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Mathematical notations and
nomenclature

Mathematical notations Throughout the manuscript, we represent matrices, vectors and
scalars by boldface uppercase characters (e.g., A), boldface lowercase italic characters (e.g.,
a), and lowercase italic characters (e.g., a), respectively.

The mathematical notations used in the manuscript are shown in table 1. To better
formulate the block-wise indexing, let P be a partitioning of indices of elements in vector a or
indices of columns in matrix A. Then suppose Pi indicates the ith partition and Pi(j) indexes
the jth element in Pi.

As an example of block-wise indexing, take vector b∈R5, matrix A∈R2×5, and the
partitioning P={{1, 2}, {3, 4}, {5}}. Then, b[2] is concatenation of the elements b3 and b4,
whereas A[2] is concatenation of the columns a3 and a4, and a1[2] is the column a3.

Operators

AT Transpose of matrix A
A† Moore-Penrose pseudo-inverse of matrix A
Id Identity matrix in Rd×d
1d1×d2 Matrix of ones in Rd1×d2

Element-wise indexing

ai ith element in vector a
ai ith column in matrix A
ai,j The element in the ith row and jth column in the matrix A

Block-wise indexing

P Partitioning of indices
a[i] ith block of elements in vector a, i.e., a[i]=[ak | k∈Pi]
A[i] ith block of columns in matrix A, i.e., A[i]=[ak | k∈Pi]
aj [i] jth column in block A[i], i.e., aj [i]=[ak | k∈Pi(j)]

Table 1: The mathematical notations used throughout the manuscript.

Nomenclature The nomenclature used throughout the manuscript can be divided into three
categories as shown in table 2.
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xvi Mathematical notations and nomenclature

Structure and model

y Measurement vector in Rm
Φ Dictionary (lead-field) matrix in Rm×n
β0 True representation vector in Rn

β̂ Estimated representation vector
dk Cardinality of the kth partition
K Number of blocks
[A,B] Concatenation of matrices A and B
〈a, b〉 Inner product of vectors a and b, i.e., aTb

Optimisation problem

‖a‖p `p norm of vector a
Pp,q,ε (a, b) mina ‖a‖p s.t. ‖b‖q ≤ε
Pp minβ ‖β‖p s.t. y=Φβ

‖a‖p1,p2 `p1,p2 (pseudo-)mixed-norm of vector a
P(p1,p2),q,ε (a, b) mina ‖a‖p1,p2 s.t. ‖b‖q ≤ε
Pp1,p2 minβ ‖β‖p1,p2 s.t. y=Φβ

‖a‖w;p1,p2
`wp1,p2 weighted (pseudo-)mixed-norm of vector a

P(w;p1,p2),q,ε (a, b) mina ‖a‖w;p1,p2
s.t. ‖b‖q ≤ε

Pw;p1,p2 minβ ‖β‖w;p1,p2
s.t. y=Φβ

Characterisations

I (a) Indicator function of scalar a, i.e., I(a)
def
=

{
1, if |a|>0

0, if a=0

‖A‖q→p `q→p operator-norm of matrix A, i.e., ‖A‖q→p
def
= max‖a‖q≤1 ‖Aa‖p

S (β) Support of vector β
Sb (β) Block support of vector β
|S (β)| Cardinality of S (β)

G(Φ) Gram matrix of Φ

Ker(Φ) Kernel of Φ, i.e., Ker(Φ)
def
={x∈Rn, Φx=0}

Spark(Φ) Spark of Φ, i.e., Spark(Φ)
def
= minx∈Ker(Φ)\{0} ‖x‖0

Block−Spark(Φ) Block-Spark of Φ

M (Φ1,Φ2) Basic mutual coherence constant of Φ1 and Φ2

M (Φ) Mutual coherence constant of dictionary Φ

M (Φ, k) Cumulative mutual coherence constant of dictionary Φ

Mp (Φ, k) `p-coherence function
M q,p (Φ1,Φ2) (q, p)-basic block mutual coherence constant of Φ1 and Φ2

Mq,p (Φ) (q, p)-block mutual coherence constant of dictionary Φ

Mq,p (Φ, k) (q, p)-cumulative block mutual coherence constant of dictionary Φ

MEldar
Inter (Φ1,Φ2) Eldar et al.'s basic block-coherence constant of Φ1 and Φ2

MEldar
Intra (Φ) Eldar et al.'s intra-block coherence constant of dictionary Φ

MEldar
Inter (Φ) Eldar et al.'s inter-block coherence constant of dictionary Φ

MEldar
Inter (Φ, k) Cumulative inter-block coherence constant of dictionary Φ

Qp (Sb (β) ,Φ) Characterisation of null space property
Qp1,p2 (Sb (β) ,Φ) Characterisation of block null space property
Qw;p1,p2 (Sb (β) ,Φ) Weighted characterisation of block null space property

Table 2: The nomenclature used throughout the manuscript.



Introduction

Many problems in different areas of engineering and science, such as inverse problems, can be
reformulated as an underdetermined system of linear equations, i.e., the number of equations
is less than the number of unknowns. In order to retain an appropriate unique solution from
infinitely many solutions to a such system, problem-related constraints need to be applied.
According to Tropp, for more than one century sparsity constraints have been studied and
applied to numerous applications [Tro04b].

However, if a comprehensive measurement is not provided, attaining a desired solution
will not be feasible, even considering optimal constraints. This is mainly due to the rich
characteristics of the phenomenon of interest that makes it impossible for a single modality
to project all aspects of the phenomenon. Therefore, the main research question of this
dissertation is:

What is the added value of multi-modality, when solving inverse problems?

To answer the above-mentioned question, three main challenges will raise. First of all, it
should be noticed that the desirable sparse solution can be extracted from a set of possible
solutions through a proper constrained optimisation problem.

In order to ensure the uniqueness of the sparsest solution of the optimisation problem,
some theoretical recovery conditions are proposed in literature. These conditions are based on
the amount of similarity or coherence between the columns of coefficient matrix of the inverse
problem. More precisely, the less coherence, the more relaxed are the conditions under which
recovery is guaranteed to be successful.

For vastly underdetermined systems of linear equations, the columns of coefficient matrix
are more likely to be coherent. This gives rise to the following first challenge:

Challenge 1. Many real-world inverse problems are vastly underdetermined, and classical
sparse estimation techniques do no longer give acceptable recovery conditions. How can
high-dimensional problems be adapted in favour of the coherence-based notion of conventional
conditions?

Secondly, due to the inverse impact of the coherence on the recovery conditions, low
coherence is favourable. Hence, the idea of clustering the coherent parts of the coefficient
matrix seems to be promising. Although the first challenge has a rather straightforward
approach, but this goes paired with the following technical challenge:

Challenge 2. In classical assumption, the recovery conditions are generated from the
columns of coefficient matrix, but clustered coefficient matrix consists of some differently-sized
blocks, and not necessarily columns. Therefore, the initial assumption of classical recovery
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2 Introduction

conditions does no longer hold true. How can appropriate recovery conditions be developed
for block-structured problems?

Finally, assuming that the two mentioned challenges are addressed successfully, and
returning to the main research question, the last challenge is related to the impact of
multi-modality:

Challenge 3. Is joining multiple modalities always beneficial, knowing that each modality
provides us with different properties of the same phenomenon? How can the added value of
multi-modality be demonstrated?

In order to explore and address the three aforementioned challenges, this dissertation is
organized in three main parts. Since Challenge 1 uses the results of Challenge 2, first Challenge
2 is presented in the dissertation, then Challenge 1, and ultimately in the last part a partial
answer to Challenge 3 is provided through experiments.

The first part of this thesis offers general theoretical recovery conditions based on
block-sparsity constraint, which ensure the uniqueness of the block-sparse solution of
corresponding weighted (pseudo-)mixed-norm optimisation problem in an underdetermined
system of linear equations. This part responds to Challenge 2.

The second part of the thesis suggests the clustering idea to improve the general theoretical
recovery conditions proposed in the first part, which responds to Challenge 1.

Consequently, the third part of the thesis investigates Challenge 3, while considering the
constraint in Challenge 2, i.e., block-sparsity. Our main application problem is distributed
EEG/MEG source reconstruction.

Given a linear operator relating the current density to the observed potential/magnetic
fields, which is called lead-field, the inverse problem in EEG/MEG source reconstruction solves
a vastly underdetermined system of linear equations.

In EEG/MEG source reconstruction problem, two concepts are integrated: block-sparsity,
and multi-modality. In the following, we elucidate the existence of the two mentioned concepts.
There is the notion of block activity, because the activity of each brain source is related to
a current dipole which can be represented by three magnitudes in x, y, and z directions,
respectively, and can be modelled by a vector of dimension three. Hence, the source vector
will be a concatenation of groups or blocks of length three. Moreover, usually for a given brain
task, a few regions of brain are activated, then it is consistent with the notion of block-sparsity.

Due to the fact that EEG and MEG measure electric and magnetic properties, respectively,
they are complementary. Additionally, EEG and MEG measure properties of the same
neuronal activity, induced by same current dipoles. Then, EEG and MEG information can be
combined to form a multi-modal problem.

Accordingly, the real-world distributed EEG/MEG source reconstruction problem
completely complies with the conditions of the three above-mentioned challenges, and will
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be used as a leading example.

Considering the properties of the real-world distributed EEG/MEG source reconstruction
problem, which require few number of active blocks in the source vector, in Chapter 2 a general
framework for block-sparse recovery problem is proposed. In other words, this chapter gives a
partial answer to "In an underdetermined system of linear equations, under which conditions
a unique block-sparse solution can be recovered?".

In fact, in a wide range of problems, the value of a single coefficient inside a block of
coefficients, whether zero or non-zero, is not important, but the status of the whole block which
is determined by all of its coefficients is the atomic meaningful entity. Therefore, instead of
the sparsity constraint which penalizes the non-zero coefficients, a block of coefficients should
be penalized.

Moreover, in contrast to the conventional point of view, where, the number of non-zero
values of coefficients determines the unique solution, in the block-structured problems the
status of block of coefficients (active or inactive) has an effective role. In addition, depending
on the definition of a block, an active block can also have zero coefficients.

The mentioned generality of the framework of Chapter 2 is in terms of the properties
of the underdetermined system of linear equations, extracted characterisations, optimisation
problems, and ultimately the recovery conditions. This chapter offers four main groups of
recovery conditions based on:

1. Block-Spark,

2. block null space property,

3. block mutual coherence constant, and

4. cumulative coherence constant.

It is worth mentioning that utilising the block structure, besides the conformity with
circumstances of some of the real-world problems, has the advantage of weakening the
conventional sparse recovery conditions. Then, the benefit of block-sparsity assumption
over conventional sparsity is proved theoretically, while it is shown that due to the natural
generalisation, all the proposed materials reduce to the conventional findings for the unit block
length. Finally, we prove the improvement of the proposed conditions over other recently
proposed block-sparse recovery conditions.

As mentioned implicitly, the lead-field is a fat matrix. For instance, in an ordinary
EEG/MEG source reconstruction problem with 30 sensors and 3000 sources, the lead-field
would be a matrix of dimensions 30 by 9000 (3000 sources times 3 values in x, y, and z

directions).

Since the mentioned block mutual coherence constant introduced in Chapter 2 is a
coherence characterisation extracted from the lead-field matrix, and due to the fact that
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the low coherence is favourable, the idea of clustering coherent parts of lead-field is studied in
Chapter 3. The clustering algorithm is applied in a hierarchical manner which enables us to
estimate the number of clusters according to the resulted clustering tree.

To construct the similarity matrix in hierarchical clustering algorithm, the proposed
coherence characterisation introduced in Chapter 2 is used. By applying clustering on the
lead-field matrix we will have two main achievements:

1. improved block-sparse recovery conditions, and

2. brain source space segmentation.

To explain more about the brain source space segmentation, it should be mentioned that
each consecutive block of three columns of the lead-field matrix corresponds to a single brain
source, so by clustering the blocks of the lead-field matrix we are actually clustering brain
sources.

It should be highlighted that in contrast to other existing brain source space segmentation
scenarios, in this study this segmentation is done in the most general case, i.e., the clustering
algorithm is blind to any information about the brain sources activity and EEG/MEG signals.
In other words, the segmentation is not restricted to a special brain activity.

In Chapter 4, the goal is to show the effect of combining the information of two
complementary modalities of EEG and MEG. We show that in multi-modal case more refined
and precise brain regions appear. Hence, EEG and MEG multi-modality advantage will be
proved.

Extensive experiments on synthetic and real data indicate a significant improvement over
the state-of-the-art findings in our three main research orientations.



Chapter 1

Background material
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1.1 Introduction

This chapter presents a background on the methods to face two challenges of multi-modality,
in Section 1.2, and block-sparsity. In order to review the recent studies on block-sparsity, we
start from the conventional sparsity constraint in finding a unique solution of an USLE1 in
Section 1.3. Then, a review of recent studies on block-sparsity is presented in Section 1.4. At
last, the role of block-sparsity in multi-modality is discussed in Section 1.5.

1Underdetermined System(s) of Linear Equations
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6 Chapter 1. Background material

1.2 Multi-modality

1.2.1 Introduction

Many natural phenomena consist of very complex structural and functional properties. For
instance, considering the sophisticated example of human brain as the phenomenon, the
electric, magnetic, functional and anatomical properties can be taken into account.

On the other hand, each modality or measurement instrument measures only a specific
property of the phenomenon. Then, due to the rich characteristics of a natural multi-property
phenomenon, a comprehensive information cannot be obtained by only a single modality.
Therefore, the research domain of multi-modality revealed to jointly analyse the data collected
from different modalities which are somehow complementary. The concept of multi-modality
is shown in figure 1.1 in a simple language. As shown in figure 1.1, a natural multi-property
phenomenon is represented by a multi-coloured object, where, each colour represents a specific
property of the object. In figure 1.1, modalities are been represented by eyes that are observing
the multispectral object. Then, the fact of shortcoming of a single modality to observe all the

Figure 1.1: Mono-modal dataset cannot describe the multispectral phenomenon of interest,
due to the monospectral detectability of each modality. While by combining mono-modal
datasets, an acceptable description of the phenomenon can be recovered.
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properties of the phenomenon is represented by the blindness of each of the eyes to a range of
colours. Finally, the data observed from each of the eyes can be combined to build a correct
image of the multi-coloured object of interest, which is the ultimate goal in multi-modality, i.e.,
compensating each modality’s relative shortcomings by integrating other modality’s dataset,
in order to extract the maximum available information. In multi-modality, the combined
dataset is called multi-modal dataset in contrast to the dataset of a single modality which
is called mono-modal or uni-modal dataset. The interest in the multi-modality originates
from the idea that the information in the multi-modal dataset is more than the sum of the
information in each of individual mono-modal datasets.

In our study, the multi-property phenomenon of interest is the human brain activity and we
are interested in its electromagnetic properties as represented in figure 1.2. In neurophysiology,
a wide variety of modalities are used for bioelectric measurements, among which the EEG is
the most interesting from the clinical applications point of view, thanks to the following four
main advantages: (1) non-invasive, (2) high temporal resolution (in order of milliseconds), (3)
relatively cost-effective, and (4) easy to use and portable.

In addition, for biomagnetic measurements the MEG is commonly used. As represented
graphically in figure 1.2, fusion of EEG and MEG can be used to improve the quality of
source estimation, due to the fact that multi-modality can also reduce the ill-posedness of
problems and make them better determined [Vel+16]. In the Section 1.2.2, we review the
electrophysiological properties of neuronal populations. In Section 1.2.3, the required steps
to solve the EEG/MEG source reconstruction problem is discussed. Finally, Section 1.2.6
elucidates some complementarities of EEG and MEG.

Figure 1.2: Electromagnetic properties of brain activity is measured by EEG and MEG
modalities and can be used to reconstruct the brain activity. Source reconstruction using
EEG and MEG multi-modality leads to improved results.
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1.2.2 Physiological basis of EEG and MEG

The main direct neuronal source of EEG and MEG signals is pyramidal neuron. Task of a
pyramidal neuron is to take synaptic inputs and produce patterned output of action potential
[Oka93]. As can be seen in figure 1.3, the postsynaptic dendrite part is polarized due to
the concentration discrepancy of ions. When the action current reaches the presynaptic
axon terminal, the glands of neurotransmitters are released into the synapse and bind to the
receptors on the postsynaptic dendrite, and this leads to a flow of ions of Na+ from outside of
cell to inside, and producing post synaptic current as shown in figure 1.3. As shown in figure
1.3, by spreading this ions, intracellular current (primary current) and extracellular current
(secondary current) are produced. A small patch of brain cortex which comprises thousands
of these simultaneously activated parallel pyramidal neurons can be represented by a current
dipole [CH03].This relationship between the macroscopic representation and the corresponding
microscopic neuronal activity is important [OWK97]. These pyramidal neurons are oriented
perpendicular to the brain cortex, but since the cortex is folded, ’radial’, ’tangential’, and
’oblique’ dipole orientations defined with respect to the local curvature of the skull, must be
considered.

Figure 1.3: Action current leads to releasing neurotransmitters into the synapse and producing
post synaptic current inside the cell. A current dipole is a representation of thousands of
simultaneously firing neighbouring neurons and can have different orientations.
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1.2.3 EEG/MEG forward and inverse problems

The goal in EEG/MEG source analysis is finding the appropriate sources based on the
electric/magnetic measurements, which is also called the inverse problem. It is called an
inverse problem because it exploits the information at the results stage and then leads to the
causes.

Inverse problems are not specific to the EEG/MEG source analysis research field and are
considered as one of the most important mathematical problems in science. The importance
of the inverse problems is due to the fact that by solving the problems inversely, it would be
possible to discover the latent parameters, which are not measurable directly.

In order to solve inverse problem, one must first solve the so-called forward problem, i.e.,
what would be the electromagnetic fields of a known source? This is the inverse of a inverse
problem, which exploits the information of the causes and then leads to the results.

In figure 1.4, the forward problem is to determine EEG/MEG measurements in sensor
space resulted from three active dipoles in source space, whereas, the inverse problem is to
estimate the activity of dipoles in source space given EEG/MEG measurements in sensor
space.

Figure 1.4: The forward and inverse problems in EEG/MEG source analysis.
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1.2.4 Volume conduction head model

In bioelectromagnetism, the transmission of electromagnetic fields from a current dipole
through the head tissues towards measurement sensors is called volume conduction head
model, which contains the electrical conduction properties of the head. In frequencies below
1 kHz, the quasi-static approximation of Maxwell’s equations can be used for modelling
the volume conduction head model [PH67]. Therefore, the level of realism of the volume
conduction head model determines the quality of EEG/MEG source analysis [Hau+14].

The volume conduction head model can be modelled analytically, or numerically. In other
words, for the EEG/MEG, the head can be modelled analytically by a single sphere or three
or even four concentric spheres corresponding to brain, cerebrospinal fluid, skull, and scalp
[Hos+78]. The boundary element methods and finite element methods have been developed to
numerically model the head and to better represent the realistic shape of the head [YNH91];
[AAG04]. Although utilising numerically-modelled head models lead to increased accuracy
in the source localization problem, it is computationally heavy. Therefore, based on the
requirements of the problem a trade-off between computational burden and source localization
accuracy should be taken into account.

In figure 1.5, the three-layer analytical and numerical volume conduction head models
are shown. The three layers correspond to scalp, skull, and brain, respectively. The head
model in figure 1.5(a) is computed analytically, whereas the ones in (b) and (c) are computed
numerically. The realistic brain layer in figure 1.5(b) is an inflated cortical sheet, whereas in
figure 1.5(c) it is a highly-folded cortical sheet.

Naturally, in order to build realistic head models we need to structural information of
head, which is provided by MRI2.

Figure 1.5: Three-layer (scalp, skull, and brain) head models modelled (a) analytically, and
(b,c) numerically. In (b), the cortical sheet is inflated, whereas in (c) it is highly-folded.

2Magnetic Resonance Imaging
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1.2.5 Lead-field

The transmission of electromagnetic fields from sources space through head tissues towards
sensors space can be modelled with quasi-static approximations of Maxwell’s equations [Sar87].

The quasi-static approximations of Maxwell’s equations, which allows to ignore the time
derivatives, can be divided into two groups of:

• quasi-electrostatics, which are describing electric field E, and

• quasi-magnetostatics, which are describing magnetic field B.

The mentioned quasi-static approximations with electric potential V and magnetic field
B in distance r in an infinite homogeneous medium with permittivity ε0 and permeability µ0

for a dipole p with electric charge density ρ and electric current density J are shown in figure
1.6, and table 1.1.

The quasi-static approximations of Maxwell’s equations in addition to the assumed discrete
positions of the brain sources lead to a discretised and linearised relationship between
electromagnetic signals and the source activities. The mentioned relationship is realised
through the so-called lead-field matrix which contains the electromagnetic and geometrical
properties of the head.

Figure 1.6: Electromagnetic fields (E, B) at distance r of dipole p.

Quasi-electrostatics Quasi-magnetostatics

Gauss’s law ∇ ·E = ρ
ε0

Gauss’s law ∇ ·B = 0

Faraday’s law ∇×E = 0 Ampère’s law ∇×B = µ0J

V = 1
4πε0

p · r
|r|3 B = µ0

4πp×
r
|r|3

where, ∇·, ∇×, ·, and × are divergence, curl, dot and cross product operators, respectively.

Table 1.1: The quasi-static approximations of Maxwell’s equations.
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The lead-field matrix, which is also considered as the solution of the forward problem, is
computed when the volume conduction head model, source model, and sensor model is given.

As shown in figure 1.7, knowing the volume conduction head model including scalp, skull,
and brain models with K source positions in source space and m sensors in sensor space makes
possible the computation of the lead-field matrix of dimension m by 3K.

Each block of three columns in lead-field matrix, consists of the response of all sensors to
a specific probing dipole in the source space. Actually, it is a block of three canonical probing
vectors.

Figure 1.7: Forward problem is solved when the head (scalp, skull, and brain layers), source
(K source positions), and sensor (m sensors) models are given. The lead-field matrix Φ of
dimension m by 3K is resulted from concatenation of K three-column matrices corresponding
to K source positions in source space.
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1.2.6 EEG and MEG complementarities

In recent years, the partial independence of bioelectric and biomagnetic measurements has
been studied and the added value of their combination under a multi-modal signal processing
framework has been the subject of some researches. In this section, some relative merits of
cerebral bioelectromagnetic measurements, i.e., EEG and MEG, are reviewed.

• Dimension of measurement. MEG measurement is vectorial, whereas EEG
measurement is scalar.

• Reference measurement. MEG measures magnetic field, whereas EEG measures
potential differences. In other words, the existence of reference electrode is essential in
EEG contrary to MEG (figure 1.8(a)).

• Sensor position. MEG sensors are located outside but near the head, whereas EEG
sensors are placed on the surface of the head. Therefore, MEG makes a contact-less
recording indicating that it has the advantage of very low pre-recording preparation
time and the disadvantage of necessity of existence of helmet for localization of the head
position (figure 1.8(b)).

• Sensitivity to cerebral currents. MEG is mostly sensitive to primary currents,
whereas EEG is sensitive to secondary currents (figure 1.8(c)). The cerebral currents
were briefly discussed in Section 1.2.2.

• Sensitivity to orientation of dipole. MEG has very low sensitivity to radial dipoles
and is zero for spherical head model [Ahl+10] (figure 1.8(d)).

• Sensitivity to depth of dipole. MEG has low sensitivity to deep sources, because
deeper sources become more quasi-radial (figure 1.8(e)).

• Sensitivity to head tissues. In contrast to MEG, EEG is highly sensitive to the
geometry and conductivity of media [AG03]; [GA04]. Therefore, EEG is distorted while
passing through the brain tissues, especially the skull because of its low conductivity,
i.e., high resistivity.

On the other hand, MEG is far less sensitive to internal heterogeneities [HP17]. For
instance in figure 1.8(f), for a same source model, which is realistic highly-folded cortical
sheet, MEG is quite equal for the two head models, while EEG is significantly different.

Because of the transparency of the skull to magnetic fields, MEG is able to measure the
cerebral activity of smaller brain regions [Mal11].

• Topography. EEG and MEG topographies for a same source activity are almost
orthogonal to each other (figure 1.8(g)).
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Figure 1.8: (a) MEGmeasures vectorial magnetic field, whereas EEGmeasures scalar potential
differences, (b) MEG sensors are located outside the head, whereas EEG sensors are placed
on the surface of the head, (c) MEG is mostly sensitive to primary currents, whereas EEG
is sensitive to secondary currents, (d) MEG has very low sensitivity to radial dipoles, (e)
MEG has low sensitivity to deep sources, (f) EEG is highly sensitive to the geometry and
conductivity of media, and (g) EEG and MEG topographies for a same source activity are
almost orthogonal to each other. .
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1.3 Sparsity

1.3.1 Introduction

In science and technology, e.g., statistics [CT07], or biomedical engineering [GH04]; [ES05];
[LDP07], scientists and engineers end up with vastly USLE, which have an infinite number of
solutions, if any. For instance, the research domain of inverse problem mainly deals with USLE.
Because of these infinitely many solutions, the problem is said ill-posed [Had02]. According
to some a priori knowledge about the nature of the data of interest, and consequently the
solution, this eligible infinite number of solutions, which results in ambiguity in solution space,
could be restricted to a smaller class of solutions or, pragmatically, to a unique solution, which
is a good approximation to a true solution.

Commonly, the amount of sparsity of the true solution has been exploited as additional
constraint to disappear the mentioned ill-posedness of the USLE Sparsity assumption is a
generic constraint that its application in different domains can lead to solutions with different
properties, e.g., smoothness of the solution. In this work, the sparsity assumption is utilised.
In fact, the sparsity assumption is a very relevant constraint due to the practical observation
indicating that many real world signals have approximately sparse representations.

If the coefficient matrix of USLE is union of orthonormal bases, the solution is efficient,
where efficiency in solution means requiring very few significant coefficients in comparison
to the dimension of the solution, so sparsity [CDS01]; [GN03b]. But practically it has been
observed that because of the rich characteristics of the natural phenomena, if the coefficient
matrix is a single orthonormal basis, usually the natural images or sounds do not necessarily
have sparse solution [GN03a]. Therefore, the more generalised concept of coefficient matrix
is introduced which is the so-called dictionary [MZ93]. Each column of a dictionary is called
atom. For explanation of the atom-dictionary terminology, the interested reader is referred
to [MZ93] and [CDS01]. The coefficient matrix appears in different names of design matrix,
measurement matrix, coding matrix, codebook, or dictionary, based on its nature and the
research community.

In the community of overcomplete signal representations, finding the sparse solution of a
vastly USLE is translated as recovering a high-dimensional ideally sparse vector, which can
be a digital signal or image. In addition, it can be translated as an efficient representation of
a signal in an overcomplete dictionary. Overcompleteness of the dictionary implies that the
linear system of equations is underdetermined, because the number of atoms in the dictionary
is more than the number of entries in each of the atoms. However, despite of the fact that the
problem is underdetermined, there are some heuristic and theoretical arguments on benefits
of overcompleteness in theoretical neuroscience [OF97], approximation theory [CD02], signal
processing [DCL97]; [BM99]; [CR02], and image processing [Huo99]; [SCD02]; [SED03].

Section 1.3.2 defines the sparse representation theory, next in Section 1.3.3, recovery
conditions are reviewed.
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1.3.2 Sparse representation theory

To elucidate the theory, this section is divided into three parts: (1) structure and model, (2)
optimisation problem, and (3) characterisations:

1) Structure and model In general, the USLE can be formulated as [CT05]; [DET06]:

y = Φβ0 + e, (1.1)

where, y∈Rm is the measurement vector, Φ∈Rm×n, m<n, is the dictionary, β0∈Rn is the
true representation vector, or input variable, and e∈Rm is noise, bounded by a known noise
level, e.g., ‖e‖2<ε. if e=0, then the model is noiseless [DE03b]; [GN03b]. In this study, we
will concentrate on the following noiseless model:

y = Φβ0. (1.2)

As mentioned before, the goal is to extract a representation vector β̂ which is the sparsest
among all solutions, i.e., a representation with the fewest non-zero elements relative to its
dimension. For example, suppose the following estimated representation vector β̂:

β̂ =
[
β̂1, · · · , β̂k, · · · , β̂n

]T
,

and following dictionary:
Φ = [ϕ1, · · · ,ϕk, · · · ,ϕn] ,

with ϕj∈Rm and without loss of generality, it is assumed that atoms have unit Euclidean
norm, i.e., ∀j, ‖ϕj‖2=1. Then, the sparsity structure of the noiseless USLE is graphically
represented in figure 1.9. Commonly, this problem is referred to as atomic decomposition,
since the measurement vector y is decomposed into its fewest active atoms of the dictionary
[CDS01]; [DH01]; [DE03a].

Figure 1.9: Sparsity structure of the noiseless USLE.
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2) Optimisation problem The problem of finding a sparse solution β̂ in the noiseless case
is called exact (unique) signal recovery whereas for the problem in the noisy case, it is called
stable (robust) signal recovery.

In general, exact signal recovery provides deep insight into the problem of stable signal
recovery [CT05]; [CT07]; [Don04b]; [Don04a]. Exact signal recovery remains invariant by
scaling of the dictionary, Φ→kΦ, whereas stable signal recovery has a direct relation with
scaling of the dictionary [DG08]; [FL09].

Stablity in stable signal recovery means that bounded changes in the measurement vector
y result in bounded changes in the estimated representation vector β̂ [CRT06]. Based on the
amount of the bounded change either small or arbitrary, there are two main types of stability
named local stability and global stability, respectively [DET06].

The best case in stable signal recovery is obtained when the size of the representation error
is guaranteed to be bounded by the noise level, i.e., ‖β̂−β0‖2<ε. In a real-world situation,
usually the measurement is severely incomplete and also inaccurate and when the measurement
vector is noisy and the true representation vector is not exactly sparse, the measurement is
said to be imperfect [CRT06].

Norms play an essential role in quantifying distances between two vectors or amplitude of
a single vector in the definition of cost functions for optimisation problems [Wal14]. Exact
and stable signal recovery problems can be realised through a proper constrained optimisation
problem. The straightforward optimisation problem for stable signal recovery is:

min
β
‖β‖0 s.t. ‖y −Φβ‖2 ≤ ε, (1.3)

where, for ε=0, the optimisation problem (1.3) solves an exact signal recovery problem. In a
general framework in order to cover all the previous types of optimisation problems, consider
the following constrained `p norm minimisation problem:

Pp,q,ε (a, b) : min
a
‖a‖p s.t. ‖b‖q ≤ ε, (1.4)

where, a and b are vectors, and `p norm of vector a is defined:

‖a‖p
def
=



∑
i

I (ai) , for p = 0(∑
i

|ai|p
) 1

p

, for 0 < p < +∞

max
i
{|ai|}, for p = +∞,

where, I(·) is the indicator function, i.e., I(a)
def
=

{
1, if |a|>0

0, if a=0
. The noise level ε, which

upper-bounds the Euclidean norm of noise e in the general model of (1.1) is bounded such that
0≤ε≤ε. Therefore, according to (1.4) the problem (1.3) can be represented as P0,2,ε(β,y−Φβ).
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By defining r(β)=y−Φβ as a remainder vector, it is assumed in this work as a consequence
that ‖r(β)‖q=0 is equivalent to y=Φβ. For the sake of simplicity we refer to r(β) as r.
The estimated solution of the problem Pp,q,ε(a, b) is called β̂. In the introduced general
optimisation problem, the widely used case is when the minimisation is over β and the problem
is an exact signal recovery, i.e., Pp,q,0(β, r), which for the sake of simplicity we refer to it as
Pp. Because regardless of choice of q, the ‖r‖q=0 directly indicates to the noiseless model, so
the only parameter to be determined is p.

A norm function f has three following properties [GL13]; [Wal14]:

1. f(a) ≥ 0 (nonnegativity),

2. f(αa) = |α|f(a) (positive homogeneity or scalability),

3. f(a± b) ≤ f(a) + f(b) (triangle inequality).

Some of the most important norms that their minimum induces sparsity in exact and stable
signal recovery problems are:

• `0 pseudo-norm (or semi-norm, or Hamming norm [HR09]),

• `1 norm (or taxicab norm, or Manhattan norm, or grid norm [Wal14]),

• `2 norm (or Euclidean norm), and

• `∞ norm (or maximum norm, or Chebyshev norm, or uniform norm).

Remark 1.1. Notice that, ‖a‖p for p=0 does not satisfy the required positive homogeneity
property of a norm function, i.e., ‖αa‖0 6=|α|‖a‖0. Therefore ‖a‖0 is commonly referred to as
a `0 pseudo-norm instead of `0 norm. ‖a‖0 simply counts the number of non-zero elements in
a.

Remark 1.2. It should be noticed that, ‖a‖p for 0<p<1 does not satisfy the required triangle
inequality property of a norm function. Therefore ‖a‖p for 0<p<1 is commonly referred to as
a `p pseudo-norm instead of `p norm.

For a vector β, the basic sparsity measure is the `0 pseudo-norm [HR09], which is the
number of non-zero entries of the vector β. Therefore, P0 which is an equality-constrained `0
pseudo-norm minimisation problem can be used for the exact signal recovery problem [CT05].
Similarly, P0,2,ε(β, r) which is an `2-constrained `0 pseudo-norm minimisation problem can be
used for the stable signal recovery problem [DET06], where, both P0 and P0,2,ε(β, r) are in
general NP-hard, i.e., they cannot be solved by a polynomial time algorithm [Nat95]; [AK98].

In finding the unique and sparse representations, some researchers focused on a more
general cases of Pp, 0<p≤1 [Cha07]; [DG08]; [FL09]; [DG09b], and Pp, 0≤p≤1 [GN03b];
[GN04]; [GN07] for the exact signal recovery problem and Pp,2,ε(β, r), 0<p≤1 [FL09] for the
stable signal recovery problem.
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For Pp,q,ε(β, r), 0≤p<1, the optimisation problem is non-convex, combinatorial, and
generally computationally intractable [DMA97], i.e., all possible combinations of the columns
of the dictionary should be tested for finding the smallest subset of columns satisfying the
optimisation constraint, and its complexity grows exponentially with n the length of β.
But there is still hope, either by approximating the solution of Pp,q,ε(β, r), 0≤p<1, and
relaxing the optimisation problem to P1,q,ε(β, r), which can be viewed as a convexification of
Pp,q,ε(β, r), 0≤p<1, or using numerical bypasses (shortcuts), such as greedy algorithms, e.g.,
matching pursuit [MZ93]; [Mal08], orthogonal matching pursuit [PRK93]; [MZ93]; [DMA97],
and basis pursuit [CDS01], or iterative thresholding algorithms, e.g., iterative hard thresholding
[FN03b]; [DDM08]; [BD08]; [BD09b], iterative soft thresholding, and iterative thresholding
with inversion [Mal09]; [MD10].

Matching pursuit as an iterative algorithm can be used for approximating the P0, whereas
basis pursuit leads to the exact solution to the P0. At first, in practice it had been observed
that P1 and P0 often lead to the same results [CDS01], later it turned out that under sufficient
conditions, i.e., if β is sufficiently sparse, the solutions of the mentioned problems are indeed
the same and unique [DH01]; [EB01]. Regarding the conditions for the relationship between
the solutions of P1 and P0, Donoho and Elad have addressed the following two main questions
[DE03b]; [DE03a]: Under which conditions,

Q1: the solution to P1 is necessarily the sparsest representation (solution to P0)
(Uniqueness)?

Q2: the solution to P0 is necessarily equal to the solution to P1 (Equivalence)?

In general, P1,q,ε(a, b) is convex, implying that there is no local minima problems in
its numerical solution, and based on the optimisation theory, it can be recast as a linear
programming problem [GMW90]; [Ber99]; [CDS01]. Therefore, it can be efficiently solved
by search problems based on either the classical simplex method or recently popular interior
point methods [Wyn79]; [BN03]; [BV04]. There are also some other fast algorithms [CM06];
[Gil+06]; [Gil+07]; [XH07]. Although P1,q,ε(a, b) is convex, it is not strictly convex, so the
range of unicity of the solution should be determined [GN03a]. Because of the mentioned
convexity, researchers started using P1 or equality-constrained `1 norm minimisation problem
or basis pursuit [CDS01]; [DE03b]; [CT05] for exact signal recovery problem, and in
parallel P1,2,ε(β, r) or `2-constrained `1 norm minimisation problem or basis pursuit denoising
[CDS01]; [DET06]; [Tro06], for stable signal recovery problem.

There are two other widely used optimisation problems used for stable signal recovery:
P2,1,ε(r,β), and P1,∞,ε(β,Φ

Tr). The former, `1-constrained `2 norm minimisation problem is
LASSO3, and is also known as `1-regularized least squares [Tib94]; [Tro06]; [KKB07]; [MY09]
and the latter, `∞-constrained `1 norm minimisation problem is known as Dantzig selector
[CT07]; [CXZ09]; [CWX10].

3Least Absolute Shrinkage and Selection Operator
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3) Characterisations To define a framework for recovery or identifiability conditions,
some properties and characterisations of the dictionary are introduced in literature, among
which the widely studied are gathered in table 1.2. Most of the mentioned properties
and characterisations of the dictionary are computationally unrealistic or intractable. Only
the property of mutual coherence property or the characterisation of mutual coherence
constant have the great advantage to be simple and tractable, but with the expense of
making the recovery conditions more restrictive. Next, we recall some basic notations and
characterisations which will be used in our work.

Support and Cardinality: The Support (or active set) and Cardinality of a vector β are
defined as:

Support: S (β)
def
= {k : βk 6= 0} ,

Cardinality: |S (β)| def
= ‖β‖0 .

Indeed, the non-convex pseudo-norm ‖β‖0, simply counts the non-zero elements of vector β.

Dictionary Kernel: The Kernel (or null space) of a dictionary Φ is defined as:

Ker(Φ)
def
= {x ∈ Rn,Φx = 0} .

The Kernel of a dictionary plays an important role in establishing two different classes of
recovery conditions, which will be investigated later.

Properties References

Null space property [DH01]; [EB01]; [GN03b]; [FN03a]; [Zha05]; [SXH08]; [CDD09]
Robust null space property [DG09a]; [FR13]
Mutual coherence property [DH01]; [EB01]; [GN03b]; [Tro04a]; [Fuc04]; [Tro06]; [GN07]
Restricted isometry property [CT05]; [Bar+08]; [Can08]
Uniform uncertainty principle [CT05]; [CT06]
Exact reconstruction principle [CT06]
Neighborliness of the projected polytopes [VS92]; [Don05]; [DT05]; [DT06]

Characterisations References

Spark [GN03b]; [DE03b]
Cospark [CT05]
Cumulative coherence [DE03b]; [Tro04a]
Quantity invariant γ2S [FL09]
Mutual coherence constant [DH01]; [EB01]; [GN03b]; [Tro04a]; [Fuc04]; [Tro06]; [GN07]
Restricted isometry constant [CT05]; [Bar+08]; [Can08]
Restricted orthogonality constant [CT05]
Asymetric restricted isometry constant [DG08]; [DG09b]

Table 1.2: Properties and dictionary characterisations used in literature to define exact and
stable recovery conditions.
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Spark: The smallest number of columns of dictionary Φ that are linearly dependent is called
Spark.

Spark has a very important role in guaranteeing the uniqueness of the sparse
representation. This importance has been already demonstrated by Gorodnitsky and Rao
[GR97].

The Spark of a dictionary Φ is defined mathematically as [GN03b]; [DE03b]; [DE03a];
[BDE09]:

Spark (Φ)
def
= min
x∈Ker(Φ)\{0}

‖x‖0 . (1.5)

By the definition of the Spark(Φ), any vector x in the null space of the dictionary, i.e.,
Φx=0, must satisfy ‖x‖0≥Spark(Φ).

As it can be seen, Spark characterises the null space of a dictionary using the `0
pseudo-norm.

Despite of the superficial similarity between Rank and Spark, they are entirely different
in concept and computational complexity.

The Rank of a dictionary is defined as the largest number of the columns of Φ which are
linearly independent, and its computation is sequential (easy to compute), whereas Spark is
the size of the smallest number of linearly dependent columns of Φ, and its computation is of
combinatorial search with exponential complexity.

In general, without zero columns, the Spark of a dictionary Φ∈Rm×n is bounded by
[DE03b]:

2 ≤ Spark(Φ) ≤ min {Rank(Φ) + 1, n}
≤ min {m+ 1, n}
= m+ 1.

(1.6)

A dictionary with maximal Spark, i.e., Spark(Φ)=m+1, is called full-Spark.

For a dictionary with linearly dependent columns, at least two columns are linearly
dependent, i.e., 2≤Spark(Φ), and for many randomly generated dictionaries, Spark(Φ) is
equal to Rank(Φ)+1.

On the other hand, we have Rank(Φ)≤min{m,n}, and since the problem is
underdetermined, i.e., m<n, min{m,n} is m and also min{m+ 1, n}=m+1.

As it can be seen in (1.5), the dictionary characterization Spark(Φ) is obtained by
minimisation of the intractable non-convex `0 pseudo-norm, which is not easy to compute.
More precisely, given a matrix Φ, computing Spark(Φ) is NP-hard4. The computational
complexity of Spark(Φ) is investigated in [TP13].

4Non-deterministic Polynomial-hard
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Mutual coherence constant: The maximum pairwise absolute correlation between the
normalized atoms of a dictionary can be used as a characterization of the dictionary, which is
called Mutual Coherence Constant (MCC) [DH01]. From computational point of view, MCC
can be considered as the maximum element of off-diagonal absolute Gram (Gramian) matrix
G(Φ)

def
= ΦTΦ [DE03b]; [DE03a], i.e.,

M (Φ)
def
= max

k,k′ 6=k
|〈ϕk,ϕk′〉| = max

k,k′ 6=k

∣∣ϕTkϕk′∣∣
= max

k,k′ 6=k

∣∣Gk,k′ (Φ)
∣∣ ,

where, 〈a, b〉 computes the inner product of the vectors a and b. Obviously, the main diagonal
of G(Φ) is composed of 1s, due to the `2-normalization of the atoms of the dictionary. Since
it is assumed that the atoms of the dictionary have unit `2 norm, MCC satisfies M(Φ)≤1,
because of the Cauchy-Schwarz inequality |〈ϕk,ϕk′〉|≤‖ϕk‖2‖ϕk′‖2. For a dictionary as an
orthonormal basis, M(Φ)=0, whereas for a dictionary consisting two or m orthonormal bases,
M(Φ) is bounded by [HSP06]:

1√
m
≤M (Φ) ≤ 1. (1.7)

For an equiangular tight frame deterministic dictionary, which satisfies the following three
conditions [FR13]:

‖ϕk‖2 = 1, for k = 1, · · · , n,
|〈ϕk,ϕk′〉| = c, ∀k 6= k′ and constant c,

m

n

n∑
k=1

〈ϕ,ϕk〉ϕk = ϕ, ∀ϕ ∈ Rm.

the lower-bound of M(Φ) or the Welch bound is
√

(n−m)/(m(n−1)) [Wel74]; [SJ03]. The
Welch bound defined for equiangular tight frame deterministic dictionaries is even less than
the lower-bound of M(Φ) for a general random dictionary in (1.7), unless m=1, for which the
two lower-bounds are equal.

MCC was first computed for two orthonormal bases Φ1 and Φ2, which is called basic
MCC :

M (Φ1,Φ2) = max
k,k′

∣∣∣ϕT1k
ϕ2k′

∣∣∣ .
Notice that for orthonormal bases Φ1 and Φ2 and their concatenation [Φ1,Φ2], we

have M (Φ1,Φ2) =M ([Φ1,Φ2]). Supposing the dimension of two orthonormal bases Φ1

and Φ2 is m by m, it is proved that 1/
√
m≤M(Φ1,Φ2)≤1 [DH01]; [EB01]; [EB02]. The

lower-bound is achieved when the pair of orthonormal bases are spikes and sines [DH01] or
Identity and Hadamard [EB02] matrices or any other orthonormal matrices corresponding to
the orthonormal bases, whereas the upper-bound is achieved when at least one of the columns
in each of two orthonormal bases is common.
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Cumulative mutual coherence constant: MCC uses the maximum absolute off-diagonal
element of the Gram matrix G(Φ) as the characterization of the dictionary Φ, while by
summing over any k elements of G(Φ), we would better characterize the dictionary. This
kind of dictionary characterization is called cumulative MCC.

The conventional cumulative MCC, (or Babel function [Tro04a], or `1-coherence function
[FR13]) of a dictionary Φ∈Rm×n is defined as:

M (Φ, k)
def
= max
|Λ|=k

max
j /∈Λ

∑
i∈Λ

|〈ϕi,ϕj〉| , (1.8)

where, Λ represents k different indices from {1, · · · , n}.

Although cumulative MCC is computationally more difficult than MCC characterization,
it leads to more weakened or relaxed recovery conditions, i.e., the solution of the corresponding
optimisation problem is ensured to be unique even for less sparse representation vectors.

A straightforward extension of `1-coherence function would be `p-coherence function,
defined for any p>0 [FR13]:

Mp (Φ, k)
def
= max
|Λ|=k

max
j /∈Λ

(∑
i∈Λ

|〈ϕi,ϕj〉|p
) 1

p

.

The p parameter in Mp(Φ, k) controls the `p norm of k off-diagonal elements of G(Φ),
which makes the Mp(Φ, k) to have the following properties:

• For p=1, Mp(Φ, k) reduces to the conventional cumulative MCC, i.e.,
M1(Φ, k)≡M(Φ, k).

• For p=∞, for any value of k, Mp(Φ, k) reduces to the conventional MCC, i.e.,
M∞(Φ, k)≡M(Φ), because `∞ norm of any vector is equal to the maximum absolute
value of the vector.

The Welch bound mentioned for the MCC can be extended to the cumulative MCC, i.e.,
for k<

√
n−1, cumulative MCC is lower-bounded by k

√
(n−m)/(m(n−1)), where, again the

lower-bound is achieved when the dictionary is an equiangular tight frame [SV08].

In a similar work for extracting the cumulative coherence of the dictionary, Donoho and
Elad introduced µ1/2 and µ1 of the Gram matrix, which is the smallest m off-diagonal entries
in a single row or column of the Gram matrixG, which sums at least to 1/2 and 1, respectively.

There are the relationships M−1(Φ)≤µ1(G)<Spark(Φ) and µ1/2(G)≤(1/2)µ1(G)

[DE03b]; [DE03a].
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In another study, based on the manner of identifying the Support set of a sparse signal
in the OMP5 algorithm, union cumulative coherence is proposed and denoted by MU (Φ, k)

[Dos05]; [Zha+15]:

MU (Φ, k)
def
= max
|Λ|=k

max
j /∈Λ

∑
i∈Λ

|〈ϕi,ϕj〉|+ max
l∈Λ

∑
i∈Λ\{l}

|〈ϕi,ϕl〉|

 ,

where, Λ represents k different indices from {1, · · · , n}.

MU (Φ, k) even better characterizes the dictionary Φ in comparison to conventional
cumulative MCC, i.e., M(Φ, k). Because, a part from the first common term in MU (Φ, k),
which seeks the maximum of sum of pairwise absolute inter-set correlations between the
columns i∈Λ and j /∈Λ, the second term in MU (Φ, k) seeks the same characterization for
intra-set columns i∈Λ and l∈Λ.

Although MU (Φ, k) is computationally more complicated than M(Φ, k), it leads to more
accurate analysis of the reconstruction capacity of the orthogonal matching pursuit [Zha+15].

Tropp has shown the following properties for cumulative MCC [Tro04a]:

• M(Φ, 0)=0 (by convention),

• M(Φ, 1)=M(Φ),

• M(Φ, k)≤kM(Φ),

• M(Φ, k+1)−M(Φ, k)≥0,

• M(Φ, k+2)−2M(Φ, k+1) +M(Φ, k)≤0,∀k≥0, and

• For orthonormal basis, M(Φ, k)=0, ∀k≥0.

In a more general case, for 1≤k1, k2≤n−1 with k1+k2≤n−1, we have [FR13]:

max {M(Φ, k1),M(Φ, k2)} ≤M(Φ, k1 + k2)

≤M(Φ, k1) +M(Φ, k2).

As it can be learned from the above-mentioned different formula of cumulative version of
the ordinary coherence measure, this type of dictionary characterisation is more informative
and general. Since instead of the first maximum off-diagonal absolute value of the Gram
matrix G(Φ), k of them characterise the dictionary Φ.

5Orthogonal Matching Pursuit
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1.3.3 Exact recovery condition

One of the fundamental contributions of the overcomplete signal representations community
is theoretically-proved necessary and sufficient conditions for exact or stable signal recovery
problems. In other words, if based on some regularity conditions for sparsity assumption the
representation vector is sufficiently sparse, then it can be recovered exactly or stably [VPF15].
Therefore, ill-posedness issue of the USLE can be solved [DET06].

The importance of the Exact Recovery Condition(s) (ERC) or stable recovery condition is in
guaranteeing the uniqueness or faithful approximation of the solution of the model through the
sparse optimisation problem, otherwise, different optimisation algorithms may return different
or significantly different solutions.

The theoretical ERC and stable recovery conditions guarantee that the solution can be
found independent of the algorithm used, i.e., supposing the existence of a sparse enough
solution, it is possible to derive necessary and sufficient conditions for the recovery of the
desired solution, regardless of the recovery algorithm used.

As mentioned earlier, in this study we concentrate on the ERC, i.e., the noiseless model
in (1.2), i.e., y=Φβ0.

The aforementioned sufficient sparsity condition, which sometimes can be applied explicitly
on the representation vector, is determined by a so-called Sparsity Level (SL) or sparsity bound,
which is the upper-bound for the number of non-zero entries of the representation vector, and
is derived from the dictionary. The sparsity level of a dictionary is represented by SL(Φ).

In other words, when the representation vector is very sparse, the sparsity level is low and
vice versa [DH01]; [CT05]; [Cha07]; [CWX10].

A representation is said to be k-sparse if it has at most k non-zero entries, which can be
arbitrarily placed anywhere in the representation. In other words, k is less than sparsity level,
so for a k-sparse representation β0, we have ‖β0‖0≤k<SL(Φ).

In this section, we briefly explain the main following ERC:

• ERC based on Spark,

• ERC based on null space property,

• ERC based on mutual coherence constant, and

• ERC based on cumulative coherence constant.
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ERC based on Spark In literature, to approach the problem of determining the sufficient
conditions for unique sparse recovery, i.e., ERC, a different problem inspired by the concept
of uncertainty principle is considered [GR97]; [DS89].

Consider the problem P0 and suppose β0 and β1 are two distinct representations of
the non-zero signal y, in the dictionary Φ, i.e., y=Φβ0 and y=Φβ1. The uncertainty
principle of redundant solutions states that a non-zero signal cannot have multiple highly
sparse representations. In other words, in a given dictionary Φ there is a limit on the sparsity
level of the representations β0 and β1:

‖β0‖0 + ‖β1‖0 ≥ Spark (Φ) . (1.9)

The mentioned uncertainty principle has been proved based on the definition of Spark in
(1.5), i.e., Spark(Φ)

def
= minx∈Ker(Φ)\{0} ‖x‖0, indicating that for β0−β1 in the Kernel of the

dictionary Φ, i.e., Φ(β0−β1)=0, we have ‖β0−β1‖0≥Spark(Φ). Then, triangle inequality
induces (1.9).

The uncertainty principle in (1.9) has been stated and demonstrated for different cases of
dictionaries. At first, the dictionary was considered as a concatenation of two orthonormal
bases [DH01]; [EB01]; [EB02]. Then, this uncertainty principle was generalised to dictionaries
which arise from the union of more than two orthonormal bases [GN03b]. Finally, it was
generalised to dictionaries which can be the concatenation of less structured blocks [DE03b];
[DE03a]; [GN03a].

Using the aforementioned uncertainty principle in different cases of dictionary, and the
simple criterion of Spark, the uniqueness of the sparse solution can be demonstrated.

If β0 is a candidate solution of the P0 problem for a general dictionary Φ, and meets

‖β0‖0 <
Spark (Φ)

2
, (1.10)

then according to the mentioned uncertainty principle in (1.9), any other solution must be
denser. Therefore the solution which is sufficiently sparse according to (1.10), is unique and
the sparsest.

For a dictionary Φ∈Rm×n, considering the upper bound of Spark in (1.6), i.e., m+1, and
the above-mentioned conventional Spark-based condition in (1.10), the admitted sparsity level
is at most (1+m)/2.

Although among different ERC, ERC based on Spark is the most relaxed condition, i.e., the
highest sparsity level, the computation of the Spark characterisation is not tractable [TP13].
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ERC based on null space property Conventional Null Space Property (NSP) provides
necessary and sufficient conditions for the exact recovery of k-sparse representation via P1, in
other words the equivalence of P0 and P1, i.e., the solution to P0 is necessarily equal to the
solution to P1.

For a k-sparse representation β∈Rn, i.e., |S(β)|≤k, assuming that the Support S of
the true solution lies within S(β)⊂{1, · · · , n}, i.e., S(β0)⊂S(β), the mentioned traditional
condition states that if

Qp (S (β) ,Φ)
def
= max
x∈Ker(Φ)\{0}

∑
i∈S(β)

|xi|p∑
i

|xi|p
<

1

2
,

then β0 is the unique solution to the problem Pp.

NSP has been demonstrated by starting to prove that for all x∈Ker(Φ), we have
‖β0‖pp<‖β0+x‖pp. Then using a variant of quasi-triangle inequality, i.e., |a+b|p−|a|p≥−|b|p,
and calculating `p norm over on-Support (∈S(β)) and off-Support (/∈S(β)) parts, Qp(S(β),Φ)

is achieved.

NSP was first stated for a dictionary which is concatenation of two orthonormal matrices
corresponding to orthonormal bases and for p equal to one [DH01]; [EB01]; [EB02]; [FN03a],
then was proved for arbitrary nonorthogonal dictionaries [DE03b]; [GN03a]; [Zha05]; [SXH08];
[CDD09]. Later, it was more generalised to 0≤p≤1 and for dictionaries being a union of
orthonormal bases [GN03a]; [GN03b] and for general arbitrary dictionaries [GN04]; [GN07].

In order to investigate the relationship between the ERC based on NSP and the previously
mentioned ERC based on Spark in (1.10), let p=0 in Qp(S(β),Φ):

Q0 (S (β) ,Φ)
def
= max
x∈Ker(Φ)\{0}

|S (β)|
‖x‖0

=
|S (β)|

min
x∈Ker(Φ)\{0}

‖x‖0
=
|S (β)|

Spark (Φ)

<
1

2
.

Then, |S(β)|<Spark(Φ)/2.

On the other hand, due to the assumption S(β0)⊂S(β), we have |S(β0)|≤|S(β)|, which
leads to the ERC based on Spark. Therefore, the ERC based on NSP is a general property,
which in a special case of p=0 reduces to the ERC based on Spark in (1.10).

Another stable variant of NSP is also introduced in literature, which is called robust NSP
[DG09a]; [FR13]. From algorithmic point of view, robust NSP is used for stable signal recovery
via basis pursuit [FR13].



28 Chapter 1. Background material

ERC based on mutual coherence constant In general, Spark and NSP are
computationally unrealistic, in other words, it is computationally intractable in polynomial
time to check the identifiability of the model through the recovery conditions, specially
when the number of atoms in the dictionary is high. For detailed information about the
computational complexity of Spark and NSP, the interested reader is referred to [TP13] and
[TP14].

To overcome this shortcoming, another characterisation of the dictionary called Mutual
Coherence Constant (MCC) was exploited in literature with the expense of making the
recovery conditions more restrictive, i.e., lowering the sparsity level.

MCC, which is defined on page 22, i.e.,M(Φ)
def
= maxk,k′ 6=k | 〈ϕk,ϕk′〉 |, is a simple approach

for characterising the proximity or similarity between the atoms of the dictionary.

MCC was first introduced by Mallat and Zhang to heuristically evaluate the performance
of the MP6 algorithm [MZ93].

Like Spark, to approach the problem of exact signal recovery based on mutual coherence,
uncertainty principle was used in literature. Suppose β1 and β2 are two distinct
representations of the non-zero signal y in two orthonormal bases Φ1 and Φ2, respectively,
i.e., y=Φ1β1=Φ2β2. The basic or classic uncertainty principle states that a non-zero signal
cannot have multiple sparse representations in two distinct orthonormal bases, if both bases
are mutually incoherent [DS89]; [DH01]; [EB01]; [EB02].

Therefore, there is a limit on the sparsity level of the representations β1 and β2:

‖β1‖0 + ‖β2‖0 ≥
2

M (Φ1,Φ2)
, (1.11)

where, M(Φ1,Φ2)= maxk,k′ |ϕT1k
ϕ2k′
| is the basic MCC.

In an attempt to extend the basic uncertainty principle to non-orthonormal bases but still
square and non-singular matrices Φ1 and Φ2, ‖β1‖0+‖β2‖0≤(1/2)M̃−1(Φ1,Φ2) is developed
as recovery condition for the uniqueness of the solutions of P0 and P1, and their equivalence,
where, M̃(Φ1,Φ2)= max{maxi,j |Φ−1

1 Φ2|i,j ,maxi,j |Φ−1
2 Φ1|i,j} [DH01].

In fact, the definition of coherence in M̃(Φ1,Φ2), which computes the `∞ norm (maximum
entry in a vector) of `1,∞ norm (maximum absolute entry in a matrix) of matrices Φ−1

1 Φ2 and
Φ−1

2 Φ1, implicitly indicates to the definition of coherence of blocks in a special case, which
will be explained in Chapter 2.

Returning back from basic two orthornomal bases Φ1 and Φ2 to the dictionaries Φ, and
in order to shift the recovery conditions based on Spark to MCC, first we need to find their
relationship.

MCC for an orhtogonal matrix is zero, i.e., no constraint. It should be mentioned
that, Spark is lower bounded by a function of inverse of MCC, i.e., Spark(Φ)≥f(M−1(Φ)).

6Matching Pursuit
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Therefore, we can approximate the intractable characterisation Spark with a computationally
tractable characterisation MCC.

For a general dictionary, the smallest value of the MCC is of interest, in other words the
tightest lower bound of the Spark, because as mentioned before in (1.10), the sparsity level is
defined as half of the Spark, i.e., ‖β0‖0<Spark(Φ)/2.

In addition to theoretic results, from algorithmic point of view, generally the smaller the
MCC, the better the performance of recovery algorithms. [FR13] has justified the claim for
OMP7, BP8, and basic thresholding algorithms.

If the dictionary is the concatenation of two orthonormal bases, [DH01] proved that for
guaranteeing the uniqueness of the solution of P0 and equivalence of P1, it is sufficient for
f(M−1(Φ))=1+M−1(Φ).

Later, Elad and Bruckstein improved the condition by getting f(M−1(Φ))=2M−1(Φ)

(also proved in [DE03b] and [DE03a] as a special case) and f(M−1(Φ))=(2
√

2−1)M−1(Φ)

for guaranteeing the uniqueness of the solution of P0 and equivalence of P1, respectively
[EB01]. Feuer and Nemirovski proved that the latter is the maximum lower bound for Spark

that can be achieved in the P1 problem, i.e., the bound is tight [FN03a].

Supposing that the dictionary arises from the union of L orthonormal
bases (L≥2), Gribonval and Nielsen proved f(M−1(Φ))=L/(L−1)M−1(Φ) and
f(M−1(Φ))=(2

√
2−2+1/(L−1))M−1(Φ) for guaranteeing the uniqueness of the solution of

P0 and equivalence of P1, respectively [GN03b]; [GN03a]. Tropp also proved the recovery
condition resulted from the latter f(M−1(Φ)), for the equivalence of OMP and BP algorithms
[Tro04a].

Later, Donoho, Elad, Gribonval, Nielsen, and Bruckstein demonstrated that the previous
results of Donoho and Huo, i.e., f(M−1(Φ))=1+M−1(Φ), can be generalised from a union of
two orthonormal bases to a dictionary in a general case, which it can be the concatenation of
less structured blocks (in addition to orthonormal bases) [DE03b]; [DE03a]; [GN03a]; [BDE09].

For β0 and β1 as two distinct representations of the non-zero signal y, in the dictionary
Φ, i.e., y=Φβ0 and y=Φβ1, and by combining f(M−1(Φ))=1+M−1(Φ) with (1.9), we have

‖β0‖0 + ‖β1‖0 ≥ Spark (Φ) ≥ 1 +M−1 (Φ) . (1.12)

Therefore, for any general dictionary, the k-sparse representation vector β0 is the unique
solution of the P0 and P1 problems, if

‖β0‖0 ≤ k <
1 +M−1 (Φ)

2
. (1.13)

According to the lower bound of MCC for a general random dictionary Φ in (1.7), i.e.,
1/
√
m, and the above-mentioned conventional MCC-based condition in (1.13), the sparsity

7Orthogonal Matching Pursuit
8Basis Pursuit
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level is at most (1+
√
m)/2, although for equiangular tight frame deterministic dictionaries it

can goes up until (1+
√

(m(n−1))/(n−m))/2.

Gribonval and Nielsen demonstrated that under the condition in (1.13), and for an
arbitrary dictionary, the problems Pp with 0≤p<1 and P1 are equivalent [GN07].

From algorithmic point of view, Tropp proved the same condition of (1.13) for
representation recovery through some greedy recovery algorithms, i.e., equivalence of OMP
and BP algorithms [Tro04a].

In another algorithmic study, Maleki demonstrated slightly stronger sufficient recovery
conditions than (1.13) via iterative thresholding algorithms of iterative thresholding with
inversion, namely IHT9 and IST10. He showed that, supposing β0 is sorted in descending
order of its absolute values [Mal09]:

1. if k<(1/3)M−1(Φ), then iterative thresholding with inversion recovers the true solution,
i.e., β0, in at most k iterations.

2. if k<(1/3.1)M−1(Φ) and |β0i |/|β0i+1 |<3`i−4, 1≤i<k, then iterative hard thresholding
will recover Support of the true solution, i.e., S(β0), in at most

∑k
i=1 `i+k iterations,

and after this number of iterations, without changing the Support, the error of β0

recovery will be eliminated exponentially. `i is the step after which β0i+1 will get into
the Support.

3. if k<(1/4.1)M−1(Φ) and |β0i |/|β0i+1 |<3`i−5, 1≤i<k, then iterative soft thresholding will
recover Support of the true solution, i.e., S(β0), in at most

∑k
i=1 `i+k iterations, and

after this number of iterations, without changing the Support, the error of β0 recovery
will be eliminated exponentially. `i is the step after which β0i+1 will get into the Support.

In another algorithm-based condition, it has been shown that for k<M−1(Φ)/4 every k-sparse
representation can be exactly recovered via iterative hard thresholding [FR13].

In addition, Donoho et al. demonstrated the same condition of (1.13) for a stable solution
in a stable signal recovery problem of P0,2,ε(β, r) [DET06].

9Iterative Hard Thresholding
10Iterative Soft Thresholding
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ERC based on cumulative coherence constant The coherence characterisation of
MCC [DH01] represents only the most extreme correlation between the atoms of the
dictionary and does not offer a comprehensive description of the dictionary. In order to
extract more information and to better characterise the dictionary, researchers focused on
cumulative coherence characterisations. Although it is computationally more difficult than
the conventional coherence characterisation, it leads to weakened recovery conditions; i.e., it
provides sharper results for the equivalence of P0 and P1 optimisation problems.

The characterization µ1/2(G) introduced by Donoho and Elad as a cumulative coherence
characterisation is the smallest m off-diagonal entries in a single row or column of the Gram
matrix G, which sums at least to 1/2. Based on µ1/2(G), if ‖β0‖0<µ1/2(G), then β0 is the
unique solution of the P1 optimisation problem [DE03b].

From algorithmic point of view, considering cumulative MCC defined in (1.8), i.e.,
M(Φ, k)

def
= max|Λ|=k maxj /∈Λ

∑
i∈Λ | 〈ϕi,ϕj〉 |, Tropp demonstrated that, if

M (Φ, k) +M (Φ, k − 1) < 1, (1.14)

then k-sparse representation vector β0 can be recovered correctly from orthogonal matching
pursuit and basis pursuit algorithms, which is a sufficient condition [Tro04a].

The ERC based on cumulative MCC, i.e., (1.14), is weaker than the ERC based on MCC,
i.e., the inequality of (1.13). Because by rearranging (1.13) we have 2 kM(Φ)−M(Φ)<1,
which can be reformulated such as: kM(Φ)+(k−1)M(Φ)<1. Now we can compare
the reformulated condition of (1.13), i.e., kM(Φ)+(k−1)M(Φ)<1, with condition (1.14).
Considering theM(Φ, k)≤kM(Φ) andM(Φ, k−1)≤(k−1)M(Φ) properties, we conclude that
the left-hand side of the just obtained reformulated inequality is greater than or equal to the
left-hand side of the inequality in (1.14), i.e., M(Φ, k)+M(Φ, k−1)≤kM(Φ)+(k−1)M(Φ).
Then, higher values of k could meet the condition in (1.14) compared to the reformulated
inequality of (1.13). Hence, the condition based on cumulative MCC is weaker than the
condition based on MCC.

The results were improved more by a characterisation called union cumulative
coherence: MU (Φ, k)

def
= max|Λ|=k{maxj /∈Λ

∑
i∈Λ | 〈ϕi,ϕj〉 |+ maxl∈Λ

∑
i∈Λ\{l} | 〈ϕi,ϕl〉 |}

[Dos05]; [Zha+15]. If MU (Φ, k)<1, then the k-sparse representation vector can be exactly
recovered by the orthogonal matching pursuit algorithm. The ERC using MU (Φ, k) is weaker
than (1.14), since MU (Φ, k)<M(Φ, k)+M(Φ, k−1), and so higher values of k can be selected
in MU (Φ, k)-based condition. There is also a stable recovery condition via orthogonal
matching pursuit using the characterisation MU (Φ, k) [Zha+15].

In another work, it is been demonstrated that if
M(Φ, k)+M(Φ, k−1)<mini∈T |β0i |/maxi∈T |β0i |, where, |T |=k, then the k-sparse
representation vector β0 can be recovered exactly via basic thresholding algorithm
[FR13]. Moreover, it has been shown that if 2M(Φ, k)+M(Φ, k−1)<1 and M(Φ, 2k)<1/2,
then the k-sparse representation is exactly recovered via hard thresholding pursuit and
iterative hard thresholding algorithms, respectively [FR13].
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1.4 Block-sparsity

1.4.1 Introduction

According to Tropp, for more than a century, sparsity constraint has been utilised to recover
the sparsest unique solution of a proper optimisation problem and to derive the corresponding
recovery conditions [Tro04b]. As described in Section 1.3, sparsity constraint penalizes the
non-zero coefficients; however, in some real-world engineering problems and applications,
which some of them are gathered in table 1.3, applying penalty on non-zero coefficients does
not lead to a proper solution compatible to the real-world conditions.

In these kinds of problems, in addition to sparsity, structural, geometrical, or categorical
constraints or a priori knowledge may be available that leads to block sparsity [EKB10a],
group sparsity [RRN12] and joint sparsity [FR08]. Therefore, a block of coefficients need to
be penalized and recovery conditions determine the maximum number of active blocks, and
not coefficients, to ensure the uniqueness of the block-sparse solution of the corresponding
optimisation problem.

On demonstrating the benefits of the block structure constraint, Kwon and Rao showed
that for exact Support recovery in the presence of noise, block-sparsity leads to the reduced
number of measurements by the factor of at least the inverse of block length, compared to the
conventional element-wise sparse recovery [KR12]. If each block of columns in the dictionary
corresponding to each block in the representation vector is composed of linearly dependent
columns, the blocks are said to be redundant blocks, whereas if the columns are not linearly
dependent, the blocks are referred to as non-redundant blocks [EV12]. Section 1.4.2 defines
the block-sparse representation theory, next in Section 1.4.3, recovery conditions are reviewed.

Applications References

Radar [MZ06]
Sensor arrays [MCW05]
Signal sampling [CK04]; [LD08]; [BD09a]; [ME09]; [Eld09]; [ME10]; [GE10]
Face recognition [Wri+09]; [EV11]; [EV12]; [PL15]
MRI pulse design [Zel+08b]; [Zel+08a]
Speech recognition [GC08a]; [GC08b]
Music segmentation [Krs+05]; [Dau06]; [KOP13]
Gene expression levels [ES05]; [Par+08]
Multiple measurement vector [Cot+05]; [CH06]; [ME08]; [FR08]; [BF10]; [ER10]; [LL11]; [LWY13]
Sparse communication channels [CR02]
Finding datasets’ representatives [ESV12]
Multi-band signal reconstruction [Lan67]; [ME09]; [Mis+11]; [ME10]
EEG/MEG source reconstruction [GGR95]
Data clustering on multiple subspaces [EV09]; [EV10]; [EV13]

Table 1.3: Some engineering problems that have structural constraints.
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1.4.2 Block-sparse representation theory

To elucidate the theory, this section is divided into the following three parts: (1) structure
and model, (2) optimisation problem, and (3) characterisations:

1) Structure and model As mentioned before, the goal is to extract a representation vector
β̂ which is the block-sparsest among all solutions, i.e., a representation with the fewest active
blocks relative to its dimension. For instance, suppose the following estimated representation
vector β̂ which consists of nonoverlapping equally-sized blocks of length d, i.e., ∀k, β̂[k]∈Rd:

β̂ =
[
β̂T [1] , · · · , β̂T [k] , · · · , β̂T [K]

]T
,

where, Kd=n, and the kth block is:

β̂ [k] =
[
β̂1 [k] , · · · , β̂d [k]

]T
.

Then, the dictionary is represented by:

Φ = [Φ [1] , · · · ,Φ [k] , · · · ,Φ [K]] ,

where, the kth blocks of atoms of the dictionary is:

Φ [k] = [ϕ1 [k] , · · · ,ϕd [k]] ,

with ϕj [k]∈Rm and without loss of generality, it is assumed that atoms have unit Euclidean
norm, i.e., ∀j, k, ‖ϕj [k]‖2=1. Then, assuming that the true solution β0 is exactly recovered,
i.e., β̂=β0, the block-sparsity structure of the estimated representation vector β̂ in the
noiseless linear model is represented graphically in figure 1.10. The model can be either
noiseless, i.e., y=Φβ0, or in general case, noisy, i.e., y=Φβ0+e, which are defined in (1.2)
and (1.1), respectively.

Figure 1.10: Block-sparsity structure of the exactly recovered representation vector β̂ in the
noiseless linear model of y=Φβ0.
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2) Optimisation problem Similar to the conventional element-wise sparse recovery, the
problem of finding a solution β̂, in the noiseless case of (1.2), i.e., y=Φβ0, is called block-sparse
exact (unique) signal recovery whereas in the other case of (1.1), i.e., y=Φβ0+e, is called
block-sparse stable (robust) signal recovery.

Block-sparse exact and stable signal recovery problems can be realised through a proper
constrained optimisation problem. The straightforward optimisation problem for block-sparse
stable signal recovery is:

min
β
‖β‖2,0 s.t. ‖y −Φβ‖2 ≤ ε, (1.15)

where, for ε=0, the optimisation problem (1.15) solves a block-sparse exact signal recovery
problem.

In a general framework, consider the following constrained `p1,p2 (pseudo-)mixed-norm
minimisation problem:

P(p1,p2),q,ε (a, b) : min
a
‖a‖p1,p2 s.t. ‖b‖q ≤ ε, (1.16)

where, a and b are vectors, ε bounds the noise level, i.e., 0≤ε≤ε, and `p1,p2
(pseudo-)mixed-norm of block-structured vector a=

[
aT [1] , · · · ,aT [k] , · · · ,aT [K]

]T , where,
a [k] = [a1 [k] , · · · , ad [k]]T , is defined:

‖a‖p1,p2
def
=



∑
k

I
(
‖a [k]‖p1

)
, for p2 = 0(∑

k

‖a [k]‖p2p1

) 1
p2

, for 0 < p2 < +∞

max
k

{
‖a [k]‖p1

}
, for p2 =∞,

where, I(a) is the indicator function, i.e., I(a)
def
=

{
1, if |a|>0

0, if a=0
.

According to (1.16) the problem (1.15) can be represented as P(2,0),2,ε(β,y−Φβ).

Although the notation P(p1,p2),q,ε(a, b) can cover all the previous types of optimisation
problems, the widely used case is when the minimisation is over β and the problem is a
block-sparse exact signal recovery, i.e., P(p1,p2),q,0(β, r), which for the sake of simplicity we
refer to as Pp1,p2 . Because regardless of the choice of q, the ‖r‖q=0 directly indicates to the
noiseless model, i.e., y=Φβ0, so the only parameters to be determined are p1 and p2.

Since the optimisation problem in block-sparsity domain is a generalisation of the
conventional optimisation problem in sparsity domain, for d=1, the two optimisation problems
are equivalent, i.e., Pp1,p2≡Pp2 .

The straightforward configuration of the mentioned optimisation problem in a block-sparse
exact or stable signal recovery problem is P(p,0),q,ε(β, r), which simply minimise the number
of active blocks, i.e., blocks with non-zero `p norm.
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However, the P(p,0),q,ε(β, r) optimisation problem is in general non-convex and finding
its solution is NP-hard11 [Nat95]; [AK98]. Therefore, there is a need for convexification,
relaxation or approximation of P(p,0),q,ε(β, r). Similar to sparsity domain, in block-sparsity
domain the following two main questions are addressed:

Q1: Is the solution to P2,1 necessarily the block-sparsest representation (solution to P2,0)
(Uniqueness)?

Q2: Is the solution to P2,0 necessarily equal to the solution to P2,1 (Equivalence)?

It has been shown that under sufficient conditions, P2,1 and P2,0 are equivalent [EB09]; [EM09];
[SPH09]; [EKB10b]; [EKB10a], and in a more general case the equivalence of Pp,1 and Pp,0 for
p>0 and for both non-redundant and redundant blocks is investigated [EV11]; [EV12].

Subspace matching pursuit is a greedy algorithm, which is used for a block-sparse exact and
stable signal recovery problems of P(2,0),q,0(βΦ, r) and P(2,0),2,ε(βΦ, r), respectively, where,
βΦ=

[
(Φ[1]β[1])T , · · · , (Φ[k]β[k])T , · · · , (Φ[K]β[K])T

]T , and the Φ[k]'s are assumed to be
full rank matrices [GZM09].

In addition, subspace base pursuit and its modified version is used for a block-sparse exact
and stable signal recovery problems of P(2,1),q,0(βΦ, r) and P(2,1),2,ε(βΦ, r), respectively, and
under sufficient conditions, P(2,1),q,0(βΦ, r) and P(2,0),q,0(βΦ, r) are equivalent [GZM09].

Moreover, there are theoretical conditions for ensuring the equivalence of P(p,1),q,0(βΦ, r)

and P(p,0),q,0(βΦ, r) for p>0, while the blocks could be non-redundant or redundant [EV11];
[EV12].

In fact, unlike Pp,0 that extracts a representation with the fewest active blocks β[k], the
P(p,0),q,0(βΦ, r) extracts a representation with the fewest active reconstructed vectors Φ[k]β[k]

[Elh12]. When the blocks Φ[k]'s are non-redundant, the solution to P(p,0),q,0(βΦ, r) has also
the fewest active blocks [Elh12].

There are also some recovery conditions of P2,1 via the mixed `2/`1-optimisation program
[EM09]; [SPH09], also known in the statistics literature as group LASSO12 [YL06]; [LBW11],
BMP (Block Matching Pursuit) and BOMP (Block Orthogonal Matching Pursuit) algorithms
[EKB10a].

In addition, there are block-sparse stable recovery conditions for block orthogonal matching
pursuit and block-thresholding algorithms [BHE11]. Also `2/`1-optimisation program [EM09],
block versions of CoSaMP13 and IHT14 [Bar+10] algorithms (which are the extensions
of iterative sparse coding algorithms to model-based sparse representation) lead to robust
recoveries in the presence of noise.

11Non-deterministic Polynomial-hard
12Least Absolute Shrinkage and Selection Operator
13Compressive Sampling Matched Pursuit
14Iterative Hard Thresholding
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3) Characterisations Similar to the conventional sparse representation theory, in order to
define block-sparse recovery conditions, some characterisations of the dictionary are required.

In the following, the main characterisations extended from the conventional notions of
Spark and mutual coherence are provided:

• Subspace Spark,

• Block-coherence and sub-coherence,

• Extended block-coherence,

• Fusion coherence,

• Mutual subspace coherence, and

• Cumulative mutual subspace coherence constant.

Subspace Spark: In a related work for defining block-sparse recovery conditions, Spark

of the set of subspaces Si=span(Φ[i])∈Rd, denoted by SparkS(Φ), is defined as the smallest
integer r such that

∑r
i=1 si=0, where, si 6=0, si∈Si and i∈{1, · · · ,K} [GZM09].

Block-coherence and sub-coherence: Eldar and her colleagues introduced two
different measures of the block-wise coherence of the dictionary, named block-coherence and
sub-coherence [EB09]; [EKB10b]; [EKB10a].

Block-coherence measures the global coherence properties of the dictionary, in other words,
quantifies the inter-block coherence through:

MEldar
Inter (Φ)

def
= max

k,k′ 6=k

1

d

∥∥ΦT [k] Φ
[
k′
]∥∥

2→2
, (1.17)

where, ∀k,Φ[k]∈Rm×d, and d is the size of all equally-sized blocks, i.e., d1= · · ·=dK=d. For
a typical matrix A, the `2→2 operator-norm, i.e., ‖A‖2→2

def
= max‖a‖2≤1 ‖Aa‖2, is equal to its

maximum singular value. For d=1, the block-coherence is equivalent to the conventional MCC,
i.e., MEldar

Inter (Φ)≡M(Φ).

On the other hand, sub-coherence measures the local coherence properties of the dictionary
by computing the intra-block coherence through:

MEldar
Intra (Φ)

def
= max

i,j 6=i
k

∣∣ϕTi [k]ϕj [k]
∣∣ . (1.18)

The sub-coherence characterisation for dictionaries with intra-block orthonormality is zero,
i.e., for 1≤k≤K, ΦT [k]Φ[k]=Id, we have MEldar

Intra (Φ)=0.
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Extended block-coherence: As an extension of the studies of Eldar et al., Ziaei and his
colleagues study the same problem with different block sizes [Zia+10]. For establishing their
findings, they introduced a new version of the block-coherence of Eldar et al., i.e., MEldar

Inter (Φ)

defined in (1.17), replacing d by maxi,j 6=i
√
didj , where, di is the length of block i [Zia+10].

Fusion coherence: Fusion coherence in the context of fusion frames is defined as
MF (Φ)= maxi 6=j{| 〈ϕi,ϕj〉 | · ||PiPj ||2→2}, where, Pi denotes the orthogonal projection onto
the fusion frame subspace Wi [BKR11]; [Aya14]; [ADR16].

Fusion coherence in the special setting, where the projection matrices are equal to one or
all the subspaces have dimension one, reduces to MCC, i.e.,MF (Φ)≡M(Φ) [BKR11], whereas
for the equally-sized subspaces, reduces to the block-coherence defined by Eldar et al., i.e.,
MF (Φ)≡MEldar

Inter (Φ) [BKR11].

Mutual subspace coherence: In a related work, mutual subspace coherence has been
introduced by Ganesh et al. as a measure of inter-block coherence, which measures the smallest
angle between any two subspaces that do not intersect with each other, i.e., disjoint subspaces
[GZM09]:

MS (Φ)
def
= max

i,j 6=i
max
x∈Si
y∈Sj

∣∣xTy∣∣
‖x‖2 ‖y‖2

,

where, Si=span(Φ[i])∈Rd, under the assumption of linearly independent columns of each
block, i.e., non-redundant blocks.

In another work, the concept of mutual subspace coherence has been used for establishing
recovery conditions with more relaxed assumption of redundant blocks, where, the columns
of each block can be linearly dependent [EV11]; [EV12]. When the blocks are non-redundant
and orthonormal, the inter-block coherence proposed by Eldar et al. is equivalent to mutual
subspace coherence, i.e., MEldar

Inter (Φ)≡MS(Φ) [EV12]. For d equal to 1, the mutual subspace
coherence is equivalent to the conventional MCC, i.e., MS(Φ)≡M(Φ) [EV12].

Cumulative mutual subspace coherence constant: In literature on block sparsity,
there is another cumulative characteristic based on subspaces, named cumulative mutual
subspace coherence, which is defined as [EV12]:

MS (Φ, k)
def
= max
|Λ|=k

max
j /∈Λ

∑
i∈Λ

max
x∈Si
y∈Sj

∣∣xTy∣∣
‖x‖2 ‖y‖2

,

where, Λ represents k different indices from {1, · · · ,K}. For d equal to 1, the cumulative
mutual subspace coherence is equivalent to the conventional cumulative coherence, i.e.,
MS(Φ, k)≡M(Φ, k) [EV12]. Similar properties of conventional cumulative coherence hold
true for cumulative mutual subspace coherence, i.e., MS(Φ, 1) is equal to MS(Φ), and
MS(Φ, k)≤kMS(Φ) [EV12].
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1.4.3 Block-sparse exact recovery condition

Recently, there has been a huge surge of interest in developing recovery conditions, which
ensure the uniqueness or robustness of the block-sparse representation of the USLE. In
addition, block-sparsity can be used in dictionary learning, where there is a joint block-sparse
representation of signals [ZMRE12].

In addition to the aforementioned practical interest of the block-sparse representation, i.e.,
compatibility with some real world problems, from a mathematical point of view, assuming the
block-wise structure for the representation leads to weakened recovery conditions [EKB10a];
[Zia+10]; [BHE11]. By weakened recovery conditions we mean that for the same number
of non-zero elements in the representation, assuming the block structure guarantees the
uniqueness of the representation with a higher sparsity level.

Similarly, conditions for guaranteeing the uniqueness or faithful approximation of
the solution with the models of (1.2), i.e., y=Φβ0, and (1.1), i.e., y=Φβ0+e, are
called Block-sparse Exact Recovery Condition (Block-ERC) and block-sparse stable recovery
condition.

Sparsity level in the block-wise world is called Block-Sparsity Level (Block-SL) or
block-sparsity bound, which is represented by Block−SL(Φ). As it can be easily derived,
supposing equally-sized blocks of length d, i.e., d1= · · ·=dK=d, to improve the conventional
ERC and stable recovery conditions, the d times block-sparsity level have to be greater than
the sparsity level, i.e., d×Block−SL(Φ)>SL(Φ).

Such sparse representations whose non-zero entries appear in a few blocks are referred to
as block-sparse or block k-sparse representation [EB09]; [SPH09]; [BHE11]; [EV12] , which k
is the maximum number of active blocks.

Similarly, for a block k-sparse representation, for all p≥0 we have
‖β0‖p,0≤k<Block−SL(Φ). From conventional element-wise sparsity point of view, for
equally-sized blocks, block k-sparse representation is equivalent to kd-sparse representation,
i.e., ‖β0‖0≤kd.

In this section, we review the following main block-sparse exact recovery conditions:

• Block-ERC based on Spark,

• Block-ERC based on null space property,

• Block-ERC based on mutual coherence constant, and

• Block-ERC based on cumulative mutual coherence constant.
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1) Block-ERC based on Spark From algorithmic point of view, Ganesh and his colleagues
proved that supposing a k-subspace sparse measurement vector y, if k<SparkS(Φ)/2 then the
sparse decomposition is necessarily unique in their proposed algorithms of subspace matching
pursuit and subspace base pursuit [GZM09].

2) Block-ERC based on null space property In literature, this type of Block-ERC can
be divided into the following groups:

Based on block null space property: [SPH09] demonstrated that the conventional
NSP can be generalised to block-sparse representation. By proposing the following condition,
they showed the equivalence of the optimisation problems P2,1 and P2,0:

Q2,1 (Sb (β) ,Φ)
def
= max
x∈Ker(Φ)\{0}

∑
k∈Sb(β)

∣∣∣∣∣∣
d∑
j=1

|xj [k]|2
∣∣∣∣∣∣
1
2

K∑
k=1

∣∣∣∣∣∣
d∑
j=1

|xj [k]|2
∣∣∣∣∣∣
1
2

<
1

2
,

where, Sb(β) is subset of a set with all subset of size k of {1, · · · ,K}, i.e., block k-sparse
representation, and d is the length of equally-sized blocks. Also, he mentioned that his result
can be generalised to P2,p, 0<p≤1.

Based on fusion null space property: In addition, the fusion NSP defined in the
fusion frame framework proposed by Boufounos et al., in a special case in which all the
subspaces share the same dimension, becomes similar to the NSP proposed by Stojnic et al.
[BKR11].

Moreover, the notions of exact, stable and robust NSP for fusion frames are presented in
[Aya14]; [ADR16].

3) Block-ERC based on mutual coherence constant In literature, this type of
Block-ERC can be divided into the following groups:

Based on block-coherence: Eldar and her colleagues extended the basic uncertainty
principle to the block-sparse representations [EB09]; [EKB10b]; [EKB10a]. In other words,
there is a limit on the block-sparsity level of the representations β1 and β2:

‖β1‖2,0 + ‖β2‖2,0 ≥
2

dMEldar
Inter (Φ1,Φ2)

, (1.19)
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where, the basic block-coherence of Eldar et al., i.e.,MEldar
Inter (Φ1,Φ2), is the maximal coherence

between the blocks of the orthonormal bases Φ1 and Φ2, i.e.,:

MEldar
Inter (Φ1,Φ2) = max

k,k′

1

d

∥∥ΦT
1 [k] Φ2

[
k′
]∥∥

2→2
,

where, d is the length of the equally-sized blocks.

Notice that for orthonormal bases Φ1, Φ2 and their concatenation [Φ1,Φ2], we have
MEldar

Inter (Φ1,Φ2)=MEldar
Inter ([Φ1,Φ2]).

Again, supposing the dimension of two orthonormal bases Φ1 and Φ2 is m by m, and
m=Rd (R is an integer), it is proved that MEldar

Inter (Φ1,Φ2)≥1/
√
dm [EB09]; [EKB10b];

[EKB10a].

Notice that for d=1, all the formulation reduces to its conventional one described in Section
1.3.3.

Then, they proposed Block-ERC for ensuring the uniqueness of the solution of their
proposed recovery algorithms of `2/`1-optimisation program [EM09], block matching pursuit
and block orthogonal matching pursuit [EB09]; [EKB10b]; [EKB10a] based on their proposed
block version of the conventional MCC.

Their Block-ERC for recovering a block k-sparse representation through their proposed
recovery algorithms and for equally-sized blocks of length d is [EB09]; [EKB10b]; [EKB10a]:

‖β0‖2,0 <
1 +

(
dMEldar

Inter (Φ)
)−1 (

1− (d− 1)MEldar
Intra (Φ)

)
2

. (1.20)

In a similar work, Ziaei et al. proved nearly the same Block-ERC of (1.20), for the
different block size setting, where, all the d-s in (1.20) and MEldar

Inter (Φ) have been replaced
by maxi,j 6=i

√
didj [Zia+10].

Ziaei et al. proved that their proposed modification of the `2/`1-optimisation program
for different-size blocks outperforms the `2/`1-optimisation program [EM09] and basis pursuit
[CDS01], in terms of the error rate [Zia+10].

In the presence of noise, Ben-Haim and Eldar proposed block-sparse stable recovery
conditions for block orthogonal matching pursuit and block-thresholding algorithms [BHE11].

Based on fusion coherence: In addition, in the context of fusion frame theory,
Boufounos et al. have proved that if k<(1+M−1

F (Φ))/2, then the unique recovery of his
`0 and `1 norm optimisation problems is guaranteed [BKR11].

Later, Ayaz et al. improves some of the results of Boufounos et al. in the fusion frame
setup [Aya14]; [ADR16].

The recovery condition based on the fusion coherence in the special setting, where, all the
subspaces share the same dimension, reduces to (1.20) [BKR11].
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Based on mutual subspace coherence: There is a relationship between subspace
Spark and mutual subspace coherence, i.e., SparkS(Φ)≥1+M−1

S (Φ), which is similar to its
conventional relationship [GZM09].

From algorithmic point of view, Ganesh and his colleagues proved similar conditions in
recovering the representation. Supposing that the measurement vector y is k-subspace sparse,
they demonstrated that if k<(1+M−1

S (Φ))/2, then subspace matching pursuit and subspace
base pursuit algorithms are guaranteed to find the k subspaces exactly [GZM09].

In a related work based on MS(Φ), Elhamifar and Vidal proved that if the measurement
vector y has a unique block k-sparse representation vector β0, and the subspaces spanned by
the columns of the blocks are disjoint, then under the condition

k <
1 +

(
1+εp
1−εpMS (Φ)

)−1

1 +
√

1+σp
1+εp

,

the optimisation problems Pp,1 and Pp,0 are equivalent, and also under the condition

k <
1 +

(
1+ε′p
1−ε′p

MS (Φ)
)−1

2
,

the optimisation problems P(p,1),q,0(βΦ, r) and P(p,0),q,0(βΦ, r) are equivalent, where, σp, εp,
and ε′p are some intra-block p-restricted isometry constants which are defined based on the
restricted isometry properties introduced in the paper [EV11]; [EV12].

4) Block-ERC based on cumulative mutual coherence The mutual subspace coherence
of Ganesh et al. [GZM09] represents only the most extreme correlation between the subspaces
of the dictionary and does not offer a comprehensive description of the dictionary.

In order to extract more information and to better characterise the dictionary, Elhamifar
and Vidal focused on the cumulative version of mutual subspace coherence.

In the block-wise world, Elhamifar and Vidal proved that if the measurement vector y has
a unique block k-sparse representation vector β0, and the subspaces spanned by the columns
of the blocks are disjoint, then under√

1 + σp
1 + εp

MS (Φ, k) +MS (Φ, k − 1) <
1− εp
1 + εp

,

the optimisation problems Pp,1 and Pp,0 are equivalent, and also under

MS (Φ, k) +MS (Φ, k − 1) <
1− ε′p
1 + ε′p

,

the optimisation problems P(p,1),q,0(βΦ, r) and P(p,0),q,0(βΦ, r) are equivalent, where, σp, εp,
and ε′p are some intra-block p-restricted isometry constants which are defined based on the
restricted isometry properties introduced in the paper [EV12].
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1.5 Block-sparsity and multi-modality

1.5.1 Introduction

In Section 1.2, first the concept of multi-modality is discussed in general. Then, we showed
that due to the fact that a brain neuronal activity have electric and magnetic properties,
the brain imaging modality of EEG or MEG individually, cannot completely describe the
electromagnetic behaviour of the brain neurons. On the other hand, EEG and MEG measure
the electrical and magnetic activities of the same cerebral currents, respectively. Since
they have complementary information, they can be an appropriate choice as brain imaging
modalities in a multi-modality framework. Therefore, we took the distributed EEG and MEG
source reconstruction problem as a real-world example of multi-modality.

However, the distributed EEG or/and MEG source reconstruction problems are vastly
underdetermined, i.e., the number of EEG or/and MEG sensors is significantly less than the
number of brain sources, e.g., in a typical problem there could be 30 sensors against 3000
sources.

Hence, in order to recover a unique solution from the USLE of distributed EEG or/and
MEG source reconstruction problems, appropriate constraint(s) need(s) to be applied on the
corresponding optimisation problem .

In Section 1.4, we pointed out that, in certain USLE a block of coefficients need to be
penalized and not necessarily a single coefficient. Hence, the notion of block-sparsity was
extended from the conventional notion of sparsity, which was reviewed in Section 1.3.

As a real-world example, we again took the distributed EEG or/and MEG source
reconstruction problem. Since each brain source, which is a dipole, can be represented as
a block of size d=3, and the source reconstruction problem is consistent with the constraint
of block-sparsity.

Although the two mentioned notions of multi-modality and block-sparse representation
theory are fundamentally independent, they meet each other in our main real-world problem,
i.e., distributed EEG and MEG source reconstruction problem.

In order to recover a unique solution, in addition to imposing the block-sparsity constraint
on the corresponding optimisation problem, the number of active blocks should be less than
a threshold. The mentioned restricted number of active blocks is explained through recovery
conditions, which are explained in Chapter 2.

Next, in Chapter 3 by following a framework to merge the lead-field matrices of each source
position, we show that at level of grouping corresponding to maximum inter-group distance
and minimum number of groups, the system satisfies the existing conditions.

Finally, in Chapter 4, we demonstrate the impact of EEG and MEG multi-modality and
merging framework on brain source space segmentation.
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1.5.2 Distributed EEG and MEG source reconstruction problem

Regardless of the chosen strategy to combine the EEG and MEG measurements and lead-field
matrices, consider the combined measurement vector as yEMEG, the lead-field matrix as
ΦEMEG, and the true source vector as β0. Then, the distributed EEG and MEG source
reconstruction problem can be translated in mathematical form as an USLE model in an
ideally noiseless case, i.e., yEMEG=ΦEMEGβ0.

On the other hand, each current dipole in the source space, which can be represented as a
vector, has three values in three dimensions of x, y and z in the Cartesian coordination. So,
each current dipole can be represented as a block of length three, i.e., β0[k]∈R3, ∀k. Then,
each successive three elements in the source vector β0 represents the activity of a current
dipole.

From physiological a priori knowledge, it is known that for a given brain task only a few
regions of brain will be activated, i.e., sparse regions. Furthermore, for a given active current
dipole, the activity of each of values in three dimensions of x, y and z is not constrained, then
sparsity inside each active block β0[k] is not important.

Therefore, among the infinitely many solutions of the above-mentioned USLE or source
activity vectors β̃, solutions with the fewest active blocks of dimension three would be of
interest and not necessarily solutions with the fewest non-zero scalar entries.

Ultimately, our real-world distributed EEG and MEG source reconstruction problem
perfectly complies with the notions of multi-modality and block-sparse representation theory.

As shown in figure 1.11, without imposing appropriate constraints on the optimisation
problem corresponding to the EEG and MEG multi-modal USLE in the source reconstruction
problem, there would be infinitely many solutions β1, · · · ,β∞ (left branch), but by applying
block-sparsity constraints, the desired block-sparse solution β0 (right branch), can be
recovered.

Notice, the left branch in figure 1.11, in contrary to the right branch, is obtained without
exploiting any anatomical information from MRI15, i.e., the volume conduction head model
is spherical and is computed analytically. By utilising anatomical constraint, the position of
sources is restricted to be placed on a specific points, hence, the resulted lead-field matrix is
more precise.

In addition, in order to uniquely recover the desired block-sparse solution β0, we need to
consider block-sparse exact recovery conditions, which are going to be discussed in the next
chapter.

15Magnetic Resonance Imaging



44 Chapter 1. Background material

Figure 1.11: EEG and MEG source reconstruction problem using the measurements stored in
yEEG and yMEG vectors, and their corresponding lead-field matrices, leads to infinitely many
solutions of β1, · · · ,β∞, while by imposing anatomical and block-sparsity constraints under
recovery conditions, a unique solution β0 can be recovered.
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2.1 Introduction

This chapter contains the main contribution of the Ph.D. thesis. In this chapter, a general
framework for block-sparse exact signal recovery in an USLE1 problem, i.e., Block-ERC2,
is proposed. The framework consists of four theoretical and one algorithmic-dependent
Block-ERC.

1Underdetermined System(s) of Linear Equations
2Block-sparse Exact Recovery Condition(s)
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The mentioned generality is in terms of

• structure of the dictionary, i.e., blocks could be orthonormal bases or there may exist
intra-block orthonormality, however, in one of the proposed Block-ERC the computation
of the Moore-Penrose pseudo-inverse of each block is involved, which requires the blocks
to be full column rank,

• norm in the corresponding optimisation problem,

• length of blocks,

• parameters of the proposed block-sparsity measures, e.g., we are not constrained to only
Euclidean norm criterion for determining the active blocks, and

• there is no constraint on the relationship between the dimensions of size of the dictionary
Φ∈Rm×n, except m<n.

As mentioned, the recovery conditions are proposed for the exact solution of the
optimisation problem, therefore the uniqueness of the representation is the center of our
focus. In addition, the exact recovery conditions ensure the uniqueness of the Support of the
solution, i.e., the problem is Support recovery, and not coefficient recovery.

Through the aforementioned generalisations, we can relax some constraints as mentioned
before, and improve the results of Eldar et al. [EB09]; [EKB10b]; [EKB10a], and extend
some findings of Donoho et al. [DH01]; [DE03b], Elad and and Bruckstein [EB01]; [EB02],
and Gribonval and Nielsen [GN03b]; [GN03a] from element-wise (scalar-wise) to block-wise
(vector-wise) framework [APJ16].

This chapter is a major extended version of [APJ16]. Section 2.2 presents the required
terminology and tools to establish the main block-sparse recovery conditions which are
introduced in Section 2.3. At last, to demonstrate the supremacy of the proposed theoretical
recovery conditions in comparison to the state-of-the-art results, some numerical experiments
are implemented in Section 2.4, and finally conclusions in Section 2.5 terminate this chapter.

2.2 Block-sparsity

Firstly, we need to redefine the structure of the dictionary and the representation vector and
consequently the model. Then, an appropriate optimisation problem yielding block-sparse
solutions should be investigated. Finally, suitable block-wise characterisations of the
dictionary, which would be the base material for proposing the solution’s uniqueness will be
required. All the above mentioned requirements for establishing Block-ERC are investigated
in this section through the following parts of structure and model, optimisation problem, and
characterisations.
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2.2.1 Structure and model

Consider the representation vector β̂ can be viewed as a concatenation of K individual blocks:

β̂ =
[
β̂T [1] , · · · , β̂T [k] , · · · , β̂T [K]

]T
,

where, the kth block of β̂ can be represented as:

β̂ [k] =
[
β̂1 [k] , · · · , β̂dk [k]

]T
,

where, β̂dk [k]=[β̂i | i=
∑k−1

j=1 dj+dk], and the length of kth block is dk, whereas the vector of
the blocks’ length is:

d = [d1, · · · , dK ] ,

where,
∑K

k=1 dk=n, i.e., the block structure is non-overlapped, and there is no constraining
relationship between any dk and m. Then, the block structure of the representation vector
β̂, which is consecutive dk-length vectors, is assumed to be known a priori. Similarly, the
following block-wise structure is assumed for the dictionary Φ, which can be viewed as a
concatenation of all K individual blocks:

Φ = [Φ [1] , · · · ,Φ [k] , · · · ,Φ [K]] ,

where, Φ[k]∈Rm×dk , and as it is mentioned there is not any imposed relationship between m
and n, other than m<n. The kth block is defined as the dk columns of matrix Φ:

Φ [k] = [ϕ1 [k] , · · · ,ϕdk [k]] ,

with ϕj [k]∈Rm, and without loss of generality, it is assumed that ϕj [k] has unit Euclidean
norm, i.e., ∀j, k : ‖ϕj [k]‖2=1. The block structure of Φ and β̂ is shown schematically in
figure 2.1. The matrix multiplication can be decomposed as sum of multiplication of blocks
to reconstruct the measurement vector y∈span{Φ}∈Rm. Therefore, as the model we use
the noiseless USLE explained in (1.2), which can be viewed as the block-wise structure, i.e.,
y=Φβ̂=

∑K
k=1 Φ[k]β̂[k].

Figure 2.1: Block structure of the dictionary Φ and the representation vector β̂ in the noiseless
linear model, i.e., y=Φβ̂=

∑K
k=1 Φ[k]β̂[k].
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2.2.2 Optimisation problem

As mentioned before, in the conventional element-wise sparse recovery problem, the goal is to
extract a representation vector among the set of eligible solutions which is the sparsest one, i.e.,
a representation with the fewest non-zero elements. But in the framework of block-sparsity,
the fewest active blocks are of interest, and not fewest non-zero elements. Any active block
k has at least one non-zero element in β[k] which results in its non-zero `p norm (for any p),
which can be used for determining the active blocks. Usually, p is assigned to two, because
the `2 norm is a rotational invariant measure. Here we use the `p norm in more general cases
of 0≤p and 1≤p.

As we said, a representation β is called block k-sparse if it has at most k active blocks,
i.e., ‖β‖p,0≤k. The `p,0 pseudo-mixed-norm of β, i.e.,

∑
k I(‖β[k]‖p), which can be used for

counting the number of active blocks, measures the activity of each block in `p norm sense and
the sparsity of the active blocks in `0 pseudo-norm sense. Therefore, block’s `p norm for any
p could be a suitable criterion for determining the activity of blocks and then using another
sparsity inducing norm applied on the resulted vector containing the `p norm of each block
could implement the concept of block-sparsity.

The previously-introduced (equation (1.4), page 17) general constrained `p norm
optimisation problem Pp,q,ε(a, b) : mina ‖a‖p s.t. ‖b‖q≤ε, is defined to recover sparse
solution, i.e., solution with the fewest non-zero elements, with the widely used problem
Pp : minβ ‖β‖p s.t. y=Φβ. Then, the general constrained `p1,p2 (pseudo-)mixed-norm
optimisation problem P(p1,p2),q,ε(a, b) : mina ‖a‖p1,p2 s.t. ‖b‖q≤ε, introduced (equation
(1.16), page 34) to recover equally-sized block-sparse solution, i.e., solution with
the fewest active blocks, where, ∀k, dk=d, with the widely used problem Pp1,p2 :

minβ ‖β‖p1,p2 s.t. y=Φβ. In this chapter, we introduce the following constrained `wp1,p2
weighted (pseudo-)mixed-norm optimisation problem P(w;p1,p2),q,ε(a, b) in a more general
case to recover differently-sized block-sparse solution, and cover all previously introduced
optimisation problems:

Definition 2.1 (Constrained `wp1,p2 weighted (pseudo-)mixed-norm optimisation
problem).

P(w;p1,p2),q,ε (a, b) : min
a
‖a‖w;p1,p2

s.t. ‖b‖q ≤ ε,

`wp1,p2 weighted (pseudo-)mixed-norm of a vector a, i.e., ‖a‖w;p1,p2 , is defined by following
definition:
Definition 2.2 (Weighted (pseudo-)mixed-norm). The `wp1,p2 weighted
(pseudo-)mixed-norm of a block-structured vector a=[aT [1], · · · ,aT [k], · · · ,aT [K]]T ,
where, a[k]=[a1[k], · · · , adk [k]]T , is defined as:

‖a‖w;p1,p2

def
=



∑
k

I
(
wk ‖a [k]‖p1

)
, for p2 = 0(∑

k

wp2k ‖a [k]‖p2p1

) 1
p2

, for 0 < p2 < +∞

max
k

{
wk ‖a [k]‖p1

}
, for p2 =∞,
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where, I(a) is the indicator function, i.e., I(a)
def
=

{
1, if |a|>0

0, if a=0
, and w=[w1, · · · , wK ] is

the weight vector.

The `wp1,p2 for either 0≤p1<1 or 0≤p2<1 is called weighted pseudo-mixed-norm,
consequently, the corresponding problem P(w;p1,p2),q,ε(a, b) is called constrained `wp1,p2 weighted
pseudo-mixed-norm optimisation problem.

`wp1,p2 weighted (pseudo-)mixed-norm when all the weights are 1, i.e., w=11×K , is equal
to the `p1,p2 (pseudo-)mixed-norm, i.e., `1p1,p2≡`p1,p2 . In addition, for p1>0 and p2=0, the
`wp1,0 weighted pseudo-mixed-norm is independent of weight vector w, so it equals to ordinary
pseudo-mixed-norm, i.e., `wp,0≡`p,0 for p>0.

Although P(w;p1,p2),q,ε(a, b) with carefully selected values for p1 and p2, is defined generally
and can cover lots of scenarios, but the proposed conditions in this study concentrate on the
following special cases:

• a: a is chosen to be the representation vector, i.e., a=β.

• b: b is selected as r, i.e., b=r=y−Φβ.

• ε (and q): The representation vector β is minimised in a block-sparse exact signal
recovery problem, hence, ε should be zero, i.e., P(w;p1,p2),q,0(β, r). For the sake of
simplicity we refer to P(w;p1,p2),q,0(β, r) as Pw;p1,p2 , because regardless of choice of
q, the ‖r‖q=0 directly indicates to the noiseless model, so the only parameters to
be determined are w, p1 and p2. Therefore, the utilised optimisation problem is
Pw;p1,p2 : minβ ‖β‖w;p1,p2 s.t. y=Φβ.

• w: Throughout this thesis, only two cases for w is considered. In a block-structured
vector a=[aT [1], · · · ,aT [K]]T with length vector d=[d1, · · · , dK ], wk in wk‖a[k]‖p1 is
either d−1/p1

k or 1. Therefore, although in general the weight vector w can consist of any
arbitrary values, in this work it is considered as d−1/p1 and the corresponding problem
is represented as Pw;p1,p2 , except when mentioned explicitly that it is a vector of ones,
i.e., 11×K , and it can be represented as P1;p1,p2 . But P1;p1,p2 is equal to Pp1,p2 , so we
refer this case to Pp1,p2 . Therefore, we have two cases of Pp1,p2 and Pw;p1,p2 , where the
weight vector w is:

∀k ∈ {1, · · · ,K} , wk = d
− 1

p1
k .

• p1 and p2: The main proposed Block-ERC include the cases 0=p2≤p1, and the more
general one of 0≤p2≤1≤p1.

It is obvious that, if the size of all the blocks is chosen to be 1, i.e., ∀k, dk=1, then
the block-sparse exact signal recovery reduces to the conventional exact signal recovery, i.e.,
Pw;p1,p2≡Pp1,p2≡Pp2 . In addition, the problem Pw;p1,p2 for 0=p2<p1 is independent of the
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weight vector w and equals to ordinary pseudo-mixed-norm problem, i.e., Pw;p,0≡Pp,0 for
p>0.

As it can be seen in Section 1.4.2, most of the previous works are based on Euclidean norm
as a measure of block activity, i.e., P2,p. However, it has been shown that by using norms
other than Euclidean, the performance of the selection of group of variables increases [ZRY09].
So, we study the impact of other norms.

In this chapter, we first introduce Block-ERC based on Pp,0 in two different cases of p≥0

and p≥1. Then, we generalise the results to Pp1,p2 and Pw;p1,p2 , where, the activity of blocks
is measured by `p1 norm, p1≥1, and the sparsity of the blocks by `p2 (pseudo-)norm, 0≤p2≤1.

Remark 2.1 (Pw;p1,p2 v.s. Pp1,p2). Notice that in general:

• For equally-sized blocks, i.e., ∀k, dk=d, we propose Block-ERC based on Pp1,p2 , where, p1

can have zero value, while for a more general case of differently-sized blocks we propose
Block-ERC based on Pw;p1,p2 for p1 6=0, to have finite values for the elements of the
weight vector w, because wk=d

−1/p1
k .

• As mentioned before, if 0=p2<p1 then the `wp1,p2 weighted pseudo-mixed-norm
optimisation problem is equivalent to the `p1,p2 pseudo-mixed-norm optimisation
problem, i.e., ∀p>0, Pw;p,0≡Pp,0.

The selection of the values of the (pseudo-)mixed-norm coefficients p1 and p2 in the
corresponding optimisation problems Pp1,p2 and Pw;p1,p2 is very important. Since the
optimisation problems Pp1,p2 and Pw;p1,p2 are presented in a general case, by selecting
a certain values of the (pseudo-)mixed-norm coefficients p1 and p2, one can switch the
problem between the conventional sparsity and block-sparsity problem. Map of the values
of the (pseudo-)mixed-norm coefficients p1 and p2, which leads to sparsity and block-sparsity
problems is shown in figure 2.2.

Figure 2.2 represents schematically our regions of interest in orange colour for the
(pseudo-)mixed-norm coefficients p1 and p2 in a block sparsity problems Pp1,p2 or Pw;p1,p2 ,
compared to the traditional sparsity problem, shown in blue colour region. As it can be seen
in figure 2.2, considering additional constraint of proposed block sparsity (orange-coloured
regions) on the representation vector, gives rise to a wider region of the (pseudo-)mixed-norm
coefficients of the corresponding optimisation problem compared to the existing block sparsity
(green-coloured regions), and conventional sparsity (blue-coloured regions). In figure 2.2, the
most frequently studied cases are represented by solid circles. For instance, P0,1 (≡P0) and P1,1

(≡P1), which are represented by blue circles (left and right one, respectively) are the widely
used cases in sparse exact recovery problems, whereas P2,0 and P2,1, which are represented by
green circles (down and top one, respectively) are the widely used cases in block-sparse exact
recovery problems.
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Figure 2.2: Sparsity and block sparsity regions in terms of ‖β‖p1,p2 , and ‖β‖w;p1,p2
, assuming

∀k, dk=d. The most commonly studied cases are indicated with solid circles.

Remark 2.2 (Sparsity regions in figure 2.2). For 0<p1=p2=p≤1, the block-sparse exact
signal recovery optimisation problems Pp,p and Pw;p,p reduce to the traditional exact signal
recovery problem, i.e., Pp,p≡Pp and Pw;p,p≡d−1/p Pp (∀k, dk=d). In other words, in the
common region of sparsity and block-sparsity, i.e., p1=p2=1 (the right blue circle in figure
2.2), and under certain conditions, the conventional exact signal recovery problem can recover
the block-sparse representation. In addition, for p1=0 and p2=1 (the left blue circle in figure
2.2), the P0,1 problem reduces to the classic exact signal recovery problem, i.e., P0,1≡P0, but
it is still non-convex.

Remark 2.3 (Block-sparsity regions in figure 2.2). As shown in figure 2.2 the proposed
block-sparsity region (orange region) covers the existing most frequently studied cases in block
sparsity problem (green circles) and the widely used tractable case in the traditional sparsity
problem (the right blue circle) in literature.
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2.2.3 Characterisations

To define the Block-ERC, it is necessary to introduce some notations. Except when mentioned
explicitly, (1) the block length dk∈N, where,

∑K
k=1 dk=n, and dmax and dmin are the maximum

and minimum block length, respectively, and (2) the characterisations coincide with the results
known in the conventional element-wise case if all blocks are of size 1, i.e., d1= · · ·=dK=1.
We first give some general definitions, which then will be used to prove uniqueness results.
Definition 2.3 (Block-Support and Block-Cardinality). The Block-Support and
Block-Cardinality of a representation vector β∈Rn are defined as:

Block-Support: Sb (β)
def
=
{
k : ‖β [k]‖p 6= 0, 1 ≤ k ≤ K

}
∀p ≥ 0,

Block-Cardinality: |Sb (β)| def
= ‖β‖p,0 ∀p ≥ 0.

‖β‖p,0 simply counts the number of active blocks in the sense of their non-zero `p norm.

In fact, considering the definition of ‖β‖p,0, each block is first represented by its `p norm.
So, non-zero representatives indicate active blocks. Then, by applying the `0 pseudo-norm
on the blocks’ representatives, the active blocks are counted. When d1= · · ·=dK=1, the
Block-Support and Block-Cardinality will be equivalent to the conventional Support and
Cardinality (see Section 1.3.2), respectively.

Definition 2.4 (Dictionary Kernel). The Block-Kernel or block null space of a dictionary
Φ∈Rm×n, is equivalent to its usual Kernel:

Block−Ker(Φ)
def
=

{
x ∈ Rn,

K∑
k=1

Φ [k]x [k] = Φx = 0

}
= Ker(Φ).

Actually, the Block-Kernel is the block-wise definition of the conventional Kernel of a
dictionary. Because of their equivalency and for the sake of simplicity, we use the notation of
conventional Kernel.

Regarding the uniqueness of the solution of Pp,0 problem, an interesting question is
"What is the minimal value of ‖x‖p,0 for x∈Ker(Φ)\{0}, and p>0?". To elucidate the
significance of the mentioned question, assume that β0 and β1 are both solutions to
problem Pp,0, i.e., y=Φβ0=Φβ1. Then Φ(β0−β1)=0, so x=β0−β1∈Ker(Φ). Clearly,
‖x‖p,0=‖β0−β1‖p,0≤‖β0‖p,0+‖β1‖p,0=2‖β0‖p,0 since both ‖β0‖p,0 and ‖β1‖p,0 attain the
minimum `p,0 pseudo-mixed-norm. Consequently, assuming two solutions we reach to
‖x‖p,0/2≤‖β0‖p,0.

Hence, if ‖β0‖p,0<minx∈Ker(Φ)\{0} ‖x‖p,0/2, then no other solution β1 exists for which
‖β0‖p,0=‖β1‖p,0. We stress the importance of the latter through the following definition which
is a straightforward generalisation of the conventional Spark [GN03b]; [DE03b]:
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Definition 2.5 (Block-Spark). The Block-Spark of a dictionary can be defined based on
`p,0 pseudo-mixed-norm:

Block−Spark(Φ)
def
= min
x∈Ker(Φ)\{0}

‖x‖p,0 ∀p ≥ 0.

Block-Spark characterises the block null space of a dictionary using the `p,0
pseudo-mixed-norm.

By definition, any vector x in the block null space of the dictionary, i.e.,
∑K

k=1 Φ[k]x[k]=0,
must satisfy ∀p≥0, ‖x‖p,0≥Block−Spark(Φ). This important block-wise characterisation of
the dictionary is the extension of the conventional Spark defined in equation (1.5) page 21.

Because of the fact that the proposed characterisation is a block-wise generalisation of
the conventional element-wise case, in a unit block size setting, i.e., ∀k, dk=1, our proposed
Block-Spark is equivalent to the conventional Spark, i.e., Block−Spark(Φ)≡Spark(Φ).

The following property shows the relationship between the proposed Block-Spark and the
conventional Spark, which will be used in Section 2.3.1 to demonstrate the improvement of
the recovery conditions based on Block-Spark compared to the ones based on the conventional
Spark:

Property 2.1 (Block-Spark v.s. Spark). Let dk be the block length of the
kth block in Φ, and denoting d=

∑
k∈Sb(x?

b ) dk/ |Sb(x?b)| the average block length, with
x?b= arg minx∈Ker(Φ)\{0} ‖x‖p,0, ∀p≥0, then we have:

dBlock−Spark(Φ) ≥ Spark(Φ).

Proof. Let x?∈ arg minx∈Ker(Φ)\{0} ‖x‖0 and x?b∈ arg minx∈Ker(Φ)\{0} ‖x‖p,0. Obviously,
‖x?‖0≤‖x?b‖0, and ‖x?b‖0≤

∑
k∈Sb(x?

b ) dk, indeed the whole block is activated even if only a

single element is needed. Now letting d= |Sb(x?b)|
−1∑

k∈Sb(x?
b ) dk=‖x?b‖

−1
p,0

∑
k∈Sb(x?

b ) dk,
the transitivity of the inequalities yields ‖x?‖0≤d ‖x?b‖p,0, which is exactly
dBlock−Spark(Φ)≥Spark(Φ).

Due to non-convexity of the pseudo-mixed-norm ‖·‖p,0, Block-Spark is not computationally
tractable. Therefore, the following block coherence measure, which is the block-wise extension
of the conventional MCC3 is proposed:

3Mutual Coherence Constant
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Definition 2.6 (Block coherence). The (q, p)-Block Mutual Coherence Constant
(Block-MCCq,p) of a dictionary is defined ∀(q, p)∈R2

>0 as:

Mq,p (Φ)
def
= max

k,k′ 6=k

d
− 1

p

k d
1
q

k′

dmax

∥∥∥Φ† [k] Φ
[
k′
]∥∥∥
q→p

,

where, Φ†[k] is Moore-Penrose pseudo-inverse of the full column rank block Φ[k]∈Rm×dk ,
and ‖Φ‖q→p is the `q→p operator-norm of dictionary Φ, which can be computed through
any of the following expressions [Tro04b]; [GL13]:

‖A‖q→p
def
= max

a6=0

‖Aa‖p
‖a‖q

= max
‖a‖q=1

‖Aa‖p = max
‖a‖q≤1

‖Aa‖p .

For a unit block size setting, d1= · · ·=dK=1, and `2-normalized columns of Φ, as expected,
Block-MCCq,p is equivalent to conventional MCC (page 22), i.e., Mq,p(Φ)≡M(Φ), because
each block of dk columns Φ[k] will be a single column, i.e., Φ[k]=ϕk, and for the vector ϕk,
we have ϕ†k=ϕ

T
k and for the scalar ϕTkϕk′ , we have ‖ϕTkϕk′‖q→p=|ϕTkϕk′ | for ∀(q, p)∈R2

≥0, so
Mq,p(Φ)= maxk,k′ 6=k |ϕTkϕk′ |=M(Φ).

Although Block-MCCq,p is valid for ∀ (q, p)∈R2
>0, in practice, because of the computational

complexity, only some basic operator-norms can be calculated [Tro04b]. Table 2.1 explains
these basic operator-norms.

In order to investigate the bounds and relationship of the proposed Block-MCCq,p to
the existing dictionary characterisations, we need to study the properties of the `q→p
operator-norm of a matrix, which in turn requires to establish the bounds of division of norm
of two vectors:

Property 2.2 (Bounds of two vector norms division). ∀(q, p)∈R2
>0, and ∀a∈Rd, we

have:

min
{

1, d
1
p
− 1

q

}
≤
‖a‖p
‖a‖q

≤ max
{

1, d
1
p
− 1

q

}
.

The proof of Property 2.2 is provided in Section A.1 (page 119). The general bounds of

p = 1 p = 2 p =∞

q = 1 Maximum `1 norm of a column Maximum `2 norm of a column Maximum absolute entry of matrix
q = 2 NP-hard Maximum singular value Maximum `2 norm of a row
q =∞ NP-hard NP-hard Maximum `1 norm of a row

Table 2.1: Computational complexity of `q→p operator-norm for different basic (q, p) pairs
[Tro04b].
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Property 2.2 include the following special cases ∀a∈Rd [GL13]:

1 ≤
‖a‖1
‖a‖2

≤
√
d,

1 ≤
‖a‖2
‖a‖∞

≤
√
d,

1 ≤
‖a‖1
‖a‖∞

≤ d.

Property 2.3 (Bounds of two (pseudo-)mixed-norms division). ∀(q, p)∈R2
>0, for

a= [a [1] , . . . ,a [K]] and ∀k, a [k]∈Rdk , and for weighted (pseudo-)mixed-norms we have:

‖a‖w;p,1

‖a‖w;q,1

≥ min
k

min

{
1, d

1
q
− 1

p

k

}
=

{
1, if 0 < q ≤ p

d
1
q
− 1

p
max , if 0 < p < q

,

‖a‖w;p,1

‖a‖w;q,1

≤ max
k

max

{
1, d

1
q
− 1

p

k

}
=

{
d

1
q
− 1

p
max , if 0 < q ≤ p

1, if 0 < p < q
.

Similarly, for non-weighted (pseudo-)mixed-norms we have:

‖a‖p,1
‖a‖q,1

≥ min
k

min

{
1, d

1
p
− 1

q

k

}
=

{
d

1
p
− 1

q
max , if 0 < q ≤ p

1, if 0 < p < q
,

‖a‖p,1
‖a‖q,1

≤ max
k

max

{
1, d

1
p
− 1

q

k

}
=

{
1, if 0 < q ≤ p

d
1
p
− 1

q
max , if 0 < p < q

.

Proof. For any real fractions x1/y1, . . . , xK/yK with positive denominators, we have [pah05]:

min

{
x1

y1
, . . . ,

xK
yK

}
≤ x1 + . . .+ xK
y1 + . . .+ yK

≤ max

{
x1

y1
, . . . ,

xK
yK

}
,

where, equality happens if and only if all fractions x1/y1, . . . , xK/yK

are equal. Then, for any k, considering xk=‖a[k]‖p/d1/p
k and

yk=‖a[k]‖q/d1/q
k , we have xk/yk=d

1/q−1/p
k ‖a[k]‖p/‖a[k]‖q. On the other

hand, from Property 2.2 (bounds of two vector norms division), we have
∀(q, p)∈R2

>0, ∀b∈Rd : min{1, d1/p−1/q}≤‖b‖p/‖b‖q≤max{1, d1/p−1/q}. Consequently,
min{1, d1/q−1/p

k }≤xk/yk≤max{1, d1/q−1/p
k }, which by considering the above-mentioned

inequality, we have:

min
k

min

{
1, d

1
q
− 1

p

k

}
≤

∑
k

xk∑
k

yk
≤ max

k
max

{
1, d

1
q
− 1

p

k

}
.

On the other hand, from Definition 2.2 (weighted (pseudo-)mixed-norm) we have∑
k xk=‖a‖w;p,1 and

∑
k yk=‖a‖w;q,1, which proves the bounds. Similarly, for any k,

considering xk=‖a[k]‖p and yk=‖a[k]‖q, the bounds for division of two non-weighted
(pseudo-)mixed-norms can be obtained.
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Property 2.4 (`q→p operator-norm properties). Assuming A∈Rm×n, B∈Rm×n, and
C∈Rn×l, the `q→p operator-norm of a matrix satisfies the following properties:

• Nonnegativity: ∀(q, p)∈R2
≥0 : ‖A‖q→p≥0.

• Positivity: ∀(q, p)∈R2
≥0 : ‖A‖q→p=0 if and only if A=0.

• Homogeneity: ∀q∈R≥0,∀p∈R>0, ∀α∈R : ‖αA‖q→p= |α| ‖A‖q→p.

• Triangle inequality: ∀q∈R≥0, ∀p∈R≥1, for p=0 : ‖A+B‖q→p≤‖A‖q→p+‖B‖q→p.

Remark 2.4 (Generalised matrix norm). Any matrix norm definition that satisfies the
above four properties is called generalised matrix norm [HR12]. All the above-mentioned
properties hold true ∀q∈R≥0, in contrast to p. Table 2.2 summarises the ranges of p in which
different properties hold true. As it can be seen in table 2.2, for ∀q∈R≥0 and ∀p∈R≥1, the
`q→p operator-norm satisfies all the above four properties, hence it is a generalised matrix
norm in the mentioned range for q and p.

• Submultiplicativity: In general, we have:

∀(q, p) ∈ R2
>0, ‖AC‖q→p ≤ ‖A‖q→p ‖C‖q→p max

{
1, n

1
q
− 1

p

}
.

For q≥p we have max{1, n1/q−1/p}=1, and then there exists submultiplicativity property,
i.e., for q≥p>0, we have ‖AC‖q→p≤‖A‖q→p ‖C‖q→p.

Remark 2.5 (Matrix norm). Any norm definition that satisfies the above five properties
is called matrix norm [HR12]. The `q→p operator-norm ∀q∈R≥0 and ∀p∈R≥1 satisfies the
first four properties (generalised matrix norm), whereas for q≥p>0 satisfies the fifth property.
Then, `q→p operator-norm for q≥p≥1 satisfies all the above five properties, hence it is a matrix
norm.

• Bounds: We define the following four types of bounds and inequalities for the `q→p
operator-norm:
1) ∀ (q, p, q′, p′)∈R4

>0, we have:

‖A‖q→p ≥ max
{

min
{

1,m
1
p
− 1

p′
}
‖A‖q→p′ ,min

{
1, n

1
q′−

1
q

}
‖A‖q′→p

}
,

‖A‖q→p ≤ min
{

max
{

1,m
1
p
− 1

p′
}
‖A‖q→p′ ,max

{
1, n

1
q′−

1
q

}
‖A‖q′→p

}
,

∀q∈R≥0 p = 0 0 < p < 1 p ≥ 1

`q→p properties N, P, T N, P, H N, P, H, T

Table 2.2: Properties of `q→p operator-norm for different ranges of p, while ∀q∈R≥0, where
N, P, H, and T stand for the existence of nonnegativity, positivity, homogeneity, and triangle
inequality properties, respectively.
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1 ≤
‖A‖1→1

‖A‖1→2

≤ m
1
2 ,

n−1 ≤
‖A‖1→1

‖A‖∞→∞
≤ m,

n−
1
2 ≤

‖A‖2→2

‖A‖∞→∞
≤ m

1
2 ,

1 ≤
‖A‖1→2

‖A‖1→∞
≤ m

1
2 ,

1 ≤
‖A‖1→1

‖A‖1→∞
≤ m,

1 ≤
‖A‖2→2

‖A‖1→2

≤ n
1
2 ,

m−
1
2 ≤
‖A‖∞→∞
‖A‖1→2

≤ n,

n−
1
2 ≤

‖A‖1→2

‖A‖2→∞
≤ m

1
2 ,

n−
1
2 ≤
‖A‖1→1

‖A‖2→2

≤ m
1
2 ,

1 ≤
‖A‖2→2

‖A‖1→∞
≤ (mn)

1
2 ,

1 ≤
‖A‖∞→∞
‖A‖1→∞

≤ n,

n−
1
2 ≤
‖A‖1→∞
‖A‖2→∞

≤ 1.

n−
1
2 ≤

‖A‖1→1

‖A‖2→∞
≤ m,

1 ≤
‖A‖2→2

‖A‖2→∞
≤ m

1
2 ,

1 ≤
‖A‖∞→∞
‖A‖2→∞

≤ n
1
2 ,

n−1 ≤
‖A‖1→2

‖A‖∞→∞
≤ m

1
2 ,

Table 2.3: Inequalities of basic tractable `q→p operator-norms based on table 2.1 (page 54)
for a matrix A∈Rm×n.

which the bounds are based on the operator norm having one of the original domains,
either q, or p.

2) In addition, the bounds can be based on the operator norm having totally new
domains, e.g., q′ and p′, i.e., ∀ (q, p, q′, p′)∈R4

>0 we have:

‖A‖q→p ≥ min
{

1,m
1
p
− 1

p′
}

min
{

1, n
1
q′−

1
q

}
‖A‖q′→p′ ,

‖A‖q→p ≤ max
{

1,m
1
p
− 1

p′
}

max
{

1, n
1
q′−

1
q

}
‖A‖q′→p′ .

Remark 2.6 (`q→p operator-norm inequalities). The above-mentioned general
inequalities for basic tractable `q→p operator-norms based on table 2.1 (page 54) is
shown in table 2.3, which includes the following standard inequalities [GL13]:

‖A‖1→∞ ≤ ‖A‖2→2 ≤
√
mn ‖A‖1→∞ ,

1√
n
‖A‖∞→∞ ≤ ‖A‖2→2 ≤

√
m ‖A‖∞→∞ ,

1√
m
‖A‖1→1 ≤ ‖A‖2→2 ≤

√
n ‖A‖1→1 .

In addition, in general (tractable and intractable), the `q→p operator-norm inequalities
for a fixed p or q is shown schematically in figure 2.3.

Figure 2.3: `q→p operator-norm inequalities for common `q→p operator-norms according to
table 2.1 (page 54).
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3) Another useful lower- and upper-bound ∀ (q, p, q′, p′)∈R4
>0 are:

‖A‖q→p ≥
min

{
1,m

1
p
− 1

p′
}

min
{

1, n
1
q′−

1
q

}
min

{
1,m

1
p′−

1
2

}
min

{
1, n

1
2
− 1

q′
}

√
min {m,n}

‖A‖F ,

‖A‖q→p ≤ max
{

1,m
1
p
− 1

p′
}

max
{

1, n
1
q′−

1
q

}
max

{
1,m

1
p′−

1
2

}
max

{
1, n

1
2
− 1

q′
}
‖A‖F ,

where, the Frobenius norm is defined as ‖A‖F=
√∑m

i=1

∑n
j=1 |ai,j |2.

4) In addition, the `q→p operator-norm of any matrix A is less than or equal to the `q→p
operator-norm of another matrixB, in which all the elements are the maximum absolute
value of the elements of first matrix. It also holds true, when all the on-diagonal entries
of A and B are set to zero:

∀i, j, ∀ (q, p) ∈ R2
>0, if |ai,j | ≤ bi,j = max

i,j
|ai,j | ⇒ ‖A‖q→p ≤ ‖B‖q→p ,

and

∀i, j, ∀ (q, p) ∈ R2
>0, if

{
|ai,j | ≤ bi,j = max

i,j
|ai,j | , i 6= j

ai,j = bi,j = 0, i = j
⇒ ‖A‖q→p ≤ ‖B‖q→p .

See Section A.2 (page 121) for the proof of Property 2.4.

Now, based on the above-mentioned properties of the `q→p operator-norm introduced in
Property 2.4 (`q→p operator-norm properties), in the following property we investigate the
possible relationship between different Block-MCCq,p characterisations (Definition 2.6, page
54) with basic (q, p) pairs according to table 2.1 (page 54):

Property 2.5 (Block-MCCq,p inequalities). The different Block-MCCq,p characterisations
calculated for basic tractable `q→p operator-norms of table 2.1 (page 54) have the following
relationships:

M1,1 (Φ) ≤M1,2 (Φ) ≤M1,∞ (Φ) ,

M2,2 (Φ) ≤M1,2 (Φ) ≤M1,∞ (Φ) ,

M2,2 (Φ) ≤M2,∞ (Φ) ≤M1,∞ (Φ) ,

M∞,∞ (Φ) ≤M2,∞ (Φ) ≤M1,∞ (Φ) ,

while their general relationship is represented schematically in figure 2.4.

The proof of Property 2.5 is provided in Section A.3 (page 126).

Since the recovery conditions started with orthonormal bases, the following property shows
Definition 2.6 (block coherence) in special case of intra-block orthonormality:

Property 2.6 (Block-MCCq,p for intra-block orthonormality). If the dictionary Φ has
intra-block orthonormality, i.e., for 1≤k≤K, ΦT [k]Φ[k]=Idk , then ∀(q, p)∈R2

>0 we have:

Mq,p (Φ) = max
k,k′ 6=k

d
− 1

p

k d
1
q

k′

dmax

∥∥ΦT [k] Φ
[
k′
]∥∥
q→p .



2.2. Block-sparsity 59

Figure 2.4: Block-MCCq,p inequalities for common `q→p operator-norms according to table
2.1 (page 54).

Proof. Taking into account that, for an orthonormal matrix we have A†=AT , the result is
immediately obtained from the Definition 2.6 (block coherence).

Block-MCCq,p is a measure of similarity between different blocks of the columns of the
dictionary, which is the block-wise extension of the conventional MCC (page 22). Since
the dictionary coherence has an inverse effect on the theoretical recovery conditions, the
lower bounds for coherence is desired. When a dictionary has intra-block orthonormality,
Block-MCCq,p can be bounded, as shown in the following property:

Property 2.7 (Block-MCCq,p upper-bound with intra-block orthonormality I).
For a dictionary Φ with intra-block orthonormality, i.e., for 1≤k≤K, ΦT [k]Φ[k]=Idk , the
upper-bound of Block-MCCq,p is shown in table 2.4.

The proof of Property 2.7 is provided in Section A.4 (page 129). Later, in Property 2.9, we
will show another upper-bounds for Block-MCCq,p based on the relationship with conventional
MCC. Property 2.8 investigates the bounds of Block-MCCq,p in terms of the conventional MCC
(page 22).

Property 2.8 (Block-MCCq,p bounds). Block-MCCq,p is bounded based on the
conventional MCC, i.e., M(Φ)

def
= maxk,k′ 6=k | 〈ϕk,ϕk′〉 |.

1) Suppose for a dictionary with full column rank blocks, we haveM(Φ)<d
1/q−2
max (dmax−1)−1/2

(q, p) (1, 1) (1, 2) (1,∞) (2, 2) (2,∞) (∞,∞)

maxMq,p(Φ) d
− 1

2
minm

1
2 d

− 1
2

minm
1
2 m d

− 1
2

min d
− 1

2
max d

− 1
2

maxm
1
2 d

− 1
2

maxm
1
2

Table 2.4: Upper-bound of Block-MCCq,p obtained based on the relationship with unit `2→2

operator-norm, for different basic (q, p) pairs and for a dictionary Φ∈Rm×n with intra-block
orthonormality.
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(q = q′, p = p′) (1, 1) (1, 2) (1,∞) (2, 2) (2,∞) (∞,∞)

maxMq,p(Φ) d
1
2
max d

1
2
max dmax 1 d

1
2
max d

1
2
max

Table 2.5: Upper-bound of Block-MCCq,p obtained based on the relationship with MCC, for
different basic values of (q, p) pairs and for a dictionary with intra-block orthonormality.

and q≥p≥1, then:

0 ≤Mq,p (Φ) ≤ d
3
2
− 1

p
max M (Φ)

1− d
2− 1

q
max (dmax − 1)

1
2 M (Φ)

.

2) For a dictionary with intra-block orthonormality, ∀(q, p, q′, p′)∈R4
>0 we have:

0 ≤Mq,p (Φ) ≤ M (Φ)

dmax
max
k,k′ 6=k

d
1
2
− 1

p

k d
1
q

+ 1
2

k′ max

{
1, d

1
p
− 1

p′
k

}
max

{
1, d

1
q′−

1
q

k′

}
×

max

{
1, d

1
p′−

1
2

k

}
max

{
1, d

1
2
− 1

q′

k′

}
.

The proof of Property 2.8 is provided in Section A.5 (page 131). In addition, we have:

Property 2.9 (Block-MCCq,p upper-bound with intra-block orthonormality II).
For a dictionary with orthonormal blocks, Block-MCCq,p is upper-bounded based on its
relationship with MCC, i.e., ∀(q, p, q′, p′)∈R4

>0, we have:

0 ≤Mq,p (Φ) ≤ d−1
max max

k,k′ 6=k
d

1
2
− 1

p

k d
1
q

+ 1
2

k′ max

{
1, d

1
p
− 1

p′
k

}
max

{
1, d

1
q′−

1
q

k′

}
×

max

{
1, d

1
p′−

1
2

k

}
max

{
1, d

1
2
− 1

q′

k′

}
.

The mentioned upper-bound of Block-MCCq,p for basic tractable (q, p) pairs is shown in table
2.5.

Proof. Since MCC is upper-bounded by one, from Property 2.8 the proof is done.

Notice that in Property 2.7 we introduced the bounds of Block-MCCq,p based on the
bounds of the operator-norms in terms of the unit `2→2 operator-norm, whereas now in
Property 2.9 we introduced another upper-bound based on its relationship with MCC and
considering the upper-bound of MCC. By minimising upper-bounds of Block-MCCq,p in
properties 2.7 (table 2.4) and 2.9 (table 2.5), the final resulted upper-bounds are shown in
table 2.6.

Remark 2.7. By comparing the bounds of conventional MCC, i.e., 1/
√
m≤M(Φ)≤1

(equation (1.7), page 22), with the upper-bounds of the proposed dictionary coherence in table
2.6, where, there is intra-block orthonormality and considering dmin=dmax=m (orthonormal
complete bases), it can be seen that, although the obtained upper-bound for Block-MCC1,∞ is
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(q, p) (1, 1) and (1, 2) (1,∞) (2, 2) (2,∞) and (∞,∞)

maxMq,p(Φ) min

{
d
− 1

2
minm

1
2 , d

1
2
max

}
min {m, dmax} d

− 1
2

min d
− 1

2
max min

{
d
− 1

2
maxm

1
2 , d

1
2
max

}
Table 2.6: Upper-bound of Block-MCCq,p obtained based on properties 2.7 (table 2.4) and
2.9 (table 2.5), for different basic values of (q, p) pairs and for a dictionary Φ∈Rm×n with
intra-block orthonormality.

greater than that of conventional MCC (m v.s. 1), but both characterisations have the same
upper-bound for (q, p) pairs of (1, 1), (1, 2), (2,∞), and (∞,∞), while the upper-bound for
(2, 2) is 1/m, which is much less than the conventional unit upper-bound, and even less than
the lower-bound of conventional MCC (1/m v.s. 1/

√
m).

If MCC is small enough, the dictionary is said to be incoherent, similarly if Block-MCCq,p is
small enough, the dictionary will be block-incoherent. The term block-incoherent is previously
used in some studies, of course with a different definition for the characterisation of the
coherence of the dictionary which is called block-coherence [PV07]; [EB09]; [EKB10b].

Next, we demonstrate the relationship between the proposed general
Block-MCCq,p and the conventional characterisation of Donoho and Huo, i.e.,
M̃(Φ1,Φ2)

def
= max{maxi,j |Φ−1

1 Φ2|i,j ,maxi,j |Φ−1
2 Φ1|i,j} explained on page 28 [DH01], in

sparsity, and block-coherence of Eldar et al., i.e., MEldar
Inter (Φ)

def
= maxk,k′ 6=k ‖ΦT [k]Φ[k′]‖2→2/d

explained on page 36 equation (1.17) [EKB10a], in block-sparsity domain.

Property 2.10 (Block-MCCq,p v.s. coherence of Donoho and Huo). For a dictionary
Φ=[Φ1,Φ2] with two invertible square blocks of same size, d1=d2=m, we have:

M1,∞ (Φ) = M̃ (Φ1,Φ2) ,

and
{M1,1 (Φ) ,M1,2 (Φ) ,M2,2 (Φ) ,M2,∞ (Φ) ,M∞,∞ (Φ)} ≤ M̃ (Φ1,Φ2) ,

where, M̃(Φ1,Φ2) is the dictionary characterisation of Donoho and Huo, i.e.,
M̃(Φ1,Φ2)

def
= max{maxi,j |Φ−1

1 Φ2|i,j ,maxi,j |Φ−1
2 Φ1|i,j}, and Mq,p(Φ) is the proposed

Block-MCCq,p, i.e., Mq,p(Φ)
def
=d−1

max maxk,k′ 6=k d
−1/p
k d

1/q
k′ ‖Φ

†[k]Φ[k′]‖q→p.

Proof. Considering that `1→∞ operator-norm represents the maximum absolute value of
matrix, i.e., ‖A‖1→∞= maxi,j |ai,j | (table 2.1, page 54), and the fact that here Φ[k]=Φk, the
definition M̃(Φ1,Φ2)

def
= max{maxi,j |Φ−1

1 Φ2|i,j ,maxi,j |Φ−1
2 Φ1|i,j} (page 28) can be rewritten

as M̃(Φ1,Φ2)= maxk,k′ 6=k ‖Φ−1[k]Φ[k′]‖1→∞. On the other hand for the invertible block
Φ[k], we have Φ−1[k]=Φ†[k], so M̃(Φ1,Φ2)= maxk,k′ 6=k ‖Φ†[k]Φ[k′]‖1→∞. On the other
hand, M1,∞(Φ)=d−1

max maxk,k′ 6=k dk′‖Φ†[k]Φ[k′]‖1→∞= maxk,k′ 6=k ‖Φ†[k]Φ[k′]‖1→∞, because
∀k, dk=dmax (d1=d2=m). Then, M1,∞(Φ)=M̃(Φ1,Φ2). In addition from Property 2.5
(Block-MCCq,p inequalities), we know that M1,∞(Φ) upper-bounds the other basic tractable
(q, p) pairs of table 2.1 (page 54), hence, the proof for the second part is done.
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Property 2.11 (Block-MCCq,p v.s. block-coherence of Eldar et al.). For a dictionary
with equally-sized blocks of length d and intra-block orthonormality, ∀(q, p)∈R2

>0 we have:

Mq,p(Φ) ≥ d
1
q
− 1

p min
{

1, d
1
p
− 1

2

}
min

{
1, d

1
2
− 1

q

}
MEldar
Inter (Φ) ,

Mq,p(Φ) ≤ d
1
q
− 1

p max
{

1, d
1
p
− 1

2

}
max

{
1, d

1
2
− 1

q

}
MEldar
Inter (Φ) ,

where, MEldar
Inter (Φ) is the block-coherence of Eldar et al., i.e.,

MEldar
Inter (Φ)

def
= maxk,k′ 6=k ‖ΦT [k]Φ[k′]‖2→2/d, and Mq,p(Φ) is the proposed Block-MCCq,p,

i.e., Mq,p(Φ)
def
=d−1

max maxk,k′ 6=k d
−1/p
k d

1/q
k′ ‖Φ

†[k]Φ[k′]‖q→p. Then, for q=p=2, we have
M2,2(Φ)=MEldar

Inter (Φ).

Proof. From Property 2.6 (Block-MCCq,p for intra-block orthonormality;
page 58) in a special setting of d1= · · ·=dK=d, we have ∀(q, p)∈R2

>0 :

Mq,p(Φ)=d1/q−1/p−1 maxk,k′ 6=k ‖ΦT [k]Φ[k′]‖q→p. Then, from Property 2.4 (`q→p
operator-norm properties; second set of bounds), we can determine the bounds of `q→p
operator-norm based on `q′→p′ operator-norm, i.e., ∀A∈Rm×n, ∀ (q, p, q′, p′)∈R4

>0 :

‖A‖q→p≥(≤) min(max){1,m1/p−1/p′}min(max){1, n1/q′−1/q}‖A‖q′→p′ , and by selecting
q′=p′=2, we have:

Mq,p(Φ) ≥ d
1
q
− 1

p
−1

min
{

1, d
1
p
− 1

2

}
min

{
1, d

1
2
− 1

q

}
max
k,k′ 6=k

∥∥ΦT [k] Φ
[
k′
]∥∥

2→2
,

Mq,p(Φ) ≤ d
1
q
− 1

p
−1

max
{

1, d
1
p
− 1

2

}
max

{
1, d

1
2
− 1

q

}
max
k,k′ 6=k

∥∥ΦT [k] Φ
[
k′
]∥∥

2→2
.

Next, considering the definition MEldar
Inter (Φ)

def
= maxk,k′ 6=k ‖ΦT [k]Φ[k′]‖2→2/d presented on page

36 equation (1.17), the proof is done.

The above introduced coherence constant Block-MCCq,p characterises the dictionary by
means of the maximum coherence, but with the expense of heavier computations it is possible
to better characterise it using a cumulative coherence.

Definition 2.7 (Cumulative Block-MCCq,p). The cumulative Block-MCCq,p of a
dictionary with full column rank blocks, is defined for all integers 1≤k≤K−1 and
∀(q, p)∈R2

>0 as:

Mq,p (Φ, k)
def
= max
|Λ|=k

max
j /∈Λ

∑
i∈Λ

d
− 1

p

i d
1
q

j

dmax

∥∥∥Φ† [i] Φ [j]
∥∥∥
q→p

,

where, Λ⊂{1, · · · ,K} of Cardinality k.

Cumulative Block-MCCq,p measures the maximum total Block-MCCq,p between a fixed
block and a collection of other blocks, which is the block-wise generalisation of the conventional
cumulative MCC defined in (1.8), i.e., M(Φ, k)

def
= max|Λ|=k maxj /∈Λ

∑
i∈Λ | 〈ϕi,ϕj〉 |.
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As expected, for a unit block size scenario, i.e., d1= · · ·=dK=1, cumulative Block-MCCq,p
in Definition 2.7 is equivalent to the conventional cumulative MCC in (1.8) presented on page
23. The following property shows the cumulative Block-MCCq,p properties, which are similar
to the cumulative MCC’s one presented on page 24:

Property 2.12 (Cumulative Block-MCCq,p properties). For any dictionary Φ with full
column rank blocks, and Block-MCCq,p Mq,p(Φ), ∀(q, p)∈R2

>0 we have:

Mq,p (Φ, 1) = Mq,p (Φ) ,

and
Mq,p (Φ, k) ≤ kMq,p (Φ) .

Proof. An investigation of the formula of cumulative Block-MCCq,p, shows that ∀(q, p)∈R2
>0

and for k=1, it reduces to Block-MCCq,p, i.e.,:

Mq,p (Φ, 1) = max
|Λ|=1

max
j /∈Λ

∑
i∈Λ

d
− 1

p

i d
1
q

j

dmax

∥∥∥Φ† [i] Φ [j]
∥∥∥
q→p

= max
i

max
j 6=i

d
− 1

p

i d
1
q

j

dmax

∥∥∥Φ† [i] Φ [j]
∥∥∥
q→p

= Mq,p (Φ) .

To prove the second part, similar to the proof of Proposition 2.1 in [Tro04a], ∀(q, p)∈R2
>0 we

have:

Mq,p (Φ, k) = max
|Λ|=k

max
j /∈Λ

∑
i∈Λ

d
− 1

p

i d
1
q

j

dmax

∥∥∥Φ† [i] Φ [j]
∥∥∥
q→p
≤ max
|Λ|=k

∑
i∈Λ

Mq,p (Φ) = kMq,p (Φ) .

According to the inter-block coherence defined by Eldar et al. in (1.17) page 36, i.e.,
MEldar
Inter (Φ)

def
= maxk,k′ 6=k ‖ΦT [k]Φ[k′]‖2→2/d, [EB09]; [EKB10b]; [EKB10a], and the concept

of cumulative coherence introduced by Tropp [Tro04a] (page 24), we extend the inter-block
coherence and introduce the following definition:

Definition 2.8 (Eldar’s cumulative coherence). The cumulative inter-block coherence
constant of a general dictionary Φ is defined for all integers 1≤k≤K−1 as:

MEldar
Inter (Φ, k)

def
= max
|Λ|=k

max
j /∈Λ

∑
i∈Λ

1

d

∥∥ΦT [i] Φ [j]
∥∥

2→2
,

where, Λ⊂{1, · · · ,K} is of Cardinality k and d1= · · ·=dK=d.

As expected, for d=1, cumulative inter-block coherence constant in Definition 2.8 is
equivalent to the conventional cumulative MCC defined in (1.8) presented on page 23. The
following property shows the properties of cumulative inter-block coherence constant, which
are similar to the properties of cumulative MCC presented on page 24:
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Property 2.13 (Eldar’s cumulative coherence properties). For any general dictionary
Φ with equally-sized block structure, i.e., d1= · · ·=dK=d, we have:

MEldar
Inter (Φ, 1) = MEldar

Inter (Φ) ,

and
MEldar
Inter (Φ, k) ≤ kMEldar

Inter (Φ) .

Proof. It is similar to the proof of Property 2.12 (cumulative Block-MCCq,p properties).

In the following property, the relationship between our two proposed cumulative
coherences, i.e., cumulative Block-MCCq,p (Definition 2.7) and Eldar’s cumulative coherence
(Definition 2.8), is investigated:

Property 2.14 (Cumulative Block-MCCq,p v.s. Eldar’s cumulative coherence). For
a dictionary Φ with orthonormal equally-sized blocks, we have:

M2,2 (Φ, k) = MEldar
Inter (Φ, k)

Proof. From Definition 2.7 (cumulative Block-MCCq,p), we have ∀(q, p)∈R2
>0 :

Mq,p(Φ, k)
def
=d−1

max max|Λ|=k maxj /∈Λ

∑
i∈Λ d

−1/p
i d

1/q
j ‖Φ†[i]Φ[j]‖q→p. On the

other hand, for orthonormal blocks we have Φ†[i]=ΦT [i], and by selecting
q=p=2 for an equally-sized block structure, i.e., d1= · · ·=dK=d, we get
Mq,p(Φ, k)=d−1 max|Λ|=k maxj /∈Λ

∑
i∈Λ ‖ΦT [i]Φ[j]‖2→2=MEldar

Inter (Φ, k).
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2.3 Block-sparse exact recovery condition

In this section Block-ERC based on above-mentioned different characterisations and properties
of a dictionary will be studied, which can be considered as the main theoretical contribution
of this thesis.

2.3.1 Block-ERC based on Block-Spark

To introduce the Block-ERC we need a block-wise version of the conventional uncertainty
principle defined in (1.9) page 26. Therefore, generalising the ideas from [GR97]; [DS89];
[DH01]; [EB01]; [EB02]; [DE03b]; [DE03a]; [GN03b]; [GN03a]; [BDE09], we propose the
following lemma which is called block-sparse uncertainty principle based on Block-Spark :

Lemma 2.1 (Block-UP4 based on Block-Spark). For any arbitrary non-zero signal y
with two distinct representations β0 and β1 in any general dictionary Φ, i.e., y=Φβ0=Φβ1,
we have:

∀p ≥ 0, ‖β0‖p,0 + ‖β1‖p,0 ≥ Block−Spark(Φ).

The proof of Lemma 2.1 is provided in Section A.6 (page 136).

As expected, for conventional element-wise sparse recovery case, i.e., d1= · · ·=dK=1,
block-sparse uncertainty principle based on Block-Spark is equivalent to the conventional
Spark-based uncertainty principle of (1.9) on page 26, i.e., ‖β0‖0+‖β1‖0≥Spark(Φ).

Using the proposed Lemma 2.1 (Block-UP based on Block-Spark), we introduce the
following Block-ERC based on Block-Spark :

Theorem 2.1 (Block-ERC based on Block-Spark). For any general dictionary Φ,
such that y=Φβ0, ∀p≥0, if

‖β0‖p,0 <
Block−Spark(Φ)

2
,

then β0 is the unique solution to the Pp,0 optimisation problem.

Proof. Considering Lemma 2.1 (Block-UP based on Block-Spark), suppose that in addition
to β0 there is another solution β1, that satisfies the same linear model, i.e., y=Φβ0=Φβ1.

Since it is assumed that the number of active blocks of the candidate solution β0 is less
than Block−Spark(Φ)/2, from Lemma 2.1 it can be deduced that any alternative solution
such as β1 necessarily is denser and has more than Block−Spark(Φ)/2 active blocks.

4Block-sparse Uncertainty Principle



66 Chapter 2. Block-ERC in general dictionaries

As expected, for d1= · · ·=dK=1, Theorem 2.1 (Block-ERC based on Block-Spark) is
equivalent to the conventional Spark-based ERC of (1.10) on page 26, i.e., ‖β0‖0<Spark(Φ)/2.

As mentioned earlier, from a mathematical point of view, exploiting the block structure
information of the representation leads to improved recovery conditions, i.e., conditions with
higher sparsity levels, i.e., more non-zero coefficients.

For investigating this claim, consider a block-sparse representation β0, which
satisfies the condition of the Theorem 2.1 (Block-ERC based on Block-Spark), i.e.,
‖β0‖p,0<Block−Spark(Φ)/2. The number of non-zero elements is at most dmax times greater
than the number of active blocks, i.e., ∀p≥0, ‖β0‖0≤dmax ‖β0‖p,0, where, equality occurs when
all of the elements in each of the blocks are non-zero in an equally-sized blocks case. Therefore,
using Theorem 2.1 (Block-ERC based on Block-Spark) we have:

‖β0‖0 < dmax
Block−Spark(Φ)

2
. (2.1)

Now, if we treat the block-sparse representation β0 as a conventional sparse representation,
i.e., without exploiting its block structure, the sufficient recovery condition would be
‖β0‖0<Spark(Φ)/2 as explained in (1.10) on page 26, and by comparing with (2.1), it is
clear that for showing the benefit of the assumption of the block structure on the recovery
condition, the relation between dmaxBlock−Spark(Φ) and Spark(Φ) should be investigated.

According to the relationship in Property 2.1 (Block-Spark v.s. Spark, page 53), i.e.,
dBlock−Spark(Φ)≥Spark(Φ), it is clear that the right-hand side of the inequality (2.1) is
greater than or equal to the right-hand side of the inequality (1.10), i.e., Spark(Φ)/2, because
we have dmax≥d.

Therefore, exploiting the block structure information of the representation and using the
proposed characterisation of the dictionary, named Block-Spark (Definition 2.5, page 52),
improves the conventional Spark-based ERC presented in (1.10) by increasing the sparsity
level, hence, weakening the corresponding conditions.

Remark 2.8. Although the Block-ERC based on Block-Spark in Theorem 2.1 (Block-ERC
based on Block-Spark) improves the conventional condition of Gorodnitsky and Rao [GR97],
Donoho et al. [DS89]; [DH01]; [DE03b]; [DE03a], Elad and Bruckstein [EB01]; [EB02],
Gribonval and Nielsen [GN03b]; [GN03a], and Bruckstein et al. [BDE09], when it comes
to practical computations both conditions would become unrealistic, because both the
characterisation Block-Spark (and corresponding Spark) and the related optimisation problem
Pp,0 (and corresponding P0) are non-convex.

Therefore, the next step would focus on at least the related optimisation problems which
are tractable. In the next section we propose conditions for more general optimisation problems
of Pw;p1,p2 and Pp1,p2 , where, 0≤p2≤1≤p1.
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2.3.2 Block-ERC based on block null space property

By refining and generalising the ideas from Donoho et al. [DH01]; [DE03b], Elad and
Bruckstein [EB01]; [EB02], Gribonval and Nielsen [GN03a]; [GN03b]; [GN04]; [GN07], Feuer
and Nemirovski [FN03a], Zhang [Zha05], Cohen et al. [CDD09], Stojnic et al. [SXH08];
[SPH09] and Boufounos et al. [BKR11], we propose the following theorem, called Block Null
Space Property (Block-NSP).

Block-NSP includes more general case of differently-sized blocks, i.e., d1 6= · · · 6=dK ,
arbitrary dictionary and integrating the block-structure information into the proposed
characterisation, e.g., Qw;p1,p2(Sb(β),Φ), and problems, e.g., Pw;p1,p2 and Pp1,p2 , where,
0≤p2≤1≤p1.

Theorem 2.2 (Block-NSP). Let Φ be a general dictionary in y=Φβ0 and
Sb(β)⊂{1, · · · ,K} a set of block indices. For 0≤p2≤1≤p1 and Block-Support Sb(β0),
define:

Qw;p1,p2 (Sb (β) ,Φ)
def
= max
x∈Ker(Φ)\{0}

∑
k∈Sb(β)

wk
p2

∣∣∣∣∣∣
dk∑
j=1

|xj [k]|p1
∣∣∣∣∣∣
p2
p1

K∑
k=1

wp2k

∣∣∣∣∣∣
dk∑
j=1

|xj [k]|p1
∣∣∣∣∣∣
p2
p1

,

with the convention of x0= lim
i→0+

xi=

{
1 x 6=0

0 x=0
and wk=d

−1/p1
k ,∀k are the elements

of the weight vector w.
If Qw;p1,p2(Sb(β),Φ)<1/2, then for all β0 whose Block-Support lies within Sb(β), i.e.,
Sb(β0)⊂Sb(β), β0 is the unique solution to the Pw;p1,p2 .

Notice that for the case of equally-sized blocks, i.e., d1= · · ·=dK=d, if
Qp1,p2(Sb(β),Φ)<1/2 and Sb(β0)⊂Sb(β), then β0 is the unique solution to the Pp1,p2 ,
where, Qp1,p2(Sb(β),Φ) is the unweighted variant of Qw;p1,p2(Sb(β),Φ):

Qp1,p2 (Sb (β) ,Φ)
def
= max
x∈Ker(Φ)\{0}

∑
k∈Sb(β)

∣∣∣∣∣∣
d∑
j=1

|xj [k]|p1
∣∣∣∣∣∣
p2
p1

K∑
k=1

∣∣∣∣∣∣
d∑
j=1

|xj [k]|p1
∣∣∣∣∣∣
p2
p1

.
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The proof of Theorem 2.2 is provided in Section A.7 (page 137).

As expected, for d1= · · ·=dK equal to 1, p2 equal to p, and for all p1≥1, Block-NSP
(Theorem 2.2) is equivalent to the conventional NSP (page 27).

Theorem 2.2 (Block-NSP) determines sufficient conditions on Sb(β) by determining a 50%

upper threshold on the concentration of the `p1 norm of blocks of Kernel x in Block-Support

Sb(β), such that guarantee the uniqueness of the solution to the Pw;p1,p2 minimisation problem.

Corollary 2.1. β is the unique solution of Pp,0 (or Pw;p,0) minimisation problem, if ∀p≥1

|Sb (β)| < Block−Spark(Φ)

2
,

where, |Sb(β)| is the Block-Cardinality of β defined in Definition 2.3 (page 52).

Proof. In Theorem 2.2 (Block-NSP) for a special case of p2=0, ∀p1=p≥1 we have

∀Sb (β) , Qw;p,0(Sb (β) ,Φ) ≤ max
x∈Ker(Φ)\{0}

|Sb (β)|
‖x‖w;p,0

.

Maximum value of the right-hand side is obtained by minimising ‖x‖w;p,0, which the minimum
value is defined according to Definition 2.5 as Block-Spark, so

∀Sb (β) , Qw;p,0(Sb (β) ,Φ) ≤ |Sb (β)|
Block−Spark(Φ)

.

But from Theorem 2.2 (Block-NSP), it is known that for unique solution of the problem Pw;p,0,
it is required that Qw;p,0(Sb(β),Φ)<1/2. On the other hand, ∀p≥1, Pw;p,0 is equal to Pp,0,
which proves the corollary.

Following corollary is a double proof for Theorem 2.1 (Block-ERC based on Block-Spark,
page 65) for p≥1 instead of p≥0.

Corollary 2.2. For any general dictionary, ∀p≥1 if

‖β0‖p,0 <
Block−Spark(Φ)

2
,

then β0 is the unique solution to the Pp,0 (or Pw;p,0) optimisation problem.

Proof. From Theorem 2.2 (Block-NSP), we have Sb(β0)⊂Sb(β), so ‖β0‖p,0=|Sb(β0)|≤|Sb(β)|
and using Corollary 2.1 the proof is done.

Remark 2.9. Although the proposed Block-NSP (Theorem 2.2) is a generalisation of all the
previous null space properties, in general the characterisation Qw;p1,p2(Sb (β) ,Φ) is not easy
to calculate. Therefore, in the next section the tractable characterisation of coherence will be
taken into consider.
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2.3.3 Block-ERC based on block mutual coherence constant

Eldar et al. extended the basic uncertainty principle defined in (1.11) on page 28 to
block-sparse domain defined in (1.19) on page 39 [EB09]; [EKB10b]; [EKB10a]. Now we
generalise the results of Eldar et al., which will be also considered as a generalisation of the
basic uncertainty principle [DS89]; [DH01]; [EB01]; [EB02] and name it basic block-sparse
uncertainty principle.

Lemma 2.2 (Basic Block-UP5). Supposing β1 and β2 are two distinct block-structured
representations of the non-zero signal y in two orthonormal m×m matrices Φ1 and Φ2 with
similar block structure (same number of blocks and blocks’ length vector d), respectively, i.e.,:

y =
K∑
k=1

Φ1 [k]β1 [k] =
K∑
k=1

Φ2 [k]β2 [k] ,

then ∀(q, p)∈R2
≥1, and ∀r∈R≥0:

‖β1‖r,0 + ‖β2‖r,0 ≥
2

d
− 1

2
mind

3
2
maxM q, p

p−1
(Φ1,Φ2)

,

where, M q,p/(p−1)(Φ1,Φ2) is defined based on the parameter changing of p→p/(p−1) in
M q,p(Φ1,Φ2), which is called basic Block-MCCq,p. Basic Block-MCCq,p is derived from the
special case of Property 2.6 (Block-MCCq,p for intra-block orthonormality, page 58), when the
characterisation is extracted from two separated matrices instead of one matrix, and is defined
as follows:

∀(q, p) ∈ R2
>0, M q,p (Φ1,Φ2) = max

k,k′

d
− 1

p

k d
1
q

k′

dmax

∥∥ΦT
1 [k] Φ2

[
k′
]∥∥
q→p .

The proof of Lemma 2.2 is provided in Section A.8 (page 140).

From the notation point of view, notice that the basic Block-MCCq,p of two orthonormal
matrices is equal to the Block-MCCq,p of the dictionary built from the concatenation of those
previous orthonormal matrices, i.e., M q,p/(p−1)(Φ1,Φ2)=Mq,p/(p−1)([Φ1,Φ2]).

As expected, for d1= · · ·=dK equal to 1, Lemma 2.2 reduces to the basic uncertainty
principle explained in (1.11), i.e., (‖β1‖0+‖β2‖0)≥2/M(Φ1,Φ2).

In comparison of different uncertainty principles, it should be taken into account
that a typical uncertainty principle I is weaker than uncertainty principle II, when
minimal sum of `0 pseudo-norm or `r,0 pseudo-mixed-norm of two candidate solutions
β1 and β2 in I is higher than II. To see the effect of block-sparsity on the uncertainty
principle, using ‖β1‖0≤dmax ‖β1‖r,0 and ‖β2‖0≤dmax ‖β2‖r,0, ∀r≥0, in (1.11), we get
(‖β1‖r,0+‖β2‖r,0)≥2/(dmaxM(Φ1,Φ2)). Then, comparing with Lemma 2.2, we need to
demonstrate the relationship between dmaxM(Φ1,Φ2) and d−1/2

min d
3/2
maxM q,p/(p−1)(Φ1,Φ2).

5Block-sparse Uncertainty Principle
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Property 2.15 (Basic Block-MCCq,p v.s. basic MCC). Supposing Φ1 and Φ2 are two
orthonormal matrices, ∀(q, p)∈R2

>0 we have:

0 ≤
d
− 1

2
mind

3
2
maxM q, p

p−1
(Φ1,Φ2)

dmaxM (Φ1,Φ2)
≤ d−

1
2

min d
− 1

2
max max

k,k′
d

1
p
− 1

2

k d
1
q

+ 1
2

k′ max

{
1, d

1
2
− 1

p

k

}
max

{
1, d

1
2
− 1

q

k′

}
.

The above upper-bound for different values of q and p are shown in table 2.7.

Proof. From second part of Property 2.8 (Block-MCCq,p bounds, page 59), which the
dictionary has intra-block orthonormality, in a special case of two distinct orthonormal bases
instead of one dictionary, ∀(q, p, q′, p′)∈R4

>0 we have:

0 ≤M q,p (Φ1,Φ2) ≤ M (Φ1,Φ2)

dmax
max
k,k′

d
1
2
− 1

p

k d
1
q

+ 1
2

k′ max

{
1, d

1
p
− 1

p′
k

}
max

{
1, d

1
q′−

1
q

k′

}
×

max

{
1, d

1
p′−

1
2

k

}
max

{
1, d

1
2
− 1

q′

k′

}
.

Then, by parameter changing of p→p/(p−1), and then selecting q′=p′=2, we get:

0 ≤M q, p
p−1

(Φ1,Φ2) ≤ M (Φ1,Φ2)

dmax
max
k,k′

d
1
p
− 1

2

k d
1
q

+ 1
2

k′ max

{
1, d

1− 1
p
− 1

p′
k

}
max

{
1, d

1
q′−

1
q

k′

}
×

max

{
1, d

1
p′−

1
2

k

}
max

{
1, d

1
2
− 1

q′

k′

}
=
M (Φ1,Φ2)

dmax
max
k,k′

d
1
p
− 1

2

k d
1
q

+ 1
2

k′ max

{
1, d

1
2
− 1

p

k

}
max

{
1, d

1
2
− 1

q

k′

}
.

Next, by multiplying by d−1/2
min d

1/2
max>0, the proof is done.

Remark 2.10. As it is mentioned before, in order to compare the proposed basic
block-sparse uncertainty principle in Lemma 2.2 (Basic Block-UP, page 69), i.e.,
(‖β1‖r,0+‖β2‖r,0)≥2/(d

−1/2
min d

3/2
maxM q,p/(p−1)(Φ1,Φ2)), with the conventional basic uncertainty

principle explained in (1.11) on page 28, i.e., (‖β1‖0+‖β2‖0)≥2/M(Φ1,Φ2), the relationship
between d

−1/2
min d

3/2
maxM q,p/(p−1)(Φ1,Φ2) and dmaxM(Φ1,Φ2) should be investigated. The

mentioned comparison is shown in table 2.7. Since the two terms are in the denominator
of the right-hand side of the uncertainty principle, the smaller values lead to more weakened
uncertainty principles, hence, improve the conditions. Therefore, the values in table 2.7,
which are less than or equal to one, correspond to weakened uncertainty principles due to

0 < q& p ≤ 2 q& p ≥ 2 0 < q ≤ 2 & p ≥ 2 q ≥ 2 & 0 < p ≤ 2

d
− 1

2
mind

3
2
maxMq,

p
p−1

(Φ1,Φ2)

dmaxM(Φ1,Φ2)
≤ d

− 1
2

min d
1
p

+ 1
q
− 1

2
max d

− 1
2

min d
1
2
max d

− 1
2

min d
1
q
max d

− 1
2

min d
1
p
max

Table 2.7: Upper-bound of d−1/2
min d

3/2
maxM q,p/(p−1)(Φ1,Φ2)/dmaxM(Φ1,Φ2) for different values

of q and p.
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using block-sparsity. From table 2.7, it can be seen that for ∀(q, p)∈R2
≥2 and dmin=dmax, the

proposed basic block-sparse uncertainty principle in Lemma 2.2 (Basic Block-UP) improves
the conventional basic uncertainty principle explained in (1.11).

To compare the proposed basic block-sparse uncertainty principle in Lemma 2.2 (Basic
Block-UP, page 69, with dmin=dmax=d) with the block-sparse uncertainty principle proposed
by Eldar et al. in (1.19) on page 39, i.e., ‖β1‖2,0+‖β2‖2,0≥2/(dMEldar

Inter (Φ1,Φ2)),
where MEldar

Inter (Φ1,Φ2)= maxk,k′ ‖ΦT
1 [k]Φ2[k′]‖2→2/d, we need to investigate the relationship

between M q,p/(p−1)(Φ1,Φ2) and MEldar
Inter (Φ1,Φ2).

Property 2.16 (Basic Block-MCCq,p v.s. basic block-coherence of Eldar et al.).
Supposing Φ1 and Φ2 are two orthonormal matrices with equally-sized blocks of length d,
∀(q, p)∈R2

>0 we have:

M q, p
p−1

(Φ1,Φ2)

MEldar
Inter (Φ1,Φ2)

≥ d
1
q

+ 1
p
−1

min
{

1, d
1
2
− 1

p

}
min

{
1, d

1
2
− 1

q

}
,

M q, p
p−1

(Φ1,Φ2)

MEldar
Inter (Φ1,Φ2)

≤ d
1
q

+ 1
p
−1

max
{

1, d
1
2
− 1

p

}
max

{
1, d

1
2
− 1

q

}
.

Then, for q=p=2 the lower- and upper-bound are both equal to one, then
M2,2(Φ1,Φ2)=MEldar

Inter (Φ1,Φ2). The above bounds for different values of q and p are shown
in table 2.8.

Proof. It follows from Property 2.11 (Block-MCCq,p v.s. block-coherence of Eldar et al., page
62) in a special case of two orthonormal matrices ∀(q, p)∈R2

>0:

M q,p (Φ1,Φ2) ≥ d
1
q
− 1

p min
{

1, d
1
p
− 1

2

}
min

{
1, d

1
2
− 1

q

}
MEldar

Inter (Φ1,Φ2) ,

M q,p (Φ1,Φ2) ≤ d
1
q
− 1

p max
{

1, d
1
p
− 1

2

}
max

{
1, d

1
2
− 1

q

}
MEldar

Inter (Φ1,Φ2) .

Then, by parameter changing of p→p/(p−1), the proof is done.

Remark 2.11. To compare the proposed basic block-sparse uncertainty
principle in Lemma 2.2 (Basic Block-UP, page 69, with dmin=dmax=d), i.e.,
(‖β1‖r,0+‖β2‖r,0)≥2/(dM q,p/(p−1)(Φ1,Φ2)), with the block-sparse uncertainty principle
proposed by Eldar et al. in (1.19), i.e., ‖β1‖2,0+‖β2‖2,0≥2/(dMEldar

Inter (Φ1,Φ2)), the

0 < q& p ≤ 2 q& p ≥ 2 0 < q ≤ 2 & p ≥ 2 q ≥ 2 & 0 < p ≤ 2

Mq,
p

p−1
(Φ1,Φ2)

MEldar
Inter (Φ1,Φ2)

≥ 1 d
1
q

+ 1
p
−1

d
1
p
− 1

2 d
1
q
− 1

2

Mq,
p

p−1
(Φ1,Φ2)

MEldar
Inter (Φ1,Φ2)

≤ d
1
q

+ 1
p
−1

1 d
1
q
− 1

2 d
1
p
− 1

2

Table 2.8: Bounds of M q,p/(p−1)(Φ1,Φ2)/MEldar
Inter (Φ1,Φ2) for different values of q and p.
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relationship between M q,p/(p−1)(Φ1,Φ2) and MEldar
Inter (Φ1,Φ2) should be investigated. With

the same reasoning as the one used in Remark 2.10 (page 70), the upper-bound values in table
2.8, which are less than or equal to one, correspond to weakened uncertainty principles. From
table 2.8, it can be seen that for ∀(q, p)∈R2

≥2, the proposed basic block-sparse uncertainty
principle in Lemma 2.2 improves the basic block-sparse uncertainty principle proposed by
Eldar et al. in (1.19) on page 39.

As mentioned before, we had lower-bound for the basic MCC, i.e., M(Φ1,Φ2)≥1/
√
m

(page 22), and for basic block-coherence of Eldar et al., i.e., MEldar
Inter (Φ1,Φ2)≥1/

√
dm (page

40). Next, we show the corresponding lower-bound for the proposed basic Block-MCCq,p in a
special case of q=p=2, i.e., M2,2(Φ1,Φ2).

Property 2.17 (Basic Block-MCC2,2 lower-bound). Supposing Φ1 and Φ2 are two
m×m orthonormal matrices, we have:

M2,2 (Φ1,Φ2) ≥ dmin d
− 3

2
max√
m

. (2.2)

The proof of Property 2.17 is provided in Section A.9 (page 144).

Remark 2.12 (Block-incoherency). It can be seen that for special settings of
d1= · · ·=dK=1 and equally-sized blocks, i.e., d1= · · ·=dK=d, Property 2.17 is equivalent
to the conventional bound, i.e., M(Φ1,Φ2)≥1/

√
m, and the bound of Eldar et al.,

i.e., MEldar
Inter (Φ1,Φ2)≥1/

√
dm, respectively. Generally, for settings of dmin d

−3/2
max ≤1, the

lower-bound in Property 2.17 is less than or equal to the lower-bound in conventional
case, which means that in the proposed block-structured scenario, dictionaries can be more
block-incoherent compared to the conventional case. Since there is a direct relationship
between the sparsity level of recovery condition and block-incoherency, hence improved
recovery conditions are obtained in block-structured scenario. In addition, notice that in
the proof of all above basic two orthonormal bases we used the relationships of a dictionary
with intra-block orthonormality, because for an orthonormal base Φ∈Rm×m, with ΦTΦ=Im,
we have ΦT [k]Φ[k]=Idk .

Returning back from basic two orthonormal bases Φ1 and Φ2 to the dictionaries Φ, the
corresponding relations based on Block-MCCq,p (Definition 2.6, page 54) should be established.
Thanks to Block-MCCq,p, we can overcome the issue of intractability of the Block-Spark

(Definition 2.5, page 52). Now, we introduce the following Block-ERC based on Block-MCCq,p:
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Theorem 2.3 (Block-ERC based on Block-MCCq,p). For any dictionary Φ

with full column rank blocks, let y=Φβ0, then supposing Block-MCCq,p Mq,p(Φ),
Block-Support relation Sb(β0)⊂Sb(β), ∀(q, p)∈R2

≥1, and ∀r∈R≥0, if

‖β0‖r,0 <
1 + (dmaxMq,p (Φ))−1 min

k
min

{
1, d

1
q
− 1

p

k

}
2

,

then β0 is the unique solution to the Pw;q,1 problem.

The proof of Theorem 2.3 is provided in Section A.10 (page 145).

For d1= · · ·=dK=1, Theorem 2.3 converges to its conventional element-wise counterpart
explained in (1.13) on page 29, i.e., ‖β0‖0<(1+M−1(Φ))/2.

As mentioned before (page 38), the right-hand side of the equation in Theorem 2.3 is called
Block-SL and is represented as Block−SL(Φ). In order to make a comparison of Block-SL of
Theorem 2.3, for different basic tractable (q, p) pairs of table 2.1 (page 54), let us represent
it as Block−SLq,p(Φ) and call it (q, p)-Block-Sparsity Level (Block-SLq,p). In the following
property we investigate the possible relationship between different Block-SLq,p:

Property 2.18 (Block-SLq,p inequalities). The different Block-SLq,p calculated for basic
tractable `q→p operator-norms of table 2.1 (page 54) have the following relationships:

Block−SL1,∞ (Φ) ≤ Block−SL1,2 (Φ) ≤ Block−SL1,1 (Φ) ,

Block−SL1,∞ (Φ) ≤ Block−SL1,2 (Φ) ≤ Block−SL2,2 (Φ) ,

Block−SL1,∞ (Φ) ≤ Block−SL2,∞ (Φ) ≤ Block−SL2,2 (Φ) ,

Block−SL1,∞ (Φ) ≤ Block−SL2,∞ (Φ) ≤ Block−SL∞,∞ (Φ) ,

which is shown in figure 2.5(a), while their general relationship for equally-sized case, i.e.,
d1= · · ·=dK=d, is represented schematically in figure 2.5(b).

Figure 2.5: Block-SLq,p inequalities for (a) differently-sized, and (b) equally-sized block
structure, for common `q→p operator-norms according to table 2.1 (page 54).
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The proof of Property 2.18 is provided in Section A.11 (page 148).

Now we need to prove the claim of improved recovery conditions in the block-wise domain
through comparing sparsity level with block-sparsity level. To this end, supposing that β0

has a block-sparse structure and satisfies the condition of Theorem 2.3 (Block-ERC based on
Block-MCCq,p), and considering the fact that ∀r≥0, ‖β0‖0≤dmax ‖β0‖r,0, we have:

∀(q, p) ∈ R2
≥1, ‖β0‖0 <

dmax +M−1
q,p (Φ) min

k
min

{
1, d

1
q
− 1

p

k

}
2

.

Comparing with ‖β0‖0<(1+M−1(Φ))/2 in (1.13) on page 29, we see that the relationship
between dmax+M−1

q,p (Φ) mink min{1, d1/q−1/p
k } and 1+M−1(Φ) should be investigated. We

show this relationship in the following property, which the proof is provided in Section A.12
(page 149):

Property 2.19 (SL6 v.s. Block-SLq,p). For a dictionary Φ with intra-block
orthonormality, and Block-MCCq,p Mq,p(Φ), ∀(q, p, q′, p′)∈R4

>0 if the MCC M(Φ) is small
enough, i.e.,

M (Φ) ≤

1−
dmax min

k
min

{
1, d

1
q
− 1

p

k

}
max
k,k′ 6=k

d
1
2
− 1

p

k d
1
q

+ 1
2

k′ max

{
1, d

1
p
− 1

p′
k

}
max

{
1, d

1
q′−

1
q

k′

}
max

{
1, d

1
p′−

1
2

k

}
max

{
1, d

1
2
− 1

q′

k′

}
dmax − 1

,

then the proposed sparsity level in Theorem 2.3 (block-ERC based on Block-MCCq,p, page
73) is higher than the conventional sparsity level, i.e.,

dmax +M−1
q,p (Φ) min

k
min

{
1, d

1
q
− 1

p

k

}
≥ 1 +M−1 (Φ) .

Remark 2.13. Therefore, exploiting the block structure information of the representation
and using the proposed characterisation of the dictionary, named Block-MCCq,p (Definition
2.6, page 54), improves the conventional MCC-based ERC of Donoho et al. [DH01]; [DE03b];
[DET06], Gribonval and Nielsen [GN03a]; [GN07], Tropp [Tro04a], and Bruckstein et al.
[BDE09] by increasing the sparsity level, hence weakening the corresponding conditions. The
mentioned improvement is under condition on conventional MCC, which ensures that the
dictionary is sufficiently incoherent, i.e., MCC is small enough.

In order to have a clear sense of the upper-bound on the conventional MCC in Property
2.19 (SL v.s. Block-SLq,p), this value is calculated in table 2.9 for the basic tractable (q, p)

pairs of table 2.1 (page 54). Although, for the MCC values less than the upper-bounds in
table 2.9, the supremacy of the proposed sparsity level is ensured, but these bounds are very
pessimistic and in practice for even higher values of MCC the supremacy of the proposed
sparsity level can be observed.

6Sparsity Level
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(q = q′, p = p′) (1, 1) (1, 2) (1,∞) (2, 2) (2,∞) (∞,∞)

M(Φ) ≤ 1

d
1
2
max

(
d
1
2
max+1

) 1

d
1
2
max

(
d
1
2
max+1

) 1
dmax

0 1

d
1
2
max

(
d
1
2
max+1

) 1

d
1
2
max

(
d
1
2
max+1

)

Table 2.9: Upper-bound of MCC ensuring the supremacy of the proposed sparsity level, for
different basic values of (q, p) pairs and for a dictionary with intra-block orthonormality.

Remark 2.14. Table 2.9 demonstrates that our proposed sparsity level for the `2→2

operator-norm, which is equal to the conventional `2 matrix norm, requires the most strict
upper-bound on M(Φ) in order to be higher than the conventional sparsity level, while
the dictionaries with characterisations that use operator-norms other than `2→2 can be
less incoherent (more coherent, i.e., higher M(Φ) is allowed), and especially for `1→∞
operator-norm the most relaxed upper-bound on M(Φ) is achieved. This is one of the
advantages of utilising operator-norms, which enable us to have more relaxed conditions by
exploiting norms other than the conventional `2.

Now Block-ERC of Eldar et al., i.e., ‖β0‖2,0<(1+(dMEldar
Inter (Φ))−1(1−(d−1)MEldar

Intra (Φ)))/2,
explained in (1.20) on page 40, can be compared to our Block-ERC proposed in Theorem 2.3
(Block-ERC based on Block-MCCq,p, page 73). Supposing that all blocks sharing the same
block length d, it is clear that the relationship between (MEldar

Inter (Φ))−1(1−(d−1)MEldar
Intra (Φ))

and M−1
q,p (Φ) min{1, d1/q−1/p} should be investigated.

Lemma 2.3 (Eldar et al.'s v.s. proposed Block-SLq,p). For a dictionary with intra-block
orthonormality, Block-ERC proposed in Theorem 2.3 (Block-ERC based on Block-MCCq,p,
page 73) for q=p=2 as the best case is equal to Block-ERC of Eldar et al. (equation (1.20),
page 40).

The proof of Lemma 2.3 is provided in Section A.13 (page 151).

Remark 2.15. It is worth mentioning that in dictionaries with intra-block
orthonormality, by definition of intra-block coherence of Eldar et al., MEldar

Intra (Φ)

is equal to zero in Block-ERC of Eldar et al. (equation (1.20), page 40), i.e.,
‖β0‖2,0<(1+(dMEldar

Inter (Φ))−1(1−(d−1)MEldar
Intra (Φ)))/2=(1+(dMEldar

Inter (Φ))−1)/2. On the
other hand, based on lemma 2.3, the proposed Block-ERC for q=p=2 is equivalent to the
condition of Eldar and her co-workers. Therefore, our proposed Block-ERC in Theorem 2.3
(page 73) in the following special setting, reduces to Block-ERC of Eldar et al.:

• q=p=2,

• equally-sized blocks, i.e., d1= · · ·=dK=d, and

• intra-block orthonormality of dictionary, i.e., for 1≤k≤K, ΦT [k]Φ[k]=Id.

In other words, in the mentioned special setting, theoretically and independent of the recovery
algorithm, the same Block-ERC can be achieved.
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2.3.4 Block-ERC based on cumulative coherence constant

All the coherence characterisations such as conventional MCC (page 22) [DH01],
block-coherence of Eldar et al. (page 36) [EKB10a], mutual subspace coherence of Ganesh et
al. (page 37) [GZM09], or our Block-MCCq,p (page 54) regardless of their definition in the
block-wise or element-wise domain represent only the most extreme correlation between the
atoms, blocks or subspaces of the dictionary and do not offer a comprehensive description of
the dictionary.

Based on the proposed Eldar’s cumulative coherence (Definition 2.8, page 63) for
equally-sized blocks of length d, we introduce the following condition named Block-ERC based
on cumulative inter-block coherence constant :

Theorem 2.4 (Block-ERC based on Eldar’s cumulative coherence).
For any general dictionary Φ with equally-sized blocks of length d, and for
(d−1)MEldar

Intra (Φ)+dMEldar
Inter (Φ, k−1)<1, if

MEldar
Inter (Φ, k) +MEldar

Inter (Φ, k − 1) <
1− (d− 1)MEldar

Intra (Φ)

d
,

where, MEldar
Inter (Φ, k)

def
=d−1 max|Λ|=k maxj /∈Λ

∑
i∈Λ ‖ΦT [i]Φ[j]‖2→2 (Eldar’s cumulative

coherence, Definition 2.8, page 63), and MEldar
Intra (Φ)

def
= maxi,j 6=i

k
|ϕTi [k]ϕj [k]| (page 36),

then block k-sparse representation vector β0 can be recovered correctly from block
orthogonal matching pursuit and `2/`1-optimisation program algorithms.

The proof of Theorem 2.4 is provided in Section A.14 (page 154).

For d equal to 1, the Block-ERC based on cumulative inter-block coherence constant which
is proposed in Theorem 2.4 is equivalent to its element-wise counterpart defined in (1.14) on
page 31, i.e., the ERC based on cumulative MCC, i.e., M(Φ, k)+M(Φ, k−1)<1. The last
proposed Block-ERC is the only algorithm-dependent condition, which the algorithms are
explained in [EB09].
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2.4 Numerical experiments

In this section, the block-sparsity levels resulted from the proposed
Block-ERC based on Block-MCCq,p (Theorem 2.3, page 73), i.e.,
Block−SLq,p(Φ)=(1+(dmaxMq,p(Φ))−1 mink min{1, d1/q−1/p

k })/2, are going to be calculated.
Block-MCCq,p is selected, because it is computationally tractable. In all of the numerical
simulations performed below, we have:

1. Dictionaries are generated from independent and identically distributed (i.i.d.) random
variables, with 40 rows and 400 columns.

2. All columns of the dictionaries are normalized to have unit `2 norm.

3. The results are shown in terms of average and standard deviation over 100 repetitions
of random dictionary generation.

4. All blocks share the same length d, i.e., d1= · · ·=dK=d.

5. Only the basic tractable operator-norms of table 2.1 (page 54) are considered for the
calculation of the Block-MCCq,p.

In Definition 2.6 (page 54), we proposed the characterisation Block-MCCq,p in a general
format, which has three main free parameters of dk, Φ, and `q→p operator-norm, i.e.,
Mq,p(Φ)= maxk,k′ 6=k(d

−1/p
k d

1/q
k′ )/dmax‖Φ†[k]Φ[k′]‖q→p. Therefore, following parameters can

be considered in the computation of sparsity level:

• Block length dk: Block-MCCq,p is a function of the length of each block, i.e. dk, ∀k.

• Type of dictionary Φ: Although Block-MCCq,p is defined for a dictionary in general, but
in Property 2.6 (Block-MCCq,p for intra-block orthonormality, page 58), we investigated
a special case, where, there is intra-block orthonormality, i.e., ΦT [k]Φ[k]=Id, ∀k.

• `q→p operator-norm in Block-MCCq,p: Based on the table 2.1 (page 54), only six
tractable operator-norms of `1→1, `1→2, `1→∞, `2→2, `2→∞, and `∞→∞ are considered
in the numerical experiments.

In order to investigate the behaviour of sparsity level in Block-ERC based on Block-MCCq,p as
a function of the three above-mentioned parameters, in each of the following three experiments,
one parameter out of three is kept fixed. Finally, for comparison with the existing results,
the sparsity level in the sparsity domain introduced by Donoho et al. (equation (1.13), page
29), i.e., SLDonoho=(1+M−1(Φ))/2, and in the block-sparsity domain introduced by Eldar et
al. (equation (1.20), page 40), i.e., SLEldar=(d+(MEldar

Inter (Φ))−1(1−(d−1)MEldar
Intra (Φ))/2, are

provided. Notice, in order to compare to the conventional sparsity level of Donoho et al., the
block-sparsity level resulted in the Block-ERC, whether ours or the results of Eldar et al.,
are multiplied by d to be transformed to the sparsity level, because the dictionary consists of
equally-sized blocks. At last, the higher the sparsity level, the more improved the recovery
condition.



78 Chapter 2. Block-ERC in general dictionaries

2.4.1 Effect of dictionary and operator-norm type

In this experiment, assume that the block length d is fixed. The goal is to investigate the
sparsity level for two types of random dictionaries without and with intra-block orthonormality,
and for the six pairs of q and p with tractable operator-norms.

Finally, the sparsity levels for two types of random dictionaries each with six different
pairs of q and p are compared to the conventional sparsity levels of Eldar et al. and Donoho
and his co-workers. The result of the experiment is shown in figure 2.6 for (a) d=2 and (b)
d=4. The first six bars in figure 2.6(a) and (b) correspond to the proposed sparsity levels
for random dictionaries without (SL(Φ), orange colour) and with (SL(Φort), blue colour)
intra-block orthonormality. Sparsity levels of Donoho et al. for the mentioned two types of
dictionary are equal.

As it can be seen in figure 2.6(a) and (b), all the proposed sparsity levels based on
Block-MCCq,p for random dictionaries Φ without intra-block orthonormality are higher than
the conventional sparsity levels introduced by Eldar et al. and Donoho et al. (orange colour),
whereas for random dictionaries Φort with intra-block orthonormality (blue colour), the highest
value corresponds to Block-MCC2,2, which is equal to the sparsity level of Eldar et al., as
proved theoretically in Lemma 2.3 (page 75), and explained in Remark 2.15. At last, all the
proposed sparsity levels for two types of dictionaries are higher than the conventional sparsity
level of Donoho et al. as proved theoretically in Property 2.19 (page 74), and explained in
Remark 2.13.

Figure 2.6: Sparsity levels for six tractable Block-MCCq,p, for dictionaries without (SL(Φ))
and with (SL(Φort)) intra-block orthonormality compared to two conventional sparsity levels
for (a) d=2, and (b) d=4.
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2.4.2 Effect of block length and operator-norm type

In this experiment, assume that the dictionary is in general with full column rank blocks.
The goal is to investigate the sparsity levels for the six pairs of q and p with tractable
operator-norms and for different dictionaries with equally-sized blocks d={1, 2, 4, 5, 8, 10}.
Finally, the sparsity levels for six Block-MCCq,p computed for different values of d, are
compared to the conventional sparsity levels of Donoho et al. and Eldar and her co-workers.
As it can be seen in figure 2.7, for a general dictionary, for d>1 all the proposed sparsity levels
based on Block-MCCq,p are higher than the conventional sparsity levels introduced by Donoho
et al. and Eldar and her co-workers. By increasing the block length d, the difference between
the proposed and conventional sparsity levels becomes more pronounced.

Assuming that the sparsity level corresponding to Block-MCCq,p is represented by
SLq,p(Φ), the following SLq,p inequalities was obtained from simulation experiments for
all values of d: SL1,∞(Φ)<SL1,2(Φ)<SL2,∞(Φ)<SL1,1(Φ)<SL∞,∞(Φ)<SL2,2(Φ), whereas
SL1,2(Φ), SL2,∞(Φ), SL1,1(Φ), and SL∞,∞(Φ) are closer to each other compared to the
two other sparsity levels. Part of the sparsity level inequalities obtained from simulation
experiments is proved theoretically in Property 2.18 (Block-SLq,p inequalities, page 73).

For a general dictionary with full column rank blocks, sparsity level of Eldar et
al. is not computable for all values of d, because from Block-ERC of Eldar et al.,
i.e., ‖β0‖2,0<(1+(dMEldar

Inter (Φ))−1(1−(d−1)MEldar
Intra (Φ)))/2, (equation (1.20), page 40), the

inequality 1−(d−1)MEldar
Intra (Φ)+dMEldar

Inter (Φ)>0 should hold true in order to have a positive
sparsity levels. At last, for d=1, the SL in block domain are equal to the scalar domain.

Figure 2.7: Sparsity levels for different values of block length d using six Block-MCCq,p,
compared to two conventional sparsity levels proposed by Donoho et al. and Eldar and her
co-workers.
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2.4.3 Effect of block length and dictionary type

In this experiment, assume that the dictionary characterisation of Block-MCC2,2 is used.
The goal is to investigate the sparsity levels for two types of random dictionaries without
and with intra-block orthonormality, and for different dictionaries with equally-sized blocks
d={1, 2, 4, 5, 8, 10}. Finally, the sparsity levels for two types of random dictionaries computed
for different values of d, are compared to the conventional sparsity levels of Donoho et al. and
Eldar and her co-workers.

As it can be seen in figure 2.8, for Block-MCC2,2 as dictionary characterisation, the
proposed sparsity levels for random dictionaries without intra-block orthonormality and
with full column rank blocks (Φ, hollow downward orange triangles) are higher than the
conventional sparsity levels introduced by Donoho et al. (Φ, hollow green circles) and Eldar
et al. (Φ, hollow upward blue triangles) for all values of d.

Except for the results of Donoho et al., the sparsity levels for random dictionaries
with intra-block orthonormality are higher than for random dictionaries without intra-block
orthonormality (with full column rank blocks). Sparsity level of Donoho et al. is invariable to
two types of dictionaries Φ and Φort, and also to changes in d (the corresponding two set of
markers are superimposed). At last, for d=1, the sparsity levels in block domain are equal to
the scalar domain.

Figure 2.8: Sparsity levels for different values of block length d for two types of random
dictionaries without (Φ) and with (Φort) intra-block orthonormality, compared to two
conventional sparsity levels.
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2.5 Conclusion

In this chapter, the sufficient conditions for unique representation of block-sparse recovery
of an arbitrary signal y in a general arbitrary dictionary Φ using general weighted
(pseudo-)mixed-norm Pw;p1,p2 (and also Pp1,p2 as explained in Remark 2.1, Pw;p1,p2 v.s. Pp1,p2 ,
page 50) optimisation problem, are proposed.

The dictionary is general (with full column rank blocks) and not restricted to be a union
of two or more orthonormal bases, although we have some results in the special setting of the
dictionary with intra-bock orthonormality. For theoretical conditions, weighted optimisation
problems of Pw;p1,p2 (and also Pp1,p2 for 0≤p2≤1≤p1) and Pw;p,0 (and also Pp,0 for p>0) are
defined in their general form.

In addition, the proposed characterisations of Block-Spark, Block-NSP, Block-MCCq,p,
cumulative Block-MCCq,p, and the properties are introduced in the general case.

Then, we demonstrated the relationship between the proposed Block-MCCq,p, and
conventional MCC and block-coherence proposed by Eldar et al. [EB09]; [EKB10b]; [EKB10a].

The proposed various properties and block-sparse uncertainty principles are defined in the
general case and introduced to deduce recovery conditions for block-sparse representations.

We defined basic block-sparse uncertainty principle based on the proposed basic
Block-MCCq,p, upper-bounded it in terms of its conventional basic MCC, then lower-bounded
in terms of m and length of blocks, then showed its relationship with basic block-coherence
of Eldar et al., and in the end we showed in which conditions the dictionary can be more
block-incoherent relative to the conventional and existing block-wise cases.

We demonstrated that the proposed Block-ERC based on Block-Spark improves the
conventional ERC based on Spark [DE03b]; [GN03b]. In addition, the proposed Block-NSP
generalises the conventional NSP [DH01]; [EB01]; [GN03b]; [FN03a]; [Zha05]; [SXH08];
[CDD09] and another existing Block-wise NSP [SPH09], and Fusion NSP in special setting
[BKR11].

Further, we showed that the proposed Block-ERC based on Block-MCCq,p improves the
conventional ERC based on MCC [DH01].

Moreover, we improved the Block-ERC of Eldar et al. and demonstrated that our results
algorithm-independently weaken the condition. In addition in special setting of q=p=2,
intra-block orthonormality and equally-sized blocks our proposed Block-ERC and the results
of Eldar et al. are equivalent [EB09].

Next, we proposed Block-MCCq,p-based recovery conditions for convex problem Pw;p,1

(and Pp,1 for equally-sized blocks), where, p≥1.

Finally, we introduced the cumulative version of the block-coherence of Eldar et al.
[EB09], named it cumulative inter-block coherence constant, demonstrated its relationship
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with cumulative Block-MCCq,p, and the inter-block coherence defined by Eldar et al., and
proposed Block-ERC based on cumulative inter-block coherence constant.

All the contributions of this work are the natural generalisation of the existing conventional
concepts, thus, they all reduce to the conventional ones for the unit block size, i.e., ∀k, dk=1.
Therefore, all the results are consistent with the previous findings.

In numerical experiments in Section 2.4, we showed that in computation of sparsity level,
there are three types of parameters: block length dk, existence of intra-block orthonormality,
and `q→p operator-norm in Block-MCCq,p.

Then, by assuming that only two types of parameters are variable, we investigated the
behaviour of sparsity level in three different experiments.

In this part, we are going to investigate the sparsity levels while all the three mentioned
parameters are variable. In figure 2.9, the first twelve bars for each block size d, indicate
(d+M−1

q,p (Φ))/2.

The proposed sparsity levels are calculated for the six tractable basic operator-norms of
`1→1, `1→2, `1→∞, `2→2, `2→∞, and `∞→∞, based on the table 2.1 (page 54). Then, repeated
for dictionaries without (Φ) and with (Φort) intra-block orthonormality.

The last four bars are the sparsity levels of the Block-ERC proposed by Eldar et al., i.e.,
d times the right-hand side of the (1.20), and of the ERC proposed by Donoho et al., i.e.,
(1+M−1(Φ))/2 defined in (1.13), for two types of dictionary, i.e., Φ and Φort.

As it can be seen in figure 2.9, all sparsity levels for d=1 converge to the conventional
sparsity level of Donoho et al., whereas by increasing d, the sparsity level related to the
Block-ERC, whether ours or the condition of Eldar et al., are significantly increased, which
practically demonstrates the claim of weakened recovery conditions in the block-wise domain,
which has been proved theoretically in Property 2.19 (SL v.s. Block-SLq,p, page 74).

In addition, it can be seen in figure 2.9 that for q=p=2, our proposed sparsity level is
equal to that of Eldar et al., which demonstrates the correctness of the claim in Lemma 2.3
and consequently Remark 2.15. As discussed in Remark 2.15 and can be seen in figure 2.9,
for q=p=2 and intra-block orthonormality, the proposed sparsity level reduces to the sparsity
level of Eldar and her co-workers.

Furthermore, for all variable parameters, we have SL1,∞(Φ)<SL1,2(Φ)<SL1,1(Φ),
SL1,∞(Φ)<SL1,2(Φ)<SL2,2(Φ), SL1,∞(Φ)<SL2,∞(Φ)<SL2,2(Φ), and SL1,∞(Φ) <

SL2,∞(Φ) < SL∞,∞(Φ), which is in agreement with Property 2.18 (Block-SLq,p inequalities).

In addition, it can be seen that for a given q and p pairs, the sparsity level of dictionaries
Φort with intra-block orthonormality is higher than the sparsity level of dictionaries Φ without
intra-block orthonormality, i.e., conditions based on Φort are weaker.
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Figure 2.9: Sparsity level as a function of d for different values of q and p, averaged over 100
realisations of random dictionaries, with m=40 and n=400.

Future research should focus on:

• Introducing block-sparse recovery conditions based on the proposed cumulative
Block-MCCq,p defined in Definition 2.7.

• Generalising the conventional dictionary characterisation of µ defined in [DE03b], to
establish block-sparse recovery conditions.

• Transforming all the previously mentioned block-sparse exact recovery conditions to
block-sparse stable recovery conditions. In stable or robust recovery conditions we have,
‖y−Φβ̂‖2<e, where, e is the noise level.

• Study on block-sparse optimisation algorithms, and the relationship between the
theoretical and algorithmic block-sparse recovery conditions.
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3.1 Introduction

The structure of block-sparsity, which is defined in Section 2.2.1 had been assumed to be
known. In other words, the block structure of the representation vector β and dictionary Φ is
assumed to be stored in d=[d1, · · · , dK ]. However, in some problems the block structure prior
knowledge might be not available. Therefore, the problem of block structure identification
needs to be taken into account [Eks11].

In this chapter, the proposed block structure identification method is explained in Section
3.2. Next, the advantages of the proposed method including the improved recovery conditions
and brain source space segmentation are investigated in sections 3.3 and 3.4, respectively.
Then, some experiments on synthetic dictionary and real lead-field in Section 3.5 demonstrate
the advantages of the proposed block structure identification method.
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3.2 Block structure identification

As mentioned earlier, many real-world inverse problems are vastly underdetermined. In a fat
coefficient matrix of a vastly USLE1, the columns are more likely to be coherent. Therefore,
computing any kind of dictionary characterisation based on inter-columns coherence leads
to high values. As discussed in Chapter 2, because of the inverse relationship between the
coherence characterisation of a general dictionary and the corresponding sparsity level in
Block-ERC2, the resulted Block-ERC would be tighter, which is not desired.

One possible solution to the issue of high coherence characterisation of dictionary or
coefficient matrix in vastly USLE, is grouping the coherent columns of the dictionary to
form some groups of columns, where, the columns inside each group or block are highly
coherent. Then, computing the inter-blocks coherence characterisation leads to lower
coherence characterisation of dictionary in comparison to the standard inter-columns coherence
characterisation, because the resulted block of columns are more incoherent compared to the
columns of dictionary. The proposed Block-MCCq,p3 is a suitable coherence characterisation
of dictionary, due to its generality and flexibility in computing the coherence between
differently-sized blocks of columns.

By clustering the coherent columns or blocks of columns of a given dictionary utilising
general characterisation of Block-MCCq,p as the similarity measure, the block structure of
the dictionary can be identified. Because each cluster of columns represents a block of the
dictionary. In other words, clusters resulted from the clustering algorithm are equivalent to
the blocks of the dictionary.

After applying clustering algorithm on the dictionary, each cluster, e.g., cluster k, contains
some columns, where, the number of columns determines the size of corresponding block in
the dictionary, i.e., dk, therefore, the block structure d=[d1, · · · , dK ] is identified.

Each column in the dictionary Φ∈Rm×n is multiplied to a corresponding element in the
representation vector β∈Rn, i.e., y=

∑n
i=1 βiϕi. So, each column ϕi in dictionary is linked

to a corresponding element in β, i.e., βi. Therefore, by determining the block structure of
dictionary, the block structure of the representation vector is also identified.

By utilising the proposed clustering-based framework, we attain two main goals, which
are represented graphically in figure 3.1 for a real-world problem of EEG4/MEG5 source
reconstruction USLE:

• improved Block-ERC, and

• support segmentation.

1Underdetermined System(s) of Linear Equations
2Block-sparse Exact Recovery Condition(s)
3(q, p)-Block Mutual Coherence Constant
4ElectroEncephaloGraphy
5MagnetoEncephaloGraphy
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Assuming the EEG/MEG source reconstruction problem in figure 3.1, there are four brain
sources of s1, · · · , s4, as a simple example. The clustering tree is resulted from clustering the
lead-fields of four sources. As shown graphically, the inter-cluster distance in clustering tree
at the clustering level equivalent to three clusters is maximum. Then, the estimated number
of clusters in the lead-field is three. As represented graphically in figure 3.1 (right part), the
SL[%]6 for three clusters is higher than the SL[%] for four clusters, where, the clustering is not
applied. So there is improvement in Block-ERC based on Block-MCCq,p. The computation of
different sparsity levels will be explained in Section 3.3.

The clustering structure corresponding to three clusters is P={s1, s2, [s3, s4]}, where, s3

and s4 are clustered to form a new cluster, while s1 and s2 are single-element clusters.
Therefore, d=[3, 3, 6], because in EEG/MEG source reconstruction problem each source’s
lead-field corresponds to three columns in the whole lead-field matrix. The partitioning P of
sources s1, · · · , s4, indicates to the brain source space segmentation, as represented graphically
in figure 3.1 (left part), and will be explained in detail in Section 3.4.

Figure 3.1: Clustering the coherent blocks using Block-MCCq,p determines the block structure,
while improves Block-ERC and segments brain sources.

6Sparsity Level
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3.2.1 Clustering coherent blocks of a general dictionary

Whether the block structure of a given dictionary is assumed to be known beforehand but it
is not the optimal structure or it is unknown, by clustering coherent blocks in a bigger block,
there would be the possibility of enhancing the structure of the dictionary as a preprocessing
step.

In this chapter, we made use of standard agglomerative hierarchical clustering method,
where, the proposed Block-MCCq,p is used as the measure of similarity or coherence.
Hierarchical clustering provides a set of clustering structures in multilevel hierarchy manner,
which allows to decide the level of clustering that is most suitable to the application of interest.
The set of clustering structures is called clustering tree or dendrogram. The dendrogram
consists of some nodes indicating the clusters, and usually the clustering level corresponding
to the maximum inter-node distance is selected as the desired clustering level.

In figure 3.2, it has been assumed that before blocks clustering all of the blocks of
the dictionary Φ∈R8×12 share the same length of two, i.e., d1= · · ·=d6=2. Then, by
applying hierarchical clustering on initial blocks of dictionary and choosing the clustering
level corresponding to the maximum inter-node distance in the clustering tree, i.e., three
clusters, the clustered representation appears.

As it can be seen in figure 3.2, after blocks clustering, blocks Φ [1], Φ [4], and Φ [6]

are concatenated to form a new block Φcls [1] in new representation, whereas Φ [2] and
Φ [3] are concatenated to form Φcls [2]. Hence, the identified block structure is d=[6, 4, 2].
Consequently, their corresponding blocks in the representation vector β will be clustered. The
clustered representation of the new model, i.e., y=Φclsβcls, leads to more relaxed Block-ERC,
i.e., higher sparsity levels, which will be demonstrated in Section 3.5.

Figure 3.2: Clustered representation of general dictionary Φ and representation vector β.
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3.3 Block-ERC in clustered representation

To investigate Block-ERC in clustered representation, we need to calculate Block-SLq,p
7, which

has inverse relationship with Block-MCCq,p. Since blocks growing due to clustering can lead
to a case where a big block covers whole space, we apply PCA8 to clustered blocks before
computing Block-MCCq,p.

In order to compare the resulted Block-SLq,p to conventional sparsity level, we need to
state the number of blocks of columns in terms of the number of columns. In a dictionary
with equally-sized blocks, i.e., d1= · · ·=dK=d, the Block-SLq,p can be simply converted to
sparsity level through multiplying Block-SLq,p by the length of each of the blocks, i.e.,
d×Block−SLq,p(Φ) or

∑Block−SLq,p(Φ)
k=1 dk.

Next, we explain how to compute sparsity levels in a dictionary with differently-sized
blocks.

3.3.1 Sparsity levels in differently-sized block structure of a dictionary

In a dictionary with differently-sized blocks, i.e., d1 6= · · · 6=dK , it can be
assumed a range of sparsity levels between SLmin(Φ)=

∑Block−SLq,p(Φ)
k=1 d(k) and

SLmax(Φ)=
∑K

k=K−Block−SLq,p(Φ)+1 d(k), where, d(k) are elements of the ascendingly-sorted
d, i.e., d(1)≤ · · ·≤d(K). In other words, SLmin and SLmax are sum of the Block-SLq,p
minimum and maximum elements of d, respectively, as shown in figure 3.3.

Remark 3.1. For d1= · · ·=dK , the upper-bound and lower-bound of the range of sparsity
level are equal, i.e., SLmax(Φ)≡SLmin(Φ).

In some cases like figure 3.2, a block in clustered representation is in fact a concatenated
version of a set of other blocks with the same size d, and not columns necessarily, i.e., d=1.
This is the case in our real-world EEG and/or MEG source reconstruction problem, where, the

Figure 3.3: The computation of SLmin and SLmax from ascendingly-sorted d.

7(q, p)-Block-Sparsity Level
8Principal Component Analysis
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Minimum Maximum

Block−SLmin(Φ) = 1 SLmin(Φ) = 2 Block−SLmax(Φ) = 3 SLmax(Φ) = 6

Table 3.1: Sparsity levels for the dictionary in figure 3.2, if Block−SLq,p(Φ)=1.

initial blocks are lead-fields with the same size of three. In this type of problem, the number
of blocks of size d or the blocks themselves have meaningful information. For instance, in our
problem, each block of size d=3 represents a brain source.

Therefore, we can simply divide the number of elements to the length d to provide another
means of representing the results, which is the number of initial blocks. Then, considering
maximum sparsity level in the most pessimistic case, i.e., SLmax, we can also represent the
results in terms of maximum block-sparsity level, i.e., Block-SLmax, which is SLmax(Φ)/d.

Therefore, we can consider the following basic types of sparsity level and Block-SLq,p for
the maximum range:

• Block-SLq,p: Number of differently-sized blocks resulted from
(1+(dmaxMq,p(Φ))−1 mink min{1, d1/q−1/p

k })/2, (Theorem 2.3, page 73).

– SLmin: Number of columns resulted from
∑Block−SLq,p(Φ)

k=1 d(k).

∗ Block-SLmin: Number of equally-sized blocks of size d resulted from
SLmin(Φ)/d.

– SLmax: Number of columns resulted from
∑K

k=K−Block−SLq,p(Φ)+1 d(k).

∗ Block-SLmax: Number of equally-sized blocks of size d resulted from
SLmax(Φ)/d.

As an example, consider the dictionary in figure 3.2 with Block-SLq,p equal to one. Then, the
mentioned different sparsity levels are shown in table 3.1.
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3.4 EEG/MEG source reconstruction problem and USLE

It was explained in Section 1.2.5 that the solution of the EEG/MEG forward problem is called
lead-field, denoted by ΦEEG/MEG∈Rm×n , which linearly relates the activities in source,
denoted by β, and EEG/MEG sensor space, denoted by yEEG/MEG. In other words, we have
yEEG/MEG=ΦEEG/MEGβ.

As mentioned earlier in Section 1.2.3, the inverse problem involves computing the
parameters of the brain sources. Since the number of the sensors, i.e., m, is much less
than the number of the brain sources, i.e., K, there would be infinitely many states of the
sources that lead to the same electromagnetic fields, i.e., yEEG/MEG=ΦEEG/MEGβi, where
i∈{1, · · · ,∞}. Hence, the EEG/MEG source reconstruction problem is ill-posed.

To make the problem solvable with a unique solution, a dipole source model can be
applied to the brain current sources. In other words, a population of cerebral neurons can
be represented by a single dipole. A dipole can be represented mathematically as a vector.
Considering the 3D Cartesian coordination, for each dipole we have six parameters to be
determined.

• Three parameters are related to the dipole position in i, j, and k direction, which by
meshing the brain, these positions can be also limited to some predefined discrete values
placed in the vertices of brain mesh.

• Three parameters characterise the power of the dipole in each of three directions, i.e.,
the magnitudes of the dipole moment in i, j, and k direction.

For instance in figure 3.4, the dipole located in s4 is related to three consecutive entries in
the source activity vector β∈Rn, where K=n/3.

Assuming only four brain source positions s1, · · · , s4 and three electric or magnetic sensors
in a simple case, figure 3.4 represents EEG and MEG linear models.

As it can be seen in figure 3.4, regardless of the head electromagnetic properties, and in
terms of the parameters of the dipole source model, each element of EEG lead-field is a function
f of direction vectors i, j, or k and the distance between the position of corresponding source
and sensor, e.g., the EEG lead-field for source s1 is represented in figure 3.4. Each consecutive
three elements in a row belongs to a certain sensor and source. Similarly, in terms of the
parameters of the dipole source model, each element of MEG lead-field is a function g of
direction vectors i, j, or k and the distance between the position of corresponding source and
sensor, e.g., the MEG lead-field for source s2 is represented in figure 3.4.

Therefore, due to discretising and linearising effect of lead-field and having much less
sensors than sources, an EEG/MEG source reconstruction problem can be stated in a form of
USLE.
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Figure 3.4: A simple EEG (left) and MEG (right) linear models for four brain sources
s1, · · · , s4, and three electric and magnetic sensors, respectively. A 3D dipole located in
s4 is shown and represented mathematically.
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3.4.1 EEG/MEG source space segmentation

As mentioned earlier, the EEG/MEG source reconstruction problem can be modelled as an
USLE. In our real-world problem, the dictionary in USLE is called the lead-field matrix. the
whole lead-field matrix, is built by horizontal concatenation of lead-fields of all sources in the
source space. As described before, the lead-field matrix of a single source is a m by 3 matrix,
where, m is the number of sensors in the sensor space. Hence, a whole lead-field matrix is
composed of consecutive three-column individual lead-field matrices.

On the other hands, as mentioned before, in the EEG/MEG linear model each of
three-column individual lead-field matrices Φ[k], ∀k, are multiplied to the activity of
corresponding dipole in the source vector β to construct the activity of the sensor space,
i.e., y=

∑K
k=1 Φ[k]β[k]. Then, each block of dictionary, Φ[k], ∀k, is the direct coefficient of

its corresponding source activity.

Therefore, by clustering the coherent lead-field matrices Φ[k] of the whole lead-field matrix
Φ, their corresponding blocks in the source activity vector β will also be clustered. Hence,
the sources will be grouped and will form some segments in the source space.

To realise the mentioned idea, we propose the general Block-MCCq,p dictionary
characterisation, which measures the similarity between the blocks of the dictionary. Then,
Block-MCCq,p can be used in the clustering step to make similarity matrix.

As represented graphically in figure 3.5, the six sources in the brain are clustered in different
three segments based on the clustering of their corresponding lead-fields in the lead-field
matrix. In other words, clustering of the coherent lead-field matrices Φ[1], Φ[4], and Φ[6]

leads to clustering of their corresponding sources β[1], β[2], and β[3], and so on.

Figure 3.5: Segmenting the source space of brain using clustering the corresponding lead-fields.
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3.5 Results

Assuming that the number of clusters is not known, a strategy will be needed to appropriately
estimate it, which leads us to hierarchical clustering analysis. Hierarchical clustering can be
visualized by the so-called clustering tree or dendrogram. The clustering tree is composed of
nodes (clusters) and branches, which the length of each branch shows the distance between
the two nodes. A scale with the largest distance between consecutive nodes or longest branch
can be considered as an appropriate scale for clustering, which gives the estimated number
of clusters. The agglomerative hierarchical clustering algorithm is used. In agglomerative as
opposed to divisive method, each single data is considered as a cluster, then at each clustering
level the clusters are successively merged until all the data are clustered into a single cluster.

Suppose that in figure 3.6(a), each block Φ[k] of dictionary is represented by a single
circle, and there are 100 blocks, i.e., k∈{1, · · · , 100}. The relative distances between circles
are determined by the proposed coherence measure Block-MCC2,2. The random dictionary
is generated in a way to have five equally-sized clusters of blocks of length 20. Then,
Φ[1], · · · ,Φ[20], construct cluster I and so on. The process of generating desired random
dictionaries is explained in Section 3.5.1. A method called complete has been used to compute
the distance between two clusters, which is equal to the longest distance between two points in
the two clusters as illustrated in figure 3.6(a). In figure 3.6(b) the dendrogram resulted from
clustering the random dictionary is shown. As expected, the magenta dotted horizontal line
in the scale with the largest distance between consecutive nodes intersects the dendrogram
five times, so the estimated number of clusters is five, which is true.

Figure 3.6: (a) The longest distance between two points in the two clusters determines
inter-cluster distance; (b) Number of vertical branches at a clustering level with longest branch
approximates the number of clusters.
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3.5.1 Synthetic dictionary

Dictionaries Φ∈Rm×n, with equally-sized blocks of length d1= · · ·=dK=d, are generated
from independent and identically distributed (i.i.d.) random variables and all columns of
the dictionaries are normalized to have unit `2 norm. The idea to generate the whole
dictionary is first to start from an initial block, next some representative blocks of clusters
are generated, then from each representative block of a cluster, the blocks belonging to the
same cluster are produced. To construct a second block from a first one, the random matrix
exp((C−CT )

√
2ε/‖C−CT ‖F ) is multiplied to the first block, where, C is a square random

matrix of dimension m. Depending on the role of ε whether to generate representative blocks
of clusters or blocks of dictionary, it is named εinter or εintra, respectively.

In figure 3.7, the process of generating a random dictionary Φ with N clusters and K

blocks is illustrated. First, from a random initial block µ0∈Rm×d, N representatives of clusters
µ1, · · · ,µN are created, using the mentioned multiplier and parameter εinter. Then, from each
representative µi, ∀i, the blocks Φi [j], ∀j, belonging to the same cluster i are generated, using
the mentioned multiplier and parameter εintra. The parameter ε in the multiplier controls the
amount of overlap and similarity between blocks. In fact, εinter defines the overlap between
the representative blocks of clusters, whereas εintra controls the overlap between the blocks
belonging to the same cluster. Finally, the results are shown in terms of average and standard
deviation over 100 repetitions of random dictionary Φ∈R10×80 generation with dj=2, ∀j.

Figure 3.7: From initial block µ0, N representative blocks of clusters are computed. Then,
from each representative block µi, all blocks Φi [j] belonging to the same cluster i are
generated.
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Block-ERC in clustered representation and the number of clusters In this
experiment, the agglomerative hierarchical clustering algorithm is applied on the blocks of a
random dictionary with certain number of clusters, whereas the Block-MCC2,2 and complete
method are used to measure the inter-blocks coherence and inter-clusters distance, respectively.
The mentioned certain number of clusters is once set to four and once set to eight.

As it can be seen in figure 3.8, by applying hierarchical clustering on the blocks of the
dictionary, i.e., by decreasing the number of clusters, there exists at least one clustering level in
which the relative Block-SL2,2 in the most pessimistic case, i.e., Block−SL2,2(Φ)[%], increases
in comparison to when the clustering is not applied on the dictionary, i.e., the rightmost part
of each diagram corresponding to 40 clusters. Therefore, clustering coherent blocks of the
dictionary improves the Block-ERC through increasing the Block-SL2,2.

In addition, for εinter>1 and εintra<0.1, the Block−SL2,2(Φ)[%] has a peak in a clustering
level equal to the number of the clusters in the simulated dictionary. In fact, in figure 3.8
when there is four clusters in the simulated dictionary (blue curve, square markers), the
maximum is at the fourth clustering level and also the consistent results are obtained for eight
clusters in the dictionary (red curve, circle markers). For the clustering level lower than the
optimal level, the space is under-sampled and there would be a block spanning the whole
space, whereas for the clustering level higher than the optimal level, the space is over-sampled
and the over-partitioning leads to high coherence measure.

Figure 3.8: Block−SL2,2(Φ)[%] for each level of clustering computed for complete method,
Block-MCC2,2, d=2, N={4, 8}, and different values of εinter and εintra for simulating
dictionary Φ∈R10×80.
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Block-ERC in clustered representation and the conventional ERC In this
experiment, the goal is to compare the sparsity level obtained in the proposed Block-ERC
to the conventional sparsity level which is equal to the half of the number of rows of Φ.

First, we need to express the block-sparsity level in terms of the conventional sparsity
level as described in Section 3.3, e.g., SLmin and SLmax. Then, consider one of the cases
in figure 3.8, e.g., εinter=3.5, εintra=0.1. So, the complete method is used to calculate
inter-clusters distance, whereas the Block-MCC2,2 measures the inter-blocks coherence of a
dictionary Φ∈R10×80 with equally-sized blocks, i.e., d1= · · ·=d40=d=2.

In figure 3.9, it can be seen that by applying hierarchical clustering on the blocks of the
dictionary, the increase in the sparsity levels even surpasses the conventional sparsity level
which is marked with a black dotted line. It can be seen in figure 3.9 that close to the
clustering level equal to the number of clusters in the simulated dictionary, even the proposed
SLmin can surpass the conventional sparsity level. Therefore, clustering the coherent blocks
of a dictionary in addition to enhancing the Block-ERC through increasing the Block-SL2,2,
improves the conventional sparsity level. Hence, improves the conventional ERC.

At last, in order to make sure that the clustering structure in a clustering level, where,
there is a peak in sparsity level is done properly, the average clustering accuracy over 100
repetitions is computed for fourth (for the case of four clusters in the dictionary) and eighth
(for the case of eight clusters in the dictionary) clustering levels, which are equal to 99.65% and
100%, respectively. Therefore, the peak in the sparsity level diagram, which is more striking in
figure 3.8 in addition to giving an estimation of the number of clusters in the dictionary, also
with high probability (at least in this example) corresponds to the correct clustering structure
of the dictionary.

Figure 3.9: SLmin[%] and SLmax[%] for each level of clustering computed for complete method,
Block-MCC2,2, d=2, εinter=3.5 and εintra=0.1 for (a) N=4 and (b) N=8 in the dictionary
Φ∈R10×80.
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3.5.2 Real EEG/MEG lead-field

In this experiment the hierarchical clustering is used because of its characteristic in estimation
of the number of clusters, as described in section 3.5. In order to simulate or import real-world
sensor, source and volume conduction head model required to generate the real lead-field we
used an open source software package MATLAB-based toolbox named FieldTrip [Oos+11].

EEG lead-field is obtained using 32 standard electrodes and utilising three different
volume conduction head models of three-layer concentric spheres, realistic three-layer with
inflated cortical sheet obtained by boundary element methods and realistic three-layer with
highly-folded cortical sheet obtained by SPM8 software [Spm]. Realistic head models are
obtained by imposing anatomical constraint, which is provided by MRI9.

Similarly, for MEG lead-field generating, 32 standard sensors closest to the previously
selected 32 EEG standard electrodes are selected and single sphere, realistic single layer with
inflated and highly-folded cortical sheets are used as volume conduction head models. The
sensor model, three-compartment (brain, skull, and scalp) volume conduction head model
(analytical and realistic), and source model (spherical and realistic) are shown in figure 3.10.

Figure 3.10: Different geometrical models of the EEG/MEG experiment: 1- Spherical (a,d),
realistic inflated (b,e), and realistic highly-folded (c,f) source models; 2- EEG (a,b,c), and
MEG (d,e,f) sensor models; 3- Three-layer concentric spheres (a), realistic three-layer (b,c),
single sphere (d), and realistic single layer (e,f) volume conduction head models.

9Magnetic Resonance Imaging
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Block-ERC in clustered representation As explained in Section 3.3, generally, in
transforming the Block-SLq,p, which is determined by Block-ERC, into the conventional
sparsity level, different types of sparsity levels can be appeared, e.g., minimum sparsity level
SLmin, and maximum sparsity level SLmax. On the other hand, as described earlier in the
Section 3.5, number of branches in a clustering level with maximum inter-node distance in a
clustering tree resulted from a hierarchical clustering algorithm can be used as an estimation
of the number of clusters of a dictionary.

Assume the sparsity level computed in the clustering level corresponding to the maximum
inter-node distance in the clustering tree is shown by SL2, whereas the sparsity level computed
for the lead-field without clustering is called SL1. In order to investigate the effect of clustering
the coherent blocks of the lead-field on sparsity levels, we compute the relative change quantity,
i.e., (SL2(Φ)−SL1(Φ))/SL1(Φ).

In figure 3.11, the relative change of sparsity levels SLmin, and SLmax is shown. In addition,
the experiment is repeated for two modalities of EEG and MEG, and three head models with
spherical, realistic inflated and realistic highly-folded cortical sheets.

As it can be seen in figure 3.11, by clustering coherent blocks of the lead-field (whether
EEG/MEG or spherical/realistic cortical sheet) using the proposed Block-MCC2,2, all sparsity
levels significantly increase, especially SLmax. Hence, clustering coherent blocks of lead-field
using the proposed Block-MCCq,p coherence measure leads to improved Block-ERC.

Figure 3.11: Relative increase of sparsity levels SLmin, SLmax, when clustering the coherent
blocks of lead-field, repeated for two modalities of EEG and MEG, and three head models
with spherical, realistic inflated and realistic highly-folded cortical sheets.
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EEG/MEG source space segmentation As described in Section 3.4.1, clustering the
coherent blocks of the lead-field matrix results in some brain regions, because each block of
the lead-field correspond to a single source position in the source space. Then, coherent source
positions form brain regions, where, coherency is defined by the Block-MCCq,p coherence
measure applied on the bocks of the lead-field.

The results of clustering coherent source positions using EEG and MEG lead-field, and for
three head models with spherical, realistic inflated and realistic highly-folded cortical sheets
are shown in figure 3.12. Although, in this experiment the number of clusters or brain regions
is estimated from the clustering tree, but since there is a series of clustering structures in the
hierarchical clustering analysis, by introducing extra information to the problem about the
number of brain regions, there would be the possibility of having different brain regions. In
other words, the resulted brain regions in figure 3.12 are not fixed and can be adapted based on
the number of regions. In addition, the resulted brain regions are a function of Block-MCCq,p
and inter-cluster distance method.

Figure 3.12: Brain source space segmentation, when clustering the coherent blocks of lead-field,
repeated for two modalities of EEG and MEG, and three head models with spherical, realistic
inflated and realistic highly-folded cortical sheets.
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Comparison to the conventional lobes of the brain In order to compare the resulted
brain source space segmentation in a specific clustering level to the conventional lobes of the
brain, the closest boundaries to the conventional boundaries are shown in figure 3.13(a) and
(b).

The brain segmentation and boundaries resulted from EEG, and MEG lead-fields are
shown in figure 3.13(a), and (b), respectively. The anatomical lobes and the functional areas
of the brain are shown in figure 3.13(c).

Therefore, using the proposed framework, i.e., clustering coherent blocks of the lead-field
with the help of the proposed Block-MCCq,p coherence measure, the conventional structural
and functional brain lobes can be divided into subject-specific refined regions.

Figure 3.13: The proposed subject-specific brain source space segmentation, using (a) EEG,
and (b) MEG lead-fields, compared to (c) the conventional anatomical and functional brain
lobes.
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3.6 Conclusion

In this chapter, we investigated the effect of clustering the coherent blocks of the dictionary
on the Block-ERC and brain source space segmentation. The coherency is defined based on
the proposed general characterisation of Block-MCCq,p. To this aim, different experiments
were done on synthetic dictionary and real EEG/MEG lead-field.

In experiments with synthetic dictionary, we demonstrated in figure 3.8 the positive effect
of clustering the coherent blocks of the dictionary on the sparsity levels. Then, block-sparse
exact recovery condition based on the block mutual coherence constant improves by clustering
the coherent blocks. Furthermore, in figure 3.9 we showed that this improvement in the
proposed block-sparse exact recovery conditions due to hierarchical clustering, even holds to
the conventional exact recovery condition.

Finally, in experiments with real EEG/MEG lead-field in figure 3.11, we showed that the
sparsity levels in different cases increase by clustering coherent lead-fields, hence, improves the
corresponding block-sparse exact recovery condition. In figure 3.12, we showed that even by
the mentioned clustering method, some consistent brain regions appear. By utilising the MRI
of a person in calculating the realistic volume conduction head model, subject-specific brain
regions appear. In fact, here we proposed a segmented structure of brain sources, making use
of just the lead-field matrix in a general way, without being restricted to a special activity of
dipoles β0 or EEG/MEG signals y.

Ultimately, in this chapter for identifying the block structure of the dictionary or lead-field,
a general framework based on the proposed block mutual coherence constant Block-MCCq,p
is proposed, which at the same time improves the block-sparse exact recovery condition and
provides a brain source space segmentation strategy.
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4.1 Introduction

As mentioned in Section 1.2, EEG1 and MEG2 source reconstruction problems solve a same
brain source activity problem when acquired simultaneously [Mol+08]. In other words, for
EEG or MEG signal yEEG/MEG∈Rm, EEG or MEG lead-field matrix ΦEEG/MEG∈Rm×n,
and brain source activity β0∈Rn, we have the following EEG and MEG USLE 3:

yEEG = ΦEEGβ0, and yMEG = ΦMEGβ0.

The key aim in this chapter is to integrate the complementary information of EEG and
MEG modalities within the block structure identification framework introduced in Chapter 3
with application to brain source space segmentation.

In contrast to the brain source space segmentation studies in literature, which are
integrating the information of EEG or MEG signals yEEG/MEG and lead-fields ΦEEG/MEG

into the problem, the proposed multi-modality strategy uses the block structure identification
framework, which requires only the lead-field matrices, in order to demonstrate the benefit of
merging EEG and MEG modalities at the same complexity or number of sensors.

1ElectroEncephaloGraphy
2MagnetoEncephaloGraphy
3Underdetermined System(s) of Linear Equations
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4.2 Multi-modal lead-field

4.2.1 Structure and model

In order to investigate the impact of multi-modality, i.e., the integration of the complementary
information of EEG and MEG modalities, we need to think of a strategy to combine the
mono-modalities.

Suppose that the odd rows of USLE related to EEG generative model is represented
as yOEEG=ΦO

EEGβ0, and similarly the even rows of USLE related to MEG model as
yEMEG=ΦE

MEGβ0. Then, by concatenating the odd rows and even rows of EEG and MEG
generative models, respectively, the EEG and MEG multi-modal model is as follows:[

yOEEG

yEMEG

]
=

[
ΦO

EEG

ΦE
MEG

]
β0. (4.1)

There are three reasons behind the mentioned strategy of integration of mono-modalities.

1) Fixed number of sensors Assuming that the number of sensors in both modalities is
even, then each signal yOEEG∈Rm/2 or yEMEG∈Rm/2 has as half of observations as the original
signal yEEG/MEG∈Rm, i.e., each modality contributes the same in terms of the number of
sensors, so the comparison would be more fair compared to the odd number of one of original
modalities’ sensors. Then, by concatenating them, the number of equations in the resulted
USLE in multi-modality would be equal to the the original USLE in mono-modality.

By keeping fixed the number of sensors in mono-modality and multi-modality, we assure
that the probable added value is because of the multi-modality itself and not in reason
of the increased observation. Because, in case of utilising all the equations in each of
mono-modal USLE corresponding to EEG and MEG, the equations in final USLE would
be more than the original USLE, i.e., yEMEG∈R2m, where, yEMEG is the multi-modal
observation. Therefore, we would have an increased input information in multi-modality
in comparison to mono-modality, which would not lead to a fair comparison.

2) Minimal change in sensors position By drawing for example the odd rows of one
modality and even rows of the other, i.e., without shared index for sensors position, we again
ensure that the possible enhancement is due to the multi-modality itself and not because of
major change in sensors position. Otherwise, if for example we select odd rows from both
mono-modalities, the sensors layout in mono-modality would be significantly different from
multi-modal layout. Because we are assuming that each MEG sensor is selected among the
whole standard sensors, based on the proximity to an EEG sensor, to minimise the distance
between each pair of EEG and MEG sensors. So, if the index set of selected sensors in one
mono-modality does not have any shared sensor’s index with the other mono-modality, the
difference in sensors position in mono-modality and multi-modality will be minimised.



4.2. Multi-modal lead-field 105

3) Uniform sub-sampling in sensor space By selecting even or odd rows of USLE,
we are assuring that the sensors are uniformly distributed all over the head. Otherwise, by
selecting for example the first half of one mono-modal sensors and the second half of the
other mono-modal sensors, although the multi-modal sensors cover whole parts of the head,
we would lose the information of one part of brain in mono-modality.

Therefore, considering the three mentioned reasons in multi-modality strategy, we are
eliminating or reducing the side effects of increased observation, and optimum sensor position,
so we can investigate the impact of multi-modality itself.

As mentioned before, the purpose of this chapter is to investigate the impact of multi-modal
lead-field matrix within the block structure identification framework introduced in Chapter 3
with application to brain source space segmentation. Therefore, from the multi-modal USLE
in (4.1), we only need to lead-field matrices ΦEEG and ΦMEG, or precisely ΦO

EEG and ΦE
MEG.

In figure 4.1(c), the multi-modal lead-field ΦEMEG is built by concatenating the odd rows of
ΦEEG (blue lead-field) and the even rows of ΦMEG (green lead-field).

As represented graphically in figure 4.1, number of multi-modal EMEG sensors in figure
4.1(c) is equal to the number of mono-modal EEG and MEG sensors in figure 4.1(a) and (b),
which is equal to the number of rows of the lead-field matrices, i.e. m.

As mentioned before, the MEG sensors in figure 4.1 are the closest sensors to EEG sensors,
e.g., MEG sensor #1 is the closest MEG sensor to EEG sensor #1, and so on.

The minimal change in sensors position in figure 4.1(c) in comparison to figure 4.1(a) and
(b), also the uniform distribution of sensors, would be more evident by increasing the density
of sensors.

Figure 4.1: The rows of (a) EEG lead-field ΦEEG and (b) MEG lead-field ΦMEG can be
combined together to form (c) the new multi-modal lead-field ΦEMEG.
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4.3 Results

In this section, the multi-modality strategy will be experimented on synthetic dictionaries and
real EEG/MEG lead-fields. In all of the experiments, the agglomerative hierarchical clustering
analysis based on the block structure identification framework proposed in Chapter 3 will be
applied on the dictionaries.

The proposed inter-block coherence measure in a special case, Block-MCC2,2
4, is

used to compute the similarity matrix in the hierarchical clustering algorithm, i.e.,
M2,2(Φ)= maxk,k′ 6=k ‖Φ†[k]Φ[k′]‖2→2/dmax. The standard complete method is used to
compute the inter-cluster distance required in the hierarchical clustering algorithm.

4.3.1 Synthetic dictionary

In this part, the set of two complementary random dictionaries Φi∈R10×80, i={1,2}, with
equally-sized blocks of length dj=d=2, ∀j, is generated from independent and identically
distributed (i.i.d.) random variables and all columns of the dictionaries are normalized to
have unit `2 norm.

In order to generate two complementary random dictionaries, firstly, as described in Section
3.5.1, one of the dictionaries is generated by setting the related parameters εinter and εintra.
Then, utilising the same strategy and by setting the parameter εinter−dictionary, which controls
the overlap between the two dictionaries, the second dictionary is produced. In figure 4.2(a)
and (b), the role of different types of ε in generation of random dictionaries Φ1 and Φ2 is
shown. Then, as shown in figure 4.2(c) by drawing half of the rows of each of the dictionaries
and finally by making a sufficient shift on one of the set of rows belonging to one dictionary,
here Φ2, the combined dictionary Φ12 is obtained. All the results are shown in average and
standard deviation over 100 repetitions of generation of complementary random dictionaries
pairs.

Figure 4.2: The role of (a) εinter and εintra in generation of random dictionary Φ1, and (b)
εinter−dictionary in generation of Φ2 to produce the multi-modal dictionary Φ12.

4(2, 2)-Block Mutual Coherence Constant
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Block-ERC in clustered representation for a combined dictionary In Section 3.5.1,
we demonstrated that in a random dictionary with certain values of εinter and εintra, the
Block-SL2,2

5 computed in each clustering level of the hierarchical clustering algorithm have a
peak value at a clustering level equal to the number of clusters in the generated dictionary.

Therefore, under certain values of εinter and εintra, the argument of the peak in
Block−SL2,2(Φ)[%] computed at each level of the hierarchical clustering algorithm is equal
to the number of clusters in the dictionary, i.e., N .

In this part, in an experiment similar to Section 3.5.1, the block sparsity-level in
the pessimistic case, i.e., Block−SL2,2(Φ)[%], is computed in each clustering level of
the hierarchical clustering analysis, but here the dictionary is a combination of two
complementary dictionaries instead of being a simple mono-modal random matrix. In
Section 4.2.1, the procedure of combining two complementary dictionaries is described. Also,
the complementarity of two dictionaries is defined based on their overlap, determined by
εinter−dictionary.

In generating two complementary dictionaries, one of them is produced as explained in
Section 3.5.1. Then the other dictionary is generated by multiplying the first dictionary to
a random matrix exp((C−CT )

√
2εinter−dictionary/‖C−CT ‖F ), where, C is a square random

matrix of dimension m.

As it can be seen in figure 4.3, by applying hierarchical clustering on the blocks
of the combined dictionary for εinter−dictionary=1, εinter≥3.5 and εintra≤0.1, a peak in
Block−SL2,2(Φ)[%] appears in an argument equal to the sum of the clusters in each of the
two original dictionaries.

For instance, when there are four clusters in each of the two complementary dictionaries i.e.,
N=4 (blue squares), which construct the combined one, the maximum Block−SL2,2(Φ)[%]

for combined dictionary is at the eighth clustering level.

Similarly the consistent results are obtained for five clusters in each of the two
complementary dictionaries, i.e., N=5 (red circles). In other words, there is a peak
in Block−SL2,2(Φ)[%] at the tenth clustering level, when the multi-modal dictionary is
composed of two mono-modal dictionaries, each has five clusters. For the clustering level
lower than the optimal level, the space is under-sampled and there would be a block spanning
the whole space, whereas for the clustering level higher than the optimal level, the space is
over-sampled and the over-partitioning leads to high coherence measure.

On the other hand, when the average blocks of each cluster of blocks are not different
enough, i.e., εinter<3.5, but still the blocks in each cluster of blocks are similar enough, i.e.,
εintra≤0.1, we can observe that the number of clusters in the combined dictionary or the
argument of the peak in Block−SL2,2(Φ)[%] is less than the sum of clusters in each of initial
dictionaries but greater than the number of clusters in each of initial dictionaries.

5(2, 2)-Block-Sparsity Level
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Therefore, the number of clusters in the combined dictionary depending on the overlap
between the blocks, which is determined by ε, is greater than the number of clusters in one of
the initial dictionaries and at most is equal to the sum of the number of clusters in the initial
dictionaries.

In addition, the amplitude of peak of Block−SL2,2(Φ)[%] increases when the number
of clusters decreases. For instance, in figure 4.3, the amplitude of average peak of
Block−SL2,2(Φ)[%] for multi-modal dictionaries composed of two four-clusters dictionaries
(blue square) is higher than the corresponding average amplitude for five clusters in each of
mono-modal dictionaries (red circle).

Therefore, by reducing the number of clusters in the dictionary, Block−SL2,2(Φ)[%]

increases, hence, more weakened Block-ERC6 are obtained.

Figure 4.3: Block−SL2,2(Φ)[%] for each level of clustering is computed for the complete
method, Block-MCC2,2, d=2, N={4, 5}, εinter−dictionary=1, and different values of εinter and
εintra for simulating dictionary Φ∈R10×80.

6Block-sparse Exact Recovery Condition(s)
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4.3.2 Real EEG and MEG lead-field

In this part, the original lead-fields, which build the multi-modal lead-field are the ones
explained in Section 3.5.2. Therefore, there are three head models with spherical, realistic
inflated, and realistic highly-folded cortical sheets as shown in figure 4.4.

The 32 sensors shown in figure 4.4 are in multi-modal case, where, there are equal number
of sensors from both modalities. By selecting the odd and even rows of EEG and MEG USLE,
respectively, we can see that the sensor distribution is almost uniform, i.e., the sensors are not
concentrated in a region of brain.

EEG and MEG complementarity in brain source segmentation In Section 1.2.6,
some basic complementarities of EEG and MEG were discussed. In this section we show that
in the brain source segmentation using the proposed strategy of clustering coherent lead-fields
corresponding to brain sources utilising Block-MCCq,p, we can observe some complementarities
between brain source segmentation employing EEG or MEG lead-field.

In figure 4.5, the brain clusters or regions based on clustering of the EEG or MEG lead-field
for clustering levels 3, 10, 15, 17, and 20 and three types of cortical sheets are shown.

It can be seen that for the all shown clustering levels, the previously mentioned
complementarity also appears in our brain source segmentation strategy, which is more visible
in low clustering levels in figure 4.5.

Figure 4.4: (a) spherical, (b) realistic inflated and (c) realistic highly-folded cortical sheets for
the head models used in EEG and MEG multi-modality experiment.
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Figure 4.5: EEG and MEG complementarity in brain source segmentation using Block-MCC2,2

and complete method for some clustering levels and for (a) spherical, (b) realistic inflated,
and (c) realistic highly-folded cortical sheets.
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EEG and MEG multi-modality and the clustering tree The agglomerative
hierarchical cluster analysis, using the standard inter-cluster distance and our proposed
inter-block similarity methods builds a hierarchy of clustering structures, which is represented
in the clustering tree, as shown in figure 4.6.

The clustering trees built using EEG, MEG, and multi-modal EEG+MEG lead-fields for
spherical, realistic inflated, and realistic highly-folded cortical sheets are shown in figure 4.6(a),
(b), and (c), respectively.

As mentioned before, the advantage of using the hierarchical clustering algorithm is in
estimating the number of clusters and in general the block structure, by selecting a block
structure corresponding to the longest inter-node distance. Also, one can impose other
constraints such as minimum number of clusters.

In figure 4.6, for each source model, the block structure is opted based on a minimum
number of clusters and maximum inter-node distance. To make clusters distinguishable, each
cluster is colour-coded.

Figure 4.6: Clustering tree using EEG or MEG mono-modal lead-field and EEG+MEG
multi-modal lead-field for (a) spherical, (b) realistic inflated, and (c) realistic highly-folded
cortical sheets.
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EEG and MEG multi-modality and the number of regions In order to estimate
the number of clusters from the dendrogram as described in Section 3.5, in addition to the
constraint of the maximum distance between consecutive nodes or clusters in dendrogram, the
number of clusters is also set to be greater than a threshold.

As it can be seen in figure 4.7(a), the estimated number of clusters or brain regions resulted
from the EEG and MEG multi-modal lead-field for spherical cortical sheet is 10, which is more
than the estimated number of brain regions using EEG or MEG lead-field alone, which both
are 8 clusters. The similar results are obtained for realistic head models as shown in figure
4.7(b) and (c).

Therefore, brain source space segmentation using the proposed strategy of clustering the
coherent lead-fields based on the introduced Block-MCC2,2 is more refined when utilising EEG
and MEG multi-modal lead-field compared to EEG or MEG mono-modal lead-fields.

Figure 4.7: Number of clusters using EEG or MEG mono-modal lead-field and EEG+MEG
multi-modal lead-field for (a) spherical, (b) realistic inflated, and (c) realistic highly-folded
cortical sheets.
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EEG andMEGmulti-modality and the area of regions In this part, for a fixed number
of regions or clusters, the area of brain regions is investigated for EEG/MEG mono-modal
lead-fields and multi-modal EEG and MEG lead-field clustering.

In this experiment, to better demonstrate the impact of multi-modality on the area of brain
regions, only the source model with spherical cortical sheet is used. In addition the standard
average method is used to compute the inter-cluster distance. In this method, the distance
between two clusters is defined as the average distance between each point in one cluster
to every point in the other cluster. Furthermore, the Block-MCC1,∞ is used as coherence
measure.

In the top row of figure 4.8, it can be seen that in each certain number of clusters, the
biggest area (maximum value in bar chart) belongs to multi-modal EEG and MEG lead-field
clustering and nearly for all the other regions the area for multi-modal EEG and MEG is less
than EEG or MEG lead-field alone.

In addition, the area of brain regions are represented in pie charts. The largest area is
coloured as blue in pie charts, which is not very obvious in brain source space in the current
angle of view. Because, the region with maximum area represents brain sources at the bottom
of the head, where, there is not any sensor on it, whereas the other regions represent brain
sources under the sensors.

Therefore, for a fixed number of clusters, brain regions under sensors in multi-modal
lead-field clustering are smaller than mono-modal lead-field clustering. Hence, EEG and MEG
multi-modality leads to increased brain source space resolution.

Figure 4.8: At each level of clustering, the area of brain regions are shown in pie and bar
charts for EEG, MEG and their combination. At the top row, the descendingly sorted brain
regions are shown for each one of three types of lead-fields. The hierarchical clustering method
is average, and BMIC1,∞ is used as coherency measure.
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4.4 Conclusion

In this chapter, first we showed the effectiveness of multi-modality on synthetic data through
demonstrating that the number of clusters in a combined random dictionary is equal to the
sum of the number of clusters in its two original random dictionaries.

Then, passing from synthetic data to real one, we showed that by clustering coherent brain
sources through clustering their corresponding EEG or MEG lead-fields, some regions appear.
The brain regions resulted from two mono-modal lead-fields are somehow complement each
other.

Then, by applying the block structure identification framework introduced in Chapter 3,
i.e., assuming that the number of clusters can be estimated by the largest distance between the
adjacent nodes in dendrogram, we demonstrated that by combining EEG and MEGmodalities,
the number of clusters existing in the resulted multi-modal lead-field increases.

In addition, in another experiment we demonstrated that for a fixed number of clusters, the
under-sensor brain regions are smaller in multi-modal lead-field compared to the mono-modal
one. Therefore, more refined segmentation can be achieved in EEG and MEG multi-modality
clustering using the proposed coherency measure.

In all the above experiments the number of sensors for mono-modal or multi-modal cases
was kept to be equal.

Future research should focus on:

• Study on electromagnetic properties in 2D/3D mediums with different number of
boundaries as a general case.

• Designing more scenarios (other than brain segmentation) to investigate the impact of
multi-modality.

• Designing more methods to combine modalities.

• The impact of combining more modalities (greater than two).

• The optimum ratio of the number of measurements from each modality (not necessarily
50% in two modalities case).
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The contributions of this thesis can be categorized into three main research domains. The
three classes of research contributions address the three challenges that have been mentioned
and discussed in Section Introduction of the dissertation.

In order to explore and address the three mentioned challenges in Introduction, this
dissertation is organized in three main parts. Since the first challenge uses the results of
the second challenge, the second challenge is presented in the dissertation before the first
challenge, and ultimately in the last part a partial answer to the third challenge is provided
through experiments.

First challenge is about the ineffectiveness of some classic methods in high-dimensional
problems. Second challenge raises when classic recovery conditions cannot be established
for a new concept of constraint of corresponding optimisation problem, because of materials
shortage in new framework. Finally, the combination of different information of a same
phenomenon is the subject of the third challenge.

In this section, first we briefly recall the challenges and then mention the corresponding
contributions to deal with them.

As mentioned in Section Introduction, all the three independent research orientations meet
each other in our real-world application, which is distributed EEG/MEG source reconstruction
problem, to partially respond to the main research question of the thesis, which is:

What is the added value of multi-modality, when solving inverse problems?

In the following the contributions and perspectives are organized into three sections:
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High-dimensional problem

Challenge 1. Many real-world inverse problems are vastly underdetermined, and
classical sparse estimation techniques do no longer give acceptable recovery conditions.
How can high-dimensional problems be adapted in favour of the coherence-based notion
of conventional conditions?

For vastly underdetermined systems of linear equations, which the columns of the
coefficient matrix are great in number, the classical dictionary characterisations such as
mutual coherence constant are more likely to be high. Because the classical dictionary
characterisations measure the coherency of the columns of the dictionary. Naturally, increasing
in the number of columns of the dictionary would be equivalent to increasing the probability
of coherency between the columns of the dictionary. On the other hands, due to the inverse
relationship between the sparsity level defined in the exact recovery conditions and the classical
dictionary characterisation, high coherency leads to low sparsity level. Therefore, being vastly
underdetermined has a negative effect on the exact recovery conditions.

Assuming that the atomic entity in classical dictionary characterisations is columns of
the dictionary, one possible solution would be to decrease the number of atomic entities by
changing the concept of atomic entity from columns to block of columns of the dictionary.
Therefore, in Chapter 3 we proposed to cluster the coherent entities (columns or block of
columns) of the dictionary. By the idea of clustering the coherent entities to build new entities,
we are improving the exact recovery conditions by gaining two advantages at the same time:
(1) reducing the number of entities, (2) building more incoherent entities.

In the EEG/MEG source reconstruction problem, the initial entity is already a fixed-length
block of columns (three columns), then we clustered the coherent blocks of columns. In order to
determine the coherency between block of columns we utilised the dictionary characterisation
block mutual coherence constant proposed in Chapter 2.

Then, for EEG/MEG source reconstruction problem we profited the idea of clustering the
coherent blocks of columns, i.e., brain source lead-fields, to segment the brain source space.
The proposed strategy for brain source space segmentation is in a general case, without being
restricted to know any information about the sources activity and sensors measurement, only
utilises EEG/MEG lead-field matrix. In addition, at the same time by clustering the coherent
sources and forming the brain regions, the number of brain regions in which it is ensured to
have a unique solution in the EEG or MEG source reconstruction problem is improved.

As perspective in this domain, different standard or customized clustering strategies can
be investigated to find an optimum clustering strategy, which leads to improvement in the
exact recovery conditions. One possible strategy in hierarchical clustering algorithm would be
to update the similarity matrix at each clustering level, i.e., recompute the new distance of
clusters and update the similarity matrix based on new clustering structure.
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Block-structured problem

Challenge 2. In classical assumption, the recovery conditions are generated from
the columns of coefficient matrix, but clustered coefficient matrix consists of some
differently-sized blocks, and not necessarily columns. Therefore, the initial assumption
of classical recovery conditions does no longer hold true. How can appropriate recovery
conditions be developed for block-structured problems?

In Chapter 2, we defined a general framework to cover all types of atomic entity
including columns, and equally/differently-sized blocks of columns, in order to propose general
theoretical exact recovery conditions. The proposed theoretical recovery conditions are based
on block-sparsity constraint, which ensure the uniqueness of the block-sparse solution of
corresponding weighted (pseudo-)mixed-norm optimisation problem in an underdetermined
system of linear equations. The mentioned generality of the framework is in terms of the
properties of the underdetermined system of linear equations, extracted characterisations,
optimisation problems, and ultimately the recovery conditions. The mentioned theoretical
exact recovery conditions are categorized in four different groups based on the utilised
characterisations and properties, i.e., conditions based on (1) Block-Spark, (2) block null
space property, (3) block mutual coherence constant, and (4) cumulative coherence constant.

On the other hand, the proposed framework is consistent with the base findings, since
all the materials in the proposed infrastructure are a generalisation of the existing references
Indeed, we investigated the theoretical relationship between the proposed infrastructure and
the classical one, and showed that all the new materials reduce to the conventional ones
in specific cases. We redemonstrated the benefit of block-sparsity assumption compared
to conventional sparsity in the improvement of the recovery conditions. In addition, we
theoretically proved the supremacy of the theoretical exact recovery conditions defined in
the proposed general infrastructure over existing conditions, which are assuming the same
block-sparsity constraint.

As perspective in this research direction, we could mention to the following subjects:

• Introducing block-sparse recovery conditions based on the proposed cumulative
Block-MCCq,p defined in Definition 2.7.

• Generalising the conventional dictionary characterisation of µ defined in [DE03b], to
establish block-sparse recovery conditions.

• Transforming all the previously mentioned block-sparse exact recovery conditions to
block-sparse stable recovery conditions. In stable or robust recovery conditions we have,
‖y−Φβ̂‖2<e, where, e is a bounded noise.

• Study on block-sparse optimisation algorithms, and the relationship between the
theoretical and algorithmic block-sparse recovery conditions.
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Multi-modality

Challenge 3. Is joining multiple modalities always beneficial, knowing that each
modality provides us with different properties of the same phenomenon? How can
the added value of multi-modality be demonstrated?

In order to approach the above-mentioned important and huge challenge, we simplify and
limit the challenge to the conditions of our main problem, i.e., distributed EEG and MEG
source reconstruction problem. In other words, we restrict the mentioned general challenge to
have only two modalities, and try to partially address the challenge.

In Chapter 4, we propose a multi-modality framework based on the block structure
identification framework proposed in Chapter 3 and block mutual coherence constant proposed
in Chapter 2.

To this aim, we applied the block structure identification framework on multi-modal
lead-field instead of mono-modal one, to segment brain source space. To investigate the
impact of multi-modality, we defined a lead-field combining strategy, which reduces the impact
of other factors such as change in the position and number of sensors.

First, we showed that brain regions resulted from clustering the coherent sources of
EEG and MEG lead-field matrices separately, are complementary. Then, we made use of
complementarities of EEG and MEG lead-field matrices to generated a combined EEG and
MEG multi-modal lead-field matrix, and it turned out that in multi-modality case the number
of clusters determined by the largest distance between adjacent nodes in dendrogram is higher
than mono-modal cases. In addition, for a fixed number of clusters, the under-sensor brain
regions in multi-modal lead-field is smaller than mono-modal lead-field clustering.

Therefore, it can be deduced that in multi-modality case, more refined and precise regions
appear, hence, the resolution of identifying the active regions increases in comparison to the
mono-modal cases.

As perspective in this research area, we could mention to the following points:

• Study on electromagnetic properties in 2D/3D mediums with different number of
boundaries as a general case.

• Designing more scenarios (other than brain segmentation) to investigate the impact of
multi-modality.

• Designing more methods to combine modalities.

• The impact of combining more modalities (greater than two).

• The optimum ratio of the number of measurements from each modality (not necessarily
50% in two modalities case).



Appendix A

Proofs

A.1 Proof of Property 2.2 (Bounds of division of two vector
norms, page 54)

Proof. In order to demonstrate the bounds of ‖a‖p/‖a‖q, first we prove it using the derivative
method for ∀(q, p)∈R>1, next utilising the Hölder’s inequality we show that the same bounds
hold true for the wider range of q and p, i.e., ∀(q, p)∈R>0.

1) To compute the critical point of ‖a‖p/‖a‖q using the derivative method, we need to
compute its derivative with respect to the coordinates, knowing that (f/g)′=(f ′g−g′f)/g2,
and (|f |)′=f ′ f/|f |, where f ′ is derivative of f with respect to x, i.e. d f(x)/d x, we have:

∀(q, p) ∈ R>1,
∂

∂ai

‖a‖p
‖a‖q

=

∂‖a‖p
∂ai
‖a‖q −

∂‖a‖q
∂ai
‖a‖p

‖a‖2q
(A.1)

Then, we need to compute ∂‖a‖p/∂ai and ∂‖a‖q/∂ai, so:

∂ ‖a‖p
∂ai

=
∂

∂ai

(∑
i

|ai|p
) 1

p

=
1

p

(∑
i

|ai|p
) 1

p
−1

∂

∂ai

∑
i

|ai|p = ‖a‖1−pp |ai|p−2 ai.

Therefore, substituting ∂‖a‖p/∂ai and ∂‖a‖q/∂ai in (A.1) and make it equal to zero, we have:

∂

∂ai

‖a‖p
‖a‖q

=
‖a‖q ‖a‖

1−p
p |ai|p−2 ai − ‖a‖p ‖a‖

1−q
q |ai|q−2 ai

‖a‖2q

= ai
‖a‖p
‖a‖q

(
|ai|p−2

‖a‖pp
− |ai|

q−2

‖a‖qq

)
= 0 ⇒ |ai| ∈

0,

(
‖a‖pp
‖a‖qq

) 1
p−q

 .

Hence, the derivative cancels for all a with 1≤m≤d non-zero elements that all are equal, i.e.,
|ai|=(‖a‖pp/‖a‖qq)1/(p−q)=C∈R>0, whereas all other elements are identically zero. Then, the
fraction in the critical point evaluates to

∀(q, p) ∈ R>1,
‖a‖p
‖a‖q

=
(mCp)

1
p

(mCq)
1
q

= m
1
p
− 1

q ,

119
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which is minimised for m=

{
d1/p−1/q, if q≤p
1, if q>p

= min{1, d1/p−1/q}, and maximised for

m=

{
1, if q≤p
d1/p−1/q, if q>p

= max{1, d1/p−1/q}.

2) Knowing that the `p norm is a decreasing function in p, the following lower-bound is
resulted for p≤q:

∀a ∈ Rd, ∀(q, p) ∈ R2
>0, if p ≤ q ⇒ ‖a‖q ≤ ‖a‖p ⇒ 1 ≤

‖a‖p
‖a‖q

.

Now to demonstrate the upper-bound, the following Hölder’s inequality is used [GL13]:

∀r ∈ R≥1,
d∑
i=1

|xiyi| ≤ ‖x‖r ‖y‖ r
r−1

=

(
d∑
i=1

|xi|r
) 1

r
(

d∑
i=1

|yi|
r

r−1

) r−1
r

.

Next, assuming xi=aip, yi=1, and r=q/p (the above condition on r is met, because p≤q), we
have

∑d
i=1 |xiyi|=

∑d
i=1 |aip|=

∑d
i=1 |ai|

p, and the above equation turns into:

∀a ∈ Rd,∀(q, p) ∈ R2
>0, p ≤ q,

d∑
i=1

|ai|p ≤

(
d∑
i=1

(|ai|p)
q
p

) p
q
(

d∑
i=1

1
q

q−p

) q−p
q

=

(
d∑
i=1

|ai|q
) p

q

d
q−p
q .

Then, taking the both sides to the power of 1/p, we get:

∀a ∈ Rd,∀(q, p) ∈ R2
>0, p ≤ q,

(
d∑
i=1

|ai|p
) 1

p

≤

(
d∑
i=1

|ai|q
) 1

q

d
1
p
− 1

q

⇒
‖a‖p
‖a‖q

≤ d
1
p
− 1

q .

Therefore, for p≤q, we have 1≤‖a‖p/‖a‖q≤d1/p−1/q. Similarly, for q≤p, we get
d1/p−1/q≤‖a‖p/‖a‖q≤1, which proves the property.
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A.2 Proof of Property 2.4 (`q→p operator-norm properties, page
56)

Proof. Based on the definition of the ‖A‖q→p, i.e., maxa6=0 ‖Aa‖p/‖a‖q or max‖a‖q≤1 ‖Aa‖p,
we prove the following properties, for A∈Rm×n, B∈Rm×n, and C∈Rn×l:

• Nonnegativity: In definition ‖A‖q→p= max‖a‖q≤1 ‖Aa‖p, ‖Aa‖p is greater than or equal
to zero, then the nonnegativity of ‖A‖q→p is obvious ∀(q, p)∈R2

≥0.

• Positivity: ∀(q, p)∈R2
≥0 if ‖A‖q→p=0, then ‖Aa‖p=0 for each a∈Rn, i.e., each column

in A is zero. Hence, A=0.

• Homogeneity: ∀q≥0 and ∀p>0, we have

‖αA‖q→p = max
a6=0

‖αAa‖p
‖a‖q

= max
a6=0
|α|
‖Aa‖p
‖a‖q

= |α| ‖A‖q→p .

The above second equality in the first line is resulted from the homogeneity property of
norm of vectors, which holds true only for p>0 [Ela10]; [GL13].

• Triangle inequality: ∀q≥0, p=0 or ∀p≥1, it is obtained as follows

‖A+B‖q→p = max
a6=0

‖(A+B)a‖p
‖a‖q

≤ max
a6=0

‖Aa‖p + ‖Ba‖p
‖a‖q

≤ max
a6=0

‖Aa‖p
‖a‖q

+ max
a6=0

‖Ba‖p
‖a‖q

= ‖A‖q→p + ‖B‖q→p .

The above inequality in the first line is resulted from the triangle inequality property of
norm of vectors, which holds true only for p=0 and p≥1 [Ela10]; [GL13].

• Submultiplicativity: It is obtained as follows:

‖AC‖q→p = max
a6=0

‖ACa‖p
‖a‖q

= max
a6=0

‖ACa‖p
‖a‖q

‖Ca‖q
‖Ca‖q

‖Ca‖p
‖Ca‖p

≤ max
Ca6=0

‖ACa‖p
‖Ca‖q

max
a6=0

‖Ca‖p
‖a‖q

max
a6=0

‖Ca‖q
‖Ca‖p

= ‖A‖q→p ‖C‖q→p max
{

1, n
1
q
− 1

p

}
.

(A.2)

The last term of (A.2) is obtained using the upper-bound in Property 2.2 (bounds of
two vector norms division), i.e.,:

∀ (q, p) ∈ R2
>0,∀a ∈ Rd, min

{
1, d

1
q
− 1

p

}
≤
‖a‖q
‖a‖p

≤ max
{

1, d
1
q
− 1

p

}
.

Therefore, from (A.2) for q≥p>0, we see that the submultiplicativity holds true, i.e.,
‖AC‖q→p≤‖A‖q→p ‖C‖q→p.
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• Bounds: 1) Considering the definition of `q→p operator-norm, i.e., maxa6=0 ‖Aa‖p/‖a‖q,
and the lower-bound of division of two vector norms introduced in Property 2.2 (bounds
of two vector norms division), i.e., ∀(q, p)∈R2

>0,∀a∈Rd : ‖a‖q/‖a‖p≥min
{

1, d1/q−1/p
}
,

we conclude the following lower-bounds for A∈Rm×n, a∈Rn, and ∀ (q, p, q′, p′)∈R4
>0:

∀a 6= 0,
‖Aa‖p
‖a‖q

≥min
{

1,m
1
p
− 1

p′
} ‖Aa‖p′
‖a‖q

,

∀a 6= 0,
‖Aa‖p
‖a‖q

≥min
{

1, n
1
q′−

1
q

} ‖Aa‖p
‖a‖q′

.

Therefore, we have

∀a 6= 0,
‖Aa‖p
‖a‖q

≥ max

{
min

{
1,m

1
p
− 1

p′
} ‖Aa‖p′
‖a‖q

,min
{

1, n
1
q′−

1
q

} ‖Aa‖p
‖a‖q′

}
.

Then, taking into account that the max operator is order preserving, i.e., ∀x, if
f(x)≤g(x), then maxx f(x)≤maxx g(x), the lower-bound of ‖A‖q→p is achieved.

Similarly, utilising the upper-bound of division of two vector norms introduced in
Property 2.2 (bounds of two vector norms division), i.e., ∀(q, p)∈R2

>0, ∀a∈Rd :

‖a‖q/‖a‖p≤max{1, d1/q−1/p}, results in the following inequalities, which conclude the
upper-bound of ‖A‖q→p for A∈Rm×n, a∈Rn, and ∀ (q, p, q′, p′)∈R4

>0:

∀a 6= 0,
‖Aa‖p
‖a‖q

≤max
{

1,m
1
p
− 1

p′
} ‖Aa‖p′
‖a‖q

,

∀a 6= 0,
‖Aa‖p
‖a‖q

≤max
{

1, n
1
q′−

1
q

} ‖Aa‖p
‖a‖q′

.

Therefore,

∀a 6= 0,
‖Aa‖p
‖a‖q

≤ min

{
max

{
1,m

1
p
− 1

p′
} ‖Aa‖p′
‖a‖q

,max
{

1, n
1
q′−

1
q

} ‖Aa‖p
‖a‖q′

}
.

2) To prove the second set of bounds, from Property 2.2 (bounds of two vector norms
division), i.e., ∀(q, p)∈R2

>0, ∀a∈Rd : ‖a‖q/‖a‖p≥min{1, d1/q−1/p}, we have the following
inequalities for A∈Rm×n, a∈Rn, and ∀ (q, p, q′, p′)∈R4

>0:

∀a 6= 0, ‖Aa‖p ≥ min
{

1,m
1
p
− 1

p′
}
‖Aa‖p′ ,

∀a 6= 0,
1

‖a‖q
≥ min

{
1, n

1
q′−

1
q

} 1

‖a‖q′
.

Considering that both sides of the above inequalities are positive, by multiplying the
same sides we get:

∀a 6= 0,
‖Aa‖p
‖a‖q

≥ min
{

1,m
1
p
− 1

p′
}

min
{

1, n
1
q′−

1
q

} ‖Aa‖p′
‖a‖q′

.
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Then taking into account that the max function is order preserving, the proof is done
for lower-bound.

Similarly, for the upper-bound, from Property 2.2 (bounds of two vector norms
division), i.e., ∀(q, p)∈R2

>0,∀a∈Rd : ‖a‖q/‖a‖p≤max{1, d1/q−1/p}, we have the following
inequalities for A∈Rm×n, a∈Rn, and ∀ (q, p, q′, p′)∈R4

>0:

∀a 6= 0, ‖Aa‖p ≤ max
{

1,m
1
p
− 1

p′
}
‖Aa‖p′ ,

∀a 6= 0,
1

‖a‖q
≤ max

{
1, n

1
q′−

1
q

} 1

‖a‖q′
.

Considering that both sides of the above inequalities are positive, by multiplying the
same sides we get:

∀a 6= 0,
‖Aa‖p
‖a‖q

≤ max
{

1,m
1
p
− 1

p′
}

max
{

1, n
1
q′−

1
q

} ‖Aa‖p′
‖a‖q′

.

Then taking into account that the max function is order preserving, the proof is done
for upper-bound.

In order to prove the `q→p operator-norm inequalities shown schematically
in figure 2.3, utilising the lower-bound of second set of bounds in Property
2.4 (`q→p operator-norm properties), i.e., ∀ (q, p, q′, p′)∈R4

>0,∀A∈Rm×n :

‖A‖q→p≥min{1,m1/p−1/p′}min{1, n1/q′−1/q}‖A‖q′→p′ , it is straightforward that for a
fixed p=p′ if q′≤q (or similarly, for a fixed q=q′ if p≤p′) we have ‖A‖q→p≥‖A‖q′→p′ .

3) In order to prove the lower-bound of the third set of bounds, using the lower-bound
of second set of bounds in Property 2.4 (`q→p operator-norm properties), i.e.,
∀ (q, p, q′, p′)∈R4

>0, ∀A∈Rm×n : ‖A‖q→p≥min{1,m1/p−1/p′}min{1, n1/q′−1/q}‖A‖q′→p′ ,
we will have the following first line of inequalities. Then, by utilising the same
inequality once again, this time for q′=p′=2, we get the following second line of
inequalities. The reason that first the relation with ‖A‖q′→p′ is stated and then the
relation with ‖A‖2→2, is that if in a problem the q and p values are bounded based
on some thresholds such as q′ and p′, respectively, e.g., q≤/≥q′ and p≤/≥p′, then
there could be a unique solution to the related min and max operators. Whereas,
if directly the relation with ‖A‖2→2 was stated, and supposing that p≥1, then form
instance min{1,m1/p−1/2} would have two values based on the value of p compared
to 1. Then from [GL13], we have ‖A‖2→2≥‖A‖F /

√
Rank(A), where the Frobenius

norm is defined as (
∑m

i=1

∑n
j=1 |ai,j |2)1/2, which produces the following third line. But

Rank(A) is upper-bounded by min{m,n} [GL13], then 1/
√
Rank(A) is lower-bounded
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by 1/
√

min{m,n}, which produces the following last line:

‖A‖q→p ≥ min
{

1,m
1
p
− 1

p′
}

min
{

1, n
1
q′−

1
q

}
‖A‖q′→p′

≥ min
{

1,m
1
p
− 1

p′
}

min
{

1, n
1
q′−

1
q

}
min

{
1,m

1
p′−

1
2

}
min

{
1, n

1
2
− 1

q′
}
‖A‖2→2

≥
min

{
1,m

1
p
− 1

p′
}

min
{

1, n
1
q′−

1
q

}
min

{
1,m

1
p′−

1
2

}
min

{
1, n

1
2
− 1

q′
}

√
Rank(A)

‖A‖F

≥
min

{
1,m

1
p
− 1

p′
}

min
{

1, n
1
q′−

1
q

}
min

{
1,m

1
p′−

1
2

}
min

{
1, n

1
2
− 1

q′
}

√
min {m,n}

‖A‖F .

In order to prove the upper-bound of the last set of bounds,
using the upper-bound of second set of bounds in Property 2.4
(`q→p operator-norm properties), i.e., ∀ (q, p, q′, p′)∈R4

>0,∀A∈Rm×n :

‖A‖q→p≤max{1,m1/p−1/p′}max{1, n1/q′−1/q}‖A‖q′→p′ , we will have the following
first line of inequalities. Then, by utilising the same inequality once again, this time
for q′=p′=2, we get the following second line of inequalities. But from [GL13], we have
‖A‖2→2≤‖A‖F , which produces the following last line:

‖A‖q→p ≤ max
{

1,m
1
p
− 1

p′
}

max
{

1, n
1
q′−

1
q

}
‖A‖q′→p′

≤ max
{

1,m
1
p
− 1

p′
}

max
{

1, n
1
q′−

1
q

}
max

{
1,m

1
p′−

1
2

}
max

{
1, n

1
2
− 1

q′
}
‖A‖2→2

≤ max
{

1,m
1
p
− 1

p′
}

max
{

1, n
1
q′−

1
q

}
max

{
1,m

1
p′−

1
2

}
max

{
1, n

1
2
− 1

q′
}
‖A‖F .

4) In order to prove the relation between the `q→p operator-norm of two matrices
A∈Rm×n and B∈Rm×n, having the condition ∀i, j, |ai,j |≤bi,j= maxi,j |ai,j |, or even
when the on-diagonal entries are set to zero, we can utilise the second bounds proposed
in the current property. First, using the lower-bound of the mentioned set of bounds, i.e.,
∀ (q, p, q′, p′)∈R4

>0, ∀A∈Rm×n : ‖A‖q→p≥min{1,m1/p−1/p′}min{1, n1/q′−1/q}‖A‖q′→p′ ,
for q′=1 and p′=∞, the following first line is produced. Then considering
min{1,m1/p}=1 and also ‖A‖1→∞= maxi,j |ai,j |= maxi,j |bi,j |=‖B‖1→∞, we can
substitute ‖A‖1→∞ by ‖B‖1→∞ to have the following second line. Again, using the
same lower-bound, this time for q=1, p=∞, q′=q and p′=p, we reach the following third
line:

‖A‖q→p ≥ min
{

1,m
1
p

}
min

{
1, n

1− 1
q

}
‖A‖1→∞

= min
{

1, n
1− 1

q

}
‖B‖1→∞

≥ min
{

1, n
1− 1

q

}
min

{
1,m

− 1
p

}
min

{
1, n

1
q
−1
}
‖B‖q→p

= m
− 1

pn
−
∣∣∣1− 1

q

∣∣∣ ‖B‖q→p .
Therefore,

‖A‖q→p
‖B‖q→p

≥ m−
1
pn
−
∣∣∣1− 1

q

∣∣∣ m
− 1

p n
−|1− 1

q |≤1
===========⇒ ‖A‖q→p ≤ ‖B‖q→p .
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Similarly, using the upper-bound of the mentioned
set of bounds, i.e., ∀ (q, p, q′, p′)∈R4

>0,∀A∈Rm×n :

‖A‖q→p≤max{1,m1/p−1/p′}max{1, n1/q′−1/q}‖A‖q′→p′ , and following above steps,
we obtain:

‖B‖q→p
‖A‖q→p

≤ m
1
pn

∣∣∣1− 1
q

∣∣∣ m
1
p n|1− 1

q |≥1
=========⇒ ‖A‖q→p ≤ ‖B‖q→p .
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A.3 Proof of Property 2.5 (Block-MCCq,p inequalities, page 58)

Proof. From Block-MCCq,p (Definition 2.6, page 54) we have:

∀(q, p) ∈ R2
>0, Mq,p (Φ)

def
= max

k,k′ 6=k

d
− 1

p

k d
1
q

k′

dmax

∥∥∥Φ† [k] Φ
[
k′
]∥∥∥
q→p

.

Next, considering the relationship between the `1→1 and `1→2, and also `1→2 and `1→∞
operator-norms, which are presented in general in Property 2.4 (`q→p operator-norm
properties) and for certain (q, p) pairs in table 2.3, the proof is straightforward, as follows:

M1,1 (Φ)
def
= max

k,k′ 6=k

d−1
k dk′

dmax

∥∥∥Φ† [k] Φ
[
k′
]∥∥∥

1→1

≤ max
k,k′ 6=k

d−1
k dk′

dmax
d

1
2
k

∥∥∥Φ† [k] Φ
[
k′
]∥∥∥

1→2

= max
k,k′ 6=k

d
− 1

2
k dk′

dmax

∥∥∥Φ† [k] Φ
[
k′
]∥∥∥

1→2

= M1,2 (Φ) ≤ max
k,k′ 6=k

d
− 1

2
k dk′

dmax
d

1
2
k

∥∥∥Φ† [k] Φ
[
k′
]∥∥∥

1→∞

= max
k,k′ 6=k

dk′

dmax

∥∥∥Φ† [k] Φ
[
k′
]∥∥∥

1→∞

= M1,∞ (Φ) .

Similarly, for the second inequality taking into account the relationship between the `2→2

and `1→2 operator-norms, we have:

M2,2 (Φ)
def
= max

k,k′ 6=k

d
− 1

2
k d

1
2
k′

dmax

∥∥∥Φ† [k] Φ
[
k′
]∥∥∥

2→2

≤ max
k,k′ 6=k

d
− 1

2
k d

1
2
k′

dmax
d

1
2
k′

∥∥∥Φ† [k] Φ
[
k′
]∥∥∥

1→2

= max
k,k′ 6=k

d
− 1

2
k dk′

dmax

∥∥∥Φ† [k] Φ
[
k′
]∥∥∥

1→2

= M1,2 (Φ) .

Then, for the third inequality considering the relationship between the `2→2 and `2→∞,
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and also `2→∞ and `1→∞ operator-norms, we have:

M2,2 (Φ)
def
= max

k,k′ 6=k

d
− 1

2
k d

1
2
k′

dmax

∥∥∥Φ† [k] Φ
[
k′
]∥∥∥

2→2

≤ max
k,k′ 6=k

d
− 1

2
k d

1
2
k′

dmax
d

1
2
k

∥∥∥Φ† [k] Φ
[
k′
]∥∥∥

2→∞

= max
k,k′ 6=k

d
1
2
k′

dmax

∥∥∥Φ† [k] Φ
[
k′
]∥∥∥

2→∞

= M2,∞ (Φ) ≤ max
k,k′ 6=k

d
1
2
k′

dmax
d

1
2
k′

∥∥∥Φ† [k] Φ
[
k′
]∥∥∥

1→∞

= max
k,k′ 6=k

dk′

dmax

∥∥∥Φ† [k] Φ
[
k′
]∥∥∥

1→∞

= M1,∞ (Φ) .

Finally, for the last inequality we need to know the relationship between the `∞→∞ and
`2→∞ operator-norms:

M∞,∞ (Φ)
def
= max

k,k′ 6=k

1

dmax

∥∥∥Φ† [k] Φ
[
k′
]∥∥∥
∞→∞

≤ max
k,k′ 6=k

1

dmax
d

1
2
k′

∥∥∥Φ† [k] Φ
[
k′
]∥∥∥

2→∞

= max
k,k′ 6=k

d
1
2
k′

dmax

∥∥∥Φ† [k] Φ
[
k′
]∥∥∥

2→∞

= M2,∞ (Φ) .

For the proof of general relationships of figure 2.4, utilising the upper-bound of second set of
bounds in Property 2.4 (`q→p operator-norm properties), i.e., ∀ (q, p, q′, p′)∈R4

>0,∀A∈Rm×n :

‖A‖q→p≤max{1,m1/p−1/p′}max{1, n1/q′−1/q}‖A‖q′→p′ , and for a fixed p=p′, and q′≤q, which
yields ‖A‖q→p≤n1/q′−1/q‖A‖q′→p, we get the following inequalities:

∀(q, p, q′) ∈ R3
>0, q

′ ≤ q, Mq,p (Φ)
def
= max

k,k′ 6=k

d
− 1

p

k d
1
q

k′

dmax

∥∥∥Φ† [k] Φ
[
k′
]∥∥∥
q→p

≤ max
k,k′ 6=k

d
− 1

p

k d
1
q

k′

dmax
d

1
q′−

1
q

k′

∥∥∥Φ† [k] Φ
[
k′
]∥∥∥
q′→p

= max
k,k′ 6=k

d
− 1

p

k d
1
q′

k′

dmax

∥∥∥Φ† [k] Φ
[
k′
]∥∥∥
q′→p

= Mq′,p (Φ) .

Similarly, using the same upper-bound of Property 2.4, this time for a fixed q=q′, and p≤p′,
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which yields ‖A‖q→p≤m1/p−1/p′‖A‖q→p′ , we get the following inequalities:

∀(q, p, p′) ∈ R3
>0, p ≤ p′, Mq,p (Φ)

def
= max

k,k′ 6=k

d
− 1

p

k d
1
q

k′

dmax

∥∥∥Φ† [k] Φ
[
k′
]∥∥∥
q→p

≤ max
k,k′ 6=k

d
− 1

p

k d
1
q

k′

dmax
d

1
p
− 1

p′
k

∥∥∥Φ† [k] Φ
[
k′
]∥∥∥
q→p′

= max
k,k′ 6=k

d
− 1

p′
k d

1
q

k′

dmax

∥∥∥Φ† [k] Φ
[
k′
]∥∥∥
q→p′

= Mq,p′ (Φ) .
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A.4 Proof of Property 2.7 (Block-MCCq,p bounds with
intra-block orthonormality I, page 59)

Proof. Using the definition of Mq,p(Φ) in Property 2.6, and submultiplicativity property of
operator-norm introduced in Property 2.4 (`q→p operator-norm properties), we have:

∀ (q, p) ∈ R2
>0, Mq,p (Φ) = max

k,k′ 6=k

d
− 1

p

k d
1
q

k′

dmax

∥∥ΦT [k] Φ
[
k′
]∥∥
q→p

≤ max
k,k′ 6=k

d
− 1

p

k d
1
q

k′

dmax

∥∥ΦT [k]
∥∥
q→p

∥∥Φ[k′]
∥∥
q→p max

{
1,m

1
q
− 1

p

}
.

(A.3)

On the other hand, from the following property, ‖ · ‖q→p can be bounded in terms of ‖ · ‖2→2,
which is often called the spectral norm:

Property A.1 (Bounds of `q→p operator-norm in terms of `2→2). The bounds of the
`q→p operator-norm of a matrix A∈Rm×n in terms of its `2→2 operator-norm based on the
second set of bounds in Property 2.4 (`q→p operator-norm properties) for q′=p′=2 is:

‖A‖q→p ≥ min
{

1,m
1
p
− 1

2

}
min

{
1, n

1
2
− 1

q

}
‖A‖2→2 ,

‖A‖q→p ≤ max
{

1,m
1
p
− 1

2

}
max

{
1, n

1
2
− 1

q

}
‖A‖2→2 .

These bounds for different values of q and p are shown in table A.1.

Therefore, based on Property A.1, we upper-bound the `q→p operator-norms of the
upper-bound of Block-MCC in equation (A.3):

Mq,p (Φ) ≤ max
k,k′ 6=k

d
− 1

p

k d
1
q

k′

dmax
max

{
1, d

1
p
− 1

2

k

}
max

{
1,m

1
2
− 1

q

}∥∥ΦT [k]
∥∥

2→2
×

max
{

1,m
1
p
− 1

2

}
max

{
1, d

1
2
− 1

q

k′

}∥∥Φ[k′]
∥∥

2→2
max

{
1,m

1
q
− 1

p

}
.

(A.4)

But ∀k, ‖ΦT [k]‖2→2=‖Φ[k]‖2→2=1, because for a typical matrix A∈Rm×n we have
‖A‖2→2=σmax(A)=

√
λmax(ATA), where, σ and λ are singular value and eigenvalue,

respectively, but here A is an orthonormal matrix, then ATA=In, and then λmax(In)=1.

q& p ≤ 2 q& p ≥ 2 q ≤ 2 & p ≥ 2 q ≥ 2 & p ≤ 2

‖A‖q→p

‖A‖2→2
≤ m

1
p
− 1

2 n
− 1

q
+ 1

2 1 m
1
p
− 1

2n
− 1

q
+ 1

2

‖A‖q→p

‖A‖2→2
≥ n

− 1
q

+ 1
2 m

1
p
− 1

2 m
1
p
− 1

2n
− 1

q
+ 1

2 1

Table A.1: Bounds of ‖A‖q→p/‖A‖2→2 for different values of q and p, where, A is a m by n
matrix.
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maxMq,p(Φ) maxMq,p(Φ)

0 < q& p ≤ 2 max
k,k′ 6=k

d
− 1

2
k d

1
q

k′ d
−1
maxm

1
p
− 1

2 max
{

1,m
1
q
− 1

p

}
≤ d

− 1
2

min d
1
q
−1

maxm
1
p
− 1

2 max
{

1,m
1
q
− 1

p

}
q& p ≥ 2 max

k,k′ 6=k
d
− 1

p

k d
1
2
k′ d
−1
maxm

1
2
− 1

q max
{

1,m
1
q
− 1

p

}
≤ d

− 1
p

min d
− 1

2
maxm

1
2
− 1

q max
{

1,m
1
q
− 1

p

}
0 < q ≤ 2 & p ≥ 2 max

k,k′ 6=k
d
− 1

p

k d
1
q

k′ d
−1
maxm

1
q
− 1

p ≤ d
− 1

p

min d
1
q
−1

maxm
1
q
− 1

p

q ≥ 2 & 0 < p ≤ 2 max
k,k′ 6=k

d
− 1

2
k d

1
2
k′ d
−1
maxm

1
p
− 1

q ≤ d
− 1

2
min d

− 1
2

maxm
1
p
− 1

q

Table A.2: Upper-bound of Block-MCCq,p for different ranges of q and p and for a dictionary
with intra-block orthonormality.

Therefore, the inequality (A.4) is developed into table A.2. In each case in the last
column of the table A.2, the maximum value is achieved for minimum block length dmin
with negative power, and maximum block length dmax with positive power. The table 2.4
shows the upper-bound of Mq,p(Φ) based on table A.2, for the basic tractable values of q and
p based on table 2.1.
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A.5 Proof of Property 2.8 (Block-MCCq,p bounds, page 59)

Proof. 1) Since the operator-norm is nonnegative (Property 2.4), it can be seen that
∀k, k′ 6=k,∀(q, p)∈R2

≥0 : ‖Φ†[k]Φ[k′]‖q→p≥0⇒ ∀(q, p)∈R2
>0 : Mq,p(Φ)≥0. Considering that for

all k the blocks Φ[k] are full column rank, using the Moore-Penrose pseudo-inverse property
of matrices, ∀(q, p)∈R2

>0 we have:

Mq,p (Φ) = max
k,k′ 6=k

d
− 1

p

k d
1
q

k′

dmax

∥∥∥Φ† [k] Φ
[
k′
]∥∥∥
q→p

= max
k,k′ 6=k

d
− 1

p

k d
1
q

k′

dmax

∥∥∥(ΦT [k] Φ [k]
)−1

ΦT [k] Φ
[
k′
]∥∥∥
q→p

.

Applying the general format of submultiplicativity property of operator-norm of a matrix,
which is introduced in the Property 2.4 (`q→p operator-norm properties) ∀(q, p)∈R2

>0, on the
above last equality, ∀(q, p)∈R2

>0 we have:

Mq,p (Φ) ≤ max
k,k′ 6=k

d
− 1

p

k d
1
q

k′

dmax

∥∥∥(ΦT [k] Φ [k]
)−1
∥∥∥
q→p

∥∥ΦT [k] Φ
[
k′
]∥∥
q→p max

{
1, d

1
q
− 1

p

k

}
. (A.5)

Since each element of the ΦT [k]Φ[k′] is the pairwise correlation between the columns of the
k and k′ 6=k blocks, for any k and k′ 6=k the ΦT [k]Φ[k′] can be upper bounded byM(Φ) 1dk×dk′ ,
so it is true for their operator-norms, because using Property 2.4 (`q→p operator-norm
properties) for comparison of `q→p operator-norm of two matrices (the forth property of the
part Bounds), we have the following first line (based on table 2.1, the maximum absolute entry
of a matrix is represented by its `1→∞ operator-norm), whereas by the homogeneity property
of `q→p operator-norm defined in Property 2.4 ∀q≥0 and ∀p>0, the following second line is
obtained ∀(q, p)∈R2

>0:

∀k, k′ 6= k,
∥∥ΦT [k] Φ

[
k′
]∥∥
q→p ≤

∥∥∥∥ΦT [k] Φ
[
k′
]∥∥

1→∞ 1dk×dk′
∥∥
q→p

=
∥∥ΦT [k] Φ

[
k′
]∥∥

1→∞
∥∥1dk×dk′∥∥q→p

≤M (Φ)
∥∥1dk×dk′∥∥q→p .

The above last line comes from the fact that ∀k, k′ 6=k, the maximum absolute value of
multiplication of blocks k and k′ is less than or equal to M(Φ), which is by definition the
maximum off-diagonal absolute value of multiplication of the whole dictionary to itself, i.e.,
M(Φ)

def
= maxk,k′ 6=k |Gk,k′(Φ)|, where G(Φ)

def
=ΦTΦ.

Then, using the upper-bound of the third set of bounds in Property 2.4, we will have the
following second line. Then, by computing the Frobenius norm in the second line, ∀k, k′ 6=k
and ∀(q, p, q′, p′)∈R4

>0 we get the following third line:
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∥∥ΦT [k] Φ
[
k′
]∥∥
q→p ≤M (Φ)

∥∥1dk×dk′∥∥q→p
≤M (Φ) max

{
1, d

1
p
− 1

p′
k

}
max

{
1, d

1
q′−

1
q

k′

}
max

{
1, d

1
p′−

1
2

k

}
max

{
1, d

1
2
− 1

q′

k′

}∥∥1dk×dk′∥∥F
= (dk dk′)

1
2 M (Φ) max

{
1, d

1
p
− 1

p′
k

}
max

{
1, d

1
q′−

1
q

k′

}
max

{
1, d

1
p′−

1
2

k

}
max

{
1, d

1
2
− 1

q′

k′

}
.

(A.6)

Therefore, substituting ‖ΦT [k]Φ[k′]‖q→p with its upper-bound in the (A.5), ∀(q, p, q′, p′)∈R4
>0

we get:

Mq,p (Φ) ≤M (Φ) max
k,k′ 6=k

d
1
2
− 1

p

k d
1
q

+ 1
2

k′

dmax

∥∥∥(ΦT [k] Φ [k]
)−1
∥∥∥
q→p
×

max

{
1, d

1
p
− 1

p′
k

}
max

{
1, d

1
q′−

1
q

k′

}
max

{
1, d

1
p′−

1
2

k

}
max

{
1, d

1
2
− 1

q′

k′

}
max

{
1, d

1
q
− 1

p

k

}
.

(A.7)

Now an upper bound for ‖(ΦT [k]Φ[k])−1‖q→p should be developed. As part of the
required tools to reach this aim we will utilise the following property:

Property A.2. For q≥p≥1, if ‖A‖q→p<1, then [HR12]

(I +A)−1 =
∞∑
i=0

(−A)i .

Proof. It follows from Corollary 5.6.16 of [HR12]. Based on the Corollary 5.6.16 of [HR12],
the matrix norm of A should be less than one. Therefore, we imposed the constraint q≥p≥1,
because according to Remark 2.5 (matrix norm) on page 56 the `q→p operator-norm for q≥p≥1

satisfies all the required properties to be conceived as a matrix norm.

Therefore, according to Property A.2, we need to decompose the ΦT [k]Φ[k] into a sum
of two matrices, which one of them is an identity matrix. For now we continue with the
current constraints on q and p, i.e., ∀(q, p)∈R2

>0, but as soon as we use the above property
the constraints will change to q≥p≥1.

ΦT [k]Φ[k] is a dk×dk matrix which all of its diagonal elements are one, and its off-diagonal
elements measure pairwise correlation between the columns of the same block k. Therefore,
ΦT [k]Φ[k] can be decomposed as ΦT [k]Φ[k]=Idk+F [k], where:

∀k, fi,j [k] =

{
0, if i = j

ϕTi [k]ϕj [k], if i 6= j.

But we are interested in the upper-bound of ‖(ΦT [k]Φ[k])−1‖q→p. By the mentioned
decomposition we have the following first line of inequalities. Then, utilising the Property A.2,
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assuming q≥p≥1 and ‖F [k]‖q→p<1 (its veracity will be investigated) the following second line
is obtained. Next utilising the generalisation (from two matrices to more than two matrices)
of the triangle inequality property of the `q→p operator-norm introduced in Property 2.4
(`q→p operator-norm properties) ∀q∈R≥0, ∀p∈R≥1, or for p=0, the following third line is
obtained. Then utilising the generalisation (from two matrices to more than two matrices)
of the submultiplicativity property of the `q→p operator-norm introduced in Property 2.4 for
q≥p>0, the following forth line is obtained. Finally, utilising the sum of an infinite geometric
series, i.e.,

∑∞
i=0 r

i=1/(1− r), where |r|<1, the following last line is obtained, considering the
assumption ‖F [k]‖q→p<1 (to be investigated).

∀k, q ≥ p ≥ 1,
∥∥∥(ΦT [k] Φ [k]

)−1
∥∥∥
q→p

=
∥∥∥(Idk + F [k])−1

∥∥∥
q→p

=

∥∥∥∥∥
∞∑
i=0

(−F [k])i

∥∥∥∥∥
q→p

≤
∞∑
i=0

∥∥∥(−F [k])i
∥∥∥
q→p

≤
∞∑
i=0

‖F [k]‖iq→p

=
1

1− ‖F [k]‖q→p
.

(A.8)

Now we investigate the veracity of the assumption ‖F [k]‖q→p<1. Since each off-diagonal
entry of F [k] is the pairwise correlation between the columns of the kth block and the
on-diagonal values are all zero, it can be upper bounded by M (Φ) (1dk−Idk), so it is true
for their operator-norms, because using Property 2.4 (`q→p operator-norm properties) for
comparison of `q→p operator-norm of two matrices ∀(q, p)∈R2

>0 (the forth property of the part
Bounds), we have:

∀k, q ≥ p ≥ 1, ‖F [k]‖q→p ≤ ‖‖F [k]‖1→∞ (1dk − Idk)‖q→p
= ‖F [k]‖1→∞ ‖(1dk − Idk)‖q→p
≤M (Φ) ‖(1dk − Idk)‖q→p .

The `1→∞ operator-norm of a matrix computes the maximum absolute entry of the matrix
(table 2.1). The above second line uses the homogeneity property of `q→p operator-norm
defined in Property 2.4 (`q→p operator-norm properties) ∀q≥0 and ∀p>0. The above last line
comes from the fact that ∀k, the maximum off-diagonal absolute value of multiplication of
block k to itself is less than or equal to M(Φ), because the off-diagonal values of F [k] are
a subset of off-diagonal values of the Gram matrix G(Φ)

def
=ΦTΦ, which the M(Φ) is derived

from, i.e., M(Φ)
def
= maxk,k′ 6=k |Gk,k′(Φ)|= maxk,k′ 6=k |ϕTkϕk′ |, hence ‖F [k]‖1→∞≤M(Φ).

Then, using the upper-bound of the third set of bounds in Property 2.4 (`q→p
operator-norm properties), we will have the following second line. By computing the Frobenius
norm in the second line, the third line is obtained. Considering the obtained constraint on q
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and p, i.e., q≥p≥1, we choose q′=p′=1 in the following third line, because both q and p are
lower-bounded by one.

‖F [k]‖q→p ≤M (Φ) ‖(1dk − Idk)‖q→p

≤M (Φ) max

{
1, d

1
p
− 1

p′
k

}
max

{
1, d

1
q′−

1
q

k

}
max

{
1, d

1
p′−

1
2

k

}
max

{
1, d

1
2
− 1

q′
k

}
‖(1dk − Idk)‖F

=
(
d2
k − dk

) 1
2 M (Φ) max

{
1, d

1
p
− 1

p′
k

}
max

{
1, d

1
q′−

1
q

k

}
max

{
1, d

1
p′−

1
2

k

}
max

{
1, d

1
2
− 1

q′
k

}
=
(
d2
k − dk

) 1
2 d

1− 1
q

k d
1
2
k M (Φ)

= d
2− 1

q

k (dk − 1)
1
2 M (Φ) .

Therefore, for all k we have ‖F [k]‖q→p≤d2−1/q
max (dmax−1)1/2M(Φ). On the other hand, in

the Property 2.8, it is assumed that d2−1/q
max (dmax−1)1/2M(Φ)<1, so the required condition

to use the Property A.2 in (A.8), i.e., ‖F [k]‖q→p<1, is satisfied. Substituting the obtained
upper-bound of ‖F [k]‖q→p in (A.8), we get:

∀k, q ≥ p ≥ 1,
∥∥∥(ΦT [k] Φ [k]

)−1
∥∥∥
q→p
≤ 1

1− ‖F [k]‖q→p

≤ 1

1− d
2− 1

q

k (dk − 1)
1
2 M (Φ)

.

On the other hand, the previously obtained main equation (A.7) for new constraints q≥p≥1

(max{1, d1/q−1/p
k }=1) and q′=p′=1 becomes:

Mq,p (Φ) ≤M (Φ) max
k,k′ 6=k

d
1
2
− 1

p

k d
1
q

+ 1
2

k′

dmax

∥∥∥(ΦT [k] Φ [k]
)−1
∥∥∥
q→p
×

max

{
1, d

1
p
− 1

p′
k

}
max

{
1, d

1
q′−

1
q

k′

}
max

{
1, d

1
p′−

1
2

k

}
max

{
1, d

1
2
− 1

q′

k′

}
max

{
1, d

1
q
− 1

p

k

}

= M (Φ) max
k,k′ 6=k

d
1
2
− 1

p

k d
1
q

+ 1
2

k′

dmax

∥∥∥(ΦT [k] Φ [k]
)−1
∥∥∥
q→p
×

max

{
1, d

1
p
−1

k

}
max

{
1, d

1− 1
q

k′

}
max

{
1, d

1
2
k

}
max

{
1, d
− 1

2
k′

}

= M (Φ) max
k,k′ 6=k

d
1− 1

p

k d
3
2
k′

dmax

∥∥∥(ΦT [k] Φ [k]
)−1
∥∥∥
q→p

.

(A.9)

Substituting the upper-bound of ‖(ΦT [k]Φ[k])−1‖q→p obtained in equation (A.5) into the
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updated main equation (A.9), we get:

q ≥ p ≥ 1, Mq,p (Φ) ≤ M (Φ)

dmax
max
k,k′ 6=k

d
1− 1

p

k d
3
2
k′

1− d
2− 1

q

k (dk − 1)
1
2 M (Φ)

≤ M (Φ)

dmax
max
k

d
1− 1

p

k max
k′ 6=k

d
3
2
k′ max

k

1

1− d
2− 1

q

k (dk − 1)
1
2 M (Φ)

=
d

3
2
− 1

p
max M (Φ)

1− d
2− 1

q
max (dmax − 1)

1
2 M (Φ)

.

2) Starting from the definition of coherence in Property 2.6 (block-MCCq,p for intra-block
orthonormality) we have the following first line for ∀(q, p)∈R2

>0. Then considering the
upper-bound of ‖ΦT [k]Φ[k′]‖q→p for any k and k′ 6=k, obtained in (A.6), we will have the
following second line ∀(q, p, q′, p′)∈R4

>0:

Mq,p (Φ) = max
k,k′ 6=k

d
− 1

p

k d
1
q

k′

dmax

∥∥ΦT [k] Φ
[
k′
]∥∥
q→p

≤ M (Φ)

dmax
max
k,k′ 6=k

d
1
2
− 1

p

k d
1
q

+ 1
2

k′ max

{
1, d

1
p
− 1

p′
k

}
max

{
1, d

1
q′−

1
q

k′

}
max

{
1, d

1
p′−

1
2

k

}
max

{
1, d

1
2
− 1

q′

k′

}
.
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A.6 Proof of Lemma 2.1 (Block-UP based on Block-Spark, page
65)

Proof. Here, we used the following triangle inequality:

‖β0‖p,0 + ‖β1‖p,0 ≥ ‖β0 − β1‖p,0 .

which is the the block-structured generalisation of one of the properties of the `0 pseudo-norm
operator for vector space. The above relation simply indicates that, if two representations have
no overlapped supports, the sum of their number of active blocks are equal to the number of
active blocks of their subtraction (equality), while in case of overlapped supports, the sum of
their number of active blocks is greater than the number of active blocks of their subtraction
(inequality).

On the other hand, we have Φ(β0−β1)=0. Therefore (β0−β1) is in the Kernel of the
dictionary, and based on the definition of Block-Spark in Definition 2.5 (page 52), we have:

‖β0 − β1‖p,0 ≥ Block−Spark(Φ),

which proves the lemma.
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A.7 Proof of Theorem 2.2 (Block-NSP, page 67)

Proof. Under the assumption of Qw;p1,p2(Sb(β),Φ)<1/2 and Sb(β0)⊂Sb(β), to show that β0

is the unique solution to the Pw;p1,p2 minimisation problem, we need to prove that:

∀x ∈ Ker(Φ), ‖β0‖p2w;p1,p2
< ‖β0 + x‖p2w;p1,p2

,

where as defined in Definition 2.2 (weighted (pseudo-)mixed-norm, page 48), the `wp1,p2
weighted (pseudo-)mixed-norm of a vector β0 is:

‖β0‖w;p1,p2

def
=



∑
k

I

‖β0 [k]‖p1

d
1
p1
k

 , for p2 = 0

∑
k

‖β0 [k]‖p2p1

d
p2
p1
k

 1
p2

, for 0 < p2 < +∞

max
k

‖β0 [k]‖p1

d
1
p1
k

, for p2 =∞.

Then, dividing the whole blocks to on-Block-Support (∈Sb(β)) and off-Block-Support

(/∈Sb(β)), we have

0 <
∑

k∈Sb(β)



∣∣∣∣∣∣∣∣∣∣∣

dk∑
j=1

∣∣β0j [k] + xj [k]
∣∣p1

dk

∣∣∣∣∣∣∣∣∣∣∣

p2
p1

−

∣∣∣∣∣∣∣∣∣∣∣

dk∑
j=1

∣∣β0j [k]
∣∣p1

dk

∣∣∣∣∣∣∣∣∣∣∣

p2
p1



+
∑

k/∈Sb(β)

∣∣∣∣∣∣∣∣∣∣∣

dk∑
j=1

|xj [k]|p1

dk

∣∣∣∣∣∣∣∣∣∣∣

p2
p1

.

It can be rewritten in terms of the norm operator, so

0 <
∑

k∈Sb(β)

wp2k

(
‖β0 [k] + x [k]‖p2p1 − ‖β0 [k]‖p2p1

)
+

∑
k/∈Sb(β)

wp2k ‖x [k]‖p2p1 .

where, in a block-structured vector a=[aT [1], · · · ,aT [K]]T with length vector d=[d1, · · · , dK ],
wk in wk‖a[k]‖p is equal to d−1/p

k .

From quasi-triangle inequality for scalars, we generalised it to vector space and derived
the corresponding triangle inequality ‖a+b‖p2p1 −‖a‖

p2
p1
≥−‖b‖p2p1 for 0≤p2≤1≤p1. Therefore,

it is sufficient to prove:

0 <
∑

k/∈Sb(β)

wp2k ‖x [k]‖p2p1 −
∑

k∈Sb(β)

wp2k ‖x [k]‖p2p1 .
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Adding 2
∑

k∈Sb(β)w
p2
k ‖x[k]‖p2p1 to both sides, we have

2
∑

k∈Sb(β)

wp2k ‖x [k]‖p2p1 <
∑

k/∈Sb(β)

wp2k ‖x [k]‖p2p1 +
∑

k∈Sb(β)

wp2k ‖x [k]‖p2p1

=
∑
k

wp2k ‖x [k]‖p2p1 ,

or equivalently, ∑
k∈Sb(β)

wp2k ‖x [k]‖p2p1∑
k

wp2k ‖x [k]‖p2p1
<

1

2
.

But the above left-hand side expression is exactly Qw;p1,p2(Sb(β),Φ) and the inequality is the
initial assumption of the proof, i.e., Qw;p1,p2(Sb(β),Φ)<1/2.

Similarly, for the case of equally-sized blocks, i.e., d1= · · ·=dK=d, under the assumption
of Qp1,p2(Sb(β),Φ)<1/2 and Sb(β0)⊂Sb(β), to show that β0 is the unique solution to the
Pp1,p2 minimisation problem, we need to prove that:

∀x ∈ Ker(Φ), ‖β0‖p2p1,p2 < ‖β0 + x‖p2p1,p2 ,

where as defined on page 34, the `p1,p2 (pseudo-)mixed-norm of a vector β0 is:

‖β0‖p1,p2
def
=



∑
k

I
(
‖β0 [k]‖p1

)
, for p2 = 0(∑

k

‖β0 [k]‖p2p1

) 1
p2

, for 0 < p2 < +∞

max
k

{
‖β0 [k]‖p1

}
, for p2 =∞,

Then, the above-mentioned inequality is equivalent to showing

K∑
k=1

∣∣∣∣∣∣
dk∑
j=1

∣∣β0j [k]
∣∣p1∣∣∣∣∣∣

p2
p1

<
K∑
k=1

∣∣∣∣∣∣
dk∑
j=1

∣∣β0j [k] + xj [k]
∣∣p1∣∣∣∣∣∣

p2
p1

.

Then, dividing the whole blocks to on-Block-Support (∈Sb(β)) and off-Block-Support

(/∈Sb(β)), we have

0 <
∑

k∈Sb(β)


∣∣∣∣∣∣
dk∑
j=1

∣∣β0j [k] + xj [k]
∣∣p1∣∣∣∣∣∣

p2
p1

−

∣∣∣∣∣∣
dk∑
j=1

∣∣β0j [k]
∣∣p1∣∣∣∣∣∣

p2
p1


+

∑
k/∈Sb(β)

∣∣∣∣∣∣
dk∑
j=1

|xj [k]|p1
∣∣∣∣∣∣
p2
p1

.
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It can be rewritten in terms of the norm operator, so

0 <
∑

k∈Sb(β)

‖β0 [k] + x [k]‖p2p1 − ‖β0 [k]‖p2p1 +
∑

k/∈Sb(β)

‖x [k]‖p2p1 .

Utilising ‖a+b‖p2p1 −‖a‖
p2
p1
≥−‖b‖p2p1 for 0≤p2≤1≤p1, it is sufficient to prove:

0 <
∑

k/∈Sb(β)

‖x [k]‖p2p1 −
∑

k∈Sb(β)

‖x [k]‖p2p1 .

Adding 2
∑

k∈Sb(β) ‖x[k]‖p2p1 to both sides, we have

2
∑

k∈Sb(β)

‖x [k]‖p2p1 <
∑

k/∈Sb(β)

‖x [k]‖p2p1 +
∑

k∈Sb(β)

‖x [k]‖p2p1

=
∑
k

‖x [k]‖p2p1 ,

or equivalently, ∑
k∈Sb(β)

‖x [k]‖p2p1∑
k

‖x [k]‖p2p1
<

1

2
.

But the above left-hand side expression is exactly Qp1,p2(Sb(β),Φ) and the inequality is the
initial assumption of the proof, i.e., Qp1,p2(Sb(β),Φ)<1/2.
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A.8 Proof of Lemma 2.2 (Basic Block-UP, page 69)

Proof. The following proof generalises the corresponding proofs in [EB01]; [EB02]; [EB09];
[EKB10b] and [EKB10a]. Without loss of generality, assume that the non-zero signal y is
normalized to have unit squared Euclidean norm, i.e., ‖y‖22=yTy=1, and suppose that p is
Hölder conjugate to p′, i.e., 1/p+1/p′=1 [GL13]. Then,

∀(p, p′) ∈ R2
≥1, ∀q ∈ R>0, ∀r ∈ R≥0, 1 =

K∑
k,k′=1

βT1 [k] ΦT
1 [k] Φ2

[
k′
]
β2

[
k′
]

≤
K∑

k,k′=1

‖β1 [k]‖p
∥∥ΦT

1 [k] Φ2

[
k′
]
β2

[
k′
]∥∥
p′

≤ dmaxM q,p′ (Φ1,Φ2)
K∑

k,k′=1

d
1
p′
k ‖β1 [k]‖p d

− 1
q

k′

∥∥β2

[
k′
]∥∥
q

= dmaxM q,p′ (Φ1,Φ2)

K∑
k=1

d
1
p′
k ‖β1 [k]‖p

K∑
k′=1

d
− 1

q

k′

∥∥β2

[
k′
]∥∥
q

= dmaxM q,p′ (Φ1,Φ2)

‖β1‖r,0∑
k=1

d
1
p′
k ‖β1 [k]‖p

‖β2‖r,0∑
k′=1

d
− 1

q

k′

∥∥β2

[
k′
]∥∥
q
.

(A.10)

For vectors a and b we have aTb≤
∑

i |aibi|, and using Hölder’s inequality [GL13], i.e.,∑
i |aibi| ≤‖a‖p‖b‖p′ , where, ∀(p, p′)∈R2

≥1 : 1/p+1/p′=1, we have aTb≤‖a‖p‖b‖p′ , which
results the above first inequality. Considering the definition of basic Block-MCCq,p,
i.e., M q,p′(Φ1,Φ2)= maxk,k′ d

−1/p′

k d
1/q
k′ /dmax‖Φ

T
1 [k]Φ2[k′]‖q→p′ , where p′=p/(p−1), we have

‖ΦT
1 [k]Φ2[k′]x‖p′≤M q,p′(Φ1,Φ2)dmaxd

1/p′

k d
−1/q
k′ ‖x‖q, which produces the above third line

with second inequality. The above last equality follows from summation only over non-zero
blocks for any r≥0.

Before finding the upper-bound for the above last inequality (A.10), it should be taken
into account that according to the Parseval’s theorem, we have ‖y‖22=‖β1‖22=‖β2‖22=1, which
will be used in the following optimisation problem. Therefore, in order to upper-bound the
inequality (A.10), it is sufficient to solve the following optimisation problem:

∀(q, p, p′) ∈ R3
≥1,∀r ∈ R≥0, max

k,k′

‖β1‖r,0∑
k=1

d
1
p′
k

 dk∑
j=1

∣∣β1j [k]
∣∣p 1

p ‖β2‖r,0∑
k′=1

d
− 1

q

k′

 dk′∑
j=1

∣∣β2j

[
k′
]∣∣q 1

q

s.t.

‖β1‖r,0∑
k=1

dk∑
j=1

β2
1j [k] =

‖β2‖r,0∑
k′=1

dk′∑
j=1

β2
2j

[
k′
]

= 1.

(A.11)

Although the equation (A.10) holds true for ∀q∈R>0, we are going to upper-bound the (A.10)
for ∀q∈R≥1, as it is mentioned in (A.11). On the other hand, since during the procedure of
finding the upper-bound, the derivative of the q and p norms of a vector should be computed,
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we solve (A.11) in two parts: 1) ∀(q, p)∈R2
>1 (differentiable q and p norms), and 2) q=p=1

(following the related proof in [EB02], page 3).

Above optimisation problem is separable, so we need to maximise
∀(q, p)∈R2

>1,
∑‖β1‖r,0

k=1 d
1/p′

k (
∑dk

j=1 |β1j [k]|p)1/p subject to
∑‖β1‖r,0

k=1

∑dk
j=1 β

2
1j

[k]=1, and∑‖β2‖r,0
k′=1 d

−1/q
k′ (

∑dk′
j=1 |β2j [k

′]|q)1/q subject to
∑‖β2‖r,0

k′=1

∑dk′
j=1 β

2
2j

[k′]=1, separately. In order to
solve two mentioned problems, first we need to form the Lagrangian function. Then, for the
first problem we have:

L (β1, λ) =

‖β1‖r,0∑
k=1

d
1
p′
k

 dk∑
j=1

∣∣β1j [k]
∣∣p 1

p

+ λ

1−
‖β1‖r,0∑
k=1

dk∑
j=1

β2
1j [k]

 ,

then we need to compute its critical point. Considering that (|f |)′=f ′ f/|f |, where f ′ is
derivative of f with respect to x, i.e. d f(x)/d x, we have:

∂L
∂β1j [k]

= d
1
p′
k β1j [k]

∣∣β1j [k]
∣∣p−2

 dk∑
j=1

∣∣β1j [k]
∣∣p 1

p
−1

− 2λβ1j [k] = 0

⇒
∣∣β1j [k]

∣∣ ∈
0,

 2λ

d
1
p′
k ‖β1 [k]‖1−pp


1

p−2

 .

From the above last equality it can be derived that all the absolute value of the coefficients in
a block k has the same value. On the other hand, all the identical elements cannot be zero,
because it leads to ‖β1[k]‖r,0=0, but from the last line of (A.10), only non-zero blocks are
selected for optimisation. Therefore, it reduces to:∣∣β1j [k]

∣∣ =
1

2λ
.

Next, applying the unit-energy constraint of the coefficients, we get:

1 =

‖β1‖r,0∑
k=1

dk∑
j=1

β2
1j [k] =

dk ‖β1‖r,0
4λ2

⇒ λ =
d

1
2
k ‖β1‖

1
2
r,0

2
⇒
∣∣β1j [k]

∣∣ =
(
dk ‖β1‖r,0

)−1
2
.

Therefore,
∑‖β1‖r,0

k=1 d
1/p′

k (
∑dk

j=1 |β1j [k]|p)1/p is upper-bounded by ‖β1‖−1/2
r,0

∑‖β1‖r,0
k=1 d

1/2
k ,

which is again upper-bounded by ‖β1‖1/2r,0 d
1/2
max. Similarly, for the second problem it can be

proved that
∑‖β2‖r,0

k′=1 d
−1/q
k′ (

∑dk′
j=1 |β2j [k

′]|q)1/q is upper-bounded by ‖β2‖−1/2
r,0

∑‖β2‖r,0
k′=1 d

−1/2
k′ ,

which is upper-bounded by ‖β2‖1/2r,0 d
−1/2
min . Substituting the recently mentioned upper-bounds

into (A.10), we get:

∀(q, p) ∈ R2
>1, ∀r ∈ R≥0, 1 ≤ d−

1
2

mind
3
2
maxM q,p′ (Φ1,Φ2)

(
‖β1‖r,0 ‖β2‖r,0

) 1
2

≤ d−
1
2

mind
3
2
maxM q,p′ (Φ1,Φ2)

‖β1‖r,0 + ‖β2‖r,0
2

.
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The proof is completed in the above equation by replacing p′ by p/(p−1), according to the
condition of the Hölder’s inequality [GL13], and using the inequality of arithmetic-geometric
means, i.e.,

√
ab≤(a+b)/2.

Now, consider the case where q=p=1. Then, the optimisation problem in (A.11) becomes:

∀r ∈ R≥0, max
k,k′

‖β1‖r,0∑
k=1

dk∑
j=1

∣∣β1j [k]
∣∣ ‖β2‖r,0∑

k′=1

d−1
k′

dk′∑
j=1

∣∣β2j

[
k′
]∣∣

s.t.

‖β1‖r,0∑
k=1

dk∑
j=1

β2
1j [k] =

‖β2‖r,0∑
k′=1

dk′∑
j=1

β2
2j

[
k′
]

= 1,

which is equivalent to

∀r ∈ R≥0, max
k,k′

‖β1‖r,0∑
k=1

dk∑
j=1

β1j [k]

‖β2‖r,0∑
k′=1

d−1
k′

dk′∑
j=1

β2j

[
k′
]

s.t.

‖β1‖r,0∑
k=1

dk∑
j=1

β2
1j [k] =

‖β2‖r,0∑
k′=1

dk′∑
j=1

β2
2j

[
k′
]

= 1

and β1j [k] , β2j

[
k′
]
> 0.

The above optimisation problem is separable, so we need to maximise
∑‖β1‖r,0

k=1

∑dk
j=1 β1j [k]

subject to
∑‖β1‖r,0

k=1

∑dk
j=1 β

2
1j

[k]=1, β1j [k]>0 and
∑‖β2‖r,0

k′=1 d−1
k′
∑dk′

j=1 β2j [k
′] subject to∑‖β2‖r,0

k′=1

∑dk′
j=1 β

2
2j

[k′]=1, β2j [k
′]>0, separately. But, in order to solve these problems

(following the related proof in [EB02], page 3), let us consider the following Lagrangian
function, in which the positivity constraint is not enforced explicitly:

L (β1, λ) =

‖β1‖r,0∑
k=1

dk∑
j=1

β1j [k] + λ

1−
‖β1‖r,0∑
k=1

dk∑
j=1

β2
1j [k]


∂L

∂β1j [k]
= 1− 2λβ1j [k] = 0⇒ β1j [k] =

1

2λ
.

Next, applying the unit-energy constraint of the coefficients, we get:

1 =

‖β1‖r,0∑
k=1

dk∑
j=1

β2
1j [k] =

dk ‖β1‖r,0
4λ2

⇒ λ =
d

1
2
k ‖β1‖

1
2
r,0

2
⇒ β1j [k] =

(
dk ‖β1‖r,0

)−1
2
.

It can be seen that, although the constraint of β1j [k]>0 is not explicitly included in
the Lagrangian function, but from the final closed form solution this constraint can be
verified. Therefore,

∑‖β1‖r,0
k=1

∑dk
j=1 β1j [k] is upper-bounded by ‖β1‖−1/2

r,0

∑‖β1‖r,0
k=1 d

1/2
k , which

is again upper-bounded by ‖β1‖1/2r,0 d
1/2
max. Similarly, for the second problem it can be proved
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that
∑‖β2‖r,0

k′=1 d−1
k′
∑dk′

j=1 β2j [k
′] is upper-bounded by ‖β2‖−1/2

r,0

∑‖β2‖r,0
k′=1 d

−1/2
k′ , which is again

upper-bounded by ‖β2‖1/2r,0 d
−1/2
min . Substituting the recently mentioned upper-bounds into

(A.10), we get the same results as for the previous case of ∀(q, p)∈R2
>1. Hence, the Lemma

holds true for ∀(q, p)∈R2
≥1.
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A.9 Proof of Property 2.17 (Basic Block-MCC2,2 lower-bound,
page 72)

Proof. From Property 2.6 (Block-MCCq,p for intra-block orthonormality, page 58), in the
special case of two matrices and parameter changing of p→p/(p−1), we have:

∀ (q, p) ∈ R2
>0, M q, p

p−1
(Φ1,Φ2) = max

k,k′

d
− p−1

p

k d
1
q

k′

dmax

∥∥ΦT
1 [k] Φ2

[
k′
]∥∥
q→ p

p−1
.

Then, squaring both sides and for q=p=2, we get:

M2
2,2 (Φ1,Φ2) = max

k,k′

d−1
k dk′

d2
max

∥∥ΦT
1 [k] Φ2

[
k′
]∥∥2

2→2

= max
k,k′

d−1
k dk′

d2
max

∥∥ΦT
2

[
k′
]
Φ1 [k] ΦT

1 [k] Φ2

[
k′
]∥∥

2→2
.

The above second equality follows from a property of operator-norms, i.e.,
‖A‖22→2=‖ATA‖2→2. Summing over k and k′, we have:

K2M2
2,2 (Φ1,Φ2) ≥

K∑
k=1

K∑
k′=1

d−1
k dk′

d2
max

∥∥ΦT
2

[
k′
]
Φ1 [k] ΦT

1 [k] Φ2

[
k′
]∥∥

2→2

≥ 1

d2
max

∥∥∥∥∥
K∑
k′=1

dk′Φ
T
2

[
k′
]( K∑

k=1

d−1
k Φ1 [k] ΦT

1 [k]

)
Φ2

[
k′
]∥∥∥∥∥

2→2

≥ dmin
d3
max

∥∥∥∥∥
K∑
k′=1

ΦT
2

[
k′
]( K∑

k=1

Φ1 [k] ΦT
1 [k]

)
Φ2

[
k′
]∥∥∥∥∥

2→2

=
dmin
d3
max

∥∥KIdk′∥∥2→2

=
dmin
d3
max

K.

The above second inequality follows from the triangle inequality, whereas the third one
results from considering the minimum values for variable block length coefficients in
the sum operator. In fact, in this problem, having some finite integer values dk≥1,
∀k, and the corresponding orthonormal bases Φ[k], we are utilising the lower-bound∑

k dkΦ[k]≥mink dk
∑

k Φ[k]=dmin
∑

k Φ[k]. The above first equality results from the fact
that for orthonormal matrices Φ1 and Φ2 we have,

∑K
k=1 Φ1[k]ΦT

1 [k]=Φ1ΦT
1 =Im and ∀k′,

ΦT
2 [k′]Φ2[k′]=Idk′ . The last equality results from the homogeneity property (Property 2.4,

page 56) and unity of operator-norm of the identity matrix. The proof is then completed by
taking square roots from both sides and noticing that for each matrix Φ1 and Φ2, we have
m=

∑K
k=1 dk≥mink dk

∑K
k=1 1=K dmin, then K≤m/dmin, i.e.,:

M2,2 (Φ1,Φ2) ≥

√
dmin
K d3

max

≥

√
d2
min

md3
max

.
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A.10 Proof of Theorem 2.3 (Block-ERC based on
Block-MCCq,p, page 73)

Proof. Because x∈Ker(Φ), we have
∑

k′ Φ[k′]x[k′]=0. Hence, for all k,
−
∑

k′ 6=k Φ[k′]x[k′]=Φ[k]x[k]. Therefore, since for all k the block Φ[k] is full column rank,
we have −

∑
k′ 6=k Φ†[k]Φ[k′]x[k′]=x[k]. Applying ‖ · ‖p to both sides and using the triangular

inequality for p≥1 and p=0,
∑
‖ · ‖p≥‖

∑
·‖p, we have

∑
k′ 6=k ‖Φ†[k]Φ[k′]x[k′]‖p≥‖x[k]‖p.

On the other hand, from the definition of mutual coherence constant (Definition 2.6, page 54),
i.e., ∀(q, p)∈R2

>0 : Mq,p(Φ)= max k,k′ 6=k
x[k′]6=0

d
−1/p
k d

1/q
k′ d

−1
max‖Φ†[k]Φ[k′]x[k′]‖p/‖x[k′]‖q, we can

see that in order to compute Mq,p(Φ), the value d−1/p
k d

1/q
k′ d

−1
max‖Φ†[k]Φ[k′]x[k′]‖p/‖x[k′]‖q

is calculated for each k and k′ 6=k and finally the maximum calculated value is considered
as Mq,p(Φ). Then for any k and k′ 6=k, the d

−1/p
k d

1/q
k′ d

−1
max‖Φ†[k]Φ[k′]x[k′]‖p/‖x[k′]‖q

is upper-bounded by Mq,p(Φ), and since d
1/p
k d

−1/q
k′ dmax‖x[k′]‖q is positive, we have

‖Φ†[k]Φ[k′]x[k′]‖p≤d1/p
k d

−1/q
k′ dmax‖x[k′]‖qMq,p(Φ). Hence, returning back to the proof,

we have
∑

k′ 6=k d
1/p
k d

−1/q
k′ dmax‖x[k′]‖qMq,p(Φ)≥

∑
k′ 6=k ‖Φ†[k]Φ[k′]x[k′]‖p≥‖x[k]‖p or

dmaxMq,p(Φ)
∑

k′ 6=k d
1/p
k d

−1/q
k′ ‖x[k′]‖q≥‖x[k]‖p. Then by rearranging the inequality we get

dmaxMq,p(Φ)
∑

k′ 6=k ‖x[k′]‖q/d1/q
k′ ≥‖x[k]‖p/d1/p

k . Adding dmaxMq,p(Φ)‖x[k]‖q/d1/q
k to both

sides, we have:

∀q ∈ R>0, ∀p ∈ R≥1, dmaxMq,p (Φ)
∑
k′

‖x [k′]‖q

d
1
q

k′

≥ dmaxMq,p (Φ)
‖x [k]‖q

d
1
q

k

+
‖x [k]‖p

d
1
p

k

,

which using the definition of weighted (pseudo-)mixed-norm `wp1,p2 (Definition 2.2, page 48),
with wk=d

−1/q
k , p1=q, and p2=1, it is equivalent to

∀q ∈ R>0,∀p ∈ R≥1, dmaxMq,p (Φ) ‖x‖w;q,1 ≥ dmaxMq,p (Φ)
‖x [k]‖q

d
1
q

k

+
‖x [k]‖p

d
1
p

k

.

Now take any vector β with Block-Support Sb(β) such that Sb(β0)⊂Sb(β), then
summing over blocks k∈Sb(β), and knowing that for any constants α and ∀r≥0, we have∑

k∈Sb(β) α=α‖β‖r,0, we get:

∀q ∈ R>0,∀p ∈ R≥1, dmaxMq,p (Φ) ‖x‖w;q,1 ‖β‖r,0 ≥
∑

k∈Sb(β)

dmaxMq,p (Φ)
‖x [k]‖q

d
1
q

k

+
‖x [k]‖p

d
1
p

k


= dmaxMq,p (Φ)

∑
k∈Sb(β)

‖x [k]‖q

d
1
q

k

+
∑

k∈Sb(β)

‖x [k]‖p

d
1
p

k

.

On the other hand from the proof of Property 2.3 (bounds of
two (pseudo-)mixed-norms division, page 55), we have ∀(q, p)∈R2

>0 :

(‖x[k]‖p/d1/p
k )/(‖x[k]‖q/d1/q

k )≥min{1, d1/q−1/p
k }. Again using the lower-bound on the

fraction of two sums of values explained in Property 2.3, we have ∀(q, p)∈R2
>0 :

(
∑

k∈Sb(β) ‖x[k]‖p/d1/p
k )/(

∑
k∈Sb(β) ‖x[k]‖q/d1/q

k )≥mink∈Sb(β) min{1, d1/q−1/p
k }, which is
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a special case of Property 2.3. Hence, returning back to the proof, ∀q∈R>0, ∀p∈R≥1, and
∀r∈R≥0 we get:

dmaxMq,p (Φ) ‖x‖w;q,1 ‖β‖r,0 ≥ dmaxMq,p (Φ)
∑

k∈Sb(β)

‖x [k]‖q

d
1
q

k

+

(
min

k∈Sb(β)
min

{
1, d

1
q
− 1

p

k

}) ∑
k∈Sb(β)

‖x [k]‖q

d
1
q

k

=

(
dmaxMq,p (Φ) + min

k∈Sb(β)
min

{
1, d

1
q
− 1

p

k

}) ∑
k∈Sb(β)

‖x [k]‖q

d
1
q

k

≥
(
dmaxMq,p (Φ) + min

k
min

{
1, d

1
q
− 1

p

k

}) ∑
k∈Sb(β)

‖x [k]‖q

d
1
q

k

.

The above last line results from mink∈S f(k)≥mink f(k). Then, by dividing the both sides by
‖x‖w;q,1, ∀q∈R>0, ∀p∈R≥1, and ∀r∈R≥0 we have:

∀x ∈ Ker(Φ), dmaxMq,p (Φ) ‖β‖r,0 ≥
(
dmaxMq,p (Φ) + min

k
min

{
1, d

1
q
− 1

p

k

}) ∑
k∈Sb(β)

‖x [k]‖q

d
1
q

k

‖x‖w;q,1

,

or

∀x ∈ Ker(Φ), dmaxMq,p (Φ) ‖β‖r,0
(
dmaxMq,p (Φ) + min

k
min

{
1, d

1
q
− 1

p

k

})−1

≥

∑
k∈Sb(β)

‖x [k]‖q

d
1
q

k

‖x‖w;q,1

.

Since the above inequality holds true for ∀x∈Ker(Φ), it also holds for the maximiser of the
right-hand side (because the left-hand side does not depend on x). But that maximiser gives
us exactly Qw;p1,p2(Sb(β),Φ) by its definition:

dmaxMq,p (Φ) ‖β‖r,0
(
dmaxMq,p (Φ) + min

k
min

{
1, d

1
q
− 1

p

k

})−1

≥ max
x∈Ker(Φ)

∑
k∈Sb(β)

‖x [k]‖q

d
1
q

k

‖x‖w;q,1

= Qw;q,1 (Sb (β) ,Φ) .

where, ∀(q, p)∈R2
≥1 (constraint on q was imposed by the Block-NSP condition), ∀r∈R≥0, and

wk=d
−1/q
k . The above last line is obtained considering the definition of Qw;p1,p2(Sb(β),Φ) in

Block-NSP (Theorem 2.2, page 67). On the other hand, from the Block-NSP condition in
Theorem 2.2, we have, if Qw;q,1(Sb(β),Φ)<1/2 then a solution β0 to the problem Pw;q,1 is
the unique solution whenever Sb(β0)⊂Sb(β). Hence, we have that if:

∀(q, p) ∈ R2
≥1,∀r ∈ R≥0, dmaxMq,p (Φ) ‖β‖r,0

(
dmaxMq,p (Φ) + min

k
min

{
1, d

1
q
− 1

p

k

})−1

<
1

2
,

Then, the Block-NSP condition of Theorem 2.2 is met, hence any β0 solution to y=Φβ is
unique if Sb(β0)⊂Sb(β). Now, by rearranging the above inequality, we have

∀(q, p) ∈ R2
≥1,∀r ∈ R≥0, ‖β‖r,0 <

1 + (dmaxMq,p (Φ))−1 min
k

min

{
1, d

1
q
− 1

p

k

}
2

,
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and since Sb(β0)⊂Sb(β), then ‖β0‖r,0≤‖β‖r,0, so

∀(q, p) ∈ R2
≥1,∀r ∈ R≥0, ‖β0‖r,0 <

1 + (dmaxMq,p (Φ))−1 min
k

min

{
1, d

1
q
− 1

p

k

}
2

,

which is exactly the condition of the theorem. Therefore, the Block-NSP theory under the
mentioned condition is actually met and the unique solution of the problem Pw;q,1 is ensured.
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A.11 Proof of Property 2.18 (Block-SLq,p inequalities, page 73)

Proof. First, considering that for all basic tractable (q, p) pairs of table 2.1 (page 54), we have
q≤p, then the term mink min{1, d1/q−1/p

k } in Block-SLq,p of Theorem 2.3 (page 73) would be
equal to one. Hence, Block-SLq,p has directly an inverse relationship with Block-MCCq,p
(Definition 2.6, page 54), i.e., for 1≤q≤p, Block−SLq,p(Φ)=(1+(dmaxMq,p(Φ))−1)/2.
Thus, according to the previously-mentioned relationship between different Block-MCCq,p
characterisations with basic (q, p) pairs according to table 2.1 (page 54) demonstrated in
Property 2.5 (Block-MCCq,p inequalities, page 58), the Block-SLq,p inequalities would be in
the opposite direction, which proves the inequalities of the Property. Therefore, for q≤p the
directions in figure 2.5(a) (page 73) is in the opposite of the ones in figure 2.4 (page 59).

For the proof of general relationships (tractable and intractable) of figure 2.5(b), we have
the following Block-SLq,p for q>p, and d1= · · ·=dK=d:

∀(q, p) ∈ R2
≥1, q > p, Block−SLq,p(Φ) =

1 + (dMq,p (Φ))−1 d
1
q
− 1

p

2

=
1 +

(
d

1+ 1
p
− 1

qMq,p (Φ)
)−1

2

=

1 +

(
d

1+ 1
p
− 1

q max
k,k′ 6=k

d
−1− 1

p
+ 1

q

∥∥∥Φ† [k] Φ
[
k′
]∥∥∥
q→p

)−1

2

=

1 +

(
max
k,k′ 6=k

∥∥∥Φ† [k] Φ
[
k′
]∥∥∥
q→p

)−1

2
.

(A.12)

On the other hand, for q=p, and d1= · · ·=dK=d, we get the following Block-SLq,p:

∀q ∈ R≥1, Block−SLq,q (Φ) =
1 + (dMq,q (Φ))−1

2

=

1 +

(
d max
k,k′ 6=k

d−1
∥∥∥Φ† [k] Φ

[
k′
]∥∥∥
q→q

)−1

2

=

1 +

(
max
k,k′ 6=k

∥∥∥Φ† [k] Φ
[
k′
]∥∥∥
q→q

)−1

2
.

(A.13)

By comparing the Block-SLq,p in (A.12) for p>q, with (A.13) for q=p, we see that the only
difference between the equations is the `q→p operator-norm. On the other hand, from figure
2.3, we know that for a fixed p by increasing q, and for a fixed q by decreasing p, the `q→p
operator-norm increases, hence, Block-SLq,p decreases, which results in the figure 2.5(b).
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A.12 Proof of Property 2.19 (SL v.s. Block-SLq,p, page 74)

Proof. Starting from the relation between M(Φ) and Mq,p(Φ) proposed in Property
2.8 (Block-MCCq,p bounds, page 59), the aim is to build the dmax times of the
numerator of the condition of the Block-ERC based on Block-MCCq,p in Theorem 2.3, i.e.,
dmax+M−1

q,p (Φ) mink min{1, d1/q−1/p
k }, which is comparable with the conventional sparsity

level. First, we investigate the required condition on M(Φ) for a dictionary with full column
rank blocks. Using the first part of Property 2.8 (Block-MCCq,p bounds, page 59) with
conditions M(Φ)<d

1/q−2
max (dmax−1)−1/2 and q≥p≥1, and then multiplying by the positive

coefficient mink min{1, d1/q−1/p
k } and summing to dmax, for q≥p≥1 we get:

M−1
q,p (Φ) ≥ 1− d

2− 1
q

max (dmax − 1)
1
2 M (Φ)

d
3
2
− 1

p
max M (Φ)

,

M−1
q,p (Φ) min

k
min

{
1, d

1
q
− 1

p

k

}
≥ 1− d

2− 1
q

max (dmax − 1)
1
2 M (Φ)

d
3
2
− 1

p
max M (Φ)

min
k

min

{
1, d

1
q
− 1

p

k

}
,

dmax +M−1
q,p (Φ) min

k
min

{
1, d

1
q
− 1

p

k

}
≥ dmax +

1− d
2− 1

q
max (dmax − 1)

1
2 M (Φ)

d
3
2
− 1

p
max M (Φ)

min
k

min

{
1, d

1
q
− 1

p

k

}
.

But, ∀q≥p, we have mink min{1, d1/q−1/p
k }=d1/q−1/p

max , which leads to the following inequality:

q ≥ p ≥ 1, dmax + d
1
q
− 1

p
maxM

−1
q,p (Φ) ≥ dmax +

1− d
2− 1

q
max (dmax − 1)

1
2 M (Φ)

d
3
2
− 1

p
max M (Φ)

d
1
q
− 1

p
max

= dmax − d
1
2
max (dmax − 1)

1
2 + d

1
q
− 3

2
max M

−1 (Φ) .

The above right-hand side expression under the following condition would be greater than or
equal to 1 +M−1(Φ):

dmax − d
1
2
max (dmax − 1)

1
2 + d

1
q
− 3

2
max M

−1 (Φ) ≥ 1 +M−1 (Φ) ,

⇒M (Φ) ≤ 1− d
1
q
− 3

2
max

(dmax − 1)
1
2

[
(dmax − 1)

1
2 − d

1
2
max

] .

Therefore, considering another condition of the utilised property, i.e.,
M(Φ)<d

1/q−2
max (dmax−1)−1/2 in Property 2.8 (Block-MCCq,p bounds, page 59), the following

upper-bound condition on M(Φ) ensures that the proposed Block-SLq,p would be greater
than or equal to the conventional SL, i.e., dmax+M−1

q,p (Φ) mink min{1, d1/q−1/p
k }≥1+M−1(Φ):

q ≥ p ≥ 1, M (Φ) ≤ min


d

1
q
−2

max

(dmax − 1)
1
2

,
1− d

1
q
− 3

2
max

(dmax − 1)
1
2

[
(dmax − 1)

1
2 − d

1
2
max

]
 .



150 Appendix A. Proofs

But, the above second argument of the min operator ∀q, dmax is negative. Therefore, although
in practice the numerical simulations approve that the proposed sparsity level for general
dictionaries with full column rank blocks is higher than the conventional one, in theory due
to utilising the most pessimistic bounds, its supremacy cannot be proved.

Now, suppose that the dictionary Φ has intra-block orthonormality, which is the
case in the Property 2.19 (SL v.s. Block-SLq,p, page 74). Using the second part of
Property 2.8 (Block-MCCq,p bounds, page 59) as the following first line, multiplying by
mink min{1, d1/q−1/p

k } and summing to dmax, ∀(q, p, q′, p′)∈R4
>0 we get:

M−1
q,p (Φ) ≥ dmaxM

−1 (Φ)

max
k,k′ 6=k

d
1
2
− 1

p

k d
1
q

+ 1
2

k′ max

{
1, d

1
p
− 1

p′
k

}
max

{
1, d

1
q′−

1
q

k′

}
max

{
1, d

1
p′−

1
2

k

}
max

{
1, d

1
2
− 1

q′

k′

} ,
M−1
q,p (Φ) min

k
min

{
1, d

1
q
− 1

p

k

}
≥ dmaxM

−1 (Φ)

max
k,k′ 6=k

d
1
2
− 1

p

k d
1
q

+ 1
2

k′ max

{
1, d

1
p
− 1

p′
k

}
max

{
1, d

1
q′−

1
q

k′

}
max

{
1, d

1
p′−

1
2

k

}
max

{
1, d

1
2
− 1

q′

k′

} min
k

min

{
1, d

1
q
− 1

p

k

}
,

dmax +M−1
q,p (Φ) min

k
min

{
1, d

1
q
− 1

p

k

}
≥ dmax +

dmaxM
−1 (Φ)

max
k,k′ 6=k

d
1
2
− 1

p

k d
1
q

+ 1
2

k′ max

{
1, d

1
p
− 1

p′
k

}
max

{
1, d

1
q′−

1
q

k′

}
max

{
1, d

1
p′−

1
2

k

}
max

{
1, d

1
2
− 1

q′

k′

} min
k

min

{
1, d

1
q
− 1

p

k

}
.

The above right-hand side expression under the following condition and ∀(q, p, q′, p′)∈R4
>0

would be greater than or equal to 1 +M−1(Φ):

dmax +
dmaxM

−1 (Φ)

max
k,k′ 6=k

d
1
2
− 1

p

k d
1
q

+ 1
2

k′ max

{
1, d

1
p
− 1

p′
k

}
max

{
1, d

1
q′−

1
q

k′

}
max

{
1, d

1
p′−

1
2

k

}
max

{
1, d

1
2
− 1

q′

k′

} min
k

min

{
1, d

1
q
− 1

p

k

}
≥ 1 +M−1 (Φ) ,

⇒M (Φ) ≤

1−
dmax min

k
min

{
1, d

1
q
− 1

p

k

}
max
k,k′ 6=k

d
1
2
− 1

p

k d
1
q

+ 1
2

k′ max

{
1, d

1
p
− 1

p′
k

}
max

{
1, d

1
q′−

1
q

k′

}
max

{
1, d

1
p′−

1
2

k

}
max

{
1, d

1
2
− 1

q′

k′

}
dmax − 1

.
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A.13 Proof of Lemma 2.3 (Eldar et al.'s v.s. proposed
Block-SLq,p, page 75)

Proof. The proof is similar to the proof of Property 2.8 (Block-MCCq,p bounds). First, we
investigate the required condition onMEldar

Intra (Φ) for a dictionary with full column rank blocks.
Utilising the Block-MCCq,p proposed in Definition 2.6 (54), we have the following first line in
(A.14). Using the pseudo-inverse property of full column rank matrices and submultiplicativity
property of operator-norms introduced in Property 2.4 (`q→p operator-norm properties), and
for d1= · · ·=dK=d, ∀(q, p)∈R2

>0 we have:

Mq,p (Φ) = d
1
q
− 1

p
−1

max
k,k′ 6=k

∥∥∥Φ† [k] Φ
[
k′
]∥∥∥
q→p

= d
1
q
− 1

p
−1

max
k,k′ 6=k

∥∥∥(ΦT [k] Φ [k]
)−1

ΦT [k] Φ
[
k′
]∥∥∥
q→p

≤ d
1
q
− 1

p
−1

max
k,k′ 6=k

∥∥∥(ΦT [k] Φ [k]
)−1
∥∥∥
q→p

∥∥ΦT [k] Φ
[
k′
]∥∥
q→p max

{
1, d

1
q
− 1

p

}
.

(A.14)

Similar to the proof of the Property 2.8 in finding upper-bound of
‖(ΦT [k]Φ[k])−1‖q→p, by replacing M(Φ) by MEldar

Intra (Φ) (because ∀i, j,
Fi,j [k]≤MEldar

Intra (Φ)
def
= maxi,j 6=i

k
|ϕTi [k]ϕj [k]|≤M(Φ)), and using Property A.2 (q≥p≥1,

MEldar
Intra (Φ)<d1/q−2(d− 1)−1/2 to meet the related condition), we have:

∀k, q ≥ p ≥ 1,
∥∥∥(ΦT [k] Φ [k]

)−1
∥∥∥
q→p
≤ 1

1− d2− 1
q (d− 1)

1
2 MEldar

Intra (Φ)
.

For q≥p≥1 (condition imposed by Property A.2), we have max{1, d1/q−1/p}=1 in (A.14).
Therefore, by substituting the upper-bound of ‖(ΦT [k]Φ[k])−1‖q→p and the value of
max{1, d1/q−1/p} in (A.14), for q≥p≥1 we get:

Mq,p (Φ) ≤ d
1
q
− 1

p
−1

1− d2− 1
q (d− 1)

1
2 MEldar

Intra (Φ)
max
k,k′ 6=k

∥∥ΦT [k] Φ
[
k′
]∥∥
q→p

≤
d

1
q
− 1

p
−1

max
{

1, d
1
p
− 1

2

}
max

{
1, d

1
2
− 1

q

}
1− d2− 1

q (d− 1)
1
2 MEldar

Intra (Φ)
max
k,k′ 6=k

∥∥ΦT [k] Φ
[
k′
]∥∥

2→2
.

The above last inequality is achieved based on the upper-bound of `q→p operator-norm
based on `2→2 operator-norm explained in Property A.1. Then by definition, substituting
maxk,k′ 6=k ‖ΦT [k]Φ[k′]‖2→2 by dMEldar

Inter (Φ) in the above inequality, for q≥p≥1 we have:

Mq,p (Φ) ≤
d

1
q
− 1

pMEldar
Inter (Φ) max

{
1, d

1
p
− 1

2

}
max

{
1, d

1
2
− 1

q

}
1− d2− 1

q (d− 1)
1
2 MEldar

Intra (Φ)
,

or,

M−1
q,p (Φ) ≥

1− d2− 1
q (d− 1)

1
2 MEldar

Intra (Φ)

d
1
q
− 1

pMEldar
Inter (Φ) max

{
1, d

1
p
− 1

2

}
max

{
1, d

1
2
− 1

q

} .
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By comparing Eldar’s Block-ERC, i.e., ‖β0‖2,0<(1+(dMEldar
Inter (Φ))−1(1−(d−1)MEldar

Intra (Φ)))/2,
explained in (1.20) and the proposed equally-sized Block-ERC proposed in Theorem 2.3, i.e.,
∀(q, p)∈R2

≥1, ∀r∈R≥0 : ‖β0‖r,0<(1 + (dMq,p(Φ))−1 min{1, d1/q−1/p})/2, it is clear that for
q≥p≥1 (the constraint imposed up to this step) the relationship between d1/q−1/pM−1

q,p (Φ)

and (MEldar
Inter (Φ))−1(1−(d−1)MEldar

Intra (Φ)) should be investigated. By multiplying both sides
of the above inequality by d1/q−1/p>0, for q≥p≥1 we have:

d
1
q
− 1

pM−1
q,p (Φ) ≥

1− d2− 1
q (d− 1)

1
2 MEldar

Intra (Φ)

MEldar
Inter (Φ) max

{
1, d

1
p
− 1

2

}
max

{
1, d

1
2
− 1

q

} .
Assuming that the above right-hand side is greater than or equal to the expression that we are
interested in to its relation with d1/q−1/pM−1

q,p (Φ), i.e., (MEldar
Inter (Φ))−1(1−(d−1)MEldar

Intra (Φ)),
we extract the required corresponding condition. In other words, assuming that for q≥p≥1,
we have:

1− d2− 1
q (d− 1)

1
2 MEldar

Intra (Φ)

MEldar
Inter (Φ) max

{
1, d

1
p
− 1

2

}
max

{
1, d

1
2
− 1

q

} ≥ 1− (d− 1)MEldar
Intra (Φ)

MEldar
Inter (Φ)

,

we conclude that for

q ≥ p ≥ 1, MEldar
Intra (Φ) ≤

1−max
{

1, d
1
p
− 1

2

}
max

{
1, d

1
2
− 1

q

}
d

2− 1
q (d− 1)

1
2 − (d− 1) max

{
1, d

1
p
− 1

2

}
max

{
1, d

1
2
− 1

q

} ,
the assumption will hold true. On the other hand, we had another condition on
the upper-bound of MEldar

Intra (Φ) to meet the condition of Property A.2. Therefore,
the minimum of the obtained upper-bounds on the MEldar

Intra (Φ) ensures that
∀q≥p≥1 the Block-ERC proposed in Theorem 2.3 improves Eldar’s Block-ERC, i.e.,
d1/q−1/pM−1

q,p (Φ)≥(MEldar
Inter (Φ))−1(1−(d−1)MEldar

Intra (Φ)):

MEldar
Intra (Φ) ≤ min

 1

d
2− 1

q (d− 1)
1
2

,
1−max

{
1, d

1
p
− 1

2

}
max

{
1, d

1
2
− 1

q

}
d

2− 1
q (d− 1)

1
2 − (d− 1) max

{
1, d

1
p
− 1

2

}
max

{
1, d

1
2
− 1

q

}


=
1−max

{
1, d

1
p
− 1

2

}
max

{
1, d

1
2
− 1

q

}
d

2− 1
q (d− 1)

1
2 − (d− 1) max

{
1, d

1
p
− 1

2

}
max

{
1, d

1
2
− 1

q

} .
The above last inequality yields from the fact that a fraction with smaller numerator and
denominator is smaller. But, the resulted upper-bound is negative. Therefore, although in
practice the numerical simulations approve that the proposed block-sparsity level for general
dictionaries with full column rank blocks is higher than the block-sparsity level proposed by
Eldar et al., in theory due to utilising the most pessimistic bounds, its supremacy cannot be
proved.

Now let us consider the assumption of the lemma, i.e., intra-block orthonormality. By
definition, MEldar

Intra (Φ) is equal to zero in this case. Therefore, according to Theorem 2.3, the
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(q, p) (1, 1) (1, 2) (1,∞) (2, 2) (2,∞) (∞,∞)

M−1
q,p (Φ) min

{
1,d

1
q−

1
p

}
(MEldar

Inter (Φ))
−1 ≥ d−

1
2 d−

1
2 d−1 1 d−

1
2 d−

1
2

Table A.3: Lower-bound ofM−1
q,p (Φ) min{1, d1/q−1/p}/(MEldar

Inter (Φ))−1 ensuring the supremacy
of the proposed sparsity level when it is greater than one, for different basic values of (q, p)

pairs and for a dictionary with intra-block orthonormality.

relationship between ∀(q, p)∈R2
≥1 : M−1

q,p (Φ) min{1, d1/q−1/p} and (MEldar
Inter (Φ))−1 should be

investigated. Starting from the relationship between Mq,p(Φ) and MEldar
Inter (Φ) explained in

Property 2.11, we build the required relationship ∀(q, p)∈R2
>0:

M−1
q,p (Φ) ≥

d
1
p
− 1

q
(
MEldar
Inter (Φ)

)−1

max
{

1, d
1
p
− 1

2

}
max

{
1, d

1
2
− 1

q

} ,
M−1
q,p (Φ) min

{
1, d

1
q
− 1

p

}
≥
d

1
p
− 1

q
(
MEldar
Inter (Φ)

)−1
min

{
1, d

1
q
− 1

p

}
max

{
1, d

1
p
− 1

2

}
max

{
1, d

1
2
− 1

q

} ,

M−1
q,p (Φ) min

{
1, d

1
q
− 1

p

}
(
MEldar
Inter (Φ)

)−1 ≥
min

{
1, d

1
p
− 1

q

}
max

{
1, d

1
p
− 1

2

}
max

{
1, d

1
2
− 1

q

} .
The numerator and denominator of the above left-hand side are the values that we need
to compare with each other. To enhance Eldar’s Block-ERC the above right-hand side
should be greater than one. Those right-hand side values are shown in table A.3 for
different basic values of (q, p) pairs. From table A.3, it can be seen that for q=p=2,
M−1
q,p (Φ) min{1, d1/q−1/p} is greater than or equal to (MEldar

Inter (Φ))−1, which is in fact just
equal (not greater), because according to Property 2.11 for dictionaries with intra-block
orthonormality, we haveM2,2(Φ)=MEldar

Inter (Φ). Therefore, the proposed Block-ERC for q=p=2

as the best case equals to Eldar’s Block-ERC.
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A.14 Proof of Theorem 2.4 (Block-ERC based on Eldar’s
cumulative coherence, page 76)

Proof. The proof is similar to the proof of Theorem 3 in [EKB10a]. First, divide the whole
matrix Φ into two complementary matrices Φopt and Φopt. Suppose Φopt is a full column
rank m by kd matrix whose blocks correspond to non-zero blocks of β0, and let Φopt be
its complementary matrix. From Theorem 2 in [EKB10a], a sufficient condition for block
orthogonal matching pursuit and `2/`1-optimisation program algorithms to correctly recover
the block k-sparse β0, is that ρc(Φ

†
optΦopt)<1, where, ρc(A)= maxj

∑
i ‖A[i, j]‖2→2 andA[i, j]

is the (i, j)th d×d block of A. Using Moore-Penrose pseudo-inverse property of matrices and
the submultiplicativity property of ρc(·) been proved in Lemma 2 in [EKB10a], we have:

ρc

(
Φ†optΦopt

)
= ρc

((
ΦT
optΦopt

)−1
ΦT
optΦopt

)
≤ ρc

((
ΦT
optΦopt

)−1
)
ρc
(
ΦT
optΦopt

)
.

On the other hand, we have:

ρc
(
ΦT
optΦopt

)
= max

j

∑
i

∥∥ΦT
optΦopt [i, j]

∥∥
2→2

= max
j /∈Λ

∑
i∈Λ

∥∥ΦTΦ [i, j]
∥∥

2→2

= max
j /∈Λ

∑
i∈Λ

∥∥ΦT [i] Φ [j]
∥∥

2→2

≤ dMEldar
Inter (Φ, k) ,

where, Λ is the set of indices of blocks of Φ which are in Φopt, and by Definition 2.8
MEldar
Inter (Φ, k)

def
= max|Λ|=k maxj /∈Λ

∑
i∈Λ ‖ΦT [i]Φ[j]‖2→2/d. Therefore, we have:

ρc

(
Φ†optΦopt

)
≤ ρc

((
ΦT
optΦopt

)−1
)
dMEldar

Inter (Φ, k) .

Now it remains to upper-bound ρc((Φ
T
optΦopt)

−1). To this aim, we decompose ΦT
optΦopt as

ΦT
optΦopt=Ikd+F , where, F is a kd by kd matrix with blocks F [i, j] of size d×d, that

F [i, j] =

{
ΦT
opt [i] Φopt [j]− Id, if i = j

ΦT
opt [i] Φopt [j] , if i 6= j.

All the main diagonal entries of F are zero. Then, we have:

ρc (F ) = max
j

∑
i

‖F [i, j]‖2→2

≤ max
j
‖F [j, j]‖2→2 + max

j

∑
i 6=j
‖F [i, j]‖2→2

≤ (d− 1)MEldar
Intra (Φ) + dMEldar

Inter (Φ, k − 1) ,
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where, the first term is obtained by applying Geršgorin’s disc theorem [HR12], and using the
definition of sub-coherence proposed by Eldar [EKB10a]. Precisely, from the definition
of F [k, k]∈Rd×d, we have ∀k, Fi,j 6=i[k, k]≤MEldar

Intra (Φ), while Fi,i[k, k]=0. On the other
hand, from Corollary 6.1.5 in [HR12] (Geršgorin’s disc theorem), we have ∀A∈Rm×m,
‖A‖2→2≤min{‖A‖1→1, ‖A‖∞→∞}. Therefore, maxj ‖F [j, j] ‖2→2≤(d−1)MEldar

Intra (Φ). The
second term follows from the definition of the cumulative inter-block coherence constant,
defined in Definition 2.8. Using Lemma 4 in [EKB10a] and considering the assumption of
Theorem 2.4 which indicates that ρc(F )<1, we have:

ρc

((
ΦT
optΦopt

)−1
)

= ρc

( ∞∑
i=0

(−F )i
)

≤
∞∑
i=0

(ρc (F ))i

=
1

1− ρc (F )

≤ 1

1− (d− 1)MEldar
Intra (Φ)− dMEldar

Inter (Φ, k − 1)
,

where, the first inequality follows from the triangle inequality and submultiplicativity
properties. Then we have the following inequality, which is a simple rearrangement of the
equation in Theorem 2.4:

ρc

(
Φ†optΦopt

)
≤

dMEldar
Inter (Φ, k)

1− (d− 1)MEldar
Intra (Φ)− dMEldar

Inter (Φ, k − 1)

< 1.
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Résumé — De nombreux phénomènes naturels sont trop complexes pour être pleinement
reconnus par un seul instrument de mesure ou par une seule modalité. Par conséquent, le
domaine de recherche de la multi-modalité a émergé pour mieux identifier les caractéristiques
riches du phénomène naturel de la multi-propriété naturelle, en analysant conjointement les
données collectées à partir d’uniques modalités, qui sont en quelque sorte complémentaires.
Dans notre étude, le phénomène d’intérêt multi-propriétés est l’activité du cerveau humain
et nous nous intéressons à mieux la localiser au moyen de ses propriétés électromagnétiques,
mesurables de manière non invasive. En neurophysiologie, l’électroencéphalographie (EEG) et
la magnétoencéphalographie (MEG) constituent un moyen courant de mesurer les propriétés
électriques et magnétiques de l’activité cérébrale. Notre application dans le monde réel, à
savoir le problème de reconstruction de source EEG / MEG, est un problème fondamental
en neurosciences, allant des sciences cognitives à la neuropathologie en passant par la
planification chirurgicale. Considérant que le problème de reconstruction de source EEG /
MEG peut être reformulé en un système d’équations linéaires sous-déterminé, la solution
(l’activité estimée de la source cérébrale) doit être suffisamment parcimonieuse pour pouvoir
être récupérée de manière unique. La quantité de parcimonie est déterminée par les conditions
dites de récupération. Cependant, dans les problèmes de grande dimension, les conditions
de récupération conventionnelles sont extrêmement strictes. En regroupant les colonnes
cohérentes d’un dictionnaire, on pourrait obtenir une structure plus incohérente. Cette
stratégie a été proposée en tant que cadre d’identification de structure de bloc, ce qui
aboutit à la segmentation automatique de l’espace source du cerveau, sans utiliser aucune
information sur l’activité des sources du cerveau et les signaux EEG / MEG. En dépit du
dictionnaire structuré en blocs moins cohérent qui en a résulté, la condition de récupération
conventionnelle n’est plus en mesure de calculer la caractérisation de la cohérence. Afin
de relever le défi mentionné, le cadre général des conditions de récupération exactes par
bloc-parcimonie, comprenant trois conditions théoriques et une condition dépendante de
l’algorithme, a été proposé. Enfin, nous avons étudié la multi-modalité EEG et MEG et
montré qu’en combinant les deux modalités, des régions cérébrales plus raffinées sont apparues.

Mots clés : (q,p)-constante cohérence mutuelle par bloc, propriété null space par
bloc, bloc-spark, conditions de reconstruction exacte par bloc-parcimonieux, Principe
d’incertitude par bloc-parcimonieux, bloc-parcimonieux, identification de la structure de bloc,
segmentation spatiale de l’activité cérébrale, (q,p)-constante cohérence mutuelle cumulée par
bloc, multimodalité en EEG et MEG.
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Abstract — Many natural phenomena are too complex to be fully recognised by
only a single measurement instrument or mono-modality. Therefore, the research
domain of multi-modality has emerged to better identify the rich characteristics of the
natural multi-property phenomenon, through jointly analysing the data collected from
mono-modalities, which are somehow complementary. In our study, the multi-property
phenomenon of interest is the human brain activity and we are interested in better localising
it by means of its electromagnetic properties which are measurable non-invasively. In
neurophysiology, a common way to measure the electric and magnetic properties of the
brain activity is ElectroEncephaloGraphy (EEG), and MagnetoEncephaloGraphy (MEG),
respectively. Our real-world application, i.e., EEG/MEG source reconstruction problem, is
a fundamental problem in neuroscience ranging from cognitive science to neuropathology to
surgical planning. Considering that the EEG/MEG source reconstruction problem can be
reformulated as an underdetermined system of linear equations, the solution (estimated brain
source activity) should be sufficiently sparse in order to be recovered uniquely. The amount
of sparsity is determined by the so-called recovery conditions. However, in high-dimensional
problems, the conventional recovery conditions are extremely strict. By regrouping the
coherent columns of a dictionary, the more incoherent structure could be achieved. This
strategy was proposed as a block structure identification framework, which results in the
automatic segmentation of the brain source space, without using any information about
the brain sources activity and EEG/MEG signals. Despite the resulted less coherent
block-structured dictionary, the conventional recovery condition is no longer capable of
computing the coherence characterisation. To address the mentioned challenge, the general
framework of block-sparse exact recovery conditions including three theoretical and one
algorithmic-dependent conditions was proposed. Finally, we investigated the EEG and MEG
multi-modality and demonstrated that by combining the two modalities, more refined brain
regions appeared.

Keywords: (q, p)-Block Mutual Coherence Constant (Block-MCCq,p), Block Null Space
Property (Block-NSP), Block-Spark, Block-sparse Exact Recovery Conditions (Block-ERC),
block-sparse uncertainty principle, Block-sparsity, block structure identification, brain source
space segmentation, cumulative Block-MCCq,p, EEG and MEG multi-modality.
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