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Abstract

The present thesis develops a new control approach for scale-model airplanes. The pro-

posed control solutions exploit a simple but pertinent nonlinear model of aerodynamic

forces acting on the aircraft. Nonlinear hierarchical controllers are derived on the basis

of theoretical stability and convergence analyses. First, the trajectory tracking problem is

addressed by extending the thrust vectoring method used for small rotor vehicles to the

case of fixed-wing aircraft by compensating for the orientation-dependent aerodynamic

forces and by achieving a balanced flight. Then, the path-following control problem is

addressed and kinematical guidance and dynamical control laws are developed within

a single coherent framework that applies to almost all regular 3D paths. The proposed

control laws incorporate integral terms that robustify the control. They are also comple-

mented by addressing several practical issues, and validated via hardware-in-the-loop

simulations. Finally, successful flight test results illustrate the soundness and perfor-

mance of the proposed control design.

Keywords: Fixed-wing aircraft, Nonlinear control design, Aerial robotics, Trajectory-

Tracking, Path-Following, Hardware-in-the-loop simulations, Flight experiments.

Résumé

Cette thèse développe une nouvelle approche de contrôle pour les avions à échelle ré-

duite. Les lois de commande proposées exploitent un modèle non linéaire simple mais

pertinent des forces aérodynamiques appliquées à l’aéronef. Les contrôleurs hiérar-

chiques non linéaires sont synthétisés sur la base d’analyses de stabilité et de conver-

gence théoriques. Dans un premier temps, le problème de stabilisation de trajectoires

de référence est résolu en étendant la méthode du "thrust vectoring", utilisée pour les

véhicules à voilure tournante, au cas des aéronefs à voilure fixe. Le problème de suivi de

chemin est ensuite traité avec des lois de guidage cinématique et de contrôle dynamique

applicables à presque tout chemin 3D régulier. Les lois de commande proposées sont

validées par des simulations du type "hardware-in-the-loop" ainsi que par des essais en

vol réel.

Mots clés: Drones à voilure fixe, Contrôle non-linéaire, Robotique aérienne, Suivi de

trajectoire, Suivi de chemin, Simulation hardware-in-the-loop, Essais en vol.





Summary in French

• Chapitre 1: Les premiers vols autonomes

L’idée d’un avion capable de voler de façon autonome sans pilote remonte au début

de l’invention des véhicules aériens. Cette fonctionnalité devient une nécessité

dans le cas des drones sans pilotes. Actuellement, les nouvelles technologies ont

permis un développement rapide des systèmes de contrôle de vol, ce qui a con-

duit à l’ère moderne de la robotique aériennes et au développement de drones non

militaires à échelle réduite. Ceci est illustré par exemple par le développement de

microprocesseurs plus performants, la disponibilité de capteurs inertiels à base de

technologies de MEMS et le développement des technologies de batteries. Ces pe-

tits appareils se distinguent des avions conventionnels par leur enveloppe de vol

élargie et leur interaction avec un environnement dynamique et complexe. Cela

a stimulé la recherche dans ce domaine. Les principales plates-formes existantes

sont les véhicules à voilure tournante équipés de pales rotatives et capable de vols

stationnaires, les véhicules à voilure fixe équipés d’ailes profilées et les véhicules

hybrides qui combinent les capacités des deux catégories précédentes.

• Chapitre 2: Bases de la mécanique du vol

Les équations de mouvement d’un avion peuvent être dérivées en utilisant la mé-

canique classique des corps rigides. Dans ce chapitre, nous définissons les vari-

ables d’état et les entrées de contrôle utilisées pour modéliser le système, puis nous

présentons les équations cinématiques et dynamiques qui décrivent l’évolution de

ces variables d’état. Afin de compléter la description dynamique du système, nous

présentons également un modèle de la poussée lorsqu’elle est produite par un mo-

teur à hélice.

• Chapitre 3: Aérodynamique des avions

Ce chapitre reprend certains concepts de base de l’aérodynamique et introduit les

principes qui ont été exploités lors de la conception des véhicules volants plus

lourds que l’air. L’objectif est de décrire et de modéliser les forces et des moments

aérodynamiques agissant sur les profils aérodynamiques, les ailes finies et enfin

sur un avion dans son ensemble. Les hypothèses qui peuvent être faites pour les

régimes de vol à faible vitesse sont également expliquées. En conclusion, il est

souligné que dans la littérature classique, les coefficients correspondants aux forces

aérodynamiques sont modélisés comme étant linéaires en angle d’attaque (attack

angle) et en angle de dérapage (sideslip angle). Ce sont des conventions différentes

de celles adoptées dans ce travail.



• Chapitre 4: Objectifs de contrôle

Les objectifs de contrôle sont définis, et la distinction entre le problème de stabil-

isation de trajectoire de référence et celui du suivi de chemin est clarifiée. Il est

souligné que le suivi de chemin est plus communément envisagé pour les aéronefs

à voilure fixe du fait qu’il n’est pas essentiel d’imposer des contraintes de temps

strictes dans le cas d’un vol en croisière. Une partie importante de la littérature

existante sur le contrôle des aéronefs aborde le sujet du suivi de chemin princi-

palement en le divisant en deux sous-problèmes: le guidage cinématique et le

contrôle dynamique. Le guidage cinématique est conçu au niveau cinématique,

tandis que le contrôle dynamique est plus compliqué et prend en compte les forces

exercées sur l’aéronef, notamment les forces aérodynamiques. Classiquement, les

techniques de contrôle linéaire sont appliquées en linéarisant le système autour

de trajectoires d’équilibre ("trim trajectories"). D’autres approches non linéaires

ont également été développées, certaines basées sur l’inversion dynamique non

linéaire combinées avec une architecture hiérarchique de contrôle.

• Chapitre 5: Modèle de commande

Le contrôle proposé dans ce travail est basé sur une architecture hiérarchique

qui offre de nombreux avantages théoriques et pratiques. Le problème de com-

mande est d’abord simplifié en considérant que la vitesse angulaire joue le rôle

d’un terme de contrôle intermédiare, ce qui permet de développer des lois de con-

trôle indépendantes de la configuration des actionneurs du véhicules. Ensuite, un

modèle générique non linéaire de forces aérodynamiques est proposé dans le but

de l’intégrer dans la conception de contrôle. Malgré sa simplicité, ce modèle est

physiquement pertinent et sera utilisé par la suite pour la synthèse de lois de com-

mande.

• Chapitre 6: Contrôle d’attitude

La stabilisation d’attitude correspond à la conception de la boucle interne rapide

de l’architecture de contrôle hiérarchique.

Dans ce chapitre, nous dérivons d’abord une loi de contrôle pour la vitesse angu-

laire comme variable de contrôle intermédiaire avec une analyse de convergence.

Ensuite, nous montrons comment atteindre cette vitesse angulaire désirée avec les

surfaces de contrôle d’un avion conventionnel. Enfin, la commande précédente est

adaptatée aux avions à deux axes qui manquent de contrôle de gouvernail comme

par exemple les ailes volantes.



• Chapitre 7: Stabilisation de trajectoire de référence

Une solution au problème de stabilisation de trajectoire de référence est proposée

dans ce chapitre en étendant la méthodologie du "thrust vectoring" qui est souvent

choisie pour le contrôle des véhicules à voilures tournantes tel que le quadrotor.

Dans le cas des véhicules à voilure fixe, le principal défi est de prendre en compte

les forces aérodynamiques d’un avion ce qui complique la conception des systèmes

de commande. Afin de résoudre ce problème, le contrôle porposé est conçu et

analysé sur la base du modèle de forces aérodynamiques décrit précédemment

dans le chapitre 5.

Dans un premier temps, une analyse de l’existence d’orientations d’équilibre pour

le véhicle le long d’une trajectoire de référence est présentée. Ceci mène à la déf-

inition d’un ensemble de trajectoires de référence admissibles pour lesquelles on

peut assurer l’existence d’une orientation d’équilibre. Ensuite, nous présentons

la conception du contrôleur de position qui stabilise asymptotiquement la posi-

tion du véhicule. Enfin nous montrons des résultats de simulation impliquant des

trajectoires de référence agressives.

• Chapitre 8: Suivi de chemin

Le but de ce chapitre est d’adapter la solution de stabilisation de trajectoire de

référence du chapitre précédent au problème du suivi de chemin. L’objectif est de

s’approcher d’un chemin géométrique et de le suivre à vitesse donnée, cela sans

introduire de contraintes temporelles strictes sur la position de l’avion.

L’erreur de position est définie comme étant la projection orthogonale du centre de

masse du véhicule sur le chemin. La norme de la vitesse est régulée par la poussée,

alors que les surfaces de contrôle permettent de "guider" le véhicule pour assurer

la convergence de l’erreur de position à zéro. Des solutions pour les boucles de

guidage cinématique et du contrôle dynamique sont présentées. Les lois de con-

trôle sont théoriquement justifiées par une analyse de stabilité et de convergence.

Des problèmes pratiques complémentaires sont traités, notamment la possibilité

de stabiliser la vitesse air plutôt que la vitesse inertielle. Un estimateur du vecteur

vitesse air basé sur un modèle dynamique est également proposé.

Les résultats de simulation Hardware-in-the-Loop, impliquant des trajectoires de

référence complexes, illustrent la performance et la robustesse de la stratégie de

contrôle.



• Chapitre 9: Essais en vol

La stratégie de suivi de chemin est mise en pratique dans le cadre d’une série

d’essais en vol impliquant un drone à échelle réduite. Nous présentons d’abord

les propriétés de l’avion et l’architecture matérielle. Ensuite, nous décrivons le

déroulement de l’expérience. Enfin, nous montrons des résultats qui confirment

la robustesse de la commande par rapport aux erreurs de modélisation et des

mesures, et en présence du vent.
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Notation

• R denotes the set of real numbers.

• The function sign(x) with x ∈ R is defined as:

sign(x) =


+1 if x > 0

0 if x = 0

−1 if x < 0

Euclidean vectors:

• Throughout this thesis, E3 denotes the 3D Euclidean vector space and vectors in

E3 are denoted by bold letters. Inner and cross products are denoted by the sym-

bols · and × respectively.

• For any vector u ∈ E3, Πu denotes the operator of projection on the plane orthog-

onal to u, i.e. ∀v ∈ E3, Πuv = v − (v · u)u.

• The norm of a vector ξ is denoted by |ξ|.

Vectors of coordinates:

• The coordinate vector of any ξ ∈ E3 with respect to (w.r.t.) a specified frame is

denoted by the ordinary letter ξ, and ξi with i = 1, 2, 3 represents a coordinate, i.e.

ξ = [ξ1, ξ2, ξ3] ∈ R3.

• The norm of a vector ξ is denoted by |ξ|.

xix



• sat∆(y)(∆ > 0, y ∈ Rn) is the classical vector-valued saturation function sat∆(y) =

min(1, ∆
|y|)y

• ¯sat∆(y)(∆ > 0, y ∈ Rn) denotes a twice differentiable adaptation, with bounded

derivatives, of the classical saturation function sat∆(y). More precisely ¯sat∆(y) =

α∆(|y|)y with α∆ : [0,+∞)→ (0, 1] a decreasing twice differentiable function such

that α∆(0) = 1, d
dxα

∆(0) = d2

dx2α
∆(0) = 0, α∆(x) ≤ ∆

x , limx→∞(α∆(x)x) = ∆. A

typical example is α∆(x) = ∆
x tanh( x∆). From these definitions ¯sat∆(y) ' y when

|y| is small and | ¯sat∆(y)| ≤ ∆,∀y.

• The scalar product of two coordinate vectors u and v is denoted by u>v

• S(.) is the skew symmetric matrix associated with the cross product of vectors of

coordinates (i.e. S(u)v = u× v,∀u, v ∈ R3).



Acronyms

2D Two Dimension.

3D Three Dimension.

AOA Angle Of Attack.

BLDC BrushLess Direct Current.

CAS Control Augmentation System.

CFD Computational Fluid Dynamics.

CPU Central Processing Unit.

CRGIS Cultural Resources Geographic Information.

EKF Extended Kalman Filter.

ESC Electronic Speed Controller.

GNC Guidance Navigation and Control.

GPS Global Positioning System.

H.O.T Higher Order Terms.

HITL Hardware In The Loop.

IC Integrated Circuit.

xxi



IMU Inertial Measurement Unit.

INS Inertial Navigation System.

LiPo Lithium Polymer.

LPV Linear Parameter Varying.

LQG Linear Quadratic Gaussian.

LQR Linear Quadratic Regulator.

MEMS Micro-Electro-Mechanical Systems.

MIMO Multi Input Multi Output.

NACA National Advisory Committee for Aeronautics.

NASA National Aeronautics and Space Administration.

NDI Nonlinear Dynamic Inversion.

NED North-East-Down.

PD Proportional Derivative.

PI Proportional Integral.

PID Proportional Integral Derivative.

PWM Pulse Width Modulation.

SAS Stability Augmentation System.

SISO Single Input Single Output.

SLAM Simultaneous Localization And Mapping.

SRAM Static Random Access Memory.

STOL Short TakeOff and Landing.

UAV Unmanned Aerial Vehicle.

UDP User Datagram Protocol.

VTOL Vertical TakeOff and Landing.

ZLL Zero Lift Line.



1
Automation in Aviation

The idea of an airplane capable of flying autonomously without a pilot goes back

to the early era of the invention of aerial vehicles. In this chapter, some histori-

cal events linked to the development of automatic flight controls are presented,

followed by a brief description of today’s research activities in the field of aerial robotics.

1.1 Historical examples of autonomous flights

In December 1903 (USA), the Wright brothers achieved the first powered manned flight.

They invented three-axis flight control which allowed to steer the aircraft. However,

they quickly realized the difficulties of manually controlling their early aircraft which

lacked inherent stability. In Europe, similar pioneering achievements in aeronautics can

be mentioned, such as the works of Santos-Dumont in France, who succeeded in October

1906 in flying his "14-bis" design; this event was considered as the first heavier-than-air

flight in Europe.

Prior to this, aviation pioneers attempted to fly models of unmanned aerial vehicles

(UAVs), as the first flight of an unmanned model glider performed by George Cayley

in 1804 (England), and the powered flights of unmanned aircraft performed by John

Stringfellow in 1848 (England), and Du Temple in 1857 (France). As explained in [36],
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1.1. Historical examples of autonomous flights

the development of unmanned aircraft has depended on the availability of three critical

technologies: automatic stabilization, remote control and autonomous navigation1.

The american inventor and entrepreneur Elmer Ambrose Sperry, founder of the Sperry

Gyroscope Company, worked on gyrocompass2 technologies for maritime applications

which led him to develop gyrostabilizers for airplanes. His first idea was to mount three

gyros on the airplane’s pitch, roll and yaw axes and couple them to the aircraft’s con-

trol by servomotors to achieve automatic control of the orientation of the aircraft. He

then decided to mount all three gyros on a single platform, thus allowing to measure

the bank angle of the vehicle (the inclination of the aircraft with respect to a horizontal

reference plane). On the 18th of June 1914, Sperry’s son flew a gyrostabilized seaplane

down the Seine River outside of Paris, where he stood up and let go of the controls while

his mechanic climbed out on a wing.

Figure 1.1: Demonstration of the Sperry Gyrostabilizer, Bezons, France, June 1914
(source: HistoricWings.com)

Sperry then gained US Navy approval to continue developing what had come to be

called an "aerial torpedo". It consisted of mechanisms for guiding an aircraft over a

preplanned path defined by altitude and course, before commanding it to dive into its

target. In order to be able to take away the pilot from the cockpit, Sperry worked on

radio technologies and obtained, in 1917, the first patent for a radio-control system. This

allowed to carry out flight tests with unmanned vehicles. On the 6th of March 1918, a

Curtiss-Sperry aerial torpedo catapulted into the air, successfully flew its preplanned

path before diving into the water. However, not every flight was successful and many

crashes were still happening, due to the lack of a reliable technology at that time.

Following these works, Charles Franklin Kettering formed the Dayton Wright Air-

1The term navigation refers to the state estimation techniques used to localize the vehicle in its environ-
ment.

2A gyrocompass is a non-magnetic compass whose operation is based on a fast-spinning disc, and uses
the principle of gyroscopic precession.
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Chapter 1. Automation in Aviation

plane Company which took in charge the production of Liberty Eagle aerial torpedoes.

Kettering’s design came to be known as the "bug", and represented numerous innova-

tions in flight controls. Barometers where first used to control the climbing phase of the

flight via a link to the elevators until a preset altitude was reached and where the system

switches to turn the control to Sperry’s gyrocompass to maintain level flight. Horizontal

heading was also maintained by the gyrocompass which was also linked to small pneu-

matic valves for the actuation of the rudder. However this first concept led to consecutive

deep stall situations and crashes. This was first interpreted as an over-actuation of the

elevators, and adjustments were accordingly made, but this did not solve the problem.

Engineers went into searching for other solutions, until it was decided to reverse the

roles of the barometer and the gyrocompass. The gyrocompass now controlled the pitch

angle to achieve a climb out until a preset altitude was reached, then the barometers as-

sumed complete control of level flight. With this new concept, and on the 4th of October

1918, the Liberty Eagle climbed normally and leveled off at an altitude of 200ft, then

flew a preset distance of 1500ft, stopped its engine and dived to its planned target [36].

Many similar scenarios followed as the successful UAV flights of 1924 (England)

taken by the Royal Aircraft Establishment, and Germany’s V-1 "buzzbombs" that were

used in world war II, as well as the first French reconnaissance UAV, the R.20 that was

developed in the late 1950s.

By 1941, UAVs were being equipped with television cameras and transmitters in or-

der to enable their operation beyond the controller’s sight. Then radar-guidance systems

were also developed which enabled the control of UAVs in bad weather and at night.

A complete autonomous flight was relying, up until then, on limited navigation

capabilities. The traveled distance for instance was measured using a wing-mounted

anemometer tied to a pneumatically operated subtracting counter composed of clock-

works and timing gears, combined with gyrocompasses to measure the attitude and

barometers to measure the altitude. Turbulences and aggressive aircraft maneuvers eas-

ily perturbed these mechanisms. In the end, long flight times meant hours of accumu-

lating navigational errors, and engineers wanted to develop more accurate navigation

systems.

This led Charles Stark Draper, a professor at MIT, to develop the first Inertial Navi-

gation System (INS) for aircraft navigation in 1949, which solved many of the previously

evoked problems. Satellite constellations emitting radio signals for navigation appeared

in the 1960s and would enable later in the 1990s what is known today as the Global

Positioning System (GPS). All these technologies made fully autonomous flight possible

with higher precision. In the current day, pilots put airliners on autopilot within 20

minutes after takeoff, and it is even safe to perform automatic landings in bad weather.

3



1.2. Modern aerial robotics

1.2 Modern aerial robotics

Today’s technology is enabling advanced and fast development of flight control systems,

leading to the modern era of aerial robotics and the development of small non-military

UAVs. This is exemplified by the cheap and more capable microprocessors, the availabil-

ity of low-cost and robust Inertial Measurement Units (IMUs) based on Micro-Electro-

Mechanical Systems (MEMS) technology, and the development of battery technologies

such as Lithium Polymer (LiPo) batteries.

These small UAVs can perform various applications such as power line inspection,

environmental monitoring, crop monitoring, aerial photography, search and rescue, and

security surveillance. These tasks used to be carried by conventional helicopters and air-

craft, but the use of smaller and relatively cheaper vehicles has dramatically decreased

the cost of such operations. Moreover manned flights can be dangerous in some situ-

ations and even forbidden. Thus sending a small unmanned vehicle offers a practical

and affordable solution. For instance, following the eruption of mount Usu in 2000, the

Japanese government enlisted UAVs to fly reconnaissance missions to observe the ad-

vance of volcanic mud threatening surrounding villages, whilst it was too dangerous for

manned aircraft to approach the active volcano.

Clearly, such small vehicles rely on traditional flight technology but as explained in

[53], their applications distinguish them from conventional aircraft by the fact that they

need to interact autonomously with a complex dynamic three-dimensional environment.

This has complexified the sensing and control tasks of these vehicles and has boosted

the research in robotics departments in universities as well as in industries and start-up

companies. Many active research topics are related to aerial robotics, such as control

theory for under-actuated vehicles, observer theory, path planning, computer vision,

Simultaneous Localization And Mapping (SLAM), and multi-agent systems.

1.3 Categories of small UAVs

A variety of UAV designs exist, however the major categories of existing platforms are

the rotor vehicles, fixed-wing vehicles and hybrid vehicles. Other types of vehicles are

the airships (aerostats), flapping wing vehicles, ducted fans, and rockets.

1.3.1 Rotor vehicles

These vehicles rely on the presence of rotating aerodynamic blades to generate actuating

forces and torques. They are particularly capable of achieving hovering flights, which

requires generation of enough thrust to sustain their own weight and payload.
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Chapter 1. Automation in Aviation

Perhaps the most famous platform of this type is the quadrotor which is equipped

with four planar rotor-propellers, two of them rotating clockwise and the two others

rotating counterclockwise. By commanding the speed of rotation of each motor indi-

vidually it is possible to generate a desired thrust orthogonal to the plane of the rotors

and desired torques along each of the three body-axis [16]. Other variants of these ve-

hicles exist, with additional or less rotors like the hexacopter equipped with six rotors

or the tricopter equipped with three rotors. In other less conventional configurations,

the rotor-propellers are augmented with thrust-tilting capabilities [54][20], or are all

mounted with different thrust orientations [50] allowing the vehicle to behave as a fully-

actuated vehicle.

Figure 1.2: Flame Wheel F450 DJI Quadrotor
at I3S Laboratory

Figure 1.3: Yamaha R-max Helicopter (source:
Wikipedia)

Small helicopters also fall in this category. A typical helicopter is composed of a

main rotor and an auxiliary anti-torque rotor. Controlling the pitch of the main rotor’s

blades (collective pitch control) allows to change the lift magnitude, and changing the

orientation of the main rotor disk (cyclic pitch control) allows to change the orientation

of the thrust direction. The auxiliary rotor is usually mounted vertically on the tail and

allows to achieve directional control.

1.3.2 Fixed-wing vehicles

Fixed-wing vehicles take advantage of profiled wings (permanently fixed to the aircraft’s

body) to generate aerodynamic lift forces, and achieve forward flights with thrust magni-

tudes less than the weight of the vehicle. The torque control is achieved through control

surfaces at the trailing edges of the surfaces. Fixed-wing vehicles are the main subject of

this thesis and will be detailed later on.
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1.3. Categories of small UAVs

Figure 1.4: The Aerosonde UAV, designed to
collect weather data, (source: Wikipedia)

Figure 1.5: Parrot Disco flying wing

1.3.3 Hybrid vehicles

Hybrid vehicles combine the capabilities of the two previous classes of vehicles, they

are able to perform hovering flight modes and also cruise flights. They are generally

equipped with rotors allowing to generate enough thrust to sustain their weight, and also

wings allowing to take advantage of lifting aerodynamic forces when flying at higher

speeds and thus reducing the load on the motors. The difficulty in controlling such

vehicles emerges from the complexity of the transitioning maneuver between stationary

flight and high velocity cruising. Hybrid vehicles come in many configurations, mainly

tilting-thrust where the thrust direction can be modified with respect to the vehicle, and

fixed-thrust (e.g. tailsitters) where the thrust force is attached to the vehicle. They are

also equipped with aerodynamic control surfaces to generate torque control.

Figure 1.6: SkyTote Tailsitter (source:
Wikipedia)

Figure 1.7: Wingcopter hybrid vehicle at I3S
Laboratory
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2
Flight Mechanics

Equations of motion of an aircraft can be derived using classical mechanics of rigid

bodies. In this chapter, we define the state variables and actuation terms that are

used to model the system, then we present the kinematics and dynamics equa-

tions that describe the evolution of these state variables via a set of ordinary differential

equations. A simple modeling technique of the thrust produced by a motor-propeller is

presented as well.

2.1 Airplane configuration and actuators

The basic components of a general aviation airplane are shown in figure 2.1. The fixed

parts are the following:

• Fuselage: the center body of the airplane.

• Wing: this is the main wing of the airplane, and the main lift producing compo-

nent.

• Horizontal tail: also named horizontal stabilizer.

• Vertical tail: also named vertical stabilizer.
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2.1. Airplane configuration and actuators

Figure 2.1: Airplane basic components, three views of a CESSNA 172 airplane (source:
Technika Lotnicza i Astronautyczna nr 9/1983)

The other moving surfaces highlighted in figure 2.1 are control surfaces that gen-

erate primarily an aerodynamic torque used to modify the orientation (attitude) of the

vehicle1:

• Ailerons: These two control surfaces are mounted at the trailing edge of the wing

near the wing tips at both the left and right sides. They usually deflect air in

opposite directions and generate a rolling motion.

• Elevator: This control surface is located at the trailing edge of the horizontal tail,

it is used to control the pitching motion.

• Rudder: This control surface is located at the back of the vertical tail, it is used to

control the yaw motion.

The angular deflections of the ailerons, the elevator and the rudder are denoted by

δa, δe and δr respectively. The sign conventions of each of these angles are described later

in chapter 3. We also define the vector of surface controls δ = [δa, δe, δr]
>.

Another actuator is the motor that produces the thrust vector T . Additional details

on the expression of the thrust are reported in section 2.4.

1Other secondary flight control surfaces may exist on some airplanes. Among others we mention the
wing flaps whose role is to increase the lift force when flying at lower airspeeds, the trim system for the
horizontal stabilizer, and the spoilers. The use of these actuators is not considered in this thesis.
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Chapter 2. Flight Mechanics

2.2 Frames and state variables

2.2.1 Inertial frame and translational state variables

In this thesis, we assume a non-rotating earth, and a flat-Earth approximation. This is

a valid approximation for vehicles flying near the surface of the Earth for short range

navigation. Using these assumptions, the inertial frame denoted by I is considered to

be an earth-fixed frame. The unitary vectors ı0, 0 and k0 are used to designate an

orthonormal base for this frame, i.e., I = {O; ı0, 0,k0}. The choice of these vectors is

done according to the North-East-Down (NED) convention: the origin O is a fixed point

on the surface of the earth, the vectors ı0, 0 are horizontal and point respectively in the

north and east directions, and the vector k0 is vertical and points downwards.

• The position of the center of mass G of the airplane is denoted by the position

vector p =
−→
OG.

• The inertial speed v of the center of mass of the aircraft is defined as the rate of

change of p as seen in the inertial frame, i.e., v = d
dtp.

Figure 2.2: Inertial and Body-fixed frames

If the norm of the inertial speed |v| is always greater than a positive number, the

direction (heading) of v can be defined as:

h =
v

|v|
(2.1)

So that one can write v = |v|h.
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2.2. Frames and state variables

The heading h is a unitary vector, hence it can be parameterized by two angles, the

flight path angle γ, and the course angle χ (see figure 2.3), and can be written as:

h = cos γ cosχı0 + cos γ sinχ0 − sin γk0 (2.2)

Figure 2.3: Path and Course angles

2.2.2 Body-fixed frame and rotational state variables

The aircraft is assumed to be a rigid body, and the body-fixed frame B is an aircraft-fixed

frame. The three unitary vectors ı,  and k are used to designate an orthonormal base

associated with this frame, i.e., B = {G; ı, ,k}. We choose these vectors according to the

following convention: the vector ı is in the plane of symmetry of the airplane along the

fuselage, the vector  is parallel to the main wing, and the third vector k = ı ×  points

in the direction below the aircraft belly (see figure 2.2).

• The orientation of the vehicle is represented by the body-fixed unitary vectors

(ı, ,k). It can also be represented by a rotation matrix, element of the Special

Orthogonal group, R ∈ SO(3) : B → I, where the columns of R are the vectors of

coordinates of (ı, ,k) expressed in the inertial frame. An additional possibility is

to use the three Euler angles parametrization known as the yaw ψ, pitch θ and roll
φ, these angles can be related to the elements of the rotation matrix R, for more

details see for example [60].

• The vector ω is the angular velocity of the body-fixed frame B w.r.t. to the inertial

frame I, i.e., d
dt(ı, ,k) = ω × (ı, ,k).

2.2.3 Wind frame and air-velocity

Let vw denote the wind velocity. The air-velocity va is defined as the body’s relative

velocity to the wind i.e. va = v − vw. Assuming that the air-velocity is not zero, define
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Chapter 2. Flight Mechanics

the unitary vector ha = va
|va| as the direction of air-velocity, and ha its coordinate vector

in the body-fixed frame, i.e. ha represents the relative direction of the air-velocity w.r.t.

the body. The vector of coordinates ha can be parametrized by two angles, and the

commonly chosen ones are the angle-of-attack α and the sideslip angle β. These angles

are shown in figure 2.4 and are defined as follows:

ha = cosβ(cosα ı+ sinα k) + sinβ  (2.3)

ha(α, β) = [cosβ cosα, sinβ, cosβ sinα]> (2.4)

α = atan(
ha · k
ha · ı

) (2.5)

β = asin(ha · ) (2.6)

Figure 2.4: Attack and sideslip angles

A wind frameW is commonly defined when studying airplanes2, with three associ-

ated unitary vectors (ha,h
⊥,1
a ,h⊥,2a ), where h⊥,1a is in the plane of symmetry (ı,k) and

orthogonal to ha, and h⊥,2a completes the orthonormal base.

ha =
va
|va|

(2.7)

h⊥,1a =
× ha
|× ha|

(2.8)

h⊥,2a = ha × h⊥,1a (2.9)
2The aerodynamic forces are commonly expressed in the wind frame.
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2.3. Kinematics and Dynamics

2.3 Kinematics and Dynamics

The aircraft is considered to be a rigid body3, so that the classical laws of rigid me-

chanics can be applied, and the study of the translational and rotational motions can be

separated as follows:

2.3.1 Translation

Translation deals with the motion of the center of mass G of the airplane in the inertial

frame I = {O; ı0, 0,k0}.

Kinematics of translational motion

The kinematics translation equation is the expression of the inertial speed, which is by

definition the derivative of the position vector:

v =
dp

dt
(2.10)

The second order kinematics equation is the expression of the linear acceleration a,

which is the derivative of v in the same frame:

a =
dv

dt
(2.11)

According to the definition of the heading h in (2.1), one can write v = |v|h and

differentiate it to get an alternative expression for the linear acceleration:

a =
d|v|
dt
h+ |v|(ωh × h) (2.12)

ωh = h× dh

dt
(2.13)

where the vector ωh is the angular velocity associated with the unitary vector h.

Dynamics of translational motion

According to the flat-Earth approximation explained in section 2.2.1, the laws of conser-

vation of momentum can be applied in the earth-fixed inertial frame I. Working in this

(NED) frame, also leads to a constant gravity vector g = g0k0, with g0 = 9.81m/s2 as the

standard gravitational acceleration.

Applying Newton’s second law to the motion of the center of mass of the airplane,

and considering its mass m to be constant, we get:

3A rigid body is a solid body in which the distance between any two given points remains constant.
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Chapter 2. Flight Mechanics

ma = mg + Fa + T (2.14)

where Fa is the total aerodynamic force4, and T is the thrust vector or the propulsive

force.

2.3.2 Rotation

The study of the kinematics and dynamics of the rotational motion of a rigid body can

be separated from its translational motion by taking as a reference point the center of

mass G of the body i.e. the origin of the coordinate system associated with the body fixed

frame B.

Kinematics of rotational motion

The derivative of the body fixed unitary vectors ı,  and k taken in the inertial frame, are

related to the angular velocity vector ω according to the following kinematics equation:

d

dt
(ı, ,k) = ω × (ı, ,k) (2.15)

One can equivalently derive this equation by differentiating the rotation matrix R :

B → I. Recalling that ω is the vector of coordinates of the angular velocity vector in the

body frame, equation (2.15) is equivalent to the following:

Ṙ = RS(ω) (2.16)

Dynamics of rotational motion

Let H be the angular momentum vector taken about the center of mass. Applying the

law of conservation of rotational momentum we can write:

dH

dt
= Ma +MT (2.17)

H = −
ˆ
P∈body

−→
GP × (

−→
GP × ω)dm = J .ω (2.18)

whereMa is the total aerodynamic torque about G, andMT is the torque created by the

propulsion system due to the displacement of the point of application of the thrust force

from the center of mass. In the case of a propeller motor, additional aerodynamic and

gyroscopic torques have to be included. J denotes the inertia operator at G.

4The expression of the aerodynamic force Fa will be detailed in the next chapter.
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2.4. Propulsion

Expressing the previous relations using vectors of coordinates in the body fixed

frame offers advantages when working with rigid bodies. Indeed the inertia operator

J becomes a constant matrix J ∈ R3×3 called the inertia matrix, and equation (2.17) can

be rewritten as:

J
dω

dt
= −S(ω)Jω +Ma +MT (2.19)

2.4 Propulsion

The propulsive mechanisms that produce the thrust force are the source of energy5 that

powers the airplane through the air. Many types of propulsive systems exist. The recip-

rocating engine-propeller combination is the oldest propulsion device and still equips

many general aviation aircraft. The invention of the more powerful jet engines created a

milestone in the history of aerospace engineering, and made high-speed flight possible.

However, small scale fixed-wing airplanes are generally equipped with a motor-

propeller combination, which due to the light weight of these vehicles generates a high

thrust-to-weight ratio. The motor can be an internal combustion engine or more fre-

quently an electrical brushless motor. For the applications of this thesis, we are inter-

ested in small airplanes and we will present the model of thrust generated by a propeller.

Figure 2.5: BLDC Motor

Figure 2.6: Motor Propeller mounted on a
small UAV

5The engines are the main source of energy, however in the presence of wind, the vehicle is capable
of harvesting energy from its surrounding air, an example is the glider airplane which is able to achieve
sustainable flights in certain conditions without being equipped with any propulsive system.
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Chapter 2. Flight Mechanics

Consider that the motor’s shaft and therefore the propeller rotates at an angular

velocity Ω = ΩıT , with ıT denoting the unitary vector parallel to the shaft of the motor.

The standard accepted thrust model, is a function of the angular velocity of the shaft,

and is expressed as follows:

T = kΩ(Ω2)ıT (2.20)

with kΩ a positive constant.

More advanced models take into account the dependency of thrust on both the angu-

lar velocity Ω and the air-velocity va by combining momentum conservation and blade

element theories. These models also predict the presence of H-forces acting orthogonally

to the motor’s axis ıT , which makes the total thrust force expression three dimensional.

One can write for instance:

T = (kΩ(Ω2) + ∆T )ıT + TH (2.21)

where TH is orthogonal to ıT , and ∆T is generally a negative term reducing the ideal

thrust magnitude in equation (2.20). Such theories are relevant when studying near-

hovering maneuvers for multicoptors as in [4], [22] and helicopters as in [44]. However

for the study of fixed wing aircraft traveling at relatively higher speeds, aerodynamic

forces vary with the square of the airspeed |va| and dominate first-order drag forces such

as those that appear in TH . The standard expression in (2.20) is therefore an acceptable

model in our case.

Let Θ be the point of application of the thrust force, and jprop ∈ R+ the inertia of the

motor/propeller about the shaft axis, then the total torque MT created by the motor-

propeller about the center of mass of the aircraft can be written as follows:

MT =
−→
GΘ× T − sign(Ω)k

′
ΩΩ2ıT − jpropω ×Ω (2.22)

with k
′
Ω a positive constant. The second term represents a resisting aerodynamic torque

and the third term is the gyroscopic effect of the spinning propeller. If the motor is

mounted so that the thrust direction passes through the center of mass of the aircraft,

the first term in (2.22) is equal to zero. Furthermore, the effect of the last two terms is

usually comparatively small, and the torque MT can be neglected in general because it

can be easily compensated for by torque control actions.
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3
Aerodynamics of Airplanes

Aerodynamics is a sub-field of fluid mechanics that studies the interactions be-

tween solid objects and their surrounding air. This chapter revisits some ba-

sic concepts of this field, and introduces the principles that were exploited to

invent heavier-than-air flying vehicles. The objective is to understand the behavior and

modeling of aerodynamic forces and moments acting on airfoils, finite-wings and finally

on an airplane as a whole. Assumptions that can be made for low airspeed flying regimes

are explained as well. The aim of this chapter is to provide a control engineer with the

necessary information needed to design control systems for airplanes. For additional

material on aerodynamics see [2, 3].

3.1 Sources and variations of aerodynamic forces and moments

Consider an experiment in which a fixed aerial vehicle is immersed in a steady and

uniform three-dimensional flow of air.
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3.1. Sources and variations of aerodynamic forces and moments

Figure 3.1: Airflow around a flying-wing
aircraft

Figure 3.2: Wind tunnel test (source: NASA
Langley CRGIS)

This rush of air generates a force on the body called the aerodynamic force. The force

exerted by the airflow at each point on the surface of the vehicle is the effect of two forces

per unit area, a shear stress and a pressure distribution:

• Friction shear stress ff : This force per unit area is tangential to the surface of the

body. It represents the viscous friction that is the effect of opposition to motion

between the fluid and the solid surface.

• Pressure fP : This force per unit area is normal to the surface. It is the result of

repetitive "striking" of air molecules1 on the surface of the solid.

The total aerodynamic force exerted on the body is obtained by integrating these two

vector quantities on the entire external surface (S) of the solid:

Fa =

‹

(S)

ffds+

‹

(S)

fPds (3.1)

The point of application of this force is called the aerodynamic center which we denote

by C. The associated aerodynamic torque, evaluated at the center of gravity G is:

Ma =
−→
GC × Fa +Ma,0 (3.2)

where Ma,0 is a pure torque called the zero-lift moment.

1Mainly oxygen and nitrogen
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Chapter 3. Aerodynamics of Airplanes

Figure 3.3: Friction shear stress and pressure

Figure 3.4: Total aerodynamic force and
torque

Then comes the question on how to predict the distribution of pressure and shear

stresses. The solution involves a number of physical principles that lead to a set of

coupled nonlinear partial differential equations called the Navier-Stokes equations. They

can be solved using advanced numerical computation techniques, leading to the descrip-

tion of the evolution of the fluid in space and time. However, even to these days, some

fluid properties cannot be totally represented in mathematical forms and their quantita-

tive determination relies mostly on experiments. In the case of aerodynamic forces and

torques, they can be measured in wind tunnel tests, which will be sufficient at least from

a control engineer’s point of view to determine their characteristics. Simplifying the an-

alytical expressions of these forces is possible. Indeed, applying a dimensional analysis

based on the Buckingham PI theorem shows that aerodynamic forces can be expressed as

a function of a minimum number of independent dimensionless variables.

3.1.1 Steady aerodynamic coefficients

Each component Fa,i of the aerodynamic force Fa can be written in the following form

(see [2] p. 39):

Fa,i = ηa|va|2C(Re,M, ha) (3.3)

ηa =
ρS

2
(3.4)

Re =
ρl|va|
µ

(3.5)

M =
|va|
Vs

(3.6)

Where ρ is the freestream2 density3, S is a characteristic surface commonly chosen as

the wing planform area, l is a characteristic length commonly chosen as the wingspan,
2The freestream quantities are the characteristics of air far from the body.
3At standard sea-level the density of air is approximately 1.225kg/m3.
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3.1. Sources and variations of aerodynamic forces and moments

µ is the viscosity of air4, and Vs is the speed of propagation of pressure waves (sound) in

air. The two dimensionless numbersRe andM are called respectively the Reynolds and

the Mach numbers and are of prime importance in aerodynamics. C(·) is a dimensionless
static coefficient that depends on the Reynolds and Mach numbers, as well as on the

direction of the air-velocity. The complexity of the friction and pressure distribution in

(3.1) is now hidden in dimensionless aerodynamic coefficients whose variations will be

discussed further in next sections.

Dimensional analysis can be applied in the same manner to the aerodynamic torque

Ma and yields the following expression:

Ma,i = ηal|va|2CM (Re,M, ha) (3.7)

With CM another dimensionless static coefficient.

It is well known that, for subsonic flows with a Mach number M smaller than 0.3,

and for aerial vehicles flying at low Reynold numbers, as in the case of small UAVs, the

aerodynamic coefficients are almost independent of the Mach and Reynolds numbers5.

This property is assumed in many works related to modeling aerodynamics for small

UAVs such as [5] and [46], and is summarized in the following assumption:

Assumption 3.1. For vehicles flying at low Reynold numbers and low airspeeds, the aerody-
namic coefficients are indepedent of the Reynold and Mach numbers.

Hence, the steady aerodynamic coefficients vary only with the direction of the air-velocity

ha. Equivalently, they are only functions of the attack angle α and the sideslip angle β,

and we can write C(.) = C(α, β) and CM (.) = CM (α, β).

3.1.2 Unsteady aerodynamic coefficients

The previous discussion treated the case of a fixed airplane in a steady airflow. However,

spatial and temporal variations of the flow pattern around the object appear when ma-

neuvering the airplane in rotational or accelerated motions, and the aerodynamic effects

become different than those experienced in a steady flight.

It is therefore considered by aerodynamicists, that an acceptable mathematical ap-

proximation of aerodynamic coefficients would take the form C(α, β, ω, α̇, β̇, ω̇), where

ω is the vector of coordinates of the angular velocity expressed in the body frame.

Additionally, the motion of control surfaces δ creates variations of forces on parts of

the wings or tails. Unsteady motion is also associated with high control deflection rates,

therefore transient control forces and torques are also functions of δ and δ̇.
4At standard sea-level temperature, µ = 1.7894× 10−5 (kg)

(m)(s)
5At least for flying regimes below the stall region as is explained in later sections.

20



Chapter 3. Aerodynamics of Airplanes

Combining the preceding discussions, we can write as a summary the following ap-

proximations:

C(.) ' C(α, β, ω, δ, α̇, β̇, ω̇, δ̇) (3.8)

CM (.) ' CM (α, β, ω, δ, α̇, β̇, ω̇, δ̇) (3.9)

3.2 Aerodynamic forces of airplanes

The total aerodynamic force Fa can be resolved into components along the body frame

axis:

Fa = FX + FY + FZ (3.10)

FX = −ηa|va|2CX(.)ı (3.11)

FY = −ηa|va|2CY (.) (3.12)

FZ = −ηa|va|2CZ(.)k (3.13)

(3.14)

The coefficient CX , CY and CZ are called respectively the axial, side and normal

forces coefficients6.

Another possibility is to express the components of Fa in the wind frame:

Fa = FD + FL + FC (3.15)

FD = −ηa|va|2CD(.)ha (3.16)

FL = ηa|va|2CL(.)h⊥,1a (3.17)

FC = −ηa|va|2CC(.)h⊥,2a (3.18)

where FD is called the drag force, FL the lift force and FC the crosswind force. And CD,

CL and CC are their corresponding non-dimensional coefficients.

6The definition of the normal force coefficient may correspond to −CZ in some references [60]
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3.2. Aerodynamic forces of airplanes

Figure 3.5: Aerodynamic forces on an airplane

The axial and normal components were first used by Otto Lilienthal in 1889, how-

ever the Wright brothers preferred to use the drag and lift decomposition [3]. In these

days, the drag and lift aerodynamic coefficients are almost always used to describe aero-

dynamic forces on airplanes while the axial and normal components are still used in the

case of bodies of revolution like rockets.

It is possible to work out an algebraic transformation between the aerodynamic coef-

ficients of both systems as follows:CDCC
CL

 =

 cosβ cosα sinβ cosβ sinα

− sinβ cosα cosβ − sinα sinβ

− sinα 0 cosα


CXCY
CZ

 (3.19)

An airplane is designed to achieve a sufficient lift force during forward flight as op-

posite to non lifting bodies. This is primarily achieved by the design of the main wings,

which strongly characterizes to the variations of the airplane’s aerodynamic coefficients.

It is common to study first the aerodynamics of a wing’s sections, and then to extend it

to the case of an airplane. This is the purpose of the next sections.

3.2.1 Aerodynamics of airfoils

An airfoil is the cross-sectional shape of a wing. Figure 3.6 shows some nomenclature

associated with airfoils.
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Chapter 3. Aerodynamics of Airplanes

Figure 3.6: Airfoil nomenclature

Figure 3.7: Components of Fa

The measurements of aerodynamic forces and torques acting on an airfoil in a wind

tunnel test are usually carried out on constant-chord wings with a span larger than the

size of the wind tunnel’s airflow. These measurements correspond to infinite wings, in

the sense that any additional effects at the wing tips are not taken into account. The

air-velocity is also considered to be parallel to the section, i.e. va lies in the plane of

the airfoil. With these assumptions we are brought to a planar study. Figure 3.7 shows

the axis and force representations in the 2D case, note also that the direction of the air-

velocity is now parametrized by the angle of attack α alone. In order to entirely describe

the aerodynamic force Fa, we will show measurements of the aerodynamic coefficients

CL and CD for such infinite airfoils. The measured coefficients correspond to a steady

case, therefore they depend only on α.

In order to produce a lifting force in the most efficient manner, airfoil designers try

to find optimal shapes ensuring a compromise between high lift and low drag. The ob-

jective is to maximize the lift-to-drag ratio. One of such popular airfoils is the positively

cambered NACA2412 shape7 which is the wing section of most Cessna aircraft8. The fol-

lowing aerodynamic characteristics were obtained using the XFOIL tool9, which runs a

data fusion process combining available experimental data with numerical predictions.

7This airfoil has a camber of 2% of the chord
8Some modern airfoils are superior to the NACA2412 airfoil in terms of efficiency, we mention the LS(1)-

0417 airfoil designed by NASA during the 1970s [2]
9
http://web.mit.edu/drela/Public/web/xfoil/
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3.2. Aerodynamic forces of airplanes

Figure 3.8: NACA2412 airfoil
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Figure 3.9: Lift Coefficient for NACA2412

In figure 3.9, it can be seen that CL varies almost linearly with α and attains a peak

value at an angle that we will denote by αs, then it drops drastically as α is increased

further. This situation where the lift component drops is called the stall region and αs

is called the stall angle. The stall phenomenon is caused by the flow separation on the

upper surface of the airfoil that is more accentuated for α > αs.

The drag coefficient is almost constant below the stall angle αs, then increases dra-

matically beyond stall. The drag component of the aerodynamic force is mainly caused

by viscosity of the fluid or what is known as skin friction drag which is obtained by in-

tegrating the shear stress over the surface of the body. However in the stall region, the

flow separates early on the top surface causing a drop in the pressure of air in the wake,

the difference of pressure between the air "in front" and at the "back" of the airfoil leads

to an additional form drag which contributes in increasing the total net drag force.
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Figure 3.10: Drag Coefficient for NACA2412

−30 −20 −10 0 10 20 30
−40

−20

0

20

40

60

80

alpha (deg)

C
L

/C
D

Figure 3.11: Lift-to-drag ratio for NACA2412

Note that the zero lift line (ZLL)10 is not aligned with the chord line but it is inclined

upwards and corresponds to an angle of attack of α0 ' −2◦. In other words, for α = 0

a lifting force is still generated and we get CL(0) > 0. This is the case for most conven-

tional cambered airfoils. However, throughout this thesis we choose the convention
10This is the direction of the air-velocity that results in a pure drag force, i.e. the resulting aerodynamic

force is parallel to the air-velocity.
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Chapter 3. Aerodynamics of Airplanes

to align the body axis ı with the zero lift line as in figure 3.12 so as to preserve the

property CL(0) = 0. This convention will be extended to the 3D case when working

with finite wings and airplanes.

Figure 3.12: Change of body axis

Classical modeling functions of airfoil’s aerodynamic coefficients

The variations of the aerodynamic coefficients CL(α) and CD(α) are classically approxi-

mated by their first order Taylor expansions as follows (see [59]):

CL(α) ' CL,αα (3.20)

CD(α) ' CD0 (3.21)

These approximations are valid at low speeds. Their computation for low positive

values of α ∈ [0◦, 8◦] gives CL,α = 0.1092deg−1 = 6.2567rad−1 and CD0 = 0.0095 for the

NACA2412. Also note that the body axis are chosen according to figure 3.12 in order

to get CL(0) = 0, this corresponds to a translation of the abscissa in the plots of the

aerodynamic coefficients by the value α0.
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Figure 3.13: Drag approximation for
NACA2412
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Figure 3.14: Lift approximation for
NACA2412
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3.2. Aerodynamic forces of airplanes

3.2.2 Aerodynamics of finite wings

In this section we extend the study to the aerodynamics of finite wings. The air velocity is

still considered to be parallel to the wing’s section. An important phenomenon happens

at the wing tips where due to the pressure gradient, an air flow tends to appear from

the region of high pressure under the wing to the relatively lower pressure on the top

surface, this flow establishes a circular motion called a vortex that trails downstream of

the wing (see figure 3.15). Locally at the wing surface, the flow induces a downward

component of the wind velocity called downwash, this decreases the effective angle of

attack at the leading edge and therefore decreases the global lift on the wing, it also

adds an additional drag component called the induced drag, which is induced by the

slight deviation of the lift force from the direction of va , for more details see [3, chapter

5].

Figure 3.15: Vortices on a finite wing

For a finite wing, the slope of the lift curve is smaller than that of the corresponding

infinite airfoil with the same cross section. The aspect ratio AR of a wing is defined as

follows:

AR =
b2

S
(3.22)

Where b is the wing span and S is the planform area of the wing. Denote by C ′L,α the

slope of the lift curve of the corresponding infinite airfoil. Then an approximation of the

slope of the finite wing’s lift curve is given by the following equation, as in [3]:

CL,α =
C ′L,α

1 +
C′L,α
πeAR

(3.23)

Where e is called the span efficiency factor and is typically equal to 0.95 for subsonic

aircraft.

The drag force coefficient of the finite wing becomes the sum of the infinite airfoil’s
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Chapter 3. Aerodynamics of Airplanes

drag coefficient previously described and an induced drag term that can be considered

to be equal to C2
L

πeAR .

Writing the second order Taylor expansions of the lift and drag coefficients for a finite

wing gives:

CL(α) ' CL,αα (3.24)

CD(α) = CD0 +
C2
L

πeAR

' CD0 +
C2
L,α

πeAR
α2 (3.25)

Note again that those approximations are valid for values of α below the stall region

(small value of α).

A numerical application on the wing whose section is supposed to be similar to the

NACA2412 airfoil, and whose wingspan is equal to b = 1.5m and wing planform area is

equal to S = 0.36m2 gives: CL(α) = 4.835α and CD(α) = 0.0095 + 1.218α2.

3.2.3 Extension to the case of airplanes

Now, the unit vector ı is chosen in the plane of symmetry of the airplane and parallel to

the zero lift plane.

Steady forces with fixed control surfaces

We first consider the steady aerodynamic forces on the airplane. We also consider the

control surfaces (ailerons, elevator and rudder) to be fixed in their neutral positions i.e.

δa = δe = δr = 0. Hence, the steady coefficients depend only on α and β.

Large values of the sideslip angle β makes the analysis very complex, however air-

planes are usually designed to operate in balanced flights which consist of flying with

almost zero sideslip angle. This has the advantage of exploiting the optimized aerody-

namic characteristics that are obtained when the air-velocity is in the plane of symmetry

of the airplane (highest lift and maximal lift-to-drag ratio). Another advantage of the

balanced flight is the comfort it brings to the people on board, by zeroing lateral acceler-

ations. The analysis of aerodynamic coefficients is limited to small values of β, for which

we can write CC ' CY .

We first discuss the variations of the lift coefficient CL. For subsonic speeds, aero-

dynamic wind tunnel tests show that the lift coefficient of the airplane can be approx-

imated to that of the complete wing by itself, including the portion of the wing that is

masked by the fuselage (see [2, chapter6]). So the discussion about CL in section 3.2.2

concerning finite wings is still valid for the case of a fuselage-wing combination. Other
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3.2. Aerodynamic forces of airplanes

components of the plane such as the horizontal tail can contribute to the lift but with

smaller values. In general we can expect the variations of CL for an airplane to resemble

to the case of a finite wing, and for small values of α and β, CL can still be written as:

CL(α, β) ' CL,αα (3.26)

with CL,α calculated according to 3.23.

Concerning the drag coefficient, it can be shown again that for small values of α and

β, CD still takes the following form (see [2, chapter 6]):

CD(α, β) = CD0 +
1

πeosAR
C2
L

' CD0 + CD,α2α2 (3.27)

CD,α2 =
C2
L,α

πeosAR
(3.28)

where the coefficient CD0 takes into account the skin friction drag of all the parts of the

airplane. The term eos is called the Oswald efficiency factor, it is different from the effi-

ciency factor e previously defined for finite wings, it is typically smaller than e (eos < e),

and is introduced to take into account parasitic drag forces due to aerodynamic interac-

tions between the different parts.

The side force coefficient for a symmetric airplane can be approximated by its first

order Taylor expansion as follows:

CC ' CY ' CC,ββ (3.29)

with CC,β > 0. The principal contributors to the side force are the vertical tail and the

fuselage.

Total aerodynamic forces

It is commonly assumed that the unsteady effects can be modeled as linear perturbations

to the steady aerodynamic coefficients previously described. In general for an aerody-

namic coefficient C(.), one can write:

C(.) = Cst(α, β) + ∆C(α̇, β̇, ω, ω̇, δ, δ̇) (3.30)

where Cst(α, β) is a steady aerodynamic force coefficient.
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3.3 Aerodynamic torques of airplanes

The components of the aerodynamic torque Ma are commonly resolved in the body

frame: Ma = Ma,1ı + Ma,2 + Ma,3k, where Ma,1 is called the rolling torque, Ma,2 is

the pitching torque and Ma,3 is the yawing torque. We define the torque aerodynamic

coefficients Cl, Cm and Cn according to the following:

Ma,1 = ηab|va|2Cl(.) (3.31)

Ma,2 = ηac|va|2Cm(.) (3.32)

Ma,3 = ηab|va|2Cn(.) (3.33)

Note that the reference length used for the rolling and yawing torques is the wingspan

b of the wing, but the chord length c is used in the case of the pitching torque11.

The purpose of the control surfaces δ = [δa, δe, δr]
> is to exploit the surrounding

flow of air in order to modify the components of the generated torque. When a control

surface deflects, it effectively changes the camber of the wing, which results in a change

of the local force produced by that wing, hence affecting the aerodynamic torque about

the center of mass of the aircraft.

The left and right ailerons are designed to deflect in opposite directions to generate

opposite incremental forces on the two sides of the wing, which results primarily in a

rolling moment Ma,1. The right aileron’s deflection δar is positive when the control sur-

face deflects upwards, and the left aileron’s deflection δal is positive when the control

surface deflects downwards. The combined term δa is commonly chosen as δa = δar+δal
2 ,

and with the previous conventions, a positive value of δa is expected to generate a posi-

tive rolling moment. Similarly, a positive elevator deflection δe corresponds to a control

surface deflecting upwards and creates a positive pitching moment. A positive deflec-

tion of the rudder corresponds to a deflection of the control surface towards the right

side of the airplane and is expected to create a positive yawing moment.

11If the wing has a varying chord, it is common to use the mean chord length along the wing as a reference
length for the pitching torque.
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3.3. Aerodynamic torques of airplanes

Figure 3.16: Action of ailerons Figure 3.17: Action of elevator Figure 3.18: Action of rudder

Following this discussion, we expect the coefficientsCl,Cm andCn to depend strongly

on δ. However the same phenomena that influenced the variations of the force aero-

dynamic coefficients cause the moment aerodynamic coefficients to depend on the set

of variables (α, β, ω, δ, α̇, β̇, ω̇, δ̇). Some of these variables only affect a component of a

torque lightly and can be neglected with respect to other more effective terms. More-

over, it is commonly considered that these coefficients can be modeled with acceptable

accuracy using linear approximations.

Rolling moment coefficient

For small sideslip angles and small control surface deflections, the aerodynamic coeffi-

cient Cl can be approximated as following [60]:

Cl ' Cl,β(α)β + Cl,δa(α, β)δa + Cl,δr(α, β)δr +
b

2|va|
(Cl,ω1(α)ω1 + Cl,ω3(α)ω3) (3.34)

The sign of the term Cl,β(α) is important for the lateral stability of the airplane,

and is mainly dependent on the dihedral of the main wings of the aircraft. A positive

dihedral angle gives one wing a positive angle of attack to the lateral component of the

air-velocity (va,2), and the other wing receives a similar negative angle of attack, thus

generating a negative rolling moment when β is positive. Therefore Cl,β(α) is generally

negative for an airplane with dihedral, and this is a stabilizing configuration for the

aircraft since it helps reducing the sideslip angle by rolling away from the relative wind.

A negative dihedral angle is called an anhedral and creates the opposite effect.

The ailerons generate torque through the termCl,δa . The rudder action also generates

unwanted roll effect through the term Cl,δr because the center of pressure of the rudder

is normally above the level of the airplane’s center of mass.

The termCl,ω1(α) represents the damping moment resisting the rolling motion of the

aircraft and is a negative term. Note that in order for Cl,ω1 and Cl,ω3 to be dimensionless

they were multiplied by the term b
2|va| in equation (3.34).
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The values of the introduced terms in equation (3.34), are usually hard to estimate

precisely, however some empirical formulas can be found in references like [35] or [59]

and are used for pre-design stages and to evaluate the performance and stability of an

aircraft.

Pitching moment coefficient

The aerodynamic coefficient Cm can be approximated as follows [60]:

Cm ' Cm,0 +
xcpCl,α

c
α+ Cm,δe(α)δe +

c

2|va|
(Cm,ω2(α)ω2 + Cm,α̇(α)α̇) (3.35)

Cm,0 represents a pure torque, and xcpCl,α
c α takes into account the torque resulting

from the displacement xcp of the center of pressure w.r.t. the center of mass (i.e. the

abscissa of the point of application of Fa), which depends among others on the design

of the horizontal tail. A design with a negative value of xcp, i.e. when the center of

pressure is rearward to center of mass, creates a restoring moment on α, and a stabilizing

configuration. The elevator effect on the pitching moment is represented with the term

Cm,δe . And the negative term Cm,ω2 corresponds to a damping torque. The term Cm,α̇

represents the transitory effects of the downwash on the rear components of the aircraft.

Yawing moment coefficient

The aerodynamic coefficient Cn can be approximated as follows [60]:

Cn ' Cn,β(α)β +Cn,δr(α, β)δr +Cn,δa(α, β)δa +
b

2|va|
(Cn,ω1(α)ω1 +Cn,ω3(α)ω3) (3.36)

Cn,β(α) is strongly influenced by the design of the vertical tail. It provides directional

stability when it is positive and helps the aircraft to align with the relative wind, hence

reducing the sideslip angle.

The rudder action appears in the term Cn,δr . And the negative term Cn,ω3 corre-

sponds to the damping effect on the yawing motion.

Total aerodynamic torque

Using equations (3.31)-(3.33), we can write the total aerodynamic torque in the following

compact form:
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Ma = ηa|va|2b

 Cl(.)
c
bCm(.)

Cn(.)


' ηa|va|2b(CM,0 + CM,αα+ CM,α̇(α)α̇+ CM,β(α)β +A(α, β)δ +B(α)ω) (3.37)

The expressions of the vectors CM,0, CM,α, CM,α̇ and CM,β and the matrices A and B

can be easily deduced from equations (3.34), (3.35) and (3.36).
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4
Control Objectives

Flight control is the technology that assists a pilot in operating the aircraft, or even

allows for a fully autonomous flight to take place without human intervention.

Various operating modes are encountered in practice. In this chapter, some con-

trol problems are discussed, then a survey of some existing advancements in guidance,

linear and nonlinear control strategies is presented.

4.1 General control model

Using Equations (2.10), (2.14), (2.15), and (2.19), we can write the following set of ordi-

nary differential equations describing the time evolution of the aircraft’s motion:

dp
dt = v

dv
dt = g + Fa

m + T
mı

d
dt(ı, ,k) = ω × (ı, ,k)

J dωdt = −S(ω)Jω + Γ(δ) + Γ
′

(4.1)

where in the second equation, the thrust direction is considered to be parallel to the

body axis (ıT = ı). The total aerodynamic torque is written as the sum of a torque Γ(δ)
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generated by the control surfaces δ and a residual torque Γ
′
, these terms can be deduced

from equation (3.37). The torque due to propulsion is neglected.

In these equations, T and δ constitute control terms that should be used to control

the state of the vehicle (p,v, (ı, ,k),ω).

This typical model of a rigid airplane has six main degrees of freedom for the position

and orientation1. On the other hand, the dimension of the set of control terms (T, δ) is

equal to four. This makes the aircraft an under-actuated system. However by looking

at equations (4.1), it can be seen that the rotational dynamics are fully actuated via the

control surface δ, while the translational dynamics are under-actuated via the mono-

dimensional thrust T . Thus at the translational level, controllability results from the

nonlinear coupling between the thrust and the orientation of the vehicle.

4.2 Objectives

A human pilot can fly an inherently stable airplane. This is done by directly requesting

a commanded thrust T using a throttle. Control surface deflections δ are also under the

control of the pilot who usually uses a joystick or a yoke to command the ailerons and

the elevator, while the rudder is commanded by pedals. Small scale airplanes can also

be piloted manually using radio control transmitters.

Figure 4.1: Manual control

However the stability properties of the airplane can sometimes be poor. Such as the

case of highly maneuverable airplanes that are designed to gain maneuverability at the

expense of their passive stability characteristics. The manual control of such vehicles

can be demanding for the pilot in terms of concentration, a solution is to add embedded

computers between the pilot and the actuators that will execute control algorithms to

assist the pilot in keeping control of his aircraft. A step further to fully autonomous

flight consists in giving the computer the complete task of controlling the vehicle. In

1The dimension of the position vector p ∈ R3 is equal to three, and since there is a one-to-one corre-
spondence between the orientation of the vehicle and the Special Orthogonal group (SO(3)), the dimension
of the orientation is three as well.
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the following we present the mathematical formulation of the attitude control, speed

control, path following and trajectory tracking tasks.

4.2.1 Attitude and speed control systems

Instead of interpreting the pilot’s commands directly as actuators setpoints, one can

design a system in which the throttle is replaced by a speed setpoint v∗ ∈ R+. One may

also use the joystick2 to specify a desired attitude equivalent to three desired body-fixed

unitary vectors (ı̄, ̄, k̄).

The speed setpoint v∗ can be considered as a desired magnitude of the inertial speed

|v| or a desired magnitude of the air-velocity |va|. This first task can be achieved by

stabilizing the error |v| − v∗ (or alternatively |va| − v∗) to zero using the thrust intensity

T as a control variable.

The second task of stabilizing the attitude is achieved using the control variable δ

to get a convergence of the aircraft’s frame B = {G, ı, ,k} to the desired mobile frame

B̄ = {G, ı̄, ̄, k̄}.

Figure 4.2: Speed control system Figure 4.3: Attitude control system

4.2.2 Path Following

We consider now a fully automated case where the airplane has to approach and follow

a pre-defined path without any time constraints. Consider a three-times differentiable

curve C in 3D-space. The path following control objective consists in stabilizing the

aircraft’s speed |v| (or alternatively the airspeed |va|) at a desired value v∗, and in zeroing

the "distance" between the vehicle’s position and the desired geometric path.

These tasks are commonly decomposed into sub-problems: kinematical guidance

and dynamical control.

2We refer roughly by joystick to all elements used to control the surface deflections, as joystick, yokes
and their combination with pedals and even radio commands in the case of radio controlled airplanes.
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Figure 4.4: Path following objective

Figure 4.5: Path following control system

Kinematical Guidance

Guidance involves body kinematic equations only and usually consists in determining

the desired heading direction h∗ for the aircraft given the path to follow3. It is mostly

independent of the aircraft characteristics.

Dynamical Control

This stage of control takes into account the specificities of the aircraft and of aerody-

namic forces and torques that influence its dynamics. Dynamical control is in charge via

the production of torques and thrust of making the actual aircraft heading direction h

converge to the direction h∗ specified at the guidance level, and of stabilizing the aircraft

velocity |v| or the airspeed |va| to the desired value v∗.

This separation between kinematical guidance and dynamical control is conceptually

3Note that determining a desired heading vector h∗ is also equivalent to determining desired path (γ∗)
and course (χ∗) angles.
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Figure 4.6: Trajectory tracking objective

Figure 4.7: Trajectory tracking control system

attractive and convenient, all the more so that imprecise knowledge of aerodynamic

forces acting on the aircraft dynamics constitutes the main source of difficulty for the

design of robust controllers4.

4.2.3 Trajectory Tracking

Trajectory tracking refers to the problem of stabilizing a time-parametrized reference

position trajectory. Let pr(t) denote a reference trajectory in E3, the control objective

is to stabilize the position tracking error p̃ = p − pr about zero using the same control

inputs T , and δ.

Trajectory tracking is best adapted to highly maneuverable rotor vehicles like quadro-

tors and helicopters, whose positions can be precisely and timely monitored near hover-

4It should be noted that in some works on path following, it is considered that the kinematical guidance
also involves second order kinematics, so that the output of the kinematical control block is the desired
angular velocity ωh∗ associated with the unitary vector h∗, i.e., ωh∗ = h∗ × ḣ∗, or equivalently the desired
values for the variations of the path (γ̇∗) and course (χ̇∗) angles.
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ing. Its applicability to fixed-wing aircraft, although possible is more limited because the

position-timing issue for cruising vehicles is less essential than following a preplanned

path with a given velocity needed for the production of strong air-lift forces on profiled

wings.

4.2.4 Other control systems modes

Additional functions of automatic control systems require the stabilization of a part of

the vehicle’s state, like the altitude hold control system which monitors the altitude of

the aircraft while allowing the pilot to freely steer the airplane in the horizontal plane.

The control systems may also run a heading hold mode, which means that the pilot

specifies the desired heading vector h∗ without necessarily having a curve to follow, this

can be done by parameterizing the direction h∗ using the course and the flight path

angles, the objective would then be to achieve a constant course angle, or a constant

climb or descent rate. Automatic control systems can also achieve automatic take-off
and landing.

In some other control schemes, the pilot inputs are considered to be the angle of

attack, and the stability axis roll rate5, while the sideslip angle is automatically regulated

at zero.

In addition, if the airplane is marginally stable or unstable, stability augmentation
systems (SAS) provide artificial stability to improve the flying qualities by adding for ex-

ample artificial damping on the rotational motion of the aircraft. Augmentation system

may also provide the pilot with a particular type of response to the control inputs, this

is known as a control augmentation system (CAS).

4.3 A review of guidance techniques

Guidance concerns the kinematical part of the path-following problem, it constitutes

the outer loop of an automated flight control system.

Many works study the case of 2D path following in the horizontal plane, by con-

sidering that the altitude is maintained or controlled by a seperate altitude controller.

Other studies investigate the possibilities to extend guidance strategies to the 3D case

[9] [11] [42]. The reference path may be fixed or, in more advanced applications, it can

be attached to a frame that is moving with respect to the inertial frame [39] [38]. Basic

studies consider the case of straight-line paths, and circular paths while others formulate

the problem of following any regularly parametrized path [9] [11].

The guidance problem is generally formulated as the task of zeroing the distance

5This is the component of the angular velocity along the direction of the speed.
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between the vehicle’s position and a virtual target on the reference path. This virtual

target is generally considered as the orthogonal projection of the center of mass of the

vehicle onto the path [55]. Other variant characterization of the virtual target has been

proposed to avoid projection non-uniqueness issues in some particular situations. For

instance, the curvilinear abcissa of the virtual target may be considered as a free degree

of freedom [9] [11], or the virtual target is considered to be at the intersection of the path

with a circle centered on the vehicle with a specified radius as in [41]. Let us denote by

p̃ the distance from the virtual target to the vehicle.

The desired path angle γ∗ and course angle χ∗ are then calculated as a function of the

components of p̃ expressed in a frame attached to the reference path. The expressions of

γ∗ and χ∗ are sometimes chosen as simple stabilizing saturated proportional controllers

such as Line-of-sight strategies sometimes combined with pure pursuit tactics, or more

generally as stabilizing nonlinear functions of p̃ such as lookahead, or vector field strate-

gies [34]. In order to avoid the singularities associated with the definition of the path

angle γ, the authors in [11] use the Special Orthogonal group SO(3) in the formulation

of the desired heading vector.

These desired path and course angles can be fed to the inner control loops as in-

puts, however in some guidance strategies, the desired values of their variations are also

computed so that inner loops have to generate desired accelerations determined at the

guidance level. Accordingly the desired path angle rate ω∗γ and course angle rate ω∗χ are

computed, either as linear or nonlinear controllers (see for example [41]) for the stabi-

lization of the errors γ̃ = γ − γ∗ and χ̃ = χ− χ∗.

4.4 A review of linear control techniques

Inner-loop controllers have historically, and to these days, been essentially designed

on the basis of linearized modeled dynamic equations about so-called trim trajectories.

They are also reported in all major flight dynamics textbooks (as in [60],[35], [5]), and

for this reason, are often taken for granted in path following studies that focus only on

the simpler generic guidance part of the problem such as the techniques presented in

the previous section. In this section, the main principles of linear control techniques are

briefly described.

Trim trajectories and linearization

Trim trajectories correspond to steady flight conditions, during which the components

of the total forces and moments in the body-fixed frame are zero or constant. This cor-

responds to a constant steady state equilibrium along the trajectory. The most common
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trim conditions are the steady level flight, steady turning flight and the steady climb and

sink flights.

The nonlinear dynamics of the system in (4.1) can be written equivalently in the form

Ẋ = f(X,U) (4.2)

where X is the state vector and U = (T, δa, δe, δr) is the control input vector.

Let X∗ and U∗ be the solutions of the system along trim trajectories, that satisfy the

system’s equation Ẋ∗ = f(X∗, U∗) 6.

The nonlinear equations Ẋ = f(X,U) can be linearized around the previously cal-

culated equilibrium using the small-disturbance theory, where it is considered that the

motion of the aircraft consists in small deviations about a steady flight. The state and

control input vectors can be written as X = X∗ + ∆X , and U = U∗ + ∆U . And one can

verify that

∆Ẋ = A ∆X +B ∆U +H.O.T (4.3)

where the matrices A and B are defined as A = ∂f
∂X and B = ∂f

∂U evaluated at the

equilibrium. These partial derivatives involve many aerodynamic derivatives as a result of

differentiating aerodynamic coefficients. They are generally estimated from geometrical

properties, from the variations of aerodynamic coefficients, or from perturbed motion of

an aircraft during a flight test or a wind tunnel test. Higher order terms (H.O.T) can be

neglected for small variations of ∆X and ∆U .

In order to simplify the problem, it is common to decouple the longitudinal and lateral
dynamics. This means that the equations in ∆Ẋ = A ∆X +B ∆U can be separated into

two decoupled sets:

• Longitudinal dynamics described by:

∆Ẋlon = Alon ∆Xlon +Blon ∆Ulon (4.4)

With for example Xlon = (v1, v3, θ, ω2)> where v1 and v3 are the first and third

components of the speed in the body axis, and Ulon = (T, δe)
>.

• Lateral dynamics described by:

∆Ẋlat = Alat ∆Xlat +Blat ∆Ulat (4.5)

With for example, Xlat = (v2, φ, ω1, ω3)> where v2 is the second component of the
6the derivatives Ẋ∗ are generally computed as functions of the desired trim speed, path angle and turn-

ing radius.
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speed in the body axis, and Ulat = (δa, δr)
>.

Open loop dynamics and stability of the uncontrolled motion

In order to study the stability of the uncontrolled motion, we can consider the longitudi-

nal and lateral systems in equations (4.4) and (4.5), with the terms ∆Ulon and ∆Ulat put

to zero. Then by computing the eigenvalues and eigenvectors of the system matricesAlon
and Alat, we can get a clear idea about the inherent stability of the system and the differ-

ent dynamical modes of motion close to the equilibrium. These modes are described by

most of the flight stability studies as follows:

• The longitudinal modes associated with the system ∆Ẋlon = Alon ∆Xlon:

– Short-period mode: This is generally a short-period oscillatory mode associ-

ated with variations of the pitch angle θ (or equivalently the angle of attack

α). This mode also characterizes the response of the pitch motion to the el-

evator input. Therefore it is of interest to design the airplane in such a way

that this mode has a high convergence rate.

– Phugoid mode: This is a lightly-damped long-period oscillatory mode asso-

ciated with the interplay of velocity and altitude (or path angle). This mode

occurs slowly that even a pilot can easily correct for it manually.

• The lateral modes associated with the system ∆Ẋlat = Alat ∆Xlat:

– Roll mode: This is a highly convergent motion associated with the response

of the rolling motion of the vehicle to the ailerons input.

– Spiral mode: This is a slowly convergent or divergent mode and is associated

with the tendency of the vehicle to sideslip into a turn.

– Dutch-Roll mode: This a lightly damped oscillatory motion with a low fre-

quency, and is associated with a rolling and yawing motion with some sideslip-

ping. This mode can be excited by a rudder pulse.

The spiral and dutch-roll modes can be made stable by using appropriately

sized vertical tail and wing dihedral.

MIMO linear control

The multi-input multi-output (MIMO) control design techniques, sometimes referred

to as modern control techniques, are generally time-domain techniques that apply to

state-space models as in equations (4.4) and (4.5).
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Consider in general a linear system of the form ∆Ẋ = A ∆X + B ∆U , if the system

is controllable, a feedback control ∆U = −K∆X can be designed by assigning stable

eigenvalues and eigenvectors to the resulting system ∆Ẋ = (A − BK) ∆X . One then

has to apply the control U = U∗+∆U . In general the state ∆X is not fully available from

measurements. It is possible however to design output feedback control for some mea-

sured output vector Y = C∆X , or design a state estimator that estimates the vector X

using the output measurements Y and then apply the full state feedback. Additionally

one can design dynamic regulators, such as integrators, in which case the state vector

∆X can be augmented with additional intermediate variables.

Instead of assigning desired eigenvalues and eigenvectors for the system, other pop-

ular approaches can be used to design a feedback control ∆U = −K∆X , such as linear

quadratic regulators (LQR) which consist in selecting a performance criterion in the time

domain in the form J = 0.5
´∞

0 (∆X>Q∆X + ∆U>R∆U)dt where Q is symmetric pos-

itive semi-definite, and R is symmetric positive definite, then finding the optimal gain

K that minimizes J . Linear quadratic methods can be adapted to solve output feed-

back control problems, or they can be designed with full state feedback combined with

a Kalman observer. This combination of a Kalman filter and a full state linear quadratic

regulator is known as Linear-Quadratic-Gaussian (LQG) control and has certain guaran-

teed robustness properties as explained in [60]. Another popular MIMO control design

is H∞ control, this is a frequency domain technique that minimizes the maximum sin-
gular value of a transfer function matrix corresponding to a chosen error signal, this

technique falls under the category of "robust control" design.

SISO linear control

Rather than studying high order systems, it might be convenient to close several simple

feedback loops in succession and study lower order systems, this is known as hierarchi-

cal or nested loops control.

Additionally, it is simpler to deal with first order single-input single-output (SISO)

systems, where each state variable is associated (controlled) with the most effective ac-

tuator, while the effect of the variations of other control inputs and states is neglected or

treated as a disturbance.

The MIMO techniques that were described in the previous section were developed

more recently and may theoretically guarantee the stability of the whole system which

is not the case of the classical designs based on successive loops closure and SISO sys-

tems. However SISO techniques are still being employed in some cases, because of their

simplicity.

For SISO systems, time-domain techniques can be easily applied to the resulting
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first order systems, or one can compute Laplace transfer functions and apply frequency-

domain techniques such as root locus analysis to calculate control gains.

Figure 4.8: SISO linear control

Most of these classical control techniques are structured according to the following

scheme:

• Lateral control systems:

– Course angle control: In this outer loop, the roll angle (φ) plays the role of

an intermediate control variable in order to track the desired course angle (χ)

specified at the guidance level.

– Roll control: In this inner loop, the ailerons (δa) are used to control the roll

motion (φ) of the aircraft.

– Sideslip control: The rudder (δr) is used to regulate the sideslip angle (β) and

to achieve a balanced flight.

• Longitudinal control systems:

– Path angle control: In this outer loop, the pitch angle (θ) or the attack-angle

(α) of the aircraft, are used as intermediate control variables to track the de-

sired path angle (γ) specified at the guidance level.

– Pitch or angle of attack (AOA) control: In this inner loop, the elevators (δe) are

used to control either the pitch angle (θ) or the attack-angle (α) of the aircraft.

– Velocity control: This objective can be achieved independently using the thrust

(T ) of the aircraft as a control input and is known as auto-throttle control.

The linear techniques described so far apply on linearized models near specific flight

conditions. In order to control the airplane on a larger flight envelope, the feedback
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gains should be adjusted according to the flight condition. This can be done using gain
scheduling techniques which consists in interpolating gains between many values calcu-

lated at different equilibrium flight conditions.

4.5 A review of nonlinear control techniques

Nonlinear control techniques do not rely on linearization of the system’s equations and

may thus cover a wider flight envelope. They can yield enlarged domain of stability in-

cluding high and rapidly varying angles of attack. Some techniques are based on feedback
linearization that transforms the nonlinear system into an equivalent linear one using a

state transformation. Or, the system can be divided into subsystems, and hierarchical

controllers can be applied by closing nested control loops.

Nonlinear Dynamic Inversion (exact input-output linearization)

This method consists in differentiating the output vector successively until independent

input control variables, allowing for the linearization of the output, are obtained (see for

example [27]).

A balanced flight condition is generally assumed and where the rudder regulates the

sideslip angle close to zero independently of the rest of the system. The output is then

commonly taken as the inertial speed v = |v|h(χ, γ) or the air velocity va, whose desired

values and variations are specified at the guidance level.

Accordingly, the output vector that we will denote by z is the tracking error on the

velocity and has a dimension of three. Differentiating it gives the error on the accel-

eration of the vehicle who is a function of the thrust T and the aerodynamics forces.

Assuming that the aerodynamic forces are independent of the angular rates and the

control surface deflections, ż becomes a function of the thrust T and the attitude of

the vehicle. Differentiating two more times allows to obtain three independent control

variables u = (T̈ , δa, δe)
>. These computations are generally cumbersome since the non-

linear equations of flight are complex, but it can be shown that the final equations can

be written in the following form:

d

dt

z1

z2

z3

 =

 z2(x, T )

z3(x, T, Ṫ )

U(x, T, Ṫ , u)

 (4.6)

where z1 = z, x represents the original internal state variables, u = (T̈ , δa, δe) is the

input vector, and U(x, T, Ṫ , u)> has the following form:
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U(x, T, Ṫ , u) = Φ1(x, T, Ṫ ) + Φ2(x, T, Ṫ )u (4.7)

If Φ2(x, T, Ṫ ) and det(Φ2(x, T, Ṫ )) are nonzero, the application u → U(x, T, Ṫ , u) is

bijective, this allows U to be viewed as a new control vector. System 4.6 is linear and

controllable, and any MIMO linear control design can be applied and the stabilization

of a desired reference velocity is possible. Finally, the values of the control terms u are

computed as, u = Φ−1
2 (x, T, Ṫ ) (U − Φ1(x, T, Ṫ )).

In order to complete such a nonlinear control design, one has to examine the stabil-

ity of the internal variables (apart from the controlled output variables). One way of

examining the boundedness of internal variables is to set the output error identically to

zero, and examine the stability of the zero dynamics.
However this technique raises the following issues:

• The second derivative of the thrust T is generally not available as a control vari-

able, indeed one has to incorporate the motor’s dynamics into the control design,

which complicates the task. Additionally, the previous control design requires the

knowledge of T and Ṫ which are not measured and are hard to estimate.

• The condition det(Φ2(x, T, Ṫ )) 6= 0 is not guaranteed along the trajectory.

• This nonlinear dynamic inversion (NDI) controller requires the full knowledge of

all the nonlinear dynamics of the aircraft. In practice, many of the aerodynamic

coefficients may not be available, and the robustness of such a controller is not

guaranteed.

Backstepping Control

This design procedure is in some ways similar to the nonlinear dynamic inversion tech-

nique presented in the previous section, however, instead of linearizing the entire sys-

tem, a stabilizing feedback control is constructed for each subsystem by considering at

each step a state variable as a virtual control input. Lyapunov functions are used to

prove the stability of the global system. This technique falls in the category of hierar-

chical controllers, such as the control designs that will be developed in this thesis. It

has many advantages over NDI techniques such as increased robustness and flexibility

in the design.

It is common to design an hierarchical architecture for these nonlinear controller

similarly to what we already presented in the SISO linear control section, except that

here the equations are not linearized and nonlinear feedback linearizing control terms

are employed. Indeed, the architecture of the flight controller is as follows, where the

symbol→ signify "controlled by":
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• Sideslip angle β → Yawing angular rate ω3 → Rudder action δr

• Airspeed |va| → Thrust T

• Course angle χ→ Roll angle φ→ Rolling angular rate ω1 → Ailerons action δa

• Path angle γ → Pitch angle θ or Attack angle α → pitching angular rate ω2 →
Elevator action δe

Each of these tasks, forms a nonlinear system, whose control terms can be designed

using backstepping techniques.

In this section we will present an example for stabilizing the flight path angle γ as it is

commonly done using the classical approximation of the lift aerodynamic coefficientCL.

We will also use this example to point out the difficulties encountered when using such

classical models, in order to motivate the proposed modeling and design approaches

that will be proposed in later chapters.

Assuming first that the task of zeroing the sideslip angle is achieved, the simplest

path angle control design considers that the roll angle is close to zero. These assump-

tions reduce the system equations to a two dimensional longitudinal situation, therefore

neglecting lateral effects. Accordingly, we have

α ' θ − γ (4.8)

In the absence of wind, it can be shown using the translational dynamics equation

and the definition of γ that:

γ̇ =
T sinα

m|v|
+
ηa|v|2CL
m|v|

− g0 cos γ

|v|
(4.9)

=
T sinα

m|v|
+
ηa|v|CL,αα

m
− g0 cos γ

|v|
(4.10)

Where we have used the classical modeling expression of the lift aerodynamic coef-

ficient, CL = CL,αα.

In equation 4.10, α or equivalently θ = α+ γ should play the role of a virtual control

input. As can be seen it is complicated to work out an explicit expression for the control

term due to the appearance of both terms α and sinα in equation 4.10. In some works,

the term T sinα is considered to be negligible comparing to the lift force and therefore

is omitted from the equation (as in [43]). In other works, it is assumed a low angle-

of-attack flying regime and sinα is replaced by its first order Taylor approximation, i.e.
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sinα ' α while T is replaced by its desired value T ∗ whose computation is supposed to

be known from the airspeed regulation subsystem. Let’s consider here the former case,

and replace α by θ − γ. The system can be written in a strict feedback form as follows:

γ̇ = a1|v|(θ − γ)− g0 cos γ

|v|
(4.11)

θ̇ = ω2 (4.12)

ω̇2 = Φ1(|v|, α, α̇, ω2) + Φ2(|v|, α)δe (4.13)

With a1 =
ηaCL,α
m a positive constant, and Φ2 a positive function. Backstepping con-

trol techniques can be used to solve this problem (see for example [43]), they consist of

a sequence of design problems for low order systems, and can be briefly described as

follows:

• Step 1, equation 4.11: A desired value for the pitch angle θd is considered as an

intermediate control variable for the stabilization of the path angle γ at its desired

value.

• Step 2, equation 4.12: A desired pitch angular velocity ω2d plays the role of a con-

trol variable for the stabilization of θ − θd at zero.

• Step3, equation 4.13: Finally, the elevator deflection δe stabilizes the error ω2−ω2d

at zero.

Extending this idea to the 3D case is not straightforward. Indeed the assumption

that the roll angle is zero doesn’t hold, and equation 4.8 is not valid. The angle α be-

comes a highly nonlinear trigonometric function of the attitude and the speed direction,

i.e. α = α(φ, θ, ψ, γ, χ). Therefore in general, it is considered that α is an intermediate

control input for the stabilization of γ (as in [13]). This however raises another issue.

Indeed keeping the assumptions on a zero sideslip angle and in the absence of wind, the

expression of γ̇ in a three dimensional case takes the following form:

γ̇ =
T sinα

m|v|

√
cos2 γ − sin2 φ

cos γ
+
ηa|v|CL,αα

m
cosφ− g0 cos γ

|v|
(4.14)

Therefore computing a value of a desired angle of attack α∗ will depend on the roll

angle φ. The desired attitude of the vehicle is hard to compute and becomes itself a func-

tion of the current orientation of the vehicle, which makes the problem of the attitude

control loop ill-posed.

Some works consider the case where the pilot input commands consist of a desired angle
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of attack (or pitch angular rate), a stability-axis roll rate, and a desired sideslip angle.

For example in [12], this problem was solved by combining time-scale separation, NDI

techniques for the computation of feedforward terms for each loop, and LQ techniques

for the computation of feedback terms. A similar work is found in [57] and in [62]

where dynamic inversion is combined with stochastic robust design. Nonlinear adaptive

control techniques were also investigated in order to take into account uncertainties and

parametric changes in the nonlinear model of the aircraft as in [58] and [7]. In other

works such as [32] and [14], nonlinearity is dealt with by applying Linear Parameter

Varying (LPV) modeling and control.

As was explained in section 4.2, trajectory tracking applications were mainly developed

for vehicles operating near hovering modes. There is indeed a large amount of research

and results concerning trajectory tracking solutions using rotor vehicles (mainly quadro-

tors), see for example [33], [28] and [16]. However trajectory tracking applications for

fixed-wing vehicles are less common and few works can be found in this area [58] [51]

[21] [37].
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Flying vehicles of different classes (see chapter 1) led to the development of dif-

ferent control strategies often based on different control tools (see chapter 4).

The robotics community has been mainly involved in projects related to small

rotor vehicles (such as the quadrotor) and the well accepted hierarchical control design

based on the thrust direction control paradigm has gained popularity due to its simplic-

ity and practical performance (see [18]). On the other hand, control design for fixed-

wing aircraft is more than a century years old and has been extensively developed in the

aeronautics community, or more specifically in what is known as the field of Guidance,
Navigation and Control (GNC). The traditional and adopted techniques for the control

of aircraft are mainly based on the linearization of the aircraft dynamics around trim

trajectories. Linear control methods are then applied to the resulting system. Other

nonlinear techniques were also discussed in section 4.5.

Recently, the control community had to deal with projects related to hybrid vehicles1

(see chapter 1) that can perform stationary flights like multicopters and helicopters,

and also fly at high speeds while taking advantage of the lifting properties of profiled

wings like airplanes. The control of these vehicles was initially addressed by combining

the two existing approaches of control and by switching between these control laws.

1In some references, hybrid vehicles are referred to as VTOL vehicles for vertical takeoff and landing
vehicles, while in other references VTOLs refer to multicopters and helicopters.
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This transition between the two modes is delicate and does not handle the high non-

linearity of the aerodynamic models at high angles of attack. The question that arises

is whether it is possible to design similar control architectures that can deal with all

classes of vehicles using a unique generic control law that does not involve a switching

policy. Previous research works in [48, 49] investigated the possibility of adaptation of

the hierarchical control design approach based on the thrust direction control paradigm

to bodies subjected to aerodynamic forces such as airplanes. It was shown that a class of

aerodynamic models allows indeed the development of such feedback control theories

with stability and convergence analysis.

More precisely, a common control architecture based on a hierarchical control de-

composition can be applied to a large class of vehicles such as rotor vehicles (e.g. quadro-

tors), axisymmetric vehicles (e.g. rockets) [49], fixed wing vehicles [21] [23], and hybrid

vehicles. A generic control model that can serve as a basis to design autopilots for trajec-

tory tracking and path following is also common to these vehicles. A synthesis of these

control approaches in the case of fixed-wing airplanes is presented next.

In this chapter, the concept of hierarchical control design is presented. Then it is

shown how the fully actuated attitude dynamics allows to consider a lower-order model

for control design, independently of the actuation configuration of a specific vehicle. Fi-

nally, a simplified "model for control" of aerodynamic forces is presented and compared

with classical aerodynamic modeling techniques.

5.1 Hierarchical control design

Consider again the control model of section 4.1:

dp

dt
= v (5.1)

dv

dt
= g +

Fa
m

+
T

m
ı (5.2)

d

dt
(ı, ,k) = ω × (ı, ,k) (5.3)

J
dω

dt
= −S(ω)Jω + Γ(δ) + Γ

′
(5.4)

Hierarchical control consists in decomposing the system into a cascade of subsystems

of lower orders. For instance, in this case, the system (5.1)-(5.4) can be decomposed into

two main subsystems as follows:

50



Chapter 5. Control Model for Control Design

• Position control: An outer-loop for the subsystem composed of equations (5.1) and

(5.2), where the position p and/or the velocity v are controlled using the thrust T

and the orientation of the vehicle as virtual intermediate inputs. This consists in

determining a desired thrust, and a desired orientation of the vehicle equivalent to

the determination of three body-fixed unitary vectors that we denote by (ı̄, ̄, k̄).

• Attitude control: Inner control loops concerning equations (5.3) and (5.4), where

first in equation (5.3) the angular velocity is used as an intermediate control in-

put that we denote by ω∗ to make the orientation of the vehicle track the desired

orientation specified at the position control level. Then in equation (5.4), the con-

trol surfaces δ should generate a torque control term that makes the actual angular

velocity track the desired angular velocity previously defined.

For convergence analysis, either backstepping (based on classical Lyapunov-type ap-

proaches) or high-gain techniques (based on singular perturbation theory) can be ap-

plied. In this latter case, it is important to keep in mind that the rate of the convergence

of inner-loops must be higher than that of outer-loops, so that an assumption of time-

scale separation would be valid. In other words, each loop should converge relatively

faster than its outer-loop so that the intermediate control variables can be considered to

be applied almost instantaneously. This is what gives the position control the name of

"slow" outer-loop, and the attitude control the name of "fast" inner-loop.

This control scheme has many advantages, let us mention some of them:

• Working with systems of low orders (mainly first and second order systems) facil-

itates practical implementation, tuning and failure diagnosis procedures.

• Position and velocity estimation relies on low frequency measurement rates, like

global positioning systems (GPS), pitot tubes and cameras, while for attitude es-

timation higher frequency measurement rates are available from onboard Inertial

Measurement Units (IMU) for example. This means that the rate of convergence

for the estimators of translation variables is more limited than that of the attitude

estimators. This has direct implication on control design, and justifies the separa-

tion of the system’s dynamics to slow outer-loops and fast inner-loops.

5.2 Control model

Designing control laws along with convergence analysis is done on the basis of a math-

ematical model. The chosen model should be close enough to the actual physical system

and yet simple enough to lend itself to analysis. In this section we explain the choices

that are made in order to simplify the control model.
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5.3. Modeling aerodynamic forces for control

First, it is assumed that the actuator’s proper dynamics are sufficiently fast so that

they can be neglected in the first approximation. Small fixed-wing airplanes, for in-

stance, are equipped with electrical brushless motors for the generation of thrust, and

servomotors for the actuation of angular positions of the control surfaces. These motors

have their own electronic controller modules, which should ensure sufficiently fast re-

sponse of the actuators with respect to the mechanical dynamics of the aircraft. Hence

desired values of T and δ are supposed to be reached instantaneously.

Second, and in view of equation (5.4), ω can be modified at will via the choice of the

active control torque (Γ(δ)) produced by the control surfaces. One can thus consider the

angular velocity ω as an intermediate control input. This corresponds to postponing the

study of the inner-loop of the hierarchical design corresponding to equation (5.4).

Following these assumptions, we choose the following control model:


dp
dt = v

dv
dt = g + Fa

m + T
mı

d
dt(ı, ,k) = ω × (ı, ,k)

(5.5)

With T and ω taken as control inputs.

It is interesting to note that these equations are representative of a large class of aerial

vehicles, by being independent of the actuation specificities of a vehicle. The resulting

system can be used to design general hierarchical control principles that apply to a large

number of vehicles.

5.3 Modeling aerodynamic forces for control

System (5.5) has to be complemented with a model for the resultant aerodynamic force

Fa. Chapter 3 presented a physical description of aerodynamic forces, and their classical

approximation as linear functions of the attack and sideslip angles. In this section, an

alternative nonlinear model of aerodynamic forces will be presented which is inspired

from previous works in [21], [49] and [45].

The model that we propose to use is,

Fa = −ηa|va|(c0va,1ı+ ¯̄c0va,2+ c̄0va,3k) (5.6)

With c0, c̄0 and ¯̄c0 denoting positive coefficients.

This model is compatible with relations 3.10-3.18, and corresponds to,CX = c0ha,1 =

c0 cosα cosβ, CY = ¯̄c0ha,2 = ¯̄c0 sinβ and CZ = c̄0ha,3 = c̄0 sinα cosβ.
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Let c1 be a positive constant coefficient such that, c̄0 = c0 + 2c1. In the case of zero

sideslip (β = 0), one easily verifies using equation (3.19) that:

CD(α, 0) = c0 + 2c1 sin2(α) (5.7)

CL(α, 0) = c1 sin(2α) (5.8)

For small attack angles, the drag coefficient CD is thus approximately equal to c0

and the lift coefficient CL is approximately proportional to the attack angle with the

coefficient of proportionality given by 2c1, and the expression of CY for small values of

β can also be written as CY ' ¯̄c0β. Those are the classical first-order approximations of

the static aerodynamic coefficients at low attack and sideslip angles, that were discussed

in chapter 3. For the two models (the classical and the proposed one) to correspond at

small attack and sideslip angles, one can choose to set c1 =
CL,α

2 , c0 = CD0 and ¯̄c0 = CC,β .

A clear advantage of this model with respect to the classical linear approximations

is that the aerodynamic coefficients do not grow unbounded when the angles α and β

get large, but they vary periodically with the relative motion of air. For instance if the

drag coefficient c0 were equal to zero then, in the case of zero sideslip angle, the resul-

tant aerodynamic force would be orthogonal to the zero-lift plane with an amplitude

proportional to sinα|va|2.

Note that this model represents forces acting on bodies with symmetries. More pre-

cisely, (ı, ), (,k) and (ı,k) should all be planes of symmetry for the expression 5.6 to

hold for all values of va,1, va,2 and va,3. This can be seen by noticing that Fa(−va) =

−Fa(va). One can also notice that the equivalent drag and lift coefficients satisfy the

properties CD(−α, 0) = CD(α, 0), and CL(−α, 0) = −CL(α, 0). This of course is not

exact in the case of an actual aircraft whose geometry presents only a vertical plane

of symmetry which is (ı,k). However, we expect that the model approximates at best

the aerodynamic forces for ha,1 > 0 and ha,3 > 0, i.e. for forward flights and positive

angle-of-attack regimes, which cover almost all the intended maneuvers of an aircraft.

This model is also coherent with experimental data performed on a variety of wing

profiles and axisymmetric bodies as explained in [46] and [49]. However, for lift-optimized

wing profiles, this model fails to account for stall phenomena occurring at large attack

angles. Modeling a large flight envelope is still possible by combining different classes

of modeling functions, the interested reader is referred to [46], and [45]. However, for

the applications in this thesis, we are mostly interested in controlling the aircraft in the

linear regime without dealing with the stall region.

It is clear that in accordance with assumption 3.1, the aerodynamic coefficients in ex-

pression 5.6 do not vary with the Reynolds and Mach numbers. Additionally this model
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5.3. Modeling aerodynamic forces for control

implicitly assumes that the effects of rotational and unsteady motions and of the control

surfaces are neglected. This latter assumption has the advantage in a mathematical point

of view of making system 5.5 triangular, so that a hierarchical controller can be designed

without dealing with zero-dynamics. On the other hand, whether the unsteady effects

can really be neglected without destabilizing the system is a matter of investigation that

has to be verified in simulations and practical experiments.

Case of spherical bodies

For a spherical body, and considering the symmetry of the problem along all the body

axis, the aerodynamic force do not depend on the body’s orientation and is reduced to its

drag component. The aerodynamic force is thus parallel to va. The general model (5.6)

can be adapted to this case by zeroing the lift coefficient, i.e. taking c1 = 0, and since the

coefficients c0, c̄0 and ¯̄c0 should all be equal one can write,

Fa = −ηa|va|(c0va,1ı+ c0va,2+ c0va,3k)

= −ηa|va|c0va (5.9)

with c0 a positive and constant drag coefficient.

Figure 5.1: Aerodynamic forces on a sphere

Case of airplanes

The shape of the airplane does not present any axial symmetry, and the coefficients c0,

c̄0 and ¯̄c0 are in general all different. The general aerodynamic model in (5.6), can be

written equivalently as follows,

Fa = −ηa|va|(c̄0va − 2c1va,1ı− (¯̄c0 − c̄0)va,2) (5.10)

Where we used again the definition c̄0 = c0 + 2c1.
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As a conclusion, despite the simplicity of these models, they are physically pertinent

and locally similar to the classical known approximations of aerodynamic forces2. They

also allow for elegant stability analysis and control design as will be seen in the next

chapters. Similar models were recently proposed in [30] and [31], where aerodynamic

forces and torques are expressed in the body frame of the vehicle and are globally non-

singular (i.e. they are not written as functions of attack and sideslip angles), the authors

have also noticed the advantages of employing these models for simulation and stability

analysis.

2Precise modeling of aerodynamic forces and torques is important for designing an airplane, for simu-
lation and for evaluation of flight performance, which are not the subject of this work.
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6
Attitude Control

Attitude stabilization corresponds to designing the fast inner-loop of the hierar-

chical control architecture. Once this loop is active and achieving its objective,

outer-loops can be designed separately.

In this chapter, we first derive a control law for the angular velocity as an intermedi-

ate control variable along with a convergence analysis. Then we show how to track this

desired angular velocity with the control surfaces of a conventional airplane. Finally, an

adaptation of the previous control to the case of a flying wing is shown.

6.1 Problem statement

The attitude control problem is associated with the following subsystem taken from

section 5.1:

d

dt
(ı, ,k) = ω × (ı, ,k) (6.1)

J
dω

dt
= −S(ω)Jω + Γ(δ) + Γ

′
(6.2)

The objective is to achieve a convergence of the aircraft’s frame B = {G; ı, ,k} to a

desired time-varying frame B̄ = {G; ı̄, ̄, k̄}.
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According to section 5.2, we divide this subsystem further to two subsystems:

• An orientation control associated with equation 6.1, and where a desired angular

velocity ω∗ plays the role of the intermediate control variable that ensures the

convergence B → B̄

• A torque control problem where the control surfaces δ generate the required torque

that ensures the convergence ω → ω∗, where ω∗ is the vector of coordinates of ω∗

expressed in the body frame.

Figure 6.1: Attitude control block diagram

6.2 Attitude control design

Consider a time-varying desired body frame B̄ = {G; ı̄(t), ̄(t), k̄(t)}. It is also assumed

that ı̄(t), ̄(t) and k̄(t) vary smoothly with time so that their derivatives ˙̄ı(t), ˙̄(t), and
˙̄k(t) are well-defined.

The angular velocities of ı̄ and ̄ are defined respectively as:

ωı̄ = ı̄× ˙̄ı (6.3)

ω̄ = ̄× ˙̄ (6.4)

One can then deduce the angular velocity of the frame B̄ as:

ω̄ = ωı̄ + (ı̄ · ω̄)ı̄ (6.5)

= ω̄ + (̄ · ωı̄)̄
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Proposition 6.1. Assuming that the frame B̄ and its angular velocity ω̄ are well-defined, an
angular velocity control that almost globally asymptotically (locally exponentially) stabilizes
B̄ = B is

ω = ω̄ + kω(t)((ı× ı̄) + (× ̄) + (k × k̄)) (6.6)

with kω(t) > ε > 0.

Proof.

Let (uθ, θ̃) denote the axis-angle representation of the rotation between the frames

B and B̄. Consider the following candidate Lyapunov function:

Vθ̃ = 0.5 tan2 (
θ̃

2
) ≥ 0

Taking the derivative of Vθ̃ gives

V̇θ̃ = 0.5 tan (
θ̃

2
)

˙̃
θ

cos2 ( θ̃2)

By definition we have ˙̃
θ = (ω̄ − ω) · uθ. Replacing ω by the control law of equa-

tion (6.6) yields ˙̃
θ = −kω(t)((ı× ı̄) + (× ̄) + (k × k̄)) · uθ.

Next, we show that (ı× ı̄)+(× ̄)+(k× k̄) = 2 sin θ̃ uθ. According to Rodrigues’

formula for the rotated vectors we have,

ı̄ = cos θ̃ ı+ sin θ̃ (uθ × ı) + (1− cos θ̃)(uθ · ı) uθ (6.7)

̄ = cos θ̃ + sin θ̃ (uθ × ) + (1− cos θ̃)(uθ · ) uθ (6.8)

k̄ = cos θ̃ k + sin θ̃ (uθ × k) + (1− cos θ̃)(uθ · k) uθ (6.9)

From 6.7, one deduces that:

ı× ı̄ = sin θ̃ (ı× (uθ × ı)) + (1− cos θ̃)(uθ · ı) (ı× uθ)

= sin θ̃ uθ − sin θ̃(ı · uθ) ı+ (1− cos θ̃)(uθ · ı) (ı× uθ) (6.10)

Similarly,

× ̄ = sin θ̃ uθ − sin θ̃( · uθ) + (1− cos θ̃)(uθ · ) (× uθ) (6.11)

59



6.3. Torque control

and,

k × k̄ = sin θ̃ uθ − sin θ̃(k · uθ) k + (1− cos θ̃)(uθ · k) (k × uθ) (6.12)

Summing (6.10), (6.11) and (6.12) gives:

(ı× ı̄) + (× ̄) + (k × k̄) = 3 sin θ̃ uθ − sin θ̃ uθ + (1− cos θ̃) (uθ × uθ)

= 2 sin θ̃ uθ (6.13)

Therefore ˙̃
θ = −2kω(t) sin θ̃. Replacing ˙̃

θ in the expression of V̇θ̃ gives:

V̇θ̃ = −4kω(t)Vθ̃ ≤ 0

Therefore Vθ̃ converges exponentially to zero, and the almost global asymptotic

stability of B = B̄ follows from the definition of Vθ̃, with the domain of attraction

{θ̃(0) : θ̃(0) 6= π}. Also note that orientations such that θ̃ = π are unstable equilibria.

6.3 Torque control

Denote by ω∗ the desired angular velocity determined previously. The objective is to

calculate the expression of control surfaces δ that achieves the convergence of ω to ω∗.

We write equation (6.2) again for convenience,

J
dω

dt
= −S(ω)Jω + Γ(δ) + Γ

′
(6.14)

Recall that Γ(δ) is the torque due to the control surfaces, and Γ
′

is the residual torque,

and both of these terms can be deduced from equation (3.37).

Proposition 6.2. The following expression of the desired torque Γ(δ)∗ produced by the control
surfaces makes ω track ω∗

Γ(δ)∗ = Jω̇∗ + S(ω)Jω∗ − Γ
′ − kγJ(ω − ω∗) (6.15)

with kγ a positive gain.

Proof. Let ω̃ = ω − ω∗ denote the error on the angular velocity. One verifies using

the control expression in equation (6.15) that

J ˙̃ω = −S(ω)Jω̃ − kγJω̃ (6.16)
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Consider the following cost function

Vω̃ = |Jω̃|2 ≥ 0 (6.17)

which is equal to zero only when ω̃ is zero. Taking the derivative of Vω̃ and using

equation (6.16) gives

V̇ω̃ = 2(Jω̃)>(J ˙̃ω)

= −2(Jω̃)>(S(ω)Jω̃ + kγJω̃)

= −2kγ |Jω̃|2

= −2kγVω̃ ≤ 0

From which results the global exponential convergence of Vω̃ and hence of ω̃ to

zero.

In practice however, it is sometimes hard to get a good estimate of the inertia ma-

trix J . The cancellation of the residual torque Γ
′

produced by the non-moving surfaces

is also challenging and involves identification of many aerodynamic coefficients and pa-

rameters, as can be seen in equations (3.34)-(3.36). However using a simple proportional

feedback with a high gain is sufficient in practice to make ω track ω∗. Indeed the fully

actuated nature of the attitude dynamics and the availability of the estimate of the angu-

lar velocity at a high rate makes the use of high proportional gains possible1, allowing us

to take advantage of the robustness associated with the use of high proportional gains.

The modified control law becomes

Γ(δ)∗ = −Kγ(ω − ω∗) (6.18)

with Kγ a high gain matrix, which can be chosen as a diagonal matrix for example if

one assumes that J is almost diagonal.

It should be noted that for a regular airplane, the neglected torque Γ
′

has a tendency

to achieve passive stability by its restoring and damping terms as explained in section

3.3. Additionally the maximum active torque Γ(δ) that can be achieved is limited by

the mechanical stops of the actuators (the possible range of the components of δ) and

the flying regime (the value of |va|). This may limit the maximum achievable angular

velocity ω∗.

The last step of the attitude control design is to compute the angles of deflection δ of

the control surfaces that achieve the desired control torque Γ(δ)∗. In view of (3.37), the

1This is equivalent in practice to running this discrete controller at a high rate, in accordance with its
name as a "fast" inner-loop.
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relation used to model the production of the control torque takes the following form,

Γ(δ) ' |va|2Ā(α, β)δ (6.19)

The matrix-valued function Ā(α, β) is aircraft specific, it depends in particular on

the placement of the control surfaces with respect to the aircraft center of mass and

on their dimensions. Typically around nominal air velocities and for small attack and

side-slip angles, Ā can be approximated as a constant matrix which in view of equations

(3.34)-(3.37) can be written as

Ā = ηab

Cl,δa 0 Cl,δr

0 c
bCm,δe 0

Cn,δa 0 Cn,δr

 (6.20)

Inverting relation (6.19) suggests to make δ track the desired angles of deflection δ∗

given by

δ∗ =
1

|va|2
Ā−1Γ∗

= − 1

|va|2
Ā−1Kγ(ω − ω∗) (6.21)

The matrix Ā may not be known precisely in practice. One may then calculate the

desired deflection angles according to the following relation,

δ∗ = − 1

|va|2
Kδ(ω − ω∗) (6.22)

with Kδ a high gain matrix. If one assumes further that Ā is almost diagonal, Kδ can

be chosen as a high gain diagonal matrix.

In general the actuators have their own dynamics that should be included in the anal-

ysis in order to make δ track δ∗. However small scale airplanes are generally equipped

with electrical servomotors that accept setpoints in angular deflections and whose proper

dynamics can be supposed to be sufficiently fast so that δ∗ can be considered to be instan-

taneously tracked. The maximum deflection rate δ̇ is surely limited by the technology

of the actuators and this is usually determined in the specifications of the motors. This

in turn has implications on the maximum rate of change of the angular velocity ω̇∗ that

can be achieved. However, these issues are not addressed in this thesis.
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6.4 Adaptation to two-axis pitch-roll autopilots

In the preceding section, we considered the case of three-axis autopilots monitoring an-

gles of the ailerons, elevator and rudder. Some small scale vehicles such as flying-wings

involve ailerons and tail elevator actions only. The autopilot associated with their config-

uration is called a two-axis autopilot. The possibility of designing such less sophisticated

autopilots is discussed next.

6.4.1 Pitch-roll attitude control

The desired attitude of the the vehicle is commonly chosen to achieve a balanced flight

by zeroing the lateral air-velocity component va,2, which is equivalent to zeroing the side-

slip angle β. Provided that an adequate bank angle is created, the tail vertical surface

is generally very efficient at maintaining the side-slip angle small without an active yaw

control. This corresponds to a positive value of the coefficient Cn,β in equation (3.36)

which as explained in section 3.3 corresponds to a restoring yawing torque created pas-

sively due to the presence of the vertical tail.

This explains why active yaw control via the use of a rotating rudder surface is of

secondary importance for most common airplanes. Following the computation of the

desired angular velocity ω∗ given by 6.6, it thus essentially suffices to create, via elevator

and ailerons actions, pitch and roll torques that asymptotically stabilize ω1 − ω∗1 and

ω2−ω∗2 at zero. This can be achieved without creating a yaw torque with the rudder, and

makes k track k̄. The vertical tail will then make ı and  converge to ı̄ and ̄ respectively,

via the generated passive torques.

6.4.2 Case of a flying-wing aircraft

A flying-wing is an unconventional aircraft configuration that lacks a tail and has no

fuselage, with most of the payload and equipment being housed inside the main wing

(see figure 6.2). It is sometimes regarded as a practical concept due its excellent aerody-

namic efficiency, and its light weight.

Figure 6.2: Flying-wing actuation configuration
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However, because this airframe lacks conventional fixed and control surfaces, it suf-

fers from the absence of inherent passive stability and it is in general difficult to control.

Some precautions should be taken at the design level. For instance, in order to en-

sure longitudinal static stability (as in the case of an ordinary airplane), the equipment

should be adequately distributed within the limited space, so that the center of gravity

lies ahead of the wing aerodynamic center. It is clear that directional stability would be

difficult to ensure due to the absence of a vertical tail, and among many of the proposed

solutions, it is considered that a good flying-wing design includes swept-back wings with

twisted tips [61]. Finally, a carefully designed flying-wing would still be marginally sta-

ble, and its manual control requires a lot of concentration, therefore it is common to

equip such vehicles with onboard controllers that provide stability augmentation.

The actuation configuration of this vehicle consists of two "elevons", which are con-

trol surfaces at the trailing edges of both sides of the wing. These elevons replace the

ailerons and the elevator. If they deflect together in the same direction, they create a

pitching moment, and if they deflect differentially, they create a rolling moment.

The right elevon’s deflection that we denote here by δev,r is considered to be positive

when it deflects upwards, while the left elevon’s deflection that we denote by δev,l is

considered to be positive when it deflects downwards.

Similarly to equation (6.19) and (6.20), we can relate the active rolling torque Γ1

and pitching torque Γ2 to the elevons’ deflections according to relations of the following

form, [
Γ1

Γ2

]
' |va|2Ā

[
δev,r

δev,l

]
(6.23)

with,

Ā = ηab

[
Cl,δ Cl,δ
c
bCm,δ −

c
bCm,δ

]
(6.24)

The attitude control design that we presented in this chapter can thus be applied

to the flying-wing aircraft, by inverting equation (6.23) for the computation of the de-

sired elevon’s deflections (similarly to equation (6.21)). Clearly, no active yawing control

torque is intentionally produced with this strategy, and the situation corresponds to the

two-axis (pitch-roll) control that was previously discussed.
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Trajectory Tracking

Trajectory tracking control is designed in this chapter by extending the method-

ology of thrust vectoring that is often chosen for the control of low-velocity

small scale rotor vehicles with reduced lift surfaces such as the quadrotor. The

main challenge is to take into account the dynamics of aerodynamic forces that signif-

icantly complicate the design of flight control systems for fixed-wing vehicles. To this

aim, the control solution is designed and analyzed on the basis of the model of aerody-

namic forces previously described in section 5.3.

We begin by presenting the position control problem. An equilibria analysis follows,

where we define a set of admissible reference trajectories. Then, we present the design

of the position controller that asymptotically stabilizes the reference position. Finally

we show simulation results involving challenging reference trajectories.

7.1 Problem statement

Let pr(t) denote a (three times differentiable) reference trajectory in E3, with bounded

time-derivatives at all orders. In particular vr(t) and ar(t) denote the reference velocity

and reference acceleration respectively. The control objective is to stabilize the position

tracking error p̃ = p−pr. The control model presented in section 5.2 can now be written

as follows,
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
dp̃
dt = ṽ

dṽ
dt = g + Fa

m + T
mı− ar

d
dt(ı, ,k) = ω × (ı, ,k)

(7.1)

7.2 Equilibrium analysis

A necessary condition for the asymptotic stabilization of the reference position pr(t), is

the existence of an equilibrium of the state on the trajectory. In the case of the proposed

hierarchical control architecture, the existence of the equilibrium can be proved by find-

ing locally unique time-functions of the thrust1 T (t) and of the body-fixed frame of the

vehicle Br = {G; ır(t), r(t),kr(t)} that satisfy the second equation in (7.1) with dṽ
dt ≡ 0.

This corresponds to the following equilibrium equations,

T ır = Fr (7.2)

Fr = −mg − Fa +mar (7.3)

In order to give a clear view on the methodology for extending the thrust vectoring

control, we start by considering the classical case of vehicles flying in a near hovering

mode such as quadrotors, then we show how to extend the analysis for vehicles whose

shape can be approximated by a sphere, and finally we solve the equilibrium equations

for an airplane whose aerodynamic forces are assumed to take the form proposed in 5.3.

Case of a quadrotor

The control of a quadrotor is classically addressed by neglecting external aerodynamic

forces2 and taking Fa = 0. With this assumption, equation (7.3) becomes,

Fr = −mg +mar (7.4)

Now one can apply equation (7.2). The underlying geometrical interpretation is that

the thrust vector should be chosen equal to the "apparent external force" Fr, which is

equivalent to saying that at equilibrium the thrust direction should be parallel to Fr,

1we use directly the notation T (t) instead of Tr(t), because the desired thrust is considered to be applied
instantaneously.

2In more advanced studies, it can be shown that first-order aerodynamic effects due to the physics of
the propellers can be taken into account in control design to enhance the performance of the closed-loop
system, see for instance [22].
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and the magnitude of the thrust counterbalances the external force intensity.

As long as Fr is different from zero, there exist only two solutions for the equilibrium

equation:

T = |Fr| ır =
Fr
|Fr|

(7.5)

T = −|Fr| ır = − Fr
|Fr|

(7.6)

However in practice, the thrust is constrained to be positive and the solution in (7.5)

is chosen.

Remark 7.1. With the previous choice of ır and the condition Fr 6= 0, the equilibrium equa-
tions are satisfied for any choice3 of the unitary vector r which can be used as a free degree of
freedom for secondary objectives. And finally kr can be computed according to kr = ır× r to
complete the orthonormal base associated with the body frame Br.

Remark 7.2. If the reference trajectory corresponds to a uniform motion with a constant
velocity, i.e. ar(t) ≡ 0, one gets for the thrust direction ır = −k0. Which means that the
plane of the quadrotor remains horizontal. This is surely not realistic, and is the consequence
of neglecting the aerodynamic forces. A more rigorous analysis should include a model for Fa,
a simple case is to assimilate the vehicle to a spherical body as shown in the next section.

Case of a spherical body

In the case of a spherical body, the aerodynamic force is reduced to its drag component.

According to equation (5.9), we have Fa = −ηa|va|c0va, which gives,

Fr = −mg +mar + ηa|va|c0va (7.7)

The air-velocity in this case is equal to va = vr − vw.

Notice that Fr is independent of the orientation of the vehicle, and as long as Fr 6= 0,

we have the same solution for the equilibrium with a constraint positive thrust: T = |Fr|,
and ır = Fr

|Fr| . The choice of r is still a free degree of freedom that can be controlled

independently to achieve a complementary objective.

Case of airplanes

In the case of airplanes, the aerodynamic force Fa is no longer reduced to its drag

component, and the existence of lifting forces makes Fa in general dependent on the

3As long as r is chosen orthogonal to ır.
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orientation of the vehicle. Hence, the solution for ır is no longer systematic. How-

ever, using the model proposed in section 5.3, the aerodynamic force can be written as

Fa = −ηa|va|(c̄0va−2c1va,1ı−(¯̄c0− c̄0)va,2). Note that the first term−ηa|va|c̄0va is inde-

pendent of the orientation of the vehicle, while the second term +ηa|va|2c1va,1ı is along

the thrust direction and can be lumped with the thrust. More precisely, the equilibrium

equation dṽ
dt ≡ 0 can now be written as following,

T̄ ır = F̄r − ηa|va|(¯̄c0 − c̄0)va,2r (7.8)

T̄ = T + ηa|va|2c1va,1 (7.9)

F̄r = −mg + ηa|va|c̄0va +mar (7.10)

An additional term (−ηa|va|(¯̄c0− c̄0)va,2r) appears now in the equilibrium equation,

and the solution for ır is not independent of the choice of r anymore, but the entire

equilibrium attitude should be chosen simultaneously. Many solutions to this equation

might exist, however we choose the one that corresponds to a balanced flight i.e. such

that va,2 = 0.

Using equations (7.8) and (7.9), and setting va,2 = 0, the corresponding solutions for

ır and for a positive thrust T are the following:

T = |F̄r| − ηa|va|2c1va,1 (7.11)

ır =
F̄r

|F̄r|
(7.12)

As for the unit vector r, it has to be orthogonal to both ır and va (so that va,2 = 0 is

satisfied). Therefore we have r = ± va×ır
|va×ır| . These two possible orientations correspond

to flying either cockpit/up or cockpit/down with the aircraft nose facing the incoming

air. The common situation is the cockpit/up situation and corresponds to choosing:

r =
va × ır
|va × ır|

(7.13)

Finally, the third unit vector kr is just the cross-product of the other two unit vectors.

kr = ır × r (7.14)

These solutions for the equilibrium exist provided that F̄r 6= 0 and va × ır 6= 0 along

the trajectory, this leads us to define a set of admissible trajectories as follows,

Definition 7.1. A trajectory pr(t) such that 0 < ε < |vr(t)| < vmax < +∞ is admissible if
assuming zero wind velocity, the equilibrium equation g+ Fa

m + T
mı−ar = 0 is satisfied with
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1. zero sideslip velocity, i.e. ∀t : vr,2(t) = 0,

2. strictly positive angles of attack, i.e. ∃ε1 > 0,∀t : vr,3(t) > ε1

3. The inequality,

∃ε2 > 0, ∀t : |g − c̄0

m
|vr(t)|vr(t)− ar(t)| > ε2 (7.15)

With the above conditions satisfied, |F̄r| and |va × ır| never cross zero, ensuring the

existence of an equilibrium orientation (ır(t), r(t),kr(t)) along the reference trajectory

as given by equations (7.12),(7.13) and (7.14). It is not difficult to verify that this set of

trajectories is much larger than the set of classically defined trim trajectories for which

the aircraft translational and angular velocities expressed in the body frame are constant.

7.3 Control design and convergence analysis

Let us now focus on control design. We denote the acceleration tracking error as ã =

a− ar = dṽ
dt . Using the expression (5.10) of Fa in (7.1) then yields,

mã = (mg − ηa|va|c̄0va −mar) + (T + ηa|va|2c1va,1)ı+ ηa|va|(¯̄c0 − c̄0)va,2 (7.16)

Let Ip̃ denote a saturated integral of the position tracking error p̃, and ξ(p̃, ṽ, Ip̃) de-

note a bounded PID-like control law that asymptotically (and locally exponentially) sta-

bilizes (p̃, ṽ, Ip̃) = (0,0,0) for the linear control system ã = ξ, and such that ξ(0,0,0) =

0. In view of (7.16),

ã = ξ(p̃, ṽ, Ip̃)−
F̄

m
+
T̄

m
ı+

ηa
m
|va|(¯̄c0 − c̄0)va,2 (7.17)

F̄ = −mg + ηa|va|c̄0va +mar +mξ (7.18)

T̄ = T + ηa|va|2c1va,1 (7.19)

We would like the terms− F̄
m + T̄

mı+
ηa
m |va|(¯̄c0− c̄0)va,2 in equation (7.17) to converge

to zero to obtain the closed loop equation,

ã = ξ(p̃, ṽ, Ip̃) + o(t), lim
t→∞

o(t) = 0 (7.20)

Set T̄ = F̄ · ı so that in view of the relation in (7.19), the desired thrust is calculated

according to

T = F̄ · ı− ηa|va|2c1va,1 (7.21)
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Let us assume that |F̄ | is always larger than some positive number, and set the fol-

lowing desired body axis orientation,

ı̄ =
F̄

|F̄ |
(7.22)

̄ =
va × ı̄
|va × ı̄|

(7.23)

k̄ = ı̄× ̄ (7.24)

Assuming that the desired thrust is instantaneously applied, equation (7.17) may

also be written as:

ã = ξ(p̃, ṽ, Ip̃) +
|F̄ |
m

(ı× (ı× ı̄)) +
ηa
m
|va|(¯̄c0 − c̄0)(va · (− ̄)) (7.25)

In order to avoid useless theoretical complications, we assume from now on that

the thrust T applied to the aircraft is bounded. This in turn implies, by virtue of energy

dissipation in the air, that |v| is itself bounded, and if the wind speed vw is bounded, then

va is also bounded. This also implies that |F̄ | = | −mg + ηa|va|c̄0va +mar| is bounded.

Therefore it suffices to work out an angular velocity control ω that makes |ı − ı̄| and

| − ̄| converge to zero to ensure the convergence of (p̃, ṽ, Ip̃) to (0,0,0). This is the

core of the control strategy, it implies in particular that the body frame B = {G; ı, ,k}
converges to the frame B̄ = {G; ı̄, ̄, k̄}. This latter problem is well posed because F̄ and

va and, subsequently, the frame B̄, do not depend on (are not functions of) the airplane

orientation. This point is important to properly justify the proposed control design.

As an application of proposition 6.1, we can state the following,

Corollary 7.1. Assume that the angle |θ̃| between the frames B and B̄ is initially smaller than
π. Provided that |F̄ | and |va × F̄

|F̄ | | are always larger than a small positive number so that ı̄
and ̄ are always well defined, the angular velocity control

ω = ω̄ + kω(t)((ı× ı̄) + (× ̄) + (k × k̄)) (7.26)

with kw(t) > ε > 0 renders the equilibrium B = B̄ exponentially stable.

For the sake of simplification it is thereafter assumed that there is no wind so that vw = 0

and va = v.

Theorem 7.1. Assuming zero wind velocity, if pr(t) is an admissible trajectory, then the
control law (7.21)-(7.26) locally exponentially stabilizes (p̃, ṽ, Ip̃,B) = (0,0,0, B̄r).
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Sketch of proof. The angular velocity control law in 7.26 makes o(t) in relation

(7.20) converge asymptotically (locally exponentially) to zeroa, provided that the

thrust control T is chosen according to (7.21). Using the assumption that ξ(p̃, ṽ, Ip̃)

asymptotically (and locally exponentially) stabilizes (p̃, ṽ, Ip̃) = (0,0,0) for the

linear control system ã = ξ, one deduces that under the same conditions stated

in 7.1, the control laws (7.21)-(7.26) locally exponentially stabilizes (p̃, ṽ, Ip̃,B) =

(0,0,0, B̄). In the case where pr(t) is an admissible trajectory, these conditions are,

in view of the definition of such a trajectory, satisfied when ξ(p̃, ṽ, Ip̃) = 0. Moreover

B̄ then coincides with the frame B̄r = {G; ır, r,kr}.
aA more formal proof requires to use an angular velocity control ω that stabilizes |F̄ |(|ı− ı̄|+|− ̄|)

at zero. For more details see [23] and the proof of proposition 4 in [49].

Remark 7.3. The conditions pointed out in corollary 7.1 prevent us from stating a more
global stability result. However, the practical stability domain can be quite large because the
set where |F̄ | and |v × F̄

|F̄ | | are equal to zero is very "thin".

Remark 7.4. No condition has so far been put on the sign of the thrust intensity T , whereas
only positive thrust can be produced for many aircraft. To take this limitation into account
and obtain a result similar to Theorem 1, one has to add it as a constraint in the definition of
an admissible trajectory, i.e. by further requiring that Tr = (c0|vr(t)|vr(t)+m(ar(t)−g)) ·ır
is always larger than some positive number.

7.3.1 Examples of bounded feedback terms

Saturated PD controller

The feedback part ξ of the controller can be designed as a nonlinear saturated PD con-

troller, as follows:

ξ(p̃, ṽ) = −kp ¯sat∆p(p̃)− kd ¯sat∆v(ṽ) (7.27)

= −kpα∆p(|p̃|)(p̃)− kdα∆v(|ṽ|)(ṽ) (7.28)

Where ∆p and ∆v are positive numbers, and kp, and kd are positive gains. Using the

Lyapunov function V (p̃, ṽ) = 1
2 |ṽ|

2 + kp
´ |p̃|

0 α∆p(s)sds ≥ 0, it can be shown that its time

derivative is equal to V̇ = −kdsat∆v(|ṽ|)|ṽ|2 ≤ 0. Applying LaSalle’s invariance prin-

ciple shows that the origin of this system is globally asymptotically stable and locally

exponentially stable.
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Saturated PID controller

To compensate for modeling errors and slowly time-varying perturbation terms, an inte-

gral term should be added. This term should be however bounded in order to avoid sin-

gularities in specifying the desired attitude. Among different possibilities, the bounded

conditional integrator Ip̃ defined in [19] is chosen. It is the solution of the following

differential equation (with Ip̃ = İp̃ = 0),

Ïp̃ = −kdI İp̃ + ¯sat
∆
Ï

2 (kpI(−Ip̃ + ¯sat∆I (Ip̃ +
p̃

kpI
))) (7.29)

Where kdI , ∆Ï , kpI and ∆I are positive numbers. It is shown in [19] that |Ip̃|, |İp̃| and

|Ïp̃| are bounded respectively by ∆I +
∆Ï

2k2
dI

, ∆Ï
2kdI

and ∆Ï .

An expression of a stabilizing nonlinear PID controller using the previous integrator

is the following:

ξ(p̃, ṽ, Ip̃) = −kp ¯sat∆p(p̃+ kIIp̃)− kd ¯sat∆v(ṽ + kI İp̃)− kI Ïp̃ (7.30)

Indeed, let p̄ = p̃+ kIIp̃ applying the previous feedback control yields,

¨̄p = −kp ¯sat∆p(p̄)− kd ¯sat∆v( ˙̄p) (7.31)

For which in analogy to the PD controller defined previously, we can deduce the

convergence of (p̄, ˙̄p) to zero which also ensures the convergence of (p̃, ṽ) to zero even in

the presence of a constant perturbation term (for details see [19]).

7.4 Simulations

The object of this section is to illustrate the tracking performance of the control (T,ω)

given by (7.21) and (7.26) applied to an aerial vehicle weighting 3Kg and modeled sim-

ilarly to the control model presented in 5.3, with ηa = 0.55, c0 = 0.01, c1 = 1.5, ¯̄c0 = 3.

In order to test the robustness of the control against modeling errors, we choose

model parameters for the control computation that are slightly different than those of

the simulated model: m = 2.7, ηa = 0.48, c0 = 0.01 and c1 = 1.5. The thrust calcu-

lated with these values is applied to the aircraft with the multiplication factor of 0.8.

Furthermore the applied thrust is constrained to be nonnegative.

The reference trajectory used for this simulation consists first of a straight accelerated

trajectory at 2.4m/s2 followed by a half-circle left-turning maneuver with a speed of
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Chapter 7. Trajectory Tracking

20m/s and a radius of 80m, then a right-turning maneuver with the same speed and

radius, after which the trajectory is decelerated until the speed reaches 15m/s. Finally,

The trajectory consists of a vertical circular loop with a speed of 15m/s and a radius of

15m then a deceleration along a straight line.

The bounded feedback term ξ is calculated according to the following:

ξ(p̃, ṽ, Ip̃) = −5 ¯sat20(p̃+ Ip̃)− 5 ¯sat20(ṽ + İp̃)− Ïp̃

Ïp̃ = −0.5İp̃ + ¯sat
1.5
2 (20(−Ip̃ + ¯sat4(Ip̃ +

p̃

20
)))

The gain kω(t) involved in the expression (7.26) of ω is chosen constant and equal to 10.

The initial distance between the aircraft and the reference trajectory is equal to 52m.
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Figure 7.1: Trajectory

Figures 7.1 to 7.4 show that the vehicle closely follows the reference trajectory. The

position error grows during the aerobatic loop maneuver because the desired (theoret-

ical) negative thrust is not applied (see figure 7.7) and the trajectory tracking objective

is temporarily not achieved. However the vehicle manages to complete the loop, then

catches up and converges again to the trajectory. The sideslip angle also converges to

zero on each part of the trajectory as seen in figure 7.5. Discontinuities (or sudden in-

crease) in the error correspond to discontinuities on the reference acceleration when
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switching between different parts of the trajectory4.
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Figure 7.2: Horizontal trajectory
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Figure 7.3: Vertical trajectory

4To avoid these errors, one must design a three-times differentiable trajectory.
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Figure 7.4: Position error |p̃|
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Figure 7.5: Sideslip angle
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Figure 7.6: Angle of Attack5

5 This figure shows a high angle of attack at the end of the flight. This is because the reference trajectory
ends with a decelerating phase and a slow reference velocity. The situation is of course unrealistic because
this simulation doesn’t take into account the stall phenomenon.
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Figure 7.7: Thrust control
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Figure 7.8: Angular velocity control
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8
Path Following

Guidance and Control are the classical terms associated with the notion of path-

following when applied to mobile robotics. As explained in 4.2, this is a more

commonly considered objective in the field of aircraft control than tracking a

time constrained trajectory. The aim of this chapter is to adapt the trajectory tracking

control solution of the previous chapter to the path following problem.

This chapter is organized as follows. Section 8.1 recalls the general control objec-

tives associated with the path following problem. Section 8.2 presents a solution to

the auto-throttle problem. Section 8.3 introduces some useful kinematics relations and

presents a solution to the kinematical guidance loop. Section 8.4 details the dynamical

control design stages, yielding control laws that are theoretically justified via stability

and convergence analysis. Complementary practical issues are addressed in section 8.6.

Hardware-in-the-loop simulation results involving a scale-model aircraft and challeng-

ing reference paths, with large initial tracking errors, and air-velocity measurements

approximations are reported in section 8.7.
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8.1 Problem Statement

Consider a three-times differentiable curve C in 3D-space parametrized by its curvilinear

abscissa s, and letQ(s) represent the point on the curve closest to the center of mass G of

the airplane. Depending on the curve, this point can be always unique (as in the case of

a straight line) or only locally unique, depending on the position of the airplane w.r.t the

curve (as, for instance, in the case of a circle for which uniqueness is granted provided

that G does not belong to the circle axis passing through the origin and perpendicular to

the circle’s plane). Let q denote the position of the point Q, and let v∗ ∈ R+ denote the

desired magnitude of the airplane’s velocity. Define the position error vector p̃ = p− q.

A way to achieve the path following objectives consists in regulating ev = |v| − v∗ and p̃

at zero.

Figure 8.1: Desired path and position errors

In order to structure the control design according to the hierarchical architecture

explained in section 5.1, the control model of section 5.2 is divided to the following

subsystems, where each is associated with a specific control task:

• Kinematical guidance: This is the outer loop that involves body kinematics equa-

tions only. It corresponds to the following equation,

˙̃p = v − q̇

= |v|h− q̇ (8.1)
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In this equation, we consider that the heading vector h = v
|v| (provided that v

is different than zero) plays the role of an intermediate control variable for the

guidance loop.

• Velocity control: This control block monitors the speed |v| via thrust adaptation. It

corresponds to an equation of the form,

ėv = f(T ) (8.2)

that will be detailed later. The corresponding control variable is thus the thrust

T . We will also discuss the possibility to regulate the airspeed |va| instead of the

inertial speed.

• Heading stabilization: This control block is related to the monitoring of the head-

ing h and to achieving a balanced flight (zeroing va,2) via the aircraft attitude as

an intermediate control input. The corresponding equation is the translational dy-

namics equation, written here using the proposed aerodynamic model (5.10) as

follows,

a = ḡ +
T̄

m
ı+ va,2Ō(va) (8.3)

with, Ō(va) = ηa|va| c̄0−¯̄c0
m ,

ḡ = g − ηac̄0

m
|va|va (8.4)

and,

T̄ = T + 2ηac1va,1|va| (8.5)

• Attitude control: This is the inner loop subsystem related to the stabilization of

the attitude using the angular velocity ω. This control block involves the following

equation,

d

dt
(ı, ,k) = ω × (ı, ,k) (8.6)

The angular velocity is then stabilized using the control surface angles δ according

to the control design in chapter 6.

In accordance with this control architecture, the decomposition of v into the product

of |v| and h is all the more justified that convergence to the desired path can be per-
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Figure 8.2: Control block diagram

formed at various speeds with the same heading policy and, vice versa, that changing

the heading policy does not imply modifying the speed.

The proposed control design involves the interconnection of these different stages as

shown in figure 8.2. Each of these blocks will be detailed next.

8.2 Velocity Control

Using equations (8.3), (8.4) and (8.5) and the definition of ev = |v| − v∗, one finds that,

d

dt
ev = ḡ · h+ (ı · h)

T̄

m
− v̇∗ + va,2Ō(va) · h (8.7)

with, Ō(va) = ηa|va| c̄0−¯̄c0
m . This relation in turn suggests to set,

T̄ = m
(
− ḡ · h+ v̇∗ − kT,1ev − kT,2αeIev

)
/ı · h (8.8)

with kT,1 and kT,2 denoting positive gains and Iev a bounded integral of the velocity error

ev defined as,

İev = kT,3
(
− Iev + ¯sat∆ev (Iev + ev/kT,3)

)
(8.9)

with ∆ev denoting a positive number, and kT,3 a typically large positive number. The

scalar function αe is defined by,

αe(ev, Iev) = α∆ev (|Iev + ev/kT,3|) (∈ (0, 1]) (8.10)

The integrator Iev in 8.9 is ultimately bounded by ∆ev , and |İev | is ultimately bounded

by 2kT,3∆ev .

Proof. From equation (8.9), we can deduce that,
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0.5
d

dt
I2
ev = −kT,3(I2

ev − Iev ¯sat∆ev (Iev + ev/kT,3))

≤ −kT,3|Iev |(|Iev | −∆ev) (8.11)

Therefore |Iev | decreases when |Iev | ≥ ∆ev , and ∃t0 : ∀t ≥ t0, |Iev | ≤ ∆ev

From equation (8.9), and the result on the ultimate boundedness of |Iev |, we

have,

∀t ≥ t0
|İev | ≤ kT,3|Iev |+ kT,3∆ev

≤ kT,3∆ev + kT,3∆ev

= 2kT,3∆ev

From which results the ultimate boundedness of |İev |.

This Proportional-Integral (PI) feedback controller, complemented with a pre-compensation

term, is well defined if ı · v 6= 0 (a nominally satisfied condition) and yields the closed-

loop equation,
d

dt
ev = −kT,1ev − kT,2αeIev + va,2Ō(va) · h (8.12)

Proposition 8.1. Assume that ı ·v is always larger than some positive number. If the sideslip
speed va,2 converges exponentially to zero, then the application of the thrust control (8.8)

ensures the exponential convergence of ev to zero. When va,2 ≡ 0, the origin of the feedback
controlled system (8.12) is globally asymptotically and locally exponentially stable.

Proof. Consider the candidate Lyapunov function L = 0.5e2
v + 0.5kT,2I

2
ev . Along

any solution to the system one verifies that,

L̇ = −kT,1e2
v − kT,2KT,3(1− αe)I2

ev + va,2evŌ(va) · h (8.13)

• If ∀t va,2 = 0 then,

L̇ = −kT,1e2
v − kT,2KT,3(1− αe)I2

ev ≤ 0 (8.14)

Note that we are stating the result assuming that the perturbation vanishes, it is possible however to
prove that with the chosen control term, and with the presence of a constant bounded and non-vanishing
perturbation, the system converges to an equilibrium (ev, Iev ) = (0, c) with c 6= 0, a constant that depends
on the magnitude of the perturbation. For details see [19].
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From which we can deduce the global asymptotic stability of (ev, Iev) = (0, 0).

When ev and Iev are close to zero, one can verify that the variations of ev and

Iev satisfy the equations of a second order linear system. Indeed one gets ëv +

kT,1ėv + kT,2ev = 0 from which we can deduce that the equilibrium is locally

exponentially stable.

• If ∃t : va,2 6= 0, and assuming that |va,2| converges to zero exponentially, the

ultimate exponential convergence follows from the fact that an additive, ex-

ponentially vanishing, perturbation applied to a system whose origin is expo-

nentially stable does not prevent the solutions to this system from converging

to zero exponentially.

How to control the aircraft attitude so as to make va,2 converge to zero, and thus

achieve a so-called "balanced" flight with zero sideslip angle, is addressed later on via

the control of the aircraft attitude. In order to avoid theoretical complications of little

practical importance, boundedness of the aircraft velocity is assumed. This assumption

can also be justified because of thrust physical limitation and energy dissipating drag

forces. Note also that the integral action is not only useful in practice to compensate for

imprecisely known pre-compensation terms, but also to compensate for the imperfect

knowledge of the physically applied thrust.

8.3 Kinematical Guidance

Kinematical relations

Consider again the definition of the point Q(s) on the reference path. We define at the

pointQ(s) on this path, an associated parallel transport frame F = {Q;u, ū, ¯̄u}with u the

vector tangent to the path C at the point Q (see figure 8.1). An advantage of a parallel

transport frame over the more conventional Frénet frame is that it is continuously well-

defined at points where the path curvature vanishes. It does not suffer from ambiguity

and sudden orientation changes when the curves straightens out [6][17]. Its relative

drawback is that it is not defined from the sole curve characteristics (curvature and tor-

sion). More precisely, it is uniquely defined only once the vectors ū and ¯̄u are arbitrarily

chosen at some point on the curve. The corresponding variational frame equations are,

d

ds
ū = −γ1u ;

d

ds
¯̄u = −γ2u ;

d

ds
u = γ1ū+ γ2 ¯̄u (8.15)

A formal proof on the boundedness of |v| can be found in [25].
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With this formalism any smooth curve is characterized by an initial point at s = 0,

the choice of a parallel transport frame at this point, and the functions γ1(s) and γ2(s).

These functions are themselves related to the curve curvature κ and torsion τ according

to κ =
√
γ2

1 + γ2
2 and τ = d

ds(arctan(γ2

γ1
)). For instance, γ1 = 0, γ2 = 0 in the case of a

straight line, and γ1 = 1
r , γ2 = 0 in the case of a circle with radius r.

By definition of Q (point on the curve closest to G), the vector p̃ is perpendicular to

the tangent to the curve at Q (see figure 8.1) . It thus belongs to the plane {Q; ū, ¯̄u}. Let

y = [y1, y2]> ∈ R2 denote the vector of non-zero coordinates of p̃ expressed in the basis

of the parallel transport frame F = {Q;u, ū, ¯̄u}, i.e. p̃ = y1ū + y2 ¯̄u with y1 = p̃ · ū and

y2 = p̃ · ¯̄u. The convergence of p̃ to zero is equivalent to the convergence of y to zero, and

one can make p̃ converge to zero by considering its variations w.r.t. the reference frame

F . We will use the notation p̃F and ˙̃pF when differentiating the vector p̃ in the reference

frame F . We have,
˙̃p =

d

dt

−→
OG − d

dt

−−→
OQ = v − ṡu (8.16)

and,
˙̃pF = ẏ1ū+ ẏ2 ¯̄u (8.17)

with

ẏ1 =
d

dt
(p̃ · ū)

= ˙̃p · ū+ p̃ · ˙̄u

= (v − ṡu) · ū+ ṡp̃ · (−γ1u)

= v · ū (8.18)

and

ẏ2 =
d

dt
(p̃ · ¯̄u)

= ˙̃p · ¯̄u+ p̃ · ˙̄̄u

= (v − ṡu) · ¯̄u+ ṡp̃ · (−γ2u)

= v · ¯̄u (8.19)

Therefore ẏ = [v · ū,v · ¯̄u]>. This relation may also be written as,

˙̃pF = Πuv

= v − (u · v)u (8.20)

We also need an expression of ṡ. Recall that by definition of Q, the error p̃ is orthogonal
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to u, and therefore, p̃ · u = 0. Differentiating this equality gives:

˙̃p · u+ p̃ · u̇ = 0

v · u− ṡ+ ṡp̃ · (γ1ū+ γ2 ¯̄u) = 0

From which we can deduce that,

ṡ =
(u · v)

1− γ1y1 − γ2y2
(8.21)

For the sake of avoiding problems of little practical relevance, we will assume from

now on that the chosen path is such that γ1 and γ2 are uniformly bounded. The unique-

ness of the projection of the aircraft center of mass on the path is then granted provided

that 1 − γ1y1 − γ2y2 is larger than some positive constant. In the case of a straight line,

for which γ1 = γ2 = 0, this condition is thus satisfied independently of the aircraft posi-

tion. If the condition is satisfied and |v| is bounded, then the time-derivative of u is also

bounded.

Guidance

By viewing the aircraft as a point moving in 3D-space with a given speed |v|, the problem

is to determine a desired heading direction h∗ that yields the convergence of this point

to the desired path and ensures that the point moves thereafter along the path with the

desired direction given by ±u, i.e. such that h∗ converges to signvuu with signvu chosen

in advance and equal to either 1 or -1. There are obviously a multitude of solutions to

this problem as was discussed in section 4.3. The solution that we propose here consists

in setting,

h∗ = sin(θh)l+ (cos θh)signvuu (8.22)

with l denoting some unit vector orthogonal to u and θh an angle depending on the

position error p̃ and converging to zero when |p̃| tends to zero. For instance, a simple

possible choice for l and θh is,

ȳ = k1D ¯sat∆h(y)/|v| (8.23a)

l = − ȳ1ū+ ȳ2 ¯̄u

|ȳ|
(8.23b)

θh = arctan(|ȳ|/
√

1− |ȳ|2) (8.23c)

with D = diag{d1, d2} a diagonal matrix with di ∈ (0, 1] (i = 1, 2), ∆h = µ|v|
k1 max(d1,d2) ,
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µ ∈ (0, 1), and k1 a positive gain. Note that |ȳ| < 1 so that θh is well defined and belongs

to [0, π/2). Note also that sin(θh) = |ȳ| ≤ µ so that the term sin(θh)l entering the ex-

pression of h∗ is always well defined. Moreover, if d1 = d2 then sin(θh) tends to µ when

|y| tends to infinity i.e. when the aircraft is far from the path. Therefore, in this case

arcsin(µ) characterizes the angle of incidence of the desired heading direction w.r.t. the

tangent to the desired path at the point Q. The usefulness of choosing d1 6= d2 is related

to the possibility of imposing different upper bounds upon |ẏ1| and |ẏ2|, a feature which

may be useful to separate the rates of convergence along the directions ū and ¯̄u, and

limit the rate of descent or of climb of the aircraft when, for instance, ¯̄u is chosen as a

vertical vector.

Also note that the previous choices of ȳ, l and θh are equivalent to writing the desired

heading vector as follows:

h∗ = −ȳ1ū− ȳ2 ¯̄u+
√

1− |ȳ|2signvuu (8.24)

The following proposition summarizes the stability and convergence properties as-

sociated with this desired heading direction.

Proposition 8.2. Assume that 1 − γ1y1 − γ2y2 and |v| are always larger than some positive
number so that the position error p̃ and the aircraft heading vector h are always well defined.
Assume that |v| is bounded and that h = h∗+o, with o denoting a "residual" vector such that
the integral

´ t
0 |o(s)|ds is bounded. Then |y| converges to zero, and h tends to signvuu. The

convergence is ultimately exponential if the convergence of |o| is itself ultimately exponential.
Moreover |ẏ| is ultimately upper bounded by µ|v| and |ẏi| is ultimately upper bounded by

di
max(d1,d2)µ|v|(i = 1, 2). In the case where o ≡ 0 the equilibrium p̃ = 0 is locally exponen-
tially stable.

Proof. Define ō = |v|Πuo. The time-variation of p̃F is given by,

˙̃pF = Πuv = |v|Πu(h∗ + o)

= −|v|(ȳ1ū+ ȳ2 ¯̄u) + ō
(8.25)

Note that
´ t

0 |ō(s)|ds ≤ sup(|v|)
´ t

0 |o(s)|ds and that this integral is thus bounded.

Because ˙̃pF = ẏ1ū + ẏ2 ¯̄u, it comes that ẏ = −|v|ȳ + ō = −k1D ¯sat∆h(y) + ō, with

ō denoting the vector of coordinates of ō along the unit vectors ū and ¯̄u. The an-

nounced ultimate upper bounds of |ẏ(t)| and |ẏi(t)|(i = 1, 2) follow directly from

That is to take into account the interconnection between different subsystems and the fact that although
h is controlled to converge to h∗, it may not be equal to h∗ at all times.
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this latter equality and the convergence of |ō| to zero imposed by the bounded-

ness of the integral of this term. The convergence of y and ẏ to zero then follows

from re-writing the previous equality as ẏi = −k1diα
∆h(|y|)yi + ōi(i = 1, 2), so that

d
dt |yi| ≤ −k1diα

∆h(|y|)|yi| + |ōi|. The convergence is ultimately exponential when

|o|, and thus |ō|, themselves converge ultimately exponentially to zero. The local

exponential stability of y = 0 in the sense of Lyapunov when o ≡ 0 is inherited from

the non-saturated equation ẏ = −k1Dy that holds in the first approximation when

|y| is small. Finally, since |y| and thus |ȳ| tend to zero, θh converges to zero and, in

view of (8.22), h (= h∗) converges to signvuu.

8.4 Dynamical Control

Dynamical Control is in charge of making the aircraft heading direction h converge to

the desired one h∗ and ensuring a balanced flight, i.e. zeroing the side-slip angle by ze-

roing the lateral velocity component va,2 = va ·. We show next that these two objectives

can be achieved via the determination of a desired mobile frame B̄ = {G; ı̄, ̄, k̄} and the

convergence of the aircraft frame B = {G; ı, ,k} to this desired frame. Let ωh denote

the angular velocity of h as defined in (2.13), i.e.,

ḣ = ωh × h (8.26)

and ωh = h× ḣ. Let ω̄h denote a "desired" angular velocity for the heading vector h that

ultimately exponentially stabilizes h = h∗ when ωh = ω̄h. Take for instance,

ω̄h = ω̄h∗ + khh̃ (8.27)

withωh∗ = h∗×ḣ∗ denoting the angular velocity of h∗, h̃ = h×h∗, and kh a positive gain

whose value determines the rate of convergence of h to h∗. The almost global asymptotic

(local exponential) stability of h = h∗ when ωh = ω̄h then results from the inequality
d
dt(1 − h · h

∗) = −kh|h̃|2 ≤ 0. The domain of stability is not global because h = −h∗

is also an equilibrium. The instability of this latter equilibrium, and the convergence to

the former equilibrium when h is initially different from −h∗, comes from examining

the non-increasing cost function 1 − h · h∗ which has its maximum value (equal to 2)

when h = −h∗.
A more complete solution involves a complementary integral action in charge of

compensating for stationary effects of errors in the modeling of the aircraft dynamics

that could prevent the convergence of h to h∗. Considering that the error vector h̃would

typically converge to a constant vector w.r.t. a frame rotating with the angular velocity
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ωh∗ of h∗ . This suggests to use a bounded integral term calculated according to,

ż = ωh∗ × z + kz
(
− z + ¯sat∆z(z + h̃/kz)

)
; z(0) = 0 (8.28)

with ∆z > 0 the chosen upper bound for |z(t)|, and kz denoting a positive number.

The expression (8.27) of ω̄h is then modified to

ω̄h = ωh∗ + kh,1h̃+ kh,2αhz (8.29)

with kh,1 denoting a positive gain and the scalar function αh defined by

αh(h̃, z) = α∆z(|z + h̃/kz|) (∈ (0, 1])

From now on, the arguments of this function are omitted for the sake of legibility.

Proposition 8.3. Assume that 1 − γ1y1 − γ2y2 and |v| are always larger than some positive
number so that the position error p̃, the desired heading vector h∗, and the aircraft heading
vector h are always well defined. Assume also that ωh = Πhω̄h + o, with ω̄h given by (8.28)-
(8.29) and o a "residual" vector such that the integral

´ t
0 |o(s)|ds is bounded. We distinguish

two cases:
case 1: ∀t : o(t) = 0.

• In this case, the system (8.26), (8.28), (8.29) has two equilibria, namely (h, z) = (h∗,0)

and (h, z) = (−h∗,0). The first of these equilibria is locally exponentially stable,
whereas the second one is unstable;

• (h, z) converges to the first (desired) equilibrium provided that h(0) 6= −h∗(0).

case 2: ∃t : o(t) 6= 0.

• If (h, z) does not converge to the unstable asymptotic equilibrium (−h∗,0) then it con-
verges to the desired asymptotic equilibrium (h∗,0).

• If |o| converges ultimately exponentially to zero, then the convergence of (h, z) to (h∗,0)

is also ultimately exponential.

Proof. Forming the time-derivative of the positive function V0 = (1 − h · h∗) +

0.5kh,2|z|2 yields,

V̇0 = −kh,1|h̃|2 − kh,2kz(1− αh)|z|2 − o · h̃ (8.30)

case 1: ∀t : o(t) = 0.

In the absence of wind, this frame coincides with the wind frame defined in section 2.2.3.
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In this case V̇0 ≤ 0, and V̇0 = 0 if and only if (h, z) = (h∗,0) or (h, z) = (−h∗,0). It

is simple to verify that these two points, for which V0 is stationary, are indeed equi-

libria of the system (8.26), (8.28). Because V0 is non-increasing, and αh(0, z) = 1

only if z = 0, the convergence of |h̃| and |z| to zero follows. This in turn implies that

(h, z) converges to one of the system’s equilibria. Because 1−h(t)·h∗ ≤ V0(t) ≤ V0(0)

is always smaller than two when h(0) 6= −h∗, h cannot converge to −h∗, and thus

necessarily converges to the desired equilibrium.

Another way of establishing the stability, or instability, properties of the system’s

equilibria consists in studying linear approximations of the system about these equi-

libria. One verifies that, in the first order approximation about (h̃, z) = (0,0), the

variations of h̃ and z satisfy the following equations:{
˙̃
h = ωh∗ × h̃∓ (kh,1h̃+ kh,2z)

ż = ωh∗ × z + h̃
(8.31)

With the sign in the right-hand side of the first equality depending on the chosen

equilibrium, i.e. (h, z) = (h∗,0) or (h, z) = (−h∗,0). The minus sign goes with the

first equilibrium, and the plus sign with the second one. Consider a frame rotating

with the angular velocityω∗h, and let x1 (resp. x2) denote the two-dimensional vector

of Cartesian coordinates (in this frame) of the projection of h̃ (resp. z) onto the plane

orthogonal to h∗. System (8.31) becomes equivalent to the following linear system,{
ẋ1 = ∓(kh,1x1 + kh,2x2)

ẋ2 = x1

(8.32)

The characteristic polynomial associated with the first (resp. second) one is (λ2 +

kh,1λ + kh,2)2 = 0 (resp. (λ2 − kh,1λ − kh,2)2 = 0). All poles of the first system have

negative real parts, whereas two poles of the second system are real positive. This

in turn proves that the equilibrium (h, z) = (h∗,0) is exponentially stable, and that

the other equilibrium is (exponentially) unstable.

case 2: ∃t : o(t) 6= 0.

Let us first establish that (h̃, z) converges to (0,0). The assumed boundedness of´ t
0 |o(s)|ds implies that

´ t
0 o(s) · h̃(s)ds is also bounded. Since V0 is positive and uni-

formly bounded from above, |V0(t) − V0(0) +
´ t

0 o(s) · h̃(s)ds| = kh,1
´ t

0 |h̃(s)|2ds +

kh,2kz
´ t

0 (1 − α1(s))|z(s)|2ds is also uniformly bounded. Therefore the integrals´ t
0 |h̃(s)|2ds and

´ t
0 (1 − α1(s))|z(s)|2ds are uniformly bounded. Because the time-

derivative of |h̃| is bounded, the first of these integrals would diverge if |h̃| did not
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converge to zero. The same reasoning applies to the second integral and leads to the

convergence of (1−α1)|z|2 to zero. This term also converges to
(
1−α∆z(|z|)

)
|z|2 =(

|z|− ¯sat∆z(|z|)
)
|z|when h̃ converges to zero. Because ¯sat∆z(|z|) < |z|when z 6= 0,

the convergence of this latter term to zero in turn implies the convergence of |z| to
zero.

The convergence of (h̃, z) to (0,0) in turn implies that (h, z) converges either to

(h∗,0) or to (−h∗,0). Therefore, non-convergence to the unstable point (−h∗,0)

implies convergence to the desired stable point (h∗,0). The ultimate exponential

rate of convergence when |o| converges to zero exponentially follows from the fact

that an additive, exponentially vanishing, perturbation applied to a system whose

origin is exponentially stable does not prevent the solutions to this system from

converging to zero exponentially.

Let us now define the desired mobile frame B̄. Recall the expression of acceleration

in equation (2.12), a = ˙|v|h + |v|(ωh × h). This relation suggests to define a "desired"

acceleration as follows,

a∗ = v̇∗h+ |v|(ω̄h × h) (8.33)

with ω̄h given by (8.28), (8.29). From relation (8.3) we note that

ı =
a− ḡ − va,2Ō(va)

|a− ḡ − va,2Ō(va)|
(8.34)

The desired acceleration is in turn used to define ı̄ as follows (compare with (8.34))

ı̄ =
a∗ − ḡ
|a∗ − ḡ|

(8.35)

The side component va,2 of the airspeed should be regulated to zero, therefore, for the

vector ̄, we set

̄ =
va × ı̄
|va × ı̄|

=
va × (a∗ − g)

|va × (a∗ − g)|
(8.36)

so that va and  are orthogonal, and the third vector k̄ is just calculated as the cross

product of ı̄ and ̄, i.e.

k̄ = ı̄× ̄ (8.37)

An important property is that, like p̃, v, va, g, ω∗h and ωh, the unit vectors (̄ı, ̄, k̄) so

defined do not depend on the aircraft attitude. Therefore, their time-derivatives do not

depend on the aircraft angular velocity ω. Let ωı̄ := ı̄ × ˙̄ı and ω̄ := ̄ × ˙̄ denote the

angular velocities of ı̄ and ̄ respectively. The angular velocity of the frame B̄ is then

given by ω̄ = ωı̄ + (ı̄.ω̄)ı̄ = ω̄ + (̄.ωı̄)̄, and this vector does not depend on ω either.
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The problem of stabilizing B̄ = B is thus well-posed.

Proposition 8.4. Assume that 1 − γ1y1 − γ2y2 and |v| are always larger than some positive
number so that the position error p̃, the aircraft heading vector h, and the desired heading
vector h∗ are always well defined. Assume also that |a∗ − ḡ|, |̄ı× va|, are always larger than
some positive number so that the frame B̄ and its angular velocity ω̄ are well-defined. Then an
angular velocity control that almost globally asymptotically (locally exponentially) stabilizes
B = B̄ is

ω = ω̄ + kω(t)
(
(ı× ı̄) + (× ̄) + (k × k̄)

)
(8.38)

with kω(t) > ε > 0.

A proof of this proposition is similar to the proof of proposition 6.1.

Prior to stating overall stability result, the following theorem summarizes conver-

gence properties that can be established from the partial results obtained so far.

Theorem 8.1 (Convergence). Consider an aircraft whose motion equations satisfy the kine-
matic equations (5.1)-(5.3) and the Newton dynamic equation (5.2), complemented with the
model (5.6) of aerodynamic forces. Given a desired heading vector h∗, apply to this system
the attitude angular velocity control (8.38), combined with the thrust control defined by (8.5)

(8.8) (8.9). Assume that during the flight 1− γ1y1 − γ2y2, |v|, |a− ḡ|, |a∗ − ḡ|, |h · (a− ḡ)|,
|ı̄ × va|, and |ı · v| are always larger than some positive number. Then |v| converges to v∗.
Provided that θ̃(0), i.e. the initial angle between the aircraft frame and B̃, is different from
π, the aircraft frame converges to B̄ and the sideslip angle converges to zero. Furthermore, if
(h, z) does not converge to the unstable point (−h∗,0), then (h, z) converges to (h∗,0). In
this latter case, if h∗ is given by (8.22)-(8.23),then the path following error p̃ converges to
zero and h converges to the desired direction, i.e. signvuu. Rates of convergence to the desired
equilibria are ultimately exponential.

Proof. The convergence of |v| to v∗ when |ı · v| remains larger than some positive

number was established in Proposition 8.1. The convergence of the aircraft frame to

B̄ when θ̃(0) 6= π was established in Proposition 8.4. Therefore, since |v|, and thus

|va|, are assumed to be bounded, and since  converges to ̄, va,2 = va ·  = va · (− ̄)
and the sideslip angle converge to zero. From the convergence of ı to ı̄ one deduces

from relations (8.34) and (8.35) that ξ := a−ḡ
|a−ḡ| −

a∗−ḡ
|a∗−ḡ| converges to zero. The

convergence of |v| − v∗ to zero entails the convergence of d
dt |v| − v̇

∗ to zero. Since

a−a∗ = ( ddt |v| − v̇
∗)h+ |v|(ḣ− ω̄h×h) one then deduces that (a−a∗) ·h converges

to zero. This latter property combined with the convergence of ξ to zero in turn

implies that ((a − ḡ) · h)( 1
|a−ḡ| −

1
|a∗−ḡ|) converges to zero. Since |(a − ḡ) · h| is, by

assumption, always larger than some positive number, (|a− ḡ| − |a∗− ḡ|) converges
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to zero. Now combining this with the fact that Πhξ converges to zero, one deduces

that (ḣ − ω̄h × h) also converges to zero. Because ωh := h × ḣ and ωh · h = 0

one then infers that ωh converges to Πhω̄h. All convergence rates evoked so far

–the rate of convergence of ωh to Πhω̄h in particular– are ultimately exponential.

Thereforeωh = Πhω̄h+o, with |o| vanishing ultimately exponentially, and thus such

that the integral
´ t

0 |o(s)|ds is bounded. By application of Proposition 8.3, if (h, z)

does not converge to the asymptotically unstable point (−h∗,0), then it converges

to (h∗,0) with a rate of convergence also ultimately exponential. In this latter case,

by application of Proposition 8.2, the ultimate exponential convergence of the path

following error y to zero, and of h to signvuu, follows.

The conditions pointed out in Theorem 8.1, under which convergence to the desired

path is granted, may seem restrictive at first glance; but they are in fact inherent to the

control problem at hand. They are also related to the existence of particular trajectories

along which the linearized equations of the system are not controllable. Although they

are not satisfied in only very specific situations, they nonetheless rule out the possibility

of global convergence results. However, it remains possible to state local asymptotic

stability results when these conditions are satisfied on the desired path. For instance,

in the case of zero wind velocity, and when |v| = v∗ is constant, one verifies that these

conditions are satisfied on the desired path if |u×ı| andu·ı are positive (and larger than a

small number) on the path. Since, for a balanced flight, ı = a−ḡ
|a−ḡ| with a = v∗2(γ1ū+γ2 ¯̄u)

and ḡ = g − ηac̄0
m v∗2u, these conditions are themselves satisfied if

A1: |g × u− v∗2(γ1 ¯̄u− γ2ū)| > ε1 > 0 (8.39)

and

A2: |ηac̄0

m
v∗2 − g · u| > ε2 > 0 (8.40)

We can then state the following local exponential stability result.

Theorem 8.2 (Local exponential stability). Given the model (5.6) of aerodynamic forces,
consider the control system composed of the kinematic equations (5.1)-(5.3) and the Newton
dynamic equation (5.2), augmented with the integrators (8.9) and (8.28). In the case of zero
wind velocity and a constant v∗ ( 6= 0), if the assumptions A1-A2 are satisfied and h∗ is
a desired heading vector defined by (8.22)-(8.23), then the control inputs (T,ω) defined by
(7.19),(8.8),(8.9) and (8.38) locally exponentially stabilize the equilibrium (p,v,B, z, Iev) =

(q, signvuv
∗u, B̄,0, 0).

Proof. Let r̃ ∈ R3 denote a local parametrization of the orientation error between

the frames B and B̄, and he ∈ R3 the vector of coordinates of h − h∗ in the inertial
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frame. Recall that (0, y>)> is the vector of coordinates of the position error p − q
in the frame F . Define x1 = r̃, x2 = (ev, Iev)

>, x3 = (h>e , z
>)>, x4 = (0, y>)>, and

x = (x>1 , x
>
2 , x

>
3 , x

>
4 )> ∈ R14. Consider the error system

ẋ = f(t, x)

whose origin x = 0 is an equilibrium. It is clear that the (local) exponential stability

of this equilibrium is equivalent to the (local) exponential stability property stated

in Theorem 8.2. In view of Propositions 8.1-8.4 and their proofs, in the neighbor-

hood of x = 0 this system is an interconnection of sub-systems in the form

ẋ1 = f1(t, x1)

ẋi = fi(t, xi) + gi(t, x1, . . . , xi−1), i = 2, 3, 4

with |gi(t, x1, . . . , xi−1)| ≤
∑i−1

j=1 γi,j |xj |, i = 2, 3, 4 for some non-negative constants

γi,j , and the origin of each (isolated) subsystem ẋi = fi(t, xi) being exponentially sta-

ble due to the existence of a positive function Vi(xi) such that dVi
dxi
fi(t, xi) ≤ −αi|xi|2

and |dVidxi
| ≤ βi|xi| for some positive constants αi and βi. Define the "interconnection"

matrix as

S =


α1 0 0 0

−β2γ21 α2 0 0

−β3γ31 −β3γ32 α3 0

−β4γ41 −β4γ42 −β4γ43 α4


Being lower triangular with positive diagonal terms, there exists a diagonal weight-

matrix D such that DS + STD is symmetric positive definite. Then, by application

of Theorem 5.4 (page 233) in [26], x = 0 is locally exponentially stable.

Remark 8.1. Despite the no-wind and constant desired speed assumptions, Assumptions A1-
A2 are less conservative than the convergence conditions of Theorem 8.1 from which they de-
rive, because they bear only upon the desired aircraft trajectory and speed. On the other hand,
Theorem 8.1 shows that convergence is possible even when the aircraft starts far away from
the desired equilibrium. Non-satisfaction of the convergence conditions over a long period of
time is a remote possibility in practice, even in the absence of a good control. Nevertheless,
this possibility cannot be discarded a priori. It thus matters to take practical precautions
and implement control expressions which, besides from being efficient during the time-periods
when these conditions are met, yield control inputs that are well defined and bounded in all
circumstances. In particular, of course, no division by zero should be allowed.
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8.5 Application to particular curves

8.5.1 Straight line

C is a straight line passing through the point pc and with constant unit direction vector

u. Then γ1 = γ2 = 0. Assumption A1 is verified provided that the path is not vertical,

i.e. not parallel to the gravitational acceleration. As for Assumption A2, it gives a con-

dition relating the desired speed to the path slope. More precisely it is verified when

v∗2 6= mg0

ηac̄0
sin(ν), with ν = arcsin(k0 · u) = −γ (γ is the path angle), i.e. the angle be-

tween the path and the horizontal plane. Moreover, the point Q is always unique and

its position can be directly calculated from the aircraft position p and the curve charac-

teristics (pc,u). More precisely, q = pc +
(
u.(p − pc)

)
u, p̃ = u ×

(
(p − pc) × u

)
and

any pair (ū, ¯̄u) of constant orthonormal vectors perpendicular to u can be used for the

control calculations.

8.5.2 Circular path

C is a circle centered at pc with radius r and constant unit vector ¯̄u orthogonal to the

circle’s plane. Note that this plane does not have to be horizontal. Then γ1 = 1
r , γ2 =

0. As for the straight line case, the point Q on the curve and the unit vectors (ū,u)

associated with the parallel transport frame (which because of our choice of ¯̄u, coincides

in this particular case with the Frénet frame) can be directly calculated from the aircraft

position p and the curve characteristics (pc, r, ¯̄u). More precisely, ū =

(
(p−pc)× ¯̄u

)
× ¯̄u

|
(

(p−pc)× ¯̄u
)
× ¯̄u|

,

u = ū× ¯̄u, q = pc − rū, and p̃ = p− q.

The condition of positivity of (1 − γ1y1 − γ2y2) ensuring the good conditioning of the

projection of the aircraft CoM on the circle may also be written as (p − pc).ū 6= 0. It is

not satisfied only when the aircraft is located on the circle’s axis, which corresponds to

the case where the aircraft is equidistant to all points on the circle (loss of uniqueness

of the closest point). Assumption A1 is always verified, except in the particular case

when the circle is vertical and g0 = v∗2

r . As for Assumption A2, it is verified when

v∗2 > mg0

ηac̄0
sin(ν), with ν denoting the angle between the circle’s plane and the horizontal

plane.

Which clearly coincides with the first unitary vector defining the parallel transport frame.
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8.6 Practical issues

8.6.1 Estimation of the air-velocity

The air-velocity vector va appears in the control expressions and thus needs to be either

measured or estimated. For small UAVs, which fly at low speeds, one cannot assume

that the inertial velocity v is a good approximation of va. Also, since these vehicles are

usually not equipped with angle of attack and sideslip angle sensors, the air-velocity is

typically not measured directly. Nevertheless, the use of a single Pitot tube allows for

the measurement of the component va,1 in the direction of the aircraft fuselage. Then

one can build a model based estimate of va,3. Indeed, using equation 8.3, one gets,

va,3 = m
c̄0|va|(g − a) · k. By further assuming that va,1 is the main component of va, an

estimate of va,3 is,

v̂a,3 =
m

ηac̄0|va|
(g − â) · k (8.41)

With â denoting an estimate of the acceleration a. For this latter estimate, one may use

onboard accelerometers that measure g − a or, alternatively, assume that the variations

of v in the body frame are slow so that â = ω × v. An even cruder estimation is â =

0. Finally assuming that the sideslip velocity va,2 is kept small by virtue of the lateral

energy dissipation and the passive lateral stability of the plane (via its vertical stabilizer

and wing dihedral) and re-enforced by the attitude controller, one can assume that v̂a,2 =

0. The resulting estimate of va, used for the implementation in this work is v̂a = va,1ı+

v̂a,3k with â = 0.

8.6.2 Airspeed control

Instead of stabilizing the inertial velocity |v| one may wish to monitor the air velocity in

the direction of ı, i.e. the component va,1 = va.ı, which can be measured, for instance,

with a pitot tube. This is a more common situation and a more secure choice for flight

tests, since maintaining the airspeed at nominal values ensures the availability of enough

lifting forces and decreases the chances of stall. This choice is even more crucial for

small UAVs for which the difference between the inertial velocity and airspeed can easily

become significant in the presence of wind.

Define now the speed error as ev = va,1 − v∗. Using (8.3) the time-derivative of ev

Via the balanced flight policy.
For simulations and for flight tests.
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satisfies the relation,

d
dtev = d

dt((v − vw) · ı)− v̇∗

= (a− v̇w) · ı+ ω · (ı× va)− v̇∗

= (g − v̇w) · ı+ ω · (ı× va)− ηac0
m |va|va,1

−v̇∗ + T
m + va,2Ō(va) · ı

Assuming that va,2 converges exponentially to zero (balanced flight), exponential

convergence of va,1 − v∗ to zero is then obtained by setting

T = T ∗ −mkT,1ev −mαekT,2Iev (8.42)

with T ∗ = −m((g− v̇w) ·ı+ω ·(ı×va)− ηac0
m |va|va,1− v̇

∗), kT,1 and kT,2 denoting positive

gains, and Iev some bounded integral of ev. The simple PI controller obtained by omit-

ting the pre-compensation term T ∗ may be sufficient in practice to bring and maintain

ev close to zero.

Stabilizing va,1 instead of |v| implicitly means that the current aircraft’s speed that

results from airspeed control, coincides with the desired speed, i.e. v∗(t) = |v(t)|. This in

turn yields to setting v̇∗ = d
dt |v| in the relation (8.33) that defines the desired acceleration

a∗. This supposes that d
dt |v| is either estimated or measured.

8.6.3 Calculation of PWM control inputs

The controller produces four control inputs, namely the desired thrust T and the three

deflection angles composing the vector δ. The calculated values of these inputs are com-

municated to the motors of the actuators as Pulse-Width-Modulated (PWM) signals, that

are encoded in most software as setpoint values comprised between 0 and 1 in the case

of T (0 for a non-rotating motor and 1 for maximum rotating speed), and between −1

and +1 for the deflection angles. Concerning the transformation between the generated

thrust and the encoded setpoint uT of the squared angular velocity of the propeller’s

motor, although it is in reality not linear according to section 2.4, we have considered

a simple linear approximation T ' kTuT with kT a positive constant gain. The inte-

gral action incorporated in the thrust control law allows for the compensation of this

modeling error. As for the electrical servo motors acting on the control surfaces, which

interpret the PWM inputs as angular setpoints, a scaling has to be done to bring back

calculated angle values within the interval [−1,+1], with ±1 corresponding to chosen

saturated values of these angles.

In the case of airplanes equipped with electrical motors.
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8.6.4 Thrust bounds and attack angle monitoring

We have so far assumed that the aircraft could produce the desired thrust T calculated

according to (8.5)-(8.8). In practice this desired value of T may leave the physical thrust

interval [Tmin, Tmax]. When this happens at least one of the control objectives –i.e. con-

vergence of the aircraft’s heading direction h to the desired one h∗, or stabilization of

|v| at the desired speed v?– cannot momentarily be achieved with the available thrust.

For instance, descending from a high altitude to a horizontal path with the convergence

dynamics specified by h∗ may require a negative thrust (to slow down the aircraft) that a

common aircraft cannot produce. Similarly, climbing with these convergence dynamics

and velocity may require a thrust that exceeds Tmax.

To avoid this situation, one of the possibilities consists in reducing the rate of conver-

gence to the desired path in order to have the control action focused on the stabilization

of the aircraft velocity. This can be done, for instance, by choosing the parameter µ in the

expression of the saturation ∆h = µ|v|
k1max(d1,d2) small enough. In the case of a horizontal

path one may alternatively set the parameter d2 small enough so as to impose a small

rate of climb or descent, during the transient phase of convergence to the path, that is

compatible with the thrust limitations.

One may also temporarily accept an increase of the aircraft’s velocity beyond the desired

speed v∗ during a descending transient phase when a negative thrust (needed to slow

down the aircraft) is calculated and cannot be produced (i.e. when Tmin = 0). In this

case only the objective of convergence of the heading direction h to the desired one h∗

is maintained. In this case the desired speed v∗(t) is supposed to be equal to the actual

resulting speed of the aircraft |v(t)|, this in turn yields, just as in the case of air-velocity

control, to setting v̇∗ = d
dt |v| in relation (8.33).

A different issue concerns positive thrust limitations. Indeed, while unlimited thrust

power theoretically allows one to control an aircraft at any speed and attack angle, a

finite value Tmax automatically limits the aircraft’s speed. Moreover, when the maximal

thrust is significantly smaller than the aircraft’s weight it critically matters to keep the

attack angle small and under the stall value. Without this safety feature the direction ı̄

that is calculated (or imposed by a pilot) without taking this limitation into considera-

tion may yield a large angle of attack and a loss of lift leading to a continuing descent

even at full thrust. To automatically integrate this safety feature in the proposed control

design let us rename the unit vectors {ı̄, ̄, k̄} calculated without taking thrust limita-

tions into account as {ı̄∗, ̄∗, k̄∗}. Let also αmax denote the desired upper-bound for the

attack angle.
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Whenever the predicted attack angle α∗ = arcsin( va
|va| .k̄

∗) is larger than αmax we pro-

pose to determine new desired attitude directions for the aircraft such that the associated

attack angle is equal to αmax. More precisely, we propose to set

ı̄ = rot(αmax̄
∗)
va
|va|

, ̄ = ̄∗, k̄ = ı̄× ̄ (8.43)

with rot(αmax̄
∗) va
|va| denoting the vector va

|va| rotated by the angle αmax about the unit

vector ̄∗. In this case the pre-compensation velocity ω̄ is calculated with ωı̄ = ı̄× ˙̄ı and,

in view of (8.43)

˙̄ı = αmaxω̄∗ × ı̄+ rot(αmax̄
∗)Π va

|va|

v̇a
|va|

8.6.5 Transition between reference paths

Suppose that the vehicle is following a path (C1), and that once it reaches (or gets close

to) a pointW1 ∈ (C1), it has to follow another curve (C2).

Many switching policies can be employed. In this work we decide that the switching

occurs as soon as the vehicle enters a sphere centered onW1 with a specified "acceptance

radius" that we denote by rac. With this policy, the guidance algorithm switches to

following (C2) once the distance of the center of mass of the vehicle to W1 is less or

equal to rac: |
−−→
GW1| ≤ rac.

Figure 8.3: Switching scenarios

However, this strategy has a drawback. If the vehicle fails to enter the sphere, it will

continue following (C1) beyond the point W1. Therefore another condition should be

added to the switching policy, such as a half-plane switching criteria (see [5, chapter

11]). These particular situations are not addressed in this thesis, and may be the subject

of future developments.
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8.7 Hardware-In-The-Loop simulations

The object of this section is to test the path following control approach in Hardware-

In-The-Loop (HITL) simulations, which consist in implementing the control algorithms

on actual hardware that could equip a physical UAV aircraft. The difference with a real

experimentation is that this hardware is connected to a computer simulated model of

an aircraft that closely mimics the dynamics of a physical aircraft. This technique is

convenient to validate both the control algorithm and the functioning of the embedded

system, before moving on to experiments.

8.7.1 Aircraft simulator

We use the X-plane 10 software, a Laminar Research product, as a flight simulator. X-

plane implements an aerodynamic model based on the so-called blade element theory

(www.x-plane.com/desktop/how-x-plane-works/). This method takes into considera-

tion the geometry of the plane and the different airfoil shapes. It decomposes the wings,

and the horizontal and vertical stabilizers into a finite number of elements. Aerody-

namic forces are then determined for each element depending on its orientation and the

air-velocity at its location on the aircraft. Force calculations take downwash and prop-

wash effects into consideration, with finite-wing corrections depending on the wings

geometry. Compressible flow effects are also taken into account. This approach differs

from others that traditionally calculate aerodynamic forces from stability derivatives

and lookup tables, and whose precision is tied to data acquired from wind tunnels mea-

surements and/or advanced computational fluid dynamics (CFD) simulations. Another

asset of this simulation technique, particularly interesting for scale-model UAVs, is that

the obtained flight model is not limited to a small flight envelope. One can also design a

custom aircraft model by using the "Plane-Maker" tool included in X-plane and create a

custom airfoil force model by using the "Airfoil-Maker" tool.

For the present simulations, we have used an available model of a small scale UAV

created with the previously cited tools. Some specifications of the model are:

• Wingspan: 2.2m

• Wing surface: 0.6m2

• Fuselage length: 1.6m

• Weight: 2.7kg
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8.7.2 Controller hardware and software

A "Pixhawk" controller, equipped with a 168 MHz ARM CPU and 256 KB of RAM, is

used as the autopilot hardware. Our code implementation is based on the open-source

PX4 flight stack that runs on top of a NuttX real-time operating system and uses the

PX4 middleware [29]. This software architecture runs different threads with a modu-

lar approach and handles inter-process communications, allowing for the development

and use of off-the-shelf control code. We took advantage of this possibility to replace

the pre-existing position and attitude control modules by our own libraries in order to

implement the proposed control algorithms. However we kept the other pre-existing

functionalities and, in particular, the extended Kalman Filter (EKF) state observer. The

software logs all the flight data on a SD card, allowing the flight information to be ana-

lyzed after the flight.

8.7.3 Ground control station

We use the "Qgroundcontrol" software (qgroundcontrol.com) as a control station in-

stalled on a base computer, to design missions and change parameters online during

flights. In our simulation setup, Qgroundcontrol establishes a communication with the

"PIXHAWK" controller using the "MAVLINK" protocol. In parallel, Qgroundcontrol es-

tablishes a UDP link with the X-plane simulator to send and receive data. This dual

connection allows Qgroundcontrol to perform hardware-in-the-loop simulation by al-

lowing an indirect communication between the controller and the simulator. Simulated

position and attitude of the aircraft are used to create virtual sensory measurements

(GPS, IMU, barometer, pitot) that are purposefully corrupted with artificial noise and

produced (sent) at a realistic rate. These simulated sensor’s measurements are handled

effectively by the state estimator whose outputs are very satisfactory when compared

with the real state of the vehicle obtained in the simulator. Since sate estimation is not

the objective of this work, we will not detail the algorithms regarding sensor data gen-

eration or state estimation, interested readers can refer to the source codes of Qground-

control and PX4. The controller calculates PWM control values and sends them to the

ground station, which in turn sends them back to the simulator that uses them as set-

points for the generation of thrust and for control surfaces deflections.

Which is in this case a simulation.
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Figure 8.4: HITL tools

8.7.4 Simulation results

For these simulations we consider, as in a realistic case, that a priori unknown wind may

be present, and we choose to stabilize the airspeed va,1 at 12m/s. Besides the three-axis

controller, we have also tested the two-axis (pitch-roll) adaptation proposed in section

6.4.

The aerodynamic coefficients used for the control calculations are: ηac0 = 0.006, and

ηac1 = 0.5. The choice of these coefficients need not be precise, indeed the integral

action included in the control design is supposed to compensate for these modeling

errors. However in order to use coefficients with the correct order of magnitude, one

can refer to measurements data for NACA profiles as in section 3.2.1, then apply the

finite-wing correction according to section 3.2.2, where the coefficients are adapted to

the characteristics of the wing in question (surface and span).

The control parameters that are used are:

• Guidance: k1 = 1, µ = 0.5, d1 = 1, d2 = 0.5

• Airspeed control: kT,1 = 1.8, kT,2 = kT,1/2, kT,3 = 10, ∆ev = 10

• Heading stabilization: kh,1 = 1.4, kh,2 = 0.49, ∆z = 0.6, kz = 10

• Attitude control: kω = 7.0

During implementation, the saturation functions ¯sat∆(x) = α∆(|x|)x entering the con-

trol laws were replaced by the classical vector-valued saturation functions, i.e. with

α∆(|x|) = max(1, ∆
|x|). As explained in section 6.3, control surfaces angles are calculated
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according to δ∗ = − Kδ
|va|2 (w − w∗) = − 1

|va|2diag([90, 120, 90])(w − w∗). For the thrust

calculation we used kT = 18.

Simulation 1: a custom 3D path

The chosen closed reference curve (see Fig. 8.5) consists, for the first part, of a horizontal

segment connected to a horizontal half-circle of radius equal to 40m, followed by another

horizontal segment. The second part of the reference path is similar to the first one

except that it is inclined with an angle of 15◦ w.r.t. the horizontal plane. Just recall here

that an inclined circular path does not qualify as a trim trajectory.

The first set of simulations are carried out with no wind so that one can appreciate

the controllers performance in this "ideal" case.

Simulations results are reported in Fig. 8.5 and Fig. 8.6. They show that the con-

troller allows the aircraft to approach the desired path and then follow it closely. Despite

the approximations involved in the estimation of the air-velocity va, the imperfections

of the model used for the control design, and the noisy state estimates produced by the

embedded EKF observers, the controller nominally maintains the magnitude of the po-

sition error well under the accepted norm of a wingspan. Larger errors only occur when

the aircraft has to switch from one piece of the curve to the next one. The switching is

done according to an acceptance radius as explained in section 8.6.5.

The chosen acceptance radius is chosen differently for every point according to the situation, it is most
of the time equal or close to 5m.
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Figure 8.5: Simulation 1, 3-axis aircraft, trajectory and reference path (with no wind)
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Figure 8.6: Simulation 1, 3-axis aircraft, position error |y| (with no wind). The vertical
dashed lines indicate the instances when the autopilot switches to another reference
path.

Fig. 8.7 shows the time evolution of various variables. From these figures one can

pinpoint the descent phase starting at t ≈ 65s and yielding the zeroing of the thrust dur-

ing the time-period when the requested computed value is negative and the air-velocity

component va,1 exceeds the desired speed.
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Figure 8.7: Simulation 1, 3-axis aircraft: (a) thrust setpoint (b) airspeed va,1 (c) angles
of control surfaces

The same simulation is repeated using the two-axis pitch-roll attitude autopilot. This

controller shows similar behavior to the three-axis autopilot (see figures 8.8 and 8.9).
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Figure 8.8: Simulation 1, 2-axis pitch-roll aircraft, trajectory and reference path (with
no wind)
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Figure 8.9: Simulation 1, 2-axis pitch-roll aircraft, position error |y| (with no wind).
The vertical dashed lines indicate the instances when the autopilot switches to another
reference path.

Simulation 2: a custom 3D path in the presence of wind

For the second set of simulations a steady (a priori unknown) wind of intensity |vw| =

4m/s blowing from the South (corresponding to the X-axis in Fig. 8.5) has been added

to the X-plane scenario. Despite an inevitable performance degradation, Fig. 8.10 and

Fig. 8.11 show that the proposed controller, implemented with the basic air-velocity

estimator evoked previously, continues to operate properly in this case.
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Figure 8.10: Simulation 2, trajectory and reference path (with wind)

0 20 40 60 80 100
0

5

10

15

20

time (s)

p
o

si
ti

o
n

 e
rr

o
r 

(m
)

Figure 8.11: Simulation 2, position error |y| (with wind). The vertical dashed lines
indicate the instances when the autopilot switches to another reference path.
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Figure 8.12: Simulation 2, 3-axis aircraft, airspeed va,1 (with wind).
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Simulation 3: waypoint following

For this simulation, a typical path derived from a sequence of waypoints is designed

with the ground control station. Two consecutive waypoints determine a joining line

segment and switching to the next segment is done via an acceptance radius of 20m.

This rule applies to all waypoints except for the last one that is interpreted as the center

of a horizontal circle of radius equal to 30m. The same wind speed and direction that

were used for the second simulation are added to this scenario. Simulation results are

reported in Figs. 8.14-8.15.

Figure 8.13: Simulation 3, Top view of the path from Qgroundcontrol, the blue line
corresponds to a manual flight before switching to the automatic mode where the red
line shows the approach of the aircraft to desired path (orange line).
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Figure 8.14: Simulation 3, altitude
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Figure 8.15: Simulation 3, airspeed va,1

For the next simulation, we designed a model of a flying-wing using the "Plane-

Maker" tool with the following specifications:

• Wingspan: 1.0m

• Wing surface: 0.23m2

• Weight: 0.75kg

Figure 8.16: The flying wing designed using the "Plane-Maker" tool.
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Figure 8.17: Simulation 4, trajectory and reference path

The aerodynamic coefficients used for the control calculations are: ηac0 = 0.003, and

ηac1 = 0.08, and the control parameters are:

• Guidance: k1 = 1, µ = 0.5, d1 = 1, d2 = 0.4

• Airspeed control: kT,1 = 0.9, kT,2 = kT,1/2, kT,3 = 10, ∆ev = 10

• Heading stabilization: kh,1 = 1, kh,2 = 0.25, ∆z = 0.6, kz = 10

• Attitude control: kω = 7.0

Control surfaces angles are calculated according to

[
δev,r

δev,l

]
= − 1

|va|2

[
17.5 21

17.5 21

][
ω1 − ω∗1
ω2 − ω∗2

]
.

Simulation 4: flying-wing and aggressive maneuvers

The airspeed va,1 is chosen to be stabilized at 15m/s. In order to test more aggressive

maneuvers, we choose as a reference path an inclined circle with a 25◦ inclination w.r.t.

the horizontal plane, and a radius of 35m. After some time the reference path is suddenly

switched to a vertical circular path with a radius of 35m as well, and situated far from

the first one.

The flying-wing is initially far from the inclined circle, and it is seen in figure 8.17

that it approaches the path and manages to follow it with an acceptable error of mag-

nitude less than 2.5m. The vehicle then quits the first path and approaches the vertical

circle, then follows it in a looping maneuver while keeping the position error less than

4m. The airspeed va,1 is also regulated efficiently at 15m/s, it increases above the set-

point during descending phases where the theoretical thrust reaches its lower saturation

at zero.
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Figure 8.18: Simulation 4, position error: components of y. The vertical dashed lines
indicate the instances when the autopilot switches to another reference path.
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Figure 8.19: Simulation 4, airspeed va,1
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9
Flight Tests

The path following control strategy, after being extensively tested in HITL simu-

lations, is now put into practice within a series of flight tests involving a scale-

model UAV.

We first present the airplane properties and the hardware architecture. Then we

describe the experimental setup and the progress of the flight tests. Finally we show

results involving challenging reference paths, with large initial position errors.

9.1 Demonstration vehicle

The vehicle used for the tests is an E-flite "TIMBER" airplane shown in figure 9.1. This

airplane is designed to fly at low airspeeds. It is equipped with wheels as well as a

steerable tail wheel which gives it taxiying capabilities and also short takeoff and landing

(STOL) capabilities.

Some of its basic features are the following,

• Wingspan 1.5m

• Wing area 0.36m2

• Fuselage length 1m
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9.2. Avionics and actuators

Figure 9.1: Timber airplane

• Total Weight 1.8Kg

9.2 Avionics and actuators

The autopilot hardware that we used is a "PIXRACER" controller board, another con-

troller of the pixhawk family. It is equipped with a 180Mhz ARM CPU, and 256KB

of SRAM. This controller is dedicated to mobile robotics and is equipped with embed-

ded Inertial Measurement Units (IMU) which provide measurements redundancy. The

models of these sensors modules are the following:

• Invensense ICM-20608 Accel / Gyro

• Invensense MPU9250 Accel / Gyro / Mag

• Honeywell HMC5983 magnetometer

• MS5611 barometer

This board also has a slot for a microSD card that is used for logging data. It has

an interface to a safety switch and buzzer. An I2C bus allows to connect to peripheral

ICs that uses the I2C serial communication protocol, like for example differential pres-

sure sensors and external magnetometer modules. Radio modems can be connected to

telemetry ports to exchange live data with a ground base computer. PPM-Sum or S.Bus

receivers can be connected to the board to achieve manual radio control. And finally

PWM output ports are connected to servomotors and ESCs, the pulse modulated signal

they generate has a period of 2000µs and an amplitude above 2 Volts, with the minimum

value corresponding to a pulse width of about 900µs.
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Chapter 9. Flight Tests

Figure 9.2: Avionics

We used a UBLOX N8M GPS with an external magnetometer which is supposed to

be less prone to electromagnetic disturbances. The pitot tube mounted on the aircraft

uses a SDP33 pressure sensor from Sensirion AG. Notice in figure 9.1 how this tube

was mounted under the right wing to avoid the influence of propwash effects from the

propeller at the nose, in order to get (as much as possible) correct measurements of the

airspeed.

The plane was equipped with a 1300KV brushless outrunner motor, a 40A ESC and

a blade propeller of size 12X4". The surface controls were actuated with standard servo-

motors. A 3 cell Lithium-Polymer (LiPo) battery powered the board and the ESCs.

The software code is the same as the one tested in HITL simulations, except that it is

now compiled for the architecture of the Pixracer.

9.3 Experimental setup

Prior to going to the field, the sensors were calibrated using routines provided by the

ground station (qgroundcontrol). The controller was also loaded with verified initial

The Pixracer belongs to the FMUv4 generation, while the early version of pixhawk boards belongs to
the FMUv2 generation.

113



9.3. Experimental setup

Figure 9.3: Flight operation

values of control parameters similar to those used during HITL simulations.

As in the case of HITL simulations, reference paths were prepared using two different

methods:

• The classical waypoint tools provided by the ground control station. These are a

set of points in space for which the position is determined by longitude, latitude

and altitude values. Standard waypoints are connected with straight segments

and constitute straight line paths to be followed. Other "loiter" type waypoints are

interpreted as the centers of a circular path, whose radius should be additionally

specified along with the direction of loitering (clockwise or anti-clockwise as seen

from the top).

• Custom three-dimensional path were also coded in the autopilot software. These

paths are made of a series of continuously connected lines and arcs of circles.

The flight tests were carried out in a large field in the south-east of France, and care

was taken during the design of reference paths in order to respect the dimensions of the

field, keep a safe distance from inhabited areas and fly in an authorized range of altitude.

The pilot and the ground operator agreed on a test scenario. The pilot had to manu-

ally takeoff and land the airplane, and also to switch the flight mode to fully autonomous

mode at a suitable time, and switch back to manual control in case of a loss of control

or a technical failure. The ground operator was in permanent communication with the

pilot, monitoring airspeed and battery level, and detecting anomalies sent to the ground
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Chapter 9. Flight Tests

station through telemetry. He also made online parameter changes (tuning) according

to visual information of the airplane, telemetry data, and pilot observations.

9.4 Results

First flight: waypoint following

The model parameters used for the control calculations are ηac0 = 0.006, ηac1 = 0.52,

m = 2 and g0 = 9.81. As in the case of HITL simulations, the values of c0 and c1

were determined using the empirical formulas in sections 3.2.1 and 3.2.2 that relate

the aerodynamic coefficients to the aircraft wingspan and wing surface. The control

parameters are:

• Guidance: k1 = 0.75, µ = 0.5, d1 = 1, d2 = 0.4

• Airspeed control: kT,1 = 1, kT,2 = kT,1/2, kT,3 = 10, ∆ev = 15

• Heading stabilization: kh,1 = 1, kh,2 = 0.25, ∆z = 0.6, kz = 10

• Attitude control: kω = 7.0

Desired deflection angles were calculated according to δ∗ = − 1
|va|2diag([20, 24, 18])(ω−

ω∗). The thrust command was calculated according to 8.6.3, with kT = 14.

Figure 9.4: flight 1, horizontal trajectory and reference path. The waypoints are num-
bered from 1 to 6. The last waypoint (6) is the center of a reference circular path.
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9.4. Results

The first test is a classical waypoint follow-up. The last part of this mission con-

sists in following a circle of radius 40m in the clockwise direction (as seen from above).

Once the airplane reaches the penultimate waypoint, it is at a distance of 125m from

the reference circle (and 165m from its center), it is also flying in the opposite direction

and has to achieve a tight turning maneuver to track the desired heading direction. The

commanded airspeed was 11m/s and the weather was relatively calm.
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Figure 9.5: flight 1, altitude

The results in figures 9.4-9.7 show that the airplane managed to approach every part

of the path with a root mean square (RMS) position error (|y|) of 0.9m at proximity of the

path and RMS airspeed error (|ev|) of 0.5m/s. The airplane also managed to turn back

and approach the circular reference path. It kept following the circle until the pilot

decided to switch back to manual mode and perform the landing. Note that disconti-

nuities and large transient errors on the position error correspond to switching between

different parts of the reference path.

The instants where the airplane was still far away from the reference path and approaching were con-
sidered as outliers. The computation of this RMS value only considers the situations where the position
error is less than 3m

As in HITL simulations, this switching is performed automatically according to a specified acceptance
radius.
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Chapter 9. Flight Tests

Figure 9.6: flight 1, position error: components of y. The vertical dashed lines indicate
the instances when the autopilot switches to another waypoint. The numbers of the
waypoints are also indicated and correspond to those shown in figure 9.4
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Figure 9.7: flight 1, (a) Thrust setpoint (b) Airspeed

Second flight: a custom 3D path

The model parameters used for the control calculations are ηac0 = 0.006, ηac1 = 0.52,

m = 2 and g0 = 9.81. The control parameters are:

• Guidance: k1 = 1.5, µ = 0.5, d1 = 1, d2 = 0.4
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9.4. Results

• Airspeed control: kT,1 = 1.8, kT,2 = kT,1/2, kT,3 = 10, ∆ev = 15

• Heading stabilization: kh,1 = 1.2, kh,2 = 0.36, ∆z = 0.6, kz = 10

• Attitude control: kω = 7.0

Desired deflection angles were calculated according to δ∗ = − 1
|va|2diag([21, 28, 21])(ω−

ω∗). For the thrust command, it was calculated according to 8.6.3, with kT = 14.

For this second test, the chosen closed reference path (see Fig. 9.8) is similar to the

one tested in HITL and consists, for the first part, of a horizontal segment connected to

a horizontal half-circle of radius equal to 40m, followed by another horizontal segment.

The second part of the reference path is similar to the first one except that it is inclined

with an angle of 15◦ w.r.t. the horizontal plane. The commanded airspeed was 10m/s

and the path was traveled twice. During this experiments, the weather was relatively

calm, with a varying east wind of magnitude less than 5m/s.
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Figure 9.8: Flight 2, trajectory and reference path

The vehicle was being flown manually and the controller was switched to autopilot

mode at about 80m of the reference path. The vehicle then approached and followed the

desired path closely with an error of magnitude ±1m and RMS value of 0.9m (see Fig.

9.9). A position error that remains smaller than the wingspan of the vehicle represents

a good result for this kind of small and light airplane, particularly sensitive to wind and

equipped with low cost sensors. The airspeed was also maintained close to the desired

setpoint, with an error of about ±1m/s and RMS value of 0.5m/s (Fig. 9.10). These

results highlight the robustness of the control w.r.t. model errors and uncertainties.
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Figure 9.9: Flight 2, position error: components of y. The vertical dashed lines indicate
the instances when the autopilot switches to another waypoint.
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Figure 9.10: Flight 2, (a) Thrust setpoint (b) Airspeed
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Figure 9.11: Flight 2, altitude
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Figure 9.12: Flight 2, control surfaces setpoint

Third flight: inclined circular path

In this flight test, we investigate the ability of the autopilot to follow an inclined circular

path with 15◦ of inclination, and in the presence of wind and wind gusts. The radius

of the circle is 30m, and the commanded speed is 11m/s. The same model and control

parameters that were used for the second (previous) flight, were used again. Figures

9.13-9.16 show that the aircraft succeeded in following the reference path, but with a

larger (and still acceptable) position error of ±1.6m and a RMS value of 1.16m. The

airspeed was controlled with an error of ±4m/s and a RMS value of 2.49m/s.
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Chapter 9. Flight Tests

Figure 9.13: Flight 3, trajectory and reference path
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Figure 9.14: Flight 3, position error: components of y
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Figure 9.15: Flight 3, altitude
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Figure 9.16: Flight 3, (a) Thrust setpoint (b) Airspeed
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Conclusion

This thesis covered many aspects of the flight control field, ranging from system

modeling, to designing algorithms for attitude control, trajectory tracking and

path following. Guidance and control strategies were implemented on flight

controllers. They were first validated via realistic HITL simulations, followed by a series

of flight experiments.

Context of the thesis:

The present work is an extension of prior works on the control of flying vehicles, in-

cluding rotor vehicles [18], rocket-like vehicles [49] and fixed-wing vehicles [21]. It con-

tributes to the development of a novel and unified control framework for aerial vehicles.

This "unification" is motivated by the fact that the control community developed specific

control designs for the class of fixed-wing aircraft that are different from nonlinear con-

trol strategies employed for rotor vehicles such as quadrotors. The principles that these

works have in common, and on which this thesis is based, are the following:

• The proposed control design is based on a hierarchical scheme which offers theo-

retical as well as practical advantages. One of which, is the possibility to exploit

the fully actuated attitude dynamics, and consider a lower-order model for control

design that is independent of the actuation configuration of a specific vehicle.

• The flight control community has always relied on conventions and approxima-

tions of aerodynamic forces developed by aerodynamicists: the aerodynamic forces

are classically decomposed along the wind axis, and their corresponding coeffi-

cients are considered to be linear in attack and sideslip angles. Those are different

conventions than the ones adopted for this work. Indeed, an alternative generic

123



nonlinear model of aerodynamic forces was proposed in [48] [49], for the purpose

of integrating it in control design. This model is physically pertinent and equiv-

alent to classical approximations for small attack and sideslip angles. One of its

assets is that the proposed aerodynamic coefficients are periodic nonlinear models

that do not grow unbounded when the attack and sideslip angles become large, so

that they can cope with larger aerodynamic envelopes. This model is nonetheless a

simplification of the physical reality since it implicitly neglects the effects of rota-

tional and accelerated motions, as well as the deflections of control surfaces. These

assumptions make the system’s equations triangular, so that nonlinear hierarchical

controllers can be designed without dealing with zero-dynamics.

• For a vehicle that is not subject to aerodynamic forces (apart from the thrust gen-

eration mechanism) such as the quadrotor, trajectory tracking control can be de-

signed using "thrust vectoring" control, where the thrust direction and its mag-

nitude play the role of an intermediate control variable. This solution has been

extended to other vehicles subject to aerodynamic forces such as spherical bodies,

axisymmetric vehicles and fixed-wing aircraft.

Results and contributions:

The main results and contributions of this thesis, can be summarized as follows:

• Attitude control laws are first designed, and serve as the fast inner-loops of the

control scheme. The study considers the actuation configuration of a conventional

aircraft, and some methods for computing the desired deflection angles of control

surfaces are explained. A two-axis adaptation to the case of airplanes that lack

rudder control is also proposed, and the case of a flying-wing configuration is con-

sidered.

• A trajectory tracking controller is designed, which exponentially stabilizes any ref-

erence trajectory belonging to a large set of admissible trajectories. The proposed

control design methodology is inspired from previous work [21] on the control of

scale-model airplanes, but is different in the way the sideslip angle is stabilized

to zero. While in [21] the control of this angle is decoupled from the control of

the thrust direction, a more elegant solution is proposed in this thesis, where a

complete desired vehicle’s orientation is specified to ensure exponential stability

of zero tracking errors. The results of this part are published in [23].

• The solution is then adapted to the path-following problem. It combines kinematic

guidance and dynamic control into a single framework. An extended nonlinear
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analysis is performed that takes into consideration the interconnections between

the different subsystems. These results are published in [25] and [24].

• Many practical aspects are investigated in order to put the path-following solu-

tion into practice. In particular, a method to estimate the air-velocity vector is

proposed, which is suitable for small UAVs that are not equipped with attack and

sideslip angles sensors. The guidance and control strategies were implemented on

a flight controller running a real time operating system. It was first extensively

tested in realistic HITL simulations, which validated the application of the control

algorithm and the embedded system.

• The path-following strategy was finally tested in flight experiments using a small

RC airplane. The reported results, involving aggressive maneuvers, confirmed the

robustness of the control solution w.r.t. modeling, measurements, and estimation

approximations.

An asset of the resulting nonlinear controllers (trajectory tracking and path-following),

is that they are designed to operate in a large spectrum of operating conditions. In partic-

ular, they avoid singularities associated with the parametrization of the vehicle’s attitude

and heading, and they overcome the limitations associated with classical methods based

on linearization along trim trajectories. Indeed, they go further in terms of convergence

and stability analyses over an extended flight domain and allow performing aggressive

maneuvers beyond trim trajectories. The proposed laws are also complemented with

bounded integral actions to compensate for inevitable modeling errors.

Challenges, recommendations and possible extensions:

Many challenges were encountered during this project. Some of the system’s parameters

were difficult to estimate, mainly the BLDC motor’s parameters, and the aerodynamic

coefficients of the airplane. This has been effectively handled by the robustness of the

controller thanks to the integral terms. However, a closer look at the airspeed regulation

results shows a degraded performance in some parts of the aggressive maneuvers. A

reason for this might be a poor identification of the motor’s parameters that led to non-

optimal control gains. This suggests that the thrust control can be enhanced if a better

identification of the motor’s parameter is done. A thrust test bench can be constructed

for this purpose. The flight simulator used for the HITL simulations was sufficiently re-

alistic, which was an enabling factor for the success of the flight experiments. However,

it was noticed after comparing with experiments, that the motor-propeller behavior was

not similar in the two cases (simulation and experiments). This suggests enhancing the

simulator (by creating custom plug-ins for instance).
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An additional challenge was the necessity to estimate the air-velocity vector va. The

proposed model-based estimator worked well in practice, however its design relies on

many assumptions such as the balanced flight condition, which makes its reliability

uncertain. Future improvements of this estimator might take advantage of additional

sensors that can measure the direction of the air-velocity.

Additionally, it is recommended that other issues such as the actuator’s time con-

stants and saturation limits, are dealt with.

The next logical stage of these studies will involve experiments with more demand-

ing flight scenarios, practical implementation of the trajectory tracking solution, and

extension to the control design of hybrid vehicles.
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