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Chapitre 1

Introduction

Les espaces de modules sont des constructions fondamentales de la géo-
métrie algébrique. Ils apparaissent naturellement dans des problémes de clas-
sification. De facon générale, un espace de modules pour une famille X d’ob-
jets et une relation d’équivalence ~ est un espace dont chaque point cor-
respond exactement a une classe d’équivalence de ces objets. Les espaces
de modules sont donc, par définition, des espaces de classification. Dans
notre contexte, les objets qu’on cherche a classifier sont des variétés algé-
briques. Ainsi, une question naturelle est si on peut aussi munir ces espaces
de modules d’une structure algébrique. On souhaite aussi que notre espace
de modules soit unique (& isomorphisme prés).

On considére une classe particuliére d’objets : les fibrés vectoriels sur
une variété algébrique. Plus précisement, un espace de modules de fibrés
vectoriels stables sur une variété algébrique lisse X est un schéma dont les
points sont en bijection naturelle avec les classes d’isomorphisme de fibrés
vectoriels stables sur X.

Ces espaces peuvent étre construits grace a la théorie géométrique des
invariants (GIT) comme quotients de certains schémas par une certaine ac-
tion de groupe naturelle. Néanmoins, cette construction ne nous donne pas
des informations sur la géométrie de ’espace de modules en question. Ainsi,
une fois qu’on a montré l’existence d’un tel espace, il est naturel de chercher
& donner une description de sa structure locale et globale. Dans certains cas,
lorsqu’on analyse la structure algébrique de certains espaces de modules, on
retrouve des variétés projectives issues de la géométrie algébrique classique.
En outre, les automorphismes de ces variétés peuvent étre parfois interpretés
comme des transformations des objets classifiés. Dans ce cas ces automor-
phismes sont dits modulaires.

Cette thése est dédiée a I'étude des espaces de modules de fibrés (respec-
tivement de fibrés quasi-paraboliques) sur une courbe algébrique et lisse sur
le corps des nombres complexes. Le texte est composé de deux parties bien
différenciées :
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Dans la premiére partie, je m’intéresse a la géométrie liée aux classi-
fications de fibrés quasi-paraboliques de rang 2 sur une courbe elliptique
2-pointée, & isomorphisme prés. Les notions d’indécomposabilité, simplicité
et stabilité de fibrés donnent lieu & des espaces de modules qui classifient ces
objets. La structure projective de ces espaces est décrite explicitement, et
on prouve un théoréme de type Torelli qui permet de retrouver les informa-
tions de départ. Cet espace de modules est aussi mis en relation avec I'espace
de modules de fibrés quasi-paraboliques sur P!, qui apparait naturellement
comme revétement de ’espace de modules sur la courbe elliptique. Finale-
ment, on démontre explicitement la modularité des automorphismes de cet
espace de modules. Cette partie correspond a l'article de recherche [28].

Dans la deuxiéme partie, j'étudie I'espace de modules SU(2) de fibrés
semistables de rang 2 et déterminant trivial sur une courbe hyperelliptique C'.
Plus précisément, je m’intéresse a I’application naturelle iz : SUc(2) — |L]*
induite par le systéme linéaire |£|, ot £ est le fibré déterminant, générateur
du groupe de Picard de SU¢(2). Cette application peut étre interpretée en
termes du groupe de Picard de C. En effet, considérons la variété de Picard
Picd~1(C) de fibrés en droites de degré g — 1. Le diviseur canonique de C
O C Pic?™1(C) est défini, en tant qu’ensemble, par

0 := {L € Pic }(C) | h°(C, L) # 0}.

Alors, Iapplication i, s’identifie & 'application 6 : SU(2) — |20| définie
par

9(F) := {L € Pic?"}(C) | h°(C,E ® L) # 0},

et elle est de degré 2 dans notre cas.

Dans le Chapitre 3, on définit une fibration SUc(2) --» P9 dont la fibre
générique est birationnelle & 'espace de modules Mg 2, de courbes ration-
nelles 2g-épointées, et on cherche a décrire la restriction de 6 aux fibres de
cette fibration. On montre que cette restriction est, & une transformation bi-
rationnelle prés, une projection osculatoire centrée en un point. En utilisant
une description due & Kumar, on démontre que la restriction de ’application
0 a cette fibration ramifie sur la variété de Kummer d’une certaine courbe
hyperelliptique de genre g — 1. Cette partie a été développée dans ’article
[29].

1.1 Fibrés quasi-paraboliques sur une courbe ellip-
tique

1.1.1 Définitions

Soit C' une courbe complexe, compacte et lisse de genre g > 0 et soit
T =t + -+ + t, un diviseur réduit sur C. Un fibré quasi-parabolique de
rang 2 (E,p = (p1,...,pn)) sur (C,T) est la donnée d’un fibré vectoriel
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E de rang 2 sur C, et d'un sous-espace linéaire p; C E;, de dimension 1
pour chaque 7 = 1,...,n, ou £}, est la fibre de ¢;. Le sous-espace p; C Ej,
est appelé la structure quasi-parabolique au dessus de t;. Ces objets sont
souvent appellés fibrés quasi-quasi-paraboliques dans la literature. Les fibrés
quasi-paraboliques ont été introduits par Seshadri pour construire une dés-
ingularisation [53] de l'espace de modules de fibrés de rang 2 et degré zéro.

Si la courbe C' est hyperelliptique, on peut étudier la relation entre fibrés
quasi-paraboliques de rang 2 sur C et sur son quotient hyperelliptique. Le
cas g = 0 a été étudié dans l'article [39], et le cas g = 2 a été développé dans
[30]. Dans mon travail [28], je m’intéresse au cas g = 1.

Notation. Dans ce qui suit, les fibrés quasi-paraboliques sont supposés de
rang 2, sauf si le contraire est indiqué, notamment s’il s’agit de fibrés en
droites.

1.1.2 Indécomposabilité, simplicité, stabilité

On considére trois notions associées aux fibrés quasi-paraboliques : in-
décomposabilité, simplicité et stabilité. Un fibré quasi-parabolique est indé-
composable s’il ne peut pas étre écrit comme somme de deux fibrés quasi-
paraboliques linéaires, et simple s’il n’admet pas d’automorphismes non sca-
laires (qui préservent les directions quasi-paraboliques). Soit g = (pu1, ..., fyn) €
[0,1]™ un vecteur de poids. Par définition, un fibré quasi-parabolique &£ est
p-semistable si, pour tout sous-fibré en droites L C E, on a

degFE — 2degl + Z i — Z pi > 0.
piZL piCL

On dit que & est p-stable si 'inégalité est stricte pour tout L.

Ces trois notions coincident quand C' est la droite projective [40], mais
elles différent pour les courbes de genre supérieur [30]. Dans le travail |28],
je m’intéresse au cas (C,T') d’une courbe elliptique C' et d’un diviseur T' =
t1 + to de degré 2. On montre que, dans cette situation, les implications
suivantes ne sont pas des équivalences :

p-stable = simple = indécomposable.

On montre aussi que tout fibré quasi-parabolique simple est p-stable pour
un certain choix de p.

1.1.3 L’espace de modules de fibrés p-semistables

On s’intéresse maintenant aux espaces de modules de fibrés p-semistables
pour p fixé, au sens GIT. Ces espaces ont été étudiés dans le cas g = 0 dans
[6], [40] et [21]. Bauer [6] a prouvé que ’espace de modules correspondant est
rationnel. Casagrande |21] construit cet espace comme une certaine variété
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de sous-espaces linéaires contenues dans l'intersection de deux quadriques.
Plus généralement, tous les espaces de modules de fibrés quasi-paraboliques
connus sont rationnellement connexes. On sait que, pour les surfaces com-
plexes lisses, connexité rationnelle implique rationalité. Il est donc naturel de
s’'intérroger sur la rationalité de ces espaces de modules en genre supérieur.
Notre premier résultat est le suivant :

Théoréme A. Soit C une courbe de genre 1 et T un diviseur réduit de
degré 2. Alors, Uespace de modules Bun*(C,T') de fibrés quasi-paraboliques
p-semistables avec déterminant fixé est isomorphe a P! x P!

Pour fixer les notations, considérons maintenant et dans ce qui suit 1’es-
pace de modules Bun’é(C, T) des fibrés quasi-paraboliques de déterminant
trivial. Si @1 # pe, tout fibré p-semistable est p-stable. Quand py = po,
on a un lieu strictement p-semistable I' C Bunf;(C,T) : c’est une courbe
plongée dans P! x P! comme une courbe de bidegré (2,2). Soit G le groupe
d’automorphismes de P! x P'. On a 'isomorphisme suivant :

G = (PGL(2,C) x PGL(2,C)) x Z/2Z.

Le facteur Z/2Z du produit semi-direct corresponde a 'involution (z,w) —
(w,z) de P! x P!,
Dans la section 2.5.1, on montre le théoréme de type Torelli suivant :

Théoréme B. Soit C' une courbe de genre 1 et T un diviseur réduit de degré
2. Alors, la courbe I' est isomorphe a C, et on peut retrouver le diviseur T a
partir du plongement T' C P* xP'. De plus, il existe des bijections canoniques
entre les ensembles suivants :

courbes courbes
(2,2)-courbes / G & elliptiques / N <1_1> m(tioznle)l_les / N
rc ]Pl % PL 2-pointées o
(C,T) pointées
’ (PL, D +1)

7

1.1.4 L’espace de modules de fibrés simples

L’espace des poids pu est divisé en deux chambres C« et Cs avec espaces
de modules respectifs associés Bung(C,T) et Bung(C,T). Dans chaque
chambre, les espaces de modules Bun’é(C, T) sont constants, i. e. les points
de Bung(C'7 T) représentent les mémes fibrés indépendamment des poids p
Sur la courbe I' on retrouve un phénomeéne de wall-crossing : un point dans I
représente un fibré différent selon que p est dans C- or C-, En revanche, les
fibrés représentés dans le complémentaire Bung(C,T)\T' et Bung(C,T)\T
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sont les mémes. En identifiant les fibrés identiques, on construit le schéma
non-séparé

Buno(C,T) = X~ HX>/ ~

qui parameétre I’ensemble de fibrés quasi-paraboliques simples sur (C,T).

1.1.5 Une application entre deux espaces de modules

Soit D =041+ A+ oo + t un diviseur réduit de degré 5 sur P'. Dans
[40], les auteurs construisent I'espace de modules grossier Bun(P!, D) de
fibrés quasi-paraboliques indécomposables de rang 2 avec déterminant fixé
sur (P!, D) comme un recollement de cartes projectives. Ces cartes sont elle
mémes des espaces de modules Bun” (P!, D) de fibrés v-semistable pour des
poids v spécifiques, et chaque v-chambre correspond & une de ces cartes.

L’une de ces cartes est isomorphe au plan projectif P2. De plus, on a cinq
points fixés dans cette carte : quatre points D; pour ¢ = 0,1, A\, ¢ et un point
spécial Dy. Ces points correspondent a des configurations quasi-paraboliques
particuliéres sur un certain fibré sur P!. La deuxiéme carte S est définie
comme D'éclatement de P? dans ces cinq points. La carte S est donc par
définition une surface de del Pezzo de degré 4.

Soit C' la courbe elliptique définie par le revétement double 7 : C' — P!
ramifié sur les 4 points 0, 1, A et co. Le point ¢t € P! se reléve par ce revétement
en deux points t1 et to dans C.

On construit un morphisme modulaire

® : S = Bun(P!, D) — Bun(C,T) = P! x P

Ce morphisme est essentiellement la composition du tiré en arriére par ’ap-
plication m, suivi de transformations élémentaires de fibrés, qui correspondent
projectivement aux transformations élémentaires classiques des surfaces ré-
glées.

Théoréme C. Le morphisme ® est le revétement double de Pt x P! ramifié
sur la courbe I'.

1.1.6 La géométrie du revétement ¢

On cherche maintenant & donner une interprétation modulaire & la géo-
métrie du revétement ®. Soit 7 I'involution de § induite par 'application de
degré 2 ®. On montre que 7 est le relévement & S d’un automorphisme de de
Jonquiéres de degré 3 du plan projectif. Plus précisément, 7 est le relévement
d’une transformation birationnelle de P? préservant le pinceau de droites qui
passent par le point spécial D; et le pinceau de coniques qui passent par les
quatre points D;. On montre ensuite que le groupe Aut(P! x P!, T") d’auto-
morphismes de P! x P! qui préservent I' est engendré par trois involutions
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00, 01 et ¢7 qui commutent deux a deux. Ces involutions sont modulaires,
dans le sens ol elles correspondent & des transformations naturelles de fibrés
quasi-paraboliques. Elles se relévent respectivement en des automorphismes
0p, 01 et pr de S.

Ces involutions nous permettent de réinterpréter le groupe Aut(S) d’au-
tomorphismes de § comme un groupe de transformations modulaires :

Théoréme D. Le groupe Aut(S) est engendré par les involutions oy, @1 et
T.

Les automorphismes de S sont complétement caractérisés par leur action
sur I’ensemble suivant de 16 éléments de P? : les cing points D;, les dix droites
I1;; passant par D; et D; et la conique II qui passe par tous les points D;. On
calcule explicitement cette action et I’expression en coordonnées projectives
de chaque involution.

1.2 Fibrés de rang 2 sur une courbe hyperelliptique

1.2.1 Les espaces de modules de fibrés vectoriels SU¢(r)

Soit C' une courbe complexe, compacte, lisse et de genre g > 2. Soit
SUc(r) Pespace de modules de fibrés semistables de rang r et déterminant
trivial sur C'. Cet espace de modules est une variété normale, projective et
unirationnelle de dimension (r? — 1)(g — 1).

L’étude de la structure projective des espaces de modules de fibrés pour
rang et genre bas a conduit & des belles descriptions géométriques, souvent
a la rencontre de la géométrie classique. Par exemple, dans le cas d’une
courbe hyperelliptique C, Desale et Ramanan [23] ont étudié le quotient
SUc(2)/i* de l'espace de modules de fibrés par l'application ¢* induite par
I'involution hyperelliptique 7. Ils ont montré qu’il existe deux quadriques
Q1 et Q2 dans I'espace projectif de dimension 2g + 1 telles que le quotient
SU(2)/i* est isomorphe & la variété des sous-espaces linéaires de dimension
g contenus dans ()1, qui appartiennent & un systéme fixé des espaces isotropes
maximaux, et qui intersectent Qo en quadriques de rang au plus 4. On peut
trouver d’autres résultats sur la structure projective de SU¢(r) dans [50] et

[48].

L’application theta

Le groupe de Picard de SU¢(r) est isomorphe & Z, et il est engendré
par un fibré en droites £ qu’on appelle fibré déterminant [7, 8]. Le diviseur
canonique © C Pic/™1(C) est défini en tant qu’ensemble comme

0 :={L € Pic? }(C) | h°(C, L) # 0}.
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L’application naturelle az : SUc(r) --+ |£]* induite par le systéme linéaire
|£| peut étre étudiée grace aux séries linéaires r® sur la variété jacobienne
Jac(C). Plus précisément, soit Pic/™1(C) la variété jacobienne de diviseurs
de degré g — 1 sur C. Pour chaque fibré E € SUc(r), on définit le lieu

9(E) :={L € Pic?"1(C) | h°(C,E ® L) # 0}.

Si O(E) n'est pas égal a Pic?"(C), on a que O(FE) est un diviseur dans
Pic9™1(C). Ce diviseur appartient au systéme linéaire [r©|, ott © est le divi-
seur canonique de Pic/~!(C). On obtient donc une application rationnelle

0:SUc(r) --» |rO].
Le résultat clé est le suivant :

Théoréme 1.2.1 (Beauville, Narasimhan, Ramanan [10]). 1l existe un iso-
morphisme canonique |L|* = |rO| qui identifie ap a 6.

Si 0 est un morphisme, alors c¢’est un morphisme fini. En effet, puisque
le systéme linéaire |£| est ample, 6 ne peut pas contracter des courbes. Il est
connu que 'application # est un morphisme dans les trois cas suivants : r = 2;
r=3et g=2ou3;etr=3et C générique [51]. En outre, 'application 6
n’est pas un morphisme si r > 0 [51, 22|, et elle est génériquement injective
pour C générale et g > r [20].

Le cas r =2

Si C est une courbe de genre g = 2, Narasimhan et Ramanan [46] ont
prouvé que 'application @ est un isomorphisme entre SU(2) et [20] = P3.
Pour les courbes de genre supérieur, on a le résultat suivant :

Théoréme 1.2.2 (|23, 7, 19, 55]). Soit C une courbe de genre g > 3. Alors :
1. Si C n’est pas hyperelliptique, Uapplication 0 : SUc(2) — 20| est un
plongement.

2. 8t C est hyperelliptique, application 6 se factorise par l'involution
hyperelliptique i et plonge le quotient SU-(2)/i* dans |20)].

En particulier, si C est une courbe hyperelliptique avec g > 3, ’applica-
tion 6 est un morphisme de degré 2.

1.2.2 La géométrie de I’application theta

Le but principal de mon travail [29] est d’expliquer la géométrie associée a
I’application 8 dans le cas 7 = 2 et lorsque C est une courbe hyperelliptique.
Dans le cas non hyperelliptique, Particle [1] décrit un lien entre 'espace
de modules SU(2) et I'espace de modules Mo, de courbes rationnelles
avec 2¢ points marqués. Dans le travail [29], la relation avec 'espace de
modules My o4 présente une nouvelle description du morphisme 6 si C' est
hyperelliptique.
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Notation. Dans le texte qui suit, une forme F' de degré r dans P™ dénote
un élément de I'espace vectoriel HO(P", Opn (7)) = Sym” (C"*1)*. Si I'on fixe
une base xq,...,z, de (C""1)* F est simplement un polynéme homogéne
de degré r dans les variables xg, ..., x,.

Une fibration en Mg'g

Soit C une courbe hyperelliptique de genre g > 3. Soit M&g le quo-

tient GIT (P!)29%2//PGL(2,C) de I'espace (P!)29*2 par Paction diagonale
du groupe PGL(2,C) pour la PGL(2, C)-linéarisation naturelle du fibré en
droites &?ZTZOPI (1). C’est donc une compactification de ’espace de modules
Mo,gg.

Mon premier résultat est une extension de [1] au cas hyperelliptique.

Proposition 1.2.1. Soit D un diviseur effectif général de degré g sur C.
Il eziste une fibration pp : SUC(2) --+ |2D| = P9 dont la fibre générale est

birationnelle a MS}%. De plus, on a

1. Pour tout diviseur général N € |2D)|, il existe une application ration-
nelle dominante hy : P?\?_Z ——» pBl(N) et 2g points fixés sur ]P’?\?_Q,
tels que les fibres de hy sont les courbes rationnelles normales qui
passent par ces points.

2. La famille de courbes définie par hy est la famille universelle de
GIT

courbes rationelles normales sur la fibre générique Mgy, .
La construction de ’espace IP’?\?_2 est explicite : on considére le diviseur
K + 2D dans C, out K est le diviseur canonique. Ce diviseur apparait natu-
rellement quand on regarde 'espace P Ext!(O(D), O(—D)) = |K + 2D|* qui
classifie les extensions de la forme

(e) 0—O(-D)— E.— O(D)— 0.

Le diviseur K +2D est trés ample, en particulier ’application rationnelle
associée au systéme linéaire |K + 2D| plonge la courbe C' dans un espace
projectif IP%(]_2. L’espace IP’?\?_2 est définit comme le sous-espace projectif
engendré par le support du diviseur NV, vu comme ensemble de points dans
C C Png_2. Cet ensemble est constitué de 2g points p1,...,pa4, ce sont
exactement les points marqués dans P?\?_z énoncés dans la Proposition 1.2.1.

Une courbe rationnelle normale spéciale

L’objectif maintenant est de décrire 'application 6 restreinte aux fibres
génériques de la fibration pp. Pour cela, la construction qui suit est cruciale :
Soient deux points p, i(p) dans C en involution hyperelliptique, et consi-
dérons la droite [ C IP%]_2 sécante & C' et passant par p et i(p). On montre
que la droite [ intersecte toujours ’espace ]P’?\‘?_z en un point exactement, et
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que le lieu I' C P?\?_Q de ces intersections quand on fait varier p,i(p) est une
courbe rationnelle normale qui passe par les points pi,...,p2y. Par la Pro-
position 1.2.1, application hpy contracte les courbes rationnelles normales
de P?\?_z passant par pi,...,p2g. En particulier, hy contracte la courbe I'
en un point P € p;'(N) o M&g.

Dans Darticle [35], Kumar définit le systéme linéaire Q de (g — 1)-formes
sur P2973 qui s’annulent avec multiplicité g — 2 sur 2g — 1 points généraux.
II montre que  induit une application birationnelle iq : P2973 —-» Mg:gg
sur le quotient GIT de M 4. Le systéme linéaire partiel A C €2 des formes
qui s’annulent avec multiplicité g — 2 dans un point général additionnel e €
P29-3 induit une projection rationnelle  : M&gg --» |Al*. En particulier,
K est une projection osculatoire centrée au point w = ig(e). Kumar montre
aussi que cette application est de degré 2. Mon deuxiéme résultat décrit
birationnellement les restrictions de ’application 6 aux fibres pJ_D1 (N) alaide
de 'application de Kumar :

Théoréme E. L’application 0 restreinte a la fibre générique pBl(N) est la
projection osculatoire k centrée au point P = hy(I'), modulo composition
avec une application birationnelle.

Kumar démontre que 'image de s est une composante connexe de 1’es-
pace de modules SU¢,, (2), ou Cy, est la courbe hyperelliptique de genre g —1
obtenue comme revétement ramifié de P! qui ramifie exactement sur les 2g
points définis par w € ./\/lgjgg. 11 montre aussi que le lieu de ramification
du morphisme & est la variété de Kummer Sing(SU¢(2)) = Kum(Cy,) C
SUc,, (2), i. e. le lieu des fibrés décomposables L @ L™, avec L € Jac(Cy).

Ces résultats de Kumar et le Théoréme E nous permettent de décrire le

lieu de ramification de ’application @ :

Théoréme F. Le lieu de ramification de application 0 est birationnel a une
fibration sur |2D| =2 P9 en variétés de Kummer de dimension g — 1.

1.2.3 Les applications de classification

Un outil fondamental dans les arguments de [29] est 'étude des applica-
tions de classification

fr :PExtY(L™', L) --» SUc(2),

ou L est un fibré en droites. Plus précisément, ’application f; associe & la
classe d’équivalence d’une extension

() 0L —E, —-L!'=o0.

le fibré vectoriel E, € SUc(2). Les applications fr, ne sont pas toujours bien
définies : en effet, le lieu de base de fr est le lieu de classes d’extensions
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instables dans PExt! (L', L). Ce lieu correspond a une certaine variété sé-
cante de la courbe C' C IP)BDg*Q =PExt} (L% L).

L’emploi de ce type d’applications de classification est une approche clas-
sique & I’étude des espaces de modules de fibrés. Par exemple, ils ont été utili-
sés par Atiyah [3] pour étudier les fibrés vectoriels sur les courbes elliptiques,
et par Newstead [47] pour étudier 'espace de modules de fibrés vectoriels se-
mistables de rang 2 avec déterminant impair fixé dans le cas g = 2. Dans [1]
et [15], ils ont été utilisés pour étudier I’espace de modules SU¢(2) quand C
est une courbe de genre g > 2, non hyperelliptique si g > 2.

Notons ¢y, := 6o fr. Bertram [11] montre I'existence d’un isomorphisme

~ 39—2 7g—1
HO(SMC(Q)aE) = HO(]P)DQ aIg’ (g))¢ (11)
qui se traduit en la caractérisation suivante, clé dans les preuves de [29] :

Théoréme 1.2.3 (Bertram [11]|). L’application @1, est donné par le systéme
linéaire |Igfl(g)| de formes de degré g qui s’annulent avec multiplicité au
moins g — 1 sur C.

Les applications de classification ¢, apparaissent dans [29] dans le contexte
suivant :

Proposition 1.2.2. Soit D un diviseur effectif de degré g sur C et posons
L = O(D). Alors, l'application k o hy coincide avec la restriction pp|p2-2,
N

modulo composition avec une application birationnelle.

La restriction de ¢; en genre bas

Une étude précise du lieu de base de I'application de restriction ¢y, |p2q—2
N

conduit au résultat suivant :

Théoréme G. Soit C' une courbe hyperelliptique de genre 3, 4, ou 5. Alors,
L. .. N 2g—2 y . .

pour N générique, la restriction a Py = de lapplication oy, est exactement

la composition ko hy.



Chapitre 2

Geometry of the moduli of
parabolic bundles on genus 1
curves

2.1 Introduction

Let C be a smooth compact projective curve over C and T' =ty +-- -+,
an effective reduced divisor on C of degree n. A rank 2 quasi-parabolic bundle
(E,p = (p1,-..,pn)) over (C,T) consists in a rank 2 vector bundle E over
C' together with 1-dimensional linear subspaces p; of the fiber Ey, of t; for
1 =1,...,n. The linear subspaces p; are called the quasi-parabolic directions.

If C is hyperelliptic, we can study the relation between quasi-parabolic
bundles over C' and over its hyperelliptic quotient. The case g = 0 is explored
in [39], and the case g = 2, building on [15] and [14], is developed in [30].
Here we investigate the case g = 1.

We are interested in three notions associated to these objects: indecom-
posability, simplicity and stability. A quasi-parabolic bundle is indecompos-
able if it cannot be written as a sum of two quasi-parabolic line bundles,
and simple if it does not admit non-scalar automorphisms (preserving quasi-
parabolic directions). Let p = (p1,...,pun) € [0,1]™ be a vector of weights.
By definition, a quasi-parabolic bundle £ = (F,p) is p-semistable if, for
every line subbundle L C E, we have

indy (L) := degE — 2degL + > pui — Y p1i > 0.
piZL p;CL

We say that the bundle £ is p-stable when the inequality is strict for every
L.

These three notions coincide when the curve is the projective line (see
[40]), but they are different for curves of higher genus. In this paper, we
study the case of an genus 1 curve C with a divisor T' = t1 + 9 of degree 2.

13
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We show that, in this situation, p-stability implies simplicity and simplicity
implies indecomposability:

p-stable = simple = indecomposable.

We also show that every simple bundle is pu-stable for some . Thus, the set
of simple quasi-parabolic bundles is the union of the different sets of u-stable
bundles when g varies.

We are interested in the moduli space of p-semistable bundles, for fixed
p. These spaces have been studied in the genus 0 case in [6], [40] and [21]. It
has been shown by Bauer [6] that the corresponding moduli space is rational.
Furthermore, Casagrande [21]| constructs this space as the variety of linear
subspaces of a projective space contained in the intersection of two quadrics.
More generally, all the known moduli spaces of quasi-parabolic bundles are
rationally connected. For complex smooth surfaces, this implies rationality.
Thus, it is natural to ask about rationality of these moduli spaces in higher
genus. In our case, this question is answered positively in Section 2.4, where
we prove the following Theorem:

Theorem A. Let C' be a smooth genus 1 curve and T = t1 + to a reduced
divisor of degree 2. Then, the moduli space Bunk'(C,T) of p-semistable
quasi-parabolic bundles with fized determinant L is isomorphic to P* x P!,

For py # peo, every p-semistable bundle in this moduli space is p-stable.
For p1 = po, we have a strictly p-semistable locus I' C Bung(C7 T'), which
is a bidegree (2,2) genus 1 curve in P! x P!. The curve I does not depend
on the weights 1 and ps. We show that this locus contains the initial data
(C,T), equivalent to the data of a degree 4 reduced divisor D and a point
t ¢ D in P!. This is proved in the following Theorem of Torelli type, where
we consider all curves smooth:

Theorem B. Let C be a smooth genus 1 curve and T = t1 + to a reduced
divisor of degree 2. Then, the curve I' is isomorphic to C, and we can
recover the divisor T from the embedding T C P' x PL. Furthermore, let
G = Aut(P! xPL,T") be the group of automorphisms of P* x P! preserving the
curve I'. Then, there exist one-to-one correspondences between the following
sets:

5 9 2-punctured (4 +t1)_d
(2,2)- 1:1 genus 1 1:1 puncture
curves G +—— /~ — rational /N
I c PLxP! eurves curves
T
“n (B, D +1)
Vs

where the relations ~ in the second and third sets are defined as follows:
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— In the second set, (C,T) ~ (C',T") if there exists an isomorphism
between C and C' sending the divisor T to T".

— In the third set, (P*, D +1t) ~ (PL, D’ +') if there exists an automor-
phism of P! sending the divisor D to D' ett to t'.

The space of weights p is divided in two chambers C. and Cs with
associated moduli spaces Bung(C, T') and Bung,(C, T). Inside each chamber,
the points in Bun{s(C, T') are represented by the same bundles, regardless of
the weight. Along the curve I' occurs a wall-crossing phenomena: a point in
I' is represented by a different bundle for g in C. or Cs. In contrast, the
bundles appearing in the spaces Bung(C, T) \ T and Bung,(C,T) \T are the
same. Identifying identical bundles, we construct the non-separated scheme

Buno(C,T) = C< [| C>/ ~

which parametrizes the set of simple quasi-parabolic bundles on (C,T).

Let D be a reduced divisor on P! of degree 5. In [40], the authors
construct the full coarse moduli space Bun_1 (P!, D) of rank 2 indecompos-
able quasi-parabolic vector bundles over (P!, D) as a patching of projective
charts. These charts are moduli spaces Bun” (P!, D) of v-semistable bun-
dles for specific weights v. Thus, when we move weights from one chamber
to another, we change between the charts.

One of these charts is isomorphic to the projective plane P2. We have
five points in this chart, namely four points D; for i = 0,1, A, t; and a special
point D;. Moving weights, we change to the chart S, which is the blow-up
of P? in these five points. This chart is by definition a del Pezzo surface of
degree 4 (recall that a del Pezzo surface of degree d is a blow-up of the plane
in 9 — d points).

We construct a degree 2 modular map

& : S = Bung (P!, D) — Bun®(C,T) = P! x P',

This map is the double cover of P! x P! ramified over the curve I'. We
give a modular interpretation of the geometry of this covering. We start by
studying the automorphism 7 of § induced by ®. This map is the lift of a de
Jonquiéres automorphism of the projective plane. More precisely, it is the
lift of a birational transformation of P? preserving the pencil of lines passing
through D; and the pencil of conics passing through the four points D;.
Then, we show that the group Aut(P! x P!, T") of automorphisms of P! x P!
preserving I' is generated by three involutions gy, 01 and ¢ commuting
pairwise. These involutions are modular, in the sense that correspond to
natural quasi-parabolic bundle transformations. They lift to automorphisms
agp, 01 and wT of S.

These involutions allow us to reinterpret the group Aut(S) of automor-
phisms of § in modular terms:
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Theorem C. The group Aut(S) is generated by the involutions oy, r and
T.

These automorphisms are completely characterized by their action on a
set 2, which is the union of the following geometric elements in P2: the five
points Dj;, the ten lines 1I;; passing by D; and D; and the conic II passing
by all the points D;. We compute explicitely this action and the coordinate
expression for each involution.

2.2 GIT moduli spaces and elementary transforma-
tions

In this Section, we recall the definitions of the main objects and maps that
appear in this paper. These are the moduli spaces of rank 2 quasi-parabolic
vector bundles over (C,T') and elementary transformations of quasi-parabolic
vector bundles, where C' is a genus g curve and 7' is an effective reduced
divisor.

2.2.1 The GIT moduli space of quasi-parabolic vector bun-
dles

Let C' be a genus g > 0 curve. Let T' = t; + --- + t, be an effective
reduced divisor of degree n on C. Let g = (pu1, ..., tn) € [0,1]" be a vector
of weights.

The coarse moduli space Bun’z(C, T) of p-semistable quasi-parabolic
bundles of determinant L over (C,T) is a separated projective variety. The
subset of p-stable points is Zariski open and smooth, and the boundary is
the p-strictly semistable locus, containing the singular part (see [45], [13],
[43], [52], [35] and [12]).

Let (E,p) be a rank 2 quasi-parabolic bundle over (C,T) and T/ C T a
subdivisor. A quasi-parabolic line subbundle of (E,p) is a quasi-parabolic
line bundle (L, p’) over (C,T") such that L C E and L does not pass through
the quasi-parabolic directions supported by 7”7 = T — T" (here, p’ is the
unique quasi-parabolic structure over (C,T")). The quotient quasi-parabolic
bundle is the quasi-parabolic line bundle (E/L,p") over (C,T").

The slopes of £ = (L,p’) and £ = (E, p) are respectively the quantities

1
slope(L) :=deg L + Z wi , slope(€&) = 3 deg E + Z L
t, €T’ t, €T
With this notation, we have that

ind, (L) = 2 slope(€) — 2 slope(L).
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In particular, £ is p-semistable if, and only if, slope(€) > slope(L) for every
quasi-parabolic line subbundle £, the strict inequality corresponding to p-
stability.

Let £ be p-semistable of rank 2. A Jordan-Hélder filtration is a sequence

oOcLcé

such that slope(£) = slope(£). This sequence is not canonical, but the
graded bundle gr€ = L ® (£/L) is canonical. The moduli space Bun¥ (C, T')
is constructed by identifying bundles £ and &’ if gr€ = gr€’ as holomorphic
quasi-parabolic bundles. We say then that £ and &’ are in the same S-
equivalence class (see [45] and [13]).

From now on, we will write Bun’(C,T) instead of Bung(B)(C, T) for a
divisor B.

2.2.2 Elementary transformations

Let C' be a genus g > 0 curve. Let T' = t; + --- + t, be an effective
reduced divisor on C' of degre n. Let g = (1, ..., un) € [0,1]™ be a vector
of weights.

We recall here the fundamental properties of elementary transformations
of quasi-parabolic vector bundles. For a more complete reference, see [41],
[30], [39] or [27].

Let E be a rank 2 vector bundle over C. Let t € C, and let us denote
by E; the fiber of t. The projective space P(E}) of the fiber is the space of
1-dimensional vector subspaces of E;. The projectivization P(E) of E is the
projective bundle given by taking the projective spaces P(E); = P(E;) for
every t € C. Hence, P(E) is a ruled surface.

Let (E,p) be a quasi-parabolic bundle over (C,T). The projectivization
P(E, p) of (E, p) consist of the projective bundle P(E) together with the line
pi € P(Ey,) for each t;.

The elementary transformation elm;, of P(E, p) is a birational transfor-
mation of the total space tot(P(E)): it is the blow-up of the point p; € P(E)
followed by the contraction of the total transform F of the fibre F. The
point resulting from this contraction gives the new quasi-parabolic direction
P;-

In the vectorial setting (F,p), we have two transformations which coin-
cide projectively with the above definition: the positive elementary transfor-
mation elm; and the negative elementary transformation elm, . We recall
their properties in the following Proposition:

Proposition 2.2.1. Let (E, p) be a quasi-parabolic bundle over (C,T). Then,
the quasi-parabolic bundle (E',p') = elmtf,(E,p) satisfies the following prop-
erties:

— det(F',p') = det(E,p) ® O(t;).
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— If L C E is a line subbundle passing by p;, its image by elng S a
subbundle L' =2 L @ O(t;) of elm;r,(E) not passing by p;.
— If L C E is a line subbundle not passing by p;, its image by elm;: 18
a subbundle L' =2 L of ehn:;(E) passing by p;.
For the negative elementary transformation, the quasi-parabolic bundle (E",p") =
elm, (E,p) satisfies:
— det(E",p") = det(E, p) @ O(—t;).
— If L C E is a line subbundle passing by p;, its image by elm; s a
subbundle L' = L of elmtt(E) not passing by py .
— If L C E 15 a line subbundle not passing by pi, its image by elm;. s
a subbundle L' = L ® (—t;) of elm,. (E) passing by py.

From this Proposition, we obtain
(E,p) is (u)-semistable = elm; (E, p) is (p;)-semistable.

where p = (p1,..., 1) and p; = (p1,...,1 — pi, ..., pin). Therefore, an
elementary transformation is a class of isomorphisms, well-defined between
the corresponding moduli spaces:

e1m+,
Bun¥(C,T) — Bungéti)(C, T).

The inverse map is elm; , and the composition elm;f oelmz; is the tensor
product by O(t;). If t; # t;, elmj oelm; = elmj oelmy. We denote by
elm7, the composition elmy, = elml’{i1 o---oelmy ., where T" =1t; + -+
t;,, C T is a subdivisor.

Tensoring by a line bundle M gives the twist automorphism

Bun®(C,T) M, Bunt

LoM? (C’ T)'

If the genus of C is 1, the line bundles of even degree over C' are always of
the form M? for a suitable line bundle M. Consequently, the moduli spaces
Bun¥(C,T) and Bun¥,(C,T) are isomorphic if the degrees of L and L' have
the same parity. Thus, if ¢ = 1 it is enough to study the moduli spaces
Bun’(C,T) for L = O and L = O(wx), for a fixed point ws € C.

Notation. Let us denote by Bunf; (C,T') the moduli space Bung(wm) (C,T).

2.3 Rank 2 indecomposable vector bundles over genus
1 curves

Let C be a genus 1 curve. Let Jac(C) = Pic®(C) be the Jacobian of C.
Recall that the variety Jac(C') is a curve isomorphic to C. Moreover, Jac(C)
is a group, and the 2-torsion subgroup Jac(C)[2] consists of four torsion
bundles L in Jac(C'), thus satisfying L? = O.
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2.3.1 The group law in C'

Let us now fix an embedding C' C P? such as C is given by the equation
y* = (e —1)(z -2

in an affine chart, with A € C\ {0,1}. Let 7 : C — P! be the double cover
(z,y) — x. We consider the usual group law in C' given by collinearity. Let
w; be the four Weierstrass points, namely the preimages of the ramification
points ¢ = 0,1, A\, 00 via m. The point at infinity we, is an inflection point
on the curve, and it is thus the identity element for the group action.

Every element L of Jac(C) is of the form L = O(p — ws). The elements
of the 2-torsion subgroup Jac(C')[2] are the four line bundles

Lk = (’)(wk — woo)

corresponding to the Weierstrass points wy on C, for k € A ={0,1, A, 0o}.
Let g € C be a point. We define an involution ¢, : C' — C' as follows: for
every p € C, 14(p) is the unique point in C satisfying the following equation
of linear equivalence:
P+ q+1g(p) ~ 3wee.

The subgroup Jac(C')[2] acts on Jac(C) by tensor product of line bundles.
Each element Lj of Jac(C)[2] thus induces an involution on Jac(C'), and
therefore also on C.

The double transpositions of P!

Consider the set A = {0,1,\,00} C P!. For each subset Q C A of two
points, there exists un automorphism of P! that exchanges the points in 2,
and the points in A\ . More precisely, let k£ € A, and consider the following
maps:

A zZ— A _)\z—)\

Po(z) =~ Bilz)=——7, B(x)=——

For k € A\{oo}, the map f3y, is the unique automorphism of P! that permutes
the points in the pairs {k,00} and A\ {k,o0}. We adopt the notation S
for the identity map of P!,

Let us also remark that the maps (8, are involutions, and that we have
the following relation:

Bo o B1 = Ba.

The double transpositions are closely related to the action of the sub-
group Jac(C)[2]:
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Proposition 2.3.1. Let A € C\ {0, 1}, and let C be the elliptic curve given
by the equation y?> = z(z — 1)(x — ). Let k € A ={0,1,\,00}. Then, the
mwvolution C ®—Lk> C coincides with the composition ty,, © tw., . Moreover,
the following diagram commutes:

c 2k, o

i
]P)l Br ]P)l

Proof. Let M = O(p — ws) be an arbitrary line bundle of degree 0. Then
M ® L = O(p — wg) = O(q — weo) for a suitable ¢ € C. The group law
on C implies that ¢, wi and ¢, (p) are collinear in the projective model
P? of affine coordinates (x,y). This implies ¢ = ty, © tw. (p). Since the
hyperelliptic involution ¢y, and the twist ¢y, o ty,, commute for all &, the
map B is well defined.

The set W := {wp, w1, wy, Weo} is invariant under the map ¢y, © Ly
Since points wy, in C' are projected by 7 to points k in P! for k € A, the
map [ is as described. O

2.3.2 Indecomposable rank 2 vector bundles over C'

The classification of indecomposable vector bundles E of rank 2 over
genus 1 curves C' was achieved by Atiyah in [3]. In this Section we recall
some of his results. For a fixed determinant, the set of these bundles is
parametrized by the Jacobian of C.

Let Ey, E1 be the unique non trivial extensions given by exact sequences

0= 00— F - Owx) —0 and 0—0— Ey— O—=0.
The following results are due to Atiyah (1-5) and to Maruyama (6):
Theorem 2.3.2 (Atiyah [3], Maruyama [42]). The bundles E1 and Ey satisfy
the following properties:

1. The vector bundle Ep is the unique indecomposable rank 2 bundle of
determinant O(weo) up to isomorphism.

2. Let L € Jac(C). Then, there is a unique inclusion L C Ej.
8. The bundle E1 does not admit non-scalar automorphisms.

4. The indecomposable rank 2 vector bundles of trivial determinant are
exactly those of the form Ey ® Ly, where Ly is a torsion line bundle.

5. There is a unique inclusion O C Ey.

6. Let T = t1 + to be a reduced divisor in C. Consider the following set
of quasi-parabolic bundles over (C,T):

P = {(Eo,p = (p1,p2)) | p1 C O and po ¢ O}



CHAPITRE 2. MODULI OF PARABOLIC BUNDLES 21

The group of automorphisms of Ey modulo scalar automorphisms acts
transitively and freely on this set.

Let us sketch an argument for (6). By Theorem 2 and Remark 3 of [42],
the group of automorphisms of P(Fy) is C. This group acts by translation in
each fiber and fixes the section corresponding to the line subbundle O C FEj.
Since p; is contained in O, the action of this group is clearly transitive and
free on the set Pj.

Remark. By (3), Ey only admits scalar automorphisms. On the other hand,
multiplication by torsion line bundles give the automorphisms of the projec-
tivisation bundle P(E7). In contrast, Fy admits non-scalar automorphisms.
In fact, for every line bundle L of degree —1 and every quasi-parabolic bun-
dle in Py, there is a unique inclusion L C FEj such that L passes by both
quasi-parabolic directions p; and po.

The geometry of P(E))

Let us fix a point p € C and a line bundle L € Jac(C). By (3) in
Theorem 2.3.2, L is a subbundle of F; and the inclusion is unique (up to
scalar multiplication). This inclusion thus defines a single quasi-parabolic
direction my(L) in the fiber (E7), of p. Hence, we have a map

my : Jac(C) — P(Eq)|,.

The line subbundle L C E; correspond to a cross-section sy, of self-intersection
+1 of the ruled surface P(F). The following Proposition describes the ge-
ometrical situation of these cross-sections: for every point m in the fiber
P(E1)|p there are generically two +1 cross-sections of P(E;) passing through
m.

Proposition 2.3.3. Let A € C\ {0, 1}, and let C be the elliptic curve given
by the equation y* = x(x — 1)(x — X). Let p be a point of C. Then, the map
my : Jac(C) — P(E1)|p is of degree 2 ramified in four points. If z € P(E4)|,
s a mon-ramification point, we have

my ' (2) = {0(q — wee), O(1p(q) — woo)}

for q € C. The preimages of ramification points are the four line bundles
M = O(q — weo) with 1y(q) = q. They satisfy M? = O(ws — p).

Proof. Let L = O(q — ws) € Jac(C) be a non-ramification point of m,,.
Let L' = O(§ — ws) # L such that m,(L) = m,(L’) = m. The associated
cross-sections sy, and sy only intersect in m. In particular, the underlying
bundle E of the image of the quasi-parabolic bundle (Eq,my,(L)) over (C,p)
via elm; is decomposable:

E:O(p'i'q_woo)@o(p“‘q_woo)
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By the properties of elementary transformations, we have that det £ =
O(wso + p), which implies ¢ = ¢,(q). Suppose that there is a third dis-
tinct line bundle L” passing through m. Then, the projective bundle P(E)
has three non crossing +0 sections sy, sy/, sy, implying that E is trivial.
But then F = elm, (E) is decomposable, which is absurd. This proves that
the map m,, is of degree 2, and the four ramification points are the fixed
points of the involution ¢,. O

2.3.3 The Tu isomorphism

Let C be a curve of genus 1. We say that a rank 2 (non quasi-parabolic)
vector bundle F over C'is semistable (resp. stable) if it is p-semistable (resp.
stable) for g = (0,...,0). The moduli space Bunp(C') of semistable rank 2
vector bundles over C' with trivial determinant is constructed in [54].

The bundles appearing in Bunp(C) are in fact all strictly semistable.
They are the decomposable bundles L @& L™, together with the indecompos-
able bundles Fy ® L, with L a torsion line bundle.

Theorem 2.3.4 (Tu [54]). Let A € C\{0,1}, and let C be the elliptic curve
given by the equation y*> = x(xz—1)(x— ). Then, the moduli space Bunp(C)
is isomorphic to the quotient of Jac(C') by the hyperelliptic involution. More
precisely, there is an isomorphism

Bunp(C) 1u, pt

such that Tu(P) = 7(p), where P = [L ® L] for L = O(p — weo) and  is
the hyperelliptic cover. Moreover, we have
— Ifp € P\{0,1,\, 00}, P is represented by a single isomorphism class
Lo LY.
— Ifp=Fk €{0,1,\,00}, P is represented by two different isomorphism
classes Ly @ Li] and [Ey ® Lg].

For a classification of more general principal bundles over genus 1 curves,
we refer to [38].

The forgetful map

Let p € [0,1]™. The forgetful map Forget : Bun/s(C,T) — Bunp(C) is
defined in the obvious way:

Forget[F, p| = [E].
Proposition 2.3.5. The map Forget is an algebraic map.

Proof. First, let us remark that the map Forget is set-theoretically a well-
defined map. Indeed, the underlying bundles of the quasi-parabolic bundles
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appearing in the classification of Proposition 2.4.5 are either of the form
L@ L7, for L € Jac(C) or of the form Ey ® L, for L € Jac(C)[2]. These
are all strictly semistable by Theorem 2.3.4.

Let p € [0,1]? \ W’. According to Proposition 2.4.7, the quasi-parabolic
bundles in Bung(C, T) are all stable. By the universal property of the mod-
uli space Bunf;(C,T), there exists an universal family defined over the set
Bunf;(C,T), i.e. a vector bundle € over C' x Bun;(C,T) together with a
line subbundle § of &|px7. The map Forget transforms this family on the
family given by the vector bundle €. This map is algebraic.

If v € W/, we have a canonical isomorphism

¢ : Bung(C,T) — Bunfs(C, T),

with g € [0,1]2 \ W, such that the diagram

Bun’(C,T) —2— Bunf(C,T)

lForget
Forget,,

Bunp(C)

commutes set-theoretically. Since ¢ and Forget, are algebraic, the compo-
sition Forget,, is also algebraic. O

2.4 The coarse moduli space of quasi-parabolic bun-
dles over a genus 1 curve

Let C be a genus 1 curve. Let T' = t; +12 be an effective reduced degree 2
divisor on C. In this Section, we describe the GIT moduli space Bun¥ (C,T)
of p-semistable rank 2 quasi-parabolic bundles with quasi-parabolic direc-
tions over T and fixed determinant L. This moduli space depends on the
choice of weights. More precisely, there is a hyperplane cutting out [0, 1]?
into two chambers, and strictly p-semistable bundles only occur along this
wall. The moduli space Bun¥'(C,T) is constant in each chamber, i. e. the
set of quasi-parabolic bundles representing each of its points does not vary.

While we are mostly interested in the trivial determinant case, it turns
out that the computations are easier in the odd degree case. Therefore, we
will first study the odd degree case and then translate our results to the even
degree setting.

2.4.1 The odd degree moduli space

Let C be a genus 1 curve. Let T' = t; 4 t2 be an effective reduced degree
2 divisor on C. Let wy be a point of C'. We remark that we do not specify
an embedding of C in P? in this Section, but we keep the notation ws, for
coherence with the upcoming sections.
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In this Section, we describe the moduli space Bunf, (C,T), subsequently
giving a proof of Theorem A. Let us define the wall W C [0,1])? as the
hyperplane p; 4+ po = 1. We will see that semistable bundles arise only when
weights are in W. Let us start by listing p-semistable and p-stable bundles
in W:

Proposition 2.4.1. Let C be a genus 1 curve, and let T = t1 + to be an
effective reduced divisor on C. Let ws be a point of C. Let p be weights
in the wall W, with u; # 0 for i = 1,2. Then, the quasi-parabolic bundles
representing points in Bunk, (C,T') are exactly the following:
— p-stable bundles:
— (E1,p) with quasi-parabolic directions p not lying on the same
subbundle L € Jac(C).
— Strictly p-semistable bundles:
— (F1, p) with quasi-parabolic directions p lying on the same subbun-
dle L € Jac(C).
— E=L® L Y(wy) with L € Jac(C) and no quasi-parabolic direc-
tions lying on L™ (wso).
If i = 0, we also find the bundles E = L & L™ (ws) with m; lying on
LN weo)-

Proof. By Theorem 2.3.2, the underlying vector bundle of an element of
Bunf_(C,T) is either decomposable or ;. The result follows from direct
computation of the p-quasi-parabolic degree of each bundle. O

Now we describe the S-equivalence classes in Bunf, (C,T'). Let I' be the
strictly p-semistable locus. We have the following result:

Theorem 2.4.2. Let C' be a genus 1 curve, and let T = t1+t2 be an effective
reduced divisor on C. Let wso be a point of C. Let p be weights in the wall W .
Then, the locus I' C Bunf, (C,T) is a curve parametrized by the Jacobian
of C'. More precisely, if 0 < p1, pe < 1, for each point L in I there exists a
unique L € Jac(C) such that L is represented by precisely the following three
different isomorphism classes of quasi-parabolic vector bundles:
— E<(L) = (E1, p) with both quasi-parabolic directions lying on L C Ej.
— &-(L) = (L ® L Y(ws), p) with quasi-parabolic directions outside of
L™ Y(wso), not on the same L.
— E_(L) = (L® L™ (ws), p) with both quasi-parabolic directions on the
same L.

Proof. We claim that the three bundles above are all of the same S-equivalence
class, i. e. they are all identified in a single point in the moduli space. Indeed,
a Jordan-Holder filtration for the first configuration is 0 C (L,p’) C E<(L),
where (L, p’) is the unique quasi-parabolic structure over (C,T). The bun-
dles (L,p’) and £~ (L) have equal slope 1. This gives the graded bundle

g1, E<(L) = (L) & (L7 (ws), )-
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For the second configuration, we choose the filtration 0 C (L™} (woo), ) C
&~ (L) with associated graded bundle

gr, &5 (L) = (L7 (weo), ¢) @ (L, p).

Since clearly gr,£<(L) = gr,,E (L), the quasi-parabolic bundles £<(L) and
E~(L) are in the same S-equivalence class. The second filtration works also
for the bundle £~ (L), hence this bundle is also identified with the previous
two.

From the description of strictly p-semistable bundles in Proposition 2.4.1,
it is clear that no other bundle belongs to the same S-equivalence class.
Consequently, the map I' — Jac(C') given by [E.(L)] — L is an isomorphism,
where [E.(L)] is the S-equivalence class of the three quasi parabolic bundles
E«(L), E~(L) and E-(L). O

A map onto Bunf_(C,T)

Fix p in the wall W. By Proposition 2.4.1, p-stable bundles are of the
form (E7, m). Let us consider the vector bundle

¢ =E x {0} 2% X = O x (B(E1)y, x P(E1),)

where p : E1 — C'is the Atiyah bundle. The subvariety
Y =Tx (P(E1), xP(E1),) CX
is of codimension one. Let § be the subbundle of €|y defined by

3 _Jmx {0} k=1
(tk,p1p2) = p2 x {0} ifk=2

where t, € T and p; C (E1)l|y, is the line passing by the origin of (E7)ly,
corresponding to the point p; € P(Ey);,. The pair (&,F) is an algebraic
family of quasi-parabolic vector bundles over (C,T') over P(E})¢, x P(E)y,.
Moreover, the fibers of this family are quasi-parabolic bundles of the form
(E1,p = (p1,p2)) over (C,T). This family induces an algebraic map

M :P(E1)s, x P(E1)s, — Bunf_(C,T)

given by M(p1,p2) = [E1,p = (p1,p2)]. We are now in position to prove
Theorem A when weights are in the wall.

Theorem 2.4.3. Let C be a genus 1 curve, and let T = t1+t2 be an effective
reduced divisor on C. Let woo be a point of C. Fix a vector of weights p in

the wall W. Then, the map M 1is an isomorphism. Furthermore, the curve
T is of bidegree (2,2) in P(E1)s, x P(Ep), = P! x P
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Proof. Let £ = (E1,p) be a quasi-parabolic bundle. If £ is stable, then it is
the only quasi-parabolic bundle in its S-equivalence class. If £ is semistable,
Theorem 2.4.2 shows that it is the only quasi-parabolic bundle in its S-
equivalence class having F; as underlying bundle. This shows injectivity,
and surjectivity is also clear from Theorem 2.4.2.

Strict p-semistability occurs when there is a degree 0 line subbundle L
passing through both quasi-parabolic directions. For a generic choice of m1,
there are two of these line subbundles passing through m;, thus defining
generically two quasi-parabolic directions on the fiber of ¢35 (see Proposition
2.3.3). Hence, the locus of strictly p-semistable quasi-parabolic configura-
tions is a curve of bidegree (2,2). Theorem 2.4.2 shows that this locus is
exactly I'. O

When we move the weights p outside the wall and inside the cham-
bers, the family of p-semistable bundles changes. More precisely, some of
the formerly strictly p-semistable bundles become stable, while some others
become unstable. Therefore, points in I' are represented by different isomor-
phism classes of bundles depending on the choice of weights. The following
Proposition summarizes the situation:

Proposition 2.4.4. Let C be a genus 1 curve, and let T = t1 + to be an
effective reduced divisor on C. Let wso be a point of C. Let pu be a vector of
weights outside the wall. Then, the moduli space Bunt; (C,T') is isomorphic
to PL xIP'. Each point in this space is represented by a single p-stable bundle.
Points outside T' are represented by a single quasi-parabolic configuration
(E1,p) with p not lying on the same line subbundle L € Jac(C'). FEach point
L €T is represented by:

— The bundle E<(L), if p € I.

— The bundle E< (L), if p € I~.

Proof. 1t is sufficient to show that the bundle £.(L) is p-stable when p; +
p2 < 1 and p-unstable when p + po > 1, and that the bundle & (L)
is respectively p-stable and p-unstable in the opposite chambers. This is
proved by computing the quasi-parabolic p-degree of L in each case. O

We have proven that Bunf, (C,T) is isomorphic to P! x P! for every p.
The same result holds for Bunf;(C,T) applying an elementary isomorphism.
This completes the proof of Theorem A.

Consider the set of quasi-parabolic bundles representing points in the
moduli space Bunf, (C,T) (resp. in Bunj (C,T)). These sets are the
same if, and only if, both weights p and v belong to the same set among the
following three:

— The chamber I = {(u1,p2) € (0,1)% | p1 + p2 < 1}.

— The chamber I = {(p1, p2) € (0,1)2 | pg + pg > 1}.

— The wall W = {(p1, p2) € (0,1) | g + po = 1}.
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We will thus adopt the notations

Bung,_(

C,T), Bun,_(C,T) and Buny_(C,T)

for the moduli spaces Bunfy_(C,T) and p in I, I and W respectively.

2.4.2 The even degree moduli space

Let C be a genus 1 curve. Let T' = t; 4 t2 be an effective reduced degree
2 divisor on C. Let wo be a point of C'. As in the previous Section, we do
not specify an embedding of C' in P2

In this Section we use the description of the odd degree moduli space to
describe the moduli space Bung(C’, T). The map

Elmj; = elm;’; QR

provides an isomorphism between Bun¥_ (C,T) and Bun{;?(C,T), where R
is a convenient line bundle and py = (11,1 — p2) (see Table 2.2). The wall
and chambers change in even degree. The sets of bundles representing points
in Bunf,(C,T) and Bun{(C, T) are the same if, and only if, both weights p
and v belong to the same set among the following three:

— The chamber J< = {(11, 12) € (0,1)% | 1 < pia}.

~ The chamber Js = {(j1, j2) € (0,12 | 1 > pa}.

— The wall W' = {(ul,ug) S (0, 1)2 ’ H1 = ,UQ}.

Recall that we have two kinds of semistable rank 2 vector bundles E of
trivial determinant: the decomposable case, i. e. where E = L @& L~! with
deg L = 0, and the indecomposable case Fy ® Ly with Ly a torsion line
bundle. Let us start by fixing weights p in the wall, as in the odd degree
case.

Proposition 2.4.5. Let C be a genus 1 curve, and let T = t1 + to be an
effective reduced divisor on C. Let ws, be a point of C. If p € W'\ {0}, the
quasi-parabolic bundles representing points in Bung(C,T) are the following:
— p-stable bundles:
— (L® LY, p), L # Ly, with no quasi-parabolic directions on L nor
on L7
— (Eo ® Lk, p) with no quasi-parabolic directions on Ly C Eg ® L.
— Strictly p-semistable bundles:
— (Le L7Y,p), L # Ly, with one or two quasi-parabolic directions
on L or L™, but not both on the same.
— (Fo ® Ly, p) with exacly one quasi-parabolic on Ly C Ey ® Ly.
— (L ® Lg, p) with quasi-parabolic directions not lying on the same
Ly.

Proof. By applying the elementary transformation Elm;g to the bundles of
Proposition 2.4.1, we obtain the described bundles. The different cases L =
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L and L # Lj correspond in the odd degree setting to E; having one or
two degree 0 bundles passing through ms. O

Let us keep the notation I for the strictly p-semistable locus in Bunfy (C, T').
This locus is a curve parametrized by Jac(C) by Theorem 2.4.3, and the de-
scription of the bundles representing points in I' is as follows:

Theorem 2.4.6. Let C' be a genus 1 curve, and let T = t1+to be an effective
reduced divisor on C. Let we, be a point of C. Let 0 < p1 = po < 1. For each
point £ in T' C Bunf(C,T) there exists a unique L € Jac(C) such that the
point L is represented by precisely the following three different isomorphism
classes of quasi-parabolic vector bundles:
— If L is a 2-torsion line bundle:
— F<(L) = (Ey ® L,p) with my on L C Ey ® L and mg not on L.
— Fs(L) = (Ey® L,p) with ma on L C Eg ® L and my not on L.
— F=(L) = (L @ L,p) with quasi-parabolic directions not lying on
the same L.
— If L is not a 2-torsion line bundle:
— F(L)=(L® L', p) withmy € L and ma out of L and L~!.
— Fo(L) = (L ® L™, p) with my € L™ and my out of L and L~!.
— F—(L)=(L® L™, p) with my € L and may in L™'.

Proof. One way to prove this result is to translate the situation of Theorem
2.4.6, computing the images of the bundles (L), &<(L) and E-(L) in
Bung_ (C,T) by the clementary transformation Elm;. Let M € Jac(C) be

an arbitrary line bundle and L = M(ty + R), with 2R = —t; — ws. We
claim that

Elm; (£.(M)) = F.(L)

for x € {<,>,=}. Let us prove the assertion for the first case. The bundle
E«(M) = (Fi1,p) has quasi-parabolic directions p lying on M C E;. If
L is a 2-torsion line bundle, say L = Lj, Proposition 2.3.3 states that M
is the unique degree 0 subbundle of F; passing through po . This implies
that the underlying bundle of Elm;’(£<(M)) is indecomposable, and thus
equal to Eg ® L. If L is not a 2-torsion line bundle, the underlying bundle
of Elmj (£<(M)) is decomposable, therefore it is L @ L. The position
of quasi-parabolic directions is given by the configuration in £-(M). For
x € {>,=}, the proof is similar. O]

Alternatively, one can also show that strictly semistable configurations
in the even degree case are given by Jordan-Holder filtrations

0C (L,p)) CF(L)  for x€{<,>}
0C (L7, ph) CF=(L)
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where (L,p}) (vesp. (L,p)) is the line subbundle over (C,t;1) (resp. (C,t2)).
These give isomorphic graded bundles. Therefore, F-(L), and F~ (L) are
identified in the moduli space. Moving weights outside the wall, we find the
same situation as in the odd degree case: some of the strictly semistable
bundles F, (L) become stable, while some become unstable.

Proposition 2.4.7. Let C be a genus 1 curve, and let T = t1 + t2 be an
effective reduced divisor on C. Let ws be a point of C. Let p be weights
outside the wall and [E,p] € Bunly(C,T) \T. Then, one of the following
holds:

— E=L®L', with L # Ly, and quasi-parabolic directions outside L

and L1,

— FE = Ey® Ly, with quasi-parabolic directions outside Ly,.
Each point L € T' is represented by one of the following bundle:

— The bundle F-(L) if p € J<.

— The bundle F~(L) if p € J.

We follow the notation of the previous section: for p in J. (resp. in
J>), we will denote by Bung(C,T) (resp. Bung(C,T)) the moduli space
Bun¥;(C,T).

2.4.3 Coordinate systems

Let C be a genus 1 curve, and let T = t; + t2 be an effective reduced
divisor on C. In this Section we define coordinate systems for the moduli
spaces Buny (C,T'). These coordinate systems will be automatically defined
on Buny (C,T) and Buny (C, T) since every bundle appearing in these spaces
is already in Bun7 (C,T).

The coordinate system for Buny, (C,T')

We start by defining an automorphism ¢7 of Buny(C,T). Let P =
[E,1] be an element of Bung(C, T). The bundle elm}.(F,1) has determinant
O(2weo). Define the bundle ¢r(E,1) := elm}.(E, 1) ® O(—wes), with trivial
determinant. Using the classification result of Proposition 2.4.5, we check
that ¢r(E,l) is an element of Buny(C,T), and that its S-class does not
depend on the representative bundle of P. We thus obtain an automorphism

¢r : Bunp(C,T) — Bunp(C,T)

We define the coordinate system on Bung, (C,T') as follows. Consider the
moduli space Bunp(C,T) defined in Section 2.3.3: by composing the map



CHAPITRE 2. MODULI OF PARABOLIC BUNDLES 30

Simple parabolic bundles
det E = O(weo) det E =0
By
—_— L71
/— Y
L
Ec (M) with M2 (t2) # O(wso) Fe (L) with L? # O
Fy EO ® Lk
M .
//'_— L
with M2(ty) = O(weo) with L2 = O
M~ we) —_— !
—_— M L
(‘:> (M) with M2(ty) # O(weo) f> (L) with L% # O
Ey® Ly,
M~ (woo)
. Lk
—_——M
with M?(t2) = O(weo) with L? = O

Table 2.1 — List of simple quasi-parabolic bundles over (C,T). Each figure
represent the corresponding projective bundle, and each quasi-parabolic bun-
dles on the right side a obtained by applying the elementary transformation
Elmg to the corresponding bundle on the left side.

¢ with the forgetful and Tu maps we obtain the diagram

Buny, (C,T) o, Buny (C,T)

Forget l l Forget

Bunp(C) Bunp(C)
’I‘ul% %l’I‘u
P! P!

The coordinate map in Buny(C,T) is the mapping
Bung(C,T) S P! x P!

defined by ¢ = (Tuo Forget) x (Tuo Forget o¢r). This map is algebraic since
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Indecomposable, not simple bundles

det E = O(weo) det E=0
M (we) | —————— M (w0)
—_— M M(wso)
with M2(t;) = O(we) with M2(t;) = O(ws)
Eo® L

—— M (ww)

Ly

—_— M
with M2(t2) = O(weo) with L? = O

Table 2.2 — List of indecomposable, not simple quasi-parabolic bundles over
(C,T). Each figure represent the corresponding projective bundle, and each
quasi-parabolic bundles on the right side a obtained by applying the elemen-
tary transformation Elmj2 to the corresponding bundle on the left side.

it is given by linear projections. We will prove the following Proposition
using the coordinate system in the odd degree case:

Proposition 2.4.8. The mapping € is an isomorphism.

The coordinate system for Bun,_(C,T)

Recall that T' = t; + t2. Let us write t; = (¢, s) and ta = (¢, —s), where
C = {y?> = x(x — 1)(x — \)}. Consider the projections &1 : C — P! and
gy : C — P! with center the points t; and ty respectively, and satisfying
gi(wg) =k for k € {0,1, \}. A straightforward calculation shows that these
maps are defined by the equations
ty — sx _ty+sz

51(x7y): y—s ) 82(.%',y)— y+3

The preimages of this map are thus of the form {p, ¢;,(p)}, where ¢ is the
involution defined in Section 2.3.1. In particular, for & € {0, 1, \, oo}, we have
that the image of the point £;, = [E~(L4)] by ¢ is the point (k, k) € P! x PL.

Now we are in position to define our coordinate system ¢ on Buny, (C,T).
Let P be a point in Bung_ (C,T'). By theorem 2.4.2, P is represented by a
unique bundle of the form (F7, m). By Proposition 2.3.3, the quasi-parabolic
direction mj (resp. msg) corresponds to a pair {p, it (p)} (resp. {q,i,(q)})

for p, ¢ € C. The coordinate map in Buny,_(C,T) is the mapping
e :Bunj_(C,T) — P! x P!
defined by e(E1,m) = (e1(p), e2(q)).
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Proposition 2.4.9. The coordinate map € : Bung, (C,T) — P! x P! is an
isomorphism, and its inverse is the map M defined in Theorem 2.4.3.

Proof. Let (my,m2) € (E1)y, X (E1)t,. Let p,q € C such that m; = £1(p)
and mg = £2(q). By definition of the maps M and e, we have that

e o M(my,mz) = (e1(p),e2(q)) = (m1,m2)

The same argument shows that, for every P = [E1,m] € Bun,_(C,T),
Moe(P)="P. O

Proof of Proposition 2.4.8. Let R = O¢(r — ws) be a divisor such that
2R = weo — t1 = to — Weo. Then, the following diagram is commutative:

Buny_ (C,T)
elmf| ®(y \elmiz ®O(R+woo)
Buny, (C,T) or » Bungy (C, T')
l’I‘u o Forget lTu o Forget
P! P!

Elements of Buny,_ (C,T) are of the form [Ey,m = (m1,m2)]. Fix the
second quasi-parabolic direction mso. For each m1 = 1(p), we define a point
z(my) € P! as follows:

z(m1) := (TuoForget o elm;, ®O(—R)) [E1, m]
= Tu(O(p =) ® O(u1,(p) = 7)) -
We see that the map my — z(m) is bijective. We also define w(ms) fix-

ing this time mq, the map mo — w(ms) is also bijective. Since the map
elm,?: ®O(R) is an isomorphism of moduli spaces, the coordinate map

e : Bunp(C,T) — Buny,_(C,T)

is an isomorphism.

The relation between even and odd coordinates

Here we describe the coordinate change between even and odd degree
moduli spaces. Remark that we have seen in the proof of Proposition 2.4.8
that this coordinate change is not canonical, since we have to choose a root
of t1. Let R = O(r — ws) be a divisor such that 2R = O(t; — ws). The
elementary map

_ elm/; ®O(R) _
Bung (C,T) ———— Bun,,_(C,T)
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yields a coordinate transformation 6 : P! x Pt — P! x P! satisfying
foe=co (elm ®O(R)).
For k € A ={0,1,\, 00}, define the points py := ty, (r) and g := L. (Pr)-

Proposition 2.4.10. The map 0 is given by 0 = 01 x 05, where 61 and 65
are the unique automorphisms of P! satisfying

01(m(pr)) = O2(m () =k
for every k € A.

Proof. Let k,1 € A and [L ® L™Y,m] = e Y(w(p), 7(q)). In the generic
situation, there exists M in Jac(C) such that m is defined by the intersection
of unique subbundles M (—weso) and M ~!(—we) of L&L™!. By the definition
of €, we have that L = O(py, — wso) and M = O(q — weo).-

The image of [L & L™, m] by elm;” ®O(R) is a quasi-parabolic bundle
[E1,m = (n1,n2)], where n; is the intersection of L(R) and L~(R) and ns
is the intersection of M (—R) and M ~!(—R). By our choice of py and ¢, we
have also that L(R) = O(w; — we) and M(—R) = O(w; — ws). By the
definition of e, we have that ¢[E, n] = (k,1).

We can repeat the arguments in this proof fixing L and varying M, or
viceversa. In particular, 6 = 01 X 60s. O

Remark. It would be interesting to describe the moduli space when the di-
visor is not reduced, i. e. when t; = to. However, it would be important
to clarify the notion of quasi-parabolic bundle in this setting. One approach
could be to consider two quasi-parabolic directions over the multiple point
in C. Nevertheless, this proposal does not seem suitable under the point of
view of the study of connections on quasi-parabolic bundles, developed for in-
stance in in [40] and [30]. On the other hand, we can think of quasi-parabolic
directions as sections over each point of the divisor 7. Consequently, when
the divisor is not reduced, we may consider k-jets of sections over a point of
multiplicity k.

2.5 The group of automorphisms and the Torelli
result

Let C be a genus 1 curve. Let T = t; + to be an effective reduced
degree 2 divisor on C. Let 7 : C — P! be the double cover of P! satisfying
m(t) = w(te) =t € PL.

We are now interested in simple quasi-parabolic bundles over (C,T'). The
following Proposition holds:
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Proposition 2.5.1. Let (E, p) be a rank 2 quasi-parabolic bundle over (C,T)).
Then (E,p) is simple if, and only if, it is p-stable for some p.

Proof. Since simplicity is preserved by elementary transformations and twists,
we can assume det £ = O(ws). Bundles in Bung_(C,T)JBung,_(C,T)
are listed in Proposition 2.4.4: FEj is simple as a vector bundle by Theorem
2.3.2, thus (F1,p) is simple for every p. The remaining bundles are of the
form (L® L™ (ww), p) with exactly one quasi-parabolic direction on L. The
automorphism group of (L @ L™ (ws)) is of projective dimension 1 acting
on the complementary of L and L~!. Hence, only the identity fixes the
quasi-parabolic directions p and (L @ L™ (wx ), p) is simple.

Conversely, again using the classification of Proposition 2.4.5, (E, p) sim-
ple implies (E, p) is p-semistable for some p. Parabolic p-semistable bundles
which are non-p-stable for any p are of the form £-(L) by Theorem 2.4.2
and Proposition 2.4.4. These are not simple. O

Simple bundles are then parametrized by the non-separated scheme
Buno(C,T) = C< [| C>/ ~

constructed by patching the two charts C« = Bung(C, T') and Cs = Bung,(C, T),
where we identify identical quasi-parabolic bundles along C \T' and Cs \T.

In this Section, we will study some of the automorphisms of this moduli
space and in Section 2.7 we will prove that there are no more. Automor-
phisms of Bunp(C,T') consist of pairs of maps (11, 2) that coincide on the
gluing locus and that satisfy one of the following two conditions:

— Each vy, is an automorphism of C leaving invariant I, or

— The maps 91 : Cc — Cs and 9 : s — C. are isomorphisms

leaving invariant I'.

Moreover, it is sufficient to explicit only one of the 1, to completely define
the corresponding automorphism.

Twist automorphisms

The twist by a torsion line bundle Lj induces an automorphism between
the charts . .
Cc 25 0., 020,

It is clear by construction that these isomorphisms coincide on the com-
plement Cj \ T' of the strictly semistable loci, thus they extend to a global
isomorphism

Bunp(C,T) Elhw, Bunp(C,T).
Since the p-stability index is left unchanged under ® Ly, this automorphism

preserves I'. We will call this mappings twist automorphisms. Remark that
® Ly is the identity map and ®Lgo ®L; = QL.
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Our aim now is to compute these twists in terms of the coordinate system
¢ defined in Section 2.4.3.

Proposition 2.5.2. Let k € {0,1,\,00}. Then, in the coordinate system
giwen by e, the mapping ®Ly, is expressed as follows:
Pl x Pt £k, pl oy pl
(z,w) = (Bk(2), Br(w))
with Bi the map defined in Section 2.3.1.

Proof. Let (E,l) be a quasi-parabolic bundle in C.. We will now compute
the images

E = Forget(F,l) and F = Forgetoor(FE,l).

The twist by L in Buné(C, T') corresponds to tensoring each of these
bundles by Lg. Hence, the first (resp. the second) argument of the mapping
®Ly depends only on the first (resp. the second) coordinate. Finally, these
maps are the twists appearing in Proposition 2.3.1, i. e. those making the

diagram
Bunp(C) 224 Bune(C)
Tul = glTu
]P)l Br ]P>1
commute. O

The elementary automorphism

Consider the map ¢ introduced in Section 2.4.3. Since C. is an open
set of Bunp(C,T), ¢r is well defined on C. Recall that elmr}r changes the
weights pu; into 1 — u;. It follows that ¢p permutes C. and Cs. We will
hence consider the map ¢ : C« — C5. The description of this map in our
setting is the following:

Proposition 2.5.3. In the coordinate system defined by e, the mapping ¢
1s the mapping that exchanges coordinates between the two factors, i. e. it is
the map

P! x P! 2T, Pl P!
defined by ¢r(z,w) = (w, 2).

Proof. Let (z,w) = ([E = L& L™'],[M @ M~!]) be a point in P! x P1. In
the generic situation, L # L~! and there are unique subbundle inclusions
M(~ws) C E and M~} (—ws) C E defining a quasi-parabolic configuration
(E,m) over (C,T) with both quasi-parabolic directions outside L and L~!.
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Then, by the properties of elementary transformations, we have
¢r(Le L7, MeM ) =(MeM '] [LeL™)
as stated. O

In particular, we have that the curve I' C P! x P! is invariant under the
transformation (z,w) — (w, 2).

The odd degree case

The former automorphisms can also be defined on the odd degree case,
namely for the moduli space Bun,,_(C,T"). We will show that they have the
same coordinate expression than in the even degree case.

Proposition 2.5.4. The twist automorphism Bun,, (C,T) SN Bun,_ (C,T)
1s expressed as follows in the coordinate system &:

P! x Pt 25 pl x p!
(z,0) = (Br(2), Br(w))
with Bi the map defined in Section 2.3.1.

Proof. 1t is enough to prove the assertion on C.. Let [Eq,m] € C< be an
arbitrary point. By Proposition 2.3.3, the direction m; is defined by two line
subbundles O(p; — woo) and O(1y;(pj) — Weo), for j € {1,2}. Twisting by Ly
yields the involution of Proposition 2.3.1 on each of these subbundles. [

The map ¢r is defined in the same way as in the even degree case: it is
the elementary transformation elm? followed by the twist by O(—wwo).

Proposition 2.5.5. In the coordinate system e, the mapping ¢ is the map
Pl x P! 2T, pl x P!
defined by ¢r(Z,0) = (w, 2).

2.5.1 The Torelli result

Let C' be a genus 1 curve. Let T = t; + t5 be an effective reduced
degree 2 divisor on C. By Theorem 2.4.2, the strictly p-semistable locus I"
in the moduli space Bung(C,T) is an embedding of Jac(C'), which is itself
isomorphic to C'. Hence, the curve C is embedded in the moduli space
Buny (C,T). In this Section we show that this embedding also contains the
information about the divisor 7T'.
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Let ¢ be the coordinate system defined in Section 2.4.3. Let (Z,w) €
P! x P! = Bung (C,T) be a point in the moduli space. Let us consider the
vertical and horizontal lines passing by (Z, 0):

V:={(,w) |weP'}, Hy={(z,%) | z € P'}

The following Lemma characterizes the vertical and horizontal lines tangent
to ' c P! x Ph:

Lemma 2.5.6. Let C' be a genus 1 curve. Let T = t1 + to be an effective
reduced degree 2 divisor on C. Let A = {0,1,\,00} C P'. Then, the vertical
line Vz is tangent to U if, and only if, Z € A. Similarly, the horizontal line
Hy is tangent to T if, and only if, w € A.

Proof. For 2 = [L @ L~!] € P! fixed, there are generically two points in
' with first coordinate Z, namely [F.(L)] and [Fi(L~1)]. Therefore, V; is
tangent if, and only if L is a 2-torsion bundle, which correspond to z € A
according to Theorem 2.3.4.

Since I' is invariant under the transformation (z,w) — (w,z), Hy is a
tangent horizontal line if, and only if, Vj; is a tangent vertical line. O

Let 7, 7o : P x P! — P! be the projections with respect to the first and
second factors. The restriction of each of these maps to I' is a double cover
of P! that ramify in the points of the set A according to Lemma 2.5.6. Thus,
from the embedding I' € P! x P! we recover directly the set A as the set of
ramification points of the projections m; and my. The point ¢ associated to
the degree 2 divisor 2 is also given by the embedding:

Proposition 2.5.7. Let C be a genus 1 curve. Let T = t1+to be an effective
reduced degree 2 divisor on C. Let (0o, w) € I' NV be the tangency point of
the curve I' with the vertical tangent Voo. Then, w = t.

More generally, let k € A and Vi, be the corresponding vertical tangent
toT'. Let (k,w) € I' NV be the tangency point. Then, Bi(W) = t.

Proof. Let P = (0o, w). By definition of ¢, we have that co = Tu o Forget (&),
where £ € Bunp(C, T') represents the point P. Thus, by Theorem 2.4.6 and
Theorem 2.3.4, the underlying vector bundle of £ is O & O or Ey. Since P
is a point in the curve I, we have that P = [F,(O)].

Consider the bundle F-(O) = (Ey, p), where py C O C Ey and p2 ¢ O.
According to the definition of £, we have to show that Tu o Forget ogr (&) = ¢.

Let ¢ € C be the unique point such that the subbundle L = O(—q) passes
through both p; and ps. Let us apply the mapping ¢ to F-(O). After
the first elementary transformation elm, we get the bundle & = (O(t1) ®
L(t1),p’), where p) is outside both factors and pf lies on L(t1). Therefore,
the underlying bundle of elm (€) is O(t1) ® L(t1 +12). Twisting by O(—wao)
gives the bundle F' = O(t] — woo) ® L(woso). Since detF' = O, it follows that
g =t; and W = Tu[F] =t as we wanted to show.
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For a k € A\ {0}, the above discussion holds if we multiply every bundle
by Li. The final underlying bundle is Fy, = F' ® Li. By Proposition 2.3.1,
w = TulFy| = Bi(2). 0

The next Lemma will be useful to show Theorem B.

Lemma 2.5.8. Let I be a smooth curve of genus 1 embedded in P! x P! as
a (2,2)-curve. Then, there exists an automorphism 6 of P* x P! such that
the vertical (resp. horizontal) tangents to the image T" = §(T') C P! x P! are
the lines Vi, (resp. Hy), for k € A ={0,1,\,00} and some A € C\ {0,1}.

Proof. Let us consider the first projection 71 : P! x P* — P!, Since I' is a
(2,2)-curve, the restriction map |r is a double cover of P'. Furthermore,
by Riemann-Hurwitz formula, the map m1|r ramifies in four distinct points
Z0, %1, Tx, Too in P, Similarly, the map mo|p ramifies in four distinct points
Y0, Y1, Y, Yoo in PL. Let &7 (resp. d2) be the unique automorphism of P!
such that d1(xg) = k (resp. d2(yr) = k), for k € A\ {\}. It suffices to take
0= (51 X 52. O

Let T' be a smooth curve of genus 1 embedded in P! x P! as a (2,2)-
curve. By Lemma 2.5.8, there exists A € C\ {0, 1} such that the vertical and
horizontal tangents of I" are respectively the lines Vi, and Hy, with k € A.
In this setting, the curve I' is symmetric with respect to the line z = w in
P! x PL.

Lemma 2.5.9. Let \,t € C\ {0,1}, X\ # t. Then, there exists a unique
smooth irreducible bidegree (2,2) curve I C P* x P! such that
— The wvertical and horizontal tangents to I' are precisely the lines Vj,
and Hy, with k € A.
— The tangency point between I' and Vuo is (00, t).
Moreover, the curve I' is symmetric with respect to the line z = w.

Proof. A bidegree (2,2) curve in P! x P! is given by a polynomial

P(z,w) = Z a2 w?

0<4,5<2

In particular, for fixed & € A, the polynomial Py(w) = P(k,w) is a degree
2 polynomial in w. The curve I' is tangent to the vertical V}, if and only
if the polynomial Py(w) has a double root, i.e. its discriminant vanishes.
This condition gives a degree 2 equation on the a;;. Thus, tangency with
the lines Vi, and Hj, gives 8 conditions, (one of them is actually redundant:
since I' is a smooth bidegree (2,2) curve, thus the projections 7, and 7,
cannot simultaneously ramify at arbitrary points). Vanishing at the point
(0o, t) gives a linear equation on the a;j. By direct computation, we check
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that (up to scalar multiplication), there is a unique choice of the a;; such
the polymial P is irreducible. This choice gives the polynomial

P(z,w) = t?2? — 2t2%w + t*w? — 2tzw? + 2*w?

— 22Xtz — 2Mw + 2(2(A + 1)t — 7 — X)zw + A,
which is symmetric in the variables (z,w). O

Let G = Aut(P! x PL,T") be the group of automorphisms of P! x P!
preserving the curve I'. Remark that the involutions

Br X Br, ¢ € Aut(P! x P1), for k € A,

where ¢(z,w) = (w, z), preserve the tangents Vi and Hy.

Proposition 2.5.10. Let ' be a smooth curve of genus 1 embedded in P* x P!
as a (2,2)-curve, and satisfying the conditions of Lemma 2.5.8. Then, the
group Aut(P! x P1,T) is generated by the maps of the form ~ x ~y, where y
is an automorphism of P! preserving the set A\, and by the involution ¢.

Proof. Recall that the we have the group isomorphism
Aut(P* x P') = (PGL(2,C) x PGL(2,C)) x Z/27Z,

where the semi-direct factor Z/27Z corresponds to the involution ¢.

By Lemma 2.5.9, the curve I' is symmetric with respect to the line z = w,
hence ¢ € Aut(P! x PL.T).

Let ¢ = @1 X p2 € PGL(2,C) x PGL(2, C) be an automorphism preserv-
ing I'. Then, ¢ must preserve the set T' of vertical and horizontal tangents
to I'. In particular, ¢ and @9 must preserve the set A, and hence there
is a finite number of possible candidates. By using the expression of the
polynomial P(z,w), we check that if ¢ preserves I', then ¢ = v x 7 with
v € Aut(P!) preserving A. O

If A ¢ {—1,1/2,2}, the set of automorphisms of P! preserving A is
precisely the set of double transpositions 8. Since Sgo 1 = B, we have the
following result:

Corollary 2.5.11. Let ' be a smooth curve of genus 1 embedded in P' x
P! as a (2,2)-curve, and satisfying the conditions of Lemma 2.5.8. If A\ &
{—1,1/2,2}, the group Aut(P' x P1,T) is isomorphic to (Z/2Z)3, and it is
generated by the involutions By X By and ¢r, for k € A.

Recall that if A € {—1,1/2,2}, the group of automorphisms of the elliptic
curve (I', wyo) is isomorphic to Z/47 (and not to Z/27Z). In this case, the
group Aut(P! x PL.T) is slightly bigger. The reason is that there are auto-
morphisms of P! that exchange the elements of the set {k, \} while leaving
invariant the elements of A\ {k, A}, for some k € A\ {\}.
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Proof of Theorem B. We have to show that there are one-to-one correspon-
dences between the sets

(4+1)-
(2, 2)-curves . 2-punctured " pun@ured
r ,C Pl « Pl /G > genus 1 ~ rational / ~
curves (C,T) curves
(P, D +1)
\

For the first bijection, let A be the set of (2,2)-curves I' C P! x P! modulo
the group G, and let B be the set of 2-punctured genus 1 curves (C,T)
modulo the group of isomorphism of C' preserving T'.

Consider the embedding I' C P! x P!. By Lemma 2.5.8, we can assume
that the vertical and horizontal tangents with respect to I' are respectively
the lines Vi, and Hj with & € A = {0,1,\,00}. Let t € P! such that
(00,t) € P! x P! is the tangent point of I" and V.. Let T be the divisor
given by the preimages of ¢ by the restriction of the second projection mo|r :
I — P If o € Aut(P! x PY,T'), the restriction o|r yields un automorphism
(T, o(t1) + o(t2)). Thus, we have defined a map ¢ : A — B.

Conversely, let (C,T) be a 2-puctured genus 1 curve. Let w : C — P!
be a double cover of P! such that 7(t;) = 7(tz) = ¢ and such 7 ramifies
in the points in A = {0,1,\,00} € P! for a certain A € C. By Lemma
2.5.9, there exists un unique embedding C' C P! x P! such the vertical and
horizontal tangents with respect to I' are respectively the lines Vi, and Hj
with £ € A = {0,1,\,00}. If p : (C,T) — (C,T") is an isomorphism
with 7" = t] + t}, let us consider the double cover 7 : C — P! such that
7(t)) = 7(ty) = ' and such 7 ramifies in the points 0,1,\,00 € P!. The
automorphism p induces an automorphism v of P! preserving the set A and
such that ¢ = v(t). According to Proposition 2.7.2, the map 7 X 7y preserves
the curve I'. Hence, this construction defines a map ¢ : B — A. The maps
 and v are well-defined and inverses.

The second correspondance is given by the double cover 7 : C' — P! such
that m(t1) = w(t2) = t, and its ramification divisor D. O

This type of result has been also found by Balaji, Biswas and Del Bano
Rollin [5], where the authors study the moduli of quasi-parabolic bundles in
the higher genus case, subsequently proving a theorem of Torelli type.

2.6 A map between moduli spaces

Let W =04+1+X+o00and D = W + t be reduced divisors on P'.
Let C be the curve defined by the equation y? = z(z — 1)(z — A). Consider
the divisors W = wg + w1 + wy + wee and T = t1 + to on C respectively
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supported by the Weierstrass points and by the two preimages of ¢ under the
hyperelliptic cover w. Let D =W + T

We study in this Section a map ® between the moduli spaces BunOE(IP’1 ,D)
and Bungs(C, T), with fixed weights p and p. The first space is the moduli
space of p-semistable rank 2 quasi-parabolic vector bundles of degree 0 over
(P!, D). This moduli space is described and constructed in [40].

More precisely, the authors consider the full coarse moduli space Bun_1 (P!, D)
of degree —1 indecomposable quasi-parabolic bundles (P_1(t) in their nota-
tion). They construct this space by patching projective charts consisting of
moduli spaces Bun”, (P!, D) of v-semistable bundles.

Let us describe two of these charts. The chart V' corresponds to the mod-
uli space Bun”, (P!, D), for «democratic»weights v; = v, with % <v< %,
and is isomorphic to P2. It consists of those indecomposable quasi-parabolic
bundles of the form F = (Op1 & Op1(—1), ) with no n; lying in Op1 and not
all n; lying in Op1(—1) (see Proposition 3.7 of [40]). There are 16 special
geometric objects in V', namely:

— Five points D; for i € {0,1, \, 00, t}.

— Ten lines II;; joining D; and Dj.

— The conic II passing through all D;.

Let Q be the set of these objects. The chart S corresponds to the moduli
space with democratic weights v such that % <v < % As a projective
surface, it is isomorphic to the blow-up of the five points D; in P2. This is
by definition a del Pezzo surface of degree 4 (see [25]). In particular, the
exceptional divisors II; of D; and the total transforms of II;; and II constitute
16 (—1)-curves in S. We will keep the notation II;; and II for the total
transforms when there is no risk of confusion. There are exactly five (—1)-
curves intersecting II, namely the II;’s, and the chart V is obtained as the
blow-down of these 5 curves. Similarly, there are 5 (—1)-curves intersecting
IT;, namely II and II;; for j # . The other charts are isomorphic to projective
surfaces obtained by blow-downs of some of these (—1)-curves.

The open set

U_1 =V \{D;, 11,11}

of generic quasi-parabolic bundles is common to every chart. The final non-
separated patching is made via the blow-down birational maps between the
charts (see Theorem 1.3 in [40]).

2.6.1 Defining the map ¢

1111
2992992992
corresponds to the point t. Consider the associated moduli space Bunoﬁ(IP’l, D).
The isomorphism

Let us start by fixing weights p = ( i), where the free weight

elm : Bun®, (P!, D) — Bung (P!, D)
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is well-defined by the properties of elementary transformations. Let Uy be
the image of U_; by this map. We have the following result:

Proposition 2.6.1. The moduli space Bunoﬁ(]P’l,Q) s isomorphic to S for
all p € 10,1]. Every bundle in Uy has trivial underlying bundle.

Proof. The map elmar is an isomorphism of moduli spaces preserving -
stability. A straightforward calculation shows that all bundles in the families
II, II;, and II; ; C Bun%1 (P!, D) are p-semistable (stable when 0 < p < 1).
Hence, Bunoﬂ(Pl,Q) =S.

For the second assertion, remark that every quasi-parabolic bundle £ in
U_1 can be written as (Op1 @ Op1(—1),1) with iy C Op1(—1). By properties
of elementary transformations, elmar (€) has trivial underlying bundle.  [J

Let us now define the mapping ®. Let £ be a quasi-parabolic bun-
dle in Bunoﬁ(}P’l, D). Consider the pullback bundle 7*€ of £: it is a quasi-
parabolic bundle over (C, D). The bundle 7*€ is p'-semistable, where p' =
(1,1,1,1, ju, pr). a a

Consider the following composition of maps:

/ + "
Bun% (C,D) o, BungwOo (C,D) Torgetw, Bunf,, (C,T) oM, Bun¥;(C,T).
The weights here are p” = (0,0,0,0, p, 1) and g = (p, ). The first map
is the positive elementary transformation over W. The second map forgets
quasi-parabolic directions over W and keeps those over T'. Because of the
nullity of the weights over W, this map preserves the stability notion. The
last map is the twist automorphism, with M = O¢(—2wx).

Let ¢ be the composition of these four maps. The map & is the com-
position of 7* and ¢w:

Bun§ (P!, D) 2 > Bun/s(C,T)
m W
Bun%, (C,D)

Notice that the role of ¢ € P! in the definition of this map is different
from the roles of the other points in D. We have defined a morphism & :
Bunoﬁ(]P’l,Q) — Bunf(C, T) between our moduli spaces.

2.6.2 Computing the map ¢

First, we will compute the map ®|y,. For ¢, € P!, consider the set

Uo = {(Oc ® Og,m) | e, € P'} € Bunls (C, D).
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of quasi-parabolic bundles on (C, D), where m := (0,1,¢,00,[,1). Since
m(t1) = m(t2), the quasi-parabolic directions over ¢; and ty of 7*& are the
same. Thus, 7* is a birational map between Uy and Ugc.

We will use the coordinate chart Uc = P! x P! and the coordinate system
e for Bunf;(C,T) defined in Section 2.4.3.

The map ow|v,.

Let (E,m) be a quasi-parabolic bundle over (C, D) and Dy C D a sub-
divisor. We say that a line subbundle L of F passes through Dg if L passes
through every point of Dy.

Lemma 2.6.2. Let £ = (O¢ ® Oc,m) be a quasi-parabolic bundle over
(C,D). Let SV_VQ(E) be the set of degree —2 line subbundles of Oc & O¢
passing through m|y . Then, there exists a point p € C' such that

Sp?(€) = {Lw, Ly} with Ly = Oc(—p — o), Ly = Oc(—twe. (P) — Weo)

Similarly, let 553(5) be the set of degree —3 line subbundles of Oc ® O¢
passing through m|p. Then, there is a point ¢ € C' such that

SH3(E) = {Mp, Mp} with Mp =2 Oc(—q — 2weo), M = Oc(—tu., (q) — 2weo).

Proof. Let us prove the assertion for SI/_Vz(S). Consider a line bundle L =
Oc(—p— weo), for pin C. The vector space Hom (L, Oc @ O¢) is isomorphic
to Hom(Og, L= @ L™!). The projective dimension of this space is 3 by
Riemann-Roch. This means that there is an inclusion L < Og & O¢ such
that L passes through three quasi-parabolic directions, say mg, m; and my.
By moving p in C' we move on the fiber of ws,. This constitutes a double
covering of P!, hence there are generically two points p and p’ in C such that
S (E) = {L, L' = Oc(—p' — weo)}. To see that p' = . (p), consider the
case p # p’. We have that Forget o elm{;,(£) ® Oc(—2wss) = Oc(wee — p) &
Oc(ws — p') has trivial determinant, implying p’ = ¢, (p). The proof for
SH3(E) is similar. O

Proposition 2.6.3. The map ¢w |y, is given by

owlu,
P! x P! —S P x P dwlus(el) = (dwlp. (e 1), dwlp. (1))

where

Ml —=1)+t(1—c¢)
At(l—c)+1l(c—1))+ct(1—1)

c—1
¢W|(1]C(Ca )= )\m and ¢W|%IC(C,Z) =

Proof. Consider the trivial rank 2 vector bundle O¢c & O¢ and its projec-
tivization C xPL. Let m = (0,1, ¢, 1,1,00) be a quasi-parabolic configuration
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P
00
P(z,w)
c
1
0
0 1 A z1 00 Pi

Figure 2.1 — The curve of bidegree (2,2) defined by P(z,w) = 0. Here,

c—

Z1 = )\C—A'

on Oc®O¢. Let us write (E,n) := ¢wl|vu. (Oc ® Oc, m). We want to com-
pute the e-coordinates of (F,n) in terms of (c,!).

There exists p € C such that [E] = [L ® L™!] in Bunp(C), with L =
O(p — weo). By the properties of elementary transformations, the preimages
of the line bundles L and L™! via ¢w |y, are the following subbundles of

Oc @ O¢:

Ly =Oc(—p —ws) L%/V = O (~tws (P) — Weo)

By construction, Ly and L, pass through the quasi-parabolic directions
over W. Moreover, these are the unique subbundles of degree —2 passing
through these quasi-parabolic directions by Lemma 2.6.2.

Consider the (+4)-cross-sections sy and s}, of the trivial projective bun-
dle C x P! corresponding to Ly and L}, respectively. The section sy (resp.
syy) intersects the constant section y = oo in two points with base coordi-
nates woo and p (resp. woo and y (p)) in C. We claim that m(p) = A<=}
This will imply

c—1

c—A

as desired. In order to prove the claim, consider the pullback of the section
sw by 7. It is a curve of bidegree (2,2) in P(Op1 @ Op1) = P! x P! having
vertical tangencies over the ramification points 0, 1, A\, 0o € P! and intersect-
ing the horizontal w = oo in two points with base coordinates Z = co and
z1 = mw(p) respectively (see Figure 2.1). This curve is defined by a bidegree
(2,2) polynomial P(z,w) satisfying the former conditions, which translate
to 8 polynomial equations on the coefficients of P. Solving this polynomial
system yields z; = /\g:}\.

For the second coordinate, we have that

¢W|%]C(Ca l) = TO Forget O(bT o ¢W’UC(OC P OC,P) — T[M ® ]\4—_1]7

ow b (c,1) = T o Forget oy |v, (Oc & Oc, m) = A
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with M = O(q—we) for ¢ € C. The preimages of M and M ! by ¢rodw v,
are

Mp = OC(_Lwoo (p) - 2woo) ) Mb = OC’(—p - 2woo)

These correspond to two (+3)-cross-sections sp and s, of the projective
bundle passing through every quasi-parabolic point over W +T'. The section
sp (resp. s7,) intersects the constant section y = [ in three points having
base coordinates t1, t2 and iy, (p) (resp. t1, t2 and p). The pullback of
these cross-sections by 7 is a curve of bidegree (3,2) on P! x P! having
vertical tangencies over the ramification points and crossing in a node over
t. Applying these conditions to a polynomial of degree (3,2) on z, w yields
the desired formula for (;SW\QUC(C, 0). O

The map ¢

Let IP’IQ) be the projective line with homogeneous coordinates b = (bg : by :
bs). The birational coordinate change P! x P! — P2 > Uy is explicited in
Section 6 of [40]. Composing with the coordinates of ¢y |y, of Proposition
2.6.3 of [40], we find that the mapping

®|y, : Up — P x P! = Bunf(C, T)

is given in Uy by the expression

bit —b boA — biA — by + b
<I>|U0(b0:b1:b2):<1 2 LA A 2).

—b
bot —bi’ ' b2 — bobs

This map extends to a degree 2 rational map P - ]P’% — P! x P! by analytic
continuation.

2.6.3 The special locus of ® and the geometric configuration
on P

In this Section we will relate the set Q of 16 geometric objects in ]P’IQ) with
the undeterminacy and the ramification locus of ®.
Special locus of ®

The undeterminacy locus of ® consists of the five special points D; € ]P’%.
Their projective coordinates are

Dy=(1:0:0), Dy=(1:1:1), Dy=(1:X:)?),
Di=(1:t:t%), Do =(0:0:1).
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The conic II passing by all the D; is given by the equation IT : b2 — boby. A
calculation shows that the map ® ramifies over the cubic ¥ C IP)% defined by
the equation

St —bgbiAE + bgbaAt + (AEZ + M+ ¢2)bobt — (2 + N)b3
—2 (At 4 t)bobybg + b3bo(\ + t + 1) 4 bob3t — b1b3 = 0.

The cubic ¥ passes through the 5 points D; and is tangent to Il in D,. This
cubic is precisely the preimage of I' € P! x P'. The curve I' has equation

I:= 1222 — 2t2%w + t?w? — 2tzw? + 22w?
— 2Xtz — 2Mw + 2(2(A + 1)t — 7 — X)zw + N’

The action of ® on the 16 objects

There are four vertical lines V; and four horizontal lines tangent to I" (see
Section 2.5.1):

Vi={(z,w) €P' x P! | z =i}, H;={(z,w) eP' xP' | w=1}

with ¢ € {0,1,\,00}. The map ® sends each curve of Q to one of these
tangents lines to I' in the following way:

— For ¢ # t, the line II;; is sent to V.

— The conic II is sent to H.

— For {i,j,k} = {0,1, A}, the lines IT;oc and II;;, are sent to H;.

The desingularisation map @

The map ® is birational with base points D;. Hence, there exists a
morphism ® such that the following diagram commutes:

S = Bunf (P!, D) % Bun/(C,T) = P! x P!
J/bl(V

The vertical map is the blow-up of the 5 points D; in ]P’l%. The map &
defined in Section 2.6.1 is the desingularisation map of ®. From the previous
discussion, we have the following result:

Theorem 2.6.4. The map ® is a double cover of P! x P! ramified over the
curve I' C P! x P,

Proof. Let us prove that S is the double cover of P! x P! ramified along I
Consider the standard Segre embedding i : P! x P' — P3 given by

’i((ZQ : Zl), (w() : wl)) = (Zoon 2w 21wy - zlwl).
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1 1
P, x P,

Figure 2.2 — The geometry of the map .

Its image is the quadric given by the equation f = ugus —ujus. The curve I’
is the restriction of a quadric in P of equation g = 0. The ramified cover of
P2 along g = 0 is then given by the equation v? = g in Pﬁw, and the covering
morphism is given by the projection onto u.

The double covering of P! x P! is thus given by the quadratic forms t?> = ¢
and f =0 in ]P’ﬁw. Since the intersection is smooth, the covering is a del
Pezzo surface of degree 4 (see for example [25], Section 8.6). Since the map
® is also of degree 2 with ramification locus I, it is the covering map. O

Let Q = {II;, IL;;,II}. From the description of ® on ), we get that the
elements of ) are sent by ® to vertical and horizontal tangents to I' as follows
(see Figure 2.2):

— For i # t, the exceptional divisor II; and the line II;; are sent to V;.

— The exceptional divisor II; and the conic IT are sent to H.

— For {i,4,k} = {0,1, A}, the lines II;c and II;;, are sent to H;.

Each (—1)-curve is mapped by @ bijectively onto its image.
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2.6.4 The involution 7
Let (E,1l) € BunOH(IP’l, D) be a quasi-parabolic bundle. Define

7(E,1) := elmy, (E,1) @ Op1(-2).

The bundle 7(F,1) is again an element of Bunoﬂ(Pl, D), therefore the map 7
is an automorphism of this moduli space.

Proposition 2.6.5. The mapping 7 s the involution induced by ®. More
precisely, T satisfies ® o = ® and it is not the identity.

Proof. Locally, P(E) is a product U, x P!. Consider the quasi-parabolic
point p = (0,0) € U, x P'. The pullback map 7* is given by

(z,y) < (2,9),

where z is a local coordinate in C with 22 = 2. An elementary transformation
centered in (z = 0,y = 0) corresponds to a coordinate transformation (z,y’)
with ¢ = y/z.

Let us now apply an elementary transformation to (E,p). We obtain the
coordinate transformation (x,y” = y/z). The pullback gives

(ZC, y”) A (Z’g = y/Z2).

The elementary transformation of 7*(E, p) is locally given by (z,9z = y/z =
y') (notice that the quasi-parabolic point is now at y” = c0).

We have shown that the quasi-parabolic bundles (E,p) and elm,(E, p)
have the same image by pullback followed by elementary transformation on
a point. Since the arguments are local, the result holds also for ®. O

The map 7 is a degree 3 birational transformation of P} (see Table 2.3).
The vanishing locus of its Jacobian determinant is exactly the union of the
geometric objects in ).

The de Jonquiéres automorphism

Let P be a point in ]P%. The line Ilp p, passing through P and D; and
the conic Ilp passing through the five points D; for ¢ = 0,1, A\, 00 and P
intersect generically in two points, which are P and 7(P).

The involution 7 is given by the intersection of two foliations on IP’%: the
pencil of lines passing through D; and the pencil of conics passing through
Dy, for i # t. The ramification locus ¥ C IP’% of ® is the tangency locus of
these two foliations. The involution 7 leaves invariant ¥ pointwise.

Each point in ¥ is represented by a quasi-parabolic bundle (O¢ @ O¢, p)
fixed by 7. Following Lemma 2.6.2, this condition means exactly that
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This is equivalent to Ly passing through at least one of the quasi-parabolic
directions over t;. Thus, ¥ is exactly the locus of semistable bundles in
Bunoﬁ(IP’l, D). Since p-stability is preserved by elementary transformations,
we obtain again that the image ®(X) is the curve I' of Section 2.4.

The action of 7 on 2 is summarized in Table 2.4.

2.7 The del Pezzo geometry and the group of au-
tomorphisms

Let Aut(S) be the group of automorphisms of the del Pezzo surface S.
We have the following Theorem:

Theorem 2.7.1. Let 0+ 1+ X+ 0o+t be a reduced degree 5 divisor in P!.
Let Dy € P? be the points defined in Section 2.6.3, k € {0,1,,00,t}, and
let S be the blow-up of P? in the points Dy. If X and t are general, the group
Aut(S) is isomorphic to (Z/27)* and acts transitively and freely on €.

Proof. See, for example, Chapter 8 of [25]. O

In particular, if A and ¢ are general, every automorphism of S is an
involution and it is uniquely defined by the image of a (—1) curve in Q. This
set is invariant under Aut(S).

2.7.1 The group of automorphisms Aut(P! x P!, T)

Let C' be a genus 1 curve. Let T = t; + t3 be an effective reduced
degree 2 divisor on C. Let 7 : C — P! be the double cover of P! satisfying
TI'(tl) = 7T(t2) =tePL

In Section 2.5 we defined five automorphisms of the moduli space Bun;(C, T):
the four twists g := ®Ly, for k € A = {0,1,\, 00}, and the map ¢p. These
maps are involutions preserving the bidegree (2,2) curve I'. Recall that
07)\ == 070 9] 071.

These involutions act transitively on the set of vertical and horizontal
tangents to I': the involution ¢ exchanges verticals and horizontals, and
the twists 0 act separately on horizontal and vertical tangents as double
transpositions. More precisely, for k € {0,1, A},

— 0k(Hw) = Hy and 61(Veo) = Vi

— (fk(Hl) = Hj and (fk(vz) = VJ for {i,j, k} = {0, 1,)\}.

— Gr(H) = V.

Let Aut(P! x PL,T) be the group of automorphisms of P! x P! leaving
invariant I'. Recall by Corollary 2.5.11 that we have:

Proposition 2.7.2. If A & {—1,1/2,2}, the group Aut(P' x PL T') is iso-
morphic to (Z./27)3, and it is generated by the involutions Gy and ¢r.
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(()\t)bobl + (t2 —tA— t)bobg + ( /\)b% + (t + A+ 1)b1b2 - b%)(bot — bl)
T (bo)\—bl —b +b2)(b0t—b1)(b1t—b2)
= (b3 + (—t2X — 2 — tA)boby + (tA +t — N)boba + (% + A\)b? + (—t)b1ba) (byt — b)t

000 = ()\bo + ( 11—+ t)bl) (tbl — bg)
oo | 001 = )\(tbo — bl)(tbl — b9)
gp2 — )\(tbo — bl) ((—)\ +t+ )\t)bl - tbg)

010 = (tbo — (1 + t)bl + bg) (()\ —t— 1)b1 + tbo)
o1 | o11 :t()\bo—bl) (tbo—l—(—l—t)bl—Fbg)

o120 =t (A2t + (A2 + £)b% + (=A% — Mt — N2t)boby + (X — t + At)boba — Ab1bo)

oxo = (Mtbg + (1 — X —t)b1) (Atbg — (A + t)by + b2)
o)\ | Ox1 = )\t(bo — bl) ()\tbo — ()\ + t)bl + bg)
ox2 = At (ADE + (1 + A)bT — (A + t 4+ At)boby + (A 4+t — At)boba — b1bo)

Yo = (—A — t2)b3 — b3 + Atboby + (12 — t — At)boba + (A + ¢ + 1)b1bo
Yr | Y1 =1t (Ao — (1 + A)by + b2) (tby — b2)
o =t ((t — X+ At)by — tha) (Abg — (1 + N)by + bg)

Table 2.3 — The involutions 7, o; and 7 in the projective coordinates b.
Here 7 = (79 : 71 : T2), 0k = (0ko : Ok1 : Ok2) and Y = (Yo : P11 YPr2).

Each involution g}, lifts to two automorphisms o and o o7 of S. These
involutions act transitively on the set £2. Choose o to be the lift of g3 such
that o (Il;e0) = I (and thus oy o 7(Il;e) = Iy, and oo = 7). Finally, let
1 be the lift of ¢ such that ¢ (i) = C. The action of these involutions
on the set 2 is summarized in Table 2.4.

II; +— II
T Hl — Hit for {Z 75 t}
M < Iy for {i,j,k} = {0,1,\}
Hk < Htco
Hkt — Hoo
Ok oo <«— I for {i,7,k} ={0,1,A}
(k#o00) | Oy, <+— 1L
11 — Hij
Htoo +—— 1II
wT Ht A Hoo
Hij +— Il for {i,j, ]{7} = {0, 1, )\}

Table 2.4 — The action of the involutions 7, o} and ¥r on the set Q.

By Proposition 2.7.2, the subgroup of Aut(S) generated by og, o1 and
Yr is isomorphic to Aut(P' x P1,T'). Since 7 is not an automorphism of
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Aut(P! x PL.T), we directly obtain by cardinality of Aut(S) that
Aut(S) = (00, 01,1, 7)

This completes the proof of Theorem C.

o1



Chapitre 3

Involutions on moduli spaces of
vector bundles and GIT
quotients

3.1 Introduction

Let C be a complex compact smooth curve of genus g > 3. Let SU¢(r)
be the moduli space of semistable vector bundles of rank r with trivial deter-
minant on C. This moduli space is a normal, projective, unirational variety
of dimension (r? — 1)(g — 1). The study of the projective structure of the
moduli spaces of vector bundles in low rank and genus has produced some
beautiful descriptions, frequently meeting constructions issued in the context
of classical geometry.

For example, in the case of a hyperelliptic curve C, Desale and Ramanan
[23] characterize the quotient SU(2)/i* of the moduli space of rank 2 vector
bundles by the map ¢* induced by the hyperelliptic involution 7. They show
that there exists two quadrics 1 and Q2 in a (2g+1)-dimensional projective
space such that the quotient SU¢(2)/i* is isomorphic to the variety of g-
dimensional linear subspaces contained in )1, belonging to a fixed system of
maximal isotropic spaces, and intersecting ()2 in quadrics of rank < 4. Some
other beautiful results regarding the projective structure of SUc(r) can be
found in [50] and [48].

The natural map ar : SUc(r) --» |£]* induced by the determinant line
bundle £ on SUc(r) is determined by the 7O linear series on the Jacobian
variety Jac(C). More precisely, let Pic/™!(C) be the Picard variety of divisors
of degree g — 1 over C. For every E € SU¢(r), let us define

O(E) :={L € Pic?"1(C) | i°(C,E ® L) # 0}.

If O(E) is not equal to Pic! ™! (C), we have that 6(E) is a divisor in Picd™1(C)
lying in the linear system |r©|, where © is the canonical divisor in Picd~1(C).

52
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This way, we obtain a rational map
0:SUc(r) --+ |rO)|

which is canonically identified to a [10].

Let us now fix » = 2. In this setting, the map 6 is a finite morphism [51].
When g = 2, the map @ is an isomorphism onto P? [46]. For g > 3, the map
0 is an embedding if C' is non-hyperelliptic, and it is a map of degree 2 if C' is
hyperelliptic [23, 7, 19, 55| (see Section 3.2.1 for more details). If g > 3, the
singular locus Sing(SU¢(2)) is the locus of decomposable bundles L @ L™,
with L € Jac(C). The map Jac(C) — SUc(2) defined by L — L& L1
identifies the Kummer variety of Jac(C) with the singular locus of SUx(2).

The goal of this paper is to describe the geometry associated to the map
f in the case r = 2 and C hyperelliptic. In the non-hyperelliptic case, the
paper [1] outlines a connection between the moduli space SUc(2) and the
moduli space My ,, of rational curves with n marked points. A generalization
of [1] has been given in [17]. In the present work, the link with the moduli
space of curves offers also a new description of the 8-map if C' is hyperelliptic.

From now on, let C' be a hyperelliptic curve of genus g > 3. The first
result of the present work is an extension of [1, Theorem 1.1] to the hyper-
elliptic setting:

Proposition 3.1.1. Let D be a general effective divisor of degree g on C.
Then, there exists a surjective fibration pp : SUc(2) --+ |2D]| = P9 whose
general fiber is birational to Moag. More precisely, we have:

1. For every general divisor N € |2D|, there exists a 2g-pointed projec-
tive space P?Vg_2 and a rational dominant map oy : IP’?\?_Q -3 pBl(N)
such that the fibers of hy are rational normal curves passing by the
2g marked points.

2. The family of rational normal curves defined by on is the univer-
sal family of rational curves over an open subset of the general fiber

M[),gg.

The 2g-pointed space P?\‘,FZ appears naturally as a classifying space for
certain extension classes. More precisely, consider extensions

(e) 0—O(-D)— E.— O(D)— 0.
These are classified by the projective space
PY % .= PExt}(O(D),O(-D)) = |K + 2D|*,

where K is the canonical divisor on C'. Since the divisor K 42D is very ample,
the linear system |K + 2D| embeds the curve C' in IP’SDgfz. The projective
space P?\?fz is defined as the span in ]P’?j’j‘F2 of the 2g marked points p1,. .., pag
on C' defined by the effective divisor N € [2D|.
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Our aim is to describe the map 6 restricted to the general fibers of the
fibration pp. To this end, the following construction is crucial:

Let ¢ be the hyperelliptic involution of C'. Let p,i(p) be two involution-
conjugate points in C'; and consider the line [ C IP%(’_2 secant to C' and
passing through p and i(p). We show that this line intersects the subspace
IP’?\?_2 in a point. Moreover, the locus I' C ]P’?VQ_Q of these intersections as we
vary p is a rational normal curve passing through the points p1,...,p2,. We
show that the map o factors by a map hy : ]P’?Vg_2 -—» M&% that contracts
the rational normal curves passing by the 2¢g marked points. In particular,

the map hy contracts the curve I' onto a point w € M 24.

Notation. Let P* = P(C"*!) denote the n-dimensional complex projective
space of lines through the origin of C"*!. Throughout this paper, a form F
of degree r on P" will denote element of the vector space H(P", Opn (1)) =
Sym” (C™*1)*. If we fix a basis xo, ..., 2, of (C""1)* F is simply a homo-
geneous polynomial of degree r on zg, ..., Ty.

In the article [35], Kumar defines the linear system Q of (g — 1)-forms
on P?973 vanishing with multiplicity ¢ — 2 at 2g — 1 general points. He
shows that 2 induces a birational map iq : P23 —-» M&g onto the GIT
compactification of the moduli space Mg 24. The partial linear system A C
of forms vanishing with multiplicity ¢ — 2 at an additional general point
e € P?973 induces an osculating rational projection r : M&IQE --» Al
More precisely, the center of the projection  is the point w = ig(e). Kumar
also shows that the map « is of degree 2 for all g. We describe birationally
the restrictions of 6 to the fibers p,,' (V) using Kumar’s map:

Theorem D. The map 0 restricted to the fibers pBl(N) 1s Kumar’s oscu-
lating projection k centered at the point w = hn(I"), up to composition with
a birational map.

Furthermore, Kumar shows that the image of k is a connected component
of the moduli space SU¢,, (2), where C), is the hyperelliptic double cover of
P! ramifying over the 2g points defined by w. He also proves that the
ramification locus of the map x is the Kummer variety Sing(SUc(2)) =
Kum(Cy) C SUc,,(2). These results due to Kumar combined with Theorem
D allow us to describe the ramification locus of the map 0:

Theorem E. The restriction of the map 6 to the general fiber of pp, ramifies
on the Kummer variety Kum(Cy,) of dimension g — 1, obtained from the
hyperelliptic curve Cy, which is the double cover of P! ramified along the 2g
points identified by P = hy(T).

The fundamental tools in our arguments are the classification maps

fr:PExtY(L7Y, L) --» SUc(2),



CHAPITRE 3. INVOLUTIONS ON MODULI SPACES 55

where L is a line bundle (in this paper, we will use L = O(—D)). More
precisely, the map fr associates to the equivalence class of a extension (e)
the vector bundle E, € SUc(2) sitting in the sequence. Consequently, the
base locus of f7, is the locus of unstable classes in PExt! (L', L).

The use of classification maps constitutes a classical approach to the
study of moduli spaces of vector bundes. For example, they have been used
by Atiyah [3] to study vector bundles over elliptic curves, and by Newstead
[47] to study the moduli space of rank 2 semistable vector bundles with odd
determinant in the case g = 2. In [1] and [15], they have been used to study
the moduli space SU=(2) when C' is a curve of genus g > 2, non-hyperelliptic
if g > 2.

Finally, we conclude this chapter by giving account of the situation in
low genus. Let ¢y := 0 o fr. We make a precise examination of the base
locus of the restriction map QOL‘P?V?*Q in genus 3, 4, 5 and 6.

Theorem F. Let C be a hyperelliptic curve of genus 8, 4 or 5. Then,
for general N, the restriction of ¢y to the subspace ]P’i‘?fQ is exactly the
composition K o hy.

3.2 Moduli of vector bundles

We briefly recall here some results about moduli of vector bundles. For
a more detailed reference, see [9].

3.2.1 Moduli of vector bundles and the map ¢

Let C be a smooth genus g > 2 algebraic curve (not necessarily hyperel-
liptic). Let us denote by Pic?(C) the Picard variety of degree d line bundles

on C. The Jacobian Pic’(C) of C will also be denoted by Jac(C). The
canonical divisor © C Pic/™!(C) is defined set-theoretically as

0 :={L € Pic? }(C) | h°(C, L) # 0}.

Let SUc(2) be the moduli space of semistable rank 2 vector bundles on C
with trivial determinant. This variety parametrizes S-equivalence classes of
such vector bundles, where the S-equivalence relation is defined as follows:
every strictly semistable vector bundle F admits a Jordan-Hdlder filtration

0=EyCECE=E

such that the quotients Ey = F,/Ey and E2/FE; are stable of slope equal to
the slope of E. The graded object

gI‘(E) =F1 & (EQ/El)



CHAPITRE 3. INVOLUTIONS ON MODULI SPACES 56

does not depend on the choice of the Jordan-Holder filtration. By definition,
two strictly semistable vector bundles £ and E’ on C are S-equivalent if
gr(E) = gr(E’), and two stable bundles are S-equivalent if and only if they
are isomorphic.

The Picard group Pic(SUc(r)) is isomorphic to Z, and it is generated by
a line bundle £ called the determinant bundle [26]. For every E € SUq(r),
let us define the theta divisor

O(E) :={L € Pic?"1(C) | h°(C,E ® L) # 0}.

In the rank 2 case, §(F) is a divisor in the linear system [20| = P21

(this is not true in general in higher rank), which leads to the definition of
the theta map
0:SU2) — |20].

If 6 is a morphism, then we have that 6 is finite. Indeed, since the linear
system |£]| is ample, the map 6 cannot contract any curve. It is known that
the map 6 is a morphism if r =2; r =3 and g =2 or 3; or r = 3 and C
is general [51]. The map € is not a morphism if » > 0 [51, 22|, and it is
generically injective for C' general and g > r [20].

Let us now fix r = 2. In particular, the map 6 is a finite morphism. If
C' is not hyperelliptic,  is known to be an embedding [19, 55]. This is also
the case in genus 2, where @ is actually an isomorphism onto P? [46]. If C is
hyperelliptic of genus g > 3, we have that 0 factors through the involution

E—i'E
induced by the hyperelliptic involution ¢, embedding the quotient SU(2)/i*
into |20 (23, 7].
3.2.2 The classifying maps

Let C be a smooth genus g > 2 algebraic curve (not necessarily hyper-
elliptic). Let D be a general degree g effective divisor on C. Let (e) be an
extension of the form

(e) 0—O(-D)— E.— O(D)— 0.

The classes of isomorphism of these extensions are classified by the (3g — 2)-
dimensional projective space

PY % .= PExt}(O(D),0(-D)) = |K + 2D|*,

where K is the canonical divisor of C'. The divisor K + 2D is very ample
and embeds C as a degree 4g — 2 curve in IP)?’DSFZ. Let us define the rational
surjective extension map

fp:P¥ 5 SUc(2)
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which sends the extension class (e) to the vector bundle E.. The composition
map

¢p =00 fp: Py --5 |20

has been described by Bertram in [11].

Let us denote by Sec™(C) the variety of (n + 1)-secant n-planes on C.
Notice that Sec”(C) C Sec™*!(C). Moreover, we have that the singular locus
of Sec™(C) is the secant variety Sec™(C) for every n. Proposition 1.1 of
[37] implies:

Proposition 3.2.1. Let C be a smooth genus g > 2 curve, and D a degree
g effective divisor on C. Then, we have:

— The bundle E, is not semistable if and only if e € Secd™2(C).

— The bundle E, is not stable if and only if e € SecI™1(C).

In particular, the base locus of the map ¢ p is precisely the secant variety
Sec?™2(C)). Theorem 2 of [11] gives an isomorphism

~ 3g—2 —g—1
where Z¢ is the ideal sheaf of C'. This isomorphism yields:

Theorem 3.2.2 (Bertram [11]|). The map pp is given by the linear system
]Ig_l(g)| of forms of degree g vanishing with multiplicity at least g—1 on C.

The relation between the linear system ]Ig_l(g)] and the secant variety
Secd™2(C) is as follows:

Proposition 3.2.3 ([1, Lemma 2.5]). The linear systems \ngl(g)| and
’ISecg_Q(C) (9)| on P?bg_z are the same.

Proof. We reproduce here the proof for the reader’s convenience. The ele-
ments of both linear systems can be seen as symmetric g-linear forms on the
vector space H°(C, K +2D)*. Let F, G be such forms. Then, F belongs to
]Ig_l(g)| (resp. G belongs to |Zg,.o-2(¢)(9)]) if and only if

F(p1,...,pg) =0 for all p; € C such that p; = p; for some 1 <i,j <g
g—1
G(p,...,p) =0 for any linear combination p = Z Aipi, where p; € C.
k=1

One can show that these conditions are equivalent by exhibiting appropriate
choices of \;. O
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3.2.3 The exceptional fibers of fp

Let C' be a smooth genus g > 2 algebraic curve (not necessarily hy-
perelliptic). Let D be a general degree g effective divisor on C. Since
dim SU(2) = 3g — 3, the general fiber of the map fp has dimension one.
The set of stable bundles for which dim(f;'(E)) > 1 is a proper subset of
SUc(2). In order to study this subset, and following [1], we introduce the
"Serre dual" divisor

B:=K-D

with deg(B) = g—2. Asin the previous paragraphs, the isomorphism classes
of extensions

0—-0O(-B)—FE—0O(B)—0
are classified by the projective space
PY % .= PExt}(O(B),O(-B)) = |K + 2B[*.

We also have the rational classifying map fp : ng_fj --» SU(2) defined in
the same way as fp.

Proposition 3.2.4. Let E € SUc(2) be a stable bundle. Then
dim(f5'(E)) =2 ifand onlyif  E € fp(P ).

Proof. Let E be a stable bundle. Then, by Riemann-Roch and Serre duality
theorems, the dimension of f, Y(E) is given by

h(C,E ® O(D)) = h°(C,E ® O(B)) 429 — 2(g — 1)
=h"(C,E® O(B)) +2

Thus, dim(f5'(E)) > 2 if and only if there exists a non-zero sheaf morphism
O(—B) — E. This is equivalent to FE € fB(P?];g%). O

If g > 2, the divisor |K 4 2B| embeds C' as a degree 4g — 6 curve in P?];g_ﬁ
(recall that PExt'(O(B),0(—B)) = |K + 2B|*). Again by Theorem 3.2.2,
the map p is given by the linear system |Igv73(g — 2)|. Moreover, Pareschi
and Popa [49, Theorem 4.1] proved that this linear system has projective

dimension (Zf;g (f)) —-1.

Let us denote by P. the linear span of H(fB(}P’%q_ﬁ)) in |20]. Since the

9)] —1, and Proposition

map @ is finite, P, has projective dimension [Zf;g (Z

3.2.4 also applies to ¢p: the fibers of ¢pp with dimension > 2 are those over
P..
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3.3 A linear projection in |20)|

Let C' be a smooth genus g > 3 algebraic curve (not necessarily hyperel-
liptic). Let D be a general degree g effective divisor on C. In this Section,
we describe the projection with center P., seen as a linear subspace of [20)|.

Let pp. be the linear projection in |20| with center P.. Recall that
dimP, = [Z?;g (3)} — 1. We can check that the supplementary linear

subspaces of P. in [20| are of dimension g. Thus, the image of pp, is a
g-dimensional projective space. Let us write

SUL (2) = SUc(2) \ (Kum(C) U pp (P "))

where gs stands for general stable bundles. Recall that the space H(C, E®
O(D)) has dimension 2 for E € SU?(2). Consequently, we can pick two
sections s1 and s9 that constitute a basis for this space.

Theorem 3.3.1. The image of the projection pp, can be identified with the
linear system |2D| on C, in such a way that the restriction of the projection
pp. to 0(SUL(2)) coincides with the map

0(SUE (2)) = 2D
O(E) +— Zeroes(s1 A s2)

Proof. This result was proved in [1] for C' non hyperelliptic, but the proof
extends harmlessly to the hyperelliptic case. The Picard variety Picd™1(C)
contains a model C of C , made up by line bundles of type O(B + p), with
p € C. The span of C inside |20[* corresponds to the complete linear system
|2D|*. Moreover, the linear span of C is the annihilator of P,. In particular,
the projection pp, |o( su% (2)) determines a hyperplane in the annihilator of P,
which is a point in |2D|. We have that this projection is given as

Prlosuzs (2)) 1 O(SUE (2)) — [2D)|
0(F) — A(E),
where A(FE) is the divisor defined by
A(E) = {pe C | '(C,E @ O(B +p)) £ 0}. (3.2

Equivalently, we have that A(E) = 0(E) N C. Since 0(E) = 0(i*E), we
directly obtain from this equation that A(E) = A(:*E). Finally, an easy
Riemann-Roch argument shows that A(E) is the divisor of zeroes of s; A
59. O

Recall that the linear system |K 4 2D| embeds the curve C in the projec-
tive space P?Z)g_2. Let N € |2D| and consider the linear span (N) C P?’Dg_Z.
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The annihilator of (N) is the vector space H%(C,2D + K — N), which has
dimension g. In particular, the linear span (N) has dimension (3g—2) —g =
2g — 2. Let us write
2g9—2 39—2
P2 .= (N) c %2,

We will study the classifying map ¢p by means of the restriction maps
©p|p2o—2 when N vary in the linear system [2D].
N

Notation. For simplicity, let us write ¢p n for the restriction map pp|p2e—2.
N

Proposition 3.3.2. Let N in |2D| be a general divisor on C C IP%"_Q. Then,
the image of

oo P -5 0(SUC(2))
is the closure in 6(SUc(2)) of the fiber over N € |2D| of the projection pp,.

Proof. Let (e) € ]P’“Z’)gf2 be an extension
(e) 0— O(-D) s E, ™ O(D) — 0.

By (37, Proposition 1.1], we have that e € ]P’?\?f2 if and only if there exists a
section
a € HY(C,Hom(O(-D), E))

such that Zeroes(meoa) = N. This means that o and i, are two independent
sections of E. ® O(D) with Zeroes(a A i) = N. Consequently, §(E.) =
©p,n(e) is projected by pp, on N € |2D| by Theorem 3.3.1. Hence, the
image of ¢p y is contained in pPTcl (N).

Conversely, by the proof of Theorem 3.3.1, we have that for every bundle
E € SUE(2), 0(E) is projected by pp, to a divisor A(E) € |2D|. The
argument used above implies that the fiber ¢} (0(E)) = f5'(E) of such a
bundle is contained in IP’Z“](sz). Consequently, the fiber of a general divisor
N € |2D| by pp, is contained in the image of pp n. O

3.4 The restriction map

Let C be a smooth genus g > 3 curve (not necessarily hyperelliptic). Let
D be a general degree g effective divisor on C. Let N = p1 + --- + pyg be a
general divisor in the linear system |2D|. Consider the span IE”?\?f2 in ]P’i’)gf2
of the 2¢g marked points p1,...,pas. In this Section, we will recall results
about the restriction map

YDN = @D|P?Vg—2 : IP’?\‘?_Q --» SUc(2).

These results can be found in [16] and [1].



CHAPITRE 3. INVOLUTIONS ON MODULI SPACES 61

. . m2g—2
3.4.1 Linear systems in P}/

Recall that the secant variety Sec?™2(C) is the base locus for pp (see
Theorem 3.2.2 and Proposition 3.2.3). Therefore, it is also natural to define

the following secant varieties in IP’?\?Q:

- 292
Sec™ := Sect 2 (C)NPY 7,

Sec!?(N) := U span{M} .

MCN
#M=g—1

Note that, since the points of IV are already in P?Vg_2, we have the inclusion
Secd™2(N) C Sec™.
Let us also define the associated linear systems in P?\?Q

S = ‘ISQCN(g)’ I 7- = ’ISngi2(N)(g)’

of forms of degree g vanishing in the corresponding secant varieties. The
previous inclusion of secant varieties implies that S is a linear subsystem of

T.

Lemma 3.4.1. The restriction map @p N s giwen by a linear subsystem R

of S.

Proof. This is a direct consequence of Theorem 3.2.2 and Proposition 3.2.3.
O

3.4.2 Moduli spaces of pointed rational curves

We will outline in this Section the relation between the restriction map
¢p,~n and the moduli spaces of pointed rational curves. Let us start by recall-
ing some facts about these moduli spaces. For a more complete discussion,
we refer to [16].

Let n > 3. We will say that n points eq,...,e, € P*2 are in general
position if no n — 2 of them lie in a hyperplane.

Two compactifications of My,

The moduli space My, of ordered configurations of n disctinct points
on the projective line is not compact, since it does not include the limit
configurations where two disctinct points «collide». We will consider the
two main compactifications of My ,,. The first one is the GIT quotient

MG = (P')"// PGL(2,C)

of (P1)" by the diagonal action of G = PGL(2, C) for the natural G-linearization
of the line bundle L = Op1(1)®" (see [24]). Moreover, the quotient M((;’,LT
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is naturally embedded in the projective space P(H®((P1)", L)%) of invariant
sections. In this compactification, if n is even, up to n/2 points are allowed
to coincide.

The second one is the Mumford-Knudsen compactification ﬂo,n, con-
structed by Knudsen [34]. The points of My, are isomorphism classes of
stable curves. A stable curve is a connected (possibly reducible) curve C
together with n disctinct points xi,...,z, € C \ Sing(C) such that the
following conditions are satisfied:

1. The curve C has only double points, and every irreducible component
of C' is isomorphic to P!,

2. The arithmetic genus of C' is equal to 0.

3. On each component of C' there are at least three points wich are either
marked or double.

Limit configurations in ﬂo,n arise as follows: when two different marked
smooth points z and y in C' merge at a smooth point p € C, the limit in
My, is a curve with a new component glued at p, and z y will be two
distinct points of this component. More details on these constructions can
be found in [32].

Both M&g and ﬂgyn contain My, as an open set. However, the
Mumford-Knudsen compactification is somehow finer: there exists a con-
traction dominant morphism

M. GIT
en : Mo — MG

contracting some components of the boundary of My ., that restricts to the
identity on Mo, [4].
Knudsen also proves [34] that there exists n forgetful morphisms

Cr: Mopn — Mo pn—1

for kK = 1,...,n. The morphism (i forgets the labelling of the k-th point.
Furthermore, the morphism ¢ : Mg, — My -1 is the universal curve over
Mo pn—1 for every k.

A variety of rational normal curves

Let eq,...e, € P" 2 be n points in general position. Let H be the Hilbert
scheme of subschemes of P"~2. Let Vo(er,...,en) C H be the subvariety of
rational normal curves in P"~? passing through the points e, ...,e,, and
let V(ei,...,en) be the closure of Vy(ey,...,e,) inside the Hilbert scheme
of subschemes of P"~2. The boundary V(ey,...,e,) \ Vo(e1,...,e,) consists
on reducible rational normal curves, i.e. reducible non-degenerate curves of
degree n such that each component is a rational normal curve in its projective
span.
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Theorem 3.4.2 (Kapranov [32]). Letey,...e, € P"~2 ben points in general
position. Then, there exists an isomorphism Vy(er,...,en) = Mop. More-
over, this isomorphism extends to an isomorphism between V (e1, ..., e,) and

Mo .

The first part of this theorem is classical (see, for example, [24]). The
isomorphism Vy(eq,...,e,) = Mo, associates to a rational normal curve
passing by eq, ..., e, the corresponding ordered configuration of n points in
P!, The extension to V(ei,...,e,) = Mo, is due to Kapranov [32].

The blow-up construction

The following construction is due to Kapranov [31]: let eq,...,e,—1 €
P"=3 be (n — 1) points in general position. Consider the following sequence
of blow-ups:

1. Blow-up the points eq,...,e,_1.

2. Blow-up the proper transforms of lines spanned by pairs of points in

{61, PN ,en_l}.

3. Blow-up the proper transforms of planes spanned by triples of points

in {eg,...,en-1}.

(n —4). Blow-up the proper transforms of linear subspaces spanned by (n—4)-
ples of points in {ej,...,e,—1}.
Let bl(P"~3) be the (n — 3)-variety obtained in this way, and b : bI(P"~3) —
P"=3 the composition of this sequence of blow-ups. We will call this map
the Kapranov blow-up map centered in the points eq,...,en_1.

Theorem 3.4.3 (Kapranov [31]). Let n > 4. Then, the moduli space My,
is isomorphic to bl(P"3).

Moreover, the images by b of the fibres of the map (i over the points
in the open set Mg ,_1 C Mg,—1 are the rational normal curves in pn—3
passing through the n — 1 points ey, ...,e,—1 (see [33], Proposition 3.1).

The Cremona inversion

Let e1,...e,—1 € P*" 3 in general position. Without loss of generality,

we may assume ey = [0:---:1:---:0]fork=1,...,n—2;and e, = [1:

-1 1]. The Cremona inversion with respect to ey, ..., e,—1 is the birational
involutive map

Cr_q: PP 3 -5 pn—3

[o:...ixp_g] = [1/xo:...: 1/zp_3].
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By abuse of notation, we will use only the index n — 1 to identify this map.
The Cremona inversion has the following property: any non-degenerate ra-
tional normal curve passing through the points ey, ..., e,_1 is transformed
into a line passing by the point Cr, 1(e,_1). Let 7,1 : P"72 ——5 Pn=3
be the linear projection with center Crj,_j(e,—1). From the previous prop-
erty, we obtain that the composition 7,1 o Cr,,_; contracts non-degenerate
rational normal curves passing through eq,...,e,_1.

Let k € {1,...,n}. By making e; play the role of e,_; in the definition
of Cr,_1, we define similarly the Cremona inversion Cry. Let 75, : PP=3 ——»
P"~* be the linear projection with center Cr(ex). By the property given in
the previous paragraph, we conclude that he map Cry satisfies the following
Lemma:

Lemma 3.4.4. Let eq,...e,_1 € P"™3 in general position. Then, the com-
position T o Cry, contracts the non-degenerate rational normal curves passing
through eq, ..., e,.

For every k € {1,...,n — 1}, we define
Hy = <61,...,é}c,...,€n,2> CPn_g

as the hyperplane of P"~3 spanned by all the points e; excluding e; and
en—1. These hyperplanes are contracted to a point by the map Cry,, and the
same results holds for the composition 7, o Cr,,. Let é; be the image of Hy,
by the rational map 7, o Cry, for every k € {1,...,n — 1}.

Theorem 3.4.2 and the fact that mo,n is the universal curve over ﬂo7n_1
imply the following Proposition:

Proposition 3.4.5 (Kapranov [32]). Let e1,...e,—1 € P~ in general po-
sition. Then, the following diagram is commutative:

i Cn—1 -
MO,TL E— MO,n—l

)| [

3 Tn—-10° Crn—1

pr—3 Lo XInol N IPm—4

Here, the map b,_1 is the Kapranov blow-up map centered in the points €y,
fork=1,....n—2.

The Kumar birational map

Let g > 3, and let e1,...,e99-1 € P29=3 in general position. Let Q be
the linear system of (g — 1)-forms in P29~3 vanishing with multiplicity g — 2
ineyp,...,e9q9-1 € P29-3 The following result holds:
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Theorem 3.4.6 (Kumar [35]). Let g > 3, and let ey, ... e29—1 € P?973 in
general position. Then, the rational map

Q" P23 __5 O

induced by the linear system @ maps P2973 birationally onto MOG,E-

The map is well-defined even without specifying an ordering. The choice

of an ordering defines an isomorphism i =2 ./\/l(();gg. A different ordering

operates as an automorphism of M&g (for more details, see [18]).

Let eg € P?973 such that w = ig(eg) lies in the open set Mo 24 C M&IZE.
The point w represents a hyperelliptic genus (g — 1) curve Cy, (namely the
double cover of P! ramifying in the 2g marked points) together with an
ordering of the Weierstrass points. Let SU¢, (2) be the moduli space of
rank 2 semistable vector bundles with trivial determinant over the curve
Cw-

Consider the partial linear system A of Q consisting of the (g — 1)-forms
in P2973 vanishing with multiplicity ¢ — 2 in all the points eg, e1, ..., €2g—1-
Let & : MOGég --» A* be the rational projection induced by the linear system
A.

Theorem 3.4.7 (Kumar [35]). Let g > 3, and let e, ... ,ez5—1 € P2973 be
29 — 1 points in general position. Let eg € P2973 such that w = ig(eq) lies in
the open set Mo.24 C Mocég. Then, the map ip induced by the linear system
A factors as k o iq, where k is a degree 2 map onto a connected component
of the moduli space SUc, (2). Furthermore, the map k ramifies along the
Kummer variety Kum(Cy) C SUc,, (2).

The map ca, can also be described in terms of Kumar’s linear system €2:

Lemma 3.4.8 (Bolognesi [16]). Let g > 3, and let eq,...,e25-1 € P?973 in
general position. Then, the following diagram is commutative:

Here, the map b is the Kapranov blow-up map centered in the general points
P1y-.-yD2g—1-
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3.4.3 The map hy

Let C be a smooth genus g > 3 curve (not necessarily hyperelliptic). Let
D be a general degree g effective divisor on C. Let N = p1 + -+ + pyg be a
general divisor in the linear system |2D|. Consider the span IP’?\?_Q in Png_z
of the 2g marked points p1,. .., pag.

We are now in situation to apply the discussion of Section 3.4.2 to the
general points p1,...,p2y in the projective space }P’?Vg_z, taking n = 2g +
1. Proposition 3.4.5 and Lemma 3.4.8 imply that we have a commutative
diagram

- G2g—1 -—
M0729+1 _— Mogg

bl ibgg_\%)

2g—2 T2g—1 © Crag—1 o 3 iQ GIT
Py - yPAITS ot > Mo

where € is the linear system of (g — 1)-forms in P29~3 vanishing with multi-
plicity g — 2 at the 2g — 1 points €1, . .., éa5—1 € P?973 defined in Proposition
3.4.5.

Let us define the rational map

hy P72 5 8
given by the complete linear system S = [Zgooo-2(ny(9)]-

Proposition 3.4.9 (Bolognesi [16]). Let N = p; + --- + pag be a general
divisor in the linear system |2D|. Then, the map hy coincides with the
composition ig o Tog—1 © Crog_1 for every k =1,...,2g.

Let us summarize the results of Lemma 3.4.4, Theorem 3.4.6 and Propo-
sition 3.4.9 in the following Proposition:

Proposition 3.4.10. The image of hy is isomorphic to the GIT moduli
space M&gg of ordered configurations of 2g points in P'. The map hy is
dominant and its general fiber is of dimension 1. More precisely, hy con-
tracts every rational normal curve Z passing through the 2g points N to a
point z in M((fg, This point represents an ordered configuration of the 2g

points N on the rational curve Z.

Since R is a linear subsystem of § by Lemma 3.4.1, we have that the
map ¢p, n factors by hy:

2g—2  hn GIT
Py ---=-- > Myag
S 3 (3.3)
¥YD,N R <
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The natural locus Sec””

Let us now study the natural locus Sec” obtained by intersecting the
base locus of pp with IP’?\?_Z. By definition, the points in Sec” are given by
the intersections (Ly—1) N ]P’?\?_Z, where Ly_1 is an effective divisor of degree
g—1and (L,_1) is its linear span in IP’%’_Q. If L,_q is contained in N, it is
clear that (L,—1) C Sec! %(N) C IP’?VQ_Z.

Lemma 3.4.11. Let L,_1 be an effective divisor on C of degree g — 1, not
contained in N. Then,

(Ly-) NPY %4 ¢  ifand only if  dim|Ly_1| > 1.
Moreover, if the intersection is non-empty, we have that
dim((Ly—1) NP %) = dim [L,_1| — 1.

Proof. First, let us suppose that L,_; and N have no points in common.
The vector space V := HY(C,2D + K — L,_1) is the annihilator of the
span (Lgy—1) in IP’?I’)g_2. By the Riemann-Roch theorem, we see that V has
dimension 2g, hence

dim(Ly—1) =(3g—2) —29g=g—2.

Let d be the dimension of the span (Ly_1, N) of the points of Ly_; and N.
Since the dimension of IP’%FZ = (N) is 2g — 2, we have that d < (¢ — 2) +
(29 — 2) + 1 = 3¢ — 3, where the equality holds iff (L,—1) N P%’*Z is empty.

In particular, this intersection is non-empty iff d < 3g—4. Since dim |K +
2D|* = dim ]P’?l’jq_2 = 39 — 2, this is equivalent to the annihilator space

W:=H"(C,2D+ K —Ly1 —N)=HC,K — Ly_1)

being of dimension > 2. By Riemann-Roch and Serre duality, we obtain that
this condition is equivalent to dim [Lg,_;| > 1.

More precisely, let us suppose that (Ly_1) N P?\?fz is non-empty and let
e:=dim((Ly—1) N IP’?\?_Z). Then, we have that

d=39—3—(e+1),

and the annihilator space W is of dimension 2+4e. Again by a Riemann-Roch
computation, we conclude that e = dim |L,_q| — 1.

Finally, if Ly,_1 and N have some points in common, we have to count
them only once in the vector space W to avoid requiring higher vanishing
multiplicity to the sections.

O
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292
Py

Figure 3.1 — The situation in genus 3. The curves I' and C' intersect along
the divisor D, of degree 6. The secant lines [ cutting out the hyperelliptic
pencil define the curve I'.

From this Lemma, we conclude that Sec/ 2(N) is a proper subset of
Sec™ if and only if there exists a divisor Ly_1 not contained in N with
dim |Ly—1| > 1. By the Existence Theorem of Brill-Noether theory (see [2,
Theorem 1.1, page 206|) this is equivalent to g > 4 in the non-hyperelliptic
case, whereas such a linear system exists also for g = 3 if C' is hyperelliptic.
We will discuss the first low genera cases for C' hyperelliptic in Section 3.7.

3.5 The hyperelliptic case

From now on, C' will be a hyperelliptic curve of genus g > 3. This
situation is thus different from the non-hyperelliptic case examined in [1],
and the results presented are new.

According to Proposition 3.2.1, the base locus of the map ¢p y is con-
tained in Sec’Y. We have seen that the secant variety Sec? 2(NN) is contained
in Sec” and that this inclusion is strict for ¢ > 4 in the non-hyperelliptic
case.

In the hyperelliptic case, we have an additional base locus for every g > 3,
which appears due to the hyperelliptic nature of the curve. This locus arises
as follows: for each pair P = {p,i(p)} of involution-conjugate points in C,
consider the hyperelliptic secant line [ in IP’?]DQ_2 passing through the points p
and i(p). Let Qp be the intersection of the line [ with IP’?\?J. Let us define
I'c P?\?ﬁ as the locus of intersection points @ p when we vary the pair P.
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Lemma 3.5.1. The locus I' C IP’?\“,’_2 15 a non-degenerate rational normal
curve in IP’?\*?_Q. Moreover, I' passes through the 2g points N C C.

Proof. Let us start by showing that the intersection is non-empty for every
pair {p,i(p)}. Since dim |p + i(p)| = dim |h| = 1, the intersection { N P?\?*Z
is non-empty by Lemma 3.4.11.

Let us show that this intersection is a point, i.e. that the line [ is not
contained in P?\?J. Recall that IP’ng*Z = |2D + K|*. If the points p and i(p)
are both not contained in the divisor NN, the vector space

V:=H%C,2D +K — N — (p+i(p)) = H*(C,2D + K — N — h)

is exactly the annihilator of the span (I, IP)?\?_2) in IP’3D9_2. In particular, the
codimension of <Z,P?\‘?72> in ]P’%q*z is the dimension of V. By Riemann-
Roch and Serre duality, we get that dimV = g — 2, thus dim(l,IP’?Vg72> =
39 —2 — (g — 2) = 2g. This means that the intersection I N P?ngz is a point.

For the case p € N and i(p) € N, let us remark that the the annihilator
of the span (Z,P?\?_2> is now the vector space H°(C,2D + K — N — i(p)).
Since

hO(C,2D + K — N —i(p)) < h°(C,2D + K — N),

we conclude that the line [ is not contained in P?\?_2. The case {p,i(p)} C N
is excluded by our genericity hypotheses on N. To summarize, we deduce
that the locus I is a curve in ]P’?\?_Z.

Let ¢ be a point of N. Then, ¢ is a point of the plane }P’?\‘,’_2. Conse-
quently, the line passing through ¢ and i(q) intersects the plane ]P’?\*?_2 at q.
Thus, we have that I' passes through the points of N. Moreover, it is clear
that N is the only intersection of I' and C', i.e. I'NC = N.

Let us prove now that I' is a rational normal curve. Since I' is defined
by the hyperelliptic pencil, it is clear that I' is rational. Moreover, since the
divisor D is general, the span of any subset of 2g — 1 points of D is ]P’?VQ_Z.
Thus, it suffices to show that the degree of I' C P?\?_Q is precisely 2g — 2.
Let us write

N =g+ +az

with ¢1,...,q24 € C. By the previous paragraph, I' passes by these 2g
points. Let us consider a hyperplane H of ]P’i?iQ spanned by 2g — 2 points
of N. Without loss of generality, we can suppose that these points are the
first 29 — 2 points q1, ..., gag—2. To show that the degree of I' is 2g — 2, we
have to show that the intersection of I' with H consists exactly of the points
qi,---,42g—2-

The intersection [ N H is empty if and only if the linear span (I, H) of
and H in IP’?bg_2 is of maximal dimension 2g — 1, i.e. of codimension g — 1 in

-9 . ..
]P’?bg . Consider the divisors

DH:q1+"'+q2g*2 and DzIQ‘”@)-
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As before, if {p,i(p)} N {q1,...,q29—2} is empty, the vector space W =
H°(C,2D + K — Dy — D)) is the annihilator of the span (I, H) in ]P’%’_Q. In
particular, the codimension of (I, H) in P?z)g_Q is given by the dimension of
W. Again by Riemann-Roch and Serre duality theorems, we can check that

dim W = h%(C, 2D + Dy + D;) + g — 1.

Thus, the codimension of (I, H) in P?j’j‘]_2 is greater than g — 1 if and only
if h°(C,—2D + Dy + D;) > 0. Since deg(—2D + Dy + D;) = 0, this is
equivalent to —2D + Dy + D; ~ 0. Since N = q1 + - - - 4 q24 ~ 2D, we have
that

2D+ D+ D;~0 <= p+i(p) ~ qag—1 + G2
— h~ Q2g—1 + Q24
= i(qag-1) = q2g-

By our genericity hypothesis on N, the last condition is not satisfied. Conse-
quently, we conclude that the line [ intersects the hyperplane H iff {p,i(p)}N
{aq1,...,q29—2} is non-empty, i.e. iff p or i(p) is one of the ¢, for k =
1,...,2g — 2. In particular,

PmH:{Qla“'?QQg—Q}

as we wanted to show. O

Hence, the curve I' is contracted by the map Ay to a point w € M&gg

by Proposition 3.4.10. The point w represents a hyperelliptic curve C,, of
genus g — 1 together with an ordering of the Weierstrass points N on the
rational curve T'.

3.5.1 The classifying map ¢p restricted to ]P’?\?_Q

Let C be a hyperelliptic genus g > 3 curve. Let D be a general degree
g effective divisor on C. Let N = p; + --- + pag be a general divisor in the
linear system |2D|, and consider the span P?ngz in IP’“;’)gf2 of the 2¢g marked
points p1, ..., pag.

In this Section, we describe birationally the restrictions of 8 to the fibers
pp (N) by means of the maps presented in Section 3.4. This restriction
happens to have a strikingly simple description in terms of basic projective
geometry of the GIT quotients.

The global factorization

Recall that the base locus of the map ¢p is the secant variety Secd2(C)
by Proposition 3.2.1. In [11], the author constructs the resolution ¢p of the
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map pp as a sequence of blow-ups

39—2
IPJD

blg,ll
blll

along the secant varieties
0 1 -1 3g—2
C = Sec’(C) C Sec' (C) C --- C Secd(C) C Py ~.

This chain of morphisms is defined inductively as follows: the center of the
first blow-up bl; is the curve C' = Sec®(C). For k = 2,...,g — 1, the center
of the blow-up bl is the strict transform of the secant variety Sec*~1(C)
under the blow-up blg_1.

The map ¢p is, by definition, the composition of the classifying map fp
defined in Section 3.2.2 and the degree 2 map 6. Thus, the map fp lifts to
a map fp which makes the following diagram commute:

—_~—

PY-2 I, S10(2)

\ | (3.4)

26]

Osculating projections

We recall here a generalization of linear projections. For a more complete
reference, see for example [44]. Let X C PV be an integral projective variety
of dimension n, and p € X a smooth point. Let

¢:UcCt—CN

(tla"'atn) — ¢(t177tn)
be a local parametrization of X in a neighborhood of p = ¢(0) € X. For
m > 0, let Op" be the affine subspace of CN passing through p € X and
generated by the vectors ¢r(0), where ¢ is a partial derivative of ¢ of order
<m.

By definition, the m-osculating space T,;" X of X at p is the projective

closure in PV of O,". The m-osculating projection

HZL:X c PN - pNm

is the corresponding linear projection with center T3".
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3.5.2 Further base locus of ¢yp y and an osculating projection

Let C be a hyperelliptic genus g > 3 curve. Let D be a general degree
g effective divisor on C. Let N = p1 + --- + pag be a general divisor in the
linear system |2D|, and consider the span IP’?\?_Q in IP%’_2 of the 2¢g marked

points p1, ..., pag.
We define the further base locus of pp n as the set

Sec™ = Sec™ \{T'U Sec?2(N)}.

This locus is non-empty for g > 4 due to the existence of effective divisors
Ly in the conditions of Lemma 3.4.11, as we will see in Section 3.7.

Lemma 3.5.2. Let Q be a r-form in P™ vanishing at the points Py and P
with multiplicity 11 and lo respectively. Then, () vanishes on the line passing
through Py and P> with multiplicity at least 1 + ls — 7.

Proof. See, for example, |36, page 2|. O

Let S = |Zg,.~(g)| be the natural linear system associated to pp n (see
Section 3.4). The forms in S vanish with multiplicity g — 1 along the points
of C' (see Lemma 3.2.3). By Lemma 3.5.2, these forms vanish then with
multiplicity (g — 1) + (g — 1) — g = g — 2 along the secant lines [ cutting out
the hyperelliptic pencil. Thus, these forms vanish with multiplicity g — 2 on
the curve I'.

Let us also consider the linear system 7" = |Zgoco-2(n)(9)|- Let T(I') C T
be the partial linear system of forms vanishing (with multiplicity 1) along
Secg_Z(N ), and with multiplicity g — 2 in I". By our previous observation,
we have the following inclusions of linear systems:

ScTI)CT.

These inclusions yield a factorization

— h * *
Y o MG C T - [T(D)]

- | (3.5)

$D,N -l ‘lN
-~ v

T osue(2))

The first map hp is the one defined in Section 3.4.3, its image is the moduli
space M&g. According to Proposition 3.4.10, this map contracts the curve

I" to a point hn(I).

Proposition 3.5.3. The map wy is the (g — 3)-osculating projection H?;S
with center the point w = hy(T).
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Proof. From the definition of the linear systems 7 (I') and S, the base locus
of the map my is the point w = hyx(I') . In particular, the map 7y is
an osculating projection of some order with respect to this point. Since the
forms in 7 (I") vanish with multiplicity g —2 along I', the order the projection
TN is g — 3. O

We will show in the next Section that the map [y is actually birational,
and that the map mn coincides with the restriction of the map 6.

3.5.3 The Kumar factorization

Let C be a hyperelliptic genus g > 3 curve. Let D be a general degree
g effective divisor on C. Let N = p1 + --- + pay be a general divisor in the
linear system |2D|, and consider the span IP%’*? in IP’?Z)g*2 of the 2g marked

points p1, ..., pa2g.

According to Proposition 3.4.10, the map hy contracts the curve I' to
a point w in M&g representing an ordered configuration of the 2¢g marked
points N. This point in turn corresponds to a hyperelliptic genus (g — 1)
curve O, together with an ordering of the Weierstrass points.

Let © be the linear system of (g — 1)-forms in P2973 vanishing with

multiplicity g — 2 at the 2g — 1 points

e1 = Tog 0 Crog(p1), ... ,e29—1 = Tag 0 Crag(pag—1)

in P2973. Theorem 3.4.6 states that the map iq induced by € maps bira-
tionally P29=3 onto the GIT quotient MOGég. Since I' is non degenerate,
there exists eg € P2973 such that w = ig(eg). Let A be the partial linear
system of Q consisting of the (g — 1)-forms in P29~3 vanishing with multi-
plicity g — 2 in all the points eg, e1,...,e24—1. Let & : /\/loeég --+ A* be the
rational projection induced by the linear system A.

Theorem 3.5.4. The map wy coincides with the Kumar map k. In partic-
ular, the map wn s of degree 2.

Proof. Consider the moduli space V = Mg:gg in its natural embedding. The
osculating projection 7y is given by the linear system |Oy(1) — (g — 2)w| of
hyperplanes vanishing in w with multiplicity ¢ — 2. By definition of €2, this
linear system pulls back via iq to the linear system of (g — 1)-forms in P29~3
vanishing with multiplicity g — 2 in eq,..., ez4—1, and also with multiplicity
g — 2 in eg, which is precisely A. Hence, the map 7wy is the map induced by
the same linear system as x.

O

3.5.4 The global description

Let C be a hyperelliptic genus g > 3 curve. Let D be a general degree
g effective divisor on C. Let N = p1 + --- + pag be a general divisor in the
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linear system [2D|, and consider the span IP’?\?_Q in IP%’_2 of the 2g marked
points p1, ..., p2g.

The resolution map ¢p of ¢p factors through the map 6 as shown in
Diagram 3.4. When restricted to ]P’i?_2 for a divisor NV, we have also shown
that the restriction map ¢p n factors through the degree 2 map mn. Now
we link these two factorizations:

Theorem 3.5.5. Let N € |2D| be a general effective divisor. Then, the re-

striction map GlfD (B2-2) 1s the map wn modulo composition with a birational
N

map.

Proof. Let us place ourselves on the open set SUY (2) C SUc(2) of general

stable bundles. One observes that the factorization ¢p = 6o ./f; of Diagram
3.4 is the Stein factorization of the map ¢p along IP%FZ. Indeed, the map
0 is of degree 2 as explained in Section 3.1. Moreover, the preimage of a
general stable bundle E by the map fp is the projectivisation of the space
of extensions of the form

e: 0—-0O(-D))—E— O(D)—0.

By Riemann-Roch, this projectivisation is in fact a P!, since h°(E(D)) is
generically 2. In particular, the fibers of }:D/ over SU%S (2) are connected.

The restriction of pp to IP%‘}F2 factors through the maps hy and 7y (see
Diagram 3.5), followed by the map [. According to Proposition 3.4.10, the
fibers of hy are rational normal curves, thus connected. Moreover, the map
m is of degree 2 by Theorem 3.5.4. By unicity of the Stein factorization,
we have our result. .

Comparing with the factorization ¢p = 6 o fp, we see that Iy cannot
have relative dimension > 0. Hence, [y is a finite map. Since the degree of
the map 6 in the Stein factorization is 2, which is equal to the degree of my,
we have that [y cannot have degree > 1. In particular, we have that the
map [y is a birational map. O

From this description and the arguments of Section 3.5.3 yields the fol-
lowing result:

Theorem 3.5.6. The restriction of the map 6 to the general fiber of pp,
ramifies on the Kummer variety of dimension g — 1, obtained from the Ja-
cobian of the hyperelliptic curve obtained as a double cover of P' ramified
along the 2g points identified by P = hy(T).

3.6 The case g =3

Let us now illustrate the geometric situation by explaining in detail the
first case in low genus. Let C be a hyperelliptic curve of genus 3. In this
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setting, we have that the map 6 factors through the involution ¢*, and embeds
the quotient SU-(2)/(i*) in P” = |26| as a quadric hypersurface (see [7]
and [23]). Let D be a general effective divisor of degree 3. The projective
space ]P’E, as defined in Section 3.1, parametrizes the extension classes in
Ext!(O(D),O(-D)). The classifying map op is given in this case by the
complete linear system |Z2(3)| of cubics vanishing on C' with multiplicity 2.
According to Proposition 3.2.3, this linear system coincides with the linear
system |Zg,.1(3)| of cubics vanishing along the secant lines of C. Recall from
Section 3.5 that among these lines we have the secant lines [ passing through
involution-conjugate points. These form a pencil given by the linear system
|h].

The image of the projection of (SUY (2)) from P, = P3 C |20 is also a
P3, that is identified with [2D| by Theorem 3.3.1. Let N € |2D| be a general
reduced divisor. By Proposition 3.3.2, the closure of the fiber pIECl(N ) is the
image via pp of the ]P’jlv spanned by the six points of V.

3.6.1 The restriction to P}

The base locus of the restriction map pp y = SDD’IP?V contains Sec =

Sec!(C) NP4 by Lemma 3.4.1. The secant variety Sec!(N) C Sec” is the
union of the 15 lines passing through pairs of the 6 points of N. According
to Lemma 3.4.11, the further base locus Sec” \ Sec!(N) is given by the in-
tersections of Pj‘v with the lines spanned by degree 2 divisors Ls on C' not
contained in N satisfying dim |Ly| > 1. By Brill-Noether theory, there is
only one linear system of such divisors on a genus 3 curve, namely the hy-
perelliptic linear system |h| (see, for example, [2], Chapter V). We will review
these ideas in Section 3.7). This linear system defines, by the intersections
with P?\?_Q of the lines spanned by the hyperelliptic pencil, the curve I" that
we introduced in Section 3.5. Hence, we have that Sec™ = {15 lines} UT,
and the restriction map ¢p n factors as

where hy is the map defined by the complete linear system [Zgq.1(y)(3)[ of
cubics vanishing along the 15 lines defined by the points of N, and p is the
projection with center the image via hy of the further base locus I'.

The image of pp v is a P3. Indeed, this image cannot have higher dimen-
sion, since the map factors through the projection of a point of MOG’%)-T c P4,
Also, it cannot have dimension < 3 since otherwise the relative dimension
of ¢p,n would be > 1, or equivalently the global map ¢p would not surjet
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onto SUc(2). Hence, in this case the map ¢p n is defined exactly by the
system of cubics in lev vanishing on Sec”.

According to Proposition 3.4.10, the image of hy is the GIT moduli space
M(%T if NV is general and reduced. It is a classic result that this moduli space
is embedded in P* as the Segre cubic Ss (see for instance [24]). This 3-fold
arises by considering the linear system iq of quadrics in P? that pass through
five points in general position. It is also isomorphic to the blow-up of P3 at
these points, followed by the blow-down of all lines joining any two points.
The curve I' C IP;LV is a rational normal curve by Lemma 3.5.1, hence I' is
contracted to a point P by hy again by Proposition 3.4.10.

By [11] and Lemma 3.4.1, the linear system |Og,(1)| of hyperplanes in
Ss is pulled back by hy to |Zg..~ (3)| on P4, The linear system |Og, (1) — P
of hyperplanes in S5 passing through P is pulled back to the complete linear
system |Zg .~ (C)| defining ¢p n. Hence, the map p is the linear projection
with center P. Since Sj3 is a cubic, the projection p is a degree 2 map.

The point P in MS}};T represents a rational curve with 6 marked points.
Let C’ be the hyperelliptic genus 2 curve constructed as the double cover of
this rational curve ramified in these 6 points. According to Theorem 4.2 of
[35], the Kummer variety Kum(C”) is contained in the image of p, and it is
precisely the branching locus of 7.

3.6.2 The global map ¢p

In the genus 3 setting, the linear system |2D| is a P3. By Proposition
3.3.2, the image of P4 by ¢p is the closure of the fiber prcl(N). For each
point N in |2D], this image is P3 = |Zg, .~ (3)[*, which is the image of the
Segre variety MOC%T under the projection with center P. Thus, the image of
the global map ¢p birational to a P3-blundle over [2D| = P3. In fact, this
image is also a quadric hypersurface in P7 [23].

3.7 Further base locus in low genera

Let C be a hyperelliptic genus g > 3 curve. Let D be a general degree
g effective divisor on C. Let N = p; 4 --- + pag be a general divisor in the
linear system |2D|, and consider the span IP’?\‘?_2 in IP%’_2 of the 2¢g marked
points p1, ..., pag.

Recall from Section 3.4 that the intersection Sec” = Sec?~2(C) N ]P’?Vg_2
arises naturally as part of the base locus of the restriction map ¢p n. The
subvarieties Sec?2(N) and T of Sec yield the factorization of p,n through
the maps hy and 7wy of Proposition 3.5.3. Let us now describe the set

SecN' = Sec \{T'U Sec?%(N)}.
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This set is empty for g = 3, hence the map ¢p n is exactly the composition
of hy and mp, as described in Section 3.6. In higher genus, the existence of
non-empty additional base locus Sec¥ corresponds to the fact that, in higher
genus, the map ¢p n is not exactly the composition of the maps hy and 7.
In other words, the map [y is non-trivial in higher genus.

This supplementary base locus is given by the intersections of (g — 2)-
dimensional (g — 1)-secant planes of C' in IP’%FQ with ]P’i?iz out of Sec?(N)
and I'. According to Lemma 3.4.11, these intersections are given by effective
divisors Ly_1 on C of degree g — 1, not contained in P?\?_z, and satisfying
dim|Lgy—1| > 1. Also by Lemma 3.4.11, we obtain dim({(Ly—1) N ]P’?\?_Q) =
dim |Lg,1‘ —1.

We will now give account of the situation in low genera.

Case g =4
In this case, the divisor N is of degree 8 and the map
eply : P c PY -5 |20] = P¥®

is given by the linear system |Z2,(4)|. This map factors through the map 7y
which coincides with the 1-osculating projection IT}, where w = hy(I).

We are looking for degree 3 divisors L with dim |L3| > 1. These satisfy
all dim |L3| = 1 and are of the form

Ls=h+q for ¢ € C,

where h is the hyperelliptic divisor. Let p be a point of C. Then L3 =
p + i(p) + q. Since dim|Lz| = 1, the secant plane IP’%3 in P19 spanned by
p, i(p) and ¢ intersects P§; in a point. But this point necessarily lies in T,
since the line passing through p and i(p) is already contained in this plane.
Hence, we do not obtain any additional locus.
Case g =5

In this case, the divisors L4 of degree 4 are all of the form

Li=h+q+r for g, € C,

and satisfy dim |L4| = 1. Thus, the corresponding secant ]P’%4 spanned by p,
i(p), ¢ and r intersects IP’?V in a point. As before, this point lies in I', thus
we do not obtain any additional locus.

Case g =6

Here we have, as in the genus 5 case, the divisors of the form

Ls=h+q for ¢ € C,
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which do not give rise to any additional base locus. But there is a new family
of divisors

Ls=2h-+r for r € C.

These divisors satisfy dim |Ls| = 2. In particular, the intersection of the IF’4L5
spanned by p, i(p), ¢, i(q) and r, for p,q € C with PY is a line m in P} .
The line I} (resp. l2) spanned by p and i(p) (resp. g, i(q)) intersects I' in a
point p (resp. ¢). In particular, the line m is secant to I' and passes through
p and ¢. Since every point of I' comes as an intersection of a secant line in
C with IP’Jl\[,), we obtain the following description of the base locus of ¢p n:

Proposition 3.7.1. Let C be a curve of genus g = 6. Then, the base locus
of the restriction map ¢p n is the ruled 3-fold Sec!(T").
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