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La résonance magnétique nucléaire (RMN) est une technique non-destructive qui permet 

d’identifier la structure des molécules avec précision. Depuis les années 50, elle a connu 

un essor considérable avec des améliorations aussi bien au niveau des séquences de pulses 

qu’au niveau de son instrumentation. En effet, une large gamme d’expérience est 

aujourd’hui disponible permettant des analyses en 2 dimensions alors qu’il n’était possible 

d’analyser auparavant qu’un seul noyau à la fois. En ce qui concerne les spectromètres 

RMN, il est possible aujourd’hui d’effectuer en recherche des analyses de très haute 

précision sur des appareils allant jusqu’au gigaHz. Des nouvelles technologies sont aussi 

disponibles pour réduire au maximum les bruits parasites. En parallèle, d’autres systèmes  

visant à augmenter l’intensité  des signaux par augmentation de la polarisation n’ont cessé 

de croître. On compte parmi elles la méthode dite « brute-force », le pompage optique, la 

Para-Hydrogen Induced Polarization (PHIP) ou encore la Polarisation Dynamique 

Nucléaire (PDN). 

Dans le cadre de ce projet de thèse, nous nous sommes intéressés à la PDN qui est une 

technique d’hyperpolarisation permettant de polariser des échantillons liquides à très basse 

température (1-4 K). La procédure habituelle nécessite de mélanger l’échantillon avec un 

« agent glaçant » et des radicaux dans des proportions bien contrôlées. Cet « agent glaçant » 

est un solvant tel que le glycerol ou le DMSO. Il permet d’éviter l’agrégation des radicaux 

et des molécules d’intérêt lors du processus de refroidissement de l’échantillon et de 

conserver une répartition homogène et aléatoire des radicaux dans la solution. Ces espèces 

paramagnétiques utilisées pour ces expériences sont classées en deux grandes familles que 

sont les nitroxides et les trityls. Parmi les nitroxides, le 2,2,6,6-tetramethylpiperidine-1-

oxyl connu aussi sous le nom de TEMPO est communément utilisé pour polariser les 

atomes d’hydrogène des molécules cibles. Les radicaux trityl sont eux généralement 

employés pour polariser les atomes de carbone des molécules d’intérêt. D’autres types de 

radicaux sont aussi en cours de développement de manière à optimiser la polarisation.     

Après avoir préparé cet échantillon, il est placé dans un réceptacle qui est lui-même 

introduit dans le polariseur. Les micro-ondes sont déclenchées pour transférer la haute 

polarisation des électrons aux espèces cibles ce qui permet d’augmenter l’intensité de leurs 

signaux RMN. Avec ce type de formulation, on observe des polarisations élevées par 
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exemple autour de P = 90 % pour des espèces protonées en présence de radicaux TEMPO. 

Bien que de telles valeurs soient obtenues, une fois que l’échantillon est retiré du polariseur, 

l’ensemble des espèces relaxent très rapidement vers leur état d’équilibre gommant ainsi 

toute amélioration obtenue par polarisation.  

En 2003, la PDN connait une révolution grâce à une avancée scientifique mise au point par 

Ardenkjaer-Larsen et al.. Connecté au sommet du polariseur, ils installent un tunnel relié à 

un spectromètre RMN permettant de transférer l’échantillon hyperpolarisé à température 

ambiante dans un tube RMN. Une amélioration considérable du rapport signal sur bruit 

d’un facteur de plus de 10 000 est observée pour la première fois à l’état liquide. Depuis 

cette prouesse, de nombreuses équipes de recherche améliorent le système de dissolution 

afin de réduire le temps de transfert et d’optimiser la séparation entre les radicaux et les 

échantillons. Les espèces paramagnétiques provoquent la relaxation des noyaux ce qui 

conduit à une perte considérable de la polarisation. On peut également citer une autre 

amélioration développée par Milani et al. qui consiste en l’élaboration d’un tunnel 

magnétique permettant une exposition continue et minimale à un champ magnétique même 

lors de l’étape de dissolution. De cette manière, une plus grande polarisation est maintenue 

et mesurée après dissolution dans le spectromètre RMN. Une version commerciale du 

polariseur connue sous le nom de SPINlab® est même disponible à la vente chez GE 

Healthcare. 

Suite à ces nombreux changements, de nouvelles applications telles que le suivi 

d’intermédiaires réactionnels ou le suivi métabolique par IRM ont fait leur apparition. Un 

exemple récurrent en d-PDN est l’étude de la transformation du pyruvate en lactate. En 

effet, l’effet Warburg est défini comme une surconsommation de glucose chez les patients 

atteints de cancer, avec une transformation de celui-ci en pyruvate puis en lactate. A 

contrario, un organisme sain transforme le pyruvate par l’intermédiaire des mitochondries 

en CO2 et en énergie. 
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Le diagnostic du cancer et son évolution pourront donc être suivis par injection au patient 

d’un bolus de pyruvate hyperpolarisé lors d’un examen IRM ; la présence de lactate 

permettant la détection du cancer ou d’en étudier son évolution. Cependant, la préparation 

de l’échantillon nécessite l’utilisation d’espèces paramagnétiques potentiellement toxiques 

d’autant plus sur des organismes affaiblis par la maladie.  

Suite à ces observations, nous avons développé, par procédé sol-gel, différentes matrices 

polarisantes nommées HYPSO pour HYbrid Polarizing SOlids. Ces silices mésoporeuses 

sont hautement poreuses et présentent de grandes surfaces spécifiques ainsi que de grands 

volumes poreux. Des espèces paramagnétiques y sont liées de manière covalente grâce à la 

mise au point et au contrôle d’une synthèse multi-étape robuste. Les matériaux 

fonctionnalisés présentent les caractéristiques nécessaires pour être utilisés en d-PDN telles 

que de grands volumes poreux ou l’absence d’interaction avec les micro-ondes. De plus, 

l’immobilisation des radicaux sur ce type de support a permis de s’affranchir de l’utilisation 

« d’agent glaçant » puisque ces derniers sont répartis de manière homogène et aléatoire à 

la surface des matériaux.  

Figure 1: Représentation schématique de la glycolyse et transformation du pyruvate en différents produits selon l’état 
des cellules : normales ou cancéreuses.  



14 | P a g e  
 

Dans un premier temps, l’immobilisation de radicaux TEMPO a été réalisée sur un solide 

mésoporeux organisé connu sous le nom de SBA-15. Ce type de matériau présente un 

arrangement hexagonal de son réseau poreux qui est constitué de longs canaux parallèles.  

    

 

Ces matériaux sont tout d’abord imprégnés avec une solution de référence composée d’un 

mélange H2O : D2O (2 : 8) puis introduits dans le polariseur PDN à basse température (1-4 

K). Le transfert de polarisation des électrons aux protons effectué par l’irradiation micro-

onde a révélé une polarisation maximale P (1H) = 50 % pour B0 = 6.7 T et T = 1.2 K. 

En comparaison et basé sur le même schéma de synthèse, des radicaux TEMPO ont été 

immobilisés sur des matériaux mésoporeux organisés de type SBA-16. Ces matériaux 

affichent une porosité de type cubique 3D avec des cavités interconnectées par des canaux.  

 

 

Après imprégnation de ces nouveaux matériaux avec une solution contenant un mélange 

H2O : D2O (2 : 8), une polarisation maximale P (1H) = 63 % a été mesurée pour un champ 

magnétique de B0 = 6.7 T et une température de T = 1.2 K. Cette différence de polarisation 

Figure 2: Incorporation directe des fragments azido dans une structure de type SBA-15. 

Figure 3: Incorporation directe des fragments azido dans une structure de type SBA-16. 



15 | P a g e  
 

avec les matériaux de type SBA-15 a été expliquée par l’influence de la matrice de silice. 

L’architecture de cette dernière qui présente une porosité interconnectée dans les 3 

dimensions de l’espace favorise la diffusion de la polarisation au sein même de la matrice. 

En complément, une solution à 3M [1-13C] d’acétate de sodium a été imprégnée dans la 

matrice de silice et une expérience de polarisation croisée a permis de transférer la 

polarisation des protons aux carbones. Dans ce même polariseur, une polarisation P (13C) 

= 36 % a été mesurée et la valeur obtenue peut être expliquée par une perte de polarisation 

lors du transfert réalisé par CP ainsi que des différences chimiques entre les deux solutions.  

Il est important de noter l’efficacité de ces matrices qui fournissent des polarisations tout à 

fait convenables avec des avantages considérables. 

Dans un second temps, une étude de l’influence de la taille des pores à granulométrie 

constante a été réalisée sur des sphères de silice non structurées. Puis une étude de la taille 

des grains avec un diamètre poreux fixe de 6 nm. Afin d’obtenir des résultats comparables, 

des concentrations équivalentes de radicaux TEMPO ont été immobilisés à la surface de 

ces billes. 

 

T

T

 

Figure 4: Synthetic procedure allowing to prepare the HYPSO 5 through the incorporation of the TEMPO radicals into a 
silica layer. 
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Les échantillons avec un diamètre poreux de 6 nm et une granulométrie comprise entre 250 

μm et 500 μm ont permis premièrement d’améliorer la filtration des solides et 

deuxièmement de faciliter l’expulsion du liquide hyperpolarisé. Une polarisation record de 

P (1H) = 99 % (± 5 %) a été enregistré sur ces même matériaux après imprégnation d’un 

mélange H2O : D2O (2 : 8). Ce résultat surpasse même les polarisations proton utilisant la 

formulation de base dépourvue de matrice polarisante qui jusqu’à ce jour fournissaient de 

meilleures polarisations. Après un transfert de la polarisation des protons aux carbones pour 

notre solution de référence à 3M [1-13C] d’acétate de sodium, une augmentation de la 

polarisation jusqu’à P (13C) = 51 % a été mesurée témoignant encore de l’efficacité de ces 

nouvelles matrices polarisantes. 

En tant que preuve de concept, des images IRM utilisant les matériaux HYPSOs comme 

matrices polarisantes ont été obtenues par hyperpolarisation d’une solution d’acétate de 

sodium de référence. Cette solution hyperpolarisée a été injectée dans un phantom qui 

consiste en un tube RMN muni d’un capillaire remplie avec du D2O. Par l’intermédiaire 

d’une séquence FLASH et d’une sonde à gradient triple, une tranche de ce tube a été 

imagée. Ceci est la première image IRM témoignant du potentiel des matrices HYPSOs. 

 

 

 

 

 

 

 

 

Enfin, nous nous sommes intéressés à une toute nouvelle formulation basée sur 

l’incorporation de radicaux TEMPO dans des xérogels de silice. Au lieu d’être sous forme 

de poudre, ces échantillons sont des monolithes de silice avec des textures similaires à 

celles des matériaux utilisés précédemment. Les premiers résultats affichent de bonnes 

Figure 5: Images IRM d'une section d'un tube RMN contenant un capillaire remplie avec du D2O après utilisation 
d’une matrice polarisante HYPSO pour hyperpolariser le liquide.  
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polarisations avec la capacité d’utiliser un même monolithe pour polariser différents 

liquides. 
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DNP  Dynamic Nuclear Polarization 

DQ  Double Quantum 

DRIFT  Diffuse Reflectance Infrared Fourier Transform  

EDTA  Ethylenediaminetetraacetic acid 

EMAAm N-ethyl-N-methylacrylamide  

EPR  Electron Paramagnetic Resonance 
18F-FDG 18F-Fluorodeoxyglucose 

HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) 

HPLC  High Pressure Liquid Chromatography 

HRTEM High Resolution Transmission Electron Tomography 

HYPSO Hybrid Polarizing Solid 

IUPAC International Union of Pure and Applied Chemistry 

MABP  4-mehtacryloyloxybenzophenone 

MAS  Magic Angle Spinning  

MCM  Mobil Composition of Matter 

MEOP  Metastable Exchange Optical Pumping 

MMA  Methacrylic acid  

MOF  Metal Organic Framework 

MRI  Magnetic Resonance Imaging 
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NMR  Nuclear Magnetic Resonance 

OX063  Trityl radical 

P123  Pluronic P123 

PASADENA Para-hydrogen and Synthesis Allow Dramatically Enhanced Nuclear 

Alignment 

PET Positron Emission Tomography 

PFTFA  Pentafluorophenyltrifluoroacetate 

PHIP  Para-Hydrogen Induced Polarization 

PO  Propylene Oxide 

PTFE  Polytetrafluoroethylene 

SABRE Signal Amplification By Reversible Exchange 

SAXS  Small Angle X-ray Scattering  

SBA  Santa Barbara Amorphous  

SEOP  Spin Exchange Optical Pumping  

SFC  Supercritical Fluid Chromatography 

TBAB  Tetra-n-Butylammonium Bromide 

TEOS  Tetraethyl orthosilicate 

TEM  Transmission Electron Microscopy 

TEMPO 2,2,6,6-Tetramethylpiperidine-1-oxyl 

TEMPOL 4-hydroxy-TEMPO 

TMOS  Tetramethyl orthosilicate 

TPSA  4-trimethoxysilyl-1,2,5,6-tetrahydrophtalic anhydride acid 

TRIS  (2-amino-2-hydroxymethyl-1,3-propandiol) 

ZQ  Zero Quantum 
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- General introduction - 
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The goal of this PhD project was to explore a new formulation of solid samples that could 

be advantageously used as hyperpolarizing matrices for dissolution Dynamic Nuclear 

Polarization (d-DNP). DNP is used to hyperpolarize NMR active nuclei of molecules by 

transferring the high polarization of electrons (present in stable organic radicals) at low 

temperatures (1-4 K) to the surrounding targeted nuclei. In many cases, the use of a glass 

forming agent is also required to insure the homogeneous dispersion of the radicals and the 

molecules of interest in the frozen liquid. However, the presence of organic radical species 

and glass forming agent may be detrimental for biological applications and the glass 

forming agent can disturb the NMR analysis by recovering the NMR peaks. Therefore, we 

aim here at developing new solid polarizing matrices by sol-gel process allowing to fix the 

aforementioned issues. These solid matrices are denoted HYPSO for HYbrid Polarizing 

SOlids and are composed of a silica framework where TEMPO radicals are covalently 

linked and homogenously distributed into the porosity. Different types of HYPSO (HYPSO 

2, 3 and 5) will be prepared and the impact of these modifications on the polarization values 

will be studied.  

Chapter 1 will present the different ways to hyperpolarize molecules with a peculiar 

interest direct towards dynamic nuclear polarization. The mechanisms: solid effect, cross-

effect and thermal mixing that are responsible of the polarization transfer are presented and 

explained in detail. Finally, the various systems used in the past as polarizing matrices will 

be reviewed.  

Chapter 2 will illustrate the methodologies to immobilize TEMPO radicals on ordered 

mesoporous silica materials and the preparation of polarizing matrices based on SBA-15 

and SBA-16 frameworks (HYPSO 2 and HYPSO 3). The characterization of these 

materials will be presented as well as the polarization values obtained after 

hyperpolarization of a benchmark solution of H2O:D2O and a 3M [1-13C] sodium acetate 

solution.   

Chapter 3 will show the influence of the pore size and the particle size of post-

functionalized silica beads with TEMPO radicals on the polarization performances. The 

influence of these two parameters on the polarization values is discussed taking into 
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account that large silica particles will ease the filtration process. Then, the first MRI 

pictures using HYPSO as polarizing matrix will be shown. 

Chapter 4 will describe the preparation of two types of hybrid silica xerogels obtained 

through a one-pot synthesis or a post-functionalization method.  The preliminary results 

using such types of materials will be presented and the possibility to reuse them will also 

be investigated.  

Finally, general conclusions and potential perspectives using these polarizing matrices will 

be provided at the end of this manuscript.   
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Chapter 1: General concepts and 
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The nuclear magnetic resonance phenomenon is based on the specific property of the nuclei 

having a spin S different from 0 to be influenced by a magnetic field. To understand this 

phenomenon, we will consider a system with a spin S= ½ which turns out to be the typical 

case of the proton. After applying a magnetic field B0, Figure 1 represents schematically 

the so-called Zeeman Effect which splits the energy level in two other levels commonly 

denoted as α and β.   

 

The energy difference between both levels is directly related to the nature of the nucleus 

and the strength of the magnetic field. One can also notice the population distribution where 

a higher number of spin nuclei is located in the lower energy level. This population 

difference follows the statistical Boltzmann distribution as calculated on the right of Figure 

1. In addition to the magnetic field, a brief radio-frequency field is applied and lead, once 

stopped, to the relaxation of the nuclear spin system by emitting a signal responsible of the 

NMR phenomenon. 

This method was largely used in analytical chemistry to precisely characterize the structure 

of molecules but also in biochemistry, in physics and in medicine with the magnetic 

resonance imaging (MRI). However, despite the wealth of information provided by nuclear 

Figure 1: Representation of the Zeeman Effect for a spin system S= ½ and the Boltzmann equation at B0 = 3 T and  
T = 298 K. 
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magnetic resonance spectroscopy, the lack of sensitivity arising from the method itself 

requires long analysis times or results on really low signal intensities. To compensate this 

lack of sensitivity several hyperpolarization techniques were developed such as brute force 

method, optical pumping, Para-Hydrogen Induced Polarization (PHIP) and Dynamic 

Nuclear Polarization (DNP).  

In the next section, the different hyperpolarization techniques are presented with particular 

emphasis on DNP, which has been used as efficient tool to polarize liquid samples. 

 

 
 

The brute-force method is based on a pure instrumental development to decrease the 

temperature and increase the strength of the magnetic field in order to enhance the 

polarization. Using this method, the hyperpolarization of a sample consists in submitting it 

to a strong magnetic field and very low temperatures without other additives. Then, the 

sample is dissolved and analyzed by NMR at room temperature to quantify the polarization 

enhancement. Brute-force method has led to the hyperpolarization of different metabolites 

such as [1-13C] pyruvic acid,5 [1-13C] sodium lactate5 or [1-13C] acetic acid5, the observation 

of the lungs through the hyperpolarization of 129Xe6 and more recently to the possibility to 

transport a hyperpolarized sample far from the polarizer.7 Despite the wide range of 

applications, cutting-edge technologies are required to reach high magnetic field and low 

temperature curbing thus the development of this technique (around B0 = 14 T and 

temperature ranging from 4 K to 100 mK). 

 

 
 

Optical pumping has been developed for the first time by A. Kastler who received the Nobel 

Prize in 1966. His work described the possibility to modify the population of the energy 

levels using a polarized light. Then, hyperpolarized noble gas were produced using two 

strategies which are known as: Spin Exchange Optical Pumping (SEOP) and Metastable 

Exchange Optical Pumping (MEOP). SEOP method is divided in two steps, which the first 

consists in using a polarized light to optically pump the electronic spins of an alkali metal 
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such as rubidium. The second step allows transferring the polarization of the rubidium to 

the noble gases such as the 3He and 129Xe by collision. This process can take a few minutes 

to few hours. The MEOP technique is generally used only for 3He and produces a 

metastable state at low pressure allowing to polarize samples in few seconds.  

 

 
 

The PHIP technique uses the property of the dihydrogen molecule, which has two spin 

isomers. Indeed, at room temperature, the dihydrogen is composed of 75% of ortho-

hydrogen (parallel spins and triplet state) and 25% of para-hydrogen (antiparallel spins and 

singlet state). At low temperature, it is possible to produce para-hydrogen which will be 

inserted (hydrogenation through PASADENA or ALTADENA methods) to an unsaturated 

precursor leading to the rupture of the magnetic symmetry of the protons. Unfortunately, 

this technique is limited to unsaturated molecules. An alternative version known as SABRE 

for Signal Amplification By Reversible Exchange allows to exchange the labile protons of 

a complex with para-hydrogen protons to hyperpolarize molecules. 

 

 

 

Figure 3: Schematic representation of the SABRE method where the labile protons of a complex are exchanged with the 
para-H2 and resulting to the polarization of a target molecule. 

 

Figure 2: Schematic representation of a syn-addition of para-H2 resulting in the polarization of a target molecule. 
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“ - A. Overhauser has predicted that the saturation of the conduction electrons should 

simultaneously increase the population difference between the nuclear Zeeman levels by a 

factor of several thousand and has proposed this as a method of polarizing nuclear spins “ 

This quotation comes from the report of T. R. Carver and C. P. Slitcher8 entitled 

“Polarization of Nuclear Spins in Metals” where they have shown for the first time the 

polarization of lithium metal based on the prediction of A. Overhauser. They have placed 

5 cm3 of lithium dispersed in oil in a static magnetic field and observed the signal arising 

from the polarization of lithium. 

This so-called polarization is described in DNP but also for the other hyperpolarization 

methods by the following equation: 

P = (  )     with ( ) = exp (  )    and ΔE =  -  = γћB0 

P = tanh  )= tanh  )              equation 1 

: Energy difference between the levels α and β. 
 

γ: gyromagnetic ratio 
 

: Boltzmann constant 
 

: Planck constant 
 

 : Temperature of the system : Strength of the magnetic field 
 

As mentioned in equation 1, the increase of polarization could be realized by increasing the 

magnetic field or decreasing the temperature (the other factors being constants). However, 

even by using a relative strong magnetic field and low temperatures, a maximum proton 

polarization P(1H) = 0.004 % was calculated (Table 1). 

Table 1: Polarization of different nuclei with a magnetic field of B0 = 11.75 T (500 MHz for protons) and T = 300 K. 

Nuclei Polarization (%) Magnetic field (T) 
1H 0.004 11.75 
13C 0.001 11.75 
15N 0.0004 11.75 
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The electrons have a gyromagnetic ratio 660 times larger than the protons which display 

the higher polarization at low temperature with a relatively strong magnetic field. The 

electrons could thus be efficiently polarized at low temperature and used to transfer their 

high polarization to other nuclei. Figure 4 confirms the high polarization of the electrons at 

B0 = 6.7 T which can reach a theoretical maximum polarization of  

P(e-) = 100 % at low temperatures (ca. 1 K).  
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Figure 4: Polarization values as a function of the temperature for 1H, 13C and electron. 

 

Dynamic nuclear polarization is thus taking advantage of the high polarization of the 

electrons at low temperature to polarize surrounding nuclei through a polarization transfer 

that can be achieved by the application of a microwave irradiation.  

 
 

To transfer the high polarization of the radicals to the surrounding nuclei, a microwave 

irradiation is required. This polarization transfer can occur following three mechanisms 

known as: solid effect, cross effect and thermal mixing. Although they are reported as three 

distinct mechanisms, it is possible that two of them occurring at the same time.  



36 | P a g e  
 

 
 

The solid effect is a mechanism involving an interaction between a single electron spin and 

a single nuclear spin submitted to a magnetic field. The Electron Spin Resonance (ESR) 

signal of this radical is presented in Figure 5 with specific off-resonance microwave 

irradiations at frequency υμw1 = υ0 (e) - υ0 (n) and υμw2 = υ0 (e) + υ0 (n) (with υ0 (e) and υ0 

(n) being the electronic and nuclear Larmor frequency respectively). Both situations lead 

respectively to a positive nuclear polarization and negative nuclear polarization whereas 

the on-microwave irradiation causes no polarization.  

 

 

Figure 5: Electron spin resonance as a function of the microwave irradiation taking values υ0 (e) - υ0 (n), υ0 (e) + υ0 (n) 
or υ0 (e) (top) and resulting to a DNP signal showing a positive or negative lobe. Extracted from the thesis of B. 
Vuichoud.3-4 
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The solid effect mechanism is explained in detail in Figure 6 with a schematic 

representation of the three aforementioned situations: positive polarization, negative 

polarization and no polarization. On the top of this figure, the Boltzmann equilibrium is 

depicted with a slight population excess in the energy levels: βeαn and βeβn compared to  

 αe αn and αe βn. On this energy level diagram two forbidden transitions known as zero 

quantum transition (ZQ) and double quantum transition (DQ) are highlighted.  

Positive polarization is achieved by applying a microwave irradiation at a frequency υμw1 

(DQ). A population excess is thus generated in the energy level αe αn followed by the 

allowed electronic relaxation in the energy level βe αn which now displays a population 

excess. Similarly, negative polarization is achieved by applying a microwave irradiation at 

a frequency υμw2 (ZQ). A population excess is thus generated in the energy level αe βn 

followed by the allowed electronic relaxation in the energy level βe βn which now displays 

a population excess. The last situation is created by applying a microwave irradiation at a 

frequency υμw = υ0 (e) which induces the equalization of the spin populations and no 

polarization enhancement is observed. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Representation of the dynamic nuclear polarization phenomenon through a solid effect mechanism involving 
the interaction between a single electron spin and a single nuclear spin. According to the microwave irradiation, the DNP 
signal can be positive, negative or absent. Extracted from the thesis of B. Vuichoud3-4 

(DQ) (ZQ) 
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Such a mechanism can occur only when the electron resonance of the radical has a 

linewidth smaller than the nuclear Larmor frequency. These conditions are fulfilled for 

example when using trityl radical (OX063) to polarize 13C nuclei. In practice, this situation 

corresponds to a sample with a low electron concentration compare to the nuclei 

concentration. One can also notice that positive and negative enhancements are separated 

by twice the Larmor frequency of the nucleus. 

 

 
 

The cross-effect mechanism is a three-spin system involving two electrons (e1 and e2) and 

one nucleus (n). In this case, the electrons should fulfill two conditions: the electron spins 

are coupled to each other by dipolar interactions and the difference between their resonance 

frequencies has to be exactly equal to the nuclear Larmor frequency (ωn = ωe1 – ωe2). If 

both conditions are respected the energy levels αe1βe2αn and βe1αe2βn are degenerate. The 

transition allowing to transfer the polarization from the electron to the nucleus is thus 

allowed.  

Figure 7: Representation of the dynamic nuclear polarization phenomenon through a cross-effect mechanism involving a 
three-spin system composed of two electrons (e1 and e2) and one nucleus (n). Since the energy levels αe1βe2αn and βe1αe2βn 
are degenerated the amount of energy requires is smaller compared to the solid effect. Extracted from the thesis of B. 
Vuichoud .3 
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The cross-effect mechanism is thus promoted when the radicals have a broad electron spin 

resonance compared to the nuclear Larmor frequency. In practice, nitroxide-based radical 

such as TEMPO radicals are well-suited to hyperpolarize proton nuclei according to a 

cross-effect mechanism. 

 
 

As suggested by its name, the thermal mixing is described by making an analogy with a 

thermodynamic system. It is thus defined by a spin temperature denoted TS and three other 

concepts known as reservoirs. 

- The electron Zeeman reservoir which represents the energy exchange between the 

electrons.  

- The electron dipolar reservoir which represents the dipole-dipole interaction 

between the electrons. 

- The nuclear Zeeman reservoir. 

In order to observe a polarization enhancement, the two electronic reservoirs (Zeeman and 

dipolar) must be in thermal contact. For this purpose, a slight off-resonance microwave 

irradiation is applied. In addition, the nuclear Larmor frequency should be in the range of 

the electronic dipolar linewidth so that an energy transfer occurs between both the nuclear 

reservoir and the electronic reservoir. In this case, the last term: “electronic reservoir” 

referred to the electron Zeeman and electron dipolar reservoir in thermal contact.  

This situation is also depicted in Figure 8 which shows the electron Zeeman system as a 

function of the electron spin population. Because of a spin S = ½, the figure displays two 

energy levels where the electron spin population is distributed following the Botlzmann’s 

law. The sub-levels correspond to the dipolar coupling and g-anisotropy known as the 

electron broadening reservoir. The application of a microwave irradiation (orange arrow) 

leads to the rearrangement of the electron spin population in the different levels and 

subsequently polarization.  
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As mentioned before, the hyperpolarization of a molecule through the DNP technique 

requires the use of paramagnetic species. In the specific case of proton polarization, 

TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) radicals are commonly used. They are 

highly stable nitroxide-based radicals due to the delocalization of the unpaired electrons 

over the nitrogen-oxygen bond (Figure 9). The steric hindrance caused by the four methyl 

groups in α-position of the NO group avoids its recombination with other radicals and the 

possibility of a H-abstraction leading to nitrone or hydroxylamine (Figure 11).9-10 The 

physical properties and the different synthetic routes for its preparation can be found in 

some recent reviews.11 

 

 

 

Figure 9: Resonance structures responsible of the stability of the TEMPO radicals. 

 

TEMPO radicals are characterized by a specific electron spin resonance which is different 

for each type of radical. It reflects the frequency at which the electrons absorb the 

Figure 8: Electron Zeeman system as a function of the electron spin population. Extracted from the thesis of B. 
Vuichoud.3 



41 | P a g e  
 

microwave irradiation. The shape of this electrons spin resonance spectrum can be 

explained by two types of broadening: the homogeneous and inhomogeneous broadening. 

The homogeneous broadening comes from the dipole-dipole interactions between the 

radicals. The inhomogeneous broadening is the result of two contributions: the hyperfine 

coupling and the g-anisotropy. The delocalization of the electrons over the nitrogen oxygen 

bond causes an interaction between the electrons and the nitrogen (I = 1) which results in a 

signal with three peaks (the multiplicity is defined as: 2nI+1 = 2x1+ 1 = 3). In addition, the 

radicals are randomly oriented and distributed which can create a difference in perception 

of the external magnetic field. This difference is called the g-anisotropy. 

 

TEMPO and its derivatives (Figure 11) are used in a wide range of research fields such as 

polymerization initiators,12 oxidation catalysts,13-15 antioxidants in biological systems16 and 

here in the field of dissolution DNP. 

 

Figure 10: Electron spin resonance of TEMPO illustrating the hyperfine coupling, g-anisotropy and dipole-dipole 
coupling. Extracted from the thesis of B. Vuichoud.3 
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Figure 11: TEMPO and its derivatives commonly used as well as nitrone groups and hydroxylamine derivative. 

 

TEMPO radicals are usually mixed with a glass-forming agent such as glycerol or DMSO 

to avoid aggregation of the radicals on one side and the molecule of interest on other side. 

In such sample-formulation, the radicals are homogeneously dispersed and different inter-

radical distances can be found as the function of the radical concentration. Highly 

concentrated samples display small inter-radical distances whereas low concentrated 

samples display large inter-radical distances. We will see later that the radical concentration 

is an important parameter which must not be neglected.   

Although TEMPO radicals are perfectly suitable to polarize protons, they can also be used 

to polarize carbon nuclei via a cross polarization experiment (vide infra). 

 

 

 

For the same magnetic field, nuclei with a low gyromagnetic ratio such as carbons reach 

lower polarization values compared to that of nuclei such as protons with a high 

gyromagnetic ratio. However, polarized carbon nuclei display longer relaxation times than 

protons at room temperature. The resulting polarization is thus maintained during a longer 

period of time allowing for example to probe systems with longer response times. The ideal 

scenario is therefore to reach high polarization values while exhibiting long relaxation 
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times i.e. combining the advantages of both nuclei. This scenario is possible by using a 

cross-polarization technique which consists in polarizing the proton nuclei with TEMPO 

radicals and transfer their high polarization to carbon nuclei. The cross-polarization 

technique is widely used in solid NMR spectroscopy but a suitable design of the coil and 

new pulse sequences were needed to implement this technique in the specific conditions of 

the d-DNP. Such improvements have been largely and clearly described in Aurélien 

Bornet’s PhD manuscript.17 

The evolution of the carbon polarization as a function of time using cross-polarization 

experiments is shown in Figure 12. Each plateau corresponds to the time required to build 

the polarization of the protons. The fast increase of carbon polarization corresponds to a 

polarization transfer from the protons to the carbons. As depicted in this figure, a maximum 

carbon-polarization is reached using a multiple contact cross-polarization experiment 

which is responsible of this saw-tooth profile. 

 

  

 

 

 

 

 

 

In the next section, a full description of the d-DNP device is presented along with a typical 

d-DNP experiment from the sample preparation to NMR signal acquisition.  
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Figure 12: Typical cross-polarization technique used in d-DNP conditions. 
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The d-DNP device is a complex system composed of a DNP polarizer connected to an 

NMR spectrometer with a magnetic tunnel18 (Figure 13). This device is already an 

advanced version to polarize samples because the tunnel allowing to transfer the 

hyperpolarized liquid from the DNP polarizer to the NMR spectrometer was developed in 

2003 by  J. H. Ardenkjaer-Larsen et al..19 Different d-DNP devices have been developed 

with some interesting improvements but only the experimental device actually available at 

the EPFL will be described, since all the samples synthesized in this PhD project  were 

polarized there.  

 

 

 

The home-built DNP polarizer20 is composed of a magnet operating at B0= 6.7 T and a 

cryostat allowing to reach temperatures as low as T = 1.2 K by mean of pumped liquid 

helium. On the top of the system, a microwave source (υμw = 187.5 – 188.5 GHz and Pμw = 

100 mW) generates the required microwave irradiation to transfer the electron polarization 

to surrounding nuclei. The microwave is guided via a waveguide and focused exactly on 

the sample through a mirror system.18 

Figure 13: Schematic representation of the d-DNP device with the DNP polarizer operating at B0 = 6.7 T and  
T = 1.2 K connected with a magnetic tunnel to a NMR spectrometer. 
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A typical d-DNP experiment can be divided in four steps which are: sample preparation, 

polarization, dissolution and NMR acquisition. 

The first step of this process, which is of major importance, consists in preparing a mixture 

commonly called “DNP juice”. The solution is composed of radicals, a glass-forming agent, 

a solvent and the molecule of interest. Depending on the polarization experiment, nitroxide-

based radicals or carbon-centered radicals will be favored. These two examples are the most 

common radicals used to polarize protons and carbons respectively. However, some 

research groups have tried to optimize the DNP process by coupling TEMPO radicals with 

another radical called BDPA for bis(diphenylene)-2-phenyl-allyl via an ester group,21 

synthesizing nitroxide-based radicals derivatives22-23 or they created completely new range 

of radicals.24 Nonetheless they are not commercially available and still subjected to 

additional researches. Through this type of preparation quite high level of proton 

polarization can be achieved (P(1H) = 90 % for a typical DNP juice composed of H2O: 

D2O: glycerol (20:30:50 v:v:v) and 50 mmol of 4-hydroxy-TEMPO), however the 

subsequent separation of the radicals from the hyperpolarized solution is important to 

prevent its fast depolarization. For nitroxide-based radicals, sodium ascorbate (vitamin C) 

can be used. 25 The radicals are reduced in his counterpart containing a hydroxyl group and 

the scavenger is transformed into a delocalized sodium ascorbyl radical which rapidly 

disproportionate (Figure 14).26 

 



46 | P a g e  
 

 

Figure 14: A) Reduction of TEMPOL by sodium ascorbate leading to the formation of ascorbyl radical and 2,2,6,6-
tetramethylpiperidine-1,4-diol B) Disproportionation of the ascorbyl radical into ascorbbate and 5-(1,2-dihydroxyethyl)-
furan-2,3,4(5H)-trione. 

 

Even after disproportionation, some residual products remain in solution and could be 

undesired depending on the system studied. For carbon-centered radicals, the separation is 

achieved by solvent extraction27 or pH modifications of the solution followed by an 

additional mechanical filtration.28-29 

The second step is the introduction of the “DNP juice” in the sample holder which is then 

placed in the DNP polarizer by mean of a long stick. The whole sample is cooled-down to 

low temperature (1 K– 4 K) and the microwave irradiation is then switched-on to transfer 

the high polarization of the electrons to the surrounding nuclei. In 2013, it has been shown, 

at B0 = 3.35 T and temperature ranging from 10 to 50 K, that the frequency-modulation 

improves the DNP signal.30 Instead of using a monochromatic microwave irradiation, a 

frequency-modulated microwave irradiation was used. Based on these results, A. Bornet et 

al.31 have investigated similar experiments at lower temperatures (4K – 1K) and higher 

magnetic field (B0 = 6.7 T) to observe comparable nuclear enhancements. As shown in 

Figure 15, the frequency is modulated according to a sinusoidal signal (triangular 
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frequency-modulation having similar effect) with a frequency fμw (t) = fμw + ½ Δfμw sin (2π 

fmod t). 

 

 

The frequency-modulation was found promising because the amount of paramagnetic 

species can be reduced up to a factor 2 without hampering the DNP process. For example, 

a sample containing TEMPOL radicals with a concentration of 25 mM in a 10:40:50 (v:v:v) 

H2O:D2O:glycerol-d8 mixture with frequency-modulation provided a proton polarization 

of ca. P(1H)= 60 % whereas the same mixture with 50 mM of TEMPOL without frequency-

modulation provided a proton polarization of ca. P(1H)= 40 %. In addition, using such 

frequency-modulation allowed to accelerate the DNP build-up times. For the same mixture 

displaying a radical concentration of 25 mM, the DNP build-up time τDNP was equal to 625 

s without frequency-modulation and was reduced to 185 s with frequency-modulation. On 

the EPFL’s system, the operator can choose to modulate or not the irradiation frequency. 

Figure 15: Sinusoidal modulation of the frequency with fμw (t) = fμw + ½ Δfμw sin (2π fmod t) and where fμw is the average 
frequency,  Δfμw is the amplitude of the frequency modulation and fmod the modulation frequency. 
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Finally, the sample is dissolved and transferred through a magnetic tunnel to an NMR 

spectrometer or a MRI system. The dissolution process requires the injection of 12 bar 

pressurized hot water (ca. 10 mL) in the sample holder. This dissolution step must be 

performed as fast as possible since the depolarization of the sample can occur. It is also 

important to note that the sample is subjected to a considerable pressure and temperature 

gradient. This significant variation has to be taking into account for a future sample 

formulation. The overall dissolution process is schematized in the Figure 16: 

 

 
 

The additional dissolution step developed in 2003 by J. H. Ardenkjaer-Larsen19 allowing 

to transfer the polarized sample from the DNP polarizer to a NMR or MRI spectrometer 

has opened an entirely new avenue for in vivo and in vitro researches. Based on the various 

metabolisms implied in the Krebs cycle, many groups have used this new technique to 

assess, control and monitor diseases or healthy tissues. Most of the time, analytes of choice 

Figure 16: Dissolution and transfer process using hot and pressurized water. 
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exhibit a labelled 13C carboxyl group which is used as a probe because of its long relaxation 

time T1. Therefore, the polarization of the analyte at room temperature after the d-DNP 

experiment is maintained during a longer period, allowing to probe different time-

dependent systems.  To further increase T1, the deuteration of molecules has been 

undertaken by several research groups.32  

However, the use of hyperpolarized molecules for in-vivo applications needs specific 

requirements: the paramagnetic species in the hyperpolarized solution have to be removed 

and the final pH has to be controlled before injection. For these reasons, buffer such as 

TRIS (2-amino-2-hydroxymethyl-1,3-propandiol) or HEPES (4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid) are commonly used to adjust the pH in the physiological 

range of 6.8 to 8.1. Today, [1-13C] pyruvate is the reference molecule in Magnetic 

Resonance Imaging Spectroscopy (MRIS) because of its specific role in oncology. Indeed, 

the cancer cells disrupt the Krebs cycle by increasing the glycolysis rate therefore 

increasing the amount of pyruvate. This phenomenon known as Warburg effect is followed, 

even in presence of dioxygen, by lactic acid fermentation in the cystoplasm which converts 

pyruvate into lactate in cancer cells instead of oxidizing pyruvate into carbon dioxide and 

cellular energy in mitochondrias in healthy tissues (Figure 17). One can thus monitor the 

kinetics of pyruvate conversion into lactate after hyperpolarization to detect a cancer or 

monitor cancer-evolution. 
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Nevertheless, a wide range of molecules were also investigated for in-vivo applications 

covering different types of metabolisms and therefore different diseases or important 

changes. The table 2 adapted from the article of R. E. Hurd et al.33 shows a non-exhaustive 

list of hyperpolarized molecules used in DNP along with their metabolized products. 

 

 

 

 

 

 

Figure 17 : Scheme representing the different pathways of the normal cell and the cancer cell. For cancerous cell the 
transformation of pyruvate into lactate is highlighted in comparison to a normal process. 
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Table 2: Hyperpolarized molecules and their corresponding products used in d-DNP. 

Hyperpolarized 

molecules 
Products References 

[1-13C] pyruvate 
[1-13C] lactate, [1-13C] alanine, [13C] bicarbonate, 

13CO2 
34 

[2-13C] pyruvate 
[2-13C] lactate, [2-13C] alanine, [1-13C] acetyl-

carnitine, [1-13C] citrate, [5-13C] glutamate 
35-36 

[1,2-13C2] 

pyruvate 

[1,2-13C] lactate, [1,2-13C] alanine, [1-13C] acetyl-

carnitine, [1-13C] citrate, [5-13C] glutamate,  

[13C] bicarbonate, 13CO2 

37 

[1-13C] lactate 
[1-13C] pyruvate, [1-13C] alanine, [13C] bicarbonate, 

13CO2 
38 

[13C] 

bicarbonate 
13CO2 39 

[1,4-13C2] 

fumarate 
[1,4-13C2] malate 40 

[1-13C] acetyl 

methionine 
[1-13C] methionine 41 

[2-13C] fructose [1-13C] fructose-6-phosphate 42 

[5-13C] 

glutamine 
[5-13C] glutamate 43 

[1-13C] 

ethylpyruvate 

[1-13C] pyruvate, [1-13C] lactate, [1-13C] alanine, [13C] 

bicarbonate, 13CO2 
44 

[1,1’-13C2] 

acetic anhydride 
Multiple 45 

[1-13C] acetate [1-13C] acetyl-carnitine 46 

[13C] urea None 47 

[1-13C] dehydro 

ascorbic acid 
[1-13C] ascorbic acid 48-49 

[1-13C] alanine [1-13C] pyruvate, [1-13C] lactate, [13C] bicarbonate 50 



52 | P a g e  
 

 
 

Many efforts have been devoted to the improvement of the d-DNP set-up or the 

development of NMR sequences however less interest was directed towards the 

optimization of the sample preparation which remains of major importance for in-vivo 

applications for instance. As shown before, techniques such as precipitation or addition of 

ascorbic acid have been developed to separate the paramagnetic species from the 

hyperpolarized liquid but both of them are not suitable for an optimal hyperpolarization 

process. Immobilization of the radicals into solid supports was also attempted in order to 

fulfill the aforementioned requirements and some relevant examples, which include the 

preparation of modified silica gel and agarose supports, polymers and ordered mesoporous 

silica matrices containing radicals are shown in the following section.  

 

 

 

The oldest literature precedents aiming to synthesize polarizing matrices were published in 

198151 and 198752 using flow DNP as hyperpolarization technique. In opposition to static 

DNP as shown before and denoted only as DNP, flow DNP set-up is composed of two main 

parts (Figure 18): the first part contains the immobilized spin-label solid retained by a filter 

in the polarizer and the second consists in a fluid flowing through the polarizing matrix 

analyzed downstream. 

Figure 18: Schematic representation of the flow DNP set-up where the immobilized paramagnetic species are 
retained by a sinter-glass filter. The hyperpolarized liquid is detected after a first pass in this system similar to a 
chromatography column. 
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The preparation of a solid phase containing paramagnetic species is essential to use this 

technique. In these publications, nitroxide radicals were immobilized on glass beads by 

reaction of a hydroxyl group with dimethyldichlorosilane followed by reaction with 

TEMPOL radicals in route 1. In route 2, the dimethydichlorosilane was replaced by 

cyanuric chloride and finally coupled also with TEMPOL radicals (Figure 19). 

 

 

Figure 19: Preparation of the solid phase containing a TEMPO radical linked via a siloxane bridge in the first reaction and 
to a triazine cycle in the second reaction. 

 

Both materials were mixed with different solvent systems and submitted to a pH range of 

1 to 11. After one hour of experiment, the glass beads obtained using route 1 were found to 

be stable independently of the pH whereas some leaching of the radicals was observed with 

the material synthesized through the second route. 
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At the same time, they have functionalized polystyrene-divinylbenzene beads through an 

electrophilic substitution reaction known as Friedel-Craft acylation. The aluminium 

chloride catalyst reacts with the acetyl chloride to form the CH3CO+ electrophile which 

then replaced a proton in the cycle. Finally, the paramagnetic species were coupled via the 

formation of a C=N bond between the 4-amino-TEMPO and the divinylbenzene derivative. 

 

 

Figure 20: Schematic representation of the functionalization of polystyrene-divynylbenzene beads. 

 

The functionalized polystyrene-divinylbenzene beads were found to be stable over the same 

range of pH however the high degree of cross-linking turned out to be detrimental for the 

flow. Indeed, a constant and adequate flow was difficult to maintain hampering thus their 

utilization in flow DNP.  

Flow DNP was not investigated in this PhD project but more details about this technique 

can be found in some recent reviews.53 Nevertheless, the filtration issues aforementioned 

can be also encountered in a static d-DNP device especially when dissolving the sample in 

the polarizer.  

In 2008, E. R. McCarney et al.54 have prepared an agarose-based matrix with different 

TEMPO radicals (Figure 21) and bought a commercial silica gel containing TEMPO 

radicals (radical loading of 0.7 mmol/g, mean pore size of 6 nm and grain size ranging from 

120-230 mesh) to probe the static and flow DNP performance.  
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Figure 21: 15N-perdeutero-4-amino-TEMPO and 14N-4-amino-TEMPO used to functionalize an agarose-based matrix. 

 

The agarose-based matrix containing TEMPO derivatives was obtained from commercial 

agarose containing N-hydroxysuccinimide functional groups able to react with 4-amino-

TEMPO according to the following scheme: 

 

 

Figure 22: Schematic representation of the reaction between amino-TEMPO and N-hydroxysuccinimide leading to the 
formation of a peptide bond. 

 

Interestingly, one can observe a linewidth broadening of the TEMPO EPR signals after 

immobilization on agarose or silica compared to corresponding TEMPO solutions recorded 

in the same conditions. This observation was attributed to the possibility to reach higher 

enhancements in the specific experimental conditions employed for this case. Moreover, 

the authors have claimed higher performances for the agarose matrix in contrast to the 

commercial silica gel but two distinct radical concentrations were used.  
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Stimuli-responsive polymers55 are polymer-based materials able to change their chemical 

and physical properties upon exposure to an external stimulus. This stimulus can be the pH, 

the electric/magnetic field, the mechanical force or the temperature. Since d-DNP 

experiments require hyperpolarization at very low temperature and fast dissolution up to 

room temperature, the use of thermo-responsive polymers56-57 as polarizing matrices is 

promising. Above a specific temperature characteristic of each type of thermo-responsive 

polymer, the structure of the polymer collapses and leads to the expulsion of the liquid 

previously impregnated into the solid matrix. 

This type of polymer was used by B. C. Dollmann et al.58 to immobilize radicals. They 

prepared a statistical triblock copolymer by radical terpolymerization between N-ethyl-N-

methylacrylamide (EMAAm), methacrylic acid (MMA) and 4-

mehtacryloyloxybenzophenone (MABP) initiated by asobisisobutyronitrile (AIBN). The 

resulting polymer was further cross-linked under UV irradiation and the carboxylic residues 

were transformed into esters by use of NEt3 and pentafluorophenyltrifluoroacetate (PFTFA) 

in DCM. Finally, the resulting product was functionalized by 4-amino-TEMPO and led to 

the expected spin-labeled thermo-responsive polymer. 
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Figure 23: Radical terpolymerization initiated by AIBN which is subsequently cross-linked by UV irradiation and finally 
functionalized with 4-amino-TEMPO. 

 

Figure 24 shows the DNP sample-formulation using such type of spin-labeled thermo-

responsive polymers. The preparation consists in impregnating the spin-labeled thermo-

responsive polymer with a mixture of water (H2O) and the target-molecule (Bio). DNP 

experiments were further conducted, here represented schematically with the microwave 

irradiations, and the sample was exposed to a temperature gradient corresponding to the 

dissolution process using hot water. As a result, the structure of the polymer collapsed, 

releasing the hyperpolarized mixture of water (H2O*) and target-molecule (Bio*). 
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In this publication, two spin-labeled thermo-responsive polymers were prepared with an 

estimated concentration of 1 mM and 6.8 mM (swollen state). These concentrations 

correspond respectively to 5 mol% and 15 mol% (molar). In both materials, a temperature 

above T = 63 °C was necessary to generate a fast (≤ 1 s) collapsing of the structure to 

liberate the solution. Even at low temperature, it was shown that microwave irradiations 

(for a microwave power Pμw above 2 W), led to a local heating, inducing a partial or 

complete expulsion of the hyperpolarized solution. A part of the impregnated liquid was 

found out of the polymer and therefore too far from the polarizing agents to be efficiently 

polarized. A modest enhancement of ε = 27 was observed for water using Overhauser DNP 

at B0 = 0.345 T. 

In 2016, T. Cheng et al.59 used the same thermo-responsive polymer (SL-hydrogel 15%) to 

hyperpolarize d10-tert-butanol and [1-13C]tert-butanol. Unfortunately, low carbon 

polarizations were recorded after dissolution: P(13C) = 2 % for d10-tert-butanol and P(13C) 

= 3 % for [1-13C]tert-butanol. These poor carbon polarization values were explained by an 

insufficient amount of TEMPO radical immobilized on the polymer and the use of an 

inadequate radical to polarize carbons nuclei. The use of trityl radicals was thus suggested 

but their accurate immobilization may be difficult as it was already for less bulky TEMPO 

radicals which exhibited a limited diffusion into the network of the hydrogel.  

B. Vuichoud et al.60 published the preparation of a thermo-responsive polymer which is a 

poly(N-isopropylacrylamide) decorated with nitroxide radicals dubbed FLAP (“Filterable 

Figure 246: Schematic representation of a spin-labeled thermoresponsive polymer used in a DNP experiment and 
subjected to a temperature gradient leading to the collapse of the polymer structure. 
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Labeled Agents for Polarization”). The synthesis of the FLAP polymer is presented in 

Figure 25.  

 

 

Figure 25: Synthesis of the Filterable Labeled Agents for Polarization (FLAP). 

 

The sample preparation with the FLAP polymer consisted in impregnating 50 mg of a 25 

mol% spin-labeled FLAP with 100 μL of a 1 M solution of NaCl in H2O. The wetted 

powder was subsequently introduced in a polarizer operating at T = 1.2 K and B0 = 6.7 T. 

Before dissolution, a proton polarization of P(1H) = 63,3 % was recorded. Unfortunately, 

this value decreased as low as P(1H) = 6 % after dissolution. Nonetheless, the FLAP 

polymer was successfully retained by the filter located in the DNP polarizer and any 

paramagnetic species were found in the NMR spectrometer as shown by the relaxation time 

of T1 (1H) = 36.6 s. In comparison, the presence of paramagnetic species without the use of 

the FLAP polymer was conducted and led to a reduced relaxation time T1 (1H) = 9.8 s. 

Moreover, the stability of the FLAP polymer over time was investigated by impregnating 

the polymer with the same solution and stored two weeks at room temperature. However 

after this period of time, the performances were found to decrease to ca. P(1H) = 50 % at T 

= 1.2 K and B0 = 6.7 T. This decrease of polarization could be attributed to the adsorption 

of water into the polymer as suggested by the bi-exponential 1H DNP build-up curves 

observed after storage. 

Additional d-DNP experiments were conducted after impregnation of a mixture of [1-13C] 

sodium pyruvate, [1-13C] sodium acetate and [1-13C] alanine in the 25 % spin-labeled 

FLAP. A CP experiment was applied to transfer the proton polarization to the carbon nuclei 

and, after dissolution, the hyperpolarized liquid was transferred into a NMR tube located 

in a 500 MHz NMR spectrometer. Carbon polarizations of P(13C) = 8.3 % for pyruvate, 

P(13C) = 7.6 % for acetate and P(13C) = 5.9 % for alanine were recorded. Although three 

metabolites were polarized at the same time, low carbon polarizations were obtained. 
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To summarize, FLAP polymers have provided reasonable proton polarizations at T = 1.2 

K. However, the dissolution of the samples led to very low polarizations at room 

temperature hampering their utilization so far. It is also important to notice that a solution 

of sodium chloride was impregnated in the FLAP in order to prevent the polymer 

dissolution below 32 °C. After dissolution, the hyperpolarized liquid was not pure but 

contains traces of this solution of sodium chloride estimated at a concentration of 20 mM. 

In recent years (2015-2017), a new and quite different approach was developed by A. 

Capozzi et al.61-62 as inspired by the preliminary studies of T. Eichhorn et al.63 While in all 

of the other strategies, the radicals were embedded in a solid matrix, they decided to 

generate free radicals using UV-irradiations at low temperature (77 K) in neat pyruvic acid 

or in solution with ethanol or THF. The use of photo-induced radicals is promising as these 

radicals can spontaneously recombine upon dissolution. However, the radical concentration 

in the samples was difficult to control by the exposure time to the UV-irradiations and the 

addition of a solvent led to different radical yields. Nevertheless, this method seems to be 

promising and open new perspectives for the d-DNP formulation but remained so far 

limited to the use of pyruvic acid. 

In conclusion, through these different examples, one can notice the importance of filtering 

out the paramagnetic species from the hyperpolarized liquid. It is a persistent issue in all 

the hyperpolarization techniques: continuous flow DNP and d-DNP. In this context, our 

research group has developed alternative silica based polarizing matrices, dubbed HYPSO 

(HYbrid Polarizing SOlids) that will be described in the next section.  

 

 

 

The first generation of HYPSO solids were based on the preparation of hybrid 

mesostructured silicas bearing TEMPO radicals. These silica frameworks were prepared 

using sol-gel process and their preparation along with their use as polarizing matrices will 

be depicted hereafter. 

Preliminary results were recently published in our group using silica solids as supports to 

covalently link TEMPO radicals.64 In this publication and as shown in Figure 26, ordered 
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mesoporous materials were prepared via sol-gel process techniques. The addition of a 

structure-directing agent such as pluronic P123 allowed to prepare a hybrid silica matrix 

exhibiting a 2D-hexagonal arrangement of its porous network with long parallel pore 

channels. These silica materials are known as SBA-15 type materials but in this case 3-

azidopropylsilane fragments were incorporated in the silica solid with various loadings. In 

the as-obtained materials, named Mat-Azide, the surface azido groups were further 

converted in amino groups through a Staudinger reaction and the resulting material was 

quoted Mat-Amine. This reaction involved the use of a phosphine derivative to generate an 

iminophosphorane which was further hydrolyzed to yield to the primary amine and the 

phosphine oxide as by product. Although mild conditions were used, it is usually difficult 

to remove the phosphine oxide. Finally, the last step of this preparation consisted in a 

peptide coupling between the surface amino fragments and the organic radical bearing a 

carboxyl group. With this method, it was thus possible to incorporate nitroxide units 

starting from the carboxy-TEMPO or carboxy-bTurea compounds. The resulting solid 

matrices, denoted as Mat-TEMPO and Mat-bTUrea, were thus obtained as depicted in 

Figure 26. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 26: Preparation of ordered mesoporous silica materials as polarizing matrices (Mat-TEMPO and Mat-bTUrea 
materials) by incorporation of TEMPO radicals and using sol-gel process. 
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Using continuous wave electron paramagnetic resonance spectroscopy, a titration of the 

TEMPO units was performed and the results showed a quite low incorporation of the 

radical units into the final materials (from 20 % to 33 % with respect to the parent azido-

containing solids).  

After extensive characterization of the materials, their performances were evaluated in 

Magic Angle Spinning DNP (MAS-DNP). Mat-TEMPO matrices were impregnated with 

1,1,2,2-Tetrachloroethane or water and the NMR spectra were recorded at 100K with or 

without microwave irradiation to determine the enhancement factors of 1H (εH), 13C (εC CP) 

and 29Si (εSi CP). The carbon or silicon enhancements were not obtained by direct 

polarization but by cross-polarization from the protons of the impregnated liquid. Results 

are plotted in the two graphs of the Figure 27. 

 

 

 

 

 

 

 

 

First of all, as shown in Figure 27.a), one can notice the existence of an optimal radical 

concentration for a starting dilution of 1/34 in azido groups giving thus the maximal 

enhancements of [εH, εC CP, εSi CP] = [21, 21, 16]. In figure 10.b), the Mat-TEMPO materials 

impregnated with water gave similar results with optimum results for 1/34 and 1/25 diluted 

materials. The enhancement factors were [εH, εSi CP] = [22, 36] and [εH, εSi CP] = [17, 36] 

respectively. These experiments highlight the possibility to polarize liquid without using 

glass-forming agent. The good polarization values for MAS DNP can be explained by a 

regular distribution of the radicals within the pores of the polarizing matrices as well as the 

control over the inter-radical distances.  

Figure 27: a) Enhancement factors of the 1H, 13C and 29Si as a function of the radical concentration for the Mat-
TEMPO impregnated with 1,1,2,2-Tetrachloroethane b)  Enhancement factors of the 1H, 13C and 29Si as a function of 
the radical concentration for the Mat-TEMPO impregnated with water. 
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Because of the potential of these polarizing matrices for DNP applications and more 

specifically in-vivo applications, labeled metabolic tracers were impregnated. An aqueous 

solution of [2,3-13C]-L-alanine and [1-13C] pyruvic acid dissolved in water were 

impregnated into 1/34-Mat-TEMPO and 13C CP MAS NMR spectra with or without 

microwave irradiations were recorded. First results revealed an enhancement factor εC CP = 

39 for labeled alanine and εC CP = 36 for pyruvic acid. 

 

 

Again, promising results were found here and led to further developments of such solids 

for d-DNP applications (vide infra). 

The aforementioned ordered mesoporous SBA-15 type materials, dubbed HYPSO 1, were 

first used in d-DNP and published in a “Proceedings of National Academy of Sciences of 

the United states of America” article.65 Here, the d-DNP experiments were performed with 

a magnetic field B0 = 6.7 T and temperature T = 1.2 K (the home-built d-DNP polarizer is 

presented in this chapter part. I-E). Optimal HYPSO 1 with a concentration of 88 μmol of 

radical per gram was divided into three portions of 20 mg and impregnated with the 

following solutions: A) 3M solution of sodium [1-13C] pyruvate in D2O/H2O (9/1) B) 3 M 

solution of sodium [1-13C] acetate in D2O/H2O (9/1) and C) a mixture of sodium fumarate 

(CH3CH(NH2)13CONHCH2
13COOH)  and alanine-glycine in D2O/H2O (9/1). After 

Figure 28: Carbon enhancement of the [1-13C] pyruvic acid after CP MAS and using 1/34 Mat-TEMPO. From the left 
to the right, the stars correspond to the keto and the 2-hydrated pyruvic acid.1-2 
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insertion of the polarizing matrix in the d-DNP polarizer, CP experiments were used to 

transfer the high electron polarization to the protons and finally the carbons of the 

impregnated liquid. Finally, each sample was dissolved by means of hot pressurized water 

and HYPSO 1 was filtered through a simple cellulose fiber filter settled in the d-DNP 

polarizer. The hyperpolarized solutions were then analyzed by 13C liquid state NMR with 

a spectrometer (300 MHz) and compared to their thermal equilibrium (Fig. 29). 

After dissolution and comparison with their thermal equilibrium, P(13C) = 16,5 % and  

P(13C) = 25,3 % were respectively recorded for the hyperpolarized solution of sodium [1-
13C] acetate and the hyperpolarized solution of sodium [1-13C] pyruvate  (Fig. 29 A. and 

Figure 29: 13C NMR spectrum after hyperpolarization of [1-13C] acetate (A), [1-13C] pyruvate (B), L-alanine-glycine 
and fumarate (C) using HYPSO 1. In each example, the hyperpolarized signal is compared to its thermal equilibrium. 
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B.). In order to show the diversity of solutions which can be hyperpolarized, the 

polarization of a mixture of fumarate and alanine-glycine was also recorded. The two 

carbonyl carbons of fumarate gave P(13C) = 19,9 %  and the alanine-glycine P(13C) = 15 % 

&  P(13C) = 13,6 %.These first results are promising and highlights the potential of HYPSO 

materials in d-DNP. The strong immobilization of the TEMPO radicals (no leaching of the 

radicals) onto the polarizing matrices was also assessed after dissolution by measuring the 
13C T1 which was ca.50 s.  

One of the main advantages of these polarizing matrices, beside the absence of radicals in 

the hyperpolarized solutions, could be the possibility to polarize samples without using a 

glass-forming agent as far as no agglomeration of radical can occur due to their 

homogeneous distribution along the silica pore channels. It was proven without any doubt 

by comparison of the DNP performances of a typical DNP juice containing glass-forming 

agents and HYPSO materials without glass-forming agents. For this purpose, the HYPSO 

1 material was impregnated with a mixture of H2O:D2O (1:9) and a typical DNP juice 

composed of H2O:D2O:glycerol-d8 ([10:40:50 (vol:vol:vol)]) was prepared. Both samples 

were polarized and the 1H DNP build-up curves exhibited a quite comparable feature at T 

= 4.2 K (see Figure 30). 

In this publication, indirect cross-polarization 1H -> 13C using TEMPO radicals was favored 

rather than direct polarization with trityl radicals because the polarization transfer was 

faster. For instance, a carbon polarization P(13C) = 40 % was reached in 20 minutes and 

Figure 30: 1H DNP build-up curves as a function of the time for HYPSO 1 impregnated with or without a glass-forming 
agent at T= 4.2 K.  



66 | P a g e  
 

measured after dissolution. Nevertheless, since cross-polarization is not commercially 

available, one would prefer direct 13C polarization with trityl radicals which are the more 

suitable radicals in this case. Hence, using the same synthesis, TEMPO radicals were 

replaced by trityl radicals and the obtained materials were called HYPSO 1.2. Only one 

material with a radical concentration of 16 μmol/g was impregnated with a 3M solution of 

[1-13C] pyruvate in D2O. As shown in Figure 31, the direct polarization of P(13C) = 15 % 

was reached within 2 hours. The DNP build-up time was fitted with a mono-exponential 

function displaying a τDNP (13C) = 104.6 min and giving a carbon polarization of P(13C) = 

22.9 % at saturation. 

 

  

Based on these results, a new strategy to synthesize HYPSOs was investigated in order to 

increase the radical incorporation yield. The radical incorporation was performed by a click 

reaction (copper catalyzed cycloaddition, CuAAC) between the surface azido fragments 

and the TEMPO radical bearing alkynyl group. The newly synthesized solids (HYPSO 2) 

allowed to reach P(13C) > 30 % in the polarizer after impregnation of a 3M solution of 

sodium [1-13C] pyruvate. As these results are part of this PhD, they will be presented in 

chapter 2. 

In conclusion, ordered mesoporous materials containing TEMPO radicals were synthesized 

using a multi-step synthesis. However, EPR experiments showed a quite low conversion of 

the azido surface fragments into the corresponding polarizing agents when using a peptide 

coupling. For the first time, Mat-TEMPO (HYPSO 1) matrices were used as polarizing 

supports in MAS-DNP. The enhancement factors of [εH, εC CP, εSi CP] = [21, 21, 16] were 

Figure 31: Direct 13C polarization of a 3 M solution of [1-13C] pyruvate previously impregnated into HYPSO 1.2. 
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measured for the optimal 1/34 Mat-TEMPO material impregnated with 1,1,2,2-

Tetrachloroethane. Additional experiments consisting in impregnating water in the Mat-

TEMPO (HYPSO 1) matrices gave maximum enhancement factors of [εH, εSi CP] = [22, 36] 

and [εH, εSi CP] = [17, 36] for the dilutions 1/34 and 1/25 respectively. As in-vivo applications 

could be one of the major utilization of these polarizing matrices, preliminary results were 

obtained for the polarization of [2,3-13C]-L-alanine and [1-13C] pyruvic acid in MAS DNP. 

Enhancement factors of εC CP = 39 and εC CP = 36 respectively were measured using 1/34 

Mat-TEMPO material.  

Using a d-DNP set-up, the impregnation of HYPSO 1 ([R] = 88 μmol/g) with a solution of 

sodium [1-13C] acetate, sodium [1-13C] pyruvate and a mixture of fumarate/alanine-glycine 

led to P(13C) = 16.5 %, P(13C) = 25.3 %, P(13C) = 19.9 %, P(13C) = 15 % / P(13C) = 13.6 % 

respectively, after dissolution. Even after the dissolution process, the radicals remained 

strongly attached onto the silica supports (as shown by the important 13C T1 ca. 50 s) and 

the advantage of using these matrices without any glass-forming agents was also 

demonstrated. Although the previous results were measured using indirect cross-

polarization 1H -> 13C, direct 13C polarization was inspected with HYPSO 1.2 materials 

containing trityl radicals as polarizing agents. As expected, a long build-up time was 

measured with a potential maximum polarization of P(13C) = 22.9 %.  

These results are encouraging and prompted us to develop other polarization matrices to 

reach higher polarization values, which is the goal of this PhD project. 
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Porous solids are classified according to the International Union of Pure and Applied 

Chemistry (IUPAC) in three categories:1 

- Microporous solids with a pore diameter below 2 nm 

- Mesoporous solids including all the porous solids with a pore diameter ranging from 

2 nm to 50 nm  

- Macroporous solids with large pores exceeding 50 nm 

Made of a crystalline aluminosilicate network, zeolites belong to the microporous solids 

family. The framework of these porous solids is composed of a tetrahedral arrangement of 

inorganic units where the central cations are surrounded by four oxygen atoms occupying 

each apex ([SiO4]4- or [AlO4]5-). Their physical and chemical properties made them good 

candidates for purification of water,2 catalysis (ZSM5, USY zeolites),3-4 energy storage5 

and ion exchange.6 Other types of materials such as Metal-Organic Frameworks (MOFs) 

have also a microporous structure. This specific structure is composed of single metallic 

ions or clusters of metallic ions linked by organic molecules. The choice of the units, metals 

and organic linkers, is important since the properties of the as-obtained materials will 

depend on it. Applications using MOFs ranging from catalysis,7 separation to sensors8 can 

be found in the literature. However, the small pores size becomes a limitation if the size of 

the substrates to be studied exceeds the pore dimension. 

 

Figure 1: Example of zeolite: ZSM-5 and MOF with an MFI type structure. 
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In this context, porous solids with larger pores were developed and studied. As an example, 

ordered mesoporous materials were synthesized. Indeed, they have a well-defined pore 

arrangement, high surface area, high pore volume and the pore size can be easily 

modulated. They are composed of an amorphous silica framework displaying siloxane 

bridges Si-O-Si with residual silanol groups Si-OH on their surface. These latter are 

hydrophilic whereas the siloxane bridges are hydrophobic. The silanol groups are of great 

interest since they can be used to modify the surface by the grafting of organometallic 

precursors. In most of the cases, ordered mesoporous solids are prepared through a 

Cooperative Templating Mechanism (CTM). This preparation route is based on a self-

assembly of surfactant micelles in interaction with the silicon precursor leading to a long-

range order organization of the porous network. Different type of solids can be prepared 

depending on the nature of the surfactant (ionic or non-ionic), the temperature, the 

surfactant:silicon ratio, the nature of the co-solvents and the nature of the catalyst (acid, 

basic, nucleophilic). The first ordered mesoporous materials denoted FSM9 for Folded 

Sheets Mesoporous were obtained using quaternary ammonium surfactant. Then, scientists 

from Mobil have prepared new types of materials belonging to the M41S family10-12 with 

various porous network arrangements: cubic (MCM-48),13-14 lamellar (MCM-50)15 and 

hexagonal (MCM-41).14  

Later, SBA-type materials standing for Santa Barbara Amorphous materials were also 

prepared using block copolymers16-17 such as SBA-15 and SBA-16. These materials display 

larger pores (SBA-15: mean pore diameter of 10 nm) and thicker walls (SBA-15: from 2 to 

6 nm) compared to M41S which give them a higher hydrothermic stability.  

In order to compare the matrix effect on the polarization performances, our research focuses 

here on the preparation of TEMPO containing solids with SBA-15 and SBA-16 

architectures. The synthesis as well as some physical features of such materials are 

presented in the following paragraphs.    
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The preparation of ordered mesoporous silica materials requires a thorough knowledge of 

the sol-gel chemistry. This process involves a succession of reactions which have to be 

precisely controlled to have access of a wide range of materials and even hybrid materials. 

The important points of this technique are described in the following section along with the 

parameters influencing each steps. 

 

 
 

Today known as sol-gel process coming from the contraction of “solution-gelification”, 

this process allows to produce solid samples by mean of a precursor which undergoes 

upstream hydrolysis and condensation reactions. In the typical case of silicon alkoxides 

with a general formula Si(OR)4  such as tetraethylorthosilicate (TEOS) and 

tetramethylorthosilicate (TMOS) for the most common, the hydrolysis and condensation 

reactions are slow. They are therefore catalyzed by acids, bases or nucleophiles species or 

even coordination complexes such as rhodium complexes. 

The sol-gel process is thus characterized by the following reactions: i) Formation of the sol, 

ii) Formation of the gel, iii) Aging and iv) Drying. 

 

 
 

The sol is a colloidal solution with particle sizes ranging from 1 nm to 100 nm obtained 

after hydrolysis and partial condensation. As shown in Figure 2, the hydrolysis reaction 

involves the interaction between a silicon precursor and water to form silanol groups. These 

freshly synthesized silanols groups have the possibility to condensate with other silicon 

precursors Si-OR (alcoxolation) or other silanol species Si-OH (oxolation). In both cases, 

the formation of siloxane bridges is observed. 
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1. Hydrolysis : 

 

2. Condensation : 

 

Figure 2: Hydrolysis and condensation reactions occurring during the sol-gel process. 

 

 
 

After many condensation reactions, the liquid sample becomes more and more viscous until 

reaching the “gelation time”. At this point, a tri-dimensional network called gel is formed 

which the structure is highly dependent on the rate of the hydrolysis and condensation. The 

resulting gel appears as an elastic and wetted sample with the remaining liquid trapped in 

the cavities formed by the network.  

 

 
 

The aging of the gel corresponds to the prolongation of the condensation reactions which 

reinforced the tri-dimensional network. These reactions increase the cross-linking of the 

network and a phenomenon of syneresis is observed. The gel network shrinks 

spontaneously and the liquid trapped into the pores is released.  

 

 
 

Drying a wet gel is a sensitive process because of the capillary forces resulting of the 

evaporation of the liquid out of the pore network. A slow drying helps to the conservation 
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of the pore network whereas a fast drying can cause some cracks into the structure or even 

sometimes the collapse of the structure. 

A wet gel can be dried by an increase of the temperature which causes the shrinkage of the 

gel which allows surface silanol groups to get spatially closer. The surface silanols can 

react with each other to form siloxane bridges which further consolidate the structure. In 

addition, the pore size becomes smaller and the surface tension of the liquid larger. When 

the gel is no longer deformable, ca. with a high surface tension and close to the cracking, 

the liquid is evaporated from the gel and only a thin film of liquid remained on the pore 

walls. Finally, the thin film of remaining liquid is removed via diffusion in the gas phase.   

Another drying process is also used: the supercritical drying in which temperature and 

pressure are chosen to insure the transformation of the liquid into a supercritical fluid. This 

process allows to prevent the cracking of the gel and the collapse of the porous network 

because the capillary forces are no more in action. However, the use of such method leads 

to materials with different porous features (with respect to what is obtained under classical 

drying conditions) and this point will be addressed with much more details in Chapter 4. 

Based on this sol-gel process, ordered mesoporous silica materials were developed. Typical 

examples are SBA-15 and SBA-16. The main features of these silica-based materials as 

well as their synthesis are described hereafter. 

 

 
 

SBA-15 type materials were first developed by D. Zhao et al. in 1998.16 The authors used 

a non-ionic triblock copolymer, namely pluronic P123, composed of a hydrophobic central 

block of poly(propylene oxide) (PO) surrounded by two hydrophilic external blocks of 

poly(ethylene oxide) (EO) frequently denoted as (EO)X(PO)y(EO)Z. As shown in Figure 3, 

the silica materials were obtained through a cooperative templating mechanism (CTM). 

The increase in concentration up to the critical micellar concentration allows to form 

spherical micelles which further self-organize into rod-like micelles. Over time, a 

hexagonal mesophase composed of these rod-shaped micelles is created while, 

tetraorthosilicate (TEOS), used as the silicon source got hydrolyzed and polycondensated 

under acidic conditions. The last step of this process consisted in removing the structure 
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directing agent (P123) to liberate the porosity. This removal must be handled carefully 

since it could affect the structure itself, resulting in lower surface areas, lower pores volume 

or complete collapse of the structure. A wide range of techniques to remove the structure-

directing agent can be found in the literature such as water/pyridine extraction,18 soxhlet 

extraction,19 calcination,20 supercritical fluid extraction,21 microwave digestion22-23 or 

photocalcination.24 

 

SBA-15 type ordered mesoporous silica materials displays a 2D hexagonal arrangement of 

mesopores (p6mm) with a mean pore diameter around 10 nm and a wall thickness of c.a  

2-6 nm. They exhibit a high surface area (600-1000 m2/g) and large pore volume (0.8-1 

cm3/g). These types of solids were used in a wide range of applications such as drug 

delivery,25 solar cells,26 batteries,27 catalysis28 and separation.29-31 

 

 
 

Similarly to SBA-15, SBA-16 mesoporous silica materials were prepared through the same 

mechanism (CTM). Instead of Pluronic P123, Pluronic F127 was used with TEOS as the 

silicon source. Various conditions can be found in the literature to create such types of 

solids as for example the use of a mixture of pluronic P123 and pluronic F127 or a ternary 

water/butanol/Pluronic F127 system.32 This type of synthesis leads to a 3D cubic 

organization of the porous network as shown by TEM micrograph (Fig. 4). SBA-16-type 

materials have large mesopores (5-15 nm) interconnected by micropores (1-2 nm). They 

Figure 4: Schematic representation of the SBA-15 formation. 

Figure 3: Schematic representation of the SBA-15 formation. Extracted from: Lombardo, D; Kiselev, M. A.; Magazù, S.; 
Calandra, P., amphiphiles self assembly : basic concepts and future perspectives of supramolecular approaches. 
Advances in condensed matter physics 2015, 22. 
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exhibit high surface area (500 to 900 m2/g) and pore volumes ranging from 0.6 to 0.8 cm3/g. 

This network arrangement belongs to Im3m space group where each mesoporous cavity is 

connected to eight other cavities.  

 

Figure 4: Transmission electron microscopy picture of SBA-16 type material.33 

 

SBA-16 mesoporous silica materials were used as catalysts,34 for metal incorporation,34 for 

further functionalization, as templates and in electronic.32 

SBA-15 and SBA-16 could be good candidates as supports to covalently linked TEMPO 

radicals for d-DNP applications. The mesoporous silicas are of interest because they could 

be easily filtered and will not interfere with microwave irradiations. Moreover, their 

synthesis is versatile and allows to incorporate various organic precursors during their 

preparation. Here, a mono-silylated azido precursor was directly incorporated during the 

preparation of SBA-15 and SBA-16 mesoporous silica materials. These azido-units were 

further coupled with TEMPO radicals by click-chemistry and the resulting solids were used 

to polarize liquids. In the next section, an overview of the different techniques used in the 

literature to functionalize silica supports with TEMPO radicals are described. The 

advantages and drawbacks of each method are presented and discussed. 
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Several approaches can be conducted to covalently link a molecule of interest onto a silica 

surface. Due to the numerous applications of functionalized silica and hence the diversity 

of grafted moieties, this study will be limited to the incorporation of TEMPO radicals onto 

silica surfaces.  

Three different methodologies can be adopted to covalently link TEMPO radicals onto 

silica materials: 

i) Direct incorporation of the functional groups during the preparation of the 

mesoporous silica materials. This method is commonly denoted as direct 

synthesis or co-condensation approach and has the advantage to yield hybrid 

materials in one step. However, some of the freshly inserted functionalities may 

not be accessible for further reactions since they are embedded in the silica 

framework. Moreover, this insertion can affect the organization of the 

mesoporous silica material itself and resulting in some changes of the physical 

features.35 

 

ii) Post-functionalization of existing silica materials. In this case, silanol groups 

which are located onto the surface of the materials are used as reactive sites to 

anchor the molecule of interest. The advantage of this approach lies in the 

modification of the surface after the formation of the mesoporous materials. 

Hence, the organization of the mesoporous materials stays unchanged and not 

disturbed.36 However, the grafting rate is limited by the density of silanol groups 

on the surface.37-38 In addition, the preferential grafting of the organic moieties 

occurs near to the entries of the mesopores which leads to an uneven covering 

of the solids with organic groups. In some cases, this can totally obstruct the 

pore-entrance preventing the access to the inner porosity.39  

 

iii) Entrapment of the TEMPO radicals into the silica matrix. Here, the radicals are 

not covalently linked onto the silica-surface but physically entrapped in the 

silica framework. Although this strategy seems to be the easiest and fastest way 
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to incorporate organic fragments, some of these functionalities can be released 

from the silica matrix.  

 

Many studies in this field have been performed for catalytic applications and the silica-

supported TEMPO catalysts were used for example to selectively oxidize alcohols into 

aldehydes.40 The different strategies to introduce the TEMPO units are presented and 

discussed hereafter. 

The first example, described by N. Tsubokawa et al. in 1995,41 aimed to immobilize 

TEMPO moieties on commercial amorphous silicas to oxidize alcohols. Ultrafine silica 

powders containing surface silanol groups were first treated with 4-trimethoxysilyl-1,2,5,6-

tetrahydrophtalic anhydride acid (TPSA) in toluene. This lead to the convalent bonding of 

the targeted silyl-1,2,5,6-tetrahydrophtalic anhydride acid fragments. These groups were 

further transformed into TEMPO radicals by contacting a TEMPOL compound with N,N’-

Dicyclohexylcarbodiimide (DCCI) as catalyst. One of the advantage of this method lies in 

the possibility to anchor an expensive reagent on a support for further recovery and reuse. 

Moreover, this heterogeneous system allows a better separation of the product from the 

catalyst at the end of the catalytic process. However, it was found that the yield of the final 

step (reaction between TEMPOL radicals and the surface anhydride acid moieties) was 

quite low: 20-30 %. Only 0,2 mmol/g of TEMPO groups were grafted on the silica support. 

This result arises directly from the grafting technique itself which implies a preferential 

functionalization at the entries of the pores. The accessibility to the inner silanol groups is 

thus impossible due to the steric hindrance of the grafted functionalities.  
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Figure 5: Immobilization of TEMPO radicals through a multi-step synthesis using acid anhydride groups. 

 

With the same vein, C. Bolm and T. Fey et al42-43 prepared a silica-supported TEMPO 

catalyst with two distinct TEMPO derivatives. A commercially available aminopropyl-

functionalized silica obtained from the grafting of 3-aminopropyltriethoxysilane (APTES) 

on silica supports was further employed in a one-step reductive amination. In this reaction, 

the amino-groups react first with the carbonyl groups to form imines which are 

subsequently reduced by sodium cyanoborohydride.  The conversion rate was improved 

and a value as high as 54% was reached.  

 

 

 

Figure 6: One-step reductive amination from a commercial aminopropyl-functionalized silica. 
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Then, the possibility to graft TEMPO radicals onto ordered mesoporous silica materials 

was investigated. First of all, three routes were developed to anchor TEMPO groups on 

MCM-41(Mobil Composition of Matter n°41) materials (see Figure 7). These materials 

have a pore network similar to that of SBA-15 solids albeit with smaller pores ranging from 

1.5 to 10 nm. 

The route 1 is a multistep synthesis starting with a typical Williamson ether 

preparation. In presence of sodium hydride, the TEMPOL precursors are deprotonated to 

form alkoxides and gaseous dihydrogen. The alkoxides then react with allyl bromide giving 

rise to 4-allyloxy-TEMPO. The resulting silylated TEMPO precursors are further obtained 

by hydrosilylation using hydrogenotrimethoxysilane and chloroplatinic acid as catalyst. 

The grafting reaction is then performed in dry toluene under reflux.  

The second route consists in preparing first the MCM-41 support and then use the 

silanol groups to graft 3-aminopropylsilyl groups. The supported amino groups were 

further treated with 4-carboxy-TEMPO in presence of N,N’-dicyclohexyldicarbodiimide 

(DCCI) to yield to the TEMPO-amido-supported groups. 

The last route relies on the coupling of NH2-grafted solids with the N-

hydroxysuccinimide ester of 4-carboxy-TEMPO to get the TEMPO-amide supported 

groups. 

Here, the formation of urea as by-product (route 2) is avoided.  
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Figure 7: Different routes allowing to link TEMPO radicals onto ordered mesoporous silica materials. 
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Figure 8: Preparation of SBA-15 mesoporous materials containing TEMPO radicals. 

 

Inspired by the previously described synthesis developped by C. Bolm and T. Fey, SBA-

15 mesoporous materials coated with aminopropyl fragments were converted into the 

corresponding TEMPO-amino-SBA-15 solids. In this example, the same type of reaction 

involving the formation of an imine which is subsequently reduced by NaBH3CN is 

performed. SBA-15 mesoporous materials were used instead of amorphous commercial 

aminopropyl-functionalized silicas.   

 

 

Figure 9: Preparation of silica gel coating with TEMPO radicals through the method of Tanaka et al. 

 

Another strategy developed by H. Tanaka et al. consisted first in the preparation of a urea-

TEMPO silylated precursor by reaction between TEMPO radical containing an amino 

group in position 4 and the 3-(triethoxysilyl)propyl isocyanate in Benzene. The silylated 
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product was then refluxed in benzene for 61 h with the silica gel leading to covalent grafting 

of the TEMPO fragments on the silica surface.  

Although the choice of the strategy to incorporate reactive organic species onto the surface 

of silica is essential, the nature of the functionality selected is also fundamental. It has been 

proven that it is not obvious to control the regular distribution of the functional groups into 

the pore channels. The precursor has to be sufficiently hydrophobic to enter the core of the 

micelle and not too bulky to avoid the perturbation of the system. 44-49  

In conclusion, a wide range of reactions using several TEMPO derivatives was developed. 

As shown in this section, the post-functionalization of commercial aminopropyl-

functionalized silica supports or homemade silica supports is widely developed. All of them 

successfully led to the immobilization of TEMPO units silica surfaces albeit with different 

loadings. However, none of these methods have been selected because of the click 

chemistry potential which could provide higher conversion rates to transform the precursors 

into TEMPO radicals. Moreover, the direct synthesis should be more appropriate to 

homogeneously disperse the TEMPO radicals in a silica matrix. 

The next part of this chapter will be devoted to the direct synthesis of hybrid silica matrices 

containing TEMPO units by sol-gel using a templating route as a way to secure the regular 

dispersion of the TEMPO fragments in the whole silica sample. 

 

 

 

We have decided to develop hybrid ordered mesoporous silica materials with two different 

pore network architectures: SBA-15 and SBA-16. Noteworthy, SBA-15 and SBA-16 type 

materials were preferred here because of their interesting physical features: their high 

porous volume offer the possibility to impregnate a high quantity of liquid to be further 

polarized. Moreover, their thick silica walls could be an asset to tolerate the harsh 

conditions of the DNP experiments (T= 1.2 K). 

The hybrid SBA-15 and SBA-16 materials were prepared by co-hydrolysis and co-

condensation of a 3-azidopropyltriethoxysilane precursor with TEOS in acidic conditions 
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using tri-block copolymers as structure directing agents. Different molar ratios of 3-

azidopropyltriethoxysilane and TEOS were used: 1/34, 1/60, 1/100, 1/140 and 1/320. 

A schematic representation of the multi-step synthesis for both materials is depicted in 

Figure 10.  

 

 

 

 

The hybrid SBA-15 and SBA-16 solids were prepared using a classical procedure and more 

details concerning the experimental protocols are provided in the supporting information 

at the end of this chapter. 

 

 

 

Figure 10: Schematic representation of the multi-step synthesis leading to azido-functionalized SBA-15 and SBA-16. The 
different structures are the result of different tri-block copolymers used in specific conditions. 
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The second step of the materials’ synthesis consisted in a Copper-catalyzed Alkyne-Azide 

Cycloaddition (CuAAC) reaction between the surface azido moieties and the TEMPO 

radical bearing an alkynyl group. The experimental conditions of this synthesis are briefly 

depicted in Figure 11. 

 

 

To carry out these reactions, some organic intermediates such as the 3-

azidopropyltriethoxysilane and the o-propargyl were synthesized. Their preparations are 

described in the following paragraphs along with the click chemistry reaction.   

 

 

 

Two precursors: the silylated azido-derivative and the TEMPO radical bearing an alkynyl 

group, are compulsory to yield to the TEMPO containing solids. These two precursors were 

thus prepared separately:  

Figure 11: Copper(I)-catalyzed Alkyne-Azide cycloaddition performed on azido-functionalized SBA-16 and SBA-15 
materials. 
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i) The nucleophilic substitution of 3-chloropropyltriethoxysilane with sodium 

azide in presence of Tetra-n-Butylammonium Bromide (TBAB) has led to the 

formation of 3-azidopropyltriethoxysilane (see SI at the end of the chapter for 

detailed description of the synthetic protocol).50 

 

 

 

The final product was characterized by 1H NMR (CD2Cl2,300 MHz): ẟ 0.62-0.65 (m, 
2H), 1.2 (t, J = 6.6 Hz, 9H), 1.67 (m, 2H), 3.26 (t, J = 7 Hz, 2H), 3.79 (q, 6H). 

 

ii) The Williamson ether synthesis allows to couple the TEMPOL fragments with 

an allyl bromide to form the desired alkyne derivative bearing the TEMPO unit 

(see SI at the end of the chapter for detailed description of the synthetic 

protocol):  

Figure 12: 1H NMR spectra of the 3-azidopropyltriethoxysilane at 300 MHz. 
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After preparation and characterization of the two precursors, hybrid SBA-15 and SBA-16 

containing propyl azido fragments were prepared via a direct synthesis.18 This one-pot 

synthesis method consisted in the co-hydrolysis and co-condensation of tetraethyl 

orthosilicate and (3-azidopropyl)triethoxylsilane in the presence of structure-directing 

agent such as pluronic P123 and pluronic F127 triblock copolymer to obtain the targeted 

SBA-15 and SBA-16 type solids respectively (Fig. 10). Finally, the two ordered 

mesoporous silica materials were clicked with TEMPO radicals through a CuAAC (Fig. 

11). 

In order to obtain the first silica materials dubbed HYPSO 2, pluronic P123 in aqueous HCl 

(pH= 1.5) was mixed with (3-azidopropyl)triethoxylsilane and TEOS (amounts adjusted 

depending on the desired dilution). Then, the whole mixture was homogenized at room 

temperature by stirring 3h and was placed in a pre-heated oil bath (T= 45 °C). The 

temperature was monitored inside the round bottom flask to introduce precisely the NaF 

when the solution reached 40 °C. Then, the reaction mixture was maintained at 45 °C under 

stirring for the next 72h. The resulting material was filtered and washed with H2O, EtOH 

and Et2O. At this stage, the porous network is filled by the surfactant which was removed 

by soxhlet extraction. The resulting white solid was filtered, washed with Et2O and dried 

under high vacuum (10-5 mbar) at 135°C for 15h. Then, the azido-units were coupled under 

argon with o-propargyl TEMPO and a solution of CuI in DMF and NEt3 for 48h at 50 °C. 

The resulting material was filtered, washed and dried under high vacuum (10-5 mbar) at 

50°C for 15h. 

Similarly, HYPSO 3 silica materials were prepared by mixing at room temperature, the 

pluronic F127, NaCl in aqueous HCl and water in a Teflon bottle for 1h30. Then, the 

reaction mixture was heated up to 40 °C for 1h and TEOS and 3-azidopropyltriehtoxysilane 

were added. The Teflon bottle was closed again and vigourously stirred at 40 °C for 20h 

prior to be introduced in a pre-heated oven settled at 100 °C for 2h without agitation. The 

resulting white solid was filtered and washed with EtOH and acetone. After having crushed 
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the solid in a mortar, it was dried at 100 °C under high vacuum (10-5 mbar) for 5h. The 

pluronic F127 was removed by water/pyridine treatment prior to be washed, dried at  

100 °C under high vacuum (10-5 mbar) for 15h and stored in a glovebox.  

Finally, the azido units were coupled with o-propargyl TEMPO under argon using the same 

protocol than HYPSO 2 materials. 

The azido-functionalized SBA-15 and SBA-16 intermediates denoted as N3_SBA-15 and 

N3_SBA-16 respectively were characterized by several techniques as well as the 

corresponding materials after the CuAAC reaction (vide infra). These materials are entitled 

HYPSO 2 and HYPSO 3 respectively.  

 

 
 

The physical and chemical features of the mesoporous silica solids were carefully analyzed 

by N2 adsorption/desorption, EPR, DRIFT, SAXS and TEM. These data are essentials for 

the description of the hybrid materials and to study the influence of the materials features 

on the polarization properties. 

 

 
 

 
 

As shown in Table 1, HYPSO 2 samples display high surface areas ranging from 767 to 

866 m2.g-1 and porous volumes from 1.07 to 1.19 cm3.g-1. Then, the long pore channels of 

the SBA-15, on which are based the HYPSO 2, are characterized by a pore diameter of 8-

9 nm. As an example, the adsorption/desorption isotherm and Barrett-Joyner-Halenda 

(BJH) plot are presented in Figure 13 and 14 for 1/34_HYPSO-2. 
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Figure 13: Adsorption/desorption isotherm for 1/34_HYPSO-2. 
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Figure 14: Mesopore mean diameter for 1/34_HYPSO-2. 
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All the data recorded are summarized in the table below: 

Table 1: Surface area, porous volume and pore diameter for HYPSO 2. 

Materials 

[≡SiR] 

μmol≡SiR .g-

1 

SBET 

m2.g-1 

Vp(tot.)a 

cm3.g-1 

Dp
b 

nm 

1/34_HYPSO-2 472 832 1.15 8 

1/60_HYPSO-2 272 767 1.07 8 

1/100_HYPSO-2 164 866 1.19 9 

1/140_HYPSO-2 118 849 1.15 8 
a: total pore volume corresponding to the quantity of N2 adsorbed at P/P0 = 0.99, b: Mesopore mean diameter calculated using the BJH 

model (adsorption branch). 

 

As expected for the synthesis of mesoporous SBA-16 type solids, all the samples display 

type IV isotherms. Surface areas ranging from 714 to 983 m2.g-1 and from 913 to 1184  

m2.g-1 were obtained for HYPSO 3 and N3_SBA-16 materials respectively. A bimodal 

distribution was highlighted using the BJH model for the cavities of the SBA-16 and the 

MP model for the windows inter-connecting these cavities. Narrow pore sizes of 6-7 nm 

for cavities and 1-2 nm for the windows were obtained. Moreover, an abrupt desorption at 

P/P0= 0.45 was found and attributed to a “ink bottle” effect as expected for this type of 

architecture. Indeed, the desorption occurred via smaller pores which are in this case the 

windows between the cavities. According to the α-plot model, 37-46 % of the total pore 

volume of 0,62-0,82 cm3.g-1  are micropores. As an example, the adsorption/desorption 

isotherm, BJH plot and MP-plot are presented in Figures 15 and 16 for 1/34_HYPSO-3. 
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Figure 15: Adsorption/desorption isotherm for 1/34_HYPSO-3. 

Figure 16: Mesopore mean diameter for 1/34_HYPSO-3. 
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All the data recorded were summarized in the table below: 

Tableau 2 : Surface area, porous volume and pore diameter for N3_SBA-16 and HYPSO 3.  

Materials 

[≡SiR] 

μmol≡SiR 

.g-1 

SBET 

m2.g-1 

Vp(tot.)a 

cm3.g-1 

Vp(μ.)b 

cm3.g-1 

Dp
c 

nm 

1/34_N3_SBA-16 472 1012 0,68 0,31 2/ 6 

1/34_HYPSO-3 472 729 0,50 0,19 2/ 5 

1/60_ N3_SBA-16 272 1010 0,66 0,29 2/ 6 

1/60_HYPSO-3 272 752 0,52 0,22 2/ 5 

1/100_ N3_SBA-16 164 913 0,62 0,11 2/ 6 

1/100_HYPSO-3 164 893 0,63 0,26 1/ 6 

1/140_ N3_SBA-16 118 1184 0,82 0,33 1/ 7 

1/140_HYPSO-3 118 983 0,69 0,26 2/ 7 

1/320_ N3_SBA-16 52 1068 0,75 0,48 2/ 7 

1/320_HYPSO-3 52 714 0,48 0,27 2/ 5 
a: total pore volume corresponding to the quantity of N2 adsorbed at P/P0 = 0.99, b: Micropore volume calculated from the αs plot model, 

c: Micropore mean diameter calculated using MP model/mesopore mean diameter calculated using the BJH model (adsorption branch). 
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Figure 17: MP-plot for 1/34_HYPSO-3. 
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b) Transmission Electron Microscopy pictures 
 

TEM micrographs were recorded for N3_SBA-15 and N3_SBA-16 materials by depositing 

a droplet of ethanol containing the powdered solid on a Cu grid covered by a carbon film 

and further evaporation of the solvent. In Figure 18, two pictures, which are illustrative of 

all the N3_SBA-15 and N3 SBA-16 materials, are presented with a magnification of 20 nm. 

These pictures highlight the high degree of porous structuration of the SBA-16 type and 

SBA-15 materials which are highly ordered.  

 

 
 

All the samples were analyzed by small angle X-ray diffraction to determine the interplane 

spacings and the lattice parameter. The micropore mean length (Lμpore ) was also calculated 

for each sample. The results are summarized in Table 3 and Figure 19 shows an example 

for HYPSO 2 and HYPSO 3 materials. As an example, 1/100_HYPSO 3 material exhibited 

an intense peak at ca 2θ= 0.75 characteristic of the (110) plane and thus suggesting the 

presence of a cubic-centered body lattice. 1/100-HYPSO 2 material was also characterized 

by a strong peak on its diffractogram (Figure 19) and two additional peaks which can be 

indexed on a hexagonal lattice as (200) and (110) reflections. 

Figure 18: TEM pictures of hexagonal 1/100 N3_SBA-15 in the [001] axis and of cubic 1/140 N3_SBA-16 in the [111] axis. 



101 | P a g e  
 

The results highlight thus a retention of the cubic and hexagonal structure even after 

immobilization of the TEMPO radicals onto the silica matrices. 

Table 3: Small angle X-ray scattering for N3_SBA-16, HYPSO 2 and HYPSO 3 materials. 

Materials Structure d(110)a 
nm 

a0
b
 

(nm) 

Lμpore
c
 

(nm) 

1/34_N3_SBA-16 Cubic 11.2 15.8 9.6 

1/34_HYPSO-3 Cubic 11.2 15.8 10.4 

1/60_ N3_SBA-16 n.d n.d n.d n.d 

1/60_HYPSO-3 Cubic  11.0 15.6 10.2 

1/100_ N3_SBA-16 n.d n.d n.d n.d 

1/100_HYPSO-3 Cubic  10.5 14.9 8.6 

1/140_ N3_SBA-16 n.d n.d n.d n.d 

1/140_HYPSO-3 Cubic 11.6 16.4 9.3 

1/320_ N3_SBA-16 n.d n.d n.d n.d 

1/320_HYPSO-3 Cubic 12.5 17.7 12.3 

1/34_HYPSO-2 Hexagonal 11 12.7 4.6 

1/60_HYPSO-2 Hexagonal 10.8 12.4 4.4 

1/100_HYPSO-2 Hexagonal 10.8 12.4 3.2 

1/140_HYPSO-2 Hexagonal 10.5 12.1 4.1 
a: The interplane spacings of SBA-15 and SBA-16 are d(100) and d(110) respectively, b: The lattice parameter is given by a = d(110)x , 

c: Micropore mean length, calculated as: Lμpore =(d(110) *2/(cos(π/4)-2* Dmeso)/2. 

Figure 19: Diffractograms for 1/100_HYPSO-2 and 1/100_HYPSO-3 samples. 
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DRIFT spectroscopy was used to probe the surface of the different grafted and un-grafted 

samples. Two types of samples were thus analyzed: i) SBA-16 solids containing the 

azidopropyl fragment and ii) materials containing the TEMPO units after the CuAAC 

reaction. As an example, the DRIFT spectra of 1/60_N3_SBA-16 and 1/60_HYPSO 3 

materials are presented in Figure 20.  

First of all, the 1/60_N3_SBA-16 spectrum presents a strong and sharp absorption peak 

located at 3700 cm-1 for the isolated -OH groups (stretching band ν(O-H)). Slightly shifted 

toward lower frequencies, at 3400 cm-1, a strong and broad absorption peak stands for the 

stretching -OH groups bonded to each other through weak H bonds. The 3 bands located 

around 2900 cm-1 are typical peaks for ν(C-H) of alkane groups corresponding to the 

triazole, the propyl linker and the aliphatic groups of TEMPO. As expected, the azido peak 

ν(N=N) can be identified at 2210 cm-1.  

Similar signals can be found for the 1/60_HYPSO 3 material with slight differences. Two 

peaks located at 3400 cm-1 and 1620 cm-1 are shifted toward lower frequencies but this 

perturbation was not considered since it is too weak to be significative. However, the 

difference in intensity for the peak attributed to the -N3 groups was taking into account to 

quantity the efficiency of the cycloaddition (CuAAC yield). This peak was integrated for the 

two samples and those of the unclicked materials set to 100 %. The same peak was 

integrated for the clicked sample and a yield corresponding to the ratio of N3 converted into 

1,2,3-triazole cycle was deducted. This study was systematically performed and the 

corresponding data are summarized in Table 4.  
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Figure 20 : Comparison between DRIFT spectra of 1/60_N3_SBA-16 (blue) and 1/60_HYPSO 3 materials (red)   

 

As shown in table 4, yields ranging from 64 % to 88 % for the more efficient cycloaddition 

was found. The yield decreases when the quantity of starting azido species decreases. This 

trend could be explained by a lack of accessibility of the azido groups that may be 

embedded in the silica walls or located into very small pores.   

 

Table 4: Radical concentrations determined by EPR spectroscopy and DRIFT analysis allowing to probe the surface. 

In addition to DRIFT analysis, Continuous Wave Electron Paramagnetic Resonance (CW-

EPR) was performed on samples displaying supported TEMPO radicals. Analysis at room 

Dilutions 
[N3] 

(μmol.g-1) 

[R]  

(μmol.g-1) 

[R]  

(μmol.cm-3) 

EPR yield 

(%) 

CuAAC 

yield (%) 

1/34 472 246 491 52 88 

1/60 272 135 260 50 81 

1/100 164 79 125 48 77 

1/140 118 50 72 41 74 

1/320 52 33 67 63 64 
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temperature allowed to precisely determine the radical concentrations whereas inter-radical 

distances were evaluated at 110 K (more details can be found in the supporting 

information). 

 

To quantify the radical concentration in the solids, solutions of TEMPO in toluene with 

different radical concentrations were prepared as standards for calibration purposes. The 

corresponding EPR spectra were recorded and the peaks integrated to plot the calibration 

curve. Samples freshly synthesized were simply placed in EPR tubes and transferred in the 

EPR spectrometer. The quantity of radical [R] (μmol.cm-3) was determined taking into 

account the total pore volume of the materials. As can be seen in table 4, percentages 

ranging (EPR yield) from 41 % to 63 % were calculated. The discrepancy between the 

results obtained by EPR and DRIFT may be attributed to the decomposition of some 

TEMPO radicals during the CuAAC reaction along with mathematical errors due to the 

fact that the concentration of radical is reported with respect of the porous volumes. 

Overall, we can conclude here that the incorporation of TEMPO, albeit not quantitative is 

higher than that obtained using other reported coupling reactions such as peptide coupling.  

The inter-radical distances of the HYPSO solids were also evaluated by measuring the 

linewidths of the EPR signals since the aggregation of the radicals can lead to fast 

depolarization or very low polarization. Distances above 2 nm can be determined since the 

EPR signal is broadened by electron-electron dipolar couplings and spin exchange.51 For 

larger distances, the dipolar linewidth is masked by inhomogeneous broadening (ca. 12 G). 

In this study, the central line of the EPR signal was used because it is less broadened by the 

g-tensor and hyperfine anisotropies and is therefore the most sensitive to the dipolar 

broadening. 

For this purpose, samples were impregnated with 1,1,2,2-Tetrachloroethane and linewidths 

of EPR spectra were measured with an EPR spectrometer maintained to 110 K using a 

nitrogen flow. Data obtained for HYPSO 2 and HYPSO 3 were plotted in Figure 21 with 

an estimated error of 5%. 
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Figure 21: EPR linewidths measured at 110 K as a function of the radical concentration for HYPSO 2 and HYPSO 3. 

 

EPR linewidths of 12.1; 13.1; 15.3 and 20.9 G were determined for HYPSO 3 with a 

dilution factor of 1/140, 1/100, 1/60 and 1/34 respectively. One can notice an increase of 

the linewidths with increase in the radical concentration. The values observed are almost 

proportional to the radical concentration. In comparison, the linewidths for HYPSO 2 are 

narrower which can be attributed to a more uniform 3D distribution of the radicals. 

In conclusion, DRIFT spectroscopy has highlighted the presence of N3 moieties onto the 

surface of the mesoporous silica materials. The conversion of these fragments into TEMPO 

radicals was also evaluated and compared to the radical concentration measured by EPR. 

Using EPR linewidths, we were also able to show the absence of radical aggregation and 

the random distribution of the species onto the surface of the materials. 
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HYPSO 2 and HYPSO 3 materials were further tested as polarizing matrices after 

impregnation of a H2O:D2O mixture. DNP experiments were performed at two distinct 

temperatures (4.2 K and 1.2 K) and the measured polarization values were compared to the 

radical concentration for each porous network (HYPSO 2 or HYPSO 3). In addition, 

HYPSO 3 was also impregnated with a 3M solution of sodium [1-13C]-acetate which was 

further polarized by cross-polarization. The results are presented and discussed below with 

a complete description of the polarization process starting from the sample preparation to 

the data processing allowing to deduce the polarization values and the build-up times.  

 

 
 

The standard procedure consisted in filling 90 to 100 % of the pore volume of the 

mesoporous samples by incipient wetness impregnation. This method commonly used for 

the synthesis of heterogeneous catalysts consists in impregnating into a solid the molecule 

of interest previously dissolved in an aqueous medium. The capillary action pulls the 

solution into the pores which stays blocked inside of the porous network. Impregnated 

materials were then loaded in a holder and introduced in the polarizer. 

 

 
 

The DNP build-up curves were fitted with the following equation: 

 

 

The parameters of this equation are defined such follows: 

 represents the maximum polarization reached for the considered sample 
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 corresponds to the time required to reach 63 % of polarization for the considered 

sample. Five times  correspond to 99 % of for the considered sample. 

 

 
 

HYPSO 2 and HYPSO 3 bearing TEMPO radicals with concentrations ranging from 67 to 

263 μmol.cm-3 were impregnated with a benchmark solution of H2O : D2O (2 : 8). In 

addition, SBA-15 and SBA-16 type solids containing only azido propyl groups onto their 

surface were impregnated with a solution of 40 mM TEMPOL in H2O : D2O : glycerol-d8 

(10 : 40 : 50) and used as standards. A classical DNP juice composed of H2O:D2O:glycerol-

d8 (10:40:50) doped with 40 mM TEMPOL was also used to compare the polarization 

values at the purely liquid state-of-the art polarization value. All the samples were proton 

polarized and the experiments were proceeded at 4.2 and 1.2 K using microwave frequency 

modulation.  
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Figure 22: HYPSO 2 and HYPSO 3 with different radical concentration impregnated with a mixture of H2O:D20 and 
polarized at 4.2 K. 
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Figure 23: HYPSO 2 and HYPSO 3 with different radical concentration impregnated with a mixture of H2O:D20 and 
polarized at 1.2 K. 

 

First of all, it is important to notice that four types of samples were polarized with the 

following characteristics: 

- HYPSO 2 which are ordered mesoporous silica solids displaying long pore channels 

with a diameter of 8-10 nm stacked in a 2D-hexagonal arrangement. These samples 

were obtained using the Pluronic P123 instead of the Pluronic F127 (HYPSO 3) to 

get this specific arrangement. These samples are loaded with different 

concentrations of the same TEMPO radical. 

 

- HYPSO 3 which are ordered mesoporous silica solids displaying a 3D structure 

where the pores are interconnected. These samples are also loaded with different 

concentrations of the same TEMPO radical.  

 
 

- SBA-15 or SBA-16 type solids containing azido propyl linkers onto their surfaces 

loaded with a solution of TEMPOL. Here, two solids were analyzed 

1/140_N3_SBA-15 and 1/140_N3_SBA-16.  
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- Classical DNP juice: Liquid sample (no silica matrix) composed of 

H2O:D2O:glycerol-d8 (10:40:50) doped with 40 mM TEMPOL. 

At 4.2 K, the samples exhibited lower polarization values as expected because the 

polarization process is highly dependent on the temperature. Indeed, when increasing the 

temperature, the electrons are less polarized which means they will transfer a significantly 

lower amount of their polarization. In this specific case, a maximum proton polarization of  

P(1H) = 21.5 % was observed for the TEMPOL DNP reference. This can be directly 

compared with the two following solids: 1/140_N3_SBA-15 and 1/140_N3_SBA-16 which 

gave a P(1H) = 9 % and P(1H) = 19 % respectively. Whereas, SBA-16 type materials could 

achieve a proton polarization close to the DNP isotropic mixture, SBA-15 type materials 

exhibited a low proton polarization value. This observation thus has a direct link with the 

silica framework which is the only difference between the materials. The measurements 

suggest that it is easier to transfer the polarization from the electrons to the surrounding 

nuclei when using HYPSO 3 type sample. The small windows allowing to interconnect the 

pores of HYPSO 3 could be responsible for a better polarization transfer in the 3 dimensions 

of the matrix. 

At the same temperature, the HYPSOs previously impregnated with the benchmark 

solution of H2O:D2O provided proton polarization values even more pronounced at low 

radical concentrations. Indeed, a maximum proton polarization of P(1H) = 13 % for HYPSO 

3 and P(1H) = 8 % for HYPSO 2 were obtained for the lower concentrations. A similar 

behavior was observed for HYPSOs materials, SBA-16 type materials like HYPSO 3 

displayed again higher polarization values than SBA-15 type materials like HYPSO 2. The 

hypothesis of a matrix effect is confirmed independently of the immobilization of the 

TEMPO radicals. 

At 1.2 K, 1/140_N3_SBA-15 and 1/140_N3_SBA-16 were able to reach P(1H) = 50 % and 

P(1H) = 63 % respectively. These polarization values are also the maximum measured for 

HYPSO 2 and HYPSO 3 at this same temperature. Since the temperature is a non-negligible 

parameter for the DNP process, it is not surprising to get higher polarization in this case 

compared to the previous experiments performed at 4.2 K. We can also notice that HYPSO 

3 need a lower radical concentration to reach higher polarization compared to HYPSO 2 

thus confirming a better polarization transfer. The polarization differences already 
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observed at 4.2 K for the azido-materials only impregnated with TEMPO radicals are also 

observed on HYPSOs at this temperature. 

In conclusion, higher proton polarization values were observed at low temperature as 

expected. The presence of silica was found inert with respect to the polarization 

experiments as similar polarization values were recorded at 4.2 K and 1.2 K with or without 

silica matrix. SBA-16 type architecture allowed to reach higher polarization values than 

those obtained for SBA-15 solids. This result suggests that the organization of the porous 

network has an impact on the polarization performances: HYPSO 3 which displays a 3D 

pore network arrangement is much more efficient than HYPSO 2 which is composed of a 

2D hexagonal arrangement of long pore channels. This 3D architecture may ease the spin 

diffusion with respect to the 2D architecture. In the latter architecture the polarization 

propagation only proceeds toward a unique direction which is the one of the pore channels. 

 

 

 

13C polarization experiments can be operated either by direct polarization of the carbon 

nuclei or by cross-polarization from proton to carbon. The first approach is usually 

performed with carbon-centered radicals such as 1,3-bisdiphenylene-2-phenylallyl (BDPA) 

or trityl radicals (Figure 24) in conventional glassy DNP formulations.  

The BDPA radical also known as the Koeslch’s radical was first synthesized in 1957. 52 

The delocalization of the radical onto the two fluorene groups make it a persistent free 

radical. Through a solid effect mechanism, BDPA was used in a polystyrene matrix53-57, 

coupled to TEMPO moieties58 or even more recently used in sulfolane59 for the first time 

in dissolution-DNP. However, BDPA radicals have a major drawback which is their low 

solubility in water59, thus hampering the dissolution step. 

Trityl radicals were first synthesized by M. Gomberg60 in 1900 with the triphenylmethyl 

radical. They were rapidly modified to increase their solubility by adding different 

functional groups. In Figure 24, two radicals known as CT03 and OX063 are presented. 

They are respectively decorated with CH3 and CH2-CH2-OH chains which give them a 
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complete different solubility. They were developed by Nycommed Innovations (GE 

Healthcare) and used in d-DNP. 

 

 

Figure 24: Representation of the trityl and BDPA radicals used to polarize carbons. 

 

The second approach largely employed in solid NMR was further developed in DNP. This 

technique consists in transferring the magnetization of high gamma nuclear spins (1H) to 

low gamma nuclear spins (13C, 15N, 129Xe …) in order to improve the polarization of a 

targeted compound. The idea of this technique is to combine the advantages of high and 

low gamma nuclei which means important polarization rates and long life-times. 

BDPA and trityl radicals have narrow EPR lines but remain expensive compared to 

TEMPO radicals (OX063 being the most expensive). Moreover, higher polarization rates 

can be expected for protons than carbons because of their physical characteristics (γ1
H > 

γ13
C). For these reasons, TEMPO species were used to polarize protons and the polarization 

was transferred to molecules bearing carbons by cross polarization. With a spin equal to 0, 
12C is impossible to detect by NMR or MRI and its low natural abundance in 13C is close 

to 1%. Labelled compounds were thus employed and in particular sodium [1-13C]-acetate 

was investigated to probe different metabolic pathway61-66. 
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Optimal HYPSO 3 with a radical concentration of [R]= 67 umol.cm-3 was first impregnated 

with a 3M solution of sodium [1-13C]-acetate in H2O:D2O (1:9). The solid was then 

introduced in a home-built d-DNP polarizer63 with a magnetic field of B0 = 6.7 T at 1.2 K. 

The polarizer, equipped with a probe optimized for CP67 experiment, allowed to transfer 

the proton polarization to carbon. Details concerning the pulse sequence can be find in the 

following articles.68-71  

 

 

As shown in Figure 25, the proton polarization was transferred by cross-polarization using 

8 contacts each 4 minutes to reach a P(13C) of 36 % after ca. 30 minutes. The difference of 

the polarization P(1H) = 63 % and P(13C) = 36 % obtained in this case could be explained 

by first the chemical difference between the analytes and second by a polarization loss 

during the transfer from proton to carbon P(1H -> 13C). As performed in conventional 

dissolution-DNP experiment, hot pressurized water was used to expel the solution of 

sodium [1-13C]-acetate from the solid and this solution was further transferred to the NMR 

spectrometer through a magnetic tunnel. After NMR acquisition, the liquid was filtrated, 

centrifugated and analyzed by EPR. Unfortunately, EPR signal coming from TEMPO 

radicals were found in the aliquot but in very low concentration close to 1 μmol.L-1. This 

may arise from the presence of some silica grains which were not accurately filtered off. 
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Figure 25: Cross-polarization experiment on HYPSO 3 impregnated with a mixture of 3M solution of sodium [1-13C]-
acetate in H2O:D2O 
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As defined above, the build-up time  corresponds to the time required to reach 63 % 

of the maximal polarization for a considered sample. It allows thus to evaluate the 

polarization time which should be in the optimal case as fast as possible. The build-up times 

of HYPSO 2 and HYPSO 3 were recorded at two temperatures: 4.2 K and 1.2 K and 

compared to the N3 materials and the classical DNP juice.  

 

 
 

The same DNP polarizer operating at B0 = 6.7 T was used to measure the build-up times 

on several samples. The obtained values were fitted using a monoexponential curve which 

does not take into account polarization by spin diffusion. As a reference, a classical DNP 

solution containing TEMPOL radicals in a H2O:D2O:Glycerol-d8 mixture was prepared. As 

shown in Figure 26, the glassy mixture displays a build-up time of ca 75 s which is 

comparable to that obtained with the N3_SBA-15 sample impregnated with the same 

solution. The polarization times are therefore not affected by the presence of SBA-15 type 

silica matrices. However, the impregnation of TEMPOL radicals in N3_SBA-16 materials 

gave a longer build-up time of 145 s.  

HYPSO 2 solids containing TEMPO radicals with a concentration ranging from 50 

μmol.cm-3 to 200 μmol.cm-3 were also impregnated with a mixture of H2O:D2O (2:8). The 

open triangles correspond to sample analyzed without frequency-modulation and the full 

triangles with frequency-modulation. Four values are plotted on the Figure 26 where 3 full 

triangles are behind 3 open triangles. The build-up times were found to increase when the 

radical concentration decreases. As a reminder, at this temperature the maximum proton 

polarization was obtained for the sample containing 50 μmol.cm-3 of radical. A small 

difference can be noticed at this concentration with or without frequency-modulation but 

this gap is not significant.  

Recorded build-up times using HYPSO 3 materials were also studied with or without 

switching on the frequency-modulation. Data are plotted in Figure 26 using the same 
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symbols code: the open circles correspond to build-up times without frequency-modulation 

and the full circles to build-up times with frequency-modulation. Even in this case, the 

frequency modulation did not allow to get higher polarization values. However, one can 

notice fast build-up times for samples displaying concentrations of 127 and 267  

μmol.cm-3. Although these values are very interesting, the reached polarization levels are 

quite low. Therefore, samples with lower radical concentrations were preferred as they 

provide a good compromise between relatively high proton polarizations and not too long 

build-up times.  
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Figure 26: Build-up times as a function of the radical concentration for samples analyzed at 4.2 K. 

 

In conclusion, it is clear that the frequency-modulation has no impact on the build-up times 

at this temperature. Moreover, HYPSO 3 materials display shorter build-up times than 

HYPSO 2 solids arising from their specific 3D architecture. 
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b) Measurement of the build-up times at 1.2 K   
 

At 1.2 K, the build-up times are longer and exceed largely the maximum of 150 s recorded 

at 4.2 K. N3_SBA-15 and N3_SBA-16 materials were again impregnated with a glassy 

mixture constituted of TEMPOL as polarizing agents. Build-up times around 325 s and 500 

s were recorded for N3_SBA-15 and N3_SBA-16 materials respectively. This bigger 

difference at this temperature emphasizes a build-up time longer for SBA-16 type materials. 

HYPSO materials were also analyzed by impregnation of a mixture of H2O:D2O. At this 

temperature, a general trend consisting in reducing the build-up times by applying 

frequency-modulation is observed for samples with a concentration below 72 μmol.cm-3.  

Higher radical concentrations display analogous results with or without frequency-

modulation. Then, optimal HYPSO 2 ([R]= 50 μmol.cm-3 ) reveals a lower build-up time 

when frequency-modulation is applied ( TDNP = 150 s ). 
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Figure 27: Build-up times as a function of radical for temperature T= 1.2 K. 
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In conclusion, similar results were observed at 4.2 K for N3_SBA-15 materials and the 

state-of-the art DNP juice. At the same temperature, N3_SBA-16 materials displayed a 

significant difference with a build-up time almost doubled. However, this long build-up 

time corresponds to an increase of the proton polarization value. At 1.2 K, the frequency-

modulation turned out to be significant for radical concentrations below 72 μmol.cm-3. 

Regarding HYPSO materials, SBA-16 type materials showed better performances for a 

concentration of 72 μmol.cm-3 with frequency-modulation.  

 

 
 

The methodology (direct synthesis using a templating route) used to synthesize HYPSO 

materials has successfully led to silica materials containing TEMPO radicals covalently 

linked onto their silica surface. For this purpose, two main precursors, the 3-

azidopropyltriethoxysilane and the alkyne derivative bearing TEMPO units were first 

prepared and fully characterized. Through a copper(I)-catalyzed alkyne-azide 

cycloaddition, the incorporation of TEMPO radicals on silica materials were successfully 

achieved with various loadings and a yield of ca. 50% (according to EPR). HYPSO 2 and 

HYPSO 3 display two different architectures (2D hexagonal vs 3D cubic for HYPSO 2 and 

HYPSO 3 respectively). These solids were used as polarizing matrices and the polarization 

levels as well as the build-up times were measured. In general, samples coated with a high 

radical concentration allow to reach short build-up times but also low proton polarizations. 

A compromise between high polarization values and short build-up times must be done. 

The optimal HYPSO 3 containing 72 μmol.cm-3 of radicals displays a shorter build-up time 

as compared to the HYPSO 2 solid with 50 μmol.cm-3 of radicals with higher performances 

in polarization, P(1H) = 63 % and P(1H) = 50 % respectively. This difference was attributed 

to a more homogeneous 3D distribution of radicals in HYPSO 3 and an interconnection of 

the pores which allows a better nuclear spin diffusion in the solid. 
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In a 500 mL Schlenk, sodium azide (4,08 g; 1,5 equiv. 62,8 mmol) and 

tetrabutylammonium bromide (TBAB; 2,66 g; 0,2 equiv. 8,3 mmol) were dried overnight 

under vacuum at 130°C. Dry acetonitrile (120 mL) and 3-chloropropyltriethoxysilane (9,8 

mL; 40,70 mmol) were added and reflux under argon overnight. After the reaction, the 

solvent was removed under reduced pressure. The crude mixture was then diluted in 

pentane and the suspension was filtered under argon to yield to a colorless liquid. 

1H NMR (CD2Cl2,300 MHz): ẟ 0,62-0,65 (m, 2H), 1,2 (t, J = 6,6 Hz, 9H), 1,67 (m, 2H), 

3,26 (t, J = 7 Hz, 2H), 3,79 (q, 6H). 

 

 

 

In a 500 mL three-neck round bottom flask and under argon, NaH (60% in mineral oil; 1,3 

equiv. 2,71 g;  67,93 mmol) and dry DMF (DMF was refluxed, distilled on CaH2 and stored 

for 24h on 3 Å molecular sieve; 300 mL) were mixed. Once, the reaction mixture was 

cooled down to 0 °C, 4-hydroxy-TEMPO (9 g; 52,25 mmol) was added portionwise and 

stirred at room temperature for 30 minutes. Then, propargyl bromide (7,85 mL; 52,25 

mmol) was added dropwise at 0°C. The solution changes rapidly from orange to black color 

and before adding water (250 mL), the resulting mixture is stirred for 3h at room 

temperature. The solution is extracted with EtOAc (5 x 80 mL) and the combined organic 

phases were washed with water (5 x 80 mL) and dried over MgSO4, filtered, evaporated 

under reduced pressure and purified by column chromatography (silica gel, 10% EtOAc in 

hexane) giving rise to the desired product as an orange solid. 



120 | P a g e  
 

 
 

 
 

 
 

Typical procedure is given for 1/34_N3_SBA-15 material: In a round bottom flask 

containing the (3-azidopropyl)triethoxysilane (341 mg, 1 equiv) and TEOS (9. 75 g, 34 

equiv) a solution of pluronic P123 (1.5mol% with respect to siloxy-precursors) in aqueous 

HCl (pH= 1.5) was added. Then, the mixture was stirred for 3h at room temperature and 

placed in a pre-heated oil bath settled to T= 45 °C. The temperature of the solution was 

carefully monitored and NaF (1.5mol% with respect to siloxy-precursors) was added when 

the reaction mixture reached T= 40 °C. Finally, the reaction mixture was stirred at 45 °C 

for 72h. The resulting material was filtered and washed with H2O (3 x 3 times the gel 

volume), EtOH (3 x 3 times the gel volume) and Et2O (3 x 3 times the gel volume). In order 

to remove the surfactant (P123), the resulting material was placed into a soxhlet cartridge 

and extracted with EtOH for 48h. The material was filtered and washed with Et2O and dried 

under high vacuum (10-5 mbar) at 135 °C for 15h. 

 

 
 

Copper-catalyzed alkyne-azide cycloaddition (CuAAC) was used to couple the azido 

fragments with TEMPO radicals. Typical click-chemistry is presented for the 

1/34_N3_SBA-15 material previously described. 

Under argon atmosphere, o-propargyl TEMPO (965 mg, 5 equiv) was added to a 

suspension of N3_SBA-15 materials (2 g) in DMF (20 mL) and NEt3 (1 mL) and CuI (5.1 

mg, 5mol%). The mixture was stirred for 72h at 50 °C and then filtrated and washed with 

DMF (2 x 20 mL), EtOH (3 x 20 mL), Et2O (3 x 20 mL). Finally, the product obtained was 

dried under high vacuum (10-5 mbar) at 50 °C for 15h. 
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The following procedure is inspired from A. Boullanger, New J. Chem. 2010, 34, 738-
743. 

 

 
 

The typical procedure for 1/100_N3_SBA-16 material is: Pluronic F127 (2g), NaCl (7.19, 

ratio F127 to Si-based reactant: 35 equiv) in aqueous 2 M HCl (20mL, 0.5 mL/mmol siloxy-

precursors) and water (60mL, 1.5 mL/mmol siloxy-precursors) were dissolved in a closed 

250 mL teflon bottle at room temperature for 1h30 and then for 1 h at 40 °C. Then, TEOS 

(8.31 g, 100 equiv) and (3-azidopropyl)triethoxylsilane (99mg, 1 equiv) were 

simultaneously added. The bottle was closed again and vigorously stirred at 40 °C for 20 h 

before it was placed in a pre-heated oven at 100 °C for 2 h without agitation. The white 

precipitate was filtered and washed with EtOH (3 × 1/3 of initial reaction volume) and 

acetone (3 × 1/3 of initial reaction volume). The resulted solid was then crushed in a mortar 

and dried at 100 °C under vacuum (10-5 mbar) for 5 h. Then the material is stirred in 

water/pyridine solution (1:1, 1.5 mL/mmol siloxy-precursors) adjusted to pH 6.5 by 

aqueous HCl (2 M) at 70 °C for 16 h. Next, the material is filtered and washed with EtOH 

(3 × 1/3 of reaction volume) and acetone (3 × 1/3 of reaction volume) and dried at 100 °C 

under vacuum (10-5 mbar) for 15 h. 

 

 
 

Copper-catalyzed alkyne-azide cycloaddition (CuAAC) was used to couple the azido 

fragments with TEMPO radicals. Typical click-chemistry is presented for the 

1/100_N3_SBA-16 materials previously described. 

Under an argon atmosphere, O-propargyl TEMPO (342 mg, 2.67 mmol) was added to a 

suspension of 1/100_N3_SBA-16 (2 g, 0.535 mmol azide) in DMF (20 mL) and Et3N (880 

μL). Then a solution of CuI (3.1 mg, 16 μmol) in DMF/Et3N (1:1, 240 μL) was added. The 

mixture was stirred for 72 h at 50 °C and then filtrated and washed with DMF (2 × 20 mL), 
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EtOH (3 × 20 mL), Et2O (2 × 20 mL). The product was then dried under vacuum (10-5 

mbar) at 50 °C for 15 h. 

 

 
 

 
 

Experiments were performed at 77 K using a BELSORB-Max from BEL-JAPAN. Before 

N2 adsorption, the samples were outgassed at 10-5 mbar and T= 408 K for 12 h. The pore 

diameter distribution and the mean pore diameter (dp) were calculated using Barrett–

Joyner–Halenda (BJH) method. The specific surface area (SBET) was calculated using the 

Brunauer–Emmett–Teller (BET) equation.  

 

 

 
 
Diffuse Reflectance Infrared Fourrier Transform spectroscopy is an analytical technique 

where an infrared beam interacts with the particles and is reflected off the surface 

depending on the properties of the powder. Preparation of the sample is really simple and 

consists only in introducing the powder in the cell. DRIFT spectra were recorded on a 

Nicolet 6700-FT spectrometer using a cell equipped with CaF2 windows. Typically, 64 

scans were accumulated for each spectrum (resolution 4 cm-1). 

 

 

 

CW EPR spectra were recorded on a Bruker EMX X Band spectrometer (9.5 GHz 

microwave frequency). Conversion time was set to 40.96 ms, time constant to 5.12 ms and 

1024 data points were recorded. The modulation frequency was 100 kHz and the 

modulation amplitude 1 Gauss. In all measurements, attenuation was varied such that no 

saturation was observed. 
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The samples were filled in a 3.0 mm quartz tube with a maximum sample height of 3 mm. 

The sample position in the cavity was carefully optimized. The spectra were recorded at 

room temperature and with a sweep width of 600 Gauss and attenuation between 26 and 14 

dB. The amount of radical was determined by double integration of the CW spectra and 

referencing to calibration curve of TEMPO in toluene solutions measured for the 

concentration range between 0.4 and 80 mM. An additional correction for the difference in 

the incident microwave power has been taken into account. Data was processed with 

OriginLab. 

 

 
 

Each sample was impregnated with 1,1,2,2-Tetrachloroethane and filled in a 3.0 mm quartz 

tube. All spectra were recorded at 110K using a nitrogen flow cryostat. Attenuation was 

varied from 32 to 23 dB. The EPR spectrum of a nitroxide radical consists of three lines 

due to strong hyperfine interaction with the 14N nucleus. For the line-width measurements 

we have used the central line, which is less broadened by the g-tensor and hyperfine 

anisotropies and which therefore is the most sensitive to the dipolar broadening. For the 

obtained signal to noise levels, the estimated linewidth error bars were around 5 %. 

 

 
 

Conventional TEM micrographs were performed at the “Centre Technologique des 

Microstructures”, UCBL, Villeurbanne, France, using a JEOL 2100F electron microscope. 

The acceleration voltage was 200 kV. The samples were prepared by dispersing a drop of 

the ethanol suspension of a ground sample on a Cu grid covered by a carbon film. 

 

 
 

Liquid NMR spectra were recorded on BRUKER AVANCE 300 spectrometer (300 MHz). 
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Small-Angle X-ray scattering (SAXS) on powder was carried out with a Bruker D8 Avance 

diffractometer (33 kV & 45 mA) with CuKα radiation (λ = 0.154 nm) in the Service 

Diffraction RX, IRCE Lyon, France. The diffraction patterns were collected in the 2θ angle 

range [0.45°-7.0°] at a scanning rate of 0.1°/min. The interplane spacings, d(hkl) for 

different Miller indices (hkl) were calculated using the Bragg’s law (nk = 2dsinθ). The 

lattice parameter (a0) for the hexagonal structured mesoporous material is given by a0 = 

2d(100)/√3. 
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The matrix effect observed between HYPSO 2 and HYPSO 3 due to the difference of the 

architecture of the porous network has highlighted the importance of the physical features 

of the polarizing matrices. In ordered mesoporous silica materials, higher polarization 

values were measured when increasing the pore interconnectivity. Hence, non-structured 

silica materials with higher interconnectivity may provide even higher polarization 

performances. For this reason, we have decided to post-functionalize commercially 

available porous silica spheres commonly used in High Performance Liquid 

Chromatography (HPLC) or Supercritical Fluid Chromatography (SFC) with TEMPO 

radicals. On the one hand, these silica spheres could resist to the dissolution step which is 

performed by flushing the frozen sample (1-4 K) with hot pressurized water and on the 

other hand, their porosity would provide the possibility to impregnate important quantities 

of liquids to be polarized. These silica spheres have silanol groups onto their surface that 

will be used to create a silica layer containing azido units to be further coupled with 

TEMPO radicals. At the same time, we have decided to study the influence of the pore size 

and the particle size on the polarization values. Silica spheres with pore diameters ranging 

from 6 nm to 28 nm with a constant particle size of 15 μm were first post-functionalized 

with TEMPO radicals. Subsequently, silica spheres with a similar pore size of 6 nm and 

particle sizes ranging from 20 μm to 500 μm were also coated with silica layer containing 

TEMPO radicals. 

Using these commercially available porous silica spheres and this post-functionalization 

strategy, the preparation of the polarizing matrices was more straightforward and the entire 

process could be more easily scalable. The preparation of these new polarizing matrices 

with a non-structured silica pore network could also ease the expulsion of the 

hyperpolarized liquid during the dissolution process and the increase of the particle size 

could facilitate the filtration and the recovery of the polarizing matrices.  

In this chapter, a first part is dedicated to the process to obtain well-controlled silica 

spheres. Then, the new methodology to post-functionalize the porous silica spheres is 

presented with the polarization performances as a function of the pore size or the particle 

size. Finally, the carbon polarization after dissolution is presented as well as the first MRI 
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pictures showing the possibility to use this type of porous matrices to acquire images using 

a single NMR scan thus opening perspectives for MRI in-vivo applications. 

 

 
 

The production of suspensions containing monodispersed silica spheres can be precisely 

controlled by using the so-called Stöber process. This process allows to have a control over 

the size of the as-obtained spherical silica particles. Many research groups have worked on 

this process and have provided different models aiming to explain their mechanism of 

formation. In this section, we will focus on the description of the Stöber process along with 

the presentation of the different mechanistic models.  

 

 
 

Investigated first by G. Kolbe in 19563 and further developed by W. Stöber and A. Fink in 

1968,2 the synthetic process nowadays known as Stöber process have emerged. Initially, 

the idea was to produce a colloidal system containing silica particles of uniform size and 

shape. As shown in Figure 1, this process is a two-step process involving hydrolysis and 

polycondensation reactions in alcoholic medium using a basic catalyst. The first reaction 

takes place by mixing a tetraalkoxysilane precursor in a water/alcohol solution and 

ammonia as catalyst. The alcoxy-groups of the silane precursor are thus transformed into 

silanol groups with release of alcohol and the latter are rapidly and concomitantly 

condensed into siloxane bridges.  

 

 

 

Figure 1: Synthesis of silica spheres using the so-called Stöber process. 
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Various systems can thus be obtained by changing the composition of the alcoholic medium 

and the length of the alkyl chain of the alcoxysilane precursor. Reported results showed 

that the use of methanol provided smaller particles than those yielded using n-butanol as 

solvent. However, the size distribution was broader when using n-butanol and a mixture of 

methanol:butanol (1:1) was thus used to reach more uniform big particles. These 

observations were accompanied by faster reaction rates along with small particles when 

shortening the alkyl chain of the tetraalcoxysilane precursor (i.e. tetramethyl orthosilicate).  

At the reverse, slower reaction rates and bigger particles were yielded when using 

tetrapentyl orthosilicate in n-propanol and n-butanol. Moreover, the absence of ammonia 

led to the flocculation of the system with particles displaying irregular shapes. The 

ammonia is thus responsible of the spherical shape of these particles, but not only, because 

high concentration of ammonia led to spherical particles with larger sizes. To summarize, 

Figure 2 shows the dependence of the silica spheres as a function of the composition of the 

water:ammonia mixture using a constant concentration of alkoxysilane (0.28 mol/L) in 

ethanol. 

Figure 2: Diagram showing the dependence of the silica spheres as a function of the composition of the water : 
ammonia mixture using a constant concentration of tetraethyl orthosilicate (0.28 mol/L) in ethanol extracted from 
the publication of W. Stöber.2 
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On Figure 3 (left), a TEM micrograph displays the spherical silica spheres obtained by 

using Si(OEt)4 and ethanol as solvent. However, the preparation of silica spheres exceeding 

a size of 1 μm was impossible using this system. Therefore, alkoxysilane precursors with 

longer alkyl chains were used but led to silica particles with a broader size distribution and 

sometimes to samples with particles displaying two different sizes. For this reason, a new 

composition containing 0.2 mol/L of the tetrapentyl-orthosilicate, 5 mol/L of water and a 

saturated ammonia solution in ethanol was used. Figure 3 (right) shows the resulting silica 

spheres with a particle size of ca. 1 μm (median particle size of 1.38 μm).  

 

 

 

To conclude, spherical silica particles of different sizes can be successfully produced using 

the Stöber process. As shown before, the concentration of the silane precursor, ammonia or 

the nature of the solvent have a noticeable impact on the size, shape and dispersion of the 

resulting silica particles. This process is easy to perform and additional purification 

techniques are not necessary. However, these experiments were reproduced on different 

days by using different reagents but the results were not precisely reproducible. Since the 

publication of this report, better control over the particle size or narrower size distribution 

were achieved by adjusting for example the nature of the solvent, the temperature or the 

concentration.4-6 G. Bogush et al.4 developed for example silica particles with a narrow 

pore size distribution using a mixture containing 0.2M of TEOS, 1M of ammonia and 2M 

Figure 3: Electron micrographs of the silica spheres obtained in ethanol with a tetraethyl orthosilicate as silica source 
(left) and tetrapentyl orthosilicate (right) extracted from the publication of W. Stöber et al.2 
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of H2O in ethanol at T= 25 °C. Nevertheless, 36 years after, A. Van Blaaderen concluded 

that “A general agreement on the processes responsible for the particle formation and 

growth, final monodispersity, particle size, and shape has not yet emerged “.7 The 

following models based on kinetic considerations8-10 or by a controlled aggregation 

mechanism of particles11-13  are described hereafter. 

 

 
 

Nucleation and growth are the two main steps for the synthesis process of particles. The 

nucleation corresponds to the formation of the first particles which grow differently 

according to the complexity of the system. This nucleation phenomenon is commonly 

divided into homogeneous and heterogeneous nucleation. Whereas the first term describes 

a spontaneous and random nucleation, the second term refers to the nucleation which occurs 

at the nucleation sites on solid surfaces due to the presence of impurities for example. In 

both cases, they highlight the transition between a homogeneous solution and a mixture 

containing particles. Based on these two characteristic steps, three models have emerged to 

describe the formation of these particles and are known as:  

- I. LaMer and Dinegar model14  

- II. Ocaña model15  

- III. Sugimoto model 
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V. K. Lamer and R. H. Dinegar describe a model where the nuclei are formed at the same 

time through a homogeneous nucleation and then grow. In this situation, the nucleation and 

growth are considered are two distinct steps which occur one after the other. The possibility 

to generate new nuclei during the growth is not considered and therefore the possibility to 

get particles with different sizes is thus not possible. In Figure 4, the bold line I represents 

this model in three phases: pre-nucleation, nucleation and growth. During the first phase, 

the solute concentration increases until its solubility limit (critical concentration of 

sursaturation). Subsequently, the nucleation starts spontaneously and the solute 

concentration decreases leading to the ending of the nucleation. Finally, the freshly 

synthesized nuclei start to grow to generate particles with an uniform size.  

Although the LaMer and Dinegar model mentions a short and fast nucleation, it has been 

proven that is not always the case specifically when complex systems are used. The 

Sugimoto model (solid line III) explains thus the particles growth by a coalescence 

phenomenon known as the Ostwald ripening and the Ocaña model (dash line II) describes 

the generation of particles with an uniform size by aggregation of small particles.  

Figure 4 : Formation processes leading to uniform particle sizes: I. LaMer and Dinegar model II. Ocaña model 
III. Sugimoto model. Extracted from the publication of P. Tartaj et al.1 
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Whatever the mechanism involved, the Stöber process allows to produce size- and shape-

controlled particles by adjusting the experimental parameters. However, these silica 

spheres are not porous. 

 

 
 

From the pioneer results of W. Stöber et al., the synthetic routes were further optimized to 

yield porous silica spheres. The formation of porous silica spheres can be obtained through 

different experimental procedures which have a direct impact on the final features of the 

silica nanoparticles such as for example the pore size, the pore distribution, the particle size 

or the structuration of the porous network.  

In 1997, M. Grün et al.16 reported the preparation of M41S-type mesoporous silica spheres 

through the modification of the Stöber process. This process is based on the use of 

tetraalcoxysilane combined with ammonia in alcoholic medium (Stöber process) and the 

addition of a cationic surfactant. In these preliminary results, the reaction mixture was 

composed of tetraethoxysilane as the silica source, n-hexadecyltrimethylammonium 

bromide or n-hexadecylpyridinium chloride as cationic surfactants, aqueous ammonia as 

the catalyst and ethanol as the alcoholic solvent. Mesoporous silica spheres with a mean 

pore size of 3 nm were obtained with n-hexadecyltrimethylammonium bromide or n-

hexadecylpyridinium chloride. Both samples displayed surface area ranging from 1050 to 

1200 m2/g and a pore volume from 0.8 to 0.9 cm3/g. However, the granulometry was not 

fully controlled: most of the particles were spherical but some aggregates were also present. 

Since the publication of this first report, many research groups have synthesized porous 

silica spheres through different methods using for instance emulsion-based chemistry. 17-24  

This method lies on the preparation of emulsions which consist in mixing two non-miscible 

liquids through the addition of an emulsifier to stabilize the whole mixture. Systems 

consisting in droplets of water dispersed in oil (W/O) or droplets of oil dispersed in water 

(O/W) are thus generated. The droplets are what we usually called the “discontinuous 

phase” whereas the other is defined as the “continuous phase”. More complex systems can 

also be created by emulsifying a W/O emulsion in aqueous phase to yield to a double 

emulsion W/O/W (or O/W/O for the O/W emulsion). Porous silica nanoparticles are thus 
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obtained by polymerization of the continuous phase of the emulsion.24 The pore size is 

controlled by the size of the droplets and the pore interconnection by the ratio of the 

dispersed phase. A high ratio of the dispersed phase compared to the continuous phase give 

rise to a highly interconnected porosity. 

For example, A. Imhof et al.25 prepared porous silica spheres by using a first oil-in-

formamide emulsion which was further fractionated to obtain the desired degree of size 

uniformity. The sodium dodecyl sulfate was used as emulsifier to stabilize the emulsion. 

Then, a solution containing an alkoxysilane precursor, such as TMOS or TEOS, was mixed 

with formamide and water (silane/water with a ratio in the range of 3-10). The silane 

precursor was then partially hydrolyzed leading to its partial solubility in formamide. 

Finally, the resulting sol was dispersed in the first emulsion and the size of the droplet was 

adjusted by centrifugation. A small amount of ammonia was added to induce gelation 

(several hours) of the system by increasing the pH. The resulting gel was washed in alcohol, 

dried and calcined to remove the organic parts. As a result, silica materials were obtained 

with uniform spherical pore size ranging from 50 nm to 10 μm. Other systems were 

described using titania and zirconia but they will not be investigated in this chapter.25-26 

However, emulsions require to use an emulsifier such as surfactant which can be replaced 

by solid particles to create the so-called Pickering emulsions.27-28 

More interestingly, porous silica spheres known as Kromasil are available with different 

pore size ranging from 6 nm to 100 nm. They are produced on a large scale and commonly 

used for high performance liquid chromatography. Their synthesis is based on the 

preparation of a sol emulsified in a polar organic solvent. After gelation upon heating, 

porous silica spheres are then generated by evaporation under reduced pressure. The pore-

size being governed by the choice of the starting silane precursor. 

In the following part of the chapter, we will focus on the use of non-hierarchically ordered 

mesoporous silica spheres similar to Kromasil ones which display a high pore-

interconnectivity. 
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The introduction of organics into silica solids can be performed using different methods as 

presented in chapter 2: the direct synthesis or the post-functionalization. Since we have 

decided to use commercial non-hierarchically ordered mesoporous silica spheres, the post-

functionalization is the method of choice to introduce surface TEMPO groups. In the next 

section, the characteristics of the commercial non-hierarchically mesoporous silica spheres 

are presented. Different pore size and particle size were selected for post-functionalization 

with TEMPO radicals. This strategy to modify the surface of the silica spheres is also 

presented hereafter. 

 

 

 

 
 

The starting silica materials are non-hierarchically ordered mesoporous silica spheres with 

different pore sizes and particles sizes. Two types of porous silica spheres were selected: i) 

Porous silica spheres with a constant particle size around 15 μm and pore size ranging from 

ca. 5-6 nm to 28 nm and ii) Porous silica spheres with a constant pore size of ca. 4-6 nm 

and particle size ranging from 20 μm to 500 μm. According to the supplier (SiliCycle), the 

pore diameter, average particle size, specific surface area and pore volume are presented 

for both series in the following tables. 
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Table 1: Non-hierarchically ordered mesoporous silica spheres with a constant particle size of ca. 15 μm and pore size 
ranging from 6 nm to 28 nm (data provided by the supplier). 

Name of the 

silica sample 

SiliaSphere 

spherical 

silica gel 

(S10008B) 

SiliaSphere 

spherical 

silica gel 

(S10008F-A) 

SiliaSphere 

spherical 

silica gel 

(S10008G-A) 

SiliaSphere 

spherical 

silica gel 

(S10008M) 

Pore diameter 

(nm) 
6 7.3 12.4 28.8 

Particle size 

average D50 

(μm) 

14 14.5 14.5 15.7 

Specific 

surface area 

(m2/g) 

452 528 320 108 

Pore volume 

(cm3/g) 
0.68 0.97 0.99 0.83 

 

Table 2: Non-hierarchically ordered mesoporous silica spheres with a constant pore size of 6 nm and particle size 
ranging from 20 μm to 500 μm (data provided by the supplier). 

 

Name of the silica 

sample 

SiliaFlash 

irregular 

silica gel 

(R10023B) 

 

SiliaFlash 

irregular 

silica gel 

(R10050B) 

 

SiliaFlash 

irregular 

silica gel 

(R10060B) 

 

SiliaFlash 

irregular 

silica gel 

(R10070B) 

 

Pore diameter 

(nm) 
6 6 6 6 

Particle sizes 

(μm) 
20 - 45 60 - 120 120 - 200 200 - 500 

Specific surface 

area (m2/g) 
546 526 455 512 

Pore volume 

(cm3/g) 
0,72 0,72 0,66 0,80 
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According to the supplier, these non-hierarchically ordered porous silica have a spherical 

shape without cracks and a narrow particle size distribution. They are mainly used for 

purification and high pressure chromatography (High Performance Liquid 

Chromatography and Supercritical Fluid Chromatography) which is an asset for our study. 

Indeed, this shows that they are well-suited to tolerate harsh conditions such as high 

pressure which is used during the dissolution process. This characteristic suggests also that 

no fine particles are produced in these conditions.  

After washing with DCM and an EDTA solution to remove eventual traces of metallic 

impurities which could decrease the polarization values, the porous silica spheres were 

dried under high vacuum (10-5 mbar) at 135 °C and stored in the glovebox. The porous 

silica spheres were again analyzed by N2 adsorption/desorption to probe any changes 

(Tables 3 and 4). As expected, similar pore diameter, surface area and pore volume were 

found for all the samples after these washings.  

 

Table 3: Non-hierarchically ordered porous silica spheres with a constant particle size of ca. 15 um and pore size 
ranging from 6 nm to 28 nm after washing with DCM and an EDTA solution. 

Name of the 

silica sample 

SiliaSphere 

spherical 

silica gel 

(S10008B) 

SiliaSphere 

spherical 

silica gel 

(S10008F-A) 

SiliaSphere 

spherical 

silica gel 

(S10008G-A) 

SiliaSphere 

spherical 

silica gel 

(S10008M) 

Pore diameter 

(nm)a 
5.4 8.1 12.1 28.3 

Specific 

surface area 

(m2/g)b 

446 478 330 100 

Pore volume 

(cm3/g)c 
0.65 0.92 0.96 0.78 

a: Pore diameter calculated using the BJH model (desorption branch), b: Specific surface area calculated using the BET model, c: Total 

pore volume corresponding to the quantity of N2 adsorbed at P/P0 = 0.99. 
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Table 4: Non-hierarchically ordered porous silica spheres with a constant pore size of 6 nm and particle size ranging 
from 20 μm to 500 μm after washing with DCM and an EDTA solution. 

Name of the 

silica sample 

SiliaFlash 

irregular 

silica gel 

(R10023B) 

 

SiliaFlash 

irregular 

silica gel 

(R10050B) 

 

SiliaFlash 

irregular 

silica gel 

(R10060B) 

 

SiliaFlash 

irregular 

silica gel 

(R10070B) 

 

Pore diameter 

(nm)a 
4.8 4.8 4.8 5.4 

Specific 

surface area 

(m2/g)b 

538 477 457 470 

Pore volume 

(cm3/g)c 
0.73 0.67 0.69 0.72 

a: Pore diameter calculated using the BJH model (desorption branch), b: Specific surface area calculated using the BET model, c: Total 

pore volume corresponding to the quantity of N2 adsorbed at P/P0 = 0.99. 

 

 

 

The surface modification was inspired from the publication of C.-H. Chu et al.29  aiming to 

prepare a silica support containing Si-H surface groups by the coating of a 

polyhydrogenosiloxane layer on the surface of silica supports. The gel was prepared by 

hydrolysis of the silane precursor and its further condensation onto the silica support as 

follows: 

  

X is a hydrolytically labile group such as halide or alcoxy. 
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The silane was thus covalently linked to the silica support by formation of new siloxane 

bridges from the surface silanol-groups of the starting silica support. As a result, a silica 

layer containing the hydrogenosilane groups was yielded onto the surface of the support.  

Since paramagnetic species are needed for DNP, the hydrogenotrialkoxysilane precursor 

was replaced by the 3-azidopropyltriethoxysilane to generate the functional silica layer. 

Similarly to previous experiments, the azido moieties were then coupled with TEMPO 

radicals through a copper catalyzed alkyne-azide cycloaddition reaction (Fig. 5). 

Depending on the concentration of azido-groups to be introduced, a THF solution 

containing different molar ratios of tetraethoxysilane and 3-azidopropyltriethoxysilane was 

added to a HClaq : THF suspension of porous silica spheres before heating at 70 °C for 1h. 

The solid was further recovered by filtration, washed three times with a water:THF (20:80) 

mixture, ethanol and diethyl ether and dried under high vacuum (10-5 mbar) at 135 °C 

overnight (see the experimental section for detailed procedures). Note that the 

concentrations of the two silane precursors were carefully controlled in order to be 

sufficiently high to create a strong cross-linking between the silica layer and the support 

while avoiding the clogging of the support’s porosity. The surface azido groups were 

further coupled with the TEMPO radicals according to the previously described procedure 

(see experimental section). The final materials were washed with an EDTA solution, 

ethanol and diethyl ether prior to be dried under high vacuum (10-5 mbar) overnight at 50 

°C and stored in a glovebox. As usually, these final materials were stored in the glovebox.  

T

T

 

Figure 5: Formation of the silica layer containing the azido groups which are then coupled with TEMPO radicals 
through a copper-catalyzed alkyne-azide cycloaddition. 
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Subsequently, the materials were characterized and polarized to probe the influence of the 

pore size and particle size. In addition, external paramagnetic species such as the dioxygen 

of the atmosphere was removed in one of the formulation to quantify its impact on the 

polarization values. Finally, and for the first time MRI pictures were obtained with HYPSO 

5 impregnated with a 3 M solution of sodium [1-13C] acetate. 

 

 

 

 
 

N2 adsorption/desorption experiments were performed on all samples. The specific surface 

area, pore volume and pore size were deduced from this analysis and the radical 

concentrations were also calculated from EPR. 

 

 
 

In Table 5, porous silica spheres with a pore size of 6 nm (according to the supplier but in 

fact 4-6 nm) and particle size ranging from 20 μm to 500 μm were analyzed after 

introduction of the TEMPO radicals. Specific surface ranging from 258 m2.g-1 to 447 m2.g-

1 along with a pore volume ranging from ca. 0.4 to 0.6 cm3.g-1 were measured. EPR analysis 

showed radical concentrations from ca. 15 to 30 μmol.cm-3 for these same samples. 
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Table 5: Porous silica spheres with a constant pore size and particle size ranging from 20 μm to 500 μm for a radical 
concentration from 10 to 30 μmol.cm-3. 

Entry SBET a 

m2.g-1 
Vp(tot.)b 
cm3.g-1 

Dpc 
nm 

[R] 
μmol.cm-3 

Particle 
size μm 

1 414 0.52 4.2 25 20 - 45 
2 260 0.34 4.2 26 20 - 45 
3 447 0.57 4.2 28 20 - 45 
4 442 0.57 3.7 23 60 - 120 
5 258 0.35 3.7 26 60 - 120 
6 346 0.48 3.7 31 60 - 120 
7 429 0.63 3.7 17 120 - 200 
8 393 0.61 3.7 20 120 - 200 
9 374 0.57 3.7 23 120 - 200 

10 442 0.65 5.4 14 200 - 500 
11 407 0.65 5.4 20 200 - 500 
12 407 0.47 3.7 23 200 - 500 
13 422 0.69 5.4 25 200 - 500 

a: Specific surface area calculated using the BET model, b: Total pore volume corresponding to the quantity of N2 adsorbed at P/P0 = 

0.99, c: Pore diameter calculated using the BJH model (desorption branch). 

 

Table 6 displays the same type of results but for samples with a constant pore size of 6 nm 

(according to the supplier but in fact 4-6 nm) and particle size ranging from 200 to 500 μm. 

With this type of polarizing matrices specific surface area ranging from 258 m2.g-1 to 447 

m2.g-1 and pore volume of ca. 0.5-0.7 cm3.g-1 were measured.  

Table 6: Porous silica spheres with a constant pore size and particle size ranging from 200 to 500 μm. 

Entry SBETa  

m2.g-1 
Vp(tot.)b 
cm3.g-1 

Dpc 
nm 

[R] 
μmol.cm-3 

10 442 0.65 5.4 14 
11 407 0.65 5.4 20 
12 307 0.47 3.7 23 
13 422 0.69 5.4 25 
14 447 0.64 3.7 34 
15 416 0.62 3.7 38 
16 436 0.61 3.7 41 
17 440 0.63 3.7 43 
18 432 0.60 3.7 72 

a: Specific surface area calculated using the BET model, b: Total pore volume corresponding to the quantity of N2 adsorbed at P/P0 = 

0.99, c: Pore diameter calculated using the BJH model (desorption branch). 

In summary and independently of the particle size, high surface areas and high pore 

volumes were measured. Moreover, using this method, we were able to prepare materials 

exhibiting similar textures and different radical concentration. 
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N2 adsorption/desorption and EPR analysis were also performed on polarizing matrices 

with a constant particle size of ca. 15 μm and pore size ranging from 6 nm to 28 nm. As 

shown in Table 7 to Table 10, the specific surface areas measured are lower when 

increasing the pore size. For example, surface areas from 194 m2.g-1 to 386 m2.g-1 for 

samples with a pore size of 6 nm (according to the supplier but in fact 4-5 nm) and from 90 

m2.g-1 to 126 m2.g-1 for samples with a pore size of 28 nm (according to the supplier but in 

fact 28-31 nm) were obtained. 

Table 7: Porous silica spheres with a pore size Dp of ca. 4-5 nm and a constant particle size of ca. 15 μm. 

Entry SBET a 

m2.g-1 
Vp(tot.)b 
cm3.g-1 

Dpc 
nm 

[R] 
μmol.cm-3 

19 221 0.31 4.8 22.3 
20 194 0.29 3.7 27 
21 378 0.51 4.8 46.1 
22 386 0.53 4.8 75.3 
23 380 0.50 4.8 78.8 
24 276 0.37 4.8 103.5 

a: Specific surface area calculated using the BET model, b: Total pore volume corresponding to the quantity of N2 adsorbed at P/P0 = 

0.99, c: Pore diameter calculated using the BJH model (desorption branch). 

Table 8: Porous silica spheres with a pore size of Dp= 8 nm and a constant particle size of ca. 15 μm. 

Entry SBET a 

m2.g-1 
Vp(tot.)b 
cm3.g-1 

Dpc 
nm 

[R] 
μmol.cm-3 

25 342 0.75 8.1 12 
26 320 0.70 8.1 17 
27 335 0.71 7.1 21 
28 340 0.72 8.1 24 

 

Table 9: Porous silica spheres with a pore size of Dp= 12 nm and a constant particle size of ca. 15 μm. 

Entry SBET a 

m2.g-1 
Vp(tot.)b 
cm3.g-1 

Dpc 
nm 

[R] 
μmol.cm-3 

29 283 0.9 12.1 11 
30 250 0.8 12.1 22 
31 222 0.62 10.6 42 
32 103 0.30 10.6 43 
33 311 0.88 10.6 51 

a: Specific surface area calculated using the BET model, b: Total pore volume corresponding to the quantity of N2 adsorbed at P/P0 = 

0.99, c: Pore diameter calculated using the BJH model (desorption branch). 
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Table 10: Porous silica spheres with a pore size of Dp= 28 nm and a constant particle size of ca. 15 μm. 

Entry SBET a 

m2.g-1 
Vp(tot.)b 
cm3.g-1 

Dpc 
nm 

[R] 
μmol.cm-3 

34 114 0.84 30.8 1 
35 98 0.79 28.3 4 
36 119 0.90 21.6 7 
37 93 0.65 28.3 11 
38 126 0.74 24.5 12 
39 117 0.76 28.3 13 
40 109 0.68 28.3 13 
41 110 0.71 28.3 17 
42 116 0.78 28.3 21 
43 90 0.70 28.3 26 

a: Specific surface area calculated using the BET model, b: Total pore volume corresponding to the quantity of N2 adsorbed at P/P0 = 

0.99, c: Pore diameter calculated using the BJH model (desorption branch). 

 

 

 

In order to get insight into the pore structuration and interconnectivity of the samples, 

Transmission Electron Microscopy (TEM) and Electron Tomography (ET) pictures were 

recorded for three types of solids: HYPSO 2, HYPSO 3 and these new solids dubbed here 

HYPSO 5. While TEM micrographs give a glimpse of the difference between the samples, 

ET pictures provide a clear idea of the pore structuration and interconnectivity. HYPSO 2 

solids display distinctively a 2D hexagonal arrangement of long parallel pore-channels as 

expected for SBA-15 type solids. HYPSO 3 solids show a 3D cubic arrangement of 

interconnected cage like pores which were found to improve the polarization performances. 

Finally, HYPSO 5 display a non-structured framework with a highly interconnected pore-

network. The polarization results are presented in the next section for these new porous 

silica materials. 
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HYPSO 2

HYPSO 3 
 

 

HYPSO 5 

 
 
 

 

 

Figure 6: Transmission Electron Microscopy (TEM) and Electron Tomography (ET) pictures of HYPSO 2 (Top), HYPSO 
3 (Middle) and HYPSO 5 (Bottom). 
 

 

 

 

50 nm 
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HYPSO 5 silica spheres displaying a constant pore size of ca. 6 nm and particle size ranging 

from 20 μm to 500 μm as well as HYPSO 5 silica spheres with a constant particle size of 

ca. 15 μm and pore size ranging from 6 nm to 28 nm were analyzed by DNP using 

frequency-modulation. Prior to be polarized, a benchmark solution of H2O:D2O (8:2) was 

impregnated by IWI in the polarizing matrices. Then, the samples were loaded in the holder 

which was directly inserted in the polarizer settled at 1.2 K. 

 

 
 

The use of large porous silica particles could improve the dissolution step by avoiding the 

presence of fine silica particles in the NMR spectrometer. For this reason, particles 

exhibiting pore diameter of 6 nm and the biggest particle sizes (200 to 500 μm) were first 

studied. In Figure 7, the proton polarization values recorded at T= 1.2 K were plotted as a 

function of the radical concentration. In comparison to previous data obtained for HYPSO 

2 and HYPSO 3, similar trend (“volcano” curve) could be observed. The more diluted and 

the more concentrated samples displayed the lowest polarization values with a P(1H) = 54 

% for a radical concentration of 20 μmol.cm-3 and P(1H) = 65 % for a radical concentration 

of 72 μmol.cm-3. It is not worth nothing that these low polarization values were comparable 

or higher to the maximum polarization recorded for HYPSO 2 (P(1H) = 50 % with an 

optimal radical concentration of 79 μmol.cm-3) and HYPSO 3 (P(1H) = 63 % with an 

optimal radical concentration of 67 μmol.cm-3). Overall, the most important result is the 

remarkable proton polarization of P(1H) = 99 % obtained for a radical concentration of only 

34 μmol.cm-3. This result strongly suggests the beneficial impact of the pore-connectivity 

on the polarization performances. 
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Figure 7: Proton polarization values as a function of the radical concentration for HYPSO 5 displaying a pore diameter of 
6 nm and particle size ranging from 200 to 500 um. 

 

In order to compare the DNP performances between the conventional homogeneous DNP 

juice and the solid matrices, the 1H DNP build-up curves of all the samples were recorded 

at T= 1.2 K. A conventional homogeneous DNP “juice” was prepared by mixing 50 mmol 

of 4-hydroxy-TEMPO in a H2O: D2O: glycerol (20:30:50 v:v:v) solution and the selected 

polarizing solids were: i) HYPSO 5 with pore size of 6 nm and particle size ranging from 

200 to 500 μm, optimal, ii) the optimal HYPSO 2 ([R]= 79 μmol.cm-3) and iii) the optimal 

HYPSO 3 ([R]= 67 μmol.cm-3). For sake of comparison with the DNP “juice”, the three 

matrices were impregnated with a benchmark solution composed of H2O:D2O (2:8) without 

the use of glycerol as glassy agent (found useless with the solid matrices). 

As shown in Figure 8, the samples displayed four different 1H DNP profiles. From these 

curves, two information could be extracted: the maximum proton polarization value and 

the rapidity to reach this maximum. HYPSO 2 and HYPSO 3 exhibited a similar behavior 

in the first minutes (almost up to 5 minutes) and reached, as expected, the lowest maximum 

polarization values. For HYPSO 5, the build-up time was higher and the plateau was barely 

reached after 20 minutes if compared to HYPSO 2, HYPSO 3 and the DNP “juice”. 

However, HYPSO 5 reached a polarization value as high as P(1H)= 99 % (± 5%) after 20 
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HYPSO 5, dp = 6 nm with a particle size ranging from 200 
to 500 μm (B= 6.7 T; T= 1.2K)
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minutes that exceeded those of all the other samples and particularly that of the DNP “juice”  

( P(1H)= 90 % ). 

 

 

Additional experiments were conducted with TEMPO containing silica spheres of various 

particle size: 20-45 μm, 60-120 μm, 120-200 μm and 200-500 μm and a radical 

concentration between 10 μmol.cm-3 to ca. 30 μmol.cm-3. The samples with different radical 

concentrations were loaded with the benchmark solution of H2O:D2O (2:8). During these 

experiments, frequency-modulation was used and the samples were polarized at T= 1.2 K 

and B0= 6.7 T. 

Figure 9 shows the proton polarization values as a function of the radical concentration for 

these samples. In this specific case, two types of error should be considered. One related to 

the quantification of the radical concentration and the other related to the measurement of 

the polarization values. Despite these uncertainties, the proton polarization values recorded 

were different and were apparently a little dependent on the particle size. For instance, at 

[R] = 23 μmol.cm-3 the proton polarization for the samples with a particle size of: 60 – 120 

μm, 120 – 200 μm and 200 – 500 μm were respectively P(1H)= 67 %, P(1H)= 52 % and 

P(1H)= 60 %. A difference of P(1H)= 15% was observed between samples with a particle 

HYPSO 2 

HYPSO 3 

Standard DNP 
juice 

HYPSO 5 

Figure 8: 1H DNP build-up curves for three samples displaying different pore network: HYPSO 2 with a radical 
concentration of 79 μmol.cm-3 (black triangles), HYPSO 3 with a radical concentration of 67 μmol.cm-3 (black stars), 
HYPSO 5 with a radical concentration of 34 μmol.cm-3 (red triangles) and a standard DNP juice (black squares).  
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size of 60-120 μm and samples with a particle size of 120-200 μm. Moreover, as the 

physical features of the starting silica spheres are not all exactly the same (pore volume 

between 0.66 and 0.8 cm3.g-1 and specific surface area ranging from 455 to 546 m2.g-1) the 

description of the radical in μmol.cm-3  was not fully consistent, albeit it was found the most 

appropriate.  

  

 

Figure 9: Proton polarization values as a function of the radical concentration for HYPSO 5 displaying a pore diameter of 
6 nm and particle size ranging from 20 um to 500 um. 

 

In a nutshell, the proton polarization values were found slightly different (50-70%) for these 

polarizing matrices depending on the particle size and the radical concentration; one 

exception being the silica spheres with particle size ranging from 200 μm to 500 μm which 

showed a proton polarization of 80 % for a radical concentration of 25 μmol.cm-3. 

 

 
 

The influence of the pore size was also investigated on this new type of samples. As before, 

all the samples were impregnated with the benchmark mixture of H2O:D2O (2:8) and 
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polarized at T= 1.2 K using frequency-modulation.  Diameters ranging from 6 nm to 28 nm 

were selected to probe any polarization changes from small to large pores.  

 

 

As shown in Figure 10, proton polarization values ranging from 82 % to 27 % were 

recorded for HYPSO 5 with a pore diameter of 6 nm, depending on the radical 

concentration. The maximum was found for a radical concentration of [R]= 24 μmol.cm-3 

and the minimum for [R]= 98 μmol.cm-3. More importantly, low radical concentrations 

were found suitable to polarize efficiently. These polarizing matrices could be compared 

with those displaying a pore size of 6 nm and particle size of 200-500 μm (section VI. B. 

Fig. 7). On these previous polarizing matrices, a maximum proton polarization of P(1H)= 

99% was recorded for a radical concentration of [R]= 34 μmol.cm-3. Here, the maximum 

proton polarization value (82 %) was found at [R]= 24 μmol.cm-3. This difference (17 %) 

could be explained by a difference in particle size of ca. 15 μm. 

In Figure 11, the proton polarization values as a function of the radical concentration are 

presented for samples with a pore diameter of 8 nm. For this pore size, a maximum proton 

polarization of P(1H) = 80 % was recorded at [R] = 21 μmol.cm-3.  
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Figure 10: Proton polarization values as a function of the radical concentration for HYPSO 5 with a pore size of 6 nm. 
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Similarly, samples with a pore size of 12 nm were impregnated and polarized at T= 1.2 K. 

A maximum proton polarization of P(1H) = 60 % was found at higher concentration of [R]= 

43 μmol.cm-3. (Fig. 12) 

 

Figure 12: Proton polarization values as a function of the radical concentration for HYPSO 5 with a pore size of 12 nm. 
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Figure 11: Proton polarization values as a function of the radical concentration for HYPSO 5 with a pore diameter of 8 
nm. 
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From these three series, it seems that high polarization can be reached whatever the pore-

size and that difference in pore diameter between 6 and 8 nm is not enough to observe any 

polarization difference. However, when doubling the pore size from 6 to 12 nm, it seems 

that slightly lower polarization values are obtained and that the bigger the pores, the higher 

is the radical concentration is needed to reach high polarization values. 

Dp (nm) Maximum P(1H) (%) [R] (μmol.cm-3) 

6 82 24 

8 80 21 

12 60 43 

 

We therefore expected to reach lower polarization values at higher radical concentration 

when using silica spheres with even bigger pores (i.e. 28 nm). 

 

Figure 13: Proton polarization values as a function of the radical concentration for HYPSO 5 with a pore size of 28 nm. 

 

Counter-intuitively, a radical concentration of 17 μmol.cm-3 was found optimal to reach the 

maximum proton polarization of P(1H) = 75 % (see figure 13) and this result is quite similar 

to those obtained with the silica spheres of small pore diameters (6 and 8 nm). It is therefore 

difficult to draw a trend to explain the influence of the pore diameters on the polarization 

performances.  
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Overall, one can notice that high polarization values can be reached whatever the pore size 

and the granulometry of the silica spheres if appropriate radical concentrations are chosen 

and that the pore-interconnectivity is the key parameter for reaching remarkable 

polarization values. These results also suggest that the polarization of complex molecules 

could be effective using polarizing matrices with big pores. 

 

 

 

Since remarkable proton polarization values were recorded for a benchmark solution of 

H2O:D2O (2:8) in HYPSO 5, we have decided to investigate the 13C polarization. On this 

experiment, HYPSO 5 with a radical concentration of 24 μmol.cm-3, a pore diameter of 6 

nm and particle size of 14 μm was selected. The sample was impregnated with a 3M 

solution of sodium [1-13C] acetate in H2O:D2O (2:8). After introduction of the wetted 

polarizing matrix in the DNP polarizer settled at T= 1.2 K, a first proton polarization of 

P(1H) = 70 % was recorded. Subsequently, this high proton polarization value was 

transferred to the surrounding carbon nuclei by applying a cross-polarization experiment 

every 6 minutes. As a result, a high carbon polarization value of P(13C) = 51 % was reached 

(Figure 14). In comparison to the previous experiment where a maximum of P(1H) = 99 % 

was recorded, the reached lower polarization value is related to the use of a completely 

different analyte. Nevertheless, the reached proton and carbon polarization values were 

found high. 
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In a typical dissolution-DNP experiment, the hyperpolarized liquid is filtered from the 

polarizing matrix in the DNP polarizer under magnetic field. As explained in chapter 1, a 

dissolution stick equipped with a small oven heating and pressurizing the water is manually 

coupled with the holder previously placed in the DNP polarizer settled at low temperature. 

The dissolution sequence is then triggered by pushing a button on the dissolution stick 

which is maintained in the DNP polarizer by the operator while the pressurized hot water 

is injected to dissolve the hyperpolarized liquid. Because of the pressure, it exists some 

risks that the hot water leach into the DNP polarizer full of helium if the dissolution stick 

is not properly coupled to the sample holder. For this reason, preliminary tests of filtration 

were performed out of the polarizer and out of the magnetic field by introducing an on-line 

PTFE syringe filter (pore size of 0.45 μm) just before the magnetic tunnel and directly 

outgoing from the DNP polarizer. The figure 15 shows the actual device where the magnets 

are disposed in a frame obtained by 3D printing few centimeters from the top of DNP 

polarizer. The PTFE filter can be installed on-line between the magnets and the top of the 

DNP polarizer.  

Figure 14: 13C  Build-up curve with CP for HYPSO 5 impregnated with a 3M solution of [1-13C] sodium acetate in H2O:D2O 
(2:8). Inset: curves for 1H DNP build-up without cross-polarization (gray) and 1H DNP build-up with cross-polarization 
(blue) for HYPSO 5 loaded with a 3M solution of [1-13C] sodium acetate in H2O:D2O (2:8). 
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Unfortunately, all of these filtration trials performed with previous polarizing matrices such 

as HYPSO 2 led to a complete loss of the polarization when performing the filtration 

outside of the magnetic field. This fast depolarization outside of the magnetic field could 

be explained by a prolonged contact between the hyperpolarized liquid and the 

paramagnetic species on the surface of the polarizing matrix which are known to relax 

rapidly the nuclei at room temperature. 

However, and mainly because the architecture of the HYPSO 5 could ease the release of 

the hyperpolarized liquid from the polarizing matrix as compared to HYPSO 2, we have 

decided to re-novel the experiment with HYPSO 5. The typical 3M solution of sodium [1-
13C] acetate in H2O:D2O (2:8) was impregnated in HYPSO 5 ([R] = 26 μmol.cm-3) with a 

mean pore diameter of 6 nm and a particle size of 14 μm. The wetted solid matrix was 

introduced in the DNP polarizer and the polarization transferred from the protons to the 

carbons by cross-polarization experiments. After dissolution, a polarization of P(13C) = 19 

% was recorded and the T1 of HDO in solution was measured and gave T1(HDO) = 30 s 

showing that no radical was found after the PTFE filter. This reasonable carbon polarization 

was reached because the highly interconnected structure of the HYPSO 5 allowed to 

accelerate the release of the hyperpolarized liquid from the polarizing matrix and thus to 

use a filter outside of the magnetic field. 

 

Figure 15: Schematic representation of the DNP polarizer connected to the transfer line equipped few centimeters 
after the top of the DNP polarizer with the magnets (magnetic tunnel). 
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As shown in chapter 1, a wide range of molecular probes are available to monitor in-vivo 

and in-vitro metabolisms. 13C-MRI coupled to DNP could be a method of choice for 

example if compared to Positron-Emission Tomography (PET) which is commonly 

employed to probe metabolic processes in neurology, cardiology or oncology using an 

analog of glucose: 18F-fluorodeoxyglucose (18F-FDG). This latter contains a radioisotope 

of fluorine which is produced prior to the detection by a medical cyclotron (Figure 16). 

 

 

Figure 16: Molecular structure of glucose and 18F-fluorodeoxyglucose. 

 

In a typical analysis, the radiopharmaceutical tracer is injected intravenously into the 

patient. Similarly to glucose, the 18F-FDG is transported into the cells and is phosphorylated 

to 18F-FDG-6-phosphate through the hexokinase (or glucokinase). After this 

transformation, the metabolism of the 18F-FDG-6-phosphate is blocked. The hydroxyl 

group which was replaced by a fluorine nucleus at the C-2 position of the ring (Figure 16) 

is essential to follow the Krebs cycle. Hence, the 18F-FDG is trapped and emit positron 

(half-life of 110 minutes) which interact with electrons to give two photons moving in the 

opposite direction and finally detect by a γ-camera to give a picture. 
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As a result, 18F-FDG PET analysis allows to distinguish areas which consume a large 

quantity of glucose and therefore can detect cancer (Warburg effect chapter 1). However, 

in a recent paper of H. Gutte et al.,30 the difficulty to discriminate a muscle from a tumor 

on the right front leg of a canine cancer patient was pointed out. As shown in Figure 18 

(B), the tumor and the muscle appear in yellow indicating a high glucose uptake and 

accumulation. In addition, one can notice the low quality of the picture obtained with FDG-

PET compared to that obtained by 1H-MRI.  

 

Figure 17: Entrapment mechanism of 18F-FDG glucose 

Figure 18: Pictures of a right front leg of a canine cancer patient acquired by: (A) FDG-PET, (B) FDG-PET + 1H-MRI and 
(C) 1H-MRI 
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Despite these observations, the two medical imaging techniques must not be opposed but 

should be considered as complementary based on the expected responses.31-32 1H-MRI 

provides a better visualization of the anatomical details whereas FDG-PET allows the 

metabolic assessment of the tissues.    

In 2015, A. Flori et al.33 have hyperpolarized a sodium [1-13C]acetate solution to assess the 

real-time cardiac metabolism of pigs. This metabolic probe was selected because it is the 

most abundant extra- and intra-cellular short-chain fatty acid. Acetate is physiologically 

present in human blood with a concentration around 0,05-0,2 mM.34-35 Moreover, the 

inadequate glassy property of this molecule in DNP remains a challenge to tackle. 

For this reason, we have also decided to hyperpolarize a solution of sodium acetate because 

the HYPSO matrices could be of interest to increase the signal to noise ratio of this 

molecular probe. The impregnation of the HYPSO material with the solution of sodium 

acetate and the operating conditions are described in the following paragraph. The first 13C 

MRI pictures on a phantom were also recorded and presented hereafter. 

 

 
 

HYPSO 5 was loaded with a sodium [1-13C]acetate solution and polarized at 1,2 K. The 

hyperpolarized liquid was then expelled from the polarizing matrix by means of small 

amount of superheated D2O (10 bar, 450 K). In order to be able to filter the silica spheres, 

a cellulose filter was installed output the dissolution stick itself settled in the polarizer. It 

has to be noticed that in general when the filter was placed outside of the polarizer, just 

before the magnetic tunnel, the freshly generated polarization decreases rapidly to its 

equilibrium value losing thus the possibility to increase signals. The hyperpolarized 

solution recovered free of any glass-forming or radicals was subsequently injected in a 5 

mm NMR tube containing a slightly off-centered 2 mm capillary filled with D2O and used 

as phantom. In the field of medical imaging, a phantom is a designed object as model to 

evaluate the performance of imaging devices. It is more readily available and avoid to 

expose a living subject to possible risks. In this experiment, the phantom was installed in a 

500 MHz NMR spectrometer equipped with a triple gradient probe and images of a thin 

slice were acquired using a FLASH sequence.36 The images obtained after 

hyperpolarization of the sodium [1-13C]acetate solution are presented in the figure 19. 
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In both images, a black circle located in the center appears which correspond to the capillary 

filled with D2O. 13C image highlights for the first time the possibility to use HYPSO 5 as 

polarizing matrix to efficiently hyperpolarize and record MRI pictures after dissolution of 

sodium [1-13C]acetate. 

 
 

In conclusion, the new methodology to post-functionalize commercial mesoporous silica 

spheres has allowed to prepare polarizing matrices with different pore size and particle size. 

The TEMPO radicals were introduced on the silica spheres in a two-step process: i) coating 

of the silica sphere with a silica layer containing azido groups and ii) introduction of the 

TEMPO units via a click reaction with the surface azido groups. The post-functionalization 

of porous silica spheres with different particle size suggests that this parameter has an 

influence on the proton polarization values. However, an optimum with a particle size of 

200-500 μm was found to reach remarkable polarization performances and to ease the 

filtration during the dissolution process. However, changing the pore size of the porous 

silica spheres from 6 nm to 28 nm has highlighted that high polarization values (60 – 80 

%) can always be reached with radical concentration ranging from 20 to 40 μmol.cm-3. In 

addition, polarizing matrices with larger pore size provide the possibility to hyperpolarize 

larger molecules/systems with decent polarization values.  

Of the different materials developed, the non-structured silica spheres exhibiting a high 

pore-interconnectivity gave higher performances P(1H)= 99 % (± 5 %) which even 

exceeded those of the state-of-the-art DNP “juice”. In comparison to previous systems, the 

Figure 19: 1H (left) and 13C pictures (right) acquired after hyperpolarization and dissolution of a solution of 3M sodium 
[1-13C]acetate in H2O:D2O (2:8) impregnated into HYPSO 5. 



167 | P a g e  
 

time to prepare the polarizing matrices were reduced and the entire process could 

potentially be easily scalable. Concerning these specific silica materials, the impregnated 

liquid was better released from these systems than from previous systems. It was thus 

possible for the first time to install a syringe filter between the magnetic tunnel and the top 

of the DNP polarizer to secure and ease the dissolution process.  

Finally, a high carbon polarization value of P(13C)= 51 % for a solution of sodium acetate 

was recorded after dissolution using these silica spheres (HYPSO 5 of dp = 6 nm). 

Moreover, a first MRI picture using solid as polarizing matrix was recorded on a phantom 

constituted of a NMR tube containing a capillary tube filled with D2O. 
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For the precursor’s synthesis, the procedures are described in the supporting information 

of the chapter 2. 

Before post-functionalization, the starting porous silica spheres were washed with DCM 

(3x50 mL) and an EDTA solution (3x50 mL) to eventually remove the paramagnetic 

species. The resulting porous silica spheres were then dried under high vacuum (10-5 mbar) 

at 135°C for 12h. 

 

 
 

The procedure to insert the azido moieties is described hereafter but the quantity inserted 

for each HYPSO is summarized in the following tables. 

Prior to be heat up at 70 °C, porous silica spheres (1000 mg) were mixed with THF (20 

mL) and an aqueous solution of HCl ([C]= 2.3 M, 1.4 mL). Then, a solution containing 

tetraethylorthosilicate (Tables 9-14), 3-azidopropyltriethoxysilane (Tables 9-14) and THF 

(Tables 9-14) was prepared. A small aliquot (9 mL) of this solution was added dropwise 

over a period of 15-20 minutes. Finally, the reaction mixture is stirred under reflux for 1h. 

The solid was further recovered by filtration, washed three times with 50 mL of a mixture 

of water/THF (20:80), ethanol (3x50 mL) and diethyl ether (3x50 mL) and dried under high 

vacuum (10-5 mbar) at 135°C overnight.  
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Table 11: Proportion for porous silica spheres with a pore size of 6 nm and particle size ranging from 200 to 500 μm. 

Entry 
Tetraethylorthosilicate 

(mg) 

3-

azidopropyltriethoxysilane 

(mg) 

THF (mL) 

10 2589.4 84.6 87 

11 2598.3 70.0 87 

12 2581.2 89.8 87 

13 2573.0 100.8 87 

14 2523.3 162.5 87 

15 2538.9 141.0 87 

16 2554.0 117.2 87 

17 2524.0 157.1 87 

18 2438.5 258.1 87 

 

Table 12: Porous silica spheres with a constant pore size of 6 nm a particle size ranging from 20 to 500 μm. 

Entry 
Tetraethylorthosilicate 

(mg) 

3-

azidopropyltriethoxysilane 

(mg) 

THF 

(mL) 

Particle 

size 

(μm) 

1 2760.5 90.7 87 20 - 45 

2 2756.0 97.5 87 20 - 45 

3 2772.9 74.0 87 20 - 45 

4 2661.6 82.9 87 60 - 120 

5 2670.3 72.0 87 60 - 120 

6 2653.5 89.4 87 60 - 120 

7 2302.0 73.0 87 120 -200 

8 2309.0 63.7 87 120 -200 

9 2294.6 81.6 87 120 -200 

10 2589.4 84.6 87 200 -500 

11 2598.3 72.3 87 200 -500 

12 2581.2 89.8 87 200 -500 

13 2573.0 100.8 87 200 -500 
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Table 13: Porous silica spheres with a pore size of Dp= 6 nm and particle size of ca. 15 μm. 

Entry Tetraethylorthosilicate 
(mg) 

3-
azidopropyltriethoxysilane 

(mg) 

THF 
(mL) 

Particle 
size 

(μm) 
19 2325.0 25.0 87 15 
20 2304.0 49.0 87 15 
21 2283.0 74.0 87 15 
22 2262.0 99.0 87 15 
23 2241.9 124.6 87 15 
24 2222.0 146.9 87 15 

 

Table 14: Porous silica spheres with a pore size of Dp= 8 nm and particle size of ca. 15 μm. 

Entry Tetraethylorthosilicate 
(mg) 

3-
azidopropyltriethoxysilane 

(mg) 

THF 
(mL) 

Particle 
size 

(μm) 
25 1960.0 91.3 87 15 
26 1966.6 81.8 87 15 
27 1976.3 77.1 87 15 
28 1948.0 103.8 87 15 

 

Table 15: Porous silica spheres with a pore size of Dp= 12 nm and particle size of ca. 15 μm. 

Entry Tetraethylorthosilicate 
(mg) 

3-
azidopropyltriethoxysilane 

(mg) 

THF 
(mL) 

Particle 
size 

(μm) 
29 1599.3 74.2 87 15 
30 1564.1 118.5 87 15 
31 1536.6 147.8 87 15 
32 1514.8 173.1 87 15 
33 1460.8 239.2 87 15 

 

Table 16: Porous silica spheres with a pore size of Dp= 28 nm and particle size of ca. 15 μm. 

Entry Tetraethylorthosilicate 
(mg) 

3-
azidopropyltriethoxysilane 

(mg) 

THF 
(mL) 

Particle 
size 

(μm) 
34 481.6 97.7 89 15 
35 483.4 99.6 89 15 
36 473.7 108.5 89 15 
37 493.0 80.0 89 15 
38 508.5 67.8 89 15 
39 471.5 108.5 89 15 
40 497.0 76.0 89 15 
41 484.0 91.0 89 15 
42 459.8 120.1 89 15 
43 492.0 81.5 90 15 
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Copper-catalyzed alkyne-azide cycloaddition (CuAAC) was used to couple azido 

fragments with TEMPO radicals. Typical click-chemistry is presented for the silica spheres 

containing azido fragments previously described. 

Under argon atmosphere, o-propargyl TEMPO (Tables) was added to a suspension of N3-

silica spheres (1g) in DMF (5 mL). Then, a fresh stock solution of CuI (15 mg, 78.76 μmol) 

was prepared in DMF/NEt3 (5 mL/ 2 mL) and an aliquot (Tables) was added to the latter 

solution. The mixture is stirred for 72h at 50 °C and then filtrated and washed with a EDTA 

solution (2 x 20 mL), DMF (2 x 20 mL), EtOH (3 x 20 mL), Et2O (3 x 20 mL). Finally, the 

product obtained is dried under high vacuum (10-5 mbar) at 50 °C for 15h. 

 

Table 17: Proportion for porous silica spheres with a pore size of 6 nm and particle size ranging from 200 to 500 μm. 

Entry 
O-propargyl TEMPO  

(mg) 

Solution of 

CuI (mL) 

10 22.2 0.6 

11 17.8 0.5 

12 23.7 0.7 

13 25.2 0.7 

14 41.0 1.2 

15 35.3 1.0 

16 30.3 0.8 

17 40.4 1.2 

18 65.6 1.9 
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Table 18: Porous silica spheres with a constant pore size of 6 nm a particle size ranging from 20 to 500 μm. 

Entry 
O-propargyl TEMPO  

(mg) 

Solution of 

CuI (mL) 

1 26.7 0.6 

2 24.1 0.7 

3 19.5 0.5 

4 23.9 0.6 

5 22.2 0.5 

6 24.2 0.7 

7 18.8 0.5 

8 17.1 0.5 

9 20.1 0.6 

10 22.2 0.6 

11 17.8 0.5 

12 23.7 0.7 

13 25.2 0.7 

 

Table 19: Porous silica spheres with a pore size of Dp= 6 nm and particle size of ca. 15 μm. 

Entry 
O-propargyl TEMPO  

(mg) 

Solution of 

CuI (mL) 

19 6.3 0.2 

20 12.6 0.4 

21 18.9 0.5 

22 25.2 0.7 

23 31.5 0.9 

24 37.9 1.1 
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Table 20: Porous silica spheres with a pore size of Dp= 8 nm and particle size of ca. 15 μm. 

Entry 
O-propargyl TEMPO  

(mg) 

Solution of 

CuI (mL) 

25 23.9 0.7 

26 23.2 0.6 

27 20.8 0.5 

28 27.9 0.7 

 

Table 21: Porous silica spheres with a pore size of Dp= 12 nm and particle size of ca. 15 μm. 

Entry 
O-propargyl TEMPO  

(mg) 

Solution of 

CuI (mL) 

29 12.2 0.3 

30 17.3 0.4 

31 37.9 1.1 

32 44.2 1.3 

33 36.1 0.9 

 

Table 22: Porous silica spheres with a pore size of Dp= 28 nm and particle size of ca. 15 μm. 

Entry 
O-propargyl TEMPO  

(mg) 

Solution of 

CuI (mL) 

34 24.0 0.7 

35 25.2 0.7 

36 26.5 0.8 

37 20.8 0.6 

38 17.8 0.5 

39 28.3 0.8 

40 19.5 0.6 

41 23.3 0.7 

42 30.7 0.9 

43 19.2 0.3 
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Experiments were performed at 77 K using a BELSORB-Max from BEL-JAPAN. Before 

N2 adsorption, the samples were outgassed at 10-5 mbar at 408 K for 12 h. The pore diameter 

distribution and the mean pore diameter (dp) were calculated using Barrett–Joyner–Halenda 

(BJH) method. The specific surface area (SBET) was calculated using the Brunauer–

Emmett–Teller (BET) equation.  

 

 

 

Preparation of the sample consist in filling a cell equipped with CaF2 windows with the 

powder. DRIFT spectra were recorded on a Nicolet 6700-FT spectrometer and 64 scans 

were accumulated for each spectrum (resolution 4 cm-1). 

 

 
 

Conventional TEM micrographs were performed at the “Centre Technologique des 

Microstructures”, UCBL, Villeurbanne, France, using a JEOL 2100F electron microscope. 

The acceleration voltage was 200 kV. The samples were prepared by dispersing a drop of 

the ethanol suspension of a ground sample on a Cu grid covered by a carbon film. 

 

 
 

Electron tomography (ET) pictures were recorded on a TEM JEOL JEM-2100F equipped 

with a GATAN Ultrascan 1000 CDD camera. The JEOL TEMography software package 

was used for the automated acquisitions and 3D reconstructions. Moreover, 3D views of 

the reconstructed structures were obtained with ImageJ software. For each sample, a series 

of tilted images was collected from -70° to 70°, with the Saxton scheme (variable angular 

step improving the 3D reconstruction with a reduced number of images to preserve the 
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beam sensitive structure of the samples). The samples HYPSO 2 and HYPSO 5 were 

recorded without any specific preparation. However, HYPSO 3 was impregnated under 

vacuum with an epoxy resin to completely fulfil the pores and thin sections of 50 nm 

obtained by ultramicrotomy were observed.  

 

 
 

Typically, HYPSO materials were analyzed through the d-DNP system represented in 

Figure 20. After impregnation with the adequate analyte, the polarizing matrix was 

introduced in the polarizer with a magnetic field of B0 = 6.7 T and a temperature of 4.2 K 

or 1.2 K. A microwave source of 94 GHz was used to transfer the polarization from the 

electrons to the molecule of interest. Frequency can be modulated with an amplitude of 

Δvμw = 100 MHz and fmod = 10 kHz or not modulated. The DNP build-up of 1H spins is 

measured with 1° nutation angle pulses followed by an acquisition period of 1ms. The 

resulting free induction decay is Fourier transformed, phased and integrated to obtain a 

value of 1H spin for the corresponding acquisition period. This sequence is applied every 5 

seconds during at least 250 seconds (up to 1500 seconds for long build up time), thus, 

obtaining at least 50 values of 1H spin. 

 

  

Figure 20: Representation of the polarizer coupled to a NMR spectrometer via a magnetic tunnel. (private 
communication of Mathieu Baudin) 
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In the previous chapters, polarizing matrices were obtained either by the preparation of 

ordered mesoporous materials or by post-functionalization of silica spheres of various 

sizes. Depending on the system and mostly for samples with fine silica particles, the 

dissolution step could be hampered by filtration issues. These problems are related to the 

use of hot pressured water to recover the solution containing the hyperpolarized sample 

that may carry some fine silica particles outside the polarizer or may lead to filter-blocking. 

If the silica grains containing TEMPO radicals are found in the hyperpolarized solution, 

the measured polarization can be suboptimal or can completely disappear. Hence, we have 

developed alternative polarizing matrices functionalized by TEMPO radicals of controlled 

granulometry to fix this problem. Beside silica spheres, we thus will focus here on the 

preparation of monolithic samples while maintaining a large pore interconnectivity. 

Samples were prepared using sol-gel process via two different synthetic routes. In the first 

route, the TEMPO radicals are directly introduced at the beginning of the sol-gel process. 

The second route consists in preparing functional silica-materials containing azido groups 

which are further transformed into TEMPO fragments. The direct incorporation of the 

TEMPO groups lead to samples with a monolithic shape (rigid cylinders) and an orange 

color. In the second case, relative large silica beads are produced due to the cracking of the 

monoliths during the TEMPO introduction.  

This chapter therefore describes the preparation of the aerogels and xerogels. The two 

different synthetic processes to produce xerogel cylinders or beads are detailed here along 

with the complete characterization of the resulting solids. Different parameters such as the 

build-up times, relaxation times and the polarization values were measured to probe the 

behavior of these new polarizing matrices. In addition, the quantity expelled from the solids 

was evaluated by 1H NMR after dissolution of the samples. Since the different formulations 

allowed to perform an easy and fast filtration, the silica matrices were recovered and re-

used to polarize a sample in a second polarization-dissolution cycle. 
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Sol-gel process or derivative methods were used in this PhD project to develop new hybrid 

ordered mesoporous materials or functionalized silica spheres with TEMPO groups. It is 

now obvious that this technique is a versatile way to produce any kind of supports decorated 

with organic groups of interest. Moreover, we have proved that it is perfectly suitable for 

d-DNP analysis and MRI applications. In order to optimize the entire DNP process, we first 

focused on the possibility to improve the filtration by changing the granulometry of the 

polarizing matrices. One of the possible solutions was to prepare aerogel or xerogel silica-

based materials which displayed similar textures and chemical compositions. Indeed, their 

high porosity could host the TEMPO radicals and the solution to be polarized and their 

monolithic shape could improve the filtration step. The silica networks were tailored to 

mimic those of HYPSO 5 solids. 

As depicted in Figure 1, the only difference between the two materials preparation relies 

on the drying step. Whereas the solvent is removed under supercritical CO2 drying for the 

aerogels, the xerogels are dried under ambient pressure. Their synthesis involve the use of 

alkoxysilanes which react under specific conditions to create a viscous solution known as 

the “sol”. After a certain period of time (the gelation time), the sol polymerized to give a 

gel swollen by the solvent. A network was thus created and its mechanical strength could 

be reinforced by adjusting the aging time. The difference in the drying step as presented 

above can generate significant changes on the structure and properties of the materials.  

 
Figure 1: Schematic representation of the synthesis process leading to aerogel or xerogel materials.1 
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The next section will be divided in three parts: the first and the second section will describe 

the main characteristics of the aerogels and xerogels as well as the salient points of their 

synthesis. Then, the polarization values and build-up times will be presented and discussed 

in regard of the d-DNP process constraints. 

 

 
 

 
 

First reported in 1931 by S. S. Kistler2, the aerogels display : a low density (30 – 50 kg.m-

3), a high porosity (85 – 99%) and a high specific surface area (500 – 1300 m2.g-1). They 

are mainly used for their thermal insulator property but their applications are relatively 

wide from aerospace3 to biomedical applications.4  

The drying process used to prepare the xerogels is important for determining their textural 

properties. Arising from some perturbations when expelling the solvent from the pore 

network of the materials, the drying step can induce cracking or collapse of the materials’ 

porosity. These perturbations are capillary constraints as defined by the Laplace-Young 

equation: 

 

 

 

 

- P: capillary pressure (N.m-2) 

- R: meniscus radius (m) 

- γ: surface tension of the liquid (mN.m-1) 

- θ: wetting angle   
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A schematic representation of the pores with different sizes is shown in Figure 2. The 

indices 1 and 2 refer respectively to a large pore with a radius R1 and a small pore with a 

radius R2. The pressure exerted into these pores are denoted P1 and P2 and the wetting angles 

θ1 and θ2. The situation as presented here is an ideal case because in reality the pores are 

not perfectly cylindrical and can display some asperities. The Laplace-Young equation 

shows that decreasing of the pore size (R) results in increasing capillary forces and cracking 

can thus preferentially occur on the smaller pores of the final material. To avoid such 

cracking, for a given material where it is not possible to increase or calibrate the pore size, 

one can act on the surface tension between the interfaces by changing the solvent or by 

introducing additives. Solvent extraction can also be performed with supercritical CO2. The 

method consists in substituting the liquid used during the synthesis to a fluid which has a 

surface tension equal to zero. The capillary stress thus disappears, giving rise to materials 

with a monolithic shape without cracks. 

In Figure 3, a carbon dioxide phase diagram is plotted and allows to localize the critical 

point above which supercritical drying can be performed. In the specific case of carbon 

dioxide, the critical pressure and temperature are respectively: Pc = 73.8 bar and Tc = 31.1 

°C.  In these specific conditions the substance is a supercritical fluid which has a peculiar 

behavior at the boundary between a liquid and a gas.  

 

Figure 2: Schematic representation of pores with a radius R1 or R2 on which different capillary forces are applied. 
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Although carbon dioxide is used as a supercritical fluid, other substances could be also 

employed as shown in table 1 where the physical properties of some supercritical fluids are 

summarized.5 Extraction under supercritical conditions is thus possible with a wide range 

of solvents. Nevertheless, some of them are discarded because of their toxicity or corrosion 

such as ammonia or for safety reasons (ethane being highly flammable). In most cases, 

carbon dioxide is employed because it is non-toxic, non-flammable, chemically inert, 

inexpensive and available at high purity. In addition, its relatively low critical temperature 

(31.1 °C) and pressure (73.8 bar) are easily achievable. These characteristics are interesting 

in order to extract and purify organic compounds with low decomposition temperature.  

 

 

 

Figure 3: Phase diagram of carbon dioxide displaying the pressure as a function of the temperature. 
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Table 1: Physical properties of some supercritical fluids. 

 

Supercritical drying using alcohols such as methanol deserves also to be mentioned. The 

critical temperature and pressure are relatively high which implies the deployment of a 

heavier safety device. It is also worth noting that methanol is not chemically inert. The 

hydroxyl groups present on the surface of the silica materials can react with methanol to 

form surface methoxy species. More hydrophobic materials are thus generated and present 

usually a higher mechanical resistance than materials dried via supercritical CO2.  

 

 
 

For this preparation, anhydrous methanol was first inserted in a 50 mL round bottom flask 

previously placed in an ice bath along with tetramethyl orthosilicate (TMOS). Then, a 

solution of oxalic acid with a concentration of 1 mmol.L-1 was prepared and added dropwise 

to the previous mixture. Finally, the resulting viscous solution was vigorously stirred at 

0°C for 30 minutes prior to remove the ice bath for additional stirring at room temperature 

(24h). Following the number of aerogels needed, the proportions of the chemicals can be 

adjusted.  

In order to avoid any cracks on the aerogels during the drying process, hydrophobic Teflon 

vials were used in the next step. For one aerogel, a Teflon vial was placed in an ice bath 

and a portion of the previous mixture was introduced. Then water and methanol were added 

before preparing a 1M solution of ammoniac. Finally, the ammoniac solution was added 

Fluids Critical temperature  Critical pressure 

 (°C) Bar Atm psi 

Carbon dioxide 31.1 73.8 74.8 1070.4 

Ethane 32.4 48.8 49.5 707.8 

Methanol 240.1 80.9 82.0 1173.4 

Ammonia 132.4 113.5 115.0 1646.2 

Nitrous oxide 36.6 72.4 73.4 1050.1 

Xenon 16.7 58.4 59.2 847.0 

Water 374.4 221.2 224.1 3208.2 
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dropwise and the sample was stirred 90 s prior to remove the stirring magnet and placed it 

inside the fridge for 2h. The sample was further placed at room temperature for 2h and 

dried 48h at 50 °C.  

Because the water is not miscible with the supercritical CO2,
6

 the water contained in the 

sample was exchanged with acetone which is miscible. Therefore, all eventual capillary 

constraints arising from a liquid-liquid interaction were removed. As shown in Figure 4, 

the samples were immersed in acetone to remove the water before being dried by 

supercritical CO2. 

 

After this exchange process, the autoclave (Fig. 5) used to prepare the aerogels was cooled 

down to 10°C to be able to transfer the liquid CO2 from the bottle to the autoclave. Then, 

the gel was placed in a crucible filled with acetone and placed in the autoclave. The system 

was tightly closed and completely filled with liquid CO2. The next step consisted in closing 

the filling valve and opening the draining valve to purge out the solvent of the autoclave 

(procedure repeated 6 times).  Once all the traces of the solvent were removed, the 

autoclave was again filled with the liquid adjusted above the gel and all the valves were 

closed. The temperature was set to 45°C and pressure to 95 bar for 1h before slowly 

releasing the pressure (ca. 1 bar/min) while keeping the same temperature. This slow 

depressurization avoids to crack the final material and the retention of the temperature 

avoids the condensation of CO2. Indeed, as shown in figure 3, above the supercritical point 

and for a given pressure, the decrease of the temperature could lead to cross the boundary 

Figure 4: Aerogels immersed in acetone to remove water before being dried by supercritical CO2.  
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between the supercritical state and the liquid state. A picture of the supercritical device 

used for the preparation of our aerogels is presented in figure 5. 

 

 

Unfortunately, after many attempts based on the same reaction scheme already detailed for 

HYPSO 5, the aerogels were prepared but they exhibited a poor mechanical strength 

leading to a fine silica powder. This issue is also discussed in a recent review published by 

A. Lamy-Mendes.7 Their application in d-DNP which uses harsh conditions was thus 

discarded and we focused our investigations on silica xerogel materials. 

 

 
 

As mentioned above, the solvent in xerogel materials can be removed under ambient 

pressure drying. This technique which is less drastic than the use of supercritical carbon 

dioxide is also presented as an industrial and safer alternative to produce silica materials. 

However, using such drying technique, the characteristics of the silica xerogels are quite 

different. In comparison to aerogels, their porosity is lower (25 % vs 85 – 99 % for aerogels) 

Figure 5: Autoclave connected to a CO2 bottle allowing to prepare the aerogels. 
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albeit still high. In addition, these silica materials display high surface area and a pore size 

which can be tuned from 1 to 10 nm. A considerable shrinkage of the porosity, from 90 % 

to 95 % depending on the system, is observed during the drying process.8 

 

 
 

Hybrid silica xerogels were prepared either by direct incorporation of TEMPO radicals 

during the preparation of the materials or by post-functionalization of xerogels containing 

azidopropyl-fragments. As shown in Figure 6, these two strategies led to two types of 

samples: i) an orange silica xerogel molded in a cylindrical shape (direct incorporation of 

the TEMPO groups) and ii) an orange silica xerogel made of beads of different sizes (post-

functionalization of azido-containing solids). 

 

Figure 6: Schematic representation of the two synthetic routes leading to the hybrid xerogels containing TEMPO radicals. 

 

The synthesis of both materials is explained in the following paragraph but more details 

can be found in the supporting information at the end of this chapter.  
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Hybrid silica xerogels were obtained using a straightforward method based on sol-gel 

process in two steps. The first step consists in preparing a sol at 0°C by mixing methanol, 

TMOS and a portion of an oxalic acid solution [C] = 0.001 M. Then, the reaction mixture 

was maintained at 0°C for 30 minutes and finally left 24h at room temperature. The next 

day, the second step was performed by mixing an aliquot of the previous sol with milli-Q 

water, 3-azidopropyltriethoxysilane and a freshly prepared ammonia solution [C] = 1M at 

0°C in a Teflon vial (this container was used for the same reason as before). Subsequently, 

the reaction mixture was kept 90 seconds at 0°C and the stirring magnet was removed 

before introducing the Teflon vial in the fridge for 2h. As shown in Figure 7, materials with 

various dilutions were prepared in cylindrical Teflon vials by incorporating different 

amounts of the 3-azidopropyltriethoxylsilane precursor.  

Finally, all the closed Teflon vials containing the sols were aged at 50°C for 2 days in an 

oven. Then, the solvent was slowly removed by increasing the temperature up to 110 °C in 

24 h with the Teflon vial caps slightly opened (1/4 of a turn). Transparent silica xerogels 

bearing azidopropyl-groups were thus obtained. 

 

 

Figure 7: Schematic representation of the synthesis of hybrid silica xerogels. 

 

Copper-catalyzed alkyne-azide cycloaddition was then performed to introduce the TEMPO 

radicals using the same protocol than the one used in the previous chapters. However, the 

speed of the stirring magnet was slowed down to avoid as much as possible to damage the 
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monoliths and to avoid to create fine xerogel particles. A schematic representation of the 

synthesis along with a picture of the final materials are depicted in Figure 8. 

 

 

Materials with different radical concentrations were prepared and analyzed (vide infra) 

before impregnation with liquids and subsequent polarization. 

 

 

 

After drying the samples for 12h at 50 °C under high vacuum, surface area, pore size and 

porous volume were obtained from N2 adsorption/desorption measurements. The results are 

summarized in Table 2 with the radical concentration arising from electron spin counting 

using EPR. Moreover, EPR spectra for each samples are presented in Figure 11. 

Surface areas ranging from 355 to 586 m2.g-1 were found with a pore size ranging from 3 

to 6 nm. The samples display high porous volumes from 0.4 to 0.7 cm3.g-1 allowing to 

impregnate a large quantity of liquid. Nevertheless, small fluctuations can be observed and 

could be explained by inhomogeneous heating of the samples in the oven or a different 

solvent extraction rate when opening the Teflon vial caps.  

 

Figure 8: Schematic representation of the TEMPO incorporation using CuAAC in the silica xerogels bearing azido groups. 
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Tableau 2: N2 adsoprtion/desorption analysis and electron paramagnetic resonance of the final xerogels with different 
radical concentrations. 

Entry 
[R]  

(μmol.cm-3) 

SBET 

(m2.g-1) 

Dpa 

(nm) 
Vp(tot.)b 

(cm3.g-1) 
1 2 381 5 0.46 

2 5 418 4 0.4 

3 10 407 3 0.33 

4 14 355 6 0.51 

5 15 429 3 0.36 

6 34 430 3 0.36 

7 44 586 5 0.77 
a: Mesopore mean diameter calculated using the BJH model (adsorption branch).b: total pore volume corresponding to the quantity of 

N2 adsorbed at P/P0 = 0.99. 

As an example the adsorption/desorption isotherm along with the BJH plot allowing to 

determine the mean pore diameter for one of the xerogel post-functionalized with TEMPO 

radicals are presented in Figure 9 and 10. 
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Figure 9: Adsorption/desorption isotherm for one of the xerogel post-functionalized with TEMPO radicals ([R]= 
14 μmol.cm-3). 
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Figure 10: Mesopore mean diameter for one of the xerogel post-functionalized with TEMPO radicals ([R]= 14 
μmol.cm-3). 

Figure 11: EPR signal for xerogels obtained by direct incorporation of TEMPO radicals. 
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The second strategy consisted in preparing hybrid silica-based xerogels containing TEMPO 

radicals in one step. The synthetic process is more straightforward and may lead to the 

physical entrapment of some TEMPO radicals within the silica. This entrapment could be 

an advantage when polarizing pyruvic acid which can react with TEMPO radicals onto the 

matrix surface if it is not diluted in an aqueous solution. With respect to the aforementioned 

procedure which needs temperatures ranging from 50 °C to 110 °C, the protocol may need 

adjustments because such temperatures may be too extreme for the TEMPO radicals. A 

preliminary study therefore consisted in monitoring by EPR the stability of the TEMPO in 

THF at 70 °C as a function of the time.  

 

Figure 12: EPR signal for TEMPO radicals in THF at room temperature (red line) and heated at T=70°C for 5 minutes 
(blue line) 20 minutes (green line) and 50 minutes (black line). 
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As shown in Figure 12, after heating 5 minutes at T= 70 °C the intensity of the EPR signal 

started to decrease showing that the amount of paramagnetic species rapidly decreased at 

this temperature. We therefore decided to prepare the xerogels at a lower temperature (T= 

50 °C) both for the aging time and the drying. 

For their synthesis, the same sol containing TMOS, MeOH, water and oxalic acid was 

prepared. Compared to the previous preparation allowing to obtain hybrid silica xerogels 

through post-functionalization, the second step was performed by introducing different 

amounts of TEMPO radicals instead of the 3-azidopropyltriethoxysilane. As previously, 

samples were placed for 2h in the fridge and few hours at room temperature. Then, they 

were directly introduced in the oven and heated at 50°C for 2 days. Finally, they were dried 

24h in the Teflon vials with the caps slightly opened (1/4 of a turn). A schematic 

representation of the synthesis is depicted in Figure 13. 

 

Since TEMPO radicals were already entrapped in the silica framework, the resulting 

samples were simply dried under high vacuum at T= 50 °C and stored in a glovebox prior 

to be used for DNP. The silica xerogels with various concentrations in TEMPO radicals are 

shown in Figure 14 before and after the drying process.   

 

Figure 13: Schematic representation of the preparation of the xerogels by direct incorporation of TEMPO radicals. 

Figure 14: Silica xerogels with different radical concentrations before drying (left) and after drying (right). 
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Hybrid silica xerogels containing TEMPO were first dried under high vacuum at 50 °C for 

12h. Then, they were analyzed using N2 adsorption/desorption and EPR as shown in the 

table 3. Surface areas ranging from 389 to 587 m2.g-1, pore volumes ranging from 0.5 to 

0.9 cm3.g-1 and pore-size from 4 to 6 nm were measured. In this case, we observed also 

small fluctuations which could be due, in most samples, to the very low quantity of TEMPO 

used. Overall, increasing the amount of radical led to the decrease of the surface area. 

Regarding the pore size, they were not very different (4 to 6 nm) and the pore volume was 

found to decrease while increasing the amount of TEMPO (exception for entry 3 and 4). 

 

Table 3: N2 adsorption/desorption experiments and electron spin resonance for hybrid silica xerogels  

Entry 
[R]  

(μmol.cm-3) 

SBET 

(m2.g-1) 

Dpa 

(nm) 
Vp(tot.)b 

(cm3.g-1) 
1 17 587 6 0.90 

2 51  531 5 0.78 

3 76  525 4 0.55 

4 90 449 5 0.70 

5 91 476 6 0.76 

6 113 420 6 0.64 

7 226 389 5 0.58 

8 304 427 4 0.47 
a: Mesopore mean diameter calculated using the BJH model (adsorption branch).b: total pore volume corresponding to the quantity of 

N2 adsorbed at P/P0 = 0.99. 

As an example the adsorption/desorption isotherm along with the BJH plot allowing to 

determine the mean pore diameter for one of the xerogel obtained by direct incorporation 

of TEMPO radicals are presented in Figure 15 and 16. Moreover, EPR spectra for each 

samples are presented in Figure 17. 
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Figure 15: Adsorption/desorption isotherm for one of the xerogel obtained by direct incorporation of TEMPO 
radicals ([R]= 226 μmol.cm-3). 

Figure 16: Mesopore mean diameter for one of the xerogel obtained by direct incorporation of TEMPO radicals 
([R]= 226 μmol.cm-3). 
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The aforementioned hybrid xerogel-materials were impregnated with a solution of 

H2O:D2O (2:8) using the IWI technique as presented in chapter 2. The volume of H2O:D2O 

solution corresponds to 90-100 % of the xerogel pore-volume. The wetted samples were 

further introduced in the DNP polarizer operating at B0 = 6.7 T and T = 1.2 K. Proton 

polarization values were measured by using frequency-modulation since higher 

performances can be reached. Details procedures can be found in the supporting 

information at the end of this chapter.  

 

 
 

The polarization performances of the first bench of xerogels (post-introduction of TEMPO 

units) as a function of the radical concentrations (ranging from 2 to 44 μmol.cm-3) are 

Figure 17: EPR signal for xerogels prepared by direct incorporation of TEMPO radicals. 
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shown in Figure 18. For the lower radical concentration (0 to 15 μmol.cm-3), the proton 

polarization levels are low (P(1H) < 10%) because an insufficient amount of radicals is 

present to efficiently polarize the surrounding protons. From 15 μmol.cm-3 to 35  

μmol.cm-3, one can observe a slight increase of the polarization levels up to 15%. This 

result is in sharp contrast to what was observed for the HYPSO 5 materials which exhibited 

the maximum proton polarization of P(1H) = 99 % for a radical concentration of 34 

μmol.cm-3. Here, the maximum of polarization (P(1H) = 41 %) is observed for a radical 

concentration of 44 μmol.cm-3. 
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Figure 18: Proton polarization values as a function of the radical concentration for hybrid silica xerogels prepared 
through post-functionalization.  

 

 
 

The second preparation of xerogels (direct incorporation of TEMPO units) was also 

impregnated with a mixture of H2O:D2O (8:2). As shown in Figure 19, proton polarization 

values were measured as a function of the radical concentration. In comparison to the 

previous curve, a different behavior is observed. Indeed, really small amount of TEMPO 

radicals allows to reach proton polarization values up to P(1H) = 46 % for a radical 
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concentration of 17 μmol.cm-3. Since these xerogel materials were prepared by direct 

incorporation of the TEMPO radical, the increase of the polarization for a low radical 

concentration could be attributed to a better radical distribution into the new matrix. 

Following this reasoning, a lower radical loading could afford higher performances but this 

preparation is challenging since only 5 mg of TEMPO radicals have been used to achieve 

the maximum proton polarization of this curve.  
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Figure 19: Proton polarization values against the radical concentration for hybrid xerogels obtained with the one-pot 
synthesis. 

 

 
 

In addition, proton build-up times were recorded at 4.2 K for samples prepared via the one-

pot synthesis. Relatively fast build-up times ranging from 26 s to 291 s were recorded. One 

can notice a moderate increase of the build-up time (from 26 s to 75 s when decreasing the 

radical concentration from 304 to 51 μmol.cm-3) followed by a sharp increase of the build-

up time (291 s) when the radical concentration is decreased to 17 μmol.cm-3. These results 

show that a compromise between high proton polarization and fast build-up time has to be 

done. 
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Figure 20: Proton build-up times as a function of the radical concentration for the xerogels obtained through the one-
pot synthesis. 

 

 
 

The proton T1 relaxation times were also measured at 4.2 K. The T1 relaxation is the spin-

lattice relaxation also called thermal relaxation or longitudinal relaxation. It corresponds to 

the energy transfer from the spins to the environment. The nuclei spins relax to their thermal 

equilibrium by dissipating the accumulate energy in the lattice. As shown in Figure 21, the 

general trend of the curve is similar to that measured for the proton build-up times. The 

T1(1H) relaxation times are really fast for almost all the samples but longer for a radical 

concentration of 17 μmol.cm-3 which gave a P(1H) = 46 % and τDNP (1H)= 291 s. 
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Figure 21: T1-relaxation times as a function of the radical concentration for hybrid xerogel materials obtained via a 
one-pot synthesis. 

 

 
 

Paramagnetic species are essential for DNP experiments but their concentrations have to 

be precisely controlled. As explained before, the presence of radicals after dissolution 

would be detrimental for in-vivo or in-vitro applications but not only. Out of the magnetic 

field and at room temperature the presence of radicals will induce the fast depolarization of 

the surrounding polarized nuclei. The signal enhancement gained at low temperature is thus 

completely lost. To monitor the presence of TEMPO in the recovered sample after the 

dissolution step, a post-functionalized hybrid silica xerogel was used to polarize a 3M 

solution of [1-13C] sodium acetate in H2O:D2O (2:8).  

The tests were performed on the hybrid xerogel beads with a radical concentration of [R] 

= 24 μmol.cm-3. Each 3 minutes, cross-polarization experiments were performed with a 

contact times of 4 ms. The resulting experiment is plotted in Figure 22 and shows the proton 

polarization transfer to the carbon which is normalized and plotted as a function of the time. 

A fast build-up time was observed and one could dissolve the sample after only 6 minutes. 
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Figure 22: Cross-polarization experiment for a hybrid silica xerogel with a radical concentration of [R]= 24 μmol.cm-3 
and impregnated with a 3M solution of [1-13C] sodium acetate. 

 

Then, the dissolution stick was equipped with a small cellulose filter and installed on the 

top of the polarizer to dissolve the mixture trapped into the polarizing matrix in 10 s with 

5 mL of D2O (120◦C, 10 bar). This cellulose filter allowed to retain the beads while the 

hyperpolarized liquid was transferred to the NMR spectrometer. Relative long T1 were 

measured showing that no radical species were present in solution: T1(13C) = 68 s for the 

sodium acetate solution and T1(1H) = 36 s for HDO.  

In addition, the concentration of the acetate solution expelled from the solid was quantified 

by 1H NMR. After dissolution, the concentration of the hyperpolarized liquid was 

compared to a solution of sodium acetate with a known concentration used as standard. 

However, a concentration of 1.1 mM was measured after dissolution for the hyperpolarized 

solution which is far from the expected concentration of 9mM for a total recovery of the 

solution. In conclusion, the sodium acetate solution previously impregnated into the 

polarizing matrix was not completely expelled since the concentration before impregnation 

and after dissolution is different. The increase of the pore size of the polarizing matrices 

could probably improve this issue. 
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The design of these new porous polarizing matrices allowed to ease the filtration process. 

Each polarization experiment was performed with a different aliquot but it would be really 

attractive to be able to re-use such polarizing solids several times. We therefore tried to 

polarize twice a sodium acetate solution using a unique polarizing matrix.  

For this experiment, hybrid xerogel beads with a radical concentration of 24 μmol.cm-3  

were selected and impregnated with a 3M solution of [1-13C] sodium acetate in H2O:D2O 

(2:8). Prior to be used in DNP, a cellulose filter was installed in the dissolution stick for 

recovering the polarizing beads to be further used in a second polarization run.  The solution 

impregnated into the solid matrix was first polarized at T= 1.2 K (Figure 23) and cross-

polarization experiments were performed to transfer the proton polarization to the carbon 

nuclei (Figure 24). After these first experiments, the polarizing beads were dissolved to 

expel the solution from the DNP polarizer to the NMR spectrometer. Then, the polarizing 

beads were recovered in the cellulose filter and soaked overnight in a 3M solution of [1-
13C] sodium acetate in H2O:D2O (2:8) to exchange the D2O used to dissolve the sample. 

The day after, the same polarizing beads were introduced in the DNP polarizer to perform 

the second cycle of polarization/cross-polarization. The experiments were conducted at T= 

1.2 K and the dissolution stick was again equipped with a new cellulose filter. 

The recorded results are presented in Figure 23 for the 13C DNP build-up times and in 

Figure 24 for the cross-polarization experiments. In both cases, the blue curve corresponds 

to the first cycle of polarization/cross-polarization whereas the red curve corresponds to the 

second cycle of polarization/cross-polarization. In addition, the results were normalized 

and superimposed to be compared. 

As shown in Figure 23, the 13C DNP build-up curves after the first and second cycle 

achieved were found very similar with only a small slight shift of the red curve toward 

lower values compared to the blue one. In addition, Figure 24 showing the cross-

polarization experiments displays comparable results, indicating again the possibility to re-

use this polarizing matrix for these experiments. Moreover, long T1 were measured showing 

that no radical was present in the NMR spectrometer after the dissolution step (T1(13C)= 74 

s and T1(1HDO)= 36 s).  
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Figure 23: 13C DNP build-up times after a first (blue) and second (red) polarization experiment using the same 
polarizing matrix. 
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Figure 24: Cross-polarization experiments after a first (blue) and (second) hyperpolarization using the same polarizing 
matrix. 

 

In conclusion, the xerogels functionalized with TEMPO radicals were found to improve 

the filtration process by providing polarizing matrices in the form of silica beads or 

monolithic cylinders. In this case, any silica particles were found in the NMR spectrometer 

after the dissolution step.  At low temperature, the proton polarization as well as the carbon 

polarization measured were quite good and relatively short build-up times were obtained. 

For the first time, it was even possible to polarize twice a liquid with the same polarizing 
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matrix. Both strategies could be used depending on the system which is studied. For 

example, the one-pot synthesis which can trap TEMPO radicals into the wall of the matrix 

could be used after a treatment with ascorbic acid to polarize acidic compounds. 

Nevertheless, these systems which are promising should be optimized.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



211 | P a g e  
 

 

 

 

 

 

 

 

 

 

CONCLUSIONS  

AND  

PERSPECTIVES 
 

 

 

 

 

 

 

 

 

 

 

 



212 | P a g e  
 

The goal of this PhD project was to prepare solid matrices containing paramagnetic species 

(TEMPO radicals) covalently attached to their surface for d-DNP applications. These 

systems allowed to polarize various solutions of analytes without adding any additives such 

as glass forming agents. Different silica materials were successfully prepared and the 

introduction of the TEMPO radicals was adjusted. Modifying the physical and chemical 

features of the solids allowed to identify the main parameters impacting the polarization 

values. Their granulometry was tailored to ease the filtration step and the experimental 

protocols were modified to make the synthesis potentially easily scalable.  

Initially, polarizing matrices, HYPSO 2 and HYPSO 3 based respectively on SBA-15 and 

SBA-16 architectures, were prepared by co-hydrolysis and co-condensation of the 3-

azidopropyltriethoxysilane precursor and TEOS in the presence of structure directing 

agents. Such structure directing agents were removed before coupling the surface azido 

fragments with the TEMPO radicals through a copper(I)-catalyzed alkyne azide 

cycloaddition (Figure 25). The as-obtained materials displaying various radical 

concentrations were fully characterized by N2 adsorption/desorption, EPR, SAXS, DRIFT 

and TEM further polarization. A maximum proton polarization of P(1H)= 50 % was 

recorded for HYPSO 2 materials whereas HYPSO 3 materials showed higher performances 

with a proton polarization of P(1H)= 63 %. This improvement was explained by a better 

pore interconnectivity of HYPSO 3 promoting the diffusion of the polarization in the whole 

sample. In addition, cross-polarization experiments were also conducted on the optimal 

HYPSO 3 impregnated with a solution of sodium [1-13C] acetate. As a result, a carbon 

polarization of P(13C)= 36 % was recorded but small traces of TEMPO radicals were found 

after dissolution, probably due to small silica particles in the hyperpolarized solution. 

Independently of the pore network architecture, longer build-up times were recorded at 1.2 

K than at 4.2 K. When applying frequency-modulation no impact on the build-up times 

were found at 4.2K. However, the use of the same modulation at 1.2 K decreased the build-

up times. In general, a compromise between high polarization values and short build-up 

time was needed. 
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Figure 25: Preparation of HYPSO 2 and HYPSO 3 from the silicon precursor to the final material bearing TEMPO radicals. 
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The results observed for HYPSO 3 prompted us to develop non-structured silica materials 

exhibiting highly interconnected pores. For this purpose, robust commercially available 

mesoporous silica spheres were selected. A methodology was developed to post-

functionalize these silica spheres by creating a silica layer containing the azido fragments 

which were further transformed into TEMPO radicals via a click reaction. These polarizing 

matrices were denoted HYPSO 5 and different starting materials displaying a pore size 

ranging from 6 nm to 28 nm and a constant particle size were coated. In a second time, 

porous silica spheres with a particle size ranging from 20 to 500 μm and exhibiting a 

constant pore size were also coated (Figure 26). These studies showed that the proton 

polarization values for this type of porous silica spheres were found slightly different 

depending on the particle size. Moreover, by increasing the particle size up to 500 μm, the 

filtration process was improved. Arising from the peculiar architecture of the HYPSO 5, 

high proton and carbon polarization values were recorded: P(1H)= 99% and P(13C)= 51%. 

Interestingly, this proton polarization value exceeds that obtained with state-of-the art DNP 

formulations reflecting thus the advantage of using these polarizing matrices.  

 

T

T

 

Figure 26: Formation of the layer containing the azido moieties which are then coupled with TEMPO radicals through a 
copper-catalyzed alkyne-azide cycloaddition at the surface of the porous silica spheres. 
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In addition, HYPSO 5 allowed for the first time to perform the filtration step out of the 

DNP polarizer. This is an important point since a simple PTFE filter could be added before 

the magnetic tunnel facilitating thus the conception of the dissolution set-up. Last, but not 

least, the first 13C MRI pictures were recorded using HYPSO 5 as polarizing matrix.  The 
13C pictures are presented in figure 20 and highlight the potential of these polarizing 

matrices for MRI in vivo applications.  

As a summary, the following scheme displays the polarization values recorded depending 

on the pore network architecture of the polarizing matrices as observed by electron 

tomography. 

HYPSO 2 HYPSO 3 HYPSO 5 

   

P(1H)= 50 % 

P(13C)= 33 % 

P(1H)= 63 % 

P(13C)= 36 % 

P(1H)= 99 % 

P(13C)= 51 % 

D. Gajan et al.  

Proc. Natl. Acad. Sci., 

2014 

D. Baudouin et al.  

Chem. Sci.,  

2016 

M. Cavaillès et al.  

Angew. Chem.,  

2018 

Figure 27: 1H (left) and 13C pictures (right) acquired after hyperpolarization and dissolution of a solution of 3M 
sodium [1-13C]acetate in H2O:D2O (2:8) impregnated into HYPSO 5. 
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Finally, another approach based on the synthesis of hybrid silica xerogels was developed 

to produce two distinct families of polarizing matrices. A first one obtained by the direct 

incorporation of the TEMPO radicals during the sol-gel process and the second one by post-

functionalization of the azido-containing silica xerogels with TEMPO radicals. The first 

formulation led to samples with a monolithic shape whereas the second route led to large 

silica beads of different sizes. Preliminary results showed that proton polarization values 

up to P(1H)= 46 % were found for samples prepared via a direct introduction of the TEMPO 

units with a TEMPO concentration of 17 μmol.cm-3. Moreover, a comparable proton 

polarization value of P(1H)= 41 % was recorded at [R]=  44 μmol.cm-3 for the other family. 

This difference could be explained by a better radical distribution through the one-pot 

synthesis compared to the previous preparation. To confirm that, additional experiments 

consisting in measuring the EPR linewidths could be performed. These results highlight 

again the importance of the sample formulation and the importance of the localization of 

the paramagnetic species for optimized polarization performances. These polarizing 

matrices were also found useful to polarize different liquids with a unique monolith. 

A perspective of our work could be the implementation of the strategy recently developed 

by D. Silverio and al.9, allowing to hide the TEMPO radicals within the silica walls. This 

approach could be valuable to efficiently polarize pure pyruvic acid or biological solutions 

without any direct contact with the radicals. In this work, a tris-silylated precursor 

containing a nitroxide-based radical (Figure 28) was used to prepare through a sol-gel 

process two types of materials: i) an ordered mesoporous silica materials containing 

TEMPO radicals within the silica walls (HYPSO-W1) and ii) an ordered mesoporous silica 

materials doped with a bis(triethoxysilyl)ethane and containing TEMPO radicals within the 

silica walls (HYPSO-W2).  The different routes to prepare these materials are presented in 

figure 28. 
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Subsequently, samples were treated with an ascorbic acid solution to remove the radicals 

from the surface and keep only those in the walls. A decrease of 22 % and 36 % in radical 

content was recorded for HYPSO-W2 and HYPSO-W1 respectively. Finally, both samples 

were polarized at 1.2 K and 6.7 T using cross polarization experiments. After impregnation 

with neat pyruvic acid, proton polarization of P(1H)= 40 % and a carbon polarization of 

P(13C)= 17 % were recorded for the optimal polarizing matrix HYPSO-W2 with a dilution 

of [25/1]. Similarly, optimal HYPSO-W1 with a dilution of [1/200] was impregnated with 

neat pyruvic acid to yield to a proton polarization of P(1H)= 22 %. These results show that 

the introduction of TEMPO radicals within the silica walls is possible and that the organic-

doped HYPSO-W2 gives higher performances than HYPSO-W1. 

Another potential research project could be the use of these new polarizing matrices 

(HYPSO 5) to transport a sample hyperpolarized from one laboratory to another one 

without losing the freshly acquired signal enhancement. As shown recently by X. Ji et al.10, 

samples such as [1-13C]glucose, [13C3, 15N]alanine, [13C2, 15N]glycine and [1-13C]sodium 

Figure 28: Synthetic pathways leading to HYPSO-W1 and HYPSO-W2 containing the TEMPO radicals within the silica 
walls. 
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pyruvate prepared in the form of a micro-particulate powder were polarized through the 

use of a physically separated solution containing 80 mM TEMPOL-benzoate in 

toluene/THF (8:2) called the radical-rich phase (RRP) (Figure 29).  

 

In contrast to the common DNP juice where the liquid to hyperpolarize is in close contact 

with the surrounding nuclei, in this type of formulation (Figure 29), the proton nuclei are 

in the RRP whereas the carbon nuclei are in the radical-free phase (RFP). Therefore, by 

mean of cross-polarization experiments the proton polarization can be transferred to the 

carbon nuclei of the target metabolite without suffering from depolarization since the 

paramagnetic species are physically separated in the RRP. It is important to mention that 

this phenomenon is due to the 13C-13C spin diffusion which is two orders of magnitude 

slower than 1H-1H spin diffusion in the RFP. Therefore, the carbon polarization is trapped 

in the RFP and the relaxation through the RRP is impossible since this phase is not enriched 

in 13C. Increase of the 13C spin-lattice relaxation times T1(13C) was recorded with for 

example T1(13C)= 37h for the [1-13C]sodium pyruvate with a micro-particulate formulation 

whereas T1(13C)= 20 min was recorded for the same sample in solution. To conclude, 

samples with long T1(13C) could be polarized in one laboratory and used few hours after in 

another one. However, in this proof of concept system, the use of a glass-forming agent 

and free radicals remained an issue which could be tackled by the use of new polarizing 

matrices.   

Figure 29: SEM picture of a micro-powder of [1-13C] sodium pyruvate and its impregnation with a polarizing solution. 
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A last perspective could also be to use the hybrid xerogels obtained through the one-pot 

synthesis in continuous flow DNP. These polarizing matrices could act as chromatography 

columns containing paramagnetic species to polarize a liquid flow.  

As suggested, numerous perspectives are possible with these polarizing matrices. However, 

to the best of our knowledge, systems implementing a DNP polarizer coupled with a MRI 

system via a tunnel magnetic allowing to preserve the polarization at room temperature are 

not available even in research laboratories. Few hardware combining a DNP polarizer at 

proximity of a MRI machine are available and the possibility to probe in-vivo systems with 

this machine is even lower. Although this technique is revolutionary and could be improved 

by using our polarizing matrices, the skills of chemists, biologists and physicists are 

essential to be able to widely develop a DNP polarizer coupled to a MRI machine.  
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Hybrid silica xerogels obtained via post-functionalization or one-pot synthesis were 

prepared using the same sol part described below. 

In a 50 mL round bottom flask equipped with a stirring magnet, tetramethylorthosilicate 

(TMOS) and anhydrous methanol were introduced at 0 °C. Then, an oxalic acid solution 

([C]= 0.001 M) was added dropwise (around 1 drop each 2 seconds) and the reaction 

mixture was stirred for 30 minutes at 0 °C and 24h at room temperature (TMOS: MeOH: 

H2O ; 1:6:4). Following this quantity around 8 different samples can be prepared. 

 

 
 

In a small Teflon vial placed in an ice bath, 3.76 mL of the previous solution and 779 μl of 

milli-Q water were inserted. Then the 3-azidopropyltriethoxysilane previously prepared 

was inserted in different amount depending on the chosen concentration. A fresh ammonia 

solution was prepared with a concentration of [C]= 1 M and 0.1 mL was added. Before 

removing the stirring magnet, the reaction mixture was mixed for 90 seconds. The Teflon 

vial was closed and placed in the fridge for 2h (Gelation time 4-5 minutes) and few hours 

at room temperature. The sample was aging in an oven at 50 °C for 48h and dried by 

applying a ramp from 50 °C to 110 °C in 24 h. Finally, the sample is naturally cooled down 

to room temperature and ready for the next step. 

Under argon, the as-obtained material was coupled with TEMPO radicals in presence of 

CuI and DMF. The reaction mixture was heated up for 48h and washed with a solution of 

EDTA (3 x 50 mL), ethanol (3 x 50 mL) and diethyl ether (3 x 50 mL). The orange silica 

beads obtained were dried under high vacuum for 12h at 50 °C and stored in a glovebox. 
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In a small Teflon vial placed in an ice bath, 3.76 mL of the previous solution and 779 μl of 

milli-Q water were inserted. Then TEMPO radicals previously prepared was inserted in 

different amounts depending on the chosen concentration. A fresh ammonia solution was 

prepared with a concentration of [C]= 1 M and 0.1 mL was added. Before removing the 

stirring magnet, the reaction mixture was mixed for 90 seconds. The Teflon vial was closed 

and placed in the fridge for 2h (Gelation time 4-5 minutes) and few hours at room 

temperature. The sample was dried 50 °C for 72h and left at room temperature to cool 

down. The final orange xerogel was dried under high vacuum for 12h at 50 °C and stored 

in a glovebox.  

 

 
 

 
 

Xerogel beads were directly inserted in the tubes whereas the orange cylindrical monoliths 

were crashed and a small part inserted in the tubes. As usually, experiments were performed 

at 77 K using a BELSORB-Max from BEL-JAPAN. The pore diameter distribution and the 

mean pore diameter (dp) were calculated using Barrett–Joyner–Halenda (BJH) method. The 

specific surface area (SBET) was calculated using the Brunauer–Emmett–Teller (BET) 

equation.  

 

 

 

CW EPR spectra were recorded on a Bruker EMX X Band spectrometer (9.5 GHz 

microwave frequency). Conversion time was set to 40.96 ms, time constant to 5.12 ms and 

1024 data points were recorded. The modulation frequency was 100 kHz and the 

modulation amplitude 1 Gauss. In all measurements, attenuation was varied such that no 

saturation was observed. 
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The samples were filled in a 3.0 mm quartz tube with a maximum sample height of 3 mm. 

The sample position in the cavity was carefully optimized. The spectra were recorded at 

room temperature and with a sweep width of 600 Gauss and attenuation between 26 and 14 

dB. The amount of radical was determined by double integration of the CW spectra and 

referencing to calibration curve of TEMPO in toluene solutions measured for the 

concentration range between 0.4 and 80 mM. An additional correction for the difference in 

the incident microwave power has been taken into account. Data was processed with 

OriginLab. 

 

 
 

A first aqueous solution of HCl was prepared with a concentration of 2.3 M. Then 1.5 mL 

of this solution was poured in a second solution containing 10 mg of TEMPO radicals and 

20 mL of THF. Finally, a capillary was filled with 0.05 mL of this latter solution and 

inserted in an EPR tube. Then, the system comprising the filled capillary in an EPR tube 

was immersed in an oil bath and heated. An EPR spectrum was acquired after 5, 20 and 50 

minutes. 
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