R. Bartenschlager, F. Penin, V. Lohmann, and P. André, Assembly of infectious hepatitis C virus particles, Trends in Microbiology, vol.19, pp.95-103, 2011.

B. Bartosch, J. Dubuisson, and F. Cosset, Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes, The Journal of Experimental Medicine, vol.197, pp.633-642, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00133783

J. R. Bishop, M. Schuksz, and J. D. Esko, Heparan sulphate proteoglycans fine-tune mammalian physiology, Nature, vol.446, pp.1030-1037, 2007.

J. Blaising, P. L. Lévy, C. Gondeau, C. Phelip, M. Varbanov et al., Silibinin inhibits hepatitis C virus entry into hepatocytes by hindering clathrin-dependent trafficking, Cellular Microbiology, vol.15, pp.1866-1882, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01494096

S. Bolte and F. P. Cordelières, A guided tour into subcellular colocalization analysis in light microscopy, Journal of Microscopy, vol.224, pp.213-232, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00132481

B. Brügger, B. Glass, P. Haberkant, I. Leibrecht, F. T. Wieland et al., The HIV lipidome: A raft with an unusual composition, vol.103, pp.2641-2646, 2006.

K. E. Coller, K. L. Berger, N. S. Heaton, J. D. Cooper, R. Yoon et al., RNA interference and single particle tracking analysis of hepatitis C virus endocytosis, PLoS Pathogens, vol.5, p.1000702, 2009.

G. David, X. M. Bai, B. Van-der-schueren, J. J. Cassiman, and H. Van-den-berghe, Developmental changes in heparan sulfate expression: In situ detection with mAbs, The Journal of Cell Biology, vol.119, pp.961-975, 1992.
DOI : 10.1083/jcb.119.4.961

URL : http://jcb.rupress.org/content/jcb/119/4/961.full.pdf

C. P. Dietrich, H. B. Nader, and A. H. Straus, Structural differences of heparan sulfates according to the tissue and species of origin, Biochemical and Biophysical Research Communications, vol.111, pp.865-871, 1983.

K. W. Dunn, M. M. Kamocka, and J. H. Mcdonald, A practical guide to evaluating colocalization in biological microscopy, American Journal of Physiology. Cell Physiology, vol.300, pp.723-742, 2011.

J. D. Esko and U. Lindahl, Molecular diversity of heparan sulfate, The Journal of Clinical Investigation, vol.108, pp.169-173, 2001.
DOI : 10.1172/jci13530

URL : http://www.jci.org/articles/view/13530/files/pdf

M. J. Evans, T. Von-hahn, D. M. Tscherne, A. J. Syder, M. Panis et al., Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry, Nature, vol.446, pp.801-805, 2007.

M. J. Farquhar, K. Hu, H. J. Harris, C. Davis, C. L. Brimacombe et al., Hepatitis C virus induces CD81 and claudin1 endocytosis, Journal of Virology, vol.86, pp.4305-4316, 2012.
DOI : 10.1128/jvi.06996-11

URL : https://jvi.asm.org/content/86/8/4305.full.pdf

C. G. Hansen and B. J. Nichols, Molecular mechanisms of clathrinindependent endocytosis, Journal of Cell Science, vol.122, pp.1713-1721, 2009.

H. J. Harris, C. Davis, J. G. Mullins, K. Hu, M. Goodall et al., Claudin association with CD81 defines hepatitis C virus entry, The Journal of Biological Chemistry, vol.285, pp.21092-21102, 2010.
DOI : 10.1074/jbc.m110.104836

URL : http://www.jbc.org/content/285/27/21092.full.pdf

K. Hayashida, P. D. Stahl, and P. W. Park, Syndecan-1 ectodomain shedding is regulated by the small GTPase Rab5, The Journal of Biological Chemistry, vol.283, pp.35435-35444, 2008.
DOI : 10.1074/jbc.m804172200

URL : http://www.jbc.org/content/283/51/35435.full.pdf

G. Horváth, V. Serru, D. Clay, M. Billard, C. Boucheix et al., CD19 is linked to the integrin-associated tetraspans CD9, CD81, and CD82, The Journal of Biological Chemistry, vol.273, pp.30537-30543, 1998.

B. Jammart, M. Michelet, E. Pécheur, R. Parent, B. Bartosch et al., Very-low-density lipoprotein (VLDL)-producing and hepatitis C virus-replicating HepG2 cells secrete no more lipoviroparticles than VLDL-deficient Huh7.5 cells, Journal of Virology, vol.87, pp.5065-5080, 2013.
DOI : 10.1128/jvi.01405-12

URL : https://jvi.asm.org/content/87/9/5065.full.pdf

C. T. Jones, M. T. Catanese, L. M. Law, S. R. Khetani, A. J. Syder et al., Real-time imaging of hepatitis C virus infection using a fluorescent cell-based reporter system, Nature Biotechnology, vol.28, pp.167-171, 2010.

F. Komurian-pradel, G. Paranhos-baccalà, M. Sodoyer, P. Chevallier, B. Mandrand et al., Quantitation of HCV RNA using real-time PCR and fluorimetry, Journal of Virological Methods, vol.95, pp.111-119, 2001.
DOI : 10.1016/s0166-0934(01)00300-7

G. Koutsoudakis, E. Herrmann, S. Kallis, R. Bartenschlager, and T. Pietschmann, The level of CD81 cell surface expression is a key determinant for productive entry of hepatitis C virus into host cells, Journal of Virology, vol.81, pp.588-598, 2007.

G. Al, , vol.13, p.14

O. Lamas-longarela, T. T. Schmidt, K. Schöneweis, R. Romeo, H. Wedemeyer et al., Proteoglycans act as cellular hepatitis delta virus attachment receptors, PloS One, vol.8, p.58340, 2013.

K. Lambaerts, S. A. Wilcox-adelman, and P. Zimmermann, The signaling mechanisms of syndecan heparan sulfate proteoglycans, Current Opinion in Cell Biology, vol.21, pp.662-669, 2009.

T. Laskus, L. F. Wang, M. Radkowski, H. Vargas, M. Nowicki et al., Exposure of hepatitis C virus (HCV) RNA-positive recipients to HCV RNA-positive blood donors results in rapid predominance of a single donor strain and exclusion and/or suppression of the recipient strain, Journal of Virology, vol.75, pp.2059-2066, 2001.

M. Lefèvre, D. J. Felmlee, M. Parnot, T. F. Baumert, and C. Schuster, , 2014.

, Syndecan 4 is involved in mediating HCV entry through interaction with lipoviral particle-associated apolipoprotein E, PloS One, vol.9, p.95550

S. Liu, W. Yang, L. Shen, J. R. Turner, C. B. Coyne et al., Tight junction proteins claudin-1 and occludin control hepatitis C virus entry and are downregulated during infection to prevent superinfection, Journal of Virology, vol.83, pp.2011-2014, 2009.

M. Lyon, J. A. Deakin, and J. T. Gallagher, Liver heparan sulfate structure. A novel molecular design, The Journal of Biological Chemistry, vol.269, pp.11208-11215, 1994.

E. M. Manders, F. J. Verbeek, and J. A. Aten, Measurement of co-localization of objects in dual-colour confocal images, Journal of Microscopy, vol.169, pp.375-382, 1993.

K. Morikawa, Z. Zhao, T. Date, M. Miyamoto, A. Murayama et al., The roles of CD81 and glycosaminoglycans in the adsorption and uptake of infectious HCV particles, Journal of Medical Virology, vol.79, pp.714-723, 2007.

P. D. Mosier, C. Krishnasamy, G. E. Kellogg, and U. R. Desai, On the specificity of heparin/heparan sulfate binding to proteins. Anion-binding sites on antithrombin and thrombin are fundamentally different, PloS One, vol.7, p.48632, 2012.

L. Pichard, E. Raulet, G. Fabre, J. B. Ferrini, J. Ourlin et al., Human hepatocyte culture, Methods in Molecular Biology Clifton NJ, vol.320, pp.283-293, 2006.

P. Pileri, Y. Uematsu, S. Campagnoli, G. Galli, F. Falugi et al., Binding of hepatitis C virus to CD81, Science, vol.282, pp.938-941, 1998.

A. Ploss, M. J. Evans, V. A. Gaysinskaya, M. Panis, H. You et al., Human occludin is a hepatitis C virus entry factor required for infection of mouse cells, Nature, vol.457, pp.882-886, 2009.

C. Pönighaus, M. Ambrosius, J. C. Casanova, C. Prante, J. Kuhn et al., Human xylosyltransferase II is involved in the biosynthesis of the uniform tetrasaccharide linkage region in chondroitin sulfate and heparan sulfate proteoglycans, The Journal of Biological Chemistry, vol.282, pp.5201-5206, 2007.

S. Ramírez, S. Pérez-del-pulgar, J. A. Carrión, M. Coto-llerena, L. Mensa et al., Hepatitis C virus superinfection of liver grafts: A detailed analysis of early exclusion of non-dominant virus strains, The Journal of General Virology, vol.91, pp.1183-1188, 2010.

S. Reitsma, D. W. Slaaf, H. Vink, M. A. Van-zandvoort, and M. G. Egbrink, The endothelial glycocalyx: Composition, functions, and visualization, Pflügers Archiv-European Journal of Physiology, vol.454, pp.345-359, 2007.

G. M. Reynolds, H. J. Harris, A. Jennings, K. Hu, J. Grove et al., Hepatitis C virus receptor expression in normal and diseased liver tissue, Hepatology Baltimore Md, vol.47, pp.418-427, 2008.

B. Sainz, N. Barretto, D. N. Martin, N. Hiraga, M. Imamura et al., Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor, Nature Medicine, vol.18, pp.281-285, 2012.

R. Sasisekharan and G. Venkataraman, Heparin and heparan sulfate: biosynthesis, structure and function, Current Opinion in Chemical Biology, vol.4, pp.626-631, 2000.

E. Scarselli, H. Ansuini, R. Cerino, R. M. Roccasecca, S. Acali et al., The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus, The EMBO Journal, vol.21, pp.5017-5025, 2002.

A. Schulze, P. Gripon, and S. Urban, Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans, Hepatology Baltimore Md, vol.46, pp.1759-1768, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00690474

Q. Shi, J. Jiang, and G. Luo, Syndecan-1 serves as the major receptor for attachment of hepatitis C virus to the surfaces of hepatocytes, Journal of Virology, vol.87, pp.6866-6875, 2013.

O. Söderberg, M. Gullberg, M. Jarvius, K. Ridderstråle, K. Leuchowius et al., Direct observation of individual endogenous protein complexes in situ by proximity ligation, Nature Methods, vol.3, pp.995-1000, 2006.

K. I. Stanford, J. R. Bishop, E. M. Foley, J. C. Gonzales, I. R. Niesman et al., Syndecan-1 is the primary heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice, The Journal of Clinical Investigation, vol.119, pp.3236-3245, 2009.

A. Sutton, V. Friand, S. Brulé-donneger, T. Chaigneau, M. Ziol et al., Stromal cell-derived factor1/chemokine (C-X-C motif) ligand 12 stimulates human hepatoma cell growth, migration, and invasion, Molecular Cancer Research MCR, vol.5, pp.21-33, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00416650

T. Toida, H. Yoshida, H. Toyoda, I. Koshiishi, T. Imanari et al., Structural differences and the presence of unsubstituted amino groups in heparan sulphates from different tissues and species, The Biochemical Journal, vol.322, pp.499-506, 1997.

D. M. Tscherne, M. J. Evans, T. Hahn, . Von, C. T. Jones et al., Superinfection exclusion in cells infected with hepatitis C virus, Journal of Virology, vol.81, pp.3693-3703, 2007.

T. Wakita, T. Pietschmann, T. Kato, T. Date, M. Miyamoto et al., Production of infectious hepatitis C virus in tissue culture from a cloned viral genome, Nature Medicine, vol.11, pp.791-796, 2005.

A. Woods and J. R. Couchman, Syndecan-4 and focal adhesion function, Current Opinion in Cell Biology, vol.13, pp.578-583, 2001.

B. Grigorov, E. Reungoat, G. Dit-maurin, A. Varbanov, M. Blaising et al., Hepatitis C virus infection propagates through interactions between
URL : https://hal.archives-ouvertes.fr/hal-01792609

, Syndecan-1 and CD81 and impacts the hepatocyte glycocalyx

, Cellular Microbiology, p.12711, 2017.

M. Plummer, C. De-martel, J. Vignat, J. Ferlay, F. Bray et al., Global burden of cancers attributable to infections in 2012: a synthetic analysis, Lancet Glob. Health, vol.4, pp.609-616, 2016.

J. K. Mitchell, S. M. Lemon, and D. R. Mcgivern, How do persistent infections with hepatitis C virus cause liver cancer?, Curr. Opin. Virol, vol.14, pp.101-108, 2015.

P. Observatory and H. Collaborators, Global prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study, Lancet Gastroenterol. Hepatol, vol.2, pp.161-176, 2017.

J. Nault and M. Colombo, Hepatocellular carcinoma and direct acting antiviral treatments: Controversy after the revolution, J. Hepatol, vol.65, pp.663-665, 2016.

T. F. Baumert, F. Jühling, A. Ono, and Y. Hoshida, Hepatitis C-related hepatocellular carcinoma in the era of new generation antivirals, BMC Med, vol.15, p.52, 2017.

J. Hengst, C. S. Falk, V. Schlaphoff, K. Deterding, M. P. Manns et al., Direct-Acting Antiviral-Induced Hepatitis C Virus Clearance Does Not Completely Restore the Altered Cytokine and Chemokine Milieu in Patients With Chronic Hepatitis C, J. Infect. Dis, vol.214, pp.1965-1974, 2016.

N. Akuta, F. Suzuki, M. Hirakawa, Y. Kawamura, H. Sezaki et al., Amino acid substitutions in hepatitis C virus core region predict hepatocarcinogenesis following eradication of HCV RNA by antiviral therapy, J. Med. Virol, vol.83, pp.1016-1022, 2011.

D. Paul, V. Madan, and R. Bartenschlager, Hepatitis C virus RNA replication and assembly: living on the fat of the land, Cell Host Microbe, vol.16, pp.569-579, 2014.

J. Rauterberg, B. Voss, G. Pott, and U. Gerlach, Connective tissue components of the normal and fibrotic liver. I. Structure, local distribution and metabolism of connective tissue components in the normal liver and changes in chronic liver diseases, Klin. Wochenschr, vol.59, pp.767-779, 1981.

S. L. Friedman, Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver, Physiol. Rev, vol.88, pp.125-172, 2008.

S. De-minicis, E. Seki, H. Uchinami, J. Kluwe, Y. Zhang et al., , 2007.

, Gene expression profiles during hepatic stellate cell activation in culture and in vivo, Gastroenterology, vol.132, pp.1937-1946

X. Z. Lin, M. H. Horng, Y. N. Sun, S. C. Shiesh, N. H. Chow et al., Computer morphometry for quantitative measurement of liver fibrosis: comparison with Knodell's score, colorimetry and conventional description reports, J. Gastroenterol. Hepatol, vol.13, pp.75-80, 1998.

M. Rojkind, M. A. Giambrone, and L. Biempica, Collagen types in normal and cirrhotic liver, Gastroenterology, vol.76, pp.710-719, 1979.

H. M. Kagan, Lysyl oxidase: mechanism, regulation and relationship to liver fibrosis, Pathol. Res. Pract, vol.190, pp.910-919, 1994.

R. V. Iozzo and L. Schaefer, Proteoglycan form and function: A comprehensive nomenclature of proteoglycans, Matrix Biol. J. Int. Soc. Matrix Biol, vol.42, pp.11-55, 2015.

A. Schmaus, J. Bauer, and J. P. Sleeman, Sugars in the microenvironment: the sticky problem of HA turnover in tumors, Cancer Metastasis Rev, vol.33, pp.1059-1079, 2014.

A. Martinez-hernandez and P. S. Amenta, The extracellular matrix in hepatic regeneration, 1995.

, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.9, pp.1401-1410

J. Kanta, Elastin in the Liver, Front. Physiol, vol.7, p.491, 2016.

S. Sun, Z. Song, S. J. Cotler, and M. Cho, Biomechanics and functionality of hepatocytes in liver cirrhosis, J. Biomech, vol.47, pp.2205-2210, 2014.

J. M. Wells, A. Gaggar, and J. E. Blalock, MMP generated matrikines, Matrix Biol. J. Int. Soc. Matrix Biol, vol.44, pp.122-129, 2015.

S. Ricard-blum and S. D. Vallet, Fragments generated upon extracellular matrix remodeling: Biological regulators and potential drugs, Matrix Biol. J. Int. Soc. Matrix Biol, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02109885

Y. A. Lee, M. C. Wallace, and S. L. Friedman, Pathobiology of liver fibrosis: a translational success story, Gut, vol.64, pp.830-841, 2015.

S. Ricard-blum, G. Baffet, and N. Théret, Molecular and tissue alterations of collagens in fibrosis, Matrix Biol. J. Int. Soc. Matrix Biol, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01808771

L. Ferrell, Liver pathology: cirrhosis, hepatitis, and primary liver tumors. Update and diagnostic problems, Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. Inc, vol.13, pp.679-704, 2000.

S. Trivedi, S. Murthy, H. Sharma, A. S. Hartlage, A. Kumar et al.,

V. Scheel, T. K. Billerbeck, and E. , Viral persistence, liver disease and host response in Hepatitis C-like virus rat model, Hepatol. Baltim. Md, 2017.

M. J. Nielsen, M. A. Karsdal, K. Kazankov, H. Grønbaek, A. Krag et al., Fibrosis is not just fibrosis-basement membrane modelling and collagen metabolism differs between hepatitis B-and C-induced injury, Aliment. Pharmacol. Ther, vol.44, pp.1242-1252, 2016.

M. Guido, A. Mangia, and G. Faa, Gruppo Italiano Patologi Apparato Digerente (GIPAD) and Società Italiana di Anatomia Patologica e Citopatologia Diagnostica/International Academy of Pathology, Italian division (SIAPEC/IAP). (2011) Chronic viral hepatitis: the histology report, Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver, vol.43, pp.331-343

J. Beltra and H. Decaluwe, Cytokines and persistent viral infections, Cytokine, vol.82, pp.4-15, 2016.

F. Douam, D. Lavillette, and F. Cosset, The mechanism of HCV entry into host cells, Prog. Mol. Biol. Transl. Sci, vol.129, pp.63-107, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01157783

B. Grigorov, E. Reungoat, A. Gentil-dit-maurin, M. Varbanov, J. Blaising et al., Hepatitis C virus infection propagates through interactions between syndecan-1 and CD81, and impacts the hepatocyte glycocalyx, Cell. Microbiol, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02096738

M. E. Hemler, Tetraspanin functions and associated microdomains, Nat. Rev. Mol. Cell Biol, vol.6, pp.801-811, 2005.

F. Berditchevski, Complexes of tetraspanins with integrins: more than meets the eye, J. Cell Sci, vol.114, pp.4143-4151, 2001.

A. Alisi, M. Arciello, S. Petrini, B. Conti, G. Missale et al., Focal adhesion kinase (FAK) mediates the induction of pro-oncogenic and fibrogenic phenotypes in hepatitis C virus (HCV)-infected cells, PloS One, vol.7, p.44147, 2012.

M. Vicente-manzanares, D. J. Webb, and A. R. Horwitz, Cell migration at a glance, J. Cell Sci, vol.118, pp.4917-4919, 2005.

A. Matsumoto, M. Ono, Y. Fujimoto, R. L. Gallo, M. Bernfield et al., Reduced expression of syndecan-1 in human hepatocellular carcinoma with high metastatic potential, Int. J. Cancer, vol.74, pp.482-491, 1997.

C. Pönighaus, M. Ambrosius, J. C. Casanova, C. Prante, J. Kuhn et al., Human xylosyltransferase II is involved in the biosynthesis of the uniform tetrasaccharide linkage region in chondroitin sulfate and heparan sulfate proteoglycans, J. Biol. Chem, vol.282, pp.5201-5206, 2007.

J. Kuhn, O. A. Gressner, C. Götting, A. M. Gressner, and K. Kleesiek, Increased serum xylosyltransferase activity in patients with liver fibrosis, Clin. Chim. Acta Int. J. Clin. Chem, vol.409, pp.123-126, 2009.

O. A. Gressner and C. Gao, Monitoring fibrogenic progression in the liver, Clin. Chim. Acta Int. J. Clin. Chem, vol.433, pp.111-122, 2014.

A. Schulze-krebs, D. Preimel, Y. Popov, R. Bartenschlager, V. Lohmann et al.,

D. Schuppan, Hepatitis C virus-replicating hepatocytes induce fibrogenic activation of hepatic stellate cells, Gastroenterology, vol.129, pp.246-258, 2005.

M. H. Jee, K. Y. Hong, J. H. Park, J. S. Lee, H. S. Kim et al., New Mechanism of Hepatic Fibrogenesis: Hepatitis C Virus Infection Induces Transforming Growth Factor ?1 Production through Glucose-Regulated Protein 94, J. Virol, vol.90, pp.3044-3055, 2015.

N. Fausto, J. E. Mead, P. A. Gruppuso, A. Castilla, and S. B. Jakowlew, Effects of TGF-beta s in the liver: cell proliferation and fibrogenesis, Ciba Found. Symp, vol.157, pp.174-177, 1991.

I. Lua, Y. Li, J. A. Zagory, K. S. Wang, S. W. French et al., Characterization of hepatic stellate cells, portal fibroblasts, and mesothelial cells in normal and fibrotic livers, J. Hepatol, vol.64, pp.1137-1146, 2016.

Y. Kataria, R. J. Deaton, E. Enk, M. Jin, M. Petrauskaite et al., Retinoid and carotenoid status in serum and liver among patients at high-risk for liver cancer, BMC Gastroenterol, vol.16, p.30, 2016.

N. Benzoubir, C. Lejamtel, S. Battaglia, B. Testoni, B. Benassi et al., HCV core-mediated activation of latent TGF-? via thrombospondin drives the crosstalk between hepatocytes and stromal environment, J. Hepatol, vol.59, pp.1160-1168, 2013.

J. Y. Shin, W. Hur, J. S. Wang, J. W. Jang, C. W. Kim et al., HCV core protein promotes liver fibrogenesis via up-regulation of CTGF with TGF-beta1, Exp. Mol. Med, vol.37, pp.138-145, 2005.

P. Valva, P. Casciato, J. M. Diaz-carrasco, A. Gadano, O. Galdame et al., The role of serum biomarkers in predicting fibrosis progression in pediatric and adult hepatitis C virus chronic infection, PloS One, vol.6, 2011.

A. Castilla, J. Prieto, and N. Fausto, Transforming growth factors beta 1 and alpha in chronic liver disease. Effects of interferon alfa therapy, N. Engl. J. Med, vol.324, pp.933-940, 1991.

D. R. Nelson, R. P. Gonzalez-peralta, K. Qian, Y. Xu, C. G. Marousis et al., Transforming growth factor-beta 1 in chronic hepatitis C, J. Viral Hepat, vol.4, pp.29-35, 1997.

V. Paradis, D. Dargere, M. Vidaud, A. C. De-gouville, S. Huet et al., Expression of connective tissue growth factor in experimental rat and human liver fibrosis, Hepatol. Baltim. Md, vol.30, pp.968-976, 1999.

C. Hora, F. Negro, G. Leandro, C. M. Oneta, L. Rubbia-brandt et al.,

R. Malinverni, J. Gonvers, and J. Dufour, Connective tissue growth factor, steatosis and fibrosis in patients with chronic hepatitis C, Liver Int. Off. J. Int. Assoc. Study Liver, vol.28, pp.370-376, 2008.

L. Preisser, C. Miot, L. Guillou-guillemette, H. Beaumont, E. Foucher et al., IL-34 and macrophage colony-stimulating factor are overexpressed in hepatitis C virus fibrosis and induce profibrotic macrophages that promote collagen synthesis by hepatic stellate cells, Hepatol. Baltim. Md, vol.60, pp.1879-1890, 2014.

E. Mormone, Y. Lu, X. Ge, M. I. Fiel, and N. Nieto, Fibromodulin, an oxidative stresssensitive proteoglycan, regulates the fibrogenic response to liver injury in mice, Gastroenterology, vol.142, pp.612-621, 2012.

Z. Vadasz, O. Kessler, G. Akiri, S. Gengrinovitch, H. M. Kagan et al., Abnormal deposition of collagen around hepatocytes in Wilson's disease is associated with hepatocyte specific expression of lysyl oxidase and lysyl oxidase like protein-2, J. Hepatol, vol.43, pp.499-507, 2005.

V. Barry-hamilton, R. Spangler, D. Marshall, S. Mccauley, H. M. Rodriguez et al., Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment, Nat. Med, vol.16, pp.1009-1017, 2010.

S. B. Liu, N. Ikenaga, Z. Peng, D. Y. Sverdlov, A. Greenstein et al., Lysyl oxidase activity contributes to collagen stabilization during liver fibrosis progression and limits spontaneous fibrosis reversal in mice, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.30, pp.1599-1609, 2016.

N. Ikenaga, Z. Peng, K. A. Vaid, S. B. Liu, S. Yoshida et al., Selective targeting of lysyl oxidase-like 2 (LOXL2) suppresses hepatic fibrosis progression and accelerates its reversal, Gut, vol.66, pp.1697-1708, 2017.

Y. Li, Q. Zhang, Y. Liu, Z. Luo, L. Kang et al., , 2012.

, Hepatitis C virus activates Bcl-2 and MMP-2 expression through multiple cellular signaling pathways, J. Virol, vol.86, pp.12531-12543

R. J. Fontana, J. L. Dienstag, H. L. Bonkovsky, R. K. Sterling, D. Naishadham et al., Serum fibrosis markers are associated with liver disease progression in non-responder patients with chronic hepatitis C, Gut, vol.59, pp.1401-1409, 2010.

O. Núñez, A. Fernández-martínez, P. L. Majano, A. Apolinario, M. Gómez-gonzalo et al., Increased intrahepatic cyclooxygenase 2, matrix metalloproteinase 2, and matrix metalloproteinase 9 expression is associated with progressive liver disease in chronic hepatitis C virus infection: role of viral core and NS5A proteins, Gut, vol.53, pp.1665-1672, 2004.

Y. Murawaki, Y. Ikuta, M. Koda, and H. Kawasaki, Serum type III procollagen peptide, type IV collagen 7S domain, central triple-helix of type IV collagen and tissue inhibitor of metalloproteinases in patients with chronic viral liver disease: relationship to liver histology, Hepatol. Baltim. Md, vol.20, pp.780-787, 1994.

Y. Murawaki, Y. Ikuta, and H. Kawasaki, Clinical usefulness of serum tissue inhibitor of metalloproteinases (TIMP)-2 assay in patients with chronic liver disease in comparison with serum TIMP-1, 1999.

, Clin. Chim. Acta Int. J. Clin. Chem, vol.281, pp.109-120

M. J. Nielsen, S. S. Veidal, M. A. Karsdal, D. J. Ørsnes-leeming, B. Vainer et al.,

R. Hamatake, Z. D. Goodman, D. Schuppan, and K. Patel, Plasma Pro-C3 (N-terminal type III collagen propeptide) predicts fibrosis progression in patients with chronic hepatitis C, Liver Int. Off. J. Int. Assoc. Study Liver, vol.35, pp.429-437, 2015.

A. El-karef, M. Kaito, H. Tanaka, K. Ikeda, T. Nishioka et al., Expression of large tenascin-C splice variants by hepatic stellate cells/myofibroblasts in chronic hepatitis C, J. Hepatol, vol.46, pp.664-673, 2007.

J. H. Benbow, A. D. Elam, K. L. Bossi, D. L. Massengill, E. Brandon-warner et al., Analysis of Plasma Tenascin-C in Post-HCV Cirrhosis: A Prospective Study, 2018.

J. Kanta, S. Dooley, B. Delvoux, S. Breuer, T. D'amico et al., Tropoelastin expression is up-regulated during activation of hepatic stellate cells and in the livers of CCl(4)-cirrhotic rats, Liver, vol.22, pp.220-227, 2002.

Y. S. Seo, M. Y. Kim, S. U. Kim, B. S. Hyun, J. Y. Jang et al., Accuracy of transient elastography in assessing liver fibrosis in chronic viral hepatitis: A multicentre, retrospective study, Liver Int. Off. J. Int. Assoc. Study Liver, vol.35, pp.2246-2255, 2015.

N. Wang, J. P. Butler, and D. E. Ingber, Mechanotransduction across the cell surface and through the cytoskeleton, Science, vol.260, pp.1124-1127, 1993.

M. J. Paszek, N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg et al., Tensional homeostasis and the malignant phenotype, Cancer Cell, vol.8, pp.241-254, 2005.

P. A. Janmey, R. G. Wells, R. K. Assoian, and C. A. Mcculloch, From tissue mechanics to transcription factors, Differ. Res. Biol. Divers, vol.86, pp.112-120, 2013.

J. Ivaska, Unanchoring integrins in focal adhesions, Nat. Cell Biol, vol.14, pp.981-983, 2012.

S. Huang and D. E. Ingber, Cell tension, matrix mechanics, and cancer development, Cancer Cell, vol.8, pp.175-176, 2005.

S. S. Desai, J. C. Tung, V. X. Zhou, J. P. Grenert, Y. Malato et al., Physiological ranges of matrix rigidity modulate primary mouse hepatocyte function in part through hepatocyte nuclear factor 4 alpha, Hepatol. Baltim. Md, vol.64, pp.261-275, 2016.

R. P. Martins, J. D. Finan, F. Guilak, and D. A. Lee, Mechanical regulation of nuclear structure and function, Annu. Rev. Biomed. Eng, vol.14, pp.431-455, 2012.

S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti et al., Role of YAP/TAZ in mechanotransduction, Nature, vol.474, pp.179-183, 2011.

S. Dupont, Role of YAP/TAZ in cell-matrix adhesion-mediated signaling and mechanotransduction, Exp. Cell Res, vol.343, pp.42-53, 2016.

A. L. Olsen, S. A. Bloomer, E. P. Chan, M. D. Gaça, P. C. Georges et al., Hepatic stellate cells require a stiff environment for myofibroblastic differentiation, Am. J. Physiol. Gastrointest. Liver Physiol, vol.301, pp.110-118, 2011.

M. Guvendiren, M. Perepelyuk, R. G. Wells, and J. A. Burdick, Hydrogels with differential and patterned mechanics to study stiffness-mediated myofibroblastic differentiation of hepatic stellate cells, J. Mech. Behav. Biomed. Mater, vol.38, pp.198-208, 2014.

R. G. Wells, The role of matrix stiffness in regulating cell behavior, Hepatol. Baltim. Md, vol.47, pp.1394-1400, 2008.

P. B. Limaye, G. Alarcón, A. L. Walls, M. A. Nalesnik, G. K. Michalopoulos et al., Expression of specific hepatocyte and cholangiocyte transcription factors in human liver disease and embryonic development, Lab. Investig. J. Tech. Methods Pathol, vol.88, pp.865-872, 2008.

T. Nishikawa, A. Bell, J. M. Brooks, K. Setoyama, M. Melis et al., Resetting the transcription factor network reverses terminal chronic hepatic failure, J. Clin. Invest, vol.125, p.1533, 2015.

I. Vallianou, D. Dafou, N. Vassilaki, P. Mavromara, and M. Hadzopoulou-cladaras, Hepatitis C virus suppresses Hepatocyte Nuclear Factor 4 alpha, a key regulator of hepatocellular carcinoma, Int. J. Biochem. Cell Biol, vol.78, pp.315-326, 2016.

W. Tian, C. Hao, Z. Fan, X. Weng, H. Qin et al., , 2015.

, Myocardin related transcription factor A programs epigenetic activation of hepatic stellate cells, J. Hepatol, vol.62, pp.165-174

I. Mannaerts, S. B. Leite, S. Verhulst, S. Claerhout, N. Eysackers et al., The Hippo pathway effector YAP controls mouse hepatic stellate cell activation, J. Hepatol, vol.63, pp.679-688, 2015.

W. Cai, L. Lin, H. Hao, S. Zhang, F. Ma et al., Yes-associated protein/TEA domain family member and hepatocyte nuclear factor 4alpha (HNF4?) repress reciprocally to regulate hepatocarcinogenesis in rats and mice, Hepatol. Baltim. Md, vol.65, pp.1206-1221, 2017.

L. Xu, A. Y. Hui, E. Albanis, M. J. Arthur, S. M. O'byrne et al., Human hepatic stellate cell lines, LX-1 and LX-2: new tools for analysis of hepatic fibrosis, Gut, vol.54, pp.142-151, 2005.

A. Florimond, P. Chouteau, P. Bruscella, J. Le-seyec, E. Mérour et al., Human hepatic stellate cells are not permissive for hepatitis C virus entry and replication, Gut, vol.64, pp.957-965, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01063909

L. Aoudjehane, G. Bisch, O. Scatton, C. Granier, J. Gaston et al., Infection of Human Liver Myofibroblasts by Hepatitis C Virus: A Direct Mechanism of Liver Fibrosis in Hepatitis C, PloS One, vol.10, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01182769

B. Bartosch, Piecing together the key players of fibrosis in chronic hepatitis C: what roles do non-hepatic liver resident cell types play?, Gut, vol.64, pp.862-863, 2015.

E. G. Meissner, M. Mclaughlin, L. Matthews, A. M. Gharib, B. J. Wood et al., Simtuzumab treatment of advanced liver fibrosis in HIV and HCV-infected adults: results of a 6-month open-label safety trial, Liver Int. Off. J. Int. Assoc. Study Liver, vol.36, pp.1783-1792, 2016.

S. A. Gonzalez, M. I. Fiel, J. Sauk, P. W. Canchis, R. Liu et al., Inverse association between hepatic stellate cell apoptosis and fibrosis in chronic hepatitis C virus infection, J. Viral Hepat, vol.16, pp.141-148, 2009.

P. Lu, V. M. Weaver, and Z. Werb, The extracellular matrix: a dynamic niche in cancer progression, J. Cell Biol, vol.196, pp.395-406, 2012.

T. A. Wynn, Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases, J. Clin. Invest, vol.117, pp.524-529, 2007.

, TGF-?1 independent xylosyltransferase-induction after an UDP induced repression of the extracellular matrix in normal human dermal fibroblasts

, Joachim Kuhn, vol.1

, Georgstrasse, vol.11, 32545.

T. A. Wynn, Cellular and molecular mechanisms of fibrosis, J Pathol, vol.214, issue.2, pp.199-210, 2008.

X. Meng, D. J. Nikolic-paterson, and H. Y. Lan, TGF-?: the master regulator of fibrosis, Nat Rev Nephrol, vol.12, issue.6, pp.325-338, 2016.

R. T. Kendall and C. A. Feghali-bostwick, Fibroblasts in fibrosis: novel roles and mediators, Front Pharmacol, vol.5, 2014.

C. Frantz, K. M. Stewart, and V. M. Weaver, The extracellular matrix at a glance, J Cell Sci, vol.123, pp.4195-4200, 2010.

C. Pönighaus, J. Kuhn, K. Kleesiek, and C. Götting, Involvement of a cysteine protease in the secretion process of human xylosyltransferase I, Glycoconj J, vol.27, issue.3, pp.359-366, 2010.

J. Kuhn, C. Prante, S. Schön, C. Götting, and K. Kleesiek, Measurement of fibrosis marker xylosyltransferase I activity by HPLC electrospray ionization tandem mass spectrometry, Clin Chem, vol.52, issue.12, pp.2243-2249, 2006.

I. Faust, C. Roch, J. Kuhn, C. Prante, C. Knabbe et al., Human xylosyltransferase-I-a new marker for myofibroblast differentiation in skin fibrosis, Biochem Biophys Res Commun, vol.436, issue.3, pp.449-454, 2013.

J. C. Casanova, J. Kuhn, K. Kleesiek, and C. Götting, Heterologous expression and biochemical characterization of soluble human xylosyltransferase II, Biochem Biophys Res Commun, vol.365, issue.4, pp.678-684, 2008.

C. Götting, J. Kuhn, and K. Kleesiek, Human xylosyltransferases in health and disease, Cell Mol Life Sci, vol.64, issue.12, pp.1498-1517, 2007.

E. Condac, G. L. Dale, D. Bender-neal, B. Ferencz, R. Towner et al., Xylosyltransferase II is a significant contributor of circulating xylosyltransferase levels and platelets constitute an important source of xylosyltransferase in serum, Glycobiology, vol.19, issue.8, pp.829-833, 2009.

C. Götting, S. Sollberg, J. Kuhn, C. Weilke, C. Huerkamp et al., Serum xylosyltransferase: a new biochemical marker of the sclerotic process in systemic sclerosis, J Invest Dermatol, vol.112, issue.6, pp.919-924, 1999.

B. F. Eames, A. Singer, G. A. Smith, Z. A. Wood, Y. Yan et al., UDP xylose synthase 1 is required for morphogenesis and histogenesis of the craniofacial skeleton, Dev Biol, vol.341, issue.2, pp.400-415, 2010.

K. Holmborn, J. Habicher, Z. Kasza, A. S. Eriksson, B. Filipek-gorniok et al., On the roles and regulation of chondroitin sulfate and heparan sulfate in zebrafish pharyngeal cartilage morphogenesis, J Biol Chem, vol.287, issue.40, pp.33905-33916, 2012.

I. Faust, P. Traut, F. Nolting, J. Petschallies, E. Neumann et al., Human xylosyltransferases-mediators of arthrofibrosis? New pathomechanistic insights into arthrofibrotic remodeling after knee replacement therapy, Sci Rep, vol.5, p.12537, 2015.

S. Cicko, M. Grimm, K. Ayata, J. Beckert, A. Meyer et al., Uridine supplementation exerts anti-inflammatory and anti-fibrotic effects in an animal model of pulmonary fibrosis, Respir Res, vol.16, p.105, 2015.

C. Evaldsson, I. Rydén, and S. Uppugunduri, Anti-inflammatory effects of exogenous uridine in an animal model of lung inflammation, Int Immunopharmacol, vol.7, issue.8, pp.1025-1032, 2007.

R. P. Vieira, T. Müller, M. Grimm, . Gernler-v-von, B. Vetter et al., Purinergic receptor type 6 contributes to airway inflammation and remodeling in experimental allergic airway inflammation, Am J Respir Crit Care Med, vol.184, issue.2, pp.215-223, 2011.

J. B. Volmer, L. F. Thompson, and M. R. Blackburn, Ecto-5'-nucleotidase (CD73)-mediated adenosine production is tissue protective in a model of bleomycin-induced lung injury, J Immunol, vol.176, issue.7, pp.4449-4458, 2006.

C. Quast, C. Alter, Z. Ding, N. Borg, and J. Schrader, Adenosine Formed by CD73 on T Cells Inhibits Cardiac Inflammation and Fibrosis and Preserves Contractile Function in Transverse Aortic Constriction-Induced Heart Failure, Circ Heart Fail, vol.10, issue.4, 2017.

G. A. Mccomsey, U. A. Walker, C. B. Budhathoki, Z. Su, J. S. Currier et al., Uridine supplementation in the treatment of HIV lipoatrophy: results of ACTG 5229, AIDS, vol.24, issue.16, pp.2507-2515, 2010.

N. Venhoff, D. Lebrecht, C. Deveaud, B. Beauvoit, J. Bonnet et al., Oral uridine supplementation antagonizes the peripheral neuropathy and encephalopathy induced by antiretroviral nucleoside analogues, AIDS, vol.24, issue.3, pp.345-352, 2010.

, References (celles qui apparaissent dans le Online Methods sont surlignées en jaune)

P. Bonnafous, M. Perrault, L. Bihan, O. Bartosch, B. Lavillette et al., Characterization of hepatitis C virus pseudoparticles by cryo-transmission electron microscopy using functionalized magnetic nanobeads, J Gen Virol, vol.91, pp.1919-1949, 2010.

K. E. Coller, K. L. Berger, N. S. Heaton, J. D. Cooper, R. Yoon et al., RNA interference and single particle tracking analysis of hepatitis C virus endocytosis, PLoS Pathog, vol.5, p.1000702, 2009.

J. Blaising, P. L. Lévy, S. J. Polyak, M. Stanifer, S. Boulant et al., Arbidol inhibits viral entry by interfering with clathrin-dependent trafficking, Antiviral Res, vol.100, pp.215-224, 2013.

J. Blaising, P. L. Lévy, C. Gondeau, C. Phelip, M. Varbanov et al., Silibinin inhibits hepatitis C virus entry into hepatocytes by hindering clathrin-dependent trafficking, Cell Microbiol, vol.15, pp.1866-82, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01494096

M. Bathfield, D. 'agosto, F. Spitz, R. Charreyre, M. T. Delair et al., Versatile precursors of functional RAFT agents. Application to the synthesis of bio-related end-functionalized polymers, J Am Chem Soc, vol.128, pp.2546-2593, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01877426

M. Bathfield, D. 'agosto, F. Spitz, R. Charreyre, M. T. Pichot et al., Sub-micrometer sized hairy latex particles synthesized by dispersion polymerization using hydrophilic macromolecular RAFT agents, Macromol Rapid Comm, vol.28, pp.1540-1545, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01877424

P. Relogio, M. Bathfield, Z. Haftek-terreau, M. Beija, A. Favier et al., Biotin-end-functionalized highly fluorescent water-soluble polymers, Polym Chem, vol.4, pp.2968-81, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00867740

M. Bathfield, D. Daviot, D. 'agosto, F. Spitz, R. Ladavière et al., Synthesis of Lipid-alpha-end-Functionalized Chains by RAFT polymerization. Stabilization of Lipid/Polymer Particle Assemblies, Macromolecules, vol.41, pp.8346-53, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01877420

S. Adjili, A. Favier, J. Massin, Y. Bretonnière, W. Lacour et al., Synthesis of multifunctional lipid-polymer conjugates: application to the elaboration of bright far-red fluorescent lipid probes, RSC Adv, vol.4, pp.15569-78, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00990292

B. Rajwa, T. Bernas, H. Acker, J. Dobrucki, and J. P. Robinson, Singleand twophoton spectral imaging of intrinsic fluorescence of transformed human hepatocytes, Microscopy research and technique, vol.70, pp.869-79, 2007.

A. Favier, F. Agosto, M. Charreyre, and C. Pichot, Synthesis of N-acryloxysuccinimide copolymers by RAFT polymerization, as reactive building blocks with full control of composition and molecular weights, Polymer, vol.45, pp.7821-7851, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01877430

C. Chapel, C. Garcia, B. Bartosch, P. Roingeard, N. Zitzmann et al., Reduction of the infectivity of hepatitis C virus pseudoparticles by incorporation of misfolded glycoproteins induced by glucosidase inhibitors, J Gen Virol, vol.88, pp.1133-1176, 2007.

C. Cepraga, T. Gallavardin, S. Marotte, P. H. Lanoë, J. Mulatier et al., Biocompatible well-defined fluorophore-polymer conjugates for photodynamic therapy and two-photon imaging, Polym Chem, vol.4, pp.61-67, 2013.

N. Boens, W. Qin, N. Barasi?, J. Hofkens, M. Ameloot et al., Fluorescence Lifetime Standards for Time and Frequency Domain Fluorescence Spectroscopy, Anal Chem, vol.79, pp.2137-2186, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00137719

J. Thévenot, A. Troutier, J. L. Putaux, T. Delair, and C. Ladavière, Effect of the Polymer Nature on the Structural Organization of Lipid/Polymer Particle Assemblies, J Phys Chem B, vol.112, pp.13812-13834, 2008.

A. Troutier, T. Delair, C. Pichot, and C. Ladavière, Physicochemical and Interfacial Investigation of Lipid/Polymer Particle Assemblies. Langmuir, vol.21, pp.1305-1318, 2005.

K. J. Blight, J. A. Mckeating, J. Marcotrigiano, and C. M. Rice, Efficient replication of hepatitis C virus genotype 1a RNAs in cell culture, J Virol, vol.77, pp.3181-90, 2003.

D. Lavillette, A. Tarr, C. Voisset, P. Donot, and B. Bartosch, Characterization of host-range and cell entry properties of hepatitis C virus of major genotypes and subtypes, J Virol, vol.41, pp.265-74, 2005.

B. Bartosch, J. Dubuisson, and F. L. Cosset, Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes, J Exp Med, vol.197, pp.633-675, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00133783

D. Lavillette, B. Bartosch, D. Nourrisson, G. Verney, F. L. Cosset et al., Hepatitis C virus glycoproteins mediate low pH-dependent membrane fusion with liposomes, J Biol Chem, vol.281, pp.3909-3926, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00313675

J. Baumann and M. D. Fayer, Excitation transfer in disordered twodimensional and anisotropic threedimensional systems: Effects of spatial geometry on timeresolved observables, J Chem Phys, vol.85, p.4087, 1986.

A. Troutier and C. Ladavière, An overview of lipid membrane supported by colloidal particles, Adv Colloid Interf Sci, vol.133, pp.1-21, 2007.

K. Nakayama and M. Tamura, What is the true origin of the bright red-orange autofluorescence in the hepatocytes?, Hepatology, vol.51, pp.1083-1087, 2010.

M. Udagawa, Y. Horie, and C. Hirayama, Aberrant porphyrin metabolism in hepatocellular carcinoma, Biochem Med, vol.31, pp.131-140, 1984.

M. Gordillo, T. Evans, and V. Gouon-evans, Références bibliographiques 1, vol.142, pp.2094-2108, 2015.

D. P. Bogdanos, B. Gao, and M. E. Gershwin, Liver Immunology. Compr. Physiol, vol.3, pp.567-598, 2013.

A. W. Duncan, Frequent Aneuploidy Among Normal Human Hepatocytes, Gastroenterology, vol.142, pp.25-28, 2012.

M. E. Preziosi and S. P. Monga, Update on the Mechanisms of Liver Regeneration, Semin. Liver Dis, vol.37, pp.141-151, 2017.

P. Bedossa and V. Paradis, Liver extracellular matrix in health and disease, J. Pathol, vol.200, pp.504-515

S. L. Friedman, Hepatic Stellate Cells: Protean, Multifunctional, and Enigmatic Cells of the Liver, Physiol. Rev, vol.88, pp.125-172, 2008.

J. Poisson, Liver sinusoidal endothelial cells: Physiology and role in liver diseases, J. Hepatol, vol.66, pp.212-227, 2017.

F. Braet and E. Wisse, Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review, Comp. Hepatol, vol.1, p.1, 2002.

L. D. Deleve, X. Wang, and Y. Guo, Sinusoidal Endothelial Cells Prevent Rat Stellate Cell Activation and Promote Reversion to Quiescence, Hepatol. Baltim. Md, vol.48, pp.920-930, 2008.

J. García-pagán, J. Gracia-sancho, and J. Bosch, Functional aspects on the pathophysiology of portal hypertension in cirrhosis, J. Hepatol, vol.57, pp.458-461, 2012.

J. Ehling, CCL2-dependent infiltrating macrophages promote angiogenesis in progressive liver fibrosis, Gut, vol.63, pp.1960-1971, 2014.

D. Thabut and V. Shah, Intrahepatic angiogenesis and sinusoidal remodeling in chronic liver disease: New targets for the treatment of portal hypertension?, J. Hepatol, vol.53, pp.976-980, 2010.

B. Ding, Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis, Nature, vol.505, pp.97-102, 2014.

G. Marrone, The transcription factor KLF2 mediates hepatic endothelial protection and paracrine endothelial-stellate cell deactivation induced by statins, J. Hepatol, vol.58, pp.98-103, 2013.

J. G. Abraldes, Addition of Simvastatin to Standard Therapy for the Prevention of Variceal Rebleeding Does Not Reduce Rebleeding but Increases Survival in Patients With Cirrhosis, Gastroenterology, vol.150, 2016.

E. Liaskou, D. V. Wilson, and Y. H. Oo, Innate Immune Cells in Liver Inflammation, Mediators Inflamm, 2012.

E. Arriazu, Extracellular Matrix and Liver Disease, Antioxid. Redox Signal, vol.21, pp.1078-1097, 2014.

O. A. Gressner, R. Weiskirchen, and A. M. Gressner, Evolving concepts of liver fibrogenesis provide new diagnostic and therapeutic options, Comp. Hepatol, vol.6, p.7, 2007.

M. Klaas, The alterations in the extracellular matrix composition guide the repair of damaged liver tissue, Sci. Rep, vol.6, 2016.

R. G. Wells, The role of matrix stiffness in regulating cell behavior, Hepatology, vol.47, pp.1394-1400

P. Bornstein, Matricellular proteins: an overview, J. Cell Commun. Signal, vol.3, pp.163-165, 2009.

J. Huxley-jones, S. M. Foord, and M. R. Barnes, Drug discovery in the extracellular matrix, Drug Discov. Today, vol.13, pp.685-694, 2008.

V. H. Pomin and B. Mulloy, Glycosaminoglycans and Proteoglycans. Pharmaceuticals, vol.11, p.27, 2018.

F. N. Lamari, M. Militsopoulou, T. N. Mitropoulou, A. Hjerpe, and N. K. Karamanos, Analysis of glycosaminoglycan-derived disaccharides in biologic samples by capillary electrophoresis and protocol for sequencing glycosaminoglycans, Biomed. Chromatogr. BMC, vol.16, pp.95-102, 2002.

W. Wang, Sequencing of chondroitin sulfate oligosaccharides using a novel exolyase from a marine bacterium that degrades hyaluronan and chondroitin sulfate/dermatan sulfate, Biochem. J, vol.474, pp.3831-3848, 2017.

D. G. Seidler, J. Peter-katalinic, and A. D. Zamfir, Galactosaminoglycan Function and Oligosaccharide Structure Determination. Sci. World J, vol.7, pp.233-241, 2007.

M. Pikulski, A. Hargrove, S. H. Shabbir, E. V. Anslyn, and J. S. Brodbelt, Sequencing and Characterization of Oligosaccharides Using Infrared Multiphoton Dissociation and Boronic Acid Derivatization in a Quadrupole Ion Trap, J. Am. Soc. Mass Spectrom, vol.18, pp.2094-2106, 2007.

A. Fullár, Response of Hepatic Stellate Cells to TGFB1 Differs from the Response of Myofibroblasts. Decorin Protects against the Action of Growth Factor, Pathol. Oncol. Res, vol.23, pp.287-294, 2017.

R. Ciftciler, The importance of serum biglycan levels as a fibrosis marker in patients with chronic hepatitis B, J. Clin. Lab. Anal, vol.31, p.22109

J. M. Whitelock, J. Melrose, and R. V. Iozzo, Diverse Cell Signaling Events Modulated by Perlecan, Biochemistry, vol.47, pp.11174-11183, 2008.

M. S. Lord, The multifaceted roles of perlecan in fibrosis, Matrix Biol, pp.150-166, 2018.

T. N. Wight, Versican: a versatile extracellular matrix proteoglycan in cell biology, Curr. Opin. Cell Biol, vol.14, pp.617-623, 2002.

B. I. Ayerst, C. L. Merry, and A. J. Day, The Good the Bad and the Ugly of Glycosaminoglycans in, Tissue Engineering Applications. Pharmaceuticals, vol.10, 2017.

T. N. Bukong, S. B. Maurice, B. Chahal, D. F. Schaeffer, and P. J. Winwood, Versican: a novel modulator of hepatic fibrosis, Lab. Invest, vol.96, pp.361-374, 2016.

Y. Kim, P. Nijst, K. Kiefer, and W. H. Wilson-tang, Endothelial Glycocalyx as Biomarker for Cardiovascular Diseases: Mechanistic and Clinical Implications, Curr. Heart Fail. Rep, vol.14, pp.117-126, 2017.

J. Takagi, K. Strokovich, T. A. Springer, and T. Walz, Structure of integrin ?5?1 in complex with fibronectin, EMBO J, vol.22, pp.4607-4615, 2003.

C. R. Franco, Glycosaminoglycan chains from alpha5beta1 integrin are involved in fibronectin-dependent cell migration, Biochem. Cell Biol. Biochim. Biol. Cell, vol.87, pp.677-686, 2009.

E. J. Nam and P. W. Park, Shedding of Cell Membrane-Bound Proteoglycans, Methods Mol. Biol. Clifton NJ, vol.836, pp.291-305, 2012.

R. L. Chen and A. D. Lander, Mechanisms Underlying Preferential Assembly of Heparan Sulfate on Glypican-1, J. Biol. Chem, vol.276, pp.7507-7517, 2001.

J. Filmus, M. Capurro, J. Rast, and . Glypicans, Genome Biol, vol.9, p.224, 2008.

H. Sakane, H. Yamamoto, S. Matsumoto, A. Sato, and A. Kikuchi, Localization of glypican-4 in different membrane microdomains is involved in the regulation of Wnt signaling, J Cell Sci, vol.125, pp.449-460, 2012.

T. Manon-jensen, Y. Itoh, and J. R. Couchman, Proteoglycans in health and disease: the multiple roles of syndecan shedding, FEBS J, vol.277, pp.3876-3889

X. Lin, Functions of heparan sulfate proteoglycans in cell signaling during development, Development, vol.131, pp.6009-6021, 2004.

M. Suflita, L. Fu, W. He, M. Koffas, and R. J. Linhardt, Heparin and related polysaccharides: Synthesis using recombinant enzymes and metabolic engineering, Appl. Microbiol. Biotechnol, vol.99, pp.7465-7479, 2015.

J. R. Bishop, M. Schuksz, and J. D. Esko, Heparan sulphate proteoglycans fine-tune mammalian physiology, Nature, vol.446, pp.1030-1037, 2007.

R. J. Linhardt, Claude S. Hudson Award address in carbohydrate chemistry. Heparin: structure and activity, J. Med. Chem, vol.46, pp.2551-2564, 2003.

M. Wakao, Synthesis of a chondroitin sulfate disaccharide library and a GAG-binding protein interaction analysis, Bioorg. Med. Chem. Lett, vol.25, pp.1407-1411, 2015.

J. E. Silbert and G. Sugumaran, Biosynthesis of Chondroitin/Dermatan Sulfate, IUBMB Life, vol.54, pp.177-186

C. Abeijon, E. C. Mandon, and C. B. Hirschberg, Transporters of nucleotide sugars, nucleotide sulfate and ATP in the Golgi apparatus, Trends Biochem. Sci, vol.22, pp.203-207, 1997.

T. H. Vu and Z. Werb, Matrix metalloproteinases: effectors of development and normal physiology, Genes Dev, vol.14, pp.2123-2133, 2000.

A. D. Theocharis, Cell-matrix interactions: focus on proteoglycan-proteinase interplays and pharmacological targeting in cancer, FEBS J, vol.281, pp.5023-5042, 2014.

Y. Itoh, Membrane-type matrix metalloproteinases: Their functions and regulations, Matrix Biol. 44, vol.46, pp.207-223, 2015.

S. Duarte, J. Baber, T. Fujii, and A. J. Coito, Matrix metalloproteinases in liver injury, repair and fibrosis, Matrix Biol, pp.147-156, 2015.

S. Milani, Differential Expression of Matrix-Metalloproteinase-1 and-2 Genes in Normal and Fibrotic Human Liver, Am. J. Pathol, vol.144, pp.528-537, 1994.

T. Hamada, C. Fondevila, R. W. Busuttil, and A. J. Coito, Metalloproteinase-9 deficiency protects against hepatic ischemia/reperfusion injury, Hepatology, vol.47, pp.186-198

E. R. Motrescu, Matrix metalloproteinase-11/stromelysin-3 exhibits collagenolytic function against collagen VI under normal and malignant conditions, Oncogene, vol.27, pp.6347-6355, 2008.

G. A. Mcquibban, Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo, Blood, vol.100, pp.1160-1167, 2002.

J. Gaffney, I. Solomonov, E. Zehorai, and I. Sagi, Multilevel regulation of matrix metalloproteinases in tissue homeostasis indicates their molecular specificity in vivo, Matrix Biol, pp.191-199, 2015.

L. Przemyslaw, H. A. Boguslaw, S. Elzbieta, and S. M. Malgorzata, ADAM and ADAMTS family proteins and their role in the colorectal cancer etiopathogenesis, BMB Rep, vol.46, pp.139-150, 2013.

L. J. Mccawley and L. M. Matrisian, Matrix metalloproteinases: they're not just for matrix anymore! Curr, Opin. Cell Biol, vol.13, pp.534-540, 2001.

H. , K. Bartlett, A. H. Chen, Y. Park, and P. W. , Molecular and Cellular Mechanisms of Ectodomain Shedding, Anat. Rec. Hoboken NJ, vol.293, pp.925-937, 2007.

D. L. Wheeler, K. J. Ness, T. D. Oberley, and A. K. Verma, Protein Kinase C? Is Linked to 12O-tetradecanoylphorbol-13-acetate-induced Tumor Necrosis Factor-? Ectodomain Shedding and the Development of Metastatic Squamous Cell Carcinoma in Protein Kinase C? Transgenic Mice, Cancer Res, vol.63, pp.6547-6555, 2003.

Y. Izumi, A metalloprotease-disintegrin, MDC9/meltrin-gamma/ADAM9 and PKCdelta are involved in TPA-induced ectodomain shedding of membrane-anchored heparin-binding EGF-like growth factor, EMBO J, vol.17, pp.7260-7272, 1998.

W. Thabard, M. Collette, R. Bataille, and M. Amiot, Protein kinase C delta and eta isoenzymes control the shedding of the interleukin 6 receptor alpha in myeloma cells, Biochem. J, vol.358, pp.193-200, 2001.

V. Matthews, Cellular Cholesterol Depletion Triggers Shedding of the Human Interleukin6 Receptor by ADAM10 and ADAM17 (TACE), J. Biol. Chem, vol.278, pp.38829-38839, 2003.

B. Tresckow and . Von, Depletion of Cellular Cholesterol and Lipid Rafts Increases Shedding of CD30, J. Immunol, vol.172, pp.4324-4331, 2004.

M. Phong, Molecular mechanisms of L-selectin-induced co-localization in rafts and shedding

, Biochem. Biophys. Res. Commun, vol.300, pp.563-569, 2003.

M. Shi, K. Dennis, J. J. Peschon, R. Chandrasekaran, and K. Mikecz, Antibody-Induced Shedding of CD44 from Adherent Cells Is Linked to the Assembly of the Cytoskeleton, J. Immunol, vol.167, pp.123-131, 2001.

M. L. Fitzgerald, Z. Wang, P. W. Park, G. Murphy, and M. Bernfield, Shedding of Syndecan-1 and-4 Ectodomains Is Regulated by Multiple Signaling Pathways and Mediated by a Timp-3Sensitive Metalloproteinase, J. Cell Biol, vol.148, pp.811-824, 2000.

A. Brill, Oxidative stress activates ADAM17/TACE and induces its target receptor shedding in platelets in a p38-dependent fashion, Cardiovasc. Res, vol.84, pp.137-144, 2009.

J. Kahn, B. Walcheck, G. I. Migaki, M. A. Jutila, and T. K. Kishimoto, Calmodulin Regulates LSelectin Adhesion Molecule Expression and Function through a Protease-Dependent Mechanism, Cell, vol.92, pp.809-818, 1998.

O. Nagano, Cell-matrix interaction via CD44 is independently regulated by different metalloproteinases activated in response to extracellular Ca2+ influx and PKC activation, J. Cell Biol, vol.165, pp.893-902, 2004.

K. Reiss, ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and ?catenin nuclear signalling, EMBO J, vol.24, pp.742-752, 2005.

M. J. Lavoie and D. J. Selkoe, The Notch Ligands, Jagged and Delta, Are Sequentially Processed by ?-Secretase and Presenilin/?-Secretase and Release Signaling Fragments, J. Biol. Chem, vol.278, pp.34427-34437, 2003.

J. J. Peschon, An essential role for ectodomain shedding in mammalian development, Science, vol.282, pp.1281-1284, 1998.

K. J. Garton, Stimulated Shedding of Vascular Cell Adhesion Molecule 1 (VCAM-1) Is Mediated by Tumor Necrosis Factor-?-converting Enzyme (ADAM 17), J. Biol. Chem, vol.278, pp.37459-37464, 2003.

S. W. Sunnarborg, Tumor Necrosis Factor-? Converting Enzyme (TACE) Regulates Epidermal Growth Factor Receptor Ligand Availability, J. Biol. Chem, vol.277, pp.12838-12845, 2002.

L. F. Jackson, Defective valvulogenesis in HB-EGF and TACE-null mice is associated with aberrant BMP signaling, EMBO J, vol.22, pp.2704-2716, 2003.

K. Elenius, A Novel Juxtamembrane Domain Isoform of HER4/ErbB4 ISOFORMSPECIFIC TISSUE DISTRIBUTION AND DIFFERENTIAL PROCESSING IN RESPONSE TO PHORBOL ESTER, J. Biol. Chem, vol.272, pp.26761-26768, 1997.

K. Hori, A. Sen, and S. Artavanis-tsakonas, Notch signaling at a glance, J Cell Sci, vol.126, pp.2135-2140, 2013.

C. Sato, G. Zhao, and M. X. Ilagan, An Overview of Notch Signaling in Adult Tissue Renewal and Maintenance, Curr. Alzheimer Res, vol.9, pp.227-240, 2012.

A. J. Groot and M. A. Vooijs, The Role of Adams in Notch Signaling, Adv. Exp. Med. Biol, vol.727, pp.15-36, 2012.

M. K. Sethi, Molecular Cloning of a Xylosyltransferase That Transfers the Second Xylose to O-Glucosylated Epidermal Growth Factor Repeats of Notch, J. Biol. Chem, vol.287, pp.2739-2748, 2012.

Z. Li, Structural basis of Notch O-glucosylation and O-xylosylation by mammalian protein-O-glucosyltransferase 1 (POGLUT1), Nat. Commun, vol.8, 2017.

T. V. Lee, A. Pandey, and H. Jafar-nejad, Xylosylation of the Notch receptor preserves the balance between its activation by trans-Delta and inhibition by cis-ligands in Drosophila, PLOS Genet, vol.13, p.1006723, 2017.

N. Tsoukalas, Advanced small cell lung cancer (SCLC): new challenges and new expectations, Ann. Transl. Med, vol.6, 2018.

E. M. De-francesco, M. Maggiolini, and A. M. Musti, Crosstalk between Notch, HIF-1? and GPER in Breast Cancer EMT, Int. J. Mol. Sci, vol.19, 2018.

A. Harbuzariu, The Role of Notch Signaling and Leptin-Notch Crosstalk in Pancreatic Cancer, Medicines, vol.5, p.68, 2018.

B. Gil-garcía and V. Baladrón, The complex role of NOTCH receptors and their ligands in the development of hepatoblastoma, cholangiocarcinoma and hepatocellular carcinoma, Biol. Cell, vol.108, pp.29-40, 2016.

F. X. Gomis-rüth, Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1, Nature, vol.389, pp.77-81, 1997.

V. Arpino, M. Brock, and S. E. Gill, The role of TIMPs in regulation of extracellular matrix proteolysis, Matrix Biol. 44, vol.46, pp.247-254, 2015.

R. A. Black, TIMP3 checks inflammation, Nat. Genet, vol.36, pp.934-935, 2004.

H. Stanton, The activation of ProMMP-2 (gelatinase A) by HT1080 fibrosarcoma cells is promoted by culture on a fibronectin substrate and is concomitant with an increase in processing of MT1-MMP (MMP-14) to a 45 kDa form, J. Cell Sci, vol.111, pp.2789-2798, 1998.

M. T. Jackson, B. Moradi, M. M. Smith, C. J. Jackson, and C. B. Little, Activation of matrix metalloproteinases 2, 9, and 13 by activated protein C in human osteoarthritic cartilage chondrocytes, Arthritis Rheumatol. Hoboken NJ, vol.66, pp.1525-1536, 2014.

H. Ra, Control of Promatrilysin (MMP7) Activation and Substrate-specific Activity by Sulfated Glycosaminoglycans, J. Biol. Chem, vol.284, pp.27924-27932, 2009.

J. Oh, The Membrane-Anchored MMP Inhibitor RECK Is a Key Regulator of Extracellular Matrix Integrity and Angiogenesis, Cell, vol.107, pp.789-800, 2001.

S. Pasco, J. Monboisse, and N. Kieffer, The ?3(IV)185-206 Peptide from Noncollagenous Domain 1 of Type IV Collagen Interacts with a Novel Binding Site on the ?3Subunit of Integrin ?v?3 and Stimulates Focal Adhesion Kinase and Phosphatidylinositol 3-Kinase Phosphorylation, J. Biol. Chem, vol.275, pp.32999-33007, 2000.

Y. Kim, Endostatin Inhibits Endothelial and Tumor Cellular Invasion by Blocking the Activation and Catalytic Activity of Matrix Metalloproteinase 2, Cancer Res, vol.60, pp.5410-5413, 2000.

S. Rajagopalan, X. P. Meng, S. Ramasamy, D. G. Harrison, and Z. S. Galis, Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability, J. Clin. Invest, vol.98, pp.2572-2579, 1996.

B. H. Rauch, E. Bretschneider, M. Braun, and K. Schrör, Factor Xa Releases Matrix Metalloproteinase-2 (MMP-2) From Human Vascular Smooth Muscle Cells and Stimulates the Conversion of Pro-MMP-2 to MMP-2: Role of MMP-2 in Factor Xa-Induced DNA Synthesis and Matrix Invasion, Circ. Res, vol.90, pp.1122-1127, 2002.

V. A. Morozov and S. Lagaye, Hepatitis C virus: Morphogenesis, infection and therapy, World J. Hepatol, vol.10, pp.186-212, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02332126

J. P. Messina, Global Distribution and Prevalence of Hepatitis C Virus Genotypes, Hepatol. Baltim. Md, vol.61, pp.77-87, 2015.

K. M. Hanafiah, J. Groeger, A. D. Flaxman, and S. T. Wiersma, Global epidemiology of hepatitis C virus infection: New estimates of age-specific antibody to HCV seroprevalence, Hepatology, vol.57, pp.1333-1342

I. Schietroma, Hepatitis C Virus and Hepatocellular Carcinoma: Pathogenetic Mechanisms and Impact of Direct-Acting Antivirals, Open Virol. J, vol.12, pp.16-25, 2018.

A. L. Cox, Global control of hepatitis C virus, Science, vol.349, pp.790-791, 2015.

Q. L. Choo, Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome, Science, vol.244, pp.359-362, 1989.

E. Piver, A. Bull, P. Roingeard, and J. Meunier, Hépatite C : le serial killer photographié plus de 25 ans après sa mise en examen. médecine/sciences, vol.33, pp.720-723, 2017.

L. T. Yeung, S. M. King, and E. A. Roberts, Mother-to-infant transmission of hepatitis C virus, Hepatology, vol.34, pp.223-229

C. B. Polis, S. N. Shah, K. E. Johnson, and A. Gupta, Impact of Maternal HIV Coinfection on the Vertical Transmission of Hepatitis C Virus: A Meta-analysis, Clin. Infect. Dis, vol.44, pp.1123-1131, 2007.

N. F. Fletcher, Hepatitis C virus infection of cholangiocarcinoma cell lines, J. Gen. Virol, vol.96, pp.1380-1388, 2015.

P. Lozach, DC-SIGN and L-SIGN Are High Affinity Binding Receptors for Hepatitis C Virus Glycoprotein E2, J. Biol. Chem, vol.278, pp.20358-20366, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01061433

J. P. Gardner, L-SIGN (CD 209L) is a liver-specific capture receptor for hepatitis C virus, Proc. Natl. Acad. Sci, vol.100, pp.4498-4503, 2003.

S. Wang, DC-SIGN mediates avian H5N1 influenza virus infection in cis and in trans, Biochem. Biophys. Res. Commun, vol.373, pp.561-566, 2008.

N. Plazolles, Pivotal Advance: The promotion of soluble DC-SIGN release by inflammatory signals and its enhancement of cytomegalovirus-mediated cis-infection of myeloid dendritic cells, J. Leukoc. Biol, vol.89, pp.329-342

T. B. Geijtenbeek, DC-SIGN, a Dendritic Cell-Specific HIV-1-Binding Protein that Enhances trans-Infection of T Cells, Cell, vol.100, pp.587-597, 2000.

S. Shafti-keramat, Different Heparan Sulfate Proteoglycans Serve as Cellular Receptors for Human Papillomaviruses, J. Virol, vol.77, pp.13125-13135, 2003.

L. De-witte, Syndecan-3 is a dendritic cell-specific attachment receptor for HIV-1, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.19464-19469, 2007.

A. Schulze, P. Gripon, and S. Urban, Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans, Hepatol. Baltim. Md, vol.46, pp.1759-1768, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00690474

P. G. Spear, Herpes simplex virus: receptors and ligands for cell entry, Cell. Microbiol, vol.6, pp.401-410, 2004.

T. Compton, D. M. Nowlin, and N. R. Cooper, Initiation of human cytomegalovirus infection requires initial interaction with cell surface heparan sulfate, Virology, vol.193, pp.834-841, 1993.

P. Hilgard and R. Stockert, Heparan Sulfate Proteoglycans Initiate Dengue Virus Infection of Hepatocytes, Hepatology, vol.32, pp.1069-1077, 2000.

Q. Shi, J. Jiang, and G. Luo, Syndecan-1 Serves as the Major Receptor for Attachment of Hepatitis C Virus to the Surfaces of Hepatocytes, J. Virol, vol.87, pp.6866-6875, 2013.

B. Grigorov, Hepatitis C virus infection propagates through interactions between Syndecan-1 and CD81 and impacts the hepatocyte glycocalyx, Cell. Microbiol, vol.19, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01792609

M. Lefèvre, D. J. Felmlee, M. Parnot, T. F. Baumert, and C. Schuster, Syndecan 4 Is Involved in Mediating HCV Entry through Interaction with Lipoviral Particle-Associated Apolipoprotein E, PLOS ONE, vol.9, p.95550, 2014.

H. Fan, Attachment and Postattachment Receptors Important for Hepatitis C Virus Infection and Cell-to-Cell Transmission, J. Virol, vol.91, 2017.

Z. Miao, Regulated Entry of Hepatitis C Virus into Hepatocytes, Viruses, vol.9, 2017.

V. Agnello, G. Ábel, M. Elfahal, G. B. Knight, and Q. Zhang, Hepatitis C virus and other Flaviviridae viruses enter cells via low density lipoprotein receptor, Proc. Natl. Acad. Sci. U. S. A, vol.96, pp.12766-12771, 1999.

E. Scarselli, The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus, EMBO J, vol.21, pp.5017-5025, 2002.

B. Bartosch, An Interplay between Hypervariable Region 1 of the Hepatitis C Virus E2 Glycoprotein, the Scavenger Receptor BI, and High-Density Lipoprotein Promotes both Enhancement of Infection and Protection against Neutralizing Antibodies, J. Virol, vol.79, pp.8217-8229, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00313682

Q. Ding, M. Von-schaewen, and A. Ploss, The Impact of Hepatitis C Virus Entry on Viral Tropism, Cell Host Microbe, vol.16, pp.562-568, 2014.

P. Pileri, Binding of Hepatitis C Virus to CD81, Science, vol.282, pp.938-941, 1998.

J. Diao, Hepatitis C virus induces epidermal growth factor receptor activation via CD81 binding for viral internalization and entry, J. Virol, vol.86, pp.10935-10949, 2012.

B. D. Lindenbach and C. M. Rice, The ins and outs of hepatitis C virus entry and assembly, Nat. Rev. Microbiol, vol.11, pp.688-700, 2013.

D. N. Martin and S. L. Uprichard, Identification of transferrin receptor 1 as a hepatitis C virus entry factor, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.10777-10782, 2013.

C. Fillebeen and K. Pantopoulos, Hepatitis C Virus Infection Causes Iron Deficiency in Huh7.5.1 Cells, PLoS ONE, vol.8, 2013.

M. Mehrez, D. Sa-fattah, N. Aa-azeem, M. Saleh, and K. Mostafa, Hemochromatosis Gene Polymorphism as a Predictor of Sustained Virological Response to Antiviral Treatment in Egyptian Chronic Hepatitis C Patients, Euroasian J. Hepato-Gastroenterol, vol.7, pp.154-157, 2017.

M. J. Evans, Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry, Nature, vol.446, pp.801-805, 2007.

S. Liu, Tight Junction Proteins Claudin-1 and Occludin Control Hepatitis C Virus Entry and Are Downregulated during Infection To Prevent Superinfection, J. Virol, vol.83, 2009.

A. Ploss, Human occludin is a hepatitis C virus entry factor required for infection of mouse cells, Nature, vol.457, pp.882-886, 2009.

B. Sainz, Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor, Nat. Med, vol.18, pp.281-285, 2012.

Y. Ni, Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes, Gastroenterology, vol.146, pp.1070-1083, 2014.

E. Blanchard, Hepatitis C Virus Entry Depends on Clathrin-Mediated Endocytosis, J. Virol, vol.80, pp.6964-6972, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00105504

J. Blaising, Silibinin inhibits hepatitis C virus entry into hepatocytes by hindering clathrindependent trafficking, Cell. Microbiol, vol.15, pp.1866-1882, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01494096

S. Haid, T. Pietschmann, and E. Pécheur, Low pH-dependent Hepatitis C Virus Membrane Fusion Depends on E2 Integrity, Target Lipid Composition, and Density of Virus Particles, J. Biol. Chem, vol.284, pp.17657-17667, 2009.

D. Lavillette, Hepatitis C Virus Glycoproteins Mediate Low pH-dependent Membrane Fusion with Liposomes, J. Biol. Chem, vol.281, pp.3909-3917, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00313675

I. Romero-brey, Three-Dimensional Architecture and Biogenesis of Membrane Structures Associated with Hepatitis C Virus Replication, PLoS Pathog, vol.8, 2012.

J. Dubuisson and F. Cosset, Virology and cell biology of the hepatitis C virus life cycle-An update, J. Hepatol, vol.61, issue.S3, p.13, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01140479

C. L. Jopling, M. Yi, A. M. Lancaster, S. M. Lemon, and P. Sarnow, Modulation of Hepatitis C Virus RNA Abundance by a Liver-Specific MicroRNA, Science, vol.309, pp.1577-1581, 2005.

L. Chatel-chaix and R. Bartenschlager, Dengue Virus-and Hepatitis C Virus-Induced Replication and Assembly Compartments: the Enemy Inside-Caught in the Web, J. Virol, vol.88, pp.5907-5911, 2014.

M. B. Zeisel, E. Crouchet, T. F. Baumert, and C. Schuster, Host-Targeting Agents to Prevent and Cure Hepatitis C Virus Infection, Viruses, vol.7, pp.5659-5685, 2015.

V. Jirasko, Structural and Functional Studies of Nonstructural Protein 2 of the Hepatitis C Virus Reveal Its Key Role as Organizer of Virion Assembly, PLOS Pathog, vol.6, p.1001233, 2010.

M. Zayas, G. Long, V. Madan, and R. Bartenschlager, Coordination of Hepatitis C Virus Assembly by Distinct Regulatory Regions in Nonstructural Protein 5A, PLoS Pathog, vol.12, 2016.

A. Boyer, The Association of Hepatitis C Virus Glycoproteins with Apolipoproteins E and B Early in Assembly Is Conserved in Lipoviral Particles, J. Biol. Chem, vol.289, pp.18904-18913, 2014.

Y. Ariumi, The ESCRT System Is Required for Hepatitis C Virus Production, PLoS ONE, vol.6, 2011.

G. H. Syed, M. Khan, S. Yang, and A. Siddiqui, Hepatitis C Virus Lipoviroparticles Assemble in the Endoplasmic Reticulum (ER) and Bud off from the ER to the Golgi Compartment in COPII Vesicles, J. Virol, vol.91, 2017.

J. M. Timpe, Hepatitis C virus cell-cell transmission in hepatoma cells in the presence of neutralizing antibodies, Hepatology, vol.47, pp.17-24

N. Barretto, B. Sainz, S. Hussain, and S. L. Uprichard, Determining the Involvement and Therapeutic Implications of Host Cellular Factors in Hepatitis C Virus Cell-to-Cell Spread, J. Virol, vol.88, pp.5050-5061, 2014.

F. Xiao, Hepatitis C Virus Cell-Cell Transmission and Resistance to Direct-Acting Antiviral Agents, PLoS Pathog, vol.10, 2014.

M. B. Zeisel, J. Lupberger, I. Fofana, and T. F. Baumert, Host-targeting agents for prevention and treatment of chronic hepatitis C-Perspectives and challenges, J. Hepatol, vol.58, pp.375-384, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00741430

S. Vegna, NOD1 Participates in the Innate Immune Response Triggered by Hepatitis C Virus Polymerase, J. Virol, vol.90, pp.6022-6035, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02187346

S. M. Horner, Activation and evasion of antiviral innate immunity by hepatitis C virus, J. Mol. Biol, vol.426, pp.1198-1209, 2014.

. Asselah, Traitement de l'hépatite chronique c, J Pharm Clin, 2006.

T. J. Liang and M. G. Ghany, Current and Future Therapies for Hepatitis C Virus Infection, N. Engl. J. Med, vol.368, pp.1907-1917, 2013.

, Un médicament efficace contre l'hépatite C vient d'être autorisé à la vente en pharmacie, p.25, 2018.

M. Chang, Metabolic alterations and hepatitis C: From bench to bedside, World J. Gastroenterol, vol.22, pp.1461-1476, 2016.

A. Banerjee, K. Meyer, B. Mazumdar, R. B. Ray, and R. Ray, Hepatitis C Virus Differentially Modulates Activation of Forkhead Transcription Factors and Insulin-Induced Metabolic Gene Expression, J. Virol, vol.84, pp.5936-5946, 2010.

I. Shoji, L. Deng, and H. Hotta, Molecular Mechanism of Hepatitis C Virus-Induced Glucose Metabolic Disorders, Front. Microbiol, vol.2, 2012.

I. Qadri, Induced oxidative stress and activated expression of manganese superoxide dismutase during hepatitis C virus replication: role of JNK, p38 MAPK and AP-1, Biochem. J, vol.378, pp.919-928, 2004.

C. Brault, Glutathione peroxidase 4 is reversibly induced by HCV to control lipid peroxidation and to increase virion infectivity, Gut, vol.65, pp.144-154, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01850307

H. Liang and W. F. Ward, PGC-1alpha: a key regulator of energy metabolism, Adv. Physiol. Educ, vol.30, pp.145-151, 2006.

M. Y. Sheikh, J. Choi, I. Qadri, J. E. Friedman, and A. J. Sanyal, Hepatitis C virus infection: molecular pathways to metabolic syndrome, Hepatol. Baltim. Md, vol.47, pp.2127-2133, 2008.

R. Moucari, Insulin resistance in chronic hepatitis C: association with genotypes 1 and 4, serum HCV RNA level, and liver fibrosis, Gastroenterology, vol.134, pp.416-423, 2008.

K. Patel, Insulin resistance is independently associated with significant hepatic fibrosis in Asian chronic hepatitis C genotype 2 or 3 patients, J. Gastroenterol. Hepatol, vol.26, pp.1182-1188, 2011.

T. Sersté, Metabolic disorders associated with chronic hepatitis C: impact of genotype and ethnicity, Liver Int. Off. J. Int. Assoc. Study Liver, vol.30, pp.1131-1136, 2010.

D. L. Diamond, Temporal Proteome and Lipidome Profiles Reveal Hepatitis C VirusAssociated Reprogramming of Hepatocellular Metabolism and Bioenergetics, PLoS Pathog, vol.6, 2010.

K. Sugiyama, Prominent Steatosis with Hypermetabolism of the Cell Line Permissive for Years of Infection with Hepatitis C Virus, PLoS ONE, vol.9, 2014.

S. D. Woodhouse, Transcriptome Sequencing, Microarray, and Proteomic Analyses Reveal Cellular and Metabolic Impact of Hepatitis C Virus Infection In Vitro, Hepatol. Baltim. Md, vol.52, pp.443-453, 2010.

S. Fabiani, P. Fallahi, S. M. Ferrari, M. Miccoli, and A. Antonelli, Hepatitis C virus infection and development of type 2 diabetes mellitus: Systematic review and meta-analysis of the literature, Rev. Endocr. Metab. Disord, 2018.

G. Gastaldi, N. Goossens, S. Clément, and F. Negro, Current level of evidence on causal association between hepatitis C virus and type 2 diabetes: A review, J. Adv. Res, vol.8, pp.149-159, 2017.

P. Bedossa and V. Paradis, Liver extracellular matrix in health and disease, J. Pathol, vol.200, 2003.

S. L. Friedman, Evolving challenges in hepatic fibrosis, Nat. Rev. Gastroenterol. Hepatol, vol.7, pp.425-436, 2010.

G. Sebastiani, K. Gkouvatsos, and K. Pantopoulos, Chronic hepatitis C and liver fibrosis, World J. Gastroenterol. WJG, vol.20, pp.11033-11053, 2014.

A. Florimond, Human hepatic stellate cells are not permissive for hepatitis C virus entry and replication, Gut, vol.64, pp.957-965, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01063909

L. Aoudjehane, Infection of Human Liver Myofibroblasts by Hepatitis C Virus: A Direct Mechanism of Liver Fibrosis in Hepatitis C, PLoS ONE, vol.10, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01182769

P. B. Devhare, Exosome-Mediated Intercellular Communication between Hepatitis C Virus-Infected Hepatocytes and Hepatic Stellate Cells, J. Virol, vol.91, pp.2225-2241, 2017.

Y. Wang, J. Li, X. Wang, M. Sang, and W. Ho, Hepatic stellate cells, liver innate immunity, and hepatitis C virus, J. Gastroenterol. Hepatol, vol.28, pp.112-115, 2013.

R. Bataller, Y. Paik, J. N. Lindquist, J. J. Lemasters, and D. A. Brenner, Hepatitis C virus core and nonstructural proteins induce fibrogenic effects in hepatic stellate cells, Gastroenterology, vol.126, pp.529-540, 2004.

J. Iqbal, S. Mcrae, K. Banaudha, T. Mai, and G. Waris, Mechanism of Hepatitis C Virus (HCV)-induced Osteopontin and Its Role in Epithelial to Mesenchymal Transition of Hepatocytes, J. Biol. Chem, vol.288, pp.36994-37009, 2013.

G. Gong, G. Waris, R. Tanveer, and A. Siddiqui, Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-?B, Proc. Natl. Acad. Sci. U. S. A, vol.98, pp.9599-9604, 2001.

C. Bureau, Nonstructural 3 Protein of Hepatitis C Virus Triggers an Oxidative Burst in Human Monocytes via Activation of NADPH Oxidase, J. Biol. Chem, vol.276, pp.23077-23083, 2001.

K. Li, T. Prow, S. M. Lemon, and M. R. Beard, Cellular response to conditional expression of hepatitis C virus core protein in Huh7 cultured human hepatoma cells, Hepatol. Baltim. Md, vol.35, pp.1237-1246, 2002.

M. Bauer and I. Bauer, Heme oxygenase-1: redox regulation and role in the hepatic response to oxidative stress, Antioxid. Redox Signal, vol.4, pp.749-758, 2002.

M. Y. Abdalla, M. M. Mathahs, and I. M. Ahmad, Reduced heme oxygenase-1 expression in steatotic livers infected with hepatitis C virus, Eur. J. Intern. Med, vol.23, pp.649-655, 2012.

A. Schulze-krebs, Hepatitis C virus-replicating hepatocytes induce fibrogenic activation of hepatic stellate cells, Gastroenterology, vol.129, pp.246-258, 2005.

W. Lin, HCV regulates TGF-?1 production through the generation of reactive oxygen species in an NF?B-dependent manner, Gastroenterology, vol.138, 2010.

A. Mazzocca, Binding of Hepatitis C Virus Envelope Protein E2 to CD81 Up-regulates Matrix Metalloproteinase-2 in Human Hepatic Stellate Cells, J. Biol. Chem, vol.280, pp.11329-11339, 2005.

J. Cheng, Activation of hepatic stellate cells by the ubiquitin C-terminal hydrolase 1 protein secreted from hepatitis C virus-infected hepatocytes, Sci. Rep, vol.7, 2017.

P. Failli, The mitogenic effect of platelet-derived growth factor in human hepatic stellate cells requires calcium influx, Am. J. Physiol.-Cell Physiol, vol.269, pp.1133-1139, 1995.

L. Wong, G. Yamasaki, R. J. Johnson, and S. L. Friedman, Induction of beta-platelet-derived growth factor receptor in rat hepatic lipocytes during cellular activation in vivo and in culture, J. Clin. Invest, vol.94, pp.1563-1569, 1994.

D. H. Meyer, M. G. Bachem, and A. M. Gressner, Modulation of hepatic lipocyte proteoglycan synthesis and proliferation by Kupffer cell-derived transforming growth factors type beta 1 and type alpha, Biochem. Biophys. Res. Commun, vol.171, pp.1122-1129, 1990.

G. Svegliati-baroni, Bile acids induce hepatic stellate cell proliferation via activation of the epidermal growth factor receptor, Gastroenterology, vol.128, pp.1042-1055, 2005.

H. Yoshiji, Vascular endothelial growth factor and receptor interaction is a prerequisite for murine hepatic fibrogenesis, Gut, vol.52, pp.1347-1354, 2003.

Y. Inagaki and I. Okazaki, Emerging insights into Transforming growth factor ? Smad signal in hepatic fibrogenesis, Gut, vol.56, pp.284-292, 2007.

A. Leask and D. J. Abraham, TGF-beta signaling and the fibrotic response, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.18, pp.816-827, 2004.

R. M. Dawood, Dysregulation of fibrosis related genes in HCV induced liver disease, Gene, vol.664, pp.58-69, 2018.

F. Marra and C. Bertolani, Adipokines in liver diseases, Hepatol. Baltim. Md, vol.50, pp.957-969, 2009.

A. W. Rachfal and D. R. Brigstock, Connective tissue growth factor (CTGF/CCN2) in hepatic fibrosis, Hepatol. Res. Off. J. Jpn. Soc. Hepatol, vol.26, pp.1-9, 2003.

Y. Zhou, X. Jia, G. Wang, X. Wang, and J. Liu, PI-3 K/AKT and ERK signaling pathways mediate leptin-induced inhibition of PPARgamma gene expression in primary rat hepatic stellate cells, Mol. Cell. Biochem, vol.325, pp.131-139, 2009.

H. Sahin, C. Trautwein, and H. E. Wasmuth, Functional role of chemokines in liver disease models, Nat. Rev. Gastroenterol. Hepatol, vol.7, pp.682-690, 2010.

R. F. Schwabe, R. Bataller, and D. A. Brenner, Human hepatic stellate cells express CCR5 and RANTES to induce proliferation and migration, Am. J. Physiol. Gastrointest. Liver Physiol, vol.285, pp.949-958, 2003.
DOI : 10.1152/ajpgi.00215.2003

H. Sahin, Chemokine Cxcl9 attenuates liver fibrosis-associated angiogenesis in mice, Hepatol. Baltim. Md, vol.55, pp.1610-1619, 2012.

M. M. Zaldivar, CXC chemokine ligand 4 (Cxcl4) is a platelet-derived mediator of experimental liver fibrosis, Hepatol. Baltim. Md, vol.51, pp.1345-1353, 2010.

S. De-minicis, Role of endogenous opioids in modulating HSC activity in vitro and liver fibrosis in vivo, Gut, vol.57, pp.352-364, 2008.

W. Jeong, Paracrine Activation of Hepatic CB1 Receptors by Stellate Cell-Derived Endocannabinoids Mediates Alcoholic Fatty Liver, Cell Metab, vol.7, pp.227-235, 2008.

R. G. Ruddell, A Role for Serotonin (5-HT) in Hepatic Stellate Cell Function and Liver Fibrosis, Am. J. Pathol, vol.169, pp.861-876, 2006.

S. Zhan, Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo, Hepatol. Baltim. Md, vol.43, pp.435-443, 2006.

G. A. Macdonald, Lipid peroxidation in hepatic steatosis in humans is associated with hepatic fibrosis and occurs predominately in acinar zone 3, J. Gastroenterol. Hepatol, vol.16, pp.599-606, 2001.

J. Choi and J. James-ou, Mechanisms of Liver Injury. III. Oxidative stress in the pathogenesis of hepatitis C virus, Am. J. Physiol.-Gastrointest. Liver Physiol, vol.290, pp.847-851, 2006.

A. Watanabe, Apoptotic hepatocyte DNA inhibits hepatic stellate cell chemotaxis via tolllike receptor 9, Hepatol. Baltim. Md, vol.46, pp.1509-1518, 2007.

L. Sandrin, Transient elastography: a new noninvasive method for assessment of hepatic fibrosis, Ultrasound Med. Biol, vol.29, pp.1705-1713, 2003.

Z. D. Goodman, Grading and staging systems for inflammation and fibrosis in chronic liver diseases, J. Hepatol, vol.47, pp.598-607, 2007.

A. Baiocchini, Extracellular Matrix Molecular Remodeling in Human Liver Fibrosis Evolution, PLOS ONE, vol.11, p.151736, 2016.

M. J. Nielsen, Markers of Collagen Remodeling Detect Clinically Significant Fibrosis in Chronic Hepatitis C Patients, PLoS ONE, vol.10, 2015.

J. Y. Shin, HCV core protein promotes liver fibrogenesis via up-regulation of CTGF with TGF-beta1, Exp. Mol. Med, vol.37, pp.138-145, 2005.

Y. Li, Hepatitis C Virus Activates Bcl-2 and MMP-2 Expression through Multiple Cellular Signaling Pathways, J. Virol, vol.86, pp.12531-12543, 2012.

L. Preisser, IL-34 and macrophage colony-stimulating factor are overexpressed in hepatitis C virus fibrosis and induce profibrotic macrophages that promote collagen synthesis by hepatic stellate cells, Hepatol. Baltim. Md, vol.60, pp.1879-1890, 2014.

R. J. Fontana, Serum fibrosis markers are associated with liver disease progression in nonresponder patients with chronic hepatitis C, Gut, vol.59, pp.1401-1409, 2010.

M. J. Nielsen, Plasma Pro-C3 (N-terminal type III collagen propeptide) predicts fibrosis progression in patients with chronic hepatitis C, Liver Int. Off. J. Int. Assoc. Study Liver, vol.35, pp.429-437, 2015.

J. Guéchot, Relationship between procollagen III aminoterminal propeptide and hyaluronan serum levels and histological fibrosis in primary biliary cirrhosis and chronic viral hepatitis C, J. Hepatol, vol.20, pp.388-393, 1994.

V. Leroy, Changes in histological lesions and serum fibrogenesis markers in chronic hepatitis C patients non-responders to interferon alpha, J. Hepatol, vol.35, pp.120-126, 2001.

F. Oberti, Noninvasive diagnosis of hepatic fibrosis or cirrhosis, Gastroenterology, vol.113, pp.1609-1616, 1997.

C. Pilette, V. Croquet, E. Vuillemin, F. Oberti, and P. Calès,

, Gastroenterol. Clin. Biol, vol.23, pp.557-565, 1999.

D. Omran, Enhanced liver fibrosis test using ELISA assay accurately discriminates advanced stage of liver fibrosis as determined by transient elastography fibroscan in treatment naïve chronic HCV patients, Clin. Exp. Med, vol.18, pp.45-50, 2018.

M. Lavie, X. Hanoulle, and J. Dubuisson, Glycan Shielding and Modulation of Hepatitis C Virus Neutralizing Antibodies, Front. Immunol, vol.9, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02112360

X. Qin, Comparative Analysis for Glycopatterns and Complex-Type N-Glycans of Glycoprotein in Sera from Chronic Hepatitis B-and C-Infected Patients, Front. Physiol, vol.8, 2017.

T. J. Eberts, R. H. Sample, M. R. Glick, and G. H. Ellis, A simplified, colorimetric micromethod for xylose in serum or urine, with phloroglucinol, Clin. Chem, vol.25, pp.1440-1443, 1979.

T. Wakita, Production of infectious hepatitis C virus in tissue culture from a cloned viral genome, Nat. Med, vol.11, pp.791-796, 2005.

B. Jammart, Very-Low-Density Lipoprotein (VLDL)-Producing and Hepatitis C VirusReplicating HepG2 Cells Secrete No More Lipoviroparticles than VLDL-Deficient Huh7

, Cells. J. Virol, vol.87, pp.5065-5080, 2013.

H. Song, Thermal stability and inactivation of hepatitis C virus grown in cell culture, Virol. J, vol.7, p.40, 2010.

M. A. Stepp, S. Pal-ghosh, G. Tadvalkar, and A. Pajoohesh-ganji, Syndecan-1 and Its Expanding List of Contacts, Adv. Wound Care, vol.4, pp.235-249, 2015.

I. Barbosa, Improved and simple micro assay for sulfated glycosaminoglycans quantification in biological extracts and its use in skin and muscle tissue studies, Glycobiology, vol.13, pp.647-653, 2003.

D. Papy-garcia, Glycosaminoglycans, protein aggregation and neurodegeneration, Curr. Protein Pept. Sci, vol.12, pp.258-268, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01588263

J. Kuhn, Xylosyltransferase II is the predominant isoenzyme which is responsible for the steady-state level of xylosyltransferase activity in human serum, Biochem. Biophys. Res. Commun, vol.459, pp.469-474, 2015.

G. Xu, M. J. Amicucci, Z. Cheng, A. G. Galermo, and C. B. Lebrilla, Revisiting monosaccharide analysis-quantitation of a comprehensive set of monosaccharides using dynamic multiple reaction monitoring, The Analyst, vol.143, pp.200-207, 2017.

N. J. Sarma, Hepatitis C Virus Mediated Changes in miRNA-449a Modulates Inflammatory Biomarker YKL40 through Components of the NOTCH Signaling Pathway, PLoS ONE, vol.7, 2012.

A. Iwai, T. Takegami, T. Shiozaki, and T. Miyazaki, Hepatitis C Virus NS3 Protein Can Activate the Notch-Signaling Pathway through Binding to a Transcription Factor, SRCAP. PLoS ONE, vol.6, 2011.

D. Soares-da-costa, R. L. Reis, and I. Pashkuleva, Sulfation of Glycosaminoglycans and Its Implications in Human Health and Disorders, Annu. Rev. Biomed. Eng, vol.19, pp.1-26, 2017.

H. Kang, Cancer Cell Glycocalyx and Its Significance in Cancer Progression, Int. J. Mol. Sci, vol.19, p.2484, 2018.

N. Farfán, The transcriptional factor ZEB1 represses Syndecan 1 expression in prostate cancer, Sci. Rep, vol.8, p.11467, 2018.

K. Baghy, P. Tátrai, E. Reg?s, and I. Kovalszky, Proteoglycans in liver cancer, World J. Gastroenterol, vol.22, pp.379-393, 2016.

C. M. Vicente, Heparan Sulfate Proteoglycans in Human Colorectal Cancer, Anal. Cell. Pathol. Amst, p.8389595, 2018.

C. Chute, Syndecan-1 induction in lung microenvironment supports the establishment of breast tumor metastases, Breast Cancer Res. BCR, vol.20, p.66, 2018.

P. Ke, S. S. Chen, and .. , Hepatitis C Virus and Cellular Stress Response: Implications to Molecular Pathogenesis of Liver Diseases, Viruses, vol.4, pp.2251-2290, 2012.

A. L. Valadão, R. S. Aguiar, and L. B. De-arruda, Interplay between Inflammation and Cellular Stress Triggered by Flaviviridae Viruses, Front. Microbiol, vol.7, 2016.

J. Kuhn, O. A. Gressner, C. Götting, A. M. Gressner, and K. Kleesiek, Increased serum xylosyltransferase activity in patients with liver fibrosis, Clin. Chim. Acta Int. J. Clin. Chem, vol.409, pp.123-126, 2009.

K. S. Abdelwahab and Z. N. Ahmed-said, Status of hepatitis C virus vaccination: Recent update, World J. Gastroenterol, vol.22, pp.862-873, 2016.

S. A. Krumm and K. J. Doores, Targeting Glycans on Human Pathogens for Vaccine Design, Curr. Top. Microbiol. Immunol, 2018.

T. F. Baumert, F. Jühling, A. Ono, and Y. Hoshida, Hepatitis C-related hepatocellular carcinoma in the era of new generation antivirals, BMC Med, vol.15, 2017.

N. Goossens and Y. Hoshida, Hepatitis C virus-induced hepatocellular carcinoma, Clin. Mol. Hepatol, vol.21, pp.105-114, 2015.

P. Axley, Z. Ahmed, S. Ravi, and A. K. Singal, Hepatitis C Virus and Hepatocellular Carcinoma: A Narrative Review, J. Clin. Transl. Hepatol, vol.6, pp.79-84, 2018.

M. K. Sethi, F. F. Buettner, A. Ashikov, and H. Bakker, In vitro assays of orphan glycosyltransferases and their application to identify Notch xylosyltransferases, Methods Mol. Biol. Clifton NJ, vol.1022, pp.307-320, 2013.

T. V. Lee, Negative regulation of notch signaling by xylose, PLoS Genet, vol.9, p.1003547, 2013.