
HAL Id: tel-02037308
https://theses.hal.science/tel-02037308

Submitted on 20 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neurophysiological Mechanisms of Auditory
Distractibility in the Healthy, Aging or Damaged

Human Brain
Hesham Elshafei

To cite this version:
Hesham Elshafei. Neurophysiological Mechanisms of Auditory Distractibility in the Healthy, Aging or
Damaged Human Brain. Neuroscience. Université de Lyon, 2018. English. �NNT : 2018LYSE1255�.
�tel-02037308�

https://theses.hal.science/tel-02037308
https://hal.archives-ouvertes.fr


 i 

 
 
 
 
 
 
 
N°d’ordre NNT : xxx 
 
 

THESE de DOCTORAT DE L’UNIVERSITE DE LYON 
opérée au sein de 

l’Université Claude Bernard Lyon 1 
 

Ecole Doctorale ED476 
Neurosciences and Cognitive Sciences 

 
Spécialité de doctorat : Neurosciences 

Discipline : Neurosciences 
 
 
 

Soutenue publiquement le 22/11/2018, par : 
Hesham A. ELSHAFEI 

 
 

Neurophysiological Mechanisms  
of Auditory Distractibility  

in the Healthy, Aging or Damaged Human Brain 
 

 
 
 
Devant le jury composé de : 
 

Pr. Stephanie CLARKE Université de Lausanne Rapporteure 
Pr. Sarang DALAL Aarhus University Rapporteur 
Dr. Marie GOMOT INSERM Examinatrice 
Pr. Norbert Nighoghossian UCBL1 Examinateur 
Dr. Aurélie BIDET-CAULET INSERM Directrice de thèse 
Dr. Olivier BERTRAND INSERM Co-directeur de thèse 

 
 



 ii 



 iii 

 

 

 

 

 

 

 

 

To Gimmy and Nouaa, 

To Zozo, 

 
 



 iv 



 v 

Acknowledgements 
First, I would like to thank my wonderful PhD supervisors. Olivier, thank you for your presence, 

support and helpful feedback. Aurélie, from day one, you have guided me through this 

adventure and you have taught me everything I know. I will always cherish the time we have 

spent together, working, arguing, travelling, and just plain having fun. There are no words to 

express my gratitude in the couple of languages I know. I would also like to thank everybody 

in the DYCOG team for their help and support and for just being who they are. Special thanks 

to: 

 My MATLAB guru, Romain with whom we have spent hours and hours dealing with 

one hell of a messy dataset and with whom I am glad to have had co-authored my first 

paper;  

 Lesly, for her invaluable help with data preprocessing; Anne for her insightful feedback 

and help with the frontal damage study; 

 Catherine for help with patient recruitment; Professor Nighoghossian for opening the 

doors of his Stroke department. 

Thanks to all of the great kids in the lab: Roxane, Marion, Enrico, Stephano, Raphaël, Jelle, 

Jelena, Oussama, Kristien, Gaëtan, Anne, Remy, Bastien, Salomé, Agathe, Laurianne, Thibaut, 

Benoit and Florian. You have put fun in fundamental research. I would also like to thank my 

magnetoencephalography heroes: Sébastien and Claude. Sébastien, you have been through 

the dozens of participants we have recruited, you have helped more than you were supposed 

to. MEG forever and for always.  

A whole hearted thanks to all of the beautiful people I’ve shared my life outside of the 

lab with: Saloni, Judith, Alex, Mélaine, Camille and Elise. Thank you, my loves, for always being 

there throughout the rollercoaster of emotions this journey has been. And not to forget my 

(besties): Jimmy, Mr. n’aimes pas les tomates, Beyoncé, BenBen, Isabella and Coco, with 

whom I have become the person I have always wanted to be.  

Last but not least, my family, whose love since my eyes opened to this world have 

carried me from one continent to another and from one career to another. Thank you for 

never stopping believing in me.  

Finally, special thanks to the two artists who have accompanied and inspired me 

through the last year of this PhD: David Bowie and RuPaul.



 

 vi 



 vii 

Abstract 
Top-down (TD) and bottom-up (BU) mechanisms of attention are supported by dorsal and 

ventral networks that mainly overlap in the lateral prefrontal cortex (lPFC). A balance between 

these mechanisms is essential, yet rarely investigated. Increased distractibility observed 

during ageing or after frontal damage could result from jeopardizing this balance. It has been 

proposed that distinct oscillatory frequencies support the activation of these two attention 

networks. Our main aim was to test, in the auditory modality, whether (1) alpha oscillations 

would coordinate activity within the dorsal TD network, (2) gamma activity would index the 

activation of the ventral BU network, (3) the lPFC would support the balance between these 

networks through oscillatory coupling. We also aimed to investigate the oscillatory correlates 

of the increased distractibility associated with ageing or frontal damage. MEEG data were 

recorded while participants performed the Competitive Attention Test, which enables 

simultaneous investigation of BU and TD attention mechanisms. We showed that alpha 

oscillations indexed facilitatory and suppressive mechanisms of TD attention, and 

communication within the dorsal network; while gamma oscillations indexed the ventral 

network activation. Moreover, the lPFC subtended communication in the two networks; with 

the TD/BU interaction occurring in the medial PFC. We also showed that ageing-related 

distractibility was of TD deficit origin. Finally, preliminary results suggest that lPFC damage can 

impact both TD and BU attention. This thesis provides novel insights into the brain oscillatory 

dynamics of the TD/BU attentional balance supporting distractibility. 

 

Keywords: Auditory attention; Attentional capture; Alpha oscillations; Gamma activity; 

Oscillatory coupling; Ageing; Frontal damage; Magnetoencephalography 
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Résumé 
Les mécanismes volontaires (V) et involontaires (I) de l’attention reposent sur les réseaux 

dorsal et ventral, convergeant dans le cortex préfrontal latéral (lPFC). La distractibilité accrue 

liée au vieillissement ou à une lésion frontale pourrait être due à une altération de l’équilibre 

entre ces mécanismes V et I, essentiel mais rarement étudié. Notre objectif est de tester, dans 

la modalité auditive, si (1) les oscillations alpha coordonnent l'activité du réseau dorsal, (2) les 

oscillations gamma celle du réseau ventral, (3) le couplage oscillatoire dans le lPFC maintient 

l’équilibre entre les deux réseaux. Ce travail vise également à étudier les corrélats oscillatoires 

de la distractibilité accrue liée au vieillissement ou à une atteinte frontale. Des données MEEG 

ont été enregistrées alors que des participants réalisaient le Competitive Attention Test, qui 

permet d’étudier simultanément les mécanismes V et I de l’attention. Nous avons montré que 

les oscillations alpha reflètent l’activation des mécanismes facilitateurs et suppresseurs de 

l’attention V, et la communication au sein du réseau dorsal ; alors que les oscillations gamma 

indexent l’activation du réseau ventral. De plus, le lPFC serait impliqué dans la communication 

au sein des deux réseaux, et le PFC médian dans l’équilibre attentionnel V/I. Nous avons 

également montré que la distractibilité accrue était liée à un déficit d’attention V au cours du 

vieillissement, et à une altération des processus V et I après lésion frontale. Ce travail de thèse 

offre donc une meilleure compréhension de la dynamique cérébrale oscillatoire sur laquelle 

repose l'équilibre attentionnel V/I, et donc la distractibilité. 

 

Mots-clés : Attention auditive ; Capture attentionnelle ; Oscillations alpha ; Activité gamma ; 

Couplage Oscillatoire ; Vieillissement ; Lésion frontale ; Magnétoencéphalographie 
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Résumé Substantiel 
L’attention est une fonction cérébrale qui permet, volontairement ou non, de faciliter le 

traitement de certaines informations de l’environnement tout en ignorant les autres. Le 

traitement des informations par le cerveau est contrôlé par deux types de processus : des 

processus volontaires et involontaires. D’une part, l’attention volontaire permet de 

sélectionner les informations pertinentes pour réaliser efficacement la tâche en cours. 

L’attention volontaire peut agir par différents mécanismes tels que des mécanismes 

facilitateurs ou inhibiteurs et des mécanismes de préparation ou d’anticipation attentionnelle. 

D’autre part, l’attention peut être capturée involontairement par un stimulus saillant 

inattendu, et donc détournée de la tâche en cours. Cette forme involontaire de l’attention est 

nécessaire pour pouvoir réagir à un évènement potentiellement important mais non pertinent 

pour la tâche en cours (ex. une alarme au feu). La tendance au détournement involontaire de 

l’attention est communément dénommée distractibilité. Un bon équilibre entre l’attention 

volontaire et l’attention involontaire est crucial pour être efficace dans une tâche donnée, 

tout en étant réactif à l’environnement, sans être distrait en permanence. Un manque de 

distractibilité pointe vers une dominance de l’attention volontaire, alors qu’une distractibilité 

accrue peut être due soit à une réduction de l’efficacité de l’attention volontaire, soit à une 

facilitation du déclenchement de la capture attentionnelle involontaire. Cet équilibre précaire 

est souvent altéré dans des pathologies psychiatriques ou neurologiques, et même au cours 

du vieillissement normal. 

L’attention volontaire reposerait sur un réseau dorsal comprenant les régions frontales 

postérieures et intra-pariétales, alors que la capture attentionnelle involontaire activerait un 

réseau ventral incluant les la jonction temporo-pariétale et le cortex frontal ventral. Ces deux 

réseaux convergent au niveau du cortex préfrontal latéral (lPFC). Par ailleurs, l'exploration des 

activités oscillatoires est une approche idéale pour étudier la dynamique des mécanismes 

attentionnels. En effet, des études chez l’animale et l’humain suggèrent que l’activité 

oscillatoire refléterait non seulement l’activation mais aussi la communication au sein des 

réseaux ventral et dorsal de l’attention. 

Ce travail de thèse a pour objectif de tester les hypothèses suivantes. (1) Un couplage 

longue distance dans les basses fréquences alpha (8-14 Hz) coordonnerait l'activité au sein du 

réseau dorsal de l’attention volontaire. (2) Les activités dans les hautes fréquences gamma (> 



 x 

30 Hz) reflèteraient l'activation du réseau ventral de l’attention involontaire. (3) Le couplage 

des oscillations haute et basse fréquence dans le lPFC permettrait la communication entre les 

deux réseaux et sous-tendrait l’équilibre entre l’attention volontaire et l’attention 

involontaire. Ce travail a également pour but de comprendre l’origine cérébrale de la 

distractibilité exacerbée associée au vieillissement sain ou à une altération du cortex frontal 

en étudiant cette hiérarchie oscillatoire.  

Des données MEG / EEG ont été simultanément enregistrées alors que des participants 

réalisaient le Competitive Attention Test. Ce paradigme permet d’évaluer, sur les plans 

comportemental et neurophysiologique, les processus d’attention volontaire (anticipation et 

inhibition attentionnelles) et involontaire (capture attentionnelle). Nous avons montré que les 

oscillations alpha reflétaient l’action de mécanismes facilitateurs et suppresseurs de 

l’attention volontaire dans les cortex auditifs (pertinents pour la tâche) et les cortex visuels 

(non pertinents pour la tâche), respectivement, via des sous-bandes d’alpha distinctes. La 

synchronisation de phase dans la bande alpha pourrait sous-tendre la communication entre 

les cortex auditifs et des régions distantes du réseau dorsal de l’attention volontaire. Nous 

avons aussi montré que les oscillations gamma reflétaient l’activation du réseau ventral de 

l’attention involontaire. De plus, le lPFC serait impliqué dans la communication cérébrale, via 

synchronisation de phase, au sein des deux réseaux ; tandis que l'équilibre attentionnel 

volontaire/involontaire reposerait sur le PFC médian et le cortex cingulaire antérieur. Nous 

avons également observé que la distractibilité au cours du vieillissement était liée à un déficit 

d’attention volontaire plutôt qu’à une altération du réseau ventral de l’attention involontaire. 

Enfin, les résultats comportementaux préliminaires que nous avons obtenus après accident 

vasculaire cérébral indiquent que des lésions du lPFC entraineraient à la fois des altérations 

de l’attention volontaire et de l’attention involontaire.  

Ce travail de thèse offre donc une meilleure compréhension de la dynamique 

oscillatoire de l'équilibre attentionnel volontaire/involontaire qui conduit à un bon niveau de 

distractibilité chez l’adulte jeune sain ou à une distractibilité accrue au cours du vieillissement 

sain ou pathologique. 
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Preamble 
 “Sand was dribbling out of the bag of her attention, faster and faster.” 

― Sarah Blake 

 

Our environment contains far more information than we can process at one time. Thus, we 

depend on our attention to orient our limited resources towards relevant items. Attention can 

be oriented endogenously (top-down), in anticipation of a stimulus, a red light turning green 

for example; or it can be captured exogenously (bottom-up), e.g. by a telephone ringing. A 

dynamic balance between top-down and bottom-up mechanisms of attention is essential to 

carry out day-to-day tasks, and the tendency to have one’s attention captured is commonly 

referred to as distractibility.  

 

“Any distraction tends to get in the way of being an effective gangster.” 

― Terence Winter 

 

Top-down and bottom-up mechanisms of attention are supported by distinct brain 

networks that overlap mainly in the lateral prefrontal cortex. Nevertheless, these mechanisms 

have been mostly explored in the visual domain and in separate experiments, with few 

attempts to investigate the balance between them. Moreover, several questions have been 

raised concerning the paradigm which has been used to investigate auditory distractibility i.e. 

the oddball paradigm.  

Brain oscillations refer to the rhythmic activity generated spontaneously or in response 

to stimuli by neurons in the central nervous system. More and more, the role of brain 

oscillations as functional building blocks in sensory-cognitive processes such as attention is 

being established. Moreover, there is a growing hypothesis that activity in different oscillatory 

band, alpha and gamma, support different mechanisms of attention, top-down and bottom-

up, respectively. 

Throughout the work presented here in this thesis, we have adapted, The Competitive 

Attention Test, a novel paradigm recently proposed to investigate (1) the oscillatory orchestra 

underlying top-down and bottom-up auditory attentional mechanisms, and the balance 

between them; (2) how this balance changes with healthy ageing and frontal lobe damage.  
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In the first four chapters, the theoretical context of this work shall be laid out, followed 

by a description of the main methodological techniques used throughout the thesis work. 

Afterwards, four studies shall be presented highlighting our main results, followed by a 

synthesis and a discussion of these results.
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Part I: Theoretical Context 
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1 Attention as a Concept  

1.1 What We Talk About When We Talk About Attention 

“The world is too much with us [..] Little we see in Nature that is ours” 
― William Wordsworth 

 

Imagine a modern-day PhD student listening to a tutorial on how to write a thesis. The time 

he would make it from the beginning to the end of the audio, a mobile phone has beeped, a 

colleague giggled over a cat photo and many other external and internal events have 

competed for neural representation (Ruff 2013). Facing these numerous events is our brains’ 

limited processing capacity. Thus, we rely on our attention to prioritize the processing of only 

a fragment of these incoming stimuli (Desimone and Duncan 1995; Reynolds and Heeger 

2009), but what do we talk about when we talk about attention? While according to William 

James: “Everyone knows what attention is…” (James 1890), more than a century of 

psychology, psychophysics and neurosciences research have provided us with numerous 

views of what attention could be.  

First, attention was viewed as a “filter” or a “bottleneck” through which all physical 

properties of incoming stimuli would be first extracted, then based upon task-relevant 

properties, irrelevant (unattended) stimuli would be selectively filtered out while relevant 

(attended) stimuli would pass for further processing (Broadbent 1958; Duncan 1980). This 

model was updated, where attention was regarded rather as a “buffer” where relevant and 

irrelevant stimuli would be processed but to different extents i.e. processing of irrelevant 

(unattended) stimuli would be much attenuated in comparison to that of the augmented 

processing of attended stimuli (Treisman 1964). Later on, attention would be considered as 

“glue” which combines singleton features of attended stimuli that are pre-attentively 

extracted and separated (Treisman and Gelade 1980; Treisman 1988). 

However, a more compelling view of attention is that rather than being a unitary 

phenomenon, attention should be regarded as a multi-component system that involves 

several cognitive processes and relies on different brain networks (Posner and Petersen 1990; 

Posner and Fan 2008; Petersen and Posner 2012). In their seminal review, Posner and Petersen 

(1990) have proposed that attention is sustained by three main systems/networks: the 
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alerting system, the executive system and the orienting system. The latter is the main focus 

of this thesis; however, the other two systems shall be discussed here briefly.  

Alerting, phasic alertness or phasic arousal can be understood as a rapid increase of 

vigilance (readiness) from resting baseline that could be triggered in response to warning 

signals or in anticipation of upcoming stimuli (Kahneman 1973; Posner and Petersen 1990; 

Petersen and Posner 2012). It is distinguishable from tonic (intrinsic) alertness (arousal) which 

fluctuates in the order of minutes to hours and refers to a more general form of wakefulness 

control (Sturm et al. 1999; Degutis and Van Vleet 2010). It has been demonstrated that 

alertness is associated with several physiological responses, such as an increase in cardiac 

rhythm (Kahneman 1973; Oken et al. 2006). In addition, behaviorally it manifests as a 

reduction in reaction times when a target event is preceded by a warning signal in comparison 

to the absence of such signal (Marrocco et al. 1994; Marrocco and Davidson 1998; Beane and 

Marrocco 2004). The activation of the alerting system has been associated with the locus 

coeruleus-norepinephrine (LC-NE) system, a neuromodulatory system in the midbrain which 

could influence the cortical control of attention through noradrenergic innervation to cortical 

regions such as the right inferior and superior frontal gyri and the parietal cortex (Marrocco 

et al. 1994; Coull et al. 1996; Raz and Buhle 2006; Sara and Bouret 2012; Masson and Bidet-

Caulet 2018). 

Executive attention or executive control is another major component of the 

attentional framework (Petersen and Posner 2012). This system is essential for complex 

situations that requires planning, decision making, conflict resolution among competing 

cognitive elements, process switching, and novelty detection (Bush et al. 2000; Botvinick et al. 

2001). The application of such system could be demonstrated in tasks such as the Stroop task 

where participants are required to indicate the written color name (e.g. green), that could be 

congruent (e.g. green) or not (e.g. blue) with the actual color of the word (Stroop 1935; Fan 

et al. 2009). The activation of the executive system has been associated with two main frontal 

regions: the anterior cingulate cortex and the lateral prefrontal cortex (Damasio and 

Sutherland 1994; Anderson et al. 2000; Ochsner et al. 2001; Stuss 2011).  

The third component in the aforementioned taxonomy is the orienting system. 

Orienting refers to the allocation of attention to a specific perceptual input thus prioritizing 

the processing of such attended input (Eriksen and Hoffman 1972; Posner 1980; Hawkins et 

al. 1988). Orienting could englobe various modalities, e.g. visual, auditory or somatosensory, 
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and could involve attentional allocation to specific points in space i.e. spatial attention (Posner 

1980) or in time (Coull and Nobre 1998). Spatial auditory attention is the main focus of this 

thesis.  

Orienting can occur in two different modes: top-down or bottom-up (Posner and 

Petersen 1990; Petersen and Posner 2012). For example, going back to our PhD student, on 

one hand, while listening to the tutorial, he is actively orienting (allocating) his attention to 

the lecturer’s voice in an endogenous top-down manner. On the other hand, the colleague’s 

audible giggle would orient the student’s attention in an exogenous bottom-up manner. In a 

laboratory setting, one of the main paradigms that has been used to disentangle these two 

modes of attentional orienting is the Posner Spatial Cuing Paradigm (Posner 1980). Typically, 

participants are first presented with a visual or an auditory cue that indicates the spatial 

location of an upcoming visual or auditory target. 

 

 
Figure 1. Representative frames of four different trials of the Posner Cueing Paradigm. 
Participants are often required to press a button as soon as they detect the target (Adapted 
from Chica et al. 2013).  
 

As shown in Figure 1, in the Posner paradigm, attention could be oriented either 

endogenously, using a spatially central cue which informs the participant on the potential 

location of the target. Attention could also be oriented exogenously, using a spatially 

peripheral cue, which automatically captures the participant’s attention to the possible 

location of the target (Posner 1980). These cues could be either valid i.e. the target location 

would match the location indicated by the cue or invalid i.e. the target location would not 

match the location indicated by the cue. 

In order to disentangle the orienting component of attention from the alerting 

component, one could add trials where either (1) the cue is substituted by a warning signal 

(or an uninformative cue) or (2) no cue nor warning signals are present. Thus, by subtracting 

the uninformative cue, from the no cue condition, we could obtain a measure of the alerting 



Attention as a Concept 

 8 

system. Moreover, by subtracting the uninformative cue from the informative cue condition, 

we could obtain a measure of the top-down or bottom-up orienting system, with central or 

peripheral cues, respectively (Petersen and Posner 2012). 

 We’ve described the different components of attention which should be regarded as a 

multicomponent system: alerting, orienting and executive control. Now let’s delve into the 

underlying neurophysiological correlates of the two orienting mechanisms of attention (top-

down and bottom-up) and the interplay between them. 

 

1.2 Ground Control to Major Tom: Top-Down Attentional Mechanisms 

Top-down, or endogenous, attentional orienting is a voluntary, goal-driven process that 

enables the efficient performance of an on-going task by selecting relevant information 

(Posner and Petersen 1990; Berger et al. 2005; Petersen and Posner 2012). It has been 

thoroughly investigated using the Posner paradigm with a central visual or auditory cue that 

either indicates (informative) or not (neutral/uninformative) the spatial location of an 

upcoming visual or auditory target. By comparing informative and uninformative cue-trials, 

investigators could shed light onto the deployment of top-down attentional orienting 

mechanisms using various behavioral and neurophysiological measures. 

 Behaviorally, reaction times to targets preceded by an informative cue are shorter than 

those preceded by an uninformative cue. In other words, when participants are informed of 

the location of the upcoming target, they are faster to detect or discriminate these targets 

(Müller and Findlay 1988; Müller and Rabbitt 1989; Golob et al. 2002; Hayward and Ristic 

2013; Bidet-Caulet et al. 2014; ElShafei et al. 2018).  

The neural correlates of this orienting (cueing) effect has been investigated using 

either neuroimaging techniques such as positron emission tomography (PET), functional 

magnetic resonance imaging (fMRI) or electrophysiological techniques such as 

Electroencephalography (EEG), Magnetoencephalography (MEG) or intracranial EEG 

recordings. The deployment of top-down attention can be investigated via cue-locked activity 

during the time-interval between the cue and the target. In addition, the impact of top-down 

attention on target processing can be investigated via target -locked activity.  
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1.2.1 Top-Down Attention 

Before the presentation of the target, several studies highlighted the presence of cue-related 

evoked activity usually arising (500-600ms) after cue presentation: the Contingent Negative 

Variation (CNV: Brunia and van Boxtel 2001) and it’s magnetic counterpart: the Contingent 

Magnetic Variation (CMV: Gómez et al. 2004). For example, as seen in Figure 2, using an 

adaptation of the Posner paradigm, Bidet-Caulet and colleagues (2014) reported an enhanced 

amplitude of the CNV in trials with cues informative of an upcoming auditory target, compared 

to trials with uninformative cues. This has led to the suggestion that the CNV represents a 

reliable index of top-down attention deployment (Brunia 1999; Brunia and van Boxtel 2001; 

Gómez et al. 2004, 2007, Bidet-Caulet et al. 2012, 2014).  

 
Figure 2. Cue-Related Potentials. A. Mean cueRPs at the fronto-central group of electrodes as 
a function of the cue category (informative or uninformative). B. Scalp topographies of the 
CNV, in trials with informative or uninformative cue in the 650–800 ms window after cue onset. 
**P<0.01. (Adapted from Bidet-Caulet et al. 2014). 
 

However, concerns have been raised on which process the CNV 

represents: anticipatory attention or motor preparation. It has been proposed that the CNV 

represents both however on two different time scales. In other words, the CNV can be divided 

into an early and a late phase (Brunia and van Boxtel 2001), where the early phase of the CNV 

would primarily reflect anticipatory attention, and the late phase of the CNV would principally 

index (but not necessarily uniquely) motor preparation (Brunia and van Boxtel 2001; Hart et 

al. 2012). 

In addition, studies using fMRI have demonstrated pre-activation of brain sensory 

regions relevant for processing the upcoming target. For example, task-relevant visual 

(Kastner et al. 1999; Liu et al. 2014), auditory (Voisin et al. 2006; Bueti and Macaluso 2010) or 

somatesnesory (Langner et al. 2011) regions have been shown to be pre-activated according 

to the modality of the expected target. Thus top-down attention increases sensory activity 
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and would subsequently improve the processing of anticipated relevant input, acting as a 

facilitatory mechanism.  

 

1.2.2 Top-Down Modulation of Target processing 

After the presentation of the target, studies using electrophysiological techniques, have 

utilized target-related evoked activity to investigate the impact of the deployment of top-

down attention on target processing. Target sound presentation has been associated with 

three main canonical evoked responses: the fronto-central N1 negative response (80—110 ms 

post target onset), the central P2 positive response (150—200 ms post onset) and the parietal 

P3 positive response (250—450 ms post onset) (Hillyard et al. 1973; Caporello Bluvas and 

Gentner 2013).  

On one hand, numerous studies have demonstrated that top-down attention 

enhanced the amplitude of the early N1/P2 components (see Figure 3), reflecting an enhanced 

processing of the attended stimuli in comparison to the non-attended stimuli in the auditory 

(Picton and Hillyard 1974; Hansen and Hillyard 1980; Näätänen and Picton 1987; Neelon et al. 

2006; Bidet-Caulet et al. 2007) and the visual (Eason et al. 1969; Mangun and Hillyard 1991; 

Guerreiro et al. 2010; Mittag et al. 2013; Slagter et al. 2016) modalities. 

 

 
Figure 3. The Event-Related Potential (ERP) elicited by a visual stimulus typically consists of 
early sensory evoked components including the N1 wave followed by higher-level cognitive 
components such as the P3. ERPs shown here are in response to left field stimuli. The early 
sensory evoked component N1 are typically found to be larger when a stimulus is presented at 
an attended location as compared with an unattended location. (Adapted from Hillyard et al. 
1998). 
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On the other hand, several studies have demonstrated an opposite effect of top-down 

attention on the amplitude of the P3 component (Hugdahl and Nordby 1994; Golob et al. 

2002; Ofek and Pratt 2004; Bidet-Caulet et al. 2014). For example, Bidet-Caulet and colleagues 

(2014) demonstrated a reduced P3 component to auditory targets preceded by an informative 

cue in comparison to those preceded by an uninformative cue (see Figure 4). This reflects the 

functional relevance of the P3 component as a tracker of the probabilities of possible events 

with its amplitude reflecting target certainty rather than attentional relevance (Duncan-

Johnson and Donchin 1977; Suwazono et al. 2000; Mars et al. 2008; Bidet-Caulet 2014). 

 
Figure 4. ERPs to targets (targetRPs). A. Mean at the parietal group of electrodes as a function 
of the cue category. B. Scalp topographies of the target-P3, in trials with informative or 
uninformative cue in the 250–500 ms window after target, *** P<0.001. (Adapted from Bidet-
Caulet et al. 2014).  
 
1.2.3 Top-Down Modulation of Selection  

Thus far, we have described how top-down anticipatory attention would modulate brain 

activity during the expectation of a unimodal target, but what if we are faced with other 

targets in a different or same modality as that of the expected target? In the auditory modality, 

in order to investigate top-down auditory attention, investigators have used the dichotic-

listening paradigm which requires the subject to attend to an auditory stream presented to 

one ear while ignoring an auditory stream presented to the other ear (Cherry 1953; Broadbent 

1958). This form of top-down selective attention promotes the processing of attended 

(relevant) stimuli, resulting in reduced brain responses to unattended (irrelevant) inputs and 

enhanced processing of relevant information (Hillyard et al. 1998).  

In addition, using imaging techniques such as fMRI and PET (see Figure 5), it has been 

demonstrated that attention to one modality during presentation of asynchronous streams of 

auditory and visual objects enhances activity in the sensory cortex of the attended modality 

and decreases activity in the sensory cortex of the unattended modality (Ghatan et al. 1998; 
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Kastner and Ungerleider 2000; Laurienti et al. 2002; Johnson and Zatorre 2006; Salmi et al. 

2007; Serences and Yantis 2007; Salo et al. 2013, 2017). This suggests that there exits two 

distinct sub-systems within the top-down selective attentional system: a facilitatory system 

which increases brain activity to task-relevant input and a suppressive system which decreases 

brain activity to task-irrelevant input (Pinsk et al. 2004; Gazzaley et al. 2005; Bidet-Caulet et 

al. 2007, 2010; Chait et al. 2010). However, while modulations of an anticipated target 

processing suggest the deployment of distinct facilitatory and suppressive attentional 

mechanisms during target expectancy, little is known about the genuine activation of these 

mechanisms during anticipation of an upcoming stimulus. 

 

 
Figure 5. Comparison of auditory versus visual orienting tasks revealed auditory and visual 
modality- specific attention-related modulations. (Adapted from Salmi et al. 2007) 
 

In summary, we have described behavioral, electrophysiological and functional neural 

correlates of top-down anticipatory mechanisms of attention. We have demonstrated how 

top-down anticipatory attention would modulate both cue- and target-related activity. Finally, 

we have provided evidence that top-down attention would comprise two systems: a 

facilitatory system and a suppressive system. However, the activation of these systems during 

stimulus anticipation remains barely investigated. 
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1.3 Major Tom to Ground Control: Bottom-Up Attentional Mechanisms 

1.3.1 Bottom Up Attentional Mechanisms: Definitions & Key Aspects  

Above, we have discussed how attention can be oriented in an endogenous top-down manner. 

Attention can also be oriented in an exogenous (bottom-up) manner, as when captured by 

task-irrelevant salient stimuli (such as luminosity change or a car break screech) that are not 

in our initial intentions or goals (James 1890; Jonides 1981). In comparison to top-down 

mechanisms, bottom-up attentional mechanisms are externally-driven, less voluntary, and 

more automatic.  

The involuntary allocation of attention away from one’s goal directed behavior is 

denoted distraction, and the tendency to have one’s attention captured in such fashion is 

denoted distractibility. Distraction has been studied in the visual and auditory modalities using 

different approaches and here, a special focus shall be on distraction by sound due to the 

fundamental differences in how information is registered and processed in the two modalities. 

For example, whereas the spatial selectivity of the visual system provides a strong selection 

mechanism, the auditory system does not appear to allow such an extreme focus i.e. our ears 

cannot be easily shut to avoid registering sound, unlike the eyes in relation to light (Hughes 

2014). 

Distraction as a behavioral phenomenon underlies two distinct mechanisms: 

interference-by-process and attentional capture (Hughes 2014). For example, in a seriall recall 

task, participants are required to memorize (encode) and then recall a series of digits (e.g. 

Jones et al. 1992; Jones and Macken 1993; Neath 2000). If for example, a distracting sound is 

played during either the memorization or recalling phases, the negative behavioral impact of 

such sound would stem from its interference with the ongoing process and not necessarily 

due to an allocation of attention towards it (Hughes 2014).  

A distracting sound could also impact behavioral performances primarily due to its 

physical saliency and its capability to momentarily disengage attention away from the focal 

task, regardless of the particular processing involved in the ongoing task (Escera et al. 1998; 

Parmentier 2008; Parmentier et al. 2008). We shall focus more on the latter mechanism of 

distraction: attentional capture which, in turn, could be categorized into two separate forms 

according to the nature of the distracting sound and the ongoing task.  

First is the transition-related attentional capture which corresponds to the occurrence 

of “transients” in an ongoing stimulation such as a sudden onset of a sound during silence or 
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even the reverse, a sudden offset of a long-lasting sound (Wetzel and Schröger 2014). Second 

is the deviance-related attentional capture, which is associated with the predictive modeling 

of regularities in the acoustic environment. In other words, a distracting sound violates an 

established model of auditory regularities (Schröger et al. 2014; Wetzel and Schröger 2014). 

In the literature, the latter has received much more “attention” and thus we shall discuss the 

main paradigm that has been used for that line of work and afterwards we shall discuss the 

pitfalls of the use of such paradigm and then discuss a relatively more recent line of work 

investigating mainly the transition-related form of attentional capture. 

 

1.3.2 Bottom Up Attentional Mechanisms: The Oddball Paradigm 

Deviance-related attentional capture has been investigated using variations of the reaction 

time-based oddball paradigm. In this paradigm, participants are required to respond (detect 

or discriminate) to a specific target stimulus. Meanwhile, they are presented with a sequence 

of repetitive regular (standard) stimuli which are sporadically interrupted by a rare (deviant 

or oddball) stimulus that breaks this repetitive sequence and potentially captures the 

participants’ attention. It has been proposed that attentional capture could be measured as 

the difference between the time taken to respond to a target stimulus in the presence and 

absence of the rare deviation (Dalton and Hughes 2014). 

One variation of this paradigm (see Figure 6) has been used by Schröger and colleagues 

(1996). In this paradigm, participants were presented with a pair of tones (S1 in the left ear 

followed by S2 in the right ear). They were instructed to ignore sounds in the left ear (S1) while 

attending to the other (S2) in order to perform a Go/NoGo task. In the unattended ear, S1 was 

either a standard sound (played 88% of the time) or a deviant sound with a carrier frequency 

that deviates from the standard sound by a small or large magnitude. Participants were slower 

when S2 was preceded by a small deviant S1, even more so when it was preceded by a large 

deviant S1, when compared to trials where it was preceded by a standard S1. The authors 

have related this RT effect to the attentional capturing effect of the deviant sounds.  
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Figure 6. Pairs of tones (S1 and S2) were presented and subjects were instructed to ignore S1 
(left ear) and make a Go/NoGo response to S2 (right ear). SI had a standard frequency of 700 
Hz occasionally deviating by a small (p = 0.06; Af = 50 Hz) or large (p = 0.06; Af = 200 Hz) 
amount. S2 were presented with an intensity of 70 (Go; p = 0.5) or 80 (NoGo; p = 0.5) dB SPL 
The S1-S2 interval was 200 msec. (Adapted from Schröger 1996). 
 

Another variation (see Figure 7) has been proposed by Escera and colleagues (Escera 

et al. 1998). In this paradigm, participants were instructed to perform a visual discrimination 

task while ignoring a sequence of sounds that contained standard tones (80%), deviant tones 

(10%), and novel natural sounds (10%). Reaction times to visual stimuli preceded by a deviant 

tone were longer compared to those preceded by a standard tone. Moreover, reaction times 

to visual stimuli preceded by novel sounds were even more prolonged in comparison to 

standard and deviant tones. Several studies have replicated these results using different 

versions of these two paradigms (Parmentier et al. 2008; Parmentier and Hebrero 2013). 
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Figure 7. A variation of the auditory-visual oddball paradigm, in which standard and oddball 
(deviant or novel) sounds are presented while the participant is engaged in a visual task not 
related to the distinction between standard and oddball sounds. All sounds are followed by a 
picture of animals or clothes. Subjects are instructed to distinguish animal and clothes by 
button press. (Adapted from Wetzel and Schröger 2014). 
 

Alongside these behavioral effects, a triumvirate of electrophysiological responses to 

deviant sounds has been extensively reported: the mismatch negativity, the P3a and the 

reorientation negativity (RON) (Schröger 1997, 2005; Escera et al. 1998; Jacobsen et al. 2003; 

Winkler 2007; Berti 2008; Berti et al. 2013). 

 

 
Figure 8. Idealized illustration of (a) Event-Related Potentials to standard and deviant tones in 
an oddball paradigm. (b) Difference waves between standard and deviance tones highlighting 
the deviant-related triumvirate responses: the mismatch negativity (MMN), the P3a and the 
reorientation negativity (RON). (Adapted from Kahkonen and Ahveninen 2002). 
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According to these studies, each component represents a stage in the three-stage 

model of distraction. First the MMN would represent the automatic detection of the deviant 

sound, then the P3a would index novelty detection and involuntary orienting of attention 

towards novel sounds (review in Escera et al. 2000). Finally, the RON would reflect the 

reorienting of attention to task-relevant information (Escera et al. 2003; Escera and Corral 

2007; Horváth et al. 2008). 

 

1.3.3 Bottom Up Attentional Mechanisms: How odd is the ball? 

Nevertheless, recently, the use of the reaction-time based oddball paradigm has received 

several critiques. First, target stimuli in this paradigm are always preceded by a sound. Thus, 

one might wonder if these irrelevant sounds act as warning signals rather than true 

distractors. Indeed, Parmentier and colleagues (2010) demonstrated that varying the 

relationship between the deviant sound and the probability/onset of the target sound could 

abolish distraction effects or even result in facilitation effects. Second, attentional capture 

(distraction) is measured by comparing reaction times in trials with novel sounds and trials 

with standard sounds, while there is no comparison with the reaction times in the absence of 

any sound (Bidet-Caulet et al. 2014). Third, the sounds are embedded in sequences that could 

be inhibited by top-down mechanisms of selective attention similarly to the unattended 

stream in a classic dichotic paradigm i.e. listening to different acoustic stimuli presented to 

each ear simultaneously (Hillyard et al. 1973). Interestingly when distracting sounds are not 

presented within a sequence the cost in reaction time is highly reduced (Berti 2013). 

  

In summary, we have described behavioral and electrophysiological correlates of 

bottom-up attentional capture which have been almost uniquely investigated using the 

oddball paradigm. Finally, we have reviewed recent critiques to this paradigm. In the following 

section, we shall discuss alternative paradigms to investigate not only bottom-up mechanisms 

of attention but also the interaction of such mechanisms with top-down mechanisms. 
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1.4 Let’s Dance: Interaction Between Top-Down & Bottom-Up Attentional Mechanisms 

As seen above, top-down and bottom-up mechanisms have been mostly investigated in 

separate experiments (Corbetta and Shulman 2002). Only few studies have explored how an 

unexpected stimulus outside the focus of attention can disturb top-down attentional 

mechanisms necessary to the good performance of the ongoing task, and how these top-down 

mechanisms can modulate the bottom-up mechanisms of attentional capture triggered by the 

unexpected stimulus. 

For example, Miller and colleagues (2011) investigated distraction through 

presentation of rare isolated environmental sounds while subjects were playing a video game: 

Tetris. The authors could show that enhancing top-down attention, by increasing the game 

difficulty, resulted in reduced brain responses to distracting sounds. This was in accordance 

with previous evidence that the electrophysiological P3a response to deviant distracting 

sounds could actually be altered (amplitude reduction) by attentional load or task demand 

leading to reduced attentional orienting towards the distracting sound (Harmony et al. 2000; 

Zhang et al. 2006; SanMiguel et al. 2008; Lv et al. 2010). Unfortunately, in their study Miller 

and colleagues could not measure the impact of the distracting sounds on the game 

performance neither at the behavioral nor at the electrophysiological level. 

In 2014, Bidet-Caulet and colleagues proposed a novel paradigm, the Competitive 

Attention Task (CAT), that allows the assessment of bottom-up and top-down mechanisms of 

auditory attention in a more ecological setting. This paradigm shall be discussed in length in 

the Material and Method section but to summarize, it is an adaptation of the Posner cueing 

paradigm using visual cues and monaural auditory targets. In this task, top-down (TD) 

anticipatory attention is measured by comparing trials with informative cues to trials with 

uninformative cues. Bottom-up (BU) attentional capture is triggered by a binaural distracting 

sound played during the delay between the cue and the target in only 25 % of the trials. 

Distraction is assessed as the impact of distracting sounds on task performance and the 

balance between TD and BU mechanisms can be measured by comparing responses to 

distracting sounds following informative vs. uninformative cues.  

Using scalp EEG recordings, they were able to show that, on the one hand, increasing 

the load in top-down anticipatory attention decreases distracting sound processing at early 

stages (as reflected by N1 to distracting sounds), but seemed to fail to reduce the behavioral 

distraction effect. On the other hand, bottom-up attentional capture by distracting sounds 
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could disturb top-down mechanisms by lengthening target processing (as reflected by N1 to 

targets) and detection (see Figure 9). 

 
Figure 9. A. Mean ERPs to distracting sounds at the fronto-central group of electrodes as a 
function of the cue category (informative or uninformative). B. From left to right, scalp 
topographies of the N1, P2, early P3 and late P3, in trials with informative or uninformative 
cue after distractor onset, respectively. C. Mean ERPs to targets according to distractor onset 
time at Cz electrode (NoDIS, DIS1, DIS2, DIS3). *P<0.05, ***P<0.001. (Adapted from Bidet-
Caulet et al., 2014). 
 

 

In summary, while several endeavors have been undertaken to investigate bottom-up 

and top-down mechanisms of attention separately, there have been fewer attempts to 

investigate the interaction between the two mechanisms. In the light of the concerns about 

the oddball paradigm’s adequacy, we believe that the CAT would be more particularly suitable 

to investigate the underpinnings of such interaction.
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2 Attention as a Network 

“Invisible threads are the strongest ties.” 
― Friedrich Nietzsche 

 

In the previous chapter, we have attempted to define top-down and bottom-up attentional 

mechanisms in a phenomenological sense. We have also presented electrophysiological and 

fMRI markers of these mechanisms. In this chapter, we discuss how these mechanisms are 

supported by distinct yet overlapping brain networks. Since much of the knowledge about 

such networks stems from studies investigating visual attention, we shall be discussing studies 

from visual and auditory modalities.  

 

2.1 Networks Supporting Top-Down Attentional Mechanisms 

In their seminal review, Corbetta and Shulman (2002) identified two major brain networks 

supporting top-down (endogenous) and bottom-up (exogenous) attentional mechanisms: a 

dorsal fronto-parietal network and a ventral fronto-parietal network, respectively. In the 

visual domain (see Figure 10), two main hubs for top-down signals have been highlighted: The 

Frontal Eye Fields (FEF) and the Intraparietal Sulcus (IPS). The visual top-down orienting 

system has been investigated in both the human (Kastner et al. 1999) and the non-human 

primate (e.g. Wardak et al. 2006) brain using several techniques such as PET (Corbetta et al. 

1993; Nobre et al. 1997; Vandenberghe et al. 1997) and fMRI (Gitelman et al. 1999; Kastner 

et al. 1999; Shulman et al. 1999; Wojciulik and Kanwisher 1999; Corbetta et al. 2000, 2002; 

Hopfinger et al. 2000; Wardak et al. 2006). A recurrent finding in these studies is an enhanced 

activation of both the FEF and IPS when participants direct their attention endogenously 

towards a visual hemifield. 

Activity in these regions have also been found to dynamically track the locus of 

attention in the visual field (Serences and Yantis 2007). Moreover, using techniques such as 

single-pulse transcranial magnetic stimulation (TMS) that could interfere with signal 

propagation across cortical regions, it has been demonstrated that temporary abruption of 

FEF/IPS activity impeded participants to successfully orient their attention to anticipated 

targets (Szczepanski and Kastner 2013). However, there is evidence that FEF and IPS might 

play slightly different roles in top-down attention. In two separate studies, Hung and 
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colleagues demonstrated that disruption of the IPS functioning (Hung et al. 2005) led to an 

impaired top-down attention control only in the visual hemifield contralateral to the 

upcoming target (responsible for processing an upcoming target). However, disruption of the 

FEF (Hung et al. 2011) functioning, impaired top-down control in both contralateral and 

ipsilateral hemifields.  

 
Figure 10. Dorsal and ventral fronto-parietal networks. Areas in blue indicate the dorsal 
fronto-parietal network. FEF, frontal eye field; IPs/SPL, intraparietal sulcus/superior parietal 
lobule. Areas in orange indicate the stimulus-driven ventral fronto-parietal network. TPJ, 
temporoparietal junction (IPL/STG, inferior parietal lobule/superior temporal gyrus); VFC, 
ventral frontal cortex (IFg/MFg, inferior frontal gyrus/middle frontal gyrus). (Adapted from 
Corbetta and Shulman 2002). 
 

 In the auditory domain, there is a growing number of neuroimaging studies suggesting 

that top-down endogenous orienting of auditory attention engages cortical circuitry that is 

highly similar (see Figure 11) to that engaged during visual attention e.g. the FEF and the IPS 

(Rosano et al. 2002; Shomstein and Yantis 2004; Mayer et al. 2006; Wu et al. 2007; Smith et 

al. 2010; Kong et al. 2012; Lee et al. 2013). However, several studies have reported the 

activation of other regions during top-down orienting of auditory attention such as the inferior 

frontal gyrus (Voisin et al. 2006; Salmi et al. 2009), the dorso- (Voisin et al. 2006; Salmi et al. 

2009) and ventro-lateral (Kong et al. 2012) prefrontal cortex, suggesting a more widespread 

dorsal network of top-down auditory attention. Moreover, Kong and colleagues (2012) 

demonstrated that even within the common (supramodal) regions of top-down attention such 

as the IPS, visual and auditory attention recruit different neuronal subpopulations (Kong et al. 

2012).  
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Figure 11. Auditory and visual attention evoke similar patterns of brain activation. (A) Neural 
basis of audiospatial attention (spatial cues versus non-spatial cues). (B) Neural basis of 
visuospatial attention. (C) Statistical maps from both conditions (auditory and vision) on the 
same background image. FEF: Frontal Eyes Fields, PPC: Posterior Parietal Cortex, SMA: 
Supplementary Motor Area, AudC: Auditory Cortex, VisC: Visual Cortex. (Adapted from Smith 
et al. 2010). 
 

2.2 Networks Supporting Bottom-Up Attentional Mechanisms 

Supporting the bottom-up (exogenous) attentional mechanisms is the ventral fronto-parietal 

network comprising the temporoparietal junction (TPJ) and the ventral frontal cortex (inferior 

and middle frontal gyri) (Corbetta and Shulman 2002; Corbetta et al. 2008; Chica et al. 2013; 

Ruff 2013). In the visual domain, various studies have demonstrated the activation of these 

regions in response to rare (low-frequency) stimuli and/or during attentional capture by task-

irrelevant stimuli (Robinson et al. 1995; Steinmetz and Constantinidis 1995; Downar et al. 

2000, 2001; Kirino et al. 2000; Marois et al. 2000; Serences et al. 2002). 

 Although often investigated separately, neural networks supporting visual and 

auditory bottom-up attentional mechanisms appear to be highly similar (Mayer et al. 2009; 

Salmi et al. 2009; Huang et al. 2012; Larson and Lee 2013a). For example, in a meta-analysis 

of more than 70 studies investigating brain activation during an oddball paradigm, revealed 

that the ventral (bottom-up) network was almost identical in both modalities, except for a 

more right-lateralized TPJ activation in the visual modality in comparison to a bilateral 



Attention as a Network 

 24 

activation in the auditory modality (Kim 2014). Thus, it has been suggested that ventral (and 

dorsal) networks supporting bottom-up (and top-down) attentional mechanisms are 

potentially supramodal systems (Macaluso et al. 2003; Macaluso and Driver 2005; Macaluso 

2010; Vossel et al. 2014).  

 Finally, it’s important to note that while so far we have outlined distinct regions for 

dorsal and ventral networks, some investigations in the visual domain demonstrated that such 

distinction between the two networks might not be as clear as we would like to believe 

(Serences and Yantis 2007). This common activation has been reported even more in the 

auditory domain (Salmi et al. 2009; Alho et al. 2014). For example, Alho and colleagues 

reported activations of the FEF/IPS and the TPJ to both top-down and bottom-up orienting of 

attention. However, the activation of the IPS was more prominent in the top-down orienting 

task. 

 

2.3 Prefrontal Cortex (PFC) 

It has been shown that while the dorsal and ventral networks are anatomically segregated, 

there exists some overlap between them in the visual (Buschman and Miller 2007; Corbetta 

et al. 2008; Katsuki and Constantinidis 2014) and auditory (Salmi et al. 2009; Alho et al. 2014) 

domains. A recurrent candidate for this overlap is the lateral prefrontal cortex (Chao and 

Knight 1995; Kim et al. 1999; Miller and Cohen 2001; Fox et al. 2006; He et al. 2007). Below, 

we shall first detail the various structures (see Figure 12) that constitute the prefrontal cortex 

and their role in cognition. Then, we shall highlight how the lateral prefrontal cortex, in 

particular, could support the dynamic balance (interaction) between top-down and bottom-

up networks attention. 
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Figure 12. Functional division of the human prefrontal cortex. (A and B) Tilted frontal-side 
view (left) of the human brain with illustration of common functional divisions of the prefrontal 
cortex. dlPFC: dorsolateral prefrontal cortex, dmPFC: dorsomedial prefrontal cortex, 
vmPFC: ventromedial prefrontal cortex, vlPFC: ventrolateral prefrontal cortex, OFC: oribital 
frontal cortex, ACC: anterior cingulate gyrus. (Adapted from Carlen 2017). 
 

The prefrontal cortex can be subdivided into a medial and a lateral part. The medial 

prefrontal cortex (comprising the ventro- and dorso- medial prefrontal cortices), along with 

the anterior cingulate cortex, is a component of the cognitive control system, with higher 

activation of these regions corresponding to enhanced active suppression of irrelevant stimuli 

(Rule et al. 2002; Badre 2008; Salmi et al. 2009). The lateral prefrontal cortex (comprising the 

ventro- and dorso- lateral prefrontal cortices) also plays a major role in cognitive task control 

(Cole et al. 2013). Interestingly, the auditory modality is richly represented in the prefrontal 

cortex more than any other modality i.e. the auditory modality impinges on prefrontal cortices 

on the lateral, medial, and orbital surfaces with almost every area of the prefrontal cortex 

having some connections with auditory association cortices (Barbas et al. 2012a). In addition 

to this role in cognitive control, the prefrontal cortex seems to play an important role in 

balancing top-down a bottom-up attentional mechanisms. 

On one hand, it has been demonstrated, in both visual (Kastner and Ungerleider 2000) 

and auditory (Bushara et al. 1999; Zatorre et al. 1999; Lewis et al. 2000; Voisin et al. 2006) 

modalities, that the lateral prefrontal cortex (lPFC) plays a role in supporting top-down 

attention by activating the pathway of the relevant sensory modality (Barceló et al. 2000; 

Esterman and Yantis 2010) and inhibiting the irrelevant sensory modality pathway (Caclin and 

Fonlupt 2006). In other words, lPFC could be involved in the top–down control of attention by 
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means of biasing sensory processing in favor of information that is behaviorally relevant 

(Miller and D’Esposito 2005; Rossi et al. 2007). In addition, studies using transcranial magnetic 

stimulation (TMS) have demonstrated a causal role of lateral prefrontal top-down signals in 

modulating the neural processing of relevant stimuli (Johnson et al. 2007; Miller, Vytlacil, et 

al. 2011; Zanto et al. 2011). Taken together, these findings suggest that the lateral prefrontal 

cortex plays a crucial role in the top-down control of attention. 

On the other hand, lPFC seems to also play an important role in bottom-up attentional 

mechanisms. fMRI studies suggest that the lPFC is involved in attentional capture in both 

auditory (Watkins et al. 2007) and visual (Han and Marois 2014) modalities. lPFC activation 

has been associated with the inhibition of responses to distracting stimuli (Dolcos et al. 2007; 

Clapp et al. 2010; Suzuki and Gottlieb 2013). In addition, reduced activity in the lPFC has been 

linked to impaired distraction processing (Gaebler et al. 2015), while increased connectivity 

between the lPFC and task-relevant regions reduces external interference (Takeuchi et al. 

2015). Finally, Cosman and colleagues (2015) decreased susceptibility to attentional capture 

by utilizing transcranial direct-current stimulation (tDCS) to stimulate the lPFC. However, it 

remains unclear whether lPFC is actually involved in the attentional capture itself and/or in 

controlling reorientation of attention towards the initial task. 

In summary, these results highlight the implication of the lPFC in both top-down and 

bottom-up attentional mechanisms. Based upon these findings, we hypothesize that the lPFC 

would support the interaction (balance) between these two mechanisms. A promising way of 

probing this dynamic interaction is to explore oscillatory brain activities. In the following, we 

shall define brain oscillations and how they could shed more light to this role of lPFC.  
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3 Attention as a Wave 

“Sit in reverie and watch the changing color of the waves 
that break upon the idle seashore of the mind." 

― Henry Wadsworth Longfellow  

 

In 1929, Hans Berger described continuous waves (oscillations) in the electroencephalogram, 

specifically a large-amplitude rhythm induced by eye closure, the “alpha” rhythm (1929). 

While Berger was (allegedly) attempting to investigate their role in telepathic communication 

(Buzsaki 2006), brain oscillations have been assigned a much more essential role in cognitive 

functions. 

Briefly, oscillations are described by three pieces of information: frequency, power, 

and phase. Frequency is the speed of the oscillation (number of cycles per second) and 

according to this speed, oscillations are clustered into frequency bands, including delta (1–4 

Hz), theta (4–8 Hz), alpha (8–14 Hz), beta (15–30 Hz), gamma (>30 Hz). Power is the amount 

of energy in a frequency band and phase is the position along the sine wave at any given time 

point (see Figure 13). Here we shall focus mainly on oscillations in the alpha and gamma bands 

and how modulations in their power (amplitude) and phase might orchestrate attentional 

mechanisms. 

 

 
Figure 13. The three dimensions that define oscillations: frequency, power and phase. (Adapted 
from Cohen 2014). 
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3.1 Oscillatory Activity in The Alpha Band 

3.1.1 You Shall Not Pass: Alpha Oscillations as The Gate Keeper 

Being more prominent when awake participants close their eyes, oscillations in the alpha band 

(8 and 14Hz) were first considered as a marker of cortical idling (Pfurtscheller et al. 1996). 

However, this idea has been recently challenged with hypotheses that alpha activity actually 

reflects neuronal excitability, namely, the inhibition-timing hypothesis by Klimesch and 

colleagues (2007) and the gating by inhibition hypothesis by Jensen and Mazaheri (2010).  

The inhibition-timing hypothesis assumes that alpha oscillations are induced by 

inhibitory cells and reflect rhythmic changes between phases of maximal and minimal 

inhibition. Thus, a neuron might (a) in a high excitation level, fire in a tonic manner and 

subsequently overrides the inhibitory influence of the oscillatory activity (Figure 14A), or (b) 

in a lower excitation level fire rhythmically (entrained to the oscillation: Figure 14B). In other 

words, increases in alpha power (alpha synchronization) reflects a state of low excitability i.e. 

inhibition, whereas decreases in alpha power (alpha desynchronization) reflects a state of 

rather high excitability i.e. release of inhibition (Klimesch et al. 2007). More importantly, the 

inhibition-timing hypothesis assumes that since this increase in amplitude leads to an 

increased rhythmic activity thereby it allows a more precise timing of neural activity by 

providing a small time-window for firing for many neurons. For example, in Figure 14B, one 

can note that the neuronal rhythmic firing is regulated by alpha oscillations in a way that it 

occurs solely in phases of low alpha activity. 

 
Figure 14. The inhibition–timing hypothesis assumes that depending on the amplitude of the 
oscillation (and the excitation level of single cells), two different firing patterns can be 
distinguished. (A) If the amplitude of the oscillation is small, cells with a high level of excitation 
fire tonically, not entrained to the phase of the oscillation. (B) If the amplitude is large even 
cells with a high level of excitation will fire rhythmically, entrained to the phase of the 
oscillation. (Adapted from Klimesch et al. 2007). 
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The gating by inhibition hypothesis (see Figure 15C) implements this inhibitory role of 

alpha oscillations in the functional architecture of the different brain networks. According to 

this hypothesis, in a certain task, neural pathways could be either task-relevant or irrelevant: 

through GABAergic interneurons, alpha power would increase in task-irrelevant pathways 

(regions), blocking information processing in a pulsed manner, along this pathway, and 

subsequently gating the information flow to task-relevant pathways (Jensen and Mazaheri 

2010).  

 

 
Figure 15. Consider a situation in which information is supposed to be routed from node a to 
node b but not from node a to node c. (A) One possibility is that the synaptic connections from 
node a to b are strengthened on a fast time scale and weakened from node a to c. This would 
require a mechanism for synaptic plasticity that works on a fast time scale. (B) Information 
might be gated through neuronal phase-synchronization between node a and c. The information 
flow from node b to c is blocked by adjusting the phase difference. (C) Gating by inhibition. 
Node c is actively suppressed by functional inhibition. This serves to gate the information flow 
from a to b. The functional inhibition is reflected in the 9–13 Hz alpha band.(Adapted from 
Jensen and Mazaheri 2010). 
 

3.1.2 Alpha in Your Eyes, Alpha in Your Ears: Alpha Oscillations and Sensory Modulations 

In support of these hypotheses, in the visual domain (see Figure 16), it has been demonstrated 

that during the expectation of visual targets in a specific hemifield, alpha power decreases in 

contralateral visual areas responsible for processing the attended space, while alpha power 

increases in ipsilateral visual areas responsible for processing the unattended space (Worden 

et al. 2000; e.g. Kelly et al. 2006; Thut 2006; Rihs et al. 2007, 2009; Marshall, Bergmann, et al. 

2015; Doesburg et al. 2016). Not only does alpha activity display a retinotopic specificity, but 

also visual feature specificity. For example, Snyder and Foxe (2010) used a paradigm in which 

participants were required to attend to either the color or the motion of a visual stimulus, and 
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they demonstrated that alpha power increased in regions responsible for color-processing 

when color was cued, and similarly for motion-processing regions when motion was cued.  

 

 
Figure 16. (A) Experimental paradigm. Each trial began with one of four visual cues, 
instructing subjects either to attend to the left, right or both luminance pedestals. (B) Grand 
average alpha modulation index (attention left versus attention right) calculated for cue-target 
interval (350–1,350 ms post-cue). (Adapted from Marshall, Bergmann, et al. 2015). 
 

These results also extend to the somatosensory domain (Haegens et al. 2010, 2011, 

2012; Cheyne 2013) and even to cross-modal domains, where alpha power increases in 

regions processing the unattended modalities and decreases in regions processing the 

relevant modality (e.g. Foxe et al., 1998; Fu et al., 2001; Gomez-Ramirez et al., 2011; Jiang et 

al., 2015). Based upon all these evidences combined, alpha oscillations would be a suitable 
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candidate for supporting facilitatory and suppressive mechanisms of top-down anticipatory 

attention. But what about auditory alpha?  

Contrary to the visual domain, only a handful of studies investigated the impact of 

anticipatory attention on alpha modulations in the auditory cortices. This relative scarcity in 

the literature is probably due to doubts in the existence of independent generators of auditory 

alpha activity due to the inferior visibility of auditory alpha activity in raw electrophysiological 

data, in comparison to the visual and motor alpha activity probably due to the orientation of 

such generators which might impede their visibility in EEG signals, for example (Weisz et al. 

2011). However, in 2012, Muller and Weisz provided compelling evidence for the existence of 

auditory generators of alpha activity. In their study, using magnetoencephalography (MEG), 

they have demonstrated an increase in alpha power, solely in the right auditory cortex, when 

attention was directed towards the ipsilateral right ear compared to when directed towards 

the contralateral ear. This has been followed by several reports of auditory alpha modulations 

(Mazaheri et al. 2013; Frey et al. 2014; Weisz and Obleser 2014; Weise et al. 2016; van Diepen 

and Mazaheri 2017). 

Importantly, alpha power was also found to correlate with behavioral performances. 

For example, in a study by Mazaheri and colleagues (2013), participants performed a cross-

modal discrimination task, where according to an attentional cue, they were required to 

discriminate a feature of either a visual or an auditory stimulus. They have demonstrated that 

in anticipation of a visual target, reaction times positively correlated with alpha power in the 

occipital cortex, while in anticipation of an auditory target similar positive correlation pattern 

were noticed in the vicinity of the auditory cortex. In other words, the more alpha power 

decreased (desynchronized) in the relevant regions, the faster participants were. Similar 

correlation patterns have been demonstrated in visual (Thut 2006; Händel et al. 2011; 

Bonnefond and Jensen 2012; Payne et al. 2013; Myers et al. 2014), somatosensory (Haegens 

et al. 2011) and cross-modal (Weise et al. 2016) tasks.  

 

3.1.3 Power Is Not Everything: A Role for the Phase of Alpha Oscillations 

So far, we have discussed how top-down attentional mechanisms would modulate alpha 

oscillations in task (ir)relevant sensory regions, and throughout this section we have affirmed 

the inhibitory role played by alpha oscillations. However, it is important to note that alpha 

oscillations could reflect other processes rather than cortical inhibition e.g. active processing 
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(Palva and Palva 2007, 2011). In both of their reviews, Palva and Palva have pointed out the 

discrepancy between the assigned “inhibitory” role of alpha oscillations and evidence of 

increases in alpha power in frontal and parietal regions  as well as in sensory regions high up 

in the processing hierarchy i.e. regions that are task-relevant (Jensen et al. 2002; Palva et al. 

2005, 2011; Haegens et al. 2011). 

In their framework, they have suggested two main ideas. First, that the amplitude of 

alpha oscillations might not always reflect the same processes: While the amplitude of alpha 

oscillations in sensory regions might reflect “inhibition” or “inhibition release”, the amplitude 

of alpha oscillations in other higher-level regions, might in fact reflect active processing (active 

processing hypothesis: Palva and Palva 2007). Second, amplitude data is not sufficient to draw 

a complete physiological picture of alpha oscillations. Thus, more light should be shed on the 

phase dynamics of these oscillations. Indeed, on a sensory level, it has been shown that the 

phase of alpha oscillations in sensory regions plays a role, in stimuli detection, where stimuli 

coinciding with a certain phase of ongoing alpha oscillations are more likely to reach sensory 

awareness (Busch et al. 2009; Mathewson et al. 2010). 

So far, we have discussed alpha modulations in sensory cortices. However, empirical 

evidence highlights the fact that alpha activity is also modulated in frontal and parietal regions 

(e.g. Capotosto et al. 2009). Thus, it has been proposed that the alpha phase dynamics would 

orchestrate long-range inter-areal communication through phase synchrony or coherence 

between the different nodes of a given task-related neural network (Palva et al. 2005; 

Klimesch et al. 2007; Palva and Palva 2007, 2011).  

Following this thread of thought, during a task that manipulates top-down attentional 

mechanisms, might one expect alpha activity to be modulated in different nodes of the dorsal 

fronto-parietal network supporting top-down attention mechanisms? Could the alpha rhythm 

pave the way for modulatory signals to travel from fronto-parietal regions of the dorsal 

attentional network, such as the IPS and the FEF, to task-relevant sensory regions such as the 

visual or auditory cortices? 
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3.1.4 Alpha Oscillations & Top-Down Attentional Networks 

It has been proposed that fronto-parietal regions could control spatial attention through the 

modulation of ongoing alpha rhythms (Capotosto et al. 2009). In their study, Capotosto and 

colleagues (2009), targeted the IPS and the FEF, using repetitive transcranial magnetic 

stimulation (rTMS), while participants performed a posner-based visual discrimination task. 

Interference with either the FEF or the IPS, impaired participants’ behavioral performances, 

i.e. they were slower to discriminate the visual targets. More interestingly, this behavioral 

effect was accompanied by (and correlated to) a disruption of anticipatory alpha (power) 

desynchronization in the occipital cortex. Thus, providing preliminary evidence to the causal 

role of the dorsal fronto-parietal network in the control of human visuo-spatial attention via 

alpha oscillations in visual regions. 

Combining neuroimaging techniques such as EEG, MEG and fMRI and advanced 

connectivity measures such as partial directed coherence, phase locking, and granger 

causality, several reports in the somatosensory (Sacchet et al. 2015), the visual (Sauseng et al. 

2005; Capotosto et al. 2009, 2011, 2015, 2016, Doesburg et al. 2009, 2016; Zumer et al. 2014; 

Lobier et al. 2018) and the auditory (Muller and Weisz 2012; Huang et al. 2014; Weisz et al. 

2014) domains have established that synchrony in the alpha rhythm could play a role in 

coordinating and regulating neuronal processing across fronto-parietal and visual/auditory 

systems. For example, in tasks of auditory spatial attention, while attending to a monaural 

target, stronger phase synchrony (connectivity) has been observed between the contralateral 

auditory cortex and nodes of the dorsal attentional network (IPS: Huang et al. 2014; 

intraparietal lobule: Weisz et al. 2014).  

 

3.1.5 How Many Alpha(s) Are There: Alpha Oscillations & Peak Frequency  

One final key characteristic of alpha oscillations that we shall discuss is the alpha peak 

frequency. While earlier studies demonstrated that alpha could be divided into three alpha 

sub-bands: a lower band, reflecting phasic alertness, an intermediate band, reflecting 

expectancy and an upper band reflecting task performance (Klimesch et al. 1993, 1998; 

Klimesch 1999), currently, studies regard alpha activity in between 8 and 14 Hz as a monolithic 

entity, i.e. alpha band is often regarded as a single band. 

Nevertheless, recent evidence suggests that rather than representing random 

fluctuations alpha peak frequency (APF) might represent the nature and activation level of the 
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neural population and task demands (Kawasaki et al. 2010; Nir et al. 2010; Haegens et al. 2014; 

Hülsdünker et al. 2015; Mierau et al. 2017). According to these studies, the APF should be 

regarded as a “trait” and/or “state” variable.  

APF could be considered as a “trait” or a “characteristic” variable that changes across 

(1) individuals and varies as a function of age, neurological diseases or behavioral 

performances (Klimesch 1999; Başar 2012), and (2) cortical regions, as found for example, 

during resting state, where parietal and occipital regions displayed different APFs (Haegens et 

al. 2014). 

APF could also be considered as a “state” variable that would index performance 

fluctuations, cognitive demands and probably the functional task-relevance of a specific 

cortical region (Klimesch 1999; Başar 2012; Haegens et al. 2014). For example, studies in the 

working memory (Haegens et al. 2014), sensorimotor control (Hülsdünker et al. 2015) and 

pain perception (Nir et al. 2010) domains have shown that APF increases with increasing task 

demands. While the role of such APF variability remains unclear we believe that such 

phenomenon should be further investigated in studies of alpha activity.  

 

In summary, we have described how alpha activity (power) would reflect top-down 

modulations of cortical sensory activity. In addition, we have also described how alpha activity 

(phase) would support long-range interareal communication between these sensory regions 

and nodes of the dorsal top-down attentional network. Now, let’s shift gears to a faster 

rhythm: Gamma! 
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3.2 Oscillatory Activity in The Gamma Band 

3.2.1 Gamma Oscillations: Music or noise? 

Oscillations with frequency over 30–40Hz are denoted gamma. These fast oscillations became 

“visible” or “detectable” with the advent of digital EEG whose recording capacity (>200Hz) 

surpassed that of its analogue counterpart (<25Hz; Hughes 2008). In comparison to the larger 

and slower rhythms, these oscillations were originally considered as noise but later on, a 

critical role for gamma oscillations in perceptual binding has been highlighted (review in Singer 

2001). Perceptual binding refers to the phenomenon of grouping features representing the 

same object so that they could be processed (perceived) as a coherent whole. This role of 

gamma oscillations in perceptual binding has been demonstrated by several studies in the 

animal (Eckhorn et al. 1988; Aston-Jones and Cohen 2005) and the human (Kristeva-Feige et 

al. 1993; Desmedt and Tomberg 1994; Jokeit and Makeig 1994; Tallon et al. 1995; Tallon-

Baudry et al. 1996, 1997) brain in response to different auditory, visual and somatosensory 

stimuli.  

This gamma-binding hypothesis proposes that by synchronizing assemblies of neurons 

that process distinct features of an object, the “fractured” features of the object are linked 

into a unified, coherent percept (Tallon-Baudry and Bertrand 1999). Gamma oscillations have 

also been related to attentional processes. However, it is important to note that the term 

“gamma” has been an umbrella term for different types of fast oscillatory activity. In the 

following, we shall different types of gamma oscillations according to their (a) temporal 

relationship to their eliciting stimuli and (b) frequency bandwidth. 

 

3.2.2 Gamma Oscillations: One Gamma Fits all? 

First, in relation to stimulus onset, there are three different types of gamma activity: evoked, 

induced and steady-state responses (Galambos 1992). The steady-state response is often 

elicited to periodically modulated stimulus (auditory, visual or somatosensory) at the driving 

frequency of the stimulus (Tallon-Baudry and Bertrand 1999; Bertrand and Tallon-Baudry 

2000). Evoked and induced gamma oscillations are seen in response to transient stimuli 

(Tallon-Baudry and Bertrand 1999). However, they differ in their phase-locking to the stimulus 

(see Figure 17). Evoked gamma is characterized by precise phase-locking to the stimulus onset 

whereas induced gamma is not phase-locked to the stimulus onset, i.e. its temporal 

relationship with stimulus onset is fairly loose, and of the three types, induced gamma seems 
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to have the most relevance with perceptual binding (review in Tallon-Baudry and Bertrand 

1999; Bertrand and Tallon-Baudry 2000). 

 
Figure 17. Schematic representation of evoked and induced gamma oscillatory responses. An 
evoked response (blue boxes) appears at the same latency and phase in each single trial and 
hence can be detected in the averaged evoked potential. An induced response (green boxes) 
appears with a jitter in latency from one trial to another, centered around a given latency (green 
line). It therefore tends to cancel out completely in the averaged evoked potential. (Adapted 
from Tallon-Baudry and Bertrand 1999). 
 
 Second, within the gamma band, two types of “gamma” need to be distinguished: 

narrowband and broadband gamma (Sedley and Cunningham 2013). On one hand, 

narrowband gamma (2–5 Hz bandwidth oscillations close to 60 Hz) has been mainly reported 

in the animal visual cortex (review in Saleem et al. 2017). Yet, the function of this narrowband 

activity is unclear, with hypotheses that it could represent cortical idling (Jia et al. 2011; 

Saleem et al. 2017). On the other hand, broadband gamma extends from (30 -90 Hz) rhythms 

and seems to play a more active role in perception (Fries et al. 2001; Fries 2005; Lachaux et al. 

2005; Sedley and Cunningham 2013) that will be discussed in the following. It is important to 

note, however, that within broadband gamma there exist “true” oscillations occupying a 

specific frequency band (albeit a broad one) and other indefinite spectral activity that is 

considered to represent leakage from multi-unit activity (Sedley and Cunningham 2013). Thus, 
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in this section we shall be concerned only with broadband gamma oscillations with a specific 

frequency range. 

 

3.2.3 Gamma Oscillations Reflect Attentional Mechanisms 

Gamma oscillations have been associated with attention, where, following an opposing 

pattern to that of alpha activity (see Figure 18), attention to a visual or an auditory stimulus 

enhances gamma power in the visual (Fries et al. 2001, 2008, Fries 2005, 2009; Taylor et al. 

2005; Womelsdorf and Fries 2007; Siegel et al. 2008; Popov et al. 2017) or auditory (Debener 

et al. 2003; Schadow et al. 2009) cortices, respectively.  

 

 
Figure 18. Time-frequency representations (TFRs) of target-locked oscillatory power for left 
versus right cued trials during visual target expectancy. (A) Pre-target alpha power increased 
in sensors ipsilateral to the cue direction, whereas it decreased in contralateral sensors. (B) 
Post-target gamma power decreased relatively in sensors ipsilateral to the cue direction, 
whereas it increased in contralateral sensors. (Adapted from Popov et al. 2017). 
 

Gamma oscillations have also been observed in regions other than sensory regions in 

Stroop (Shinichiro Koga et al. 2012; Oehrn et al. 2014), visual search (Ossandon et al. 2012), 

object categorization (Ramot et al. 2012), reading (Jung et al. 2008), working memory (Michels 

et al. 2010), Go/No-Go (Swann et al. 2013), visual (Akimoto et al. 2013, 2014) and auditory 

(Lee et al. 2007; Ahveninen et al. 2013) oddball tasks. Thus, gamma oscillations seem to 

promote the activation of task-relevant processes across the entire brain and not only in the 

sensory cortices.  
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Moreover, similarly to alpha oscillations, it has been demonstrated that gamma band 

activity correlates with behavioral performances. There is broad evidence for an association 

of amplitude (and phase) of gamma oscillations with faster (Gonzalez Andino et al. 2005; 

Fründ et al. 2007; Martinovic et al. 2007, 2008; Schadow et al. 2009; Ahveninen et al. 2013), 

and better (Kaiser et al. 2006, 2009; Kaiser, Heidegger, and Lutzenberger 2008; Kaiser, 

Heidegger, Wibral, et al. 2008; Ahveninen et al. 2013) performances. Finally, gamma power in 

lateral prefrontal cortex was shown to predict attentional performances (Rouhinen et al. 

2013). 

 

3.2.4 Does the Brain Speak Gamma? Gamma Synchrony Reflect Interareal Communication 

Phase synchrony in gamma oscillations seems to subtend communication between different 

brain regions (the communication through coherence hypothesis: Fries 2005). According to 

this framework (see Figure 19), communication between sending and receiving neuronal 

pools is dependent on the phase synchrony between them in the gamma band i.e. 

communication is dependent on whether gamma oscillatory activity between two neuronal 

pools is coherent or not. Thus, the coherent phase of gamma oscillations would govern signal 

transmission across neuronal connections (Fries 2005). This might be achieved by the sending 

neuronal pool entraining the gamma phase in the receiving pool thus rendering their 

interconnection more powerful (Fries 2009).  
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Figure 19. Red and green filled circles illustrate a sending and a receiving neuronal group, 
respectively. The small vertical lines illustrate action potentials of neurons in the two groups 
and the arrows illustrate those action potentials traveling along the connecting axons. Spikes 
that arrive at excitability peaks of the receiving neuronal group have pointed arrowheads. 
Spikes that miss excitability peaks have blunt arrowheads. The red and green neuronal groups 
undergo coherent excitability fluctuations and their communication is therefore effective. The 
black neuronal group however undergoes excitability fluctuations that are not coherent with 
the green neuronal group and therefore communication between the green and the black 
neuronal group is prohibited. (Adapted from Fries et al., 2005). 
 

In the attention domain, it has been demonstrated that top-down attention increases 

gamma synchrony between frontal regions and task-relevant regions (Gregoriou et al. 2009; 

Baldauf and Desimone 2014). For example, Baldauf and Desimone (2014) using MEG 

recordings in human subjects demonstrated that synchrony (coherence) in the gamma band 

(70-100Hz) increased between the inferior frontal junction and (1) the fusiform face area 

when participants attended to face, or (2) the parahippocampal place area when participants 

attended to places.  
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3.3 Different waves for different networks 

Previously, we have discussed how alpha oscillations could be involved in feedback signaling. 

In a similar manner, there is ample evidence that fast gamma oscillations are involved in 

cortical feedforward signaling (von Stein et al. 2000; Buzsaki et al. 2004; Kaiser and 

Lutzenberger 2005; Buschman and Miller 2007; Arnal et al. 2011; Bastos et al. 2012, 2015; 

Xiao-Jing Wang 2013; van Kerkoerle et al. 2014; Buschman and Kastner 2015; Fries 2015; 

Kornblith et al. 2016; Michalareas et al. 2016). 

In what might be the first demonstration of such phenomenon von Stein and 

colleagues (2000) demonstrated that, in the rat visual system, gamma oscillations 

predominated in bottom-up interactions, while top-down interactions evolved mainly in the 

middle frequency (4–12 Hz) oscillations. These findings have been replicated in the macaque 

(Buschman and Miller 2007) and the human visual (Michalareas et al. 2016) and auditory 

cortices (Fontolan et al. 2014), where bottom-up and top-down propagation (influences) 

predominated in gamma and delta/alpha/beta bands, respectively. Moreover, causal 

evidence of such propagation has been provided from a study by van Kerkoerle and colleagues 

(2014) using laminar recordings in the monkey brain. In this study, microstimulation in the V1 

elicited gamma-oscillations (40-90Hz) in V4, whereas microstimulation in V4 elicited alpha-

oscillations (5-15Hz) in V1, thus providing causal evidence for the opposite propagation of 

these rhythms. Therefore, at least on a signal processing level, there is a growing hypothesis 

that slow oscillations, namely alpha oscillations, would be involved in cortical feedback 

signaling while faster oscillations, namely gamma oscillations, would be involved in cortical 

feedforward signaling. Could such reasoning be applied to attentional mechanisms? 

In their seminal study, Buschman and Miller (2007), using electrodes implanted in the 

monkey brain, found that coupling between prefrontal and parietal cortex differed depending 

on whether attention was being externally captured (bottom-up/pop out) or internally 

directed (top-down visual search). When attention was externally captured, and information 

flowed in a ‘‘bottom- up’’ manner (from parietal cortex to prefrontal cortex), coupling 

(coherence) was observed in the gamma-band (35-55Hz). In contrast, when attention was 

internally controlled, and information flowed in a “top-down” manner from prefrontal to 

parietal cortex, synchrony between prefrontal and parietal cortex was at a lower-frequency 

beta-band (22-34Hz). Furthermore, several studies using intracranial EEG demonstrated that 

bottom-up feedforward attentional influences are carried by the gamma-band while top-
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down feedback attentional influences are carried by the beta-band either within the primate 

(Bastos et al. 2015) or the human (Richter et al. 2017) brain.  

Based upon these results, we have constructed a working hypothesis on the 

mechanisms supporting the bottom-up/top-down balance of attention: high frequency 

oscillations would support bottom-up mechanisms of attention and index the activation of the 

ventral bottom-up network, whereas long-range coupling in lower frequencies would 

coordinate activity within the dorsal top-down network.  

Earlier we have discussed how bottom-up and top-down attentional networks might 

overlap then how would their two oscillatory indices (alpha and gamma) interact? 

 
3.4 Alpha-Gamma Coupling 

Traditionally, oscillatory activity has been binned into separate frequency bands that have 

been investigated separately, giving the impression of a lack of interaction between these 

bands. However, there has been evidence, stemming from both animal and human studies, 

that oscillatory activity in various bands interact with one another in what is termed cross-

frequency interaction or cross-frequency coupling (CFC), which could involve either power-to-

power, phase-to-power or phase-to-phase interactions (Onslow et al. 2011). In this section, 

we shall focus on phase-to-power or phase-amplitude interactions (see Figure 20). 
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Figure 20. Local field potential data showing theta-gamma phase-amplitude coupling in CA1 
of rat hippocampus. (A) 10 s of broadband LFP and corresponding power spectrum (right) 
showing predominant theta-frequency power whilst a rat actively explores its home cage. (B) 
Expanded 1 s segment showing raw signal (top) and bandpass filtered theta and gamma (lower) 
rhythms. The thick grey line over the gamma signal shows the amplitude envelope and dashed 
horizontal lines mark timing of theta cycle peaks; note alignment of theta peaks and gamma 
envelope during the first half of the trace. (Adapted from Onslow et al. 2011). 
 

For example, in the rat hippocampus, it has been demonstrated that the power of 

gamma oscillations were modulated by the phase of theta (Chrobak and Buzsáki 1998) and 

theta/alpha (Bragin et al. 1995) oscillations. In other words, power of fast oscillations was 

determined by the phase of slower oscillations. Later on, Lakatos and colleagues showed that 

in the primary auditory cortex of awake macaque monkeys, during rhythmic auditory 

stimulation, the amplitude of gamma oscillations (30–70 Hz) was modulated by the phase of 

slower theta (4–10 Hz: Lakatos et al. 2005) and delta (1—4Hz: Lakatos et al. 2008) oscillations. 

Later on, this phenomenon was replicated in several modalities, in the macaque and the 

human brain, highlighting an important role of phase-amplitude coupling (PAC) in the control 

of neuronal processing and communication generally and attentional selection more 

specifically (Jensen and Colgin 2007; Lakatos et al. 2008; Bahramisharif et al. 2013; Szczepanski 

et al. 2014; Bonnefond and Jensen 2015; Esghaei et al. 2015; Chacko et al. 2018). 
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PAC has also been found to correlate with human behavioral performances. For 

example, Szczepanski and colleagues (2014), using human intracranial recordings 

demonstrated that during a task of visuospatial attention, the strength of delta/theta (2–5Hz) 

phase to high-gamma (70–250Hz) amplitude coupling in visual and dorsal-attention-network 

regions negatively correlated with reaction time (RT) i.e. the higher PAC, the lower (faster) 

RTs. Similar results have been obtained by Chacko and colleagues (2018), 

using electrocorticography (ECoG) recordings while participants performed a visually 

cued spatial attention task. However, RT negatively correlated with the strength 

of theta/alpha (6–9 Hz) phase to beta/low-gamma (25-45 Hz) amplitude coupling. 

PAC could also be involved in communication within neural networks such as the 

dorsal and ventral attentional networks. Imagine three neural populations A, B and C, it is 

required to (1) enhance communication between A and C, and (2) to reduce communication 

between B and C (see Figure 15). In this example, C could be the Frontal Eye Fields (FEF), B 

could be the auditory cortex ipsilateral to an upcoming target and A could be the contralateral 

auditory cortex. 

Bonnefond and colleagues (2017) proposed a model for such communication with 

several assumptions. First, long distance interareal communication (A C and B C) is 

established through inter-areal phase synchrony in the alpha band. Thus, for neurons in pool 

A and C to communicate, they oscillate coherently (phase synchrony) in the alpha band in 

conjunction with a decrease in alpha power that would allow information transfer between 

the two regions. However, between B and C communication would be interfered by (a) 

stronger alpha power in B or (b) phase asynchrony between B and C.  

Second, gamma oscillations are nested within alpha oscillations, i.e., they should occur 

only during the excitability phase of alpha oscillations. Thus, in pool A, the low magnitude of 

alpha oscillations allows for longer-duty cycles, i.e., longer time windows for the gamma 

activity during the excitability phase of the alpha cycle. As the excitable phase of the alpha 

oscillations will be aligned between the two relevant pools of neurons, gamma activity in A 

will be able to impact the neurons in C and gamma oscillations in A and C will consequently be 

correlated and possibly coherent. Meanwhile, in pool B, the high magnitude of alpha 

oscillations will reduce the duty cycle and the asynchrony of alpha oscillations in B and C will 

prevent gamma activity in B to drive cells in C. 
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Figure 21. The synchronization in the alpha-band establishes the functional connection 
between A and C. This allows for representational specific neuronal firing reflected by the 
gamma band activity to flow to region C. The blocking of communication between B and C is 
achieved by high alpha power in B and an asynchrony between B and C. Therefore, both 
modulations in alpha-band power, as in gating by inhibition, and phase synchronization 
between the regions, as in CTC, are determining the routing of information between regions. 
Note that phase synchronization is assumed in the alpha band and the information transfer is 
reflected by gamma-band activity. (Adapted from Bonnefond et al, 2017). 
 

In summary, this model proposes that inter-regional (global) communication could be 

established through alignment (synchrony) in the phase of alpha oscillations which is (1) 

concomitant to local modulations in alpha power and (2) coupled to the local power (not the 

phase) of gamma oscillations. However, while global synchrony or coherency could be 

established in the gamma band, it is not essential. 

 This model, in part, fits with the growing literature ascribing slow oscillations a role in 

communicating top-down attentional signals. However, it is incompatible with evidence from 

the same studies demonstrating that bottom-up attentional influences are communicated 

through synchrony within fast gamma oscillations (Buschman and Miller 2007; Bastos et al. 

2015; Richter et al. 2017). In our opinion, in order to describe the dynamic communication 

between cortical regions during specific cognitive processes such as top-down and bottom-up 

attention, the timing aspect of such processes should be considered. 

3.5 A New Model in Town 

Here, we propose an oscillatory framework of top-down and bottom-up mechanisms of 

auditory attention and the interaction between them. First aspect of this framework is that 

top-down anticipatory signals would modulate the amplitude of alpha oscillations in the 

auditory cortices (auditory alpha). In this top-down prepatory setting occurring in a relatively 
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long time-window, such modulation would be possible through phase synchronization 

between auditory alpha on one side and fronto-parietal (FEF and/or IPS) and prefrontal alpha 

(lPFC) on the other side. Power of auditory gamma being coupled to the phase of auditory 

alpha (Lakatos et al. 2005; Canolty and Knight 2010; Bonnefond et al. 2017) would also be 

modulated by the anticipatory signals.  

The second aspect of this framework is that the propagation and regulation of 

attentional capture-related bottom-up signals would be supported predominantly by gamma 

activity (power and phase) in the ventral fronto-parietal network of attention and in prefrontal 

regions (lPFC) as well. We posit that given the rapid nature of attentional capture, it would be 

more efficient for the brain to rely on information transfer through fast gamma oscillations 

while alpha oscillations would be more suitable for communication over relatively longer 

periods of time. 

Third aspect of this framework is that we propose a crucial role played by the lateral 

prefrontal cortex in subtending (1) top-down long-range alpha and bottom-up gamma 

synchrony, and (2) the interaction between the two mechanisms indexed by gamma power 

modulations and/or fluctuations in the alpha-gamma coupling magnitude. In order to 

establish such role, we have planned to investigate two populations that demonstrate 

prefrontal impairments: healthy ageing individuals and patients with frontal lesions.
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4 Attention as a Difficulty  

So far, we have attempted to paint a clear picture, in the healthy brain, of the different top-

down and bottom-up attentional mechanisms. Now, in order to characterize the role of the 

lPFC in attentional mechanisms, we shall discuss two conditions that have been associated 

with attentional difficulties: healthy ageing and frontal damage  

 

4.1 Ageing & Attention 

“Age is an issue of mind over matter. If you don't mind, it doesn't matter” 
―Mark Twain 

Aging is characterized by a decline in many cognitive processes such as working memory, 

executive function, language and attention (Drag and Bieliauskas 2010). In this section, we 

shall discuss how ageing impacts top-down and bottom-up attentional mechanisms on 

behavioral and functional levels.  

 

4.1.1 Ageing & Top-Down Attention 

Behaviorally, top-down attentional orienting has been shown to be preserved in ageing. 

Indeed, it has been demonstrated that in attentional cueing tasks, once age-related general 

slowing and sensory processing declines are accounted for (Zanto and Gazzaley 2014), older 

participants take advantage of spatial cues in a similar manner to younger participants to 

respond faster to upcoming visual (Nissen and Corkin 1985; Hartley et al. 1990; Gottlob and 

Madden 1998; Talsma et al. 2006) and auditory (Robin and Rizzo 1992) targets. This preserved 

performance, however, is accompanied by somewhat impaired neural markers of the 

deployment of top-down attention. For example, ageing has been associated with a reduction 

in the amplitude of the contingent negative variation (CNV: see Figure 2 and section 1.2.1), 

an electrophysiological marker of preparatory behavior (Zappoli et al. 1988, 1992; Onofrj et 

al. 2001). 

 Another marker recently used to elucidate the influence of ageing upon TD attentional 

mechanisms is alpha oscillations. With aging, TD attentional facilitatory processes, indexed by 

alpha desynchronization, have been found to be either reduced (Deiber et al. 2013; Hong et 

al. 2015; van der Waal et al. 2017), reserved (Leenders et al. 2018; Tune et al. 2018) or even 

enhanced (Heideman et al. 2018). However, TD suppressive processes indexed by alpha 
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synchronization seem to deteriorate (Vaden et al., 2012) with ageing. In summary, ageing 

seems to primarily impact suppressive processes of top-down attention, while facilitatory 

ones seem to be relatively unaffected.  

 

4.1.2 Ageing & Distraction 

Behaviorally, ageing is characterized by a reduced capability to inhibit irrelevant information 

in visual and auditory modalities (Chao and Knight 1997; Alain and Woods 1999; Gazzaley et 

al. 2005; Andrés et al. 2006; Fabiani et al. 2006; McGinnis 2012; Wais et al. 2012; Getzmann 

et al. 2013). However, this heightened susceptibility to distraction could be related to either, 

an atypical attentional capture response to irrelevant stimuli (scenario 1) or impaired 

inhibitory mechanisms of top-down attentional control (scenario 2, Gazzaley 2013). 

 Electrophysiologically, there is evidence supporting both scenarios. On one hand, 

studies using the oddball paradigm often demonstrated that elder participants display either 

delayed (Getzmann et al. 2013; Cid-Fernández et al. 2014) or attenuated (Kok 2000; Andrés et 

al. 2006) responses (MMN-P3-RON) to novel stimuli (evidence for scenario 1). On the other 

hand, using fMRI, Peiffer and colleagues (2009) demonstrated that visual cortex deactivation 

during an auditory discrimination task was reduced with ageing. In addition, using fMRI, it has 

been shown that older adults demonstrated a prominent deficit in the suppression of cortical 

activity associated with task-irrelevant representations, whereas enhancement of task-

relevant activity was preserved (Gazzaley et al. 2005). 

Finally, Guerreiro and colleagues (2010; 2013) have demonstrated that modality of 

both task-relevant and task-irrelevant stimuli determine the extent of distractibility of older 

adults (see Figure 22). In summary, they have hypothesized that, age-related differences in 

attention are modality dependent. Specifically, this hypothesis predicts that age-related 

deficits are most likely to arise in tasks that require suppressing unimodal rather than cross-

modal distraction and in tasks that require suppressing visual distraction, regardless of the 

relevant modality (Guerreiro and Van Gerven 2011; Guerreiro, Anguera, et al. 2013; Guerreiro, 

Murphy, et al. 2013; Guerreiro et al. 2015; Van Gerven and Guerreiro 2016). 

In summary, ageing is associated with an exacerbated distractibility that is reflected 

both behaviorally and electrophysiologically (evoked potentials). Thus, given the potential role 

of gamma oscillations in bottom-up attention, one might expect oscillatory activity to be 

involved in such behavioral deficit.  
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Figure 22. Pattern of age-related differences in selective attention by sensory modality of to-
be-attended and to-be-ignored information. Shades of gray indicate graded probability of 
finding age-related distraction (i.e., darker shades indicate higher probability. (Adapted from 
Guerreiro, Murphy, et al. 2013). 
 

4.1.3 Ageing & Frontal Integrity 

Several theories have been proposed to account for attentional deficits during healthy ageing 

e.g. the generalized slowing theory (Salthouse 1996), the neural noise (Crossman and Szafran 

1956; Welford 1981), the load theory (Maylor and Lavie 1998), the posterior to anterior shift 

in ageing theory (PASA: Davis et al. 2008), the compensation-related utilization of neural 

circuits hypothesis (CRUNCH: Reuter-Lorenz and Lustig 2005), the scaffolding theory of ageing 

and cognition (STAC: Park and Reuter-Lorenz 2009) and the cognitive reserve hypothesis 

(Stern 2002). However, here we shall focus only on the inhibitory deficit hypothesis (Hasher 

and Zacks 1988) and the frontal hypothesis of aging frontal lobe (West 1996).  

According to the inhibitory deficit hypothesis (Hasher and Zacks 1988) ageing is 

associated with inhibitory impairment, and, as a result, older adults exhibit disproportionate 

interference from irrelevant information (Lustig and Hasher 2001). Recent developments to 

the theory regards inhibition as a three-facet process that (a) controls access to attention's 

focus, (b) deletes irrelevant information from attention, and (c) suppresses or restrain strong 

but inappropriate responses (Lustig et al. 2007). Accordingly, during a given task, age-related 

reduction in inhibitory control might lead to a reduced ability to (a) ignore concurrent task-

irrelevant distraction, (b) delete information that is no longer relevant to the current task, and 

(c) restrain responding when a preponderant response is inappropriate (Friedman and Miyake 

2004; Lustig et al. 2007; Guerreiro et al. 2010; Stothart and Kazanina 2016). This hypothesis 

received validation from studies demonstrating that older adults might not be able to suppress 
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activity in irrelevant cortical regions (e.g. Mund et al. 2010; Clapp et al. 2011; Chadick et al. 

2014). For example, in their study, Chadick and colleagues (2014), using fMRI, demonstrated 

that ageing was associated with reduced suppressive activity in visual regions (see Figure 23) 

representing irrelevant information in addition to altered functional coupling between these 

cortical regions and the suppression network including the medial prefrontal cortex. 

 
Figure 23. Younger versus Older Suppression Network. A) Functional connectivity map for 
younger participants using a left parahippocampal place area seed, contrasting face-memory-
Overlap > passive-view-overlap (i.e., suppression network). B) Same as A, but for older 
participants. C) Contrast between younger and older suppression network maps. All images 
thresholded at p < 0.05 and corrected for multiple comparisons using cluster method. (Adapted 
from Chadick et al. 2014). 
 

Another leading hypothesis is the frontal hypothesis of aging (West 1996) which 

speculates that the frontal lobes are particularly sensitive to the aging process and that 

declines in frontal efficiency can account for several deficits associated with aging including 

increased distractibility. The frontal lobe is particularly sensitive to the ageing process with 

age-related declines in frontal anatomy including: decreased gray matter thickness, reduced 

activity and connectivity (review in Gazzaley and D’esposito 2007; Fabiani and Gratton 2012). 
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The frontal hypothesis has been supported by studies demonstrating that older adults 

demonstrate reduced functional connectivity (e.g. Chao and Knight 1997; Campbell et al. 

2012; Li and Zhao 2015) and overall activity (Chao and Knight 1997; Solbakk et al. 2008) in 

prefrontal regions such as the anterior cingulate and the lateral prefrontal cortex that 

normally would act to reduce interference from distraction. However, in our opinion these 

two hypotheses are closely-related to each other since most of the regions assigned an 

inhibitory (control) role are located in the (pre)-frontal cortex, pointing to a possible 

reconciliation between both hypotheses (Gazzaley and D’esposito 2007). 

    

4.2 Attention & Frontal damage 

Every year, around 6.5 million people die from stroke worldwide, making it the second 

major cause of disability in the world (Lecoffre et al. 2017) with around one in five strokes 

occurring in the frontal lobe (Bogousslavsky 1994). Anatomically speaking, frontal strokes 

could be delineated into either prefrontal, premotor, superior medial, orbital-medial, basal 

forebrain or white matter (Bogousslavsky 1994). In section 2.3 we have discussed that the 

lateral prefrontal cortex (lPFC) is part of both the ventral and dorsal networks and plays a 

crucial role in the control of visual (Buschman and Miller 2007; Corbetta et al. 2008; Katsuki 

and Constantinidis 2014) and auditory (Salmi et al. 2009; Alho et al. 2014) attention. In our 

working hypothesis, the lPFC plays an important role in subtending the oscillatory interaction 

between top-down and bottom-up attention. Thus, in this section, we shall narrow our focus 

to patients with lesions in the lateral prefrontal cortex (lPFC) and provide a summary of the 

impact of their lesion upon attentional mechanisms. 

 

4.2.1 Prefrontal Lesions & Top-Down Attention 

In section 2.3, we have reviewed how the lPFC seems to play a role in supporting top-down 

attention either by (1) activating the pathway of the relevant sensory modality, (2) inhibiting 

the irrelevant sensory modality, or even (3) driving oscillatory coupling between frontal and 

sensory regions in attentional tasks. Interestingly, lPFC lesions have often been associated 

with impaired top-down selective attentional mechanisms in both the auditory (Knight et al. 

1981; Woods and Knight 1986; Bidet-Caulet et al. 2015) and visual (Knight et al. 1981; Barceló 

et al. 2000; Yago et al. 2004; Sinnett et al. 2009; Miller, Vytlacil, et al. 2011) modalities. This 

has been demonstrated in the human as well as the macaque brain (Rossi et al. 2007). 
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However, whether it’s the facilitatory (as evidenced by Bidet-Caulet et al. 2015) component 

or the inhibitory component (as evidenced by Godefroy and Rousseaux 1996) that lies behind 

this top-down attention deficit remains unclear. 

 

 
Figure 24. Topography plots of the early and late CNV components for the three group. Lateral 
PFCLeft represent the lateral PFC group when right and left electrodes are exchanged for the 
patients with right hemisphere lesions so that for the all the lateral PFC patients left hemisphere 
electrodes are synonymous with lesioned hemisphere. PFC: lateral prefrontal cortex; OFC: 
orbitofrontal cortex; CNV: contingent negative variation. (Adapted from Funderud et al. 2013). 
 
 

lPFC lesions have also been associated with deficiencies in preparatory processes 

indexed by reduction of the contingent negative variation (CNV, see Figure 24) to visual 

(Funderud et al. 2013) or auditory (Rosahl and Knight 1995; Zappoli et al. 2000) stimuli. 

However, to our knowledge, no study has investigated how lPFC lesions would impact top-

down modulation of ongoing alpha oscillations during a task of spatial orienting.  

 

4.2.2 Prefrontal lesions & Bottom-up Attention 

We have also reviewed how lPFC would play an important role in bottom-up attention with 

lPFC activation being associated with the inhibition of brain responses to distracting stimuli. 

Behaviorally, stroke lesions to the lPFC have been accompanied by increased distractibility 

with lPFC patients performances deteriorating in presence of distracting stimuli (Chao and 
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Knight 1995; Gehring and Knight 2002). These deteriorations correlated with decreased brain 

activity in the lPFC (Chao and Knight 1998).  

Electrophysiologically, it has been demonstrated that, for patients with lPFC lesions, 

novel stimuli elicited a reduced novelty P3a, which reflects reduced attentional capture. 

(Knight and Scabini 1998; Solbakk and Løvstad 2014). Novel stimuli also elicited enhanced 

early P50 responses, whichs reflect reduced suppression of distractor processing even at early 

stages (Knight et al. 1989; Bolton and Staines 2014). Finally, in response to novel stimuli, lPFC 

patients present an enhanced sustained negative slow wave, indicating prolonged resource 

allocation to task-irrelevant stimuli (Løvstad, Funderud, Lindgren, et al. 2012). The ensemble 

of these results highlights a crucial role of the lPFC in controlling the detection, processing and 

the disengagement away of the distracting stimuli. Thus, investigating the impact of lPFC 

damage on distraction in an ecological setting, seems to be rather important. In addition, to 

our knowledge, no study has investigated the impact of lPFC lesions on bottom-up gamma 

oscillations.  

 

4.3 The Lateral Prefrontal Cortex: Roads Untraveled 

In this chapter, we have reviewed evidence of impaired top-down and bottom-up mechanisms 

of attention that could be directly (prefrontal stroke) or indirectly (ageing) linked to reduced 

integrity of the lateral prefrontal cortex. This gives more support to the idea that the lPFC 

could represent the interaction hub between these mechanisms. However, among the studies 

reviewed here, very few utilized paradigms that permit the simultaneous investigation of top-

down and bottom-up attention mechanisms and the interaction (balance) between them. 

Thus, the dynamic role of the lPFC in attention remains to be uncovered. Precisely, the 

following questions remain unanswered: 

 What is the impact of frontal “malfunctioning” upon the facilitatory and suppressive 

mechanisms of top-down anticipatory attention, indexed by modulations in the alpha 

band? 

  What is the brain origin of the exacerbated distractibility associated with frontal 

malfunctioning: An impaired bottom-up attentional system or a reduced top-down 

attentional control? 

 How would this frontal dysfunction impact the balance between top-down and 

bottom-up attentional mechanisms? 
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Answering such question would not only help us to better characterize attentional difficulties 

within these populations but also, would further our understating of the dynamic balance 

between attentional processes.
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Hypothesis & Objectives 
As an action or a reaction to our environment, attention can be oriented either in an 

endogenous (top-down) or an exogenous (bottom-up) manner. Both orienting mechanisms 

are supported by two partially segregated networks, the dorsal and ventral fronto-parietal 

attention networks, with the lateral prefrontal cortex lying at the crossroad between these 

networks. Brain oscillatory activities have been shown to play an important role in supporting 

communication within bottom-up and top-down attentional networks in both sensory and 

higher-level cognitive regions. Ageing and frontal damage are associated with attentional 

difficulties that could be related to an exacerbated bottom-up attentional capture and/or 

reduced top-down attentional control. 

  Regarding the literature of bottom-up and top-down attention, three points could be 

raised: First, studies investigating attention in the visual domain, by far, outnumber those 

from the auditory domain in spite of the richer representation of the auditory modality in the 

prefrontal cortex, which could help shed more light onto the architecture of attentional 

systems. Second, and more importantly, few attempts have been made to investigate both 

top-down and bottom-up attentional mechanisms in the same study and, so far, not so much 

light has been shed upon the dynamic balance between these mechanisms. In other words, 

only few studies explored how an isolated unexpected task-irrelevant stimulus outside the 

attention focus can disturb the top-down attentional mechanisms and, reversely, how top-

down mechanisms can modulate the bottom-up mechanisms of attentional capture triggered 

by an unexpected event. Finally, in the oscillatory domain, several investigations highlight the 

fact that at least on a signal propagation level, slow (alpha) and fast (gamma) oscillations seem 

to reflect feedback and feedforward signaling, respectively. However, while few studies point 

out to the existence of such “division” in the attention domain (low and high oscillations 

supporting top-down and bottom-up attention), it seems to be barely investigated. 

Briefly, in this thesis work we sought to provide new insights into the brain 

mechanisms of distractibility by investigating the oscillatory dynamics supporting the balance 

between bottom-up and top-down auditory attention in the healthy young, ageing and 

damaged brain. This work has been constructed on the following hypothesis based on the 

literature presented in the previous chapters: Long-range coupling in lower frequencies would 

coordinate activity between the nodes of the dorsal top-down network, whereas high 
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frequency oscillations would support bottom-up mechanisms of attention and index the 

activation of the ventral bottom-up network. High frequency oscillations and their coupling to 

low rhythms in the lateral prefrontal cortex, a brain region common to both ventral and dorsal 

networks, would regulate the dynamic interplay between these two networks.  

 

 
Figure 25. Schematic representation of the oscillatory framework used in this thesis work. 
DAN: dorsal attentional network, VAN: ventral attentional network, lPFC: lateral prefrontal 
cortex, AudC: auditory cortex, VisC: visual cortex, CFC: cross-frequency coupling.  
 
 

This work has been based upon a novel paradigm proposed by Bidet-Caulet and 

colleagues (2014): The Competitive Attention Test (CAT). It is worth mentioning that for the 

work presented here, this paradigm has been updated twice and we shall be referring to both 

versions as CAT2.0 and CAT3.0. In summary, the CAT is an adaptation of the Posner cueing 

paradigm using visual cues and monaural auditory targets. Top-down anticipatory attention is 

measured by comparing trials with informative cues to trials with uninformative cues. In only 

25 % of the trials, bottom-up attentional capture is triggered by a binaural distracting sound 

played during the delay between the cue and the target. Distraction is assessed as the impact 

of distracting sound on task performance and the balance between both mechanisms could 

be measured by comparing responses to distracting sounds following informative and 

uninformative cues.  
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Combining the CAT with behavioral assessment, simultaneous MEG and EEG recordings, we 

had three aims. 

I. Investigating the oscillatory dynamics supporting top-down and bottom-up attention and 

the interaction between them. For that end, we hypothesized that: 

(1)  Low-frequency alpha oscillations would support top-down anticipatory attention 

in the dorsal top-down network. Further, we hypothesized that during the 

anticipation of an auditory target: 

a. In the auditory cortex, alpha oscillations would reflect both facilitatory and 

suppressive mechanisms of top-down attention (Study I: CAT2.0).  

b. Long-range communication between nodes of the dorsal top-down 

network (e.g. the Frontal Eye Fields) and the auditory cortex would be 

established through inter-areal phase synchrony in the alpha band 

(Supplementary study I: CAT2.0). 

c. Based upon evidence of phase-amplitude coupling (Canolty and Knight 

2010), gamma oscillations, presumably nested upon alpha oscillations, in 

the auditory cortex would reflect modulations of top-down attention 

before and after target presentation (Supplementary study II: CAT2.0). 

(2) High frequency gamma oscillations would support bottom-up attentional 

mechanisms in the ventral bottom-up network (Study II: CAT3.0). 

(3) The interplay (balance) between the ventral and dorsal attentional networks would 

be supported by the lateral prefrontal cortex, at the crossroad between the two 

networks, through modulations of either alpha phase-gamma amplitude coupling 

or modulations of gamma amplitude (Study II: CAT3.0). 

 

II. Characterizing the neural correlates of the ageing-associated exacerbated 

distractibility by investigating the impact of ageing on oscillatory activities supporting 

the balance between top-down and bottom-up attentional mechanisms. We 

hypothesized that ageing would be characterized by (1) exacerbated behavioral 

distractibility, (2) reduced top-down filtering of irrelevant information, indexed by 

alterations in the alpha band, and (3) impaired responses to distracting sounds indexed 

by alterations in the gamma band (Study III: CAT3.0).  
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III. Investigating the role of the lateral PFC in supporting the dynamic of top-down and 

bottom-up attention, and further specifying the brain dysfunction leading to increased 

distractibility in these patients (Study IV: CAT3.0). 
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5 Experimental Paradigm & Protocol 
5.1 The Competitive Attention Test: First Iteration (CAT 1.0) 

“By three methods we may learn wisdom: First, by reflection, which is noblest;  
Second, by imitation, which is easiest;  

and third by experience, which is the bitterest” 
― Confucius 

 

The main paradigm used for all of the experiments in this thesis is the Competitive Attention 

Test (CAT). This paradigm has been proposed by Bidet-Caulet and colleagues in 2014 to 

investigate the deployment of top-down and bottom-up mechanisms of attention and the 

balance between them (CAT 1.0: see Figure 26). Please note that this version of the paradigm 

has not been used in this thesis work.  

 

 
Figure 26. The Competitive Attention Test (CAT1.0). (A) In informative trials, a one-sided 
visual cue (200 ms duration) indicated in which ear (left or right) the target sound will be 
played (50 ms duration) after a random delay (900–1,010 ms). (B) In uninformative trials, a 
two-sided visual cue (200 ms duration) did not provide any indication in which ear (left or 
right) the target sound will be played. In 25 % of the trials a binaural distracting sound (300 
ms duration), such as a phone ring, was played during the delay between cue and target. The 
distracting sound could equiprobably onset in three different time periods after the cue offset: 
in the 150–230 ms range, in the 350–430 ms range, or in the 550–630 ms range. (Adapted from 
Bidet-Caulet et al., 2014). 
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In 75 % of the trials, a target sound (50 ms duration) followed a central visual cue (200 ms 

duration) with a randomly chosen delay between 900 and 1,010 ms. The cue was a green 

arrow, presented on a grey-background screen, pointing either to the left, right, or both sides. 

The target sound was a monaural harmonic sound (fundamental frequency: 200 Hz, 5 

harmonics; 5 ms rise-time, 5 ms fall-time) presented at 15 dB SL (mean ± SD: 43.9 ± 2.2 dBA). 

In the other 25 %, the same structure was retained, however, a binaural distracting sound (300 

ms duration; 70 dB SL; mean ± SD: 56.9 ± 2.2 dBA) was played during the cue-target delay. The 

distracting sound could equiprobably be presented in three different time periods after the 

cue offset: in the 150–230 ms range (DIS1), in the 350–430 ms range (DIS2), or in the 550–630 

ms range (DIS3). 

The cue and target categories were manipulated in the same proportion for trials with 

and without distracting sound. In 33.3 % of the trials, the cue was pointing left, and the target 

sound was played in the left ear, and in 33.3 % of the trials, the cue was pointing right, and 

the target sound was played in the right ear, leading to a total of 66.6 % of informative trials. 

In the last 33.3 % of the trials, the cue was uninformative, pointing in both directions, and the 

target sound was played in the left (16.7 %) or right (16.7 %) ear.  

Participants were instructed to perform a detection task by pressing a mouse button 

as fast as possible when they heard the target sound. Participants were informed that 

informative cues were 100 % predictive and that a distracting sound could be sometimes 

played. They were asked to allocate their attention to the cued side in the case of informative 

cue, to ignore the distractors and to respond as quickly and correctly as possible. Participants 

had 2,500 ms to answer after target sounds, each trial lasted therefore from 3,600 to 3,710 

ms. In the absence of the visual cue, a blue fixation cross was presented at the center of the 

screen. Subjects were instructed to keep their eyes fixated on the cross and to minimize eye 

movements and blinks while performing the task. Finally, subjects performed 15 blocks (72 

trials each),  leading to 810 trials in the NoDIS, 90 in the DIS1, 90 in the DIS2 and 90 in the DIS3 

conditions. The whole session lasted around 130 minutes. 
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5.2 The Competitive Attention Test: First adaptation (CAT 2.0) 

This adaptation was utilized to acquire our first simultaneous EEG and MEG recordings from 

18 healthy young subjects. We have decided that simultaneous recordings are more 

informative since EEG served to provide established markers of top-down and bottom-up 

attentional mechanisms to guide MEG analysis. Moreover, the superior spatial resolution of 

the MEG signal served to precisely locate the generators of these mechanisms and the 

interaction between them. For this experiment, several changes were made to CAT1.0 (see 

Figure 27):  

First, in order to render the task more challenging to increase the top-down attentional 

load, the detection task was replaced by a discrimination task. Participants were instructed to 

categorize two target sounds as either high- or low-pitched sound, by either pulling or pushing 

a joystick. The mapping between the targets (low or high) and the responses (pull or push) 

was counterbalanced across participants, but did not change across the blocks, for each 

participant. Target sounds were monaural pure tones (duration: 100ms; carrier frequency 

between 512 and 575 Hz; 5 ms rise-time, 5 ms fall-time) played at 25 dB SL (mean ± SD: 52.4 

± 7.6 dBA). 

Second, the delay between the visual cue and the auditory target was fixed at 1000ms, 

since we compared fixed to jittered cue-target delays and no difference was found. Third, the 

distribution of the distracting sounds was changed. In the original CAT1.0, distracting sounds 

were played within discrete time windows. Thus, distracting sounds might have been used as 

predictive cues of the upcoming target. For this experiment, distracting sounds could be 

played at any time point in the range of 150–630ms after cue offset. They were played at 35 

dB SL (mean ± SD: 47.4 ± 7.6 dBA). 
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Figure 27. CAT2.0 Design. Top row. Example of an informative trial with no distracting sound: 
a one-sided visual cue (200 ms duration) indicated in which ear (left or right) the target sound 
would be played (100 ms duration) after a fixed 1000-ms delay. Bottom row. Example of an 
uninformative trial with a distracting sound, a two-sided visual cue (200 ms duration) did not 
provide any indication in which ear (left or right) the target sound will be played. In 25 % of the 
trials a binaural distracting sound (300 ms duration), such as a clock ring, was played during 
the delay between cue and target. The distracting sound could equiprobably onset in three 
different time periods after the cue offset: in the 50–250 ms range, in the 250–450 ms range, 
or in the 450–650 ms range. 
 
 
5.3 The Competitive Attention Test: Second Adaptation (CAT 3.0) 

This iteration was utilized to acquire simultaneous EEG and MEG recordings from 45 healthy 

participants (age range: 19-75), and 8 patients with frontal stroke. For this experiment, three 

main changes were made to CAT2.0. All these changes were made to render the experiment, 

as a whole, shorter in duration for elderly participants and patients with frontal stroke, while 

retaining most of the trial proportion in CAT1.0 and CAT2.0 (see Figure 28): 

1. Distracting sounds were classified as either DIS1, played from 50 ms to 350 ms after 

the cue offset or DIS2, played from 350 ms to 650 ms after the cue offset.  

2. The proportion of informative to uninformative trials was changed: In 25% of the trials, 

the cue was pointing left, and the target sound was played in the left ear, and in 25% 
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of the trials, the cue was pointing right, and the target sound was played in the right 

ear, leading to a total of 50% of informative trials (instead of 67%). In the other 50% 

(instead of 33%) of the trials, the cue was uninformative, pointing in both directions, 

and the target sound was played in the left (25%) or right (25%) ear.  

3. Subjects performed 10 blocks (64 trials each) leading to 480 trials in the NoDIS, 80 in 

the DIS1 and 80 in the DIS2 conditions. The whole session lasted around 80 minutes.  

4. Target sounds were played at 25 dB SL (approximately 63 dB A) and distracting sounds 

were played at 55 dB SL (approximately 73 dB A).  

 
Figure 28. CAT3.0 design. Top row. Example of an informative trial with no distracting sound: 
a one-sided visual cue (200 ms duration) indicated in which ear (left or right) the target sound 
would be played (100 ms duration) after a fixed 1000-ms delay. Bottom row. Example of an 
uninformative trial with a distracting sound, a two-sided visual cue (200 ms duration) did not 
provide any indication in which ear (left or right) the target sound will be played. In 25 % of the 
trials a binaural distracting sound (300 ms duration), such as a phone ring, was played during 
the delay between cue and target. The distracting sound could equiprobably onset in two 
different time periods after the cue offset: in the 50–350 ms range, or in the 350–650 ms range. 
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5.4 Discrimination Task 

Since participants were required to discriminate two target sounds, we aimed to account for 

the participants’ pitch-discrimination capacities. So, the pitch difference between the two 

target sounds was defined in a Discrimination Task. The aim of this task was to ensure that, 

for all participants across all groups, the CAT discrimination task would be neither too easy 

nor too difficult. Thus, differences in performances in the CAT paradigm between groups 

would reflect differences in attentional rather than discrimination (sensory) processes. 

In this task participants were randomly presented with one of two target sounds: a 

low-pitched sound (512 Hz) and a high-pitched sound (575 Hz; two semitones higher), 

equiprobably in each ear (four trials per ear and per pitch). As described above, participants 

were asked to categorize the target sounds as either high- or low-pitched sound within 3 

seconds. If participants failed to respond correctly to more than 85% of the trials, the pitch of 

the high target sound was augmented, by half a semitone with a maximum difference of 3 

semitones between the two new targets. 

 

5.5 Procedure 

5.5.1 General Procedure for simultaneous EEG/MEG recordings 

The experiments were run at the MEG department of the neuroimaging center in Lyon, the 

CERMEP (https://www.cermep.fr/). Participants were seated in a sound-attenuated, 

magnetically shielded recording room, at a 50 cm distance from the screen. The response 

device was a custom index-operated joystick that participants moved either towards them 

(when instructed to pull) or away from them (when instructed to push). All stimuli were 

delivered using Presentation software (Neurobehavioral Systems, Albany, CA, USA). All sounds 

were presented through air-conducting tubes using Etymotic ER-3A foam earplugs (Etymotic 

Research, Inc., USA).  

First, the auditory threshold was determined for the two target sounds differing by 2 

semitones (512 and 575 Hz), for each ear, for each participant using the Bekesy tracking 

method (Von Békésy and Wever 1960). Second, participants performed the discrimination 

task. If participants failed to respond correctly to more than 85% of the trials, the pitch of the 

high target sound was augmented, by half a semitone with a maximum difference of 3 

semitones between the two targets (auditory thresholds were then measured with the new 

targets). Afterwards, participants were trained with a short sequence of the Competitive 
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Attention Task. Finally, MEG and EEG were recorded. After the MEG/EEG session, participants’ 

subjective reports regarding their strategies were collected. 

 

5.5.2 MEG Recordings 

The MEG data were acquired with a 275-sensor axial gradiometer system (CTF Systems Inc., 

Port Coquitlam, Canada) with continuous sampling at a rate of 600Hz, a 0–150Hz filter 

bandwidth, and first-order spatial gradient noise cancellation. Moreover, eye-related 

movements were measured using vertical and horizontal EOG electrodes. Head position 

relative to the gradiometer array was acquired continuously using coils positioned at three 

fiducial points; nasion, left and right pre-auricular points. Head position was checked at the 

beginning of each block to control head movements. 

 

5.5.3 EEG Recordings 

The EEG setup varied between CAT2.0 and CAT3.0. For the former, EEG was recorded 

continuously from 56 scalp electrodes and the ear lobes. In addition, EEG sensor locations 

were collected and digitized using a Polhemus device (https://polhemus.com/). For the latter, 

EEG was recorded continuously from only 7 scalp electrodes placed at frontal (Fz, Fc1, Fc2), 

central (Cz), and parietal (Pz) sites, and at the two mastoids (M1, M2). Electrode placement 

was chosen in order to capture the well-established event-related markers of attention such 

as: CNV, taget-P3 and novelty-P3 complex. For both, the reference electrode was placed on 

the tip of the nose, the ground electrode on the forehead. In addition, one bipolar EOG 

derivation was recorded from 2 electrodes placed on the supra-orbital ridge of the left eye 

and infra-orbital ridge of the right eye.  

 

5.5.4 Magnetic Resonance Imaging (MRI) Recordings 

After the MEG/EEG recordings, T1-weighted three-dimensional anatomical images were 

acquired for each participant using a 3T Siemens Magnetom whole-body scanner (Erlangen, 

Germany). These images were used for reconstruction of individual head shapes to create 

forward models for the source reconstruction procedures that shall be described later. The 

processing of these images was carried out using CTF’s software (CTF Systems Inc., Port 

Coquitlam, Canada).  
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6 MEG Data Analysis 

6.1 Preprocessing Pipeline 

Here we shall discuss the common preprocessing pipeline that we have utilized for all data 

analysis in all experiments. It is worth mentioning that in all the experiments we focused 

mainly on the MEG data and oscillatory activities. 

 First, based on behavioral data analysis only correct responses that were executed 

after the onset of the target sound and before the apparition of the following cue were 

considered for electrophysiological analyses. Data segments contaminated with excessive 

head movements that exceeded 10 mm from the reference position (measured at the 

beginning of the session, once the participant was comfortably seated) were excluded. In 

addition, data segments contaminated with muscular activity or sensor jumps were excluded 

semi-manually using a threshold of 2200 and 10000 femtoTesla respectively. Independent 

component analysis was applied on the band-pass filtered (0.1—40Hz) data in order to 

remove eye-related (blink and saccades) and heart-related artefacts. Subsequently, 

components were removed from the non-filtered data via the inverse ICA transformation. 

Data were further notch filtered at 50, 100 and 150Hz and high-pass filtered at either 0.1Hz 

(CAT2.0) or 0.2Hz (CAT3.0: to remove noticeable slow drifts in the data of several participants). 

It’s worth mentioning that for CAT3.0 data, due to high environmental noises (construction 

work) during data acquisition, we changed the MEG gradiometers formation from first-order 

to third-order, offline. The higher-order gradiometer formation is a noise-cancellation 

technique which permits MEG detectors to be sensitive to the weak signals of the brain, yet 

impervious to the much stronger sources from the environment (https://goo.gl/92pojU). 

 

6.2 Oscillatory Activity Analysis 

For analysis of oscillatory analysis in both alpha and gamma bands, either at the sensor or 

virtual electrode level, the oscillatory power was calculated using Morlet Wavelet 

decomposition with a width of four cycles per wavelet (m=7; Tallon-Baudry and Bertrand 

1999) at center frequencies of interest (between 5 and 18 Hz for alpha and between 40 and 

150 Hz for gamma), in steps of 1 Hz and 10 ms for gamma and 50 ms for alpha. 

 The advantage of the wavelet method is that it provides better time and frequency 

resolution than the more classical moving short-term Fourier transform (Bertrand and Tallon-
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Baudry 2000). And since the wavelets are applied on each single trial followed by averaging 

time-frequency power across trials, this method provides the possibility to identify both 

phase-locked (evoked) and non-phase locked (induced) activity to a certain stimulus (Tallon-

Baudry et al. 1999).  

 

 
Figure 29. A. Successive simulated EEG trials with an early gamma response phase-locked to 
stimulus onset full line boxes and a late gamma burst jittering in latency dashed line boxes. B. 
Averaging in the time domain across trials leads to the conventional evoked potential. C. Time-
frequency power representation wavelet transform of the evoked gamma response. The x-axis 
is time, and the y-axis is frequency. The gray scale codes the variations of power positive or 
negative with respect to a pre-stimulus baseline. The non-phase-locked activity cancels out. D. 
Time-frequency power computed for each singe trial. E. Average of time-frequency powers 
across trials. The induced gamma response is clearly visible. (Adapted from Bertrand and 
Tallon-Baudry, 2000). 
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6.3 Source Level Analysis: DICS Beamformer 

In order to estimate the brain regions driving activity in time-frequency windows of interest 

(in alpha or gamma band), we have utilized the frequency–domain adaptive spatial technique 

of dynamical imaging of coherent sources (DICS; Gross et al., 2001). For each participant: 

1. A Cross-spectral density (CSD) matrix was calculated using the multitaper method.  

2. An anatomically realistic single-shell headmodel based on the cortical surface was 

generated from individual head shapes (Nolte, 2003). A grid with 0.5 cm resolution was 

normalized on an MNI template, and then morphed into the brain volume of each 

participant.  

3. Leadfields for all grid points along with the CSD matrix were used to compute a 

common spatial filter that was subsequently used to estimate the spatial distribution 

of power for all time-frequency windows of interest.  

 

6.4 Source Level Analysis: Virtual Electrodes 

The DICS beamformer provides a snapshot picture of the brain sources of oscillatory activity 

in a definite time-frequency window i.e. for each voxel, oscillatory power is represented as 

one value. In order to obtain higher time-frequency resolution, we applied the Virtual 

Electrode method. For each participant: 

1. The source space was subdivided anatomically according to a certain atlas and regions 

of interest (ROIs) were chosen.  

2. For each ROI, in order to reconstruct activity at the source level, we computed the 

time-frequency signal at the virtual electrode level using the LCMV beamformer. 

Spatial filters were constructed from the covariance matrix of the averaged single trials 

at sensor level and the respective leadfield by a linearly constrained minimum variance 

(LCMV) beamformer (Van Veen et al. 1997). Afterwards, spatial filters were multiplied 

by the sensor level data in order to obtain the time course activity at each voxel of 

interest in each ROI. For each ROI, we subtracted the evoked potential (i.e., the signal 

averaged across all trials) from each trial.  

3. Subsequently, time-frequency power was calculated using Morlet Wavelet 

decomposition as described in section 6.2. 
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6.5 Statistical Analysis: Cluster Based Permutation Test 

For almost all MEG analyses, we have used the nonparametric cluster-based permutation 

analysis (Maris and Oostenveld 2007). In brief, this test first calculates paired t-tests for each 

data sample, which are then thresholded at P < 0.05. Selected significant samples are clustered 

in connected sets (clusters) on the basis of temporal, spatial and spectral adjacency. The sum 

within each cluster (Tsum) is retained, and the procedure is repeated 1000 times on shuffled 

data in which the condition assignment within each individual is swapped randomly. On each 

permutation, the maximum Tsum (Tmax) is retained yielding a distribution of 1000 Tmax 

values. From this distribution, the cluster probability of each empirically observed Tsum can 

be derived. Clusters are labelled as significant with a P-value ≤ 0.05. Please note, that cluster 

permutations control for multiple comparisons in time, frequency, sensor space or source 

space.  

 

6.6 Correlation Analysis 

Across the thesis work, we have attempted to correlate behavioral performances (reaction 

times) to modulations in oscillatory activity (alpha and gamma) in both sensor and source 

level. Correlation topographies (maps) were created in both sensor and source space domains 

(Mazaheri et al. 2013). In order to create these topographies, first, we performed a trial-by-

trial correlation, using non-parametric Spearman tests, in each participant, between reaction 

times and each sensor-time frequency point (sensor level) or at each grid point (source level). 

Then, the correlation coefficients were subsequently converted to z-values using Fisher's r- to 

z-transformation to obtain a normally distributed variable. The statistical significance of the 

correlations was assessed at the group level with a one-sample t-test of the correlation z-

values at each sensor-time-frequency point (sensor level) or at each grid point (source level), 

and then subjected to a cluster-level randomization test to correct for multiple comparisons 

in the sensor-space, time and frequency dimensions (sensor level) or source space (source 

level). It is important to note that at the source level, single-trial oscillatory activity was 

reconstructed at each grid point using a Partial Cannonical Correlation (PCC) beamformer, a 

more computationally efficient alternative to the DICS beamformer. 

 



MEG Data Analysis 

 72 

6.7 Connectivity Analysis 

We have also attempted to identify the brain regions that could be functionally connected (in 

the gamma or alpha band) to the auditory cortices. For that, we have extracted the complex 

values containing phase information into source space using partial canonical coherence (PCC) 

beamformer which provides the possibility of extracting both power and phase information 

on the source level. For each participant: 

(1) Cross-spectral density (CSD) matrices were calculated using the multitaper method. 

Leadfields for all grid points along with the CSD matrix were used to compute a 

common spatial filter that was used to estimate the spatial distribution of power and 

phase for the time-frequency window of interest.  

(2) Phase synchrony (Lachaux et al. 1999) between each voxel in the auditory ROIs and all 

other voxels was calculated, averaged across voxels of the auditory ROI, and then 

Fisher Z transformed. Thus, for each extra-auditory brain voxel, a single, phase 

synchrony value with the entirety of the auditory ROI was obtained.
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7 Alpha Oscillations and Top-Down Attention 

7.1 General Presentation 

Within our framework, we have proposed that alpha oscillations play a dual role in top-down 

attention with their amplitude reflecting local sensory regulation of cortical excitability and 

information processing (Klimesch et al., 2007; Jensen and Mazaheri, 2010), whereas their 

phase would reflect long-range inter-areal communication (Palva and Palva, 2007, 2011). In 

what follows, we have sought to establish that dual role in anticipation of visually-cued 

auditory target (CAT2.0). 

In study I, anticipation of the auditory target resulted in a decrease in auditory alpha 

power around 9Hz (low alpha) and an increase in visual alpha power around 13 Hz (high alpha), 

with only the latter correlating with reaction times. Moreover, within the right auditory cortex, 

we demonstrated a larger increase in high alpha power when attending an ipsilateral sound, 

and a stronger decrease in low alpha power when attending a contralateral sound. In 

summary, we found facilitatory and suppressive attentional mechanisms with distinct timing 

in task-relevant and task-irrelevant brain areas, that differentially correlated to behavior and 

were supported by distinct alpha sub-bands. 

In the follow-up supplementary study I, we have investigated inter-areal 

communication by measuring whole brain phase synchrony with the auditory regions of 

interest (ROIs: defined in study I) as a seed. We have demonstrated that alpha phase 

synchrony significantly increased between the right auditory cortex and the left prefrontal 

cortex (Frontal Eyes Fields and lPFC) during expectation of an ipsilateral rather than a 

contralateral target. This provides insight into the role of alpha phase in subtending long-range 

communication and also sheds some light on the potential role of the lPFC in supporting top-

down attentional mechanisms. 

Finally, in supplementary study II, we have attempted to uncover potential alpha-

phase/gamma-amplitude coupling within the auditory ROIs in the time-window of interest 

previously defined in study I. As a first step, we have demonstrated that the amplitude of 

gamma oscillations was modulated by both the laterality of the anticipated target and the cue 

information before and after the presentation of the target. However, the question whether 

gamma oscillations were coupled to the phase of alpha oscillations or not is yet to be 

investigated in future research.
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7.2 Study I: Alpha Activity During Top-Down Attention (CAT 2.0) 

Two Sides of the Same Coin: Distinct Sub-Bands in the α Rhythm Reflect Facilitation and 
Suppression Mechanisms during Auditory Anticipatory Attention 
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Abstract

Anticipatory attention results in enhanced response to task-relevant stimulus, and reduced processing of
unattended input, suggesting the deployment of distinct facilitatory and suppressive mechanisms. � Oscillations
are a suitable candidate for supporting these mechanisms. We aimed to examine the role of � oscillations, with
a special focus on peak frequencies, in facilitatory and suppressive mechanisms during auditory anticipation,
within the auditory and visual regions. Magnetoencephalographic (MEG) data were collected from fourteen
healthy young human adults (eight female) performing an auditory task in which spatial attention to sounds was
manipulated by visual cues, either informative or not of the target side. By incorporating uninformative cues, we
could delineate facilitating and suppressive mechanisms. During anticipation of a visually-cued auditory target,
we observed a decrease in � power around 9 Hz in the auditory cortices; and an increase around 13 Hz in the
visual regions. Only this power increase in high � significantly correlated with behavior. Importantly, within the
right auditory cortex, we showed a larger increase in high � power when attending an ipsilateral sound; and a
stronger decrease in low � power when attending a contralateral sound. In summary, we found facilitatory and
suppressive attentional mechanisms with distinct timing in task-relevant and task-irrelevant brain areas, differ-
entially correlated to behavior and supported by distinct � sub-bands. We provide new insight into the role of the
� peak-frequency by showing that anticipatory attention is supported by distinct facilitatory and suppressive
mechanisms, mediated in different low and high sub-bands of the � rhythm, respectively.

Key words: �; � sub-bands; attention; audition; magnetoencephalography; oscillations

Significance Statement

We investigated the role of � oscillations, with a special focus on peak frequencies, in facilitatory and
suppressive mechanisms during anticipation, using magnetoencephalographic (MEG) data collected during
an auditory spatial attention task. We show, during anticipation of a visually-cued auditory target, a
decrease in � power around 9 Hz in the auditory cortices, simultaneous to an increase around 13 Hz in in
the visual regions, the latter significantly correlated with behavioral performances. Within the right auditory
cortex, we show a larger increase in high � when attending an ipsilateral sound; and a stronger decrease
in low � when attending a contralateral sound. Therefore, anticipatory attention would be supported by
distinct facilitatory and suppressive mechanisms, mediated in different low and high � sub-bands, respec-
tively.
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Introduction
We spend a large fraction of our time anticipating stim-

uli (Requin et al., 1991) and to support this behavior,
anticipatory attention promotes the processing of upcom-
ing relevant stimuli, resulting in reduced brain responses
to unattended inputs and enhanced processing of rele-
vant information (for review, see Hillyard et al., 1998).
These modulations of target processing suggest the de-
ployment of distinct facilitatory and suppressive atten-
tional mechanisms during target expectancy, similarly to
the inhibitory and facilitatory mechanisms supporting se-
lective attention (de Fockert and Lavie, 2001; Gazzaley
et al., 2005, 2008; Bidet-Caulet et al., 2007, 2010, 2015;
Chait et al., 2010; Slagter et al., 2016). However, little is
known about the potential facilitatory and suppressive
attentional mechanisms activated during anticipation of
an upcoming stimulus.
Oscillations in the � band, loosely defined between 8

and 14Hz, have been proposed to play a crucial role in
anticipatory attention (for review, see Foxe and Snyder,
2011; Frey et al., 2015). Discovered in 1929 by Hans
Berger (Berger, 1929), � oscillations were first considered
a marker of cortical idling (Pfurtscheller et al., 1996).
However, this idea has been challenged with � oscilla-
tions being assigned an active inhibitory role in cognitive
processing (Klimesch et al., 2007; Jensen and Mazaheri,
2010). The large literature in the visual modality paints a
rather dynamical picture in which, during target expecta-
tion, � power decreases in visual areas responsible for
processing the attended space while � power increases in
(1) visual areas responsible for processing the unattended
space with or without distracting stimuli (Kelly et al., 2006;
Rihs et al., 2007, 2009), and (2) areas responsible for
processing unattended modalities (Foxe et al., 1998; Fu
et al., 2001; Gomez-Ramirez et al., 2011; Jiang et al.,
2015). Therefore, � oscillations would be a suitable can-
didate for supporting facilitatory and suppressive mech-
anisms of anticipatory attention.

Interestingly, distinct frequency peaks (sub-bands) in
the � band manifest as a function of cortical location and
task demand (Haegens et al., 2014). In a similar vein,
Mazaheri et al. (2013) compared � activity while partici-
pants were cued to either a visual or an auditory target,
and found a decrease in � power around 10 Hz in visual
regions concomitant to an increase around 15 Hz, in the
vicinity of the right auditory cortex. Taken together, these
results highlight the importance of considering the fre-
quency peak within the � band.
Contrary to the visual domain, only a handful of studies

investigated the impact of anticipatory attention on �
modulations in the auditory cortices. A recurrent magne-
toencephalographic (MEG) finding is an increased �
power, solely in the right auditory cortex, when attention
was directed toward the ipsilateral right ear compared to
when directed toward the contralateral ear (Müller and
Weisz, 2012) or non-spatially oriented (Weisz et al., 2014).
These results demonstrate how � oscillations could be
involved in the suppressive mechanisms of auditory an-
ticipatory attention (see also Frey et al., 2014; Weise et al.,
2016), but do not shed much light on their implication in
facilitatory mechanisms.
We aimed to examine the role of � oscillations in atten-

tional facilitatory and suppressive mechanisms during au-
ditory anticipation, within the auditory cortices and also
between the visual and auditory regions. For this purpose,
we recorded MEG activity during an auditory task in which
spatial attention to auditory targets was manipulated by
visual cues, either informative or not of the target side. By
incorporating spatially uninformative cues, we aimed to
delineate facilitating and suppressive mechanisms sup-
porting auditory anticipatory attention (Bidet-Caulet et al.,
2010).
We hypothesized that during a spatial attention task,

the balance between facilitatory and suppressive mecha-
nisms of auditory anticipatory attention would be indexed
by � activity following two main patterns. (1) A decrease in
� power (reflecting inhibition release, i.e., facilitation) in
task-relevant auditory areas would be concomitant to an
increase in � power (reflecting inhibition/suppression) in
task-irrelevant visual cortices. (2) Within the right auditory
cortex, we expected a decrease in � power when atten-
tion is directed toward the contralateral ear and an in-
crease in � power when attention is directed toward the
ipsilateral ear, relative to when attention is not spatially
oriented (uninformative cues). Also, if distinct suppressive
and facilitating attentional mechanisms are activated dur-
ing anticipation, they should be differentially correlated to
behavioral performances. Finally, to gain further insight
into the role of the peak-frequency in the � band (Haegens
et al., 2014), we aimed to systematically investigate the
effect of the frequency peak with the prediction that fa-
cilitatory and suppressive attentional mechanisms would
be mediated in different � sub-bands.

Materials and Methods
Participants
Fourteen healthy participants (eight females) took part

in this study. The mean age was 25 years � 0.85 SEM. All
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participants were right handed, and reported normal hear-
ing, and normal or corrected-to-normal vision. All partic-
ipants were free from any neurologic or psychiatric
disorders. The study was approved by the local ethical
committee, and subjects gave written informed consent,
according to the Declaration of Helsinki, and they were
paid for their participation.

Stimuli and tasks
Competitive attention task (CAT)
In 75% of the trials, a target sound (100-ms duration)

followed a central visual cue (200-ms duration) with a
fixed delay of 1000 ms (Fig. 1). The cue was a green
arrow, presented on a gray-background screen, pointing
either to the left, right, or both sides. Target sounds were
monaural pure tones (carrier frequency between 512 and
575 Hz; 5-ms rise time, 5-ms fall time). In the other 25%,
the same structure was retained, however, a binaural
distracting sound (300-ms duration) was played during
the cue-target delay (50- to 650-ms range). However, for
the purpose of this study, only distractor-free trials were
analyzed. The cue and target categories were manipu-
lated in the same proportion for trials with and without
distracting sound. In 33.3% of the trials, the cue was
pointing left and the target sound was played in the left
ear, and in 33.3% of the trials, the cue was pointing right
and the target sound was played in the right ear, leading
to a total of 66.6% of informative trials. In the last 33.3%
of the trials, the cue was uninformative, pointing in both
directions, and the target sound was played in the left
(16.7%) or right (16.7%) ear.
Participants were instructed to categorize two target

sounds as either high- or low-pitched sound, by either
pulling or pushing a joystick. The mapping between the
targets (low or high) and the responses (pull or push) was
counterbalanced across participants, but did not change
across the blocks, for each participant. to account for the

participants’ pitch-discrimination capacities, the pitch dif-
ference between the two target sounds was defined in a
discrimination task (see below). Participants were in-
formed that informative cues were 100% predictive and
that a distracting sound could be sometimes played. They
were asked to allocate their attention to the cued side in
the case of informative cue, to ignore the distractors and
to respond as quickly and correctly as possible. Partici-
pants had a 3.4-s (3400-ms) response window. In the
absence of the visual cue, a blue fixation cross was
presented at the center of the screen. Subjects were
instructed to keep their eyes fixated on the cross and to
minimize eye movements and blinks while performing the
task.

Discrimination task
Participants were randomly presented with one of two

target sounds: a low-pitched sound (512 Hz) and a high-
pitched sound (575 Hz; two semitones higher), equiprob-
ably in each ear (four trials per ear and per pitch). As
described above, participants were asked to categorize
the target sounds as either high- or low-pitched sound
within 3 s.

Procedure
Participants were seated in a sound-attenuated, mag-

netically shielded recording room, at a 50-cm distance
from the screen. The response device was an index-
operated joystick that participants moved either toward
them (when instructed to pull) or away from them (when
instructed to push). All stimuli were delivered using Pre-
sentation software (Neurobehavioral Systems, RRID:
SCR_002521). All sounds were presented through air-
conducting tubes using Etymotic ER-3A foam earplugs
(Etymotic Research, Inc.).
First, the auditory threshold was determined for the two

target sounds differing by two semitones (512 and 575
Hz), in each ear, for each participant using the Bekesy

Figure 1. Protocol. Top row, In informative trials (67% of all trials), a one-sided visual cue (200-ms duration) indicated in which ear
(left or right) the target sound will be played (100-ms duration) after a fixed 1000-ms delay. Bottom row, In uninformative trials (33%
of all trials), a two-sided visual cue (200-ms duration) did not provide any indication in which ear (left or right) the target sound will be
played. In 25% of all trials (not depicted in figure), a binaural distracting sound (300-ms duration), such as a phone ring, was played
during the delay between cue and target.
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tracking method (Von Békésy and Wever, 1960). The
target sounds were then presented at 15-dB sensation
level while the distracting sounds were played at 35-dB
sensation level. Second, participants performed the dis-
crimination task. If participants failed to respond correctly
to �85% of the trials, the pitch of the high target sound
was augmented, by half a semitone with a maximum
difference of three semitones between the two targets
(auditory thresholds were then measured with the new
targets). Afterward, participants were trained with a short
sequence of the CAT. Finally, MEG and EEG were re-
corded while subjects performed 15 blocks (72 trials
each). Each trial lasted from 4.6–4.8 s, leading to a block
duration of �5 min and a MEG/EEG session of �1 h 35
min (breaks included). After the MEG/EEG session, par-
ticipants’ subjective reports regarding their strategies
were collected.

Behavioral data analysis
For behavioral data analysis, a response was consid-

ered correct, if it matched the response mapped to the
target sound and was executed before the apparition of
the following cue. The influence of the factor cue (three
levels: left, right and uninformative) on the percentage of
correct responses was tested using a linear mixed-effects
models [lme4 package (Bates et al., 2014) for R Team,
2014; RRID:SCR_015654].
For post hoc analysis, we used the Lsmean package

(Lsmean version 2.20-23; Searle et al., 1980) where p
values were considered as significant at p � 0.05 and
adjusted for the number of comparisons performed
(Tukey method). Incorrect trials were excluded from fur-
ther analysis, leaving on average (216 � 6.92 SEM) trials
per cue condition per participant. The influence of the cue
on the median of reaction times (RTs) of the correct trials
were tested using the same tests.

Magnetoencephalography
Recordings
Simultaneous EEG and MEG data were recorded, al-

though the EEG data will not be presented here. The MEG
data were acquired with a 275-sensor axial gradiometer
system (CTF Systems Inc.) with continuous sampling at a
rate of 600 Hz, a 0- to 150-Hz filter bandwidth, and
first-order spatial gradient noise cancellation. Moreover,
eye-related movements were measured using vertical and
horizontal EOG electrodes.
Head position relative to the gradiometer array was

acquired continuously using coils positioned at three fi-
ducial points; nasion, left and right pre-auricular points.
Head position was checked at the beginning of each
block to control head movements.
In addition to the MEG/EEG recordings, T1-weighted

three-dimensional anatomic images were acquired for
each participant using a 3T Siemens Magnetom whole-
body scanner. These images were used for reconstruction
of individual head shapes to create forward models for the
source reconstruction procedures. The processing of
these images was conducted using CTF’s software (CTF
Systems Inc.).

Outline of the electrophysiological data analyses
The analyses reported here focused on modulations of

oscillatory activity in the � band during top-down antici-
patory attention, i.e., during the cue-target delay in trials
with no distractor and a correct response. MEG data were
pre-processed in the sensor space using the software
package for electrophysiological analysis (ELAN Pack;
Aguera et al., 2011). Further analyses were performed
using Fieldtrip (www.fieldtriptoolbox.org; Oostenveld
et al., 2011, RRID:SCR_004849), an open source toolbox
for MATLAB (RRID:SCR_001622), custom-written func-
tions and R (www.r-project.org; RRID:SCR_001905).
First, significant modulations of oscillatory activity in the

� band after cue onset (cue-related activity) were as-
sessed by contrasting post-cue activity against pre-cue
activity in the sensor level time-frequency domain (see
below, Sensor-level analysis).
Second, based on the sensor level results, two post-

cue and one pre-cue time windows in two distinct fre-
quency bands were chosen for source analyses (see
below, Source-level analysis). Based on the results of
post-/pre-cue contrast in the source domain, auditory and
visual regions of interest (ROIs) were selected for further
virtual electrode analysis, i.e., time-resolved estimation of
source activity (see below, Defining ROIs and virtual elec-
trodes). From these activities, we then specified the time
courses, power spectrum, and the � peak frequency for
each virtual electrode (see below, Reconstruction of
source activity) and assessed the attentional modulations
of the cue-related � activity (see below, Attentional mod-
ulation of � activity).
Third, correlation between RTs and cue-target activity

was investigated in the sensor (see below, Correlation
between � activity and behavioral data: sensor level) and
source (see below, Correlation between � activity and
behavioral data: source level) domains.

Data pre-processing
Head movements
As participants had an EEG cap on, head movements

were relatively more difficult to control, in comparison to
standard MEG procedures, where the participant’s head is
relatively stabilized to the MEG dewar via an inflatable cush-
ion. Thus, in reference to the first block, head positions in the
following blocks exceeded the pre-determined threshold of
�1 cm. This would have compelled us to exclude a huge
portion of the trials if all 15 blocks were concatenated to-
gether. Therefore, for each subject, data were organized in
three groups of five blocks so that, within each group,
differences in head positions, recorded at the beginning of
each block, did not exceed a threshold of �1 cm.
It is noteworthy that for data pre-processing and sensor

level analysis (described below) trials from the three
groups were concatenated. However, for source level and
virtual electrode analyses (described below), each group
was processed separately, and outputs were eventually
averaged.

Pre-processing
Only correct trials were considered for electrophysio-

logical analyses. Data segments contaminated with mus-
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cular activity or sensor jumps were excluded semi-
manually using a threshold of 2200 and 10,000
femtoTesla, respectively. Independent component analy-
sis was applied on the bandpass filtered (0.1–40 Hz) data
to remove eye-related (blink and saccades) and heart-
related (ECG) artefacts. Subsequently, components (four
on average) were removed from the non-filtered data via
the inverse ICA transformation. Data were further notch
filtered at 50, 100, and 150 Hz and high-pass filtered at
0.1 Hz.

Cue- and target-related activity
Sensor-level analysis
To investigate the dynamics of � power modulations

after the visual cue, the oscillatory power of trials from the
three cue conditions all together was calculated using
Morlet Wavelet decomposition with a width of four cycles
per wavelet (m � 7; Tallon-baudry and Bertrand, 1999) at
center frequencies between 5 and 18 Hz, in steps of 1 Hz
and 50 ms. Activity of interest (defined between 0 and 2 s
post-cue and 7–15 Hz) was contrasted against mean
baseline activity (�0.6 to �0.2 s pre-cue) using a non-
parametric cluster-based permutation analysis (Maris and
Oostenveld, 2007). In brief, this test first calculates paired
t tests for each sensor at each time-frequency point,
which are then thresholded at p � 0.05. The sum within
each cluster (Tsum) is retained, and the procedure is
repeated 1000 times on shuffled data in which the con-
dition assignment within each individual swapped ran-
domly. On each permutation, the maximum Tsum (Tmax)
is retained yielding a distribution of 1000 Tmax values.
From this distribution, the cluster probability of each em-
pirically observed Tsum can be derived. Clusters are la-
beled as significant with p � 0.05. Please note, that for
this test, cluster permutations control for multiple com-
parisons in time, frequency and sensor space dimensions.

Source-level analysis
To elucidate the possible brain regions underlying the

sensor-level � modulations, we have defined two post-
cue (0.2–0.6, 0.6–1.0) and one pre-cue (�0.6 to �0.2)
time-windows in two different frequency bands (9 and
13 � 2 Hz). These time-frequency windows have been
chosen based on the results from the statistical contrast
in the sensor level.
To estimate the brain regions driving activity in these

time-frequency windows, we have used the frequency–
domain adaptive spatial technique of dynamical imaging
of coherent sources (DICS; Gross et al., 2001). Data, from
all conditions, within each group of blocks were concat-
enated, and cross-spectral density (CSD) matrix (�0.7 to
2 s, relative to cue onset) were calculated using the
multitaper method with a target frequency of 11 (�4) Hz.
For each participant, an anatomically realistic single-

shell headmodel based on the cortical surface was gen-
erated from individual head shapes (Nolte, 2003). A grid
with 0.5-cm resolution was normalized on a MNI template,
and then morphed into the brain volume of each partici-
pant. Leadfields for all grid points along with the CSD
matrix were used to compute a common spatial filter that
was used to estimate the spatial distribution of power for

all time-frequency windows of interest per group of
blocks. For each participant, these power distributions
were averaged across the three groups of blocks. After-
ward, Each post-cue window was contrasted against a
corresponding baseline pre-cue window using a nonpara-
metric cluster-based permutation analysis (Maris and
Oostenveld, 2007). For this test, cluster permutations
control for multiple comparisons in the source space
dimension.

Defining ROIs and virtual electrodes
The aforementioned source-level analysis provides a

snapshot picture of underlying cortical activity. To go a
step further, we defined virtual electrodes within ROIs, for
the purpose of resolving the time course of activity at the
source level. The source space was subdivided into 116
anatomically defined ROIs according to the macroscopic
anatomic parcellation of the MNI template using the au-
tomated anatomic labeling (AAL) map (Tzourio-Mazoyer
et al., 2002). We limited our analysis to four auditory
regions; left and right Heschl gyri (HG) and superior tem-
poral gyri (STG) and two occipital regions (left and right
middle/superior gyri). For each auditory region; virtual
electrodes were defined as the average of five neighbor-
ing voxels exhibiting the strongest � power modulations,
i.e., highest t values in the source-level baseline contrast
in the 0.6 to 1s (relative to cue onset) and 7- to 11-Hz
time-frequency window. Same procedure was used for
the occipital regions; however, voxels were chosen based
on the highest t values in the source-level baseline con-
trast in the 0.6- to 1-s (relative to cue onset) and 11- to
15-Hz time-frequency window.

Reconstruction of source activity
To get a time-resolved estimation of source activity, we

computed the time-frequency signal at the virtual elec-
trode (defined above) level using the LCMV beamformer.
Spatial filters were constructed from the covariance ma-
trix of the averaged single trials at sensor level (�0.7 to 2
s, relative to cue onset, 1–20 Hz, � 15%) and the respec-
tive leadfield by a linearly constrained minimum variance
(LCMV) beamformer (Van Veen et al., 1997). Afterward,
spatial filters were multiplied by the sensor level data to
obtain the time course activity at each voxel of interest.
Activity was averaged across the five voxels defined for
each ROI (see section above) and for each hemisphere.
Moreover, activity was averaged across the two auditory
ROIs (HG and STG). Thus, limiting our analysis to four
ROIs (one auditory and one occipital in each hemisphere).
For each ROI, we subtracted the evoked potential (i.e.,

the signal averaged across all trials) from each trial. Sub-
sequently, time-frequency power was calculated in the
same manner as in the sensor level analysis using Morlet
Wavelet decomposition.
To visualize the different profiles observed on both

sensor and source levels, � power (computed using Mor-
let Wavelets) was averaged between 7 and 11 Hz, and
between 11 and 15 Hz, for auditory and visual regions,
separately, to extract the time course of � activity in these
two � sub-bands.
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In addition, � power (computed using Morlet Wavelets)
was averaged between 0.6 and 1s for each ROI, to extract
the power spectrum in each subject. Afterward, individual
� peak frequency (iAPF) was defined separately for audi-
tory and visual regions, in each subject. For auditory
virtual electrodes, the peak was defined as the frequency
with the maximum � power decrease relative to the base-
line (�0.6 to �0.2 s pre-cue onset) between 5 and 15 Hz.
For visual virtual electrodes, the peak was defined as the
frequency with the maximum � power increase relative to
the baseline. The median APFs across subjects and hemi-
spheres were 9 and 13 Hz in the auditory and visual virtual
electrodes, respectively.

Attentional modulation of � activity
A linear mixed-effects model (lme) was fit to predict

modulation of � activity uniquely in auditory virtual elec-
trodes between 600 and 1000 ms (relative to cue onset)
with the following factors as fixed effect: (1) cue laterality
according to the auditory cortices (three levels: ipsilateral,
contralateral, and uninformative); (2) hemisphere (two lev-
els: left and right); and (3) frequency (two levels: 9 and 13
Hz). A random effect was included for each participant
and thus allowing us to model variability between partic-
ipants. The chosen frequencies were the median APFs
calculated in the previous analysis (see above, Recon-
struction of source activity). Similar to the previous step,
for post hoc analysis, we used the Lsmean package.

Correlation between � activity and behavioral data: sen-
sor level
As a final step, and to assess the relationship between

the cue-related changes in � power, in the sensor space,
and RTs, correlation topographies were created (Mazaheri
et al., 2013). First, we performed a trial-by-trial correlation,
using non-parametric Spearman tests, in each partici-
pant, between RTs and post-cue � power at each time
frequency point (between 6 and 16 Hz, by steps of 1 Hz,
and between 0 and 1200 ms post-cue onset, by steps of
50 ms) for each sensor, to create topographies of the
correlation (Mazaheri et al., 2013). The correlation coeffi-
cients were subsequently converted to z values using
Fisher’s r- to z-transformation to obtain a normally dis-
tributed variable. The statistical significance of the corre-
lations was assessed at the group level with a one-sample
t test of the correlation z values at each sensor and
each time-frequency point, and then subjected to a
cluster-level randomization test to correct for multiple
comparisons in the sensor space, time, and frequency
dimensions.

Correlation between � activity and behavioral data:
source level
To assess the relationship between cue related

changes in � power and RTs in source-space, single trial
� activity was reconstructed at each grid point using a
partial cannonical correlation (PCC) beamformer, a more
computationally efficient alternative to the DICS beam-
former. Afterward, we performed a trial-by-trial correla-
tion, using non-parametric Spearman tests, in each
participant, between RTs and post-cue � power (between
10 and 16 Hz, and between 900 and 1200 ms, according

to the sensor level results) at each grid point (Mazaheri
et al., 2013). The correlation coefficients were subse-
quently converted to z values using Fisher’s r- to
z-transformation to obtain a normally distributed variable.
The statistical significance of the correlations was as-
sessed at the group level with a one-sample t test of the
correlation z values at each grid point and then subjected
to a cluster-level randomization test to correct for multiple
comparisons in the source space dimension.

Power analysis
To demonstrate the statistical robustness of our tests

(see above, Behavioral data analysis and Attentional mod-
ulation of � activity), we have applied sensitivity power
analyses using the G�Power software (Faul et al., 2007,
2009), using a power of 0.8, an � error of 0.05, and
correlation of 0.5 among repeated-measures; for all the
analysis based on linear mixed-effects models (as an
approximation), we ran the sensitivity power analysis for a
repeated-measures ANOVA. Results are detailed in rele-
vant sections.

Results
Behavioral analysis
The percentage of correct responses (on average:

96.05 � 0.73 SEM) was not significantly modulated by the
cue category. For the median RTs, as shown in Figure 2,
we found a significant main cue effect (F(2,26) � 31.5, p �
0.01, �2 � 0.7). The reported effect size (f; Cohen, 1988)
of this test is 1.52 superior to the required effect size of
0.35 as calculated by the G�Power software.

Post hoc tests indicated that participants were faster
when the cue was informative (either right or left) in com-
parison to the uninformative cue (p � 0.01). No significant
differences were found between the left and right cue
conditions.

Cue- and target-related � activity: sensor level
analysis
On contrasting post-cue activity to baseline activity,

two profiles centered on two distinct frequencies (9 and
13 Hz; low and high �) were distinguished. In the low �
frequencies, a widespread decrease lasted between cue
onset and 600 ms (post-cue-onset; early period). Later on,
this activity was spatially focused to left temporo-parietal
sensors just before the target onset (late period). Simul-
taneously, in the high � frequencies, the early period
displayed an occipitally focalized decrease followed by an
increase that spreads to right temporal sensors in the late
period (Fig. 3).

Cue- and target-related � activity: source level
analysis
Sources of these activities were estimated and con-

trasted to the baseline window. In the early period (200–
600 ms), a general decrease of the low-� can be observed
in several occipital, temporal and central brain regions,
bilaterally (Table 1). However, in the same time period, at
higher � frequency, this decrease was restricted to re-
gions dedicated to visual processing in the occipital and
temporal lobes (Table 1). In the late period, the low-�
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decrease became more restricted to the auditory regions
in the temporal cortices, e.g., bilateral HG and STG, and
to motor areas (Table 1). However, at higher frequencies,
an � increase was maximal in occipital, parietal and tem-
poral regions dedicated to visual processing, and in pari-
etal regions (Table 1).

ROI analysis: � time course and peak frequency
At the virtual electrode level, we were able to confirm

that the time-frequency profiles of both auditory and vi-
sual ROIs are consistent with the profiles that have been
demonstrated at the sensor level (Fig. 4A). We could also
confirm, at the virtual electrode level, the frequency dif-
ferences that have been observed at the sensor level.
Indeed, the median � frequency peak across subject was
9 Hz in auditory cortices and 13 Hz in visual cortices (Fig.
4B). Moreover, as can be observed in Figure 4C, these �
peak frequencies were well circumscribed within the 7- to
15-Hz � band.

ROI analysis: attentional modulations of � activity
In order investigate the modulation of � activity in au-

ditory virtual electrodes, a lme model was used with three
factors: (1) cue laterality according to the auditory cortices
(three levels: ipsilateral, contralateral and uninformative);
(2) hemisphere (two levels: left and right); and (3) fre-
quency (two levels: 9 and 13 Hz).
The lme model yielded several significant main effects

and interactions (listed in Table 2 with interaction of inter-
est in bold font). The highest-order significant interaction
of interest is the three-level interaction between cue lat-
erality, hemisphere, and frequency (F(2,26) � 3.07, p �
0.04, �2 � 0.17). The reported effect size (f) of this test is
0.65 superior to the required effect size of 0.28 as calcu-
lated by the G�Power software.
To elucidate this interaction, we performed post hoc

lme models testing the influence of the cue laterality (three
levels: ipsilateral, contralateral, and uninformative) and

hemisphere (two levels: left and right), for each frequency
(9 and 13 Hz), since we aimed to shed more light onto the
role of peak frequencies on � modulations (Fig. 5)
At 9 Hz (low �), only the two-level interaction between

cue laterality and hemisphere (F(2,26) � 5.2, p � 0.005,
�2 � 0.17) reached significance. The reported effect size
(f) of this test is 0.45 while the required effect size as
calculated by the G�Power software was 0.23; 2 by 2 post
hoc testing revealed that in the right hemisphere (auditory
cortex), � power was significantly lower in the contralat-
eral cue condition, in comparison to the ipsilateral and
uninformative cue condition (p � 0.004 and p � 0.01,
respectively). No significant effects were found in the left
hemisphere (Fig. 5). In summary, a facilitatory effect on
the low � power was found in the right auditory cortex for
the contralateral cue.
At 13 Hz (high �), only the two-level interaction between

cue laterality and hemisphere (F(2,26) � 4.95, p � 0.007,
�2 � 0.1) reached significance. The reported effect size (f)
of this test is 0.33 while the required effect size as calcu-
lated by the G�Power software was 0.28; 2 by 2 post hoc
testing revealed that in the right hemisphere (auditory
cortex), � power was significantly higher in the ipsilateral
cue condition, in comparison to the uninformative cue
condition (p � 0.007), but not to the contralateral cue
condition (p � 0.16). No significant effects were found in
the left hemisphere (Fig. 5).
In summary, a suppressive effect on the high � power

was found in the right auditory cortex for the ipsilateral
cue.

Correlation between � activity and behavioral data
At the sensor level, pre-target activity between 0.9 and

1.2 s (relative to cue onset) in the 10- to 15-Hz frequency
band at a cluster centered around right occipital and
parietal sensors was found to negatively correlate with
RTs (p � 0.001). In other words, the higher individual �
power in that cluster, the faster the participant. At the

Figure 2. Mean of median RT (ms) per condition; ��p � 0.01. Error bars represent SEM.
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source level, � activity between 0.9 and 1.2 s (relative to
cue onset) and 10–16 Hz, mainly in the left and right
superior occipital gyri, the left middle occipital gyrus, the
right calcarine, and the right postcentral gyrus, was found
to negatively correlate with RTs (p � 0.01; Fig. 6).

Discussion
In this study, we have demonstrated that (1) anticipating

a visually-cued auditory target differentially modulates �
power in the auditory and visual cortices; (2) these mod-
ulations occur within different � sub-bands; (3) modula-
tions in the right auditory cortex (facilitation and
suppression) also occur within different � sub-bands; and
(4) RTs to the auditory target correlate with the � power
increase in the visual cortices.

Behavioral measure of top-down anticipatory
attention
Participants identified the target pitch faster in trials

with an informative cue, in agreement with several previ-
ous studies (Golob et al., 2002; Bidet-Caulet et al., 2015).

This effect is more likely to be related to differences in
anticipatory attention since the informative cue provided
additional information solely about the location of the
target and not about its category neither its mapped
response, thus motor preparation was equivalent across
all conditions.

Distinct profiles of � activity in visual and auditory
regions
In line with our hypothesis, anticipating an auditory

target modulated � power differently in the auditory and
visual cortices, following different patterns. In the auditory
cortex, after the visual cue onset, low-frequency � (�9 Hz)
power continuously decreased until target onset. Simul-
taneously, in the visual cortices, a transient decrease in
low and high-frequency (�13 Hz) � power between 200
and 600 ms post-cue onset was followed by a power
increase, uniquely in high �, before target onset.
According to recent hypotheses, � oscillations reflect

regulation of cortical excitability (Klimesch et al., 2007;
Jensen and Mazaheri, 2010; Foxe and Snyder, 2011). This

0.2 0.6 1.4

Figure 3. Comparison between low (7–11 Hz; left panel) and high (11–15 Hz; right panel) � activity. First row, Topographical maps of
baseline corrected (�600 to �200 ms pre-cue onset) � power averaged in the respective frequency bands during two latency
windows: (1) 200–600 ms and (2) 600–1000 ms, relative to cue onset. Sensors highlighted with black dots present � activities
statistically significant from the baseline using cluster-based permutation tests and sensors highlighted by black boxes were used to
represent the time-frequency activity in the second row. Second row, Time-frequency representations of � power baseline corrected
(�600 to �200 ms pre-cue onset) averaged across sensors highlighted by the black boxes over the topographical maps on the first
row. Third row, Distributions of t values, masked at p � 0.05, from cluster-based permutation tests contrasting time-frequency
windows of interest against baseline activity at the source level.

New Research 8 of 14

July/August 2018, 5(4) e0141-18.2018 eNeuro.org

rich3/enu-enu/enu-enu/enu00418/enu2683d18z xppws S�4 7/24/18 22:21 MS: Ini:

F6



gauge would be supported by � power increases in task-
irrelevant regions and by � power decreases in task rele-
vant regions. In line with previous findings in the visual
(Sauseng et al., 2005; Thut, 2006), somatosensory (Hae-
gens et al., 2012), auditory (Müller and Weisz, 2012; Weisz
et al., 2014), and audiovisual (Mazaheri et al., 2013; Frey
et al., 2014; Van Diepen and Mazaheri, 2017) domains, we
have found that anticipating an auditory target resulted in
(1) a decrease in � power, possibly leading to increased
excitability, in task-relevant auditory cortical regions, si-
multaneous to (2) an increase in � power, probably reduc-
ing excitability, in task-irrelevant visual regions.

Top-down modulation of � activity in the auditory
cortex
A scant literature (Gomez-Ramirez et al., 2011; Weisz

et al., 2011, 2014; Müller and Weisz, 2012; Frey et al., 2014;
Weise et al., 2016), mostly using MEG, exists on � genera-
tors in the auditory cortices, probably due to the limitations
of EEG technique to capture their activity (Frey et al., 2014).
In the present study, using MEG, we could show not only
that � activity, in the auditory cortices, is modulated accord-
ing to the visual cue information, but also that these modu-
lations occur within different � sub-bands.
In the auditory cortices, to optimize the processing of

an upcoming monaural sound, two phenomena might be
expected: (1) an inhibition (increase in � activity) in the
auditory cortex ipsilateral to the attended side, and (2) a
pre-activation (or released inhibition, i.e., decrease in �
power) in the contralateral auditory cortex. The question
is: which of these two modulations (down- or upregula-
tion) would drive anticipatory attention? By incorporating
an uninformative cue condition, we could delineate these
facilitatory and suppressive mechanisms.
We observed � power modulations according to the

visual cue information, in the right auditory cortex, only. At
lower � frequencies (�9 Hz), we found a decrease in �
power (relative to the baseline), in the three cue conditions
(contralateral, ipsilateral and uninformative). Importantly,

this decrease was most prominent when a contralateral
sound was expected rather than an ipsilateral or a spa-
tially non-cued sound. On the other hand, at higher �
frequencies (�13 Hz), an increase in � power (relative to
the baseline) was observed in all conditions. Interestingly,
this increase was more prominent when an ipsilateral,
rather than a spatially non-cued target was expected.
The present results corroborate previous findings (Müller

and Weisz, 2012; Weisz et al., 2014) showing that the right
auditory cortex plays a special role in auditory spatial atten-
tion. We extend these findings by demonstrating that the
excitability of the right auditory cortex can be both (1) down-
regulated for processing an ipsilateral right-ear sound and
(2) upregulated for processing a contralateral left-ear sound.
Importantly, to our knowledge, the present study is the first
one to demonstrate that these modulations occur at differ-
ent � frequencies, suggesting that the dynamic equilibrium
between suppressive and facilitatory mechanisms of audi-
tory anticipatory attention would be supported by different
high and low � sub-bands, respectively.
Finally, � activity in the left auditory cortex was not

modulated by top-down attention. This asymmetry could
be interpreted in the light of the right hemispheric special-
ization in pitch processing (Milner, 1962; Zatorre and
Belin, 2001; Zatorre et al., 2002; Lattner et al., 2005; Hyde
et al., 2008). Since participants performed a pitch cate-
gorization task, the right auditory cortex would be more
relevant for target sound processing and thus more influ-
enced by top-down attention. The asymmetry of � activity
modulations could also be interpreted in the light of the
right hemispheric dominance in spatial attention that has
been illustrated for the auditory (Zatorre and Penhune,
2001; Spierer et al., 2009) and visual (Nobre et al., 1997;
Corbetta and Shulman, 2002) modalities. This dominance
would reflect a functional asymmetry in auditory process-
ing, wherein the left auditory cortex preferentially pro-
cesses sounds within the contralateral egocentric space,
whereas the right auditory cortex processes the entire
acoustic space (Spierer et al., 2011).

Table 1. Brain regions displaying significant � activity modulations in the low (7–11 Hz) or high (11–15 Hz) � frequency bands
in two time windows on baseline contrast in the source level

7–11 Hz Early time window (200–600 ms) Late time window (600–1000 ms)
Left and right 2:
Heschl gyrus
Inferior, middle, and STG calcarine
Cuneus
Inferior, middle, and superior occipital gyri
Inferior parietal gyrus
Postcentral gyrus
Precentral gyrus
Precuneus
Supp. motor area

Left and right 2:
Heschl gyrus
Inferior, middle, and STG
Inferior parietal gyrus
Postcentral gyrus
Precentral gyrus
Supp. motor area

11–15 Hz Early time window (200–600 ms) Late time window (600–1000 ms)
Left and right 2:
Calcarine
Cuneus
Inferior and middle occipital gyri
Inferior and middle temporal gyri

Left and right 1:
Calcarine
Cuneus
Precuneus
Inferior and middle occipital gyri
Inferior and middle temporal gyri
Inferior and superior parietal gyri

Up-arrows indicate � synchronization (relative increase in power) while down-arrows indicate � desynchronization (relative decrease in power).

New Research 9 of 14

July/August 2018, 5(4) e0141-18.2018 eNeuro.org

rich3/enu-enu/enu-enu/enu00418/enu2683d18z xppws S�4 7/24/18 22:21 MS: Ini:



Correlation between � activity and behavioral
performances
We found that the higher � power in the occipital cor-

tices, the faster participants correctly discriminated the
upcoming target sound. In other words, the stronger in-

hibition of task-irrelevant regions, the faster the subjects.
This result is in line with previous findings that behavioral
performances correlate with the increase in � power (Hae-
gens et al., 2012) and reinforces the hypothesis that �
oscillations exert an inhibitory role (Jensen and Mazaheri,
2010; Klimesch, 2012). Importantly, this correlation be-
tween an increase in � power in irrelevant brain regions
and behavior was only found significant in the higher �
frequencies (10–15 Hz), bringing further evidence for a
specificity of the high � sub-band in suppressive atten-
tional mechanisms.
Contradictory to the present findings, a positive corre-

lation between � power in the auditory cortices and RTs in
a sound discrimination task was found in a previous study
(Mazaheri et al., 2013). However, differences between the
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Figure 4. Source level activity. A, Time course of � (relative to baseline) between 7–11 and 11–15 Hz, for occipital and auditory virtual
electrodes averaged across both hemispheres. Note that subtracting the evoked response from single trials before time-frequency
transformation only partially removed the evoked response to the target in the � bands. B, Boxplot of Individual � peak frequency in
visual and auditory regions. C, Relative power spectrum averaged between 600 and 1000 ms post-cue in visual and auditory regions.

Table 2. Significant results of the LME model testing the
modulation of � activity by cue laterality, hemisphere, and
frequency

Factor p value f statistic
Hemisphere 0.02 5.3
Frequency �0.001 141
Cue laterality by hemisphere 0.01 4.0
Cue laterality by hemisphere by frequency 0.04 3.1

The interaction of interest is highlighted in bold.
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two studies might explain this discrepancy. First, in their
study, spatial attention was not modulated, i.e., the audi-
tory target was always binaural. Second, participants dis-
criminated three auditory target frequencies that were
further apart in pitch and much easier to discriminate in
comparison to our paradigm (250, 1000, and 4000 Hz vs
512 and 575 Hz). We posit that in the case of an easy task
the excitability of relevant areas can be up and down
regulated and correlate with task performance; whereas in
the case of a difficult task, the excitability of relevant areas
would be maximal and only the inhibition of signal disper-
sion to irrelevant areas could fluctuate and correlate with
performance.

The role of different � frequency sub-bands
The present study highlights specificities of low and

high � sub-bands: (1) the peak frequency of the � increase
in visual regions was found to be higher (�13 Hz) in
comparison to that of the � decrease in auditory regions
(�9 Hz); (2) the � increase in visual regions was found to

be significantly correlated to behavior in the high � fre-
quencies, only; (3) in the right auditory cortex, a larger
decrease in � power during contralateral sound expecta-
tion was found in the low �, whereas a stronger increase
in � power during ipsilateral sound anticipation was found
in the high �. The existence of different sub-bands of the
� rhythm is not a new concept (Klimesch et al., 1993,
1999; Sauseng et al., 2005; Groppe et al., 2013), but their
functional role is still unclear. Recently, � generators have
been observed in each of the cortical laminae (Haegens
et al., 2015) in primary sensory cortices. Interestingly, the
� activity seems to peak at different frequencies accord-
ing to the layers, providing neuronal underpinnings to
different � sub-bands. In the present study, the differ-
ences observed across frequencies can be interpreted
differently by considering the � peak frequency as a “trait”
or “state” variable (Haegens et al., 2014), providing infor-
mation into their functional role, as discussed in the fol-
lowing.

Figure 5. � Power (relative to baseline) averaged between 600 and 1000 ms (post-cue onset) at 9 Hz (left panel) and 13 Hz (right panel)
for the three cue conditions; �p � 0.05, ��p � 0.01. Error bars represent SEM.

leveL ecruoSleveL rosneS

-4

4

T Values

Figure 6. A, Topography of t values, masked at p � 0.05, from cluster-based permutation testing of the significance of the correlation
between � activity (900–1200 ms, 10–15 Hz) and RT at the sensor level. B, Time-frequency distribution of t values, masked at p �
0.05, averaged across sensors highlighted by the black box on the topography in A. C, t values source distributions, masked at p �
0.05, from cluster-based permutation testing of the significance of the correlation between � activity (900–1200 ms, 10–16 Hz) and
RT. Please note, that negative t values signify negative correlation between RTs and � activity.
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The present results of different dominant frequencies
in the visual and auditory regions are in line with evi-
dence from previous studies demonstrating that � peak
frequency varies as a function of cortical location (Ka-
wasaki et al., 2010; Haegens et al., 2014). � Peak
frequency could be considered as a trait or a “charac-
teristic” variable that changes across individuals (Kli-
mesch, 1999; Başar, 2012) and cortical regions, as
found during resting state, in parietal and occipital
regions (Haegens et al., 2014). In this light, the differ-
ences in � peak frequency reported here might be
related to anatomic and physiologic disparities be-
tween the visual and auditory cortices. However, one
should note that no difference in � peak frequencies
was found between the macaque auditory, visual and
somatosensory primary areas (Haegens et al., 2015).
Nonetheless, the present findings also show an in-

crease in high � power, when attending an ipsilateral
sound, in the right auditory cortex. This is in agreement
with the results of Mazaheri et al. (2013) pointing to an �
activity increase in the vicinity of the auditory cortices to
be centered around higher � frequencies. Therefore, �
peak frequency could also be considered as a state vari-
able that would index performance fluctuations, cognitive
demands and probably the functional task-relevance of a
certain cortical region (Klimesch, 1999; Başar, 2012; Hae-
gens et al., 2014). The present results show that suppres-
sive attentional mechanism in the visual non-relevant
regions are indexed by an increase in high � power which
is correlated to behavior. Moreover, within the right audi-
tory cortex, suppression (downregulation) of brain activity
when attending an ipsilateral sound is reflected in the high
� sub-band; whereas brain processing facilitation of the
contralateral expected sound is indexed in the low � sub-
band. Taken together, the present results highly suggest that
different high and low � sub-bands would support suppres-
sive and facilitatory mechanisms of anticipatory attention,
respectively.

Conclusion
The current study replicates and extends previous find-

ings of the presence of � generators in the auditory
cortices and of the right hemispheric dominance of audi-
tory spatial attentional modulations.
Importantly, the present work provides evidence of

distinct facilitatory and suppressive mechanisms sup-
porting anticipatory attention. These two attentional
mechanisms have distinct timing in task-relevant and
task-irrelevant brain areas, are differentially correlated
to behavior, and are supported by different sub-bands
of the � rhythm.
Therefore, the present findings provide new insight into

the role of the peak-frequency in the � band by showing
that anticipatory attention is a dynamic process sup-
ported by a balance between facilitatory and suppressive
mechanisms, which would be mediated in different low
and high sub-bands of the � rhythm, respectively.
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7.3 Supplementary Study I: Alpha Connectivity during Top-Down Attention (CAT2.0) 

7.3.1 Introduction  

In the introductory section, we have reviewed evidence that communication between nodes 

of the dorsal fronto-parietal top-down attention network could be established via oscillatory 

activity in the alpha band (Capotosto et al. 2009). However, in the auditory domain, evidence 

of such connectivity (between the auditory cortices and regions of the dorsal network) have 

been contradictory. For example, in their 2012 study, Muller and Weisz demonstrated an 

increased functional connectivity between the right auditory cortex and the frontal eyes fields 

for attended ipsilateral (to the auditory cortex) auditory targets in comparison to attended 

contralateral target, i.e. enhanced dorsal connectivity with the task-irrelevant auditory cortex. 

On the contrary, in two later studies, while attending to a monaural target, in comparison to 

the ipsilateral (to the auditory target) auditory cortex, stronger connectivity has been 

observed between the contralateral auditory cortex and the left intraparietal sulcus (Huang 

et al. 2014) or the right intraparietal lobule (Weisz et al. 2014), i.e. enhanced dorsal 

connectivity with the task-relevant auditory cortex. 

In our framework, long-range communication in the dorsal network of top-down 

attention is supported by phase synchrony in the alpha band. Thus, we have aimed to 

investigate the functional connectivity between the auditory ROIs, already defined in the 

previous study, and the rest of the brain regions during the anticipation of a visually cued 

auditory target and how this connectivity would be modulated by the cue information. 

Several measures have been proposed to compute functional connectivity (review in 

Bastos and Schoffelen 2016). Two major candidates for these analyses were coherence 

(Rosenberg et al. 1989) and Phase Synchrony (Lachaux et al. 1999). However, the fact that the 

calculation of the former takes into account the amplitude of the signal, we have opted for 

the latter in order to assure that our results are driven by pure phase-to-phase synchrony. 
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7.3.2 Materials and Methods 

We have extracted the complex values of the Fourier transform containing phase information 

and transferred these complex values into source space using partial canonical coherence 

(PCC) beamformer, a computationally efficient alternative to the DICS that provides the 

possibility of extracting both power and phase information on the source level. For each 

participant: 

(1) Data, from all conditions were concatenated, and cross-spectral density (CSD) matrix 

(-0.8 to 2 s, relative to cue onset) were calculated using the multitaper method with a 

target frequency of 10 (±5) Hz. Leadfields for all grid points along with the CSD matrix 

were used to compute a common spatial filter that was used to estimate the spatial 

distribution of power and phase for the time-frequency window of interest (0.6-1 s 

post-cue onset, 7-15 Hz). Please note that since we had no a priori hypotheses on the 

role of previously highlighted alpha sub-bands, we have opted to analyze a frequency 

window that englobes both bands i.e. 7—15Hz. 

(2) For each auditory ROI, phase synchrony between each voxel within the ROI and all 

other voxels was calculated. For each voxel outside of the auditory ROIs, the obtained 

values were averaged across auditory voxels leading to a single value of phase 

synchrony between each non-auditory voxel and each auditory ROI. These values were 

then FisherZ transformed.  

 

Finally, for each ROI, post-non-informative cue alpha phase synchrony (relative to baseline) 

was subtracted from contralateral and ipsilateral cue conditions, separately. Then ipsilateral 

activity was contrasted against the contralateral activity using non-parametric cluster-based 

permutation analysis (Maris and Oostenveld 2007). Please note, that for this test, cluster-

based permutations control for multiple comparisons in the source space dimension. 
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7.3.3 Results 

Only for the right auditory ROI, a significant cluster (p < 0.01) extended notably to the vicinity 

of left dorsolateral prefrontal cortex, the left frontal eye fields and the left pre-central gyrus. 

For all these regions, phase synchrony in the ipsilateral (right) cue was higher than that in the 

contralateral (left) cue condition (see Figure 1A). Please note that similar analyses have been 

undertaken in theta (2-6Hz), beta (20-30Hz) and gamma (60-100Hz) bands with neither 

significant emergence of such connectivity nor modulations by the cue information.  

 

 

Figure 1. Distributions of T-values, masked at p<0.05, from Cluster Based Permutation tests 
contrasting contralateral and ipsilateral post-cue phase synchrony with the Right auditory ROI 
(7-15Hz and 0.6-1 post-cue). 
 
 
7.3.4 Discussion 

In this study, we have analyzed phase synchrony between the auditory cortices and the rest 

of the brain in the time-frequency window (0.6-1 s post-cue onset, 7-15 Hz) where we have 

previously highlighted significant modulation of alpha activity by the information of the visual 

cue. We have demonstrated that attending to a right auditory target increased synchrony 

between the right ipsilateral auditory cortex and regions in the vicinity of the left Frontal eye 

fields (FEF) and the left dorsolateral prefrontal cortex (dlPFC). This result corroborates (1) the 

established role of the FEF as a source of top-down signals responsible for controlling alpha 

activity in the task (ir)relevant sensory cortices (Capotosto et al. 2009) and (2) the role of the 

lPFC in modulating the neural processing of (ir)relevant stimuli (Johnson et al. 2007; Miller, 

Vytlacil, et al. 2011; Zanto et al. 2011).  

Nevertheless, our finding contradicts previous studies (Huang et al. 2014; Weisz et al. 

2014), where the opposite pattern has been found i.e. increased synchrony between nodes of 

the dorsal top-down network and the auditory cortex contralateral to the attended target. 
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However, differences between these three studies might explain this discrepancy. We 

consider the discrimination task (512 vs 575 Hz) in our paradigm to be more demanding than 

both the detection (Weisz et al., 2014) and the discrimination (800 vs 1500Hz: Huang et al., 

2014) tasks used in previous studies. In our discrimination task (study I), we have 

demonstrated that, globally, only alpha synchronization in visual task-irrelevant regions 

correlated with better performances. In a similar vein, we posit that due to the difficulty of 

the task, in anticipation of an auditory target, the excitability of relevant (contralateral) 

auditory cortex would be maximal and only the inhibition of signal dispersion to the 

“relatively” irrelevant (ipsilateral) auditory cortex could fluctuate and would necessitate more 

top-down inhibitory control signals. This also reinforces the hypothesis that alpha oscillations 

mainly exert an inhibitory role on underlying cortical excitability (Jensen and Mazaheri 2010; 

Klimesch 2012). 

 Finally, we have previously interpreted the auditory laterality asymmetry (lack of 

synchrony effects in the left auditory cortex) in the light of (1) the right hemispheric 

specialization in pitch processing (Milner 1962; Zatorre and Belin 2001; Zatorre et al. 2002; 

Lattner et al. 2005; Hyde et al. 2008), and (2) the right hemispheric dominance in spatial 

attention that has been illustrated for the auditory (Zatorre and Penhune 2001; Spierer et al. 

2009) and visual (Nobre et al. 1997; Corbetta and Shulman 2002) modalities. Furthermore, 

only contralateral frontal regions (FEF and dlPFC) showed higher phase synchrony with the 

right auditory cortex. This pattern is in line with recent work mainly in the visual modality 

using both fMRI (Szczepanski et al. 2010; Vossel et al. 2012) and combined TMS/MEG 

(Marshall, O’Shea, et al. 2015) recordings. These studies have demonstrated that attention 

signals in fronto-parietal regions, e.g. FEF, were spatially specific i.e. stronger when attention 

was directed to the contralateral than to the ipsilateral visual field.  

 Taken together, these results demonstrate how alpha phase synchrony would support 

inter-areal communication during (top-down) anticipation of an auditory target in manner 

that shows high specificity in the laterality of both auditory and frontal regions to the 

anticipated target. 



 

 97 

7.4 Supplementary Study II: Gamma Activity during Top-Down Attention (CAT2.0) 

7.4.1 Introduction  

In the previous two studies, we have demonstrated how both amplitude and phase of alpha 

oscillations would support modulations and long-range communication in the dorsal top-

down network of attention, respectively. In the introductory section, we have highlighted that 

while anticipatory alpha activity decreases contralaterally and increases ipsilaterally to the 

attended side, stimulus-induced gamma power is boosted contralaterally and attenuated 

ipsilaterally (Marshall, O’Shea, et al. 2015) in both the visual (Fries et al. 2001, 2008, Fries 

2005, 2009; Taylor et al. 2005; Womelsdorf and Fries 2007; Siegel et al. 2008; Popov et al. 

2017) and auditory (Debener et al. 2003; Bidet-Caulet et al. 2007; Schadow et al. 2009) 

modalities. In addition, we have reviewed evidence that amplitude of gamma oscillations is 

often coupled to the phase of ongoing alpha oscillations (review in Bonnefond et al. 2017).  

In our framework, we have hypothesized that the amplitude of gamma oscillations 

would be coupled to the phase of alpha oscillations and subsequently would reflect 

modulations of top-down attention before and after target presentation. Originally, we have 

planned to compute phase-amplitude coupling in the auditory ROIs but prior to that, we have 

aimed to investigate whether (1) anticipation of an auditory target would impact gamma 

activity (power) in the auditory cortices before and after the presentation of an auditory target 

and (2) whether, similarly to alpha activity, gamma activity (power) before the auditory target 

would correlate with behavioral performances.  

 
7.4.2 Material and Methods 

7.4.2.1 Definition of Cue and Target Related Gamma Band 

Gamma band activity before and after the target was investigated at the source level within 

auditory ROIs (defined in study I). The bandwidth of this gamma band was defined between 

60 and 100 Hz, based upon results of study II (see chapter 8.2) whereas the time windows of 

interest before (pre-) and after (post-) the presentation of the auditory target were defined 

as follows:  

 For the pre-target window, we based our choice upon results from study I i.e. 600 to 

1000ms (post-cue onset).  

 For the post-target window, we have averaged oscillatory activity from both auditory 

ROIs and between 60 and 100Hz. Afterwards activity of interest (defined between 1 
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and 2s post-cue) was contrasted against mean baseline activity (-0.4 to -0.2s pre-cue) 

in steps of 10ms using a non-parametric cluster-based permutation analysis (Maris and 

Oostenveld 2007). For this test, cluster permutations control for multiple comparisons 

only in the time dimension. 

 

7.4.2.2 Gamma Activity Modulation 

In order to investigate gamma modulation before target presentation, a linear mixed-effects 

model (lme) was fit to predict modulation of gamma activity in auditory ROIs between 600 

and 1000ms (relative to cue onset) and between 60 and 100Hz with the following factors as 

fixed effects: (1) cue laterality according to the auditory cortices (3 levels: ipsilateral, 

contralateral and uninformative), and (2) hemisphere (2 levels: left and right). A random effect 

was included for each participant, allowing us to model variability between participants.  

 Moreover, in order to investigate gamma modulation after target presentation, a 

similar mixed-effects model (lme) was fit to predict modulation of gamma activity in auditory 

ROIs in the same frequency band but between 1300 and 1450ms (relative to cue onset). For 

this test the fixed effects were: (1) target laterality according to the auditory cortices (2 levels: 

ipsilateral, contralateral), and (2) hemisphere (2 levels: left and right), and (3) cue information 

(2 levels: informative and uninformative). 

For post-hoc analysis (of both tests) we used the Lsmean package (Lsmean version 

2.20-23; Searle et al., 1980) where p-values were considered as significant at p<0.05 and 

adjusted for the number of comparisons performed (Tukey method). 

 

7.4.2.3 Gamma Activity and Behavioral Performances 

In order to evaluate the relationship between cue related changes in gamma power and 

reaction times in source-space, single trial gamma activity was reconstructed at each grid 

point using a Partial Cannonical Correlation (PCC) beamformer, a more computationally 

efficient alternative to the DICS beamformer. Afterwards, we performed a trial-by-trial 

correlation, using non-parametric Spearman tests, in each participant, between reaction times 

and post-cue gamma power (between 60 and 100Hz, and between 600 and 1000 ms, 

according to the sensor level results) at each grid point (Mazaheri et al. 2013). The correlation 

coefficients were subsequently converted to z-values using Fisher's r- to z-transformation to 

obtain a normally distributed variable. The statistical significance of the correlations was 
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assessed at the group level with a one-sample t-test of the correlation z-values at each grid 

point and then subjected to a cluster-level randomization test to correct for multiple 

comparisons in the source space dimension. 

 

7.4.3 Results 

7.4.3.1 Definition of Cue and Target Related Gamma Band 

Upon contrasting post-cue gamma activity to baseline activity in both auditory ROIs, we have 

identified a significant cluster (p = 0.022) extending between 1300 and 1450 ms (post-cue 

onset). This has been defined as the post-target gamma time-window of interest (see Figure 

1). 

 

 

Figure 1. (A) Gamma power, relative to baseline (400-200 pre-cue onset), averaged across 
both auditory virtual ROIs. (B) Time distribution of t-values, masked at p<0.05, from Cluster 
Based Permutation tests contrasting post-target gamma activity against baseline activity at the 
virtual electrode level. 
 
7.4.3.2 Gamma Activity Modulation 

In the pre-target window, only an effect of cue laterality (F(1, 13) = 22.5, p < 0.01, η2 = 0.002) 

reached significance. 2 by 2 post-hoc testing revealed that in auditory cortices, gamma power 

was significantly higher in the contralateral cue condition, in comparison to the ipsilateral and 

uninformative cue condition (p < 0.001). 

 

In the post-target window, we found an effect of target laterality (F(2, 13) = 10.27, p <0.01, η2 

= 0.17). Gamma power was significantly higher in response to contralateral than to ipsilateral 

targets in both hemispheres. Moreover, we found an effect of cue information (F(2, 13) = 8,6, 



Alpha Oscillations and Top-Down Attention 

 100 

p < 0.01, η2 = 0.09). Regardless of the hemisphere and target side, gamma power was 

significantly higher when the cue was informative rather than uninformative of the target ear 

presentation.  

 

 

Figure 2. Upper panel: Pre-target gamma power (relative to baseline) averaged between 600 
and 1000ms (post-cue onset) and 60-100Hz for the three cue conditions, in each hemisphere. 
Lower panel: Post-target gamma power (relative to baseline) averaged between 1300 and 
1400ms (post-cue onset) and 60-100Hz according to cue information and target presentation 
conditions, in each hemisphere. *P < 0.05, **P < 0.01, ***P < 0.001. Error bars represent 
SEM. 
 
7.4.3.3 Gamma Activity and Behavioral Performances 

Gamma activity between 600 and 1000ms (relative to cue onset) and 60-100Hz, mainly in the 

right auditory cortex and the right temporoparietal junction, was found to negatively correlate 

with reaction times (p = 0.03). The larger the gamma activity, the shorter the reaction times. 

Other regions included, the right middle temporal and occipital gyri, the fusiform, the 

calcarine, and the inferior partial gyrus (see Figure 3). 
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Figure 3. T-value source distributions, masked at p<0.05, from Cluster Based Permutation 
testing the significance of the correlation between gamma activity (600-1000ms, 60-100Hz) 
and reaction time. Please note, that negative t-values signify negative correlation between 
reaction times and gamma activity. 
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7.4.4 Discussion 

In this study we have demonstrated that induced gamma activity in the auditory cortices 

before the presentation of an auditory target was differentially modulated by the type of the 

visual cue, i.e. in both auditory cortices, gamma power was higher when attending to a 

contralateral auditory target, in comparison to both the ipsilateral and uninformative 

conditions. In addition, we have demonstrated that in both auditory cortices, higher gamma 

power in response to contralateral rather than to ipsilateral targets, and that the presentation 

of an auditory target preceded by an informative cue induced an increase in gamma activity 

in comparison to when preceded by an uninformative cue. Finally, before the presentation of 

the auditory target, gamma power in the right auditory cortex and the right temporoparietal 

junction (TPJ) correlated negatively with reaction times i.e. the higher the gamma power was, 

the faster the participants were. 

These findings corroborate the growing literature that ties gamma activity to local 

neuronal processing (Fries 2005, 2009) where, first, lateralized gamma activity after target 

presentation would reflect the preferential contralateral processing in the auditory cortices, 

in relation to the anatomical organization of the auditory system. Second, increased gamma 

responses to targets when preceded by an informative (rather than an uninformative) cue 

would reflect the effect of top-down attention on target processing. Third, the increase of 

gamma activity during expectation of a contralateral (rather than an ipsilateral) target would 

reflect cortical pre-activation of the relevant areas in order to better process the upcoming 

target.  

Finally, the correlation between reaction times and gamma activity in the right 

auditory cortex is consistent with the right hemispheric specialization in pitch processing 

(Milner 1962; Zatorre and Belin 2001; Zatorre et al. 2002; Lattner et al. 2005; Hyde et al. 2008). 

Since participants performed a pitch categorization task, the right auditory cortex would be 

more relevant for target sound processing. In addition, it has been proposed that the right TPJ 

plays a role in mediating endogenous attention shifts of auditory spatial attention (Salmi et al. 

2009) where it would operate as a filter for incoming stimuli (Larson and Lee 2013b, 2014). 

Taken together, this affirms the role of gamma oscillations in promoting the activation of task-

relevant processes across the brain and not only in sensory (auditory) cortices. 
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8 Gamma Oscillations and Bottom-Up Attention 

8.1 General Presentation 

Within our framework, we have proposed that the power of gamma oscillations would 

support the activation of the ventral bottom-up attention network. We have also proposed 

that the lateral prefrontal cortex (lPFC) would play a role in (1) subtending bottom-up gamma 

synchrony, and (2) the interaction between bottom-up and top-down mechanisms indexed by 

gamma power modulations and/or fluctuations in the alpha-gamma coupling. 

 In study II, in response to an unexpected salient distracting sound (CAT 3.0), we have 

observed an increase in gamma power in the left and right auditory cortices, the bilateral 

temporo-parietal junctions, and the right ventrolateral frontal cortex. This activation pattern 

highly corresponds to previous results from functional magnetic resonance imaging (fMRI) 

studies of both visual (see Corbetta and Shulman 2002; Corbetta et al. 2008 for review) and 

auditory (e.g. Salmi et al. 2009; Alho et al. 2014; Salo et al. 2017; Long and Kuhl 2018) bottom-

up attention. In addition, we have demonstrated, using gamma oscillatory activity for the first 

time, how deployment of top-down attention can modulate distracting sound processing. 

However, contrary to our initial hypothesis, the locus of this interaction was in in the dorso- 

and ventromedial prefrontal cortices and the anterior cingulate cortex, i.e. the hub of the 

inhibitory control system (Salmi et al. 2009; Løvstad, Funderud, Meling, et al. 2012; Ossandon 

et al. 2012; Erika-Florence et al. 2014). Importantly, we have demonstrated that during the 

presentation of a distracting sound, gamma activity is synchronous between the auditory 

cortices and several distant brain regions, notably the lPFC. This hints to an important role of 

the lPFC in supporting bottom-up attention while its role in the interaction between top-down 

and bottom-up mechanisms (possibly through phase-amplitude coupling) remains to be 

established. 

 In supplementary study III, we have demonstrated that even after the presentation of 

a distracting sound, a similar pattern of auditory alpha power as in the absence of a distracting 

sound (see Study I) was re-established.
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8.2 Study II: Distractor-related Gamma Activity (CAT3.0) 

What’s in Your Gamma? Activation of The Ventral Fronto-Parietal Network in Response to 
A Distracting Sound.  
 
Hesham A. ElShafei1, Lesly Fornoni, Rémy Masson, Olivier Bertrand & Aurélie Bidet-Caulet1. 
 
In preparation. 
 

1 Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center; CRNL, INSERM 
U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France 



Gamma Oscillations and Bottom-Up Attention 

 106 

 



Gamma Oscillations and Bottom-Up Attention 

 107 

Abstract  
Auditory attention operates through top-down (TD) and bottom-up (BU) mechanisms that are 

supported by dorsal and ventral brain networks, respectively, with the main overlap in the 

lateral prefrontal cortex (lPFC). A good TD/BU balance is essential, yet it is rarely investigated. 

Oscillatory activity is a novel method to probe the attentional dynamics with evidence that 

gamma activity (>30Hz) could signal BU processing and thus would be a good candidate to 

support the activation of the ventral BU network. MEG data were collected from 21 young 

adults performing the Competitive Attention Task which enables simultaneous investigation 

of BU and TD attentional mechanisms. Distracting sounds elicited an increase in gamma 

activity in regions of the BU ventral network. TD attention modulated these gamma responses 

in regions of the inhibitory cognitive control system: the medial prefrontal and anterior 

cingulate cortices. Finally, distracting-sound-induced gamma activity was synchronous 

between the auditory cortices and several distant brain regions, notably the lPFC. We provide 

novel insight into (1) the role of gamma activity in supporting the activation of the BU ventral 

network and its modulation by TD attention, and (2) the role of the prefrontal cortex in 

subtending BU attentional mechanisms and their balance with TD mechanisms.  

 

Keywords: auditory attention; attentional capture; gamma oscillations; phase synchrony; 

prefrontal cortex  
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1 Introduction 
In an environment that contains far more information than we can process at a time, we rely 

on our attention to prioritize the processing of only a fragment of these incoming stimuli 

(Desimone and Duncan 1995). Attention can be oriented endogenously (top-down), in 

anticipation of an upcoming stimulus for example, or it can be captured exogenously (bottom-

up) by a salient irrelevant stimulus such as a telephone ringing (Posner and Petersen 1990; 

Petersen and Posner 2012). A dynamic balance between top-down (TD) and bottom-up (BU) 

mechanisms of attention is essential to be task-efficient while being aware, yet not fully 

distracted, of our surroundings. 

  Two major neural networks support TD (endogenous) and BU (exogenous) 

mechanisms of attention: a dorsal frontoparietal network comprising the posterior frontal and 

intraparietal cortices; and a ventral frontoparietal network, largely lateralized to the right 

hemisphere, comprising the temporo-parietal junction (TPJ) and the ventral prefrontal cortex 

(vPFC); with the two networks overlapping mainly in the lateral prefrontal cortex (lPFC) (Kim 

et al. 1999; Miller and Cohen 2001; Corbetta and Shulman 2002; Fox et al. 2006; He et al. 2007; 

Corbetta et al. 2008; Asplund et al. 2010). 

 A promising way of addressing the dynamics of TD and BU attentional systems is to 

explore brain rhythms. On one hand, TD anticipatory attention is indexed by 

(de)synchronisation of oscillatory activity in the alpha band (review in Klimesch et al. 2007; 

Jensen and Mazaheri 2010; Frey et al. 2014; e.g. ElShafei et al. 2018). On the other hand, BU 

attentional capture is signalled by an increased activity in the gamma band in the primate 

brain (Buschman and Miller, 2007). 

Activation in the gamma band (>30 Hz) has been associated to attention, with 

enhanced gamma activity in the visual (e.g. Fries et al. 2001) or auditory (e.g. Ray et al. 2008) 

cortices, in response to attended visual or auditory stimuli, respectively. Gamma activity has 

also been observed in regions other than sensory regions (e.g. dorsolateral prefrontal cortex, 

intraparietal sulcus and temporo-parietal junction) in several working memory (Michels et al. 

2010; Albouy et al. 2013), and visual (Akimoto et al. 2013, 2014) or auditory (Lee et al. 2007; 

Ahveninen et al. 2013) oddball tasks. Thus, gamma activity seems to promote the activation 

of relevant processes across the brain and not only in sensory cortices. Finally, it has been 

demonstrated that attention increases the coupling between frontal and relevant sensory 
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regions via gamma synchrony (Buschman and Miller 2007; Gregoriou et al. 2009; Baldauf and 

Desimone 2014). Therefore, gamma activity would be a good candidate to support activation 

of the ventral network of attention. However, to our knowledge, no study has investigated 

the role of gamma activity in the balance between BU and TD mechanisms of attention in the 

human brain. 

Distraction by unexpected sounds has been mostly investigated using variations of the 

reaction-time based oddball paradigm. In this paradigm, the response time to a target 

stimulus is compared in the presence (vs. absence) of a rare deviation (oddball) within a 

sequence of irrelevant stimuli that could be in the same (Schröger 1996) or a different (Escera 

et al. 1998) modality than the attended target. However, the adequacy of such paradigm to 

provide a reliable measure of attentional capture has been recently criticized (review in 

Parmentier and Andrés 2010; Bidet-Caulet et al. 2014; Dalton and Hughes 2014; Masson and 

Bidet-Caulet 2018). 

In 2014, Bidet-Caulet and colleagues proposed a novel paradigm, the Competitive 

Attention Task (CAT), an adaptation of the Posner cueing paradigm using visual cues and 

monaural auditory targets. In this task, TD anticipatory attention is measured by comparing 

trials with informative cues to trials with uninformative cues. BU attentional capture is 

triggered by a binaural distracting sound played during the delay between the cue and the 

target in only 25 % of the trials. Distraction is assessed as the impact of distracting sounds on 

task performance and the balance between TD and BU mechanisms can be measured by 

comparing responses to distracting sounds following informative vs. uninformative cues. 

We have recorded MEG activity from young healthy adults performing the CAT to test 

the following hypotheses. (1) BU attentional capture by an isolated unexpected stimulus 

would be indexed by gamma activity in the ventral attentional network including the TPJ and 

VPFC. (2) The lPFC would support the balance between BU and TD attention by demonstrating 

modulations of gamma activity to distracting sounds by cue information, since the lPFC is part 

of both the ventral and dorsal networks of attention. Finally, we sought to investigate the 

connectivity, subtended by gamma activity, between the auditory cortices and other brain 

regions during the presentation of a distracting sound, with a prediction that the mains hubs 

of this connectivity would lie within the lPFC. 
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2 Material & METHODS 

2.1 Participants 

Twenty-one healthy participants (9 females) took part in this study. The mean age was 24.7 

years ± 0.62 Standard Error of Mean (SEM). All participants were right handed, and reported 

normal hearing, and normal or corrected-to-normal vision. All participants were free from any 

neurological or psychiatric disorders. The study was approved by the local ethical committee, 

and subjects gave written informed consent, according to the Declaration of Helsinki, and they 

were paid for their participation. 

 

2.2 Stimuli and tasks 

2.2.1 Competitive Attention Task (CAT) 

In 75 % of the trials, a target sound (100 ms duration) followed a central visual cue (200 ms 

duration) with a fixed delay of 1000 ms (see Figure 1). The cue was a green arrow, presented 

on a grey-background screen, pointing either to the left, right, or both sides. Target sounds 

were monaural pure tones (carrier frequency between 512 and 575 Hz; 5 ms rise-time, 5 ms 

fall-time). In the other 25 %, the same structure was retained, however, a binaural distracting 

sound (300 ms duration) was played during the cue-target delay (50-650 ms range after cue 

offset). Trials with a distracting sound played from 50 ms to 350 ms after the cue offset were 

classified as DIS1, those with a distracting sound played from 350 ms to 650 ms after the cue 

offset were classified as DIS2, those with no distracting sound were classified as NoDIS. A total 

of 40 different ringing sounds were used as distracting sounds (clock-alarm, door-bell, phone 

ring, etc.) for each participant. 

The cue and target categories were manipulated in the same proportion for trials with 

and without distracting sound. In 25% of the trials, the cue was pointing left, and the target 

sound was played in the left ear, and in 25% of the trials, the cue was pointing right, and the 

target sound was played in the right ear, leading to a total of 50% of informative trials. In the 

other 50% of the trials, the cue was uninformative, pointing in both directions, and the target 

sound was played in the left (25%) or right (25%) ear. To compare brain responses to 

acoustically matched sounds, the same distracting sounds were played in each combination 

of cue category (informative, uninformative) and distractor condition (DIS1 or DIS2). Each 

distracting sound was thus played 4 times during the whole experiment, but no more than 
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once during each single block to limit habituation. Participants were instructed to categorize 

two target sounds as either high- or low-pitched sound, by either pulling or pushing a joystick.  

The target type (high or low) was manipulated in the same proportion in all conditions. 

The mapping between the targets (low or high) and the responses (pull or push) was 

counterbalanced across participants but did not change across the blocks for each participant. 

In order to account for the participants’ pitch-discrimination capacities, the pitch difference 

between the two target sounds was defined in a Discrimination Task (see section 2.2.2). 

Participants were informed that informative cues were 100 % predictive and that a distracting 

sound could be sometimes played. They were asked to allocate their attention to the cued 

side in the case of informative cue, to ignore the distractors and to respond as quickly and 

correctly as possible. Participants had a 3.4 second (3400 ms) response window. In the 

absence of the visual cue, a blue fixation cross was presented at the center of the screen. 

Subjects were instructed to keep their eyes fixated on the cross. 
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Figure 1. Protocol. Top row. Example of an informative trial with no distracting sound: a one-
sided visual cue (200 ms duration) indicated in which ear (left or right) the target sound would 
be played (100 ms duration) after a fixed 1000-ms delay. Bottom row. Example of an 
uninformative trial with a distracting sound: a two-sided visual cue (200 ms duration) did not 
provide any indication in which ear (left or right) the target sound will be played. In 25 % of 
the trials, a binaural distracting sound (300 ms duration), such as a clock ring, was played 
during the delay between cue and target. The distracting sound could equiprobably onset in 
two different time periods after the cue offset: in the 50–350 ms range, or in the 350–650 ms 
range. 
 

2.2.2 Discrimination Task 

Participants were randomly presented with one of two target sounds: a low-pitched sound 

(512 Hz) and a high-pitched sound (575 Hz; two semitones higher), equiprobably in each ear 

(four trials per ear and per pitch). As described above, participants were asked to categorize 

the target sounds as either high- or low-pitched sound within 3 seconds.  

 

2.2.3 Procedure 

Participants were seated in a sound-attenuated, magnetically shielded recording room, at a 

50 cm distance from the screen. The response device was an index-operated joystick that 



Gamma Oscillations and Bottom-Up Attention 

 113 

participants moved either towards them (when instructed to pull) or away from them (when 

instructed to push).  All stimuli were delivered using Presentation software (Neurobehavioral 

Systems, Albany, CA, USA). All sounds were presented through air-conducting tubes using 

Etymotic ER-3A foam earplugs (Etymotic Research, Inc., USA).  

First, the auditory threshold was determined for the two target sounds differing by 2 

semitones (512 and 575 Hz), for each ear, for each participant using the Bekesy tracking 

method (Von Békésy and Wever 1960). The target sounds were then monaurally presented at 

25 dB sensation level (between 37.5 and 52.1 dB A across subjects) while the distracting 

sounds were binaurally played at 55 dB sensation level (between 47.5 and 62.1 dB A across 

subjects), above the target sound thresholds. Second, participants performed the 

discrimination task. Afterwards, participants were trained with a short sequence of the 

Competitive Attention Task.  Finally, MEG and EEG were recorded while subjects performed 

10 blocks (64 trials each) leading to 240 trials in the NoDIS and 80 in the DIS conditions, for 

informative and uninformative cues, separately. The whole recording session lasted around 

80 minutes. After the MEG/EEG session, participants’ subjective reports regarding their 

strategies were collected. 

 

2.3 Behavioral Data Analysis 

For behavioral data analysis, a button press before target onset was considered as a false 

alarm (FA). A trial with no button-press after target onset and before the next cue onset was 

considered as a miss trial. A trial with no FA and with a button-press after target onset was 

counted as correct if the pressed button matched the response mapped to the target sound, 

and as incorrect if otherwise. Reaction-times (RTs) to targets were analysed in the correct 

trials only. 

The influence of (1) cue condition (2 levels: informative and uninformative) and (2) 

distractor condition (3 levels: NoDis, DIS1 and DIS2) on median reaction times (RTs) of correct 

responses and on percentage of incorrect responses was tested using a linear mixed-effects 

models using the lme4 package (Bates et al. 2014) for R  (Team 2014). For post-hoc analysis 

we used the Lsmean package (Searle et al. 1980) where p-values were considered as 

significant at p<0.05 and adjusted for the number of comparisons performed (Tukey method). 
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2.4 Brain Recordings 

Simultaneous EEG and MEG data were recorded, although the EEG data will not be presented 

here. The MEG data were acquired with a 275-sensor axial gradiometer system (CTF Systems 

Inc., Port Coquitlam, Canada) with continuous sampling at a rate of 600Hz, a 0–150Hz filter 

bandwidth, and first-order spatial gradient noise cancellation. Moreover, eye-related 

movements were measured using vertical and horizontal EOG electrodes. Head position 

relative to the gradiometer array was acquired continuously using coils positioned at three 

fiducial points; nasion, left and right pre-auricular points. Head position was checked at the 

beginning of each block to control head movements. 

In addition to the MEG/EEG recordings, T1-weighted three-dimensional anatomical 

images were acquired for each participant using a 3T Siemens Magnetom whole-body scanner 

(Erlangen, Germany). These images were used for reconstruction of individual head shapes to 

create forward models for the source reconstruction procedures. The processing of these 

images was carried out using CTF’s software (CTF Systems Inc., Port Coquitlam, Canada). 

 

2.5 Data Pre-processing 

Only correct trials were considered for electrophysiological analyses. Data segments for which 

the head position differed for more than 10 mm from the median position during the 10 blocks 

were excluded. In addition, data segments contaminated with muscular activity or sensor 

jumps were excluded semi-manually using a threshold of 2200 and 10000 femtoTesla 

respectively. For all participants, more than 75 % of trials remained after rejection for further 

analyses. 

Independent component analysis was applied on the band-pass filtered (0.1-40Hz) data 

in order to remove eye-related (blink and saccades) and heart-related artefacts. Subsequently, 

components (four on average) were removed from the non-filtered data via the inverse ICA 

transformation. Data were further notch filtered at 50, 100 and 150Hz and high-pass filtered 

at 0.2Hz. 
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2.6 Distractor-locked Gamma Activity 

2.6.1 Gamma Band (Sensor level): Definition 

The goal of this step was to define the time-frequency range of gamma activity of interest. 

First, for each distractor onset time-range, surrogate distractors were created in the NoDIS 

trials with similar distribution over time than the real distractors. Afterwards, the time-

frequency power, of distractor (and of surrogate distractor) trials was calculated using Morlet 

Wavelet decomposition with a width of four cycles per wavelet (m=7; Tallon-Baudry and 

Bertrand 1999) at center frequencies between 40 and 150 Hz, in steps of 1 Hz and 10 ms. 

Activity between 0 and 0.35s post-distractor onset and 50-110Hz was contrasted between 

distractor and surrogate trials using a nonparametric cluster-based permutation analysis 

(Maris and Oostenveld 2007). This contrast extracts distractor-related activity clear of cue-

related activity (see Figure 2). 

 

 
Figure 2. Schematic depiction for baseline correction of trials with a distracting sound.  

 

2.6.2 Gamma Band (Source level): Computation 

The goal of this step was to estimate the brain regions driving gamma activity in response to 

distracting sounds in the time-frequency window of interest (0.1-0.3 s post-distractor onset, 

60 to 100Hz) defined from the sensor-level analysis (part 2.6.1). We utilized the frequency–

domain adaptive spatial technique of dynamical imaging of coherent sources (DICS; Gross et 

al., 2001). Data from both surrogate and real distractors were concatenated, and cross-

spectral density (CSD) matrix (-0.2 to 0.6 s, relative to real/surrogate distractor onset) were 

calculated using the multitaper method with a target frequency of 80 (±30) Hz. For each 

participant, an anatomically realistic single-shell headmodel based on the cortical surface was 
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generated from individual head shapes (Nolte, 2003). A grid with 0.5 cm resolution was 

normalized on an MNI template, and then morphed into the brain volume of each participant. 

Leadfields for all grid points along with the CSD matrix were used to compute a common 

spatial filter that was used to estimate the spatial distribution of power for time-frequency 

window of interest (0.1-0.3 s post-distractor onset, 60 to 100Hz).  

 

2.6.3 Gamma Band (Source Level): Analysis 

For each participant, we estimated source-level activity (0.1-0.3 s post-distractor onset, 60 to 

100Hz) for each cue category (informative and uninformative) and for both cue categories 

concatenated. We performed two analyses: 

(1) In order to characterize the brain areas activated in the gamma band during the 

distracting sound presentation, distractor-locked gamma activity was contrasted to 

surrogate distractor-locked gamma activity 

(2) In order to investigate the interaction between distractor response and cue 

information, surrogate-corrected gamma activity in the informative cue condition was 

contrasted to surrogate-corrected gamma activity in the uninformative cue condition. 

Both tests have been carried out using non-parametric cluster-based permutation analysis 

(Maris and Oostenveld 2007). Please note, that for these tests, cluster permutations control 

for multiple comparisons in the source space dimension. 

 

2.6.4 Gamma Band (Source Level): Connectivity Analysis 

The aim of this analysis was to identify the brain regions that could be functionally connected 

in the gamma band to the auditory cortices during the presentation of the distracting sound. 

We have extracted the complex values containing phase information into source space using 

partial canonical coherence (PCC) beamformer, a computationally efficient alternative to the 

DICS that provides the possibility of extracting both power and phase information on the 

source level. For each participant: 

(1) Similarly, to the DICS beamformer, data from both surrogate and real distractors were 

concatenated, and cross-spectral density (CSD) matrix (-0.2 to 0.6 s, relative to 

real/surrogate distractor onset) were calculated using the multitaper method with a 

target frequency of 80 (±30) Hz. Leadfields for all grid points along with the CSD matrix 

were used to compute a common spatial filter that was used to estimate the spatial 
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distribution of power and phase for the time-frequency window of interest (0.1-0.3s 

post-distractor onset, 60 to 100Hz).   

(2) One auditory region of interest (ROI) was defined by including, in both hemispheres, 

the Broadmann areas 22, 41 and 42, according to the Talairach Tournoux atlas 

(Talairach and Tournoux 1988; Lancaster et al. 1997). 

(3) Phase synchrony (Lachaux et al. 1999) between each voxel in the auditory ROIs and all 

other voxels was calculated, averaged across voxels of the auditory ROI, and then 

Fisher Z transformed. Thus, for each extra-auditory brain voxel, a single phase 

synchrony value with the entirety of the auditory ROI was obtained.  

Finally, distractor-locked gamma phase synchrony was contrasted to surrogate distractor-

locked gamma phase synchrony using non-parametric cluster-based permutation analysis 

(Maris and Oostenveld 2007). Please note, that for this test, cluster permutations control for 

multiple comparisons in the source space dimension. 
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3 Results  

3.1 Behavioral Analysis 

Participants correctly performed the discrimination task in 96.04 ± 0.29 SEM % of the trials. 

The remaining trials were either incorrect trials (3.95 ± 0.29 SEM %), missed trials (0.27 ± 0.06 

%) or trials with FAs (0.02 ± 0.01 %).  

 

3.1.1.1 Median Reaction Times 

We found a significant main effect of cue category (F(1, 20) = 4.9, p = 0.02, η2 = 0.36) on median 

reaction times in correct trials. Participants were faster when the cue was informative in 

comparison to the uninformative cue. In addition, we found a significant main effect of the 

distractor condition (F(2, 42) = 34.2, p < 0.01, η2 = 0.49). Post-hoc tests indicated that, in 

comparison to the NoDIS condition, participants were faster in the early DIS1 condition (p < 

0.001) but slower in the late DIS2 condition (p < 0.001). Participants were also faster in the 

early DIS1 than in the late DIS2 condition (p < 0.001). No interaction effect was found 

significant. 

 

3.1.1.2 Percentage of Incorrect Responses 

Only a main effect of the distractor condition (F(2, 42) = 3.8, p = 0.02, η2 = 0.17) was found 

significant on the percentage of incorrect responses. Post-hoc tests indicated that 

participants, committed more errors in the late DIS2 condition in comparison to the NoDIS (p 

= 0.02) and early DIS1 (p = 0.07) conditions. 
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Figure 3. A. Median Reaction Times (RTs) according to cue and distractor conditions. B. 
Percentage of Incorrect Responses according to cue and distractor conditions. * P < 0.05, ** P 
< 0.01, *** P < 0.001. Error bars represent SEM. 
 

3.2 Gamma Activity Analysis  

3.2.1 Gamma Sensor Level Activation 

Real-distractor high-frequency activity was contrasted to that of surrogate-distractor using 

non-parametric cluster-based permutation testing. As shown in Figure 4, this contrast 

revealed one significant positive cluster (p = 0.002) indicating an increase in gamma activity 

centered spatially around left and right temporal sensors (Fig 4A), temporally between 0.1 and 

0.3s post-distractor onset (Fig 4B & C), and frequency-wise, between 60 and 100 Hz (Fig 4B & 

D).  
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Figure 4. Gamma activity to distractor at the sensor level. A. Topographical maps averaged 
between 50-110 Hz and 0-0.35 seconds post-distractor onset, of the t-values, masked at p < 
0.05 of the contrast between distractor and surrogate distractor gamma activity. B. Time-
frequency representations of the t-values (of the aforementioned test) of the sensors 
highlighted by red boxes in A. C. Frequency distribution of t-values of the aforementioned 
sensors averaged across the time dimension. D. Time distribution of t-values of the 
aforementioned sensors averaged across the frequency dimension. 
 

3.2.2 Gamma Source Level Activation 

The aim of this test was to highlight the regions driving gamma activity observed at the sensor 

level. Based upon the sensor level results, we have computed DICS beamformer sources for 

each participant between 60-100Hz and 0.1-0.3s post-distractor. Real-distractor gamma 

activity was contrasted to that of surrogate distractors using non-parametric cluster-based 

permutation testing. A significant positive cluster (p < 0.01) indicating an increase in gamma 

activity notably in (1) the left and right auditory cortices, (2) the left and right tempo-parietal 

junctions, and (3) the right ventrolateral prefrontal cortex (vlPFC). Other regions included the 

calcarine, the anterior, middle and posterior cingulate gyri, the inferior temporal gyri and the 

Precuneus.  
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Figure 5. Gamma activity to distractor at the source level. Distributions of T-values, masked 
at p<0.05, from Cluster Based Permutation tests contrasting real and surrogate distractor 
gamma activity (60-100Hz and 0.1-0.3 post-distractor) at the source level. AcX: Auditory 
Cortex. TPJ: temporo-parietal junction. vlPFC: ventrolateral prefrontal cortex. 
 

3.2.3 Gamma Source Level Cue Effect Comparison  

To investigate the effect of top-down attention on bottom-up processing, we analysed the 

effect of cue information on the gamma response to distracting sounds. For each participant, 

real distractor source-level data (60-100 Hz, 0.1-0.3s) were baseline corrected by subtracting 

surrogate-distractor activity. Corrected distractor gamma activity was contrasted between the 

two cue categories (informative vs. uninformative) using non-parametric cluster-based 

permutation testing. A significant cluster (p = 0.014) extended notably to (1) the left 

dorsomedial and ventromedial prefrontal cortices, and (2) the left anterior cingulate gyrus. 

Other regions included the left pre- and post- central gyri, the left supplementary motor area, 

the left superior parietal lobule. All these regions displayed a significantly higher activation 

when the distracting sound was preceded by an informative cue rather than an uninformative 

cue. 
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Figure 5. Top-down modulation of gamma activity to distractor at the source level. 
Distributions of T-values, masked at p<0.05, from Cluster Based Permutation tests contrasting 
surrogate-corrected distractor gamma activity (60-100Hz and 0.1-0.3 post-distractor) within 
informative and uninformative cue conditions. dmPFC: dorsomedial prefrontal cortex. vmPFC: 
ventromedial prefrontal cortex. ACC: anterior cingulate cortex. 
 

3.2.4 Gamma Source Level Connectivity Analysis 

Real-distractor phase synchrony (both auditory ROIs averaged being the reference) in the 

gamma band (60-100 Hz, 0.1-0.3s) was contrasted to that of surrogate distractors using non-

parametric cluster-based permutation testing. A significant cluster (p < 0.01) indicated an 

increase in gamma synchrony notably in the ventrolateral and the dorsolateral prefrontal 

cortex in both hemispheres. Other regions included the pre- and post- central gyri, the 

supplementary motor areas, the frontal eye fields and the paracentral lobule, in the left 

hemisphere. 
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Figure 6. Gamma connectivity to distractor at the source level. Distributions of T-values, 
masked at p<0.05, from Cluster Based Permutation tests contrasting real and surrogate 
distractor gamma phase synchrony (60-100Hz and 0.1-0.3 post-distractor) at the source level 
between the auditory ROI and all other cortical regions. dlPFC: dorsolateral prefrontal cortex. 
vlFPC: ventrolateral prefrontal cortex.  
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4 Discussion 
In the present study, we have demonstrated that in response to a salient unexpected 

distracting sound, the auditory cortices and the temporo-parietal junctions in both 

hemispheres, and the right ventrolateral PFC were activated in the gamma band. In addition, 

modulation by top-down attention of gamma activity to distracting sound was found in the 

left dorsomedial and ventromedial prefrontal cortices. Finally, we have evidenced synchrony 

in the gamma band between regions in the dorsolateral and ventrolateral prefrontal cortices 

and the auditory cortices during distracting sound processing.  

 

4.1 Behavioral measures of TD and BU attentional mechanisms 

Behaviorally, participants discriminated the target pitch faster in trials with an informative cue 

in comparison to trials with an uninformative cue. This effect is in agreement with several 

previous studies (Golob et al. 2002; Bidet-Caulet et al. 2014; ElShafei et al. 2018). It is most 

likely related to differences in TD anticipatory attention since the informative cue provided 

additional information solely about the location of the target and not about its category 

neither its mapped response, leading to equivalent motor preparation across conditions. 

In trials with distracting sounds, participants responded faster to the following target in 

trials with early distracting sounds rather than with late distracting sounds. This pattern can 

be explained in light of the phenomena triggered by a distracting sound (Bidet-Caulet et al., 

2014; Masson and Bidet-Caulet, 2018): (1) a persistent increase in arousal resulting in RT 

reduction (behavioral benefit) and (2) a strong transient attentional capture (exogenous 

orienting) leading to RT augmentation (behavioral cost); with the behavioral net effect of 

distracting sound varying according to the time interval between the distracting and the target 

sounds. Importantly, we also found that participants were less accurate to discriminate the 

auditory targets when preceded by late distracting sounds in comparison to the no distractor 

condition. This result provides further evidence of a detrimental behavioral effect of 

distracting sounds which orient attention away from the task at hand.  

Therefore, these behavioral results demonstrate that, in the CAT paradigm, TD attention 

is enhanced in trials with informative cue, and that a strong transient bottom-up attentional 

capture is triggered by distracting sounds. 
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4.2 Activation of the Ventral Bottom-Up Attentional Network in the Gamma band 

In line with our hypothesis, in response to an unexpected salient distracting sound, we have 

observed an increase in gamma activity in the left and right auditory cortices, the bilateral 

temporo-parietal junctions, and the right ventrolateral frontal cortex. This present result is 

highly consistent with the proposal by Corbetta and Shulman (2002 and 2008), based on 

functional magnetic resonance imaging (fMRI) studies of visual attention, that the ventral 

attention system, involved in bottom-up attention, includes the temporo-parietal junction and 

the ventral frontal cortex. This present finding is also in agreement with fMRI (e.g. Salmi et al. 

2009; Alho et al. 2014; Salo et al. 2017) and MEG/EEG (e.g. Ahveninen et al. 2013) studies in 

the auditory modality. In addition, the right lateralization of the frontal activation is consistent 

with findings of a ventral network predominantly localized to the right hemisphere in the 

visual modality (Corbetta and Shulman 2002; review in Corbetta et al. 2008). Also,  the 

bilateral activation of the TPJ is in line with a meta-analysis showing stronger activation of the 

left TPJ to auditory than to visual irrelevant oddball stimuli (review in Kim 2014).  

Importantly, we found that the gamma activation in the ventral network in response to 

distracting sounds lasted from 100 to 300ms after distracting sound onset. This result confirms 

that BU attentional capture is a rapid and transient phenomenon, in agreement with a 

behavioral cost observed only for late distracting sounds offsetting between 50 and 350 ms 

before target onset. Such activation in high frequency gamma oscillations is also consistent 

with the fast nature of the attentional capture phenomenon. Finally, it is worth noting that 

the activation of the ventral attentional network was found in response to entirely task-

irrelevant distracting sounds, contrary to earlier studies which suggested that task-relevance 

rather than saliency is critical to the engagement of the ventral network (Serences et al. 2005; 

Indovina and Macaluso 2007; Corbetta et al. 2008). The short duration of the ventral network 

activation might have precluded its observation using techniques with low temporal 

resolution (fMRI) in these studies.  

 

4.3 The PFC and the balance between TD and BU attentional mechanisms 

We did not find any significant effect of cue information on gamma activity within the regions 

of the ventral attentional network, suggesting no direct influence of top-down attention on 

this bottom-up attention network. However, in several regions of the left prefrontal cortex, 
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notably (and contrary to our original hypothesis) in the dorso- and ventro-medial prefrontal 

cortices and the anterior cingulate cortex (ACC), gamma activity was more pronounced in 

response to distracting sounds preceded by an informative cue rather than an uninformative 

cue. 

These medial frontal regions have been hypothesized to play a role in the inhibition of 

irrelevant stimuli with an increase in the activation of these regions during presentation of 

irrelevant salient stimuli (e.g. Rule et al. 2002; Salmi et al. 2009). In the non-human primate 

auditory system, such role is supported by cortico-cortical connections between these regions 

(the medial PFC and the ACC) and inhibitory neurons in auditory association regions in order 

to suppress irrelevant signals (Matsumoto and Tanaka 2004; Barbas et al. 2005, 2012; Medalla 

et al. 2007). Importantly, electrical stimulation of the ACC has been shown to reduce auditory 

evoked activity in non-human primate superior temporal cortices (Müller-Preuss et al. 1980; 

Müller-Preuss and Ploog 1981), providing direct evidence of an inhibitory role of these medial 

frontal regions. Therefore, in the present study, the larger gamma activation of the medial PFC 

regions and the ACC, during distracting sounds preceded by an informative cue, could reflect 

a strong and fast inhibitory signal to regions involved in the processing of task-irrelevant 

information. This stronger inhibition could result from an increased top-down attention load 

with informative cues, in line with shorter reaction times, compared to trials with 

uninformative cues.  

The medial prefrontal localization of such regions contradicts our original hypothesis 

that more lateral prefrontal regions would play a prominent role in orchestrating the interplay 

between TD and BU attentional mechanisms, as suggested by previous studies using fMRI in 

human subjects (Fox et al. 2006; Corbetta et al. 2008; Alho et al. 2014; Katsuki and 

Constantinidis 2014; Vossel et al. 2014). However, we believe that such role for the lPFC 

cannot be ruled out. As evidenced in the non-human primate brain, the ACC has excitatory 

and inhibitory connections to the anterior and posterior parts of the lPFC, respectively 

(Medalla and Barbas 2010), with the former momentarily suspending current tasks and the 

latter facilitating attentional switch to a novel task (review in Barbas et al. 2012). In the context 

of the present paradigm, (1) a stronger ACC to lPFC signal could facilitate switching from the 

TD task to the BU distracting sound processing, and vice versa, and (2) the opposite effects on 

the anterior and posterior parts of the lPFC combined to the insufficient spatial resolution of 

MEG could preclude the observation of significant gamma activation in the lPFC.  
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To the best of our knowledge, this is the first study, to utilize gamma activity to highlight 

the potential role of the prefrontal cortex in subtending the balance between top-down and 

bottom-up attentional mechanisms. Both the medial PFC and the ACC were more activated 

during bottom-up processing of distracting sound under increased TD attentional load. They 

could orchestrate the interplay between top-down and bottom-up attention by (1) exercising 

a TD inhibitory attentional control via direct projection to the auditory cortices, and (2) by 

controlling task-switching between TD and BU brain operations via projections to the lateral 

PFC. Therefore, the brain regions supporting the interaction between TD and BU attention 

would not be part of the ventral nor of the dorsal attentional networks. This is in line with 

earlier studies suggesting that dorsal and ventral networks would not directly interact but 

would be linked through other regions of the prefrontal cortex (e.g. Fox et al. 2006).  

 

4.4 Functional Connectivity During Distractor Processing 

Finally, we have demonstrated that during the presentation of a distracting sound, gamma 

activity was synchronous between the auditory cortices and several distant brain regions, 

notably the dorso- and ventro-lateral prefrontal cortices. As discussed above, the lateral 

prefrontal cortex is a recurrent candidate for the interaction between dorsal and ventral 

networks of attention in both the visual (Buschman and Miller 2007; Corbetta et al. 2008; 

Katsuki and Constantinidis 2014) and the auditory (Salmi et al. 2009; Alho et al. 2014) domains.  

Specifically, the lPFC seems to play an important role in bottom-up attentional 

mechanisms. fMRI studies suggest that the lPFC is involved in attentional capture in both 

auditory (Watkins et al. 2007) and visual (Han and Marois 2014) modalities with its activation 

being associated with the inhibition of distraction responses (Dolcos et al. 2007; Suzuki and 

Gottlieb 2013) and with reduced activity in the lPFC being linked to impaired distraction 

processing (Gaebler et al. 2015). In addition, it has been demonstrated that activity in the lPFC 

(specifically the dorsolateral prefrontal cortex) correlates with distractor suppression (Suzuki 

and Gottlieb 2013; Yan et al. 2016), and that lPFC stimulation decreases susceptibility to 

attentional capture (Cosman et al. 2015). Thus, the lateral PFC could be attributed a role in 

cognitive inhibitory control.  

We have discussed above how gamma power modulations in the ACC and the medial 

PFC would reflect top-down attentional control. We posit that the lateral PFC, through gamma 

phase modulations, could also play a complementary role in the propagation of this top-down 
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signal. We suggest that gamma connectivity between the lateral PFC and the auditory cortices 

(investigated here) and the medial PFC and ACC (to be investigated in future research) reflects 

the propagation of the inhibitory (control) top-down signal aimed to filter out task irrelevant 

distracting sounds in anticipation of the upcoming relevant target sound. This interpretation 

is in line with the Communication-Through-Coherence (CTC) hypothesis which proposes that 

anatomical connections are dynamically rendered effective or ineffective through the 

presence or absence of rhythmic synchronization, particularly in the gamma band (Fries 2005). 

Moreover, this suggested link between the lateral and medial subdivisions of the 

prefrontal cortex is in line with previous studies highlighting high interconnectivity between 

the lateral and medial PFC (Miller and Cohen 2001; Cole et al. 2013). In their study, Cole and 

colleagues (2013) demonstrated that the lateral PFC along with the posterior parietal cortex, 

constitute a highly flexible connectivity hub that could be involved in implementing task 

demands by biasing information flow across multiple large-scale functional networks. Thus, 

the lateral PFC could act as an inhibitory (control) signal relay hub between nodes of the 

ventral bottom-up network (e.g. the auditory cortex) and the medial PFC and ACC. 

Finally, to our surprise, we found no synchrony in the gamma band between the 

auditory cortices and other nodes of the ventral attentional network, such as the temporo-

parietal junction or the ventrolateral frontal cortex. An interpretation is that the non-

synchronized gamma activation of the ventral network nodes (i.e. TPJ, ventrolateral frontal 

cortex and auditory cortex) would reflect only the involuntary processing of the distracting 

sound in separate brain regions; while the lPFC synchrony with each of these nodes would 

contribute to the suppression of such involuntary processing. 
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5 Conclusion 

Using the high temporal and spatial resolution of magnetoencephalography, we demonstrate 

for the first time, in the human brain, how gamma oscillations would support activation and 

communication within the ventral BU attentional network and its interaction with TD 

attention. This corroborates the proposed role for gamma oscillations as a promoter of rapid 

transfer of information through the cortical hierarchy (Sedley and Cunningham 2013). 

Moreover, we suggest that this finding fits in a wider framework proposing that activity in 

different attentional networks would be supported by different frequency bands. More 

precisely, slow oscillations (namely alpha) would support more top-down attentional 

mechanisms, while faster oscillations (namely gamma) would support more bottom-up 

attentional mechanisms (Buschman and Miller 2007). Importantly, we have provided evidence 

that the medial prefrontal cortex would support the balance between top-down and bottom-

up mechanisms of attention, while the lateral prefrontal cortex would potentially regulate the 

processing of distracting sounds. 
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8.3 Supplementary Study III: Early Distractor-Related Alpha Activity (CAT3.0) 

8.3.1 Introduction  

In the previous study, we investigated gamma responses to distracting sounds. We were also 

interested in exploring alpha responses to the same sounds, specifically, to investigate how 

the alpha synchronization/desynchronization pattern, previously demonstrated in distractor-

free trials (Study I), would be re-established after the presentation of a distracting sound. In 

order to ensure that we investigate a time period where several alpha cycles can occur, we 

have restricted our alpha analyses to the early distractors (offsetting 350-650ms before the 

onset of the target sound).  

 

8.3.2 Material and Methods 

8.3.2.1 Definition of Early Distractor-Related Alpha Activity: Sensor Level 

Similarly, to the gamma activity analysis, the goal of this step was to define the time-frequency 

range of alpha activity of interest. First, to obtain a baseline clear of cue-related activity, we 

have created surrogate early distractors in the NoDIS trials. Afterwards, the oscillatory power, 

of early distractor and (surrogate distractor) trials was calculated using Morlet Wavelet 

decomposition with a width of four cycles per wavelet (m=7; Tallon-Baudry and Bertrand 

1999) at center frequencies between 5 and 15 Hz, in steps of 1 Hz and 50 ms. Activity between 

-0.1 and 0.65s relative to distractor onset and 5-15Hz was contrasted between distractor and 

surrogate trials using a nonparametric cluster-based permutation analysis (Maris and 

Oostenveld 2007). 

 

8.3.2.2 Definition of Early Distractor-Related Alpha Activity: Source Level 

Based upon the previous step, we have defined a time-frequency window of interest (0.35-

0.65 s post-distractor onset, 7 to 13Hz). We have utilized the frequency–domain adaptive 

spatial technique of dynamical imaging of coherent sources (DICS) in order to estimate the 

brain regions driving sensor-level distractor-related alpha activity. Data, from both surrogate 

and real distractors were concatenated, and cross-spectral density (CSD) matrix (-0.2 to 0.7 s, 

relative to real/surrogate distractor onset) were calculated using the multitaper method with 

a target frequency of 10 (±4) Hz. For each participant, an anatomically realistic single-shell 

headmodel based on the cortical surface was generated from individual head shapes (Nolte, 



Gamma Oscillations and Bottom-Up Attention 

 136 

2003). A grid with 0.5 cm resolution was normalized on an MNI template, and then morphed 

into the brain volume of each participant. Leadfields for all grid points along with the CSD 

matrix were used to compute a common spatial filter that was used to estimate the spatial 

distribution of power for time-frequency window of interest. 

Afterwards, in order to characterize the brain areas activated in the alpha band 

following the presentation of the distracting sound, distractor-related alpha activity was 

contrasted to surrogate distractor-related alpha activity using non-parametric cluster-based 

permutation analysis (Maris and Oostenveld 2007). Please note, that for these tests, cluster-

based permutations control for multiple comparisons in the source space dimension. 

 

8.3.2.3 Early Distractor-Related Alpha Activity: Cue Modulation Effect 

For each participant, we estimated source-level activity (0.35-0.65s post-early-distractor 

onset, 7 to 13Hz) for each cue category (left, right and uninformative). Afterwards, in order to 

investigate the interaction between early distractor alpha response and cue information, we 

have contrasted surrogate-corrected alpha activity between: (1) the left and right cue 

conditions, (2) the left and uninformative cue conditions, and (3) and the right and 

uninformative cue conditions. All three tests have been carried out using non-parametric 

cluster-based permutation analysis (Maris and Oostenveld 2007). For these tests, cluster-

based permutations control for multiple comparisons in the source space dimension. 
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8.3.3 Results 

8.3.3.1 Definition of Early Distractor-Related Alpha Activity: Sensor Level 

Real early distractor alpha activity was contrasted to that of surrogate early distractor using 

non-parametric cluster-based permutation testing. As shown in the figure below, this contrast 

revealed one significant negative cluster (p < 0.01) centered spatially around left and right 

temporal sensors (see Figure 1), temporally between 0.35 and 0.65s post-early distractor 

onset and frequency-wise, between 7 and 13 Hz. Distracting sounds were followed by a 

decrease in alpha power (7-13 Hz) between 350 and 650ms. 

 

 

Figure 1. Topographical maps averaged between 5-15 Hz and -0.1-0.65 seconds (relative to 
distractor onset), of the t-values, masked at p < 0.05, of the baseline contrast between early 
distractor and surrogate distractor alpha activity. B. Time-frequency representations of the t-
values (of the aforementioned test) of the sensors highlighted by red circles in A. C. Frequency 
distribution of t-values of the aforementioned sensors averaged across the time dimension. D. 
Time distribution of t-values of the aforementioned sensors averaged across the frequency 
dimension. 
 
8.3.3.2 Definition of Early Distractor-Related Alpha Activity: Source Level 

The aim of this test was to highlight regions possibly driving the aforementioned alpha activity 

observed on the sensor level. Thus, based upon the sensor level results, we have computed 

DICS beamformer sources for each participant between 7-13Hz and 0.35-0.65s post-

distractor. Real early distractor alpha activity was contrasted to that of surrogate early 

distractors using non-parametric cluster-based permutation testing.  
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A significant cluster (p < 0.01) extended bilaterally, notably, to the Heschl, superior 

temporal, pre- and postcentral gyri. Other regions included left and right calcarine, inferior 

and middle temporal and occipital gyri.  

 

 

Figure 2. Distributions of T-values, masked at p<0.05, from Cluster Based Permutation tests 
contrasting real and surrogate early distractor alpha activity (7-13Hz and 0.35-0.65 post-
distractor) at the source level 
 
8.3.3.3 Early Distractor-Related Alpha Activity: Cue Modulation Effect 

Only upon contrasting corrected early distractor alpha activity between the left and 

uninformative cue conditions, we have observed a significant cluster including the right 

auditory cortex which displayed a significantly lower activation when the distracting sound 

was preceded by an informative contralateral left cue rather than an uninformative cue. 

However, the p-value of the cluster did not resist Bonferroni correction for multiple 

comparisons (p = 0.04).  

 

 

Figure 3. Distributions of T-values, masked at p<0.05, from Cluster Based Permutation tests 
contrasting surrogate-corrected early distractor alpha activity (7-13Hz and 0.35-0.65 post-
distractor) between left cue and uninformative cue at the source level. 
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8.3.4 Discussion 

In this study we have demonstrated that during the delay between the presentation of a 

distracting sound and the presentation of the auditory target alpha power decreases 

(desynchronization) in several regions notably the auditory cortices. This desynchronization 

was modulated by the cue information in the right auditory cortex where such 

desynchronization was more prominent for the contralateral (left) cue condition in 

comparison to the uninformative condition. Although, this modulation failed to reach 

significance, it suggests that the alpha activity observed here reflects top-down modulation 

by cue information rather than bottom-up processing of the distracting sounds which were 

presented binaurally. Future investigations shall probe the time-course of this auditory alpha 

activity in the source level using virtual electrodes. 

The post-distracting sound alpha resembles the pattern of early alpha 

desynchronization described in study I in response to the cue. Interestingly, this 

desynchronization occurred later than gamma activity, previously observed in study II (350 ms 

vs 100ms after distracting sound onset, respectively). This fits well with our proposed 

oscillatory framework where gamma and alpha activity support bottom-up and top-down 

attentional mechanisms, respectively. In other words, once the distracting sound was 

processed (within the gamma band), top-down preparatory mechanisms were re-stablished 

(within the alpha band), in order to better process the upcoming auditory target.  

Overall, this pattern of alpha activity corroborates our own findings in the absence of 

distracting sound (ElShafei et al. 2018) and previous findings from the auditory alpha literature 

(Muller and Weisz 2012; Frey et al. 2014; Weisz et al. 2014) and asserts the proposed role of 

alpha oscillations supporting top-down modulation of cortical excitability (Klimesch et al. 

2007; Jensen and Mazaheri 2010).
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9 Attention & Ageing 

9.1 Study III: Impact of Ageing on Attentional Mechanisms (CAT 3.0) 

Not Just A Number: Age-Related Modulations of Oscillatory Patterns Underlying Top-Down 
and Bottom-Up Attention. 
Hesham A. ElShafei1, Lesly Fornoni1, Olivier Bertrand1 and Aurélie Bidet-Caulet1. 
 
In preparation. 
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Abstract  
Attention operates through top-down (TD) and bottom-up (BU) mechanisms. Recently, it has 

been suggested that these mechanisms are supported by distinct frequency bands with slower 

(alpha) frequencies indexing facilitatory and suppressive mechanisms of TD attention and 

faster (gamma) frequencies indexing BU attentional capture. It has been well-demonstrated 

that ageing is characterized by increased distractibility, which can result from either a reduced 

efficiency of TD attention, or an enhanced triggering of BU attention. However, only a few of 

studies have investigated the impact of ageing on the balance between TD and BU attentional 

mechanisms and its oscillatory correlates. MEG data were collected from 14 elderly (mean age 

= 67) and 14 matched young (mean age = 25) healthy human participants while performing a 

modified version of the Competitive Attention Task in which they performed a pitch 

discrimination task. TD attention was manipulated by a visual cue that was either informative 

or not of the side of the monaural target sound. BU attention was triggered by binaural 

distracting sounds that were played (25% of trials) between the cue and the target. 

Behaviorally, older participants’ performances were comparable to the young group, except 

for an exacerbated attentional capture by late distractors. Electrophysiologically, in 

comparison to young participants, they exhibited (1) deficits in the suppressive mechanisms 

of TD attention, as indexed by a reduced alpha synchronization in task-irrelevant visual 

regions, (2) less prominent alpha peak frequency differences between cortical regions, (3) a 

similar BU system activation indexed by distractor-induced gamma responses, and (4) a 

reduced activation of prefrontal inhibitory control regions. These results suggest that the 

ageing-related increased distractibility is of TD origin. 
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1 Introduction 

Ageing is characterized by attentional difficulties, in particular a reduced capability to inhibit 

irrelevant information (Guerreiro et al., 2010; Zanto and Gazzaley, 2014). This exacerbated 

distractibility has been attributed to a degradation of inhibitory mechanisms (inhibitory deficit 

hypothesis, Hasher and Zacks, 1988) and a deterioration in the functioning of the frontal lobe 

(frontal aging hypothesis, West, 1996).  

Attention operates through top-down (TD) and bottom-up (BU) mechanisms (James, 

1890; Corbetta and Shulman, 2002). TD processes promote the processing of relevant stimuli 

through facilitatory and suppressive mechanisms, resulting in enhanced processing of relevant 

information and reduced brain responses to unattended inputs, respectively (review in 

Hillyard et al., 1998). Attention can also be oriented in a BU fashion by task-irrelevant 

unexpected salient stimuli (Corbetta et al., 2000). A good balance between BU and TD 

mechanisms is thus crucial: enhanced distractibility can result from either a reduced efficiency 

of TD mechanisms, or an enhanced triggering of BU attentional capture. TD and BU processes 

are supported by partially overlapping networks: TD processes are supported by a dorsal 

fronto-parietal network, including the intraparietal sulcus, and the frontal eye fields, whereas 

BU processes are supported by a ventral fronto-parietal network, including the temporo-

parietal junction, and the ventral frontal cortex, with the two networks overlapping mainly in 

the lateral prefrontal cortex (Corbetta and Shulman, 2002; Corbetta et al., 2008). Recently, it 

has been suggested that signals in these networks are propagated via distinct frequency bands 

with slower (alpha) frequencies supporting long-range interareal interactions along the TD 

network and faster (gamma) frequencies supporting local interactions in the BU network 

(Buschman and Miller, 2007).  

Alpha oscillations (8–14 Hz) have been proposed to play a crucial role in TD anticipatory 

attention (review in Foxe and Snyder, 2011; Frey et al., 2015). More precisely, they play an 

active inhibitory role (Klimesch et al., 2007; Jensen and Mazaheri, 2010): reduced and 

enhanced alpha power reflect increased and decreased cortical excitability in task relevant 

and irrelevant areas, respectively (e.g. Kelly et al., 2006; Gomez-Ramirez et al., 2011; Weisz et 

al., 2011). Therefore, alpha rhythm is a suitable candidate for supporting facilitatory and 

suppressive mechanisms of anticipatory attention (ElShafei et al., 2018). With ageing, TD 

attentional facilitatory processes, as indexed by alpha desynchronization, has been found to 
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be either reduced (Deiber et al., 2013; Hong et al., 2015; van der Waal et al., 2017), reserved 

(Leenders et al., 2018) or even enhanced (Heideman et al., 2018). However, TD suppressive 

processes indexed by alpha synchronization seem to deteriorate (Vaden et al., 2012). 

Gamma oscillations (>30 Hz) have also been associated with attention (review in Fries, 

2009) with evidence suggesting that BU feedforward signaling propagates pre-dominantly via 

these oscillations in primate sensory areas (Bastos et al., 2015; Michalareas et al., 2016). 

Moreover, gamma activity has been found in frontal regions of the ventral network in 

response to novel sounds (e.g. Lee et al., 2007; Akimoto et al., 2013). To our knowledge, no 

study has investigated the impact of ageing on gamma oscillatory activity supporting BU 

attention. In addition, no study has investigated how ageing would impact the balance 

between TD and BU mechanisms of attention, supported by activity in different oscillatory 

bands. 

Thus, the aim of the present study was to characterize the brain origins of the 

exacerbated distractibility in elderly by investigating the impact of ageing on oscillatory 

activities supporting the balance between TD and BU attention. For this purpose, we recorded 

MEG activity from young and elderly participants while performing the Competitive Attention 

Task (Bidet-Caulet et al., 2014), a novel paradigm that permits the assessment of BU and TD 

mechanisms of auditory attention and the interaction between them. 

We hypothesized that ageing would be characterized by an (1) exacerbated behavioral 

distractibility, (2) reduced TD filtering of irrelevant information, indexed by alterations in the 

alpha band, and (3) impaired gamma responses to distracting sounds and/or impaired 

modulation of these responses by TD attention.   
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2 Material & METHODS 

2.1. Participants 

Participants were 14 young (mean age = 25 ± 0.67 Standard Error of Mean (SEM);  range: 20—

29 years; 5 females) and 14 elderly (mean age = 67 ± 1.08 SEM; range: 61—75 years; 5 females) 

adults. The two groups were matched for sex, handedness, scholar and musical education (see 

Table 1). As expected, the 2 groups significantly differ in age (non-paired t-test p < 0.001) but 

did not significantly differ in scholar (non-paired t -test p = 0.67) and musical (non-paired t -

test p = 0.32) education. All participants were healthy, right-handed, free from any 

neurological or psychiatric disorders and reported normal hearing, and normal or corrected-

to-normal vision. The study was approved by the local ethical committee, and subjects gave 

written informed consent, according to the Declaration of Helsinki, and they were paid for 

their participation. Please note that data from all young participants are included in the 

analysis presented in a previous study of gamma activity in young adults (ElShafei et al., in 

prep). 

 

 
 

Elderly group Young Group 

Age (years ± SEM) 67 ± 1.08 25 ± 0.67 

Gender 5F, 8M 5F, 8M 
Handedness 14R 14R 
Scholar Education (years ± SEM) 15 ± 0.71 15 ± 0.57 

Musical Education (years ± SEM) 1 ± 0.45 2 ± 0.68 

 

Table1. Group demographics. SEM, standard error of the mean; F, Female; M, Male; R, right-
handed. 
 



Attention & Ageing 

 147 

2.2. Stimuli and tasks 

2.2.1. Competitive Attention Task (CAT) 

In 75 % of the trials, a target sound (100 ms duration) followed a central visual cue (200 ms 

duration) with a fixed delay of 1000 ms (see Figure 1). The cue was a green arrow, presented 

on a grey-background screen, pointing either to the left, right, or both sides. Target sounds 

were monaural pure tones (carrier frequency between 512 and 575 Hz; 5 ms rise-time, 5 ms 

fall-time). In the other 25 %, the same structure was retained, however, a binaural distracting 

sound (300 ms duration) was played during the cue-target delay (50-650 ms range after cue 

offset). Trials with a distracting sound played from 50 ms to 350 ms after the cue offset were 

classified as DIS1, those with a distracting sound played from 350 ms to 650 ms after the cue 

offset were classified as DIS2, those with no distracting sound were classified as NoDIS. A total 

of 40 different ringing sounds were used as distracting sounds (clock-alarm, door-bell, phone 

ring, etc.) for each participant.  

The cue and target categories were manipulated in the same proportion for trials with 

and without distracting sound. In 25% of the trials, the cue was pointing left, and the target 

sound was played in the left ear, and in 25% of the trials, the cue was pointing right, and the 

target sound was played in the right ear, leading to a total of 50% of informative trials. In the 

other 50% of the trials, the cue was uninformative, pointing in both directions, and the target 

sound was played in the left (25%) or right (25%) ear. To compare brain responses to 

acoustically matched sounds, the same distracting sounds were played in each combination 

of cue category (informative, uninformative) and distractor condition (DIS1 or DIS2). Each 

distracting sound was thus played 4 times during the whole experiment, but no more than 

once during each single block to limit habituation. 

Participants were instructed to categorize two target sounds as either high- or low-

pitched sound, by either pulling or pushing a joystick. The target type (high or low) was 

manipulated in the same proportion in all conditions. The mapping between the targets (low 

or high) and the responses (pull or push) was counterbalanced across participants, but did not 

change across the blocks, for each participant. In order to account for the participants’ pitch-

discrimination capacities, the pitch difference between the two target sounds was defined in 

a Discrimination Task (see below). Participants were informed that informative cues were 100 

% predictive and that a distracting sound could be sometimes played. They were asked to 

allocate their attention to the cued side in the case of informative cue, to ignore the 
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distractors and to respond as quickly and correctly as possible. Participants had a 3.4 second 

response window. In the absence of the visual cue, a blue fixation cross was presented at the 

center of the screen. Subjects were instructed to keep their eyes fixated on the cross. 

 

 
Figure 1. Protocol. Top row. Example of an informative trial with no distracting sound: a one-
sided visual cue (200 ms duration) indicated in which ear (left or right) the target sound would 
be played (100 ms duration) after a fixed 1000-ms delay. Bottom row. Example of an 
uninformative trial with a distracting sound: a two-sided visual cue (200 ms duration) did not 
provide any indication in which ear (left or right) the target sound will be played. In 25 % of 
the trials, a binaural distracting sound (300 ms duration), such as a clock ring, was played 
during the delay between cue and target. The distracting sound could equiprobably onset in 
two different time periods after the cue offset: in the 50–350 ms range, or in the 350–650 ms 
range. 

 

2.2.2. Discrimination Task 

Participants were randomly presented with one of two target sounds: a low-pitched sound 

(512 Hz) and a high-pitched sound (575 Hz; two semitones higher), equiprobably in each ear 

(four trials per ear and per pitch). As described above, participants were asked to categorize 

the target sounds as either high- or low-pitched sound within 3 seconds.  
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2.2.3. Procedure 

Participants were seated in a sound-attenuated, magnetically shielded recording room, at a 

50 cm distance from the screen. The response device was an index-operated joystick that 

participants moved either towards them (when instructed to pull) or away from them (when 

instructed to push). All stimuli were delivered using Presentation software (Neurobehavioral 

Systems, Albany, CA, USA). All sounds were presented through air-conducting tubes using 

Etymotic ER-3A foam earplugs (Etymotic Research, Inc., USA).  

First, the auditory threshold was determined for the two target sounds differing by 2 

semitones (512 and 575 Hz), for each ear, for each participant using the Bekesy tracking 

method (Von Békésy and Wever, 1960). The target sounds were then presented at 25 dB 

sensation (between 30 and 69.5 dB A in old, and between 37.5 and 50.75 dB A in young 

participants) level while the distracting sounds were played at 55 dB sensation level (between 

40 and 79.5 dB A in old, and between 47.5 and 60.75 dB A in young participants), above the 

target sound thresholds. Second, participants performed the discrimination task. If 

participants failed to respond correctly to more than 85% of the trials, the pitch of the high 

target sound was augmented, by half a semitone with a maximum difference of 3 semitones 

between the two targets (auditory thresholds were then measured with the new targets). 

Afterwards, participants were trained with a short sequence of the Competitive Attention 

Task. Finally, MEG and EEG were recorded while subjects performed 10 blocks (64 trials each) 

leading to 240 trials in the NoDIS and 80 in the DIS conditions, for informative and 

uninformative cues, separately. The whole session lasted around 80 minutes. After the 

MEG/EEG session, participants’ subjective reports regarding their strategies were collected. 
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2.3. Behavioral Data Analysis 

For behavioral data analysis, a button press before target onset was considered as a false 

alarm (FA). A trial with no button-press after target onset and before the next cue onset was 

considered as a miss trial. A trial with no FA and with a button-press after target onset was 

counted as correct if the pressed button matched the response mapped to the target sound, 

and as incorrect if otherwise. Reaction-times (RTs) to targets were analyzed in the correct 

trials only. The influence of (1) age group (2 levels: young and elderly), (2) cue condition (2 

levels: informative and uninformative), and (3) distractor condition (3 levels: NoDis, DIS1 and 

DIS2) on percentage of incorrect responses and median reaction times (RTs) of correct 

responses was tested using a linear mixed-effects models (lme4 package, Bates et al., 2014 

for R Team, 2014). A random effect was included for each participant, allowing us to model 

variability between participants. For post-hoc analysis we used the Lsmean package (Lsmean 

version 2.20-23; Searle et al., 1980) where p-values were considered as significant at p<0.05 

and adjusted for the number of comparisons performed (Tukey method).  

Moreover, planned analyses of the CUE BENEFIT were carried out between groups on 

the differences in RTs Uninformative NoDIS – Informative NoDIS and of distractor effects on 

the differences in RTs NoDIS – DIS1 (as a measure of the AROUSAL BENEFIT) or DIS2 – DIS1 (as 

a measure of ATENTION CAPTURE COST), using non-paired t-tests (Bidet-Caulet et al. 2014; 

Masson and Bidet-Caulet 2018). 

 

2.4. Brain Recordings 

Simultaneous EEG and MEG data were recorded, although the EEG data will not be presented 

here. The MEG data were acquired with a 275-sensor axial gradiometer system (CTF Systems 

Inc., Port Coquitlam, Canada) with continuous sampling at a rate of 600Hz, a 0–150Hz filter 

bandwidth, and first-order spatial gradient noise cancellation. Moreover, eye-related 

movements were measured using vertical and horizontal EOG electrodes. Head position 

relative to the gradiometer array was acquired continuously using coils positioned at three 

fiducial points; nasion, left and right pre-auricular points. Head position was checked at the 

beginning of each block to control head movements. 

In addition to the MEG/EEG recordings, T1-weighted three-dimensional anatomical 

images were acquired for each participant using a 3T Siemens Magnetom whole-body scanner 
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(Erlangen, Germany). These images were used for reconstruction of individual head shapes to 

create forward models for the source reconstruction procedures. The processing of these 

images was carried out using CTF’s software (CTF Systems Inc., Port Coquitlam, Canada). 

 

 
Figure 2. Outline of the analysis pipeline.  

 

2.5. Data Pre-processing (Figure 2) 

Only correct trials were considered for electrophysiological analyses. Data segments for which 

the head position differed for more than 10 mm from the median position during the 10 blocks 

were excluded. In addition, data segments contaminated with muscular activity or sensor 

jumps were excluded semi-manually using a threshold of 2200 and 10000 femtoTesla 

respectively. For all participants, more than 75 % of trials remained after rejection for further 

analyses. Independent component analysis was applied on the band-pass filtered (0.1-40Hz) 

data in order to remove eye-related (blink and saccades) and heart-related artefacts. 

Subsequently, components (four on average) were removed from the non-filtered data via 

the inverse ICA transformation. Data were further notch filtered at 50, 100 and 150Hz and 

high-pass filtered at 0.2Hz. 

 

2.6. Cue-Locked Alpha Activity (Distractor-Free Trials) 

Region of interests, time-window and frequency bands for the analysis of cue-locked alpha 

activity was based on previous results in young healthy adults obtained using a similar 

paradigm (ElShafei et al., 2018). 



Attention & Ageing 

 152 

2.6.1. Virtual-Electrode Level Analysis and Defining ROIs 

The source space was subdivided into 69 anatomically defined brain parcels according to the 

Talairach Tournoux atlas (Talairach and Tournoux, 1988; Lancaster et al., 1997). Broadmann 

areas 17, 18 and 19 were defined as the visual regions of interest (ROIs) while areas 22, 41 

and 42 were defined as the auditory ROIs and areas 4 and 6 were defined as the motor ROIs, 

in each hemisphere. 

 

2.6.2. Reconstruction of Source Activity  

In order to reconstruct activity at the source level, we computed the time-frequency signal of 

the ROIs defined above at the virtual electrode level. Using the linearly constrained minimum 

variance (LCMV) beamformer (Van Veen et al., 1997) beamformer, spatial filters were 

constructed from the covariance matrix of the averaged single trials at sensor level (-0.8 – 2s, 

relative to cue onset, 1-20 Hz, lambda 5%) and the respective leadfield. Spatial filters were 

multiplied by the sensor level data in order to obtain the time course activity at each voxel of 

interest.  

Activity was averaged across all voxels within each ROI in both hemispheres. Thus, 

limiting our analysis to three ROIs (one auditory, one visual and one motor). For each ROI, the 

evoked potential (i.e., the signal averaged across all trials) was subtracted from each trial. 

Subsequently, the oscillatory power, of distractor-free trials, was calculated using Morlet 

Wavelet decomposition with a width of four cycles per wavelet (m=7; Tallon-Baudry and 

Bertrand, 1999) at center frequencies between 5 and 18 Hz, in steps of 1 Hz and 50 ms. 

 

2.6.3. Impact of Age on Alpha Activity: Power differences 

In order to investigate differences between groups in low and high alpha sub-bands, baseline-

corrected (-0.6 to -0.2s pre-cue) alpha power (computed using Morlet Wavelets) was averaged 

between 7 and 11Hz, and between 11 and 15Hz, separately, in each ROI. Subsequently, alpha 

activity (0.6 to 1s post-cue by step of 50 ms) within each alpha sub-band was contrasted 

between groups using a non-parametric cluster-based permutation analysis (Maris and 

Oostenveld, 2007). Please note, that for this test, cluster-based permutations control for 

multiple comparisons in the time dimension. 
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2.6.4. Impact of Age on Alpha Activity: Alpha Peak Frequency 

Alpha power (computed using Morlet Wavelets) was averaged between 0.6 and 1s for each 

ROI, to extract the power spectrum in each subject. Afterwards, individual alpha peak 

frequency (iAPF) was defined separately for each ROI, in each subject. For auditory and motor 

ROIs, the peak was defined as the frequency with the maximum alpha power decrease relative 

to the baseline (-0.6 to -0.2s pre-cue onset) between 5 and 15 Hz. For visual virtual electrodes, 

the peak was defined as the frequency with the maximum alpha power increase relative to 

the baseline.  

The APFs were fit into a linear mixed-effects model (lme) with the following factors as 

fixed effect: (1) age group (2 levels: young and elderly), (2) ROI (3 levels: auditory, visual and 

motor). A random effect was included for each participant, allowing us to model variability 

between participants. Similarly to previous analysis, for post-hoc analysis, we used the Lsmean 

package. 

 

2.7. Distractor-locked Gamma Activity 

2.7.1. Gamma Band (Sensor level): Definition 

This analysis was done to define the time-frequency range of gamma activity of interest. First, 

for each distractor onset time-range, we have created surrogate distractors in the NoDIS trials 

with similar distribution over time than the real distractors. Afterwards, the oscillatory power, 

of distractor and (surrogate distractor) trials was calculated using Morlet Wavelet 

decomposition with a width of four cycles per wavelet (m=7; Tallon-Baudry and Bertrand, 

1999) at center frequencies between 40 and 150 Hz, in steps of 1 Hz and 10 ms. Data from 

both groups were pooled together and activity of interest (defined between 0 and 0.35s post-

distractor onset and 50-110Hz) was contrasted between distractor and surrogate trials using 

a nonparametric cluster-based permutation analysis (Maris and Oostenveld, 2007). This 

contrast extracts distractor-related activity clear of cue-related activity. 

 

2.7.2. Gamma Band (Source level): Computation 

In order to estimate the brain regions driving the sensor-level distractor-locked gamma 

activity (0.1-0.3 s post-distractor onset, 60 to 100Hz), we have utilized the frequency–domain 

adaptive spatial technique of dynamical imaging of coherent sources (DICS; Gross et al., 2001).  
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Data, from both surrogate and real distractors were concatenated, and cross-spectral 

density (CSD) matrix (-0.2 to 0.6 s, relative to real/surrogate distractor onset) were calculated 

using the multitaper method with a target frequency of 80 (±30) Hz. For each participant, an 

anatomically realistic single-shell headmodel based on the cortical surface was generated 

from individual head shapes (Nolte, 2003). A grid with 0.5 cm resolution was normalized on 

an MNI template, and then morphed into the brain volume of each participant. Leadfields for 

all grid points along with the CSD matrix were used to compute a common spatial filter that 

was used to estimate the spatial distribution of power for time-frequency windows of interest.  

 

2.7.3. Gamma Power Source Level Analysis 

For each participant, we estimated source-level activity (0.1-0.3 s post-distractor onset, 60 to 

100Hz) for each cue category (informative and uninformative) and for both cue categories 

concatenated. We performed three analyses: 

(1) To characterize the brain areas activated in the gamma band during the distracting 

sound presentation, data from both groups were pooled together and distractor-locked 

gamma activity was contrasted to surrogate distractor-locked gamma activity.  

(2) To investigate group differences in distracting sound processing in the gamma 

band, surrogate-corrected gamma activity (surrogate distractor-locked gamma activity was 

subtracted from distractor-locked gamma activity) was compared between groups.  

(3) To investigate a potential interaction between groups and the use of the cue 

information, for each group separately, surrogate-corrected gamma activity in the informative 

cue condition was contrasted to surrogate-corrected gamma activity in the uninformative cue 

condition. 

All tests have been carried out using non-parametric cluster-based permutation 

analysis (Maris and Oostenveld, 2007). Please note, that for these tests, cluster-based 

permutations control for multiple comparisons in the source space dimension. 
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3 Results  

3.1 Behavioral Analysis 

Participants correctly performed the discrimination task in 95.37 ± 0.29 SEM % of the trials. 

The remaining trials were either incorrect trials (4.62 ± 0.29 SEM %), missed trials (0.49 ± 0.09 

%) or trials with FAs (0.14 ± 0.03 %). In order to investigate behavioral performances 

(percentage of incorrect responses and RTs), a lme model was used with 3 factors: (1) age 

group (2 levels: young and elderly), (2) cue condition (2 levels: informative and uninformative), 

and (3) distractor condition (3 levels: NoDis, DIS1 and DIS2). 

 

2.7.4. Behavioral Analysis: Incorrect Response Percentage (Figure 3) 

Only a significant main effect of the distractor condition (F(2, 52) = 8.9, p < 0.01, η2 = 0.21) was 

found on the percentage of incorrect responses, with no main effect of group (F(1, 15) = 2.1, 

p = 0.15, η2 = 0.07). Post-hoc tests indicated that participants, from both groups, committed 

more errors in the late DIS2 condition in comparison to the early DIS1 (p < 0.01) and the NoDIS 

(p < 0.001) conditions. 

 

 
Figure 3. Percentage of Incorrect Responses averaged across cue conditions, according to 
distractor conditions, for both groups. P < 0.05, ** P < 0.01, *** P < 0.001. Error bars represent 
SEM. 
 

2.7.5. Behavioral Analysis: Median Reaction Times (Figure 4) 

A main effect of cue category (F(1, 26) = 3.7, p < 0.01, η2 = 0.22) was found on reaction times. 

Participants were faster when the cue was informative in comparison to the uninformative 

cue. In addition we found a main effect of the distractor condition (F(2, 52) = 95.2, p < 0.01, 
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η2 = 0.64). Post-hoc tests indicated that in comparison to the NoDIS condition, participants 

were faster in the early DIS1 condition (p < 0.001) but slower in the late DIS2 condition 

(p<0.001). In addition, participants were faster in the early DIS1 condition in comparison to 

the late DIS2 condition (p<0.01). Most interestingly, we have found a significant interaction 

between age and distractor factors (F(2, 52) = 10.9, p < 0.01, η2 = 0.17). Post-hoc tests 

indicated that elderly participants were slower than the young ones in the late DIS2 condition 

(p= 0.04).  

Unpaired t-test between groups confirmed that the attention capture effect (DIS2 – 

DIS1) was significantly more pronounced for the elderly group (p < 0.01); whereas the arousal 

facilitation effect (NoDIS – DIS1; p = 0.29) and the cue benefit effect (p = 0.83) was similar in 

both groups. 

 

 
Figure 4. (A). Median RTs in each group according to cue information and distractor 
conditions. Error bars represent SEM. Boxplot of the Attention capture effect (B), the Arousal 
effect (C), and the Cue benefit effect (D), for each group. P < 0.05, ** P < 0.01, *** P < 0.001. 
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3.2 Cue-Locked Alpha Analysis 

3.2.1 Ageing and Alpha Power Modulations (source level) 

Upon contrasting post-cue activity between both groups in each ROI (motor, auditory or 

visual), no differences were found in the low alpha sub-band (7-11 Hz). However, in the high 

alpha sub-band (11-15 Hz), we found two significant positive clusters: one in the visual ROI (p 

= 0.02) and another in the motor ROI (p = 0.01). In the visual ROI, as shown in Figure 5, alpha 

power was significantly lower (less alpha synchronization) in the elderly than in the young 

participants between 600 ms and 1000 ms. In the motor ROI, the elderly displayed lower alpha 

power (more alpha desynchronization) than young participants between 600 ms and 800 ms. 

 

Figure 5. Time-course of alpha activity averaged between 7-11Hz and 11-15Hz across virtual 
ROIs. Grey Rectangles represent time-windows of significant group differences based upon 
cluster-based permutation testing. * p < 0.05. 

 

2.7.6. Ageing and Alpha peak frequency (source level) 

In order to investigate the alpha peak frequency in virtual ROIs, a lme model was used with 2 

factors: (1) age (2 levels: young and elderly), and (2) ROI (3 levels: auditory, visual and motor). 

The lme model yielded a significant interaction between age and ROI (F(2,52) = 4.1, p < 0.01, 

η2 = 0.11). Post-hoc tests indicated that, only in the young group, the alpha peak frequency 

was significantly higher in the visual ROI (mean = 12.32 Hz ± 0.44 SEM) than in the auditory 
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(mean = 9.39 Hz ± 0.58 SEM) and the motor ROIs (mean = 10 Hz ± 0.58 SEM) (p < 0.001 and p 

= 0.01, respectively), as shown in Figure 6.  

 

 
Figure 6. Individual Alpha Peak Frequency across virtual ROIs for each group. * p < 0.05, ** p 
< 0.01, *** p < 0.001. Error bars represent SEM. 
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3.3 Distractor-Locked Gamma Activity  

3.3.1 Gamma-band definition (sensor level) 

Oscillatory data were pooled from both groups and real-distractor high-frequency activity was 

contrasted to that of surrogate-distractor using non-parametric cluster-based permutation 

testing. As shown in Figure 7, this contrast revealed one significant positive cluster (p = 0.001) 

indicating an increase in gamma activity centered spatially around left and right temporal 

sensors (Fig 7A), temporally between 0.1 and 0.3s post-distractor onset (Fig 7B & C), and 

frequency-wise between 60 and 100 Hz (Fig 7B & D).  

 

 
Figure 7. Common sensor level gamma activity to distractor. A. Topographical maps averaged 
between 50-110 Hz and 0-0.35 seconds post-distractor onset, of the t-values, masked at p < 
0.05 of the contrast between distractor and surrogate distractor gamma activity. B. Time-
frequency representations of t-values (of the aforementioned test) of the sensors highlighted 
by red boxes in A. C. Frequency distribution of t-values of the aforementioned sensors 
averaged across the time dimension. D. Time distribution of t-values of the aforementioned 
sensors averaged across the frequency dimension. 

 

3.3.2 Gamma Activity: Common Activation (source level) 

Based upon sensor level results, we have computed DICS beamformer sources for each 

participant between 60-100Hz and 0.1-0.3s post-distractor. Once again, source-level data was 
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pooled from both groups and real-distractor gamma activity was contrasted to that of 

surrogate distractors using non-parametric cluster-based permutation testing.  

The aim of this test was to highlight the brain regions that are commonly activated in 

both groups in the gamma band. A significant positive cluster (p < 0.01) indicating a bilateral 

increase in gamma activity notably in (1) the auditory cortices, and (2) the tempo-parietal 

junctions and the ventrolateral prefrontal cortices (Figure 8). Other regions included the 

middle and posterior cingulate gyri, pre- and post-central gyri, the Precuneus, and the inferior 

temporal gyrus. 

 
Figure 8. Common source level gamma activity to distractor. Distributions of T-values, 
masked at p<0.05, from Cluster Based Permutation tests contrasting real and surrogate 
distractor gamma activity (60-100Hz and 0.1-0.3 post-distractor) pooled from both groups at 
the source level. TPJ: temporo-parietal junction. vlPFC: ventro-lateral prefrontal cortex. 
 

2.7.7. Gamma Activity: Group Comparison (source level) 

The aim of this test was to highlight the brain regions that are differentially activated in the 

elderly and young groups, in the gamma band. For each participant, real distractor source-

level data (60-100 Hz, 0.1-0.3s) were corrected by subtracting surrogate-distractor activity. 

Corrected distractor gamma activity was contrasted between groups using non-parametric 

cluster-based permutation testing. A significant positive cluster (p = 0.01) was found notably 

in (1) the left dorso- and ventromedial prefrontal cortices, and (2) the left anterior cingulate 

gyrus (Figure 9A). Other regions included the left pre- and post- central gyri, the left 

supplementary motor area, the left superior parietal lobule. All these regions displayed a 

higher gamma activation for the young group compared to the elderly group.  
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3.3.3 Gamma Activity: Modulation by Cue Information  

To investigate the effect of top-down attention on bottom-up processing, we analyzed the 

effect of cue information on the gamma response to distracting sounds, in each group 

separately. For each participant, real distractor source-level data (60-100 Hz, 0.1-0.3s) were 

baseline corrected by subtracting surrogate-distractor activity. For each group separately, 

corrected distractor gamma activity was contrasted between the two cue categories 

(informative vs. uninformative) using non-parametric cluster-based permutation testing. Only 

for the young group, a significant positive cluster (p = 0.02) was found in regions highly similar 

to that of the previous analysis the dorso- and ventromedial prefrontal cortices, the left 

anterior cingulate gyrus, the left pre- and post- central gyri, the left supplementary motor 

area, the left superior parietal lobule, in the left hemisphere (Figure 9B). All regions displayed 

a significantly higher gamma activation for trials when the distracting sound was preceded by 

an informative cue rather than an uninformative cue. 
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Figure 9. A. Between group comparison of gamma activity to distractor. Distributions of T-
values, masked at p<0.05, from Cluster Based Permutation tests contrasting surrogate-
corrected distractor gamma activity (60-100Hz and 0.1-0.3 post-distractor) between groups at 
the source level. B. Top-down modulation of gamma activity to distractor in the young 
group. Distributions of T-values, masked at p<0.05, from Cluster Based Permutation tests 
contrasting surrogate-corrected distractor gamma activity (60-100Hz and 0.1-0.3 post-
distractor) within informative and uninformative cue conditions for the young group. 
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4 Discussion 
In the present study, we have demonstrated that ageing differently impacts TD and BU 

attentional processes. Behavioral measures of TD attention seemed unchanged while 

distractibility was exacerbated with ageing. Electrophysiologically, during expectation of a 

visually-cued target sound, the alpha power decrease in the relevant auditory cortices was 

preserved; whereas the alpha increase in the irrelevant visual areas was reduced, in elderly 

compared to young adults. Moreover, in response to a distracting sound, a similar activation 

of the ventral BU attentional network in the gamma band, but a reduced recruitment of 

medial frontal regions was observed with ageing. 

 

4.1 Impact of Ageing on Behavioral Measures of Bottom-up and Top-down Attention 

Behaviorally, we have capacity to benefit from the cue information to identify the target pitch 

faster, in both groups. This equivalence in performance is in line with previous studies 

suggesting that TD attentional orienting is not affected by ageing (Greenwood et al., 1993; 

Curran et al., 2001; Olk and Kingstone, 2015; Erel and Levy, 2016). 

In trials with targets preceded by distracting sounds, both groups displayed a similar 

reaction time (RT) pattern: participants were faster in trials with early distracting sounds 

rather than with late distracting sounds. This pattern could be explained in light of the effects 

triggered by a distracting sound (review in Bidet-Caulet et al., 2014; Masson and Bidet-Caulet, 

2018): (1) a persistent increase in arousal resulting in RT reduction (behavioral benefit) and 

(2) a stronger transient attentional capture (orienting) effect leading to RT augmentation 

(behavioral cost). The behavioral net effect of distracting sound varies according to the time 

interval between the distracting and the target sounds. Thus, in the present paradigm, the 

difference in reaction time to targets between trials with late distracting sounds (DIS2) and 

trials with early distracting sounds (DIS1) provides a good approximation of the attentional 

capture effect with no or little contamination by the increase in arousal. Importantly, in 

comparison to the young group, elderly participants displayed a larger attentional capture 

effect. This increased susceptibility to task-irrelevant distractors is a recurrent finding in the 

literature using unimodal (visual or auditory) or cross-modal paradigms (e.g. Gazzaley et al., 

2005; Parmentier and Andrés, 2009; Bélanger et al., 2010; Li and Zhao, 2015; Mevorach et al., 

2016). 



Attention & Ageing 

 164 

4.2 Impact of Ageing on TD Attentional Mechanisms Revealed by Alpha Activity 

In a recent study (ElShafei et al., 2018), we have found in young adults, during the anticipation 

of a visually-cued auditory target, (1) an increase in alpha power around 13 Hz in task-

irrelevant visual regions, (2) a simultaneous alpha decrease around 9Hz in task-relevant 

auditory regions. This suggests that alpha desynchronization and synchronization reflect 

facilitatory and suppressive mechanisms of TD attention, respectively, by augmenting and 

reducing cortical excitability, in agreement with an inhibitory role of alpha oscillations 

(Klimesch et al., 2006; Jensen and Mazaheri, 2010; Foxe and Snyder 2011). In the present 

study, we have replicated these findings among the young group with a slightly different 

protocol.  

In addition, we have observed that elderly participants, compared to young adults, 

seem to display a similar alpha desynchronization in the relevant auditory cortices, but 

present a reduced alpha synchronization in the irrelevant visual cortices. These findings 

suggest that with ageing, suppressive TD attentional mechanisms become defect, while 

facilitatory mechanisms would be preserved, in line with previous studies of alpha oscillations 

during visual attention (Vaden et al., 2012; Leenders et al., 2018). This result is consistent with 

several previous studies using fMRI showing that the capability to filter out task-irrelevant 

information is reduced with ageing (e.g. Gazzaley et al., 2005). 

Moreover, we found a larger alpha desynchronization in the motor areas in elderly, in 

agreement with a stronger recruitment of motor regions during response preparation with 

ageing (e.g. Naccarato et al., 2006; Deiber et al., 2013). Elderly could rely more on motor 

preparation processes as a compensatory mechanism to their reduced attention filtering of 

irrelevant information, resulting in comparable performances to younger adults at the 

behavioral level.  

Finally, a novel finding in the present study is the decreased differentiation between 

alpha peak frequency of different sensory regions, with ageing. This finding is in line with 

studies investigating the development of alpha peak frequency across the life-span and 

suggesting a general decline in alpha frequency with age (e.g. Chiang et al., 2011; Gómez et 

al., 2013). Yet, this begs the question: is this decreased differentiation causal to the failure of 

older participants to filter out irrelevant visual information? In other words, would the 

reduction in alpha frequency specialization in the ageing brain lead to reduced suppressive 

mechanisms of TD attention? Another possibility would be that the alteration of suppressive 
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attentional mechanisms results in a reduced alpha frequency specificity in the ageing brain. 

This question remains for future investigation to answer. 

 

4.3 Impact of Ageing on Gamma Activation during BU Attention  

To the best of our knowledge, this is the first study to investigate gamma activity to highlight 

the impact of ageing on auditory BU attentional processes. Gamma activity has been linked to 

both sensory and non-sensory cortical activation in both the visual (Akimoto et al., 2013, 2014) 

and auditory (Lee et al., 2007; Ahveninen et al., 2013) modalities. In both the young and 

elderly groups, a gamma activation in bilateral auditory cortices, and several other brain 

regions including the temporo-parietal junctions and the right ventro-lateral prefrontal cortex, 

was observed in response to an unexpected salient distracting sound. These regions are part 

of the well-established ventral BU attentional network from studies using functional (Salmi et 

al., 2009; Alho et al., 2014; Salo et al., 2017; Long and Kuhl, 2018) and electrophysiological 

(e.g. Ahveninen et al., 2013) recordings. Therefore, these present results suggest a similar 

activation of the ventral BU attentional network in the gamma band in elderly and young 

adults. Nevertheless, in the literature it is rather unclear how ageing impacts the BU network 

with evidence of reserved (Deslauriers et al., 2017), reduced (Li et al., 2015) and even 

augmented (Kurth et al., 2016) activation with ageing. 

Importantly, younger participants demonstrated higher gamma activation in several 

regions mainly in the ventro- and dorso- medial prefrontal cortices and the anterior cingulate 

cortex, in the left hemisphere. Interestingly, modulation of gamma activity according to the 

preceding cue information was found in the same brain regions: gamma activity was larger 

after an informative cue in comparison to an uninformative cue in young participants, only. 

This gamma modulation by cue information in medial frontal regions in young adults is 

consistent with previous results (ElShafei et al., in prep) 

The ventro- and dorso- medial prefrontal cortices (PFC) and the anterior cingulate 

cortex constitute the hub of the inhibitory control system. Indeed, the activation of these 

regions is increased during presentation of irrelevant salient stimuli (e.g. Rule et al., 2002; 

Salmi et al., 2009). In the non-human primate auditory system, such role could be established 

through connections between these regions (the medial PFC and the ACC) and inhibitory 

neurons in auditory association regions in order to suppress irrelevant signals (Matsumoto 

and Tanaka, 2004; Barbas et al., 2005, 2012; Medalla et al., 2007). In addition, these regions 



Attention & Ageing 

 166 

seem to play a role in the interaction between top-down and bottom-up networks of attention 

either directly (Salmi et al., 2009; Chadick et al., 2014) or indirectly via connections to the 

lateral prefrontal cortex (Medalla and Barbas, 2010).We posit that, in the present study, 

gamma activation of the medial PFC regions and the ACC during the presentation of distracting 

sounds reflects a strong and fast inhibitory signal to regions involved in the processing of task-

irrelevant information. A larger gamma activation of these regions in trials with an informative 

cue suggest a stronger inhibition of distracting sound processing, resulting from an increased 

top-down attention load with informative cues. We found that with ageing the amplitude of 

this top-down inhibitory signal and the capacity to modulate it decline. This is consistent with 

the proposal that structural alterations in the prefrontal cortex with ageing might disrupt 

functional connectivity between the prefrontal cortex and sensory regions processing task-

irrelevant stimuli (Chadick and colleagues (2014). 

 

4.4 Impact of Ageing on BU/TD Attention balance 

Taken together, our findings suggest that with ageing, the integrity of the BU attentional 

network might remain intact, while TD inhibitory processes in the gamma and alpha bands are 

altered. Therefore, the exacerbated distractibility exhibited by elderly participants on the 

behavioral level would rather be related to a reduced activation of TD inhibitory processes 

than to an enhanced activation of the ventral BU attention network. Elderly participants seem 

to deploy less TD control in comparison to younger participants. This potentially frontally-

driven deterioration of attentional control lies on the cross-roads of the two leading 

hypotheses accounting for the increased distractibility often observed with ageing: the 

inhibitory deficit hypothesis (Hasher and Zacks, 1988) and the frontal ageing hypothesis 

(West, 1996). In line with previous findings (Chadick et al., 2014; Amer et al., 2016) and with 

the proposition made by Gazzaley and D’Esposito (2007), our findings reconcile both 

hypotheses: the decrease in the functioning of the frontal control network might be the origin 

of the ageing-related deficit in inhibitory mechanisms. Thus, the exacerbated behavioral 

distractibility in ageing might actually be of TD origin.  
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5 Conclusion 
To our knowledge, the current study is the first to utilize oscillatory modulations in the alpha 

and gamma bands in an attempt to outline how ageing affects TD and BU attentional 

mechanisms and the interplay between them in the same experiment. Behaviorally, 

distractibility to distracting sounds is exacerbated with ageing. Electrophysiologically, 

modulations in alpha oscillations reveal that while facilitatory processes of TD attention seem 

intact, suppressive processes are reduced with ageing, showing a less efficient TD filtering of 

task-irrelevant information. This deficit might be compensated by enhanced motor 

preparation. Moreover, modulations in gamma activity reveal that in comparison to younger 

adults, elderly participants similarly activate the ventral BU attentional network but display a 

weaker activation of inhibitory frontal regions in response to distracting sounds.  

Therefore, the exacerbated distractibility exhibited by elderly participants on the 

behavioral level would rather be related to a reduced activation of TD inhibitory processes 

than to an enhanced activation of the ventral BU attentional network. Importantly, TD 

inhibitory processes are altered during both attentional preparation and capture, leading to 

an attentional imbalance towards an enhanced impact of BU attention. 

While the present study is focused on the power of oscillatory activity, future 

investigations should explore how these oscillations would support the connectivity between 

different cortical regions during the deployment of TD and BU attentional processes in the 

elderly. 
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10 Attention & Frontal Damage 

10.1 Study IV: Impact of Frontal Damage on Attentional Mechanisms (CAT 3.0) 

10.1.1 Introduction 

In chapter 4, we have discussed how lesions in the lateral prefrontal cortex (lPFC) could impact 

various attentional mechanisms. For example, Bidet-Caulet and colleagues (2015) 

demonstrated that only the facilitatory but not the inhibitory top-down mechanisms of 

auditory selective attention are negatively impacted by lPFC lesions. In addition, lPFC lesions 

have been also accompanied by an increased susceptibility to distracting information (e.g. 

Chao and Knight 1995).  

The purpose of this study was to shed more light on the impact of lPFC lesions on 

anticipatory top-down attention, bottom-up attentional capture and the balance between the 

two; and in turn to highlight the role of the lPFC in all of these processes. However, the 

recruitment of a homogeneous cohort of patients with relatively circumscribed unilateral 

lesion resulting from ischemic stroke is slow and still underway. Thus, in this chapter we shall 

present and discuss preliminary behavioral results. In addition, we shall lay out the analyses 

that we are planning once the recruitment will be over. 
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10.1.2 Materials and Methods 

10.1.2.1 Participants 

Eight LPFC patients (mean age = 58 ± 4.53 Standard Error of Mean (SEM);  range: 39—74 years; 

4 females) were selected on the basis of a unilateral focal lesion to their dorsolateral PFC (4 

right and 4 left). All lesions were due to ischemic stroke. Maximal lesion overlap comprised 

Brodmann’s areas 9, 44, 45 and 46, with variable amount of damage in Brodmann’s areas 4, 

6, 8 and 47, as well as some part of the insula but auditory cortices were always preserved 

(see Figure 1). All patients were right-handed and reported no motor weakness. Recordings 

took place at least 1 year and a half after the injury. The patients were free of medical 

complications, psychiatric disorders, substance abuse, psychoactive drug treatment, or other 

neurological diseases. Eight healthy controls (mean age = 58 ± 4.69 SEM; range: 35—79 years; 

4 females) free of neurological or psychiatric disease, were chosen to individually match the 

patients in age, gender, handedness, education level and music training. As expected, the two 

groups did not significantly differ in age (T-test p = 0.94), in education level (T-test p = 0.71), 

nor in music training (T-test p = 0.49). The study was approved by the local ethical committee, 

and subjects gave written informed consent, according to the Declaration of Helsinki, and they 

were paid for their participation. 

 

 Patient group Control Group 

Age (years ± SEM) 58 ± 4.53 58 ± 4.69 

Gender 4F, 4M 4F, 4M 

Handedness 8R 8R 

Scholar Education (years ± SEM) 14 ± 1.15 15 ± 0.98 

Musical Education (years ± SEM) 3 ± 1.42 1 ± 0.88 

 

Table1. Group demographics. SEM, standard error of the mean; F, Female; M, Male; R, right-

handed. 
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10.1.2.2 Lesion Reconstruction 

We have utilized the reconstruction pipeline described by Hirel and colleagues (2017). 

Participant lesions were imaged with 3D MRI scans (Magnetom Prisma Siemens 3T MRI 

equipped with a 64-channel head/neck coil), with T1, T2 and T2FLAIR sequences (Fluid-

Attenuated Inversion Recovery scan: TR = 5000 ms, TE = 349 ms, TI = 1008 ms, FOV = 224x224 

mm, sagittal acquisition, slice thickness = 0.9 mm,192 slices). Lesions were drawn manually by 

a trained neurologist on the individual’s T2-FLAIR MRI images in native space, using MITK 3M3 

(Mint Medical Ins, USA). MRI images and lesions masks were normalized into the MNI 

(Montreal Neurological Institute) space, using the standard linear spatial normalization 

procedure from SPM12 (Functional Imaging Laboratory, London, UK) in Matlab. 

 

 
Figure 1. Overlay of the 8 lesions. The number of patients having a lesion at each voxel is color-
coded. The four lesions in the right hemisphere have been flipped on left hemisphere. There is 
a maximum of four patients having a lesion in the same voxel. 
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10.1.3 Stimuli and tasks 

10.1.3.1 Competitive Attention Task (CAT) 

A complete description of the paradigm used (CAT 3.0) has been previously provided (please 

refer to section 5.1 and 5.3 and Figure 2 below).  

 

Figure 2. Protocol. Top row. In informative trials, a one-sided visual cue (200 ms duration) 
indicated in which ear (left or right) the target sound would be played (100 ms duration) after 
a fixed 1000-ms delay. Bottom row. In uninformative trials, a two-sided visual cue (200 ms 
duration) did not provide any indication in which ear (left or right) the target sound will be 
played. In 25 % of the trials a binaural distracting sound (300 ms duration), such as a clock 
ring, was played during the delay between cue and target. The distracting sound could 
equiprobably onset in two different time periods after the cue offset: in the 50–350 ms range, 
or in the 350–650 ms range. 
 
10.1.3.2 Discrimination Task 

Participants were randomly presented with one of two target sounds: a low-pitched sound 

(512 Hz) and a high-pitched sound (575 Hz; two semitones higher), equiprobably in each ear 

(four trials per ear and per pitch). Participants were asked to categorize the target sounds as 

either high- or low-pitched sound within 3 seconds. 
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10.1.3.3 Procedure 

Participants were seated in a sound-attenuated, magnetically shielded recording room, at a 

50 cm distance from the screen. The response device was an index-operated joystick that 

participants moved either towards them (when instructed to pull) or away from them (when 

instructed to push). All stimuli were delivered using Presentation software (Neurobehavioral 

Systems, Albany, CA, USA). All sounds were presented through air-conducting tubes using 

Etymotic ER-3A foam earplugs (Etymotic Research, Inc., USA).  

First, the auditory threshold was determined for the two target sounds differing by 2 

semitones (512 and 575 Hz), for each ear, for each participant using the Bekesy tracking 

method (Von Békésy and Wever 1960). The target sounds were then monaurally presented at 

25 dB SL (58.9 ± 2.9; mean dBA ± SEM) while the distracting sounds were binaurally played at 

55 dB SL (68.9 ± 2.9; mean dBA ± SEM). Second, participants performed the discrimination 

task. If participants failed to respond correctly to more than 85% of the trials, the pitch of the 

high target sound was augmented, by half a semitone with a maximum difference of 3 

semitones between the two targets (auditory thresholds were then measured with the new 

targets). Afterwards, participants were trained with a short sequence of the Competitive 

Attention Task (CAT). Finally, MEG and EEG were recorded while subjects performed 10 blocks 

(64 trials each): the whole session lasted around 80 minutes. After the MEG/EEG session, 

participants’ subjective reports regarding their strategies were collected. 

 

10.1.4 Behavioral Data Analysis 

For behavioral data analysis, a response was considered correct, if it matched the response 

mapped to the target sound and was executed before the apparition of the following cue. 

Trials with an incorrect, or precocious or no response were excluded from further analysis. 

The influence of (1) group (2 levels: patients and controls), (2) cue condition (2 levels: 

informative and uninformative), and (3) distractor condition (3 levels: NoDis, DIS1 and DIS2) 

on percentage of incorrect responses and median reaction times (RTs) of correct responses 

was tested using a linear mixed-effects models (lme4 package, Bates et al., 2014 for R Team, 

2014). A random effect was included for each participant, allowing us to model variability 

between participants. For post-hoc analysis we used the Lsmean package (Lsmean version 

2.20-23; Searle et al., 1980) where p-values were considered as significant at p<0.05 and 

adjusted for the number of comparisons performed (Tukey method).  
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Moreover, planned analyses of the CUE BENEFIT were carried out between groups on 

the differences in RTs Uninformative NoDIS – Informative NoDIS and of distractor effects on 

the differences in RTs NoDIS – DIS1 (as a measure of the AROUSAL BENEFIT) or DIS2 – DIS1 (as 

a measure of ATENTION CAPTURE COST), using non-parametric Kruskal–Wallis tests (Bidet-

Caulet et al. 2014; Masson and Bidet-Caulet 2018). As a final step, these three measures were 

tested separately in each group, using non-parametric one-sample Wilcoxon tests. 

 
10.2 Results 

Participants correctly performed the discrimination task in 92.05 ± 0.58 SEM % of the trials. 

The remaining trials were either incorrect trials (6.48 ± 0.50 SEM %), missed trials (0.63 ± 0.13 

%) or trials with FAs (0.42 ± 0.09 %).  

 

10.2.1 Behavioral Analysis: Incorrect Response Percentage (Figure ) 

Only a significant main effect of the distractor condition (F(2, 30) = 6.4, p < 0.01, η2 = 0.25) was 

found on the percentage of incorrect responses. Post-hoc tests indicated that participants, 

from both groups, committed more errors in the late DIS2 condition in comparison to the 

NoDIS (p < 0.01) conditions. 

 

 

Figure 3. Percentage of Incorrect Responses averaged across cue conditions for patient (red) 
and control (blue) groups. P < 0.05, ** P < 0.01. Error bars represent SEM. 
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10.2.2 Behavioral Analysis: Median Reaction Times (Figure ) 

We have only found a main effect of the distractor condition (F(2, 30) = 71.9, p < 0.001, η2 = 

0.25) with no main effect of group (F(1, 15) = 2.7, p = 0.12, η2 = 0.16). Post-hoc tests indicated 

that in comparison to the NoDIS condition, participants were faster in the early DIS1 condition 

(p = 0.029) but slower in the late DIS2 condition (p < 0.001). In addition, participants were 

faster in the early DIS1 condition in comparison to the late DIS2 condition (p < 0.001).  

 

 

Figure 4. Left Panel: Median RTs for both groups. Right Panel: Attentional Capture effect on 
RTs for both groups. P < 0.05, ** P < 0.01, *** P < 0.001. Error bars represent SEM. 
 
 
10.2.3 Planned Behavioral Analysis (Figure 5) 

Non-parametric Kruskal–Wallis tests between groups demonstrated that the cue benefit 

effect (Uninformative NoDIS – Informative NoDIS; p=0.24), the attention capture effect (DIS2 

– DIS1; p = 0.09) and the arousal effect (NoDIS – DIS; p = 0.46) were similar between groups.  

 

 

Figure 5. Boxplot of (A) the Cue benefit effect, (B) the Attention capture effect, and (C) the 
Arousal effect, according to groups. 
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Below is a table with all the results from the one-sample Wilcoxon test (see  

Table 1). 

 

 Patient Group  Control Group 

Cue benefit effect p = 0.84 p = 0.04 

Attention capture effect p = 0.007 p = 0.007 

Arousal effect p = 0.01 p = 0.3 

 
Table 1. List of p-values from the one-sample Wilcoxon tests for the three behavioral measures. 
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10.3 Discussion 

Below we will discuss the preliminary behavioral results. However, due to the small group size, 

these results and their interpretation should be treated with caution. 

 

10.3.1 Impact of lPFC Lesions on Top-Down Mechanisms of Attention 

Preliminarily, according to the GLM analysis, neither group seemed to benefit from the cue 

information to faster identify the target pitch. However, visually, a difference between the 

two groups could be observed, while not significant (see Figure  and Figure 5A and Table1).  

However, in the absence of distracting sounds, only the control group was faster in the 

informative cue condition in comparison to the uninformative condition. This potential failure 

to use top-town anticipation in patients with frontal damage would be in line with previous 

studies (1) in patients suffering from dorsolateral frontal lesions performing a forewarned 

reaction-time task in the visual modality (Zappoli et al. 2000) and (2) in patients suffering from 

lateral prefrontal lesions performing an auditory Go/NoGo delayed response task (Funderud 

et al. 2013). Both studies have utilized the contingent negative variation (CNV), an evoked 

potential often used as an index of top-down anticipatory attention (e.g. Brunia and van Boxtel 

2001; Gómez et al. 2007; Bidet-Caulet et al. 2014) and both have demonstrated a diminution 

in amplitude (or even a vanishing); i.e. reduced top-down anticipatory activity. 

Taken together, these results suggest that patients could suffer from a deficit in 

intentionally orienting their attentional resources after a lPFC stroke, highlighting the 

potential role of the lPFC in top-down attention. 

 

10.3.2 Impact of lPFC Lesions on Bottom-Up Mechanisms of Attention 

Both groups displayed the reaction time (RT) pattern common to the CAT paradigm: 

participants were faster in trials with early distracting sounds rather than with late distracting 

sounds or with no distracting sounds. This pattern could be explained by the two opposite 

effects triggered by a distracting sound: (1) a persistent increase in arousal resulting in RT 

reduction (behavioral benefit) and (2) a stronger transient attentional capture (orienting) 

effect leading to RT augmentation (behavioral cost). The behavioral net effect of distracting 

sound varies according to the time interval between the distracting and the target sounds 

(Bidet-Caulet et al. 2014; Masson and Bidet-Caulet 2018). The difference in reaction time to 

targets between trials with late distracting sounds (DIS2) and trials with early distracting 
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sounds (DIS1) provides a good approximation of the attentional capture effect, while the 

difference in reaction time to targets between trials with early distracting sounds (DIS1) and 

trials with no distracting sounds (NoDIS) provides a good approximation of the arousal effect. 

Preliminary statistical testing demonstrated similar attentional capture effect in both 

groups. However, visually, a difference (close to significance) between the two groups could 

be observed notably on the attentional capture effect of the distracting sounds which seems 

more exacerbated in the lPFC group (see Figure  and Figure 5B). This observation goes in line 

with previous studies demonstrating that behaviorally, lesions to the lPFC are accompanied 

by increased distractibility where lPFC patient performances deteriorate in presence of 

distracting stimuli (Chao and Knight 1995; Gehring and Knight 2002). This increased 

distractibility could be due to an increased activation of the bottom-up ventral network or a 

reduced activation of inhibitory frontal areas. Analyses of the brain activities in response to 

distracting sounds should shed light on the origin of these attention difficulties.  

Finally, there preliminary statistical testing demonstrated an arousal effect that is 

more pronounced in the patient group. However, we believe that such effect is mainly due to 

the low sample size and greater variability across control participants.   

 

10.3.3 Future Analysis 

Once we reach the recruitment of a minimum of twelve patients and their healthy matched 

controls, we shall investigate the impact of lPFC lesions on (1) top-down attentional 

mechanisms as indexed by oscillatory activity in the alpha band, (2) bottom-up attentional 

mechanisms as indexed by oscillatory activity in the gamma band, and (3) the balance 

between top-down and bottom-up mechanisms. In addition, we shall investigate how the 

connectivity patterns, highlighted in previous chapters would be modified following a lesion 

to the lPFC.
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11 Discussion and Perspectives  

 “Truth is found neither in the thesis nor the antithesis, 
 but in an emergent synthesis which reconciles the two.” 

― Hegel 
 

Over the past fifty years, countless endeavors have been undertaken to dissect the neural 

correlates underlying mechanisms of attention using more and more sophisticated and 

precise methods of analysis. One of the recent methods is investigating oscillatory activity. In 

the present work, we aimed to improve our understanding of the role of oscillatory activity in 

the alpha and gamma bands in supporting top-down and bottom-up mechanisms of auditory 

attention and the interplay between them in the healthy, ageing and lesioned brain. 

Within this general framework, four studies combining behavioral assessment and 

simultaneous MEG and EEG recording revealed how oscillatory activity in the alpha and 

gamma bands would reflect the dynamics of top-down and bottom-up mechanisms of 

attention, respectively, and how gamma oscillatory activity in the prefrontal cortex would 

orchestrate the balance between these two mechanisms. In addition, we highlighted how 

these mechanisms could be impaired in the ageing brain and how these impairments could 

explain attentional difficulties associated with healthy ageing. Finally, using data collected 

from patients with prefrontal damage, we provided preliminary evidence to the role of the 

lateral prefrontal cortex (lPFC) in supporting both top-down and bottom-up mechanisms of 

attention.  

The discussion sections presented in chapters seven to ten of this thesis have already 

pointed out the major implications of each of these studies. The aim of the present section is 

to set this work into a broader context, by linking results together and presenting how our 

research could improve the understanding of the role of oscillatory activity in supporting the 

dynamics of attention, and more generally the communication within brain networks. 

Additionally, in each section, we will propose future lines of research that could be useful to 

further our understanding. 
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11.1 The Competitive Attention Test 

11.1.1 Duplex Responses to Distracting Sounds 

Throughout this thesis work, using different versions of the Competitive Attention Test (CAT), 

young participants displayed a similar pattern of behavioral responses to distracting sounds: 

In comparison to trials with no distracting sounds, participants responded faster to the 

following target in trials with early distracting sounds while they responded slower to targets 

in trials with late distracting sounds (see Figure 30).  

 

 
Figure 30. Median Reaction Times (RTs) according to cue and distractor conditions. *** P < 
0.001. Error bars represent SEM. Please note overall longer RTs when a discrimination task was 
used (CAT 2.0 and 3.0) compared to a detection task (CAT 1.0). Please note that for CAT1.0, 
SEMs are too small to be visible. 
 

This pattern affirms a clear distinction between two phenomena (see Figure 31) that 

could be triggered by a distracting sound: (1) a persistent increase in arousal resulting in RT 

reduction (behavioral benefit) and (2) a strong transient attentional capture (exogenous 

orienting) leading to RT augmentation (behavioral cost); with the behavioral net effect of 

distracting sound varying according to the time interval between the distracting and the target 

sounds (Bidet-Caulet et al. 2014; Masson and Bidet-Caulet 2018). Therefore, these findings 

highlight the importance of considering the different responses that are elicited by a 

distracting stimulus when investigating the brain mechanisms of distraction in future studies. 

In addition, we believe that these replicable results add to the validity of the Competitive 



Discussion and Perspectives 

 187 

Attention Test (CAT) as a suitable test to investigate the dynamics of both top-down and 

bottom-up mechanisms of attention and the balance between them in an ecological setting 

in both healthy and clinical populations.  

 
Figure 31. Schematic representation of the time-course of the two phenomena triggered by a 
distracting sound: increase in arousal (blue) and attentional capture (red). 
 

11.1.2 CAT Wars: Differences Between CAT Iterations 

In order to explore the differences between all versions of the CAT paradigm, we used three 

behavioral measures: the CUE BENEFIT (the differences in RTs Uninformative NoDIS – 

Informative NoDIS), the AROUSAL (RTs NoDIS – DIS1) and ATTENTION CAPTURE (Latest DIS – 

earliest DIS) (Bidet-Caulet et al., 2014; Masson and Bidet-Caulet, 2018). 

As seen in Figure 32A, the cue benefit was highly reduced in CAT 3.0 in comparison to 

CAT1.0 and CAT2.0. This was expected as we have modified the ratio of informative to 

uninformative trials from 2:1 to 1:1. This was a necessary compromise in order to adapt the 

duration of the paradigm to elderly and patient populations while conserving a sufficient 

number of trials with a distracting sound. Nevertheless, participants in CAT3.0 seem to have 

utilized the cue information properly as evidenced by a significant effect of cue on RTs in the 

absence of distracting sound.  

As for the distracting sound effects, we observed a marked decrease in their arousal 

effect (see Figure 32C) in both CAT2.0 and CAT3.0 in comparison to CAT1.0. We consider that 

this effect corroborates our aim to render the task more challenging by using a discrimination 

task. A slightly more difficult task is likely to increase the top-down attentional load as well as 

the tonic arousal level (Kahneman 1973; Sarter et al. 2006; Eysenck 2012). A larger tonic 

arousal level might have contributed to a ceiling effect of the phasic arousal burst to 

distracting sounds i.e. the arousal could not be indefinitely increased. Finally, in comparison 
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to the other effects, the attention capture effect seems to have varied the less (see Figure 

32B). This shows that, in the CAT paradigm, the proportion of trials with distracting sounds to 

trials with no distracting sounds (1:3) is appropriate to trigger a strong transient bottom-up 

attentional capture towards these distracting sounds. 

 

 

Figure 32. (A) the Cue benefit effect, (B) the Attention capture effect, and (C) the Arousal effect, 
according to groups. Error bars represent SEM. 
 
   
11.2 Oscillatory Activity Orchestrating Mechanisms of Attention 

11.2.1 Alpha Oscillations & Top-down Mechanisms of Attention 

11.2.1.1 A Role for Power 

We demonstrated that anticipation of an auditory target (Study I) modulated the power of 

alpha oscillations differently in both task-relevant auditory cortices (alpha power decrease: 

alpha desynchronization) and task-irrelevant occipital cortices (alpha power increase: alpha 

synchronization). We also showed that the occipital alpha synchronization correlated 

negatively with reaction times and that alpha power in the right auditory cortex was 

modulated by the visual cue. Finally, we displayed in supplementary study III that even after 

the presentation of a distracting sound, a similar pattern of auditory alpha modulation was re-

established. 

 The auditory alpha literature is fairly recent with concerns that auditory oscillations 

might reflect spectral leakage from higher frequencies (e.g. beta) and/or neighboring cortical 

regions such as the motor cortex (Weisz et al. 2011). While it has not been presented, we 

found no evidence of power modulations by the cue in neither auditory beta activity, nor 

motor alpha activity. In addition, in the ageing study we showed that auditory and motor 

alpha(s) display distinct profiles and are differently impacted by ageing. We believe that our 
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findings confirm the existence of independent generators of alpha oscillations that are specific 

to the auditory cortex and that can be modulated by top-down endogenous attention (Muller 

and Weisz 2012; Frey et al. 2014; Weisz and Obleser 2014; Weisz et al. 2014). 

In a wider context, the ensemble of these results, at least on a sensory level, are in 

accordance with the inhibition-timing (Klimesch et al. 2007) and the gating by inhibition 

(Jensen and Mazaheri 2010) hypotheses that reaffirm an “inhibitory role” of alpha oscillations. 

This however does not exclude a potential “active processing” role of alpha oscillations (Palva 

and Palva 2007, 2011). While we have focused our investigations on alpha activity in the 

auditory and visual cortices, we have observed feeble yet not negligible alpha synchronization 

in frontal regions, notably in the ventrolateral prefrontal cortex. While, the significance and 

the mechanisms underlying this alpha power synchronization remains a matter of debate 

(Palva et al. 2005; Palva and Palva 2007, 2011), we posit that this frontal alpha synchronization 

might reflect the deactivation of the task-irrelevant ventral BU attention network. 

 

11.2.1.2  A Role for Peak Frequency 

In addition, we demonstrated that alpha synchronization in the visual cortex (in anticipation 

of an auditory target) and in the right auditory cortex (in anticipation of an ipsilateral auditory 

target) were centered around 13Hz (high alpha). On the contrary, alpha synchronization in the 

auditory cortices (in anticipation of an auditory target) and in the right auditory cortex (in 

anticipation of a contralateral auditory target) were centered around 9Hz (low alpha). We 

have also replicated this pattern in the ageing study (III) where only young participants 

demonstrated such frequency differentiation. Taken together, these results not only confirm 

our hypothesis that alpha oscillations would support top-down mechanisms of attention but 

also add a fine detail on the dynamics of such support: different high and low alpha sub-bands 

would support suppressive and facilitatory mechanisms of anticipatory attention, 

respectively. 

 We discussed how alpha peak frequency could be considered as a “state” variable that 

would index performance fluctuations, cognitive demands and probably the functional task-

relevance of cortical regions (Klimesch 1999; Başar 2012; Haegens et al. 2014) with very recent 

evidence that it could be dynamically controlled by top-down signals in order to alter 

information processing in the underlying cortical regions (Wutz et al. 2018). While our results 

fit well with such notion, we cannot overlook the “trait” or “characteristic” nature of alpha 
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peak frequency that could change across individuals and cortical regions (Klimesch 1999; Başar 

2012; Haegens et al. 2014, 2015). Thus, we believe that in order to shed more light on the 

significance of alpha peak frequency, future studies should investigate more systematically 

the different alpha peak frequencies in different cortical regions using cross-modal paradigms 

where participants would be required to attend to a stimulus in a modality and ignore other 

stimuli in other modalities, i.e. attending to an auditory stimulus while ignoring concurrent 

visual and motor stimuli and vice versa. 

Finally, in the ageing study, we observed that the differences between the alpha peak 

frequencies in the auditory and visual regions diminished with ageing; a phenomenon that 

was accompanied by a diminution of visual synchronization in older participants, relative to 

the younger ones. This raises the question of the functional (causal) link between alpha peak 

frequency and top-down attentional modulations: Is the successful allocation of different 

alpha-bands to distinct mechanisms of attention an imperative for these mechanisms to be 

functional? In this sense impaired top-down suppressive mechanisms could be the 

consequence of the diminished frequency peak differences. Or is the lack of alpha sub-band 

differentiation resulting from the ageing-related top-down impairments? Another possibility 

is that both phenomena: diminished peak differences and impaired suppressive top-down 

mechanisms are symptomatic of a third phenomenon e.g. reduced frontal alpha phase 

synchrony with auditory and visual cortices. Future investigations shall look into possible 

correlations between inter-regional alpha peak frequency differences and inter-regional alpha 

phase synchrony. 

 

11.2.1.3  A Role for Phase 

We have hypothesized that in anticipation of an auditory target, long-range communication 

between nodes of the dorsal top-down attention network, such as the Frontal eye fields (FEF) 

and/or the intraparietal sulcus (IPS), and the auditory cortex would be established through 

inter-areal phase synchrony in the alpha band. We have demonstrated that anticipating an 

ipsilateral right auditory target increased phase synchrony between the right auditory cortex 

and regions in the vicinity of the left Frontal eye fields (FEF) and the left dorsolateral prefrontal 

cortex. Please note that similar analyses have been undertaken in theta, beta and gamma 

bands with neither significant emergence of such connectivity nor modulations by the cue 

information.  
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This goes in line with our general oscillatory framework that long-range 

communication across the dorsal network of top-down attention would be preferentially 

indexed by alpha phase synchrony, rather than beta (or gamma) oscillations, as described by 

earlier studies (Bastos et al. 2015; Richter et al. 2017). This, however, does not exclude a role 

for other oscillations in supporting connections between other nodes of the dorsal network 

as proposed by Clayton and colleagues (2015). In their model of top-down sustained attention, 

communication between different nodes of the dorsal fronto-parietal network occur at 

different frequency bands i.e. frontal-frontal communication occurs in the theta band whereas 

frontal-sensory communication in the alpha band. Indeed, in our analysis, we have only used 

the auditory cortices as seed to investigate phase synchrony. Future analysis shall investigate 

synchrony with different seed regions within the dorsal network, such as the visual cortex, the 

Frontal Eye Fields or the lateral prefrontal cortex.  

 

11.2.1.4  A Room for Gamma 

We also demonstrated that in anticipation of an auditory target (supplementary study II), 

induced gamma activity in the auditory cortices was differentially modulated by the visual cue 

and negatively correlated with reaction times. Also, after the target presentation, auditory 

gamma activity was higher when preceded by an informative cue in comparison to an 

uninformative cue. This fits well with the notion that the power of gamma activity reflects 

local neuronal active processing (Fries 2005, 2009; Lachaux et al. 2005; Jensen et al. 2007) 

where in this context gamma activity would reflect (1) heightened cortical excitability (pre-

activation) in the auditory cortices in order to optimally process the upcoming auditory target 

and (2) efficient processing of the auditory target.  

Regarding to our framework, in a first step, we showed that both alpha phase-

synchrony and gamma-amplitude are modulated by top-down attention (see Figure 33). 

However, the question remains whether this auditory gamma activity is coupled (nested) to 

auditory alpha oscillations i.e. whether the amplitude of gamma oscillations is related to the 

phase of alpha oscillations as it has been previously proposed (Canolty and Knight 2010; 

Bonnefond et al. 2017) and evidenced (Jensen and Colgin 2007; Lakatos et al. 2008; 

Bahramisharif et al. 2013; Szczepanski et al. 2014; Bonnefond and Jensen 2015; Esghaei et al. 

2015; Chacko et al. 2018) in different cortical regions. Future investigation of phase amplitude 
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coupling has been planned in order to shed more light on how these frequency bands interact 

with each other. 

 
Figure 33. Schematic summary of the results investigating alpha (α) and gamma (γ) during top-
down anticipation of an auditory target. FEF: Frontal eye fields, lPFC: lateral prefrontal cortex. 
AudC: auditory cortex. Ipsi: ipsilateral, Contra: contralateral, (de)Sync: (de)synchrony with 
FEF/lPFC. 
 

11.2.2 Gamma Oscillations & Bottom-up Mechanisms of Attention 

11.2.2.1 A Role for Power 

We have demonstrated that in response to an unexpected salient distracting sound, gamma 

power increases in the auditory cortices and various nodes of the ventral network of bottom-

up attention: bilateral temporo-parietal junctions and the right ventrolateral frontal cortex 

(study II). This pattern of activation is consistent with the architecture (Corbetta and Shulman 

2002; Corbetta et al. 2008; Salmi et al. 2009; Ahveninen et al. 2013; Alho et al. 2014; Salo et 

al. 2017; Long and Kuhl 2018) of the auditory ventral fronto-parietal network. In addition, it 

accentuates previous evidence to the laterality differences between the bilateral auditory 

ventral fronto-parietal network and the right lateralized visual one (Kim 2014). 

This finding is in accordance with our initial hypothesis that gamma oscillations would 

reflect the activation of the bottom-up network of attentional capture. This hypothesis was 

based upon the active processing role purported to be played by gamma oscillations where 

increase in gamma amplitude (and/or phase) reflects a facilitation of forward-transfer of 

information through the cortical populations (Fries 2005, 2009; Sedley and Cunningham 2013; 

Michalareas et al. 2016). This also fits in with the notion that bottom-up attentional capture 

is a rapid transient phenomenon. Thus, gamma activation would reflect the rapid “circuit-



Discussion and Perspectives 

 193 

breaking” effect of the distracting sound which causes a shift away from the focus of attention 

(DiQuattro et al. 2014). 

 

11.2.2.2 A Role for Phase 

We have also observed that during the presentation of a distracting sound, phase synchrony 

in the gamma band increased between the auditory cortices and several other brain regions, 

notably the lateral prefrontal cortices. This finding corroborates evidence that gamma 

oscillations could subtend inter-areal communication through phase synchrony 

(Communication through coherence hypothesis: Fries 2005, 2009). We suggest that gamma 

activity indexes not only the activation of the ventral the bottom-up network of attention but 

also the communication along this network. In the following we shall discuss how these 

oscillations could also reflect the interaction between bottom-up and top-down mechanisms 

of attention.  

 
11.2.3 The Prefrontal Cortex: A Crossroad of Mechanisms of Attention 

One of the main novelties of this thesis work is shedding new light on the role of the lateral 

prefrontal cortex in supporting top-down and bottom-up mechanisms of attention through 

phase synchrony in alpha and gamma bands, respectively (see Figure 34).  

On one hand, the lateral prefrontal cortex was involved in top-down long-range 

synchrony in the alpha band with the right auditory cortex (supplementary study I). This 

corroborates growing evidence that the lateral prefrontal cortex (lPFC) could play a role in 

supporting top-down attentional by potentially inhibiting the task-irrelevant pathways (Caclin 

and Fonlupt 2006; Johnson et al. 2007; Miller, Vytlacil, et al. 2011; Zanto et al. 2011). Future 

investigations shall attempt to explore whether these synchrony patterns correlate with 

behavioral performances and activity in both auditory and visual cortices.  

On the other hand, the lateral prefrontal cortex was involved in bottom-up gamma 

synchrony with both auditory cortices. Functional imaging studies demonstrated that the 

lateral prefrontal cortex is associated with (and correlates to) the inhibition of distraction 

responses (Dolcos et al. 2007; Suzuki and Gottlieb 2013; Yan et al. 2016). We suggest that this 

observed synchrony could be a means to regulate the distracting sound processing. Future 

investigations of top-down modulation of this bottom-up synchrony are planned.  
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Figure 34. Brain regions that displayed increased synchrony with the auditory cortices in the 
alpha (dark blue) and the gamma (light blue) bands. Regions in red displayed increased in both 
oscillatory bands. 
 

To the best of our knowledge, this is the first study, to utilize gamma activity (power) 

to investigate the potential role of the prefrontal cortex in subtending the balance 

(interaction) between top-down and bottom-up attentional mechanisms. While TD 

modulations of gamma activity did not occur in the lateral divisions of the prefrontal cortex, 

per se, we believe that such finding does not entirely invalidate our initial hypothesis. Gamma 

modulations occurred in neighboring regions: the dorso- and ventromedial prefrontal cortices 

and the anterior cingulate cortex. In these regions, gamma activity was more pronounced in 

response to distracting sounds preceded by an informative cue rather than an uninformative 

cue. On two accounts we believe that our hypothesis should withstand such contradictory 

results:  

First, anatomically, both the lateral and medial prefrontal cortices have connections 

with the auditory cortices, and the anterior cingulate cortex and the lateral prefrontal cortex 

are highly interconnected (Barbas et al. 2012b). In addition, both the lateral and medial 

prefrontal cortices are highly interconnected (Miller and Cohen 2001) and display highly 

comparable functional connectivity to other brain regions (Cole et al. 2013).  

Second, along with the lateral prefrontal cortex, these regions constitute the cognitive 

inhibitory control system (Salmi et al. 2009; Løvstad, Funderud, Meling, et al. 2012; Ossandon 

et al. 2012; Erika-Florence et al. 2014). Thus, they play more or less similar roles; for example, 

the ventromedial prefrontal cortex has also been found to be situated on the crossroads 

between top-down and bottom-up attention (Salmi et al. 2009; Chadick et al. 2014).  

Thus, while top-down and bottom-up seem to interact via the medial prefrontal cortex 

(and the anterior cingulate gyrus), a role of the lateral prefrontal cortex cannot be excluded. 
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The lPFC could allow indirect communication between the mPFC and the ventral network 

through gamma phase synchrony between the lPFC and the auditory cortex (study II) on one 

hand, and between the lPFC and the mPFC on the other hand (to be investigated). Another 

mechanism for the lPFC to control the balance between top-down and bottom-up attention 

would be the coupling between alpha and gamma oscillations which shall be further 

investigated in future research.    

 

11.2.4 An Oscillatory Model of Attention 

Here, we propose an oscillatory model of auditory attention (see Figure 35). First aspect of 

this framework is that top-down anticipatory signals would modulate the amplitude of alpha 

oscillations in the auditory cortices (auditory alpha) either by synchronization (power 

increase) or desynchronization (alpha decrease) in order to regulate auditory cortical 

excitability down (anticipatory suppression) or up (anticipatory facilitation) according to the 

laterality of the upcoming target. These modulations seem to occur in distinct alpha bands 

(study I). Such modulations would be possible through alpha phase synchronization between 

fronto-parietal (FEF and/or IPS: supplementary study I) and ipsilateral auditory regions. In this 

top-down prepatory setting, auditory gamma could reflect increased cortical excitability, i.e. 

pre-activation, of the auditory cortices (supplementary study II).  

Within our framework, it is plausible that auditory gamma could be nested upon 

auditory alpha, in accordance with the model proposed by Bonnefond and colleagues (2017). 

However, on the contrary to their model we have found no direct evidence of gamma 

activation in the dorsal network of TD attention (data not shown). 

The second aspect is that the propagation of attentional capture-related bottom-up 

signals would be predominantly reflected in gamma activity in the ventral fronto-parietal 

network (plus the auditory cortex) of attention (study II). Whereas, the regulation of this these 

bottom-up signals would be predominantly reflected in gamma activity in medial subdivisions 

of the prefrontal network of cognitive control (study II). This of course marginalizes the role 

alpha oscillations in attentional capture, but we posit that given the rapid nature of the 

attentional capture, it would be more computationally (ecologically) efficient for the brain to 

rely on information transfer through fast gamma oscillations while alpha oscillations would be 

more suitable for communication over relatively longer periods of time. 
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These two aspects reconcile theoretical models of oscillatory communication (e.g. 

Bonnefond et al. 2017) and recent experimental findings in the attention domain (e.g. 

Buschman and Miller 2007; Richter et al. 2017) by taking into consideration the nature and 

timing of the (attentional) signal to be communicated. In other words, fast bottom-up signals 

would be communicated by high-frequency gamma oscillations while, relatively slower top-

down signals would be communicated by low-frequency alpha oscillations.  

Third aspect of this framework is the role of the lateral prefrontal cortex in subtending 

long-range (1) top-down alpha and bottom-up gamma synchrony, and (2) the interaction 

between the two mechanisms. We posit that the latter role could be subtended by 

fluctuations in the alpha-gamma coupling magnitude in the lPFC. While such role has been 

only partially validated, we believe that future analyses either in healthy subjects or patients 

with frontal damage would help reaffirm this role.   

 

 
Figure 35. The Oscillatory model proposed in this thesis work. DAN: dorsal attentional network, 
VAN: ventral attentional network, lPFC: lateral prefrontal cortex, AudC: auditory cortex, mPFC: 
medial prefrontal cortex, VisC: visual cortex. 
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11.3 The Ageing Brain: A Top-Down Modulation Deficit 

11.3.1 Ageing and Alpha Oscillations 

Through the aforementioned oscillatory framework, we were able to disentangle the brain 

dynamics related to attentional difficulties often associated with ageing (see Figure 36). By 

investigating sensory (auditory/visual) and motor alpha activity, we were able to highlight a 

relatively intact facilitatory component of anticipatory attention (decrease in auditory alpha) 

and a deficit in the suppressive component (increase in visual alpha) and heightened motor 

preparation (decrease in motor alpha) with ageing. In healthy young adults, we demonstrated 

that suppression of visual alpha was linked to faster performances. Thus, would increased 

motor activity during ageing be compensatory to visual suppression deficits, in order to 

achieve similar behavioral performances? 

In healthy young adults, we demonstrated that TD attentional orienting increases 

phase synchrony between the lPFC/FEF and the task-irrelevant ipsilateral auditory cortex. 

Given the negative inhibitory influence that could be exerted by the lateral and/or medial 

prefrontal cortex upon irrelevant sensory modality pathways (Caclin and Fonlupt 2006; 

Chadick et al. 2014), we predict an impaired synchrony between the lateral prefrontal cortex 

and the visual cortices during ageing, that would result in a deficit in inhibition of task-

irrelevant visual information. Future investigations of the phase, rather than power, dynamics 

of alpha activity might uncover the origins of such deficit. 

 

11.3.2 Ageing and Gamma Oscillations 

As explained in section 11.1, using the CAT paradigm, we disentangled two responses to a 

distracting sound: a beneficial arousal effect and a detrimental attentional capture effect. Only 

the latter was exacerbated with ageing. This behavioral effect was accompanied by a reduced 

response to the distracting sounds in the medial prefrontal cortex and the anterior cingulate 

gyrus whose activity, as we have described above, seems to play an important role in top-

down inhibition of distracting stimuli (Salmi et al., 2009; Ossandon et al., 2012; Zanto and 

Gazzaley, 2013; Erika-Florence et al., 2014). Interestingly, the BU attentional network 

remained intact, thus relating exacerbated behavioral attentional capture to a reduced 

activation of TD inhibitory processes.  

This fits well with a growing hypothesis of top-down deficit in the ageing brain 

(Gazzaley and D’esposito 2007; Gazzaley 2013). This hypothesis reconciles the inhibitory 
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deficit hypothesis (Hasher and Zacks 1988) and the frontal ageing hypothesis (West 1996): the 

decrease in the functioning of the frontal control network might be the origin of the ageing-

related deficit in inhibitory mechanisms. Thus, the exacerbated bottom-up behavioral 

distractibility might actually be of top-down origin. 

 Future investigations have two aims. First, we shall investigate the gamma phase 

synchrony within and between the prefrontal control and the bottom-up networks, in order 

to shed more light on the implication of these connectivity patterns in the ageing-related 

increased distractibility. Second, it has been proposed that auditory distraction is a three-

stage phenomenon that involves the detection of the distracting stimulus followed by the 

orienting of attention processes towards it and finally these processes are reoriented back to 

the ongoing task (Wetzel and Schröger 2014). Thus, we believe that investigation of the 

evoked potentials that have been related to these processes during the Competitive Attention 

Test, shall provide complementary evidence to the results we already obtained in order to 

precisely outline facets of attentional capture that are inflicted by ageing.  

 
Figure 36. Summary of the impact of ageing on the oscillatory dynamics supporting 
mechanisms of top-down and bottom-up attention. 
 

11.4 The Lesioned Brain 

Finally, we provided preliminary behavioral results demonstrating two trending behavioral 

deficits for patients with frontal lesions: reduced capacity to utilize cue information to respond 

faster to target sounds and an exacerbated attentional capture by distracting sounds. In study 

IV, we provided possible explanations for these effects and below we shall discuss the 

implications of such preliminary results within the oscillatory framework we are proposing. 
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11.4.1 The Lesioned Brain & Alpha Oscillations 

In supplementary study I, we highlighted a role of the lPFC in the top-down modulation of 

auditory alpha activity, i.e. increased synchrony with auditory cortex ipsilateral to the 

upcoming target which hints to a role of the lPFC in regulating activity in task-irrelevant regions 

in the alpha band. Thus, we expect deficits in signatures of the suppressive top-down 

anticipatory mechanisms: less alpha increase in visual areas with the CAT. In addition, based 

upon the failure to utilize the cue and the already existing literature pointing to an impaired 

top-down anticipatory attention system (Zappoli et al. 2000; Funderud et al. 2013), we also 

expect deficits in the signatures of facilitatory top-down anticipatory mechanisms: less 

auditory and motor alpha decreases. Relative to our framework, this shall add more details to 

the role the lPFC in supporting top-down mechanisms of attention through alpha oscillations. 

 

11.4.2 The Lesioned Brain & Gamma Oscillations 

In study III we demonstrated how healthy ageing affects the organization of the gamma 

hierarchy supporting bottom-up network of attention most probably due to a functionally 

impaired frontal cortex. lPFC lesions are associated with increased distractibility (Woods and 

Knight 1986; Knight et al. 1999; Gehring and Knight 2002) and given the trending exacerbated 

distractibility frontal patients demonstrated, this strengthens our original hypothesis that lPFC 

lesions would disrupt only the top-down control of auditory distraction while the architecture 

of the bottom-up network would remain intact. Relative to our framework, this shall add more 

details to the role of the lPFC in supporting bottom-up mechanisms of attention and the 

interaction with top-down mechanisms through gamma oscillations.
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12 Conclusion 

Taken together, this thesis work provides new insights on the oscillatory hierarchy supporting 

top-down and bottom-mechanisms of auditory attention. To our knowledge, this is the first 

attempt to simultaneously investigate the role of alpha and gamma oscillations in subtending 

communication within the dorsal and ventral networks of top-down and bottom-up auditory 

attention, respectively. Our results also shed new light on how the prefrontal cortex would 

support mechanisms of attention while its exact role in supporting the interaction between 

them remains to be investigated in future research in both healthy and clinical (frontal 

damage) populations. Several of our results have been barely reported in the literature and 

we believe it might be helpful as a guideline for future research. Finally, the oscillatory model 

that we have proposed also permits to scrutinize attentional difficulties in different 

populations i.e. while we have focused on healthy ageing and frontal damage, our protocol 

and working model could be applied to investigate attentional differences in other healthy or 

clinical populations such as children, migraine, schizophrenia or autism where the bottom-

up/top-down balance is often affected.
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“I don’t know where I’m going from here,  
but I promise it won’t be boring.” 

― David Bowie
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