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Abstract

Prevalent approaches for endowing robots with autonomous navigation
capabilities require the estimation of a system state representation based on
noisy sensor information. This system state usually depicts a set of dynamic
variables such as the position, velocity and orientation required for the robot
to achieve a task. In robotics, and in many other contexts, research efforts
on state estimation converged towards the popular Bayes filter.

The primary reason for the success of Bayes filtering is its simplicity, from
the mathematical tools required by the recursive filtering equations, to the
light and intuitive system representation provided by the underlying Hidden
Markov Model. Recursive filtering also provides the most common and
reliable method for real-time state estimation thanks to its computational
efficiency. To keep low computational complexity, but also because real
physical systems are not perfectly understood, and hence never faithfully
represented by a model, Bayes filters usually rely on a minimum system
state representation. Any unmodeled or unknown aspect of the system is
then encompassed within additional noise terms.

On the other hand, autonomous navigation requires robustness and adap-
tation capabilities regarding changing environments. This creates the need
for introducing contextual awareness within the filtering process. In this the-
sis, we specifically focus on enhancing state estimation models for dealing
with context-dependent sensor performance alterations. The issue is then to
establish a practical balance between computational complexity and realistic
modeling of the system through the introduction of contextual information.

We investigate on achieving this balance by extending the classical Bayes
filter in order to compensate for the optimistic assumptions made by model-
ing the system through time-homogeneous distributions, while still benefit-
ing from the recursive filtering computational efficiency. Based on raw data
provided by a set of sensors and any relevant information, we start by intro-
ducing a new context variable, while never trying to characterize a concrete
context typology. Within the Bayesian framework, machine learning tech-
niques are then used in order to automatically define a context-dependent
time-heterogeneous observation distribution by introducing two additional
models: a model providing observation noise predictions and a model pro-
viding observation selection rules.

The investigation also concerns the impact of the training method. In
the context of Bayesian filtering, the underlying model we exploit is usu-
ally trained in the generative manner. Thus, optimal parameters are those
that allow the model to explain at best the data observed in the training
set. On the other hand, discriminative training can implicitly help in com-
pensating for mismodeled aspects of the system, by optimizing the model
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parameters with respect to the ultimate system performance, the estimate
accuracy. In a further discussion, we also analyse how the training method
changes the meaning of the model, and how this property can be properly
exploited. Throughout the manuscript, results obtained with simulated and
representative real data are presented and analysed.
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D.3 Approche et principe d’implémentation . . . . . . . . . . . . 172
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D.4 Illustration: sélection par le mélange d’experts . . . . . . . . 175
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Chapter 1

Introduction

Remember that all models are
wrong; the practical question is
how wrong do they have to be to
be not useful.

George E. P. Box
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1.1 State estimation

Estimation can be seen as the task of extracting information from noisy
measurements. State estimation specifically refers to the task of estimating
the state value of a dynamic system – which in robotics application might be
the position, the speed, the angular velocity, etc. – by opposition to time-
invariant parameter estimation. In other words, the state estimation task
consists in eliminating the noise in the data providing information about the
real system state, a principle depicted in Fig.1.1. This is why the estimation
process is often referred to as filtering. More rigorously, one should refer
to optimal filtering, since maximizing the information about the real state
relies on a chosen optimality criterion. Treated as a random variable, the
estimated state x̂ is then obtained by minimizing a loss function of the
estimation error � = x − x̂, where x represents the real system state. The
loss function is usually defined by the popular least squares error or the
minimum mean-squared error.

Figure 1.1: The basic state estimation process.

In this domain, the Wiener filter (Wiener, 1949) provided the first answer
to the problem of filtering a stationary Gaussian process by optimizing a
minimum mean-squared error criterion. This work was closely followed by
the milestone article proposed by Kalman (Kalman, 1960) who extended
this approach to the non-stationary and discrete-time case for a system
with known linear dynamics.

While the original formulation of the Kalman filter was based on the
least squares minimization method, similar equations where derived by the
Bayesian community using the Linear Dynamical System and a purely prob-
abilistic analysis (Jazwinski, 1970). The Kalman filter was soon discovered
to be a special instance of a broader class of filters, known as the Bayesian
filters1, and a variety of new models could be treated within the unifying
probabilistic framework.

Throughout the years, a diversity of Bayes filters has emerged, and have
been widely used in applications such as economics, tracking, failure detec-

1
Throughout this dissertation, we will refer to Bayesian filters or Bayes filters without

distinction.
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tion, control systems, demography and many others. Among all these ap-
plications, Bayes filters especially became of great importance in robotics,
where their low computational cost and relatively simple implementation
fostered their diffusion. In most cases, the spatial awareness required by
a robot for autonomously achieving a task relies on the sole information
provided by a Bayes filter. Thus, the state estimation process is of critical
importance for such systems.

1.2 Model assumptions and drawbacks

Strictly speaking, the term Bayes filter (and filtering) refers to the algorithm
used to perform state estimation based on a general system representation
known as the state-observation model. This template model conceptually
splits out the purely dynamical aspect of the system, considering it mon-
itors its own evolution without any other knowledge than its dynamical
equations, from the measurements made along its evolution. The graphical
structure of this model is shown in Fig.1.2 and relies on two main compo-
nents: a prediction distribution p(xt|xt−1) modeling the evolution of the sys-
tem between two subsequent states, and an observation distribution p(yt|xt)
associating an expected measurement yt to a given state value xt. This
template model gave rise to two main implementations: the Hidden Markov
Model (HMM) when the state variable is discrete, and the aforementioned
Linear Dynamical System (LDS) in which the state variable is continuous
and both prediction and observation distributions are linear Gaussian. Note
that when the state is continuous, this model is also known as the state space
model (SSM)2.

As an optimal technique, Bayes filtering brings the substantial benefit
of making the best use of the state-observation model and the collected
measurements to provide the state estimate. However, statistical optimality
is no longer guaranteed if errors and approximations are made in the model.

A Bayes filter thus provides optimal results if the state variables, the
joint measurements, and the causal relationships between them perfectly
describe the real system. This is very unlikely for numerous real applications
where the number of required state variables is too high to be tractable, or
because the real physics underlying the system are unexplained. It is then
very common to introduce simplifying and optimistic assumptions when
describing the prediction and observation functions.

One may also consider that mapping the real process to the simple state-
observation graph structure is the first structural and optimistic assumption
made in the modeling stage. This is because the real causal dependen-
cies between the state and observation variables may require a different

2
In this thesis, we will sometimes use the term Bayes filter to generally refer to contin-

uous state-observation models
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topology. For example, the actual dynamics of the system may also de-
pend on earlier state values, so that the prediction distribution is given by
p(xt|xt−1, xt−2, ..., xt−T ). In this case the prevalent first-order Markov chain
representation has to be dropped and a more complex model emerges. Sim-
ilarly, the fact that the observation yt depends on the sole state variable is
often a crude simplification of the real observation process: multiple external
phenomenons affect the nature of the true observation distribution.

Figure 1.2: A State-space model representing the sequence of states xt and
associated measurements yt. The transition between subsequent states is
modeled by the prediction distribution, and the measurement process for
each state is modeled by the observation distribution.

1.2.1 Representing uncertainty in the model

In order to compensate for the ignored or mismodeled aspects of the real
system that may decrease the efficiency of the optimal filter, a description
of the uncertainty in the model is then introduced. This uncertainty is rep-
resented through stochasticity (even if the system is not truly stochastic)
which results in the introduction of some additional noise distributions over
the deterministic component of the transition and observation models. This
built-in capability to represent the uncertainty in the model itself, and ul-
timately in the state estimate, is a key ingredient leading to the esteemed
robustness and reliability of Bayes filtering methods.

However, once again achieving optimal filtering requires an accurate rep-
resentation and parametrization of the noise models. This task is complex
since it consists in modeling what we actually ignore from the real system.
Consequently, the noise models are often chosen for mathematical consid-
erations, a typical illustration of this being the Gaussian noise used in the
original Kalman filter. Indeed, since a Gaussian distribution whose mean
is defined by another Gaussian leads to a new Gaussian distribution, this
property yields the convenient closed-form expressions of Kalman recursive
filtering.
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As it is difficult to define a realistically accurate model, finding relevant
parameters has always been mostly considered as a tuning task (Maybeck,
1982a; b). In robotics, this is commonly done by making a statistical esti-
mation of the noise value at first, and ultimately tuning these parameters
by hand once the filter is integrated in the system. In practice, the tuning
stage consists in searching for the better balance between filter performance
and robustness. Larger noise magnitudes allowing to encompass more un-
modeled aspects at the price of a higher estimate uncertainty, while smaller
values potentially resulting in overconfidence in the observation and then
in inconsistent estimates (Thrun et al., 2005b). Note that intuitively, the
parameter ’optimization’ is then done with respect to the ultimate perfor-
mance of the system, i.e the accuracy of the state estimate. Alternatively,
parameter tuning can also be automated, or treated within the framework
of state estimation by augmenting the primary state with additional vari-
ables representing the model parameters (Bar-Shalom et al., 2002). This
approach however still requires manual tuning of the artificial process that
models the evolution of the parameters.

Modeling uncertainty in the observation model

In the best case, a real sensor operates under nominal conditions, mean-
ing that it provides measurements with a known characteristic noise. The
deterministic observation model associated with the noise component then
provides an adequate representation of the real measurement process. In
real applications however, several influential and unmodeled factors cause
the sensor measurements to exhibit a wide range of alterations. This means
that the noise magnitude may actually vary in time, up until the measure-
ment can not be treated as a noisy information, but should rather be treated
as unreliable data. For example, it is the case for sensors being used out of
their operating range, or for sensors undergoing a transient disturbance, like
a vision based system exposed to low luminosity conditions. Three major
issues then arise when modeling the observation noise model:

• State estimation sub-optimality: the noise model tries to capture
multiple factors corresponding to different noise values. As a conse-
quence, it is often impossible to find a noise magnitude that would
yield an optimal estimate in any situation. Note that the noise term
is not only used to capture the existence of unmodeled disturbances
leading to fluctuation in the actual measurement error. The noise term
also implicitly compensates for other effects like: inaccuracies in the
prediction and observation models, approximation error introduced
through the estimate belief representation, the discretization of time,
and many others. It is thus important to realize that estimating the
optimal noise value does not simply consists in making a statistical es-
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timation of the measurement error. Instead, one should preferably find
the optimal parameter with respect to the ultimate filter performance,
hence automatically considering any aforecited effect.

• The need for outlier rejection: by definition outliers are mea-
surements lying outside the nominal distribution. These outliers can
totally break down the filter performance and lead to inconsistent es-
timates. To intuitively understand this problem, we shall remind that
a Kalman filter can be viewed as a minimizer of the least-squares cri-
terion which is known to be very sensitive to outliers. Consequently,
Bayes filters often require some additional outlier rejection scheme, or
the introduction of a more complex noise distribution explicitly ac-
counting for the existence of these disturbances. These approaches
respectively require to define an appropriate heuristic in the first case,
and lead to a more complex implementation in the second case (Thrun
et al., 2005b).

• The exploitation Vs. rejection problem: following the two previ-
ous points, a question naturally ensues: when can we use the measure-
ment so that it ultimately improves the estimate accuracy, and when
is a measurement considered to be destructive for the estimation pro-
cess? This question arises if, as for a majority of Bayes filter, the
choice is made of designing a nominal observation model augmented
with a rejection scheme. In this case, the rejection rule is usually de-
fined in a model-centric approach: the first step consists in finding the
best distribution modeling the emission process for the nominal case,
and all the measurements that do not fit this distribution are rejected.
This simple mechanism relies on an artificial rejection threshold over
the measurement noise which may require hand-tuning. This approach
can be legitimately questioned since the rejection decision is based on
the fact that a measurement does not fit a model which is known to
be wrong. In other words, these typical implementations ignore the
only impartial criterion for rejection, i.e. can a measurement help in
improving the estimate accuracy in absolute terms ?

The aforementioned issues mainly concern the specific instance of Bayes
filters associated with a measurement rejection rule. Other approaches exist,
in which a complex observation model tries to embed the whole range of
measurement alterations within the same distribution (Thrun, 2001; Thrun
et al., 2005a). As described in the next subsection, there still remains a
major issue that prevents us from giving the appropriate treatment to the
measurements.
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The closed-world assumption

Designing a state-observation model is usually done under an overall assump-
tion: the conventional idea of eventually defining a closed-world model. A
closed-world model assumes that the model (and by consequence, the state
estimate) contains everything the estimation system needs to know. This
prevailing assumption is inherited from a simple modeling paradigm: to
obtain good results, we simply have to define a good model. However we
have already seen that real systems can not always be perfectly and faith-
fully modeled. And if accommodating the whole model uncertainty within
a noise distribution allows to embed knowledge about the existence of ex-
ternal factors, we are still blind to the occurrence of such effects at runtime.
Therefore, we have no guarantee to give the appropriate treatment to a
new observation, especially if small errors were made at any level in the
model. Note that this is true whether we defined a complex observation
distribution embedding the existence of multiple alterations or if we defined
a nominal observation distribution associated with a rejection scheme. For
these reasons, a filter may momentarily converge to an estimate value that
makes sense for the model, but which is actually inconsistent regarding the
real system. In some extreme cases, the filter may never recover from this
perturbation, leading to filter divergence.

Conclusion

To summarize, probabilistic models provide the strong advantage of encod-
ing a description of the uncertainty in the model due to the inevitable ap-
proximation of the real system. This makes probabilistic models considered
to be very flexible in comparison to a model trying to describe precisely any
possible situation. Unfortunately this flexibility can also turn into a weak-
ness since real implementations tend to sweep numerous mismodeled aspects
under the carpet that is the stochastic component of the model. Thus the
uncertainty model might be overused, leading to sub-optimal estimation in
the best case, and to divergence in the worst case.

1.3 Enhancing Bayes filters for a better balance

between modeling errors and time efficiency

As the research context motivating this thesis concerns at first the issue of
robust and adaptive estimation for autonomous robots, the following discus-
sion focuses only on the observation component. However the ideas proposed
along this manuscript can be straightforwardly applied to the prediction dis-
tribution.
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Why improving a structurally limited model ?

It is clear that the basic state-observation model depicted in Fig.1.2 inher-
ently ignores some aspects of the underlying complexity of a real system.
Especially, the simplistic topology of the state-observation model can be seen
as the main weakness causing the previously mentioned issues when mod-
eling the complex measurement generation process. One might be tempted
to overcome this limitation with a simple answer: a complex process re-
quires a complex model. In other words, the observation component should
not be represented by a single state → observation link, but should involve
additional variables and causal relationships to express any phenomenon
involved in the measurement process. This is why the state-observation
representation can be put in perspective with temporal models capable of
encoding additional causal dependencies like the general Dynamic Bayesian
Networks (DBN) (Dean and Kanazawa, 1989). Additional modeling power
can also emerge from the introduction of complex features defined over the
measurements. This approach fostered the development of the Conditional
Random Fields (CRF) (Lafferty, 2001), which also presents inherent capa-
bilities to easily expand the topological structure of the graph. A graphical
illustration of a simple DBN, and the linear-chain CRF designed for mod-
eling the temporal aspect of a system are shown in Fig.1.3. Note that the
state-observation model can be equally seen as a simple instance of DBN
known as the 2 time-slice Bayesian Network (Koller and Friedman, 2009).

Defining more complex networks however requires additional domain ex-
pertise. In some cases, we may not have a sufficient knowledge about the
system to define properly the required system variables. The measurement
process may also be so complex that we may have to turn to structure learn-
ing methods in order to define the causal dependencies within the model.
The resulting increased complexity also comes at an additional computa-
tional cost, and hence a lower estimation frequency. Besides, and as will be
discussed later, increasing the model complexity does not always guarantee
better results, and care has to be taken when learning the model parameters
to ensure appropriate generalization when confronting the system with new
data.

Two major conclusions naturally follow the issues discussed so far:

• The variables actually involved in the measurement generation pro-
cess are not always known, neither are their probabilistic interactions.
Moreover a realistic model might not always be tractable. Thus, ap-
proximations are always made somewhere, whatever the complexity of
the model.

• Modeling approximations being compensated by the stochastic com-
ponent of the model, a better knowledge about how the noise com-

8



(a) Toy example of a DBN for monitoring a vehicle.
The model explicitly introduces a failure hidden state
that impacts the observation process. (Image excerpt
from (Koller and Friedman, 2009) p.203)

(b) Linear-chain CRF with observation-dependent
transition. Following the factor graph representa-
tion, circles represent variables nodes, and the shaded
squares represent factor nodes where each factor is de-
fined as a function of its direct neighbour variables.
These factors are used to compute the conditional dis-
tribution of the hidden variables given the observa-
tions. Note that the observation generation process
is not modeled in a CRF, and the observations are
only exploited through the factor nodes. This model
property allows for the straightforward introduction
of arbitrarily complex features. (Illustration excerpt
from (Sutton and McCallum, 2007) p.9)

Figure 1.3: Two models extending the modeling complexity of the state-
observation model.
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ponent can make the model more faithful to reality, and embedding
this knowledge within the model, would help in getting closer to the
optimal estimate. That is, one should allow the model to estimate the
actual noise magnitude instead of encompassing multiple situations
within a single static noise value.

The approaches presented in this manuscript stand on a simple paradigm:
excellent results can theoretically be obtained with a simple model, as long
as we continuously know to which extent its modeling assumptions are faith-
ful to reality. Since approximations always have to be made (regardless of
the model complexity), and are further compensated by stochasticity, we fos-
ter the use of simple structures, hence decreasing the amount of knowledge
required to derive a proper noise component.

Besides these considerations, we should remind that the state-observation
model provides a natural and unifying notation which proved to be highly
robust to its own approximations, and is still the backbone of temporal pro-
cesses modeling. One recent example being the linear-chain CRF which can
be seen as the discriminative analog of the HMM (Sutton and McCallum,
2007).

For these reasons, we investigate on approaches for improving the state-
observation model reliability by compensating for its inherent mismodeled
aspects, aiming for a practical balance between complexity and time effi-
ciency (and implementation ease as well). Three key ideas are used along
this thesis for getting better, closer to optimal estimates while using the
state-observation model as a core structure:

• Introduce time-varying models.

• Use additional contextual information within the estimation process.

• Use learning algorithms to find the model parameters.

Each of these points are developed hereafter.

The need for time-varying models

As explained previously, the first reason for sub-optimal estimation is due to
the classical representation of the uncertainty in the model through a single
static noise component. This is because the state-observation model was
built upon the first-order Markov chain theoretical framework which was
described at first under the assumption of time-homogeneity. This assump-
tion simplifying the mathematical manipulation and the exploitation of such
models. According to this assumption, the parameters of the transition and
observation distributions do not vary in time.
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However, real systems are indubitably time-heterogeneous, since for ex-
ample, the factors affecting the measurement generation process vary in time
with the different contexts. One first improvement on the state-observation
model then consists in relaxing the constraint of homogeneity and embed
time-heterogeneous distributions. Following our modeling paradigm, and
keeping the state-observation system representation, we do not focus on ex-
plaining a real, complex measurement process, and instead aim at smartly
re-evaluating at each filter iteration the noise magnitude within the obser-
vation distribution p(yt|xt).

Similarly, making smart decisions about measurement rejection (or anal-
ogously selection) implies adapting the decision rule over time, by evaluating
the reliability of a measurement and the information it brings to the esti-
mation process at each time step.

The need for contextual awareness

Whether it concerns noise adaptation or measurement rejection, time vary-
ing rules imply to transpose the knowledge traditionally encoded within the
model itself to a distinct component providing at runtime the proper in-
formation to the state-observation structure. Also, we want this additional
component to take as input the current information known to be impacting
the measurement process, that we call the contextual information.

When addressing the problem of state estimation for autonomous robots,
the nature of the navigation context is, indeed, of major importance in the
measurement generation process. Luminosity conditions might impact the
performance of cameras and laser based sensors. Some sensors may have very
specific operating range, or the actual speed of the robot and roughness of
the terrain might change the precision of the inertial measurements.

Through this dissertation, the notion of context encompasses without any
distinction every factor that is known to impact the reliability of a sensor
measurement, by comparison to its nominal operating mode.

To illustrate our approach, let’s take the example of a GPS receiver.
The position provided by the GPS can exhibit important drifts caused by
multi-path reflections, a phenomenon more likely to happen in urban envi-
ronments than in open environments. As said before, it is hard to represent
this complex phenomenon through the introduction of new variables that
would provide a better – and hypothetically perfect – observation model.
However, we can exploit a more general information: the fact that there ex-
ists a relationship between the nature of the environment and the decreased
accuracy of the measurements.

It might be tempting to include the required context variables in the
state representation of the system. This approach would therefore closely
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follow the approach suggested in (Bar-Shalom et al., 2002) to incorporate
the model parameters within the state. This would require a description
of the underlying transition and observation processes, that is highly com-
plex. It is even debatable if this precise information can straightforwardly
be modeled by a state-observation model since by nature the context is not
a real dynamical process. An other side-effect emerges from this approach:
by describing the context as part of the state, we incur the closed-world
modeling issues previously mentioned. The consequences in this case are
even worse since errors made in the model may lead to poor estimation of
the filter parameters, which in turn will decrease the global quality of the
estimate, meaning that the system is self-feeding with errors.

Therefore, we suggest an approach where the contextual information is
not tracked by the estimation system, but is preferably captured directly by
a dedicated set of sensors and any available information source. This means
that the context is seen as a set of raw measurements, and that we never
try to explicitly extract (or filter) its real nature. Note that this task would
rather correspond to place classification, and it is not our goal to extract any
meaningful categorization of the context. Our approach is more data-centric
in that we do not expect to understand or identify what information makes
sense for the robot in order to evaluate the reliability of its measurements.

Learning is the key

Once the nature of the distributions encoded by the model is fixed, deter-
mining the distributions parameters is of critical importance for the resulting
quality of the state estimate. As explained before, this task has been long
seen as a tuning task, and the use of learning algorithms in this domain is
surprisingly recent. By automatically extracting parameters from accumu-
lated data, learning not only decreases engineering costs, but also the need
for expert knowledge. It provides reliable and efficient models that proved
to outperform the ones built after human expertise (Abbeel et al., 2005).
In fact, learning, as a data-driven approach, proved to be very effective in
many domains, and not only in Bayesian filtering. As explained in (Koller
and Friedman, 2009), this is because ”The models produced by this process
are usually much better reflections of the domain than the models that are
purely hand-constructed”.

For our problem especially, learning the parameters turns to be the most
suitable approach. At first, we increase the number of parameters to be de-
termined and hence the engineering cost, by introducing a new probabilistic
relationship between the context variables and the measurement reliability.
In some cases, and as will be described later, the number of new parameters
may simply be to high to be tuned through any non-automatized process.
The main reason for learning the parameters however, is that we are unable
to understand the real phenomenon underlying this new causal relationship.
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Thus there is no effective methodology for estimating its parameters, neither
for tuning them with the help of human expertise.

Two of our major concerns, automatic parameter estimation and time-
heterogeneity, are inherently connected. In the domain of adaptive filtering,
time-heterogeneity is a direct consequence of the continuous estimation of
the parameters. As such, these methods appear as an appealing solution
to our problem since they aim at adjusting the noise magnitude in time
without requiring a precise description of the phenomenon involved. In
fact, the state-observation structure does not have to be augmented since
the noise level is assessed directly from data. Following the conventional
Bayesian approach, online estimation of the model parameters is done by
computing their posterior distribution based on the Bayes rule:

p(Θ|y1:T ) ∝ p(y1:T |Θ)p(Θ)

where Θ is the vector set of parameters and y1:T the measurement collected
up to time T . The parameters estimation then rely on two components: the
prior distribution p(Θ) and the likelihood p(y1:T |Θ). This later distribution
basically represents how likely is the set of parameters Θ to explain the
measurements collected, according to the state-observation model. For this
purpose, these methods implicitly assume that the state estimate provided
by the filter itself stays consistent with the true state, and that it is then
possible to statistically estimate some of the model parameters based on this
information (Bar-Shalom et al., 2002). These methods inherently suffers
from the closed-world representation issue, as once again we only rely on
the knowledge represented by the state-observation model to explain some
of its own parameters.

We have already seen that additional information (the context) is re-
quired if we want to properly assess the reliability of measurements in time,
and avoid to rely on the closed-world assumption. If we want to elude
the ambiguities in the estimation process naturally arising from the altered
measurements, we must however fulfil an other requirement: being given
either all or a subset of the true state variables, i.e a ground truth. To us,
the ground truth provides the only sound information for either assessing a
consistent noise model, or properly evaluating the reliability of a measure-
ment. This allows to relax some of the assumptions made when learning
the model, such as the hypothesis of state consistency, or assuming that the
more sensors provide similar information, the more reliable they are. Note
that these later approaches have been widely developed within the field of
model selection (Burnham and Anderson, 2002) or fault detection.

The true state value being clearly inaccessible during normal operation,
we determine the parameters of our model in an initial training phase. This
requires to define some training sets containing the value of the true state
and the associated measurements provided by the sensors during system
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operation. This approach is referred to as supervised learning3, and con-
sequently comes at the price of a highly accurate instrument providing the
ground truth. Still, knowing the true state value brings an other interest-
ing advantage: the ability to train the model with respect to the ultimate
filter performance. By optimizing the model parameters so that the output
estimate is close as possible to the ground truth, we implicitly handle the
modeling approximations mentioned in 1.2, and thus improve the robustness
of the estimation system.

1.4 Contributions

The main contributions of this thesis are:

• Improving the classical Bayesian filtering framework limitations through
the introduction of new noise adaptation and measurement selection
techniques.

• Restraining the closed world assumption usually made in the filter by
introducing contextual information within the estimation process.

• Suggesting the use of supervised learning and non-parametric models
as an answer to the complex problem that is modeling the effect of the
context over the observation generation process.

The theoretical developments provided in this manuscript follow a purely
Bayesian treatment. Although it is originally motivated by robotics applica-
tions, this work can be seen as a generic improvement of the classical Bayes
filter implementations. Thus, most of the following analyses and develop-
ments are not domain-specific.

1.5 Outline

The following chapter (Chapter 2) introduces the reader to the probabilis-
tic graphical models framework. This framework forms a powerful tool for
analysing and formalising our problems through an intuitive diagrammatic
representation. We especially believe that this representation is a key ingre-
dient in developing new probabilistic models, and constantly try to put our
work in context following this framework.

Based on these theoretical concepts, Chapter 3 starts with a detailed
description of the state observation model. Following a purely Bayesian
approach, we see how inference on the model lead to the well known re-
cursive filtering equations, and examine the usual training methods. We

3
As opposed to unsupervised learning, which addresses the problem of data clustering

and density estimation.
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then discuss the core issues resulting from the original assumptions made in
the state-observation model, but also from the training method. We conse-
quently suggest a new modeling paradigm allowing for a better robustness
regarding context influence over the observation. This new model results
in two sub-problems, namely measurement selection and noise adaptation,
that are tackled in the following chapters. At the same time, we evaluate
the consequences of discriminative training regarding dependencies encoded
in the model, and provide a new discriminative interpretation of the state
observation model.

In Chapter 4 and 5, we address the problem of context-dependent mea-
surement selection through two distinct, albeit related approaches. The ba-
sic idea is to define precise activation regions for each measurement subset in
the context input space. Then, based on this decision boundaries, the differ-
ent measurement are selected at runtime following different mixing strate-
gies. One innovation underlying these approaches is the exploitation of the
multiple model technique for measurement selection. An other important
aspect is the relaxation of the concept of outlier, in that the measurement
utility is not seen as a measure of its vicinity to a prior distribution. In our
system, measurements are preferably selected according to their capacity in
improving the ultimate state belief.

The first solution partly relies on the Mixture of Experts framework
which provides an elegant treatment of the selection task within a single
unifying model. The next approach tries to enhance the modeling complex-
ity of the decision boundaries while still providing fast inference capabilities.
This balance is reached thanks to the powerful Relevance Vector Machine
model, which is detailed in Chapter 5. A clear understanding of this model
being necessary for the following chapter, we provide a sound theoretical
background before discussing its application to the measurement selection
task. We provide illustration for both approaches on simulated and real
data in the context of altitude estimation.

Chapter 6 tackles the measurement noise adaptation task which can be
seen as a continuous counterpart of the selection task. Still constrained by
the computational efficiency required for online state estimation, we exploit
the regression form of the Relevance Vector Machine for modeling the noise
component. The strong modifications within the state observation model
significantly impacts the inference task whether it concerns the evaluation
of the noise value itself, or more importantly the recursive equations. We
then determine a set of approximations for simplifying the exploitation of the
model, and alternatively provide solutions for generative and discriminative
training.

Finally, Chapter 7 summarizes the work presented and discuss mid-term
and long-term future work directions.
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Probabilistic graphical

models
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Two frameworks are pervasive in this manuscript: the probabilistic frame-
work, and the probabilistic graphical models. The probabilistic framework
forms a powerful and unifying tool for addressing many problems from a
new perspective, the probabilistic treatment of the original Kalman filter
mentioned in chapter 1 being an interesting illustration of this ability. One
of the most interesting concept provided by the probabilistic framework is
its inherent capability to handle and quantify uncertainty. This concept is
particularly central in our work, as uncertainty is unavoidably brought by
noise in the measurements, and because our ability to model the system is
very limited, hence uncertain. In the case of Bayesian filtering, the ability
to assess a confidence level about the state estimate is also fundamental in
order to get consistent results. One other aspect pleading for the need to
consider uncertainty is the finite size of the training sets. Indeed, even if the
data-driven approach can be very effective, it is still important to be able
to evaluate the degree of confidence we have in the knowledge we extracted
from a limited amount of data.

Logically, the probabilistic approach handles the uncertainty in the sys-
tem state by reasoning exhaustively about the multiple possible state values,
and by evaluating the probability of each hypothesis being true. A central
foundation behind this ability is the exploitation of the Bayes theorem, al-
lowing to compute the contrapositive conditional distribution of an event a
given an event b through:

P (a|b) = P (b|a)P (a)

P (b)

The probabilistic analysis of a system has been early supported by the
use of graphical structures for representing the interactions between vari-
ables. For example this idea was proposed in 1902 by J. W. Gibbs in the
domain of statistical physics. From these early developments the contempo-
rary Probabilistic Graphical Model (PGM) framework inherited many terms
and concepts. In the field of Artificial Intelligence however, it is only in the
late 1980s that the probabilistic methods in association with the graphical
models finally got widely adopted. This success being driven by its consistent
formalism, and its sound theoretical foundations that overtook alternative
approaches for reasoning under uncertainty (Shafer and Pearl, 1990). One
particularly central topic within the PGMs in our work is the Bayesian net-
work framework and the joint concept of Bayesian inference developed by
Judea Pearl in (Pearl, 1988).

While PGMs are now used in a wide range of domains where they led
to various implementations and algorithms, they invariably rely on three
key components that define, at the same time, a complete methodology for
designing a new model and reasoning under it.
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These three components are:

• System representation

• Inference

• Training

In the next sections we give a proper description of each of these concepts
and especially focus on the Bayesian Networks and their temporal instanti-
ation, the Dynamic Bayesian Networks that are essential in this work. The
framework of PGMs being a vast topic, many aspects are voluntarily omit-
ted in this chapter, especially concerning the inference methods. For an
exhaustive and rigorous discussion about the PGMs and probabilistic ap-
proaches, we encourage the reader to refer to the book of Daphne Koller
and Nir Friedman Probabilistic Graphical Models: principles and techniques
(Koller and Friedman, 2009).

2.1 System representation

The PGM framework, in association with probabilistic reasoning, originates
from a fundamental and simple idea. That is, the idea of separating the
knowledge about the system from the reasoning algorithm that exploits this
knowledge to provide answers. This concept is known as declarative repre-
sentation. In this section we describe the notions and semantics specific to
the representation of knowledge, i.e the model of the system.

2.1.1 Bayesian Networks

The Bayesian network representation is based on directed graphs in which
the nodes are the random variables of the system and the directed edges
intuitively correspond to the causal influence of a node on another one. An
equivalent interpretation of this graph is that it provides a representation
of the independence assumptions made in the model, then described by the
absence of edges. More rigorously, these graphs are referred to as directed
acyclic graphs (DAGs), as they present two main characteristics. At first,
a pair of nodes Xi, Xj is always connected by a directed edge Xi �→ Xj ,
by opposition to an undirected edge Xi − Xj . Note that undirected edges
are used in an other graphical representation, namely the Markov Networks,
also referred to as Markov Random Fields. The second important charac-
teristic is that they contain no directed path X1 . . . XK forming a cycle such
that X1 = XK . This restriction is due to the difficulty of defining a coher-
ent and practical probabilistic model when directed cycles are present, as
convergence issues arise in inference and training.
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Figure 2.1: A DAG representing the joint probability distribution over three
variables X1, X2, X3, according to the specific decomposition described in
2.2

Hence, a DAG G provides an intuitive and compact representation of
the joint probability distributions over the variables X1, . . . , Xn describing
our system. To illustrate how a Bayesian Network encodes knowledge about
the dependencies (or independencies) between a set of random variables, we
have to introduce the notion of factorization. For a graph G with n nodes,
a distribution P over the variables X1, .., Xn factorizes according to G if
P (X1, .., Xn) satisfies:

P (X1, .., Xn) =
n�

i=1

P (Xi|PaGXi
) (2.1)

where PaGXi
denotes the parent of Xi in G.

Let us take the example of a system containing three random variables
X1, X2, X3, and decompose the joint distribution P (X1, X2, X3) by succes-
sively applying the product rule:

P (X1, X2, X3) = P (X3|X1, X2)P (X1, X2)

= P (X3|X1, X2)P (X2|X1)P (X1) (2.2)

This specific decomposition is called the chain rule for the Bayesian net-
works. It corresponds to the Bayesian Network depicted in Fig.2.1 where
each conditional distribution is represented by one, or multiple edges. Inter-
estingly, a different decomposition of P (X1, X2, X3) would lead to a different
network, so that the conditional dependencies made in (2.2) only hold for
the graph described in Fig.2.1.

The factorization property leads to the rigorous definition of Bayesian
Networks:

Definition. A Bayesian Network is a pair (G, P ) where P factorizes over
G, and where P is specified as a set of conditional probability distributions
associated with G’s nodes.
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Thus, the first step in defining a model consists in choosing a set of
random variables that describe some relevant aspects of the system. This
step is critical as the variables we decide to use substantially impact inference
and learning, and thus the global model performance. There are two kind
of variables in a model: the variables we can potentially observe, and the
ones we can not observe, referred to as hidden variables. This later category
being relevant when we know that there exists a variable in the system that
we can not observe, but that is too important to be neglected. Sometimes,
introducing a hidden variable of no direct interest for our application can
also improve the general performance of a model as it generally increases its
modeling power and thus allows to take into account some latent phenomena
in the system. Care has to be taken in order to chose a sufficient amount
of variables and, if possible, one has to evaluate their utility as for example,
including a variable that is known to impact an other one but that can
not be observed does not bring more information. In fact, these different
hypotheses are already encompassed by the probabilistic representation of
each event. Clearly, one has to keep in mind that all variables are not useful
for a specific application, and that a suitable set of variables depend on the
information we want to extract from the model.

The interpretation of the conditional distributions in the graph then de-
pends on the nature of the variables, and on our knowledge about the causal
relationships between them. Note that no information about the conditional
distribution itself is provided by the graph, except when the parameters of
the distribution themselves are seen as random variables. The nature of the
conditional distribution is also chosen for practical reasons. For instance, a
prevailing approach consists in choosing the conditional distribution so that
both the prior distribution P (PaGXi

) and the posterior distribution over Xi,

that is P (Xi|PaGXi
) for a specific instance of PaGXi

, have the same functional

form. In that case, the prior and the conditional distribution P (Xi|PaGXi
) are

said to be conjugate distributions, and information can be easily propagated
between a parent and a child since the posterior is given by a closed-form
expression1. The notion of conjugate distributions plays a very important
role, as a graph that uniformly satisfies this property can therefore be arbi-
trarily extended without changing its probabilistic analysis. This property
automatically holds for discrete variables, and is also satisfied in the con-
tinuous case when both the parent and the child distributions are in the
popular exponential family. A very common illustration of the continuous
case is the use of Gaussian distributions, which is of central interest in our
work.

When the variables within the model are discrete, one has to turn to tab-
ular conditional probability distributions. These tables provide an exhaustive
description of the probability for a variable to take one of its possible values

1
Note that this is actually true for propagating information both ways.
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given the value of its parents. The basic tabular representation however
requires a number of parameters (the table fields) that increase quickly with
the graph complexity. Alternative and compact representations are then
commonly used, based on some knowledge we have about deterministic de-
pendencies, some context-independent regularities in the parameters, but
also by introducing general parametric models that do not require to enu-
merate each conditional probability value. One popular illustration of this
later approach is the sigmoid model used in logistic regression.

When the variables take value in a continuous space, many different dis-
tributions can be used for representing a conditional distribution P (Xi|PaGXi

).
Defining an adequate conditional distribution usually means finding the
proper parameters of a known distribution, like the mean and variance of a
Gaussian for example. We will also see that some powerful methods allow us
to make no assumption about the underlying functional form of the actual
distribution, but rather extract a model of the distribution directly from
data. Note that defining a proper conditional distribution P (Xi|PaGXi

) is

equivalent to the regression task, especially when PaGXi
can be observed.

To conclude, the probabilistic framework does not put any restriction
over the nature of the variables in a graph, so that purely discrete, purely
continuous, and hybrid networks can be treated with similar methods. Ex-
amples of some conditional distributions will be provided in this chapter and
all along the manuscript. If defining the conditional dependencies within
the graph is a core issue in obtaining an efficient model, the independencies
that are implicitly defined are also very important. Especially, the concept
of conditional independence is crucial for the exploitation of the model. In
the next subsection, we discuss how a graph also encodes the conditional
independence property.

2.1.2 Conditional independence

As seen before, the joint distribution over the system variables is decom-
posed into a product of conditional distributions that relate the dependen-
cies within the model. However, the decomposition of the joint distribution
P (X1, .., Xn) also encodes an important property, namely the conditional
independences that exist in the model.

From a purely probabilistic point of view, a variable X1 is said to be
conditionally independent from an other variable X2 given X3 if we can
write

P (X1, X2|X3) = P (X1|X3)P (X2|X3)

In other words, where the basic product rule always allows us to write
P (X1, X2|X3) = P (X1|X2, X3)P (X2|X3), we now have P (X1|X2, X3) =
P (X1|X3), meaning that if X3 is given (or observed), then X1 is statisti-
cally independent from X2.
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The graphical representation of the system also encodes the property of
conditional independence. This key feature leads to an important simpli-
fication of the inference and learning task under that graph. To see how
conditional independence is represented in a graphical model G, we give
at first three examples of directed graphs containing three variables and
describe how an observation can lead to conditional independence. Based
on these examples, we then give the more general definition of conditional
independence in a graph, known as d-separation (Pearl, 1986).

Evidential trail: Having a chain X1 → X2 → X3, we intuitively
understand that information can flow from X1 to X3 if X2 is not observed.
However, if we are given an observation of X2, then the trail is said to be
inactive as X1 does not give additional information about X3. This situation
is described in Fig.2.2a, where a shaded node indicates that the associated
random variable is observed. Consequently, for this configuration we have
that X1 and X3 are conditionally independent given X2.

Common cause: For a chain X1 ← X2 → X3 as described in Fig.2.2b,
X2 is a common cause for both X1 and X3. This means that if we do not
know X2, then by probabilistically reasoning, and assuming that X1 is in
one particular state, this gives us information about the probable state of
X2. Based on that information, that means that we can infer in turn a
probable value for X3 given a particular assumption about the value of X1.
In other wordsX1 andX3 are correlated and the trail is active. However, this
information flow is broken when X2 is observed, since making an assumption
about X1 does not give additional information about X3 anymore. Here
again, X1 and X3 are conditionally independent given X2.

Common effect: The last case is a structure X1 → X2 ← X3 as
described in Fig.2.2c. This scenario is different from the two previous one
in that X2 is influenced by both X1 and X3. Then, assuming X1 is in a
specific state gives us information about the possible states of X2, but all
hypotheses about X3 are still to be considered equally. In fact, it is only
when X2 is observed that, by assuming a particular value about X1, we
can probabilistically assess the value of X3. In that case, X1 and X3 are
conditionally independent only when X2 is not observed.

For the general case of complex directed graphs where there can be
more than one trail between two nodes, we have to consider all the possible
paths. Independence is then ensured by the property of d-separation2 which
is defined as follows:

2
The term d-separation stands for directed graph separation.
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(a) The evidential trail structure: conditional in-
dependence between X1 and X3 holds when X2 is
observed (indicated by a shaded node).

(b) The common cause trail structure: conditional
independence between X1 and X3 holds when X2

is observed.

(c) The common effect trail structure: X1 and
X3 are statistically independent when X2 is not
observed.

Figure 2.2: Three graph structures yielding independence between X1 and
X3.

Definition. If X1, X2 and X3 are three set of nodes in a graph G, X1 and
X3 are said to be d-separated given X2 if there is no active trail between
any node x1 ∈ X1 and x3 ∈ X3 given X2.

In fact, a graph G defines a whole group of joint probability distribu-
tions as, for instance, discrete and continuous distributions can be implied
by the same graph3. It can be shown that this group of distributions can
equivalently be obtained by selecting the distributions that factorize over
G according to 2.1, or by selecting the distributions that satisfy the con-
ditional independencies resulting from the d-separation property in G. In
other words, a distribution P factorizes over G if and only if P satisfies the
local independences of G derived from d-separation (Koller and Friedman,
2009).

Consequently, if one intuitively sees a graph structure as a visual map-
ping of the dependence assertions between the variables of a system, great
attention should be paid regarding the independencies that implicitly emerge
from this purely causal analysis. Indeed, it is very important to understand
clearly how the resulting model reflects our interpretation of the system,
and especially when we can consider that two variables are not statistically

3
Also, different functional forms can be chosen for describing the conditional distribu-

tions.
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dependent. Further, the independence assumptions do not only change the
meaning of the model. In fact, the d-separation property can also lead to
great simplifications throughout the graph exploitation. Nevertheless, if the
computational tractability of a model is a main concern, one should how-
ever keep in mind that introducing conditional independence can potentially
decrease the trustworthiness of the model. In the next subsection we give
examples of simple Bayesian networks, and discuss how the d-separation
property influences the exploitation of the graph.

2.1.3 Graph examples

Illustration: The Naive Bayes model

One of the simplest Bayesian network is the so called naive Bayes model.
Its simplicity, and the strong independence assumptions made in this model
makes it to be also referred to as the simple Bayes or the Idiot Bayes model.

Figure 2.3: The graphical structure of the naive Bayes model for a hidden
class C and n features.

The naive Bayes model is originally used for determining the class of a
single variable C based on a set of observed features X1, . . . , Xn. In the text
categorization application for example, C corresponds to the category of a
document, for instance history, science, politics, etc, and the features Xi are
often defined as word frequencies. The Bayesian network graph of this model
is represented Fig.2.3 and depicts each observed variable as a direct child
of the class variable. This specific structure leads to the well known naive
Bayes assumption: all observed variables are conditionally independent for a
given class instance. Clearly, this is because any triplet {Xi, C,Xi �=j} forms
a distinct common cause trail which is inactive when C is observed.

Hence, the joint probability distribution P (C,X1, . . . , Xn) factorizes in
a simple product:

P (C,X1, . . . , Xn) = p(C)
n�

i=1

P (Xi|C) (2.3)
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Even if it relies on a strong assumption, i.e all features are independent
given a class, the naive Bayes model brings interesting properties due to the
algebraic separation of each feature distribution in the chain rule decompo-
sition. As a consequence, it can straightforwardly be applied to problems
where the input vector (X1, . . . , Xn) contains discrete and continuous vari-
ables. It is also convenient for dealing with high dimensional input vectors,
while jointly considering the whole set of features in a common distribution
is a lot more complex. Finally, training the model is also simplified as each
conditional distribution can be optimized separately.

Generative and Discriminative models

If the first goal of the naive Bayes classifier is to assess the class instance
of C given a set of observed features, the graph however describes the op-
posite causal process: for a given class, it seems to generate the correspond-
ing observations. Intuitively, one can understand that instead of encoding
knowledge for predicting directly P (C|X1, . . . , Xn), the naive Bayes model
is built such as describing the process by which the observations are gener-
ated. Even if this capability is not always directly exploited, it is common
to many popular models which are known as generative models. By oppo-
sition, a discriminative model would only encode the knowledge required to
predict P (C|X1, . . . , Xn), and is thus unable to generate observations based
on a particular instance of its hidden variables.

Intuitively, a generative model provides a valid representation of the real
causal processes in the system. For the text categorization application for
instance, one can legitimately argue that the word frequencies are, indeed,
a direct effect of the actual text category. From a performance perspec-
tive however, one may argue that it is unnecessary to embed knowledge
about the observation process if our only goal is to estimate the state of
the hidden class. Especially, since this knowledge is directly extracted from
limited training sets, we should more logically focus on modeling the causal
relationship P (C|X1, . . . , Xn). In practice, knowing whether it is better to
exploit a generative or a discriminative model is a complex problem that is
still debated. First of all, the performance of each class of model is deeply
correlated to the training method, and the current debates about this issue
converged to one main conclusion: generative models usually provide better
performance when we learn from small datasets, but they are outperformed
by discriminative models when the amount of available training data grows
(Ng and Jordan, 2001; Koller and Friedman, 2009). However, generative
models are naturally capable of dealing with missing values and incomplete
data sets, and some applications may also require to generate observations.
Thus, the choice of class of the model is clearly application dependent.
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Illustration: The Markov chain

Some applications, like speech recognition, require to model the temporal
nature of a system. Sometimes, it is also useful to model any form of se-
quential data, like the sequence of characters or words in a sentence which
does not properly rely on a temporal process. In these domains, the strong
correlation between successive events can not be ignored. The most sim-
ple and popular model used for expressing such sequentiality is the Markov
model.

In the general case, we want each observation yi of a system to depend
on the previous observations. This dependence can be expressed by decom-
posing the joint distribution p(y1, . . . , yn) in the form

p(y1, . . . , yn) = p(y1)
n�

i=2

p(yi|y1, . . . , yi−1)

Note that this decomposition is derived from successive application of the
product rule, and hence always holds for any joint distribution p(y1, . . . , yn).

The prevailing first-order Markov model makes the assumption that each
observation yt only depends on the last observation yt−1, and thus that yt−1

implicitly encompasses all the information gathered in the past. The graph-
ical model expressing this independence assumption is shown in Fig.2.4.

Figure 2.4: First-order Markov chain representing the joint distribution of
observations {y1, . . . , yn}

It is easy to verify that we now have p(yi|y1, . . . , yn−1) = p(yi|yn−1) from
the d-separation property applied to evidential trail structures. Thus the
d-separation property is the direct graphical equivalent of the first order in-
dependence assumption. The joint distribution factorizing over this specific
graph can now be written

p(y1, . . . , yn) = p(y1)
n�

i=2

p(yi|yi−1)

The first-order Markov model is very popular, despite the strong indepen-
dence assumption that makes the model ’forget’ about the past. In some
applications, like weather forecasting, it is however important to take into
account a sequence of past observations. Generally speaking, many appli-
cations may require to assume that the prediction for the next observation
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depends more on a trend in the past events than on the single last observa-
tion. In that case, one may turn to Markov chains of higher order, allowing
the prediction to depend on older observations. An example of second-order
Markov chain is depicted in Fig.2.5. Unfortunately, increasing the order of
a Markov chain quickly leads to unwieldy models as the number of required
parameters for describing the conditional distributions explodes. This is why
the Markov chain model is primarily used under the first-order independence
assumption.

Figure 2.5: Second-order Markov chain graphical model.

2.2 Inference

Once the graphical model and associated conditional distributions are de-
fined, we can subsequently run inference in the graph. The inference task
consists in computing the posterior probability distribution of one or multi-
ple variables within the model based on some ’observed’ values. Note that
in this context the term observed value is equally used to refer to an ac-
tual measurement (provided by a sensor for instance), but also to refer to
a variable that is arbitrarily instantiated to one of its possible values. The
inference task can be split in three major operations, or reasoning patterns :
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Causal reasoning:

Causal reasoning is the most intuitive inference case
on a directed graph. It consists in predicting the pos-
terior distribution of a variable, being given an ob-
servation in the upstream of the graph. A simple
example of this scenario is depicted on the right. In
this graph, we want to infer the distribution of y given
an observation on x1, i.e p(y|x1). Being given an ob-
servation of x1, the only distribution we can straight-
forwardly derive is p(y, x2|x1). In order to obtain the
conditional distribution of y, one consequently have
to marginalize out the variable x2. In the proba-
bilistic approach, marginalization corresponds to the
application of the sum rule to x2. In a more intuitive
interpretation, we simply want to propagate informa-
tion through x2, then take into account all its possible
values given the observation on x1. In the continuous
case, this is done by integrating the joint distribution
over x2 (sum rule) so that we finally obtain:

p(y|x1) =
�

p(y, x2|x1) dx2

Evidential reasoning:

In evidential reasoning, the inference task now con-
sists in propagating information from the effects to
the causes. The simplest scenario of evidential rea-
soning is the one described by the graph depicted on
the right. In this graph, a cause x leads to an ob-
served effect y, in a basic generative representation.
Thus, given the observation y, we aim at computing
p(x|y). However, the graph only describes the condi-
tional distribution p(y|x). Inference then requires to
exploit the Bayes’ theorem which gives us

p(x|y) = p(y|x)p(x)
p(y)

where p(x) is the prior distribution over x, and p(y)
can be computed using the sum and product rule so
that p(y) =

�
p(y|x)p(x) dx. Computing this normal-

ization term is however not always required. Note
that the Bayes’ theorem gives us the capability to
reverse the information flow within the graph.
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Intercausal reasoning:

Finally, the last class of reasoning patterns involves
information flowing between common causes of a
same effect. This is for instance the case in the graph
depicted on the right, where both x1 and x2 are par-
ents of y. Reminding that this structure is active if y
is observed, then being given an observation of x1 also
impacts the posterior distribution of x2. Intuitively,
we know that observing y give us information about
x2. Meanwhile, knowing x1 also allows us to take
away some hypotheses about why the variable y took
this specific value, which in turn provides a better in-
tuition about the more probable value of x1. In this
case, inference requires to exploit both marginaliza-
tion and the Bayes’ theorem. Note that intercausal
reasoning can be done in any direction, and the re-
quired mathematical tools may vary for each case.

Depending on the variables type and on the conditional distribution
representation, several methods can be used to perform inference. One may
roughly distinguish two main classes of inference methods: exact inference
methods and approximate inference methods. Exact inference can be per-
formed when the variables are discrete, and in the continuous case when the
conditional distributions are conveniently chosen to provide closed-form ex-
pressions. When the computational complexity of a graph increases, or when
no closed-forms solutions exist, one has to turn to approximate inference.
Two main methods are worthy of note in this domain. The first method
aims at approximating the complex distribution of interest by substituting
it with a simpler, tractable distribution. These methods rely on a common
optimization process which aims at finding the simple distribution (among
a distribution family) that provides the best similarity with the intractable
one. The similarity term being provided by the information framework in
terms of relative entropy. The second method consists in approximating
the distribution over the graph by a set of instantiations to some variables.
These methods are usually referred to as particle-based and rely on a sim-
ple idea: samples (particles) are generated from parent variables within the
graph, starting from the leaf nodes, and are then propagated by simple eval-
uation of the conditional distributions at these points. An estimation of the
resulting posterior distributions is then obtained by combining the particles
that were generated for the variables we want to infer.

A very broad range of methods provide solutions to exact and approxi-
mate inference, and discussing the details of these approaches is out of the
scope of this manuscript. In any cases, the overall inference operation relies
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on –and should be remembered as– a simple conceptual principle. That is,
inference consists in propagating messages between the parent-child pairs of
a graph, so as transmitting the information gathered from the observed vari-
ables. Examples of inference method will be provided later in the specific
case of the DBNs where exact inference corresponds to the Bayesian filter-
ing recursive equations. The probabilistic regression problem with hidden
parameters will also be detailed.

Even if, at first, inference seems to be a distinct and independent tool
exploited once the model and its parameters are defined, it is not unusual
to perform inference during the training phase. In the presence of hidden
variables that remains unobserved, we have to complete the missing data
via inference before optimizing the parameters of the joint distribution de-
fined over G. Thus, one should not consider inference and learning as two
chronologically distinct procedures within the life cycle of a graphical model.

2.3 Learning

In some specific problems, the construction of a PGM can be done after
human expertise about the system. For instance, a significant amount of
real-life systems exploit a Bayes filter whose conditional distributions are
purely handcrafted. However, within the PGM framework, the models can
be arbitrarily extended to reach levels of complexity that quickly become
intractable for a human expert. In some other applications, we may not
even have any useful knowledge about the system. For this reason, and
because it is easier and faster to acquire data from the system than to acquire
human knowledge about it, the PGM framework was developed with a rich
learning machinery. Furthermore, learning the joint distribution from data
saves engineering costs, and provides a generic approach for automatically
adapting the same model to different applications. Note however that when
particular aspects of the real physical system can be described by some
deterministic equations, including this knowledge within the model usually
increases its performance. Intuitively, this is because combining both system
expertise and learning allows to alleviate the learning algorithm and reduce
the amount of required modeling power. The training phase then exploits
the available training data more efficiently in order to capture the unknown
aspects of the system.

As said earlier, some systems are so complex that the structure of the
graph G is left unknown. Then the learning task also consists in extracting
an adequate structure from the training data. In this work, models are kept
simple enough so that we will never require to explore this area within the
learning machinery. More details about structure learning can however be
found in (Friedman and Koller, 2003; Koller and Friedman, 2009).
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2.3.1 Learning is optimization

Generally speaking, the learning task is viewed as an optimization process
whose output is the set of parameters4 of a joint distribution P factorizing
over a graph G. In this perspective, we have to define at first a set of can-
didate models defining a hypothesis space, and a loss function that specifies
some constraints and objectives the model should fulfil. For instance, and
as will be described hereafter, an intuitive loss function provides a measure
of how a model is capable of explaining the observed data, given a specific
instance of the distribution parameters.

In this chapter, we mainly discuss two scenarios:

• The data in our training set is fully observed, in which case Bayesian
networks usually allow for closed-form solutions.

• The data in our training set is partially observed, and the learning
process is generally harder, as we need to take into account the multiple
hypotheses about the unobserved variables.

In the next subsections, we discuss the two main methods for learning
parameter from data, a task known as parameter estimation.

2.3.2 Maximum likelihood parameter estimation

A common principle used for parameter estimation in Bayesian networks is
that of Maximum Likelihood. To illustrate this principle, let’s assume that
we are given a training set D containing M observations of a set of variables
X = {X1, . . . , Xn} so that D = {X [1], . . . ,X [M ]}. We also assume that
we defined a PGM {G, PG(X : Θ)} with Θ the set of parameters of the
distribution P . Note that we are in the case of fully observed data.

Thus, the probability distribution of each instance X [m] within the
dataset is given by PG(X [m] : Θ). We can view this last term as a function
of the parameter vector Θ assessing how likely it is for the distribution PG
to explain the observed data X [m]. This term is then referred to as the
likelihood function for X [m].

If we consider that the variables instances {X [1], . . . ,X [M ]} are indepen-
dent and were sampled from a common underlying distribution that we try
to model through PG , these instances are called independent and identically
distributed (i.i.d). Thanks to this independence assumption we can derive
a simple expression for the likelihood function L of the dataset D through
the product

L(Θ : D) =
M�

m=1

PG(X [m] : Θ) (2.4)

4
Note that in the case of structure learning the output also contains a representation

of the graph structure.
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Now taking into account the specific chain rule decomposition for PG(X :
Θ) over G, we can derive a final expression for the likelihood function that
applies to any Bayesian network:

L(Θ : D) =
M�

m=1

PG
�
X [m] : Θ

�

=
M�

m=1

n�

i=1

P
�
Xi[m]|PaGXi[m] : Θ

�

=
n�

i=1

� M�

m=1

P
�
Xi[m]|PaGXi[m] : Θ

��
(2.5)

Once the likelihood function defined, the set of parameters explaining at
best the training data D can thus be found by choosing the parameters Θ∗

that verify
L(Θ∗ : D) = max

Θ
L(Θ : D) (2.6)

This means that we have to ensure that PG(X [m] : Θ) is continuous and
differentiable with respect to Θ. Besides, it is customary to maximize the
log of the likelihood function, then called log-likelihood, as it often simplifies
the mathematical expression for L. Since the likelihood forms a product of a
large amount of probabilities, each of which being potentially small, the log
likelihood also helps in providing a better numerical precision and stability.
Note that the log function being monotonically increasing, maximizing the
log-likelihood is equivalent as maximizing the likelihood function.

Interestingly, we see that the likelihood of a Bayesian network forms a
product of local likelihood for each node Xi taking the form:

M�

m=1

P
�
Xi[m]|PaGXi[m] : Θ

�

If the parameters involved in the computation of each local likelihood form
disjoints subsets Θi, then the likelihood function can be seen as a product of
local terms which can be independently maximized. Thus maximizing the
log of the likelihood function (2.5) consists in subsequent optimizations of

�(Θ : D) = log(L(Θ : D)) =
n�

i=1

� M�

m=1

P
�
Xi[m]|PaGXi[m] : Θi

��
(2.7)

with respect to Θi. This decomposition usually leads to simple solutions for
the optimization problem if the conditional distributions are conveniently
chosen.
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2.3.3 Bayesian parameters estimation

The likelihood function defines an intuitive and powerful loss function for
optimizing the model parameters. However, it is well known that its straight-
forward optimization suffers from the typical drawbacks of the frequentist
interpretation of probabilities. Practically, it means that the parameter
optimization blindly relies on the sole training data and ignores any prior
knowledge we may have about the system. Also, it does not include un-
certainty over the parameters learned from data in its basic formulation.
Consequently, the learned models are prone to overfit the training set and
to perform poorly on new data. These problems are however automatically
tackled by revisiting the likelihood optimization problem in a full Bayesian
treatment.

Following the Bayesian approach, the model parameter vector Θ is now
represented by an additional random variable, so that the likelihood is now
given by the distribution P (D|Θ). An estimation of the parameters can now
be obtained by straightforward exploitation of the Bayes rule:

P (Θ|D) =
P (D|Θ)P (Θ)

P (D)
(2.8)

where P (Θ) is the prior distribution over the parameters and P (D) can be
derived by marginalizing out Θ in the likelihood function:

P (D) =

�
P (D|Θ)P (Θ) dΘ

Unlike the maximum likelihood approach which provides a point estimate
Θ∗, the Bayesian treatment defines Θ in terms of probabilities throughout
the optimization process. Before optimization, the initial belief and uncer-
tainty about Θ is defined by the prior distribution P (Θ). This knowledge
is jointly taken into account along with the likelihood of the training set
in order to compute a posterior belief about the parameters. In a typical
Bayesian approach, this posterior distribution is proportional to the product
of the likelihood and the prior, as described in (2.8).

In some cases, the prior and the conditional distributions within the
model are chosen so that we can find a closed-form expression for the poste-
rior. Ensuring that the prior and the likelihood are conjugate distributions
is a common practice for obtaining such convenient posteriors. Note that in
this case, the prior and the posterior distributions have the same functional
form, so that a previously computed posterior can be used straightforwardly
as the prior for a new training phase. When there exists no conjugate prior,
or when alternative priors are preferred for their specific characteristics, one
can approximate the fully Bayesian approach with theMaximum a posteriori
(MAP) point estimate. Namely, we seek for the parameters that maximize
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the posterior distribution:

ΘMAP = argmax
Θ

�
log P (Θ|D)

�
(2.9)

To see how MAP estimation differs from the maximum likelihood method,
we can expand (2.9) using (2.8) to get:

ΘMAP = argmax
Θ

�
log P (Θ|D)

�

= argmax
Θ

�
log

P (D|Θ)P (Θ)

P (D)

�

= argmax
Θ

�
logP (D|Θ) + logP (Θ)

�

Thus, the MAP estimate still tries to maximize the (log)likelihood function,
now biased by the prior distribution over Θ. This last term is known for fos-
tering regularization, i.e it prevents the optimization process to converge to
extreme values that would only fit the training set. This behaviour is known
as overfitting, and subsequently leads the model to perform poorly on new
data. In the worst case, the possible instances of the random variables are
only partly observed in the training set. This leaves the purely frequentist
approach unable to draw any conclusion about these specific cases, and con-
sequently to provide reliable parameter estimates. On the other hand, the
Bayesian approach rather relies on the prior knowledge introduced through
P (Θ) when the training set provides insufficient information. Recalling from
(2.7) that the log-likelihood grows linearly with the number of observations
in D, the prior influence however remains inversely proportional to the size of
the training set. As such, the Bayesian estimation method usually provides
parameters that generalize better, but care has to be taken when defining
the prior distributions.

The overfitting issue:
Overfitting remains one of the major issue when learning a Bayesian net-
work. Besides the case of small training sets, and potentially non identically
distributed observations, the model complexity is also to be considered as
a main cause for unsuccessful parameter estimation. In practice, when we
increase the number of parents PaGXi

of a variable in the graph, we auto-
matically increase the amount of required training data. This is because
the number of possible instances of the parent set increases exponentially
with the number of parents. Consequently, even large training sets may not
provide a sufficient number of samples for each possible instance. This lack
of information, relatively to the number of possible instances for the vari-
ables X in the graph, usually leads to overfitting. Thus, as can be expected,
increasing the modeling power of a model is not always a key to better
performance, as it may require too large amounts of data to be properly
trained.
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The strength of the Bayesian estimation method however lies in the
representation of Θ through a complete probabilistic distribution. When
a proper closed-form expression for the posterior can be derived, we can
use this distribution instead of a point estimate in the subsequent inference
tasks. This representation conveys a more realistic representation of the
parameters including our uncertainty in the estimate. To illustrate this
fundamental difference, we can imagine that a parameter is now represented
by a function which get more sharply peaked around the optimal value
when the amount of data in the training set5 increases. On the negative
side, exploitation of the model is consequently more complex as we have to
integrate out all the parameters in any manipulation involving Θ.

To illustrate this principle, we assume a simple graph containing a parent
variableX and a child Y . The joint distribution P (X,Y |Θ) then decomposes
in the product:

P (X,Y |Θ) = P (X|ΘX)P (Y |X,ΘY )

with Θ = {ΘX ,ΘY }, where ΘX is the set of parameters of the prior distri-
bution over the parent variable X, and ΘY the parameters of the conditional
distribution over Y .

Figure 2.6: Ground Bayesian Network of a two-variable model: each instance
{X[i], Y [i]} within the training set is depicted as an independent sample,
along with the predicted samples {X̂, Ŷ }. Note that the parameters Θ =
{ΘX ,ΘY } are shared by all instances of X and Y .

5
And confirming this trend around a single optimal value
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If our task now consists in predicting new instances X̂ and Ŷ given the
training data D and a posterior distribution P (Θ|D), we can write

P (X̂, Ŷ |D) =

�
P (X̂, Ŷ |D,Θ)P (Θ|D) dΘ

=

�
P (X̂, Ŷ |Θ)P (Θ|D) dΘ

where we use d-separation to obtain the last term, as all instances {X[i], Y [i]}
are independent given the common cause variable Θ. This independence as-
sumption is illustrated in the ground Bayesian network depicted in Fig.2.6.

So far, we assumed that the prior distribution over Θ was provided.
Practically, we need to define a distribution over a continuous space that
represents our available knowledge about the parameters before any obser-
vation on the real system. If we do not have any knowledge about the
parameters, we can use uninformative priors, and then represent Θ with
a uniform distribution in a given interval. If we want to be more specific
about the shape of the prior distribution, we usually introduce a family of
priors represented by a parametric function P (Θ : α) where the variables
α = {α1, . . . ,αn} are called the hyperparameters of the model. As said pre-
viously, the prior distribution is also chosen for its functional form, so that
the posterior P (Θ|D) forms a compact and convenient analytic expression.
When such parametric priors are used, the learning task then consists in
finding the optimal values for {α1, . . . ,αn}.

In practice, a fully Bayesian treatment of the parameter estimation prob-
lem requires to define hyperprior distributions over the hyperparameters.
The marginalization of both Θ and α that would necessarily ensue is how-
ever often intractable. Various methods exist to get around this problem via
approximation. A common approach follows a similar idea as in the MAP
estimation, and then approximates α with point estimate. This method is
referred to as Type-2 maximum likelihood or evidence approximation and
will be described in chapter 5. Alternatively, one may proceed to exact
marginalization over one of the two parameters, and then approximate the
resulting posterior that can subsequently be integrated in closed-form. This
can be done with more advanced techniques such as Laplace approxima-
tion (Chickering and Heckerman, 1997), or variational methods (MacKay,
1997). Finally, one can view the parameters as new hidden variables that
are clearly never observed. This specific problem is then addressed with ded-
icated learning methods that are built to deal with incomplete data. This
specific task is discussed in the next subsection.

2.3.4 Learning with incomplete data

The two former approaches for learning the parameter assumed that the set
of variables depicted by the model was fully observed in the training set, i.e
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we obtained observations for each variable Xi in X . The ability to observe
every variable is however quite unlikely in real applications, and as depicted
in the previous subsection, the fully Bayesian treatment of the parameter
estimation unavoidably introduces new hidden variables representing the pa-
rameters. Many problems arise from the missing data. To be more specific,
let us denote the set of i.i.d observed variables by O[m] and the missing
variables by H[m]. The likelihood function is now provided by:

L(Θ : D) =
M�

m=1

P (O[m]|Θ)

=
M�

m=1

�
P (O[m], H[m]|Θ) dH[m]

This expression shows us that the learning task now requires to run inference
on the missing (hidden) variables. Usually, the resulting likelihood does not
admit a closed-form expression, and the decomposition (2.7) allowing for
easy optimization of the parameters, is not suitable.

In a more intuitive understanding of the issues caused by incomplete
data, one may view the training data as a set of constraints in the param-
eter optimization task. Consequently, an incomplete training set yields a
lack of constraints in the optimization problem, which in turn decreases the
capability of finding a unique set of parameters. Multiple methods provide
a solution to this problem. One may for example turn to an adapted gra-
dient ascent method or alternatively perform sampling to approximate the
parameter values (Koller and Friedman, 2009). We shall however focus on
a specific approach known as Expectation Maximization that we will exploit
later.

Expectation Maximization

When direct optimization of the complete data likelihood P (O[m], H[m]|Θ)
is substantially easier than optimization of the partially observed data like-
lihood, a simple approach consists in artificially assigning the missing vari-
ables with adequate values. We know that for a given instance of Θ, we can
easily run inference in the model to evaluate the missing variables. This task
is however impossible as we are concurrently trying to learn the model pa-
rameters. The Expectation Maximization algorithm (EM) (Dempster et al.,
1977) provides an elegant solution to this problem by repeating two steps:
in the first step, we use the current value of the parameters to infer the
missing variables. In a second step, we learn a new set of parameters based
on these artificial observations and the incomplete training set. Repetition
of these two steps provides interesting convergence guarantees, as it can be
formally proved that every time we get a new parameter Θ that differs from
the previous one, the associated likelihood P (O|Θ) increases.
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As seen in the algorithm summary below, the first step does not only
require to infer the posterior distribution P (H|O,Θold). In practice, the
purpose of the fist step is to compute the expectation of the complete log-
likelihood with respect to the current posterior P (H|O,Θold) and for any
parameter Θ. For this reason this step is referred to as the E step (Ex-
pectation). In the subsequent M step (Maximization) we then find the
optimal parameter maximizing the expected likelihood. Note that the in-
troduction of the expectation yields the convergence properties of the EM
algorithm. A formal proof of this property can be found in (Bishop, 2006).

Expectation Maximization algorithm:

Let D = O be the set of observed variables, H the set of hidden
variables, and Θ the set of all model parameters.

1. Set initial value for parameters Θold

Set a convergence threshold �.

2. E step (Expectation)

Evaluate P (H|O,Θold) and compute

Q(Θ,Θold) =

�
ln
�
P (H,O|Θ)

�
P (H|O,Θold) dH

3. M step (Maximization)

Θnew = argmax
Θ

Q(Θ,Θold)

4. If |Θnew −Θold| > �,
Set Θold ← Θnew and go to step 2.

In the general formulation of the EM algorithm, the E step performs
what can be seen as soft completion of the data, by integrating over the
posterior of the missing variables. An alternative solution consists in eval-
uating a point estimate H[m] of the hidden variables and subsequently to
optimize the likelihood of the complete data {H,O}. The first step then
approximates the expectation of the complete data likelihood with hard
assignments of the missing variables. This alternative approach is thus re-
ferred to as hard-assignment EM, and may provide different results than the
general EM algorithm. However, it remains very useful in some cases when
the computation of Q(Θ,Θold) is too complex. Usually, the hard-assignment
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EM algorithm converges faster as it progresses through discrete steps. It is
also known to be prone to oscillations in the last steps of the optimization,
and thus requires to monitor the evolution of the likelihood over the training
set after each iteration of the EM steps.

2.3.5 Generative and discriminative training

The purpose of a Bayesian network is to approximate the real joint distri-
bution6 over the system variables X . This gives us the ability to generate
any variable Xi ∈ X . In many applications however, we aim at predicting a
subset of variables X given observations Y where X = {X,Y }. In this case,
we are only interested in modeling the distribution P (X|Y ). As seen earlier,
this can be done by training a discriminative model whose only purpose is
to approximate this conditional distribution. Such a goal-oriented training
is called discriminative training. Note that discriminative models do not
allow us to generate any variable in X .

Alternatively, we can also use a generative model to evaluate the pre-
diction distribution P (X|Y ), as it is the case for Naive Bayes classifiers.
Generative models being conceptually designed to represent a joint distri-
bution, they are usually trained through generative training, i.e such as
modeling P (X,Y ). However, a generative model can be optimized with re-
spect to any relevant loss function. Thus we can optimize the parameters
Θ of a generative model so that they optimize its performance at predict-
ing P (X|Y ), which corresponds to to discriminative training of a generative
model.

As said before, this approach is unusual as it changes the meaning of the
parameters (Koller and Friedman, 2009), and consequently the interpreta-
tion of the model. For instance, each conditional distribution P (Xi|PaXi)
taken independently is not tuned such as explaining at best the observations
made about the effect Xi given a cause PaXi . The conditional distribution is
now optimized so as we get the best performance at predicting an arbitrary
subset of variables within the graph. Also, the simple learning methods
discussed earlier do not apply in this case, potentially leading to more chal-
lenging computations. However, as long as we do not use the model for
a different task than the one we discriminatively trained it for, this ap-
proach proved to help in compensating for the various assumptions made
by describing a generative model. Note that a discriminative model usually
makes fewer assumptions over the system, as it straightforwardly aims at
describing a subaspect, and not an exhaustive set of causal interactions.

6
Supposing this distribution actually exists.
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2.4 Conclusion

The PGM framework is a very powerful tool for formulating, learning, and
exploiting complex models through the Bayesian approach. As a very generic
tool, it allows to re-interpret many problems through a probabilistic analysis
and to intuitively enhance existing models thanks to the handy diagram-
matic representation. For instance, we will see in the next chapters that we
can easily derive new dynamic networks by augmenting the standard state-
observation model. This implicitly restricts our analysis to a specific class
of graphical models known as the Bayesian networks, in which causal rela-
tionships are directed and indicated by arrows. The other class of graphical
models, namely the Markov Random fields in which the links are undirected,
are not considered in this work.

The PGM framework is particularly useful in that insights into the sys-
tem can easily be understood through a quick analysis of the graph. This
representation notably allows for a sound analysis of the dependencies be-
tween variables, which would appear more intricate without this visual rep-
resentation.

An interesting aspect we try to point out in this work concerns the
connexion between the dependencies encoded through the graph, and the
training method we chose. In other words, the objective function that is
optimized for learning the model parameters may drastically change the
meaning of the model. This peculiar aspect is usually ignored in most of
the implementations, where the system representation and its training are
usually considered as two distinct problems. In the next chapter we will
see how the specific discriminative training changes the dependencies –and
more importantly the independences– expressed in the model, and how we
can take advantage of it.
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This chapter intends to provide a deeper understanding of inference and
learning in the state-observation model. At first, we address inference and
detail the well-established recursive filtering method providing a simple and
fast solution for evaluating the posterior state belief given the past obser-
vations. We subsequently give a background of traditional and more recent
methods for learning the model. Based on this knowledge and on the notori-
ous issues when learning the model with the popular approaches, two central
contributions of this thesis are presented. At first, we describe a new model
for the observation distribution that incorporates an explicit representation
of measurement alterations. Second, we suggest the exploitation of an al-
ternative discriminative loss function when learning the parameters. A new
interpretation of this training method is presented, based on the duality be-
tween discriminative training and discriminative modeling. As such, these
contributions are to be seen as elemental modeling principles, which will
lead to the implementations depicted in the next chapters.

3.1 DBNs and the state-observation model

The first extension of the PGMs for modeling the temporal nature of a
system was introduced in (Dean and Kanazawa, 1989). The term Dynamic
Bayesian Networks (DBNs) was introduced later by the same authors. Orig-
inally, the DBNs are built upon the Markov and time-homogeneous assump-
tion previously mentioned. In this section, we do not provide a general def-
inition of the DBNs, but rather focus on a specific instance of DBN that
is underlying any Bayes filter implementation: the state-observation model.
A more formal definition of the DBNs and a description of their different
classes can be found in (Koller and Friedman, 2009).

Based on the first-order Markov assumption, a state-observation model
represents the evolution in time of a set of hidden state variables xt through
a Markov chain with stationary distribution P (xt|xt−1). For each hidden
state, an observation is made and modeled by an observation distribution
P (yt|xt). Three distinct inference tasks are usually performed over a state-
observation model, namely filtering, prediction and smoothing:

• Filtering consists in estimating the distribution of the current state xt
given all past observations up until time t.

• In the prediction task, we want to evaluate the distribution of a future
state xt+n given observations {y1, . . . , yt}.

• Finally, smoothing consists in computing the distribution of a state xk
given a set of observations {y1, . . . , yT } with k < T .

These different tasks are illustrated in Fig.3.1.
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Figure 3.1: The three common inference problems in the state-observation
model: prediction, filtering and smoothing. (Excerpt from (Särkkä, 2013,
p.11))

Note that in some specific applications, like speech recognition for in-
stance, it is more important to find the most probable sequence given a set
of observations. This problem strongly differs from the three former tasks,
which provide the most probable state at each time step, taken individually.
Generally, the latter problem of finding the most probable sequence is solved
with the Viterbi algorithm (Viterbi, 1967).

3.2 Inference in the state-observation model

In this subsection, we focus on the filtering task which is our main concern.
In a purely probabilistic treatment, inference equations are derived for the
LDS model, in which both the prediction and observation distributions are
linear Gaussian. During these developments, we will show how inference
leads to the basic Bayesian filtering recursive equations. As expected, further
development of this equation in the specific case of the LDS model leads to
the well known Kalman filter algorithm. Subsequently, we discuss the non-
Gaussian and non-linear cases, and detail an efficient algorithm for non-
linear models where the assumption of Gaussian noise is still reasonable.
Note that the theoretical developments made in this thesis require the state
belief to be represented by a Gaussian distribution, whether it is exact or
approximate, and the specific case of non-Gaussian distributions is left as a
matter for future work.
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3.2.1 Recursion equations

Transition and observation distributions.

The LDS model relies on three simple equations:

p(xt|xt−1) = N (xt|Axt−1,Σd) (transition)

p(yt|xt) = N (yt|Cxt,Σo) (observation)

p(x1) = N (x1|µ1,Σ1) (initial state and uncertainty)

where xt is a vector of hidden variables of size n, yt a vector of observations of
sizem, A an n×nmatrix representing the linear transition model, C anm×n
matrix defining the linear observation model, Σd an n × n matrix defining
the Gaussian noise over the system dynamics, and Σo an m × m matrix
defining the Gaussian noise associated with the observation process. Also,
the initial state x1 is described by a Gaussian distribution centred around
µ1 with initial uncertainty Σ1. As described in Fig.3.2, the state observation
model represents the joint distribution over the latent state variables and
associated observations {xt, yt}Tt=1, where the horizontal edges depict the
transition distribution, and the vertical edges the observation distribution.

Figure 3.2: State-observation model.

Recursion equations.

We first define the quantity α(xt) representing the joint probability of xt
and all the observations made up to time t:

α(xt) ≡ p(xt, y1, . . . , yt)

In a first step, the observation component can be simply extracted from
α(xt) as:

α(xt) = p(xt, y1, ..., yt)

= p(y1, ..., yt|xt)p(xt)
= p(y1, ..., yt−1|yt, xt)p(yt|xt)p(xt)
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Using d-separation on the graphical model we can prove that the joint ob-
servations made up to time t− 1 are independent of the observation at time
t given the hidden variable xt. Thus p(y1, ..., yt−1|yt, xt) = p(y1, ..., yt−1|xt).

Based on this independence property, a recursive relation can be derived:

α(xt) = p(y1, ..., yt−1|xt)p(yt|xt)p(xt)
= p(yt|xt)p(y1, ..., yt−1, xt)

= p(yt|xt)
�

p(y1, ..., yt−1, xt−1, xt) dxt−1

= p(yt|xt)
�

p(y1, ..., yt−1, xt|xt−1)p(xt−1) dxt−1

= p(yt|xt)
�

p(y1, ..., yt−1|xt, xt−1)p(xt|xt−1)p(xt−1) dxt−1

Using d-separation again we can easily understand that p(y1, ..., yt−1|xt, xt−1) =
p(y1, ..., yt−1|xt−1) as there is no active trail between yt−1 and xt given xt−1.

α(xt) = p(yt|xt)
�

p(y1, ..., yt−1|xt−1)p(xt|xt−1)p(xt−1) dxt−1

= p(yt|xt)
�

p(y1, ..., yt−1, xt−1)p(xt|xt−1) dxt−1

= p(yt|xt)
�

α(xt−1)p(xt|xt−1) dxt−1

In practice the conditional distribution p(xt|y1, ..., yt) provides a better
numerical stability than the joint distribution p(xt, y1, ..., yt) since it de-
creases the dimensionality of the represented space. Also recalling that we
aim at evaluating p(xt|y1, ..., yt) at each time step, the recursive relation can
be easily adapted by normalizing α(xt) so that we now work with

α̂(xt) = p(xt|y1, ..., yt) =
α(xt)

p(y1, ..., yt)

Also introducing a scaling factor ct = p(yt|y1, ..., yt−1), we finally have:

ctα̂(xt) = p(yt|y1, ..., yt−1)
α(xt)

p(y1, ..., yt)

=
α(xt)

p(y1, ..., yt−1)
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Thus

ctα̂(xt) = p(yt|xt)
�

α̂(xt−1)p(xt|xt−1) dxt−1 (3.1)

Note that (3.1) holds for any state-observation model without loss of
generality since no particular properties of the observation and prediction
distribution have been exploited in the previous derivation. As such, (3.1)
defines the generic recursive relationship used in any Bayes filter.

Intuitively, this equation shows that the recursive estimation of the belief
over the state xt relies on two fundamental steps. The first step involves
the computation of a prediction term that corresponds to the propagation
of the prior belief xt−1 through the dynamic model (the integral over xt−1).
Subsequently, the new belief over xt is multiplied by the probability that the
observation yt is made at the position depicted by the hypothetical predicted
state belief. This product is usually referred to as the measurement update.
To summarize, the Bayes filter starts by ’blindly’ propagating the previous
state belief through the dynamic model, and then corrects this prediction
given the observation yt. We now turn to the specific case of the LDS model
and show how the posterior belief over xt can be obtained through elegant
closed-form expressions.

3.2.2 Inference in LDS: The Kalman filter equations

Based on the conjugate properties of linear Gaussian models provided in ap-
pendix A, and since the distribution over the initial state p(x1) is Gaussian,
we know that the integral over xt−1 in the right term of (3.1) leads to a new
Gaussian distribution. Jointly with the linear Gaussian observation distri-
bution p(yt|xt), this in turns gives a posterior distribution over xt that is
also Gaussian. This property ensures that there is a closed form solution for
the recursive equation, and that all the distributions α̂(xt) will be Gaussian.
As a consequence, we denote :

α̂(xt) = p(xt|y1, ..., yt)
= N (xt|µt, Vt)

And the recursive equation (3.1) now takes the form:

ctN (xt|µt, Vt) = N (yt|Cxt,Σo)

�
N (xt−1|µt−1, Vt−1)N (xt|Axt−1,Σd) dxt−1

(3.2)
Noticing that the integral in (3.2) corresponds to the marginalization of

xt−1 in the prediction distribution, we exploit the linear Gaussian property
(A.1) discussed in appendix A to write:
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�
N (xt−1|µt−1, Vt−1)N (xt|Axt−1,Σd) dxt−1 = N (xt|Aµt−1, Pt−1) (3.3)

where Pt−1 = Σd +AVt−1At.

Because N (xt|Aµt−1, Pt−1) can be seen as our prior over xt, we can make
use of (A.1) and (A.2) to evaluate ct and the inverse conditional distribution
p(xt|yt) respectively, where both distributions are implicitly conditioned on
{x1, . . . , xt−1}. Note that we do not properly exploit the equality (3.2), but
rather proceed to an operation called completing the square. In practice,
we know that the right side of (3.2) is a product of exponential functions
where part of the exponent terms correspond to the mean and variance of
the distribution over xt. Completing the square then consist in identifying
the proper components µt and Vt, provided in closed-form by (A.2). Thus
we have:

p(xt|yt, x1, . . . , xt−1) = α̂(xt) = N (xt|µt, Vt) (3.4)

with

µt = (P−1
t−1 + CtΣ−1

o C)−1(CtΣ−1
o yt + P−1

t−1Aµt−1)

Vt = (P−1
t−1 + CtΣ−1

o C)−1

Using the identity (A.3) we can write

(P−1
t−1 + CtΣ−1

o C)−1CtΣ−1
o yt = Pt−1C

t(CPt−1C
t + Σo)

−1yt

and from the identity (A.4)

(P−1
t−1 + CtΣ−1

o C)−1P−1
t−1Aµt−1

= [Pt−1 − Pt−1C
t(Σo + CPt−1C

t)−1CPt−1]P
−1
t−1Aµt−1

= Aµt−1 − Pt−1C
t(Σo + CPt−1C

t)−1CAµt−1

Thus we finally have:

µt = Aµt−1 +Kt(yt − CAµt−1)

Vt = (I −KtC)Pt−1

Where we defined the Kalman gain matrix :

Kt = Pt−1C
t(Σo + CPt−1C

t)−1

These equations define the Kalman filtering algorithm, providing a sim-
ple and fast solution for evaluating the normalized distribution p(xt|y1, ..., yt)
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at any time step t. Fundamentally, the succinctness of the state represen-
tation is due to the conjugate property of the linear Gaussian system that
allows for closed form expressions for all the intermediate distributions at
any time step. That is, the prior over the state obtained after propagating
the last estimate through the prediction model, the observation likelihood,
and the new estimate are all Gaussian, and thus simply defined by their
mean and variance.

3.2.3 Inference in non-linear and non-Gaussian models

In the last section, the derivation of exact and simple analytical expressions
for the filtering inference task was possible thanks to the linear Gaussian
assumption made about the state and the observation variables. However,
it is very common to rely on non-linear model for both prediction and ob-
servation, as many real systems rely on complex functions for the dynamics
and the mapping from the state to the observation. Note that the case of
multi-modal distributions exploited for instance in multi-target tracking will
not be discussed here and in further chapters.

Similarly, non-Gaussian noise models might also be preferred, as for
example the measurement generation process may clearly not present a nor-
mally distributed uncertainty. Many of the complex noise models exploited
in the observation process are notably meant to better represent the occur-
rence of outliers. For example, and as suggested in (Loxam and Drummond,
2008), the Student-t distribution is an interesting alternative to the Gaus-
sian model that provides better robustness regarding the presence of outliers.
From a Bayesian point of view, the Student-t distribution is obtained by in-
troducing a conjugate prior distribution for the precision (or inverse of the
covariance) of a Gaussian. After marginalization this results in a Gaussian-
like distribution with heavy tails. Consequently the distribution inherently
allows for the presence of a limited number of outliers samples in the training
set. Put into our research context, one should argue that the exploitation
of such models should be preferred to the prevailing Gaussian distribution.
We however prefer to tackle the presence of outliers through a dedicated
additional model, and thus relax the observation noise model whose role
only consists in exploiting at best a pre-selected subset of observations. The
exploitation of a proper conjugate prior for the observation distribution is
still to be considered for future work, the purpose of this study being to
prove at first the applicability of a context-dependent observation model.

In addition, non-Gaussianity does not only arise from non-Gaussian noise
models. In fact, when the prediction and observation models are non-linear,
an initial Gaussian state prior does not ensure that the further state distri-
butions will be Gaussian in turn. Consequently, and in any of these cases,
one has to turn to approximations methods since most of the time such
models do not lead to tractable inference.
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Approximate inference methods

We can roughly identify two distinct families of approximation methods,
depending on the modeling assumptions that are made. The first family
addresses the case of non-linear prediction and observation functions while
the assumption of Gaussian noise is still reasonable. It is then possible to
exploit some deterministic approximations which yields the well known Ex-
tended Kalman filter and the Unscented Kalman filter. When non-linear
and non-Gaussian models are required, a popular family of approximate
inference methods is the particle-based approach, referred to as particle fil-
tering or sequential Monte-Carlo approaches. These approximate methods
are more precisely described in Appendix B.

In the following theoretical developments, we prefer to focus at first
on problems which for the state belief can be directly represented by an
analytic expression, and not by a set of particles. Exploitation of this latter
representation requires a re-examination of the proposed approaches that is
kept for future work. This includes the study on the conditions under which
a set of particles converges to the true distribution. Thus, we only consider
linear and non-linear models that allow for deterministic approximation.
Consequently we will assume that the state distribution can reasonably be
represented by a Gaussian. Note that this assumption greatly simplifies
derivation of the inference and learning equations in our models.

3.3 Learning in the state-observation model

So far, we assumed that the prediction and observation functions f and g as
well as the associated covariance Σd and Σo were known. Usually, f and g
are parametric functions defined by the physical properties of the system 1,
and the noise amplitude for the observation and prediction processes can be
found by a statistical analysis of the available data. This task is commonly
referred to as system identification, and is sometimes followed by manual
tuning. Learning the model parameters from data usually provides the best
results, and proved to outperform manual optimization. More importantly,
exploiting the learning machinery of the PGM framework allows for an ac-
curate identification of arbitrarily complex distributions, that may also help
in increasing the filter performance.

Multiple strategies can be chosen for learning the model parameters. It
can either be done online, using sequential optimization steps, or offline,
then based on a predefined training set (the batch method). The training
set can also either contain partially observed data, usually corresponding
to the observations {y1, . . . , yt}, or fully observed data, in which case we

1
Note that in the case of the LDS, f and g are fully represented by the matrices A and

C.
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require an accurate system for measuring the variables in xt. Note that
these measures are usually referred to as the ground truth. Finally, the model
parameters can be trained in a generative approach or in a discriminative
manner. The state-observation model being generative by construction, the
most popular and intuitive approach is to find the parameters that explain
at best the generative processes p(xt|xt−1) and p(yt|xt) through maximum
likelihood. However, the likelihood of the observed data in the training set
does not measure the performance of the filter in estimating the posterior
p(xt|y1, . . . , yt). It is then reasonable to replace the model likelihood by an
error-driven loss function in the parameter optimization process.

In their standard formulation, both generative and discriminative train-
ing are only applicable when the full state xt is available. For many real
systems, it is however more realistic to assume that we only observe a subset
of the variables in xt. For example, the state vector may describe both po-
sition and speed of the robot, while our accurate measurement system only
provides the position values. Interestingly, we will see that the discrimina-
tive method can be straightforwardly adapted, regardless of the number of
variables in the observed subset. Meanwhile, the Maximum likelihood ap-
proach is not always suitable since, when learning the model in a generative
manner, we need accurate observations for all the variables in xt that are
actually exploited in the observation model2.

Recall that when no ground truth is available, then the training set (thus
formed of observations yt only) must not contain frequent outlier occurrences
or unreliable data. This is because in this configuration we can only rely
on the filtering or smoothing capability of the model to reconstruct the se-
quence of hidden states (usually via the EM algorithm). Thus, parameter
optimization is done based on some data that is likely to be incorrect. For
this reason, we assume that an accurate measure of all or a subset of the
variables in the state vector is provided for training. Logically, online pa-
rameter estimation is not considered in this work, as we consider that the
availability of a form of ground truth is temporary, while online exploita-
tion of our algorithms would require this information to be continuously
available. Moreover, the permanent access to an accurate observation of
the state would render the exploitation of Bayes filters irrelevant. In the
next sections, we give more details about the generative and discriminative
training approaches we shall exploit.

3.3.1 Generative training

In this section, we assume we are given a fully observed dataset D =
{{x1, y1}, . . . , {xT , yT }}. Generative training then aims at maximizing the

2
Note that it is very common for the observation model to ignore some components of

the state.
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joint likelihood of the sequence of states and associated observations p(D|Θ)
with respect to the model parametersΘ. Exploiting properly the d-separation
properties of the model, the likelihood optimization breaks down into the
independent optimization of two terms, which can be seen as the prediction
likelihood and the observation likelihood:

p(D|Θ) = p(x1|µi,Σi)
T�

t=2

p(xt|xt−1,Θf ,Σd)
T�

t=1

p(yt|xt,Θg,Σo) (3.5)

where Θf and Θg represent the prediction and observation function param-
eters. This is equivalent to solve a regression problem for the mapping
xt �→ yt and xt−1 �→ xt. In practice, when the dataset is partially observed,
this general idea of separately training the observation and prediction mod-
els is kept. The training method only differs by the exploitation of the
EM algorithm in which smoothing is used to infer the hidden state variable
within the E-step.

Since generative training is equivalent to regression, algorithms have
been applied in order to build at first, parametric models (Bar-Shalom et al.,
2002), and more recently non-parametric models (Deisenroth et al., 2009; Ko
and Fox, 2009; Deisenroth et al., 2012). By learning an observation model
without introducing any prior knowledge over the system behavior, the latter
approach proved to be very efficient, and has been extended to a fully state-
dependent observation model through the introduction of heteroscedastic
noise model (meaning that the observation noise is state-dependent). This
approach tries to compensate for the usual stationary noise (homoscedastic-
ity) assumption made in traditional regression problems, that leads to the
basic issues encountered in the presence of outliers. The resulting model
is of the form yt = f(xt) + �(xt) where f and � are represented by Gaus-
sian processes (GP). Unfortunately, these models are still unable to properly
distinguish which part of the observation signal should be assigned to the
deterministic component f and which part should be considered as noise,
especially in the case of strong and state-independent noise, i.e the typical
unmodeled aspects of the observation process.

This problem is illustrated in Fig.3.3 where we trained an observation
model with heteroscedastic noise following the method proposed in (Kerst-
ing et al., 2007). This example simulates the altitude measurement provided
by an ultrasonic sensor presenting multiple outliers occurrences and a lim-
ited operation range of 6 meters. The model is trained on a first dataset.
Then its prediction mean and variance (given xt) are displayed concurrently
with the measurements provided in a different test set. While this figure
does not directly represent the impact of the exploitation of the model in
a Bayes filter, it clearly shows that, as expected, the noise model is unable
to provide consistent outputs as it is only able to reproduce the variation
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Figure 3.3: Output prediction of a GP-based heteroscedastic observation
model trained on polluted data.

in the measurement accuracy that was observed in the training set. Conse-
quently we can see that the uncertainty arbitrarily increases in some specific
state values while the measurement is correct, whereas in many situations
the measure is erroneous but the observation uncertainty stays low. While
one must argue that the role of the noise model is not to represent strong
perturbations in the measurement process, this example reveals that these
methods are unable to deal with data prone to outliers, and as such must
be exploited with great care.

3.3.2 Overcoming the regression issues with a new observa-

tion model

We have seen that general strategies as well as more advanced methods like
the introduction of heteroscedasticity suffer strong shortcomings when trying
to exploit polluted data. In this work, we suggest a different strategy by
introducing a new method for modeling the observation distribution. This
model is purposely built in order to improve its robustness with respect to
measurement errors within the training set and later at runtime.
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In our approach, the deterministic component g of the observation func-
tion3 is assumed to be known, as it can be obtained through an analysis of
the sensor physical properties. More precisely we assume that the determin-
istic mapping between xt and each possible subset of measures within yt is
known. Based on this assumption, the remaining components of the model
(and their optimization) are then fully dedicated to capturing the unmodeled
aspects of the system. In other words we make a better exploitation of the
available training data by pre-encoding what we already know about the sys-
tem. While we do not learn the observation function itself, we however learn
a selection component that acts as a selector over the individual measures
within the observation vector yt. There are two equivalent interpretations
of this new component: it can either be considered as a measurement rejec-
tion (or selection) mechanism, or alternatively as a specific instantiation of
adaptive filtering, where the model is continuously evolving. In this case the
model evolution is confined to a finite set of possible observation functions
that are selected online by an additional switch variable.

Similarly to heteroscedastic regression, we can also train a distinct model
for continuously adapting the observation noise. Note that a common as-
sumption made when learning the observation noise covariance is to require
Σo to be diagonal. This assumption can usually be done without loss of gen-
erality and reduces the number of free parameters to learn while improving
numerical stability (Murphy, 2012).

Finally recalling that our goal is to represent the context influence over
the measurement generation process, the two selection and adaptation com-
ponents are not state-dependent (as in classical heteroscedastic regression)
but context-dependent. This prevents us from the issues arising when the ob-
servation distribution is learned through a pure regression problem xt �→ yt.
The general principle of this new observation model is depicted in Fig.3.4.

3.3.3 Discriminative training

Maximum likelihood estimation, as exploited in generative training, is a
popular method because it brings some convenient decomposition proper-
ties (Cf. eq.(2.7)), and more interestingly because it is a consistent estima-
tor. Consistency means that if the model we chose is sufficiently expressive,
then if the number of data instances in the training set goes to infinity,
the maximum likelihood estimator converges to the true model (Koller and
Friedman, 2009). In this case no other training criteria can provide better
results. However, the model is rarely expressive enough, and thus maxi-
mum likelihood estimation may result in an irrelevant model. This problem
is intensified by the specific nature of the likelihood score, which measures
the strength of the dependencies between the variables and their parents

3
Or equivalently the matrix C
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Figure 3.4: Basic principle of the robust and context-dependent observation
distribution exploited in this work.

within the graph. Since likelihood maximization tends to fit precisely the
specifics of the empirical distribution, i.e the training set, it undergoes the
well-known overfitting issue.

Exploiting a generative model however does not necessarily mean that we
are interested in the generative capabilities of the model. Recalling that our
ultimate objective is to provide an accurate conditional probability over the
state given the past observations, we intuitively understand that training the
model without running inference (as done in generative training) does not
allow us to properly assess a score relating the actual model performance.
This is why we suggest an alternative loss function, which requires to run
the recursive equations during the optimization process. We refer to this
method as discriminative training, since we focus on the conditional output
distribution over the states, and not the joint distribution over the states
and observations.

Within the HMM community, discriminative methods are commonly
used and known to outperform the maximum likelihood criterion, especially
when incorrect modeling assumptions are made. Popular discriminative
methods include Viterbi training (Allahverdyan and Galstyan, 2011), Max-
imum mutual information (Bahl et al., 1986) or more performance oriented
methods such as Minimum classification error training (Juang and Katagiri,
1992). All these methods involve propagation of the hidden state variable
through the model, instead of individual training of the observation and
prediction distribution. However, these algorithm are especially designed
for HMMs and can not be directly exploited in the continuous case.

Recall that a strict formalisation of discriminative training over a state-
space model requires to maximize the conditional likelihood of the training
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set p(x1, . . . , xT |y1, . . . , yT ). Unlike joint likelihood this conditional distri-
bution does not decompose into simple terms. Consequently we ’force’ the
decomposition by replacing the discriminative likelihood by an alternative
objective function, defined as a product of subproblems that directly ex-
press the filter performance in terms of state accuracy and uncertainty. An
intuitive and simple score of the filter performance is the local posterior
distribution p(xt|y1, . . . , yt) which corresponds to the output distribution of
the recursive equation (3.1) evaluated at the training sample {xt, yt}. The
resulting objective function was also exploited in (Abbeel et al., 2005) and
can be analogously seen as the minimum classification error criterion ap-
plied to the state estimation problem. The discriminative likelihood is then
defined as:

Ldiscr =
T�

t=1

log
�
p(xt|y1, . . . , yt)

�
(3.6)

Exploiting incomplete state observations:

An interesting property brought by this alternative loss function is that it
is straightforwardly exploitable if we are only provided with observations of
a subset of the variables in xt. For example, if the training set D contains
measurement pairs {vt, yt} so that

vt = h(xt) +N (O,Σh)

where vt is the vector of observed variables in xt provided by our accurate
measurement system, h is a projective function acting as a selector over the
variables in xt and Σh is the (low) observation variance of the measurement
system used to capture a subset of the hidden state variable.

Then we can optimize Ldiscr so as to explain as best the observations in
the training set D = {{v1, y1}, . . . , {vT , yT }} i.e:

Ldiscr =
T�

t=1

log
�
p(vt|y1, . . . , yt)

�
(3.7)

noting that we have

p(vt|y1, . . . , yt) =
�

p(vt|xt)p(xt|y1, . . . , yt) dxt

The projection h being equivalent to the product of a selection matrix H
with the hidden state vector xt, we can exploit once again the conjugate
property of the linear Gaussian model to evaluate the marginal distribution
over vt using (A.1). This gives:

p(vt|y1, . . . , yt) = N (vt|Hµt,Σh +HVtH
t) (3.8)
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Training can then be done using the coordinate ascent algorithm to find
estimates for the unknown parameters of the observation distribution. While
independent optimization of each local term within (3.6) converges to a
global maximum, the optimization of the complete sum is however much
more complex. This is because each posterior p(xt|y1, . . . , yt) directly de-
pends on the past estimates, and thus global optimization of the sum is
equivalent to finding the optimal parameters that correspond to the se-
quence x1, . . . , xt (or equivalently v1, . . . , vt). Consequently, the optimiza-
tion of (3.6) is likely to converge to a local optimum, at the risk of locally
improving strong errors in the state estimate while neglecting lower errors
produced at other sample pairs {xt, yt}. In order to avoid to converge to
such faulty local optimum, the discriminative loss function can be initialized
with the parameters provided by a previous generative training step.

3.3.4 Discriminative training, or discriminative model ?

Until now, and as it is commonly done in the literature, we referred to the
optimization of an error-driven objective function as discriminative training.
In practice, the discriminative criterion we introduced might seem arbitrary,
albeit intuitive. This is because it does not follow a basic rule that we de-
scribed in chapter 2: a model encodes a single joint distribution over its
variables. For instance, a state-observation model encodes the joint likeli-
hood of the state and the observations (3.5). Exploiting a different likelihood
for learning the parameters consequently means that we arbitrarily reinter-
pret the model. We now provide an alternative viewpoint for this approach,
in order to provide a more consistent formalization of the problem regarding
the probabilistic framework.

As suggested in (Minka, 2005; Bishop and Lasserre, 2007), referring
to distinct generative and discriminative training methods in a generative
model4 is highly debatable. In fact, when we perform discriminative training
on a generative model, we change the meaning of the model and implicitly
build an equivalent discriminative model. The (conditional) likelihood opti-
mization of this new model corresponds to the discriminative training of the
initial generative model. For more consistency with the probabilistic frame-
work, we should preferably refer to generative and discriminative models.
And training then always consists in optimizing the joint distribution en-
coded by the corresponding generative or discriminative model.

Let us reconsider the ’discriminative’ likelihood p(x1, . . . , xT |y1, . . . , yT ).
As mentioned earlier, this distribution does not easily decompose in conve-
nient5 terms if we exploit the generative state-observation model. Especially,
the d-separation property of the model does not yield the likelihood to be

4
Recall that a discriminative model can only be ’discriminatively’ trained

5
For the optimization task
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decomposed in a product of posterior state distributions p(xt|y1, . . . , yt).
However, if we now introduce the corresponding discriminative model as de-
picted in Fig.3.5, and recalling that we have D = {{x1, y1}, . . . , {xT , yT }},
we can decompose the joint likelihood of the model as:

p(D) = p(x1|y1)
T�

t=2

p(xt|xt−1, yt) (3.9)

 

Figure 3.5: Original generative state-observation model (on the left), and
its corresponding discriminative representation (on the right).

In this new discriminative model, we see that the posterior belief over
the state xt depends on the prior state xt−1 and the current observation
yt. For clarity, this distribution can be represented through the graphical
model depicted in Fig.3.6 where the variable xt−1 is preferably represented
by a set of static prior parameters corresponding to the propagation of xt−1

through the prediction model. This gives us a prior mean and covariance
µt|t−1 = Aµt−1 and Vt|t−1 = Pt−1 provided by eq.(3.3). Since we only defined
an observation model p(yt|xt), the posterior p(xt|xt−1, yt) is obtained by
exploiting the property (A.2) where the prior over xt is given by µt|t−1 and
Vt|t−1. This operation corresponds to the evaluation of the contrapositive
distribution p(xt|yt) as done in (3.4), an thus leads to the Kalman equations.
Finally, we see that the likelihood encoded by the new model corresponds
to the product of posterior distributions as defined in (3.6).

Interestingly, this equivalent representation is analogous to the Maxi-
mum Entropy Markov Model introduced in (McCallum et al., 2000), except
that the state variable is here continuous, and the posterior state distribu-
tion computation still relies on a generative observation model. In other
words we exploit a discriminative version of the state-observation model
where the prediction and observation components are still generative rep-
resentations. The resulting model can however be seen as a discriminative
predictor xt−1, yt �→ xt.
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Figure 3.6: Equivalent representation of the distribution p(xt|xt−1, yt). The
prior state variable xt−1 is replaced by the resulting predicted mean and vari-
ance after propagation in the prediction model. Thus it is not represented
by a random variable but by static parameters.

Decomposing the evaluation of the distribution p(xt|xt−1, yt) in two sep-
arates steps involving the prior information over xt−1 and the observation
yt can be seen as a consequence of the model structure. Indeed, in this
new model the observation yt does not influence the states prior to time t,
due to the inactive trail xt−1 → xt ← yt. Consequently, the effect of the
prior information can be taken into account separately, before exploiting the
information provided by the observation. An other consequence of this inde-
pendence property is that the model does not allow to perform smoothing.
This can be an issue in some applications, but not in our case since we only
aim at performing filtering.

Note that the debate about discriminative or generative modeling is still
ongoing, and examples of the proper exploitation of the dual representation
of an equivalent generative and discriminative model stays rare. In this
work, we try to keep a consistent understanding of the model we exploit re-
garding the PGM framework, and we consequently prefer to clarify why the
exploitation of discriminative likelihood can be explained within the same,
unifying framework. To our knowledge, this re-interpretation of discrimi-
native training for state-observation models is new, and as such should be
considered as a theoretical contribution. Note that, for simplicity, we may
sometimes still refer to generative and discriminative training throughout
this manuscript despite the inaccuracy of this denomination.

3.4 Conclusion

In this chapter we detailed the classical filtering algorithm in the state-space
model, as well as the prevalent approaches for learning the prediction and
observation distributions. We suggested a different paradigm for building
and learning a robust observation distribution that can deal with frequent
occurrence of strong outliers. In practice, this model differs from traditional
approaches in two points. First, it considers that a rejection (or selection)
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mechanism has to be explicitly introduced in order to explain the mapping
xt �→ yt. Second, it is accepted that the information provided by xt is not
sufficient to explain the measurement generation process and the resulting
observation distribution is consequently context-dependent. Inspired by het-
eroscedastic regression models, the selection mechanism is completed by a
noise adaptation component that is also context-dependent.

We also detailed an alternative optimization criterion for learning the
model parameters that can be interpreted as re-modeling our system. This is
deeply linked to the current discussion of issues concerning the discriminative
training of generative models. In this debate, the consensus seems to be that
there are only generative and discriminative models, and training is always
consistently done through the joint likelihood optimization.

In the next chapters we will provide details about some interesting fam-
ilies of models that can be exploited for the selection and adaptation task.
Since it slightly differs from the usual state-observation based implementa-
tion, the proposed observation model also differs in the training methods
that have to be used. These training methods will be detailed along with
each suggested model.
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In this chapter, we provide a first solution for context-dependent mea-
surement selection. This task can be considered to be close to outlier re-
jection, except that we never properly characterize measurements by their
relative distance to a density function. Instead, we focus on the utility
of each measurement in improving the state estimate. This knowledge is
encoded in a new component that selects at each time step the best mea-
surement subset. Consequently, the proposed solution fundamentally differs
from the existing approaches that fully rely on the prior knowledge encoded
through the state-observation model. As described in the next sections, we
should see these developments as an extension of the multiple model ap-
proach. This chapter presents in details the work which was published in
(Ravet et al., 2013).

4.1 Motivation - beyond measurement rejection

The issue of understanding and exploiting measurements provided by differ-
ent sensors is of major importance in state estimation. In practice, one has
to deal with a whole range of performance alterations going from the un-
avoidable average observation noise to completely unreliable measure values.
The usual approach taken to cope with unmodeled observation alterations is
outlier rejection, which consists in rejecting any measurement lying some dis-
tance away from the expected observation distribution p(yt|xt). The outlier
rejection method is strongly entrenched in the domain of Bayesian filtering,
and relies on the strong assumption that we are given a sound prior knowl-
edge about the observation distribution, so that we can legitimately reject
any measurement that lies too far from its predicted distribution. Multiple
classes of methods for outlier rejection have been developed, and most of
them rely on manual parameter tuning, rejection heuristics, or heavy com-
putations that leads the filter to be unsuitable for real-time applications
(Kitagawa, 1987; 1996; Gordon and Smith, 1993). Recent work has however
shown interesting solutions for learning online the parameters of a robust
Kalman filter that is able to process corrupted data (Ting et al., 2007; Aga-
mennoni et al., 2011).

Alternatively, the existence of transient disturbances can be directly
modeled within the same complex observation distribution, which now ex-
plicitly represents some identified cases of measurement error. An illus-
tration of this method is the well known beam model defined for a laser
telemeter in (Thrun et al., 2005b). As depicted in Fig. 4.1, such models
rely on a prior knowledge about the different phenomenons that may lead
to erroneous measurements.

This approach then requires a deep understanding of the sensor behav-
ior and introduces a subjective representation of the different types of errors
that can occur through an associated local distribution. It also makes in-
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Figure 4.1: The beam model pseudo-density representing the distance zt
measured by a laser beam given the robot position xt. p(zt|xt) is defined
as a mixture of distributions representing different types of situations: un-
expected object shortening the perceived range in the first part, correct
measurement with Gaussian noise in the center (z∗t ), and max-range mea-
surement. (Excerpt from (Thrun et al., 2005b) p.128)

ference in the state-observation model more complex as there is usually no
closed-form expression for the recursive equations. Thus one has to turn to
sampling methods which come at increased computational costs and intro-
duce approximations in the state estimate.

Whether we explicitly represent the different types of alterations or not,
these approaches may perform poorly for a common reason: observations are
treated within a self-contained system. In this context, we have no guarantee
that there is no combination of measurement that can mislead the system.
Consequently, we are never sure to give an adequate treatment to the current
observation. In other words, while these models encode the existence of
alterations, and sometimes depict them with a dedicated model, they are
unable to capture the actual occurrence of the phenomenon underlying the
potential measurement alteration. Instead, they can only try to infer the
current perception context based on self-consistency checks between the real
observation and the model.

Our objective is to go beyond the traditional rejection methods. In this
context we shall see our task as optimal exploitation of the available mea-
surements, following time-varying decisions rules. For this reason, our task
is preferably referred to as measurement selection, since we do not aim solely
at rejecting the measurements that do not fit a stationary model designed
after a prior knowledge. In practice, by selecting the subset of measure-
ments that results in the best state estimate, we implicitly perform rejec-
tion. The issue of robustness is then automatically encompassed within a
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more general objective: providing the best state estimate given the available
measurements.

4.2 Approach

By artificially introducing multiple filters exploiting different measurement
subsets within the observation vector yt, we can map the measurement selec-
tion problem to the multiple model approach. The multiple model approach
can be seen as a discrete solution to the problem of adaptive filtering. In-
stead of continuously adjusting the filter parameters, a set of distinct models
are initially defined, and assumed to be optimally parametrized for the spe-
cific regimes of the system. Then the multiple model approach proceeds by
switching at runtime between the different models in order to continuously
provide the optimal output. For this reason, this scheme is usually referred
to as the multiple model adaptive estimator (MMAE). Originally, this prin-
ciple was applied to target tracking, in order to model the different regimes,
or motion patterns of the target (Bar-Shalom et al., 2002). In our case,
the multiple models differ only in the observation distributions, acting as a
selector on the measurements. This approach is depicted in Fig. 4.2.









Figure 4.2: The multiple model approach applied to measurement selection.
Illustration with a 2-dimensional observation.

In the next sections, we give a background of the existing multiple model
approaches and suggest an alternative solution, allowing to easily introduce
an additional input variable (the context) within the model.

4.2.1 Background: The multiple model approach

In a Bayesian representation, the multiple model approach assumes that
the changing behavior of the system can be represented by an additional
discrete hidden variable st ∈ {1, . . . ,K} that governs the parameters of a
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classical state-observation model, the parameters taking values in a prede-
fined discrete set. The evolution of st is modeled through an independent
HMM and either the observation distribution, the prediction distribution, or
both of them now vary with the switching discrete state. This configuration
is described in Fig. 4.3. For this reason, these approaches are referred to
as swithing state-space model (SSSM), or hybrid discrete/continuous state
space model.









Figure 4.3: Switching state space model where both the observation and
prediction distributions can switch with the hidden state.

Due to the multiple hypotheses induced by the hidden discrete state, ex-
act inference on SSSMs is intractable. This is because the first belief state is
described by a mixture of K distributions, each of these distributions then
being used to compute the next state value for each possible model. Hence,
the exact mixture distribution representing the state belief exponentially
increases in time, and must therefore be approximated. Different approxi-
mation methods can be found in the literature, according to the nature of
the filter. When each filter is a LDS, some deterministic approximations
can be performed. A popular approximation method for combining the
multiple distributions is the generalized pseudo-Bayes approach (GPB). In
the first-order generalized pseudo-Bayes (GPB1), the resulting K distribu-
tions are combined within a single component at each time step, while for
the second-order generalized pseudo-Bayes (GPB2), the previous K distri-
butions are propagated through each model before being combined. Thus
these methods respectively require to run in parallelK andK2 filters at each
iteration. The GPB method was improved through the interacting multi-
ple model (IMM) approach (Blom and Bar-Shalom, 1988) which received a
lot of attention as it provides a similar approximation to GPB2 but only
requires to run K filters in parallel.

To see why these approaches are not a satisfying solution, we shall derive
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the inference equation for the discrete hidden state st. This requires to
evaluate P (st = j|y1:t), where we start by exploiting the Markov chain
formed by st and st−1. For any i, j ∈ {1, . . . ,K}, we have:

P (st = j|y1:t) =
�

i

P (st−1 = i, st = j|y1:t)

Then using Bayes theorem we can write:

P (st−1 = i, st = j|y1:t−1, yt)

=
1

c
P (yt|st−1 = i, st = j, y1:t−1)P (st−1 = i, st = j|y1:t−1)

=
1

c
P (yt|st−1 = i, st = j, y1:t−1)P (st = j|st−1 = i, y1:t−1)P (st−1 = i|y1:t−1)

=
1

c
Lt(i, j)Z(i, j)P (st−1 = i|y1:t−1)

where
c =

�

i

�

j

Lt(i, j)Z(i, j)P (st−1 = i|y1:t−1)

with Lt(i, j) the likelihood of the observation yt in the case St = j and
St−1 = i and Z(i, j) the element (i, j) in the homogeneous transition matrix
defined for the Markov chain over the discrete state. Consequently, we see
that the belief of the current mode still relies on self-consistency of the ob-
servation with the prior knowledge introduced through the different models
and the fixed transition rules between the different modes. Furthermore,
the switches between the different modes are homogeneous Markov, a very
strong assumption if we aim at modeling the context evolution.

Although some authors augmented the IMM with context-dependent in-
formation (Schubert and Wanielik, 2009) through the introduction of an ad-
ditional Bayesian network governing the transition probabilities, this model
fundamentally relies on the exploitation of internal estimates and predefined
transition matrices. An analogous approach can be found in (de Freitas
et al., 2004) in the context of fault diagnosis. Based on a jump Markov lin-
ear model, this method requires to know the different regimes of operation
for the learning step, while we want our system to discover these different
contexts by itself.

An exception to the previously discussed models can be found in (Bengio
and Frasconi, 1996) where the transition and observation distributions of an
HMM are conditionally dependent on a new input variable. This model
is known as input-output HMM (IOHMM) and only considers the case of
discrete state dynamical systems. Note that the maximum entropy Markov
model developed in (McCallum et al., 2000) (MEMM) can be seen as a spe-
cial instance of IOHMM as it depicts a Markov chain in which the transition
probabilities depend on a set of input features. Interestingly, this model is
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more likely to be considered as a special instance of Conditional Random
Field, and as such requires to design by hand or to train independently
the feature functions describing the relationship between the state and the
observation.

Whether they are input-dependent or not, these models however assume
that there exists a sequential pattern underlying the switching behavior of
the real system. This is because they were mainly designed for sequen-
tial data labelling. As explained before, we are not willing to introduce any
temporal aspect when modeling the context influence, as we prefer to switch
arbitrarily between different regimes. For this purpose, we explore a differ-
ent switching model that was not originally designed for modeling dynamic
systems, which is known as the Mixture of Experts model.

4.2.2 Background: The mixture of experts model

Aiming at learning how to combine some complementary experts, the mix-
ture of experts model (ME) framework lends itself very well to the model
selection problem as it basically computes an optimal output through a
weighted sum of individual experts. To achieve this mediation task, the
ME relies on a gating network in charge of providing gating probabilities,
equivalent to reliability coefficients over the set of experts. When experts
are replaced by Bayes filters, this approach provides an efficient alternative
to the multiple model approach (Chaer et al., 1998) (Chaer et al., 1997).

The mixture of experts approach basically consists in decomposing a
complex problem into subtasks, each of which being handled by an appro-
priate expert. Traditionally used for regression or classification problems,
the model learns to split the input space into overlapping regions within
which assigned experts are active.

The standard ME framework (Jacobs et al., 1991) consists in a set of K
experts modules and a gating network (See Fig. 4.4). Each expert k = 1...K
associated with parameters λk looks at the input vector y and computes a lo-
cal output xk through a function fk(λk, y). In a probabilistic interpretation,
the output of an expert k can be viewed as the mean of a probability dis-
tribution P (x|y,λk) with x the desired target value associated to the input
y. Assuming that the different experts may be more competent in different
regions of the input space (i.e. they have higher probability to produce the
desired target x), the gating network mediates the outputs of the bank of
experts. For this purpose the gating network produces for each expert k a
probability of its output xk to be equal to the desired output x. This result
in a set of gating probabilities gk weighting the output of all experts while
satisfying constraints gk ≥ 0, k = 1...K, and

�K
k=1 gk = 1.
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Figure 4.4: The basic mixture of experts framework.

Given an input vector y and a target vector x, the probability of observ-
ing x is then written in terms of gating probabilities and experts outputs
(using product rule) as

P (x|y,Θ,Λ) =
K�

k=1

P (x, k|y,Θ,Λ)

=
K�

k=1

P (k|y,Θ)P (x|k, y,Λ)

=
K�

k=1

gk(y, θk)P (x|y,λk) (4.1)

where gk is the weight for expert k and {Θ,Λ} denotes the set of all param-
eters, with Θ = {θk}Kk=1 the set of gating parameters and Λ = {λk}Kk=1 the
set of experts parameters.

ME implementations then differ in 3 main points: the experts model,
the gating model, and the inference method. More information about the
different implementations can be found in (Yuksel et al., 2012).

Given a training set {x,y} =
�
{x1, y1}, . . . , {xN , yN}

�
we try to maxi-

mize the likelihood L of the data set with respect to the model parameters.
If samples are considered identically independently distributed, this is equiv-
alent to maximize:

L =
�

n

p(xn, yn)

We then define the usual cost function C as the negative log of the likelihood
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function, so that maximizing the likelihood is equivalent to minimize C:

C = −
�

n

ln(p(xn, yn))

Different methods for determining the max likelihood have been devel-
oped. The standard gradient descent methods can be applied. More recently,
sampling, variational inference and several Expectation Maximization (EM)
algorithms have emerged (Yuksel et al., 2012) and have shown good perfor-
mances.

The original Mixture of Experts model

In the standard model (Jacobs et al., 1991) the experts networks are single
layer linear networks – which means fk(λk, y) = λT

k y. The expert conditional
density function is considered to be a d-dimensional Gaussian distribution
(for a d-dimensional vector x):

P (x|k, y,λk) =
1

(2π)d/2
exp(−� x− fk(λk, y) �2

2
)

And the gating network is a single layer network with soft-max activation
function, so that:

gk =
exp(uk)�K
j=1 exp(uj)

where uk = θTk y are the gating network outputs before normalization. Here
the soft-max function ensures that the gating probabilities sum to unity
and are non-negative. This model is known as linear logistic and implicitly
induces competitiveness between the experts.

One strong limitation of this global gating network is caused by the sin-
gle layer linear implementation. This model divides the input space into
overlapping regions (Ramamurti and Ghosh, 1998) with soft hyperplanes
(meaning that data samples close to decision boundaries can lie simultane-
ously in different regions) and assign one or a combination of experts to this
region. Intuitively we can understand that these specific decision bound-
aries will also cause interference among experts where the half-subspaces
are overlapping. These interferences can happen to be constructive (or lo-
cally constructive), improving performance of a single expert, however this
is more likely to cause wrong reconstruction, especially when the number
of experts increases. Note that because of the nonlinearity of the soft-max
function, there is no analytic solution for the optimal parameters of the gat-
ing network when maximizing the model likelihood. Hence, learning requires
to turn to more complex methods like the iterative reweighted least squares
algorithm (Jordan, 1993).
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To circumvent the problem of overlapping sub-spaces, some authors (Jor-
dan, 1993) extended the model to a more complex architecture, called Hi-
erarchical Mixture of Experts (HME). This model basically consists in in-
troducing extra levels of mixing layers, by creating subsets of individual
experts providing first level output through a local gating network. These
first-level outputs are then mixed by a high-level gating network. The hi-
erarchy among subsets of experts provides isolation of sub-spaces, but also
increases computational cost as the tree height increases (more experts and
gating networks need to be learned). During training one also has to deal
with the complex problem of defining the appropriate depth of the tree.

For this reason, we prefer to apply the single gating level structure, but
switch to an other gating network model, known as localized gating network,
which provides a better modeling flexibility.

Mixture of Experts with localized gating network

Given the previously discussed issues when exploiting a single layer gating
network, we adopt a different model allowing to assign one expert to one
precise region of the input space. This modified gating network is called the
localized ME (Xu et al., 1995) and consists of normalized Gaussian kernels
(or any density function from the exponential family):

gk(y, θk) = P (k|y) = αkP (y|θk)�K
j=1 αjP (y|θj)

(4.2)

with

P (y|θk) =
1

(2π)d/2| Σk |1/2
exp

�
−
(y −mk)TΣ

−1
k (y −mk)

2

�

where θk = {mk,Σk} defines the mean and variance of the Gaussian
kernel distribution and d the dimension of the vector y.

The Gaussian kernels allow to divide the input space into soft hyper-
ellipsoids. These ellipsoids can overlap, or create localized regions of exper-
tise where a single sensor is trustworthy. Gausian kernels also simplify the
learning step, as it conducts to a one-pass maximization step when using
the EM algorithm. The convergence rate of the EM algorithm is also em-
pirically and theoretically proven to be faster than gradient ascent methods
(Jordan and Xu, 1993). Associated to the Gaussian kernels, it provides guar-
anteed convergence due to the single loop maximization step (as opposed
to the method developed in (Jordan, 1993) which consists in a double-loop
EM). For this reason we decide to learn the gating parameters with the EM
algorithm.
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Training the localized ME with Expectation Maximization:

The basic idea of the EM algorithm is to make the assumption that some
variables are hidden, in our case the probability that the nth target sample
xn was generated by expert k. Hence we introduce an indicator variable z :

zjn =

�
1 if target sample xn is generated by expert j

0 otherwise

This hidden variable induces mutual competition among experts. It
also models the existence of unknown operating contexts which for different
subsets of experts are reliable. To obtain a one pass calculation for the
gating parameters, we perform maximum likelihood estimation on the joint
density p(x, y) (Xu et al., 1995). Denoting the kth expert output conditional
density function by φk(x|y), and using the new gating function, we rewrite
equation (4.1) to get:

p(x|y,Θ,Λ) =
K�

k=1

αkP (y|θk)�K
j=1 αjP (y|θj)

φk(x|y) (4.3)

Using Baye’s rule on equation (4.2) to obtain p(y) =
�K

j=1 αjP (y|θj), we
obtain the joint density

p(x, y|,Θ,Λ) =
K�

k=1

αkP (y|θk)φk(x|y) (4.4)

Finally, introducing the indicator variable z to mediate mutually exclu-
sive experts, the joint distribution over hidden and observed variables take
the form

p(x, y, z) =
K�

k=1

(αkP (y|θk)φk(x|y))z
k

(4.5)

which by maximum likelihood leads to the cost function:

C = −
�

n

K�

k=1

zkn ln(αk P (yn|θk)φk(xn|yn)) (4.6)

Now the specificity of EM algorithm comes into play. In the first step we
replace the hidden variable z by its expected value. This is the expectation
step.
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Expectation:

E(zkn) := p(zkn = 1|xn, yn)

=
p(xn|zkn = 1, yn)p(zkn = 1|yn)

p(xn|yn)

=
αkP (yn|θk)φk(xn|yn)�K
j=1 αjP (yn|θj)φj(xn|yn)

= hk(xn, yn) (4.7)

Then we maximize the expectation of the cost function by substituting zk
by its expectation hk(x, y). This is the maximization step.

Maximization:

E(C) = −
�

n

K�

k=1

hk(xn, yn)ln
�
αk P (yn|θk)φk(xn|yn)

�

= −
�

n

K�

k=1

hk(xn, yn)ln(αkP (yn|θk))

−
�

n

K�

k=1

hk(xn, yn)ln(φk(xn|yn)) (4.8)

As we can see this cost function can be separated in two terms. The
first one corresponds to the cost function relative to gating parameters
(αkP (yn|θk)) and the second term corresponds to the expert network pa-
rameters.

4.3 Context-dependent measurement selection with

the mixture of experts model

4.3.1 Approach

The powerful mixture of experts model is now exploited for measurement
selection, following the multiple model approach discussed in section 4.2. In
our context each expert is replaced by an individual Kalman filter providing
its own estimation based on a subset of measurements {ykn} ⊆ yn and on its
parameters λk describing the corresponding measurements noise and obser-
vation selection matrix. Note that the number and nature of measurement
subsets we decide to exploit is problem dependent and may require some ex-
pertise. However it is always possible to use the combinatorially exhaustive
number of subsets.
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Consequently, we can represent the resulting model by a bank of filter
running in parallel, differing in their observation functions, and whose out-
put estimates are weighted by the gating network. This principle is depicted
in Fig. 4.5 where we show that the gating network can share some filters
inputs and exploit specific context information as well.










Figure 4.5: Mixture of experts framework for sensor selection. Each filter
can be wired to a different subset of sensors. The gating network can share
experts inputs and use any useful additional information for assessing the
context.

At first, we will consider that the model parameters are known and
discuss the inference task which, as for any multiple model approach requires
approximation. Then, training of the gating network will be detailed, based
on the work from Xu (Xu et al., 1995). In the following, we will assume that
the different state-observation models (the multiple models) are linear and
Gaussian. This assumption is made for the sake of clarity while conducting
the theoretical analysis of the approach. However, non-linear models can be
equally used within the same framework through simple adaptation steps
which are described later.

4.3.2 Inference

As explained previously, one unavoidable issue with the multiple model ap-
proach is that the exact belief state grows exponentially in time. This is
because for a set of K filters, each iteration produces K independent state
estimates and each of these possible beliefs have to be considered in the pre-
diction step of the subsequent iteration. Consequently, at iteration t = T ,
the exact distribution of the state is a mixture of KT Gaussian distributions.
To deal with this exponential growth we approximate the resulting posteri-
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ors by a single convenient distribution, an approach typically referred to as
assumed density filtering. We consequently use the GPB collapsing method
of order 1 (GPB1), and approximate the mixture of filters output distri-
bution with a single Gaussian distribution. At each step, if each filter k
provides an output distribution of mean µk and variance σk with a corre-
sponding gating weight gk, we obtain the mixture distribution mean µmix

and variance σmix (Bar-Shalom et al., 2002):

µmix =
K�

k=1

gkµk

σmix =
K�

k=1

gk[σk + (µk − µmix)(µk − µmix)
T ]

The next transition step is then based on this mixture output, hence ac-
cumulating the error introduced by the approximation at each time step.
However, it has been shown in (Boyen and Koller, 1998) that the process
error remains bounded indefinitely, avoiding the mixture output to become
irrelevant.

Alternatively, instead of approximating the posteriors by a single distri-
bution, one solution consists in pruning the less probable estimates at each
iteration. Note that this approach has not been tested yet.

4.3.3 Learning

By focusing on different objectives, we can alternatively exploit generative
or discriminative training to find the gating network parameters. Note that
we assume here that the noise model for each measurement within yn is
known and stationary, some methods for learning context-dependent noise
models being provided later.

Discriminative training

In discriminative training, we aim at optimizing the gating network parame-
ters with respect to the resulting state accuracy. Hence φk(xn|yn) is obtained
by evaluating the output distribution of the kth Kalman filter for the sample
value xn. Note that this fully exploits the discriminative equivalent model
introduced in chapter 3 in which we see each filter as a discriminative pre-
dictor yn �→ xn. The model also differs from the basic mixture of experts in
that the gating network uses a different input variable c corresponding to
the context variable. The difference between these two models is illustrated
in Fig. 4.6.

Given the two input vectors y and c, we now rewrite the basic prediction
equation (4.1) for the new context-dependent mixture model:

76



Figure 4.6: Graphical model for the basic Mixture of experts model (left),
and the Mixture of experts applied to context-dependent observation distri-
bution (right).

P (x|y, c,Θ,Λ) =
K�

k=1

P (x, k|y, c,Θ,Λ)

=
K�

k=1

P (k|y, c,Θ)P (x|k, y, c,Λ)

=
K�

k=1

gk(c, θk)P (x|y,λk)

=
K�

k=1

gk(c, θk)φk(x|y) (4.9)

where we note that x is independent of c given k (using d-separation)
so that P (x|k, y, c,Λ) = P (x|y,λk). Similarly, we exploited the inactive
trail k → x ← y to show that k is independent of y and that we have
P (k|y, c,Θ) = P (k|c,Θ).

We now introduce the localized gating network to rewrite (4.9):

P (x|y, c,Θ,Λ) =
K�

k=1

αkP (c|θk)�K
j=1 αjP (c|θj)

φk(x|y) (4.10)

and noting that we have p(c) =
�K

j=1 αjP (c|θj), we obtain the conditional
density :

p(x, c|y,Θ,Λ) =
K�

k=1

αkP (c|θk)φk(x|y) (4.11)
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Reintroducing the indicator variable z we have:

p(x, c, z|y,Θ,Λ) =
K�

k=1

(αkP (c|θk)φk(x|y))z
k

(4.12)

and we see that (4.12) is very similar to (4.5) except that the likelihood
is conditionally dependent on the input y.

However, each expert filter requires a prior information over xn (xn−1|n−1),
and we can not straightforwardly exploit the EM training proposed in (Xu
et al., 1995). Three possible methods exist for computing the prior distribu-
tion: at first, the system providing an accurate measurement of the state can
be directly used as a prior with low noise. Alternatively, we can decide to
run inference on each filter independently, each of which reusing its previous
output. And finally, we can run inference on the whole model, and compute
before each iteration of the EM algorithm the gating weights αkP (c|θk)�K

j=1 αjP (c|θj)
,

and the resulting mixture state belief.
In practice, this last solution provides the best results, and is conse-

quently adopted. The EM based training approach proposed in (Xu et al.,
1995) is then exploited, at the exception that the maximization step then
only consists in minimizing the first term of result (4.8). Setting partial
derivatives w.r.t to αk, mk, Σk to zero, and using Lagrangian multiplier to
introduce the constraint

�
k αk = 1, we obtain new estimates (Ramamurti

and Ghosh, 1998):

αk =
1

N

�

n

hk(xn, yn) (4.13)

mk =

�
n hk(xn, yn)yn�
n hk(xn, yn)

(4.14)

Σk =
1

d

�
n hk(xn, yn)� yn −mk �2�

n h(xn, yn)
(4.15)

Using these new parameters, we then alternatively repeat inference and
an iteration of EM until convergence, i.e. when changes in the parameter
values become insignificant.

Generative training

In generative training, we focus on modeling the observation distribution
p(yn|xn). That is, each expert corresponds directly to a mapping from xn to
a subset of measurements within yn. In this context, we should inform the
reader that consequently, the name of the input and output variables of the
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models are inverted relatively to the basic mixture of expert model depicted
previously. However, training the gating network can be straightforwardly
done with the same EM algorithm (Xu et al., 1995).

The main difference in the generative approach is that mixing is applied
to different observation functions. As will be discussed more precisely in
chapter 6, the generative representation yields more complex inference as
there exists an active trail xt → yt ← k. Thus, an exact Bayesian treatment
does not allow for the straightforward exploitation of the recursive filtering
equations. As discussed in chapter 3, this clearly shows that discriminative
training also influences the manner we run inference in the model. Here, we
shall note that it simplifies the exploitation of the model as it allows us to
use the standard filtering equations.

4.3.4 Exploiting non-linear filters

Both the learning and inference methods discussed in sections 4.3 and 4.2.2
exploit the availability of a closed-form expression for the filters output dis-
tribution. Especially, fast and efficient mixing of the expert filters output is
done thanks to the GPB approximation for Gaussian distributions. If non-
linear filters have to be used, the proposed learning and inference methods
can be straightforwardly exploited, for example by exploiting the UKF al-
gorithm that still provides (approximate) Gaussian outputs. Note however
that the guarantees concerning the error propagation due to the GPB ap-
proximation provided in (Boyen and Koller, 1998) is, to our knowledge, not
valid if the output distributions of each filter is already an approximation.

For non-linear and non-Gaussian filters requiring stochastic approxima-
tion, propagation of the particles is a more complex problem that has not
been studied yet. Mixing the filters output and training of the gating net-
work require new adapted methods, that are kept for future work. Fur-
thermore, until now we considered that the state estimate can be depicted
by an unimodal distribution. Some applications, for instance multi-target
tracking, however require to maintain a multimodal representation of the
state, and this specific case is also kept for future work.

4.4 Experiments

In this section we aim at demonstrating the feasibility of the proposed ap-
proach on simulated and real data in the context of altitude estimation of
a UAV. These experiments also aim at showing that the joint set of sensor
measurements used for navigation augmented with relevant contextual in-
formation (i.e. other sensor measurements, or other internal data), provides
a succinct yet rich representation of the perception context that can be used
as the input of our context-dependent selection model. Intuitively, we can
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see this joint set of measurement values as the minimum information relat-
ing the influence of the current context over sensor performance. In other
words, the filter observation input signal already contains useful clues about
the context.

4.4.1 Simulation

We first illustrate the system ability to learn decision rules according to
sensors characteristics. This simple example reproduces the take-off and
landing phases of a vertical takeoff and landing UAV. Three sensors provide
direct measures of the altitude with different characteristics, such as obser-
vation noise, outliers occurrences and measurement range thresholds (Fig.
4.7).
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Figure 4.7: Altitude measurement provided by three simulated sensors. Sen-
sor 1 reproduces typical ultrasonic measures, low observation noise, strong
outliers occurrences and maximum range threshold. Sensor 2 permanently
provides measures with high observation noise. Sensor 3 does not provide
any relevant measure before reaching 2 meters.
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All filters individually exploit a distinct sensor, and share a common con-
stant velocity transition model. We train the gating network on a dataset of
12000 samples reproducing two subsequent take-off/landing sequences. The
EM algorithm takes 50 iterations to converge with a convergence threshold
of 10−5.

The final estimate and associated uncertainty boundaries for the valida-
tion set is shown in Fig. 4.8. As we can see, the gating network learned
to switch between sensors in order to reject outliers and to take into con-
sideration each sensor measurement range. As expected from the mutual
competition between experts introduced during the learning step, the gat-
ing network tends to assign binary weights (cf. Fig. 4.9). Hence mixing only
operates during transition phases. As a consequence, the system output pro-
vides consistent estimation but does not benefit from estimation uncertainty
reduction that could be provided by direct measure fusion.
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Figure 4.8: Estimated altitude on validation dataset for the mixture of filters
and the Kalman filter with outlier rejection.
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Figure 4.9: Gating weights history on validation dataset. Each expert k
corresponds to the exploitation of the associated sensor k in Fig. 4.7.

We compared the ME approach with a classical Kalman filter enhanced
with 3-sigma rejection on all sensors. As shown in Fig. 4.8, this approach
can provide similar results with appropriately tuned filter parameters. How-
ever, the efficiency of such methods proves to be unsound, especially as small
changes in filter parameters or rejection threshold can lead to strong diver-
gence of the estimation output. Meanwhile we observed that even if changes
in filter parameters could significantly modify localization of kernels in the
input space, the ME approach invariably provides consistent output thanks
to its adaptation capability.

4.4.2 Real data

We now use datasets acquired on a paparazzi quadrotor UAV (Brisset et al.,
2006). Datasets consist of 50Hz synchronized altitude measures provided
by an ultrasonic sensor and a barometer as well as accelerations on 3 axis
provided by the embedded IMU. Altitude truth is given by a motion capture
system. As we can see in Fig. 4.10, the ultrasonic sensor presents strong
and frequent outliers we know to be related to thrust level. We also suppose
that the barometer offset is known.

Without additional understanding of the perturbations generated on ul-
trasonic sensor measures, we apply the mixture of experts framework to
show its ability to learn to filter these outliers, and improve estimation ac-
curacy. For this application we use 3 different experts: one expert based
on ultrasonic measures, an other based on barometer measures, and a last
one based on both ultrasonic and barometer measures. As we know the
presence of outliers in ultrasonic observations is correlated to the thrust,
we provide 3 inputs to the gating network: both sensor measures and the
thrust command. We compare this method to a Kalman filter using 3-sigma
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rejection scheme on ultrasonic and barometer measures. All these filters
share the same constant velocity transition model and observation noise.
We train the system on a dataset of 5000 samples. After 50 iterations the
EM algorithm reaches the convergence threshold fixed to 10−6. Note that
for both simulated or real data experiments, this corresponds to an average
convergence time of 250 seconds.
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Figure 4.10: Gating network inputs and altitude truth for validation dataset.

The experiments show that the learned parameters generalize well on
different validation sets, always providing similar performances. As we can
see on Fig. 4.11, some outliers are not perfectly filtered. These outliers
are presumably localized in unexplored regions of the input space, implying
that the rejection capability could be improved by using a larger training set.
On the validation set corresponding to Fig. 4.10, the system provides the
best RMS estimation error with a value of 0.135. The filter with rejection
provides an RMS error of 0.207. If only the sensor measurements are used
as input for the gating network, we obtain an RMS error of 0.150. This
result confirms that there exists a causal relationship between the thrust
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Figure 4.11: Altitude estimation and uncertainty boundaries using mixture
of Kalman filters on validation set.
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Figure 4.12: Estimation error relative to altitude truth for mixture of
Kalman filter (in red) and Kalman filter with 3-sigma rejection (in blue).

command and the utility of ultrasonic measures, and illustrates the ability
of the suggested approach to take it into account as well.

The estimation error improvement provided by the mixture approach
(shown in Fig. 4.12) can be explained by the sensor selection process. For
example our model learned to assign more weight to the ultrasonic sensor
as the UAV gets closer to the ground, and usually promotes the barometer
for higher altitudes, where outliers on ultrasonic measures are more likely
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Figure 4.13: Weights history for expert 1 (ultrasonic sensor + barometer),
expert 2 (ultrasonic sensor) and expert 3 (barometer).

to appear. We also notice that, due to its estimation latency, the barome-
ter measures are more relevant for small velocities. This is why, based on
the strong thrust command value, our approach reduces estimation error by
selecting the ultrasonic sensor during the fast transition phase between sam-
ple 3000 and 4000. The error difference provided by the Kalman filter here
again results from its sensitivity on filter parameters. The noise term on the
transition model should reflects the dynamics of the UAV, but as rejection
is based on the innovation term, high noise terms reduce rejection capabil-
ity on small outliers. At the same time, low values can conduct to correct
measurement rejection during high dynamic maneuvers. This explains the
highest error peaks on Fig. 4.12 where the estimation latency introduced
by the use of the barometer punctually becomes coherent with ultrasonic
outliers, and make the filter diverge until the altitude decreases. In this
more complex example, all the sensor specificities can not be handled by an
appropriate parameter tuning, and more subtle decisions rules as encoded
in the gating network prove to be more suitable.

4.5 Conclusion and remarks

4.5.1 Summary

We demonstrated that the mixture of expert framework can be applied to the
measurement selection problem. In this approach, the gating network dis-
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covers the different operating contexts and encodes knowledge about sensor
reliability through the gating probabilities distributions parameters. This
feature enables the system to automatically select the best suited estimation
output, improving robustness regarding filter parameters inaccuracies and
inherent sensor characteristics.

In practice, the model robustness is mainly due to the goal-oriented
training step i.e optimization is done with respect to the output estimate
accuracy. This is because optimization of the gating network parameters
consists in finding the best consensus between the activation regions so as
to ensure the most accurate output. It can be easily extended to more
complex configurations by increasing the gating network input space.

Simultaneously, we demonstrated that the raw measurements within the
observation variable of the model can provide an indirect but sufficient rep-
resentation of the context influence. In practice, this means that the model
learned to recognize distinctive subset of patterns within the observation
vector that correspond to modification of the measurements reliability. In
more complex cases, i.e when a common measurement pattern corresponds
to different contexts, and thus different gating weights, it is necessary to
introduce additional inputs to the gating network.

4.5.2 Further issues

Input synchronisation

In its original implementation the ME framework inputs are synchronized,
and the gating network bases its decision on a joint set of observations. For
experiments, we simulated synchronous observations by forcing sensors to
provide measures at a defined frequency. As seen in the previous section,
this approach doesn’t affect the framework ability to make decisions, mostly
because the gap between the input frequencies stays low. However, if the
difference in frequencies become too important, the system wouldn’t provide
relevant decisional capabilities.

Complexity of the activation regions boundaries

An other constraint, directly imposed by the Gaussian kernel model, is the
unimodal distribution of the activation regions. As seen earlier, one strength
of the approach is that the training step automatically defines the filter ex-
pertise region. From the robustness perspective, this is a substantial benefit.
However, this does not ensure that we always provide the optimal1 output,
since a trade-off has to be made between the experts, meaning that a filter
may be underexploited in some areas of the input space. This phenomenon

1
Where optimality consists here means providing the best estimate given the available

measurements
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is also fostered by the indicator variable z, promoting mutually exclusive
activation regions, and thus decreasing the mixing capability of the model.
As observed during the experiments, the gating weights behave more like bi-
nary activators than real mixing coefficients. Under specific configurations,
this means that the model will not provide the optimal estimate. This
would require to model the gating probabilities with more complex mod-
els, like the HME, Gaussian mixture models (Yuan and Neubauer, 2009)
or more preferably nonparametric models like Gaussian processes (Yuksel
et al., 2012). For the altitude estimation test case, we however noticed that
the localized Gaussian kernels provide satisfying results.

Training issues

The EM algorithm provides fast and guaranteed convergence to a local max-
imum of the log-likelihood. In our application, the locally optimal parame-
ters we found invariably provided relevant gating capabilities. However, in
different applications involving more expert filters and a context input space
of higher dimensionality, it may be necessary to improve the basic EM algo-
rithm and avoid non-global optima. An interesting solution (among others)
is proposed in (Ueda et al., 2000) with the split and merge EM algorithm
(SMEM). Roughly, this algorithm adds an additional step within the EM
iterations which consists in moving some experts from regions in the input
space in which there are too many activation regions to regions in which
there are too few. This provide more successful results than methods which
proceeds by continuous moves because the likelihood is locally higher within
intermediate locations, acting as a attractor.

4.5.3 Future directions: Towards non-parametric decision

boundaries

The proposed approach is instructive in that it allowed us to confirm that
context-dependent measurement selection is a relevant approach. However,
the conclusions made after exploiting the localized mixture model naturally
lead to an extension of the modeling expressiveness of the gating network
for splitting the input space more precisely. As seen earlier, two methods
can be exploited within this objective: the multi-layered HME models, or
directly introducing more complex activation region models.

Following this idea, we now decide to explore an alternative approach, in
which we simply map the sensor selection task to a classification problem.
This allows to readily exploit some state of the art classification models,
among which we focus on nonparametric and sparse models. This approach
is discussed in the next chapter.
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This chapter presents an alternative solution to the context-dependent
observation selection task. This method shares many characteristics with
the model suggested in chapter 4. The main objective is to encode knowl-
edge about the utility of each element among a bank of models in order
to select the best measurement subset at runtime. Here, precise decision
boundaries are defined in the context input space with the Relevance Vector
Machine which efficiently provides good balance between model complexity
and computational efficiency. This chapter consequently starts with a sound
introduction to the Relevance Vector Machine which will also be exploited
in the next chapter. This chapter presents in details the approach proposed
in (Ravet et al., 2014).

5.1 A new approach based on classification

In chapter 4, measurement selection was achieved through the exploitation
of the Mixture of Experts model. This framework provides an elegant so-
lution to the measurement selection problem as it models the existence of
different contexts through an additional hidden variable. During the learn-
ing phase, this variable fosters competition among filters, and results in a
consensus in the distribution of the activation regions that usually provides
great robustness. If the model we use to define the activation regions is too
simple, this consensus may however result in a suboptimal exploitation of
the experts. For instance, this can happen if the optimal activation region of
a filter is discontinuous and we still exploit the unimodal Gaussian kernels
in the gating network. Thus, we have no guarantee that the measurements
are exploited in any region of the input space where they are providing the
optimal output.

Alternatively, we can see the measurement selection task as a simple clas-
sification problem: we want to learn a mapping from the context variable
input space (continuous) to the best measurement subset (discrete). Here,
the interpretation of the ’best’ measurement subset depends, of course, on
the criterion we want to optimize. We consider two different criteria which,
once again, correspond to optimizing the resulting state-observation model
generatively, or discriminatively. In the generative case, this corresponds
to optimizing the classifier parameters so as to obtain the best observation
likelihood p(yt|xt) over the dataset. When training aims at maximizing the
conditional likelihood p(xt|y1, . . . , yt), we refer to this method as discrimi-
native training. In both cases, we can straightforwardly exploit some usual
classification methods by evaluating at first the desired class target through
a simple exhaustive evaluation of the performance of each measurement sub-
set. Note that in the Mixture of Experts based approach, the performance
of each subset (expert) was indirectly exploited during the training step in
order to infer the hidden variable z. While in this new approach, we di-
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rectly use the raw performance of each measurement subset as the selection
criterion.

The core problem remains in the definition of the precise activation re-
gion of each measurement subset. Multiple methods exist in order to split
the input space, but the requirements of our application lead to a specific
family of methods. At first, we have no prior information about the func-
tional form underlying the activation region boundaries. This is because the
nature of the context is not understood, and neither is its impact on the
measurement reliability. Thus, exploiting parametric models might be very
limiting in some cases, even if it is a highly problem-dependent issue. Also,
we aim at exploiting the complete model online, which requires the measure-
ment selection to be done without degrading the computational efficiency
relatively to that of the recursive equations.

Here, we consider non-parametric models as the best solution for defin-
ing accurate activation regions. We also believe that non-parametric models
provide strong genericness and thus require no problem-specific tuning for
different filter implementations. Non-parametric models exploit the concept
of the memory-based approach, in which the prediction for a new input
relies on the whole training data. Gaussian Processes (GP) (Rasmussen
and Williams, 2005) are one of the most popular concept in non-parametric
modeling, and have been used for learning the observation and prediction
distributions of a state-observation model (Ko and Fox, 2009; Deisenroth
et al., 2012). GPs however suffer from high computational complexity, which
makes them irrelevant for real-time state estimation if the basic training
methods are used. Their time efficiency has been increased by forcing spar-
sification of the dataset during training (Quiñonero-candela et al., 2005),
but this operation remains complex and the resulting computational cost
for a new prediction may remain prohibitive for online applications (Ko and
Fox, 2009).

Data sparsification has become a very popular concept with the advent
of the Support Vector Machines (Cortes and Vapnik, 1995), in which only a
small subset of samples within the training set is used for new predictions
(the support vectors). Within the Bayesian community, data sparsification
has been addressed through a specific training method referred to as au-
tomatic relevance determination (ARD) or sparse Bayesian learning. The
Relevance Vector Machine (RVM) introduced in (Tipping, 2001) exploits
this sparse learning technique combined with the kernel method detailed
hereafter. This results in a model that provides better generalization capa-
bilities than the SVM with significantly increased sparsity. In fact, RVM
can be seen as a specific instantiation of GP, where training automatically
introduces sparsification. Also, the RVM brings the usual benefits of the
probabilistic models and thus provides predictive distributions instead of
point predictions. This means that each prediction output is jointly pro-
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vided with a measure of its uncertainty that depends on both the process
noise observed in the dataset, and on the correlation between the new input
and the training data. Regarding this feature, we will see that the RVM has
a counter-intuitive behavior when the new input is too far from the train-
ing data, so that the prediction uncertainty decreases. However, we believe
that RVM is a key solution for learning non-parametric and computation-
ally efficient models for online measurement selection. In the next section,
we provide a detailed background about RVM before introducing the new
measurement selection method, which was originally introduced in (Ravet
et al., 2014).

5.2 Background on the Relevance Vector Machine

While we will ultimately exploit the model for classification in this chapter, it
is however simpler to introduce the concepts exploited in RVM starting with
the regression task. Classification can then be introduced as an extension
of the regression form of the RVM. Note that regression will be exploited
for the noise adaptation problem in chapter 6, thus the background given in
this section is of general purpose in this manuscript.

5.2.1 Extended linear models

We consider a regression task in which we are given a training set D con-
taining N observations {xn, yn}Nn=1, where x is an input vector of dimension
D and y denotes a scalar output. In the Bayesian approach, the regres-
sion task consists in learning a conditional distribution that explains the
relationship between the inputs and the outputs. Ultimately, we are only
interested in making prediction of the output y∗ for a new input x∗ through
the exploitation of the learned conditional distribution p(y|x).

Bayesian linear regression

Here, we start by depicting the classical linear regression method under the
Bayesian approach. The expressiveness of this model being very limited, we
see how it can be extended by re-mapping the input space on an alternative
feature space. This extension leads to an equivalent representation known
as the kernel substitution which plays a central role in non-parametric mod-
eling, and is the backbone of both the SVM and the RVM.

We start with the simplest regression method that is the standard linear
model with Gaussian noise:

y = x�w+ �
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where w is a vector of weights and � ∼ N (0,σr2) the additive noise compo-
nent. By introducing this last term, we assume that y may differ from x�w,
following an i.i.d Gaussian distribution.

Training generally consists in finding the unknown model parameters w
and σr. In the following discussion, the noise covariance is supposed to be
known and we focus exclusively on w as it is sufficient to illustrate the kernel
substitution concept. If we now write X the D × n matrix containing all
the training input vectors and y = {y1, . . . , yN}, we can write the model
likelihood:

p(y|X,w) =
N�

n=1

p(yn|xn,w)

=
N�

n=1

1√
2πσr

exp

�
− (yn − x�nw)2

2σr2

�

=
1

(2πσr2)
N/2

exp

�
− |y −X�w|2

2σr2

�

Thus the likelihood is a N -dimensional multivariate Gaussian with mean
given by X�w and covariance given by σrI (where I is the N ×N identity
matrix). In the Bayesian approach, we treat the unknown parameters as
hidden random variables, and introduce a prior distribution over w. A
common prior is a Gaussian centred in zero with covariance Σr so that
p(w) ∼ N (0,Σr). This specific distribution may seem arbitrary, but it actu-
ally brings some interesting properties that will be detailed later. Learning
then consists in finding the parameters in Σr which maximize the dataset
likelihood. Once we learned the parameters, we can compute the posterior
distribution over w and use it for prediction.

To compute the posterior distribution over w, we first note that p(y|X,w)
is Gaussian and linear in w, where the prior distribution over w is also Gaus-
sian. Thus we can exploit once again the linear Gaussian model properties
A.2 to evaluate the posterior:

p(w|X,y) ∼ N (mw,Σw)

where

mw = σr
−2Σ−1

w Xy

Σw = σr
−2XX� + Σ−1

r

From then on, we can make predictions for new inputs by marginalizing
out w in p(y∗|x∗,w) with respect to its posterior:

p(y∗|x∗,X,y) =

�
p(y∗|x∗,w) p(w|X,y) dw
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where we notice that the two components within the integral are Gaus-
sian. Thus we can straightforwardly compute the marginal distribution
p(y∗|x∗,X,y) using A.1:

p(y∗|x∗,X,y) ∼ N (m∗,Σ∗)

where

m∗ =
1

σr2
x∗�Σ−1

w Xy

Σ∗ = σr
2 + x∗�Σ−1

w x∗

The predictive distribution is thus an other Gaussian whose mean is
logically given by the product of the new input by the posterior mean of the
weight. The first term in the prediction uncertainty corresponds to the noise
in the data, and the second term is a quadratic form of the new input with
the posterior covariance of the weights. Thus, the prediction uncertainty
is proportional to the noise in the data and to the uncertainty associated
with the weights. Note that the last term also logically increases with the
magnitude of the input.

Extended linear model and the kernel method

Clearly, the basic Bayesian linear model has significant limitations in terms
of modeling capabilities. It however provides interesting analytical proper-
ties that have been exploited in the development of more complex models.
For instance, one very simple idea for extending the model expressiveness
consists in projecting the input into a new high dimensional space before ap-
plying the linear model. This is usually done by defining a nonlinear function
φ that maps the D dimensional input vector x into a new M dimensional
feature space where M > D. The regression model is now written:

y = φ(x)�w+ � (5.1)

where the vector of weights w is now M -dimensional. Interestingly, the
Bayesian analysis for this new model is identical to the basic linear model,
and if we denote the aggregation of columns vectors φ(x) for all x in D by Φ,
we can show that the prediction distribution can now be written (Rasmussen
and Williams, 2005)

p(y∗|x∗,X,y) ∼ N (m∗
φ,Σ

∗
φ)

where

m∗
φ = φ(x∗)�ΣrΦ(K + σ2

r I )
−1y

Σ∗
φ = φ(x∗)�Σrφ(x

∗)− φ(x∗)�ΣrΦ(K + σ2
r I )

−1Φ�Σrφ(x
∗)
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where we defined K = Φ�ΣrΦ.

As can be seen, the feature space into which we projected the input is
always exploited in the form of a product φ(x)�Σrφ(x�) where x and x� may
correspond to points within the training set, or to the new test point. In the
dual kernel representation, we define a kernel1 function so that k(x, x�) =
φ(x)�Σrφ(x�). The kernel function then directly represents the result of the
inner product of φ(x) and φ(x�) with respect to Σr. If we properly chose
the kernel function, we can then substitute the potentially complex inner
product in the feature space by the evaluation of the equivalent kernel. This
general idea of processing the input data directly through the evaluation of
a kernel function is sometimes referred to as the kernel trick.

Multiple kernels have been developed within the different applications of
kernel regression, among which the Gaussian kernel which takes the form:

k(x, x�) = exp

�
− 1

2
(x− x�)�Σ−1(x− x�)

�

Under its exact form, the Gaussian kernel requires the full parametrization
of the covariance Σ, which is a complex task. In practice, it is common to
assume that Σ is diagonal, so that we have:

k(x, x�) = exp

�
− 1

2

D�

i=1

1

σj
(xj − x�j)

2

�
(5.2)

where σj is referred to as the length scale on dimension j. Finally, when
σj is considered to be identical on all dimensions, we obtain the isotropic
kernel:

k(x, x�) = exp

�
− � x− x� �2

2σ2

�
(5.3)

which is known as the radial basis function (RBF) kernel. Note that for
simplicity, this last kernel is often preferred over more complex parametriza-
tions.

Practically, the σi parameters can be determined by manual tuning.
More precisely, it is commonly done by assessing the performance of the
model for distinct values of the σi’s through cross − validation2 and sub-
sequently choosing the values that provided the best results. Alternatively,
the length scale parameters can also be optimized during the training step.
This latter approach especially makes sense when we prefer to use individ-
ual parameters σi instead of an isotropic kernel since manual tuning may
quickly become inapplicable for input spaces of high dimensionality.

1
Also called covariance function

2
Cross validation is a simple technique where we divide the training set into N groups.

The model is trained N times on a training set containing N − 1 groups before assessing

its performance on the remaining N th
group. The performance of the model for the N

runs is then averaged.
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We can provide two basic interpretations that justify the exploitation of
Gaussian kernels in extended linear models. In a more intuitive analysis,
we see that the Gaussian kernel provides a measure of the distance between
two input points. In the case where we have no clear idea about a relevant
feature space for projecting the input data, an alternative approach is to
exploit the correspondence between input objects. For example if we are not
able to classify an object through a set of specific characteristics (features),
we can however evaluate how similar it is to another, and thus rely on
this score to make a decision. Consequently, the Gaussian kernel can be
seen as a similarity score between two inputs, this score being exploited to
make prediction about new inputs by comparison to the samples seen earlier
during the training procedure.

More formally, it can be proved, using the Mercer’s theorem (Rasmussen
and Williams, 2005), that working with the Gaussian kernel is equivalent to
projecting the input variable on an infinite feature space. Note that in this
case the weight vector w is consequently infinite dimensional, and this level of
complexity could not be handled without kernel substitution. The resulting
regression model is then very powerful and generic, making the Gaussian
kernel one of the most popular choice in kernel methods. Consequently,
we also adopt the Gaussian kernel in our first investigations concerning the
measurement selection task. However, the RVM model itself is generic, and
does not impose the exploitation of this specific kernel. For more details
about the different kernel functions and the kernel substitution, an extensive
discussion is provided in (Schölkopf and Smola, 2002).

5.2.2 RVM for regression

The Relevance Vector Machine, as described in (Tipping, 2001), is an ex-
tended linear model of the form (5.1). As a kernel machine, the likelihood of
the complete training set can be written using the dual kernel representation
so that we have

p(y|x,w,σr) =
1

(2πσr2)
N/2

exp
�
− 1

2σ2
r
� y −Φw �2

�
(5.4)

with Φ the design matrix whose elements are given by the kernel function so
thatΦ = [φ(x1), . . . ,φ(xN )]� with φ(xi) = [1, k(xi, x1), k(xi, x2), ..., k(xi, xN )]�.

The RVM however differs from the classical linear model because indi-
vidual Gaussian priors are defined over each element wi of w:

p(wi|αi) ∼ N (0,α−1
i ) (5.5)

where, following the notation in (Tipping, 2001), αi is the precision3 hyper-
parameter corresponding to the weight element wi. This yields an indepen-

3
Recalling that the precision is the inverse of the variance
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dent joint prior distribution over w = (w1...wN+1)�:

p(w|α) ∼ N (0, A)

where A = diag(α1, . . . ,αN+1). The resulting graphical model is depicted
in the figure hereafter.

Figure 5.1: Graphical representation of the RVM regression model.

As for the linear model, the posterior distribution of w can be evaluated
using A.2 and takes the form:

p(w|x,y,α,σr) ∼ N (mw,Σw) (5.6)

where

mw = σr
−2Σ−1

w Φ�y

Σw = (A+ σr
−2Φ�Φ)−1

Sparse Learning

It is possible to define proper conjugate priors for the αi’s and σr, i.e a
Gamma prior for the αi’s and an inverse Gamma prior for σr. However we
follow the idea suggested in (Tipping, 2001) and take non-informative uni-
form priors that correspond to the limit case where all the parameters of the
Gamma prior are set to zero. Note that the convenient prediction equations
described for the linear model could be obtained because we had fixed values
for the parameters Σr and σr. Here, the posterior distribution over the αi’s
and σr is consequently approximated by a point estimate (corresponding to
delta functions at the mode of the posterior distribution). Thus, if we seek
for the maximum of the posterior distribution of the unknown parameters,
we want to find the points αmax and σrmax that maximize the posterior
(using the Bayes rule):

p(α,σr|y,x) ∝ p(y|x,α,σr)p(α,σr)
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where, α = {α1, . . . ,αN+1}.

Since we chose an uniform prior distribution p(α,σr), finding the max-
imum of the posterior distribution is then equivalent to maximizing the
conditional likelihood marginalized with respect tow, i.e p(y|x,α,σr). Rep-
resenting the hyperparameters by point estimates obtained by maximizing
the marginal likelihood is a method known as the Type-2 Maximum Likeli-
hood, or evidence approximation (Mackay, 1992). In our case, the marginal
likelihood can be evaluated by writing:

p(y|x,α,σr) =
�

p(y|x,w,σr)p(w|α) dw (5.7)

which results in a new Gaussian distribution. Indeed, using A.1 we have

p(y|x,α,σr) ∼ N (O,C)

where
C = σ2

r I + ΦAΦ�

Training is done by optimising the usual log likelihood with respect to
α and σr. This corresponds to optimising:

ln
�
p(y|x,α,σr)

�
= ln

�
N (O,C)

�

= −1

2
Nln(2π) + ln(|C|) + y�C−1y (5.8)

There is however no direct closed form for αmax and σrmax, and consequently
optimization is done through a two-step iterative procedure described here-
after. After choosing initial values for α and σ, the first step consists in max-
imizing the current marginal likelihood by setting the corresponding deriva-
tives to zero. This provides new estimates αnew and σ2

r
new

that are used
for updating the posterior distribution of the weights. Following (Mackay,
1992), the new estimates are provided by:

αnew =
1− αiΣwii

mw
2
i

σ2
r
new

=
� y − Φmw �2

N −
�

i(1− αiΣwii)
(5.9)

where mwi is the ith component of the mean of the posterior over w, and
Σwii the ith diagonal component of the covariance of the posterior over w.

In the second step, we evaluate the new marginal likelihood

p(y|x,αnew,σnew
r ) =

�
p(y|x,w,σnew

r )p(w|αnew) dw
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and re-estimate the new parameters. These two steps are then repeated
until a convergence criterion is reached.

In practice, most of the αi tend to large values (numerically equivalent to
infinite) during the training step. Given the Gaussian distribution defined
over w (5.5), this means that the corresponding wi is zero mean with very
low uncertainty. The corresponding component of the weight vector can
therefore be pruned from the model as it is not required for making new
predictions. The input values xn associated with the remaining weights are
consequently referred to as the relevance vectors, as they are automatically
identified by the system as the points of input space being relevant for
making predictions.

Alternatively, the EM algorithm can be used by considering w as the
hidden variable of the model. This however leads to updates equations for
αnew and σ2

r
new

that are less efficient than the one we described when using
type-2 maximum likelihood. EM thus provides significantly slower conver-
gence, and as for any memory-based approach, this problem is worsened
when the size of the training set increases. Consequently, it is customary
to rely on type-2 maximum likelihood, even if we shall recall that it is an
approximation of the pure Bayesian approach, since we do not optimize the
exact likelihood of the model.

The mechanism of sparsification is a direct consequence of the exploita-
tion of peculiar priors that enforce convergence of some weight components
to zero, and is known as automatic relevance determination. Note that
ARD is not specific to the RVM and can be exploited for any extended lin-
ear model. Exploitation of priors that are purposely designed for fostering
sparsity is strongly debatable, as well as pruning parts of the training set.
This is because an exact Bayesian treatment would still assign a distribution
to the ’irrelevant’ points within the training set. Also, it is not consistent
with the theoretical role of the prior, which is to represent the prior knowl-
edge we have over the variable w. However, models like the RVM or the
SVM are now widely used in many applications, where their sparsification
capabilities are particularly appreciated. For more fairness regarding the
probabilistic Bayesian framework, we should preferably refer to the RVM as
a semi-Bayesian extended regression model.

While it is intuitive to understand that some weight parameters are
’attracted’ to zero during the optimization (due to the specific zero mean
Gaussian prior), it is not straightforward to understand why some of the
hyperparameters αi go to infinity. In (Tipping, 2001) the author provides an
intuitive interpretation explaining why some components φi of an extended
linear model may be pruned during optimization of the likelihood. Later,
a sound mathematical analysis was provided in (Faul and Tipping, 2001),
which we briefly describe in appendix C. Note that an alternative analysis,
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based on the variational framework, was also provided in (Wipf et al., 2003)4.

Extension of the training method

As described in (Tipping, 2001), the input length scale parameter of the
kernel function strongly affects the performance of the model, especially for
the regression task. From now on, and following the usual notation, we
denote the input length scale parameters vector by η so that the isotropic
Gaussian kernel (1-dimensional length scale vector) is now written:

k(x, x�) = exp

�
− η � x− x� �2

�

It is very common to adjust this parameter by hand, and only train
the model with respect to the weight hyperparameters α and the noise σr.
However, the kernel input length scale parameter can also be estimated
along with other parameters during the training step. Note that for kernels
of the form (5.2), tuning the corresponding parameters ηi quickly become
intractable, and learning is the only relevant method.

While all the parameters (α,σr, η) can be optimized through conju-
gate gradient ascent, the updates equations (5.9) provide the most efficient
method for optimizing α and σr. In practice it is thus more efficient to run
a few iterations of gradient ascent with respect to η after each update of α
and σr.

Note that in our application we will exploit isotropic kernels and conse-
quently tune the length scale parameter according to the ultimate system
performance.

Prediction

After the training procedure, we can use the optimal hyperparameters αmax

and σrmax to make predictions for new test inputs x∗ by computing the
predictive distribution

p(y∗|x∗,x,y,αmax,σrmax) =

�
p(y∗|x∗,w,σrmax)p(w|x,y,αmax,σrmax) dw

This gives a new Gaussian distribution:

p(y∗|x∗,x,y,αmax,σrmax) ∼ N (m∗,σ2∗) (5.10)

where

m∗ = mw max
�φ(x∗)

σ2∗ = σr
2
max + φ(x∗)�Σw maxφ(x

∗)

4
Since we have not described the complex specifics of the variational framework, we

prefer to rely on the work by Faul and Tipping.
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with mw max and Σw max the mean and covariance of the posterior distribu-
tion over w evaluated at αmax and σrmax.

Note that the function φ is built on the kernel function localized at the
relevance vectors. Consequently, when a new test point x∗ lies too far from
the relevance vectors, kernel functions such as the Gaussian kernels go to
zero (as a measure of distance), and the predictive uncertainty reduces to
the noise of the data σr. Similarly, the predictive mean also converges to
zero, and the resulting prediction is wrong with a very low uncertainty, as
illustrated in Fig.5.2.
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Figure 5.2: Predictive distribution of a RVM model trained on data points in
[0, 1]. As expected the prediction mean converges to zero when extrapolating
too far from the training data ( here for any new input> 1) , and the variance
becomes equal to 1

σr
2
max

.

This result is very counter-intuitive for a probabilistic model, since the
user would clearly expect the output uncertainty to increase drastically when
the relevance vectors do not allow for properly making any conclusion about
the new input. More details about this undesirable effect can be found in
(Rasmussen and Candela, 2005), where a solution for ’healing’ this behavior
is proposed. Roughly, this approach suggests to augment the basic RVM
model by introducing at runtime a new component centred on the new input
x∗ in the vector φ (referred to as a basis function). In other words, it
augments the relevance vectors extracted from the initial training set with a
new element corresponding to the input x∗. This results in new equations for
the prediction mean and variance that fix the defective behavior of the RVM
in parts of the input space that were not explored during the initial training
step. Unfortunately, the evaluation of the new mean and variance requires
the full training set, and the model can not be considered to be sparse
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anymore. This illustrates the fact that sparsity is obtained at the expense
of accuracy, and that efforts still have to be done in order to improve the
balance between these two aspects. Regarding this issue, the basic RVM
chooses sparsity over accuracy, while on the contrary, models such as the
GPs aim at accuracy but come at high computational costs.

5.2.3 RVM for classification

The classification task differs from regression in that the target values are
now discrete labels representing the different classes. Practically, when we
have K different classes, the target tn is represented through a 1-of-K coding
scheme, i.e tn is a K-dimensional vector in which the class Ck is represented
by setting all components to zero except for the kth component. In other
words, for the basic binary classification task where tn ∈ {0, 1}, class C1

is represented by tn = (1, 0)� and C2 by tn = (0, 1)�. In practice, and
following the probabilistic approach, the target values can be represented
by probabilities, meaning that some components in tn are not strictly 0 or
1, but a normalized coefficient representing the posterior probability of each
class.

The classification task consists in learning a mapping xn �→ tn, where
the input xn is in RD. Linear and extended linear models for regression
have been generalized to classification, where the main difference in the
analysis arises from the specific likelihood function adopted for the discrete
labels. Usually, and following the Bayesian approach, the linear model is
generalized through the introduction of an activation function f so that
p(Ck|x) = f(φ(x)�w), where we project the input on a new feature space as
explained before. A popular activation function is the logistic sigmoid σ(x)
defined by

σ(x) =
1

1 + exp(−x)

which maps the real input x to the finite interval [0, 1] as illustrated here-
after.

The RVM classification method originally introduced in Tipping (2001)
is designed for binary classification. The likelihood function is inspired by
the logistic regression model (Bishop, 2006) which takes the form

p(t|w,x) =
N�

n=1

σ(y(xn))
tn [1− σ(y(xn))]

1−tn (5.11)

where we defined y(xn) = φ(x)�w, and exploit the property p(C2|x) =
1 − p(C1|x). By comparison with the regression task, we see that there is
no noise on the data (σr). If we now introduce a prior distribution over
the weight p(w|α), we see that due to the sigma activation function, the
marginal likelihood p(t|x,α) as well as the posterior p(w|t,α) do not allow
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Figure 5.3: The sigmoid activation function.

for a closed-form expression anymore (recall that closed-form expression
could be obtained thanks to the linear Gaussian properties (A.1) and (A.2)).

To cope with this issue, a general approach that was originally intro-
duced in (MacKay, 1992) consists in finding a Gaussian approximation to
the posterior p(w|t,α). This is done through the application of the Laplace
approximation that basically fits a Gaussian distribution whose mean is cen-
tred on a mode of the original distribution. The Laplace approximation also
provides an approximate closed-form for the marginal likelihood, whose op-
timization leads to updates equations for the αi hyperparameters that are
similar to (5.9). Note that the analysis of sparsity that we provided for the
regression task is also applicable in this case, and consequently the training
step also results in great sparsity.

In our application however, the number of classes is very likely to be
higher than two, and we need to exploit multi-class methods. The original
binary model can be straightforwardly extended to the multi-class setting,
where the likelihood now takes the form:

p(t|w,x) =
N�

n=1

C�

c=1

σ(yk(xn))
tnk (5.12)

We do not provide further details about this approach since we will not
exploit this basic RVM model for classification. Indeed, in its original for-
mulation, the RVM classifier scales badly with the number of classes C.
More precisely, the covariance matrix of the Laplace approximation scales
with C (The covariance matrix has size MC ×MC with M the number of
relevant vectors), and the RVM classifier is known to adapt poorly to the
multi-class setting (Damoulas et al., 2008).

Note that an alternative approach to the multi-class setting consists in
training multiple and concurrent binary classifiers. In the one-versus-the-
rest approach for instance, C distinct models are trained by taking the data
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corresponding to each different class as positive examples, while the data
from the other C−1 classes are taken as negative examples. Predictions for
a new input are then made by selecting the maximum output yc(xn) among
the C different classifiers. This approach suffers from multiple problems,
mainly due to the fact that the different output probabilities have irrelevant
scales since the models are trained independently. Also, the amount of
computation required for both training and prediction is significantly higher
and increases with the number of classes.

Extension for the multi-class setting

More recently, new formulations of the multi-class RVMwere derived (Damoulas
and Girolami, 2008; Damoulas et al., 2008) in order to improve the computa-
tional efficiency and accuracy of the original method. Note that this specific
model was also developed in order to improve the modeling expressiveness
through the multi-kernel method. This means that the original RVM formu-
lation can be augmented with a new composite kernel Kβ(xi, xj) described
as a convex combination of base kernels Ks(xsi , x

s
j) so that Kβ(xi, xj) =�

βsKs(xsi , x
s
j). This feature allows the model to handle strongly hetero-

geneous input data and provide very generic learning capabilities. In our
application, this feature could bring significant benefits in complex settings
where the context is represented through numerous and strongly heteroge-
neous inputs. However, during our first investigation we will focus on prov-
ing the feasibility of the classification-based approach and exploit a unique
Gaussian kernel.

We now give a quick overview of the multiclass RVM (mRVM) originally
proposed in (Damoulas and Girolami, 2008). This model requiring an exten-
sive theoretical analysis and a complex background on variational methods
(Girolami and Rogers, 2005), we encourage the reader to explore the work of
Damoulas (Damoulas and Girolami, 2008; Damoulas et al., 2008; Damoulas
and Girolami, 2009) for a deeper understanding of the approach.

The mRVM method extends the original RVM classifier through the
introduction of a new continuous and C-dimensional hidden variable y that
is treated as an intermediate regression target output. This method was
actually introduced earlier and leads to a model known as the multivariate
probit regression (Albert and Chib, 1993). Each component ycn is here
provided by a Gaussian with standard noise model so that

ycn ∼ N (φ(xn)
�w, 1)

The target variable tn is then set according to ycn through

tn = i if yin > yjn ∀j �= i

and the resulting graph is shown in Fig. 5.4.
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Figure 5.4: Graphical representation of the mRVM. Note that α and w are
(N + 1)-dimensional.

The specific likelihood is derived by marginalizing out the intermediate
variable y (or more precisely all components ycn) which gives

p(tn = i|W,x) =

�
p(tn = i|yn)p(yn|W,x) dyn

=

�
δ(yin > yjn ∀j �= i)

C�

c=1

N (φ(xn)
�wc, 1) dyn

= Ep(u)

��

j �=i

Φ
�
u+ φ(xn)

�(wi − wj)
��

where E represents the expectation taken with respect to p(u) ∼ N (0, 1)
and Φ is known as the probit function, or Gaussian cumulative distribution
and is given by

Φ(x) =

� x

−∞
N (θ|0, 1) dθ

The mRVM likelihood is closely related to the conventional probit re-
gression method, except that the probit function inputs are here represented
by Gaussian distributions. In other words the mRVM approach directly
plugs-in the outputs of the distinct RVM regression models in the probit
activation function, which in turn provides probabilistic outputs for each
class membership. This probabilistic representation results in an increased
complexity, as it requires to evaluate the expectation with respect to p(u).
Note that the evaluation of the expectation is analytically intractable and
thus requires numerical approximation. A first approach consists in ap-
proximating the expectation by a finite sum over some points sampled from
p(u) ∼ N (0, 1). It is however more computationally efficient to approximate
the integral through the standard Gauss-Hermite quadrature which results
in a finite weighted sum and does not require to run a sampling algorithm.
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The Gaus-Hermite approximation can similarly be exploited for prediction
since the evaluation of the new outputs also require the evaluation of the
expectation of a product of probit functions.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Class 1
Class 2
Class 3
Decision boundary C1
Decision boundary C2
Decision boundary C3
Relevant vectors

Figure 5.5: Illustration of the mRVM classifier in the 3−class setting.
Dashed lines represent the decision boundary i.e p(Ck|x) = 0.5+/− 0.25 for
each class. Note that in this scenario the model selected 6 relevant vector
out of 180 samples.

The training procedure is an extension of the usual RVM training method
with augmented complexity due to the presence of the new intermediate
variable y. Recalling that sparsity arises from the specific type-2 maximum
likelihood procedure, this means that we need to infer at first the value of
y before we optimize the intermediate marginal likelihood p(y|x, A) where
A ∈ RN∗C denotes the precision matrix of parameters αnc. This naturally
leads to the exploitation of the EM algorithm in which the E-step consists in
inferring the expected value of y (based on the current posterior over W ). In
the M-step, we can consequently use the usual RVM optimization method by
maximizing p(y|x,A) =

�
(y|W,x)p(W|A). Note that this approach allows

for the exploitation of the fast training algorithm suggested in (Tipping
et al., 2003). An illustration of the mRVM performance over a toy dataset
containing 3 classes and a 2−dimensional input is provided in Fig. 5.5.

5.3 RVM based observation selection

We now suggest a new approach for measurement selection that allows for
the direct exploitation of standard classification techniques, such as the
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mRVM model that is chosen here for its sparsification capabilities. Put
in context of the Bayesian framework, the approach we present is approx-
imate as we do not explicitly introduce a hidden variable that models the
filters activation weights. Thus, and strictly speaking, this work can be put
aside from the rest of the developments suggested in this manuscript, as we
purposely ignore the exact Bayesian formalism. As will be shown hereafter,
this however allows us to introduce a very simple and efficient method for
context-dependent measurement selection that require very few additional
developments, in comparison to a basic filter implementation.

Here again, we follow the multiple model approach suggested in chapter
4, and assume that the multiple filters only differ in the subset of measure-
ments they exploit. For now, we also consider that the corresponding noise
components are known, and the resulting model can be roughly described
by the schematic representation given in Fig. 5.6.












Figure 5.6: Schematic illustration of the mRVM based selection approach for
a 2−dimensional observation vector. Recall that ct denotes the contextual
information.

We assume that the observation vector yt contains N measurements
{ynt }. Based on the pre-defined noise free components of the observation
model for each of these measurements {ynt }, we can derive the combinato-
rially exhaustive set of possible observation functions exploiting a different
measurement subset. As these functions implicitly denotes the different
contexts, we note them fc where c ∈ {1, ..., C} with C the total amount of
distinct functions. We then train a mRVM model such that, at each filter
iteration, the model selects the most appropriate subset of measurements
{ynt }n∈c in the complete measurement vector yt according to the current
context, i.e. we use the corresponding observation function fc(xt):

�
{ynt }n∈[1,...,C] ⊆ yt

�
= fc(xt)
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Defining the mRVM training set

The definition of the training data for the mRVM is a crucial step in this
approach. The idea is to form an alternative training set based on the
collected data D = �x,y, c� (respectively the ground truth, the observations
exploited for state estimation, and the contextual information) in order to
explicitly introduce our requirements in terms of system performance. Thus,
each sample {xt, yt, ct} in D is associated with an activation vector at – e.g.
at = {0, 0, 1, 0, ..., 0}� means that the most appropriate subset at time step
t corresponds to the observation function fc=3. This yields a new dataset
D� = �c,a� that is used for training a mRVM classifier with C distinct class
labels.

At this point, finding the ’most appropriate’ subset of measurements
requires the evaluation of a score function which relates our expected re-
quirements to the system performance. This score function allows us to
chose to train our model generatively or discriminatively. For instance,
generative training is achieved by choosing the measurement subset that
provides the highest probability p({ynt }n∈[1,...,C]|xt). Note that this does not
require to run the recursive equations. Alternatively, discriminative training
is achieved by running C filters, each of which exploiting a different function
fc, and then choosing at each time step the filter that provides the most ac-
curate state estimate. Practically, this is done by choosing the filter with
the highest probability N (xt|x̂ct ,σc) where x̂ct and σc are the output mean
and variance of the filter based on the observation function fc. If only a
subset of the components in the state variable xt is available for training,
we can straightforwardly exploit the marginal likelihood (3.8) described in
section 3.3.3.

Interestingly, the approach allows any arbitrary score function to be
used. In practice, the suggested discriminative approach is equivalent to
selecting the filter with the most consistent output. However, if we are
mainly interested in reducing the error in the prediction mean, and pay
no attention to the accuracy of the output uncertainty, it is possible to
exploit the RMS error score (between the filter output and the ground truth).
Note that this particular score also allows for the exploitation of a partially
observed state variable. Using the notation introduced in section 3.3.3, this
means that, at each time step t, we choose the filter providing the lowest
error � h(x̂ct)− vt �.

In practice, the examination of the filters activation frequencies provided
by the classifier on the training set provides useful insights about the relevant
measurement combinations. Some filters may appear to be rarely used and
therefore can be removed from the initial set before re-training a refined
classifier. This process can simplify the classification problem and directly
reduce the computational cost of the model at runtime.

108



Mixing the multiple filters outputs

Until now, we did not give any detail about the method for interfacing the
mRVM class label outputs with the multiple filter outputs. In the previous
chapter, the mixture of experts framework naturally led to mixing through a
weighted sum of each estimate. While this approach is still technically feasi-
ble here since the mRVM provides normalized probabilistic outputs (acting
as gating weights), it is however inapplicable during training. In the mixture
of expert based approach, while running the EM algorithm for training the
gating network, it is straightforward to exploit the current model parame-
ters to re-evaluate the gating weights. These weights are used to evaluate
the final state belief at each time step, which in turn influences the estimate
of the next filter iterations. Consequently, we can train the model by using
the exact same inference method that is exploited at runtime.

On the other hand, exploiting a similar approach with the mRVM based
approach means that the quality of each filter output will vary at each
iteration of the EM algorithm. Consequently the activation vector at needs
to be re-evaluated, and the new training set D� will vary in time during
training. Then there is no convergence guarantee concerning the training
algorithm, and generally speaking, the initial assumptions above which the
mRVM is built are now invalid. It is clear then that we can not train the
model with the mixing method that will be used at runtime. Intuitively, and
as described in (Bar-Shalom et al., 2002), an other approximation for mixing
multiple state beliefs consists in propagating only the belief with the largest
weight and discard the others. In other words, this means that the prior
belief used by all the different filters at the next iteration is the one with
the highest probability, which in our case corresponds to the filter providing
the best consistency score (the local likelihood N (xt|x̂ct ,σc)). This method
can thus be used for both the training step, and at runtime.

Note however that, to our knowledge, there is actually no restriction
regarding the mixture method we decide to exploit at runtime. In this work
however, we find more coherent to train the model based on the inference
method that will be used later.

Exploiting non-linear/diverse filters

As for the approach based on the Mixture of Experts framework, we can
straightforwardly exploit UKF and EKF filters as they provide Gaussian
outputs that allow for the use of recursive equations. In this case, since we
do not use GPB mixing, we can also consider the exploitation of particle
filters. However, note that we have not analysed the statistical properties of
the error introduced by the stochastic approximation in a such a switching
model. Thus, and unlike standard particle filters, we have no guarantee that
the system will converge to the true state distribution for a large number of
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samples.
Since the only constraint about the filters we exploit is to ensure that

the state belief they provide satisfy the recursive filtering equations, we can
consider to augment the filter bank with a single prediction model. If it
seems very unlikely that the best state belief we can obtain is based on the
sole dynamic model, we can imagine that some systems may undergo some
transient disturbances which for no measurement can temporarily improve
the estimation process.

5.4 Experiments

In this section we illustrate the performance of the mRVM based observation
selection method on the simulated and real data that was used in chapter
4. We follow the same approach and define the contextual information as a
vector containing the raw data provided by the sensors used for state esti-
mation and additional information when available. Recall that, despite its
succinctness, it has been shown that this data provides a useful representa-
tion of the perception context. The experiments are based on the mRVM
code provided by Damoulas5.

5.4.1 Simulation

As done in the previous chapter, we simulate the data gathered by 3 differ-
ent sensors providing altitude measurements during a short fly (See Fig.4.7
page 80). The set-up is however different in that we construct 7 observation
functions fc in order to cover the exhaustive measurement combinations:
{[y1], [y2], [y3], [y1y2], [y1y3], [y2y3], [y1y2y3]}. These observation functions
are exploited in association with a constant velocity transition model within
a simple Kalman filter.

Recall that in this new approach, the final state belief is not evaluated
by a weighted sum of the different filters outputs, and is here equal to the
estimate provided by the filter with the highest activation probability. Thus,
if we want the system to exploit simultaneously multiple sensors, there is
no other way than ’forcing’ fusion by creating the pre-defined measurement
combinations. Note that in the previous chapter, only 3 distinct observa-
tion models were built, each of which exploiting only a single sensor, and the
simultaneous exploitation of multiple sensors was supported by the gating
network. However, due to the peculiar model formulation and the result-
ing competition between experts, actual sensor fusion was very sporadic in
practice.

Based on the 7 original filters, we train a first mRVM model on the 6000
sample dataset corresponding to Fig. 4.7. A direct examination of the filter

5
Source: http://www.dcs.gla.ac.uk/inference/pMKL/Download.html
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activation frequencies on the training set provides useful insight concerning
the relevant sensor combinations. In this case the observation functions
f2 and f5 (exploiting measurement combinations [y2] and [y1y3]) appeared
to be exploited on less than 0.1% of the context samples. The limited
exploitation of the sensor 2 is not surprising since it provides the noisiest
measurements. Thus, while it permanently provides consistent observations,
it is then logical to fuse its measurement with a more accurate sensor in order
to reduce the uncertainty. Similarly, it is clear that the combination of the
sensor 1 and 3 does not bring many benefits as it would result in a fused
information that is inconsistent for both low and high altitudes.

Clearly, the low activation frequency of some observation models does
not mean that they play no role in improving the ultimate state belief. For
instance, they may play a key role in some very rare occasions that no other
observation function fc can deal with. Thus removing these observation
functions from the bank may lead to divergence. In practice, the simplest
method for assessing if some observation functions can be removed consists
in re-examining the global performance of the refined model. Consequently,
we train a new 5-class model and compare its performance with respect to
the original model exploiting the 7 measurement combinations. As can be
seen in Fig.5.8, the state estimate provided by the refined model on the
validation dataset is similar to the original model, whose performance is
shown in Fig.5.7. Also, both models provide a similar RMS error (0.035) on
the validation dataset.

As can be seen in both figures, the classification approach provides fast
switching capabilities, and the transition occurring around 6 meters (when
the measurements provided by sensor 1 have to be rejected) is more prop-
erly handled than with the mixture based approach (See Fig. 4.8 page 81).
Indeed, while mixing outputs through the GPB method provides smooth
transitions between filters, it also inherently introduces a short transition
’delay’ due to the continuous nature of the gating weights. Note that this
phenomenon also depends on the magnitude of the uncertainty in the deci-
sion boundaries defined by the gating network, and that we have no control
over this parameter.

In Fig.5.9 we show the activation regions of each filter in the 3D space
of the context variable defined by the sensor measurements. Note that we
must take care to interpret these figures knowing that some parts of this 3-
dimensional space do not correspond to any existing conditions (for example
the sensor 1 providing a measurement equal to 0 while both other sensors
provide measure an altitude of 8 meters). The purpose of this representation
is to illustrate the precision of the RVM in the definition of the different
activation regions. Moreover, it shows that the new model took advantage
of the RVM capability in defining multimodal regions.

For instance, the observation function f1 (sensor 1 alone) is mostly used
in intermediary altitudes (between 1 meter and 5 meters), especially when
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Figure 5.7: Estimated altitude on the validation dataset for the 7-class
model.
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Figure 5.8: Estimated altitude on the validation dataset for
the refined model (5 observation functions corresponding to
{[y1], [y3], [y1y2], [y2y3], [y1y2y3]}).

the sensor 3 is still not providing any reliable measure. Note that the same
function appears to be activated in some parts of input space that were not
seen in the training set. This is the case for y1 > 5 and y2 ≈ 0, or for y3 = 0
and y2 > 5. This phenomenon is a side effect of the mRVM approach, which
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normalizes the output of each regression model. Thus, while each underlying
regression model normally provides a zero centred prediction, the ultimate
class membership probabilities are then evaluated based on insignificantly
low values, leading to arbitrary decisions.

We find some examples of these arbitrary activation points in all of the
5 distinct activation regions showed in Fig. 5.9. While this makes the inter-
pretation of these figures quite complex, they capture some interesting clues
regarding the system behaviour. For instance, we can see in Fig.5.9d that
the combination of sensor 2 and 3 is exploited in some different parts of the
input space. The first region corresponds to intermediate altitudes, precisely
where y1 is close to zero. This corresponds to the rejection of the outliers
provided by the sensor 1. The second region is for high altitudes where both
sensor 2 and 3 provide useful information. Similarly, the combination of all
sensors is mostly used when all sensors provide a similar measure (center of
the cube), and punctually for very low altitudes where all sensors agree on
a measure close to zero.

Generally speaking, the classifier recognizes the different contexts which
for some sensor measurements could alter the estimation, while combining
the maximum of reliable data so as to provide a low estimation uncertainty.
In practice, this means that the classifier tries to exploit combined measure-
ments as often as possible. For instance, this leads to a reduced uncertainty
in the estimate for altitudes > 6 meters, where the mixture of experts ap-
proach was exploiting a single sensor.

Unsurprisingly, training the mRVM is significantly slower in comparison
to the mixture of experts approach. Under this setting, the training step
takes 15 minutes in average for a dataset containing 5000 points. It however
results in a highly sparsified data since only 42 relevant vectors were kept.
Consequently, the model is very efficient in making new predictions. In
the case of a simple 3-dimensional input space, we observed an average
prediction time of 0.002 seconds, based on non-optimized Matlab code.

The global performance of the system is also sensitive to the length scale
parameter (cf. parameter σ in (5.3)) that is here tuned manually. The best
value found on this dataset is σ = 0.6. While other values were usually not
decreasing the overall performance of the model, they however frequently
led to a slight deterioration of the rejection capability regarding the outliers
provided by the sensor 1.

5.4.2 Real data

The selection model is now illustrated on real data, using the datasets pro-
vided by our paparazzi platform, and used in the previous chapter (See Fig.
4.10 page 83). For comparison purpose, we follow the procedure of section
4.4.2 and use the same training set, before illustrating its performance on
the same validation set. The resulting altitude estimate is shown Fig. 5.10.
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(a) Activation region for y1 = f1(xt). (b) Activation region for y3 = f2(xt).

(c) Activation region for [y1y2]� =
f3(xt).

(d) Activation region for [y2y3]� =
f4(xt).

(e) Activation region for [y1y2y3]� =
f5(xt).

Figure 5.9: Activation regions (in green) in the 3-dimensional contextual
input space for the 5 filters exploited in the refined model.

As the estimation task is more complex on real data, the resulting mRVM
model uses here 126 relevant vectors, but its prediction time remains similar
to that of the model we obtained on simulated data (0.002 seconds). As
can be seen, most outliers are also avoided here, but we can detect that
the system sometimes selected an irrelevant sensor. This is for example the
case in the interval between samples 3000 and 3500, where the ultrasonic
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Figure 5.10: Estimated altitude on the validation dataset.

sensor is used, while it presents some typical outliers. From a general point
of view, we could not outperform the performance provided by the Mixture
of Experts approach in terms of RMS error. Here for example, the mRVM
based approach provides an RMS error of 0.152, while we previously ob-
tained a score of 0.135. Note however that this score remains significantly
better than for classical rejection.

Clearly, experiments shown that the mRVM model does not generalize
as well as the Mixture of Experts. While it may seem surprising given the
efficiency of sparse kernel methods, we can identify two main explanations
regarding this behavior. First, as said earlier, we did not follow a strict
Bayesian approach, and unlike the previous method, we did not introduce
a dedicated hidden variable for modeling the activation of each filter. In-
stead, we directly trained the selection model on an artificial dataset, and
the mRVM model subsequently provide predictions that are ’hard’ repro-
ductions of what was observed in the training data. Second, the mRVM
model provides much more expressiveness than the Gaussian kernels used
earlier, and it is well known that the model complexity plays a central role
in generalization, as it should match the underlying difficulty of the prob-
lem. Consequently, we may overfit the training set as the altitude estimation
task does not require to deploy such a complex model. Both these reasons
explain why the performance of the mRVM model are slightly lower than
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with the Mixture of Experts that combine simplicity and exact Bayesian
treatment. However, the approach suggested in this chapter remain more
efficient than the classical rejection scheme, and must be tested on more
complex scenarios, where the Mixture of Experts based approach might be
outperformed. It also provides a simple solution for efficient measurement
selection as no specific knowledge of the Bayesian framework is required,
and available classification libraries can be straightforwardly used.

5.5 Conclusion and remarks

5.5.1 Summary

In this chapter we presented a generic classification based mechanism for
augmenting a Bayes filter with context-dependent observation selection ca-
pability. This mechanism intrinsically allows for the straightforward ex-
ploitation of any existing classification model. In order to be able to deal
with potentially high-dimensional input space and regarding the precision
required in defining the decision boundaries, we chose to exploit the non-
parametric and sparse Relevance Vector Machine. By combining some spe-
cific prior distributions with the type-2 maximum likelihood, this model
achieves great sparsity, while automatically adapting the number of rele-
vant vectors to the problem difficulty. We especially believe that, despite its
approximate nature regarding the Bayesian framework, the RVM model is
a key component for enhancing the standard Bayes filter with online adap-
tation capabilities.

Here again, we rely on the bank of filters approach where the selection
mechanism is ensured by a discriminatively trained model, i.e such as pro-
viding the best estimate at each time step. The mRVM classification method
provides strong sparsification capabilities allowing for fast prediction given
new inputs. Also, the mRVM model provides strong genericness regarding
the dimensionality and the nature of the input space. Care has however to
be taken when the new inputs lie too far from the training set as the class
membership and associated uncertainty are then strongly inconsistent.

This approach can be seen as an extension of the model proposed in
chapter 4 in that it allows for the definition of arbitrarily complex decision
boundaries. Also, the new approach has the advantage of relying on the basic
RVM training and inference methods, thus its implementation is simple and
allows for the exploitation of available libraries.

5.5.2 Issues

We recall that, as for the mixture based approach, the model proposed in
this chapter also assumes that the measurements within the context variable
are synchronised. In settings presenting a strong difference between the
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contextual measurement frequencies, the selection model may be strongly
affected and provide irrelevant outputs.

We noticed that the global system was unsurprisingly sensible to the
kernel width parameter. In the current implementation, this parameter
is still manually tuned, which represents a non negligible engineering cost
when training the model, given the average convergence rate of the EM
algorithm (around 15 minutes). Also, the current implementation relies on
isotropic Gaussian kernels. While it seems to provide satisfying results in our
experiments, some more complex configurations may however require to use
distinct width parameters on the different dimensions of the context input
space. This would obviously increase the computational cost of training.

One disadvantage of the RVM model is that it usually becomes increas-
ingly certain when extrapolating too far from the training data. While this
behavior could still be identified with a basic regression model (since it only
requires to detect when the predictive mean goes to zero and the uncer-
tainty converges to a known value) the mRVM output does not present such
distinguishable behavior. This is due to the introduction of the multivari-
ate probit regression method which ’hides’ this phenomenon, as it provides
normalized probabilities through a 1-of-K coding scheme.

5.5.3 Future directions

Enhancing the model expressiveness

During our experimental investigations, we observed that the model gener-
alization capabilities where slightly lower that for the Mixture of Experts
approach. As discussed, in the experiments section, this is partly due to
the ’hard’ assignment of the activation regions we provide in the training
set. Also, from a general point of view, adding extra hidden variables in our
system representation is known to improve the overall performance as it can
capture unknown aspects. Thus, a first solution for improving the model
generalization capability would consist in following a proper Bayesian ap-
proach, and introduce a gating hidden variable, as done in the previous
chapter.

At first glance, it appeared during our experiments that the mRVM
model already provides great precision capabilities in defining the activa-
tion region boundaries, as we tend to overfit the training data. However, we
also discussed the need for defining different kernel width parameters on the
different dimensions of the input space. An indirect solution to this prob-
lem, and more generally to deal with highly heterogeneous data consists in
exploiting the multi-kernel method. This approach basically combines mul-
tiple base kernels trough a weighted sum, and has been widely developed
within the SVM framework. As shown in (Damoulas and Girolami, 2008),
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the mRVM model can straightforwardly be enhanced with multi-kernel ca-
pabilities where the Bayesian treatment also leads to sparse solutions in the
number of kernels. The resulting model is clearly more complex and comes
at an increased computational cost for both training and inference, but
proved to achieve state-of-the-art performance on multi-feature and multi-
class problems thanks to its genericness.

Learning a single context-dependent observation model

In chapter 3 we discussed the issues arising in methods that generatively
learn a regression model for the mapping xt �→ yt. The main issue with this
basic formulation is that external phenomenons such as the context are ig-
nored by construction and the resulting model suffers the usual shortcomings
when facing real polluted data.

In both mixture based and classification based approaches, we tried to
incorporate the state value as an input of the observation selection model,
and this always proved to lower the performance of the system. This shows
that a state-dependent model trained with the ground truth is more likely to
produce erroneous predictions, as errors on the system state are unavoidable
at runtime (hence differing from values seen in the training set). Clearly,
learning a direct regression model also suffers from this robustness issue.

However, representing the observation distribution through a single model
still presents an elegant and efficient solution. In particular, we can replace
the bank of models by a single component that would straightforwardly
model the mapping xt, ct �→ yt. Once again, a non-parametric and sparse
model such as the RVM would be a perfect candidate for learning this map-
ping, especially since it provides a Gaussian output that can be directly
exploited within a Bayes filter, as suggested in (Ko and Fox, 2009). As
discussed, this approach would not be as reliable as the one suggested in
this chapter because of the errors produced in the state belief at runtime. A
solution for improving robustness regarding this aspect may however consist
in assuming that the input data is also corrupted by an unknown noise pro-
cess. Relaxing the noise free assumption in the input data has been explored
within GP regression in (McHutchon and Rasmussen, 2011), and could be
adapted to the RVM model in future work.

Note that in our case, discriminative training automatically takes into
account the errors made in the state belief at runtime since training involves
an iterative re-evaluation of the filter outputs. Thus the model parameters
are optimized in accordance with the real noisy system output.
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Chapter 6
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Following the modeling paradigm introduced in chapter 3 we now address
the context-dependent noise adaptation task (cf. Fig. 3.4 page 56). The
extension of the basic state-observation model leads to complex inference for
both noise variable and state posterior (i.e the update equation). Generative
and discriminative approaches are discussed, and we show that the training
method influences the complexity of inference and learning in different ways.
In both cases, we describe and characterize a set of approximations that
allow to exploit the complete system online. Once again, we can interpret
these developments as new approaches to adaptive filtering where, unlike
the previous selection models, the additional time-heterogeneous variable is
now continuous. When the model is trained in a generative manner, we
will also see that our approach can be placed in the active research topic
that is heteroscedastic regression. This chapter covers in detail the concepts
proposed in (Ravet et al., 2014) and (Ravet and Lacroix, 2014) and strongly
relies on the theoretical analysis of the RVM regression model provided in
the previous chapter.

6.1 Background on time-heterogeneous observa-

tion noise models

As discussed in chapter 3, the standard Bayes filters rely on the state-
observation model which inherits the assumption of time-homogeneity orig-
inally introduced by the Markov chain model. This results in the graphical
model depicted in Fig. 6.1 where the static observation noise is represented
through the covariance parameter Σo (so that yt ∼ N (g(xt),Σo)). Most
often, the parameter which is considered to be ’optimal’ is the one that
averagely explains at best a dataset

�
{x1, y1}, . . . , {xn, yn}

�
. Following the

usual modeling strategy, designing the observation model thus consists in
finding the best distribution modeling the emission process for the nominal
cases, and rejecting all the data that does not fit this distribution (Sivia and
Skilling, 2006).

Figure 6.1: Graphical model of a state-observation model with homogeneous
observation distributions. Note that the stationary noise covariance is not
represented by a random variable.
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For many applications however, and in robotics especially, there is no sta-
tionary observation noise value that would yield an optimal output for a large
variety of operating conditions (or environments). This problem motivated
the development of adaptive filtering techniques (Mehra, 1972) where the
noise parameters are continuously estimated with the system state. Some
original approaches for adaptive filtering rely on an online analysis of the
model statistics. For instance the covariance matching method adapts the
noise parameters so that the actual (measured) covariance of the filter inno-
vation is consistent with its theoretical value. More general is the Bayesian
approach that yields the multiple model method as well as the state aug-
mentation methods in which the model parameters are integrated as part of
the system state.

The multiple model approach can obviously give a first answer for mod-
eling systems with time-varying observation noise (Bar-Shalom et al., 2002;
Ghahramani and Hinton, 1998). In that case we could straightforwardly
exploit the techniques presented before in the context of measurement selec-
tion. However, unlike measurement selection where the model intrinsically
switches between a finite number of observation functions, assuming that
the noise behavior can be segmented into multiple regimes is irrelevant in
a real scenario. Recall that our main objective in this work is to model
the context influence over the observation model without introducing any
expertise. Furthermore, for most practical applications, the physical phe-
nomenons involved in the context influence over the measurement process
remains unexplained.

Examples of state-observation models in which Bayesian inference is re-
cursively done for both the system state and the observation noise are sug-
gested in (Sarkka and Nummenmaa, 2009; Agamennoni et al., 2011). These
articles provide a sound analysis based on the variational approximation
for evaluating the posterior distribution p(xt,Σot |y1:t) through a decoupled
product of densities for xt and Σot . The corresponding graphical model is
depicted in Fig. 6.2. The estimation of the noise characteristics is then done
in an unsupervised manner, and the method potentially suffers the short-
comings discussed in chapter 3. Furthermore, these models do not allow for
the introduction of an external input that would govern the noise parameter.
In practice, their improvement regarding the standard LDS performance is
mainly due to the choice of an adequate prior distribution over Σo which
results in an outlier robust observation distribution. One interesting re-
mark concerning the model depicted in Fig. 6.2 is that the noise parameter
Σot and the state xt are conditionally dependent through the active trail
Σot → yt ← xt, hence yielding more complex inference.

At the same time, an alternative approach has been suggested in (Ko and
Fox, 2009) along with the introduction of non-parametric regression methods
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Figure 6.2: Graphical model of a state-observation model with heteroge-
neous observation distributions.

(Deisenroth et al., 2009; 2012) for learning the prediction and observation
distribution of a state-observation model. This led to the previously dis-
cussed heteroscedastic observation model of the form yt = g(xt) + �(xt)
where both g and � are given by non-parametric models such as GPs. This
augmented form of regression is illustrated in Fig. 6.3 where a basic GP is
compared to the heteroscedastic method described in (Kersting et al., 2007).

Figure 6.3: Comparison of standard GP regression model with heteroscedas-
tic GP regression. The standard GP model provides accurate prediction
mean but the output variance is sometimes inconsistent with the noise in
the data, due to the assumption of constant noise. On the other hand,
heteroscedastic regression takes into account the noise observed in the data
and provides a consistent output uncertainty.(Image excerpt from (Kersting
et al., 2007))

As shown in Fig. 6.3, heteroscedastic regression naturally provides input
dependent noise adaptation capabilities, as the their prediction variance
stays consistent with the noise observed in the training data. When used
within a Bayes filter, this method can greatly improve the consistency of
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the state estimate. However, two important aspects are not discussed in the
work of (Ko and Fox, 2009). First, since the observation distribution is fully
state-dependent, the resulting model is particularly sensitive to the presence
of outliers, which may initiate a cycle of error propagation. This is because
outliers are usually not modeled as such by the observation distribution.
Subsequently, unless similar outliers occur for the exact same state value
in the training set and at runtime 1, strong errors in the state estimate
now results from two major issues. At first, the filter is not able to process
’new’ outliers, as any standard Bayes filter. Second, the mapping xt �→ yt
may encode the presence of outliers seen in the training set in place of the
theoretical correct observation. Subsequently, errors in the state estimate
lead to poor performance of the regression model which, we shall recall, is
not robust to noisy inputs, and filter divergence is more likely to happen.
To illustrate this problem, we trained two GP observation models on the
real dataset exploited in the previous sections (one for each sensor), and run
a GP-BayesFilter on a validation set following (Ko and Fox, 2009) using
the GP library from Rasmussen and Williams2. The resulting output is
shown in Fig. 6.4 where we observe multiple cases of divergence. Note that
divergence always occur over a limited amount of time as the altitude profile
allows the filter to ’catch up’ with the correct estimate.
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Figure 6.4: Altitude estimation provided by a GP-BayesFilter on a real
validation set. Multiple cases of divergence can be observed, where the
state belief evolution is mainly governed by the dynamic model p(xt|xt−1).

The second problem that is not discussed in (Ko and Fox, 2009) con-
cerns inference in the augmented state-observation model. In this approach,

1
In which case we can not consider these measurements as outliers

2
Source: http://www.GaussianProcess.org/gpml/code
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learning a mapping xt �→ yt is treated as a standard heteroscedastic re-
gression problem. This purely generative approach is interpreted as the
standard construction step in which we define the observation model. Then,
this distribution is straightforwardly exploited through the usual recursive
filtering equations. This is ignoring the structure of the new underlying
Bayesian network, which for the standard prediction method for evaluat-
ing the distribution p(yt|xt,Σot) is now an approximation. More precisely,
the interdependency between the observation noise and the current state de-
picted in Fig. 6.2 is ignored. Intuitively, this means that we run inference on
two separate models, without taking into account the self-consistency of the
noise variable with the state-observation model. Thus, exploiting the stan-
dard recursive equations is an inexact form of inference in this case. Note
however, that avoiding to rely on self-consistency was one of our core moti-
vation for the development of new approaches. Furthermore, while it does
not respect the exact Bayesian treatment, this approach proved to perform
very well.

In the next section, we derive a new heteroscedastic, context-dependent
observation model that aims at dealing more properly with the issues emerg-
ing from the regression approach as used in (Ko and Fox, 2009). This is done
through the introduction of contextual information, but also with the help
of a new modeling paradigm. Computational efficiency is here again ensured
by the exploitation of the RVM model that we introduced in the previous
chapter. In this discussion, we will also try to keep a clear understanding
of the approximations done when running inference in the model. Inter-
estingly, we will see that discriminative training can help in improving this
specific aspect.

6.2 Sparse Bayesian models for context-dependent

observation noise

6.2.1 Building a new observation model

As done in the previous sections, we overcome the standard Bayes filter un-
ability to deal with context influence by augmenting the state-observation
model with a new component. Here, the role of this component is to ex-
plicit the context influence over the observation noise. For this purpose, we
still rely on an additional observation variable ct relating to the perception
context. To further avoid ambiguities in the contribution of the two dis-
tinct observation components, i.e the deterministic noise-free observation
function g and the noise model �, we assume that g is known and time-
homogeneous. Note that the observation function can generally be obtained
directly through physical considerations about the nominal measurement
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generation process. This results in an observation model of the form:

yt = g(xt) + �(ct)

Reminding that we consider here systems which for the assumption of
Gaussian noise is valid, �(ct) is then represented by a zero mean Gaussian
noise distribution with context-dependent variance:

�(ct) ∼ N
�
0, r(ct)

�

To avoid making any assumption over the functional form for the vari-
ance model, and keep computational efficiency, r(ct) is modeled by a RVM
regression model, naturally providing sparsity thanks to the ARD mecha-
nism. For a given training set of T observations {ct}Tt=1, we define r(ct) =
exp(zt) to ensure variance positivity where zt is given by

zt =
T�

i=1

wi+1K(ct, ci) + w1 + ν (6.1)

with w1 the bias parameter, K the chosen kernel function, and ν ∼ N (0,σ2
ν)

the component representing the noise in the data. Following the usual RVM
formulation, an independent zero-mean Gaussian prior is placed over each
component of the weight vector w = (w1, .., wT+1)� so that

p(wi|αi) = N (wi | 0,α−1
i )

where we define uniform distributions over each hyperparameter αi (Recall
that this specific prior fosters sparsity when associated with type-2 maxi-
mum likelihood).

Exploiting multi-dimensional observations

So far, the model has been depicted for a 1-dimensional observation
space. Real applications however require to consider the multi-dimensional
case. In these first developments, we assume that for an observation vari-
able yt ∈ RD, the associated noise covariance denoted E(ct) is diagonal.
This assumption is principally made as it reduces the amount of additional
variables in the model. Furthermore, as a consequence, it implicitly forces
the selection component described in the previous chapters to be responsi-
ble for explaining the correlation between the measurements. The original
RVM regression model (Tipping, 2001) uniquely allowing for mappings from
a multivariate input to a univariate output, we need to rework the model
for the multi-dimensional case. One simple solution is to exploit D inde-
pendent models for each component of the noise covariance. This however
means that we have to exploit distinct sets of relevance vectors for predic-
tion, yielding additional computations. Alternatively, the RVM regression
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Figure 6.5: State-observation model augmented with a RVM based context-
dependent noise component. Note that we use a template-based represen-
tation where T denotes the number of samples in the training set, and D
denotes the dimensionality of the observation vector yt.

model can be extended to treat multivariate outputs while exploiting a com-
mon set of relevance vectors. A detailed discussion of this approach can be
found in (Thayananthan et al., 2006; Thayananthan, 2005). For clarity, the
next discussion only considers the one-dimensional case, the extension to
higher dimensions being straightforward. The graphical representation of
the augmented state-observation model is depicted in Fig. 6.5.

6.2.2 Generative training

As assumed so far in our discussion, the following approach requires that
we are given a training set D containing the ground truth and their asso-
ciated observation, so that D = {xt, yt, ct}Tt=1. Recall that in the context
of generative training, only the subset of variables in xt that are actually
exploited by the observation model are required. Using d-separation on the
graph depicted in Fig. 6.5, we see that the joint distribution over the system
variables factorizes as follow:

p(x,y, c, z,w) = p(x1)
T�

t=2

p(xt|xt−1)
T�

t=1

p(yt|xt, zt)p(zt|ct,w)p(w|α)

where p(x1) denotes the initial state belief, defined here by a Gaussian distri-
bution of known mean and covariance. We can notice the similarity between
this decomposition and the one exploited in the standard generative train-
ing of the state-observation model (Eq. (3.5)). The similarity resides in the
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separation of the training task for the prediction model and for the obser-
vation model. Practically, the issue of training the new observation model
turns to be analogous to the heteroscedastic regression task, which has been
discussed in the context of nonparametric models in Goldberg et al. (1998);
Kersting et al. (2007); Lázaro-gredilla and Titsias (2011); Khashabi et al.
(2013); Ko and Fox (2009); Le and Smola (2005). Note however that the
training task is here a bit simpler since the observation function g is fixed and
we only focus on learning a model for the noise magnitude N(ct). As such,
the approach we describe in this chapter can be seen as a general purpose
regression method that is especially designed to deal with scenarios where
the usual heteroscedastic models are mislead by the presence of erroneous
observations in the training set. As seen earlier, the later approach is un-
able to distinguish which part of the observations should be assigned to the
observation function g, and which part should be preferably encompassed
within the noise component (cf. Fig. 3.3 page 54).

Hybrid EM/type-2 maximum likelihood training

The heteroscedastic regression problem substantially increases the complex-
ity of inference and learning (by comparison to the homoscedastic regression
task) due to the introduction of a new hidden variable, i.e the varying noise.
Many approaches rely on sampling or variational EM algorithm for approxi-
mating the posterior distribution of the noise. In our case, the specific RVM
model, and more precisely the sparsity arising from the type-2 maximum
likelihood, motivates the exploitation of a hybrid method for dealing with
the two unobserved variables zt and w.

Since the standard RVM model provides sparsity when the weight vari-
ablew is marginalized out through the type-2 maximum likelihood3 method,
we shall keep a similar approach. The reminding hidden variable zt can then
be treated through the more conventional EM algorithm. Precisely, we chose
to exploit a hard-assignment EM algorithm as suggested in Kersting et al.
(2007). Practically, this means that the noise variable zt is approximated
by a single value corresponding to the most-likely noise value. As described
hereafter, this approximation allows us to make direct use of the standard
RVM optimization and prediction equations, and provides in this context
the fastest solution for a real time application.

Following the approach suggested in (Kersting et al., 2007), the hard
E-step consists in empirical estimation of the noise variance. To empirically
evaluate the noise level for each input pair {xt, ct}, we start by sampling
K observation samples ykt from the current observation model g(xt) + �(ct).
Then we consider each pair of values yt, ykt as independent noisy observations
of the underlying noise-free observation model g(xt) so that we can evaluate

3
Recall that type-2 maximum likelihood is a semi-Bayesian method
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the local noise variance through the term (0.5 (yt−ykt )
2). Note that this term

corresponds to the unbiased empirical variance estimate (Bishop, 2006, p.27)
and aims at correcting the error introduced by the small amount of data
points (overfitting). Taking the expectation of the noise value respectively
to the RVM parameters (found after the last EM iteration), we then evaluate
the empirical variance at the input {xt, ct} through the term

vart =
1

2.K

K�

k=1

(yt − ykt )
2

In the subsequent M-step the RVM model is optimized with the new
training set D = {ct, log(vart)}Tt=1 using the classical optimization proce-
dure (Tipping, 2001). This provides new parameter estimates αnew and
σnew
ν which are subsequently exploited for sampling in the next E-step. The

whole procedure is stopped under the condition that the relevance vectors
found after RVM optimization are similar to the one returned at the previ-
ous step, and that the change in the parameter αnew and σnew

ν is below a
fixed convergence threshold. To summarize, the optimization process con-
siders the noise variance as the hidden variable of the model, and iteratively
optimizes the parameters of the RVM model following the type-2 maximum
likelihood, based on a hard assignment of the estimated noise. The intuition
behind this optimization scheme is that each iteration of the EM algorithm
decreases the empirical distance between the observations predicted by the
model and the ’real’ observations yt provided in the training set.

This method requires to use a substantial number of samples to empiri-
cally estimate the noise variance and, as any hard-assignment EM, is prone
to oscillating (Kersting et al., 2007), requiring to monitor the likelihood of
the model over the training set after each algorithm iteration. It however
brings an important advantage, since the optimized model, in association
with the last noise variance estimation, can be readily used for prediction
using classical RVM equations. Recall that the standard RVM prediction
equation (5.10) for regression indeed exploits the output values seen in the
training set (In the Bayesian treatment of regression, the output sequence
seen in the training set is involved in the evaluation of the posterior distri-
bution over the weight variables w).

Finally, we shall point out that this specific hybrid training method is an
unusual and ad hoc approximation in the context of the Bayesian framework.
Precisely, the EM procedure requires to evaluate the expectation of any
hidden variable in the model, while we marginalize out the weight variable
w of the system. This procedure is chosen on purpose as it provides us with
the sparsification guarantees of the ARD technique applied to RVM.
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Illustration

We illustrate the new observation model behavior on the simulated data
exploited earlier in the context of altitude estimation. In this first exper-
iment, we learn the noise prediction model of a sensor providing altitude
measurement with time-varying noise (corresponding to the sensor 2 in Fig.
6.6a). The context information is still defined by the 3-dimensional vector
containing the raw sensor measurements, and shown in Fig. 6.6a. The log-
likelihood progression during the EM training procedure is also illustrated
in Fig. 6.6b.
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Figure 6.6: Simulated training set and convergence progression of the hybrid
training algorithm.

As we can see, the hard-EM procedure rapidly converges to a local min-
imum, as usually observed with the hard-assignment approximation (Koller
and Friedman, 2009, p.885). This behavior contrasts with the exact EM
procedure and, loosely speaking, can be justified by the fact that the opti-
mization makes discrete steps in the parameter space. On the other hand,
the exact EM procedure follows a continuous path where each iteration
changes the parameter value by a small increment. Note that the hard-EM
tendency to oscillate after convergence is here worsened by the concurrent
type-2 optimization. Indeed, as some relevance vectors are removed along
training iterations, the model ability to explain the observations contained
in the training set vary, as the generated samples ykt directly depend on the
current set of relevant points. Subsequently, the hard assignment made over
the noise distribution may lower the model likelihood. This phenomenon can
be observed in Fig. 6.6b after the local minimum was reached at iteration
8. This convergence behavior was frequently observed in our experiments,
where the decrease in the likelihood was usually caused by underestimation
of the noise magnitude. In other words, the predictions done by the model
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became too close to the observations in the training over the multiple EM
iterations.

The resulting noise model, in association to the noise free observation
component, is then used to make prediction on the training set. The pre-
dicted observation mean and variance are shown Fig. 6.7.
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Figure 6.7: Observation predictions p(yt|xt, ct) obtained after 30 EM itera-
tions.

As can be seen, the resulting model shows accurate noise prediction ca-
pability, with a slight tendency to underestimation. Note that the training
was stopped after 30 iterations, thus the model does not exploit the pa-
rameters corresponding to the local minimum shown in Fig. 6.6b. In Fig.
6.8, we show the observation prediction obtained after stopping the training
procedure at the lowest log-likelihood value. As can be seen, the result-
ing observation uncertainty is more consistent with the actual noise in the
measurement. It is thus really important to track the progression of the
model likelihood during training, since the EM convergence properties are
not guaranteed in this approach.

However, and as explained before, one of the main benefits of this hybrid
approach resides in the direct exploitation of the ARD mechanism. In this
experiment, the type-2 maximum likelihood provided great sparsity since
only 11 relevant vectors were kept among the 6000 samples of the train-
ing set. Clearly, the resulting computational cost is compliant with online
exploitation of a Bayes filter.
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Figure 6.8: Observation predictions p(yt|xt, ct) obtained after 8 EM itera-
tions (log-likelihood local minimum). The observation uncertainty is slightly
increased in comparison to Fig. 6.7. This is particularly noticeable in the
interval between samples 1000 and 2000, and between samples 4000 and
5000.

6.2.3 Discriminative training

The previous approach aims at minimizing a loss function corresponding
to the observation likelihood. In other words the optimization step finds
model parameters explaining at best the measurement generation process.
As suggested in chapter 3, optimizing the parameters with respect to the
ultimate system performance, i.e the accuracy of the state estimates, proved
to lead to better consistency in the estimation. Training the model then
consists in finding the parameters αmax and σνmax such that:

�αmax,σνmax� = argmax
α,σν

T�

t=1

log
�
p(xt|y1:t)

�

where p(xt|y1:t) is provided by the recursive equations (3.1).

Since this distribution requires the evaluation of two latent variables, i.e
the log noise level zt and the RVM weight vector w, a procedure similar to
type-2 maximum likelihood is employed. Note that the EM procedure used
earlier is here irrelevant since we automatically remodel the graph structure
into its equivalent discriminative representation. Sampling from the gener-
ative observation model is consequently unsuitable since the purpose of the
zt variable is not to explain at best the observations yt based on the noise-
free component g(xt). Following the type-2 approximation, the variables zt
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and w are then marginalized out and we now seek for parameters αmax and
σ�max maximizing:

Ldiscr =
T�

t=1

log
�� �

p(xt|y1:t, zt)p(zt|ct,w,σν)p(w|α) dw dzt
�

Since p(zt|ct,w,σν) and p(w|α) define a linear Gaussian model, the in-
tegral with respect to w is readily evaluated to give (cf. Eq. (5.7)):

Ldiscr =
T�

t=1

log
��

p(xt|y1:t, zt)N (zt|0, Dt) dzt
�

where Dt = σν +K�A−1K, with K the vector of kernel functions such that
Ki = K(ct, ci) as defined in (6.1), and A = diag(α).

The remaining integral over zt is analytically intractable and requires
approximation. Furthermore, the most likely point approximation exploited
in the generative case can not be exploited here as the resulting distribution
over zt is a zero-centred Gaussian. Consequently, any variation in the pa-
rameters α and σν would not affect the value of the approximate integral.
Alternatively, the integration rule (B.1) exploited in the unscented trans-
form provides an accurate and computationally efficient solution. Note that
in the one-dimensional case, this corresponds to the Gaussian quadrature
method.

The parameters αmax and σνmax are then determined through conjugate
gradient ascent over Ldiscr. Note that classical optimization of the RVM
model requires the computation of a design matrix containing all kernel el-
ements evaluated at all original locations {ci}Ti=1. Here, the optimization
is done separately for each kernel vector evaluated at ci, through their in-
fluence over ultimate filter performance. The resulting optimization scheme
then differs from the standard RVM training. Moreover, the analysis of spar-
sity provided in appendix C does not hold, and the associated fast training
algorithm (Tipping et al., 2003) is not exploitable. Thus the discriminative
training approach requires to foster sparsity by thresholding of the αi val-
ues during the optimization process. This approach was also suggested in
(Tipping, 2001) in the case of general Gamma priors over the hyperparam-
eters α. We can however decrease the resulting training time by initializing
the gradient ascent procedure with the parameters found after a previous
generative training step.

6.2.4 Inference in the generative model

In this subsection we start with a brief description of a fast and approximate
inference method in the augmented state-observation model depicted in Fig.
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6.5. The approximation is due to the separation of inference in two distinct
steps, that may appear intuitive, but however inexact given the dependen-
cies encoded in the graph. In the first step, we predict the observation
noise using the RVM model, and the context information input ct. Then,
the recursive filtering equations are used, based on the resulting observa-
tion model. This inference method is usually performed (Ko and Fox, 2009;
Deisenroth et al., 2009; 2012) ignoring that the observation noise variable
zt and the state are coupled through the active trail xt → yt ← zt. In prac-
tice, exact inference over the model would require to evaluate the posterior
distribution p(xt, zt|y1:t, ct), then making the recursive filtering equations
inapplicable. Following the fast approximation method, a proper Bayesian
analysis of inference is thus given, aiming for a better consistency with the
actual dependencies in the model. This analysis yields new recursive equa-
tions for estimating both the state and noise variables.

Fast approximate inference

Recall that standard filtering over the state-observation model consists in
evaluating the normalized marginal distributions α̂(xt) = p(xt|y1, .., yt) with
the recursion equation

ηtα̂(xt) = p(yt|xt)
�

α̂(xt−1)p(xt|xt−1)dxt−1 (6.2)

In our new model, the noise level is represented by an additional latent
variable zt, and the observation distribution required for the evaluation of
(6.2) is now given by:

p(yt|xt, ct) =
�

N
�
yt|g(xt), exp(zt)

�
p(zt|ct, C, z,α,σν)dzt (6.3)

where z is the predicted log noise level at original inputs {ci}Ti=1 (training
set). As done for the standard RVM regression model, the predictive distri-
bution p(zt|ct, z,α,σ�) is evaluated through marginalization of the posterior
distribution of the weight variable w:

p(zt|ct, z,α,σν) =
�

p(zt|ct,w,σν)p(w|z,α,σν)dw (6.4)

This familiar predictive distribution is also Gaussian, as shown by the result
5.10. The evaluation of the integral (6.3) is hence analytically intractable,
and requires approximation. The fastest approach is the most likely ap-
proximation, where we replace the integral by N

�
yt|g(xt), exp(z∗t )

�
with

z∗t = argmaxzt p(zt|ct, z,α,σν). Alternatively, the integral can be approxi-
mated through the unscented transform, resulting in a set of sigma points
that can be used to evaluate the mean and variance of the observation distri-
bution. Note that both approximation methods result in a Gaussian distri-
bution, thus allowing for the exploitation of the standard filtering methods
in a state-observation model with assumed Gaussian noise.
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Proper Bayesian analysis

Formally, the recursive equations used in the previous approach are not
valid within the graph depicted in Fig. 6.5. By ignoring the coupling be-
tween the noise variable zt and the state xt induced through the distribution
p(yt|xt, zt), we leave the noise magnitude to be uniquely governed by the
RVM model. This is in accordance with one of our initial motivations, i.e
avoiding to use model self-consistency as the only score for assessing the
measurements reliability. However, and generally speaking, in any state-
observation model whose prediction and/or observation distributions are
evolving in time, inference from an exact Bayesian perspective requires the
joint evaluation of the state and the parameter variables through the same
procedure.

In our model, the interdependency between xt and zt is induced by the
generative representation of the augmented state-observation model which
tries to explain at best the observation yt produced in a given state xt.
Thus, inference over the hidden variables consists in finding the joint set of
state and model parameters that explain the observation yt, in accordance
with the the generative representation. Note that in the standard state-
observation model, inference consists only in finding the state variable that
explains at best the generation of the observation yt.

In the following discussion, we consider that the posterior distribution
over the weight parameter w is known and given by the standard equation
(5.6). Note that marginalizing out this variable in the model is coherent with
the type-2 maximum likelihood procedure used in the training step. Con-
sequently, by analogy with the standard state-observation model, filtering
now consists in evaluating the joint posterior distribution p(xt, zt|y1:t, c1:t).
However, recall that a pure Bayesian analysis would require to evaluate
p(xt, zt,w|y1:t, c1:t).

Departing from the previous analysis provided in chapter 3, we now
denote the distribution of interest α(xt, zt) = p(xt, zt, y1:t, c1:t) and derive a
new recursive equation starting with the following decomposition:

α(xt, zt) = p(xt, zt, y1:t, c1:t)

= p(y1:t|xt, zt, c1:t)p(xt, zt, c1:t)

= p(y1:t−1|yt, xt, zt, c1:t)p(yt|xt, zt, c1:t)p(xt, zt, c1:t)

= p(y1:t−1|xt, c1:t−1)p(yt|xt, zt)p(xt, zt, c1:t)

where the last expression is obtained by exploitation of d-separation prop-
erties in the graph. As for the standard state-observation model, the past
observations up to time t−1 are indeed independent of yt, zt and ct given xt.
Similarly, there is no active trail between yt and the context observations
c1:t given xt and zt. The posterior over xt and zt can then be computed as
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follows:

α(xt, zt) = p(y1:t−1|xt, c1:t−1)p(yt|xt, zt)p(xt|zt, c1:t)p(zt, c1:t)

= p(y1:t−1, xt|zt, c1:t)p(yt|xt, zt)p(zt|c1:t)p(c1:t)

= p(y1:t−1, xt|c1:t−1)p(yt|xt, zt)p(zt|ct)p(c1:t)

where once again, we exploit d-separation to obtain the last equality. We
can now identify some equivalent prediction and update steps by extracting
the prediction distribution p(xt|xt−1):

α(xt, zt)

= p(yt|xt, zt)p(c1:t)
�

p(y1:t−1, xt, xt−1|c1:t−1)p(zt|ct) dxt−1

= p(yt|xt, zt)p(c1:t)
�

p(y1:t−1, xt|xt−1, c1:t−1)p(xt−1|c1:t−1)p(zt|ct) dxt−1

= p(yt|xt, zt)p(c1:t)
�

p(y1:t−1|xt, xt−1, c1:t−1)p(xt|xt−1, c1:t−1)p(xt−1|c1:t−1)p(zt|ct) dxt−1

= p(yt|xt, zt)p(c1:t)
�

p(y1:t−1, xt−1|c1:t−1)p(xt|xt−1)p(zt|ct) dxt−1

As done previously in the standard state-observation model, we now
define a normalized distribution α̂(xt, zt) = p(xt, zt|y1:t, c1:t) and introduce
a similar scaling factor st = p(yt|y1:t−1, c1:t). Using d-separation in the
graph, we can then derive a recursive equation for α̂(xt, zt):

st α̂(xt, zt) = p(yt|y1:t−1, c1:t)
α(xt, zt)

p(y1:t, c1:t)

= p(yt|y1:t−1, c1:t)
α(xt, zt)

p(yt|y1:t−1, c1:t)p(y1:t−1, c1:t)

= p(yt|y1:t−1, c1:t)
α(xt, zt)

p(yt|y1:t−1, c1:t)p(y1:t−1|c1:t)p(c1:t)

=
α(xt, zt)

p(y1:t−1|c1:t−1)p(c1:t)

where we exploited conditional independence in the graph to show that the
observations up to time t− 1 are independent of ct. This gives us the final
form for the normalized recursive equation:

st α̂(xt, zt) = p(yt|xt, zt)
�

p(xt−1|y1:t−1, c1:t−1)p(xt|xt−1)p(zt|ct) dxt−1

(6.5)
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where we used the product rule decomposition to derive p(y1:t−1, xt−1|c1:t−1)
= p(xt−1|y1:t−1, c1:t−1)p(y1:t−1|c1:t−1).

Once again, we can view this equation as the propagation of the prior
state belief through a prediction step, subsequently followed by an update
step in which the occurrence of the observation yt is taken into account. In
the prediction step, we see that our belief about xt and zt is expressed as
the product of two distinct distributions. The first corresponds to the usual
propagation of our normalized prior over xt−1 through the prediction model
p(xt|xt−1). The second is the noise prediction distribution for the new input
ct provided by the RVM model. In other words, the predicted belief over
xt and zt is the simple product of the distribution of each variable provided
by the component of the model that does not take the observation yt into
account. Note that this is analogous to the prediction step in the standard
state-observation model. Finally, the predicted belief over xt and zt can
be used as a prior and the contrapositive of the observation distribution
p(yt|xt, zt) can be evaluated, yielding the updated belief for the state and
noise variables.

Note that for systems with assumed Gaussian noise, this last operation
leads to the convenient closed form expressions for recursive filtering, thanks
to the properties of linear Gaussian models (A.2). In our case however, the
peculiar form of the observation distribution prevent us from pursuing a
similar analysis. It is quite common, for complex Bayesian networks, that
an exact analysis actually leads to intractable forms for the hidden variables
posteriors. Thus, exact inference is impossible, and while the suggested
analysis showed more consistency regarding the Bayesian framework, ap-
proximations still have to be done. Two approximate inference methods can
be suggested here, namely the variational Bayes methods, and expectation
propagation (Minka, 2013). Roughly speaking, both methods exploit a sim-
ilar principle, and approximate the intractable distribution by a product of
independent factors representing distinct subsets of hidden variables. These
factors are represented by convenient functional forms (often chosen to be in
the exponential family) and their parameters are found by minimizing the
Kullback-Leibler divergence between the approximate distribution (i.e the
product of factors) and the exact distribution over the hidden variables. One
illustration of these methods, and a departing point for pursuing the anal-
ysis of inference in our model, can be found in (Sarkka and Nummenmaa,
2009). Note that these developments are kept for future work.

6.2.5 Inference in the discriminative model

We now address inference in the discriminatively trained model. As ex-
plained in chapter 3, this specific training procedure results in an equivalent
discriminative model which for the analysis provided before does not hold.
Because the causal interpretation of the model changed, the noise variable
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zt and the state xt are no longer coupled through the generative observation
distribution, and inference is greatly simplified. As done during training,
we can marginalize out the hidden variables zt and w required to evaluate
the posterior distribution p(xt|xt−1, yt, ct). Recall that this last expression
is implicitly provided by the recursive filtering equation (3.1).

Unlike the previous generative case, we can not easily marginalize out
the posterior distribution over w using standard RVM equations. This is
because discriminative training did not involve the evaluation of the pos-
terior distribution of the noise level z corresponding to the noise observed
at each input sample within the training set. Note that for the generative
case this was automatically done in the expectation step of the EM proce-
dure. In our approach, one solution to this problem consists in sampling
the noise level z from the model, based on parameters we found after train-
ing. This approach was previously adopted in (Goldberg et al., 1998) in the
context of heteroscedastic regression with GPs. In the following discussion,
we omit the marginalization over w for clarity in the equations. Note that
marginalization of the posterior distribution over w is implicitly done when
predicting the new noise level zt.

Recall from (3.1) that inference now consists in evaluating the posterior
α̂(xt) = p(xt|y1:t) through the equation:

stα̂(xt) =
� �

N
�
yt|g(xt), exp(zt)

�
p(zt, z|ct,D,α,σν)

�
α̂(xt−1)p(xt|xt−1) dxt−1 dz dzt

(6.6)

where D denotes the training set data and st = p(yt|y1:t−1) the scaling
factor. The distribution over zt and z can be decomposed as follow, without
loss of generality:

p(zt, z|ct,χ,α,σν) = p(zt|ct, z,α,σν)p(z|χ,α,σν)

In this last expression, the first term on the right-hand side is given by the
RVM prediction equation for a new input ct. The evaluation of the second
term is obtained through sampling, as described hereafter. In the following,
and as suggested previously in the generative case, we approximate the
integral z in (6.6) with a point estimate. Finding the exact distribution
(z|χ,α,σν) is not necessary in our case, as a point estimate over z allows for
the straightforward exploitation of standard RVM prediction equations.

Thus, we turn to a widely used sampling method known as Gibbs sam-
pling. In a first step, we use the Bayes rule to write:

p(z|x,y, c,α,σν) ∝ p(x|y, z)p(z|c,α,σν) (6.7)
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Following the standard Gibbs sampling procedure, we then sample by
cycling through the different components of z. Noting zi the ith component
of z, and z\i the remaining components, we have:

p(zi|z\i,x,y, c,α,σν) ∝ p(xt=i|yt={1:i}, zi)p(zi|z\i, c,α,σν) (6.8)

where the first term of the right-hand side of (6.8) is given by the re-
cursive filtering equation, and the last term is given by the RVM pre-
diction equation for a new input ct. At first, samples are drawn from
p(zi|z\i, c,α,σν). Each sample is then rejected or accepted regarding the
likelihood p(xt=i|yt={1:i}, zi). Intuitively, this procedure corresponds to max-
imizing the discriminative likelihood of the noise level zi.

Once a point estimate for z is found, it can be used straightforwardly
within regular RVM prediction equation for zt. Once again, the integral
over zt in (6.6) can be approximated through the methods suggested in the
generative case.

Note that the suggested procedures for training and inference in the dis-
criminative case have not been tested yet. More importantly, a sound anal-
ysis of the sparsification properties (following the original analysis of RVM
presented in appendix C) would provide insights about the convergence be-
havior of the hyperparameter optimization procedure. In the worst case, i.e
if training does not efficiently achieve sparsity, the resulting computational
cost would be analogous to that of GPs.

6.3 Experiments

In the current state of our investigations, only the generative training and
the fast approximate inference have been implemented and tested. Under
this current implementation, we illustrate the performance of the model on
real data, and subsequently combine the noise prediction model with the
mRVM based selection component presented in chapter 5. Therefore we
also illustrate the performance of the complete observation model suggested
in chapter 3. Note that a comparison between generative and discriminative
training, as well as the comparison between the two approximate inference
methods in the generative case, are to be made in future investigations.

Fast approximate inference with generative training - Real data

In this experiment, and as done earlier, we consider the task of altitude
estimation, and use the data gathered with our paparazzi quadrotor. Recall
that altitude estimation was based on two exteroceptive sensors, i.e an ul-
trasonic sensor (that is referred to as sensor 1) and a barometer (referred to
as sensor 2), both presenting distinctive behaviors. As discussed earlier in
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this chapter, we ignore for now the correlation between the two sensor mea-
surements and train two distinct RVM models that are subsequently used
to predict the noise variance of each sensor. Here again, the RVM models
exploit the Gaussian kernel with fixed input scale. The RVM input, i.e the
contextual information ct, is represented by a 3-dimensional vector includ-
ing the two current measurements provided by the altitude sensors and the
thrust command.

Since the hybrid type-2/EM training method is subject to oscillations,
we stop the optimization process when we reach the log-likelihood local
minimum. The log-likelihood progression of each model during training is
shown Fig. 6.9, where we can see that both model converged in a few
iterations, as typically observed with hard-EM algorithms.
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Figure 6.9: Log-likelihood progression during hybrid training for the two
observation models.

After training, the noise models performance is then illustrated by evalu-
ating the consistency of their prediction output on a validation set. The pre-
diction mean and variance of the complete observation model (p(yt|xt, ct) ∼
g(xt) + �(ct)) of each sensor is shown Fig. 6.10 and Fig. 6.11. For both
models, training results in highly sparsified data as, departing from a 5000
samples training set, the first model finally exploits 93 relevant vectors, and
the second model only uses 20 relevant vectors. The difference in the number
of relevant points is logically governed by the regularity of the altitude pro-
file provided by each sensor. As seen in previous chapters, and here in Fig.
6.10, the sensor 1 (ultrasonic sensor) provides measurements at a higher fre-
quency than for sensor 2, which is interpolated for synchronisation purpose.
Furthermore, the altitude measurements provided by the sensor 1 presents
numerous outliers, and these combined effects explain that the altitude pro-
file of sensor 2 is usually smoother. Thus, it is logical that the noise model
for the sensor 1 requires more relevance vectors, as the amplitude variations

139



in the noise are here significantly higher than for sensor 2.
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Figure 6.10: Observation predictions p(yt|xt, ct) for sensor 1 on the vali-
dation dataset. Boundaries illustrating the observation uncertainty corre-
sponds to 3 standard deviations (3-sigma).
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Figure 6.11: Observation predictions p(yt|xt, ct) for sensor 2 on the vali-
dation dataset. Boundaries illustrating the observation uncertainty corre-
sponds to 3 standard deviations (3-sigma).
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The accuracy of the observation noise on the validation set is more no-
ticeable Fig. 6.12, where we magnified the Fig. 6.10 in the interval between
sample 4200 and 5600. Similarly, the prediction output for sensor 2 is ac-
curately consistent with the measurements, and we observe a tendency to
overestimate the noise magnitude. In fact, while the barometer provides
accurate measurements on the validation set, we can see Fig. 6.13 that the
sensor measurements were less accurate on the training set. Recalling that
the barometer is very sensitive to changes in air pressure and weather con-
ditions, we understand that the predicted noise in the validation set is more
coherent with the error seen in the training set.
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Figure 6.12: Zoom on the observation predictions p(yt|xt, ct) for sensor 1 on
the validation dataset.

Combining noise adaptation and measurement selection

Both noise models are then used for altitude estimation, and combined with
the measurement selection mechanism presented in chapter 5. Note that the
context-dependent noise models can be straightforwardly exploited within
a standard Bayes filter, following the fast approximate inference presented
earlier. However, we aim here at illustrating the efficiency of the complete
context-dependent observation model presented in chapter 3. In a first time,
the two RVM noise models are trained following the type-2/EM training
method. These two models are then used to create a set of 3 distinct fil-
ters, each of which using either the measurement provided by the sensor
1, the measurement provided by the sensor 2, or both measurements. We
then train a mRVM model for selection following the approach suggested in
chapter 5, and observe that all filters share a comparable activation rate in
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Figure 6.13: Observation predictions p(yt|xt, ct) for sensor 2 on the training
dataset.

the training data. Thus, we do not remove any observation model from the
bank. Note that both the noise prediction and the measurement selection
components share the same contextual information.

The mRVM model is also based on a Gaussian kernel and exploits 94
relevance vectors for prediction. The average time required for selecting the
active measurement subset, predicting the associated noise magnitude, and
estimating the new state belief is of 0.002 seconds. Note that this is similar
to the amount of time required in the experiment presented in chapter 5
where we did not use the noise adaptation component. In fact, the num-
ber of classes is here slightly lower (3 instead of 5 on the refined model)
and the mRVM model is subsequently faster at making new predictions.
However, this improvement is not really significant, but similar to the ad-
ditional amount of time required here for predicting the noise magnitude,
which is why the overall computation time is equal in both applications.
Note that these values are obtained with non-optimized matlab code, and
the approach is thus compliant with real applications constraints where we
need to re-estimate the state belief at high frequencies.

Following the procedure for training and validation used in the previous
chapters, we then illustrate the complete model performance on a previously
unseen validation set. The resulting altitude estimation is shown Fig. 6.15.
For comparison, Fig. 6.14 shows the altitude estimation previously obtained
with the sole mRVM selection mechanism. As we can see, some outliers were
not perfectly rejected but the noise prediction components locally help in
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Figure 6.14: Altitude estimation with homoscedastic noise models and
mRVM based measurement selection.
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Figure 6.15: Altitude estimation with heteroscedastic noise models and
mRVM based measurement selection.
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preserving the state consistency. Unsurprisingly, they also help in improving
the overall accuracy, and the complete model provides the best RMS error
amongst all methods presented until now, with a score of 0.105. Recall that
the mRVM model with homoscedastic noise models provided an RMS error
of 0.152.

Clearly, we can notice that the resulting state uncertainty is significantly
lower when we use the noise prediction models than with homoscedastic
noise. While this result is obviously dependent on the homoscedastic noise
magnitude that was manually tuned, we however observe that the introduc-
tion of heteroscedastic noise usually leads to a global deterioration of the
state consistency. For example, the log likelihood score, i.e

1

T

T�

t=1

log
�
p(xt|y1:t, c1:t)

�

(where T denotes the number of samples in the training set) obtained with
homoscedastic noise is of −0.57, while the complete model provides a score
of −0.90. Thus, while they help in improving the general accuracy of the
state estimate, the noise model obtained with generative training tend to
underestimate the real noise in the system. Note that this behavior was
predictable since the noise components were trained generatively, and the
resulting state consistency was not considered during training. Clearly, this
results pleads for the application of discriminative training when learning
noise models. Furthermore, this also shows that the training method (or
equivalently the modeling approach) is almost as much important as the
model complexity. For example, we may already improve drastically the log
likelihood score by exploiting discriminatively trained homoscedastic noise
models.

6.4 Conclusion

6.4.1 Summary

In this chapter we have presented an extension of the state-observation
model allowing for context-dependent adaptation of the observation noise.
This extension relies on the RVM regression model that was presented ear-
lier in chapter 5. When the model is trained in a generative manner, we
saw that our approach could be mapped to the standard problem of het-
eroscedastic regression. However, the solution we provide slightly differs
from pure regression as the noise-free component is not learned together
with the noise distribution, but rather assumed to be known and defined
by the physical characteristics of the sensor. This specific implementation
heals the inability of heteroscedastic models in properly differentiating the
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role that both noise-free and noise components should play in modeling the
observation process, especially in the presence of strong outliers.

As stated in the previous chapter, the RVM sparsification property re-
sults from the type-2 maximum likelihood optimization, and we consequently
design a dedicated type-2/EM hybrid training method preserving sparsity
in the new model. The specific case of generative training yielding complex
interdependence between the state variable and the noise magnitude, we
present a fast approximate inference method. Alternatively, we derive new
recursive equations that are more respectful of the dependencies encoded
in the graph, while still benefiting from the sparification guarantees of the
RVM model.

A theoretical analysis of inference and training in the discriminative
case is concurrently discussed. This approach requires and alternative op-
timization technique for learning the hyperparameters of the RVM model,
for which the RVM standard sparsification guarantees do not hold anymore.
In the current state of our investigations, these later developments have not
been tested yet and we restrict our experimental analysis on the generative
case.

Experiments illustrate the accuracy of the noise prediction model as
well as their generalization capability on new data. By combining the noise
models with a measurement selection component, we also illustrate the per-
formance of the complete context-dependent model presented in chapter 3.
This model provides the best RMS error score obtained on our real data,
and notably improves by 50% the error obtained earlier with standard rejec-
tion and homoscedastic noise. Unsurprisingly, we saw that if heteroscedastic
noise models help in improving the state accuracy, generative training does
not provide any improvement in terms of consistency. Thus, all models
should be discriminatively trained for optimal performance.

6.4.2 Discussion

Inference approximations: benefits and drawbacks ?

While we can easily understand how ignoring some dependencies in the
model modifies the inference equations, we however ignore how it can affect
the general performance of the filter. As illustrated in the generative training
case, the fast approximation method, and a more proper treatment, bring
different benefits. In the first approach, we prevent the filter from basing
inference on self-consistency, which was one of our original objectives. In
the second approach, we saw that inference over the noise variables involves
a pure prediction step with the RVM model, and a consistency ’correction’
with respect to the generative observation model. Thus this latter approach
might help in smoothing and tempering the errors produced by the sole
RVM model.
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In any case, further experimental investigations are required regarding
proper Bayesian inference over the model as only performance evaluation
and comparison between the two methods will provide significant insights.
It is very likely however, that the most suitable inference method will depend
on the specific application. Also, note that this reveals a new investigation
direction. Indeed, if we primarily wanted to avoid relying only on self-
consistency for adapting the model parameters, we can chose here to mix
the information provided by an external component (the RVM noise predic-
tion model) with the self-consistency constraints encoded in the complete
model. Thus, we shall now investigate on the benefits of mitigating pure
self-consistency with an external and independent model through different
approximations.

Finally, recall that both approaches referred to as ’fast approximate’ and
’proper Bayesian treatment’ remain approximations in the Bayesian frame-
work. Indeed, the weight parameter w is still marginalized out for both
training and inference, while we should actually see it as an additional hid-
den variable and run inference for (z, w, x) together. This would obviously
require to exploit approximate methods such as the variational Bayes frame-
work, or expectation propagation, and the resulting model would not inherit
the sparsification properties of the standard RVM model. However, investi-
gations should be made regarding the possibility of preserving sparsity with
other approximations than the type-2 maximum likelihood.

Training and inference complexity in the discriminative case

While augmenting Bayes filters with time-varying noise model plays a cen-
tral role in trying to compensate the optimistic assumptions usually made
by the classical model, the training method might also have major conse-
quences over the system performance. As such, discriminative training seems
promising in that it requires to run the filter during optimization while gen-
erative training focuses on the underlying emission and prediction processes.
Discriminative training nevertheless brings some particular issues, since at
first, it does not allow to use classical training (and sparsification) methods
for the RVM model, but also because the optimization process of Ldiscr is
much more complex. Indeed, each term of the discriminative loss function
is strongly related to the preceding one as a direct consequence of the re-
cursive equations used for state estimation. Classical RVM models already
require the optimization of a nonconvex function, and we still need to study
the consequences of the additional complexity introduced along with this
specific loss function.

Besides this particular issue, the use of discriminative training also re-
quires some additional approximation methods for inference. Experiments
will provide a better insight on how expected benefits and inherent draw-
backs of the discriminative method impact the system performance, by com-
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parison to the much simpler generative approach.

Learning the length scale parameter

We observed that learning the noise model can easily lead to overfitting,
where variations in the noise magnitude fit precisely each sample of the
training set. In practice, this behavior appears with low kernel length scale
parameter (< 0.4 in our case) which intuitively governs the smoothness of
the prediction output. Tuning the kernel length scale parameter by hand
appeared to be more convenient as it consequently led to better generaliza-
tion capabilities, while maximum likelihood optimization logically leads to
low values for the length scale, and consequently to overfitting.

If the effects of overfitting in the noise model are usually softened in
the estimation process, this however shows that maximum likelihood is not
really adapted in our application, especially if we use point estimates and
not a proper prior distribution over the length scale parameter. It is then
interesting to investigate on the generalization improvements brought by the
use of a proper prior distribution, recalling that this can be equivalently seen
as introducing regularization terms over the maximum likelihood score.

Current state of investigations

This chapter was principally dedicated to presenting the theoretical founda-
tions for generative and discriminative modeling of context-dependent noise
models. Experiments conducted so far concerned the simple task of alti-
tude estimation for an UAV, and only a fast approximate method have been
tested. Thus, further experimental investigations are required for comparing
the different training and inference methods suggested. Moreover, the ap-
proach still has to be tested on more complex scenarios involving numerous
sensors and a broad range of contexts.

6.4.3 Future directions

In the presented approach, the specific choice of the RVM model to pro-
vide the noise magnitude yields some additional approximations. This is
because there is no closed-form expression when we marginalize out the
Gaussian distribution over zt, recalling that the noise model takes the form
�(ct) ∼ N

�
0, exp(zt)

�
. For this reason, we suggested to approximate the

marginalization through a point estimate or via the unscented transform,
both resulting in a Gaussian distribution that is necessary for recursive fil-
tering4. A more conventional approach for modeling the variance distribu-
tion of the observation model is to exploit the Gamma distribution that is

4
Recall that the Kalman filter equations represent the state belief through a Gaussian

distribution at each iteration thanks to the conjugate properties of the linear Gaussian

model
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the conjugate prior distribution of the inverse variance (precision) of a Gaus-
sian. However, the sparse Bayesian technique can not be straightforwardly
applied for modeling outputs whose probability mass take the form of a
Gamma distribution. One solution would consist here in using two RVM
models for predicting the two parameters that govern the Gamma distribu-
tion, hence increasing the computational cost of the model. Furthermore,
marginalizing out the precision variable whose prior is defined as a Gamma
distribution does not result in a new Gaussian but in a Student-t distribu-
tion. Thus approximations are still to be made in order to provide recursive
filtering solutions. The point estimate method we used in our experiments
being a rough approximation, we shall however test the improvements pro-
vided by the introduction of a Gamma prior, and, first of all, by using the
efficient unscented transform.

One central aspect in all the approaches for training and running infer-
ence suggested in this chapter is the sparsification property of the standard
RVM model. As discussed in the experiment section, this results in a a
highly time-efficient model that can straightforwardly be exploited online.
Generally speaking, it is now accepted that the ability of finding the rele-
vant examples during training is a central question in any memory based
approach, and we especially believe that this natural capability provided by
the RVM model is of great importance. In our developments, we tried to
preserve the conditions under which the RVM yields automatic relevance
determination, and accordingly adapted our utilization of the global model.
However, we could follow an opposite approach and straightly build new
complex models which for we could ensure that the sparsification properties
hold. The existence of a general set of conditions that one would have to re-
spect in order to yield sparsification is however, and to our actual knowledge,
neither known nor proved.
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Chapter 7

Conclusion and future

research

7.1 Summary of contributions

This thesis explored a new modeling paradigm for improving the standard
Bayes filter performance both in terms of global accuracy and robustness
towards erroneous measurements. Our theoretical analysis is conducted
within the Bayesian framework, and eased with the probabilistic graphi-
cal model representation presented in chapter 2. The proposed improve-
ments are driven by two identified causes of failure arising from the standard
state-observation implementation. The first cause is that many optimistic
assumptions are made when building the model: oversimplification of the
real interdependencies in the system through the HMM representation, noise
homoscedasticity, and a general tendency to represent too many unknown
phenomenon within the noise components. The second cause is strongly
related to the presence of unmodeled aspects in the model, and is a general
modeling paradigm that we earlier referred to as the ’closed-world’ assump-
tion. Following this approach, assessments can be made about unmodeled
or mismodeled phenomenons, based on the sole consistency of observations
with the model. This paradigm constitutes an issue as we remain concretely
blind to the actual phenomenon involved in the observation process, and
the lack of information may mislead our decision regarding the proper man-
ner of processing a new observation. These aspects are discussed in the
introduction of the manuscript.

In an attempt to fix these issues, we investigate on enhancing the model
expressiveness and exploiting additional information for explicitly model-
ing the complex phenomenon involved in the observation process. In this
context, we believe that machine learning techniques, and especially non-
parametric models, provide the most efficient tool for acquiring and encoding
knowledge about the measurement generation process, based on a finite set
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of training examples. However, the need for high computational efficiency
was also of major importance in our work, since our original research con-
text, i.e autonomous robotics, requires fast state estimation methods. This
pleads for the exploitation of dedicated techniques like sparse Bayesian mod-
els that provide fast inference properties, but also for the development of
specific approximations when running inference in the model. Similarly, we
kept the HMM structure as the backbone of our work, as it leads to the
highly efficient recursive filtering equations.

We begin by suggesting a new modeling paradigm for learning a robust
observation distribution. The idea is to explicitly represent the presence
of alterations in the observations via a measurement selection mechanism,
and furthermore to allow for time-varying noise. This results in a state-
observation model with two additional components taking as input some
external data that is referred to as the contextual information. The com-
ponents achieving measurement selection and noise adaptation are built as
classification and regression machines. Regarding the training of the com-
plete model, we investigate on an alternative technique, i.e discriminative
training, that is rarely employed in the domain of Bayes filtering as the state-
observation model is fundamentally designed as a generative model. With
discriminative training comes an interesting debate concerning the graph
structure we eventually use, as we show that this specific approach implic-
itly builds an equivalent discriminative model. While both generative and
discriminative modeling approaches have some relative merits, we however
recall that in the context of Bayes filtering, we never exploit the generative
capabilities of the underlying state-observation model. Thus, it seems rea-
sonable to optimize the model with respect to its performance as a state
estimator rather than its performance in generating the true observations.
This is even more debatable knowing that the model itself is built upon the
assumption that some aspects of the real system can be ignored and encom-
passed within a noise distribution. Furthermore, we see that the choice of
using a generative or a discriminative model also affects the complexity of
inference. These ideas are discussed in chapter 3.

Some specific implementations are presented in the following chapters,
based on the mixture of experts model for measurement selection in a first
time, and then by exploiting the RVM model for selection and adaptation.
These developments, as well as the resulting observation model, are summa-
rized in Fig. 7.1, and introduce the following specific contributions:

• Introduce contextual information within the estimation process for
explicitly modeling the measurement alterations.

• Drop out the standard concept of outliers as measurements lying too
far from the probability mass defined by the time-homogeneous ob-
servation distribution. We suggest instead to measure the utility of a
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measurement as its propensity to improve the state estimate.

• Use adaptive filtering techniques for measurement selection.

• Exploit the equivalent discriminative graph structure resulting from
discriminative training of a generative model.

• Exploit discriminative training in a time-heterogeneous state-observation
model.

• Suggest approximations in learning and inference that enforce the spar-
sification properties provided by the RVM model.





















Figure 7.1: Global principle of the context-dependent state-observation
model suggested in this work.
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7.2 Future directions

7.2.1 Further investigations on the current approach

Investigating on the performance of generative vs. discriminative
methods

From a practical point of view, discriminative training combined with both
Mixture of Experts and mRVM for measurement selection has shown great
robustness and consistency of their performance all along our experiments.
Clearly, this showed us that optimizing the model parameters with respect
to the filter estimate accuracy is a reliable approach. However, we have
not explored and compared both discriminative and generative methods for
each of our models: for this purpose, further experimental investigations are
required. Note that, in a first time, discriminative training appeared to us
as the most logical choice for training a measurement selection scheme, as
we always considered that the utility of a measurement only depends on its
ability to improve the state belief. Later in our investigations concerning
the PGM framework, arose the debate between generative and discrimina-
tive training. While it has been shown in the case of Kalman filtering and
for many HMM applications that discriminative training yields better re-
sults, this superiority is however not proved in the case of state-observation
models with time-varying distributions. Moreover, some previous work (Ng
and Jordan, 2001) has proved that the performance of generative and dis-
criminative models depend on the amount of available training data.

Nonetheless, we have seen in this work that discriminative training may
be interpreted as a graph remodeling whose new causal dependencies also
influence the inference task. In our work, this is equivalent to turning the
state-observation model into a simple state predictor using the observation yt
as input. Consequently, we could make direct use of the mixture of experts
or direct measurement selection without changing the inference equations
for each underlying filter. On the opposite, we saw that for the genera-
tive training of context-dependent noise models, exact inference does not
lead to the standard recursive equations. Thus, great care has to be taken
when choosing a training method, and the consequences regarding inference
difficulty, as well as the necessary approximations, have to be examined.

Extension to multi-modal state belief and stochastic approxima-
tions

All the developments presented in this thesis are built upon the assumption
that the state belief is unimodal and represented by a Gaussian distribu-
tion. Thus, we did not examine two common instantiations of Bayesian
filtering that are multi-target tracking and particle filtering. Particle fil-
tering automatically allows for the representation of multi-modal (or multi-
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target) state distribution, and provide a solution for recursive filtering in
non-linear and non-Gaussian state-space models. With the approximation
introduced through the particle representation come important questions re-
garding convergence, i.e, for an infinite amount of particles, does the particle
filter converges to the optimal filter, and does the resulting set of particles
converge to the true state distribution? If some convergence proofs exist for
the standard particle filtering instantiations (Crisan and Doucet, 2002), we
can not guarantee that they still hold with our specific observation models,
especially when we exploit the bank of filter approach. Thus, further inves-
tigations regarding the convergence properties should be done if we want to
extend our model to particle filtering.

If we want to address applications requiring a multi-modal state distri-
bution without exploiting stochastic approximation, one solution consists
in representing the state distribution through a Gaussian mixture model
(GMM). By assuming that the multi-modal state can be well described by a
weighted sum of independent Gaussian distributions, we can guarantee that
each state posterior can be used in the next iteration of recursive equations.
More precisely, if we adopt a strict selection scheme as done in chapter 5,
then we select the mixture of Gaussian provided by the most relevant filter,
and straightforwardly use it for the next iteration of recursive filtering. If
we prefer to mix the different filter outputs as done in chapter 4, then vari-
ants of the GPB approximation exist that allow for propagating a mixture
of Gaussian through the state-observation model (Dovera and Della Rossa,
2011; Zhang et al., 2013). Thus, assuming that the multi-modal state dis-
tribution can be represented by a GMM allows us to exploit our approach
with small modifications.

Multi-kernel approaches

If our experimental analysis proved that the RVM model provide an effi-
cient solution for efficiently learning continuous and discrete mappings from
simulated and real data, the contextual information we exploited until now
was relatively homogeneous and simple. It is clear however that further
applications of our approach to real estimation problems may have to deal
with complex and potentially highly heterogeneous data (binary indicators,
multi-dimensional measures, difference in amplitude ranges). Also, recall
that one of our main objectives behind the introduction of learning and
memory based methods was to avoid manual tweaking. Thus, we aim at
providing a generic method that would not require specific adaptation of the
models that govern measurement selection and noise adaptation regarding
the nature of the contextual information. In fact, this problem is probably
one of the most important issue that we have to solve in order to ensure
real genericness of our approach. Note that this topic is also prevalent in
the machine learning community when it comes to processing large scale
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information.
As discussed chapter 5, one interesting improvement of the kernel meth-

ods is the extension to the multi-kernel approach. The multi-kernel methods
intuitively exploit a set of distinct base kernel functions instead of a unique
kernel, and provide predictions based through a weighted sum of the differ-
ent kernels. Furthermore, as seen in (Damoulas and Girolami, 2008), the
sparsification properties of the RVM model can also yield to a reduced set
of relevant kernel functions. For this reasons, we particularly believe that
the multi-kernel method is a key component in ensuring genericness of our
approach.

7.2.2 Long term evolution

Improving old models or establishing new ones?

Our general motivation behind this work was to analyse and reconsider
Bayesian filtering, starting from its theoretical foundations, while it is very
usual to take the Kalman equations, and more generally the recursive Bayesian
filtering equations, for ’granted’. We saw that under the PGM framework,
we could easily re-formalize Bayesian filtering and build on top of it for im-
proving its robustness and its accuracy. From the beginning of this work,
it was deliberately chosen to enhance the original state-observation model
instead of building new models from scratch, with the idea to keep low com-
putational cost and a simple representation of the real system. However, we
also support discriminative training which, as discussed chapter 3, implicitly
yields a new graph structure.

Generally speaking, our theoretical analysis naturally leads to the idea
that it is more relevant to formalize filtering from a discriminative point of
view. This is because it is more reasonable to focus on encoding knowledge
about the system state given the observations, than encoding knowledge
over the observation generation process. Especially, and by definition, fil-
tering means that we never exploit directly the generative capabilities of the
state-observation model. Thus, filtering can be structurally seen as a dis-
criminative problem, where our goal is to predict the state posterior given a
state prior and an observation. In this formalism, we saw that the maximum
entropy markov model naturally arises, and when transposed to undirected
graphical models, we obtain a linear chain conditional random field. Both
representations brings an interesting modeling property that would allow us
to directly represent the probabilistic relationship between the state variable
and both observation and context variables trough a unique component. In
other words, we could replace our additional selection and adaptation mod-
els by a single edge (ct, yt) − xt in the graph. Following this approach, we
believe that conditional random fields would provide an efficient solution,
especially when combined with kernel methods (Lafferty et al., 2004).
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However, if it is clear that generative modeling introduces additional mis-
specifications, we know that discriminative training helps in compensating
for their effects on the global performance. Actually, recent investigations
have shown that, in the debate about discriminative or generative models,
one previously ignored answer yields the best performance: we shall get the
best of both worlds1. Indeed, in (Bishop and Lasserre, 2007), the authors
show that for a limited amount of training data, the best performance is
provided by a mix of both approaches. This solution follows a quite neglected
modeling principle in machine learning that is model averaging, and which
explicitly recognizes that there is uncertainty in the likelihood function of
any model. Thus, it is not sure that the future of filtering lies in pure
discriminative modeling, but more likely in a combination of both generative
and discriminative approaches.

1
Excerpt from the title of (Bishop and Lasserre, 2007)
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Appendix A

Mathematical properties

A.1 Properties of the linear Gaussian model

In a linear Gaussian model we are given a Gaussian distribution p(x) and a
Gaussian conditional distribution p(y|x) whose mean is defined as a linear
function of x so that:

p(x) = N (x|µ,Λ−1)

p(y|x) = N (y|Ax+ b, L−1)

where Λ−1 and L−1 are the precision matrices of each Gaussian, i.e the
inverse of the covariance matrices.

Given p(x) and p(y|x), it can be showed (Bishop, 2006) that the joint
distribution p(x, y), the marginal p(y) and the inverse conditional distribu-
tion p(x|y) are all Gaussian. Moreover the marginal distribution of y and
the conditional distribution of x given y are given by:

p(y) = N (y|Aµ+ b, L−1 +AΛ−1At) (A.1)

p(x|y) = N (x|Σ[AtL(y − b) + Λµ],Σ) (A.2)

where we defined :

Σ = (Λ+AtLA)−1

If we consider p(x) as a prior distribution of x, then p(x|y) can be seen
as the posterior distribution over x given the observation y. This conjugate
property is a key ingredient in the derivation of the Kalman filter equations.

A.2 Matrix identities

In chapter 3 we make use of a basic identity which is:

(P−1 +BtR−1B)−1BtR−1 = PBt(BPBt +R)−1 (A.3)
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Similarly, we exploit the Woodbury identity that gives:

(A+BD−1C)−1 = A−1 −A−1B(D + CA−1B)−1CA−1 (A.4)
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Appendix B

Inference in non-linear and

non-Gaussian state

observation models

B.1 Deterministic approximation

When prediction or observation involves non-linear functions but the as-
sumption of Gaussian noise is still reasonable, we can exploit deterministic
approximation methods. In this case we have a model of the form:

p(xt|xt−1) = N (xt|f(xt−1),Σd)

p(yt|xt) = N (yt|g(xt),Σo)

where either f , g or both are non-linear, and must be differentiable.
A first method consists in approximating the non-linear function f or

g with a first-order Taylor series expansion evaluated at the maximum of
the available prior distribution of the state. Following the common nota-
tion, we denote xt|t the posterior state belief so that xt|t ∼ p(xt|y1, . . . , yt)
and xt|t−1 the prior state belief after propagation through the prediction
model, i.e xt|t−1 ∼

�
p(xt−1|y1, . . . , yt−1)p(xt|xt−1) dxt−1. This means that

the function f is approximated by its first-order Taylor series approximation
evaluated at f(xt−1|t−1) and g by its approximation evaluated at g(xt|t−1).
This results in recursive equations similar to the Kalman filter, except that
the Jacobian matrices of f and g replace the conventional observation and
prediction matrices A and C. This method is known as the extended Kalman
filter (EKF), and has proven to be unreliable for systems that are not close
to linear in the time scale of the update intervals (Julier and Uhlmann,
1997).

A second approach exploits a different approximation paradigm: instead
of approximating the non-linear function itself before propagating a Gaus-
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sian distribution through it, it is better, and much simpler, to approximate
the distribution resulting from the propagation through the non-linear com-
ponent. The approximation is done by deterministically choosing a set of
weighted samples called sigma points that optimally capture the proper-
ties of the distribution before passing through the non-linear function. The
parameters of the resulting approximate Gaussian are subsequently evalu-
ated using the propagated samples. This family of methods is referred to
as Sigma point Kalman filtering (SPKF) (Merwe and Wan, 2003), and as
such may be compared to the stochastic approximation method in which
we try to find the best proposal distribution. However, while exploiting a
similar concept, the SPKF relies on a deterministic sampling scheme. One
popular deterministic transformation for computing the weighted samples
is the Unscented transform (Julier and Uhlmann, 1996), which gives rise
to theUscented Kalman filter. The UKF proved to overcome many of the
approximations issues brought by the EKF, and gives more accurate results
since the unscented transform better captures the higher order moments of
the linear function than the Taylor series expansion (Julier and Uhlmann,
2004).

The unscented transform and the UKF algorithm
Before providing the unscented Kalman filtering equations, we shall describe
the unscented transform. This transform is closely related to the Gaussian
quadrature method which basically aims at approximating the integral of
the form � +∞

−∞
W (x)f(x) dx

where W (x) is a nonnegative function, and a Gaussian in our case.
This is done by choosing m points x1, . . . , xm and associated weights

w1, . . . , wm so that

� +∞

−∞
W (x)f(x) dx =

m�

i=1

wi f(xi) (B.1)

In the unscented transform the sample points xi are parsimoniously
chosen by exploiting the symmetry properties of the Gaussian distribution
around its axes. The actual theoretical foundations behind this sample se-
lection method is behind the scope of this manuscript, and we prefer to
present the practical implementation of the basic UKF.

Following the basic propagation and observation update sequence arising
from (3.1), the UKF simply consists in applying two consecutive unscented
transforms. The first approximation is used to compute the posterior after
propagation through the prediction model (p(xt|y1, . . . , yt−1)) and a second
one to evaluate the posterior p(xt|y1, . . . , yt).

Prediction step: we form at first a set of 2n+ 1 sigma points:
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χ[0]
t−1 = µt−1

χ[i]
t−1 = µt−1 +

√
n+ λ [

�
Vt−1]i

χ[i+n]
t−1 = µt−1 −

√
n+ λ [

�
Vt−1]i

with i = 1, . . . , n and [.]i denotes the ith column of the matrix. λ is a scaling
parameter defined by λ = α2 (n+ k)− n where α and k are free parameters
that control the spread of the sigma points around the mean, and whose
optimal value is problem dependent.
The sigma points are then propagated through the non-linear prediction
function:

χ̂[i]
t = f(χ[i]

t−1) i = 0, . . . , 2n

Based on the propagated sigma points we can compute the mean and vari-
ance of the approximate predicted state distribution:

µ̂t|t−1 =
2n�

i=1

Wm
i χ̂[i]

t

V̂t|t−1 =
2n�

i=1

W c
i (χ̂

[i]
t − µt|t−1)(χ̂

[i]
t − µt|t−1)

t + Σt

where the weights Wm
i ,W c

i are given by:

Wm
0 =

λ

n+ λ

W c
0 =

λ

n+ λ
+ 1− α2 + β

Wm
i =

1

2(n+ λ)
i = 1, . . . , 2n

W c
i =

1

2(n+ λ)
i = 1, . . . , 2n

with β an additional parameter that can be optionally used to introduce
prior information about the distribution over xt. Once we computed this
predicted distribution over xt, we can now take into account the observation
and evaluate the posterior distribution p(xt|y1, . . . , yt).

Update step: we form again a set of 2n+ 1 sigma points:
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χ[0]
t|t−1 = µ̂t|t−1

χ[i]
t|t−1 = µ̂t|t−1 +

√
n+ λ [

�
V̂t|t−1]i

χ[i+n]
t|t−1 = µ̂t|t−1 −

√
n+ λ [

�
V̂t|t−1]i

Similarly, the sigma points are propagated through the non-linear observa-
tion function:

y [i]t = h(χ[i]
t|t−1) i = 0, . . . , 2n

Using these sigma points, we compute the predicted mean of the observa-
tion mt, the covariance of the measurement St and the cross-correlation Ct

between the state and the observation:

mt =
2n�

i=0

Wm
i y [i]t

St =
2n�

i=1

W c
i (y

[i]
t −mt)(y

[i]
t −mt)

t + Σo

Ct =
2n�

i=1

W c
i (χ

[i]
t|t−1 − µ̂t|t−1)(y

[i]
t −mt)

t

And finally the resulting approximate mean and covariance of the state can
be computed using:

µ̂t = µ̂t|t−1 +Kt(yt −mt)

V̂t = V̂t|t−1 −KtStK
t
t

With the Kalman gain matrix:

Kt = CtS
−1
t

B.2 Stochastic approximation

A popular family of approximate inference methods in non-linear and non-
Gaussian models is the particle-based approach. In these methods, the state
is not directly represented by a parametric distribution, as the exploitation
of complex distributions often result in an intractable recursion equation
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(3.1). The state belief is instead approximated by a set of weighted samples
or particles, xt = {xmt }Mm=1, that represent the complex posterior distribu-
tion p(xt|y1, . . . , yt). In practice, the basic idea of recursively propagating
our prior belief through the prediction model p(xt|xt−1) and subsequently
updating this distribution with the observation p(yt|xt) is replaced by two
equivalent approximate steps. In a first step, new samples are drawn from
the prediction distribution p(xt|xmt−1)

M
m=1, which corresponds to multiple

hard-assignments of the integral in (3.1). Each of these new samples are
then weighted proportionally to their observation likelihood p(yt|xmt )Mm=1.

These methods are referred to as particle filtering, or sequential Monte-
Carlo approaches. The main issue in approximating the state distribution
through a set of samples relies in the evaluation of their weights. Practically,
in the simplest form of the algorithm, most of the samples quickly become
irrelevant due to a negligible (or numerically negligible) weight. This phe-
nomenon is known as degeneracy and leads to inconsistent estimates after
a few iterations. Thus, many algorithms have been developed to tackle this
issue, based on a resampling strategy that statistically preserves the sam-
ples with the highest weights, while trying to keep a better diversity among
the samples. These approaches are known as bootstrap filters, survival of
the fittest or sequential importance resampling, and the development of new
methods is still an active research topic. Alternatively, degeneracy can be
tackled through the exploitation of a better proposal distribution, in which
the observation yt is also taken into account instead of sampling from the
unique prediction distribution.

When non-Gaussian distribution are involved, the sampling approxi-
mation showed better accuracy than the Gaussian approximation usually
made in Bayes filters. Unfortunately, this approximation is also slower. For
more details, a complete study of the particle filter variants can be found in
(Doucet et al., 2001).
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Appendix C

Sparse Bayesian learning

analysis

The approach suggested by Tipping consists in rewriting the log likelihood
in order to extract the term that depends on one particular hyperparameter
αi. As shown in (5.8), the complete analysis of the log likelihood solely rely
on the term C that can be written:

C = σ2
r I +

N+1�

j=1

α−1
j φjφ

�
j

= σ2
r I +

�

j �=i

α−1
j φjφ

�
j + α−1

i φiφ
�
i

= C−i + α−1
i φiφ

�
i

where φj denotes the jth column vector of Φ and C−i is the covariance matrix
of the likelihood without considering the contribution of the vector φi. Note
that this is equivalent to rewriting the likelihood function for αi = ∞.

Precisely, the log likelihood (5.8) depends on the determinant and the
inverse of C that can now be written:

|C| = |C−i| |1 + α−1
i φ�

iC
−1
−i φi|

C−1 = C−1
−i −

C−1
−i φiφ

�
iC

−1
−i

αi + φ�
iC

−1
−i φi

(C.1)

where we made use of (A.4) and exploited the basic determinant properties.

Using these new expressions, we can express (5.8) as the sum of two
terms:

L = ln
�
p(y|x,α,σr)

�

= L(α−i) + L(αi)
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where L(α−i) the log likelihood with the contribution of φi removed, and
L(αi) the term relating the influence of φ, i.e depending on αi. This last
term is given by

L(αi) =
1

2

�
ln(αi)− ln(αi + si) +

q2i
αi + si

�

where, for simplification, we defined the terms

si = φ�
iC

−1
−i φi

qi = φ�
iC

−1
−i y

We can now compute the derivative of the log likelihood with respect to
αi, which is given by:

∂L
∂αi

=
∂L(αi)

∂αi
=

α−1
i s2i − (q2i − si)

2(αi + si)2

Setting this derivative to zero provides a stationary point given by:

αi =
s2i

q2i − si

However, as a precision parameter, we recall that αi > 0, which requires
q2i > si. In the opposite case (q2i > si), we see that the only solution
corresponds to αi = +∞. As can be seen in (C.1), the relative value of q2i
with respect to si may increase or decrease the value of the likelihood of
the model. In practice, q2i helps in increasing the likelihood, while si may
reduce this effect, as a denominator of q2i . It is shown in (Faul and Tipping,
2001) that for q2i > si, there is a single maximum for L, while in the other
case, the maximum is obtained at αi → ∞. Thus, given the relative size
of these factors, we can evaluate how a component φi helps in explaining
the observed data, and if it can be pruned or not. This analysis leads to a
faster training algorithm that fosters sparsification. More details about this
method can be found in (Tipping et al., 2003).
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Appendix D

French Summary

D.1 Introduction: Contexte de recherche

Ces travaux se focalisent sur une problématique fondamentale de la robo-
tique autonome: l’estimation d’état. A l’heure actuelle, nous savons en
effet que la plupart des approches permettant à un robot de réaliser une
tâche quelconque requièrent tout d’abord l’extraction d’un état à partir de
mesures capteurs bruitées. Ce vecteur d’état contient un ensemble de vari-
ables caractérisant le système à un instant t, comme la position du robot,
sa vitesse, etc.

En robotique, et dans de nombreux autres domaines, le filtrage bayésien
est devenu la solution la plus populaire pour estimer l’état d’un système
de façon robuste et rapide. Cette technique repose grossièrement sur deux
composantes principales. La première composante nous permet de prédire
l’évolution de l’état dans le temps en se basant uniquement sur un modèle
dynamique du système. La seconde composante permet, elle, de prendre en
compte un ensemble de mesures capteurs afin de corriger l’état propagé ’à
l’aveugle’ à travers le modèle de prédiction.

En pratique, et particulièrement dans le cadre de la navigation au-
tonome, la qualité des mesures capteurs est fortement dépendante du con-
texte de navigation. Par contexte de navigation, nous entendons ici
tout facteur physique, autre que les variables décrites par l’état,
ayant une influence sur la qualité des mesures fournies par un cap-
teur. Par conséquent, la qualité des mesures capteurs peut s’étaler sur une
échelle allant du fonctionnement nominal, en passant par un bruit de plus en
plus important, jusqu’au moment ou la donnée n’est plus informative pour
la tâche d’estimation. Ce phénomène est illustré Fig.D.1.

Dans la section suivante, nous détaillons plus précisément le modèle état
observation qui repose derrière toute technique de filtrage bayésien. Dans
une seconde partie nous examinerons plus en détail les avantages et défauts
principaux de ce modèle. Ces sections, ainsi que le reste de ce résumé,
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Figure D.1: Évolution des perturbations sur les mesures capteurs pour
différents contextes de navigation.

exploitent le framework des modèles graphiques probabilistes, dont le lecteur
trouvera une description détaillée dans (Bishop, 2006; Koller and Friedman,
2009).

D.2 Filtrage bayésien et modèle état observation

D.2.1 Le modèle état-observation

La première adaptation des modèles graphiques probabilistes aux systèmes
dynamiques fut tout d’abord introduite dans (Dean and Kanazawa, 1989).
Plus tard, l’emploi du terme réseaux bayésiens dynamiques fut proposé par
les même auteurs. Les réseaux bayésiens dynamiques reposent, à l’origine,
sur la propriété de Markov ainsi que sur l’hypothèse de distribution invari-
antes dans le temps.

Plus particulièrement, le modèle état observation repose originellement
sur l’hypothèse de Markov d’ordre 1. L’évolution de l’état xt dans le temps
est donc décrite par une distribution stationnaire P (xt|xt−1). Pour chaque
état xt, les mesures perçues à l’instant t sont décrites par la distribution
d’observation P (yt|xt). Ces deux distributions se retrouvent respectivement
sous forme de flèches horizontales et verticales dans le graphe représenté
Fig.D.2.
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Figure D.2: Modèle état observation. Suivant le formalisme des modèles
graphiques probabilistes, l’état xt et l’observation associée yt sont con-
sidérées comme des variables aléatoires représentées par des cercles. Les
liens causaux entre variables sont représentés par des flèches représentant les
distributions conditionnelles P (xt|xt−1) et P (yt|xt). Les variables aléatoires
grisées correspondent aux variables réellement observées (dans l’exemple,
l’observation yt+1 n’a pas encore été perçue.)

L’exploitation de ce modèle, ou inférence, se divise traditionnellement
en trois tâches distinctes:

• Le filtrage consiste à estimer la distribution de l’état xt étant donné
l’ensemble des observations perçues depuis le début de la séquence
jusqu’à l’instant t.

• La prédiction consiste simplement à évaluer la distribution d’un état
futur xt+n, étant donné les observations {y1, . . . , yt}.

• Le smoothing consiste enfin à évaluer la distribution d’un état xk étant
donné les observations {y1, . . . , yT } avec k < T .

Dans ce travail, nous nous focalisons uniquement sur la tâche de filtrage.
Cette restriction a notamment des conséquences sur le type de modèles que
nous allons définir, mais également sur la nature des fonctions de coût que
nous utiliserons pendant l’apprentissage. Plus particulièrement, nous re-
streignons cette étude au cas ou les variables d’état et d’observation peu-
vent être représentées, ou approximées, par des distributions gaussiennes. Le
cas de distributions non gaussiennes nécessitant l’exploitation de méthodes
d’échantillonnage est à considérer comme une extension de ces travaux, et
reste donc réservée pour de futurs développements.

Le filtrage bayésien est une méthode récursive qui consiste à évaluer la
distribution de l’état normalisée p(xt|y1, . . . , yt). Notons que cette distribu-
tion est dite normalisée car nous avons

p(xt|y1, ..., yt) =
α(xt)

p(y1, ..., yt)
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En exploitant les indépendance conditionnelles dans le graphe, c’est-à-
dire le principe de d-séparation (Koller and Friedman, 2009), il nous est pos-
sible de trouver une expression analytique pour évaluer la distribution nor-
malisée de l’état. Cette expression correspond à la célèbre équation récursive
de filtrage:

p(xt|y1, . . . , yt) ∝ p(yt|xt)
�

p(xt−1|y1, . . . , yt−1)p(xt|xt−1) dxt−1

. Pour des distributions gaussiennes, cette équation nous permet d’aboutir
aux équations traditionnelles du filtre de Kalman cf.(Bishop, 2006).

De manière intuitive, cette équation décrit le déroulement récursif du
processus d’estimation d’état qui repose sur deux étapes. Dans un premier
temps, l’état obtenu à l’itération précédente est propagé à travers le modèle
dynamique du système. Cette étape, dite de prédiction, correspond à
l’intégrale

�
p(xt−1|y1, . . . , yt−1)p(xt|xt−1) dxt−1. Dans un second temps, la

nouvelle distribution de l’état prédit (le résultat de l’intégrale) est pondérée
par la probabilité de percevoir l’observation yt dans ce nouvel état. C’est
l’étape de correction, ou d’update.

Dans la partie suivante, nous abordons plus en détail la modélisation
classique de la distribution d’observation, et les défauts principaux qui en
découlent, et que nous essaierons de corriger.

D.2.2 Défauts du modèle état-observation

Suivant la méthode de modélisation classique, la définition de la distribution
d’observation p(yt|xt) repose sur deux éléments principaux. Dans un pre-
mier temps, le fonctionnement physique et supposé connu des capteurs est
représenté par une composante déterministe qui associe à chaque état xt un
vecteur de mesures yt. C’est la fonction d’observation que nous dénoterons
ici h.

Afin de compenser pour les aspects méconnus ou simplement inconnus
du processus de formation des mesures au niveau du capteur, une com-
posante de bruit est ensuite ajoutée à la composante déterministe du modèle
d’observation. Cette composante stochastique représente notre incertitude
dans le modèle, que ce soit au niveau de la fonction d’observation, mais aussi
globalement dans la structure très simplifiée du modèle état observation.

Ces deux composantes forment la distribution d’observation, comme
représenté Fig.D.3.

Modèle d’observation simplifié
Cette modélisation canonique de la distribution d’observation présente

un intérêt principal: sa simplicité. Cependant, elle introduit également trois
problèmes majeurs que nous détaillons ci-dessous:
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Figure D.3: Définition de la distribution d’observation au travers de deux
composantes déterministes et stochastiques. L’exemple utilise un modèle de
bruit gaussien centré en zéro tel que défini dans le cas du filtre de Kalman.

• Modèle de bruit stationnaire: historiquement, le modèle état
observation a été bâti sur la théorie des châınes de Markov, pour
lesquelles l’hypothèse de distributions stationnaires simplifiait l’exploitation
de ce type de modèle. En conséquence, les composantes de bruit du
modèle état observation sont encore, le plus souvent, définis comme
stationnaires. Comme nous l’avons vu, dans le cadre de la navigation
autonome, l’existence de différents contextes de navigation modifiant
la qualité des mesures est inévitable, et l’exploitation de distributions
stationnaires devient problématique puisque nous sommes alors forcés
de représenter plusieurs contextes (et amplitudes de bruits associés)
sous un modèle unique.

• Règles de réjection: lorsque nous définissons une distribution d’observation
stationnaire, nous introduisons implicitement l’existence d’outliers. Dans
ce cas, un outlier est une mesure qui se situe trop loin de la masse cen-
trale de la distribution d’observation, ou plus intuitivement, qui se
situe hors de la zone d’incertitude définie par le modèle de bruit au-
tour de la composante déterministe yt = h(xt). Les outliers sont donc
des mesures qui sont structurellement considérées comme des anoma-
lies, et qui en pratique peuvent causer la divergence du filtre. En
conséquence, il est souvent nécessaire d’adjoindre au modèle état ob-
servation une composante de réjection, afin de ne confronter le proces-
sus d’estimation qu’aux situations prévues par le modèle. En pratique,
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cela revient à rejeter une mesure en se basant uniquement sur le fait
qu’elle ne respecte pas le fonctionnement prévu par un modèle connu
pour être erroné. Si la réjection de mesures fortement erronées reste
utile, nous pensons néanmoins qu’il n’existe qu’un seul critère logique
de réjection: la mesure permet elle d’améliorer ou non, la qualité de
l’estimation d’état ?

• Un modèle aveugle: dans la continuité de la réflexion précédente,
nous illustrons un dernier problème via la problématique de réjection.
En l’état, lorsque nous décidons de rejeter une mesure, nous exploitons
uniquement sa consistance avec le modèle, c’est à dire, sa conformité
au comportement attendu du capteur tel que défini par le modèle
d’observation. Si la mesure se situe hors de la zone d’incertitude
du modèle, elle est donc rejetée. En utilisant, cette approche, nous
venons donc détecter de manière indirecte l’existence d’un phénomène
physique extérieur provoquant l’apparition d’une mesure erronée, sans
l’observer. Cette exemple illustre le problème général du test de consis-
tance, qui repose sur l’hypothèse forte que le modèle décrit intégralement
tous les aspects du système nécessaires au processus d’estimation.
Hors, ce modèle contient de multiples approximations, et par conséquent
nous n’avons aucune garantie de fournir aux observations le traitement
approprié. Une des conséquences de ce fonctionnement en aveugle est
la tendance des filtres bayésiens à diverger.

Dans la section suivante, nous présentons une nouvelle approche de
modélisation de la distribution d’observation qui vise à corriger ces problèmes,
tout en limitant la complexité du modèle résultant.

D.3 Approche et principe d’implémentation

Le nouveau paradigme de modélisation de la distribution d’observation ex-
ploite la décomposition d’origine en une composante déterministe à laque-
lle est adjointe une composante de bruit représentant l’incertitude dans
le modèle. Bien que fondamentalement très approximative, en comparai-
son des phénomènes physiques à l’origine de la formation des mesures au
niveau capteur, cette modélisation présente deux intérêts principaux que
nous souhaitons conserver: la simplicité, dont découle le faible coût en temps
de calcul, ainsi qu’une grande robustesse.

Notre approche se différencie de la modélisation classique par l’introduction
d’un modèle d’incertitude précis, qui évolue dans le temps afin de fournir la
meilleure estimation possible étant donné l’ensemble de mesures à disposi-
tion. Plus précisément, notre solution repose sur trois idées fondamentales:

• La modélisation explicite de l’influence du contexte: pour ce faire, une
nouvelle variable observée ct représentant le contexte est introduite.
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En fonction du contexte, la distribution d’observation, désormais hétérogène
dans le temps, varie à la fois dans le sous ensemble de mesure qu’elle
exploite à chaque instant t, ainsi que dans le bruit associé aux obser-
vations sélectionnées.

• L’exploitation des techniques d’apprentissage supervisé: la complexité
de la nature du lien causal entre contexte et observation étant trop
élevée, il nous est impossible de définir directement ce modèle. Par
conséquent, la seule solution qui s’offre à nous consiste à apprendre ce
modèle à partir de la donnée, suivant les techniques d’apprentissage
supervisé classiques.

• La modélisation implicite de l’influence du contexte: cette notion
plus subtile repose sur l’exploitation de méthode d’apprentissage al-
ternatives, comme l’apprentissage discriminatif. Intuitivement, cette
méthode consiste à optimiser les paramètres du modèle de manière à
obtenir la meilleure estimation d’état, à l’inverse des méthodes clas-
siques qui cherchent, elles, à expliquer les données d’entrâınement selon
les propriétés génératives du modèle. Il a été prouvé (Abbeel et al.,
2005) que l’apprentissage discriminatif permet de compenser certaines
imprécisions du modèle, comme dans notre cas l’existence de contextes
pour lesquels la qualité des mesures varie.

D.3.1 Principes d’implémentation

En pratique, notre problématique s’apparente à la tâche de régression, et
plus précisément de régression hétéroscédastique, qui vise à apprendre un
modèle de régression pour un mapping xt, ct �→ yt tout en définissant une
composante principale ainsi qu’un modèle de bruit tous deux variables dans
le temps. Si en pratique cette approche a été suggérée et exploitée dans
le cadre du filtrage bayésien (Ko and Fox, 2009), elle pose cependant un
problème important dans le cas de données réelles et polluées, car il devient
impossible de discerner quelle partie du signal doit être attribuée à la com-
posante principale de celle qui doit être expliquée par le modèle de bruit lors
de l’apprentissage. En cas de perturbations fortes sur les observations, cette
approche se révèle donc inexploitable. Pour éviter ce travers, nous supposons
ici que la composante principale (déterministe) du modèle d’observation est
donc connue, ce qui en pratique revient à supposer que nous connaissons le
fonctionnement physique de nos capteurs. Nous complétons ce modèle avec
deux composants supplémentaires dont les rôles consistent respectivement à
sélectionner un sous ensemble de mesures dans le vecteur d’observaiton, et
à adapter le bruit d’observation des mesures sélectionnées. Ce principe est
illustré Fig.D.4.

En pratique, nous pouvons représenter cette approche à travers la définition
d’un nouveau modèle graphique générique, que nous représentons Fig.D.5.
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Figure D.4: Principe d’implémentation général, et détail des approches pro-
posées dans ces travaux. La sélection par le mélange d’experts ainsi que
l’adaptation du bruit via des modèles de type Relevance Vector Machine
(RVM) seront détaillés par la suite. La sélection de mesure via RVM ne
sera pas détaillée dans ce résumé, mais plus de détails sont donnés dans le
chapitre 5 de cette thèse.

Figure D.5: Modèle graphique générique de l’approche proposée. ct
représente la variable de contexte observée. ht représente une nouvelle vari-
able cachée qui sera définie comme une variable discrète dans le cas de la
classification, et continue dans le cas de l’adaptation du bruit.
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Dans les sections suivantes, nous détaillons notre approche pour la sélection
par le mélange d’experts ainsi que l’adaptation du bruit via des modèles de
type Relevance Vector Machine. Ces travaux correspondent aux publica-
tions suivantes (Ravet et al., 2013; Ravet and Lacroix, 2014).

D.4 Illustration: sélection par le mélange d’experts

D.4.1 Introduction: modèle du mélange d’experts

Nous commençons cette section par introduire le modèle du mélange d’expert.
Dans un second temps, nous verrons comment ce modèle peut être exploité
pour la sélection de mesures.

L’approche du mélange d’experts repose sur une constatation simple:
pour réaliser une tâche de régression ou de classification, il est souvent
intéressant d’exploiter plusieurs modèles optimisés pour différentes régions
de l’espace d’entrée, plutôt qu’un modèle unique. Suivant cette approche le
mélange d’expert, ici détaillé pour la régression, requiert la définition d’une
banque de modèle, ainsi que d’une fonction d’activation, communément ap-
pelée gating network. Ce principe est représenté Fig.D.6.

Figure D.6: Mélange d’expert pour la régression (Jacobs et al., 1991)

En pratique, chaque expert reçoit un vecteur d’entrée y et fournit une
prédiction indépendante pour la sortie x. En parallèle, le gating network
reçoit également le vecteur d’entrée y, et produit un ensemble de poids gk
attribués à chaque expert. Ces poids reflètent la confiance du gating network
en la capacité de chaque expert à fournir la bonne variable de sortie x. La
sortie globale du modèle est alors calculée simplement comme la somme
pondérée de outputs de chaque expert. Traditionnellement, l’apprentissage
du modèle permet de déterminer les paramètres optimaux de chaque modèle
expert, ainsi que des régions d’activation (gating network).
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D.4.2 Application à la sélection de mesures

En transposant l’approche du mélange d’experts à un mélange de filtres
exploitant chacun un sous ensemble distinct des mesures dans le vecteur
d’observation, nous pouvons donc automatiquement résoudre le problème
de la sélection de mesures. La différence principale, pour notre application,
réside dans le fait que chaque filtre (expert) exploite le vecteur d’observation
en entrée, alors que le réseau de gating repose, lui, sur la variable de contexte.
Cette approche est illustrée Fig.D.7.









Figure D.7: Approche du mélange de filtres pour la sélection de mesures
dépendant du contexte. L’illustration est donnée dans le cas d’un vecteur
d’observation de dimension 2, qui résulte donc en l’exploitation de 3 filtres
distincts exploitant respectivement les mesures y1, (y1, y2) et y2.

En pratique, l’étape d’apprentissage ne nécessite ici de définir que les
paramètres du réseau de gating. Pour des raisons de simplicité, nous ex-
ploitons ici un modèle de région d’activation basé sur des noyaux gaussiens
uni-modaux. Ce choix nous permet notamment d’exploiter l’algorithme Ex-
pectation Maximisation (EM) dont les détails sont fournis dans (Ravet et al.,
2013).

Un aspect important de la méthode d’apprentissage réside dans la nature
structurellement discriminative de ce modèle: pour optimiser les paramètres
du modèle, dans le cas du mélange d’experts comme du mélange de fil-
tres, nous allons chercher à expliquer au mieux les données d’apprentissage
constituées de vecteurs d’observation et de l’état associé. Par conséquent,
durant l’apprentissage, nous allons chercher à expliquer au mieux l’état xt
au travers des équations de filtrage, ce qui n’est pas le cas dans le cadre
de l’apprentissage génératif traditionnel, qui cherche lui à optimiser les
paramètres du modèle état observation de manière à expliquer au mieux
l’évolution de l’état à travers la distribution de prédiction p(xt|xt−1) ainsi
que les observations à travers la distribution d’observation p(yt|xt). Notons
que cela signifie donc que les équations de filtrage ne sont donc pas exploitées
dans le cas de l’apprentissage génératif.

Cette spécificité a des conséquences importantes en terme de robustesse,
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puisque nous prenons également en compte les erreurs de modélisation im-
pactant la qualité de l’estimation. En pratique, nous avons notamment ob-
servé que la sortie du mélange de filtres restait toujours consistante, quelle
que soit la qualité des paramètres de chaque filtre, ce qui n’est pas le cas
pour un filtre traditionnel doté d’un mécanisme de réjection.

D.4.3 Expériences

Nous illustrons ici les résultats de l’approche du mélange de filtres dans cadre
de l’estimation d’altitude d’un drone quadrotor équipé de capteurs fortement
bruités. Les données d’entrâınement sont obtenues à l’aide d’un système
de motion capture qui fournit l’état du robot, et qui sont associées aux
observation perçues par les capteurs. Ces données sont illustrées Fig.D.8.
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Figure D.8: Données d’entrâınement comprenant (en haut) les mesures
d’altitude fournies par un capteur à ultrason ainsi qu’un baromètre. La
commande de poussée est également utilisée comme information de con-
texte (en bas à gauche), et la mesure d’altitude fournie par le système de
motion capture nous fournit la vérité terrain.

Les informations de contexte sont ici définies par les mesures capteurs,
ainsi que la commande en poussée. Ce choix se justifie par la présence
de nombreux outliers dans les mesures ultrason, qui sont potentiellement
provoqués par les perturbations électromagnétiques des moteurs. La com-
mande en poussée, proportionnelle à la vitesse de rotation, nous semble donc
pertinente dans le cadre de la sélection de mesures.

Les données d’entrâınement contiennent environ 6000 échantillons, et
l’optimisation des paramètres du gating network ne requiert que quelques
minutes, correspondant à 50 itérations de l’algorithme EM. Après la phase
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d’apprentissage, nous utilisons ce modèle sur des données de validation, qui
diffèrent donc des données d’entrâınement. La sortie du mélange de filtre
est obtenue par la somme pondérée de l’estimation fournie par chaque fil-
tre. Si nous dénotons µk et σk la moyenne et variance en sortie de chaque
filtre, la somme pondérée correspond donc à l’approximation de type gener-
alized pseudo bayes d’ordre 1 (GPB1) qui permet de représenter le mélange
des sorties de chaque filtre au travers d’une distribution unique suivant les
équations de mélange définies dans (Bar-Shalom et al., 2002):

µmix =
K�

k=1

gkµk

σmix =
K�

k=1

gk[σk + (µk − µmix)(µk − µmix)
T ]

Un exemple d’estimation en sortie du mélange de filtre est fourni Fig.D.9.
Comme nous pouvons le voir, la plupart des outliers sont rejetés correcte-
ment, même si certaines mesures erronées polluent ponctuellement l’estimation.
Deux causes principales peuvent expliquer ces erreurs: il est d’abord possi-
ble que ces mesures correspondent à des types de contextes absents dans les
données d’entrâınement. En conséquence, nous n’avons pas de garantie de
les traiter correctement. Deuxièmement, il est aussi possible que le modèle
de noyaux gaussiens uni-modaux exploités pour la définition des régions
d’activation reste relativement trop simple par rapport à la complexité du
problème de la sélection des mesures. Une complexification de ce modèle est
donc à envisager.
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Figure D.9: Estimation d’altitude et incertitude associée en sortie du
mélange de filtres sur des données de validation.

Dans la Fig.D.10, nous comparons l’erreur sur l’estimation d’altitude
fournie par le mélange de filtres avec celle fournie par un filtre de Kalman
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complété par une méthode de réjection de type 3-sigma. Clairement, le
mélange de filtre fournit ici de bien meilleures performances que le filtre de
Kalman, qui malgré une longue phase de réglage des paramètres, présente
toujours des cas de divergence significatifs. De fait, la méthode de réjection
se révèle très sensible au paramétrage des distributions de prédiction et
d’observation du filtre, là ou le mélange de filtres présente une grande ro-
bustesse grâce à l’apprentissage discriminatif.
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Figure D.10: Erreur sur l’estimation pour le mélange de filtres et un filtre
de Kalman avec réjection basée 3-sigma.

D.4.4 Conclusion

Cette première approche pour la sélection de mesures nous fournit tout
d’abord une preuve de l’applicabilité de techniques de sélection dépendant
du contexte. Notamment, nous avons vu que le modèle proposé fournit de
bonnes performances malgré un modèle des zones d’activation extrêmement
simple. Ce modèle nous permet par ailleurs d’exploiter le mélange de filtres
sans surcout significatif en temps de calcul.

Nous illustrons également qu’il n’est pas forcément nécessaire de définir
la variable de contexte par le biais de nombreuses mesures additionnelles
caractérisant l’environnement. A l’inverse, nous prouvons ici que l’ensemble
des mesures contient un ensemble de patterns identifiables par des méthodes
d’apprentissage. Ces patterns ne représentent pas directement le contexte,
mais son incidence sur la formation des mesures au niveau capteur.

Comme nous l’avons vu, une piste d’amélioration majeure consiste à
complexifier le modèle des zones d’activation du gating network. Pour ce
faire, il est notamment intéressant d’explorer la piste des modèles de type
non paramétriques. Cette piste a été explorée dans une publication addi-
tionnelle (Ravet et al., 2014).
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D.5 Illustration: adaptation du bruit à l’aide de

modèles non-paramétriques et sparses

D.5.1 Introduction: intérêt des modèles non-paramétriques

Dans l’approche précédente, nous avons fait l’hypothèse forte que les zones
d’activation pouvaient être représentées par des distributions gaussiennes
uni-modales. Cette hypothèse n’est pas sans conséquence, et il est clair
qu’un modèle plus complexe serait plus adapté, et plus pertinent dans le
cadre de la définition d’un modèle générique.

Notre but est ici de prédire à chaque instant t l’amplitude du bruit de
chaque mesure contenue dans l’observation yt. Clairement, nous n’avons
aucune idée de la nature du lien causal entre la variable de contexte et le
bruit de mesure. Pour éviter d’introduire une hypothèse forte sur la forme
fonctionnelle de cette distribution, nous décidons ici d’exploiter les modèles
non-paramétriques. Cette approche très puissante repose uniquement sur la
similarité d’une nouvelle variable d’entrée avec les données d’entrâınement
pour prédire une nouvelle sortie.
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Figure D.11: RVM pour la tâche de classification. L’exemple fourni corre-
spond à l’existence de 3 classes. Les points entourés en noir correspondent
aux points d’intérêt (ou relevance vectors) conservés pour la prédiction, les
autres sont rejetés.

Le problème principal de cette approche réside dans le temps de cal-
cul conséquent de chaque nouvelle prédiction qui doit prendre en compte
l’ensemble des échantillons des données d’entrâınement. Par conséquent,
dans le but de conserver un temps d’exécution permettant l’exploitation en
temps réel, nous choisissons ici d’exploiter des modèles non-paramétriques
dits sparses, qui nous permettent d’exploiter uniquement un sous-ensemble
des échantillons des données d’entrâınement. Le modèle RVM est partic-
ulièrement intéressant en ce sens puisqu’il permet de sparsifier la donnée
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naturellement pendant la phase d’apprentissage. Le modèle RVM pour la
classification est illustré Fig.D.11.

D.5.2 Adaptation du bruit

Le principe simplifié de notre approche est illustré Fig.D.12. Nous effectuons
maintenant un court rappel des caractéristiques de modèle RVM ainsi que
ses capacités de sparsification induites lors de l’apprentissage.

!"#
!$%&'(()*+

Figure D.12: Principe simplifié de l’adaptation du bruit à l’aide du modèle
de régression RVM.

Relevance Vector Machine
Le modèle RVM fait partie de la famille des modèles linéaires étendus

basés sur l’approche par kernel. En pratique, pour modéliser un mapping
x �→ y à travers une distribution de prédiction, cette technique revient à
introduire la modélisation suivante:

p(y|x,w,σ) = N (y | f(x),σ)

f(x) =
N�

n=1

wnK(x, xn) + b

ou K représente la fonction kernel utilisée, qui intuitivement nous four-
nit la mesure de similarité entre une nouvelle entrée x avec les données
d’entrâınement xn, et wn le poids accordé à chaque échantillon xn.

Sous deux condition spécifiques, la phase d’apprentissage conduit à la
sparsification automatique des données d’entrâınement (Tipping et al., 2003).
La première condition est de définir une distribution à priori sur les poids wn

de type gaussienne centrée en zéro, tel que: p(wi|αi) ∼ N (wi | 0,αi). La sec-
onde condition est de marginaliser les variables wn pendant l’apprentissage,
ce qui correspond à la technique dite du maximum de vraisemblance de type
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2 (Type-2 maximum likelihood). Par conséquent, la phase d’apprentissage
se résume à l’optimisation suivante:

argmax
σ,α

�
p(y|x,σ,α) =

�
p(y|x,w,σ)p(w|α) dw

�

Cette modélisation spécifique nous amène à construire le modèle graphique
présenté Fig.D.13. L’apprentissage des paramètres du modèle de prédiction
de l’amplitude des bruits, représentée ici par la variable zt, requiert un
traitement spécifique afin de conserver la conditions de sparsification du
modèle RVM. En conséquence, en lieu de l’algorithme EM qu’il serait ici ex-
act d’utiliser, nous introduisons une approche hybride EM-Type2 Maximum
Likelihood qui nous permet d’optimiser les paramètres du modèle de façon
itérative. Plus de détails concernant cette technique peuvent être trouvés
dans (Ravet and Lacroix, 2014).

Figure D.13: Modèles graphique complet pour un modèle état observation
dont les bruits de mesures varient en fonction du contexte, suivant le modèle
RVM.

D.5.3 Expériences

Nous utilisons maintenant ce nouveau modèle dans le cadre expérimental
introduit précédemment. Dans un premier temps, nous entrâınons donc le
modèle afin de prédire l’évolution du bruit d’observation des deux capteurs
de mesure d’altitude. Un exemple de prédiction du bruit sur des données de
validation est donné Fig.D.15.
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Figure D.14: Prédiction du bruit d’observation pour les mesures baromètre
sur données de validation.

Le modèle de prédiction est ensuite utilisé dans les équations de filtrage.
L’estimation d’altitude fournie par le système complet est illustré Fig.
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Figure D.15: Estimation d’altitude avec prédiction des bruits de mesures
dépendants du contexte.

Comme nous pouvons le voir, l’exploitation de ce modèle résulte en une
incertitude très faible en sortie du filtre. En pratique, ce modèle nous per-
met d’obtenir la meilleure performance en terme d’erreur sur l’estimation.
Néanmoins, du fait de cette faible incertitude, les cas d’inconsistance avec
la vérité terrain sont donc nombreux. Ce problème s’explique notamment
par l’inexactitude de la méthode d’inférence que nous utilisons ici. Plus
exactement, lorsque nous prédisons l’amplitude du bruit de mesure avant
de l’exploiter au sein des équations de filtrage, nous ignorons l’existence
d’une nouvelle dépendance entre la variable zt et l’état xt. Par conséquent,
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les équations de filtrage ne sont plus directement exploitables et de nouvelles
équations doivent être dérivées. Plus de détail concernant cette problématique
peuvent être trouvés dans (Ravet and Lacroix, 2014).

D.6 Conclusion

Nous avons proposé deux approches pour la sélection et l’adaptation du bruit
de mesures exploitables en temps réel. Ces techniques montrent des avan-
tages significatifs en termes de performance en comparaison des approches
traditionnelles, et présentent également l’avantage de ne pas nécessiter de
temps de réglage des paramètres des modèles. Pour poursuivre ces développements,
nous pensons que les modèles non-paramétriques, tels que le modèle RVM,
sont d’un grand intérêt car capable de s’adapter facilement à toute applica-
tion.

L’approche discriminative se révèle d’un grand intérêt dans la problématique
de filtrage, puisque nous ne nous intéressons qu’à la performance finale du
filtre, et non à la capacité du modèle à expliquer la donnée. Néanmoins,
comme décrit dans (Minka, 2005), l’emploi de méthodes d’apprentissage dis-
criminatives sur des modèles structurellement génératifs comme le modèle
état observation n’est pas sans conséquence. En pratique, pour conserver
une cohérence entre apprentissage et inférence, l’apprentissage discriminatif
provoque l’apparition de nouveaux modèles, pour lesquels l’inférence change.
Un grand soin doit donc être porté aux modèles graphiques équivalents,
et aux dépendances qui sont souvent oubliées dans la littérature, ou les
équations de filtrage ne sont pas remises en cause. Cette problématique
nous montre que le formalisme des modèles graphiques probabilistes joue un
grand rôle dans la compréhension et le développement des nouvelles tech-
niques de filtrage.
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Joaquin Quiñonero-candela, Carl Edward Rasmussen, and Ralf Herbrich. A
unifying view of sparse approximate gaussian process regression. Journal
of Machine Learning Research, 6:2005, 2005.

Viswanath Ramamurti and Joydeep Ghosh. On the use of localized gating
in mixture of experts networks, 1998.
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