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Abstract

The human body has more than 200 different cell types each containing an identical copy of
the genome but expressing a different set of genes. The control of gene expression is ensured
by a set of regulatory mechanisms acting at different scales of time and space. Several diseases
are caused by a disturbance of this system, notably some cancers, and many therapeutic applic-
ations, such as regenerative medicine, rely on understanding the mechanisms of gene regulation.

This thesis proposes, in a first part, an annotation algorithm (GABI) to identify recurrent
patterns in the high-throughput sequencing data. The particularity of this algorithm is to take
into account the variability observed in experimental replicates by optimizing the rate of false
positive and false negative, increasing significantly the annotation reliability compared to the
state of the art. The annotation provides simplified and robust information from a large dataset.
Applied to a database of regulators activity in hematopoiesis, we propose original results, in
agreement with previous studies.

The second part of this work focuses on the 3D organization of the genome, intimately linked
to gene expression. This structure is now accessible thanks to 3D reconstruction algorithm from
contact data between chromosomes. We offer improvements to the currently most efficient al-
gorithm of the domain, ShRec3D, allowing to adjust the reconstruction according to the user
needs.

Résumé

Le corps humain compte plus de 200 types cellulaires différents possèdant une copie identique
du génome mais exprimant un ensemble différent de gènes. Le contrôle de l’expression des
gènes est assuré par un ensemble de mécanismes de régulation agissant à différentes échelles
de temps et d’espace. Plusieurs maladies ont pour cause un dérèglement de ce système, notable-
ment les certains cancers, et de nombreuses applications thérapeutiques, comme la médecine
régénérative, reposent sur la compréhension des mécanismes de la régulation géniques.

Ce travail de thèse propose, dans une première partie, un algorithme d’annotation (GABI)
pour identifier les motifs récurrents dans les données de séquençage haut-débit. La particularité
de cet algorithme est de prendre en compte la variabilité observée dans les réplicats des ex-
périences en optimisant le taux de faux positif et de faux négatif, augmentant significativement
la fiabilité de l’annotation par rapport à l’état de l’art. L’annotation fournit une information
simplifiée et robuste à partir d’un grand ensemble de donnée. Appliqué à une base de donnée
sur l’activité des régulateurs dans l’hématopoieïse, nous proposons des résultats originaux, en
accord avec de précédentes études.

La deuxième partie de ce travail s’intéresse à l’organisation 3D du génome, intimement lié
à l’expression génique. Elle est accessible grâce à des algorithme de reconstruction 3D à partir
de donnée de contact entre chromosomes. Nous proposons des améliorations à l’algorithme le
plus performant du domaine actuellement, ShRec3D, en permettant d’ajuster la reconstruction
en fonction des besoins de l’utilisateur.
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Chapter 1

Introduction

1.1 Gene regulation in human cells

1.1.1 Genes

Each cell of an organism possess in its nucleus a unique poly-nucleotide sequence of four nucle-
otides, adenine(A), guanine(G), cytosine(C) and thymine (T) [75] called the deoxyribonucleic
acid or DNA Fig1.1, organized in a double helix structure, forming chromosomes.

Two categories can be identified within the DNA sequence: coding sequences and non coding
sequences Fig1.1. Coding sequences, are sequences that can be transcribed by an enzyme, the
RNA polymerase (RNA Pol II), which create a copy of the DNA strand into mRNA (messanger
RiboNucleic Acid). In the following, we will refer to these sequences, which code for proteins as
genes, albeit some alternative definition can be found. The mRNA produced by the RNA Pol II
migrates outside the nucleus, where the ribosomes, a complex cellular machinery, will assemble
amino-acids, corresponding to the RNA sequence, into a protein Fig1.1.

Figure 1.1 – Genes expression in human cells. Each nucleus posses DNA, which coding sequences
can be transcribed by RNA Pol II. The RNA produced by the transcription of genes is transformed
outside the nucleus by the ribosomes into proteins which fulfill many different biological func-
tions

1



2 Chapter 1. Introduction

Proteins have many different functional roles in cells. For example, they can build the struc-
tural blocks forming the cell, transmit external signals into the cell or, and we will see this par-
ticular aspect in more details, control the genes expression.

1.1.2 Cell Identity

Among the 20.000 genes present in the human DNA, only a fraction is expressed in a cell type
Fig1.2, encoding for a specific combination of proteins. For instance red blood cells produce
abundant quantities of hemoglobin whereas muscle cells produce muscle fiber proteins. The
regulation of gene transcription is orchestrated by an ensemble of regulators which ensures the
precise coordination of genes expression during cell development and cells differentiation.

Figure 1.2 – Cell identity. Cell identity is defined by the combination of genes that are expressed
(green) and repressed (red)

1.1.3 Regulators

There are two family of regulators: transcription factors (TFs) which binds on regulatory genomic
sites, also called cis-regulatory elements (CRE), and modulate the activity of nearby genes see
Fig1.3(a), and biochemical marks that binds on the DNA molecule or on specific proteins, the
histones, changing the activity of the genes nearby. We estimate that the number of CRE is six
times larger than the number of genes, thus close to 120.000.

1.1.3.1 Transcription factors

TF proteins recognize specific small DNA sequences of about 10 bp and modify the expression
of nearby genes Fig1.3(a). Activators, or enhancers, recruit the RNA Pol II in order to initiate
genes transcription whereas inhibitors prevent this recruitment. Insulators are TF that create
loops between an enhancer and the gene transcription starting site (TSS) Fig1.4. With the help
of the cohesin and a mediator the enhancer forms a complex at the TSS which recruit the RNA
Pol II Fig1.4. Insulators have a double function: they can block the action of a TF on its target
gene when located between them Fig1.3(a) (right), or enable the action of TF by forming a loop
Fig 1.3(a)(right). It has been reported that a mis-positioning of insulators may imply disease
such as acute myeloid leukemia [37].



1.1 Gene regulation in human cells 3

Figure 1.3 – The regulators can be separated in two categories: TF and biochemical marks. (a)
TF are composed of activators (left), that activate nearby genes, inhibitors (middle), that inhibit
nearby genes and insulators (right) that block or enable the influence of a TF on a gene. The color
represents the transcribed (green) or inhibited (red) state of the gene. (b) Biochemical marks
are composed of two kind of marks: marks that bind on the DNA, such as DNA methylation, and
marks that binds on histones proteins, the histones marks

Figure 1.4 – Loops induced by the clipping of an insulator, enabling the recruitment of the RNA
Pol II at the TSS (image adapted from [65] )

1.1.3.2 Biochemical marks

Biochemical marks represent a second family of gene regulators. They bind either on DNA, like
the DNA methylation or on proteins, the histones, composed of a protein core around which the
DNA is wrapped at regular intervals forming nucleosomes. In this case the marks are called his-
tones marks. These marks have an influence on gene transcription by acting on the nucleosomes
condensation Fig1.5. In order to bind on the DNA, TFs need to remove nucleosomes at the CRE.
This is only possible when the DNA is not highly condensed around nucleosomes Fig1.5.
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Figure 1.5 – The nucleosomes condensation changes the accessibility of the DNA. (1) The DNA
is inaccessible to proteins. (2) The DNA is accessible to proteins. Figure adapted from [64]

DNA methylation DNA methylation is the addition of methyl group to the 5th carbon of
cytosines, which condensed the DNA and repress the genes nearby. This process is mainly used
during cell differentiation to constraint the different cellular pathways (from stem cell to mature
tissues) [68], by definitively repressing some genes. A well known example is the inactivation of
the chromosome X [9].

Histones marks Histones composing nucleosomes posses tails on which marks can bind and
combine. Their actions are richer than DNA methylation because they can act either as gene
activator or gene inhibitor by changing the level of compaction of the DNA [70] [71] and by
regulating the type of proteins that can bind on the DNA (see appendix for further details).
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1.1.4 The regulatory network

We have seen that cell types identity, defined by a specific pattern of gene activity, is controlled
by an ensemble of regulators that act locally on the genes nearby. If the protein generated from
the expression of a gene is a TF, then it will act as a regulator on one or many genes Fig1.6(a).
Consequently, cell types identity emerges from the complex entanglement between regulators
and genes activity (see Fig1.6(b-c) for a small example). The ensemble of causal relationships
between the genes and regulators activity can be modeled by a network, namely a regulatory
network.

Figure 1.6 – Cell types identity emerge from the complex entanglement between regulators and
genes activity. For simplicity, this figures represent only the regulation via TF. A more complete
picture would also include the regulation via biochemical marks, also generated by gene tran-
scription. (a)The gene G1 is activated by the transcription factor T F1. G1 codes for a protein
which cellular function is to act as TF T F2 for another gene G2. (b) The combination of genes
emerge from a specific regulators-genes activity: T F1 activate the G1 which codes for T F4 activ-
ating G3. G2 has no activators, thus remain inactive. (c) G3 activates the gene G2 which codes
for T F2 that insulate the activation of T F1 over G1. Therefore T F4 is not produced and G3 not
expressed, forming another cell type

1.1.5 Motivations

1.1.5.1 Long-term motivation and practical applications

The long-term goal of this work is the establishment of the complete regulatory network, in order
to predict, control and understand the genes expression. Therapeutic application are important
because many diseases, such as cancers or immune diseases, takes roots in a dysfunction of the
regulatory machine. A model would allow to understand, from observed consequence, the cause
of the regulatory problem. Furthermore, other important field of application is the regenerative
medicine which uses cellular reprogramming. It consists in changing the cell identity of a patient
healthy cells, e.g. skin cells, to cure another cell type from a defective organ.
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1.1.5.2 Challenges

To achieve this goal, we need to face multiple challenges. First, we need to discover all types
of regulators and their regulatory mechanisms. Second, we need to identify these regulators
and coding sequences genome-wide. And third, we need to establish the causal relationships
between the regulators and coding sequences activity.

1.1.5.3 Purpose of this work

Our work has used the actual knowledge of regulators and regulatory mechanisms to focus on the
genome wide identification of regulators and their involvement on these regulatory mechanisms.

More precisely, we have focused on the identification and the discovery of CRE functional role
on the cell identity. This process is called DNA sequence annotation or genome annotation. We
developed a tool, GABI (Genome wide Association with Bayesian Inference), which discovers the
different activation patterns in NGS experiments and we applied it to CRE activation in different
cell types. We will show that these regulatory patterns, also called states, have a deep biological
meaning and that the number of patterns is several order less than the total number of CRE
(about 120.000), which significantly reduce the number of element to study. We will also show
that annotations provided by GABI has a higher reliability than the state of the art.

1.2 The datasets

1.2.1 Next Generation Sequencing

DNA sequencing technique was developed in 1977 by Sanger et al [60], which identify genomic
features, such as binding sites of a given protein, accessible DNA regions or histones marks pos-
ition. It is also used to recover the DNA sequence of an organism. In 2007, a new version of this
technique has emerged called Next Generation Sequencing (NGS) [46]. We present the principle
of this technique through the description of the DNAse-seq.

DNAse-seq DNase-seq (DNase I hypersensitive sites sequencing)[17] is an experiment provid-
ing a measure of DNA accessibility which identify CRE [68] [66]. It uses an enzyme, the DNase
1 [79], which slices nucleosomes free DNA regions, accessible to proteins Fig1.7(1). The sliced
DNA fragments, called reads, are then amplified and sequenced1 Fig1.7(2). These reads are
aligned on a reference genome corresponding to a consensus genome sequence of an organism
Fig1.7(3). And eventually, all the reads are summed in order to build a histogram-like signal
Fig1.7(4), namely a NGS profile of the experiment.

There exist a large variety of NGS experiments, which differs by the measured genomic fea-
ture. For example, ChiP-seq uses chromatin immuno-precipitation (ChIP) to capture genomic
regions interacting with a target protein. Another NGS technique maps reads from different part
of the genome which are close in 3D space. This is the case of the Hi-C map, which will be
presented in chapter 5.

1Their sequence is determined



1.2 The datasets 7

Figure 1.7 – DNAse-seq principle.(1) Generation of DNA fragments (reads). (2) Amplification
and sequencing of these reads. (3) Alignment of the reads on a reference genome. (4) Sum of
the reads

Figure 1.8 – The peak caller is a category of algorithm that detect peaks on NGS profiles. It sets
a value of 1 to peaks, and 0 otherwise

Interpretation of NGS signal In order to increase the signal over noise ratio, most of NGS
experiments are realized on a ensemble of cells. Consequently, in one dimensional NGS signal,
the summation of the reads lets appear peaks of reads enriched genomic regions. They indicate
the presence of the genomic feature, such as a CRE in the case of DNAse-seq. The height of these
peaks depends on many parameters [47], such as the enzyme affinity to DNA sequence or the
homogeneity of the pool of cells used for the experiment. This feature is complex to interpret,
therefore, we have focused on the NGS peaks only. These peaks can be detected using a category
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of algorithm, namely peak callers Fig1.8. It produces a binary signal which peaks are set to one
and the rest to zero. In appendix "ZINB peak caller", we describe our own peak caller which
improves two aspects of the most used peak caller, MACS [82]: The null model and the ability
to process NGS samples formatted in arrays.

In the following, experiments resulting from an ensemble of cells will be called pooled NGS
profiles.

.

1.2.2 ROADMAP dataset(DNAse-seq)

We have used in this work the DNAse-seq dataset produced by the Roadmap consortium [40],
developed in more than 50 tissues and cell types from adult, fetal and induced stem cells Fig1.9.
The dataset also posses 29 histones marks in these cell types, not used it in this work. These
profiles are realized on an ensemble of cells, therefore correspond to pooled DNAse-seq profiles.

Figure 1.9 – (a-d) Samples available in the Roadmap dataset. (e) Correlation between the dif-
ferent NGS profiles, histones marks and the DNAse (figure from [40])
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1.2.3 Single cell ATAC-seq: Hematopoiesis dataset

ATAC-seq ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) is a tech-
nique used in molecular biology to study chromatin accessibility. It was first described in 2013
[12] and it aims to identify accessible DNA regions, equivalent to DNase I hypersensitive sites.
The key part of the ATAC-seq procedure is the action of the transposase Tn5 on the genomic DNA
of the sample. Transposases are enzymes catalyzing the movement of transposons to other parts
in the genome. While naturally occurring transposases have a low level of activity, ATAC-seq
employs a mutated hyperactive transposase. The high activity allows for highly efficient cutting
of opened DNA and simultaneous ligation of specific sequences, called adapters. Adapter-ligated
DNA fragments are then isolated, amplified by PCR and used for next generation sequencing.

Pooled ATAC-seq Pooled ATAC-seq has many advantages over its concurrent, the pooled
DNASe-seq: it needs only 500 to 50 000 cells compared to 50 million for the DNAse-seq and
the protocol needs only 2 steps as opposed to 44 steps for the DNAse-seq [66]. The size of the
cell bulk imply to sample more tissues, thus decrease the experiment homogeneity and therefore
its quality.

Single cell ATAC-seq In 2015, ATAC-seq on individual cells has been performed by Buenrostro
& al [13], namely single cell ATAC-seq or scATAC-seq, which provides an insight of cell-to-cell
variation and different stages of cell type cycle. It solves the major issues of pooled experiments,
the homogeneity of the NGS samples. Indeed, in pooled experiments, all extracted cells are not
strictly in the same cellular states because some genes and regulator are transiently activated
during the cell cycles. Moreover, extracted cells come from different cell types. For example, an
extracted piece of lung, would contain blood vessels and muscles.

In this work, we have used a single cell dataset from hematopoeisis with more than 2.700
NGS profiles, including stem cells, hematopoietic-progenitor and differentiated blood cells, pro-
duced by Buenrostro & al [14]. Hematopoeisis is often used as reference model to study cell
differentiation.

1.2.4 Datasets organization

Each NGS experiment gives after peak calling a binary vector. We have chosen to represent these
vector at a 500 bp resolution, which represents 2.5 time size of a nucleosome (200bp x 2.5 =
500 bp).

All these vectors are concatenated in a matrix, Fig1.10, such that each line represents an
experiment (or a profile) and each column a genomic site of 500 bp. At this resolution, each
profile has 5.6 million dimensions, corresponding to the size of all the 22 human chromosomes
(Y and M chromosomes removed) stacked together. The replicates are ordered together and
Fig1.11 represents a sample of the formatted DNAse-seq database.
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Figure 1.10 – The NGS profiles are stack in a matrix at 500 bp resolution

Figure 1.11 – Sample of the DNAse-seq database. Each line represent a profile, each color a
different cell type and columns represent genomic sites at 500 bp
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1.3 Plan of this manuscript

In chapter 2, we expose the problem of the reproducibility of Next Generation Sequencing ex-
periments and develop a method to ensure the samples quality. In the chapter 3, we present our
pattern identification algorithm GABI and its application, in chapter 4, on the single cell hema-
topoietic dataset which allow us to recover known results but also to discover original ones. In
chapter 5 we present a different project aiming at reconstructing the 3D structure of chromo-
somes from their contacts.
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Chapter 2

Quality of NGS experiments

2.1 Reproducibility in NGS experiments

The relevance of biological results based upon NGS experiments depends on the reliability of
the NGS profiles. To increase this reliability, experiments are repeated multiple times, namely
replicates, and a consensual profile for each experiment is deduced.

However, this is only possible if the replicates are "similar enough": if one or many samples
has been disrupted, e.g. by a mistake in the experimental protocol or by a swap in the cell types
labels, it may create artifacts and skew the biological conclusions .

We assert that a NGS profile is reliable if it is more similar to its replicates than to other
experiments in the dataset. However, similarity among replicates is not obvious when comparing
only some genomic site Fig2.1 due to the high variability of these samples. This is why we need
a genome-wide comparison of profiles using distance measures.

Figure 2.1 – An illustration of the variability between similar and different cell types on the
DNAse-seq dataset. The yellow box represents three different cell types and two genomic sites.
This variability shows the importance to produce replicates to ensure the reliability of an obser-
vation

13
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2.2 The choice of a distance measure

There exists a large variety of distance measures and its choice is important to measure the
quality of the profiles. A measure which cluster experimental replicates and separate different
experiments Fig2.2(top right) leads to the identification of samples quality, whereas a mixed
replicate clustering Fig2.2(down right), prevent the detection of anomalous samples.

There is three techniques, that can be combined, used to compute the distance between
profiles1. First, the feature extraction, using for example the principal component analysis (PCA),
which combined the features of the profiles, here corresponding to the genomic sites, in order
to produce new features reducing the redundancy among features. Second, the distance metric
corresponding to a function which takes a pair of profiles (N-dimensional vectors) and returns a
scalar. In most studies, distance metrics are selected among the Pearson correlation, Euclidean
distance, Spearman correlation for raw profiles or Jaccard distance for binary profiles. Third,
the kernel function which are symmetric and positive semi-definite functions that has been wildly
used in supervised learning [51]. We define a distance measure as the triplet combination of
feature extraction, distance metric and kernel function. An extensive analysis of all distances
measures doesn’t exist so far to our knowledge. Consequently, we have developed a test to
evaluate and find the optimal distance measures given a datasets.

Figure 2.2 – Relevance of the choice of a distance measure. From the profile matrix, two dif-
ferent distance matrices are computed between the M profiles (in blue). The distance between
profiles can be visualized using a Dimensionality Reduction (DR) algorithm such as the Multi-
Dimensional Scaling (MDS) which minimizes the squared difference between the original dis-
tance and the 2D distance. Here each point represents an NGS profile. Because the difference
between replicates should be less than the difference between cell types, profiles are expected
to form clusters. In the case of the distance matrix 2, this property is not respected, which imply
that this distance is less suitable than the distance 1 to represent this dataset. Our approach is to
use clustering indexes to measure the goodness of the clusters, knowing the labels of the profiles

1Considered as vectors
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To evaluate the quality of a distance measure, we have used indexes that measure the quality
of replicates clusters, namely clustering indexes. These indexes are commonly used when the
labels are not known for a given distance measure in order to find the best clustering algorithm.
In our case the labels are given (the replicates), and we search the distance measure that optimize
the clustering indexes value, ie produces the best clusters of replicates.

2.3 Clustering Indexes

We have selected two indexes to compare the different distance measures: Silhouette and con-
nectivity. These indexes show reliable and robust values compared to other tested indexes2

Silhouette index Consider an ensemble of N points x i∈[1,N], grouped in C clusters ck ∈ C . The
Silhouette index [59] is the normalized difference of the mean distance between a point x i and
points within the same cluster, a(x i), and the smallest mean distance of x i to points in other
clusters, b(x i) Fig2.3. It is defined as:

S(C) =
1
N

∑

ck∈C

∑

x i∈ck

Si(C) Si(C) =
b(x i)− a(x i)

max(a(x i), b(x i))

with:

a(x i) =
1
|ck|

∑

x j∈ck
x i∈ck

D(x i , x j)

b(x i) = mincl∈C\ck

1
|cl |

∑

x j∈cl
x i∈ck

D(x i , x j)

The Silhouette value ranges from -1 to +1. A high Si(C) value indicates that i is closer to its
clusters than the closest cluster, and a low value that the point i is closer to another cluster than
its own. The total Silhouette value is the mean over all samples.

Figure 2.3 – An illustration of the Silhouette index on three clusters.

2Such as Calinski-Harabaz [15] which may diverge in some cases.
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Connectivity index The connectivity index is defined by the number of nearest neighbor Nneigh
chosen (= 5 in our test) . For a given point, the connectivity index is the sum over all its neighbors
of the inverse of their rank3 if they don’t belong to the same cluster and zeros otherwise. The
index is average over all the points value. For N observation points, K clusters, and M nearest
neighbor the connectivity is defined as:

Conn=
1
N

N
∑

i=1

Conni

with:

Conni =
M
∑

m=1
c(x i)6=c(xm)

1
rankx i

(xm)

with c(x i) the cluster of the point x i , and rankx i
(xm) the rank of the point xm from x i .

The score range from [0,
∑M

i=1 1/m] and the lower the score the more separate are the
clusters.

2.4 Distance measures description

2.4.1 Feature extraction

Feature extraction is an operation that create new features from original ones in order to reduce
the redundancy and the noise among features. In this work, it is performed using the principal
component analysis (PCA). PCA is an orthogonal linear transformation that convert the data
features such that the first feature (or first component) maximizes the data variance, the second
feature maximizes the remaining variance, and so on [54]. The PCA can be computed by singular
value decomposition of the covariance matrix [1], which eigenvectors correspond to the principal
components. We have defined the number of features by comparing the eigenvalue spectrum of
the original data covariance matrix to a random model. We propose a random model based on
the reshuffling instances ( ones for binary and reads for raw datasets) conserving the row and
column probability such that for a NGS profile matrix m indexed by row i and column j, the
probability the null model has the value c at (i,j) is

Pi, j(mi, j = c) = (Pi . Pj)
c

Pi =

∑

j mi, j
∑

i, j mi, j
Pj =

∑

i mi, j
∑

i, j mi, j

with Pi and Pj the probability of the row i and column j respectively. The PCA on the random
matrix is repeated multiple times and the number of components is selected such that the cor-
responding eigenvalues are above a z-score of 2.32 from eigenvalues of the random models. For
the distance measures, we have tested either with and without PCA.

3The rank of the nearest neighbor correspond to k if the point is the k-nearest neighbor
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2.4.2 Distance metrics

Distance metrics are implemented from different sources in order to make this study as exhaustive
as possible. Let’s consider two input N dimensional vectors (u, v) that can have either raw values
(u, v) ∈ NN or binary values (u, v) ∈ {0, 1}N . There are two families of distance metrics: distances
metrics that can be applied on both raw / binary profiles and distances metrics that can only be
applied on binary profiles. These distances are defined in table 2.1 and table 2.2.

Distance Expression

Pearson distance (1) 1− (u−µu).(v−µv )
σ(u).σ(v)

Euclidean distance
p

||u− v||2

L2 distance ||u− v||2

Mutual information
∑

i PU (ui). log PV (vi )
PU (ui )

Spearman distance (2) 1− (S(u)−µu).(S(v)−µv )
σ(u).σ(v)

Chebyshev distance max i ||ui − vi ||1

Canberra distance
∑

i
|ui−vi |
|ui |+|vi |

Bray Curtis distance
∑

|ui−vi |
∑

|ui+vi |

Cosine distance 1− u.v
||u||2 .||v||2

Seuclidean distance
Æ
∑

i(ui − vi)2/vi

Cityblock distance
∑

i |ui − vi |1

Table 2.1 – Distance metrics that can be applied on both raw and boolean profiles.
(1) µ the mean and σ the standard deviation (2) with S(.) a sorting function

Distance Expression

Jaccard distance C10+C01
C11+C01+C10

Yule distance 2C10C01
C11 .C00+C01 .C10

Dice distance C10+C01
2C11+C01+C10

Rogers Tanimoto distance 2(C10+C01)
C11+C00+2(C10+C01)

Sokal-Sneath distance 2(C10+C01)
C11+2(C10+C01)

Sokal-Michener distance 2(C10+C01)
2(C10+C01)+(C11+C00)

Russell-Rao distance N−C11
N

Hamming distance C10+C01
N

Table 2.2 – Distance metrics that can be applied on binary profiles only. C00,C10,C01,C11 repres-
ents respectively the number of corresponding zeros, ones-zeros, zeros-ones and ones between
u and v
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2.4.3 Kernels

In order to expand the number of possibilities, we have also implemented variations of these
distance metrics by applying kernels functions on top of them. Kernels functions are symmetric
and positive semi-definite functions that has been wildly used in supervised learning [51]. One
of the most used kernel is the Radial Basis Function [53] defined as the exponential of the L2
distance K(x , y) = e−γ||x−y||2 with x and y two vectors and γ a scalar parameter. Our extensions,
rely on substituting the L2 distance by another distance metric. We assess three different kernels:
Exponential kernel4, sigmoid kernels and cosine kernels defined in table 2.3.

Kernel Expression

Exponential (RBF) (1) K(x , y) = e−γe D(x ,y)

Sigmoid (2) K(x , y) = 1− tanh(−γs ∗ D(x , y) + c)

Cosine K(x , y) = 1− (
∑

k D(xk , y)D(x , yk))/||x ||2||y||2

Table 2.3 – Kernels. (1) with γe a parameter (2) with γs and c parameters

Parameters selection Usually kernels parameters are selected using a grid search explora-
tion. Here, in order to reduce the computing time, the parameters are computed accord-
ing to the distance matrices: the γe parameter of the exponential kernel is computed as
γe = 1/

∑

k

∑

i, j∈ck ,i> j D(i, j). The intuition is that the standard deviation of the kernel should
represent the mean size of the clusters. The γs of the sigmoid kernel is defined as γs =
∑

k

∑

i∈ck′\k ,i> j D(i, j) and the c is set to zero. The intuition is that the γs parameter represents
the mean inter-clusters distance.

4The extension of radial basis function to any distance metric
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2.5 Results

We have preformed our test on a raw and binary NGS dataset from pooled experiments and
single cell experiments in order to identify the optimal distance in each cases. We have used
the raw DNAse-seq profiles (without peak caller) as raw dataset, the binary DNAse-seq profiles
(with peak caller) as binary dataset and the single cell ATAC-seq profiles as binary single cell
experiment.

The figure Fig2.4 represents the twenty best scores of distance measures applied to the raw
DNAse-seq dataset, computed by minimizing the sum of the Silhouette and connectivity indexes
ranks. We identify two distance metrics that perform best on this dataset, Pearson and cosine,
closely followed by Bray-Curtis and Spearman. PCA feature selection didn’t improve the distance
measure on this dataset and exponential kernel improved slightly the distance measure for all
the aforementioned distance metrics.

Figure 2.4 – Internal indexes applied to distances on the raw DNAse dataset. For Silhouette, the
higher the score the better the replicates clustering while for connectivity, the lower the score the
better the replicates clustering.

The figure Fig2.5 represents the twenty best Silhouette and connectivity scores of distance
measures applied to the binary DNAse-seq dataset. We observe that optimal distance measures
are Yule, cosine, Pearson, with and without PCA, and Spearman. These measures are again
slightly increased with the exponential kernel. Connectivity measure the mixture of clusters
while Silhouette measure the relative distance. Therefore, Yule distance allows to produce more
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separated clusters than the other metrics. This is quite unexpected since Yule distance never
appears in studies using binary NGS profiles, as opposed to Jaccard distance.

Comparing the indexes score of the best raw and binarized distance measures, we observe
that binary distances achieve a better score. This indicates that binarization of NGS profiles with
a peak caller is a good pre-processing for NGS profiles and confirms that peaks height is less
relevant due to potential biases [47] than the peaks presence.

Figure 2.5 – Internal indexes applied to distances on the binary DNAse dataset. For Silhouette,
the higher the score the better the replicates clustering while for connectivity, the lower the score
the better the replicates clustering.

Eventually, Fig2.6 represents the twenty best Silhouette and the connectivity scores of dis-
tance measures applied to the binary single cell ATAC-seq dataset. Since the profiles are binary,
Yule metric has been an expected candidate. But the inherent high false negative rate of single
cell profiles leads Spearman with PCA feature extraction as the optimal distance measure. Con-
trarily to previous cases, exponential kernel doesn’t improve the distance measure.
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Figure 2.6 – Internal indexes applied to distances on the single cell ATAC-seq dataset. For Sil-
houette, the higher the score the better the replicates clustering while for connectivity, the lower
the score the better the replicates clustering.

2.6 Identification of reliable NGS profiles

We assert that a NGS profile is reliable if it is more similar to its replicates than to other exper-
iments in the dataset. With the optimal distance measure presented above we can now score
the profiles membership to their clusters by comparing the intra-cluster distance and the inter-
cluster distance. One way of doing it is by comparing the Silhouette index for each profiles (at a
fixed distance measure), Si(C), to the Silhouette index of a null model, defined by reshuffling
the cluster affiliation CR (labels) multiple times.

Si(C) =
1
N

∑

ck∈C

b(x i , ck)− a(x i , ck)
max(a(x i , ck), b(x i , ck))

The distance to the null model is expressed via a Z-score such that:

SZi =
Si(C)− Si(CR)
σ(Si(CR))

with Si(CR), σ(Si(CR)) the mean and the standard deviation of the Silhouette index over the
reshuffled tests and SZi the Z-score of the Silhouette score of the profile i. Profiles with a Z-score
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below a threshold T, SZi < T , are considered as outliers and thus removed. The choice of the
threshold depends on the dataset: if the clusters correspond to well separated cell types (eg:
muscle, lung, brain), we advice a threshold of 2.32 (associated in this case to a p-value of 10−3)
or 1.65 (associated in this case to a p-value of 10−2). In the case of similar cell types (eg: muscle
of back, muscle of arm, skeleton muscle) in the dataset, we advice to choose a threshold of 0 in
order to remove only far outliers.

Figure 2.7 – NGS Quality procedure applied to raw DNAse-seq dataset. The scatter plot is per-
formed using the t-SNE dimensionality reduction algorithm [45].(Original Dataset) The dataset
with all the profiles. (Cleaned Dataset) The dataset without outliers. Here the threshold is set to
zero (Samples Quality) The outliers are displayed in blue and the rest in red (Z-score Silhouette
Index) Z-score of the profiles

We have performed this NGS profile selection pipeline on the three datasets. In Fig2.7, Fig2.8
and Fig2.9 we represent four images representing the NGS profiles using their respective optimal
distance for each and displayed in two dimensions using the t-SNE algorithm [45]. It constructs a
probability distribution of all pairs of points in the high dimensional space and optimizes the pos-
ition of these points in the low dimensional space by minimizing the Kullback-Liebler divergence
[39] between the probability distribution in the high and low dimensional space. The parameters
of the t-SNE are optimized by maximizing the Silhouette score of the two dimensional represent-
ation. Among the four images, we display the original dataset (top left), the samples Silhouette
Z-score (bottom right) the samples below and upper the threshold (below left) and the dataset
removed from samples below the threshold (upper right). For the three datasets, the threshold
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has been set to zero to remove only far outliers.

To underline the statement on the importance of the distance measure choice to detect low
quality profiles, we have performed in appendix the same quality procedure on the single cell
ATAC-seq dataset using a distance measure not adapted to these profiles.

Figure 2.8 – NGS Quality procedure applied to binary DNAse-seq dataset. The scatter plot is
realized using the t-SNE dimensionality reduction algorithm [45]. (Original Dataset) The dataset
with all the profiles. (Cleaned Dataset) The dataset without outliers. Here the threshold is set to
zero. (Samples Quality) The outliers are displayed in blue and the rest in red (Z-score Silhouette
Index) Z-score of the profiles
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Figure 2.9 – NGS Quality procedure applied to binary single cell ATAC-seq dataset. The scatter
plot is realized using the t-SNE dimensionality reduction algorithm [45]. (Original Dataset) The
dataset with all the profiles. (Cleaned Dataset) The dataset without outliers. Here the threshold
is set to zero. (Samples Quality) The outliers are displayed in blue and the rest in red (Z-score
Silhouette Index) Z-score of the profiles

2.7 Conclusion

We have proposed a procedure to identify the optimal distance measure for a NGS dataset in-
volving a feature extraction, a distance metric and a kernel function. We have identified that
Spearman, Bray-Curtis, Pearson and Cosine distances, without PCA, with and without exponen-
tial kernels perform best on raw (discrete) NGS profiles.

For NGS profiles binarized by a peak caller, Yule distance, with and without exponential
kernel, outperforms the other distance measures. Pearson, Cosine and Spearman distances with
PCA, with and without exponential kernels, have a slightly better connectivity index but lower
Silhouette score. Interestingly , Yule distance is never used, to our knowledge, in NGS studies,
preferring Jaccard, Euclidean or Pearson for instance.

For single cell NGS profiles, we show that PCA feature extraction combined with Spearman
distance, with an without exponential kernel, outperformed all the other distance measures.

We have also defined a protocol to select high quality NGS profiles based on the optimal
distance measure. We provide a user-friendly package in python to test the distance measures
and the profiles quality at https://github.com/jbmorlot/NGSQualityTester .

https://github.com/jbmorlot/NGSQualityTester
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Automatic genome annotation

3.1 The concept

Automatic annotation of the genome is the association of a biological function to DNA locii shar-
ing common genomic features. It relies on two categories of algorithms. The first, called super-
vised, estimates the patterns of genomic features based on classified genomic sites. For example,
we can discover the recurrent patterns associated to enhancers, given two ensembles of genomic
sites classified as enhancers and not enhancers. These algorithms are optimized by minimizing
the error between inferred classes and known classes 3.1(a). The second, called unsupervised,
estimates the recurrent patterns without external data, by minimizing the difference between
the original data and the data reconstructed from the patterns Fig3.1(b). Many different cost
function can be designed to measure this difference depending on the chosen model (eg Max
Log-Likelihood, Mean Square Error, Kullback-Liebler divergence).

Genome annotation is a wide field since different parts of the genome are annotated using
very different biological experiments depending on the studied biological process[80] [67] [5]
[32]. In this work, we focus on unsupervised automatic annotation from NGS experiments in order
to discover new structures in the data and not be constrained on the availability of external data.

3.2 State of the art of human genome automatic annotations from
NGS experiments

The two most important human genome automatic annotations from NGS experiments lately
are: The ENCODE and Roadmap Project Consortiums.

The ENCODE Consortium [18] have analyzed 1,640 profiles resulting from 7 experiments
(RNA-seq, CAGE, RNA-PET, ChIP-seq, DNAse-seq, FAIRE-seq, RRBS) on 147 different cell types,
from which they have annotated 80% of the human genome with a biochemical function. They
have used the two annotations strategies: Supervised annotation to identify putative enhancer
and unsupervised annotation to discover combinations of histone modification, using a hidden
Markov model ChromHMM[25]. Histone modifications combinations assign a biological function
to genomic sites, such as promoters, enhancers or heterochromatine. References and further
explanations are provided in appendix Histone modifications and references.

The Roadmap Epigenomics Consortium [40] have provided 2,805 genome-wide datasets in

25
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Figure 3.1 – Principle of supervised and unsupervised learning. (a) In supervised learning,
classes of the data are known. The algorithm infers recurrent patterns by minimizing the er-
ror between known classes and inferred classes. (b) In unsupervised learning algorithm, classes
are not known. The algorithm infers the recurrent patterns by minimizing the error between the
original data and the reconstructed data.

127 cell types, including 1,821 histone modifications data sets, 360 DNA accessibility data sets,
277 DNA methylation datasets, and 166 RNA-seq data sets. Missing profiles among the experi-
ments are imputed [27] resulting in 28 histones marks, DNAse-seq, RNA sequencing and methyl-
ation sequencing in 127 cell types. Again ChromHMM has been used and they have annotated
the genome of the 127 cell types with a biochemical function.

3.3 Pitfall with the current annotation algorithms

Current annotation algorithms, such as ChromHMM, focus on the discovery of unconstrained
patterns. However, if applied directly to an ensemble of NGS experiments with replicates, such
as Fig3.3(a), the discovered patterns won’t share a common value among the replicates Fig3.2(b).
To circumvent this problem, the usual protocol is to merge the replicates first and then discover
patterns among the cell types which reduces the information for the annotation. Moreover, there
exists different techniques to merge the replicates and no studies, to our knowledge, has tested
the impact of these approach to the final result.

To increase the reliability by removing the merging step, we have chosen to develop our own
annotation algorithm GABI which discovers patterns among all NGS profiles by constraining the
value among the replicates to be exactly identical Fig3.2(a).
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Figure 3.2 – Actual annotation algorithm pitfalls. (a) Expected pattern (b) With an usual annota-
tion tool, the value of the replicates is not constrained to be the same (see arrows)

3.4 Genome-wide Annotation with Bayesian Inference (GABI)

GABI is an unsupervised genome annotation based on a probabilistic model which discovers re-
current patterns in binary NGS profiles under the constrain that replicates are exactly identical.
The optimization of such algorithms is performed using the Expectation-Maximization (EM) al-
gorithm which maximizes the likelihood of a probability distribution. In GABI, this distribution is
defined as the similarity between the genomic sites, representing all genomic positions, Fig3.3(a),
and an ensemble of vectors, namely the states of reference Fig3.3(b), which represents all possible
patterns. This distribution is parametrized by the False Negatives (FP), the False Positives (FP)
of each profiles and the probability of a reference state τ Fig3.3(c).

The probability distribution is written such that:

P(î = i, k̂ = k,θ ) =
1
R

D
∏

d=1

aX id Zkd
11,d aX id (1−Zkd )

10,d a(1−X id )Zkd
01,d a(1−X id )(1−Zkd )

00,d τk

with P(î = i, k̂ = k,θ ) the probability of a reference state k and the genomic site i, D the
number of profiles,

P(î = i) =
D
∏

d=1

P(X̂ id = X id) with X id = {0, 1}

the probability of the genomic site i defined as the product of the probability of the D NGS profiles
d ∈ [1, D] to be equals to 0 or 1.

P(k̂ = k) =
D
∏

d=1

P(Ẑkd = Zkd) with Zkd = {0, 1}

the probability of reference state k. a00,d , a01,d , a10,d , a11,d are respectively as the True Positive
(TP), False Negative (FN), False Positive (FP), True Negative (TN) rates of the profile d, τk is the
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probability of the state k and R is a normalization factor, defined as:

a11,d = P(X̂ id = 1|Ẑkd = 1,θ )

a10,d = P(X̂ id = 1|Ẑkd = 0,θ )

a01,d = P(X̂ id = 0|Ẑkd = 1,θ )

a00,d = P(X̂ id = 0|Ẑkd = 0,θ )

τk = P(k̂ = k|θ )

An application of this distribution on a small example is provided Fig3.4. The complete devel-
opment of the calculations with the EM algorithm is provided in the appendix GABI calculation
and algorithm description.

Figure 3.3 – Principle of Genome annotation. (a) Schematic representation of an usual NGS
profiles matrix (b) Reference states corresponding to all the possible combinations among the
cell types with the same value among replicates. (c) Parameter optimization reveals FN, FP rates
and the probability τstate of a reference state. (d) Reconstructed matrix by association of the
reference states to each genomic sites
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Figure 3.4 – The probability of reference states k and a genomic site i is adapted through the FP,
FN rates of each profile and the states probability τk

3.5 Comparison with the state of the art methods

We have compared GABI to the states of the art of annotation, which consists in merging the
replicates and possibly uses an annotation tool. We have explored four different merging tech-
niques, commonly used in many studies. Sum merging, which sums the replicates reads over the
replicates before to apply a peak caller. Uniform merging, which sums the reads of the replicates
and down-samples them in order to have the same number of reads for all merged profiles. The
procedure is then followed by the application of a peak caller. And Proportional merging which
applies the peak caller first on all profiles before merging the replicates, assigning for each gen-
omic sites a non zero value if the number of replicates with a non zero value is larger than the
number of replicates with a zero value. We have compared GABI to the most used annotation
algorithm, the hidden Markov models and we used ChromHMM [25] as benchmark.

We have performed a synthetic dataset, in order to test the performance of these techniques.
The synthetic matrix comes from a binary matrix, representing a noise free signal, i.e. in which
replicates are identical. We have token five cell types of 30 replicates each. Every genomic site is
set to a random combination among the 25 = 32 possibilities following the distribution of states
of five DNAse-seq cell types. The matrix is then modified using a False Positive and False Negative
rate identical for each profile. We have evaluated the methods by computing the area under the
precision-recall curve (AUC) [10].

We define the probability to have an observation for the reconstructed matrix at a genomic
site i for GABI as PGABI(i, d) =

∑K
k=1 P(k̂ = k|î = i,θ ) Zkd and for the HMM as PHM M (i, d) =

∑KHM M
k=1 P(k̂ = k|î = i,θ ) Ekd with E the KHM M x D emission matrix corresponding to the KHM M

different optimized patterns of the HMM [81].

Unlike GABI, HMM optimizes the patterns and the number of states is defined before the
optimization. We have defined the number of states in two different ways: either by fixing it to
25 = 32, corresponding to all the possible combinations, which should be equivalent to GABI,
either by minimizing the Bayesian information criterion (BIC) criterion [61] [84]. This criterion
is commonly used with probabilistic model to select the optimal number of parameters, along
with the Akaike information criterion (AIC) [3]1.

1It often doesn’t lead to a minimum because it is less constrained than BIC
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3.5.1 Results

Table 3.1 presents the results of the different annotation procedures on a synthetic dataset of
five cell types and 150 profiles. We have performed a simulated matrix disturbed with different
(FN,FP). Bold values represent the top performers for each FN-FP.

We observe that GABI with no merge outperforms all the other annotation procedures es-
pecially in the case of high (FN,FP). Pooled DNAse-seq correspond to (FN , F P) = (0.01, 0.3) in
average, which correspond to an AUC of 1.0 and single cell ATAC-seq, (FN , F P) = (0.01, 0.9) in
average, which represents an AUC of 0.93 with GABI.

Not merging replicates and defining reference states with identical value among replicates
allows to score the sample by their (FN,FP) and to more efficiently recover, for each genomic
site, the associated state. The Table 3.1 shows that after a merging operation, the annotation,
using GABI, using HMM with 32 states or using HMM with BIC, don’t increase significantly the
AUC and is even slightly lower in average than the merge alone.

Unlike GABI, HMMs optimize the states and a state transition matrix. Transition matrix of
HMM increases slightly the optimization of successive genomic sites most likely by inferring the
same state, since the transition from a state to itself are more probable. Handling transitions
is time consuming compared to the potential gain, therefore in GABI, we have decided to focus
on independent genomic sites. All possible combinations evolves as 2NC T with NC T the number
of cell types. When this number is large, and we will show in chapter 4 on hematopoiesis, the
number of states covering most of the genomic sites is a small subset of all possible combinations.
Furthermore, unlike the HMMs, taking all states allows to discover rare combinations and avoid
the optimization of the number of states which needs to launch multiple times the HMM in order
to optimize a parameter such as BIC.
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GABI

( FN , FP ) Merge Uniform Merge Sum Merge Prop No Merge

( 0.1 , 0.01 ) 0.732189 0.796823 0.999995 1.000000
( 0.3 , 0.01 ) 0.998388 1.000000 0.694963 1.000000
( 0.5 , 0.01 ) 0.973686 0.799805 0.741249 1.000000
( 0.7 , 0.01 ) 0.801364 0.932318 0.395107 0.999909
( 0.9 , 0.01 ) 0.456105 0.421016 0.000000 0.938357
( 0.1 , 0.1 ) 0.718551 0.922829 1.000000 1.000000
( 0.3 , 0.1 ) 0.704560 0.939165 0.995550 1.000000
( 0.5 , 0.1 ) 0.698318 0.949744 0.759204 0.999755
( 0.7 , 0.1 ) 0.512336 0.827230 0.373358 0.962490
( 0.1 , 0.3 ) 0.304047 0.221072 0.962585 1.000000
( 0.3 , 0.3 ) 0.382416 0.286358 0.935671 0.998661
( 0.5 , 0.3 ) 0.294445 0.255401 0.686937 0.901771

Merge only

( FN , FP ) Merge Uniform Merge Sum Merge Prop

( 0.1 , 0.01 ) 0.999872 1.000000 1.000000
( 0.3 , 0.01 ) 0.998265 1.000000 0.992804
( 0.5 , 0.01 ) 0.966284 0.999272 0.753350
( 0.7 , 0.01 ) 0.810993 0.934845 0.575678
( 0.9 , 0.01 ) 0.588915 0.580188 0.000000
( 0.1 , 0.1 ) 0.898596 0.975558 1.000000
( 0.3 , 0.1 ) 0.892679 0.979086 0.992085
( 0.5 , 0.1 ) 0.868799 0.976877 0.756513
( 0.7 , 0.1 ) 0.669710 0.852179 0.574683
( 0.1 , 0.3 ) 0.607109 0.593999 0.980094
( 0.3 , 0.3 ) 0.604118 0.591697 0.972883
( 0.5 , 0.3 ) 0.585676 0.593660 0.712568

HMM (32 states)

( FN , FP ) Merge Uniform Merge Sum Merge Prop

( 0.1 , 0.01 ) 0.995474 0.995325 0.995325
( 0.3 , 0.01 ) 0.993287 0.994787 0.989211
( 0.5 , 0.01 ) 0.967301 0.994739 0.751071
( 0.7 , 0.01 ) 0.823715 0.943245 0.575678
( 0.9 , 0.01 ) 0.559255 0.572448 0.000000
( 0.1 , 0.1 ) 0.715494 0.919793 0.994566
( 0.3 , 0.1 ) 0.721250 0.930621 0.989950
( 0.5 , 0.1 ) 0.684582 0.924658 0.754425
( 0.7 , 0.1 ) 0.518374 0.817632 0.574683
( 0.1 , 0.3 ) 0.211866 0.171423 0.943976
( 0.3 , 0.3 ) 0.203138 0.176628 0.916812
( 0.5 , 0.3 ) 0.192547 0.176496 0.669103

HMM (BIC optimized)

( FN , FP ) Merge Uniform Merge Sum Merge Prop

( 0.1 , 0.01 ) 0.996400 0.996355 0.996355
( 0.3 , 0.01 ) 0.995096 0.995894 0.992335
( 0.5 , 0.01 ) 0.970686 0.997315 0.749209
( 0.7 , 0.01 ) 0.820915 0.944901 0.440885
( 0.9 , 0.01 ) 0.465967 0.554817 0.000000
( 0.1 , 0.1 ) 0.722972 0.913078 0.996325
( 0.3 , 0.1 ) 0.697447 0.934549 0.991746
( 0.5 , 0.1 ) 0.676707 0.922686 0.751401
( 0.7 , 0.1 ) 0.506039 0.811436 0.448965
( 0.1 , 0.3 ) 0.386469 0.272341 0.937451
( 0.3 , 0.3 ) 0.367177 0.272639 0.928915
( 0.5 , 0.3 ) 0.290557 0.237094 0.675321

Table 3.1 – Comparison of the different annotation procedures on five cell types with 30 replicates
each. The value correspond to the AUC precision-recall for different FN-FP. Bold values represent
the top performers for each of these matrices. (GABI) GABI annotation is applied on each merging
procedure and without merging. (Merge Only) No annotation procedure where applied on top
of the merging procedure. (HMM 32 states) ChromHMM is given the maximal number of states
in the dataset. (HMM BIC optimized) ChromHMM number of states is defined by minimizing
the BIC.
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3.6 Influence of the number of cell types and number of replicates

The precision and the recall depends on the number of cell types and replicates. In figure Fig3.5
we represent the AUC on three different simulated datasets with different cell types and replic-
ates. The (FN,FP) of the three datasets correspond to usual cases: (FN, FP) = (0.1,0.01) and
(FN,FP) = (0.3,0.01) correspond to common pooled NGS profiles and (FN, FP) = (0.9,0.01) to
common single cell NGS profiles. For FN = 0.3 the AUC of GABI is higher than 0.9 for more
than two replicates, independently of the number of cell types. For FN = 0.5, the AUC of GABI
is higher than 0.9 for more than 5 replicates by cell types or with five cell types with at least
2 replicates. And eventually, in the case of FN = 0.9, at least 30 replicates per cell types are
required to get an AUC higher than 0.9. Whereas pooled datasets with 30 replicates is rare, it is
more common in single cell datasets. In summary, GABI is well-adapted for analyzing all kind of
NGS datasets.

Figure 3.5 – AUC on three different simulated datasets with different cell types and replic-
ates. The (FN,FP) of the three datasets correspond to usual cases: (FN, FP) = (0.1,0.01) and
(FN,FP) = (0.3,0.01) correspond to common pooled NGS profiles and (FN, FP) = (0.9,0.01) to
common single cell NGS profiles.

Annotation with multiple cell types is especially interesting when the number of replicates
is low. We present in Fig3.6 a dataset of two cell types with different replicates each and we
measure the AUC of one of the two. When increasing the number of replicates in cell type 1
from three to nine for three replicates in cell type 2, the AUC of cell type 2 increases from 0.45 to
0.7. This effect diminish when the number of replicates in the cell type 2 increases. The inferred
combinations links the replicates among cell types, and therefore, cell types sharing multiple
non null combinations will increase their reliabilities. More the cell types in a dataset are similar,
more the fact to increase replicates of one cell types will be equivalent to increase replicates in
all cell types.
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Figure 3.6 – Influence of the replicates on other cell types. The dataset posses two cell types.
The AUC of cell type 2 is measured for different number of replicates in each cell type.

3.7 Inference of false positive and false negative

We have used the synthetic matrix defined above to compare the FN and FP rates inferred by
GABI and the real ones Fig3.7. We observe that the real FP rate is well-recovered by GABI under
0.1 and with a larger variance at 0.3. The inferred FN rate also match to the real FN rate, with
a larger variance for high values above 0.9. Therefore, GABI recovers well the (FP,FN) rates in
the datasets, which is an indicator of profiles quality. This information can be used to study the
origins of these differences among replicates.

Figure 3.7 – Inference of the False Negative (FN) rates and False Positive(FP) rates by GABI.
The simulated datasets mixes FP and FN ranging from F P ∈ [0.01, 0.3] and FN ∈ [0.1, 0.9]
respectively. The boxes represent the upper and lower quartile for each true (FN,FP), the orange
bar, represents the median and the whiskers show the range of the data
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3.8 Conclusion

We have developed an unsupervised annotation method on binary NGS profiles, GABI, that uses
the information of all the replicates by inferring a FP, FN rate for each profile.

Any NGS experiment is subject to artifacts that could come from the biological diversity of
the sample, an issue in the experimental protocol or an error in the computational treatment
of the profiles. Annotation simplifies and increases the reliability of the biological information
contained in a dataset. Genome annotation on NGS profiles is an extension of differential ana-
lysis, which studies the differences between only two ensembles of profiles and interprets their
differences. GABI has shown to outperform other procedures, especially in hard cases such as
high FN and FP rates, which makes it suitable for single cell datasets. We provide a user-friendly
package in python to use GABI at https://github.com/jbmorlot/GABI .

https://github.com/jbmorlot/GABI


Chapter 4

Hematopoiesis analysis

4.1 Introduction to the hematopoiesis

The hematopoiesis is the study of blood cells genesis. It is one of the most studied system for cell
differentiation models due to the presence of hematopoietic stem cells (HSC), the precursors of
the hematopoietic lineage, in bone marrow. During hematopoiesis, HSC either self-renew either
differentiates into blood cell types through successive stages of lineage commitment. This process
has become a prototype of multi-lineage diversification from stem cells [69] [24] [41] [16] [62].
The prevailing model of hematopoiesis Fig4.1 predicts a first differentiation step of HSC toward
Multi-Potent Progenitors (MPP) before splitting into the myeloid and the lymphohoid lineages.
This model lies on the identification of the Common Lymphoid Progenitors (CLP) [35] and the
Common Myeloid Progenitor (CMP) [4]. However, recent single cell in vivo experiments [55]
highlight that this representation is still incomplete and misunderstood.

Figure 4.1 – Hematopoiesis development pathways. HSC: Hematopoietic Stem Cells. MPP:
MultiPotent Progenitor. LMPP: Lymphoid-primed MultiPotent Progenitor. CMP:Common My-
eloid Progenitor. CLP: Common Lymphoid Progenitor. pDC: plasmacytoid Dendritic Cell. GMP:
Granulocyte-Macrophage Progenitors. MEP: Megakaryocyte Erythroid Progenitor. Mono: Mono-
cyte.

35
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4.2 Annotation

4.2.1 NGS quality selection

We have performed a quality test on NGS profiles, keeping the top 100 profiles per cell type
which respect a Silhouette z-score of at least 1.65 (equivalent to a p-value of 10−2). We have
used the optimal distance measure defined in chapter 2: PCA feature extraction with Spearman
distance. The table 4.1 presents the cell types mean z-score value, which is an indicator of profiles
similarity within clusters, and the number of samples per cell types.

Name Number of samples Mean z-score Silhouette
HSC 100 7.97534057337
MPP 24 3.29652016787
LMPP 100 7.80727017549
CMP 100 6.02394166809
pDC 73 14.4182383982
CLP 100 26.007825668
GMP 32 2.62027218729
MEP 100 11.0472076293
Mono 84 28.1673353084

Table 4.1 – Mean z-score value among the profiles and number of samples within each clusters
(cell types)

We have used the powerful t-distributed Stochastic Neighbor Embedding (t-SNE) [45] DR
algorithm to represent the filtered single cell profiles Fig4.2. We observe that some profiles
are spitted in more than one cluster, some even mixed with other cell types. This is the case,
for example, of MPP-LMPP, GMP-CLP, CLP-pDC or CMP-pDC. This result might indicate different
populations of the same cell types or new developmental stages.
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Figure 4.2 – t-SNE of the filtered single cell profiles. Each color represent a different cell type
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4.2.2 Annotation

We have applied GABI on the filtered profiles. Among the 29 = 512 possible states, only 121
states can account for 90% of the non null genomic sites Fig4.3. Consequently the analysis of
hematopoeisis with this dataset is reduced to the study of these 121 combinations.

Figure 4.3 – Percentage of occupied genomic sites by summing the contribution of the most
present states. (a)Percentage of occupied genomic sites (b) 1-log10 of this percentage

As explained in Chapter 3, an annotation tool gives the states and their position along the
genome. Replacing the states at each genomic position gives the inferred matrix. To asses the
quality of the annotation, besides the convergence of the model’s likelihood, we represent the
mean value of the genomic sites associated to each states Fig4.4. We observe that the annotation
added more features than removed, considering that in this case the FN rate of the profiles is
high ((FN , F P) (0.85, 0.01)). This is expected for single cell profiles because they have a low
number of reads compared to profiles produced from a set of cells. We notice that the FN and FP
rates of the profiles are not homogeneous, which shows potential experimental biases to further
explore. Eventually, we represent a sample of the original matrix and the inferred matrix Fig4.5
and we observe that GABI succeeds in discovering redundant states in the original profiles matrix,
despite a high FN rate. Based on the results on our synthetic datasets, we can assert that the AUC
of this annotation is higher than 0.9.
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Figure 4.4 – Comparison of the reconstruction versus the original matrix. Plots represent the ten
most present states ordered from top to bottom. For each plots, the blue curve corresponds to
the mean of the genomic sites associated to one state, and the orange curve to the corresponding
state inferred (the x axis represent the different profiles ordered by cell types). Below, the FN and
FP rates for each profile are presented. These rates are GABI model parameters (see appendix
GABI calculation and algorithm description for more details)
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Figure 4.5 – Visualization of the inferred matrix compared to the original (top) Original profiles
(bottom) Inferred profiles
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4.3 Interpretation of the annotation

4.3.1 Interpretation of the states

Annotation provides a reliable and a simple information from a large and complex dataset by
summarized in some combinations. The study of cell types combinations on the ATAC-seq data-
set reveals informations about cellular differentiation of blood cells. The figure Fig4.6 represents
nine of the most present states, mapped on the hematopoietic tree. Interestingly most of the non
null combinations, representing 78% of the genomic sites, are in agreement with the hematopoi-
etic tree (result with a p-value of 10−5 compared to a random states conserving the number of
instance per state). These states could indicate potential developmental triggers, conserved or
vanishing regulators during blood cells differentiation. To go further, the genomic sites associ-
ated to these states need to be compared with other genomic data to develop a model of the
underlying mechanisms.

Figure 4.6 – Sample of combinations from the top most present states.

Some states, don’ t follow the hematopoietic tree. For instance Fig4.7 shows three states
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which shortcut MPP. This result is consistent with recent studies [2] [78] describing that MPP
cellular state is can be avoided when HSC cells are set in specific conditions. The study of genomic
site associated with these states might highlight some processes responsible of this effect.

Figure 4.7 – Sample of combinations which shortcut the MPP cell type
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4.3.2 Transcription factors analysis

We have compared the matrix inferred by GABI to one of the most used genomic feature to
study cell regulation: the motif analysis of transcription factors binding sites. We have measured
the enrichment of TFs in different cell types, using the motif scanner FIMO [29] applied on the
HOCOMOCO v10 database [38], containing 601 TFs motifs. This enrichment is computed as a
z-score to a null model, equivalent to the model presented in 2.4.1 (further details are provided
in appendix TF enrichment). Then, we have mapped this score on the hematopoietic tree Fig4.8.

We recover results such that NANOG and SOX13 are involved in stem cells regulation [49]
[77] and that PAX5 encodes the B-cell lineage specific activator protein. It is expressed at early,
but not late stages of B-cell differentiation, corresponding to precursor of CLP [11]. PITX2 is
known to have a role in hematopoiesis [33] and according to Fig4.8, its role is limited to the
HSC-CMP-GMP-Mono transition.

We also observe that PAX5 and PITX2 are under-expressed in MPP whereas they are over-
expressed in HSC and following cell types in the tree. This could indicate that these two TF are
involved in the MPP shortcut.

Figure 4.8 – Transcription factor enrichment in hematopoietic cell types computed using a z-
score. Z-scores between -1.65 and 1.65 are set to zero (corresponding to a p-value of 10−2 ).
This figure is a sample of the HOCOMOCO TF database
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4.3.3 Differential analysis

During cell development, regulators and genes are either kept or changed in order to change
the cell identity. The figure Fig4.9 represents the proportion of sites kept during the develop-
ment of the pDC,CLP,Mono and MEP. We observe that the number of accessible sites kept from
HSC decreases with the maturity of cells, implying a differentiation mechanism based on locii
closing. This trend is consistent with previous results on polled DNAse-seq on three stages of
hematopoiesis [69] but we observe a higher conservation percentage on mature cells than this
previous study.

Figure 4.9 – Percentage of accessible sites kept from the HSC (a) HSC-MPP-LMPP-GMP-Mono
transitions (b) HSC-MPP-CMP-MEP transitions (c) HSC-MPP-LMPP-pDC transitions (d) HSC-MPP-
LMPP-CLP transitions

We have studied cell types transitions by representing in Fig4.10 the proportion of sites kept
and changed for all pairs of cell types. We observe that the number of sites changed and kept
during transitions is heterogeneous, implying transitions with more important modifications of
the cellular landscape, eg HSC-MPP (25% of sites changed), than others, eg CMP-MEP (less that
10% of sites changes).
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Figure 4.10 – Differential analysis between the profiles; (a) Percentage of genomic sites kept in
the transition (b) Percentage of genomic sites changed in the transition. The summation of the
two matrices equals 100

4.4 Conclusion

We have applied the entire pipeline describe in this thesis, from sample selection to GABI in order
to produce a reliable annotation, on the hematopoiesis single cell ATAC-seq dataset. We high-
light 121 combinations representing the entire dataset which potentially describe developmental
triggers, conserved and vanishing regulators. Further studies are necessary to adapt these result
to a therapeutic application but these results show the potential of our method to analyze large
and noisy NGS datasets.
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Chapter 5

Analysis of the 3D genome
organization with network concepts

5.1 Introduction

As mentioned in the introduction, the gene regulation is encoded by CRE which can either act
as activator, inhibitor or insulator. Activators and inhibitors respectively activate or repress the
target genes. Insulators define gene domain boundaries. Enhancers and inhibitors are supposed
to act only on genes within these domains.

At larger scales, the genome is separated in two compartments: the euchromatine, a region
dense in active genes and active regulators, and heterochromatine a region dense in repressive
biochemical marks with no active genes. Therefore, short and long range 3D structures are closely
related to gene expression. In this chapter, we present a tool to reconstruct the 3D organization
of the genome from chromosomal contacts, using tool from graph theory. This works as been
published [50].

5.1.1 Experimental data

The Chromosome conformation technique HiC is a method that identify nearby genomic loci in
the 3D space1 [22, 44, 58]. Close genomic sites are aggregated forming a contact. All contacts
between regions are reported in a matrix, namely the HiC matrix Fig5.1. In contrast with the
single cell , this experiment is performed on an ensemble of cells, averaging the chromosomal
contacts.

1Which may be separated by many nucleotides in the linear genome.

47
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Figure 5.1 – HiC matrix sample representing a 10Mb-fragment of human chromosome 1 at a
resolution of 10kb from[58]. The color code represents the contact frequency (− log10 units).

In this work, we consider this contact matrix as the adjacency matrix of an undirected net-
work, called contact network. This approach allows to use tools from graph theory in order to
compute the distance between genomic loci as a distance on a graph.

In the first part of this chapter, we will study the use of the contact network representation
to compute the graph distance between any pair of genomic sites, including those displaying
no (or very few) contact(s). The contact network representation has been exploited in [43]
to derive a fast reconstruction algorithm, named ShRec3D for Shortest-path 3D Reconstruction.
This reconstruction algorithm uses graph distance to impute missing distances between pairs of
genomic regions before using a MDS for reconstructing the 3D genome structure.

We propose in the second part an extension of this reconstruction algorithm, involving a
tunable graph distance and two dimensionality reduction (DR) algorithms. According to exper-
iments using fluorescence in-situ hybridization (FISH) data, which evidenced a power-law cor-
relation between contact frequencies and measured distances [44], we explore the relationships
between the contact frequencies, the graph distances, and the distances within the reconstructed
3D structures. We study the transformations achieved by the different steps of the algorithm and
benchmark its possible variants. As a result, we identify two parameters which allows to tune
the final reconstruction according the user needs.
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5.2 3D Reconstruction algorithm

5.2.1 Contact network normalization

There are basically two types of networks: the networks with multiple edges and the networks
with weighted edges. An illustrative example of the former is the binary adjacency matrix defined
by a threshold on the edges values(see example Fig5.2). In this work, we used the weighted
edges’ network because it uses the number of reads as a feature, under the condition that the
weights are correctly normalized in order to remove biological biases. The SCN [19] iteratively
divide the columns and the lines of the contact map by their sum. The result is that the probability
for a given genomic region i to have a contact is the same for all region j. Formally, if we consider
Ci j a contact at the coordinates (i,j), P(I = i|J = j) the probability of having a contact between
the line i and column j given the column j, and N the number of genomic regions:

SCN(Ci j) = P(I = i|J = j) = P(J = j|I = i)

with:
N
∑

i=1

P(I = i|J = j) = 1,∀(i, j) ∈ [1, N]2

which is also equivalent to:

P(I = i) = P(J = j),∀(i, j) ∈ [1, N]2

Figure 5.2 – A simple example of a (a) binary contact map and (b) its associated network. The
number on the nodes refer to their linear ordering in the contact map

5.2.2 The challenges

The first issue is the large size of genomic contact maps, which requires fast reconstruction al-
gorithms. Methods for the reconstruction of the native structure of the proteins from its contact
map, e.g. by targeted growth [73], are limited to a few hundred of elements at the very most,
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hence do not apply to the large HiC contact maps. The same issue apply to standard reconstruc-
tion methods which are based on iterative optimization of the reconstructed structure over the
observed datas [63].

The second issue lies in the fact that part of all contact are detected, therefore the reconstruc-
tion algorithm must first infer the missing data corresponding to these non reported contacts.

5.2.3 ShRec3D

To tackle these issues, we used Shortest path Reconstruction 3D (ShRec3D) algorithm [43]. The
different steps of the algorithm are Fig5.3(a):

1. Convert contact matrix to distance matrix. The standard method to compute a distance
from conformational capture data is to consider the inverse of the contact frequency. Let
Fi j be the contact frequency between the DNA regions (i,j), then the associated distance
Li j is defined as Li j = 1/Fi j [28].

2. Complete missing data with shortest path. Considering the distance matrix as a net-
work, we can compute the shortest path distance D between all paires of genomic regions
Fig5.3(b). The Floyd–Warshall algorithm [74] is commonly used for this purpose. It con-
sists in computing for each triplet (i,j,k) if the distance between (i,j) is shorter than the
distance between (i,k) and (k,j), Di j = mink(Di j , Dik + Dk j), with D initialized as equal to
L.

3. Convert the distance matrix into coordinates with the MDS The MDS is a technique
developed to reduce the dimension of the coordinates of points which conserves as much
as possible the distance between the points [72] (see appendix MDS). There exists two
ways to optimize the MDS, either iteratively with gradient descend, either algebraically,
which is simple to implement and fast to compute. The spectrum of the Gram matrix
reflects up to what point the matrix D is close to the Euclidean distance matrix of a single
3D structure, by analyzing the gap between the highest three eigenvalues and the rest of
the spectrum Fig5.3(c-d). In the case of a real 3D structure, only the first three eigenvalues
are non zeros.
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Figure 5.3 – Principle of ShRec3D reconstruction algorithm (a) Summary the notation used in
the papers and the pipeline of ShRec3D. The green arrows represent the MDS steps and the blue
arrows the comparisons between the distance matrices that we have investigated to assess the
impact of the factor α on the different steps of the algorithm (b) An example of contact network
converted in distance network and application of the shortest path. (c) The Gram spectrum from
this distance matrix.(d) The corresponding 3D reconstruction.

5.2.4 An improvement of Shrec3D based on fluorescence in-situ hybridization
(FISH) experiments

FISH protocol associates fluorescent tags to a few specific genomic sites. It allows in a population
of fixed cells the accurate measurement of the spatial distances between these sites. Compared
with the HiC, we can link the number of contact and the in-vivo distance between genomic
sites. On the contrary of HiC, the FISH protocols tags only few samples but it provides a totally
independent constraint on the 3D reconstruction from the HiC maps. A negative correlation has
been observed for the sites tagged by FISH between their distance di j (average over numerous
single cells) and the number Ci j of Hi-C reads, or equivalently the contact frequency Fi j [44]
Fig5.4. A simple fit of this result is through a power-law such that Li j ∼ F−αF ISH

i j with αF ISH ≈
0.227. We add this extension to the ShRec3D algorithm and investigate the influence of the
value of α on the properties of the shortest-path distance matrix D and the matrix reconstructed
from the 3D coordinates R with two cases α= 0.2 (the rounded value of the exponent observed
experimentally in the above-described situation) and α = 1 (the value adopted in the original
algorithm). Moreover, we compared the MDS used previously, also called classical MDS (cMDS)
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with a MDS variant, the Sammon mapping (see appendix). By construction of its cost function,
Sammon mapping is more precise for the reconstruct of the small distances, as opposed to the
classical MDS which is more precise for the large distance. In the following, we will first study
the effect of the the shortest path and the dimensionality reduction on the value of α, before
exploring the relationship between the reconstruction error and α. This studies are performed
on Hi-C data from human cells in lymphoblastoid (GM12878) as in [44] but at higher resolution
[58].

Figure 5.4 – Contacts recorded in FISH experiment in log-log scale and the power-law fit

5.2.5 The effect of the shortest path

By definition, the shortest-path distance Di j is always smaller or equal to the edge length Li j , this
is why we can see on Fig5.5(b) that the slope αsh of the fit of logDi j = −αsh × logFi j is smaller
or equal than α given by Li j = 1/Fαi j . The dependence of αsh as a function of α is shown on
Fig.5.5(d) and a crossover is observed at a value α ≈ 0.2. It is expected that D does not rely
on low contact frequencies, associated with long edges in the contact network. Fig5.5(b) shows
that the difference between D and L is indeed more marked for smaller contact frequencies,
i.e. larger distances. However, when α decrease, the distances tends to uniformize and small
contact frequency are less and less changed by the shortest path. This is illustrated Fig5.5(c)
by the evolution with α of the proportion of rewirering, i.e. the proportion of edges Li j > Di j .
The choice of α impacts the use of low contacts for the final reconstruction. For high values of
α, only high contact value, thus contact near the diagonal will contribute to the reconstruction.
The other contacts will be inferred based on the shortest path distance of high contact values.
On the other hand, for small α, low contact values will contribute to the reconstruction which
produce a 3D structure with more information but also with more noise.



5.2 3D Reconstruction algorithm 53

Figure 5.5 – Analysis of the weighted graph distance. (a) Hi-C contact map (b) Log-log scatter
plot of the shortest-path distances Di j with respect to the contact frequencies Fi j , for two values
α = 0.2 (top) and α = 1 (bottom) of the exponent α involved in the prescription of the edge
length. The upper boundary of the cloud of points is a line of slope −α, corresponding to the
pairs of sites for which the direct edge (i, j) of length Li j is the shortest path. Minus the slope
of the red line gives the exponent αSh of the best power-law fit Di j ∼ F−αSh

i j . (c) Increase of the
percentage NSh of pairs of sites for which the direct connection (i, j) is not the shortest path, when
α increases. (d) Exponent αSh as a function of α; the dashed blue line indicates the diagonal
αSh = α
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5.2.6 The effect of the dimensionality reduction

We further explored the relationship between the reconstructed distances R and the contact fre-
quencies F (long blue arrow in Fig.5.3(a)) as a function of α. We moreover compared two
DR techniques, corresponding to different optimization criteria hence different approximations.
Classical MDS correspond to the minimization of

∑

i, j(Di j − Ri j)2. The strength of this method
is the fast calculation of the 3D structure by computing the three first eigenvectors of the metric
matrix M (as explained above). Its weakness is the low constraint on small distances, since min-
imizing the error is achieved mainly by controlling the large distances. This dominance of large
distances can be corrected by considering the relative error

∑

i, j(Di j − Ri j)2/Di j [83], leading
to the so-called Sammon mapping (see Appendix). Importantly, DR implementations essentially
requires a complete distance matrix. Otherwise when applied to L the reconstruction is highly
unstable, due to the treatment of infinite or abnormal components of L. As shown in Fig5.6,
we observe a correlation between the reconstructed distances R and the contact frequencies F ,
which can be summarized by a powerlaw with exponent α∗, depending on the value of α and the
cMDS implementation. Note that we do not claim that these power-laws have a deep meaning,
reflecting e.g. some self-similar or fractal structure of the chromosomes; the range of the fit is
not large enough to make such a claim. These power-laws are used as the simplest way to quant-
itatively describe the correlation between F and distances matrices L, D and R. The comparison
of the exponent α∗ with αSh (Fig5.6(c) ) and α (Fig5.6(d) ) provides a global quantification of
the effect on the distances of the dimensionality reduction step and the integrated algorithm,
respectively. A local quantification will be implemented in the next section.

The value of α initially taken in the expression of edge lengths L is not recovered in the
relationship between the reconstructed distance and the contact frequencies, with exponent α∗.
Part of the difference between the two exponents comes from the shortest-path computation,
Fig5.6 (d), and part from the MDS dimensional reduction, Fig5.6 (c). This latter figure shows that
Sammon mapping has a smaller impact on the exponent α∗ than classical MDS. Using Fig5.6d,
it is possible to choose a value of α to get the desired correlation behavior in the reconstructed
structure, with some limitations. Noticeably, the effect of MDS on α∗ is weaker at larger α and
the value αF ISH = 0.227 is observed at the lower boundary of the accessible range for α∗.
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Figure 5.6 – Joint influence of the exponent α and DR implementation. (a, b) Log-log scatter
plot of the reconstructed distances R with respect to the contact frequencies F for two values
α= 0.2 (a) and α= 1 (b) of the edge-length exponent α, and two RD implementations: Sammon
mapping (Sammon, top) and classical MDS (cMDS, bottom). Minus the slope of the red line
gives the exponent α∗ of the best power-law fit Ri j ∼ F−α

∗

i j . As a guide for the eyes, the dashed
black lines, with the same starting point as the red lines, represent the line with slope −0.227=
−αF ISH . (c) Exponent α∗ as a function of αSh for cMDS (green line) and Sammon (red line);
the dashed blue diagonal corresponds to α∗ = αSh. (d) Exponent α∗ as a function of α for cMDS
(green line) and Sammon (red line); the dashed blue diagonal corresponds to α∗ = α
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5.2.7 Reconstruction Error

We computed the component-wise relative error |Di j − Ri j|/Di j Fig5.7 (a-b) and its mean over
small ranges Fig5.8 in order to analyze quantitatively the action of the DR algorithms on the
different scales. We observe as expected, and it is more significant for α = 1, that the small
distances are better reconstructed for the Sammon mapping and the larger distance are better
reconstructed with the classical MDS.

It is also apparent that the Sammon mapping reproduces small structures (e.g. small loops)
while global shape is more clearly represented by the cMDS Fig5.7 (d). For small values of α
Fig5.7 (c) the structure is more fuzzy and compact, because more mid-range contact were taken
into account before the shortest path, representing closer the results of imaging experiments. For
larger values of α Fig5.7 (d), the reconstructed 3D structure is more extended, representing the
skeleton of the overall shape, which is specially suitable for 3D genome browsers.

Figure 5.7 – Comparison of classical MDS and Sammon mapping reconstruction error. (a, b) Ac-
tion of the MDS step at various scales of the 3D structure, analyzed quantitatively by computing
for each pair of sites (i, j) the relative difference |Di j − Ri j|/Di j between the shortest-path dis-
tances Di j and the reconstructed distances Ri j . This relative difference is represented component-
wise as a scatter plot with respect to the distances Di j for two values α = 0.2 and α = 1 of the
edge-length exponent α, for both Sammon mapping (Sammon, top) and classical MDS (cMDS,
bottom). The color scale is related to the density of points in the scatter plot (increasing density
from blue to red). (c, d) 3D structures obtained for α= 0.2 and α= 1 with classical MDS (blue)
and Sammon mapping (red). A comparison between panels c and d would require a suitable 3D
alignment, see Fig5.9 below
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Figure 5.8 – Relative error according to the distance range. The figure offers an alternative
representation of Fig5.7. It displays the average of the relative error |Di j − Ri j|/Di j originating
from the DR step as a function of the normalized distance range Dn, i.e. the distance divided
by the maximal component of the matrix D for the cMDS and Sammon mapping. The average
of the relative error is taken over pairs (i, j) corresponding to the same value of the normalized
distance Dn. Classical MDS performs better at large scale, whereas Sammon mapping reproduce
better the features associated with small distances. This difference is more marked for α = 1
(bottom) than for α= 0.2 (top)



58 Chapter 5. Analysis of the 3D genome organization with network concepts

Figure 5.9 – 3D reconstruction with Sammon mapping and different values of the exponent α.
Same as Fig5.7 (fragment of 10 Mb of human chromosome 1). While local features are best
reconstructed with α= 0.2 (blue) and overall shape with α= 1 (red)

5.3 Conclusion

Reconstruction algorithm allows to get access to an unobservable data, the 3D structure, from
observable contacts between the chromosomes. The most important steps in these algorithms
are the imputation of the missing data and the 3D representation. In this project we explore
different aspects of these steps with ShRec3D as a starting point. The extension presented here,
allows to select the scale of interest (Global:cMDS,Local:Sammon) and the level of information
from the contact matrix that will be used in the reconstruction (α) Eventually, we demonstrate
the capacity of our extension by applying ShRec3D to the first human chromosom at a resolution
of 10kb. We have used α= 1 in order to lower the level of details and noise due to the large size
of the reconstruction and used Sammon mapping in order to focus on short range distances.
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Figure 5.10 – 3D structure of the chromosome 1 at a resolution of 10kb (18,000 fragments), with
Sammon mapping and α = 1. The sites are colored according to their linear position along the
genome in order to keep track of the 1D connectivity
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Chapter 6

Appendix

6.1 Histone modifications and references

Many studies has studied the relationship between the histones modifications and their associated
biological functions Table 6.1. Recently, the Roadmap consortium [40] provided an automatic
annotation of the genome based on the redundant combination of histones marks in 127 cell
types. Based on the annotation provided by ChromHMM, we reconstructed the histone marks
combinations Fig6.1, which complete the table Table 6.1.

Functional Annotation Histone Marks References
Promoter H3K4me3 [7],[34] [56]
Bivalent/Poised Promoter H3K4me3/H3K27me3 [7]
Transcribed Gene Body H3K36me3 [6]
Enhancer (Active & Repressed) H3K4me1 [30]
Poised Developmental Enhancer H3K4me1/H3K27me3 [20][57]
Active Enhancer H3K4me1/H3K27ac [20],[57],[30]
Polycomb Repressed H3K27me3 [8],[42]
Heterochromatine H3K9me3 [48]

Table 6.1 – Histones marks and their related functions
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Figure 6.1 – The annotation has been realized with ChromHMM [26] on 29 histone marks in
127 cell types. The figure represents, for all combinations, the mean over all their associated
genomic sites
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6.2 Peak caller

NGS profiles are expected to show peaks. These peaks are defined as regions with an enrichment
in reads compared to the background and represent the experimental genomic feature. Peak
callers aims at detecting these peaks and therefore produce a binary signal with non zero value
at peaks.

Dozens of different peak caller exist [36] and one of the best performer and commonly used
is MACS [82]. The principle this algorithm is to fit the number of reads with a Poisson law,
representing a null model of reads randomly distributed over the genome. Peaks in the profiles
are DNA regions with a number of reads above a threshold, defined by a p-value, of a Poisson
law1. In order to take into account the evolution of the background in NGS profiles [47] MACS
first defines the potential peaks by fitting the entire genome before confirming their existence by
fitting the read in small windows around the peaks.

6.2.1 ZINB peak caller

However, MACS algorithm has a pitfall: it needs a specific format as input which is available
only after the alignment and unusually given. Aligning the reads can be tricky due to potential
sequencing biases known by the experimentalist. Therefore, we developed our own peak caller
which could be used on segmented NGS profiles vectors (see Fig1.10). We used the same prin-
ciple than MACS but we improved the probability distribution, since it has been shown [21] that
the zero inflated binomial negative distribution (ZINB) fit the NGS noise better than the Poisson
distribution. This result has been obtained by comparing the likelihood of the Poisson and the
ZINB law on a NGS control experiment Fig6.2. These control experiments are profiles generated
with the same protocol but without the enzyme used to detect the genomic feature of interest.
Therefore, these profiles represent the noise background of a NGS experiment.

We compare the results of our peak caller with MACS on a DNAse sample Fig 6.3, taking the
same p-value of 10−5. The figure Fig6.3 shows that 80% of the ZINB peak caller peaks are shared
with MACS where most differences occurs at the peaks edges. Since Poisson law has a smaller
variance than ZINB, it is normal to observe that MACS find more peaks for the same p-value.
Therefore, our peak caller results are similar to MACS results.

Figure 6.3 – Venn Diagram comparing the number of peaks similar and different. The fact
that MACS has more peaks is coherent with the fact that its distribution is underestimating the
threshold value compared to ZINB distribution

1MACS uses a p-value of 10−5
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Figure 6.2 – Reads from a mock control dataset. The histogram of the read counts is shown
in black. The colored histograms show the maximum likelihood fit of the Poisson, Negative
Binomial (NB) and Zero-Inflated Negative Binomial (ZINB) distributions. The fit of the Poisson
distribution is poor. The NB distribution gives a good fit at the tail, but not for windows with 0
and 1 read. The ZINB distribution gives a good fit over the whole range. Data from ENCODE file
ENCFF000VEK (Figure from [21])

Figure 6.4 – Difference between MACS and ZINB peak caller on raw signal

For convenience, because MACS is not applicable on our formatted datasets, we used our
ZINB peak caller for the binarization step.

6.2.2 Zero Inflated Negative Binomial (ZINB) distribution

The zero inflated negative binomial distribution extend the definition of the negative binomial
to take into account unmappable regions. The probability to have yi reads at a locus i ∈ [1, N]
is defined as

P(Y = yi) = (π+ (1−π)pα0 )
1−yi if yi = 0

P(Y = yi) = (1−π)
Γ (α+ yi)
Γ (α)yi!

pα0 p yi
1 otherwise

with π the zero-inflation or mixture parameter (proportional to the number of zeros in the
profile), α the parameter dictating the distribution of the reads and p0, p1 the probabilities in-
dicating the average number of reads in each windows k, linked by the relation p0 + p1 = 1
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6.2.3 Algorithm description

The different steps of our peak caller are:

1. Compute the histogram of the entire profile, remove the 1% highest peaks2 and normalize
it in order to get a probability.

2. Fit the Mean Square Error (MSE) between the data distribution and the ZINB by using
the Nelder-Mead method implementation of the Scipy library [31]. This methods uses the
Simplex algorithm [52] and is robust for optimization for which the derivatives are not
defined.

3. Repeat Step 2 multiple times with different parameters initialization in order to get the
optimal fit of the entire signal distribution.

4. Split the profile in windows of size WS and fit the data distribution in each using the entire
signal distribution parameters as initialization.

5. Each fit gives the p-value of the data in its window. All the windows are concatenated and
the profile is binarized by setting a threshold on the p-value.

2Which are not necessary for the fitting the noise, induce larger vectors to fit and thus is more computationally
expensive
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6.3 NGS Illumina Technique

One of the most used NGS technique is the Illumina sequencing which is based on sequencing by
synthesis. It can be decomposed in the following steps:

First the experiment needs to generate reads, corresponding to the regions of interest. Then
some oligo (or adapters) are attached to each part of the fragment allowing it to bind to a flowcell
surface Fig6.5(1). Once binded, the reads are duplicated starting from the oligo attached to the
cell before being removed, leaving a strongly attached copy Fig6.5(2). The copy then fold on the
complementary oligo attached at step 1 and allows the polymerase to create a complementary
copy of the read Fig6.5(3). This last operation is repeated multiple times in in order to increase
the read signal Fig6.5(4). All the reverse reads are then removed Fig6.5(5). The sequence of
the reads is then determined by building the complementary sequence with oligo elements that
emits light when they bind to a sequence Fig6.5(6), allowing to identify the read sequence.
Eventually the read is folded and duplicated and sequenced backward, to improve the signal
quality Fig6.5(7). Reads are treated in parallel, allowing the sequencing of billions of reads for
each experiment Fig6.5(8).



6.3 NGS Illumina Technique 67

Figure 6.5 – The different steps to sequence with the Illumina technology (source
http://www.illumina.com/company/video-hub/HMyCqWhwB8E.html)
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6.4 Distance measure not adapted to dataset

To underline the statement of the importance of the distance measure choice to detect low quality
profiles, we performed the same quality procedure on the single cell ATAC-seq dataset using a
distance measure not adapted to these profiles, Roger-Tanimoto without PCA or kernels functions
(resulting in a Silhouette score of -0.22 and a connectivity score of 0.043) Fig6.6. Because exper-
imental replicates are mixed, almost all the samples are defined as outliers and thus removed.

Figure 6.6 – NGS Quality procedure applied to binary single cell ATAC-seq using a distance meas-
ure not adapted to this dataset.
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6.5 GABI calculation and algorithm description

Consider X = {X i}i∈[1,N], the matrix of NGS profiles, as collection of vectors corresponding to N
genomic sites indexed by the random variable i ∈ [1, N]. We define

P(î = i) =
D
∏

d=1

P(X̂ id = X id) with X id = {0, 1}

the probability of the genomic site i with D the number of NGS profiles. Consider Z = {Zk}k∈[1,K]
as collection of vectors corresponding to the reference states, indexed by the random variable
k ∈ [1, K] with K the number of states. We define

P(k̂ = k) =
D
∏

d=1

P(Ẑkd = Zkd) with Zkd = {0, 1}

the probability of reference state k. To assign a reference state to each genomic site, we compute
P(k̂ = k|î = i,θ ) using Bayes formula on P(î = i|θ ). This probability distribution is optimized
using the maximum likelihood estimation (MLE), with θ an ensemble of parameters to optimized.
The likelihood is defined such that:

P(X |θ ) =
N
∏

i=1

P(î = i|θ )

=
N
∏

i=1

k
∑

k=1

P(î = i, k̂ = k|θ )

logP(X |θ ) =
N
∑

i=1

log

� k
∑

k=1

P(î = i, k̂ = k|θ )

�

=
N
∑

i=1

log

� k
∑

k=1

R(k̂ = k|θ )
P(î = i, k̂ = k|θ )

R(k̂ = k|θ )

�

with R(k̂ = k|θ ) the distribution of k̂. The principle of the MLE, is to maximize P(X |θ ) according
to θ , thus it is the same as maximizing the lower bound of logP(X |θ ). According to the Jensen
inequality on concave function, log(

∑

i λi x i)≥
∑

i λi log(x i) with
∑

i λi = 1. Consequently:

logP(X |θ )≥
N
∑

i=1

k
∑

k=1

R(k̂ = k|θ )log

�

P(î = i, k̂ = k|θ )
R(k̂ = k|θ )

�

=Q(θ )

with Q(θ ) the lower bound of the log likelihood. We see that if R(k̂ = k|θ ) = P(k̂ = k|î = i,θ ),
then the lower bound is optimal, which means that logP(X |θ ) =Q(θ ):

Q(θ ) =
N
∑

i=1

k
∑

k=1

P(k̂ = k|î = i,θ )logP(î = i, k̂ = k,θ )

−
N
∑

i=1

k
∑

k=1

P(k̂ = k|î = i,θ )logP(k̂ = k|î = i,θ )
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with the posteriori probability defined using Bayes rule:

P(k̂ = k|î = i,θ ) =
P(î = i|k̂ = k,θ )P(k̂ = k|θ )

∑K
k=1 P(î = i|k̂ = k,θ )P(k̂ = k|θ )

Let’s now define the core of this method, the a priori probability P(î = i|k̂ = k,θ ).

P(î = i|k̂ = k,θ ) =
D
∏

d=1

P(X̂ id = X id |Ẑkd = Zkd ,θ )

=
D
∏

d=1

P(X̂ id = 1|Ẑkd = 1,θ )X id Zkd P(X̂ id = 1|Ẑkd = 0,θ )X id (1−Zkd )

P(X̂ id = 0|Ẑkd = 1,θ )(1−X id )Zkd P(X̂ id = 0|Ẑkd = 0,θ )(1−X id )(1−Zkd )

Now we parametrize the probability:

a11,d = P(X̂ id = 1|Ẑkd = 1,θ )

a10,d = P(X̂ id = 1|Ẑkd = 0,θ )

a01,d = P(X̂ id = 0|Ẑkd = 1,θ )

a00,d = P(X̂ id = 0|Ẑkd = 0,θ )

τk = P(k̂ = k|θ )

and we define θ = (a11,d , a10,d , a01,d , a00,d ,τk)∀d ∈ [1, D]. Eventually the lower bound is:

Q(θ ) =
N
∑

i=1

k
∑

k=1

P(k̂ = k|X̂ i = X i ,θ )

D
∑

d=1

(X id Zkd)log(a11,d) + ((1− X id)Zkd)log(a01,d)

+ (X id(1− Zkd))log(a10,d) + ((1− X id)(1− Zkd))log(a00,d) + log(τk)

−
N
∑

i=1

k
∑

k=1

P(k̂ = k|X̂ i = X i ,θ )log
�

P(k̂ = k|X̂ i = X i ,θ )
�

Expectation Maximization Algorithm The Expectation Maximization algorithm (EM) [23] is
an optimization technique which has been developed to find iteratively the maximum likelihood.
It is mainly divided in two steps:

1. Initialization: Initialize randomly the parameters in θ and compute P(î = i|k̂ = k,θ )

2. Expectation Step: Compute the posteriori probability such such that:

P(k̂ = k|î = i,θ ) =
P(î = i|k̂ = k,θ )τk

∑K
k=1 P(î = i|k̂ = k,θ )τk
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3. Maximization Step: Compute ∂Q
∂ θ = 0 for all parameters in θ = (a11, a10, a01, a00,τk) and

update them. It gives

a10,d =

∑N
i=1

∑k
k=1 P(k̂ = k|î = i,θ )X id(1− Zkd)

∑N
i=1

∑k
k=1 P(k̂ = k|î = i,θ )(1− Zkd)

a01,d =

∑N
i=1

∑k
k=1 P(k̂ = k|î = i,θ )(1− X id)Zkd

∑N
i=1

∑k
k=1 P(k̂ = k|î = i,θ )Zkd

a11,d = 1− a01,d

a00,d = 1− a10,d

τk = P(k̂ = k,θ )

4. Repeat the Expectation and Maximization until Q(θ t+1)−Q(θ t)< ε .

6.6 TF enrichment

The result of FIMO on all genomic sites is a matrix, TFPos, which rows and columns represent the
TFs and the genomic position respectively, and the value the number of times FIMO has detected
a TF at a given genomic position3.

The enrichment is computed as the z-score to a null model, equivalent to the model presented
in 2.4.1 : it is based on reshuffling instances of the original matrix conserving the row and column
probability such that for a NGS profile matrix m indexed by row i and column j, the probability
the null model has the value c at (i,j) is

Pi, j(mi, j = c) = (Pi . Pj)
c

Pi =

∑

j mi, j
∑

i, j mi, j
Pj =

∑

i mi, j
∑

i, j mi, j

with Pi and Pj the probability of the row i and column j respectively. Here, we randomize the
inferred matrix resulting from GABI annotation, AnnMat, which rows and columns represents
the cell types and the genomic position.

The z-score for the TF k and the cell type j is then computed such that:

ZC T j ,T Fk
=

TFMat( j, k)−µTFMatR( j, k)
σTFMatR( j, k)

TFMat( j, k) =
∑

genomic site i

TFPos(k, i) . AnnMat( j, i)

TFMatR( j, k) =
∑

genomic site i

TFPos(k, i) . AnnMatR( j, i)

with AnnMatR= null model(AnnMat) and µTFMatR, σTFMatR the mean and the standard deviation
of TFMatR repeated multiple times (100 times in our case).

3Each sequence is 500 bp
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6.7 Dimensionality reduction methods

6.7.1 Classical MDS (cMDS)

The algebraic version of classical MDS of from a distance matrix D is defined in three steps [76]:

1. Compute the Gram matrix The Gram matrix M, defined as:

Mi j =
1
2
[D2

0i + D2
0 j − D2

i j] D2
0i =

1
N

N
∑

j=1

D2
i j −

1
N2

N
∑

j=1

N
∑

k> j

D2
jk

can be computed using the double centering on the distance matrix such that:

D(2)i j = D2
i j M = IdN − N−11N

where IdN is the the N × N identity matrix and 1N the N × N matrix with all components
equal to 1 [76].

2. Compute the coordinates of the data points The coordinates are defined as the eigen-
vectors of the Gram matrix such that:

Vκ,i =
Æ

λκ × Eκ(i), (κ= 1, 2,3)

for a 3D structure.

6.7.2 Sammon mapping

This method is based on the minimization of the relative stress

ε=
1

∑

i< j Di j

∑

i< j

(Di j − Ri j)2

Di j

with (i, j) the line and column indexes of the matrix. In contrast with classical MDS, there is no
longer an analytical solution relating D with the optimal coordinates. The minimization of the
stress is achieved by iterative optimization. Noticeably, the procedure takes as a starting point the
3D structure provided by classical MDS, in order to reduce the nonconvex optimization problem
to a local minimization problem and exploit the efficient dimensional reduction of the cMDS.
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