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'Picking up the quiet hum of a battery-powered, diesel-electric submarine 

in busy coastal waters is like trying to identify the sound of a single car 

engine in the din of a major city' 

Rear Admiral Frank Drennan 
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Introduction 

About 71 percent of the Earth's surface is water-covered, and the oceans hold about 

96.5 percent of all Earth's water. About half of the world's population lives within 200 

kilometers of a coastline, and their numbers are expected to double by 2025. Based on global, 

regional and local operations of international, national, and commercial organizations, 

Confined and Shallow Waters (CSW) is priority area of interest linking the high seas to the 

coasts. Maritime transport is essential to the world's economy as over 90% of the world's trade 

is carried by sea. Seaports are the backbone of global transportation routes where all shipping 

operations begin and end. 75% of all trade goes through at least one narrow passageway of 

water and therefore vulnerable strait, such as the Hormuz strait and Gibraltar strait, among 

others. Even the transoceanic traffic is partially carried out by narrow straits. Therefore, 

narrow straits, jagged coastlines, and archipelago-like environments, is to be regarded as a 

very specific operational environment with a broad variety of activities, threats and 

particularities which considerably affect the conduct of military operations. In such cases, any 

shipping company is at risk of being easily hampered or even disturbed. [1] 

Over the past decade, the location of passive sonars and the tracking of underwater 

acoustic targets have attracted increasing interest. However, this still difficult problem 

remains a constant research theme, having a high strategic value for naval operations, 

particularly in the protection of coastal oceans. The requirements of the naval mission have 

been extended from open-ocean warfighting operations, which consists of The traditional 

warfare tasks of anti-air, anti-surface, antisubmarine, strike, and mine warfare, to shallow-

water (or littoral) scenarios capable of defeating anti-access and asymmetric threats (terrorists, 

pirates, or organized criminals). This transition has not been easy for sonar technologists 

because the sonar systems originally designed for the high seas warfare now have to adapt to 

work in coastal areas. This has also been the case for modeling and simulation technologies, 

which have been redefined and refocused to support a new generation of naval systems 

designed to operate effectively in coastal areas while maintaining deep water capacity. 

Shallow water geometry, with a maximum depth of 200 m, increases the importance of 

boundary interactions, which reduce acoustic energy through propagation losses. The 

interfering noise combined with boundary reverberation makes the detection of the desired 

signals of interest a really difficult task to achieve. Coastal operations present operators with a 

unique, demanding and growing challenge, and require rethinking the wide range of naval 

roles and missions, both offensive and defensive. [2] [3] 

“CSW is a cramped, congested and contested operational environment constituting an 

extremely complex thus challenging littoral joint battlespace which affects the freedom of 

movement and action by specific geographical and geophysical factors as well as manifold 

threats and risks. On the other side, CSW also offers a broad range of possibilities and 

opportunities for military operations.” NATO 2016 [4] 

A complete and up-to-date tactical picture is essential to the successful execution of 

the overall mission. Surveillance can provide the commander with accurate information about 

the adversary's operations, his possibly intentions and threats, his valuable target location and 

his force disposition. Timely and comprehensive identification, tracking, and preemptive 

attack of submarine threats even before they leave port are major naval priorities. Naval 

forces conducting CSW operations should have robust tools at hand giving all sources of 

information to provide an effective comprehensive situational awareness. The early the 

https://water.usgs.gov/edu/watercycleoceans.html
https://en.wikipedia.org/wiki/Asymmetric_warfare
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identification and location of the possible threat, the greater is the advantage on the battlefield 

providing an undersea dominance, especially now after the recent threat of supercavitating 

torpedo technology. The idea behind of this thesis is to make the localization and possible 

identification reliable in any operation scenario allowing the commander take the best 

decision to their missions. 

There are two generic approaches for exploiting and measuring underwater sound 

waves, and both active and passive sonars were developed during the war: 

Passive sonars, first developed in 1490 by Leonardo da Vinci, are listening devices, no 

energy is transmitted to the underwater channel, consisting of single hydrophones or arrays of 

hydrophones, used primarily to detected sound from the radiated signature levels from the 

propeller, active sonar, inadvertently sound by the target, and also to detect marine animals 

like whales for scientific applications, without revealing its own location. Tactical systems 

consist of sonobuoys dropped into the ocean from ships and aircrafts, hullmounted and long 

towed arrays from submarine and surface vessels. Two important systems named as: the 

Surveillance Towed Acoustic Sensor System (SURTASS) and the Sound Surveillance System 

(SOSUS) were develop by the U.S. to missions of Anti-Submarine Warfare (AWS), which 

include providing indications and warning of increased submarine activity. "The more we 

have been faced with the challenge of diesel submarines and shallow water, the more we have 

come to realize the importance of the multi-sensor approach to ASW”, said Vice Admiral 

Owens [2]. The SOSUS played an important role in 1968 when by trilateration was able to 

locate the Soviet submarine which exploded close to the Hawaii. Although it has been shown 

the efficiency of this system, its implementation and maintenance is considered too expensive. 

Nowadays more robust sensors have been developed using optic fiber networks.  

Active sonars, developed in 1918, by both Britain and the U.S, first designed after the 

Titanic disaster to detect the presence of large objects under water as an attempt to avoid that 

it ever happen again. It emits an acoustic signal or pulse of sound, often called a "ping" into 

the underwater channel. These sound waves propagate through the ocean environment to the 

target, and then the sound bounces off the object and propagate back an “echo” to the 

receiving hydrophones. . By determining the time between the emission of the sound pulse 

and its reception, it is possible to determine the range and orientation of the object. The active 

sonars used during World War II achieved only short detection ranges against German 

submarines because of the high frequencies used.  Although the technical designs of these 

sonars were made more manageable, using high-frequency transducers, the long detection 

ranges associated with surveillance require lower operating frequencies because sound 

absorption in seawater is dependent on frequency. For this reason, low-frequency active 

acoustics (LFAA) with frequency of 100 to 1000 kHz, which can travel much longer, has 

been receiving more attention by researches. There are two primary uses of active sonar: first 

used to detection and tracking other vessels and second used to navigation or obstacle 

avoidance. In a tactical situation is only used to verify a final range to a target in which it is 

desired to engage with a torpedo. More recently, the active sonar has been used to matched 

topography processing to determine the geoacoustic parameters involved in its propagation. 

The use of sound to explore the ocean and the sea floor contributes to an increased sonar 

performance. A better knowledge of the underwater sound propagation and the ambient noise 

properties gives the submarine crew the ability to hide and seek. 

 

 

 

https://en.wikipedia.org/wiki/Leonardo_da_Vinci
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Objective  

As demonstrated in past wars and conflicts, new technologies have a significant 

impact of on combat outcomes. Thus the consequent utilization of new technologies to detect 

threats, particularly interested in shallow water environment, is of paramount importance for 

naval operations. The purpose of this thesis is to detect and localize a surface and sub-surface 

target using a passive sonar configuration mounted in a moving platform such as a submarine. 

The proposed technique was tested in a controlled environment using both a cooperative and 

non-cooperative system, and in an at-sea operational environment, tested only using a 

cooperative system.  The Hausdorff Distance technique propose here is faster, precise and 

robust technique to target localizations even when in presence of underwater propagation 

mismatches, which is the primarily limitation to the use of Matched Field Processing (MFP). 

 

Organization 

This work is divided in 7 chapters. In Chapter 1, we briefly review several related 

theories used for this thesis. The inverse problem was presented as well as the ray path 

propagation theory. At the end of the chapter the Sound Speed Profile is presented as well as 

the propagation loss on the ocean. In Chapter 2, we review localization techniques, given a 

special attention to the Matched field processing MFP. In Chapter 3, we define the Hausdorff 

distance and adapt to be used as minimal cost function to underwater target localization. In 

Chapter 4, we show the results from the controlled experiment performed at the GIPSA-LAB. 

The Chapter 5 introduced the concept of spatial diversity with the application of the 

Hausdorff Distance in an at-sea experiment called ALMA 2015. Chapter 6 introduced the 

concept of beamforming. The comparison between both processes was presented at the end of 

the chapter. Finally, Chapter 7 presents the conclusions of the thesis and gives some 

suggestions for future work. 
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CHAPTER 1     

  Localization as inverse Problem 
 

Contents 

1.1. Introduction ............................................................................................................... 5 

1.2. Inverse problem ......................................................................................................... 6 

1.3. Simulation program .................................................................................................. 8 

1.3.1 Ray path theory...................................................................................................................................................... 9 

1.4. Sound Speed Profile ................................................................................................. 10 

1.4.1 Propagation Loss ................................................................................................................................. 10 

1.4.2 Geometric spreading loss .................................................................................................................... 11 

1.4.3 Absorption loss .................................................................................................................................... 11 

1.4.4 Bottom Loss ........................................................................................................................................ 12 

1.4.5 Scattering loss...................................................................................................................................... 13 

1.5. Chapter Summary ................................................................................................... 15 

 

1.1. Introduction 
 

The ocean is an irregular and inhomogeneous acoustic waveguide bounded above by 

the sea surface and below by the seabed [4]. The context of shallow waters, typically a 

maximum depth of 200 m, associated with a long range of targets, produces sonar signals 

along the multiple paths at a very close angle and the travel time one of the other. The SSP for 

this scenario is refractive downwards or nearly constant over depth, resulting in long-distance 

multipath propagation exclusively via numerous interactions with complex boundaries 

(rugged seabed, rough moving sea surface), culminating to a tremendous obstacle for 

achieving an accurate ranging of the target. Non-stationary more or less random interference 

patterns, which can be either constructive (gain) or destructive (fading), affect the 

performance of the signal processing. The signal received by each sonar sensor is assumed to 

be the sum of the copies of the waveform transmitted by the target. It contains information 

about the specific range and depth of the target across the characteristics of the different 

propagation paths. The location information of the target can be inferred from two widely 

used parameters: the arrival time difference (TDOA) and / or the arrival angles (AOA).  

Spatial and temporal dependencies relate to how acoustic parameters of oceans vary 

with geo-location and time. Oceanographic parameters in coastal environments are generally 

characterized by strong spatial and temporal variability, which makes these regions very 

difficult acoustic environments. The term uncertainty is used to refer to how well is the 

knowledge of the parameter behavior, which is always incomplete to some degree. 
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Uncertainties in environmental parameters may affect all features of the marine medium: 

changes in temperature, pressure and salinity, the main parameters of the sound speed profile 

affect the refraction of sound in the water column (fronts, upwelling, tides, internal waves, , 

currents and turbulence) influences the times and angles of arrival from the multipath; seabed 

topography (micro-topography, ripples) affects bottom reflection angles; sea bottom geo-

acoustic properties like sediment type or layering of the seafloor affect reflection coefficient 

and may impact the detectability of late arrivals; the sea surface affected by gravity waves is 

an intrinsically random boundary and affects both reflection coefficients and arrival angles. In 

shallow water, interactions of the acoustic fields with the seabed require an increase of 

understanding of the sedimentary structure of the bottom much higher than the one required in 

deep-water environments. In many cases, even a small variation in one of these items can 

change dramatically the propagation paths. [5] 

 Seasonal variations affect oceanographic parameters in the upper ocean. In addition, 

all these parameters are geographically dependent. Episodic transitions of meteorological 

fronts from continental interiors affect the thermal structure of the adjacent shelf waters 

through intense air-sea interactions [6]. Diurnal changes also affect oceanographic 

parameters. In the hottest part of the day, the temperature rises near the surface and, as a 

result, the SSP increases towards the sea surface. This heating close to the surface (and its 

subsequent cooling) has a profound effect on surface-ship sonars. Thus, the diurnal heating 

causes lower sonar performance in the afternoon, a phenomenon known as the afternoon 

effect [7]. Others problems came by river due to its strong salinity gradients along the 

adjacent coast. Variable bottom topographies also complicate acoustic bottom boundary 

conditions [3]. 

This chapter is divided into three parts: the first one examines the process of solving 

the inverse localization problem, the second concerns acoustic propagation models and the 

last shows the influence of propagation losses, noise and SSP.  

  

1.2. Inverse problem 

The principle of most accurate technique to inverse localization is achieved by solving 

the acoustic wave equation and requires a two-steps procedure:   

 The first step consists of predicting the accurate replica of the acoustic signals 

and the corresponding TDOA and/AOA modeled, with the help of an acoustic 

propagation models (rays theory, Normal modes, parabolic equation, multipath 

expansion, wavenumber integration.). Each of techniques has its unique field 

of application which can be defined in terms of acoustic frequency and 

environmental complexity [3]. This modeled information is then used as a 

reference for the comparison with the measured signal and sharply depend on 

the accuracy of the a priori knowledge of the input environment parameters, so 

it is not surprising that processor performance depends on the accuracy and 

resolution of the environmental models.  

 The second step consists of finding the target location that produces the best 

match between the modeled signal parameters and the measured one, process 

called model-based signal processing; this best matching may be searched and 

achieved using different optimizations methods and criteria at the literature, 

such as Matched field processing and Matched mode processing (see chapter 

2), and the proposed Hausdorff distance (see chapter 3). The combination of 

several hydrophones improves and makes more robust the localization 
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processing and its accuracy by making use of spatial diversity, as a remedy to 

the problem of multipath interference and fading.  

For the applicability of Haurdorff distance one additional step must be included, which 

consist of extracting the information of the TDOA and AOA as shown at  Fig. 1. When the 

waveform parameters are known or can be estimated, the most popular method for estimating 

the TDOA is a so-called matched filtering (correlation of signal with estimated waveform) 

[8], however can also be performed using others techniques [9] and [10] and Michalopoulou 

[11], where he applied the deconvolution using singular value decomposition and found a 

better result when used on hyperbolic frequency modulation (HFM). The variance of the 

estimated TDOA can be calculated and depends on SNR, pulse bandwidth and frequency 

[12]. 

 

 

Fig. 1. Final vector of time differences between two datasets 

 

The basic idea consists of first simplifying the problem by reducing one dimension 

from 3D (azimuth included) to only 2D (range and depth). A cell grid size with variations in 

depths and range is defined, adopting the Cartesian coordinates with 𝟎 ≤ 𝐑𝐱 ≤ 𝐑𝐦𝐚𝐱  and 

𝟎 ≤ 𝐃𝐲 ≤ 𝐃𝐦𝐚𝐱, where (𝐑𝐱, 𝐃𝐲)|𝐬 ∈ 𝐒, is rasterized or pixelated for the x-scale component 

to an inter-multiple of 𝟏 𝐑𝐱⁄  and the y-scale component to an inter-multiple of  𝟏 𝐃𝐲⁄ , as 

shown at the  Fig. 1 on the left by the x blue, where each of these points is modelled using the 

ray path propagation. It is well known that by the principle of reciprocity the path from the 

direction of the receiver to target is the same compared to the reverse way. The next step is 

extracting the information of the time of arrival and using the Hausdorff distance for finding 

the possible location of the target. At  Fig. 1 on the right, the true location of the target is 

represented by the red intersection and the estimated location represented by the dark blue 

area. 

The second possible technique applied to localization inversion is process called as 

model-range signal processing. This technique is used on the project SOSUS. The difference 

is that now each one of the blue “x-point” at  Fig. 1 contains one hydrophone. As the sound 

propagates though the medium each hydrophone will record the signal with a difference in 
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time of arrival (range-only measurement or trilateration). By using these time differences 

applied on the network is possible to estimate the location of the target. The third technique is 

using an array instead of only one hydrophone in all blue “x-point”. Now by using the 

beamforming is possible to extract the information of the angle of arrival (bearing-only 

measurement or triangulation), thus with only two correctly separated arrays is possible to 

estimate the target location. The disadvantage of having to use a higher number of 

hydrophones which have to be connected as a network is its high cost. 

The most important liability to an accurate inverse localization is the sensitivity to a 

significant data-model mismatch, especially in shallow water. Incompatibility (mismatch) will 

always exist on real configuration especially when the environment is modeled as range-

independent environments. In this case, the ocean-acoustic environment is considered as 

horizontally stratified, meaning that there is no variation of the input parameters with the 

range, only with the depth for the SSP. However it is well known that there is always some 

degree of variability in the ocean parameters such as: the SSP, the geo-acoustics of the 

seabed, the bathymetry, among others. The next possible source of mismatch is generated by 

human error and for malfunctioning of equipment, such as sensors that are not calibrated or 

positioned accurately, connections not working properly, among others. 
 

1.3. Simulation program 

In 2009 Etter [3] reviewed the ocean acoustic models, where according to him 

comprises 126 propagation models, 19 noise models, 26 reverberation models and 34 sonar-

performance models. From the total about 18% is designed to shallow water. 

Accurate modeling and prediction of the acoustic environment is essential to an 

understanding sonar performance in coastal oceans. However, locating targets in an 

operational context cannot rely on too complex time-consuming propagation models, referred 

as Research Models, characterized by high accuracy and high sensitivity to environmental 

variations. For remaining close to practical situations, the representation of the shallow water 

medium involved in our localization scheme, was deliberately highly simplified using a 

range-independent acoustic propagation model, and for a nominal flat seafloor with a local 

averaged depth. This simplifications result in a reduced time-consuming and with enough 

accuracy to permit long-range predictions in a satisfactory way allowing using in an 

operational situation. According to Etter [5], an acoustic model is called physical or analytical 

when it represents the theoretical conceptualization of the physical phenomena that occur in 

the ocean. Mathematical models include both empirical models, those based on experimental 

observations, and numerical models, those constructed from the mathematical representation 

of governing physics. A third type is also defined, the so-called analog models, defined as 

controlled acoustic experiments in test tanks with the use of appropriate scale factors.  

Acoustic models can be classified into three broad categories: 

 Environmental Models - Environmental models include physics-based or empirical 

algorithms that are used to quantify the boundary conditions (surface and bottom) and 

volumetric effects of the ocean environment. Such models include, for example, sound 

speed, bathymetry, viscosity and chemical relaxation absorption coefficients, surface 

and bottom reflection loss, and reverberation of the medium due to the presence of 

bubbles, suspended matter and the biological mass. A further division can be made 

according its dependence in space dimension starting from 1D, or depth-dependence 

only (range-independent), 2D (depth and range) and 3D (depth, range and azimuth) 

both being part of a range-dependent environmental specifications. 
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 Basic Acoustic Models - In this category are included propagation models and noise. 

 Sonar Performance Models – these models are the most complex, since they 

encompass not only the algorithms of the two previous categories, but also appropriate 

signal processing models. They are applied in solving specific problems, such as in the 

detection of submerged objects, mine scanning, among others. 

1.3.1 Ray path theory 

Ray theory provides a high-frequency asymptotic approximation solution to the wave 

equation in which the ray paths are independent of frequency. The approximation leads to 

simple ordinary differential equations in ray coordinates that can be easily solved. The ray 

method is capable of providing important information on sound propagation without 

calculating the whole wavefield evolution. Ray theory has an advantage of being 

computationally efficient and its relationship to geometry makes it simple to follow and 

understand, however it presents an important disadvantage regarding to the frequency of 

operation. Ray path cannot be used when the depths are as the same order of magnitude as the 

wavelength of the received signal due to the approximation of the acoustic wave equations. At 

low frequency the interference pattern is more stable and due to the leaking phenomenon at 

frequency close to the cut of frequency the amplitude with be significant different. Thus, 

another propagation model must be used to model the environment. Normal modes 

propagation is more accurate in this situation. On  Fig. 2 is presented the range of applicability 

from the relation of frequency vs depths by the two models. 

The asymptotic solution, referred to as the ray series is substituted by the Helmholtz 

equation and after neglecting higher order terms, two equations are obtained: The Eikonal 

equation, which evaluates the acoustic energy propagation, and the Transport equation which 

evaluates the sound intensity at any point. (See Appendix 5) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Final vector of time differences between two datasets reference missing figure 
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1.4. Sound Speed Profile 

The speed of sound propagation in any medium (solid, liquid, or gas) is not constant 

and it is predicted according to the density and the elasticity of propagation medium, where 

the density varies with the chemical composition of the water and the elasticity varies with the 

temperature and pressure. Air bubbles, biological organisms, nutrient-rich coastal regions can 

also affect the velocity of sound. sound moves more slowly with increasing salinity (1 ppt of 

salinity at velocity decreases by 1.3 m / s) and and faster when temperature increases (1ºC the 

speed increases by about 4 m / s) and increasing in pressure (each 100 m deep increases by 

1.7m/s). An average value for the sound speed, c, is accepted around 1500 m sec-1 in 

seawater under ambient conditions at a temperature 0°C, 35 ppt salinity and 760 mmHg 

pressure [13]. The value of sound speed can determined by empirical formula using three 

parameters, pressure, temperature and salinity which can be measured by sensors dropped on 

the water. There are number of formulas available to calculate the sound velocity in water 

given in literature such as [14], [15], [16], [17], [18].  

 

1.4.1 Propagation Loss 
 

As sound propagates through the ocean, the total attenuation in the acoustic channel is 

calculated by four types of Propagation loss, which contributes to diminish its intensity with 

range. 

 Geometric spreading loss - includes spherical and cylindrical spreading losses in 

addition to focusing effects. 

 Absorption loss - Volume absorption in sea water, caused by viscosity, chemical 

relaxation and inhomogeneities on the medium. Absorption loss increases with 

frequency and it is the main reason for transmission in long range being performed 

by low frequency using sound propagation.  High frequency electromagnetic 

waves and light propagation are absorbed and more sensible to scattering, resulting 

in a high attenuation within distances of a few hundred meters.  

 Reflection loss – Each time that the wavefront touch the boundaries, because of 

the not so severe mismatch on the impedance of both mediums, a portion of the 

incident acoustic energy at the bottom may be transmitted into the bottom 

materials and a portion may be reflected to the medium. For high incident angle, 

the energy radiated from a source suffers severe reflection loss and will therefore 

become highly attenuated after just a few bottom bounces. On the other hand, for 

low incident angle especially to the case of shallow water and long distances, 

many more bounces are possible. The reflected energy from the bottom eventually 

returns to the water and combines with the acoustic wave reflected from the first 

layer. The resultant reflection coefficient from a layered bottom involves both a 

loss in amplitude and a change in phase relative to the incident wave. 

 Scattering loss - A rough sea surface or sea floor causes scattering of the incident 

sound. The result is a decay of the mean acoustic field in the water column as a 

function of range (scattering loss), with the scattered energy being lost to the ocean 

bottom through steep-angle propagation. The scattering loss increases with 

increasing frequency, 
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1.4.2 Geometric spreading loss 

 
The geometric spreading loss is a local loss of power that occurs in the propagation of 

waves due to energy conservation. For close distances, the acoustic wave is modeled by 

spherical scattering, as the distance traveled by the wave increases, the area of the sphere get 

bigger, and the consequence is that energy per unit of area gets smaller and smaller. The 

power loss by spherical scattering is proportional to the square of the distance.  For long 

distance transmissions especially to the case of shallow water due to the boundary 

interactions, the acoustic wave is changed due to the loss of the spherical symmetry to 

becoming cylindrical geometry, where the power loss is proportional to distance. In 

underwater acoustic propagation the geometric scattering falls between the spherical and 

cylindrical geometry. The geometric spreading is not dependent of the frequency. 

 

1.4.3 Absorption loss 
 

When sound propagates in the ocean part of the acoustic energy is continuously 

absorbed. This energy is then converted into heat due to the relative motion between water 

particles. It takes a finite time for a fluid to respond to a pressure change due to its 

compression and rarefaction effects caused by an acoustic wave, or to relax back to its former 

state after the pressure has returned to normal. This process is called relaxation. Chemical 

relaxation, which occurs in sea-water, involves ionic dissociation that is alternately activated 

and deactivated by sound compression and rarefactions. In sea water, this absorption comes 

from the molecular chemical relaxation process, which involves two different molecules 

depending of the frequency: the first, Magnesium Sulphate (MgSO4) molecules contributes to 

absorption loss below 200khz, and a Borid Acid (B(OH)3) molecules contributes to 

absorption loss for frequencies below 2kHz as shown at  Fig. 3. The second problem, which 

contributes to decay the intensity with range is the scattering effects by different kinds of in 

homogeneities present in the medium. 

Along various models to calculate the final attenuation, the Model of Francois and 

Garrison claims to have a better accuracy, Appendix 5. The input parameters to its equations 

depend on the seawater properties, such as temperature, salinity, and pH as well as the 

frequency of the sound and depth.  
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Fig. 3. Model of The Francois and Garrison 

The absorption coefficients are: salinity of 35 ppt, PH of 8.0, and a depth of about 0 m. 

The temperature was variating from 0 10 and 20 graus. 

The absorption loss is also responsible for finding the optimal frequency in a 

propagation medium. At lower frequencies with increasing wavelength the efficiency of the 

duct to confine sound decreases (the cutoff phenomenon). Leakage out of ducts in low 

frequency usually less than 100 Hz increases the penetration of sound into a seabed increasing 

the attenuation.  In the high-frequency as shown at figure x, there is a relevant increasing of 

the attenuation of the sound. Thus, high attenuation is finding at both high and low 

frequencies, while intermediate frequencies have the lowest attenuation thus achieving long 

distances. Typically, the optimum frequency is in the range 200–800Hz for a water depth of 

100 m. [19] 
 

1.4.4 Bottom Loss 
 

Seabed sediments can be modeled as a fluid, which means that they support only one 

type of sound wave - the compressional wave (type P). This is usually a good approximation 

since that the sediment is often considerably less than of a solid, because otherwise, the 

medium must be modeled as elastic, including the influence of another type of wave, which is 

the longitudinal or shear wave (type S).  

As said by Jesen [20] a geo-acoustic model is defined as a model of the real seafloor 

with emphasis on predicted values of those material properties important for the modeling of 

sound transmission (seabed). The properties of the material must include: The compressional 

wave speed, the compressional wave attenuation and the density. For elastic medium should 

also include the shear wave speed and the shear wave attenuation. For an accurate 

representation of the seabed, the influence with geographical position must also be considered 

as well as the frequency of the signal, which affects the effective acoustic penetration depth. 

At high frequencies, details of the bottom composition are required only in the upper few 

meters or tens of meters of sediment, whereas at very low frequencies (<10Hz) information 

must be provided on the whole sediment column and on properties of the underlying rocks. 

[21] 

One common classification system developed by the US naval fleet numerical weather 

center (FNWC) identifies nine bottom classes starting with a low loss sandy at to rock. The 

layered nature of the bottom sediments causes the complex reflection coefficient to vary with 

both frequency and angle of incidence.  Fig. 4 shows the bottom loss vs the grazing angle for 

these nine different bottom sediment type at frequency of 1 kHz. Book reference. 
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Fig. 4. Final vector of time differences between two datasets 

1.4.5 Scattering loss 
 

The scattering is a physic process where the incident wave is reflected after reached a 

roughness surface adding an additional loss to the specularly reflected (coherent) component 

resulting from the scattering of energy away from the specular direction. This scattering can 

causes interference for active sonar systems (process called reverberation). Surface Scattering 

models have been developed, including scattering due to surface roughness as well as a 

bubble layer when wave breaking takes place provoked by different winds speeds. [22] If the 

surface of the sea was flat and smooth, it would be an almost perfect reflector of sound, due to 

the severe incompatibility of the acoustic impedance at the air-sea interface. Thus, the 

behavior of this boundary is determined by the roughness and frequency of the acoustic 

signal. Bottom roughness is also included during the modeling of the propagation channel.  

Noise 

There are primarily three categories of noise: man-made (anthropogenic), Marine life  

and ambient noise as shown at  Fig. 5. The man-made noise primarily consists of shipping 

noise, and industrial activities such as offshore rigs and explosions. The Marine life or 

biologic noise came from animals such as shrimp, whales, dolphins, among others. The last 

font of noise came from the ambient noise such as wind, waves, water motion, bubbles, 

precipitation, thermic, earthquake, among others. Those noises are further divide in 

frequencies by Wenz in his work [26], where he found that the noise level maximum is in the 

interval 400 - 800 Hz. 

The ambient noise for the most part and when all sources are taken together, is a 

random process, very often stationary with average and mean-square values not varying much 

with time. The ambient noise, different than the man made noise, comes from all directions 

though not equally distributed. As said by [23] the noise level in shallow water for the same 

sea state as for deep oceans is about 5 dB higher. Urick (1983) [22] has shown that in calm 

winds the level of ambient noise in shallow waters is often lower than in deep waters and that 

the opposite relationship is observed in the presence of strong winds. Ambient noise can be 

observed in the frequency range from 20 Hz to 50 kHz. Ambient noise can be observed in the 

frequency range from 20 Hz to 50 kHz. It is common to divide the broad frequency range into 

smaller sub-bands, where the intensity levels in these sub-bands take different values and 

different spectral slopes due to different source mechanisms. One of the main sources of 

natural ambient sound in frequencies between 100 to 10 kHz is the explosion of bubbles 

working as an effective sound source. It is created by breaking waves due to the fluctuations 

in the elevation of the sea surface caused by the wind effects. The effect of bubbles noise is 

extended to frequencies starting from 20 Hz in shallow areas, having a strong influence 

overall the total amount of noise (2010). Even in totally calm weather micro sized bubbles in 

water add up to bigger and bigger bubbles that ascends to the surface, oscillating and 

generating noise [26]. The next source of noise is precipitation, such as hail, sleet or water 

droplets. When a raindrop strikes the ocean surface, there is an impact sound of duration 

several microseconds followed in many cases by the definitive sound of a newly created, 

shock excited bubble, which penetrates the water surface. All this bubbles effects also 

contributes to scattering the sound as presented in the previous section. At sea state 1 and 

below when breaking waves are rare, precipitation is more relevant, contributing to the 
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increases the noise levels. Ice movements are also a source of noise which at times covers a 

wide range of frequencies at high level. The minimum noise level for a medium is determined 

by its thermal agitation effects.  

Shipping noise or radiated noise can be grouped under three major classes: cavitation 

by the propeller, vibrations from on-board machinery and hydrodynamic effects such as 

turbulence, resulting from the irregular flow passing though the moving vehicle. Propulsion 

systems are the most dominant part. The noise generated from ships is grouped in three 

frequency bands: low (1-10 Hz), intermediate (10-500 Hz) and high (500 Hz - 20 kHz) 

frequencies [26]. Ships generate sound below 50 Hz that emanates from the propeller and the 

hull.  

Animals are known to produce sound to communicate, orient and to hunt. The sounds 

have a wide variety of distinctive types such as: cries, barks, grunts, mewings, chirps, 

whistles, taps,cracklings clicks, etc. Biological noise varies with time, location and frequency 

and is an important part of the ambient noise. 

The general spatial distribution of the ambient noise, including its coherence 

properties, can be used to reduce its effect of the received signal, extracting a signal 

embedded in noise. 
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Fig. 5. Noise distribution. 

1.5. Chapter Summary 

The first section of this chapter presents the complex behavior and peculiarities of the 

sound propagation in shallow water, which features many interactions with complex 

boundaries (rough seabed, rough moving sea surface). The process used to perform the 

localization inversion is presented as well as the comparison with other techniques on the 

literature. The basis for the ray path propagation is explained and its equations can be found 

on appendix. The propagation loss and the noise are presented which contributes to reduce the 

performance of the inverse localization. The propagation loss is divided in four groups: 

Geometric spreading loss, Absorption loss, Reflection loss and Scattering loss. Each group is 

then further analyzed. The noise is divided in three groups: man-made (anthropogenic), 

Marine life and ambient noise. Each group is detailed and separated by its frequency and level 

of noise. The concept of SSP is presented as well as its main equations. 
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2.1.  Introduction  

 

Matched field processing (MFP) is an underwater acoustic sonar array signal 

processing method widely used to estimate an unknown parameter from the array of 

measurements based on ocean physical propagation mode. The knowledge of the complex 

ocean environment, array configuration and the noise field is incorporated into the signal 

processing algorithms. The use of MFP is divided in two applications: the first application is 

to localize an underwater source (detect, localize and track), used in naval surveillance and 

marine monitoring. It is mostly common defined by depth and range in a 2D scenario, and 

most recently considering a 3D propagation model, it is also able to estimate the azimuth [24]. 

The second application is geoacoustic inversion, where the MFP is used to estimate the ocean 

environmental parameters, such as: sound speed profiles, water temperature, salinity, 

bathymetry, density and elasticity of the seafloor of the ocean waveguide, etc. It is, also 

referred as Matched field tomography (MFT).   

The MFP works based on matching/correlate the acoustic pressure field measured at 

an array of spatially distributed sensors with modeled replica fields computed for the acoustic 

waveguide. The MFP can be performed considering only one hydrophone or, mostly used, an 

array of hydrophone (linear array, either vertical VLA or horizontal HLA, nevertheless can be 

applied to other geometries arrays, cylindrical or spherical arrays). It is mainly apply in a 

passive array sonar system, however can be also used in an active array sonar system. It is 
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derived from the wave equation, via a numerical sound propagation model, either considering 

range dependent or independent (such as the normal mode model, the parabolic equation, and 

the ray path propagation, etc.), over a grid of points, usually 2D in range and in depth, of all 

possible source positions in the observation sea area, however can also be used in 3D 

configuration, used in the case of high azimuthally-dissymmetric environment (high variation 

of the bottom column depth where can introduce Eigen paths from different azimuth).   

The resulting output of the MFP cost function produces a likelihood surface that 

shows peaks corresponding to the estimated range and depth of the source (maximum peak 

value over a grid, which is maximized when the modeled field is similar to the measured 

field). This value corresponds to the best match between the two sets, measured and modeled, 

which should indicate, considering an accurate propagation model, the true source position. 

This surface is called as ambiguity surface and may also contains peaks at ambiguous ranges 

and depths, which can introduce some mismatch at the source position, making it hard to 

distinguish the source from the sidelobes. A better understanding of the real ocean 

environment and its variability, e.g. internal waves, ocean fronts, bathymetry and the 

geoacoustics of the seabed, recorded by better performance instrumentation, results in a better 

localization accuracy.  

 

2.2.  Historical survey presented at the literature 

Several concepts in ocean acoustics were developed at the same time and they have 

important contributions which favored the development of the work on MFP. Essentially, 

MFP is a generalization of the conventional linear plane-wave beamforming method (PWB). 

The work on PWB starts from the beginning of World War II, used to detect the azimuthal 

direction of the source, and it remains in used in innumerous applications nowadays. 

However, PWB, considering only an isolated array, has a significant limitation as it is not 

possible to directly determine the depth and range of the source. The way to overcome this 

limitation is done by picking the target direction (azimuth) as a function of time, adopting no 

variation on the target motion, a process called as target motion of analysis (TMA),  being the 

first solution to underwater localization [25]. The second solution consists of multiple sensors 

in different sites locations using PWB to estimate the azimuth of the source. The localization 

is then performed by find the position of the interconnection of the bearing measurements for 

different locations, method called as triangulation. Using this method, it was created in 1949 

the project SOSUS (SOund SUrveillance System) with the goal of localizing soviet 

submarines. The limitation of PWB is that it does not consider the complex ocean 

environment information, which are inappropriate for processing a real underwater 

environment (2D localization: range and depth), especially at low frequency and long source 

range (with the variation of the sound speed profile in depth and boundaries conditions on the 

ocean waveguide [26]). A new method must be created, where those complex information, 

defined by the medium, are modeled using an acoustic propagation model (ray path, normal 

modes, etc.). This modeled information is then used as a reference/base for the comparison 

with the measured signal to the localization problem. This process is known as model-based 

processing.  

The history of MFP starts back on 1966, where Clay [27] was the first to model the 

underwater medium using normal modes propagation, and at the same time he also identified 

the importance of the waveguide effects, arrays and signal processing on this process. Later, 

in 1972 Hinich [28], using maximum likelihood equations, theoretically approached source 

localization with vertical line array. In 1976, Carter [29] , using free space models, 

investigated the propagation considering a wavefront curvature.  In 1976, using the work of 

http://www.thesaurus.com/browse/essentially
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these three pioneers, Bucker [30], who is credited to be the first to formulate the conventional 

MFP or Bartlett MFP, now for the first time used realistic shallow water environmental 

models with complex bottom reflections. He also have shown that the comparison based on 

the magnitude squared of the correlation between the modeled and the measured signals 

resulting what is known as ambiguity surface, have enough resolution to allow the inversion, 

which represents localization in range and depth [31]. Next In 1980 and 1981, The Bucker’s 

concept were adapted by Klemm [32] addressing for the first time the use adaptive processing 

with what he called “Approximate Orthogonal Projection.”, during his experiments he 

considered stationary and non-stationary environment, and he found out that the he could 

have a better performance using the Maximal entropy approach, however this end ups with 

complex sidelobes problems, especially at low Signal to Noise Ratios (SNR). Later in 1987 

and 1988, Fizell [33] and Baggeroer [34] used different variations of the high-resolution or 

adaptative beamformer. Overall the high-resolution beamformer, the one that so far presents 

good performance is the Capon’s minimum variance distortionless response (MVDR) [35]. 

In 1985, many different works on MFP starting to appear, Shang [36] noticed that each 

position in range and depth is associated with particular modal coefficients, and he could use 

that information to localize the source using the “mode filter”, a method called as matched 

mode processing (MMP), the only limitation is that the number of hydrophones must be 

greater than the number of modes (which is generally the case of shallow water and low 

frequency). The MMP presents a better robustness to some environmental mismatch allowing 

mismatched modes to be removed. However, if the numbers of modes are not enough due to a 

low frequency and shallow water, this can leads to degradation of the source location 

introducing a high sidelobes ambiguity resulting in a biased estimation [37]. On the same 

year, Tappert [38] investigated a variant of the MFP called as back-propagation method, 

where he uses the phase conjugation in back-propagation to reverse the waveguide dispersion, 

Instead of correlating the field with a model replica used in MFP. In 1994, Voltz and Lu [39] 

addressed back-propagation method in the time domain using ray path theory. In 1985, Ozard 

[40] and 1986, Schmidt [41] exploited the Subspace-based signal analysis using singular 

value decomposition (SVD), based to MUSIC algorithm, which exploits the fact that the 

actual steering vector (Green’s function) is orthogonal to noise subspace. The music requires 

some assumptions described in [42].In 2000, Jesus [43] investigated this method to localize a 

source using a single hydrophone configuration. Another variant of the MFP was introduced 

in 1988 by Baggeroer [44] and [45] named as multiple constrain matched field processor 

(MCM). The MCM is an improvement of MVDR, it presents the best of both processors: 

From the Bartlett MFP, the wide mainlobe which correspond to a better tolerance under 

certain deterministic environmental mismatch with a small spatial resolution, and from the 

MVDR the reduction of sidelobes effects, at the same time it is more sensible when the SNR 

is low.  

The use of experimental data started in 1985, Fizell and Wales [46] demonstrated the 

use of MFP and later, in 1989 Hinich and Sullivan [47], demonstrated the use of MMP, and 

compared with the Bucker’s processor.  

All the assumptions given in these methods so far, consider that the acoustic pressure 

field is calculated by deterministic wave equations and it is time invariant. However, a 

deterministic treatment of the medium is not the most adequate, since the medium is in 

constant uncontrolled and unknown variation of its parameters, and then a stochastic approach 

may be a more appropriate approach to determine realistic wave propagation [48]. In 1991, 

Richardson and Nolte [49], exploited the use of an explicitly Bayesian formulation of the 

problem as an alternative to the mismatch problem. They characterized the ambiguity surface 

by its posteriori probability density function (PDF) of the source position related with the 
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signal and environmental parameters. The MFP with posterior probability constraints (MFP-

PPC) presents the advantage of robustness to the environmental mismatch. For more [50] 

In 1992 Westwood [51] and in 1993 Brienzo [52] addressed the use of Broadband (or 

multifrequency) MFP.  The coherent combination in frequency at the ambiguity surfaces 

shows better performance than incoherent combination especially when the environment 

mismatch and ambient noise level are significant. A matched-phase coherent processor was 

then proposed to compensate these phase shifts. [53] 

In 1991, Collins [54] exploited the concept of Focalization, where he treats the 

environment as an acoustic lens searching for the best focalized value. The ocean-acoustic 

parameters recursively suffer small alterations (parameter optimization method), and a search 

is performed on the ambiguity surface, resulted from the MFP processors, for the value which 

minimize the cost function (maximal resemblance), over all unknown or partially unknown 

parameters. High resolution cost functions have the capability of suppressing ambiguous 

solutions. In 1991 and 1992, Lynch [55] and Collins [56], using the concept of focalization 

applied to a known source location, used as reference, they exploited the variations of the 

different parameters, search for the ones which would give the correct know location, a 

process called Geo-acoustic inversion.  

In 1989, Fink introduced the concept of Time Reversal TR, since then it has been used 

in many areas, telecommunications, medicine, though-wall motion detection, etc. it was 

applied for underwater localization in 2015 by Yu [57]. TR relies on the property that the 

wave propagation is unchanged considering a small time interval, being in this sense invariant 

[58]. The signal emitted from a source and subsequently received by a transceiver is time 

reversed and retransmitted into the medium by the array, this process tent to focus 

automatically on the source, either in time and space, given a gain of more than 20 dB, 

allowing localizing targets obscured by noise or in rich scattering environments, due to the 

high energy loss. [57] 

In 2000, Michalopoulou [59]  introduced the concept of matched impulse response 

processing which is a Model-based matched filtering (MBMF), to perform the localization 

inversion with better performance than the incoherent MFP. The main difference compared 

with the MFP is that includes the temporal structure of the acoustic field using time-series 

matching for inversion. Therefore MBMF is both temporally and spatially coherent while 

conventional incoherent broadband MFP is spatially coherent only. This temporal coherence 

leads to improved inversion results and reduced sidelobes effects.  The disadvantage is that it 

can only be used in a cooperative source system (when the source signature is known). One 

possible way to overcome this limitation is to isolate the high intensity path from the 

beamforming processing to estimate the source signature.  

In 2009 Bahr [60] presented the use of trilateration or range-only measurements, 

process similar to the GPS system to make navigation for Autonomous Underwater Vehicles 

(AUVs). 

In 2017, Niu [61] presented the use of supervised machine learning applied on 

underwater target localization, and in 2018, Huang [62], used deep neural networks to localize 

a source in a shallow water enviroment.  

 

2.3. Definition  
 

On the previous section the historical survey of the MFP was presented. Here will be 

investigated the comparison between different processors, inspected from the context of: 
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resolution of the mainbeam width, sidelobe level, sensitivity to the environment mismatch 

(mostly due to the inexact knowledge of the sound speed profile and the boundary conditions)  

and the relation with low signal-to-noise ratio (SNR). Here will also be described the main 

problems of MFP and will be exploited the steps of the model based processing using MFP 

and the two most common MFP processors. 

 MFP is mainly divided into two categories:  

 The conventional MFP or Bartlett MFP, which produces a relatively broad 

main lobe, been more robust to the model mismatch with the disadvantage of 

presents low spatial resolution on its ambiguity surface, and with high sidelobe 

levels on the ambiguity surface, which are often indistinguishable from the 

mainlobe. And the adaptive matched field processor (AMFP). There are 

several processors in this category, the most common are: the Minimum 

Variance Distortionless Response (MVDR), which is a high-resolution method 

with a narrow mainlobe, which results on high spatial resolution on its 

ambiguity surface, however it has an intrinsic defect of poor robustness, been 

extremely more sensible in presence of environmental mismatch. The MVDR 

also presents a reduction of the sidelobe levels even in a low-SNR 

circumstance, reducing ambiguity point locations, which may leads to a bias 

location. It passes signal with no distortion from the specific direction while 

adaptive suppressing noise from other locations by null placement and 

“estimator-subtractor” processing. And the second algorithm is the Multiple 

Constraint Method (MCM) is an improvement of MVDR with better tolerance 

for deterministic environmental mismatch adding multiple linear constraints to 

the weight vector, which control the sharpness of the mainlobe. Large 

mainlobe is more robust against environmental mismatches however with a 

lower spatial resolution, and vice-versa. There still have many other high-

resolution method which will not be described here but it was presented at the 

previous section. 

Although the MFP is the most accurate technique to localization, it still presents 

serious challenges seen as disadvantages to its applicability:  

 The accuracy of the MFP is directly related with the cell grid size (resolution 

of the ambiguity surface). The localization will often fail if the target is located 

at the middle of the cell grid with a low spatial resolution (high value of the 

step grid).  

 And the most important limitation of the MFP, the inevitable inaccurate 

knowledge about the acoustic environment information, especially in shallow 

water environment, restricting the application of MFP by decreasing largely its 

performances. This phenomenon is well-known as environmental mismatch. 

The principal parameters which can induce errors at the localization include: 

sound speed profile, water column depth, geo-acoustics seabed parameters, 

internal waves, surface condition (surface roughness from wind and waves), 

and hydrophone positions (vertical and horizontal position and arrays tilts). 

[63] [64] [65] [66] [67]. These sensitivities can occur around the mainlobe 

peak, referred as local errors, or around the sidelobe peaks, referred as outliers. 

It is therefore simple to associate that the accuracy of propagation models in 

ocean acoustics increases dramatically by using more precise equipment to 

reducing those mismatches, resulting in a better performance of the 

localization. 
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A flow diagram of MFP is given on  Fig. 6. It presents three main components, which 

will be individually described in the next subsections: 

 Sample covariance matrix estimation (red color): The covariance 𝐒𝐱𝐱, is 

obtained from the measured source signal and it is going to be used as the 

reference of the source position to the correlator. Usually, this is done by a sum 

of outer products on the snapshots of the ambient field. 

 Green’s function (green color): In conventional array signal processing plane 

wave beamforming algorithms, the phase of the signals is controlled by the 

steering vector, generating the beam pattern of the array [68]. In a case of MFP 

this steering vector is replaced by the Green’s function 𝐆(𝒘𝟎, 𝐏) which in this 

case is defined by the impulse response of an inhomogeneous sound wave 

equation, computed using the propagation model which considers the 

environmental information of the medium. The notation P includes both the 

possible source location and unknown environmental parameters, which are in 

many cases a priori estimated over the interested sea area of the experiment. 

 Matched field algorithm (blue color): It is a cost-function of the sample 

covariance matrix S correlated with the Green’s function 𝐆(𝒘𝟎, 𝐏), which 

generate the ambiguity surface. Note that the information of the time of arrival 

(TOA), angle of arrival (AOA), and amplitude of arrival, can be extracted from 

both, the covariance matrix and the Green’s function. The maximum of the 

ambiguity surface gives the most likely position of the sound source in range 

and depth (2D scenario). From the several MFP algorithms only two will be 

described here in the following: the Bartlett MFP and the Capon’s MVDR. 

Those algorithms are the basis for the most widely used localization inversion. 

 
 

 
 

 

Fig. 6. MFP flow diagram. 

 
 

https://en.wikipedia.org/wiki/Impulse_response
https://en.wikipedia.org/wiki/Inhomogeneous_ordinary_differential_equation
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2.3.1 Green’s function 
 

The Green’s function has the information of the modeled signal pressure field for each 

position in the observed area, and represents the basis for the correlation used in MFP. The 

modeled signal pressure field is simulated using a propagation model (Ray path, normal 

mode, etc.) based on the physical ocean waveguide parameters, (either for deep water or 

shallow water scenario), frequency range (low frequency or high frequency range), and 

number of hydrophones (single hydrophone configuration or an array of hydrophones).  

The received acoustic signal is given, in time domain, by: 

𝒚𝒎,𝒏(𝒕, 𝒓𝒊 , 𝒛𝒋) = 𝒗𝒎,𝒏(𝒕, 𝒓𝒊 , 𝒛𝒋) ∗ 𝒙(𝒕) + 𝝐𝒎,𝒏(𝒕)       𝒎 = 𝟏, 𝟐, 𝟑,…𝑴 

Where: 

𝐯𝐦,𝐧(𝐭, 𝐫𝐢, 𝐳𝐣) is the impulse response of the medium at a specific location 𝐫𝐢, 𝐳𝐣 for 

each hydrophone m, and for the time snapshot index n discretized in time. 

𝐱(𝐭) is the source transmitted waveform, which in case of a non-cooperative case will 

be unknown. And; 

 𝛜𝐦,𝐧(𝐭) is the noise, assumed spatially and temporally white, zero-mean and 

uncorrelated with the transmitted signal. 

The symbol (∗)  stands for convolution, t = time, r = location in range, z location 

variable in depth 

 

The impulse response of the medium is then transformed using the Fast Fourier 

Transform to the frequency domain, given by: 

 

𝑣(w, 𝑟1, 𝑧1,P) = ∫ 𝒗𝒎,𝒏(𝒕, 𝒓𝒊, 𝒛𝒋)𝑒
−𝑗𝑤𝑡𝑑𝑡                             𝑚 = 1,2,3,…𝑀

𝑇

0
 

 

We assume that the solutions to the wave equation at the array locations, with M 

number of hydrophones, 𝒗(𝐰,𝒓𝒊, 𝒛𝒋,𝐏), are incorporated into a signal matrix 𝐯(𝒘,𝒓, 𝒛,𝑷) 

where P denotes parametric dependencies upon source location and environmental parameters 

used at the propagation model. For sound propagation numerical calculations in a range-

independent environment, the value of P will be constant in range and to simplify the equation 

it can be removed. The final matrix is then associated with each frequency w, where in case of 

the broadband transmitted signal, either coherent or incoherent average will be performed by 

the MFP.  
 

𝐯(𝒘, 𝒓, 𝒛, 𝑷) =

[
 
 
 
 𝑣(w, 𝑟

1
, 𝑧1, P)

𝑣(w, 𝑟2 , 𝑧1, P)
…

𝑣(w, 𝑟𝑖 , 𝑧1, P)

  

𝑣(w, 𝑟1, 𝑧2, P) …

𝑣(w, 𝑟2, 𝑧2, P) …

…

𝑣(w, 𝑟
𝑖
, 𝑧2, P) …

  

𝑣(w, 𝑟
1
, 𝑧𝑗, P)

𝑣(w, 𝑟2, 𝑧𝑗, P)
…

𝑣(w, 𝑟𝑖, 𝑧𝑗, P)]
 
 
 
 

 

 

 

Where in each possible position 𝒓𝒊, 𝒛𝒋 in the previous matrix 𝐯(𝐰, 𝐫𝐢, 𝐳𝐣, 𝐏), considering 

only 2D variation, range and depths, is performed for M number of hydrophones. 
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𝑣(w, 𝑟𝑖 , 𝑧𝑗 ,P) =

[
 
 
 
 
𝑣1(w, 𝑟𝑖 , 𝑧𝑗 ,P)

𝑣2(w, 𝑟𝑖 , 𝑧𝑗 ,P)
…

𝑣𝑀(w, 𝑟𝑖 , 𝑧𝑗 ,P)

  

]
 
 
 
 

 

 

2.3.2 Covariance matrix estimation 

The cross spectral density matrix (CSDM) or covariance matrix is a fundamental 

element of MFP.  It is performed through estimation of the cross-spectral functions of the 

signal at the output of the sonar array. It is essentially a coherent summation of the weighted 

received acoustic field at spatially separated hydrophones for each single frequency. The 

cross-spectral function may be defined with a Fourier transform of the cross-correlation 

function or directly via finite Fourier transform of the input time domain signal. Therefore it 

captures the spatial coherence of the acoustic field in the ocean.  

 

𝑅𝑚(𝑤) = ∫ 𝑟𝑚(𝑡)𝑒−𝑗𝑤𝑡𝑑𝑡                    0 ≤ 𝑡 ≤ 𝑇         𝑚 = 1,2,3,…𝑀
𝑇

0

 

 

The received signal can also be segmented into snapshots and harmonically 

decomposed using an FFT as a tentative to reducing the influence of the sidelobes. The 

snapshots may be windowed and overlapped as often done in Fourier transform based 

methods of spectrum estimation [31]. These snapshots are given by: 
 

𝑅𝑚,𝑖
𝑙 (𝑤) = ∫ 𝑟𝑚,𝑖(𝑡)𝑎(𝑡 − 𝑇𝑙)𝑒

−𝑗𝑤𝑡𝑑𝑡                    0 ≤ 𝑡 ≤ 𝑇         𝑚 = 1,2,3,…𝑀
𝑇𝑙+𝑇𝑤

𝑇𝑙

 

 

 

Where:  

𝐫𝐢(𝐭), is the signal recorded waveform from the array position of M hydrophone at 

each i-index snapshots, 

a(t), is the window, normally rectangular function applied to the received signal to 

control sidelobes, 

𝐓𝐥, is the start of the lth segment of data, 

𝐓𝐰, is the duration of the window function. 

 

The cross-spectral function of the two processes is defined: 

𝑆𝑥𝑥 =
1

𝐿
∑𝑅𝑚(𝑤)𝑅𝑚

𝐻(𝑤)

𝐿

𝑙=1

 

Where : 

L is the number of snapshots and R is the complex envelope of the received signal at 

the array elements; and 
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𝐒𝐱𝐱 represents the sample covariance matrix of the received signal emitted from the 

actual source location A with background noise, it is the correlation of the received signal at 

the hydrophone M with all the others hydrophones. 

 

In order to be used on the MFP algorithm the same matrix formulation regarded with 

the Green’s function will be adopt, considering a Broadband signal and a received array: 

 

 

𝑅𝑚(𝑤) = [

𝑅1(𝑤1)
𝑅2(𝑤1)

…
𝑅𝑀(𝑤1)

    

𝑅1(𝑤2)…
𝑅2(𝑤2)…

…
𝑅𝑀(𝑤2)…

  

𝑅1(𝑤𝑁)
𝑅2(𝑤𝑁)

…
𝑅𝑀(𝑤𝑁)

] 

 

The row represents the frequency spectrum of the signal recorded waveform and the column 

represents the position of the M hydrophones. The array cross-spectral matrix for the n-th 

frequency bin is: 

 

𝑆𝑥𝑥(𝑤) =

[
 
 
 
 𝑅1(𝑤𝑛)𝑅1

𝐻(𝑤𝑛)

𝑅2(𝑤𝑛)𝑅1
𝐻(𝑤𝑛)

…
𝑅𝑀(𝑤𝑛)𝑅1

𝐻(𝑤𝑛)

   

𝑅1(𝑤𝑛)𝑅2
𝐻(𝑤𝑛)…

𝑅2(𝑤𝑛)𝑅2
𝐻(𝑤𝑛)…

…
𝑅𝑀(𝑤𝑛)𝑅2

𝐻(𝑤𝑛)…

      

𝑅1(𝑤𝑛)𝑅𝑀
𝐻(𝑤𝑛)

𝑅2(𝑤𝑛)𝑅𝑀
𝐻(𝑤𝑛)

…
𝑅𝑀(𝑤𝑛)𝑅𝑀

𝐻(𝑤𝑛)]
 
 
 
 

 

 

The symbol ( 𝐇) stands for the complex conjugate operator or the Hermitian matrix. 

The cross-spectral matrix for an M element array is square MxM matrix for a given frequency 

ωn. 

 

2.4. Matched field signal processors 

Two matched field processors are subject to investigation in this thesis. The first one is 

the classical or Bartlett matched field processor and the second one is the so called minimum 

variance distortion less processor (MVDR). 

 

2.4.1 Bartlett (conventional) MFP processor 

The most known method in MFP is the conventional MFP also referred as linear 

Bartlett MFP due to its simplicity and its robustness against mismatch between estimated and 

real parameters, being a reference for all the others more sophisticated adaptive processors. 

The Bartlett MFP weights the measured data by a normalized version of the Green’s function 

and a normalized version of CSDM. For data received at L hydrophones, the ambiguity 

surface 𝐏𝐁𝐚𝐫𝐭(𝐰, 𝐫, 𝐳) can be expressed in a, quadratic form in terms of the sample covariance 

matrix 𝐒𝐱𝐱(𝐰) and the Green’s function. This estimator calculates in the frequency domain an 

inner product between pressure field measured (normalized CSDM - 𝐒𝐱𝐱(𝐰)) and replica 

pressure fields modeled (normalized Green’s function 𝐯𝐇(𝐰, 𝐫, 𝐳)), which was calculated for 

probable values of the unknown true environmental parameters. The Bartlett estimator is 

coherent in space and incoherent over frequency [69] . 

 
𝑃𝐵𝑎𝑟𝑡(𝑤, 𝑟, 𝑧) = 𝑣𝐻(𝑤, 𝑟, 𝑧)𝑆𝑥𝑥(𝑤)𝑣(𝑤, 𝑟, 𝑧) 
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A global search is then performed on the ambiguity surface 𝐏𝐁𝐚𝐫𝐭(𝐰, 𝐫, 𝐳), and the 

maximum peak value, which represents the closest similarity between the modeled and 

measured field, gives the most likely position of the source. When the noise is spatially 

homogeneuous, the output of this beamformer has the highest possible SNR [26]. The 

performance of the Bartlett MFP can be improved by simply incoherent averaging the 

ambiguity surface over frequency, because it tends to reinforce the main peak at the true 

source location while reducing the sidelobes. However a better performance is obtained by a 

coherent averaging over frequency [70] and [71]. 
 
 

2.4.2 MVDR-MFP processor 
 

MVDR method is a classic adaptive algorithm for MFP, derived with quadratic 

constraints [68], characterized by its high resolution and high sensitivity to environmental 

mismatch. It has been proven to be one of the more robust of the adaptive array algorithms for 

MFP [72] for more [31]. It is often misleadingly referred to as the "maximum likelihood" 

method [26], however it does not perform maximum likelihood parameter estimation. The 

algorithm attempts to reject interfering sources while maintaining unit gain and zero phase 

shift for each look direction minimizing the variance at the output of a linear weighting, 

𝐖𝐌𝐕𝐃𝐑
𝐇 (𝐰, 𝐫, 𝐳) of the sensors subject to the distortionless constraint. MVDR processor 

requires accurate replica signals which are especially true for MFP since it is the detailed 

spatial structure of the replica that determines the invertibility in the parameter ambiguity 

plane. The optimum weight of MPDR (similar to the minimum variance steering vector) can 

be solved as: 

 

𝑊𝑀𝑉𝐷𝑅
𝐻 (𝑤, 𝑟, 𝑧) =

𝒗𝑯(𝒘, 𝒓, 𝒛)𝑺𝒙𝒙
−𝟏(𝒘)

𝒗𝑯(𝒘, 𝒓, 𝒛)𝑺𝒙𝒙
−𝟏(𝒘)𝑣(𝒘, 𝒓, 𝒛)

 

 

The constraint of no distortion implies that the optimal filter frequency response 

𝐖𝐌𝐕𝐃𝐑
𝐇 (𝐰, 𝐫, 𝐳) multiply in frequency domain by the impulse response of the medium  

v(ω,r,z) is equal to 1 (unity gain). As a result it is possible to receive the input signal at the 

output of the processor without distortion. Minimization of the mean square of the output 

noise leads to MVDR beamformer first derived by Capon. [73] 

 Usually the covariance matrix is formed from enough data vector that it is invertible. 

The MVDR ambiguity surface is calculated by: 

 

𝑃𝑀𝑉𝐷𝑅(𝑤, 𝑟, 𝑧) = [𝑣𝐻(𝑤, 𝑟, 𝑧)𝑆𝑥𝑥
−1(𝑤)𝑣(𝑤, 𝑟, 𝑧)]

−𝟏
 

 
 

2.5.  Matched field tomography - MFT 
 

Initially MFP was created to solve the source localization problem, however it was 

realized that it could not only estimate the position of the source but also infer properties of 

the propagation medium applying some form of inverse theory. This process is nowadays 
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referred to as matched field tomography (MFT). It is considered an extension of MFP. In most 

applications there are inevitably some uncertainties in the physical parameters of the ocean 

model, which means that the ocean is too variable in both space and time for them to provide 

an accurate environmental model needed for source localization applications especially using 

high resolution algorithm. In addition, these quantities may be range dependent and require 

the appropriate propagation codes. It seems clear that having a better estimation of these 

parameters will result to a better resolution and fewer ambiguities solutions. Environmental 

parameters may include: sound speed profile, geoacoustic properties of the bottom, surface 

roughness, inhomogeneities in the ocean such as internal waves, local bottom anomalies 

and/or surface realization, etc. The MFT can also be used to identify which parameters has 

strongest/ weakest influence over the measured signals. 

The MFT works by using wideband sources at known locations, adopting a stochastic 

approach (small variations of the parameters) and looking for the best value of the ambiguity 

surface associated with the best value of the parameters variations. The technique described at 

the historical section called as focalization, whereby the environmental model is adjusted to 

optimize a cost function for the error in the predicted replica [56], is now adapt to the 

situation when the source and the receiver geometry and position is known, and used to find 

the best value of the parameters. 

 

 

2.6. Chapter Summary 

The base of this chapter is Matched field processing (MFP) methods, which are used 

to two different areas of study: firstly introduced to source localization, and later extended to 

estimate the geoacoustic ocean environmental parameters. Matched-field processing is a 

method for exploiting the effect of the ocean environment on the acoustic pressure field in 

order to estimate a source location. The accuracy of the localization is direct affect by the 

knowledge of the ocean environment, being a limiting factor for localization. This limitation 

is more robust in shallow water due to complex boundaries interactions (surface and bottom) 

The Historical survey was presented in the first section of this chapter and includes the 

mostly used methods to localization inversion. The most robust of them consists of using 

some sort of simulation of the channel as a base to the comparison called as model-based 

processing and includes: Matched field processing (MFP) divided in two groups: the first 

group, the conventional MFP or Bartlett MFP; and the second group adaptive or high –

resolution algorithms: the Capon’s minimum variance distortionless response MVDR, the 

multiple constrain matched field processor (MCM) and MUSIC algorithm. The localization 

can also be performed using matched mode processing (MMP). In sequence was presented the 

concept of focalization and posterior probability constraints both used to improve the 

accuracy of the localization. The last concept has the propose of geo-acoustic inversion, 

named as Matched field tomography (MFT). The other method to localization inversion 

which also uses model-based processing is the backpropagation approach. The two first 

approaches created to localization inversion which does not uses model-based processing was 

the target motion analysis (TMA) and the triangulation with receiver in different location 

responsible for the spatial diversity. Both methods rely on the beamforming techniques to find 

the azimuthal direction of the source transmitted waveform. Some recent works on 

triangulation considering the implementation as a model-based processing using MFP, which 

in many situations will increase the performance of the localization.  
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The second subsection of this chapter describes the comparison between different 

processors, regarding to: the resolution of the mainbeam width, sidelobe level, sensitivity to 

the environment mismatch and the relation with low signal-to-noise ratio (SNR). Still at the 

same subsection it is presented the main disadvantages restricting the application of MFP by 

reducing its performance: the resolution of the ambiguity surface; and the inevitable 

inaccurate knowledge about the acoustic environment information from the high variability of 

the ocean both space and time which will introduce at the ambiguity surface multiple local 

maximums or false alarms. 

Finally, the last section shows the model-based processing divided in three steps: the 

sample covariance matrix estimation, the Green’s function (similar to the steering vector on 

the conventional beamforming the sonar array pattern) resulted from the simulations and the 

Matched field algorithm. Two matched field processors were then presented: the Bartlett 

matched field processor and the second one is the minimum variance distortion less processor 

(MVDR). 
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CHAPTER 3     

    Hausdorff distance as cost function for the 
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3.1.  Introduction 

Object recognition algorithms are fundamental instrument in automatic matching sets 

of points. In our localization problem, we are interested on finding the minimal value of the 

distance transform, from a model-to-observation discrepancy map, measured by some cost-

function, which indicates the possible location of the source. We will describe in this chapter 

the Hausdorff Distance metric and suggest to a future work the use of the Gromov Hausdorff 

Distance cost-function metric. Here will also be presented its benefits and differences used for 

underwater localization. The first one, called as Hausdorff distance, applied on only one 

metric space. It is evaluated using the Euclidian distance on extrinsic geometry, which is 

robust to topology changes (small deformations at the surface or small size variations of an 

object) but variant or even not robust to non-rigid deformations (change the shape of the same 

object considering different poses). The second called the Gromov Hausdorff distance, used 

for a non-rigid space applied on more than one metric space, evaluated using the geodesic 
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distance on intrinsic geometry, which are invariant to non-rigid deformations but not to 

topology changes, presented in this chapter to future works. 

The Hausdorff Distance (HD) is a technique to measure the degree of resemblance 

among different sets of points that are superimposed to each other over a metric space. The 

HD technique outlined in this thesis is not new. Search in Web has revealed more than 42000 

citations, among them 700 IEEE articles related with HD, been an important technique widely 

used in many areas such as: speech recognition [74], video recognition, computer vision [75], 

medicine [76] and [77], robotics [78],  radar and satellite image processing [79], ship 

positioning [80], underwater vehicle classification [81] [82], sidescan sonar [83], and many 

other described in this article [84]. In the context of this thesis, it was first used in active sonar 

by Mours et al [85]. 

Dating back to 1905, in his PhD thesis: On the continuity of complex variable 

functions (French translation), Dimitrie Pompeiu defined the concept of distance between two 

closed sets, used in a domain of his thesis (complex analyses) [86], however the name 

nowadays referred as hausdorff distance, came few years later, in 1914, with Felix Hausdorff 

in his book Basics of Set Theory (German translation) [87]. Hausdorff considered all the basic 

properties Presented by Pompeiu,  he generalized this metric in a slightly different way, 

considering in a metric space, point out the asymmetric distances from the partial forwards 

and backwards Hausdorff distance, and defining what is currently denoted by H(A,B), 

commonly named bidirectional Hausdorff distance even after the Hausdorff’s 

acknowledgment to Pompeiu in his three books editions: in 1914, pg. 430 [87], in 1927 - Set 

Theory (German translation), pg. 280 [88] and in 1957 translated into English version, pg. 

343  [89] as well explained in [84] and [90]. 

Finally, the correct name of this metric should be referred to Pompeiu-Hausdorff 

distance, however after the acknowledgment to Pompeiu, in order to follow the literature and 

to avoid misunderstanding, we will adopt from now on as a Hausdorff distance technique. 

The computation of the Hausdorff distance does not necessarily need to establish the 

one to one correspondence relationships between the elements of the two sets; therefore it 

may effectively process the situations where multiples elements in one set are associated 

(closest) with a single element of the other set. This is unlike most model-based processing 

techniques presents at the literature, which gives an explicit pairing (one to one 

correspondence). This feature is important because in case of missing point or fake detection 

(extra points) on any one of the two sets, all the sequences comparison would be associated 

with the wrong position on the other set if followed the one to one correspondence 

relationships on the HD.   

The second important feature of this technique is the advantage that it takes into 

consideration the spatial proximity of each individual point in a rasterized grid of simulation. 

This feature makes it capable of considering the spatial properties in the measurement for 

comparison between two different set of points, meaning that it is more robust to the 

environmental mismatch comparing to those well-known localization techniques, such as for 

example the Matched Field Processing (MFP). The MFP is quite sensible to a shift in time on 

the Time Differences Of Arrival (TDOA - first arrival is used as reference), where even a 

small mismatch between the 2 sets of points, measured TDOA and modeled TDOA, may 

preclude its green’s function from matching, which would clearly affect the accuracy of the 

location. The HD also offers an opportunity for a hierarchical cell decomposition strategy, 

defining a preliminary large cell grid for a rough first global search, and then refining the 

mesh size for a higher final accuracy, which is not possible using MFP and would result the 

same problem described above.  
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The basic difference between the HD and the MFP is that the MFP evaluates the 

position of the target based on the maximum value of the output correlator of the observed 

impulse response, which contains the information about the TDOA and Angles of Arrival 

(AOA) of all ray paths. The HD distance quantifies the similarity between the two measured 

and modeled sets, TDOA and/or AOA. The correct target location is then identified as the 

output from a global search for the minimal value, corresponding to a maximal match 

between those sets, theoretically being zero if both sets are identical. In presence of an 

environmental mismatch, an error would be introduced in the modeled sets, and induce a 

corresponding error in the estimated location of the target; however it seems that the impact of 

the modeling error on results from the HD cost function is far less critical than for the MFP 

correlation. The third advantage of using HD is the reduced computational runtime, 

comparing with the MFP and MMP. Fundamental reliability and robustness issue in presence 

of degradation are discussed later, as well as comparison with other techniques. 

 

3.2. Definition 

3.2.1 Maximum Hausdorff Distance 

The Maximum Hausdorff Distance (MaxHD), described by Huttenlocher [91] in the 

field of image processing (most cited IEEE paper regarding to HD), is a technique to measure 

the degree of similarity (match) among all possible relative positions of two sets of points 

over a metric space. Here we invoke the HD for evaluating the distance between two 1D 

sequences of respectively modeled and measured TDOA, giving an interesting measure of 

their mutual suitable proximity.  

Two bounded non-empty subsets A and B of an metric space are considered, one 

being the measured sequence of TDOA 𝐑𝐓 = {𝐫𝟏, 𝐫𝟐, 𝐫𝟑, … , 𝐫𝐱}, and the other one the 

modeled sequence of TDOA 𝐒𝐓 = {𝐬𝟏, 𝐬𝟐, 𝐬𝟑, … , 𝐬𝐲}. The basic idea is, without loss 

generality, to define functions measuring the distance from each fixed element in one of the 

two sequences assigned to its nearest neighbor in the other translated sequence, and the 

distance between those selected points is defined by Euclidean norm ‖ . ‖. This way, a 

sequence of fixed point-to-point distances is obtained. Typically, the equation most 

commonly presented in the literature is the maximum bidirectional HD, defined as: 

      TTTTTT R,S h,S,R hmax=S,RH  (1) 

In this paper we will use the notations 𝐡(𝐑𝐓, 𝐒𝐓) and 𝐡(𝐒𝐓, 𝐑𝐓) for the direct, both 

forward and backward (reverse) HD respectively. The roles of the modeled and measured 

TDOA may be exchanged, resulting in two different sequences of distances. In general, those 

two “pseudo-distances” are not symmetrical 𝐡(𝐑𝐓, 𝐒𝐓) ≠ 𝐡(𝐒𝐓, 𝐑𝐓), depending on the 

number of points at each subset, and the combinations with the near neighbors themselves: 

 

      x,…1,2,3,=i     minmax=S,R h
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      y,…1,2,3,=j     minmax=R,S h
Ss

TT rs j 
  (3) 
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The final step for defining the HD consists of selecting the largest one among these 

minimal individual distances, which is the largest distance or the biggest mismatched point 

between the two sets of points.  

In order to present the explanation of this technique, it will be applied on the data of 

the GIPSA-LAB experiment. The experimental setup will be described on the next chapter, 

here will only be presented the use of the HD for underwater localization.   

Given two sets of data, one being the TDOA modeled (blue line - left) and the second 

being the TDOA measured (red line- left), presented at the Fig 1. The HD will then compare 

each index position on the first dataset with all elements from the second dataset (right). The 

final result called vector time difference between two sets will be compost of the minimal 

time interval for each index position (red square - right plot). This ensures that the closest 

position of each element will always be select.  

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 7.  Comparison between TDOA modeled and measured on the tank experiment (left), differences for each index of the first dataset 

with all the elements from the second dataset. This process is performed to all the index from the first dataset. 

 

 

 

 

 

Fig. 8. Final vector of time differences between two datasets 

The first variant of HD called Maximum HD will only select the value of the maximal 

on the minimal time difference vector. From the  Fig. 7 and  Fig. 8, the largest discrepancy 

between the two sets is located on the index position number two, represented for the yellow 

square. The others values of the time difference vector will be disregarded for this variant. 

The MaxHD tolerates small variations in time at the set of TDOAs (most coming by 

environmental mismatch), and it is unaffected by variations in absolute phase or initial delay, 

being in that sense an incoherent process. The disadvantage of only selecting the farthest 

Index i = 1    2    3     4    5    6     7    8    9    10 

First position - element index i=1 

Second position - element index i=2 

Third position - element index i=3 
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distance appears in presence of outliers (a data observation or value that lies at an abnormal 

distance from the mean of other values in a data set); those extra-points un-legitimately 

dominate the final result of MaxHD, and may be responsible for huge mismatches.  The next 

four variants of the basic MaxHD, presented in the following, mitigate this specific problem.  

In the following, we will consider only one of the two sides MaxHD: the forwards or 

backward Hausdorff Distance; the choice will be based on the number of points in the set of 

modeled and measured. Then we will select the set with the less value to be used as reference, 

in order to avoid the missing point problem (due to occlusion), i.e. points that were not 

modeled or measured after over the time interval from the first path arrival. The decision of 

eliminate the second part of the bidirectional HD may solve the problem for missing points 

however it is also important to highlight that due to effects described on chapter 1, it is 

possible that at a particular distance and depth, the dataset either from the ray path 

propagation or from the measured TDOA, may contain only one or no path connect with the 

source (case of empty TDOA vector). In this specific case scenario, the output of the HD has 

high probability of a mismatch comparing to a correct position of the target, because the 

accuracy of this technique is direct related with the number of points used for comparison at 

each one of the two sets.  One way to solve this problem is to try to simulate each one of 

variation in range and depths with the same number of vector elements, which in this 

experiment it was considered 10 elements, as shown at  Fig. 7. This number came from a 

previous analysis in a realistic operational scenario, related with the average transmitted 

source power signal and the level of detection of the received array, provided by the SNR, 

allowing the detection of a source at a specified range, and may need to be increased to 

improve the accuracy of the technique in others scenarios. 
 

3.2.2 Mean Hausdorff Distance 

A first variant of the MaxHD, proposed by Dubuisson following the work of 

Huttenlocher, is the Mean Hausdorff Distance [92], where the average of the Euclidian 

distances is taken instead of its maximum. The MeanHD is defined as:  

        x,…1,2,3,=i    min
X

 1
=S,R h

X

1i
Rr
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 (4) 

 

      y,…1,2,3,=j     min
Y

 1
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TT 
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The main advantage of the MeanHD is that all points contribute to the final measure of 

similarity, which ensures that the others closest points will be take into account, and not only 

the ones that are the farthest one to each other, which can be outliers. In other words, the big 

mismatch that could arise from those outliers is divided by the number of elements of the 

referenced dataset and in this way the error can be reduced.  

 Fig. 9 shows the result of the mean direct forward Hausdorff Distance, considering the 

mean of all elements of the time difference vector. 
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Fig. 9. The mean of all time difference vector is performed, given the result of te Mean HD. 

3.2.3 Partial Hausdorff Distance 

Some author’s defined partial Hausdorff distance as a one side of the bidirectional HD, 

called here as a Direct HD, however in this work it will follow the notation of Huttenlocher 

[18]. The partial HD extends the definition of HD and it was developed to identify instances 

that are only partly visible in images (portions of two shapes). The definition adopted in this 

work is slight different form Huttenlocher, instead of taking the 𝑲𝒕𝒉 ranked point of either 

subsets, we will adopted taking the average. The reason for this choice is that in some cases, 

most particular at long ranges, the set of TDOA measured may have different number of 

elements, due to the detection’s limitation of the peaks imposed by noise. By taking the mean, 

we reduce the influence at the result coming from vector with different sizes.  

       x,…1,2,3,=i     min
K

 1
=S,Rh 

RrthTTK  


sri

 (5) 

      y,…1,2,3,=j    min
K

 1
=R,S h 

thTTK  


rs j
Ss  (5) 

The main advantage of this variant compared with the others two previous, is its 

stronger robustness to the outlier artifacts and also a missing point problem (because of the 

occlusion or failure of some feature detector), due to the elimination of the largest distances; 

however, in case of no extra-point detected, the Partial HD does not take benefit of the total 

amount of available elements, because the second part of the dataset in principle does not 

contribute to the final result. For the first experiment due to the limitation of 10 different 

paths, it was adopted values of 𝑲𝒕𝒉 as 3 and 4. Values between 5 to 10, would give results 

close to either the MedHD or the MeanHD respectively. It is also possible varying the number 

of 𝑲𝒕𝒉, searching for the minimal output value. This process could be used to optimize this 

cost function, eliminating only the points that contain a high variation of error, however it is 

preferred to have when possible the same number of elements for all comparisons. 

 Fig. 10 shows the result of the partial direct forward Hausdorff Distance, considering 

only the mean of the 4Th first elements (red box) of the raked minimal distance vector. 

 

 

i = 1   2    3    4     5   6    7    8    9    10 
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Fig. 10. The time difference vector is sorted by the minimal to maximal value and only the first 4 are used to find the avarage given the 

Partial HD.  

3.2.4 Median Hausdorff Distance  

The third variant, called the Median Hausdorff Distance (MedHD), it is a special case 

of the partial HD, proposed by Dubuisson [92], following the Huttenlocher’s equations. 

Rather than taking the maximum or the average or only a portion of the Euclidean distances, 

The MedHD takes the value of the distance of the midlle ranked vector of the chosen subset, 

or the mean of the 2 value of the midlle ranked vector in a case of odd number vector. The 

reason is that different positions on the rasterized grid simulated may have also have close 

paths with the one recorded. 

       x,…1,2,3,=i      min K=S,R h 
Rr

50%

TT

50% sri 
  (5) 

      y,…1,2,3,=j   min K=R,S h 50%

TT

50% rs j
Ss


  (5) 

 

 Fig. 11 shows the result of the median direct forward Hausdorff Distance, considering 

the mean of the two midlle value of the ranked vector. 

 

Fig. 11. The time difference vector is sorted by the minimal to maximal value and the value on the middle is used as a result of the Median 

HD.  

 

3.2.5 Combination of Hausdorff distance 
 

The idea to use combination of the previous HD variants, came from the knowledge of 

possible mismatch between the 2 sets of points, which can contributes to generate a secondary 

lobes (ambiguity position) in a wrong target position, introducing in that way a mismatch in 

our technique. Since that each different variant performs different elements combinations, it is 

i = 1   2    3    4     5   6    7    8    9    10 
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expect that secondary lobes occurs in different positions. As a result, the combinations can be 

used as a remedy to smooth this particular ambiguity problem, giving a more accurate 

localization in a presence of mismatches.  
 

       TT

50%

TTTTTTcomb1 R,S hS,RhS,RhS,Rh   

 

         TT4TT

50%

TTTTTTcomb2 S,RhR,S hS,RhS,RhS,Rh   

3.3. Probabilistic formulation HD  
 

The last variant was presented by Olson [93] in 1998, where he describes a 

probabilistic formulation HD of image matching in terms of maximum likelihood estimation. 

First, the normal Hausdorff Distance is performed, and then, instead of chosen a maximum 

distance, or a mean, or a portion of the vector distance, it will be fitted in a particular 

probability density function (fdp), normally uniform distribution with a mean “µ” and 

standard deviation “𝝆𝟐”. The fdp will have a high intensity peak considering the case of two 

resembling subsets, with the values of “µ” and “𝝆𝟐”.” close to zero, and a low intensity peak 

with a lager standard deviation otherwise, as shown at  Fig. 12. The output of this variant will 

be the minimum at the inverse of the local maxima in the likelihood function.  This variant 

will be more suitable to the case of non-cooperative case, due to the larger number of 

elements from the sidelobes. 
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Fig. 12. Result of the fdp from the direct forward Hausdorff Distance. The red dot represents the interest peak value. 

3.4.  Hausdorff distance temporal Translation  

One of the major problem of using HD for passive localization, considering the case of 

a cooperative source, is the critical choice of the reference points used for the comparison 

between datasets where if you correctly align these points, the rest of the set will possibly 

have a reasonably match. The first time of arrival, came from the matched filter, will be used 

at the reference in zero position in both sets and then compare the elements of each sequences. 

If some problem happens with the reference point due to occlusion or false alarm detection, 

this even small time variation will introduce a shift in time in all subsequent elements of the 

subset. One way to mitigate this problem is to use temporal translation. A vector with time 

i = 1  2   3   4    5   6   7   8   9  10 
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shift value, both positive and negative defined in an interval of time, will be added in one set 

of point on the Direct hausdorff distance equations 2 and 3. A global search will be performed 

looking for the minimal value of the output vector, resulting in a correction for this particular 

mismatch. It is clear that if the correct reference was adopted at the beginning, the value of the 

element of the time shift vector would be zero.  The disadvantage of using the temporal 

translation for fixing the reference point position is the increases of the computation runtime 

as the time vector increases. 
 

         ,...2,,0,,...,-2    x ,1,2,3,…=i    minmax=,S,R h
Rr

TT  


sri
 (2) 

 

            ,...2,,0,,...,-2     y,…1,2,3,=j    minmax=,R,S h
Ss

TT  


rs j
 (3) 

In a case of non-cooperative source, this problem is no longer relevant because the 

reference point will always be the higher intensity peak after the auto-correlation, however a 

new problem become evident, the secondary lobes (sidelobes) generated due to the cross 

correlation, which takes into a count not only the time of arrival but the influence of each 

other’s times.  

3.5. Rasterized of grid of simulation  

The next step is to compute the Voronoi surface of each specify pixel location (x,y), 

obtaining the Voronoi surface array or two-dimensional distance transform. This surface array 

gives the distance for each modeled TDOA 𝐬𝐓 at the location (x,y) to the measured TDOA 𝐫𝐓 

as shown at  Fig. 13. The best matching (localization) is then performed through a global 

search for the minimal distance between those nonzero sequences, TDOA 𝐫𝐓 into TDOA 𝐬𝐓, 

or vice versa depending of the number of set’s elements, since only one side of bidirectional 

HD was. If the modeled environment is close enough to the experimental environment, the 

simulations of acoustic propagation models should give, for the correct target location, the 

same sequence of TDOA, with an ideal HD equal to 0 (if and only if 𝑹𝑻 ∈ 𝑺𝑻 and vice-versa), 

or practically reaching its minimum when every point of the modeled TDOA sequence is 

close to some elements of the measured TDOA sequence.  

 
Fig. 13. Hierarchical cell decomposition on a rasterized of grid of simulation.  

3.6. Hierarchical Cell Decomposition  

The process of Hierarchical Cell Decomposition was also introduced by Huttenlocher 

[91], in order to optimize the computational runtime; this process is only possible due to the 
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Voronoi surface array. He notices that considering a small cell grid size, with a large number 

of points, would demand a high computation runtime, instead he realize that using a large cell 

grid size, with a few number of points, would reduce the computational processing time, 

however would also reduce the accuracy. To solve this problem, he adopted an efficient 

search strategy for locating model positions, using a multi-resolution hierarchical search that 

determines which cells may contain a position satisfying the criterion under a defined 

threshold, then subdividing the interesting cells currently best estimate, into sub cells (called 

next level or children of the tree cell decomposition), which are examined recursively until to 

the current cell size becomes small enough to the operation defined limit, as shown at the  Fig. 

13. The subdivision step takes all those cells that were labeled interesting and determines a set 

of smaller divisions (finer resolution). Those not selected cells are rejected. The final result is 

a list of transformations of the model that bring it into closer matching to the observations. 

3.7. Gromov Hausdorff distance 

This technique is proposed for future works. The concept of Gromov-Hausdorff 

distances extends the idea of the Hausdorff distance, measuring the similarity among different 

shapes, making precise the notions of closeness and convergence now considering more than 

one metric space. This distance is able to detect the metric similarity between the shapes as it 

operates on their metric structure, that is, different shapes are viewed as different metric 

spaces. Therefore allows us to compare how far two shapes are from being isometric, declared 

equal if and only if they are isometric 𝒅(𝒔𝒊 − 𝒔𝒋) = 𝒅(𝒓𝒊 − 𝒓𝒋) [21]. The metric used for 

Gromov-Hausdorff distance is the geodesic metric mapped into a low-dimensional Euclidean 

space using multidimensional scaling (MDS),𝒅(𝒔𝒊 − 𝒔𝒋) and 𝒅(𝒓𝒊 − 𝒓𝒋), which compares 

non-rigid shapes measuring the length of the shortest intrinsic path between a pair of points, 

leading to a bending-invariant shape comparison framework based on their pairwise distances 

from the two subsets. The geodesic metric is invariant to rigid transformations (reflections, 

translations, rotations).  

Consciously, the origin of the name Gromov Hausdorff distance (GHD) have the same 

impasse regarding to who actually developed this technique. In 1975 D. Edwards published a 

paper titled: The Structure of Superspace [94], in which he marginally specifies the GHD in a 

different way but with equivalent terms. In few years later, back in 1981,  Mikhail Gromov in 

his book,  Metric structures for Riemann manifolds (French translation) [95], rediscovered 

this metric and generalized defining what is currently indicated at the literature nowadays, as 

explained in this article [96]. Search in Web has revealed more than 8000 citations, GHD, 

primary used in many areas such as:  shape comparison [97], face Recognition [98], and 

others. 

 

 

 

 

 

 

 

 

 

Fig. 14. Hierarchical cell decomposition on a rasterized of grid of simulation.  

https://en.wikipedia.org/wiki/Isometry
https://en.wikipedia.org/wiki/Mikhail_Gromov
http://diglib.eg.org/handle/10.2312/SPBG.SPBG07.081-090
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 Fig. 14 presents a simple example of the difference between this two metric. The HD 

is robust to compare different hands with the same pose (small topology changes), however 

cannot be used to compare different poses.  The GHD is robust to non-rigid deformations 

(different poses – different position of the fingers at the figure), however it is not so robust 

when used to compare topology changes. Fig 9 also shows the difference of geodesic 

curvature of the object compared with the Euclidian Norm [99]. 

On underwater localization problem this new metric could be interesting because the 

reference point used to align two different sets is no longer needed. However a new problem 

emerges, the GHD is not sensible to work with 1D (TDOA) , as an example, considering 2 

sets of points, X = {0, 1, 4, 10, 12, 17} ⊂ R and Y = {0, 1, 8, 11, 13, 17} ⊂ R . Then we have 

two non-isometric metric spaces with the same distance set: DX =DY = {0, 1, 2, 3, 4, 5, 6, 7, 

8, 9, 10, 11, 12, 13, 16, 17}. To solve this problem, the information from the Angle Of Arrival 

(AOA), coming from the beamforming techniques at the receiver must be included.  
 

3.8.  Chapter Summary 

The first section of this chapter presents the historical background of Hausdorff 

Distance developed by Pompeiu. It was also presented some areas where it has been applied 

being most recognized in applications of image and video processing. Three main features 

seen as advantages of using HD were presented and were compared with MFP as well as 

some disadvantages of this technique. It was also presented one explanation of why the HD 

might be more robust against environmental mismatches compared with MFP.  

The definition, equation and the HD variants was presented in the second subsection 

of this chapter. These variants might be used as a remedy to the outlier artifacts and also a 

missing point problem. The idea of combining different variants and the use of probabilistic 

formulation to reduce the problem of extra points was also presented. 

The next subsection presented the influence of the critical choice to the reference 

points used for the comparison between sets, follow by the explanation of the applicability of 

HD in a 2D scenario (range and depths) in order to localize the true target’s position, 

considering a rasterized grid of simulation. The process to optimize the computational runtime 

using Hierarchical Cell Decomposition was introduced next. Finally the use of the extended 

concept of HD, called as Gromov Hausdorff Distance was proposed for future works, and 

justified by some advantages of this new approach. The next chapter will present the results of 

the HD in a real experiment. 
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CHAPTER 4  

  GIPSA-Lab tank’s experiment  
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4.1.  Introduction  

 
In order to test and prove the applicability of the Hausdroff Distance (HD) for underwater 

localization problems, in July 2016, an experiment was conducted in the tank of the GIPSA-

Lab (Grenoble Institute of Technology, CNRS, University of Grenoble–Alpes, France). The 

experiment was highly simplified and performed in a controlled environment. The main 

purpose is to act as a proof of concept for the HD, given a better understanding of the 

technique and identifying potential advantages (more robust to environmental mismatches, 

less computational cost compared with previous techniques MFP, and insensible to variation 

in phase) and limitations applied in a real experiment (sensible to the first Eigen ray used as 

reference to the comparison between measured and modeled TDOAs).  The measurement 

setup consists of two equal transducers, one as a receiver and another as a transmitter. The 

position of the transmitter is assumed to be known only for testing the accuracy of the 

Hausdorff distance cost function with a fixed: radial range, depth and bearing from the target 

to receiver. Due to the limitations of the tank and the experimental conditions, movement 

could not be added to the target (static experiment). As a result, the localization with Doppler 

Effect could not be analyzed. The localization was performed in two dimensions (2D), as 

range and depth.  The angle of arrival (AOA) was not considered due to the limitation of the 

experiment considering a single receiver. 

The localization procedure adopted was described on the first figure of this thesis. Frist, 

identify the time difference of arrival (TDOA) measured at the receiver, then simulate the 

TDOA, based on ray-path propagation, over a 2D grid with a defined step grid, then use the 

Hausdorff distance as a cost function to find the best match between the two set of data. 
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The performances of the proposed cooperative and non-cooperative localization 

techniques are demonstrated and confirmed by simulations with respect to the signal-to-noise 

ratio. The results in terms of the localization accuracy are presented as a conclusion. 

4.2. Measurement Setup 

 
The dimension of the tank is 1.5 meter length by 1 meter width by 1 meter height, with a 

0.9-m water column depth. The geometry of the tank, geoacoustic parameters and position 

that comprise the model are illustrated in Error! Reference source not found.. The radial 

source-to-receiver range was about 0.7 m, centered horizontally in the tank, which is less than 

the value of water depths. We set the position of the acoustic receiver at fixed 0.1 m deep and 

the transmitter was located at 0.3 m deep. The SSP was designed to be constant both spatially 

and temporally during the experiment (the SSP do not change with range being in this sense 

range-independent and because the small dimension of the tank it was also considered 

constant in depth). The Final SSP value was measured at 1474.3 m/s. Simulations considered 

a flat bottom configuration and the geoacoustic parameters of the glass bottom layer include 

the thickness of 2 cm and its estimated superficial sound speed, density and compressional 

attenuation are 4500 +-100 m/s, 2.70 g/cm3 and 0.40 dB/m/kHz respectively.  

 
 

 

 

 

 

 
 

 
Fig. 15. Ray cross section 

The transmitted signals featuring different narrow and wide-band codes, among which we 

considered only Linear Frequency Modulations (LFM) with time duration of 100 µs. Both 

center frequency and bandwidth at 1MHz (500 KHz to 1.5 MHz frequency band). This signal 

was generated by the waveform generator 33500B, then amplified and transmitted to the 

underwater channel by the transducers ISL-0502. The sketch of transmission is shown at  Fig. 

16. The acoustic pressure propagate by the channel was then measured using an equal 

transducer, then pre-amplified and sampled by the data acquisition HS4 (A/D converter), with 

sample rate of 25 MHz and a resolution of 16 bits. The sketch of reception is shown at  Fig. 

16. The signal noise ratio SNR for the data was approximately 24 dB.  Fig. 17 shows the 

laboratory facility used for the experiment. 
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Fig. 16. Sketch of transmission and reception. 

 

 

Fig. 17. Experimental facility. 

The concept of beam spread is what defined the directivity of the sensors limited by 6 dB 

attenuation. The attenuation of the signal in more intense as the misalignment get higher and 

follows the equation: 

∅ = 𝟐𝑺𝒊𝒏−𝟏 (
𝟎. 𝟓𝝀

𝑫
) = 𝟔. 𝟔° 

Where: 

𝛌 = velocity (inch/ μs) / frequency (MHz) 

SSP = 1474m/s = 0.058in./ μs 

D = Element diameter (inch) = 0.5 inch 
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The transducers used both as transmitter and receiver, have approximately 7 degrees beam 

spread at the center frequency of the referred transmitted signal. Due to this directivity, the 

reflection of the tank’s side can be disregard, however, in order to record the entire set of 

different Eigen rays associated with each particularly take off angle for a specific location, the 

sensors must be mechanically rotate (tilt) and aligned to each other within a accuracy higher 

than 7 degrees. This process was performed for the 10 first Eigen ray and grouped based on 

the number of the bottom reflection. In this study, only three different groups of ray paths are 

considered, shown at Fig. 18.  The first group defined as direct path with no bottom refection 

(solid line red color), the second group considered as one bottom refection (dashed line green 

color) and the last group with two bottom refection (dash-dot line blue color). The groups 

composition are: first group 2 Eigen rays(direct path and one surface reflection (S)), second 

group 4 Eigen rays (one bottom reflection (B), one bottom and one surface reflection (BS), 

and so on, SB, SBS reflections), and third group 4 Eigen rays (BSB, BSBS, SBSB, SBSBS 

reflections.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 18. The set-up of the ray paths from the ray propagation (left). Lower transducer tilt and Higher transducer tilt (right). 

 
Due to this tilt mechanism, fixed at the middle of the transducers, the final position of 

each transducer shows a variation in depth location according to the transmitter and receiver, 

from the high angle of 85°, to the low angle of -80°, with a approximated 4.5 cm depth 

variation for each transducers, which represents 10% of the water column considering both 

combined; shown at  Fig. 18. This introduces a significant variation into the TDOA and AOA 

due to the small dimensions of the tank, being the reason to we accept 10 % of error in depth 

position (9 cm). These small differences in time will be responsible to introduce an error or 

ambiguity either in target range or in depths. The measure procedure consists of align both 

transducers, recording each Eigen ray separately as shown at  Fig. 19. Before each 

measurement in order to consider a flat surface refection, an interval in time was applied to 

reduce the waves after each mechanic tilt. Superficial roughness height was limited around 2 

cm.  Fig. 19 shows only 9 different signals. The last one was disregarded due to the high value 

of noise. At the same figure it is possible to identify the 3 different groups in time of arrival, 

and it is also noted that for take-off angles bellow 7° spacing, it is possible to identify more 

4.5 cm 

1 

2 

3 



   43 
 

 

than one possible Eigen rays, reason for even after eliminating one recorded path, it was 

possible to detect 10 different Eigen rays. At the same figure it is also possible to identify 3 of 

4 possible Eigen rays from the next group, however due to the low SNR and the presence of 

missing paths, the limit previous choose at two bottom reflections or the first 10 Eigen rays, is 

justify due to high attenuation caused by those reflections that conduct to the level of the 

signal below the level of noise.  

The gain at the variable pre-amplifier (VGA), applied on a received signal was not kept 

constant during all the measurement and its value can be seen at the legend of the  Fig. 19. The 

reason for this variation was that during the experiment, the primary task was to detect the 

TDOA coming from each Eigen ray. The VGA was used as a remedy against the problem of 

aligning the transducers due to the narrow angle spacing. Different from the MFP, the HD 

does not consider the amplitude of each Eigen ray, so this variation would not affect the final 

accuracy of the technique. This variation in a real environment could be seemed as 

interference either constructive or destructive at each moment.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19. TDOA recorded with 9 different take off angles. 

Once that we measured all package containing 10 different Eigen ray, with different 

arrival time corresponding a different paths, called as complete received signal, these signals 

were summed in time using the transmitted signal as reference for synchronization of the 

different Eigen path. The impulse response of the channel was obtained considering two 

cases: 

Cooperative case: This case is used when the transmitted signal is assumed a known 

waveform. The time difference of arrival (TDOA) is obtained by matched filter (correlation 

with the transmitted signal), and used as reference for the comparison with the modeled 

TDOA obtained from the ray path propagation, as show at Fig. 20. 
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Non-cooperative case: This case is used when the transmitted signal is assumed an 

unknown waveform or cannot be estimated, considered as a fully passive configuration. The 

time difference of arrival (TDOA) is obtained by the auto-correlation of the received signal. 

This process generates secondary lobes which contribute to a reduction of accuracy. It is most 

used in a platform like a submarine where rather than transmitter a signal (sonar array), which 

would give its position, it listen what is happen while keeping the most undetectable possible. 

 

 
 

 

 

 

 

 

 

 

Fig. 20. Cooperative case – impulse response obtained by matched filter – time domain (left), associated with the correspondent Eigen ray 

(right). 

Fig. 21 shows the difference of cooperative and non-cooperative cases. The TDOA was 

reduced to 4 (right plot - red lines) to simplify the problem because the final number of 

TDOA after the autocorrelation follow an arithmetic progression described on equation. 

𝑁𝐹 =
𝑁(𝑁 + 1)

2
+ 1 = 7        𝑁 = Number of TDOA –  1 

The secondary lobes are created by the interaction of each one of the TDOA with each 

other, so in a case of mismatch in one of the Eigen ray, this error will be propagated to the 

others, reducing the accuracy of the target. In Fig. 21 (right plot), the secondary lobes are 

represented by the blue line. 

 

 

 

 

 

 

 

Fig. 21. Difference of Cooperative case (right) and Non-cooperative case (left) with secondary lobes (blue lines). 
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The ray path propagation theory was described in chapter 1. As presented below, the 

received signal is composed of several arrivals that are the time shifted and attenuated 

versions of the transmitted signal. The time duration of the transmitted signal was choose to 

avoid overlaps and interference between signals from different paths. The time information 

provides sufficient information to determine the source location, considering the well-defined 

environmental conditions.  

Fig. 22 shows: a) the Sketch of the tank experiment, where the red dot is the position of: 

transmitter (top) and receiver (follow the black line), and the yellow dot is the position of the 

TDOA simulated, b) shows the comparison of the TDOA simulated (blue color) and received 

(red color) and c) shows the TDOA simulated considering a fixed depth and variating the 

range from 0.1 m to 1 m with a step grid of 0.1m, the red square is the selected TDOA 

simulated used to compare with the measured in b). The left image shows the TDOA 

simulated in the correct target location (yellow dot is situated at the same location of the red 

dot). It can be noted from the comparison that this position presents the most resemblance 

between simulated and measured. The right image shows the comparison considering a wrong 

position of the target. It can be noted that there is a difference between the two sets of TDOA. 

The HD measures these differences and show as output the position of most resemblance 

between the two sets as the estimated target position. 

 

 

Fig. 22. Sketck of the tank (top), Comparison between TDOA modeled and measured (middle) and TDOA modeled for a fixed depth with 

variation in range from 0 to 1m, with step grid of 0.1m. 
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4.3.  Simulation Results 

 

The simulation was divided into three different scenarios. These scenarios are tested using 

the same configuration for two different systems, as cooperative and non-cooperative, to 

directly compare the results from each system. 

Scenario 1 - All the ray paths have the correct TDOA. We do not consider any time 

variation at the received TDOA: Here we consider that the environment is well defined, 

without any mismatch of the bottom depths and SSP variations. This situation corresponds to 

the best possible scenario; however, it appears to be improbable considering the variability of 

real sea environment, including variations of the SSP, imprecision on the bottom depths, and 

mismatches in transducers locations.  

Scenario 2 - Small random time variations are added in all different Eigen ray at the 

received TDOA, representing possible mismatch. This variation was limited at 60 µs, either to 

positive or negative to the true simulated value. The limit of 60 µs was chosen based on the 

value of the SSP considered at 1474.3 m/s, which in this experiment represents a mismatch 

maximum at around 0.09 m (10% of the water column). This scenario corresponds to the 

worst possible case, representing some unpredictable variations in the environmental 

parameters, which are most commonly in the bottom depths and/or the SSP. 

Scenario 3 – Different from the scenario 2, where a random time variations were added in 

all Eigen rays, in this configuration, we assumed that some random amount of Eigen rays are 

correct measured, meaning that no error was introduced at the TDOA, and for the remaining 

Eigen rays the value modeled was increased by a random time variation limited at 60 µs. This 

scenario was the closest to the experiment, where some ray paths were measured with no time 

variations and some presented small time variations introduced by the different depth value 

due to the mechanic tilt. On Fig. 22 was illustrated this variation of TDOA modeled and 

measured to some Eigen rays. Some Eigen rays presents no time variation while others a 

small shift in time at the correct position.  

In both systems, the transmitted signal was a linear frequency modulation (chirp) with 

time duration of 100 µs and a frequency range of 500 KHz to 1.5 MHz, same configuration 

for the tank experiment. The geoacoustic parameters such as bottom configuration and the 

value for the SSP was constant equal to 1474.3m/s, same as recorded at the experiment. The 

source power was varied, with nine equally spaced values; from 150 dB to 90 dB for 1 μPa at 

1 m. 250 realizations were performed for each one of nine source power value. 

For the first simulation, we consider a cooperative system, where the transmitted signal is 

considered as a known waveform with time duration less than the next time arrival ray path, 

to avoid interference between different Eigen rays for the correlation techniques. In the three 

different scenarios, four different localization techniques were evaluated, and the results are 

presented in Fig. 23: (i) Maximum Hausdorff distance (selects the biggest difference of 

TDOAs); (ii) Mean Hausdorff distance (mean of all of the difference between TDOAs); (iii) 

Correlation of the simulated signal with the received signal, which takes into account the 
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phase of the signal; and (iv) Correlation considers the signals envelope, while the phase is 

disregarded. It was adopted a 0.01m step for the grid of simulation both in range and depths.   

Fig. 23. Cooperative case: First scenario – well-known environment, no variation in time. b) 

Second scenario – A random time variations are added in all Eigen Ray. c) Third scenario – A random time variations are added in some 

random amount of Eigen ray. 

Fig. 23 shows the result for each scenario, given the Euclidean distance (depth and range) 

for each SNR. For low SNR (less than 10 dB), the correlation techniques provide better result 

compared with HD and the reason is the defined high value of threshold (9 dB) after the 

matched filtering to detect the peaks (TDOA). At low SNR the HD fails because it does not 

correct detect all 10 Eigen rays, as a result a new detector peak technique was studied after 

this experiment. For high SNR however (more than 10 dB), the HD presented a better result. 

The Mean Hausdorff Distance for the Third scenario presented the best result and the reason 

was that in this particularly scenario, only a random partial number of Eigen rays were 

increased by a small time variation, those remaining Eigen rays, without added time variations 

contributed to soften the final result given a best accuracy to the localization. All simulations 

suggest that the HD is more robust against possible mismatches between the TDOA measured 

and modelled. 

For the second experiment, we consider a non-cooperative system. As a consequence, the 

transmitted signal is unknown. For this case, the localization was performed with only two 

techniques: the Hausdorff distance and the mean Hausdorff distance. 

Fig. 24. Non-Cooperative case: First scenario – well-known environment, no variation in time. 
b) Second scenario – A random time variations are added in all Eigen Ray. c) Third scenario – A random time variations are added in some 

random amount of Eigen ray. 
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Fig. 24 shows the result for each scenario. It can be observed that in a non-cooperative 

system the results are worse than the cooperative system, and the reason is the introduction of 

the secondary lobes coming from the output of the cross correlator. The small variation in 

time from some of the Eigen rays is then propagated to the secondary lobes and contributes to 

reduce the final accuracy of the target location. This loss of sensibility was expected in this 

case and it is the reason for instead of applying the cross correlation of the received signal, try 

to estimate the transmitted signal and perform the matched filtering in order to reduce this 

error. Now, the new break point of the SNR is 15 dB compared with 10 dB for the 

cooperative system. Overall the final value of error for this case is near the double of the 

cooperative system. Once more, the simulations suggest that the Mean Hausdorff Distance is 

more robust against possible mismatches between the TDOA measured and modelled. 

The second benefic of using HD is the reducing computational run time. As a comparison, 

the processing time for only one realization, Hausdorff distance takes 0.02 s, the correlation in 

frequency domain takes 1.15 s, and the correlation of the signal envelope in the time domain 

takes 2.48 s.  

4.4.  Experimental results  

 
The results of the experiment will be divided in two cases, following the same as 

presented for the simulations: the first case describes a cooperative system and the second 

describes a non-cooperative system. The experimental results will be compared with the one 

obtained from the simulations for the associated SNR of the experiment, which was 

approximately 24 dB. All the follow analysis will consider the use of two Hausdorff distance 

variants: the first being the Maximum Hausdorff Distance and the second being the Mean 

Hausdorff distance.  

To compare the two variants, the results are normalized and kept to the same logarithmic 

scale (same reference color mapping), allowing direct comparison of the accuracy of each 

variant on each followed image. The real target is located by a red star at the intersection of 

the red dashed lines. The minimum value of the matrix is represented by the yellow cross 

marker (+).  

The first case in analysis describes a cooperative system. Fig. 25 shows the results of both 

variants considering the step grid used for the ambiguity surface as 0.1m, both in range and in 

depth. 
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Fig. 25. Maximum Hausdorff distance (right) and Mean Hausdorff distance (left) applied in cooperative systems with step grid of 0.1m. Red 

star is a real position of the target. Yellow cross marker is the minimum value of the matrix error. 

 

Due to the low spatial resolution of the previous image (high value of the step grid), both 

variants give the correct location of the target. The dark blue means the position of the 

minimum error that correspond the best result. The Mean Hausdorff Distance presented a 

small dark blue area meaning that the variance of error is less than the Maximum Hausdorff 

distance. In order to increase the perception of accuracy, the same technique was applied for a 

step grid of 0.01m (10 times smaller), obtained by the interpolation of the TDOA modeled, 

shown at Fig. 26.  

 

Fig. 26. Maximum Hausdorff distance (right) and Mean Hausdorff distance (left) applied in cooperative systems with step grid of 0.01m. 

Red star is a real position of the target. Yellow cross marker is the minimum value of the matrix error. 

The results with a higher spatial resolution shows that the estimated position from Mean 

Hausdorff distance represented by the yellow cross is closer to the true target position 

compared with the Maximum hausdorff Distance. This result was the compatible with the one 

obtained by the simulations. 

Tables 1 show the results after the interpolation with the Euclidian distance calculated in 

comparison with the real position, at 0.7 m in range and 0.3 m in depth.  
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Table 1. The position error for different Hausdorff distance. 

Factor Aspect Maximum  

Hausdorff 

Mean  

Hausdorff 

Estimated Range (m) 0.7000 0.6900 

Depth (m) 0.2600 0.2800 

Error Range (m) 0.0000 0.0100 

Depth (m) 0.0400 0.0200 

Experimental error (m) 0.0400 0.0224 

Simulation error (m) 0.055 0.015 

 

The final value of error from the experiment is then compared with the one obtained from 

the simulations considering the Third scenario. The results are quite similar with the Mean 

HD the best variant for this experiment. 

The second case describes a non-cooperative system, shown at Fig. 27. The final accuracy 

for this case is worst compared with the cooperative systems. These results are consistent with 

the simulations. In non-cooperative systems, any small variation in time, and or amplitude, 

presents a worst effect to the accuracy of the localization due to the propagation of error from 

the cross correlation, generating the secondary lobes. In our experiment, this bias was 

generated by two principal factors: the first one is provoked by the mechanical tilt of the 

sensors, as indicated in the earlier description here. This introduces a small time variation in 

the arrival time. The second factor, each path was recorded with a different amplifier gain, in 

order to optimize the quantization interval, which may increases the intensity of wrong 

position of the secondary lobes after the cross-correlation.  

 

Fig. 27. Maximum Hausdorff distance (right) and Mean Hausdorff distance (left) applied in non-cooperative systems. Red star is a real 

position of the target. Yellow cross marker is the minimum value of the matrix error. 

In this configuration, shown at Fig. 27, the real target position (red star at the intersected 

dashed lines) is not inside of the dark blue area. The minimum value (yellow marker), is 

closer to the real target using the Mean Hausdorff distance. This result resembles to the one 
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obtained by the simulation. The second important conclusion noted by the images is the 

appearance of ambiguity points represented by the different dark blue area locations. As the 

value of small variation in time increases on the TDOAs, the contribution of these ambiguity 

points at the output of the HD become most important, which may result in an impossibility 

of localize the target close to the true position.  

Tables 2 show the results after the interpolation with the Euclidian distance calculated in 

comparison with the real position, at 0.7 m in range and 0.3 m in depth.  

Table 2. The position error passive system. 

Factor Aspect Maximum  

Hausdorff 

Mean  

Hausdorff 

Estimated Range (m) 0,600 0,730 

Depth (m) 0,370 0,390 

Error Range (m) 0,100 0,030 

Depth (m) 0,070 0,090 

Experimental error (m) 0.122 0.095 

Simulation error (m) 0.14 0.10 

 

The final value of error from the experiment is once more compared with the one obtained 

from the simulations considering the Third scenario. The Maximum Hausdorff distance 

presents a higher value of error. The results also suggest that the Mean Hausdorff distance is 

more accurate in range (~0.03m of error) than in depths (~0.09m). The results obtained by a 

cooperative case are around three times more accurate than the one by non-cooperative case. 

This conclusion was important for further studies regarding to estimating the transmitted 

signal rather than apply the cross correlation in order to avoid or reduce the effects of 

secondary lobes.  

 

4.5. Chapter Summary 

 
The purpose of the GIPSA-LAB experiment was to gather data under experimental 

conditions, used to validate the proposed inversion technique with respect of the precision 

using a real target. The detection of the arrivals angles (AOA) was not possible due to the 

limitation of the experiment, considering a single receiver. The target was motionless; as a 

consequence it was not possible to analyze the Doppler.  

An innovative and efficient Hausdorff distance technique, responsible for a comparison of 

the measured and modeled time difference of arrival (TDOA), was used in a cooperative and 

non-cooperative underwater localization. The first one considers a known transmitted signal. 

The received signal is matched filtered (correlated with the transmitted waveform). The 
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second, fully passive configuration, considers an unknown transmitted signal. The received 

signal was cross-correlated which generated secondary lobes, responsible for reducing the 

accuracy of the localization in presence of mismatches due to the propagation of error. During 

the experiment, a mechanical tilt needed to be used due to the narrow beam spread of the 

transducers. This tilt introduced a variation at the depths of the sensors considered maximum 

of 10% of the water depth, approximated as 0.09 m. this variation was important to evaluate 

the proposed technique in presence of mismatches. 

The experimental setup made in a tank has proved that it is possible to localize real signals 

in a two-dimensional scenario, range and depths, with satisfactory precision even with only 

one sensor at the receiver, and without the need for prior information about the source. These 

experimental results provide an important database for further research. These two variants of 

Hausdorff distance used a-priori for image localization have been applied at simulations and 

experimental data and the results have suggested that the HD is more robust against possible 

mismatches between the TDOA measured and modelled applied on underwater localization. 

The mean Hausdorff distance provides better results when applied to underwater localization 

because it can smooth some large discrepancies of the differences between the TDOA 

measured and modeled. These two variants have also presented an improvement at the 

computational time, compared with the correlation techniques. This is a potential opportunity 

to enable real time systems location, as in range and depths, using on an arbitrary source.  

New techniques to estimate the signal, and also to detect peaks for low SNR, need to be 

studied in order to improve the precision of this passive system localization, in order to avoid 

ambiguity location points that can be caused by secondary lobes. 
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CHAPTER 5     

  Alma 2015 Experiment – Spatial Diversity 
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5.1. Introduction 
 

The main purpose of this chapter is to present the at-sea experimental results of the 

technique Hausdroff Distance (HD) used to validate the underwater inversion in a real 

environment. The results of this experiment will be presented in two chapters. This chapter 

describes the experiment and presents the results based on the spatial diversity. The chapter 

number 6 presents the results of beamforming technique and ends up with the comparison of 

both techniques. The data set analyzed here was collected during the DGA campaign ALMA 

2015, which took place in a shallow water environment of the southern coast of France (up to 

100m deep on the Mediterranean Sea). The ALMA 2015 sea trial was intended to study of the 

influence of fluctuations due to wavefront distortion and decoherence effect on the medium, 

using different temporal and spatial scales, which makes the underwater localization a 

challenge to achieve. Acoustic data were measured over a 10m vertical linear array (VLA), 

composed of 64 hydrophones. The position of the transmitter is assumed to be known only for 

testing the accuracy of the Hausdorff distance cost function with a fixed distance, depth and 

bearing from the target to receiver. The 2-D localization, in range and depth, is performed by 

matching the patterns of time difference of arrival (TDOA) and differently from the previous 

experiment, the information of the direction of arrival (DOA) was also considered, between 
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respectively measured and modeled sequences. The DOA was obtained explicitly by the 

beamforming and implicitly by the spatial diversity due to the time delay of each hydrophone. 

Several variants of the Hausdorff Distance were applied, firstly separately in each single 

hydrophone, and then combined in order to improve the localization accuracy, reducing the 

ambiguity both in depth and in range. The performance is evaluated in terms of the 

localization accuracy of the proposed method, in a context of passive localization with a 

cooperative system considering a motionless target (Static Target). 

5.2.  The ALMA 2015 experiment 
 

In October 2015, during three days of ALMA 2015 campaign (Acoustic Laboratory for 

Marine Applications) [74], designed and managed by DGA Naval Systems, experimental 

acoustic and environmental data were collected in a shallow water environment off the 

southern coast of France, near the harbor of Toulon.  Fig. 28, presents the location of the 

single acoustic projector at the coordinates (43° 04,477N, 05° 41,946E),  and also the 

receiving 10m-high array (64 vertical linear passive array hydrophones (VLA), distributed in 

depth from 52.5m to 62.3m, equally spaced with 15cm of separation between hydrophones, at 

the coordinates (43° 07,136N, 05° 36,295E)). The wind’s direction and speed was used to 

evaluate the sea state condition during the experiment, being an average at 9 knots and its 

direction is represented by the black arrow at  Fig. 28.  

 

 
Fig. 28. Top view of the experimental setup measurements region (left), Skecth of the experiment (right).  

The seafloor was roughly flat, with an average depth about 100 m, variating from 99 ± 3 

m close to the source location and 104 ± 6 m close to the receiver position, with a sediment 

cover constantly sandy or gravelly-sandy. Subsequent simulations assume that the geoacoustic 

parameters of the bottom layer include the thickness of 2 m and its estimated superficial 

sound speed, density and compressional attenuation are 1780 ±100 m/s, 1.8 g/cm3 and 0.10 

dB/m/kHz respectively. The radial source-to-receiver range was about 9.1 km, which 

represents around 90 times the value of water depths, as shown at  Fig. 28.  

Six SSP measurements were performed during the 3 days experiment, the first three being 

close to the source and the remaining close to the receiver location. The black line measured 

on the first day; blue line, second day and red line last day of the experiment shown at  Fig. 29. 

D=9 km 

43°04,477 N, 

05°41,946 E 

43°07,136 N, 

05°36,295 E 
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The SSP is more stable close to the surface than close to the bottom. The SSP measured at the 

receiver location presented at the last day of measurements the highest fluctuation (12 m/s at 

85 m depths).  

  

 

 

 

 

 

 

Fig. 29. SSP of the experiment. SSP measured close to the receiver for each day of the experiment (left), measured close to the source 

(middle). In both plots the black color represents the first day. On the right it is presented the SSP used for the modelation. 

During the simulations, three SSP were analyzed  Fig. 29 (right). The SSP close to the 

source of the first day was simulated using 2 different ray path propagation programs from 

THALES.  Fig. 30 shows the comparison of the TDOA simulated with the three different SSP. 

The first one was measured close to the receiver, the second one measured close to the source, 

both cases considered the measurements on the first day,  and the last one was performed by 

the mean in depth between both SSP measured. From the  Fig. 30, it is possible to notice a 

resemblance of the three different SSP for the early arrivals (0 to 0.05s). The SSP close to the 

source and the SSP mean presents a high value of resemblance to a majority of the arrivals. 

The late arrivals however, presents some dissimilarity. 

 

 

 

 

 

 

 

 

 

 

Fig. 30. SSP comparison for true position of the source (9km in range and 56m in depth).  

 

The transmitted signals featuring different narrow and wide-band codes, among which it 

was considered only the first Linear Frequency Modulations (LFM) with time duration of 2 s 

(red box at  Fig. 31). The center frequency was 5 kHz and bandwidth was 2 kHz (4 KHz to 6 

kHz frequency band). The acoustic signals were sampled at 48 kHz. On the top shows the 

signal on time domain, on the left shows the spectrogram and on the right shows a short FFT 

variating with time (waterfall graph). 

Source Receiver 
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Fig. 31. Trasmitted signal used during the experiment. It is compost of short and long pulses signals and LFM, where the red box shows the 
signal used for the inverse localization. 

During the 3-days experiment a total of 415 transmissions (pings) were recorded. The first 

100 pings, corresponding to the first 5 hours of the experiment, were chosen to be analyzed 

due to low variability of the measurement as shown at  Fig. 32. These fluctuations can be 

explained by: the reflection at the wave surface (either constructive or destructive), presence 

of noise (human noise represented by vessels, and marine noise, animals), and presence of 

ducts due to a variation of the SSP gradients. A total of 5 pings were eliminated due to a 

problem at the reception, remaining 95 pings to the analysis. The sea surface was considered 

calm with roughness about 0.4 m (sea state 0) and no vessels were encountered near the area 

of the experiment during the first 95 pings. The noise levels suffer variation up to 3 dB 

between frequencies of 4 to 6 kHz comparing the hydrophone closer to the bottom and the 

one closer to the surface, and up 12 dB to low frequencies and close to the surface. Results 

have shown using the beamforming technique that the first 50 ping are more stable than the 

remaining 45 pings in term of accuracy to underwater localization. Studies to further 

understand this variation are still in progress (chapter 6 part B). The SNR has been estimated 

to be approximately around 11 dB within the frequency band of interest. The level of noise 

was approximately around -27dB as shown at  Fig. 32.  Fig. 33 shows the signal recorded by 

the hydrophone index number 1 during the first ping. The spectrogram on the left figure 

shows a high level of noise for low frequency. 
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Fig. 32. On the top is the variation of the SNR to all hydrophones and on the bottom is the variation of the noise. 

 

Fig. 33. Received signal on ping number 1 at the hydrophone index 1. 

The spatial-temporal of the impulse response of the array, presented at  Fig. 34, shows the 

influence of the multipath effect. The corresponding predicted arrival times are represented by 

the vertical lines on the time axis, formed by the time delay for each arrival in different 

hydrophone depths. The yellow dots are the peaks detected after matched filtering. The 

direction of arrivals (DOA) is extracted from the inclination of these lines follow the equation.  

𝜃 = sin−1(∆𝑇. 𝑣 𝑑⁄ ) 

Where:  

∆𝑇=diference in time from two aligned sensor 

V= SPP for the depth of the sensors 

D= vertical distance between both sensors in a VLA configuration 
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The TDOA and the DOA are going to be compared with the ones obtained by simulations 

and depending of the characteristic of the environment, they are unique associated with a 

position in space, working as a fingerprint of the propagation channel.  

 

Fig. 34. Received signal on ping number 1 by the array after matched fintering. 

 

5.3.   Spatial diversity versus beamforming 
 

The propagation mechanism of shallow water differs from the deep water scenario. In 

shallow water, most of the multipath suffers one or more reflections, which can be with the 

bottom, with the surface or a combination of both. Each of these reflections may introduce 

different: time delays, phase shifts, attenuations, and distortions on the transmitted waveform. 

These alterations can destructively interfere with one another due to the random superposition 

of multiple signal paths at the receiver, responsible for a small-scale fading, or constructively 

given a gain at the aperture of the receiving array. Fundamentally, there are two possible 

options used as a remedy to this problem, and they differ based on the coherence at each pair 

of hydrophones. 

Spatial diversity is based on the idea of variety, differentness.  Hydrophones are placed 

sufficiently far away from each other so they probably suffer independently fading. Each 

hydrophone receives a different observation of the same transmitted signal due to a different 

interference environment on each path. If the receivers are uncorrelated, the probability that 

multiple paths of the signal are in a deep fade simultaneously is much lower than the 

probability of a deep fade for a single signal path. Thus the benefit of diversity is the 

increased reliability of the link between transmitter and receiver. 

Beamforming is based on the idea of same signal delayed in time given its direction, 

where when combined will present a gain. The beamforming allows determining the direction 

of arrival (DOA) by using the steering vector, assuming plane wave propagation. This is 
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achieved by combining delayed signals from each hydrophone at slightly different times in 

such a way that signals at particular angles experience constructive interference (gain) while 

others experience destructive interference (attenuation). 

These processes enable the realization of two types of gain: diversity gain and the 

beamforming gain, (array gain). These two types of gains are fundamentally different in 

nature and the final gain of each depends strongly on the channel characteristics, the temporal 

fading statistics, and the required level of outage probability. [75] Spatial diversity and 

directivity of the radio channel are contradicting properties. A high degree of spatial diversity 

implies low directivity and vice versa. 

A common space-time statistic is that of the spatial correlation matrix, shown at  Fig. 35. 

The spatial correlation matrix is an important measure of the mutual correlation values of all 

hydrophone pairs. This measure gives the information of how is the spatial structure of a 

general channel, meaning how correlate each sensor is with its neighbors. 

𝑺𝒙𝒙 = 𝐸{𝑺[𝑛]𝒙 𝑺[𝑛]} 

On the main diagonal, the correlation matrix contains the average channel powers of the 

antenna elements. The off-diagonal elements specify the complex correlation values between 

all pairs of antenna elements. For frequency-selective fading channels, the correlation matrix 

can either be defined for each delay separately or integrated over the delay domain, as shown 

at  Fig. 35 [75]. The position number 48 shows a phase difference due to an inversion of the 

cable on the sensor. 

 

Fig. 35. Average of the spatial correlation matrix over the first 50 pings. 

The more diversity the channel offers, i.e. the larger the angular spread, the more diversity 

gain can be achieved. The more directive the channel is, i.e. narrow angular spread, the more 

correlated the path are, and consequently the higher array gain is obtained. Both gains depend 

on the number of antenna elements; however the beamforming is more sensible to this aspect. 

The key to understand the result of both processes is to analyze the two possibilities when a 

new hydrophone is added to the array:  

 The received signal from the new hydrophone is highly correlated with the others. 

In this case, the gain from the beamforming will likely be superior, and the reason 
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is that the signal from a particular path will be combined with the same direction 

from the others hydrophones while the others directions will not be beneficiated 

for any further combinations. 

 The received signal from the new hydrophone is highly uncorrelated with the 

others. In this case, the gain from the spatial diversity will likely be superior 

compared with the beamforming. The reason is that the new hydrophone will 

probably have new information. For example a new path that on the others 

hydrophones were in a fading or a path with an variation in phase that once 

combined (beamforming) will reduce the energy of the array. 

 

The coherence of the hydrophones also variates with the range, the closer the receiver is 

from the transmitter the more uncoherent the signals are considering the integration on the 

time domain due to the high value of the direction of arrival. The larger the receiver array the 

bigger is the influence of the flat boundaries conditions and the considerations of planar 

wavefront for using the beamforming due to the linear combination by the steering vector. In 

this chapter, the results from the spatial diversity will be presented and compared with the 

results from only use one hydrophone at the receiver. The next chapter the results from the 

beamforming technique will be presented as well as the comparison with the spatial diversity. 

Further experiment need to be performed to analyze the Doppler effects and the fully passive 

configuration (non-cooperative system), where the transmitted signal must be estimated from 

the received array and applied in both processes. 

The process of spatial diversity is defined following three steps: 

1) Matched filtering the transmitted signal with each hydrophone and detect the 

peaks, which mean characterizing the impulse response of the channel to each 

hydrophone (red dots). This step is shown at  Fig. 36, limited at 10 hydrophones on 

a vertical axis to a better resolution, where the red dots represented the arrival time 

to each hydrophone. Due to the multipath interference some peaks are attenuated, 

not been detected by the defined threshold and others are detected following a 

linear shift in time between pairs of hydrophones, associated with the respective 

angle. These interferences will contribute to the incoherence and coherence 

respectively of the signal. The modeled TDOA was simulated to each position in 

range and depth on the grid of simulation for only one hydrophone index number 

41 (depth of 56 m). An extrapolation of this result in time was performed given by 

the DOA to the other hydrophones on the array.  

2) The Hausdorff Distance (HD) variants are applied hydrophone by hydrophone 

between the two data set, TDOA measured and TDOA modelled, generating an 

ambiguity surface to each of them.  Fig. 37 shows the corresponding the measured 

arrival times, represented by the symbol * (red color – measured TDOA sequence) 

and the modelled TDOA, represented by the symbol * (blue color - modeled 

TDOA sequence). The Modeled TDOA presented at  Fig. 37, was evaluated around 

8.2 km in range and the center of the array at 57.5 m in depth.  From the same 

figure it is possible to notice the resemblance between the two patterns. Two 

marginal direction of the HD was analyzed: first, using the TDOA measured 

sequence as reference to the HD calculations, forward HD ℎ(𝑅𝑡, 𝑆𝑡) and the 

second, using the TDOA modeled data as reference sequence, which is the reverse 

marginal direction, backward HD ℎ(𝑆𝑡, 𝑅𝑡). The results from each marginal 

direction are not symmetric and are based on the number of the TDOA, which 



   61 
 

 

includes extra-point detection or missing point generated by interference effects, as 

well as due to the temporal resolution to detect the peaks from the measured data. 

By applying the correct marginal direction it is possible to avoid/reduce the 

situation of missing point for the comparison, responsible for introducing a high 

mismatch at the output result.  

3) Finally, the last step consists of combining all different ambiguity surface 

generated from each hydrophone. The combination was performed considering 3 

different operations: the mean, the median and the maximum of all hydrophones. 

Each operation presents its own results and will be presented in this chapter.  
 

 

Fig. 36. TDOA detection after matched filtering. The red dots represents the impulse response of the channel. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 37. TDOA peak comparison. Blue (modeled) and red (measured). Ping 3 SSP pinger at 8.2 km. on the right it was ploted a zoom in 

0.05s to show the similarity between both TDOA. 

 

5.4. Results with only one hydrophone 
 

The first analysis was performed considering the case of a single receiver. The results of 

this particular case will be used as reference to more robust processing techniques. Three 

positions in depth were chosen to perform the HD, the first was the hydrophone index 1, 

positioned at 62 m depth (maximum depth), the second was the hydrophone index 41, 

positioned at 56 m depth, same depth used to obtain the TDOA modeled from the Ray path 

propagation program, and the last one, the hydrophone index 64 positioned at 52.5 m depth 

minimal depth of the array). The main propose of this analysis is to compare the influence of 
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the multipath and noise at different depth. These results will further be compared with spatial 

diversity and beamforming. 

Five variants of HD were used to this analysis. The Maximum Hausdorff Distance 

(MaxHD Takes the maximum value of discrepancy between the 2 set of TDOA), the Mean 

Hausdorff Distance (MeanHD evaluates the mean of all variance in time from each path 

between the 2 set of TDOA), the Median Hausdorff Distance (MedHD takes the median of 

the vector TDOA variance), the Partial 4 Hausdorff Distance (Part4HD takes the 4 closest 

variance in time between the 2 set of TDOA) and the Partial -4 Hausdorff Distance (Part-4HD 

takes all the path less the 4 higher variance in time between the 2 set of TDOA). 

The principle of this analysis is the same as presented at the chapter 5 applied on a 

controlled experiment. However, in a tank, the SSP was constant over range and depth, 

resulting on a presence of the direct Eigen ray (path with no reflection either at the surface or 

at the bottom). This path was the one with the higher energy after the matched filtering, 

obtained by a search for its maximum value and it was used to synchronize both sequences of 

TDOAs. The HD is sensible to the first element used as reference to the comparison, if there 

is an even small variance on the first TDOA this error will be propagated to all other elements 

(see chapter 4). On the Alma experiment, the SSP is not constant, this sound speed variation 

with the depth will introduce curves on the Eigen paths and after a certain range all paths will 

have at least one reflection, either with the surface or the bottom or combination of both. The 

second problem is due to the interference patterns, it is possible that the first Eigen ray is no 

longer the one with higher energy peak (fading on the first arrival), which would result on 

wrong position to the reference first element on a TDOA measured after search for the 

maximum value. It is also possible that due to multipath interferences some of the TDOA in a 

sequence may completely disappear on noise not being detect anymore, case of missing point 

on the TDOA recorded (no red lines on fig around 0.04 and 0.06 s).  

 Fig. 38 shows the comparison with different ranges simulations considering the ping 

number 3, starting from the position at 7.6 km to 8,2 km and the last one at 9 km. the modeled 

TDOA represented by the blue lines and the measured TDOA by the red lines. The depth was 

kept constant at 56m. The SSP used was measured close to the source.  
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Fig. 38. Blue line TDOA simulated at 8.2 km and 56 m depth using the SSP close to the trasmitter, and red line TDOA measured considering 

ping number 3. 

 

Depending on the direction of HD, the effect of multipath interference is not so severe 

when appears after the first TDOA and the reason is that the error does not propagates to other 

elements of the sequences, however with less information because of these missing paths, it 

can generate more ambiguity points at the output of HD. In general, to avoid missing point 

problems the sequence of TDOA simulated should have more arrivals than what it was 

possible to detect on the receiver and should be applied on the defined forward Hausdorff 

Distance, from the direction received (used as base - less points) to simulated (more points). 

For example, On the  Fig. 38 at the middle, when applied the direct backward HD (one side 

HD – see chapter 4), from the simulated to the received, the closest points associated with the 

simulated TDOA around 0.04 and 0.06 s will be at 0.035 and 0.068 s due to the missing point 

at the received TDOA, resulting in a big mismatch at the output of the HD. To eliminate this 

problem one possible solution is to apply the forward HD, from the received to the simulated, 

since that those missing points will not be used to the HD comparison, no red lines to be 

compared with this particular position.  

During the 95 pings, two pings were chosen to be compared on  Fig. 39. Ping number 17 

and ping number 42. Both cases, the HD were evaluated using the SSP close to the source. 

The ping number 17 presents a high degree of resemblance compared with the simulation at 

the range position of 8.2 km and depth of 56 m. In this case, due to the temporal variation of 

the channel, it was possible to detect the time of arrival close to 0.04 s, different from the ping 

number 3 (previous case). The last peak detected to the ping number 17 has no close 

resemblance with the simulation, reason for the MaxHD may fail to localize. The ping 

number 42 presents a complete mismatch between both TDOA sequences as shown at  Fig. 39. 

The reason for this mismatch is due to the wrong reference to the first position at the 

measured TDOA used for aligning both sequence. In this case, the error will be propagated to 

all the remaining sequence, resulting in a wrong localization position.  Fig. 39  

 

 

 

 

 

 

 

 

 

 

Fig. 39. B
lue line TDOA simulated at 8.2 km and 56 m depth using the SSP close to the trasmitter, and red line TDOA measured: ping number 17 (top) 

and ping number 42 (bottom). 
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 Fig. 40 shows the output to the five different HD. As expected the ping number 17, due to 

the last arrival time on the measured signal, presents a big mismatch on the MaxHD, however 

the Mean, Median and Partial4-HD, presents a detection in range close to the correct source 

position. By only considering 4 closest elements (Partial4HD), the uniqueness information of 

the sequence was lost given more ambiguity, leading to a wrong detect position. The analysis 

of the ping number 42 was expected that all different HD variants would be unable to correct 

locate the source due to its initial reference mismatch.  

 

Fig. 40. Output to five diferent HD variants: ping number 17 (left) and ping number 42 (right). 

 

In order to summarize the results for each HD variant applied on each on of 4 different 

SSP, a table containing the number of detection, both in range and depths is presented. 

According to operational navy specialist, one considers localization as sufficiently correct 

when the error is less than 20% of the target position (True target location: range 9 km and 

depth 56 m). The amount of accept error adopted in this work was: up to 1km in range and up 

to 10 m in depths, which is around 10% around the correct target location. Only two SSP will 

be presented in this chapter: the first one being measured close to the source, and the second 

measured close to the receiver, both simulated by the program RAMSES at Thales. The two 

remaining simulations, SSP close to the source simulated by a second program and using the 

SSP evaluated by the mean between the two measured, can be found on the appendix E.  
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Table number I and II shows the results for the SSP close to the source simulated by the 

RAMSEAS ray path propagation (THALES). On the first column is presented the depth of 

each isolated hydrophone used for comparison. The HD was applied on the first 95 pings.   

Table I .Percentage of pings detected inside the limit of error from the true position (both same 

position error equal to 0) up to 1 km in range and 10 m in depth. The SSP used was measured close 

to the source and the HD was applied from the direction of received to the simulated to avoid the 

missing point. (True solution: range 9 km; depth 56 m) 

% detection in range with accepted error up to 1km 

Depth MaxHD MeanHD MedHD Part4-HD Part4HD 

52.5m 28% 23% 24% 17% 24% 

56m 39% 26% 23% 24% 18% 

62m 40% 44% 25% 31% 5% 

% detection in depth with accepted error up to 10m 

Depth MaxHD MeanHD MedHD Part4-HD Part4HD 

52.5m 2% 2% 14% 8% 24% 

56m 4% 7% 11% 12% 29% 

62m 8% 8% 20% 9% 14% 

 

Table II. Percentage of pings detected with maximal error from the true position up to 1 km in 

range and 10 m in depth from the reverse direction, from simulated to the received.  

% detection in range with accepted error up to 1km 

Depth MaxHD MeanHD MedHD Part4-HD Part4HD 

52.5m 19% 22% 26% 29% 21% 

56m 20% 22% 31% 26% 16% 

62m 23% 31% 32% 33% 5% 

% detection in depth with accepted error up to 10m 

Depth MaxHD MeanHD MedHD Part4-HD Part4HD 

52.5m 56% 64% 35% 45% 25% 

56m 44% 56% 24% 37% 36% 

62m 39% 51% 22% 33% 16% 

 

From the results of table I and II, The two first variants (MaxHD and MeanHD), presented 

a better result in range when applied to the direction from the received to the simulation (28% 

and 23% versus 19% and 22% respectively) due to the problem of missing points at the 

received data, however the remaining variants due to its combinations and the removal of big 

mismatch, presented a better result considering the direction of simulated to the received. The 

best result in depths was found using the direction of simulated data to the received. Overall, 

when only one sensor is used, the elimination of some elements in a TDOA sequence (less 

information), especially the case of Partial4HD, tends to reduce the precision of the 

localization. This situation will be further analyzed by using the spatial diversity. 
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Table number VII and VIII shows the results for the SSP measured close to the receiver. 

The simulation was performed by the RAMSES (THALES).  

Table III .Percentage of pings detected with maximal error from the true position up to 1 km in 

range and 10 m in depth. The SSP used was measured close to the receiver and the HD was applied 

from the direction of received to the simulated to avoid the missing point. (True solution: range 9 

km ; depth 56 m) 

% detection in range with accepted error up to 1km 

Depth MaxHD MeanHD MedHD 
Part4-
HD 

Part4HD 

52.5m 45% 53% 43% 52% 29% 

56m 44% 44% 36% 46% 16% 

62m 44% 53% 42% 47% 20% 

% detetion in depth with accepted error up to 10m 

Depth MaxHD MeanHD MedHD 
Part4-
HD 

Part4HD 

52.5m 13% 22% 24% 24% 8% 

56m 17% 21% 13% 26% 27% 

62m 19% 36% 33% 39% 34% 

 

Table IV. Percentage of pings detected with maximal error from the true position up to 1 km in 

range and 10 m in depth from the reverse direction, from simulated to the received.  

% detection in range with accepted error up to 1km 

Depth MaxHD MeanHD MedHD 
Part4-
HD 

Part4HD 

52.5m 1% 3% 3% 0% 16% 

56m 0% 4% 3% 0% 8% 

62m 0% 0% 12% 0% 37% 

% detetion in depth with accepted error up to 10m 

Depth MaxHD MeanHD MedHD 
Part4-
HD 

Part4HD 

52.5m 1% 3% 6% 0% 28% 

56m 0% 1% 6% 0% 52% 

62m 0% 0% 5% 0% 38% 

 

Overall the different SSP, the results for using a single hydrophone presents a better 

accuracy in range than in depths when performed from the direction of received to the 

simulated, being in average able to detect 40% of the total 95 pings. The best accuracy in 

depth came from the direction from simulated to the received. The best result to the depths 

was found using the SSP calculated by the mean between both SSP measured (close to the 

source and receiver), at the depth of 52.5m using the MeanHD, able to detect 73% of the 

pings (appendix E). The depths localization was found to be more sensible to variations of the 

SSP, where using the SSP measured close to the receiver was unable to locate even one 

correct depth in 3 of 5 HD variants for the depth of 62 m.   
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5.5.  Results with Array - Spatial diversity 
 

It was explained that the signal transmitted from the source reaches each sensor along a 

cluster of multipath arrivals with different energies, and very close arrival time delays and 

angles, resulting in overlaps and interference. These small variations in time and/or angle can 

generate an ambiguity location either in target range or in depths, especially when the 

interference occurs at the first arrival in time used to synchronize all the remaining sequence. 

The spatial diversity among the hydrophones of the quite long array (10 m) is used as a 

remedy against those interferences. The main idea consists of positioning several 

hydrophones in different locations, in the ALMA experiment equally spaced in depth (0.15m). 

Depending of the spacing between them, the signal recorded experiences different 

interference pattern resulting in fading, which in an uncoherent system has high probability of 

occurrence in different time.  

Eight variants of HD were used to this analysis, the five previously used to the case of 

only one hydrophone, plus the Partial-2 Hausdorff Distance (Part-2HD takes all the path less 

the 2 higher variance in time between the 2 set of TDOA), the Partial-1 Hausdorff Distance 

(Part-1HD takes all the path less the higher variance in time between the 2 set of TDOA). 

These variants eliminate the higher difference (maximal mismatches) between the 2 

sequences, which can occurs due to extra-points detection (wrong detection). On  Fig. 41, 

hydrophone index 9 presents the case of extra-points detection on the arrival close to 0.03s 

(black arrow), this maximal value of error will be eliminated by using these variants. The last 

variant was performed by the probabilistic formulation HD, where the HD combinations will 

be fitted in a probability density function (see chapter 4).  

On  Fig. 41 (black ellipse), the blue dots are the TDOA simulated and the red dot the 

TDOA measured. Hydrophone index number 7 at the arrival time close to 0.015 s is in a 

presence of fading, not being detected (red dot), the subsequent hydrophones due the small 

spacing between them also experiences similar interference pattern (coherence between close 

hydrophones), however as the spacing between hydrophones increases, the hydrophones start 

getting uncoherent due to the different combination of multipath and the time of arrival starts 

being detected. Since that those interference occurs in different times and different depths, the 

combination of all hydrophones should reduce the ambiguity generated by the interferences 

and fading, improving the target localization. The second and most important benefit of using 

spatial diversity is to define the first arrival used as reference to all HD comparison. The 

process is the same as applied to a single hydrophone. A matched filtering with the 

transmitted signal is applied to each hydrophone, the search for the maximum value is 

performed and the first detected position associated with a hydrophone index will be 

positioned as the reference time zero. At the simulated TDOA the first arrival of the same 

hydrophone index from the received sequence is placed at the reference time zero. This 

correction at the simulated TDOA is important in cases of the high value to the first angle of 

arrival due to the inclination in time generated by this angle. In the ALMA experiment, the 

first angle was 0.6º to the correct position, so this correction at the TDOA simulated was 

disregarded. After this process the HD can be applied as discussed at chapter 4.  
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Fig. 41. TDOA comparison. Blue dots - TDOA modelled, red dot - TDOA measured. Vertical axis represents the hydrophone index and the 

horizontal axis represents the TDOA. 

 

 Fig. 42 shows the similarity of the output of the MaxHD to the hydrophone index 1 to 2 

and index 63 to 64 (spacing of 0.15cm between hydrophones - coherence) and the 

dissimilarity between the hydrophone index 1 to 64 (spacing of 9.45m between hydrophones - 

decoherence). The effect of those ambiguity points can be reduced by evaluating the 

combinations of all different hydrophones as presented on the previous section. Three 

combinations were evaluated to each HD variant. The first result came from using the mean 

of the HD output from all Hydrophones. The mean of all hydrophones was choose to be 

presented due to its stability overall different SSP. The second result was evaluated by the 

median of all hydrophones. And the last, performed by the maximum HD output presented by 

all hydrophones. These two last combinations at some configurations presented the best 

localization results however due to its high instability of the target results over different 

configurations it was decided not to be shown. 

The last improvement came from using spatial filtering after the array combination. The 

TDOA at different hydrophones index should follow a linear time delay distribution given its 

DOA, however as seen on  Fig. 37, the detected TDOA suffer a small variation in time from 

its linearity give its direction of arrival. This variation in time could be resulted from the 

temporal resolution of the peak detection given the different multipath interference as well as 

due to the roughness either at the surface (sea wave) or at the bottom (approximation to a flat 

configuration). Due to the spatial proximity properties of the HD, these variations in time 

results in a defocusing of the HD output, where a small-time variation will be responsible for 

a small variation at the position of the target, distributing the final position of the average HD 

output to its neighborhood. The solution to this problem consists of applying a spatial filtering 

with a defined window size to consider the information of the located target’s neighborhood. 

The spatial filtering also reduces the effect of high value of ambiguity points. Five different 

kernels were used with different window size: A squared window was used with size variation 

from 3-by-3 to 10-by-10 to the first four different kernels: Mean, circular mean (Disk), 

Gaussian and Median. The last kernel used was the Wiener with a window size variation from 

6-by-6 to 12-by-12. To synthesize the results only the best overall spatial filtering will be 

presented, which will be compared with the results of not using the spatial filtering (No S. 

Filter).   
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Fig. 42. Output of the MaxHD to each isolated hydrophone index and the final result from the combination of all 64 hydrophones. I don’t 

know how to improve this figure 

 
  Two SSP will be presented here, the SSP close to the source and the SSP close to the 

receiver, considering the direction of received to simulated. The last two remaining SSP 

results can be found on the appendix F. Each SSP generated its own TDOA simulated 

sequence which was compared with the same the TDOA received sequence extracted from 

each hydrophone, thus the different target detection results came from the different input 

parameters at the simulations.  
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5.5.1 SSP close to the source 
 

The  Fig. 43 shows the output of the HD to the main variants applied on the 64 array for 

the ping number 1. The first column was performed with the average of the 64 hydrophones 

using no spatial filtering and the second column using the spatial filtering disk with window 

size of 9-by-9. The true source position is represented by the pink symbol “*” located at the 

intersection of the red lines at 9km in range and 56 m in depths. The black symbol “*” 

represents the target’s locations for each one of the HD variants.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 43. Output of the mean 64 hydrophones array to the main HD variant evaluated to the ping number 1. 

 

 

The HD variants were evaluated using a variation of the array size starting from 64 

hydrophones to 1 hydrophone. These tables will be used to define the minimal number of 

hydrophones to futures measurements given the requested minimal value of error accepted. A 

total of 95 pings were processed. 

 

 

 

 

 

 



   71 
 

 

 Table I .Percentage of pings detected with maximal error from the true position up to 1 km in 

range and 10 m in depth. The SSP used was measured close to the source and the HD was applied 

from the direction of received to the simulated to avoid the missing point.  

%  detection in range with accepted error up to 1km ( SSP close to the source)  

HD direction received to simulated (Forward HD) 

  
Max 
HD  

Mean 
HD 

Med 
HD 

Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

Prob 
HD 

Array 64 Hydrophones 
(from hydrophone 1 
to 64) 

No S. Filter 88% 82% 56% 42% 65% 73% 77% 97% 

SF-disk  9 86% 99% 88% 41% 99% 100% 100% 100% 
Array 32 Hydrophones 
(from hydrophone 1 
to 64) 

No S. Filter 91% 78% 57% 45% 65% 73% 75% 91% 

SF-disk  9 84% 99% 86% 41% 98% 100% 100% 100% 
Array 16 Hydrophones 
(from hydrophone 1 
to 64) 

No S. Filter 82% 78% 55% 44% 64% 71% 74% 91% 

SF-disk  9 80% 99% 79% 37% 95% 99% 100% 100% 
Array 8 Hydrophones 
(from hydrophone 1 
to 64) 

No S. Filter 72% 76% 54% 44% 60% 71% 73% 80% 

SF-disk  9 76% 99% 80% 33% 92% 100% 100% 99% 
Array 4 Hydrophones 
(from hydrophone 1 
to 64) 

No S. Filter 62% 71% 53% 39% 61% 71% 69% 71% 

SF-disk  9 75% 94% 65% 32% 83% 96% 95% 94% 
Array 2 Hydrophones 
(from hydrophone 1 
to 64) 

No S. Filter 62% 63% 45% 31% 53% 63% 63% 63% 

SF-disk  9 77% 89% 51% 21% 68% 83% 88% 87% 

1 Hydrophone 
(hydrophone 1 - 62m) 

No S. Filter 40% 44% 25% 5% 31% 41% 45% 44% 

SF-disk  9 66% 72% 28% 3% 39% 48% 58% 61% 

%  detection in depth with accepted error up to 10m (  SSP close to the source)  

  
Max 

HD  
Mean 

HD 
Med 

HD 
Partial 

4HD 
Partial 

4-HD 
Partial 

2-HD 
Partial 

1-HD 
Prob 
HD 

Array 64 Hydrophones 
(from hydrophone 1 
to 64) 

No S. Filter 0% 2% 31% 24% 33% 32% 21% 15% 

SF-disk  9 0% 0% 1% 48% 0% 0% 0% 0% 
Array 32 Hydrophones 
(from hydrophone 1 
to 64) 

No S. Filter 0% 3% 29% 18% 32% 33% 21% 20% 

SF-disk  9 0% 0% 2% 51% 0% 0% 0% 0% 
Array 16 Hydrophones 
(from hydrophone 1 
to 64) 

No S. Filter 0% 4% 24% 17% 29% 29% 18% 24% 

SF-disk  9 0% 0% 3% 49% 0% 0% 0% 0% 
Array 8 Hydrophones 
(from hydrophone 1 
to 64) 

No S. Filter 0% 6% 24% 13% 23% 28% 19% 29% 

SF-disk  9 0% 0% 2% 39% 1% 0% 0% 0% 
Array 4 Hydrophones 
(from hydrophone 1 
to 64) 

No S. Filter 2% 8% 17% 20% 18% 26% 18% 32% 

SF-disk  9 0% 0% 2% 40% 2% 0% 0% 0% 
Array 2 Hydrophones 
(from hydrophone 1 
to 64) 

No S. Filter 4% 9% 21% 26% 24% 28% 20% 26% 

SF-disk  9 0% 0% 2% 29% 2% 0% 0% 4% 

1 Hydrophone 
(hydrophone 1- 62m) 

No S. Filter 8% 8% 20% 14% 9% 9% 9% 16% 

SF-disk  9 0% 0% 5% 18% 1% 0% 0% 1% 
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The histogram of the best HD variant (Partial-1HD to this SSP) is presented on  Fig. 44. 

The left plot shows the improvement of using only 1 hydrophone (blue color) to the case of 

using an array with 64 hydrophones (red color). The right plot shows the improvement of 

using the array with 64 hydrophones without Spatial filtering (blue color) to the case of using 

SF with kernel disk with window size of 9-by-9 (red color). The mean and the standard 

deviation of the results in range and in depths were also evaluated by the function evfit in 

MATLAB. The blue and red dashed lines represent the extreme value probability density 

function evaluated by the function evpdf in MATLAB, which used the value of µ (green 

dotted line) and σ from the previous MATLAB function. The black dashed line represents the 

true source location. The bottom plot shows the variation of the detected range compared with 

the true target location (black line at 9km): using only 1 hydrophone (blue line), 64 

hydrophones with NO-SF (red line) and using SF-disk-9 (green line). The symbol “*” indicate 

when the detected range is outside of the limit error accepted of 1km (black dashed line to 

each direction from the true target location), variating to the total number of ping on the X-

axis.  

 

  

 

 

 

 

 

 

 

 

Fig. 44. Histogram of the Partial-1HD applied to range localization (top) and detected range variantion compared with true target location. 
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A similar process is shown at  Fig. 45, using the same HD variant (Partial-1HD to this 

SSP), however now applied to the depths localization at 56m. In this case for the only one 

hydrophone, the value of detected depth is distributed overall depths (left histogram). When 

applied on 64 hydrophones, most of the detected depths occur at a depth up to 20 m. By using 

the filtering disk 9-by-9, it was found a more stable result, where most of the detections were 

at 20 m ± 5m. On the bottom plot showing the variation of the detected depths with the ping 

number, it is possible to see the high fluctuation of the results for the case of not using 

filtering (red and blue color), and the more stable results when using the spatial filtering 

(green color). The final result however presents a bias regarding the true target location at 

56m depth. 

 

 

 

 

 

 

 

 

Fig. 45. Histogram of the Partial-1HD applied to depth localization (top) and detected depth variantion compared with true depth location.. 

 

5.5.2 SSP close to the receiver 

 
During all the analysis on the previous SSP results, the best and more reliable results from 

the spatial filtering came from the kernel disk with the window size 9-by-9, however the same 

kernel present a worst result when applied on the SSP close to the receiver. The reason from 

this disparity is shown at the  Fig. 46 and  Fig. 47. Keeping the range fixed at 9 km and 

variating the depths from 0 to 100m, the SSP close to the receiver, presents discontinuities of 

the linearity on the simulated arrival time. These variations of the arrival time with depths 
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introduce at the output of the HD a noise effect (defocusing of the ray paths). The pattern of 

the SSP close to the source generates at the output of the HD a defined ray path, shown at  Fig. 

47 on the right. These ray paths are not identified on the SSP close to the receiver due to the 

noise effects. The wiener kernel is known on the image processing for reducing the influence 

of the salt and pepper noise effects, and the best result was obtained with the window size 11-

by-11.  

 

 

 

 

 

 

 

 

 

 

Fig. 46. Variation in depths of the arrival time with a fixed range at 9km to the SSP close to the receiver (top) and to the SSP close to the 

source (bottom).  

 

 

 

 

 

 

 

 

 

 

 
Fig. 47. Output of the HD to the ping number 2 with 64 array sensors, applied to the SSP close to the receiver (left) and to the SSP close to 

the source (right).  

 

 

Partial4HD mean of all Hydrophones 

Partial4-HD mean of all Hydrophones 

Partial4HD mean of all Hydrophones 

Partial4-HD mean of all Hydrophones 
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The  Fig. 48 shows the output of the HD to the main variants applied on the 64 array for 

the ping number 1. The first column was performed with the average of the 64 hydrophones 

using no spatial filtering and the second column using the spatial filtering wiener with 

window size of 11-by-1, used to smooth the output of the Hausdorff distance. The true source 

position is represented by the pink symbol “*” located at the intersection of the red lines at 

9km in range and 56 m in depths. The black symbol “*” represents the target’s locations for 

each one of the HD variants. The noise effect could be reduced as well as the ambiguities on 

the output of the HD. The results from the HD using the SSP measured close to the receiver 

presents a better accuracy in depths locations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 48. Output of the HD variants to the ping number 1 to the 64 array sensors: mean of 64 sensors (left), median of 64 sensors (middle) and 

maximum of 64 sensors (right). 

 

The results of the second SSP, measured close to the receiver, is presented on table V. As 

the number of hydrophones decreases, high value of ambiguity appears leading to a loss of 

precision. The bold results represent the best value for each line, which helps to identify the 

best variant (column), as well as the comparison between the use of SF and not using SF. 

 

Table V .Percentage of pings detected with maximal error from the true position up to 1 km in 

range and 10 m in depth. The SSP used was measured close to the receiver and the HD was applied 

from the direction of received to the simulated to avoid the missing point.  
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%  detection in range with accepted error up to 1km (  SSP close to the receiver)  

HD direction received to simulated (Forward HD) 

  
Max 
HD  

Mean 
HD 

Med 
HD 

Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

Prob 
HD 

Array 64 Hydrophones 
(from hydrophone 1 
to 64) 

No S. Filter 21% 83% 87% 53% 92% 89% 91% 76% 

SF-Wiener 11 9% 89% 93% 62% 97% 92% 94% 94% 
Array 32 Hydrophones 
(from hydrophone 1 
to 64) 

No S. Filter 24% 83% 89% 53% 92% 89% 88% 80% 

SF-Wiener 11 12% 91% 93% 60% 94% 91% 92% 95% 
Array 16 Hydrophones 
(from hydrophone 1 
to 64) 

No S. Filter 28% 85% 85% 52% 93% 89% 91% 79% 

SF-Wiener 11 19% 88% 92% 58% 95% 88% 89% 94% 
Array 8 Hydrophones 
(from hydrophone 1 
to 64) 

No S. Filter 38% 82% 79% 59% 85% 88% 88% 79% 

SF-Wiener 11 27% 83% 86% 61% 91% 91% 89% 87% 
Array 4 Hydrophones 
(from hydrophone 1 
to 64) 

No S. Filter 38% 76% 71% 51% 82% 84% 82% 76% 

SF-Wiener 11 37% 77% 77% 55% 81% 82% 83% 80% 
Array 2 Hydrophones 
(from hydrophone 1 
to 64) 

No S. Filter 45% 60% 54% 33% 66% 60% 63% 62% 

SF-Wiener 11 41% 64% 58% 34% 66% 69% 69% 64% 

1 Hydrophone 
(hydrophone 1 - 62m) 

No S. Filter 44% 53% 42% 20% 47% 60% 55% 55% 

SF-Wiener 11 40% 48% 48% 19% 55% 63% 54% 45% 

%  detection in depth with accepted error up to 10m ( SSP close to the receiver)  

  
Max 

HD  
Mean 

HD 
Med 

HD 
Partial 

4HD 
Partial 

4-HD 
Partial 

2-HD 
Partial 

1-HD 
Prob 
HD 

Array 64 Hydrophones 
(from hydrophone 1 
to 64) 

No S. Filter 8% 39% 58% 25% 60% 54% 44% 43% 

SF-Wiener 11 2% 17% 41% 23% 43% 25% 20% 23% 
Array 32 Hydrophones 
(from hydrophone 1 
to 64) 

No S. Filter 7% 34% 59% 28% 64% 55% 41% 45% 

SF-Wiener 11 3% 18% 44% 25% 41% 26% 19% 26% 
Array 16 Hydrophones 
(from hydrophone 1 
to 64) 

No S. Filter 9% 34% 56% 28% 60% 53% 48% 49% 

SF-Wiener 11 3% 14% 43% 29% 46% 25% 23% 32% 
Array 8 Hydrophones 
(from hydrophone 1 
to 64) 

No S. Filter 15% 38% 52% 35% 56% 54% 51% 43% 

SF-Wiener 11 8% 20% 40% 29% 42% 38% 34% 32% 
Array 4 Hydrophones 
(from hydrophone 1 
to 64) 

No S. Filter 8% 32% 41% 43% 51% 48% 46% 45% 

SF-Wiener 11 13% 17% 37% 38% 38% 35% 28% 28% 
Array 2 Hydrophones 
(from hydrophone 1 
to 64) 

No S. Filter 14% 32% 31% 35% 42% 38% 33% 29% 

SF-Wiener 11 21% 20% 29% 40% 33% 28% 29% 26% 

1 Hydrophone 
(hydrophone 1) 

No S. Filter 19% 36% 33% 34% 39% 39% 40% 27% 

SF-Wiener 11 14% 28% 31% 32% 39% 38% 34% 25% 
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The histogram of the best HD variant (Partial-4HD to this SSP) is presented on  Fig. 49. 

The left plot shows the improvement of using only 1 hydrophone (blue color) to the case of 

using an array with 64 hydrophones (red color). The right plot shows the improvement of 

using the array with 64 hydrophones without Spatial filtering (blue color) to the case of using 

SF with kernel wiener with window size of 11-by-11 (red color). The mean and the standard 

deviation of the results in range and in depths were also evaluated by the function evfit in 

MATLAB. The blue and red dashed lines represent the extreme value probability density 

function evaluated by the function evpdf in MATLAB, which used the value of µ (green 

dotted line) and σ from the previous MATLAB function. The black dashed line represents the 

true source location.  

The bottom plot shows the variation of the detected range compared with the true target 

location (black line at 9km): using only 1 hydrophone (blue line), 64 hydrophones (red line) 

and using SF-disk-9 (green line). The symbol “*” indicate when the detected range is outside 

of the limit error accepted of 1km (black dashed line to each direction from the true target 

location), variating to the total number of ping on the X-axis. 

 

 

 

 

 

 

 

 
Fig. 49. Histogram of the Partial-4HD applied to range localization (top) and detected range variantion compared with true target location. 

 

A similar process is shown at  Fig. 50, using the same HD variant (Partial-4HD), however 

now applied to the depths localization at 56m. By using the SSP close to the receiver was able 

to correct located 60% in depths (error of 10 m to the true source at 56 m depth) of the total 

number of pings. 



   78 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 50. Histogram of the Partial-4HD applied to range localization (top) and detected range variantion compared with true target location. 

 

5.6. Best Configuration 
 

Overall HD variants the most consistent over all 4 SSP was the Partial-2HD. The range 
variation of each SSP is presented on  Fig. 51. The best SSP was obtained using the SSP close 
to the source simulated by the program RAMSES (blue line) where all the pings were inside 
the accept limit of error of 1km. the second best result was found using the SSP close to the 
source simulated by the second ray path program (X.program) with 4 ping out of the 1km 
interval (red line). The next SSP was measured close to the receiver with 8 pings out of the 
1km. the last SSP was performed by the mean of the 2 measured SSP. By using the same HD 
variant (Partial-2HD) the SSP mean presented 12 pings located outside the limit of 1km in 
range. When increase the accepted limit of error of to 2km (around 20% of the target location) 
only the SSP mean detect a total of 4 pings out of this new range interval. The detected depth 
evaluated for the 4 SSP was not plotted due to the bias compared with the true source. 
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Fig. 51. Detected range variantion compared with true target location using the Partial-2HD evaluated to the 4 SSP.  

5.7.  Minimal number of Hydrophones. 
 

The 8 hydrophones array in both SSP after applied the spatial filtering are still able to 

correct localize more than 90% of the total amount of transmitted pings. The minimal number 

of hydrophones to an accuracy of more than 80% of the ping after the spatial filtering is 4 

hydrophones. The total number of hydrophone less than 4 is not recommended due to a 

limited final precision, being able to localize an average of 60% of the total number of pings. 

Table VI presents the results from the 2 best variants (Partial4-HD and Partial 2-HD). The 

same table also presents the final comparison of using SF and not using SF, having an 

improvement of over 30% to the SSP close to the source and only 5% to the SSP close to the 

received. 

Table VI .Percentage of pings detected with maximal error from the true position up to 1 km. Two SSP were 
used (close to the source and close to the receiver). The direction used in both cases was received to simulated. 

 

 

 

SSP close to the source 

 
Partial4-HD 

No SF 
Partial4-HD 
SF disk 9-9 

Partial2-HD 
No SF 

Partial2-HD 
SF disk 9-9 

Array 64 Hydrophones 
(from hydrophone 1 to 64) 

65% Red. 99% Red. 73% Red. 100% Red. 

Array 32 Hydrophones 
(from hydrophone 1 to 64) 

65% 0.0% 98% -1.0% 73% 0.0% 100% 0.0% 

Array 16 Hydrophones 
(from hydrophone 1 to 64) 

64% -1.5% 95% -4.0% 71% -2.7% 99% -1.0% 

Array 8 Hydrophones   
(from hydrophone 1 to 64) 

60% -7.7% 92% -7.1% 71% -2.7% 100% 0.0% 

Array 4 Hydrophones   
(from hydrophone 1 to 64) 

61% -6.2% 83% -16.2% 71% -2.7% 96% -4.0% 

Array 2 Hydrophones   
(from hydrophone 1 to 64) 

53% -18.5% 68% -31.3% 63% -13.7% 83% -17.0% 

SSP close to the receiver 

 
Partial4-HD 

No SF 

Partial4-HD 
SF wiener 11-

11 

Partial2-HD 
No SF 

Partial2-HD 
SF wiener 11-11 

Array 64 Hydrophones 
(from hydrophone 1 to 64) 

92% Red. 97% Red. 89% Red. 92% Red. 

Array 32 Hydrophones 
(from hydrophone 1 to 64) 

92% 0.0% 94% -3.3% 89% 0.0% 91% -1.1% 

Array 16 Hydrophones 
(from hydrophone 1 to 64) 

93% 1.1% 95% -2.2% 89% 0.0% 88% -4.3% 

Array 8 Hydrophones   
(from hydrophone 1 to 64) 

85% -6.9% 91% -6.5% 88% -1.1% 91% -1.1% 

Array 4 Hydrophones   
(from hydrophone 1 to 64) 

82% -10.3% 81% -16.3% 84% -5.6% 82% -10.9% 

Array 2 Hydrophones   
(from hydrophone 1 to 64) 

66% -27.6% 66% -31.5% 60% -32.6% 69% -25.0% 
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1.1 Coherence between hydrophones 
 

The last analysis on this chapter was to define the minimal spacing between hydrophones 

which results in a diversity gain by increasing the decoherence between sensors. 2 

hydrophones were used with variations on the spacing between them, starting from spacing of 

1 hydrophone, 3 hydrophones, 7 hydrophones, 15 hydrophones and 31 hydrophones. 

Table VII .Percentage of pings detected with maximal error from the true position up to 1 km. the SSP close to 
the source and close to the receiver were used. The direction used was received to simulated. The depths were 
disregarded. 

%  detection in range with accepted error up to 1km ( SSP close to the source)  

HD direction received to simulated (Forward HD) 

  
Max 
HD  

Mean 
HD 

Med 
HD 

Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

Prob 
HD 

1 Hydrophone  
(Hydrophone 50) 

No S. Filter 35% 26% 24% 21% 20% 25% 27% 20% 

SF-disk  9 62% 81% 39% 39% 48% 59% 67% 58% 
Spacing of 1 
hydrophone    
(Hydrophone 1 and 2) 

No S. Filter 49% 52% 37% 14% 44% 51% 52% 48% 

SF-disk  9 74% 77% 24% 7% 43% 57% 63% 63% 
Spacing of 3 
hydrophones    
(Hydrophone 1 and 4) 

No S. Filter 56% 52% 42% 13% 39% 44% 51% 54% 

SF-disk  9 78% 87% 29% 6% 46% 61% 77% 71% 
Spacing of 7 
hydrophones   
(Hydrophone 1 and 8) 

No S. Filter 54% 57% 37% 25% 46% 52% 51% 49% 

SF-disk  9 73% 88% 33% 11% 49% 73% 82% 74% 
Spacing of 15 
hydrophones   
(Hydrophone 1 and 16) 

No S. Filter 51% 54% 39% 22% 53% 53% 54% 58% 

SF-disk  9 79% 87% 38% 13% 54% 75% 82% 79% 
Spacing of 31 
hydrophones  
(Hydrophone 1 and 32) 

No S. Filter 65% 58% 54% 28% 59% 60% 61% 67% 

SF-disk  9 82% 92% 51% 19% 65% 81% 89% 85% 

% detection in range with accepted error up to 1km (SSP close to the receiver)  

HD direction received to simulated (Forward HD) 

  
Max 

HD  
Mean 

HD 
Med 

HD 
Partial 

4HD 
Partial 

4-HD 
Partial 

2-HD 
Partial 

1-HD 
Prob 
HD 

1 Hydrophone  
(Hydrophone 50) 

No S. Filter 52% 52% 38% 27% 55% 58% 59% 55% 

Wiener 11 40% 48% 48% 19% 55% 63% 54% 56% 
Spacing of 1 
hydrophone    
(Hydrophone 1 and 2) 

No S. Filter 47% 53% 44% 26% 52% 60% 57% 58% 

Wiener 11 37% 48% 48% 29% 57% 62% 58% 62% 
Spacing of 3 
hydrophones    
(Hydrophone 1 and 4) 

No S. Filter 37% 44% 53% 26% 59% 57% 49% 56% 

Wiener 11 32% 45% 53% 29% 62% 57% 51% 53% 
Spacing of 7 
hydrophones   
(Hydrophone 1 and 8) 

No S. Filter 40% 60% 65% 27% 68% 64% 59% 66% 

Wiener 11 33% 58% 60% 36% 68% 66% 66% 63% 
Spacing of 15 
hydrophones   
(Hydrophone 1 and 16) 

No S. Filter 38% 54% 58% 29% 73% 65% 61% 68% 

Wiener 11 35% 63% 67% 33% 75% 72% 63% 69% 
Spacing of 31 
hydrophones  
(Hydrophone 1 and 32) 

No S. Filter 46% 64% 56% 28% 67% 73% 65% 66% 
SF-Wiener 
11 37% 68% 63% 38% 75% 77% 71% 65% 
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As the spacing between the two hydrophone increases, the decoherence between the 

received signal also increases, which means that fadings are likely to happen in different time, 

thus the combination results in an improvement at the localization accuracy.  For the table 

VIII the SSP adopted was the one close to the receiver. Overall the best cost-benefit was 

found by the spacing comprised by 15 hydrophones (array size of 2.4 m). Array with higher 

length would experience satisfactory decoherence between sensor, as shown at table VIII. 

Table VIII .Percentage of pings detected with maximal error from the true position up to 1 km. The SSP close 
to the source was used. The direction used was received to simulated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.8. Chapter Summary 
 

The purpose of the at-sea Alma 2015 experiment was to study of the influence of 
fluctuations due to wavefront distortion and decoherence effect on the medium, using different 
temporal and spatial scales. In this work it was used to validate the proposed inversion 
technique using eight different HD variants with respect to its precision. The information of the 
time difference of arrival (TDOA) as well as the angle of arrival (AOA) were used to the 
comparison between measured and modelled data. The first analysis was performed using only 
one hydrophone from the total 64 hydrophone array showing poor localization performance. 

SSP close to the source 

 
Partial4-HD 

No SF 
Partial4-HD 
SF disk 9-9 

Partial2-HD 
No SF 

Partial2-HD 
SF disk 9-9 

1 Hydrophone 
(hydrophone 50) 

20% Gain 48% Gain 25% Gain 59% Gain 

Spacing of 1 hydrophone 
(hydrophones 1 and 2) 

44% 120.0% 43% -10.4% 51% 104.0% 57% -3.4% 

Spacing of 3 hydrophones 
(hydrophones 1 and 4) 

39% 95.0% 46% -4.2% 44% 76.0% 61% 3.4% 

Spacing of 7 hydrophones 
(hydrophones 1 and 8) 

46% 130.0% 49% 2.1% 52% 108.0% 73% 23.7% 

Spacing of 15 hydrophones 
(hydrophones 1 and 16) 

53% 165.0% 54% 12.5% 53% 112.0% 75% 27.1% 

Spacing of 31 hydrophones 
(hydrophones 1 and 32) 

59% 195.0% 65% 35.4% 60% 140.0% 81% 37.3% 

SSP close to the receiver 

 
Partial4-HD 

No SF 
Partial4-HD 

SF wiener 11-11 
Partial2-HD 

No SF 
Partial2-HD 

SF wiener 11-11 

1 Hydrophone 
(hydrophone 50) 

55% Gain 55% Gain 58% Gain 63% Gain 

Spacing of 1 hydrophone 
(hydrophones 1 and 2) 

52% -5.5% 57% 3.6% 60% 3.4% 62% -1.6% 

Spacing of 3 hydrophones 
(hydrophones 1 and 4) 

59% 7.3% 62% 12.7% 57% -1.7% 57% -9.5% 

Spacing of 7 hydrophones 
(hydrophones 1 and 8) 

68% 23.6% 68% 23.6% 64% 10.3% 66% 4.8% 

Spacing of 15 hydrophones 
(hydrophones 1 and 16) 

73% 32.7% 75% 36.4% 65% 12.1% 72% 14.3% 

Spacing of 31 hydrophones 
(hydrophones 1 and 32) 

67% 21.8% 75% 36.4% 73% 25.9% 77% 22.2% 
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This problem will be tackled by considering an array of hydrophone, where it is known that the 
interference patterns does not likely happen at the same time on different uncorrelated 
hydrophones. So, the next section divided the analysis of the full array in two methods: the 
first one described in this chapter was using the spatial diversity between sensors, and the next 
one using the beamforming, where the results will be presented on the next chapter. The next 
section on this chapter introduced the concept of spatial filtering and presented the 
improvement on the performance for localization. Two SSP were analysis on this chapter, the 
first measured close to the source and the second close to the receiver. The two remaining SSP, 
the SSP evaluated by the mean of two previous SSP and the SSP close to the source simulated 
by the X.Program, were presented at the appendix E and F. The last section of this chapter 
defined the minimal number of the hydrophones as well as the minimal spacing between 
sensors for this environment to achieve a minimal of 90% of detection in range. Localization 
was considered successful if the error was smaller than 1km (around 10% of the target range). 
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6.1. Introduction 

 

The second part of the Alma 2015 analysis presents the at-sea experimental results of the 

variants Hausdroff Distance (HD) using the Beamforming technique. The beamforming 

combines the energy of the received signal given its direction of arrival (DOA) while 

attenuate the energy for the others directions. The results were obtained using the first 95 

transmitted pings (same transmitted pings used to the Spatial diversity), and the comparison 

of both techniques will be presented here. This chapter also provides the results of using a 

sector of the array with the size of 1/3 of the original array. By reducing the array size from 

10m to 3m it is possible to operate in combat vessels including in an operational submarine. 

The beamforming techniques present some advantages: it is likely more robust at low 

SNR, due to the combination of the signals from the total number of hydrophones and it 

reduces the problem generated by the temporal resolution on the peaks detection applied on 

the received signal due to its angular separation. If two eigen rays arriving at close time 

interval (chosen to be 4*1/BT) form different direction of arrival, the peak detection is able to 

identify only the highest intensity peak of the two direction by using the spatial diversity 

technique due to its temporal limitations, however by increasing the dimension (information 
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not only from the time but also from the angle) even if two eigen rays arrive at the same time, 

they can be separated considering the angular information by using the beamforming 

technique. The angular resolution depends on the total number of hydrophones.  

On the Spatial diversity, each one of the 16 HD variants (8 variants for the forward 

direction and 8 variants for the backward) is going to be evaluated to each hydrophone and 

then the output is going to be combined (mean, median or max of all hydrophones) to a final 

result, as shown at  Fig. 52 (top). The beamforming process differs from the spatial diversity 

by instead of evaluate the HD for each hydrophone and then combine to a final result, it first 

combines all the hydrophones which result in a gain (when the signals are coherent) at the 

direction of the arrival Eigen ray and then the HD is evaluated using the information of the 

TDOA and the DOA, as shown at  Fig. 52 (bottom). A process called adaptive peak detection 

was introduced and it will be discussed in this chapter. By reducing the number of HD 

operations, from the total number of hydrophones isolated 64 to only one which is a vector 

with the combination of all hydrophones in 2 dimensions: information of time (TDOA) and 

angle (DOA), the beamforming presents a reduced computational time compared with the 

spatial diversity. 14 variants of Hausdorff Distance were used to the beamforming. The 

ProbHD was eliminated because the reduced numbers of elements in a final vector (64 times 

less due to the beamforming). The next step to both methods was to use the spatial filtering, 

consisting of a total of 46 different filtering. At the end by search for the minimal value of 

error, it is possible to estimate the location in range and in depth of the target.  

Fig. 52. Flowchart of both Methods.  
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6.2. Beamforming 
 

Three SSP described on the last chapter are now compared using the information of the 

Direction of arrival (DOA) and Time difference of arrival (TDOA) at the true target location, 

shown at  Fig. 53. The SSP close to the receiver presents the higher variations on the angle 

information. 

 

 

 

 

 

 

 

 

 

Fig. 53. SSP comparison for true position of the source (9km in range and 56m in depth).  

The process of localizing using beamforming is defined following three steps: 

1) Sum of the received signal at all hydrophones, linear delayed in time based on the 

information from the direction of arrival (DOA). This process is performed in frequency 

domain through the steering vector. For each look direction, it performed the inner 

product of the steering phase shift vector with the data vector. This inner product is the 

spatial equivalent of a matched filter. 

2) Matched filtering the output of the beamforming, for each variation in angle, with the 

transmitted signal and apply the Fourier transform to time domain. Searching for the peaks 

performed in 2D, angle and time, characterizing the impulse response as shown at  Fig. 54. 

The symbol “x” black color corresponding to the modeled TDOA and the red circle 

represent the measured TDOA.  The Modeled TDOA presented at  Fig. 54, was evaluated 

on the true source position, 9 km in range (left - better resemblance between two data set) 

and on 6km range (right – wider hyperbole due to a high value of angles to a close 

distance). Both cases with the center of the array at 56 m in depth.  

3) The Hausdorff Distance (HD) variants are applied using the combination of 

both, time and angle information. The comparison between the two data set, TDOA 

measured and TDOA simulated, was performed by the square root of the time difference 

squared multiply for a weight of 10^3 plus the angle difference squared. This weight was 

applied on the time information to compensate the order of magnitude between the time 

and angle with a relation ratio 10^3. The two marginal direction, forward HD ℎ(𝑅𝑡 , 𝑆𝑡)  

and backward HD ℎ(𝑆𝑡, 𝑅𝑡), were analyzed, and again the results from each marginal 

direction are not symmetric and are based on the number of the TDOA, however because 

it was evaluated based on the combination of the total number of hydrophones, the eigen 

rays are more likely of being detected when compared with the results from each isolated 

hydrophone.  
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Fig. 54. TDOA peak comparison. Red (measured) and Black (modeled) at 9 km (left) and 6 km (right). 

 

6.3. Results Adaptive synchronization 
 

The peak detection from the beamforming was first implemented searching for the high 

intensity value after the matched filtering, process similar to the one applied on the spatial 

diversity. The results are presented on the table IX named as max peak detection evaluated to 

the SSP close to the source. As explained on the last chapter this detection is valid to the 

spatial diversity because it is likely that the fading happens in different time of arrival 

considering a long array (decoherence between hydrophones), thus at least one hydrophone 

can detect the correct value of the first arrival used as reference to all the remaining TDOA 

sequences of the total number of hydrophones. Different from the spatial diversity the 

beamforming technique does not analyze each hydrophone isolated, so even if the correct 

value to the first arrival used to synchronize the TDOA sequence can be detect to a certain 

hydrophone, the combination with the reimaging hydrophone may reduce the intensity level 

to the correct first time of arrival while amplify a wrong position, which will be detected and 

used as a reference introducing a mismatch at the ambiguity surface. To solve this problem 

one possible solution would be applying a time shift vector to each interaction of the HD, 

selecting the minimal index value of all interactions, which means the most resemblance 

between both sequences. However, this process would request a higher processing time as the 

number of elements to the time shift vector increases. The second disadvantage to this process 

is that it would be applied to all pings, including the ones that had correctly detected the first 

arrival to the reference. For example, a time shift vector with a step of 1 milliseconds with 

100 elements, accepting a total variation in time of 0.1s. This step would require an increment 

of 100 times to the processing time. A second solution and the one used in this work was the 

development of adaptive peak detection. The results are presented on table IX named as 

adaptive detection both to the range and to the depths. Different from the previous case, this 

process is only applied in case of a second peak detection or more, limited to six detection, 

over a threshold defined as 15dB under the value of maximal detected peak and before its 

arrival in time.  
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On the ping number 5 shown at  Fig. 55, a second Peak was detected before the arrival of 

the maximal detected peak (black circle). The position in time of the second maximal peak is 

going to be used as reference resulting on the ambiguity function shown at  Fig. 56.  If more 

peaks were detected under the defined threshold, the HD would be performed to this new 

position until reaches a limit defined as 6 interactions. The most similar are both sequences, 

Modeled and Measured, from each other the less will be the minimal value at the ambiguity 

surface for each HD variant, registered to each interaction. A final search for the minimal 

value of the total number of interaction is performed, having a high probability of finding the 

correct value to the first reference in time. On  Fig. 56 the value of the ambiguity surface was 

inverted to a better visualization (1/HD), thus the best case was found using the second 

maximal detected peak value(2˚ max) as reference, which gives a high value of its peak index 

on the  Fig. 56. By applying the Adaptive detection on the ping number 5 correcting the value 

of the peak used as reference it was possible to detect the target under the defined 1km error 

in range and 10 m in depths  Fig. 56 (right). The Adaptive detection in the worst scenario 

increases no more than the total amount of interactions, which in this case is 6 times the 

processing time. This process is more optimized than the previous one (100 times).  

 

 

 

 

 

 

 

 

 

Fig. 55. Adaptive peak detection. 

 

Fig. 56. Ambiguity function to the MedHD variant applied on the TDOA sequence using the wrong position as reference in time (left – 1 

max) and using the correct position as reference ( right – 2 max). 
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The first analysis was performed to measure the improvement from using the Adaptive 

peak detection. Using the SSP close to the source, the HD variants were performed to find the 

target location either in range and in depths, first considering only the maximum value as 

reference and second using the Adaptive peak detection. Seven variants of HD were used to 

this analysis, same variants used to the spatial diversity with an exception of the ProbHD (see 

chapter 3). 

Table IX .Percentage of pings detected with maximal error from the true position up to 1 km and 10 m in 
depth. The SSP close to the source was used. Both directions (forward and backward) are presented. 

Synchronization MaxHD MeanHD MedHD Partial4HD 
Partial4-

HD 
Partial2-

HD 
Partial1-

HD 

HD direction received to simulated (Forward HD) 

range 

Max Peak 
detection 14% 55% 54% 25% 57% 55% 54% 

Adaptive 
detection 13% 72% 79% 28% 67% 67% 66% 

depth 

Max Peak 
detection 18% 49% 48% 24% 46% 51% 48% 

Adaptive 
detection 18% 59% 75% 37% 62% 63% 63% 

HD direction simulated to received (Backward HD) 

range 

Max Peak 
detection 9% 8% 60% 24% 45% 31% 20% 

Adaptive 
detection 20% 38% 91% 23% 69% 48% 41% 

depth 

Max Peak 
detection 29% 28% 56% 28% 68% 57% 40% 

Adaptive 
detection 47% 58% 78% 44% 82% 68% 58% 

 

 

 Fig. 57 and  Fig. 58, shows the histogram comparison of both peak detection. The 

Adaptive peak detection has shown a significant increase in performance. The MedHD variant 

was used to show the histogram.  Fig. 57 presents the forwards HD and  Fig. 58 shows the 

backwards HD. Plot on the left shows the detection in range and plot on the right show the 

detection on depths. The red color represents the peak detection using the Max value and blue 

color represents the peak detection based on the proposed adaptive detection. The mean and 

the standard deviation of the results in range and in depths were also evaluated by the function 

evfit in MATLAB. The blue and red dashed lines represent the extreme value probability 

density function evaluated by the function evpdf in MATLAB, which used the value of µ 

(green dotted line) and σ from the previous MATLAB function. The red line represents the 

true source location both in range (9km) and in depth (56m). 
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Fig. 57. Histogram of the MedHD from the direction of received to simulated, in range (left) and in depths (right). 

 

Fig. 58. Histogram of the MedHD from the direction of simulated to received, in range (left) and in depths (right). 

 

Overall with the adaptive peak detection the correct target detection, considering the best 

overall variants (MedHD), was increased in range up to 35 % to the forward HD and 50% to 

the backward HD and the detection in depths was increased to 55% to the forward HD and 

40% to the backward HD. The second conclusion from the beamforming results compared 

with the results from spatial diversity is the higher precision on finding the true depths 

location, while reaching almost similar results on range accuracy. 

The total 95 pings were defined in 2 groups: the first one being the first 50 pings and the 

second the 45 remaining pings. The second group experiences the worst results especially to 

the range detection as shown at  Fig. 59 and  Fig. 60 due to a loss of coherence between 

hydrophones. A study to better understand the reason for this decoherence are still in 

progress, however it is expected that the surface spreading and variations of the roughness of 

the sea surface due to increasing of the wind speed may be responsible. This decoherence is 

responsible for variations of the peak intensity on the first arrival leading to a wrong reference 

position. The adaptive peak detection reduces the influence of the decoherence of the 

hydrophones and it was used to all the subsequent results. Red color represents the detection 

based on the max peak; blue color represents the detection based on the proposed adaptive 

peak detection. On the left, it was performed to the location in range and on the right to the 

location in depths. 
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Fig. 59. Variation of the detected range (left) and detected depth (right) from the direction of received to simulated: Max peak detection (red 

line), Adaptive peak detection (blue line). 

 

Fig. 60. Variation of the detected range (left) and detected depth (right) from the direction of simulated to received: Max peak detection (red 

line), Adaptive peak detection (blue line). 

 

Since that the spatial diversity technique consider the information from each isolated 

hydrophone, it is far more robust to those decoherence problem. The second conclusion is that 

the beamforming has a better results from using the  backward HD (simulated to the receiver). 

The reason for the HD performed badly using the direction of simulated to received on the 

Spatial diversity is that the peak detection on the measured TDOA is limited by the temporal 

resolution, so close arrival in time will one identify one path. The Simulated TDOA has no 

limitation leading with more information from different Eigen rays generating high value of 

ambiguity.  The beamforming can separate close time of arrivals by the angle of arrival thus 

having a better performance on the final localization. The second problem from using the 

direction of simulated to the received in evaluating the HD is presented when the simulation 

was performed using the SSP close to the receiver. Each position of the rasterized grid of 

simulation with variation in range and depth will have its own TDOA simulated which will be 

compared with the TDOA measured. The simulation using the SSP close to the receiver 

presents at some position a reduced number of elements in the sequence of TDOA simulated. 

The simulation was performed defining a maximal number of Eigen rays of 30 paths, however 

due to the wave propagation for this particular SSP, the position at 15 km range and 100m 
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deep was able to detect only 2 paths. Once used as reference to the HD, it will only consider 2 

elements thus resulting in high value on the ambiguity surface leading to a wrong location of 

the target. One possible solution is to eliminate the position on the rasterized grid of 

simulations with less than a minimal accepted number of elements. The second solution is to 

use the information of its neighborhood through the spatial filtering, valid when the size of the 

window used to filtering the output of HD is higher than the number of points on the 

rasterized grid of simulation containing only few elements.   

As for the spatial diversity, the beamforming was performed with different number of 

hydrophones in order to identify the accepted minimal number of hydrophones. The use of 

spatial filtering was also evaluated using the 5 different kernels with variation in window size 

similar as used on the spatial diversity. However, in the case of beamforming some 

configurations presents a worst result when using spatial filtering, which is different from the 

spatial diversity where all the configurations were benefited with the spatial filtering. 

 

6.3.1 SSP close to the Source 

 
The first SSP used was measured close to the source and are presented at table X to the 

range and table XI to the depth detection. The first section of the table shows the result in 

range from using the direction of the received TDOA sequence to the simulated TDOA 

sequence (Forward HD) and the second section the reverse direction (Backward HD), 

evaluated to the main seven HD variants. First line on each configuration shows the result 

from using the adaptive peak detection with no spatial filtering, named as “No S.Filter”, 

follow by the use of spatial filtering, showing the 2 best results, which are the SF with kernel 

mean with window size of 9-by-9 and the kernel disk with window size of 9-by-9, depending 

on the SPP.  

 

Table X .Percentage of pings detected with maximal error from the true position up to 1 km in 

range. The SSP used was measured close to the source and the HD was applied from the direction of 

received to simulated (Forward direction) and simulated to received (backward direction).  

 

And Table XI .Percentage of pings detected with maximal error from the true position up to 10 m 

in depth. The SSP used was measured close to the source and the HD was applied from the direction 

of received to simulated (Forward direction) and simulated to received (backward direction). 
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%   detection in range with accepted error up to 1km  ( SSP close to the source)  

HD direction received to simulated (Forward HD) 

  MaxHD  MeanHD MedHD 
Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

Array 64 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 13% 72% 79% 28% 67% 67% 66% 

SF-Mean 9 38% 66% 84% 36% 67% 59% 58% 

SF-Disk 9 42% 55% 80% 38% 56% 54% 52% 

Array 32 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 14% 68% 74% 31% 65% 67% 66% 

SF-Mean 9 42% 65% 82% 38% 68% 63% 59% 

SF-Disk 9 44% 53% 77% 37% 54% 55% 53% 

Array 16 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 11% 66% 78% 34% 65% 66% 66% 

SF-Mean 9 42% 61% 83% 36% 66% 64% 62% 

SF-Disk 9 45% 47% 75% 42% 53% 48% 49% 

Array 8 Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 22% 63% 71% 40% 66% 62% 63% 

SF-Mean 9 59% 68% 77% 43% 66% 63% 63% 

SF-Disk 9 59% 60% 68% 48% 52% 49% 51% 

Array 4 Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 6% 26% 54% 41% 40% 29% 29% 

SF-Mean 9 38% 25% 49% 43% 32% 31% 29% 

SF-Disk 9 49% 28% 27% 47% 22% 22% 25% 

Array 2 Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 7% 8% 22% 32% 22% 17% 13% 

SF-Mean 9 53% 24% 20% 33% 21% 23% 27% 

SF-Disk 9 64% 28% 12% 34% 21% 32% 36% 

HD direction simulated to received (Backward HD) 

 
 MaxHD MeanHD MedHD 

Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

Array 64 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 20% 38% 91% 23% 69% 48% 41% 

SF-Mean 9 0% 13% 91% 32% 52% 29% 23% 

SF-Disk 9 0% 2% 82% 38% 42% 21% 8% 

Array 32 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 21% 40% 92% 25% 68% 44% 39% 

SF-Mean 9 0% 16% 92% 38% 53% 31% 21% 

SF-Disk 9 0% 2% 80% 38% 44% 21% 11% 

Array 16 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 19% 41% 85% 33% 65% 43% 37% 

SF-Mean 9 0% 11% 85% 37% 44% 27% 19% 

SF-Disk 9 0% 1% 75% 42% 40% 26% 9% 

Array 8 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 6% 38% 89% 38% 73% 56% 39% 

SF-Mean 9 0% 8% 86% 41% 52% 22% 19% 

SF-Disk 9 0% 1% 64% 48% 33% 16% 7% 

Array 4 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 2% 24% 77% 39% 44% 36% 26% 

SF-Mean 9 4% 12% 61% 44% 29% 17% 15% 

SF-Disk 9 1% 5% 42% 48% 16% 8% 7% 

Array 2 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 9% 20% 33% 32% 34% 27% 25% 

SF-Mean 9 9% 8% 22% 29% 16% 15% 12% 

SF-Disk 9 5% 9% 15% 28% 14% 12% 8% 
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%  detection in depth with accepted error up to 10m ( SSP close to the  source)  

HD direction received to simulated (Forward HD) 

  MaxHD  MeanHD MedHD 
Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

Array 64 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 18% 59% 75% 37% 62% 63% 63% 

SF-Mean 9 13% 41% 82% 16% 57% 53% 45% 

SF-Disk 9 8% 40% 66% 18% 45% 43% 42% 

Array 32 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 19% 60% 78% 35% 65% 62% 58% 

SF-Mean 9 15% 44% 79% 20% 56% 51% 46% 

SF-Disk 9 9% 40% 65% 19% 45% 43% 43% 

Array 16 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 16% 59% 81% 38% 61% 57% 57% 

SF-Mean 9 18% 41% 89% 19% 60% 55% 48% 

SF-Disk 9 13% 41% 68% 24% 46% 43% 40% 

Array 8 Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 4% 46% 68% 33% 57% 53% 52% 

SF-Mean 9 2% 39% 80% 14% 53% 46% 42% 

SF-Disk 9 1% 36% 62% 17% 46% 40% 39% 

Array 4 Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 4% 13% 32% 19% 19% 15% 14% 

SF-Mean 9 0% 8% 36% 11% 17% 15% 12% 

SF-Disk 9 0% 4% 23% 12% 12% 6% 6% 

Array 2 Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 0% 1% 8% 24% 4% 3% 1% 

SF-Mean 9 0% 2% 3% 16% 5% 4% 4% 

SF-Disk 9 0% 1% 2% 12% 2% 2% 1% 

HD direction simulated to received (Backward HD) 

 
 MaxHD MeanHD MedHD 

Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

Array 64 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 47% 58% 78% 44% 82% 68% 58% 

SF-Mean 9 7% 32% 91% 17% 72% 46% 40% 

SF-Disk 9 2% 12% 85% 22% 51% 25% 17% 

Array 32 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 51% 61% 85% 42% 82% 64% 53% 

SF-Mean 9 8% 32% 89% 19% 66% 44% 33% 

SF-Disk 9 1% 8% 87% 23% 47% 22% 14% 

Array 16 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 49% 65% 83% 40% 83% 62% 54% 

SF-Mean 9 9% 29% 89% 20% 66% 38% 35% 

SF-Disk 9 3% 8% 83% 24% 41% 25% 16% 

Array 8 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 33% 58% 81% 37% 89% 74% 58% 

SF-Mean 9 18% 29% 88% 17% 69% 45% 38% 

SF-Disk 9 11% 11% 77% 19% 42% 28% 18% 

Array 4 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 43% 58% 64% 18% 67% 58% 58% 

SF-Mean 9 31% 40% 61% 15% 45% 39% 42% 

SF-Disk 9 15% 19% 43% 15% 31% 20% 18% 

Array 2 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 26% 55% 44% 29% 55% 54% 55% 

SF-Mean 9 34% 44% 45% 19% 43% 40% 45% 

SF-Disk 9 22% 35% 40% 18% 35% 34% 32% 
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Since that the combination of the hydrophones were performed before the HD given only 

one final measured vector with the information in time and angle, it was expected that the 

spatial filtering applied at the output of the HD variants would not give a big improvement at 

the localization. This result is different from the spatial diversity, and the reason is due to the 

spatial proximity property of the HD on each isolated hydrophone, allowing a small 

fluctuation on the target location to its neighborhood, given some small variations of the input 

TDOAs sequences. The SF is able to measure these small variations, reducing the ambiguity 

function, thus improving the accuracy up to 50% of the total amount of transmitted pings for 

the same SSP. On the beamforming, most of the corrections for the range detection occur on 

pings detected on the upper limit of 1km error, allowing to be detected on the limit of 1km, 

with only one considerable case shown as  Fig. 61 for the ping number 3. The only benefit of 

using the SF, applied on the this SSP, happens on depth detection as shown on the ellipsoid 

of  Fig. 62, where pings detected with a wrong value of depths could be corrected by the SF. 

Overall, the results from using the spatial filtering are better in depths detection with an 

improvement up to an average of 10% considering both HD directions, while for the range 

detection only 2.5% on average.  

 

 

 

 

 

Fig. 61. Ouput of the MedHD from the direction of received to simulated without SF (left) and with SF mean 9-by-9 (right). 
 

 

 

Fig. 62. Variation of the detected range (left) and detected depth (right) from the direction of received to simulated: with SF mean 9-by-9 

(red line), without SF (blue line). 
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Fig. 63. Variation of the detected range (left) and detected depth (right) from the direction of simulated to received: with SF mean 9-by-9 

(red line), without SF (blue line). 
 

 Fig. 64 presents the histogram to the best result from using the spatial diversity (red color) 

evaluated by the Partial-2HD with a spatial filtering disk 9-by-9, compared with the best 

result from using the Beamforming (blue color) evaluated by the MedHD with a spatial 

filtering mean 9-by-9. On the left performed for the range detection and on the right 

performed for the depth detection.  Fig. 65 shows the variation of the detected range (left) and 

variation of the detected depths (right), compared with the true target location. Red line using 

the spatial diversity and blue line using the beamforming. The Spatial filtering is more 

accurate for detecting the correct target range, while the beamforming performs better to the 

depth target detection.  

Fig. 64. Histogram of the MedHD from the direction of simulated to 
received, in range (left) and in depths (right). 

 

Fig. 65.  Variation of the detected range (left) and detected depth (right) from the direction of received to simulated: best configuration to the 

Spatial diversity with SF disk 9-by-9 (red line), best configuration to the beamforming with SF mean 9-by-9 (blue line). 
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When applied on the HD backward direction, the results are better using the beamforming 

(blue color) either to range and depth detection as shown at  Fig. 66 and  Fig. 67, both using the 

MedHD with SF mean 9-by-9, compared with the spatial filtering (red color) using the 

Partial2-HD with SF disk 9-by-9.  

 

Fig. 66. Histogram of the MedHD from the direction of simulated to received, in range (left) and in depths (right). 

 

Fig. 67. Variation of the detected range (left) and detected depth (right) from the direction of simulated to received: best configuration to the 
Spatial diversity with SF disk 9-by-9 (red line), best configuration to the beamforming with SF mean 9-by-9 (blue line). 

 

6.3.2 SSP close to the Receiver 
 

Tables XII and XII show the result for the range detection from using the SSP close to the 

receiver for range detection and for depth detection respectively. Same configuration was 

used considering the same HD variants and same TDOA received. The only difference is the 

TDOA modelled used for the HD comparison. First section used for the Forward HD 

direction and the second section used for the Backward HD direction. 

Table XII .Percentage of pings detected with maximal error from the true position up to 1 km in 

range. The SSP used was measured close to the receiver and the HD was applied from the direction 

of received to simulated (Forward direction) and simulated to received (backward direction). 
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%   detection in range with accepted error up to 1km  ( SSP close to the receiver)  

HD direction received to simulated (Forward HD) 

  MaxHD  MeanHD MedHD 
Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

Array 64 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 56% 91% 91% 43% 87% 87% 86% 

SF-Mean 9 55% 86% 94% 43% 82% 84% 82% 

SF-Disk 9 46% 77% 95% 49% 76% 74% 72% 

Array 32 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 51% 93% 92% 43% 85% 85% 86% 

SF-Mean 9 56% 86% 94% 43% 83% 80% 79% 

SF-Disk 9 55% 78% 89% 51% 77% 77% 76% 

Array 16 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 53% 88% 95% 44% 86% 87% 91% 

SF-Mean 9 65% 88% 95% 43% 79% 81% 81% 

SF-Disk 9 54% 77% 89% 46% 77% 77% 76% 

Array 8 Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 43% 85% 87% 51% 89% 87% 86% 

SF-Mean 9 46% 84% 91% 47% 86% 85% 85% 

SF-Disk 9 38% 78% 88% 51% 81% 80% 76% 

Array 4 Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 35% 72% 77% 62% 81% 81% 81% 

SF-Mean 9 42% 55% 71% 57% 67% 59% 59% 

SF-Disk 9 40% 49% 62% 65% 57% 46% 44% 

Array 2 Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 43% 41% 36% 37% 45% 44% 43% 

SF-Mean 9 35% 32% 27% 34% 26% 28% 27% 

SF-Disk 9 24% 19% 27% 36% 18% 17% 18% 

HD direction simulated to received (Backward HD) 

 
 MaxHD MeanHD MedHD 

Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

Array 64 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 0% 0% 61% 36% 1% 2% 3% 

SF-Mean 9 0% 13% 87% 42% 37% 51% 32% 

SF-Disk 9 3% 7% 96% 45% 65% 26% 7% 

Array 32 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 0% 0% 59% 45% 0% 2% 6% 

SF-Mean 9 0% 14% 89% 41% 29% 52% 38% 

SF-Disk 9 3% 5% 95% 45% 65% 25% 9% 

Array 16 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 0% 0% 57% 42% 0% 3% 6% 

SF-Mean 9 0% 13% 87% 38% 32% 45% 34% 

SF-Disk 9 3% 7% 91% 42% 60% 27% 7% 

Array 8 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 0% 8% 67% 48% 1% 9% 12% 

SF-Mean 9 1% 17% 95% 46% 54% 58% 42% 

SF-Disk 9 3% 5% 88% 48% 63% 24% 8% 

Array 4 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 0% 3% 33% 59% 0% 1% 1% 

SF-Mean 9 6% 13% 55% 48% 29% 35% 15% 

SF-Disk 9 5% 5% 61% 60% 43% 17% 8% 

Array 2 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 0% 2% 5% 35% 0% 0% 2% 

SF-Mean 9 6% 4% 17% 29% 7% 7% 4% 

SF-Disk 9 3% 1% 18% 31% 16% 3% 0% 
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And Table XI .Percentage of pings detected with maximal error from the true position up to 10 m in depth. 

The SSP used was measured close to the receiver and the HD was applied from the direction of received to 

simulated (Forward direction) and simulated to received (backward direction). 

 

%  detection in depth with accepted error up to 10m ( SSP close to the receiver)  

HD direction received to simulated (Forward HD) 

  MaxHD  MeanHD MedHD 
Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

Array 64 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 37% 80% 75% 44% 73% 75% 76% 

SF-Mean 9 49% 85% 86% 41% 81% 85% 82% 

SF-Disk 9 55% 85% 72% 31% 78% 78% 78% 

Array 32 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 37% 77% 78% 40% 77% 77% 76% 

SF-Mean 9 51% 85% 89% 45% 84% 82% 82% 

SF-Disk 9 55% 86% 72% 33% 81% 85% 85% 

Array 16 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 33% 82% 83% 39% 76% 76% 77% 

SF-Mean 9 56% 88% 89% 47% 86% 86% 86% 

SF-Disk 9 63% 84% 76% 36% 83% 84% 85% 

Array 8 Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 14% 71% 66% 43% 68% 72% 68% 

SF-Mean 9 33% 74% 77% 47% 80% 79% 78% 

SF-Disk 9 42% 78% 61% 35% 77% 80% 78% 

Array 4 Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 14% 42% 43% 44% 46% 44% 46% 

SF-Mean 9 27% 42% 54% 53% 63% 55% 51% 

SF-Disk 9 24% 44% 44% 39% 58% 51% 46% 

Array 2 Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 12% 18% 21% 36% 22% 19% 18% 

SF-Mean 9 14% 29% 29% 52% 36% 35% 29% 

SF-Disk 9 28% 41% 33% 44% 41% 42% 40% 

HD direction simulated to received (Backward HD) 

 
 MaxHD MeanHD MedHD 

Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

Array 64 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 0% 0% 49% 38% 1% 2% 3% 

SF-Mean 9 0% 7% 83% 44% 75% 71% 44% 

SF-Disk 9 0% 0% 67% 33% 53% 25% 2% 

Array 32 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 0% 0% 46% 41% 0% 2% 4% 

SF-Mean 9 1% 8% 82% 46% 68% 65% 42% 

SF-Disk 9 1% 0% 65% 34% 51% 24% 3% 

Array 16 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 1% 0% 44% 39% 0% 2% 4% 

SF-Mean 9 0% 4% 82% 52% 67% 62% 44% 

SF-Disk 9 1% 0% 63% 37% 49% 24% 2% 

Array 8 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 0% 5% 53% 45% 1% 9% 12% 

SF-Mean 9 0% 7% 80% 44% 84% 67% 39% 

SF-Disk 9 0% 0% 61% 37% 49% 21% 0% 

Array 4 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 0% 4% 29% 47% 1% 2% 2% 

SF-Mean 9 1% 2% 64% 49% 55% 33% 13% 

SF-Disk 9 0% 0% 49% 35% 25% 9% 2% 

Array 2 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 0% 1% 4% 37% 0% 0% 2% 

SF-Mean 9 1% 0% 22% 42% 19% 9% 6% 

SF-Disk 9 0% 2% 21% 35% 15% 5% 3% 
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Different from the results using the SSP close to the source, in this case (SSP close to the 

receiver) the use of spatial filtering mean 9-by-9 presents a good improvement either in range 

and depth detection, showing by the black ellipsoid on  Fig. 68 and  Fig. 69. Overall, the results 

from using the spatial filtering are still better in depths detection with an improvement up to 

an average of 27% considering both HD directions, while for the range detection only 17% on 

average.  

 

Fig. 68. Variation of the detected range (left) and detected depth (right) from the direction of received to simulated: with SF mean 9-by-9 

(red line), without SF (blue line).  

 

 

Fig. 69. Variation of the detected range (left) and detected depth (right) from the direction of simulated to received: with SF mean 9-by-9 

(red line), without SF (blue line). 

 

 Fig. 70 presents the histogram to the best result from using the spatial diversity (red color) 

evaluated by the Partial-4HD with a spatial filtering wiener 9-by-9, compared with the best 

result from using the Beamforming (blue color) evaluated by the MedHD with a spatial 

filtering mean 9-by-9. On the left performed for the range detection and on the right 

performed for the depth detection.  Fig. 71 shows the variation of the detected range (left) and 

variation of the detected depths (right), compared with the true target location. Red line using 

the spatial diversity and blue line using the beamforming. Once again, the Spatial filtering is 

more accurate for detecting the correct target range, while the beamforming performs better to 

the depth target detection. When applied on the backward HD, the results are better using the 

beamforming either to range and depth detection as shown at  0 and  Fig. 73. 
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Fig. 70. Histogram of the MedHD from the direction of simulated to received, in range (left) and in depths (right) 

 

Fig. 71. Variation of the detected range (left) and detected depth (right) from the direction of received to simulated: best configuration to the 

Spatial diversity with SF disk 9-by-9 (red line), best configuration to the beamforming with SF mean 9-by-9 (blue line).  

 

Fig. 72. Histogram of the MedHD from the direction of simulated to received, in range (left) and in depths (right). 

 

Fig. 73. Variation of the detected range (left) and detected depth (right) from the direction of simulated to received: best configuration to the 

Spatial diversity with SF disk 9-by-9 (red line), best configuration to the beamforming with SF mean 9-by-9 (blue line). 
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6.4. Minimal number of Hydrophones. 

 
In order to find the minimal number of hydrophones, table XIV shows the variation of the 

number of hydrophones on the array from 64 to 32, 16, 8, 4 and finally 2 hydrophones for the 

SSP close to the source, with the first section used for range detection and second section for 

depth detection. 

Table XIV .Percentage of pings detected with maximal error from the true position up to 1km in range and 

10 m in depth. The SSP used was measured close to the source and the HD was applied from the direction of 

received to simulated (Forward direction) and simulated to received (backward direction). 

 

 

 

 

SSP close to the source – range detection  

 
Forward HD Backward HD 

 

MedHD MedHD MedHD MedHD 

No SF  SF Mean  9-9 No SF SF Mean  9-9 

Array 64 Hydrophones 
(from hydrophone 1 to 64) 

79% Red. 84% Red. 91% Red. 91% Red. 

Array 32 Hydrophones 
(from hydrophone 1 to 64) 

74% -6.67% 82% -2.50% 92% 1.16% 92% 1.16% 

Array 16 Hydrophones 
(from hydrophone 1 to 64) 

78% -1.33% 83% -1.25% 85% -5.81% 85% -5.81% 

Array 8 Hydrophones (from 
hydrophone 1 to 64) 

71% -10.67% 77% -8.75% 89% -1.16% 86% -4.65% 

Array 4 Hydrophones (from 
hydrophone 1 to 64) 

54% -32.00% 49% -41.25% 77% -15.12% 61% -32.56% 

Array 2 Hydrophones (from 
hydrophone 1 to 64) 

22% -72.00% 20% -76.25% 33% -63.95% 22% -75.58% 

SSP close to the source – depth detection 

 
Forward HD Backward HD 

 

MedHD MedHD MedHD MedHD 

No SF SF Mean  9-9 No SF SF Mean  9-9 

Array 64 Hydrophones 
(from hydrophone 1 to 64) 

75% Red. 82% Red. 78% Red. 91% Red. 

Array 32 Hydrophones 
(from hydrophone 1 to 64) 

78% 4.23% 79% -3.85% 85% 9.46% 89% -1.16% 

Array 16 Hydrophones 
(from hydrophone 1 to 64) 

81% 8.45% 89% 8.97% 83% 6.76% 89% -1.16% 

Array 8 Hydrophones (from 
hydrophone 1 to 64) 

68% -8.45% 80% -2.56% 81% 4.05% 88% -2.33% 

Array 4 Hydrophones (from 
hydrophone 1 to 64) 

32% -57.75% 36% -56.41% 64% -17.57% 61% -32.56% 

Array 2 Hydrophones (from 
hydrophone 1 to 64) 

8% -88.73% 3% -96.15% 44% -43.24% 45% -50.00% 
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Table XV shows the variation of the number of hydrophones for the SSP close to the 

receiver, with again the first section used for range detection and second section for depth 

detection. 

Table XV .Percentage of pings detected with maximal error from the true position up to 1km in range and 

10 m in depth. The SSP used was measured close to the receiver and the HD was applied from the direction of 

received to simulated (Forward direction) and simulated to received (backward direction). 

 

The result for an 8 hydrophones array in both SSP after applied the spatial filtering are 

still able to correct localize in average more than 80% of the total amount of transmitted 

pings. The total number of hydrophone less than 8 is not recommended due to a limited final 

precision, being able to localize an average less than 50% of the total number of pings. 

 

 

 

 

SSP close to the receiver – range detection 

 
Forward HD Backward HD 

 

MedHD MedHD MedHD MedHD 

No SF  SF Mean  9-9 No SF SF Mean  9-9 

Array 64 Hydrophones 
(from hydrophone 1 to 64) 

91% Red. 94% Red. 61% Red. 87% Red. 

Array 32 Hydrophones 
(from hydrophone 1 to 64) 

92% 1.16% 94% 0.00% 59% -3.45% 89% 2.41% 

Array 16 Hydrophones 
(from hydrophone 1 to 64) 

95% 4.65% 95% 1.12% 57% -6.90% 87% 0.00% 

Array 8 Hydrophones (from 
hydrophone 1 to 64) 

87% -3.49% 91% -3.37% 67% 10.34% 95% 8.43% 

Array 4 Hydrophones (from 
hydrophone 1 to 64) 

77% -15.12% 71% -24.72% 33% -46.55% 55% -37.35% 

Array 2 Hydrophones (from 
hydrophone 1 to 64) 

36% -60.47% 27% -70.79% 5% -91.38% 17% -80.72% 

SSP close to the receiver – depth detection 

 
Forward HD Backward HD 

 

MedHD MedHD MedHD MedHD 

No SF SF Mean  9-9 No SF SF Mean  9-9 

Array 64 Hydrophones 
(from hydrophone 1 to 64) 

75% Red. 86% Red. 49% Red. 83% Red. 

Array 32 Hydrophones 
(from hydrophone 1 to 64) 

78% 4.23% 89% 3.66% 46% -6.38% 82% -1.27% 

Array 16 Hydrophones 
(from hydrophone 1 to 64) 

83% 11.27% 89% 3.66% 44% -10.64% 82% -1.27% 

Array 8 Hydrophones (from 
hydrophone 1 to 64) 

66% -11.27% 77% -10.98% 53% 6.38% 80% -3.80% 

Array 4 Hydrophones (from 
hydrophone 1 to 64) 

43% -42.25% 54% -37.80% 29% -40.43% 64% -22.78% 

Array 2 Hydrophones (from 
hydrophone 1 to 64) 

21% -71.83% 29% -65.85% 4% -91.49% 22% -73.42% 
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6.5.  Best Configuration 

 
The most robust HD variants over all 4 SSP using beamforming was the MedHD, shown 

at  Fig. 74 and for the spatial diversity was the Partial-2HD, shown at  Fig. 75. The best result 

from the beamforming was using the SSP close to the receiver with only 6 pings detected with 

more than 1km limit error in range, against 8 pings for the spatial diversity using the same 

SSP. The best result from the spatial diversity came from using the SSP close to the source 

with all the pings detected in range within 1km limit error, against 15 pings for the 

beamforming using the same SSP detected with more than 1km limit error. For the depth 

detection the beamforming present better results to all different SSP, having the best result 

using the SSP close to the source simulated by the X.Program with the MeanHD detecting all 

the ping within the 10m limit error (See appendix G). Although the direction from the 

simulated to received presents similar results over 3 SSP, the result from the SSP close to the 

source simulated by X.program presents the worst detection over all cases, reason for not be 

used. (See appendix G).  

On  Fig. 74 the first 50 pings present a better accuracy in range detection compared with 

the last 45 pings due to the decoherence between hydrophones. The error inside the black 

ellipsoid trend to happen independent of the SSP to the same ping, which is different from the 

pattern for the spatial diversity ( Fig. 75), where error from different SSP occurs in different 

pings. One possible explanation for error on the same ping number along different SSP is the 

problem of aligning between sequences, since that the TDOA received was the same to all 

different TDOA modelled. The Adaptive peak detection was limited to 6 interactions. Further 

studies need to be performed increasing the number of interactions to be compared with this 

result. On  Fig. 76 is presented the variation of the detected depth versus ping number. 

 

 

Fig. 74. Variation of the detected range for the beamforming from the direction of received to simulated using all 4 SSP. 
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Fig. 75. Variation of the detected range for the Spatial diversity from the direction of received to simulated using all 4 SSP. 

 

Fig. 76. Variation of the detected depth for the beamforming from the direction of received to simulated using all 4 SSP. 
 

6.6.  Cramer Rao bound 
 

The Cramer Rao bound was performed by Dr. Xavier and the best HD variants results 

with the correspondent spatial filtering is presented to each SSP. The Cramer Rao Bound 

shows the lower bound (minimal variance represented by the red ellipsoid. 50% small one and 

90% big one) given the conditions of the experiment. It was performed based on deterministic 

functions. The chosen variants to the beamforming were from the direction received to 

simulated: MedHD SF mean 9-by-9, MedHD SF disk 9-by-9 and MeanHD SF disk 9-by-9. 

From the backward HD only two first variants were presented. For the spatial diversity 

considering the forwards direction: Partial4-HD SF wiener 11-by-11, Partial4-HD SF disk 9-

by-9 and Partial2-HD SF disk 9-by-9. The only exception to this case was considering the 

SSP mean where it was included the Partial1-HD SF disk 9-by-9. To the backwards direction: 

Partial4-HD SF wiener 11-by-11 and MedHD SF mean 9-by-9.  Fig. 77 to  Fig. 84. 
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6.6.1 SSP close to the receiver 

 

Fig. 77. Variation of the detected depth for the beamforming from the direction of received to simulated using all 4 SSP. 

 

 

Fig. 78. Variation of the detected depth for the beamforming from the direction of received to simulated using all 4 SSP. 
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6.6.2 SSP close to the source RAMSEAS 

 

 

 

 

 

 

 

 

 

 

Fig. 79. Variation of the detected depth for the beamforming from the direction of received to simulated using all 4 SSP. 

 

Fig. 80. Variation of the detected depth for the beamforming from the direction of received to simulated using all 4 SSP. 
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6.6.3 SSP close to the source X.program 

 

 

 

 

 

 

 

 

 

 

Fig. 81. Variation of the detected depth for the beamforming from the direction of received to simulated using all 4 SSP. 

 

Fig. 82. Variation of the detected depth for the beamforming from the direction of received to simulated using all 4 SSP. 
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6.6.4 SSP mean 

 

Fig. 83. Variation of the detected depth for the beamforming from the direction of received to simulated using all 4 SSP. 

 

Fig. 84. Variation of the detected depth for the beamforming from the direction of received to simulated using all 4 SSP. 
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The best overall results was found on the spatial diversity using the SSP close to the 

source modelled by the program RAMSEAS, considering the Partial2-HD disk 9-by-9 (red 

color at the  Fig. 85 on the left). Although this case is the one with the small value of variance 

in range, it presents a bias in depths. For the beamforming the best result was found using the 

SSP close to the source modelled the X.program, considering the MeanHD SF disk 9-by-9 

(blue color at the  Fig. 85 on the right). 

 

Fig. 85. Variation of the detected depth for the beamforming from the direction of received to simulated using all 4 SSP. 

 

6.7. Array Section 
 

The last analysis was performed considering a section of the total array. This result is 

important because allows to define the best technique and HD variant which will be 

implemented in an operational vessel due to the limitation to the size of the array. The total 

array was divided in 3 sections each section with a 3m length. The results are presented on 

table XVI and XVII. 

 

 

 

 

 

 

 

Fig. 86. Variation of the detected depth for the beamforming from the direction of received to simulated using all 4 SSP. 

 
Table XVI .Percentage of pings detected with maximal error from the true position up to 1km in range and 

10 m in depth. The received array was divided in 3 sub-arrays and it was tested with all 20 hydrophones and 

with 10 hydrophones equally spaced for the case of beamforming and equally spaced from 20, 10, 4 and 2 for 

the spatial diversity. The SSP used was measured close to the source and the HD was applied from the 

direction of received to simulated (Forward direction). 

Table XVII .Percentage of pings detected with maximal error from the true position up to 1km in range and 

10 m in depth, tested to 3 sub-arrays. The SSP used was measured close to the receiver and the HD was 

applied from the direction of received to simulated (Forward direction). 

20 sensors 
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%   detection in range with accepted error up to 1km  ( SSP close to the source )  

HD direction received to simulated (Forward HD) 

Array section Technique 
N˚ of 

hydrophones 
equally spaced 

Max
HD 

Mean
HD 

Med
HD 

Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

1˚ Array 
section 

(hydrophone 
1 to 20) 

Beamforming 
SF mean [9 9] 

20 Hydrophones 27% 38% 67% 45% 51% 44% 43% 

10 Hydrophones 26% 43% 67% 46% 53% 47% 45% 

Spatial 
diversity  

SF disk [9 9]  
 

20 Hydrophones 72% 95% 48% 20% 69% 91% 96% 

10 Hydrophones 73% 94% 44% 18% 72% 91% 95% 

4 Hydrophones 76% 91% 38% 17% 58% 76% 88% 

2 Hydrophones 77% 85% 35% 16% 52% 69% 81% 

2˚ Array 
section 

(hydrophone 
21 to 40) 

Beamforming 
SF mean [9 9] 

20 Hydrophones 39% 31% 64% 34% 37% 29% 29% 

10 Hydrophones 34% 34% 65% 36% 35% 35% 35% 

Spatial 
diversity  

SF disk [9 9]  
 

20 Hydrophones 80% 95% 66% 25% 83% 95% 97% 

10 Hydrophones 82% 95% 63% 24% 79% 92% 96% 

4 Hydrophones 83% 93% 51% 29% 71% 91% 95% 

2 Hydrophones 83% 86% 40% 21% 53% 71% 78% 

3˚ Array 
section 

(hydrophone 
41 to 60) 

Beamforming 
SF mean [9 9] 

20 Hydrophones 41% 36% 63% 53% 39% 35% 33% 

10 Hydrophones 39% 38% 58% 51% 37% 38% 37% 

Spatial 
diversity  

SF disk [9 9]  
 

20 Hydrophones 77% 93% 77% 18% 83% 97% 98% 

10 Hydrophones 72% 95% 74% 24% 79% 94% 99% 

4 Hydrophones 79% 92% 63% 26% 76% 86% 89% 

2 Hydrophones 79% 91% 55% 23% 66% 82% 91% 

%   detection in depth with accepted error up to 10m  ( SSP close to the source ) 

Array section Technique 
N˚ of 

hydrophones 
equally spaced 

Max
HD 

Mean
HD 

Med
HD 

Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

1˚ Array 
section 

(hydrophone 
1 to 20) 

Beamforming 
SF mean [9 9] 

20 Hydrophones 3% 40% 76% 27% 53% 47% 45% 

10 Hydrophones 2% 41% 77% 26% 55% 49% 44% 

Spatial 
diversity  

SF disk [9 9]  
 

20 Hydrophones 0% 0% 1% 29% 2% 0% 0% 

10 Hydrophones 0% 0% 2% 31% 2% 0% 0% 

4 Hydrophones 0% 0% 2% 27% 2% 0% 0% 

2 Hydrophones 0% 0% 4% 19% 1% 1% 0% 

2˚ Array 
section 

(hydrophone 
21 to 40) 

Beamforming 
SF mean [9 9] 

20 Hydrophones 4% 27% 74% 35% 39% 33% 29% 

10 Hydrophones 3% 32% 73% 29% 42% 38% 37% 

Spatial 
diversity  

SF disk [9 9]  
 

20 Hydrophones 0% 0% 1% 25% 0% 0% 0% 

10 Hydrophones 0% 0% 1% 25% 0% 0% 0% 

4 Hydrophones 0% 0% 1% 31% 1% 0% 0% 

2 Hydrophones 0% 0% 2% 27% 0% 0% 0% 

3˚ Array 
section 

(hydrophone 
41 to 60) 

Beamforming 
SF mean [9 9] 

20 Hydrophones 3% 28% 77% 33% 40% 35% 32% 

10 Hydrophones 2% 26% 77% 31% 37% 35% 31% 

Spatial 
diversity  

SF disk [9 9]  
 

20 Hydrophones 0% 0% 0% 37% 0% 0% 0% 

10 Hydrophones 0% 0% 0% 41% 0% 0% 0% 

4 Hydrophones 0% 0% 0% 41% 0% 0% 0% 

2 Hydrophones 0% 0% 2% 38% 0% 0% 0% 
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%   detection in range with accepted error up to 1km  ( SSP close to the receiver)  

HD direction received to simulated (Forward HD) 

Array section Technique 
N˚ of 

hydrophones 
equally spaced 

Max
HD 

Mean
HD 

Med
HD 

Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

1˚ Array 
section 

(hydrophone 
1 to 20) 

Beamforming 
SF mean [9 9] 

20 Hydrophones 55% 69% 77% 32% 71% 68% 68% 

10 Hydrophones 51% 71% 86% 35% 64% 64% 68% 

Spatial 
diversity  

SF wiener 
 [11 11] 

20 Hydrophones 23% 66% 75% 46% 81% 79% 69% 

10 Hydrophones 25% 64% 69% 47% 82% 77% 66% 

4 Hydrophones 31% 56% 69% 43% 74% 73% 63% 

2 Hydrophones 37% 48% 48% 29% 57% 62% 58% 

2˚ Array 
section 

(hydrophone 
21 to 40) 

Beamforming 
SF mean [9 9] 

20 Hydrophones 54% 57% 79% 37% 60% 57% 56% 

10 Hydrophones 45% 56% 83% 41% 62% 58% 58% 

Spatial 
diversity  

SF wiener 
 [11 11] 

20 Hydrophones 20% 74% 76% 44% 82% 81% 79% 

10 Hydrophones 20% 76% 77% 44% 79% 79% 78% 

4 Hydrophones 19% 63% 66% 53% 78% 75% 73% 

2 Hydrophones 36% 59% 58% 45% 65% 71% 67% 

3˚ Array 
section 

(hydrophone 
41 to 60) 

Beamforming 
SF mean [9 9] 

20 Hydrophones 54% 61% 86% 36% 53% 52% 54% 

10 Hydrophones 52% 59% 83% 38% 57% 56% 58% 

Spatial 
diversity  

SF wiener 
 [11 11] 

20 Hydrophones 36% 84% 82% 42% 88% 87% 87% 

10 Hydrophones 38% 84% 74% 47% 82% 85% 84% 

4 Hydrophones 39% 79% 69% 39% 80% 77% 78% 

2 Hydrophones 48% 66% 56% 32% 71% 76% 74% 

%   detection in depth with accepted error up to 10m  ( SSP close to the receiver) 

Array section Technique 
N˚ of 

hydrophones 
equally spaced 

Max
HD 

Mean
HD 

Med
HD 

Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

1˚ Array 
section 

(hydrophone 
1 to 20) 

Beamforming 
SF mean [9 9] 

20 Hydrophones 39% 71% 84% 42% 80% 73% 71% 

10 Hydrophones 41% 72% 88% 46% 78% 73% 75% 

Spatial 
diversity  

SF wiener 
 [11 11] 

20 Hydrophones 5% 15% 40% 36% 48% 45% 25% 

10 Hydrophones 9% 13% 36% 36% 48% 46% 27% 

4 Hydrophones 14% 11% 34% 36% 45% 37% 26% 

2 Hydrophones 16% 24% 29% 24% 39% 37% 28% 

2˚ Array 
section 

(hydrophone 
21 to 40) 

Beamforming 
SF mean [9 9] 

20 Hydrophones 46% 60% 86% 38% 72% 69% 66% 

10 Hydrophones 48% 56% 85% 36% 78% 72% 69% 

Spatial 
diversity  

SF wiener 
 [11 11] 

20 Hydrophones 3% 15% 23% 22% 22% 16% 17% 

10 Hydrophones 3% 14% 24% 23% 23% 16% 14% 

4 Hydrophones 2% 11% 17% 38% 23% 21% 19% 

2 Hydrophones 13% 18% 21% 44% 32% 25% 24% 

3˚ Array 
section 

(hydrophone 
41 to 60) 

Beamforming 
SF mean [9 9] 

20 Hydrophones 31% 59% 87% 39% 65% 65% 60% 

10 Hydrophones 31% 59% 81% 37% 72% 66% 61% 

Spatial 
diversity  

SF wiener 
 [11 11] 

20 Hydrophones 12% 26% 29% 14% 28% 25% 27% 

10 Hydrophones 17% 24% 24% 17% 21% 31% 27% 

4 Hydrophones 11% 21% 22% 18% 23% 22% 20% 

2 Hydrophones 4% 14% 17% 19% 25% 27% 20% 
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. The results from the SSP close to receiver, considering the sub-array with around 3 m 

high, presents similar performance for range detection while for depth detection presents a 

better performance for the beamforming with an average more than 100% compared with the 

spatial diversity. The results from the remaining  SSPs show that the spatial diversity has a 

better performance (an average 30% of improvement) compared with the beamforming for the 

detection in range, while the beamforming has a better performance (an average 200%) 

compared with the spatial diversity for the detection in depth. 

 

6.8.  Chapter Summary 
 

In this chapter it was presented the results of using the beamforming technique. The 

comparison with the spatial diversity shows that the beamforming has similar performance in 

range while presents a big improvement to the detection in depth considering the full array 

size of 10 m high. The best result was found using the SSP close to the source modelled by 

the X.program using the MeanHD SF disk 9-by-9. The second conclusion is that once the full 

array was divided in 3 equal sections, each of then with 3 m high, the beamforming kept 

similar performance only to the case where it was used the SSP close to the receiver, being an 

average detected more than 80% of the ping under 1km error. To all others SSPs the use of 

beamforming came with a reduction in performance from around 30% in range compared 

with spatial diversity. 
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CHAPTER 7     

Conclusion & Perspectives 
 

In particular, this thesis was focused mainly on solving the inverse problem by using the 

Hausdorff Distance as a cost function to find the expected target location. The Hausdorff 

Distance was applied in two different scenarios: first in a controlled environment experiment, 

and second in an at-sea environment with the ALMA 2015 experiment. 

From the theoretical contribution of this work, the Hausdorff distance was adapted to be 

used to underwater localization as well as the development of two methods using the Spatial 

diversity and beamforming which makes the techniques more robust against interference. 

The results found are more than satisfactory and allowed the Navy to localize vessels in an 

operational environment. 

 

Future work 

 
Future work should consist of the following extensions to the presented initial trial: 

 Testing other variants of the HD, particularly the Gromov-Hausdorff distance; 

 Making use of not only arrival times, but also and simultaneously times and 

angles, plus Doppler shifts for realistic moving targets;  

 Testing the HD techniques in a fully passive non-cooperative context, i.e. 

working with the auto-correlation or estimating the transmitted signal and 

comparing TDOA sequences involving all pairs of arrivals.  

 Testing the HD techniques with statistically stationary, random noise 

(cavitation), radiated from a vessel. 

 Combining the spatial diversity technique with beamforming technique. 
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APPENDIX A 

Wave equation 

 

Mathematical basis for the study of sound propagation is a representing the variation of 

physical quantities that have their values modified a disturbance of the equilibrium conditions of 

a material medium. It concentrates combined effect of three physical concepts represented by 

the Continuity Equation, the Movement of the equation (Euler) and the State equation 
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Equation (0.1) 
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Equation (0.3) 

 

Expanding the state’s equation around the equilibrium pressure, taking the first-order 

terms and deriving over time we have: 

 𝑑𝑝

𝑑𝑡
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Equation (0.4) 

where the index S and 𝜌, subscribed in parentheses, mean entropy and constant density. 

Substituting dρ/dt taken from the Equation (0.1), and dS/dt taken from Error! Reference 

source not found. is obtained: 
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(−(𝑣. ∇)𝑆) = 0 

 

Equation (0.5) 

For a fluid hydrostatic equilibrium without external forces, the pressure varies only with 

depth, that is 𝑃0 = 𝜌0𝑔ℎ, therefore (𝑑𝑃0 𝑑𝑆0⁄ )𝜌 = 0, the Equation (0.5) becomes: 
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Deriving Equation (0.6) with respect to time we have: 
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Equation (0.7) 

 

Given the linearity of the derivative operators and divergence: 
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Equation (0.8) 

 

Taking the divergence of Equation (0.8) we have: 
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Equation (0.9) 

 

Substituindo Equation (0.9) em Error! Reference source not found., 

fazendo (𝑑𝑃0 𝑑𝜌0⁄ )𝑆 = 𝑐2, onde é a velocidade de propagação do som e rearrumando os termos 

chega-se a: 

Substituting Equation (0.9) in Equation (0.8), where (𝑑𝑃0 𝑑𝜌0⁄ )𝑆 = 𝑐2, which is the sound 

velocity and rearranging the terms comes to: 
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Equation (0.10) 
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APPENDIX B 

 

The Helmholtz Equation 
 

The Helmholtz equation, results from applying the technique of separation of variables to 

reduce the complexity of the analysis. Usually arises in the study of physical problems 

involving partial differential equations in both space and time. 

 
(∇2 −

1

𝑐2

𝑑2

𝑑𝑡2)𝑝(𝑟, 𝑡) = 0 

 

Equation (0.11) 

Assuming that the wave function 𝑝(𝑟, 𝑡) is separable, due to linear 

combination of sine and cosine functions (time harmonic function): 

 𝑝 = 𝐴 ∗ 𝑒𝑖𝑤𝑡 
 

Equation (0.12) 

   
Substituting this form into the wave equation, and then simplifying, we obtain the 

following equation 
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𝑤2
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Equation (0.13) 

Where w is the angular frequency, 

 𝑤 = 𝑘𝑐 
 

Equation (0.14) 

As a result, we obtain the Helmholtz equation: 

 ∇2(𝑝) − 𝑘2𝑝 = 0 
 

Equation (0.15) 

Then, we looking for a solution of the Helmholtz equation, to obtain the ray equations, in 

the form, called the ray series: 
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Equation (0.16) 

Taking derivatives of the ray series, we obtain: 
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𝑗=0

] 

 

Equation (0.17) 

And the second derivative is: 

https://en.wikipedia.org/wiki/Separation_of_variables
https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Linear_combination
https://en.wikipedia.org/wiki/Linear_combination
https://en.wikipedia.org/wiki/Sine
https://en.wikipedia.org/wiki/Cosine
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𝑝𝑥𝑥 = 𝑒𝑖𝑤𝜏 {[−𝑤2(𝜏𝑥)
2 + 𝑖𝑤𝜏𝑥𝑥]∑

𝐴𝑗

(𝑖𝑤)𝑗

∞

𝑗=0

+ 2𝑖𝑤𝜏𝑥 ∑
𝐴𝑗,𝑥

(𝑖𝑤)𝑗

∞

𝑗=0

+ ∑
𝐴𝑗,𝑥𝑥

(𝑖𝑤)𝑗

∞

𝑗=0

} 

 

Equation (0.18) 

Thus, we can write in function of the gradient 

 

∇2(𝑝) = 𝑒𝑖𝑤𝜏 {[−𝑤2|∇𝜏|
2 + 𝑖𝑤∇2

𝜏]∑
𝐴𝑗

(𝑖𝑤)𝑗

∞

𝑗=0

+ 2𝑖𝑤𝜏𝑥 ∑
∇𝐴𝑗

(𝑖𝑤)𝑗

∞

𝑗=0

+ ∑
∇2𝐴𝑗

(𝑖𝑤)𝑗

∞

𝑗=0

} 

 

Equation 
(0.19) 

 

Substituting this result into the Helmholtz equation and equating terms of like order in w, 

we obtain the following infinite sequence of equations for the functions Aj(x) 

  
𝑂(𝑤2) = |∇𝜏|

2 = 𝑐−2(𝑥) 
𝑂(𝑤) = 2∇𝜏. ∇𝐴0

+ (∇2𝜏)𝐴0 = 0 

𝑂(𝑤1−𝑗) = 2∇𝜏. ∇𝐴𝑗
+ (∇2𝜏)𝐴𝑗 = −∇2𝐴𝑗−1    𝑗 = 1,2,… 

 

Equation (0.20) 

 

The 𝑂(𝑤2) equation for τ(x) is known as the eikonal equation. The remaining equations 

for 𝐴𝑗(x) are known as the transport equations. 
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APPENDIX C 

 

Ray Path (Dr. Xavier Theory) 

 

Ray acoustics is based on the assumption that sound propagates along rays that are 

normal to wave fronts. When generated from a point source in a medium with constant sound 

speed, the wave fronts form surfaces that are concentric circles, and the sound follows straight 

line paths that radiate out from the sound source. However the rays follow curved paths rather 

than straight ones if the sound speed is not constant, due to the smell’s law. 

The starting point of the ray tracing is given by the acoustic Unidimensional wave. In our 

code, the ray equations are integrated using standard numerical integrators such as the Runge–

Kutta method. 

 

 

Figure 1: Ray cross section 

 

In order to reduce the processional time we combine the solution for the Eikonal Error! Reference 

source not found. and Error! Reference source not found.. Figure 1 

 𝑑𝑧
ds⁄

𝑑𝑟
ds⁄

=
𝑑𝑧

𝑑𝑟
=

sin 𝜃0

𝑐(0)
∗

𝑐(0)

cos 𝜃0
= tan𝜃0 = 𝑈  

 

Equation (0.21) 

And we are interest in the X variation so we derivate U in the Equation (0.21) by (∂/∂ x) 

 

 𝑑𝑈

𝑑𝑥
=

1

cos2 𝜃0
∗

𝑑𝜃

𝑑𝑥
 

Equation (0.22) 
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Using the snell`s law  

 
𝜀 =

cos 𝜃0

𝑐(0)
=

cos 𝜃𝑧

𝑐(𝑧)
= 𝑐𝑡𝑒  

Equation (0.23) 

 

Deriving in 𝜀 the Equation (0.23) by (∂/∂ x) 

 

 𝑑𝜀

𝑑𝑥
= −

sin𝜃𝑧

𝑐(𝑧)
∗

𝑑𝜃

𝑑𝑥
−

cos𝜃𝑧

𝑐2(𝑧)
∗
𝑑𝑐

𝑑𝑧
∗

𝑑𝑧

𝑑𝑥
= 0 

Equation (0.24) 

 

 𝑑𝜃

𝑑𝑥
= −

cos 𝜃0

sin 𝜃0
∗

𝑑𝑐

𝑑𝑧
∗

𝑑𝑧

𝑑𝑥
∗

1

𝑐(𝑧)
= −

1

𝑐(𝑧)
∗

𝑑𝑐

𝑑𝑧
 

Equation (0.25) 

 

As a result: 

 𝑑𝑈

𝑑𝑥
= −(1 + U2) ∗

1

𝑐(𝑧)
∗
𝑑𝑐

𝑑𝑧
 

Equation (0.26) 

Where: 

 1

cos2 𝜃0
=

cos2 𝜃0 + sin2 𝜃0

cos2 𝜃0
= (1 + tan2 𝜃) = (1 + U2) 

Equation (0.27) 

 

The initial conditions (x=0) for This new ordinary differential equations are: 

z=zs 

U=tan θ 

As a inicial approach we define the canonical munk sound speed profile describe by the equation: 

 𝑐 = 𝑐0 ∗ [1 + 𝜖 ∗ (𝑧̅ − 1 + 𝑒−�̅�)]  Equation (0.28) 
Where: 

 𝑧̅ = 2 ∗
𝑧 − 𝑧𝑎𝑥

𝑧𝑎𝑥
 Equation (0.29) 

Inicial conditions. 

𝑐0 = 1500𝑚/𝑠 

𝑧𝑎𝑥 = 1300𝑚 

𝜖 = 7.4𝑒−3 

Deriving  the Equation (0.28) by (∂/∂ z) 

 𝑑𝑐

𝑑𝑧
= 𝑐0 ∗ 𝜖 ∗

𝑑𝑧̅

𝑑𝑧
∗ (1 − 𝑒−�̅�) 

Equation (0.30) 

Where: 

 𝑑𝑧̅

𝑑𝑧
=

2

𝑧𝑎𝑥
 

Equation (0.31) 
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In order to find the time arrival we have: 

 
𝑐 =

∆𝑠

∆𝑡
 

Equation (0.32) 

   
 𝑑𝑥

𝑑𝑟
= cos 𝜃 

Equation (0.33) 

   
 𝑑𝑡

𝑑𝑥
=

1

c ∗ cos 𝜃
 

Equation (0.34) 

 

Aplying the Equation (0.27)  in above 

 𝑑𝑡

𝑑𝑥
=

(1 + 𝑈2)1/2

𝑐
 

Equation (0.35) 

The TDOA are: 

 𝜏 = 𝑡 −
𝑥

𝑐0
 Equation (0.36) 

For the distance of the ray we have: 

 𝑑𝑟

𝑑𝑥
= (1 + 𝑈2)1/2 

Equation (0.37) 

The inicial condition (x=0) are: 

R=0 

T=0 

The amplitude is: 

 
𝐴 = 𝐴𝑚 ∗

1

𝑥
∗

1

|𝑑𝑧
𝑑𝜃0

⁄ |
 

Equation (0.38) 

   
 𝑑𝑧

𝑑𝜃0
=

𝑑𝑈

𝑑𝜃0
 

Equation (0.39) 

   
 𝑑𝑈

𝑑𝑥
= −(1 + tan2 𝜃) ∗

1

𝑐(𝑧)
∗

𝑑𝑐

𝑑𝑧
 

Equation (0.40) 

 

Deriving U in the Equation (0.40) by (∂/∂𝜃0) 

 𝑑𝑈

𝑑𝜃0
= −2 ∗ 𝑈 ∗

𝑑𝑈

𝑑𝜃0
∗

𝑑𝑐

𝑑𝑧
∗

1

𝑐(𝑧)
− (1 + 𝑈2) ∗

1

𝑐(𝑧)
∗

𝑑2𝑐

𝑑𝑧2
∗

𝑑𝑧

𝑑𝜃0
+ (1 + 𝑈2)

∗
𝑑𝑐

𝑑𝑧
∗

1

𝑐2(𝑧)
∗
𝑑𝑐

𝑑𝑧
∗

𝑑𝑧

𝑑𝜃0
  

Equation (0.41) 

 

 𝑑𝑈

𝑑𝜃0
= −2 ∗ 𝑈 ∗

𝑑𝑈

𝑑𝜃0
∗

𝑑𝑐

𝑑𝑧
∗

1

𝑐(𝑧)
− (1 + 𝑈2)

∗
𝑑𝑧

𝑑𝜃0
(

1

𝑐(𝑧)
∗

𝑑2𝑐

𝑑𝑧2
−

1

𝑐2(𝑧)
∗ (

𝑑𝑐

𝑑𝑧
)
2

) 

Equation (0.42) 
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Deriving c in the Equation (0.28) by (∂/∂𝑧)  

 𝑑2𝑐

𝑑𝑧2
= 𝑐0 ∗ 𝜖 ∗

2

𝑧𝑎𝑥
∗ (−𝑒−�̅�) ∗

2

𝑧𝑎𝑥
 

Equation (0.43) 

 

The initial conditions (x=0): 

 𝑑𝑧

𝑑𝜃0
= 0 

Equation (0.44) 

 

 𝑑𝑈

𝑑𝜃0
=

1

cos2 𝜃0
= (1 + 𝑈2) 

Equation (0.45) 

 

Lastly, we must restart the ray tracing each time that the boundary is reached, but with the take-off 

angle reflected. The appropriate conditions are: 

 𝑑𝑧

𝑑𝑥
|
𝑟

=
𝑑𝑧

𝑑𝑥
|
𝑖
 

Equation (0.46) 

   
 𝑑𝑈

𝑑𝑥
|
𝑟

= −
𝑑𝑈

𝑑𝑥
|
𝑖
 

Equation (0.47) 

 

 𝑑𝑡

𝑑𝑥
|
𝑟

=
𝑑𝑡

𝑑𝑥
|
𝑖
 

Equation (0.48) 

 

 𝑑𝑟

𝑑𝑥
|
𝑟

=
𝑑𝑟

𝑑𝑥
|
𝑖
 

Equation (0.49) 

 

 𝑑𝑧

𝑑𝜃0
|
𝑟

= −
𝑑𝑧

𝑑𝜃0
|
𝑖

 
Equation (0.50) 

 

 𝑑𝑈

𝑑𝜃0
|
𝑟

= −
𝑑𝑈

𝑑𝜃0
|
𝑖

− 2 ∗
1

𝑐
∗
𝑑𝑐

𝑑𝑧
∗

1

tan 𝜃𝑖
∗

𝑑𝑧

𝑑𝜃0
|
𝑖

 
Equation (0.51) 

 

If the index of refraction is independent of frequency, then the ray paths are also 

independent of frequency. However, the phase is frequency dependent. In practice, there is 

usually a frequency-dependent loss which adds an imaginary term to the index of refraction. This 

loss introduces an additional frequency dependence in the ray calculation. (Book computational)  
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APPENDIX D 

Model of Francois and Garrison 

The absorption coefficient proposed by Francois and Garrison is decomposed into three 

terms, The first two terms of the equation show the contribution from two relaxation processes, 

the third term corresponds to the viscosity of pure water: 

 
𝛼(𝑓)  = 𝐴1𝑃1

𝑓1𝑓
2

𝑓1
2+𝑓2

+ 𝐴2𝑃2

𝑓2𝑓
2

𝑓2
2+𝑓2

+ 𝐴3𝑃3𝑓
2 

Equation (52) 

 

Where α(f)  is the attenuation, in dB km⁄  , Z is the depth, S is the salinity, T is the 

temperature, in oC, and f is the frequency, in kHz. 

The boric acid B(OH)3 contribution is quantified by 

 
𝐴1 =

8.86

𝑐
10(0.78𝑝𝐻−5) 

𝑃1 = 1 

𝑓1 = 2.8√
𝑆

35
10

(4−
1245

𝑇+273
)
 

𝑐 = 1412 + 3.21𝑇 + 1.19𝑆 + 0.0167𝑧 

Equation (53) 

   
In the above, c is the speed of sound in m/s under the water, which is approximately and Tu is the 

temperature in Celcius (C), pH is the acidity, S is the salintiy (‰), D is the depth in meters 

The contribution of magnesium sulphate MgSO4 is quantified by 

 
𝐴2 = 21.44

𝑆

𝑐
(1 + 0.025𝑇) 

𝑃1 = 1 
𝑃2 = 1 − 1.37 ∗ 10−4𝑧 + 6.2 ∗ 10−9𝑧2 

𝑓2 =
8.17 ∗ 10((8−1990)/(𝑇+273))

1 + 0.0018(𝑆 − 35)
 

 

Equation (54) 

Pure water viscosity contribution for temperature : 

 𝑇 ≤ 20 °𝐶 →  𝐴3 = 4.937 ∗ 10−4 − 2.59 ∗ 10−5𝑇 + 9.11 ∗ 10−7𝑇2 − 1.5 ∗ 10−8𝑇3 
 

𝑇 > 20 °𝐶 →  𝐴3 = 3.964 ∗ 10−4 − 1.146 ∗ 10−5𝑇 + 1.45 ∗ 10−7𝑇2 − 6.5 ∗ 10−8𝑇3 
 

Equation 
(55) 

𝑃3 = 1 − 3.83 ∗ 10−5𝑧 + 4.9 ∗ 10−10𝑧2 

Francois R. E., Garrison G. R., "Sound absorption based on ocean measurements: Part I: Pure water 

and magnesium sulfate contributions", Journal of the Acoustical Society of America, 72(3), 896-907, 

1982. 

Francois R. E., Garrison G. R., "Sound absorption based on ocean measurements: Part II:Boric acid 

contribution and equation for total absorption", Journal of the Acoustical Society of America, 72(6), 

1879-1890, 1982. 



   130 
 

 

APPENDIX E 

Table number I and II shows the results for the SSP close to the source simulated by the 

Xavier ray path propagation (THALES). This simulation is the most accurate to the channel. 

Table I .Percentage of pings detected with maximal error from the true position up to 1 km in 

range and 10 m in depth. The SSP used was measured close to the source and the HD was applied 

from the direction of received to the simulated to avoid the missing point. (True solution: range 9 km 

; depth 56 m) 

% detection in range with accepted error up to 1km 

Depth MaxHD MeanHD MedHD 
Part4-
HD 

Part4HD 

52.5m 15% 9% 25% 18% 24% 

56m 19% 15% 15% 12% 12% 

62m 24% 25% 21% 24% 22% 

% detection in depth with accepted error up to 10m 

Depth MaxHD MeanHD MedHD 
Part4-
HD 

Part4HD 

52.5m 7% 14% 18% 16% 28% 

56m 3% 8% 12% 13% 13% 

62m 11% 14% 7% 6% 9% 

 

Table II. Percentage of pings detected with maximal error from the true position up to 1 km in 

range and 10 m in depth from the reverse direction, from simulated to the received.  

% detection in range with accepted error up to 1km 

Depth MaxHD MeanHD MedHD 
Part4-
HD 

Part4HD 

52.5m 19% 25% 22% 11% 12% 

56m 13% 29% 33% 12% 5% 

62m 15% 22% 29% 15% 26% 

% detection in depth with accepted error up to 10m 

Depth MaxHD MeanHD MedHD 
Part4-
HD 

Part4HD 

52.5m 5% 5% 12% 0% 14% 

56m 8% 5% 18% 2% 8% 

62m 8% 4% 26% 1% 21% 
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Table number III and IV shows the results for the SSP evaluated by the average between 

the SSP measured close to the source and the one measured close to the receiver. The 

simulation was performed by the RAMSEAS (THALES). 

Table III .Percentage of pings detected with maximal error from the true position up to 1 km in 

range and 10 m in depth. The SSP used was the mean of the two SSP measured and the HD was 

applied from the direction of received to the simulated to avoid the missing point. (True solution: 

range 9 km ; depth 56 m) 

% detetion in range with accepted error up to 1km 

Depth MaxHD MeanHD MedHD 
Part4-
HD 

Part4HD 

52.5m 29% 27% 18% 23% 23% 

56m 37% 28% 23% 19% 18% 

62m 38% 40% 22% 23% 13% 

% detetion in depth with accepted error up to 10m 

Depth MaxHD MeanHD MedHD 
Part4-
HD 

Part4HD 

52.5m 8% 6% 18% 13% 25% 

56m 5% 13% 12% 15% 55% 

62m 13% 15% 9% 11% 14% 

 

Table IV. Percentage of pings detected with maximal error from the true position up to 1 km in 

range and 10 m in depth from the reverse direction, from simulated to the received.  

% detection in range with accepted error up to 1km 

Depth MaxHD MeanHD MedHD 
Part4-
HD 

Part4HD 

52.5m 20% 11% 24% 20% 29% 

56m 25% 18% 25% 25% 19% 

62m 29% 21% 23% 28% 11% 

% detetion in depth with accepted error up to 10m 

Depth MaxHD MeanHD MedHD 
Part4-
HD 

Part4HD 

52.5m 62% 73% 40% 62% 29% 

56m 44% 62% 31% 40% 72% 

62m 42% 47% 12% 19% 20% 

 

 

 

 

 

 

 



   132 
 

 

APPENDIX F 

 

 

%  detection in range with accepted error up to 1km (   SSP close to the source X.program )  

HD direction received to simulated (Forward HD) 

  
Max 
HD  

Mean 
HD 

Med 
HD 

Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

Prob 
HD 

Array 64 
Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 27% 3% 13% 23% 7% 3% 2% 5% 

SF-disk  9 0% 1% 2% 14% 31% 96% 73% 100% 
Array 32 
Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 32% 2% 14% 31% 6% 2% 2% 7% 

SF-disk  9 0% 2% 2% 15% 37% 96% 72% 99% 
Array 16 
Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 26% 7% 14% 35% 8% 1% 2% 8% 

SF-disk  9 0% 2% 5% 18% 29% 97% 68% 98% 
Array 8 
Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 34% 5% 21% 37% 6% 2% 1% 15% 

SF-disk  9 0% 3% 5% 19% 27% 88% 67% 94% 
Array 4 
Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 24% 7% 28% 29% 16% 12% 12% 13% 

SF-disk  9 0% 8% 3% 15% 24% 78% 69% 88% 
Array 2 
Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 24% 14% 25% 28% 21% 15% 15% 15% 

SF-disk  9 6% 14% 4% 13% 20% 65% 55% 68% 

1 Hydrophone 
(hydrophone 1) 

No S. Filter 24% 25% 21% 22% 24% 28% 26% 23% 

SF-disk  9 21% 28% 9% 12% 21% 44% 42% 47% 

%  detection in depth with accepted error up to 10m (  SSP close to the source X.program)  

  
Max 

HD  
Mean 

HD 
Med 

HD 
Partial 

4HD 
Partial 

4-HD 
Partial 

2-HD 
Partial 

1-HD 
Prob 
HD 

Array 64 
Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 9% 38% 22% 29% 31% 36% 38% 49% 

SF-disk  9 0% 0% 0% 13% 0% 0% 0% 0% 
Array 32 
Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 7% 38% 23% 26% 27% 32% 35% 47% 

SF-disk  9 0% 0% 0% 12% 0% 0% 0% 0% 
Array 16 
Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 8% 34% 23% 26% 27% 26% 31% 46% 

SF-disk  9 0% 0% 0% 14% 0% 0% 0% 0% 
Array 8 
Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 11% 29% 20% 25% 26% 24% 27% 43% 

SF-disk  9 0% 0% 0% 16% 0% 0% 0% 0% 
Array 4 
Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 9% 28% 16% 18% 19% 24% 27% 34% 

SF-disk  9 0% 0% 0% 11% 0% 0% 0% 0% 
Array 2 
Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 13% 27% 11% 20% 17% 22% 25% 38% 

SF-disk  9 0% 0% 0% 8% 0% 0% 0% 0% 

1 Hydrophone 
(hydrophone 1) 

No S. Filter 11% 14% 7% 9% 6% 15% 15% 22% 

SF-disk  9 0% 0% 0% 0% 0% 0% 0% 0% 
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Fig. 87. Histogram of the Partial-1HD applied to range localization (top) and detected range variantion compared with true target location. 

 

 

 

 

 

 

 

Fig. 88. Histogram of the Partial-1HD applied to range localization (top) and detected range variantion compared with true target location. 
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%  detection in range with accepted error up to 1km ( SSP Mean )  

HD direction received to simulated (Forward HD) 

  
Max 
HD  

Mean 
HD 

Med 
HD 

Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

Prob 
HD 

Array 64 
Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 69% 49% 43% 46% 46% 46% 48% 71% 

SF-disk  9 77% 85% 17% 51% 45% 87% 99% 66% 
Array 32 
Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 65% 46% 44% 46% 45% 45% 45% 64% 

SF-disk  9 75% 86% 19% 52% 47% 86% 99% 56% 
Array 16 
Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 62% 45% 41% 40% 44% 44% 46% 57% 

SF-disk  9 72% 89% 19% 44% 44% 78% 99% 59% 
Array 8 
Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 64% 43% 39% 43% 41% 44% 45% 53% 

SF-disk  9 67% 80% 14% 44% 41% 67% 91% 45% 
Array 4 
Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 59% 40% 40% 41% 36% 41% 47% 52% 

SF-disk  9 74% 75% 19% 35% 41% 61% 82% 47% 
Array 2 
Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 60% 45% 45% 22% 37% 43% 39% 42% 

SF-disk  9 76% 72% 17% 20% 29% 46% 61% 40% 

1 Hydrophone 
(hydrophone 1) 

No S. Filter 38% 40% 22% 13% 23% 29% 37% 27% 

SF-disk  9 58% 48% 14% 5% 19% 22% 37% 26% 

%  detection in depth with accepted error up to 10m ( SSP Mean )  

  
Max 

HD  
Mean 

HD 
Med 

HD 
Partial 

4HD 
Partial 

4-HD 
Partial 

2-HD 
Partial 

1-HD 
Prob 
HD 

Array 64 
Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 0% 32% 34% 17% 39% 40% 41% 48% 

SF-disk  9 0% 0% 2% 28% 6% 0% 0% 15% 
Array 32 
Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 1% 35% 34% 16% 39% 39% 40% 55% 

SF-disk  9 0% 0% 2% 31% 5% 2% 0% 21% 
Array 16 
Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 1% 36% 28% 18% 33% 37% 38% 51% 

SF-disk  9 0% 0% 1% 25% 4% 2% 0% 20% 
Array 8 
Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 2% 33% 31% 15% 37% 37% 35% 47% 

SF-disk  9 0% 0% 2% 26% 5% 1% 0% 21% 
Array 4 
Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 8% 24% 27% 23% 22% 34% 38% 43% 

SF-disk  9 0% 0% 1% 32% 2% 2% 1% 16% 
Array 2 
Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 12% 23% 19% 29% 27% 32% 27% 31% 

SF-disk  9 0% 0% 1% 20% 1% 2% 1% 12% 

1 Hydrophone 
(hydrophone 1) 

No S. Filter 13% 15% 9% 14% 11% 14% 16% 19% 

SF-disk  9 0% 0% 2% 22% 2% 0% 0% 3% 
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Fig. 89. Histogram of the Partial-1HD applied to range localization (top) and detected range variantion compared with true target location. 

 

 

 

 

 

 

Fig. 90. Histogram of the Partial-1HD applied to range localization (top) and detected range variantion compared with true target location. 
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%  detection in range with accepted error up to 1km (  SSP close to the source X.program)  

  
Max 

HD  
Mean 

HD 
Med 

HD 
Partial 

4HD 
Partial 

4-HD 
Partial 

2-HD 
Partial 

1-HD 
Prob 
HD 

1 Hydrophone  
(H.index 50) 

No S. Filter 15% 19% 19% 29% 13% 13% 22% 20% 

SF-disk  9 9% 20% 13% 24% 25% 47% 49% 20% 
Spacing of 1 
hydrophone    
(H.index 1 and 2) 

No S. Filter 20% 27% 19% 11% 24% 22% 24% 48% 

SF-disk  9 18% 26% 8% 3% 25% 57% 52% 48% 
Spacing of 3 
hydrophones    
( H.index 1 and 4) 

No S. Filter 27% 19% 18% 14% 23% 19% 21% 54% 

SF-disk  9 14% 23% 8% 12% 22% 59% 62% 54% 
Spacing of 7 
hydrophones   
( H.index 1 and 8) 

No S. Filter 25% 23% 24% 22% 23% 22% 35% 49% 

SF-disk  9 9% 23% 12% 4% 20% 62% 54% 49% 
Spacing of 15 
hydrophones   
( H.index 1 and 16) 

No S. Filter 24% 19% 26% 18% 21% 19% 29% 58% 

SF-disk  9 3% 17% 4% 6% 19% 61% 65% 58% 
Spacing of 31 
hydrophones  
( H.index 1 and 32) 

No S. Filter 33% 23% 22% 32% 25% 19% 22% 67% 

SF-disk  9 6% 14% 5% 14% 20% 61% 52% 67% 

%  detection in range with accepted error up to 1km ( SSP Mean)  

HD direction received to simulated (Forward HD) 

  
Max 
HD  

Mean 
HD 

Med 
HD 

Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

Prob 
HD 

1 Hydrophone  
(H.index 50) 

No S. Filter 27% 25% 17% 22% 18% 18% 18% 20% 

SF-disk  9 56% 47% 13% 33% 19% 22% 49% 20% 
Spacing of 1 
hydrophone    
(H.index 1 and 2) 

No S. Filter 45% 43% 28% 12% 35% 38% 34% 48% 

SF-disk  9 68% 59% 12% 4% 14% 31% 62% 48% 
Spacing of 3 
hydrophones    
( H.index 1 and 4) 

No S. Filter 57% 35% 29% 8% 27% 28% 36% 54% 

SF-disk  9 66% 62% 12% 5% 19% 27% 59% 54% 
Spacing of 7 
hydrophones   
( H.index 1 and 8) 

No S. Filter 57% 43% 32% 17% 35% 37% 33% 49% 

SF-disk  9 67% 63% 11% 6% 19% 34% 65% 49% 
Spacing of 15 
hydrophones   
( H.index 1 and 16) 

No S. Filter 55% 43% 25% 20% 33% 43% 34% 58% 

SF-disk  9 72% 69% 7% 14% 18% 32% 67% 58% 
Spacing of 31 
hydrophones  
( H.index 1 and 32) 

No S. Filter 61% 51% 34% 23% 35% 42% 40% 67% 

SF-disk  9 79% 76% 17% 22% 29% 44% 74% 67% 
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APPENDIX G 

%   detection in range with accepted error up to 1km  ( SSP close to the source X.Program )  

HD direction received to simulated (Forward HD) 

  MaxHD  MeanHD MedHD 
Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

Array 64 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 36% 52% 56% 27% 55% 52% 55% 

SF-Mean 9 42% 77% 89% 40% 73% 71% 74% 

SF-Disk 9 54% 94% 91% 44% 81% 84% 85% 

Array 32 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 29% 53% 53% 33% 51% 52% 57% 

SF-Mean 9 41% 78% 86% 40% 73% 68% 72% 

SF-Disk 9 54% 95% 92% 41% 82% 80% 85% 

Array 16 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 33% 52% 53% 32% 49% 49% 53% 

SF-Mean 9 43% 73% 89% 38% 71% 68% 67% 

SF-Disk 9 57% 91% 91% 39% 80% 82% 81% 

Array 8 Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 34% 64% 46% 39% 58% 60% 60% 

SF-Mean 9 45% 83% 87% 40% 76% 79% 78% 

SF-Disk 9 67% 98% 93% 42% 91% 95% 97% 

Array 4 Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 38% 53% 53% 37% 60% 54% 54% 

SF-Mean 9 54% 44% 52% 47% 39% 38% 40% 

SF-Disk 9 67% 69% 44% 56% 54% 57% 63% 

Array 2 Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 51% 47% 25% 37% 46% 46% 46% 

SF-Mean 9 65% 46% 23% 41% 39% 42% 46% 

SF-Disk 9 73% 63% 21% 48% 46% 55% 59% 

HD direction simulated to received (Backward HD) 

 
 MaxHD MeanHD MedHD 

Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

Array 64 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 25% 25% 68% 32% 48% 49% 33% 

SF-Mean 9 0% 3% 68% 55% 42% 21% 14% 

SF-Disk 9 0% 0% 36% 40% 14% 1% 0% 

Array 32 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 25% 23% 69% 33% 47% 51% 40% 

SF-Mean 9 0% 3% 67% 51% 42% 19% 12% 

SF-Disk 9 0% 0% 36% 37% 13% 1% 1% 

Array 16 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 16% 24% 68% 31% 42% 46% 38% 

SF-Mean 9 0% 2% 73% 45% 38% 15% 11% 

SF-Disk 9 0% 0% 31% 39% 12% 2% 1% 

Array 8 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 17% 24% 71% 33% 47% 53% 38% 

SF-Mean 9 0% 2% 68% 52% 36% 21% 9% 

SF-Disk 9 0% 0% 24% 43% 5% 1% 1% 

Array 4 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 3% 23% 62% 34% 24% 24% 23% 

SF-Mean 9 0% 7% 60% 63% 28% 22% 15% 

SF-Disk 9 0% 1% 19% 53% 8% 1% 0% 

Array 2 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 3% 12% 39% 29% 17% 19% 22% 

SF-Mean 9 2% 2% 20% 36% 14% 12% 7% 

SF-Disk 9 0% 0% 11% 40% 6% 4% 2% 
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%  detection in depth with accepted error up to 10m ( SSP close to the  source X.Program)  

HD direction received to simulated (Forward HD) 

  MaxHD  MeanHD MedHD 
Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

Array 64 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 61% 100% 88% 29% 94% 96% 96% 

SF-Mean 9 81% 99% 76% 21% 95% 97% 100% 

SF-Disk 9 81% 100% 80% 22% 100% 100% 100% 

Array 32 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 53% 100% 85% 25% 94% 94% 95% 

SF-Mean 9 79% 99% 66% 22% 95% 98% 98% 

SF-Disk 9 80% 100% 82% 22% 99% 100% 100% 

Array 16 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 56% 100% 89% 29% 93% 95% 94% 

SF-Mean 9 79% 99% 73% 22% 95% 98% 98% 

SF-Disk 9 83% 100% 78% 25% 100% 100% 100% 

Array 8 Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 58% 100% 84% 29% 97% 98% 98% 

SF-Mean 9 81% 100% 66% 19% 97% 100% 100% 

SF-Disk 9 85% 100% 82% 20% 100% 100% 100% 

Array 4 Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 62% 99% 77% 34% 98% 99% 99% 

SF-Mean 9 81% 98% 91% 31% 99% 98% 99% 

SF-Disk 9 84% 100% 95% 31% 100% 100% 100% 

Array 2 Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 76% 98% 71% 40% 95% 96% 98% 

SF-Mean 9 92% 99% 87% 29% 100% 100% 98% 

SF-Disk 9 95% 99% 93% 31% 100% 100% 99% 

HD direction simulated to received (Backward HD) 

 
 MaxHD MeanHD MedHD 

Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

Array 64 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 0% 0% 24% 26% 4% 0% 0% 

SF-Mean 9 5% 6% 11% 36% 9% 4% 5% 

SF-Disk 9 5% 5% 11% 16% 3% 2% 3% 

Array 32 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 0% 0% 27% 24% 3% 0% 0% 

SF-Mean 9 5% 4% 15% 36% 2% 3% 3% 

SF-Disk 9 5% 5% 11% 13% 1% 2% 3% 

Array 16 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 0% 1% 32% 24% 1% 0% 0% 

SF-Mean 9 5% 2% 16% 32% 4% 3% 4% 

SF-Disk 9 4% 6% 11% 20% 3% 2% 1% 

Array 8 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 0% 0% 14% 15% 0% 0% 0% 

SF-Mean 9 3% 7% 3% 31% 2% 1% 3% 

SF-Disk 9 7% 7% 3% 13% 2% 1% 3% 

Array 4 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 1% 1% 2% 19% 0% 0% 0% 

SF-Mean 9 4% 6% 4% 24% 4% 2% 5% 

SF-Disk 9 8% 11% 2% 25% 8% 7% 9% 

Array 2 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 1% 1% 3% 19% 0% 0% 0% 

SF-Mean 9 2% 4% 4% 23% 3% 4% 3% 

SF-Disk 9 7% 5% 11% 19% 4% 5% 5% 
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SSP mean 

%   detection in range with accepted error up to 1km  ( SSP Mean)  

HD direction received to simulated (Forward HD) 

  MaxHD  MeanHD MedHD 
Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

Array 64 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 23% 78% 87% 47% 74% 75% 71% 

SF-Mean 9 31% 72% 94% 52% 68% 67% 66% 

SF-Disk 9 36% 49% 73% 57% 58% 52% 48% 

Array 32 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 26% 76% 87% 52% 73% 72% 72% 

SF-Mean 9 33% 69% 89% 47% 69% 65% 64% 

SF-Disk 9 34% 52% 76% 57% 58% 52% 51% 

Array 16 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 25% 78% 81% 43% 73% 74% 73% 

SF-Mean 9 34% 73% 85% 41% 67% 67% 65% 

SF-Disk 9 33% 51% 76% 46% 59% 55% 53% 

Array 8 Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 32% 69% 83% 46% 73% 67% 67% 

SF-Mean 9 33% 71% 82% 58% 71% 67% 67% 

SF-Disk 9 44% 56% 69% 47% 56% 52% 53% 

Array 4 Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 27% 31% 62% 43% 46% 35% 33% 

SF-Mean 9 21% 26% 52% 45% 29% 28% 29% 

SF-Disk 9 43% 19% 31% 59% 19% 19% 20% 

Array 2 Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 18% 22% 22% 55% 25% 21% 23% 

SF-Mean 9 40% 22% 18% 56% 23% 21% 21% 

SF-Disk 9 55% 22% 13% 53% 15% 18% 22% 

HD direction simulated to received (Backward HD) 

 
 MaxHD MeanHD MedHD 

Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

Array 64 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 18% 17% 87% 47% 55% 38% 25% 

SF-Mean 9 1% 13% 91% 49% 52% 26% 17% 

SF-Disk 9 0% 3% 76% 55% 40% 14% 8% 

Array 32 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 18% 22% 85% 53% 53% 35% 24% 

SF-Mean 9 1% 15% 84% 45% 47% 33% 17% 

SF-Disk 9 0% 5% 76% 56% 38% 16% 11% 

Array 16 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 17% 17% 82% 41% 49% 39% 20% 

SF-Mean 9 1% 13% 83% 45% 52% 32% 17% 

SF-Disk 9 0% 3% 77% 48% 38% 19% 12% 

Array 8 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 15% 12% 82% 46% 56% 27% 15% 

SF-Mean 9 8% 17% 76% 60% 45% 26% 21% 

SF-Disk 9 3% 8% 68% 53% 26% 16% 15% 

Array 4 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 8% 12% 58% 41% 28% 18% 13% 

SF-Mean 9 4% 8% 47% 44% 19% 17% 15% 

SF-Disk 9 3% 6% 26% 54% 15% 13% 9% 

Array 2 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 9% 11% 23% 46% 13% 14% 12% 

SF-Mean 9 13% 12% 15% 45% 12% 11% 11% 

SF-Disk 9 13% 7% 8% 43% 9% 9% 8% 
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%  detection in depth with accepted error up to 10m ( SSP Mean)  

HD direction received to simulated (Forward HD) 

  MaxHD  MeanHD MedHD 
Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

Array 64 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 29% 80% 87% 32% 69% 69% 66% 

SF-Mean 9 16% 71% 88% 40% 68% 66% 63% 

SF-Disk 9 16% 49% 73% 38% 52% 44% 44% 

Array 32 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 31% 80% 88% 41% 68% 67% 68% 

SF-Mean 9 17% 75% 91% 40% 67% 63% 61% 

SF-Disk 9 12% 54% 77% 42% 48% 44% 44% 

Array 16 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 16% 80% 85% 35% 68% 74% 69% 

SF-Mean 9 20% 74% 86% 45% 67% 66% 62% 

SF-Disk 9 13% 47% 77% 40% 54% 48% 47% 

Array 8 Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 4% 66% 77% 36% 73% 69% 64% 

SF-Mean 9 1% 62% 84% 41% 69% 61% 58% 

SF-Disk 9 0% 36% 66% 44% 46% 42% 39% 

Array 4 Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 0% 17% 34% 37% 28% 20% 18% 

SF-Mean 9 0% 9% 36% 42% 17% 14% 13% 

SF-Disk 9 0% 4% 23% 37% 9% 6% 4% 

Array 2 Hydrophones (from 
hydrophone 1 to 64) 

No S. Filter 1% 5% 11% 38% 9% 7% 5% 

SF-Mean 9 0% 1% 3% 37% 3% 2% 1% 

SF-Disk 9 0% 0% 2% 37% 2% 1% 1% 

HD direction simulated to received (Backward HD) 

 
 MaxHD MeanHD MedHD 

Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

Array 64 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 37% 63% 81% 39% 62% 54% 55% 

SF-Mean 9 20% 37% 78% 44% 46% 33% 32% 

SF-Disk 9 2% 1% 48% 44% 17% 4% 3% 

Array 32 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 42% 55% 79% 39% 61% 60% 54% 

SF-Mean 9 23% 36% 77% 37% 49% 32% 31% 

SF-Disk 9 2% 2% 48% 42% 20% 6% 4% 

Array 16 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 45% 62% 80% 37% 65% 57% 53% 

SF-Mean 9 25% 34% 78% 41% 46% 33% 31% 

SF-Disk 9 1% 3% 46% 44% 19% 3% 2% 

Array 8 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 36% 52% 81% 32% 67% 55% 49% 

SF-Mean 9 37% 27% 72% 37% 46% 31% 29% 

SF-Disk 9 7% 7% 39% 41% 14% 7% 6% 

Array 4 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 51% 74% 74% 33% 62% 66% 61% 

SF-Mean 9 47% 52% 66% 45% 55% 54% 51% 

SF-Disk 9 16% 12% 39% 38% 25% 13% 11% 

Array 2 Hydrophones 
(from hydrophone 1 to 64) 

No S. Filter 36% 62% 46% 32% 51% 52% 53% 

SF-Mean 9 37% 53% 43% 40% 47% 47% 47% 

SF-Disk 9 9% 23% 25% 38% 22% 21% 22% 
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APPENDIX H 

%   detection in range with accepted error up to 1km  ( SSP close to the source X.Program)  

HD direction received to simulated (Forward HD) 

Array section Technique 
N˚ of 

hydrophones 
equally spaced 

Max
HD 

Mean
HD 

Med
HD 

Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

1˚ Array 
section 

(hydrophone 
1 to 20) 

Beamforming 
SF mean [9 9] 

20 Hydrophones 46% 55% 68% 40% 52% 55% 56% 

10 Hydrophones 46% 60% 66% 28% 55% 58% 63% 

Spatial 
diversity  

SF disk [9 9]  
 

20 Hydrophones 2% 6% 3% 13% 28% 85% 78% 

10 Hydrophones 2% 7% 5% 11% 29% 81% 73% 

4 Hydrophones 2% 12% 3% 14% 25% 72% 61% 

2 Hydrophones 4% 11% 5% 12% 25% 61% 54% 

2˚ Array 
section 

(hydrophone 
21 to 40) 

Beamforming 
SF mean [9 9] 

20 Hydrophones 63% 54% 57% 26% 42% 45% 63% 

10 Hydrophones 62% 48% 61% 28% 40% 48% 62% 

Spatial 
diversity  

SF disk [9 9]  
 

20 Hydrophones 0% 5% 11% 12% 34% 95% 60% 

10 Hydrophones 0% 9% 11% 11% 37% 92% 62% 

4 Hydrophones 0% 9% 6% 11% 34% 79% 59% 

2 Hydrophones 7% 18% 17% 13% 37% 53% 51% 

3˚ Array 
section 

(hydrophone 
41 to 60) 

Beamforming 
SF mean [9 9] 

20 Hydrophones 68% 78% 61% 26% 56% 66% 68% 

10 Hydrophones 69% 80% 61% 25% 57% 63% 69% 

Spatial 
diversity  

SF disk [9 9]  
 

20 Hydrophones 0% 2% 5% 12% 56% 86% 47% 

10 Hydrophones 0% 5% 5% 8% 49% 82% 46% 

4 Hydrophones 0% 7% 7% 8% 54% 78% 41% 

2 Hydrophones 1% 12% 8% 17% 39% 65% 41% 
%   detection in depth with accepted error up to 10m  ( SSP close to the source  X.Program) 

Array section Technique 
N˚ of 

hydrophones 
equally spaced 

Max
HD 

Mean
HD 

Med
HD 

Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

1˚ Array 
section 

(hydrophone 
1 to 20) 

Beamforming 
SF mean [9 9] 

20 Hydrophones 60% 82% 69% 12% 81% 82% 86% 

10 Hydrophones 65% 86% 68% 5% 82% 86% 85% 

Spatial 
diversity  

SF disk [9 9]  
 

20 Hydrophones 0% 0% 0% 11% 0% 0% 0% 

10 Hydrophones 0% 0% 0% 7% 0% 0% 0% 

4 Hydrophones 0% 0% 0% 6% 0% 0% 0% 

2 Hydrophones 0% 0% 0% 3% 0% 0% 0% 

2˚ Array 
section 

(hydrophone 
21 to 40) 

Beamforming 
SF mean [9 9] 

20 Hydrophones 60% 91% 73% 5% 85% 85% 88% 

10 Hydrophones 58% 93% 73% 9% 84% 88% 91% 

Spatial 
diversity  

SF disk [9 9]  
 

20 Hydrophones 0% 0% 0% 20% 0% 0% 0% 

10 Hydrophones 0% 0% 0% 19% 0% 0% 0% 

4 Hydrophones 0% 0% 0% 14% 0% 0% 0% 

2 Hydrophones 0% 0% 0% 11% 0% 0% 0% 

3˚ Array 
section 

(hydrophone 
41 to 60) 

Beamforming 
SF mean [9 9] 

20 Hydrophones 66% 95% 84% 5% 97% 97% 98% 

10 Hydrophones 65% 97% 88% 3% 99% 98% 98% 

Spatial 
diversity  

SF disk [9 9]  
 

20 Hydrophones 0% 0% 0% 22% 0% 0% 0% 

10 Hydrophones 0% 0% 0% 21% 0% 0% 0% 

4 Hydrophones 0% 0% 0% 21% 0% 0% 0% 

2 Hydrophones 0% 0% 0% 25% 0% 0% 0% 
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%   detection in range with accepted error up to 1km  ( SSP Mean)  

HD direction received to simulated (Forward HD) 

Array section Technique 
N˚ of 

hydrophones 
equally spaced 

Max
HD 

Mean
HD 

Med
HD 

Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

1˚ Array 
section 

(hydrophone 
1 to 20) 

Beamforming 
SF mean [9 9] 

20 Hydrophones 27% 38% 67% 45% 51% 44% 43% 

10 Hydrophones 26% 43% 67% 46% 53% 47% 45% 

Spatial 
diversity  

SF disk [9 9]  
 

20 Hydrophones 67% 75% 13% 20% 32% 56% 77% 

10 Hydrophones 64% 76% 12% 18% 28% 55% 79% 

4 Hydrophones 72% 72% 6% 17% 21% 46% 71% 

2 Hydrophones 66% 74% 12% 12% 16% 32% 57% 

2˚ Array 
section 

(hydrophone 
21 to 40) 

Beamforming 
SF mean [9 9] 

20 Hydrophones 39% 31% 64% 34% 37% 29% 29% 

10 Hydrophones 34% 34% 65% 36% 35% 35% 35% 

Spatial 
diversity  

SF disk [9 9]  
 

20 Hydrophones 71% 77% 11% 22% 32% 63% 80% 

10 Hydrophones 71% 73% 11% 20% 32% 59% 77% 

4 Hydrophones 78% 74% 9% 17% 24% 54% 71% 

2 Hydrophones 74% 68% 8% 16% 19% 40% 49% 

3˚ Array 
section 

(hydrophone 
41 to 60) 

Beamforming 
SF mean [9 9] 

20 Hydrophones 41% 36% 63% 53% 39% 35% 33% 

10 Hydrophones 39% 38% 58% 51% 37% 38% 37% 

Spatial 
diversity  

SF disk [9 9]  
 

20 Hydrophones 77% 93% 77% 18% 83% 97% 98% 

10 Hydrophones 72% 95% 74% 24% 79% 94% 99% 

4 Hydrophones 79% 92% 63% 26% 76% 86% 89% 

2 Hydrophones 79% 91% 55% 23% 66% 82% 91% 

%   detection in depth with accepted error up to 10m  ( SSP  Mean) 

Array section Technique 
N˚ of 

hydrophones 
equally spaced 

Max
HD 

Mean
HD 

Med
HD 

Partial 
4HD 

Partial 
4-HD 

Partial 
2-HD 

Partial 
1-HD 

1˚ Array 
section 

(hydrophone 
1 to 20) 

Beamforming 
SF mean [9 9] 

20 Hydrophones 3% 40% 76% 27% 53% 47% 45% 

10 Hydrophones 2% 41% 77% 26% 55% 49% 44% 

Spatial 
diversity  

SF disk [9 9]  
 

20 Hydrophones 0% 0% 1% 29% 1% 1% 0% 

10 Hydrophones 0% 0% 1% 26% 2% 2% 0% 

4 Hydrophones 0% 0% 1% 34% 2% 1% 1% 

2 Hydrophones 0% 0% 0% 35% 0% 1% 0% 

2˚ Array 
section 

(hydrophone 
21 to 40) 

Beamforming 
SF mean [9 9] 

20 Hydrophones 4% 27% 74% 35% 39% 33% 29% 

10 Hydrophones 3% 32% 73% 29% 42% 38% 37% 

Spatial 
diversity  

SF disk [9 9]  
 

20 Hydrophones 0% 0% 1% 33% 1% 0% 0% 

10 Hydrophones 0% 0% 1% 34% 1% 0% 0% 

4 Hydrophones 0% 0% 0% 37% 0% 0% 0% 

2 Hydrophones 0% 0% 0% 47% 0% 0% 0% 

3˚ Array 
section 

(hydrophone 
41 to 60) 

Beamforming 
SF mean [9 9] 

20 Hydrophones 3% 28% 77% 33% 40% 35% 32% 

10 Hydrophones 2% 26% 77% 31% 37% 35% 31% 

Spatial 
diversity  

SF disk [9 9]  
 

20 Hydrophones 0% 0% 0% 37% 0% 0% 0% 

10 Hydrophones 0% 0% 0% 41% 0% 0% 0% 

4 Hydrophones 0% 0% 0% 41% 0% 0% 0% 

2 Hydrophones 0% 0% 2% 38% 0% 0% 0% 



   147 
 

 

Résumé étendu 

 

Résumé - Cette thèse porte sur la localisation de sources acoustiques sous-marines avec application 

à une expérience en mer. Nous proposons une nouvelle méthode d'appariement basée sur une métrique 

appelée distance de Hausdorff (HD) en tant que fonction de coût à minimiser, afin d'effectuer 

l'inversion de localisation. La localisation 2D, en distance et en profondeur, est réalisée en faisant 

correspondre les schémas de différence de temps d'arrivée (TDOA) en utilisant un seul hydrophone à 

la réception et en faisant correspondre le TDOA et l'Angle d'arrivée (AOA) lors de l'utilisation d'un 

tableau des hydrophones à la réception, entre des séquences respectivement mesurées et modélisées. 

Le TDOA modélisé a été obtenu sur la base du modèle de propagation acoustique Ray-path. Les 

ensembles de données analysés ici ont été collectés dans un contexte de localisation passive en 

considérant une cible immobile et dans deux expériences : la cuve acoustique de GIPSA-LAB utilisant 

des systèmes coopératifs et non coopératifs vérifiés par des simulations du rapport signal sur bruit et 

sur la campagne ALMA 2015, collectée par la Direction générale de l'armement (DGA) en utilisant un 

système coopératif qui s'est déroulé dans un environnement en eaux peu profondes de la côte sud de la 

France. Au cours de l’expérience ALMA, les données acoustiques ont été mesurées sur un réseau 

linéaire vertical (VLA) de 10 m de haut, composé de 64 hydrophones, ce qui permet non seulement 

d’adapter le TDOA mais également l’angle d’arrivée (AOA). Plusieurs variantes de la distance de 

Hausdorff sont appliquées dans deux processus différents: premièrement, séparément dans chaque 

hydrophone, puis combinées pour améliorer la précision de la localisation (diversité spatiale), et la 

seconde où les informations des différents hydrophones sont combinées (formation de faisceaux), pour 

trouver l'emplacement cible. Les résultats des deux processus sont comparés et prouvés pour réduire 

l'ambiguïté soit la profondeur et la portée, améliorant ainsi la précision finale. Le Cramer Rao Bound 

montrant la variance minimale effectuée sur la base d’équations déterministes est présenté avec le 

meilleur résultat de chaque processus. Une performance et une précision très satisfaisantes sont 

obtenues. Les conclusions et les perspectives de ce travail sont discutées à la fin. 

 

 

Abstract — This thesis addresses an acoustic underwater source localization with application to an at-

sea experiment. We propose a new matching method based on a fit-metric called as Hausdorff distance 

(HD) as a cost-function to be minimized, in order to perform the localization inversion. The 2-D 

localization, in range and depth, is performed by matching the patterns of time difference of arrival 

(TDOA) when using only one hydrophone at the reception and by matching the TDOA and the Angle 

of Arrival (AOA) when using an array of hydrophones at the reception, between respectively 

measured and modeled sequences. The modelled TDOA was obtained based on the Ray-path acoustic 

propagation model. The data sets analyzed here were collected during two experiments in a context of 

passive localization considering a motionless target: The tank of GIPSA-LAB using cooperative and 

non-cooperative systems which were verified by simulations with respect to the signal-to-noise ratio 

and the ALMA 2015, collected by the Direction générale de l’armement (DGA) using a cooperative 

system which took place in a shallow water environment of the southern coast of France. During the 

ALMA experiment the acoustic data were measured over a 10m-high vertical linear array (VLA), 

composed of 64 hydrophones, allowing not only matching the TDOA but also the Angle of Arrival 

(AOA). Several variants of the Hausdorff Distance are applied in two different processes: First, 

separately in each single hydrophone, and then combined in order to improve the localization accuracy 

(spatial diversity), and the second, the information from the different hydrophones are combined 

(beamforming) and the HD variants are applied to find the target location. The results of both 

processes are compared and proved to reduce the ambiguity either is depth and in range, thus 

improving the final accuracy. The Cramer Rao Bound showing the minimal variance performed based 

on deterministic equations is presented with the best result of each process. Very satisfactory 

performance and accuracy are obtained. The conclusions and perspectives of this work are discussed at 

the end. 




