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Résumé long

Ces travaux de thèse ont pour objet l’étude de la croissance et de la dissolution de cristaux
confinés à travers le développement et l’application d’un modèle continu.

La croissance et la dissolution confinées des cristaux sont couramment observées dans les
environnements naturels: les exemples vont de la géologie et la biominéralisation, aux matériaux
de construction. En particulier, nous nous concentrons sur trois phénomènes: la dissolution sous
contrainte, la formation de cavités sur la face confinée d’un cristal en croissance sur un substrat,
et la force de cristallisation.
La dissolution sous contrainte est la dissolution induite par une charge extérieure sur un ensemble
de grains en solution et le compactage qui en résulte. Ceci est un problème classique en géologie,
lié par exemple à l’évolution des bassins et des roches sédimentaires, et à la formation de stylolites
(plans de discontinuité irréguliers entre deux unités rocheuses).
La formation de cavités et de rebords sur la surface confinée de cristaux en croissance est un
phénomène observé depuis ples d’un siècle, mais encore mal compris.
La force de cristallisation est la force exercée par un cristal contraint contre les parois de pores
ou de failles d’un matériel hôte. Ce phénomène est d’une grande importance pour comprendre
les mécanismes d’érosion dans les roches naturelles, les bâtiments ou le patrimoine historique.

Des mesures précises dans de tels systèmes sont difficiles et les résultats expérimentaux mon-
trent souvent des différences importantes entre eux. D’autres difficultés d’interpretation sont liées
aux lois heuristiques souvent employées pour décrire les données expérimentales ou le recours
systématique à la thermodynamique d’équilibre pour décrire des phénomènes qui sont intrin-
sèquement dynamiques. En général, il émerge le besoin de concevoir des modèles hors-équilibre
pour démêler le nombre de questions débattues.

Lors de la croissance et de la dissolution sous contrainte, un film mince de solution, permettant
le transport de masse, est souvent présent entre le cristal et le substrat. Cependant, les approches
théoriques existantes n’incluent pas des ingrédients importants tel que la pression de disjonction
et l’hydrodynamique.

Afin de construire un modèle qui inclut de manière cohérente ces ingredients physiques,
nous nous concentrons sur la dynamique au sein des contacts lubrifiés. Nous développons
un modèle continu de couche mince prenant en compte la diffusion, la cinétique de surface,
l’hydrodynamique, la tension de surface et les interactions avec le substrat (pression de disjonc-
tion). Le modèle est dérivé à partir de la limite de petites pentes à l’aide d’un développement
asymptotique standard qui exploite la minceur du film. Certaines approximations supplémen-
taires sont effectuées, par exemple en considérant un cristal rigide, des densités égales entre le
liquide et le cristal, la limite diluée dans la solution, et uniquement des déplacements verticaux.

Le modèle est ensuite appliqué aux différents problèmes susmentionnés. Dans un premier
temps, nous étudions la dissolution induite par une charge externe. Nous nous concentrons sur
le rôle des interactions entre cristal et substrat sur la dynamique de dissolution pour un contact
unique. On considère que le contact est une arête symétrique (1D) ou axisymmetrique (2D).
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Résumé long

Nous nous intéressons au cas où la cinétique de surface est rapide par rapport à la diffusion dans
la région du contact. Nous trouvons que la forme fonctionnelle de la pression de disjonction –
finie ou divergente au contact – est cruciale pour déterminer les vitesses de dissolution et les
morphologies stationnaires. Une interaction singulière en loi de puissance conduit par exemple
à des profils aplatis et à un taux de dissolution qui augmente indéfiniment avec la charge en loi
de puissance. Ces lois de puissances sont caractérisées par des exposants qui dépendent de la
valeur de la viscosité. Nous identifions deux régimes. Un premier régime, à forte viscosité, où la
charge externe est équilibrée par la dissipation visqueuse dans le film. Un second régime, à faible
viscosité, où la charge est équilibrée par la pression de disjonction. Étonnamment, pour des
charges externes importantes, une interaction exponentielle finie conduit à un profil stationnaire
de forme pointue et dont la vitesse de dissolution est indépendante de la charge appliquée. Malgré
la pression de disjonction finie, il n’est pas possible d’observer un cristal qui touche le substrat à
une charge finie dans un état stationnaire. Cela est dû au couplage entre la dissipation visqueuse
et la tension superficielle. Celle-ci, en régularisent la pointe, implique que le liquide soit évacué
moins efficacement.

Deuxièmement, nous considérons un cristal en croissance à proximité d’un mur plat. Nous
supposons un contact axisymmetrique. Dans un premier temps, nous considérons la croissance
dans un régime dominé par la diffusion (cinétique de surface rapide). Nous constatons qu’une
cavité apparaît sur la surface cristalline confinée. Nous obtenons un diagramme de morphologie
hors-équilibre décrivant la formation de la cavité qui depend d’un taux de croissance critique.
Ce résultat est en accord avec les observations expérimentales effectuées par Felix Kohler et Dag
Kristian Dysthe à l’Université d’Oslo. En traversant la ligne de transition, la cavité apparaît en
manière continue si l’interaction avec le substrat est purement répulsive. Par ailleurs, nous ob-
servons que lorsque la séparation avec le substrat est nanométrique, dû à l’effet d’une attraction
van der Waals avec le substrat, la transition apparait en manière discontinue et avec hystérésis.
De plus, dans ce cas, les effets hydrodynamiques peuvent entraver la formation de la cavité.
Nous montrons qu’au-dessus d’une viscosité critique ou au-dessous d’une épaisseur de film cri-
tique, aucune cavité ne peut se former. Nous considérons ensuite, des dynamiques de croissance
dominées par la cinétique de surface et non par la diffusion. En particulier, le diagramme de
morphologie peut être généralisé pour inclure les effets d’une cinétique de surface lente. Par
ailleurs, l’inclusion de la cinétique de surface dans la description du phénomène permet, sous
certaines restrictions, de décrire la forme globale d’un cristal en croissance sur un substrat après,
par exemple, sédimentation ou nucléation hétérogène.

Enfin, nous abordons la question de la force de cristallisation exercée par un cristal en crois-
sance entre deux parois planes. Nous considérons un cristal entre deux contacts parallèles dans
une géometrie axisymmetrique. Premièrement, nous considérons le cristal à l’équilibre. Nous
montrons l’importance de la définition de la surface de contact pour déterminer la pression
d’équilibre. Par exemple, avec une définition spécifique du rayon de contact à l’équilibre et pour
une pression de disjonction répulsive, le modèle implique une pression d’équilibre identique à
l’expression thermodynamique standard d’un cristal macroscopique. En particulier, notre ré-
sultat ne montre aucune dépendance vis-à-vis de la taille du contact. Cependant, lorsqu’on
considère une interaction attractive, avec une définition alternative du rayon de contact, des
corrections pour les cristaux de taille finie apparaissent. Ces corrections dépendent de l’angle
de contact. Nous traitons ensuite le problème hors équilibre, en laissant le cristal croître sous
l’effect d’une sursaturation fixée en dehors de la région de contact. Nous observons que pendant
la croissance, la ligne triple peut subir une transition cinétique qui comporte la formation d’un
film macroscopique. La transition dépend uniquement du rapport entre la constante de diffu-
sion, et le produit de la constante cinétique de surface et de la distance entre les murs. Avant la
transition, la pression de cristallisation hors équilibre est proche de la valeur d’équilibre obtenue
à la même sursaturation. Par contre, au-delà de la transition la force de cristallisation diminue
jusqu’à s’annuler.
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Preface

The subject of this thesis is the modeling of crystal growth and dissolution in confinement. The
project is at the crossroad between hydrodynamics, surface physics, non-equilibrium statistical
physics, and geophysics. The type of modeling we explored and more generally a large portion of
the field of surface and interface physics belongs to the family, in the statistical physics commu-
nity, known as non-linear physics: a field to which I was not familiar width before starting the
PhD. My background was indeed more oriented on statistical mechanics and theoretical chemistry
with a strong focus on computational methods (e.g. molecular dynamics, Monte Carlo, quantum
physics methods). I had just a few elementary notions in surface physics, hydrodynamics and
crystal growth.

Working on this project with Olivier I had the chance to familiarize and learn a suite of
techniques and approaches which are at the frontier between theoretical physics and applied
mathematics. It was a great chance to take part in developing a model from scratch, leaving
ample space for reflection and physical intuition a taste which I think the three years spent in
Olivier’s group helped me to sharpen and appreciate. I alternated all along the PhD, phases of
development of numerical methods – involving also purely computer science related questions
(e.g. parallelization techniques) – to a meticulous analytical study (and on this I owe a lot to
Olivier’s help and scientific sensibility) of asymptotic and quasistatic limits of the model which
were systematically compared to or inspired by the numerical work.

Beyond the one to one relationship with my supervisor and with the scientific environment in
Lyon, I had the honor to be a part of the first generation of students of the large European Hori-
zon2020 project called NanoHeal. This project, fixing some long-term and broad objectives, had
the great merit to bring together people from different backgrounds and build a very stimulant
interdisciplinary network of universities and industrial partners.

It is within this network that I had the chance to meet Felix Kohler and Dag Kristian Dysthe
from the University of Oslo. The collaboration with them and the visiting period I had in Oslo
were of great importance to mature part of the results which are discussed in this thesis.
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List of symbols

• β: In the Introduction, surface energy term with different definitions. In Chapter 4, critical
growth velocity for cavity formation.

• Label b: Fields and observables evaluated at the boundary of the contact size (contact
radius in 2D).

• Label bc: Fields and observables evaluated at the boundary of the integration domain
(simulation box).

• c(x, y, z, t): Concentration of crystal type molecules in the liquid. As a consequence of the
lubrication limit no dependence on z, i.e. c(x, y, z, t) → c(x, y, t).

• c0: Solubility of the crystal.

• ceq(x, y, t): Local equilibrium concentration at the liquid-crystal interface. In the dilute
limit ceq ≈ exp[Δμ/(kBT )].

• Δμ(x, y, t): Chemical potential (with respect to a reference state) at the liquid-crystal
interface.

• d: Separation between two surfaces. In Chapter 5, half separation between two parallel
substrates.

• D: Diffusion of crystal type molecules in the liquid.

• Da: Damköhler number.

• ε′: Viscous stress tensor.

• ε: Small parameter.

• η: Viscosity of the liquid.

• F (t): Crystallization force along z (equivalent to FCz with uCz = 0).

• FCz(t): External force acting on the crystal along z.

• γ(x, y): Surface tension.

• γ̃(x, y): Surface stiffness.

• γtl: Line tension.

• γ0tl: Line tension neglecting excess volume.

17



List of symbols

• hs(x, y): Substrate position (immobile, ∂ths = 0). In the applications of the model showed
in this work the substrate is also assumed flat, hs(x, y) = hs.

• h(x, y, t): Liquid-crystal interface position in Chapter 2. Careful, in Chapters 4 and 5, h
is the typical crystal-substrate separation, ζ ∼ O(h).

• j: Diffusion flux of crystal type molecules in the liquid.

• κ: Mean curvature of the crystal profile.

• l: Length scale of the crystal interface. Typically l � h with h a typical scale for ζ
(lubrication limit). In the introduction, average separation between surface steps.

• L in Chapters 4 and 5: Contact radius. In Chapters 2 and 3, total size of the integration
domain in 1D.

• LC: Liquid-crystal interface.

• LS: Liquid-substrate interface.

• n̂: Normal to the LC interface (oriented towards the liquid).

• ν: Kinetic constant for surface kinetics.

• Ω: Molecular/atomic volume in the crystal.

• p(x, y, z, t): Pressure in the liquid.

• P (t): Crystallization pressure along z.

• R 2D axysimmetric, or L 1D ridge (only in Chapter 3): Total size of the system.

• ρC : Crystal density (constant).

• ρL: Liquid density (constant).

• σ(x, y, t) = c(x, y, t)/c0 − 1 : Supersaturation.

• σb: Supersaturation at the edge of the contact.

• σbc: Supersaturation at the boundary of the integration domain.

• T and kB: Temperature and Boltzmann constant, respectively. The temperature is as-
sumed constant and uniform in space.

• uC(t): Crystal rigid body velocity. uCz: Component along z, equivalent to growth or
dissolution velocity.

• uL(x, y, z, t): Liquid velocity.

• U(ζ): Interaction between crystal and substrate. −U ′(ζ): Disjoining force.

• vn(x, y, t): Interface velocity (oriented towards the liquid).

• vCz = ẑ · (vn − n · uC): Local growth/dissolution rate along z.

• ζ(x, y, t) = hs(x, y)− h(x, y, t): Film width.

• ζbc: Film width at the boundary of the integration domain (constant).

• ζ0 = ζ(r = 0, x = 0): Width at the center of the crystal profile.

• ζeq0 : Width at the center of the equilibrium crystal profile.

• ζ∞eq (x, y): Equilibrium profile of a macroscopic crystal far from the substrate.
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CHAPTER 1

Introduction

Crystal growth is at the heart of several disciplines such as metallurgy, microelectronics, biomin-
eralization, and geophysics. We focus here on the subfield of crystal growth from solution and
specifically on the case where the crystal, constrained by the presence of a substrate or another
crystal, loses its translational invariance. We wish to investigate the growth/dissolution dynam-
ics within the contact between the crystal and a substrate in the cases where a liquid film is
present between the crystal and the confining wall. Confinement then affects both the growth of
the crystal and its motion: indeed, growth at the confined crystal faces is altered by the reduced
diffusion-transport across the thin liquid film and by interactions with the substrate. In addition,
due to these interactions and viscous dissipation in the liquid, work must be performed on the
system whenever the crystal is displaced.

This introduction wishes to bring the reader from a general perspective on crystal growth to
the specific questions addressed within this work. The first part introduces some basic concepts
in crystal growth/dissolution. They will help to set the framework of this study and give also
a historical perspective. The second part reviews some effects of the confinement of liquid films
between inert walls as known in the literature. The third part bridges between the two previous
ones introducing some practical instances of confined growth and dissolution in geological ap-
plications. This is the place where thin film hydrodynamics, diffusion, surface interactions, and
crystal growth/dissolution kinetics couple. In this section, we also report on the current ques-
tions addressed in experiments on confined growth and dissolution. An experienced researcher
on crystal growth and thin films or nanofluidics can start the reading from this section. The
fourth part is a concise state of the art of the existing theoretical models of confined growth and

Figure 1.1: Snowflakes are examples of dendritic crystal growth. By Charles Schmitt [Wikipedia
Commons]
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dissolution at different scales.
Finally, supported by the prior discussion, we summarize the current challenges addressed

within the thesis using thin film models.
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Figure 1.2: Schematic illustration of a surface structure with terraces bounded by a step with kinks.
From [1].

1.1 Crystal growth and dissolution from solution

A basic introduction to the standard theory of crystal growth and dissolution is here provided.
Microscopic features of a crystal surface, such as adatoms, terraces, steps, and kinks, are correlated
with the macroscopic morphology and kinetics. Below the so-called roughening temperature, crystals
are faceted and surface growth is controlled by screw dislocations or the 2D nucleation mechanism.
Above the roughening temperature, crystals are rounded and growth is controlled by the abundant
attachment sites which are present on the microscopically rough surfaces.
We introduce the important distinction between surface dominated as opposed to diffusion dominated
kinetics, which is known to lead to very different behaviors with dendritic shapes and instabilities
(Mullins-Sekerka instability) observed in the former and faceted or regular structures in the latter
(Frank construction). In surface dominated growth, depending on the microscopic growth mechanism,
different macroscopic laws are observed for the growth rate.

The fundamental microscopic elements at the crystal surface, which contribute to its kinetic
behavior, are terraces separated by steps of atomic height. These steps themselves contains
straight parts separated by kinks. On the terraces one can observe adatoms which are diffusive
atoms which can be incorporated in the surface when meeting a step, and vacancies resulting
from missing surface atoms.

As illustrated in the following, when a crystal is above the roughening temperature, the
crystal surface contains many terraces and steps and many low energy sites are available for
direct attachment of atoms. On the contrary, when surfaces are atomically flat i.e. in the presence
of a facet, two-dimensional clusters on the surface or nucleus must form to provide low energy
sites such as steps and kink positions before growth can proceed. This phenomenon is called
two-dimensional nucleation. Alternatively, steps can also be produced by dislocations emerging
at the surface, such as screw dislocations [1].

We proceed as follows. First, we discuss the roughening transition. Second, we illustrate
the macroscopic equilibrium features of crystals in the absence or in the presence of a substrate.
Third, we discuss growth and dissolution morphology and kinetics, and introduce the concept
of surface dominated as opposed to diffusion dominated kinetics. Finally, we briefly review
the effect of convective flows on free (unconstrained) crystal growth. Throughout the text,
connections between macroscopic behaviors and subjacent microscopic features are made.

1.1.1 Roughening transition

The idea that there could be a “roughening” of the interface of a crystal in equilibrium with
liquid or vapor at a particular temperature TR was suggested by Burton, Cabrera and Frank [2].
Microscopically, above TR the crystal surface is rough which means that many kink sites and steps
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Figure 1.3: Roughening transition. (a) Faceting of He4 crystal . From top to bottom the temperatures
are 1.4, 1, 0.4 and 0.1 K. From Balibar et al. [9]. (b) and (c) NaCl crystal. From (b) to (c) the temperature
is decreased leading to the appearance of a faceted shape with an atomically flat surface. From Heyraud
and Métois [10]. Reprinted from Misbah et al. [4].

are present on the surface. Below TR the crystal surface is flat and no thermally excited kinks
are available. From a macroscopic point of view, crystals are facetted below TR and smoothly
rounded above TR [3, 4] (see Fig. 1.3). This is why TR is called roughening temperature or
faceting temperature [1, 5, 6, 7, 8].

To characterize the roughening transition, let us consider a vicinal surface which is a surface
misoriented by some small angle θ from a facet direction. The associated free energy projected
on the facet orientation is

γs(θ, T ) = f0(T ) + β(T )
| tan θ|
h0

+O (
tan2(θ)

)
(1.1)

with h0 the step height and l = h0/ tan(θ) their average separation. The first term is the
free energy per area of the terrace, the second term, β(T ), is the free energy per length of step
formation (edge free-energy). As temperature increases, β(T ) decreases due to increasing entropy
associated with step-edge excitations (via the formation of kinks). Eventually β(T ) vanishes at
TR.

1.1.2 Equilibrium shapes of crystals

As illustrated in the previous section, the peculiarity of crystal interfaces with respect to liquids
or amorphous solids is that the surface free energy γ is anisotropic because surface free energy
reflects the underlying symmetry of the crystal lattice. At equilibrium, the crystal molecules
will arrange in order to minimize this energy. This corresponds to minimizing the orientation-
dependent surface free energy for a fixed volume. We here proceed to a brief review of basic
notions in the analysis of macroscopic equilibrium crystal shapes.

The Wulff construction

The problem of the equilibrium crystal shape is habitually solved using the celebrated Wulff
construction [11]. Wulff theorem has been proved by different authors [2, 12] and is a powerful
tool to predict crystal shapes in absence of external fields such as gravity or interactions with a
substrate. The Wulff construction is illustrated in Fig. 1.4. The prescription takes the following
form: one begins with a polar plot of the surface free energy (γ-plot) as a function of an orienta-
tion angle (or the surface normal) and draws a perpendicular plane (or line in 2D) through the
tip of each ray. The equilibrium shape is then formed by the interior envelope of these planes or
lines. In 2D the geometrical construction corresponds to

r(ĥ, T ) = min
θ

(γ(θ, T )
m̂ · ĥ

)
, (1.2)

22



1.1. Crystal growth and dissolution from solution

ẑ

θ

γ(θ)

Figure 1.4: Schematic of the Wulff construction. The surface free energy per unit area γ(θ) is plotted in
polar form. One draws a radius vector in each direction m̂ and constructs a perpendicular plane where
this vector crosses the Wulff plot. The interior envelope of the family of “Wulff planes”, expressed by
Eq. (1.2), is the crystal shape up to an overall scale factor. From Pimpinelli and Villain [6].

where ĥ is an arbitrary direction, r(ĥ, T ) is a radial vector to the crystal surface, γ(θ, T ) is the
orientation-dependent surface free energy in the direction of the unit vector m̂ (cos θ = m̂ · ẑ).

From Eq. (1.1) it can be seen [3] that above the roughening transition (β = 0 in Eq. (1.1)),
the cusps in the γ-plot disappears and there are no facets in the Wulff construction.

Sharp Edges and facets

When the equilibrium crystal shape has a sharp edge or corner, the Wulff construction misses
intermediate orientations [3, 6]. The accurate review from T.L. Einstein [3] presents in details
issues connected with the Wulff theorem and the strategies developed in the literature to improve
the Wulff construction.

Some continuum models, such as phase-field models, often make use of a regularization of
the surface free energy when this presents sharp corners. A common strategy is to re-write the
surface tensions γ(θ), with θ the angular orientation of the surface normal, as [13, 14]

γ(θ) ≈ γ0(θ) +
β

2
κ2 , (1.3)

where γ0(θ) is the physical surface tension, and β a parameter representing “corner energy”. This
term is proportional to the square of the mean curvature κ, thus penalizes sharp corners. This
is called the Willmore regularization in the mathematical literature. The constant β is a small
parameter. In the limit β → 0, γ = γ0 represents the physical surface free-energy.

Another difficulty is that surface free-energy is not differentiable at the orientations corre-
sponding to facets. Indeed as illustrated in Fig. 1.4 and Eq. (1.1), facet orientations are asso-
ciated, for instance, to a cusp in the surface free-energy. This has important consequences on
continuum models that are based on the differentiability of physical quantities. For example, the
equilibrium shape Eq. (1.2) can be reformulated using the surface stiffness. In 2D, this leads to
μ = ΩAγ̃ where the chemical potential μ is a constant, ΩA is the atomic area, and the stiffness
is defined as γ̃(θ) = γ(θ) + γ′′(θ) [1, 15]. Surface stiffness then becomes singular at faceted
orientations.

Invoking for example finite size effects which usually prevent a true divergence of physical
quantities, a simple ansatz is to assume a finite but large value of the stiffness at facets. Such an
ansatz sometimes emerges as a consequence of some specific types of regularizations in continuum
models to remove nonanalytic points associated with the presence of cusps. For example, some
authors [16, 17] use a surface tension which, in the neighborhood of the facet orientation θ → 0,
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θtl

Figure 1.5: Left panel: Experimental image of Au/Graphite. Right panel, schematic of wetting.
Reprinted from [15].

takes the form:
γ(θ) ≈ (θ2 + ε)1/2 , (1.4)

where ε is a small parameter. From the definition of stiffness, Eq. (1.4) implies a ratio between
surface stiffness and surface tension at facet orientations γ̃(0)/γ(0) of order 1/ε representing a
significant increase of the stiffness. This type of regularization has proven to compare well to
other modeling approaches (e.g. step models) and experiments. We will show that our model
needs, in some cases, to assume a similar increase in the surface stiffness to allow for good
quantitative comparison to experiments (see Sections 4.2.2 and 4.5.4).

A more precise analysis of faceted crystals would require to consider the physics of atomic
steps. However, this is beyond the scope of this thesis.

Presence of a substrate and solid wetting

When considering a crystal on a substrate, the new energetic contribution that has to be taken
into account is the surface free energy of the crystal-substrate interface. In the absence of facets,
the anysotropic Young contact angle condition describing solid wetting in 2D is [15]

γSV − γSA = γ(θtl) cos(θtl)− γ′(θtl) sin(θtl) , (1.5)

where, as illustrated in Fig. 1.5, γSV , γSA, and γAV = γ represent the surface free energy per
surface area (surface tension) between the different mediums: A is the crystal island, V is a liquid
solution, and S the solid substrate. Assuming that the stiffness γ̃(θ) = γ(θ) + γ′′(θ) is always
positive, the condition of partial wetting (0 < θtl < π ) is given by

− 2γ(0) < γSV − (γSA + γ(0)) < 0 . (1.6)

If crystal-substrate free energy is sufficiently small as compared to the liquid-substrate one, we
thus observe (total) wetting and the crystal spreads on the substrate.

There exist Wulff-type constructions, such as the Kashew [18], Winterbottom, or Summertop
ones [19], capable to describe crystal equilibrium in the presence of one or more substrates,
and accounting for both wetting or partial wetting scenarios. However, these constructions
are possible only for flat and homogeneous substrates. Non-flat substrates often lead to multi-
stability (i.e. more than one locally stable shape) [15].

1.1.3 Growth and dissolution kinetics

Reaction kinetics

What follows assumes that a crystal is already present. Thus growth happens by the addition
of material on a pre-existing surface. We do not discuss the problem of the nucleation of a seed
crystal [20] which is beyond the scope of this study.

The kinetics of precipitation can be divided into the following sequence of steps [21, 22]:

1. Transport of material from the bulk to the surface: governed by diffusion and advection.
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R = AΔμ/(kBT ) R = A [Δμ/(kBT )]
2A exp[−B/(kBTΔμ)]R = A exp[−B/(kBTΔμ)]

ROUGH SMOOTH
2D Nucleation Spiral growth

Figure 1.6: Interface structures and three types of growth mechanisms. R, growth rate; Δμ/kBT driving
force (chemical potential difference between solid and liquid phases); A, B, constants. First panel (from
the left), growth from a rough surface. Second panel, 2D nucleation growth. Third panel, spiral growth.
Readapted from Sunagawa [23].

2. Adsorption of solute to the surface.

3. Surface diffusion toward reactive sites.

4. Integration of the solute at the reactive sites (edges or kinks) by the formation of new bonds.

The reverse sequence would result in dissolution. In general, both the forward and backward
sequences occur simultaneously, and the net mass balance leads to growth or dissolution. At
equilibrium, the flux of atoms from any step to the next will be completely balanced by the
reverse flux so that the net rate is zero. The first step is usually labelled as bulk transport.
Processes 2-4, which themselves are an outline of several elementary steps, are called surface
processes. What controls the kinetics of crystal growth and dissolution is the slowest among
these processes. In this text, we will often refer to the first scenario as a diffusion driven/limited
regime and to the second one as a surface/precipitation limited regime or slow surface kinetics.

In free growth, precipitation-limited phenomena are common. However in confinement, trans-
port occurs through a liquid film facing the confined region and is therefore slower than in un-
constrained space. As a consequence, diffusion is often the limiting kinetic step. This is a key
issue extensively discussed at different places in this thesis report.

Surface controlled kinetics and growth rate laws

The reaction at the surface is driven by saturation ratio S(t) = IAP(t)/Ksp with IAP the ionic
activity product and Ksp the solubility product [22, 24]. In this thesis, since we assume the
dilute limit in the solution, we work in terms of concentration rather than activities. This
implies IAP(t) ≈ c(t) where c is the concentration, and Ksp ≈ c0 with c0 the solubility. It follows
that S ≈ σ + 1, where

σ(t) =
c(t)− c0

c0
(1.7)

is the (relative) supersaturation. The net growth or dissolution rate is often expressed as [21, 22]

R+,− = k+− σn ≈ k+−
( Δμ

kBT

)n
, (1.8)

where R is the net rate (difference between forward and backward reaction rate) normalized by
the reactive surface area, the labels + and − refer respectively to growth and dissolution, n is
a fitting parameter, k is a kinetic constant, kB the Boltzmann constant, T the temperature,
and Δμ the chemical potential difference between the solid and the liquid solution. The last
equality holds only close to equilibrium c ≈ ceq = c0 exp(Δμ/(kBT )) with ceq the equilibrium
concentration, and for small supersaturations, exp(Δμ/(kBT )) ≈ 1 + Δμ/(kBT ).

The parameter n can be related to the nature of the mechanism of growth and dissolution
using models which assume different microscopic structures of the crystal surface. For example,
linear response theory corresponds to a microscopically rough surface with n = 1, whereas n ∼ 2
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describes growth in presence of screw dislocations by spiral mechanism [21]. Finally, for defect-
free facets, growth can be dominated by 2D nucleation of terraces. In this case the overall
growth (dissolution) rate is R ∼ exp(−β2/ΔμkBT ) [1, 23, 25] with β the step free energy per
unit length. These different laws are summarized in Fig. 1.6. In this work, we will assume the
simplest case, namely, the surface growth (dissolution) rate to be linear n = 1 with respect to
the supersaturation. A more precise modelling should account for the details of the motion of
atomic steps. However, as mentioned above, such an approach is beyond the scope of this thesis.

Crossover between diffusion and surface driven growth

Usually, as a rule of thumb, transport processes in the bulk are the limiting one (slowest) for
high-solubility materials, while low-solubility materials will be dominated by surface processes.
This can be seen with the following hand waving argument. Assuming linear kinetics, the surface
growth rate is R = kσ = νc0σ where ν is a kinetic coefficient with the dimensions of a velocity.
Then one has to compare the growth rate, R, to the bulk diffusion flux, D∇c. This leads to
the ratio (D/ν)∇ lnσ. Hence, the lengthscale of variation of the supersaturation σ, which are
associated to the inverse of the gradient, must be compared to the physical lengthscale

lf0 =
D

ν
. (1.9)

The label f is added to distinguish this length scale, associated to “free” (unconstrained) growth,
with the one emerging from confined growth l0 discussed ahead in this thesis (see for instance
Section 2.6). The diffusion constant D at ambient temperature depends essentially on the size
of the crystal molecules which in general does not vary of many orders of magnitude for different
materials. On the contrary, ν can vary of several orders of magnitude and is usually higher for
soluble materials than for less soluble ones (for instance ν ≈ 10−3ms−1 for the very soluble NaCl
and ν ≈ 10−5ms−1 for the less soluble CaCO3). Assuming that the length scale of gradients
is fixed by the crystal size, from the above arguments it follows that growth of more soluble
materials is more likely to be transport dominated and vice versa.

Finally, we expect that as temperature increases a surface limited reaction will change to a
transport limited one. This is due to the fact that bulk diffusion and advection are weakly depen-
dent on temperature, while chemical reactions at the surface exhibit an exponential Arrhenius
dependence which would make them much faster at higher temperature [21].

1.1.4 Growth shape

The non-equilibrium shapes emerging during crystal growth depend strongly on mass transport
kinetics. We illustrate in the following two main regimes: one in which crystals asymptotically
grow compact, and one characterized by morphological instabilities.

Kinetic limited growth: Frank construction

Frank’s model [6, 26] assumes surface-limited kinetics, where the growth velocity depends only
on the local surface orientation. The asymptotic crystal shape within this model can be obtained
from a construction similar to the Wulff one. Defining with vn the normal velocity of a crystal
surface, we assume vn = n̂ · vC(n̂), where vC(n̂) is a function of the orientation of the surface.
The statement of the theorem is the following. Consider the point P defined from an origin O
by the relation OP = n̂/vC(n̂), where n̂ is the normal to the crystal surface S. Then all points
of the surface where the normal is n̂, move along a straight line parallel to the normal in P to
the surface Γ spanned by P . The different objects defined in the theorem are represented in
Fig. 1.7a.

It has been observed experimentally that crystal growth shapes are often characterized by
more pronounced facets than the equilibrium shape (see Fig. 1.7b). Within the framework of
Frank model, this can be explained by the very sharp minima usually found for vC(n̂) around
slow growth orientations [6].
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O

(a) Illustration of Frank’s theorem as re-
ported by Pimpinelli and Villain [6]. The
vectors n̂ and n̂0 are relative to two differ-
ent surface orientations, Γ is the surface
spanned by P defined by OP = n̂/vC(n̂)
where vC(n̂) is the orientation dependent
interface velocity of the crystal.

(b) Growth shapes of lead crystals near
120◦C as reported by Heyraud and Mé-
tois [10]. Facets appear sharper than in
equilibrium. Comparing the Wulff and
Frank constructions, this suggests that
the anisotropy of the kinetic coefficient is
stronger than the anisotropy of surface ten-
sion.

However, two essential physical ingredients are absent from Frank’s model: diffusion near
the surface and surface tension effects. These two ingredients affect the local growth rate and
can therefore lead to a breakdown of the validity of Frank’s construction. In the case of growth,
as illustrated in the following, diffusion near the surface is responsible for the appearance of
instabilities.

Diffusion limited growth: the Mullins-Sekerka instability

The Mullins-Sekerka instability has been originally introduced in the context of growth from
a melt of a solidification front advancing with velocity v into an undercooled melt [6, 27, 28].
However, since a parallelism can be drawn between thermal diffusion and diffusion induced by
concentration gradients, the instability also applies to (diffusion driven) growth from solution.

Let us consider a 1D solidification front advancing with velocity v along z and a generic diffu-
sion field u which can be governed by chemical potential (concentration) gradient or temperature
gradient. The diffusion equation for the liquid facing the solid is

D∂2
xu+ v∂zu = ∂tu . (1.10)

Linear stability analysis considers solutions in the form of a small perturbation of the solid-liquid
interface z = ζ,

ζ(x, t) = ζ̂ke
ikx+ωkt , (1.11)

where k is the wavenumber and ω is the angular frequency. In the stationary case ∂tu = 0,
assuming no coupling between temperature gradient and chemical potential (pure thermal driven
or chemical driven system) and considering proper boundary conditions, one obtains a dispersion
relation in the form [28]

ωk ≈ kv − βk3 . (1.12)

The parameter β is a constant proportional to the surface tension which has a stabilizing effect.
Positive values of ωk lead to a divergence with time of the corresponding amplitude. From the
definition k = 2π/λ where λ is the wavelength of the perturbation, Eq. (1.12) indicates that the
instability appears at some finite wavelength corresponding to the maximum of ωk. A sketch
interpreting Mullins-Sekerka instability as a point effect is presented in Fig. 1.8.

This type of instability is at the origin of fascinating spontaneous pattern formation observed
in nature such as dendrite growth (see Fig. 1.1) [28] or, for strongly anisotropic crystals, hopper
growth [29].
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Figure 1.8: Schematic illustration of the Mullins-Sekerka instability as reported in [28]. The right
panel represents the corresponding dimensionless diffusion field which can generally be concentration or
temperature driven. Top panel: stable growth. Bottom panel: unstable growth (in the absence of surface
tension). The point A steepens the diffusion field ahead of it resulting in a higher entering flux of particles
and a consequent faster growth.

1.1.5 Effect of flows

As a final point on the standard theory of free-growing crystals, it is important to mention the
effects of flows. Flows can be due, for instance, to density changes, temperature differences in
the solution (buoyancy-driven convection), or to external stirring. Even when these effects are
neglected, liquid flow can be generated by crystal growth itself [30]. Let us consider a crystal
growing with a flat interface. In the reference frame where the interface is immobile, the solid
moves with growth velocity uC . From the conservation of mass, the liquid velocity must move
towards the interface due to crystal growth with a velocity uLn = uCn ρC/ρL, where ρC and ρL
are the density of the crystal and of the liquid solution, respectively [30] (see also Eq. (2.3)).
This flow perpendicular to the interface will affect the growth rate [31] because it transports
additional growth units to the interface via advection.

Another type of flow is the one parallel to the interface. In free growth, this is usually due
to external stirring or external gradients and buoyancy effects. Parallel flow can be responsible
for morphological instabilities such as the appearance of step bunches [32].

In general, when assessing the importance of the effects of flows over instabilities and local
growth rate, one should consider a characteristic distance where transport due to hydrodynamic
flows is comparable to diffusion transport. In free growth, this length scale is called the boundary
layer thickness and is generally defined as the distance from the interface to a point where the
flow velocity has essentially reached the free stream velocity. The specific definition of the
boundary layer changes depending on the system considered and its precise calculation can be
quite involved. In general, we expect mass transport due to liquid flow to be relevant at distances
from the crystal interface larger than the diffusion boundary layer. A simple dimensional analysis
allows for an estimation of this length scale lBL = D/uL. In confined growth problems, this
distance is usually significantly larger than the typical scales emerging in the confined region
(see for instance the discussion section of Chapter 4). This is why effects of hydrodynamic
convection and stirring are usually discarded in most models of confined growth.

We will see in the next section that in lubricated contacts a flow parallel to the liquid-solid
interface is induced by the rigid motion of the solid. However, we also show in Section 2.4
that in the lubrication expansion and in the dilute limit which will be used in this thesis, the
consequences of advection of the concentration c by the flow are negligible. The only remaining
effect of the flow will be in the global force balance on the crystal via viscous dissipation.
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Figure 1.9: Sketch of a generic confined growing/dissolving crystal from solution.
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1.2 Thin films
When crystals grow or dissolve in confinement (see Fig. 1.9) a thin liquid film can be present between
the crystal and a confining wall. Hydrodynamics effects alone, i.e. without considering dynamical
reshaping of the surfaces, lead to non-trivial laws associated with viscous forces when the distance
between the crystal and the substrate is changed.
When film thickness becomes of the order of tens of nanometres surface-surface interactions will
come into play. The most common interaction model between surfaces in a liquid is the DLVO
theory which includes an electrostatic repulsion known as double layer repulsion. However, at shorter
separations (below 3, 2nm) important deviations from the double-layer repulsion are observed. These
effects, are usually associated with the so-called hydration forces.
Confinement-induced changes in the structure of the liquid at the nanoscale are also related to
important effects on the transport properties (diffusion and viscosity) in the film.

In confined crystal growth or dissolution a thin liquid film of solution can be present allowing
transport of solid units [33, 34, 35, 36]. In physics and biophysics thin films typically appear in the
tribology of lubricated contacts such as bearings and animal joints, foam dynamics, nanoscale
dewetting [15, 37, 38, 39] and nanofluidics [40]. They are rich physical objects described by
highly nonlinear evolution equations leading to a variety of dynamical phenomena. A review of
the type of equations and fascinating dynamics governing thin films was written by Oron et al.
[41]. We will resort to similar approaches (lubrication limit) as those widely employed in thin
films hydrodynamics to develop our model.

However, we here wish to focus on the physical properties of thin films between two surfaces in
the absence of growth (dissolution). First, we discuss standard hydrodynamics of squeezed films.
These films are known to have bearing properties strongly dependent on geometry and dimen-
sionality. Second, the presence of liquid between mineral surfaces or salts induces electrostatic
repulsion. When the thickness becomes of the order of tens of nanometers, this electrostatic
force usually combines with van der Waals interactions. We therefore introduce some of the
theories describing these interactions (disjoining pressures). Finally, we describe some of the
phenomenology arising when the separation is reduced down to the nanoscale leading to effects
both on the interactions between surfaces and on transport in the film.

1.2.1 Lubrication and bearing

Hydrodynamics of thin films has been studied for decades by the engineering and applied math-
ematics communities as a part of the field of research known as tribology. The development of

29



Chapter 1. Introduction

h0
u

a

bb

a
Fz Fz

ζ

ζ

uxb
x

z

u

Figure 1.10: Sketch of a squeeze film bearing (left panel) and of an inclined slider bearing (right panel)
projected on the x− z plane. In the trust bearing case, the bottom plane slides with velocity uxb.

this field was motivated by the need for gaining a better understanding of the mechanism of
lubrication, friction, and wear of moving or stationary parts. In this context, the slenderness
of the film can give alone (without considering interactions between surfaces) effective forces
through viscous dissipation which resists to squeezing and suction of the liquid caused by the
relative motion of the solids [42].

Without considering hydrostatic bearings, which are externally pressurized, hydrodynamic
lubrication supports a normal load in two ways:

i Squeeze film bearing: left panel of Fig. 1.10. The flow is induced only by the relative vertical
motion of the surfaces.

ii Slider bearing: right panel of Fig. 1.10. A stationary flow is also produced by sliding one
surface.

The general differential equation governing the pressure distribution in fluid film lubrication is
known as the Reynolds equation:

∇xy ·
(ρLζ3
12η

∇xyp
)
= ∇xy

[ρLζ(uxya + uxyb)

2

]
+ ∂t(ρLζ), (1.13)

where the labels a and b represent the two surfaces, xy refer to vector components on the plane
of the bottom surface, u is the liquid velocity with uxya and uxyb the in-plane velocity at the
solids interface (no-slip condition), ζ is the distance between the surfaces, p is the pressure, ρL
is the liquid density, and η the liquid viscosity.

In this type of problems, the shape of the surfaces has a fundamental role in determining
the load as a function of the separation both in the squeeze film and slide bearing cases. A
standard example are hydrodynamic squeeze bearing. For instance, in the case of a circular
plate approaching a parallel plane (such as, considering the projection along the radius, the left
panel of Fig. 1.10) the normal load is [42] Fz ∼ 1/ζ3, i.e. no touching contact can be observed
at a finite load. Similarly, in a fixed inclined slider bearing (represented in the right panel of
Fig. 1.10) when considering flow in a single dimension (1D) the minimum separation decreases
exponentially with the load [42], h0 ∼ exp(−Fz), but h0 never vanishes, i.e. there is no touching
contact. However, in the former, when the approaching surface has a parabolic contact, the
divergence in the load reduces to ∼ 1/ζ3/2, whilst in the latter, when including the flow in the
transverse direction (2D problem), contact can be reached with a finite load.

In the context of this work two questions linked to lubrication in bearing surfaces are inter-
esting for us: First, how is this picture changing when surfaces are dynamical objects such as
dissolving or growing crystals, i.e. which can change shape in time; second, what happens when
there is an interaction (disjoining pressure) between the surfaces.

1.2.2 Disjoining forces between surfaces in liquid

Thin films can be formed, maintained, and stabilized by surface-surface interactions acting at
the nano-scale [35] (tens of nanometres separation [43]). These forces globally are referred to as
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disjoining pressures.
The generic model to describe interactions between surfaces in water is the Derjaguin-Landau-

Verwey-Overbeek (DLVO) continuum theory [44] which combines a (usually) repulsive electro-
static force and a (usually) attractive van der Waals force. This theory was first used to study
colloidal interactions [45].

Charging of the surfaces in a liquid is due to ionization of surface groups or to adsorption
of ions from the solution. The electrostatic repulsion originates from a diffuse atmosphere of
counterions forming close to the charged surface. This rearrangement of charges is called the
electrical double layer. The electric diffuse double layer has a characteristic thickness known as
Debye length, λD. The repulsion arising from the electrical double layer for two planar surfaces
and low surface potential is

EDL(d) ≈
2σ2

qλD

ε
e−d/λD , (1.14)

where E is an energy per unit area, d the separation between the surfaces, σq the surface charge
density (assumed equal on each surface) and ε the permittivity. The value of the Debye length
is strongly dependent on electrolyte concentration and pH in the liquid solution and can range
from a few to hundreds of nanometres [43].

Van der Waals interactions emerge from the combination of polarization induced interactions
such as Debye-induction and Keesom-orientation forces, and London-dispersion forces. London
dispersion forces are always present (even between neutral bodies). In the case of two surfaces
facing one another van der Waals interaction energy (per surface area) assumes the form

EW (d) = − A

12π d2
, (1.15)

where A is the Hammaker constant. The Hammaker constant in a medium can be related to the
susceptibility using Lifshitz theory and is usually of order A ∼ 10−20J [43].

The sum of these two contributions, E(d) = EDL(d) + EW (d), is the DLVO interaction
potential which can assume a variety of forms: long-range repulsion, primary (adhesion force)
and secondary minimum separated by an energy barrier, or purely attractive. The exact form
depends strongly on the surface charge density and electrolyte concentration. This variety of
behaviors is illustrated in Fig. 1.11a.

However, the DLVO theory is a nonspecific continuum theory that does not take into con-
sideration the discrete molecular nature of the surfaces, solvent, or ions, and other factors that
can become important at small distances.

SFA and AFM measurements and non-DLVO forces

The DLVO theory performs well for dilute electrolyte solutions and smooth surfaces. However,
significant deviation from DLVO can be observed at small separations (<3nm) [43]. These
additional non-DLVO forces have been found to depend on the specific nature of the surfaces,
the solvent, the ions in the solvent, and the ions adsorbed on the surfaces and can be both
repulsive or attractive [46, 47, 48, 49].

Different techniques can be used to probe experimentally interactions between surfaces. The
most widely employed are Surface Force Apparatus (SFA) and Atomic Force Microscopy (AFM).
SFA is an experimental technique which allows for direct measurement of force as a function of the
distance between two surfaces with Angstrom resolution. This technique consists in approaching
surfaces immersed in a liquid towards each other and measures forces using a spring connected
to one of the surfaces [43, 46].

AFM is a technique based on the measure of the deflection of a cantilever connected to a
tip raster scanning the surface of a solid. This device can be adapted to measure forces between
surfaces substituting the tip with a colloidal probe [48, 49, 50].

Using SFA or AFM different authors reported significant deviations from DLVO at small
surface separations. In particular short-range repulsive forces have been observed and associated
with the presence of a structured layer of water molecules at the surface. The overlap of these
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Figure 1.11: Left panel: Different forms that DLVO interaction potential can take depending on surface
and separating liquid properties. Right panel: Non-DLVO disjoining forces.
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hydrated layers gives rise to short-range repulsions which are commonly referred to as hydration
forces. A detailed review of hydration forces and their possible origin was written by Valle-
Delgado et al. [48]. Other deviations from DLVO include attractive ion-correlation and depletion
effects, extensively discussed in the literature [46]. For illustrative purpose we show in Fig. 1.11b
a summary of the type of behaviors that could be observed at small separations as reported
in [46].

1.2.3 Transport properties

Modeling the forces induced by viscous dissipation (as discussed for instance in Section 1.2.1), the
SFA technique has also been used to measure the viscosities of liquids in molecularly thin liquid
films. From these experimental measurements, the viscosities of pure water and salt solutions
were found to be essentially the same as in bulk, for films as thin as 20Å .

However, when the film thickness decreases further a higher effective viscosity is measured.
The increase of the viscosity coefficient is found to be 20% to 60% higher than its bulk value and
the effect is found to be maximal when the film thickness is comparable to the Debye length,
λD [51, 52]. This higher apparent viscosity is in general associated to the movement of the diffuse
ions in the electrical double layer. This results in a streaming current inducing flow of ions in
the opposite direction as opposed to the main flow [51, 53]. This phenomenon is referred to as
electro-viscous effect. The continuum description of the electro-viscous effect via electrokinetic
models (coupling electrical double layer and fluid flow) has brought insight in nano-transport
phenomena, allowing one to discuss the role of fluid properties [54] and irregular walls [55].

However, substantial quantitative discrepancies between experiments and theory are rather
common, in particular for nanochannels [56]. Indeed, even though it is recognized that nanocon-
finement affects transport coefficients, novel experimental observations [56] suggest better quan-
titative agreement with models based on local effects (near the charged substrates) of the electric
field on the viscosity [57].

Similarly, the diffusion coefficient can be affected by confinement. Indeed, molecules and
colloidal suspensions in micro and nano-channels [40, 58, 59] can exhibit effective diffusion coef-
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ficients significantly smaller than their bulk values. This effect depends strongly on the charge,
the ratio between the size of the molecule and channel size, and channel shape [60]. Also in
this case, however, difficulties in experiments and in the theoretical description are encountered.
For instance, a recent work suggests that the current theoretical approaches cannot account for
the observed phenomenology since the drops in diffusivity of neutral and charged nano-confined
molecules were found to be similar [59].

Overall, it is difficult to extract reliable numbers from the literature for confined liquids. We
will, therefore, use bulk values for viscosity and diffusivity in our model, but keep in mind that
these values could be affected by confinement in the discussion.
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Figure 1.12: Schematic diagram of pressure solution in a clastic rock (rock formed by fragments of
pre-existing minerals). Left panel: before compaction. Blue arrows indicate the flow of particles in solution.
Red arrows indicate areas of maximum stress at grain contacts. Right panel: after compaction. In light
colored areas new mineral growth leads to reduced pore space. By Woudloper [Public domain], from
Wikimedia Commons.

1.3 Confined growth and dissolution in geology

Geology provides many natural instances of confined crystal growth and dissolution, where the
coupling between the phenomena presented above – namely, growth and dissolution kinetics (mass
transport and attachment), thin film hydrodynamics and disjoining pressure between surfaces –
realize in practice. In particular, examples of confined growth and dissolution include respectively
salt weathering (crystallization force) and rock diagenesis and compaction (pressure solution).
In this section, we focus on recent experimental results on pressure solution and on the force
of crystallization. The picture emerging from experiments is that these phenomena are still not
completely understood. Indeed the dispersion of the results and the interpretations are wide.

Crystal dissolution by the effect of an external load is commonly referred to as pressure solu-
tion. Pressure solution is considered a key aspect to describe the deformation and compaction of
sediments and sedimentary rocks (see Fig. 1.12). It plays a determining role in diagenetic densifi-
cation, porosity and permeability evolution in sedimentary basins [34, 61, 62, 63], and the devel-
opment of stylolites (irregular planes of discontinuity between two rock units) [64, 65, 66, 67, 68].

Crystal growth in confinement is a ubiquitous phenomenon found in pores, faults, or gaps,
of rocks and natural or artificial cement. In biomineralization - the process by which living
organisms grow minerals - confinement also plays a key role to control the shape and phase of
nano-crystals [69, 70, 71], and combines with the chemical environment [72] to govern microstruc-
ture formation in, e.g., bones or dentine. Constrained growth may cause large forces such as in
salt weathering [73, 74, 75, 76], in the opening of veins in the Earth’s crust [77, 78], or in frost
heave [79, 80]. This is why this phenomenon is commonly referred to as crystallization force.
Beyond its relevance for natural environments, motion produced by confined growth can be used
in technological applications such as nanomotors [81].

During dissolution or growth in confinement, contacts play a major role. While growth and
dissolution can occur at the free surface away from the contacts via bulk transport of growth
units, growth in the contact regions requires mass transport along the interface between the
crystals or between the crystals and a substrate (pore wall) [34]. The presence of a liquid film
in the contact is, therefore, a key ingredient to allow for such mass transport during solution
growth, as discussed extensively in the literature [33, 35, 36, 82].

1.3.1 Pressure solution

Pressure solution is a water-assisted dissolution process driven by stress-induced chemical poten-
tial gradients. This phenomenon is characterized by the three-step process of dissolution of solid
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Figure 1.13: Ridge and plateau structure and isolated flat-bottomed pores on the exposed surface of a
grain-to-grain contact. Reprinted from Cox and Paterson [83].

minerals at grain contacts, diffusion of solutes along the grain boundaries and reprecipitation at
free surfaces [46, 61, 62, 82].

Most experimental studies have focused on the determination of the strain compaction rate
in grain compaction experiments. Many authors fit the data according to power law relations
between applied load and grain size and strain rate

ṡ ≈ pαd−β , (1.16)

where ṡ is the strain rate, d is the grain diameter and p the external stress. The strain rate
can be expressed as ṡ ∼ vz/(Rc) with vz the dissolution rate and Rc ∼ d the grain contact size
representing a reference length [84]. Different authors report α ranging between 1 and 3 and β
close to 1 or 3 [61, 63, 68, 84, 85]. According to a number of models, the values of these exponents
could be traced back to the limiting rate process, with α = 1 and β = 3 in diffusion limited
scenarios and β = 1 with α ≥ 1 in the case of precipitation/dissolution limited rate (surface
kinetics is the slowest process) [61, 62, 86].

However, the dispersion of the experimental results is important and different authors disagree
on the interpretations. For instance, it is argued that geometrical considerations (aggregate
structure/porosity) might lead to misinterpretation of the exponents [87]. Another important
issue is the value of the effective diffusion constant in confined films which is assumed by some
authors up to 5 orders of magnitude smaller than in bulk [82, 88] whereas recent studies do not
support such large reduction [59, 89]. Furthermore, despite the widespread use of Eq. (1.16), as
underlined by Croizé et al. [84], the dependence on the strain rate on stress is rather weak in
most of the experiments. Globally the kinetics of the phenomenon remains poorly understood
since the specific rate-controlling processes are not well known at the scale of the contact [61].

As far as contact morphologies are concerned, the problem appears more complex and less un-
derstood. The general observation is that complex contact morphologies – rough or labyrinthine
contact regions – can be observed on the grain to grain contact surfaces after undergoing pressure
solution [68, 83, 85] (see Fig. 1.13). In particular, the characteristic length scale of contact island
on the crystal interface was found to increase during pressure solution with time to the power
1/3 [90]. Such complex morphological evolutions could have an effect on the measured strain
rates. Interesting morphologies are also found at larger scales when looking at stylolites [64, 68]
and have been correlated to the value of localized stress induced dissolution [65, 66]. Morpholog-
ical instabilities of non-hydrostatically stressed surfaces can be due to the Asaro-Tilder-Grinfeld
type instability. This instability is controlled by a competition between elastic strain relaxation
that favor a roughening of the interface and a stabilizing force due to surface tension. Such stress-
induced instabilities are a general problem encountered in various circumstances in physics and
geophysics and have been investigated in different studies [67, 91, 92].

However, in this thesis, we do not discuss such type of morphological instabilities which in-
volve elastic effects. Instead, we focus on the consequences of disjoining pressures, mass transport
kinetics, and hydrodynamic flows at lubricated contact.

36



1.3. Confined growth and dissolution in geology

Figure 1.14: Left panel: Degradation of a historical stone sculpture (Lecce, Italy). Right panel: SEM
image of a NaCl crystal (white) in the pore space of sandstone after evaporation of the salt solution.
Reprinted from Désarnaud et al. [93].

1.3.2 Crystallization force

Salt crystals growing in confinement under supersaturated conditions exert a crystallization force
against their host material, subjecting them to stresses (see Fig. 1.14). This phenomenon was
first reported in 1853 by Lavalle [94]. Later, it was discussed in the seminal papers of Becker
and Day [95, 96] and Taber [97] (see Fig. 1.15), and was quantified for the first time by Correns
and Steinborn [98].

Recently, crystallization pressure has attracted renewed attention since it has been recognized
as a major origin of the weathering (alteration and deterioration) of both natural and anthro-
pogenic materials (buildings, tunnels, historical monuments) [73, 75, 99, 100]. Some theoretical
models were able to correlate the normal stress exerted by a crystal growing within an idealized
crack to the opening of the crack [101].

However, the direct measurement of the force exerted by a growing crystal in confinement
is a challenge, as demonstrated by the small number of experimental results reported in the
literature [76, 93, 98, 102].

Some recent laboratory measurements showed that crystallization forces can be very high
(above 102MPa) and can exceed the tensile strength of stone [76, 93]. The experimental setups
are different but are all characterized by a crystal confined between two plates (like in the Correns
or Beker experiments) [93, 102] or in a pore (nano-tube) [76]. One of the main difficulties of these
experiments is that it is not always possible to reach high supersaturations due to heterogeneous
nucleations on the surface [102]. Most studies have focused on how different salts could be more
or less effective as damaging agents [76, 100]. Other authors have suggested to reformulate this
question in terms of the dependence of double-layer repulsion strength on materials and liquid
film properties [93].

A possible strategy which has been considered in order to decrease crystallization pressure
is to use hydrophobic coatings. These prevent the formation of the liquid film between the pore
wall and the growing crystal thus interrupting ions transport and precipitation [35, 93].

Another phenomenon relative to confined growth that was reported in Becker and Day [95]
and Taber [97] experiments, is the formation of a rim on the confined surface of the growing
crystal. The formation of the rim is an out of equilibrium effect which dynamically alters the
contact area during confined growth, as recently observed with great detail using high-resolution
microscopy [104, 105, 106]. An example of rim observation is shown in the right-hand side of
Fig. 1.15. The details of the geometry of the rim are still not well understood and characterized
and could have implications on the crystallization pressure.
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Figure 1.15: Left-hand side: simplified sketch of the setup of Becker and Day experimnet [95, 96].
Right-hand side: an example of a rim on the confined interface of a NaClO3 crystal measured after growth
under 200g loading. The topography of the surface was obtained by white light interferometry. Figure
realized combining images from [103].

1.4 Models of confined growth and dissolution

Whilst a fundamental understanding of the thermodynamics of crystallization in pores has been
achieved [35, 89], the dynamical non-equilibrium processes behind pressure solution and crystallization
force are still poorly explored.
Promising recent models able to overcome these challenges have been based on molecular dynamics
simulations and kinetic Monte Carlo techniques. However, these approaches do not have access to
the large temporal scales involved in geophysical problems or experiments.
Following the seminal model of Weyl [33], many continuum models have been proposed especially
to describe compaction creep laws in pressure solution.
In general, a systematic limitation of the existing continuum models, both for pressure solution and
crystallization force, is the absence of microscopic description of the interactions, hydrodynamics
in the liquid film and effects of surface tension. A second limitation is that many approaches rely
strongly on equilibrium thermodynamics.

We here review some of the existing modeling approaches used at different scales to address
the problem of confined crystal growth and dissolution. We proceed in order of spatiotemporal
resolution: From atomistic approaches (Molecular Dynamics) and mesoscale techniques (Kinetic
Monte Carlo), to continuum models.

Particular emphasis is dedicated to continuum models treating the problems of pressure
solution and crystallization force discussed in the previous section. We also discuss the Weyl
model focusing on the properties of the rim at the confined surface of a growing crystal.

1.4.1 Nano-scale: molecular dynamics simulations

Even though it is well known that variations in the transport coefficient can be observed in
narrow channels, precise quantitative assessment and understanding of the phenomenon are still
not achieved in experiments. Indeed experiments become difficult when approaching liquid film
thickness of the order of the nanoscale [40, 59]. Atomistic simulations constitute an important
tool to compute effective parameters such as viscosity and diffusion constant in confinement.
They also allow one to describe new phenomenology where continuum approaches break down [40,
107], for example when a reduced film thickness implies the reorganization of molecules in few
layers [48].

For instance, molecular dynamics studies (MD) have investigated transport properties in
liquid films down to a thickness of about 2Å in smooth pores [108]. More recently, MD techniques
were used to elucidate the mechanisms intervening in short-range interactions between surfaces
in water [109, 110]. Another recent work revealed the sensitivity of water-mediated calcite
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Figure 1.16: Models of intergranular pressure solution. Materials are dissolved at stressed grain contacts
and transported via grain boundary. This boundary is a liquid film of water (“thin film” models) or a
dynamic network of contacts and channel (“island and channel” models). Figure produced combining
images from Zhang and Spiers [61] and de Meer and Spiers [62].

and aragonite surface interactions with respect to the topography of the surfaces at sub-nano
confinement [111] and found important effects when these surfaces are shifted out of registry.

Molecular dynamics studies have been also used to directly address the problem of con-
fined growth at reduced separations. Effects of confinement on crystallization were reported by
Bresme and Cámara [112, 113]. These studies proved that crystallization can be induced by
confinement itself (inducing significantly higher melting temperature). In addition, they showed
that crystallization events cause forces on the pore walls.

1.4.2 Meso-scale: Kinetic Monte Carlo models

Kinetic Monte Carlo models (KMC) [114] have been developed extensively to describe surface
morphology during growth and dissolution of free (non confined) crystal surfaces. They partici-
pated in achieving fundamental understanding of the roughening transition, kinetic roughening
(dynamical non-equilibrium roughness produced by statistical fluctuations), morphological in-
stabilities (such as mounds [115] and step meandering [116]), and effects of impurities (e.g. step
bunching), as extensively discussed in the literature and in text books [1, 6, 8, 114, 117]. The
development of KMC models is still an open field of research and recent works include for in-
stance the detailed characterization of dissolution morphology and spatial distribution of reactive
sites on the surface of different minerals [118, 119]. In the context of biophysics, a recent work
used Monte Carlo techniques to address the effect of a confining membrane on the shape of a
growing interface in 1D [120] revealing a rich phenomenology with smooth and rough interfaces
and different scaling behavior depending on model parameters. However, as far as confined
crystal dissolution and growth are concerned, Monte Carlo approaches are seldom used. We are
only aware of the recent work from Høgberget et al. [121] which uses an SOS (solid-on-solid)
KMC model which includes effective interactions between surface crystal molecules and a con-
fining wall. This model is a very promising strategy to tackle confined growth/dissolution at
the mesoscale and could give information on crystal growth morphology in confined geometries.
However, some current limitations of this approach are that the system considered is 1D, that
hydrodynamics in the film is not included and that the model does not account for the solute
diffusion in the thin film. However, some of these questions are under current investigation at
the University of Oslo [122].

1.4.3 Macro-scale: continuum modeling

Pressure solution creep models Most of the models proposed at the continuum scale were
developed to describe pressure solution and grain compaction. If we exclude the possibility of
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micro-cracks on the surface (grain-boundary model [123]), and grain boundary filled with clay
platelets [62, 88], two main families of models of grain contact structures have been proposed:
The thin film models and the island and channel models (see Fig. 1.16).

In the thin film models, the grain contacts are assumed to consist of a thin water film trapped
inside contacts which cannot be squeezed out by the applied stress. The island and channel model
assumes that both solid contacts and water channels are present within the grain boundary. In
both models, water between the grain contacts is important to dissolve solid minerals and to
transport material out of the contact areas [46, 61]. Both models derive very similar creep laws
to describe the compaction problem [62, 63, 82, 87, 124]. These type of laws are in the form

ṡ ∼ De
p

d3
, (1.17a)

ṡ ∼ k
p

d
, (1.17b)

where ṡ is the strain rate defined in Section 1.3.1, p the external pressure, d the grain size, De

an effective diffusion constant (proportional to the film thickness in thin film models) and k is
a precipitation/dissolution rate constant. The first equation is valid in the case of a diffusion
limited process whilst the second is for a surface driven process.

Due to the slenderness of the film, most of the authors assume the diffusion limited sce-
nario Eq. (1.17a). However, as suggested by different experiments [46, 63], in certain systems
pressure solution could be limited by surface kinetics (Eq. (1.17b)).

While Eq. (1.17b) is linear in p, nonlinear dependencies with the applied stress are also
proposed in the literature [62] for the surface limited process when assuming a nonlinear surface
reaction kinetics (see Section 1.1.3). Other modeling approaches also consider the effect of plastic
deformations on the creep laws. An important work in this regard is the model developed by
Revil [89]. However, these models systematically lack microscopic physical ingredients such as
viscosity, disjoining pressure, and surface tension.

An interesting approach has been recently proposed on the different but related problem of
particle engulfment [125, 126], i.e. the inclusion or not of foreign particles in a solidification front.
This model accounts self consistently for microscopic interactions, force balance, hydrodynamics,
diffusion and heat transfer through a numerical finite-element method (FEM). In our opinion,
this is a very promising modeling strategy that could be extended to the problem of pressure
solution. However, a limitation of these studies is the important computational effort needed to
solve the coupled 3D hydrodynamics and diffusion problem.

Crystallization force As first reported by Correns and Steinborn [98] for a macroscopic crys-
tal in a dilute ideal solution the equilibrium crystallization pressure is given by

Peq =
kBT

Ω
ln(1 + σ) , (1.18)

where σ is the (equilibrium) supersaturation (Eq. (1.7)), Ω the molecular volume of crystal type
molecules, kB the Boltzmann constant, and T the temperature.

Relevant work on the thermodynamics of crystallization pressure has been performed in
the literature and goes beyond Eq. (1.18) accounting for ionic number and non-ideal solutions
(chemical activities) [127], the contribution of surface tension effects for microscopic crystals and
coupling with pore geometry [35, 128], and pore deformation and size distribution [129].

It is often stated that the equilibrium theory sets the upper bound to the crystallization
pressure in the limit that the disjoining pressure between surface and pore wall can sustain
it [35, 93, 99]. However, it is not clear if and how the equilibrium expression Eq. (1.18) is
applicable in out of equilibrium cases, where the supersaturation σ is not uniform in space.

Some recent works have brought advances in the understanding of the dynamical aspects
of crystallization force (e.g. the role of surface kinetics in building up crystallization pres-
sure [76, 130]). These approaches are based on the time evolution of the concentration field from
precipitation kinetics, transport and mass conservation equations using FEM methods. However,
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1.4. Models of confined growth and dissolution

the resulting crystallization force is still calculated from the equilibrium formula [76, 131, 132].
Furthermore, these authors do not include a precise description of microscopic interactions with
the pore wall nor surface tension effects or substrate inhomogeneities.

Weyl’s model and rims Weyl’s seminal model [33] is, to our knowledge, the only continuum
model that includes both growth and dissolution considering the dynamics at a single contact
(eventually relating it to the global creep problem). It can be included in the family of the thin
film models but differs from the diffusional creep model usually used in pressure solution. Given
its simplicity and elegance, Weyl’s model could be considered the archetype of thin film models.

The model does not assume any thermodynamic equilibrium law and is based only on mass
conservation augmented with the following assumptions: i) axisymmetric contact; ii) the con-
centration is a linear function of the stress across the film; iii) the thickness is constant (model
A) or exponentially decreasing with stress (model B). With these assumptions, Weyl obtains
dissolution rates (or creep laws) very similar to Eq. (1.17a). Furthermore, to the best of our
knowledge, Weyl’s model is the only theoretical model that can predict rims during confined
growth as those first observed by Becker and Day [95] and Taber [97] and illustrated in Fig. 1.15.
Assuming external stresses along z, according to the Weyl’s model the rim or hollow center exists
if the average pressure in the film is smaller than the equilibrium one

p̄ < peq , (1.19)

where p̄ = F/πR2 with F the applied load and R the radius of the crystal face. Furthermore,
the width of the rim δ is linked to stress according to the expression

δ

R
=

√
1− 2

p̄

peq
. (1.20)

However, a recent experimental work [104] contradicts this hypothesis and finds no correlation
between rim size and stress. Instead, the authors propose a scenario where rim appearance
depends on step density gradient coupled with concentration gradients oriented towards the
center of the crystal (lower in the center) by confinement and/or Berg effect [133] (concentration
higher at the corners of the crystal).

In general, one cannot expect Weyl’s model to be quantitative given the heuristic nature of
its derivation.
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Chapter 1. Introduction

1.5 Summary and objectives of this study

We have shown that confined growth and dissolution of crystals is an interdisciplinary topic at
the crossroads of independent fields of research such as thin film hydrodynamics, surface-surface
interactions (disjoining pressures), nanofluidic phenomena and crystal growth kinetics. We dis-
cussed the geological phenomena of pressure solution (confined dissolution) and crystallization
force (confined growth) and showed that their behavior differs significantly from standard un-
constrained crystal growth and dissolution usually giving rise to facetted or dendritic crystals.
Globally the experimental observations delineate a rich and complex picture which, however, due
to the heuristic character of the interpretations and to experimental difficulties, still need further
understanding. In particular, some of the questions which require better insights are:

i The emerging morphologies in confined dissolution and growth.

ii The observed dissolution and growth rates.

iii How crystallization force builds up (role of disjoining pressures, supersaturation and growth
kinetics); when and how the effective contact area changes during growth (rims formation);
how crystallization pressure can be prevented in practice.

We have also reviewed some existing theoretical approaches. We found that a common limitation
of the continuum approaches is the lack of description of microscopic interactions (disjoining pres-
sure) and hydrodynamics in the liquid film. Disjoining pressure is assumed only as a mechanism
to maintain the liquid film [46, 82] but is seldom correlated to the dynamical evolution of the
thickness (except for some considerations in [89]). Hydrodynamics is never included. When the
viscosity is considered it is only indirectly via the Stokes-Einstein relation to motivate an effective
(higher) diffusion related to (or caused by) the electro-viscous effect [62, 63, 82, 89]. However,
hydrodynamics in the liquid film could have important implications on pressure solution since it
can make the process of evacuating the liquid out of the contact dynamically unfeasible (diverg-
ing time of approach). As far as pressure solution creep models are concerned, in our opinion,
a second limitation is that surface tension effects are systematically neglected [61, 62, 89]. We
will show that at high stresses surface energy can have important consequences on the contact
morphology and asymptotic behaviors.

In regard to the problem of the force of crystallization, continuum out of equilibrium ap-
proaches are rare in the literature. Indeed, since the main aim of most authors has been to assess
the maximum force of crystallization, equilibrium thermodynamics has been the dominant tool
over alternative approaches. Furthermore, most of the research focused on refinements of the de-
scription of chemical processes – for instance to establish which are the most effective damaging
materials (typically salts as sodium sulfate that can have hydrated metastable phases) [100] –
but with a little accent on the general physical mechanism and dynamical aspects.

The study we present in this thesis is therefore motivated by the need for a consistent out
of equilibrium description of confined growth and dissolution. Our objective is to develop a
continuum model capable of describing the out of equilibrium growth and dissolution dynamics
of a confined solid surface.

In the following, we build a continuum thin film model which accounts self-consistently (in the
lubrication regime) for surface tension effects, for disjoining pressure, surface kinetics, diffusion,
and hydrodynamic flow. For simplicity, a number of approximations will be made to analyze
some of the main outcomes of the model. Motivated by the geological problems, we will provide
quantitative discussions for mineral and salt crystals when possible.
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CHAPTER 2

The Model

We derive a three-dimensional continuum model for confined growth and dissolution which takes into
account disjoining pressure effects, diffusion, surface kinetics, and hydrodynamics. A liquid film of
solution separates an impermeable substrate from the crystal and is assumed to be thin as compared
to the size of the contact. This disparity of length scales is used to reduce the dimensionality of
the problem by means of the so-called lubrication expansion. Finally, evolution equations for the
confined crystal interface are derived in some simplifying assumptions.
In particular, we discuss two different regimes: i) Fast or finite precipitation kinetics (diffusion limited
regime); ii) Slow precipitation kinetics, where we include the possible competition between diffusion
transport and surface kinetics. Both regimes result in a nonlinear and nonlocal partial differential
equation for the evolution of the crystal interface. The contact region is assumed to be in contact
with a macroscopic concentration bath. We discuss the boundary conditions used in the different
class of problems and introduce a method for lateral growth of the contact. The equations will be
applied in the following chapters to address three different problems: Dissolution induced by a load
(pressure solution), growth on a substrate after sedimentation or heterogeneous nucleation of a seed
crystal, and growth between two parallel substrates (crystallization force).

2.1 Introduction

In this chapter, we present a three-dimensional continuum model which takes into account disso-
lution or growth, disjoining pressure effects, diffusion, surface kinetics, and hydrodynamics. The
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Figure 2.1: Sketch of an arbitrary shaped crystal and of the contact region with some variables and
fields of the model. See text for notations.
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Chapter 2. The Model

key assumption that the film is thin in the contact region is formalized with the help of a multi-
scale expansion defining the lubrication limit [41]. This limit, widely employed in engineering
(trust bearing) [42, 134], physics (nanoscale dewetting) [15, 135, 136, 137] and biophysical models
(membranes) [138, 139, 140], results in nonlinear and nonlocal thin film evolution equations for
the profile of the crystal surface.

We initially proceed with the derivation of the evolution equations for the interface under rel-
atively general conditions. Then we present some simplifying assumptions such as equal densities
between the liquid and the solid, imposed symmetry (left-right symmetric ridge or axisymmetric
contact), and the dilute limit which help to reduce the complexity of the model.

We then derive and present two sets of model equations. The first assumes a finite or
fast surface kinetics, leading to a negligible contribution of attachment-detachment kinetics in
lubrication expansion (diffusion is the slowest process). The second assuming slow attachment-
detachment kinetics leads to slightly more complex equations accounting for scenarios where the
time scales of diffusion and surface processes are comparable.

Finally, we discuss two alternative conditions at the boundary of the contact. The first
assumes no lateral motion, the second allows for expansion or shrinking of the confined interface.

To facilitate the reading, many calculation details are omitted. For a more detailed under-
standing of the mathematical steps of the derivations, the reader should refer to Appendix A.
Numerical methods are described in details in Appendix B.

2.2 General derivation

The system under study is represented in Fig. 2.1. For the sake of clarity, we designate the
growing or dissolving solid by the name crystal. However, our model equally applies to amorphous
phases, or to any other solid phases that can grow and dissolve from solution. We consider a
crystal in a liquid medium, in the vicinity of a substrate, and subjected to an external force FC(t)
which will be sometimes denoted as the load. The crystal is assumed to be rigid, namely, we
neglect the contribution of elastic deformations on the interface shape and chemical potential.
We also assume a uniform and constant temperature T (isothermal conditions). For the sake
of simplicity, we discard crystal rotations and consider only translations. The substrate at
z = hs(x, y) is immobile i.e. ∂ths = 0, and is impermeable. The Liquid Crystal interface (LC)
at z = h(x, y, t) < hs(x, y) evolves with time. In the following we work in the reference frame
where the substrate is immobile, uS = 0.

We assume an incompressible fluid

∇ · uL = 0 , (2.1)

where uL(x,y,z,t) is the liquid velocity. Neglecting inertial effects (which are known to be neg-
ligible in the lubrication limit considered below see Appendix A.5.1 and [41, 141]), the liquid
obeys the Stokes equation:

η∇2uL = −∇p , (2.2)

where η is the viscosity, and p(x, y, z, t) is the pressure. Global mass conservation at the LC
interface (neglecting possible mass excess at the interface) reads [31] (see Appendix A.1)

ρL(uL · n̂− vn) = ρC(uC · n̂− vn) , (2.3)

where ρC is the constant crystal density, and ρL is the constant liquid density, uC is the trans-
lational velocity of the rigid crystal, n̂ is the normal to the LC interface and vn is the normal
velocity of the interface. Note that whenever a three-dimensional field such as uL appears in an
equation evaluated at an interface, we consider implicitly the value of this field at this interface.

Finally, we assume no slip and no penetrability at the liquid-substrate (LS) interface

uL = 0 , (2.4)
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2.2. General derivation

and a no slip condition at the LC interface

uL‖ = uC‖ , (2.5)

where the index ‖ indicates the projection of a vector on the plane tangent to the LC interface.
Local mass conservation of the solute (crystal ions or molecules in the fluid) reads in the

liquid bulk
∂tc+ uL · ∇c = −∇ · j , (2.6)

where j is the diffusion flux. We assume that diffusion is governed by Fick’s law

j = −D(c)∇c. (2.7)

As shown in Appendix A.2, the solute mass conservation at the LC interface imposes

Ω−1(vn − n̂ · uC) = c(vn − n̂ · uL)− n̂ · j , (2.8)

where Ω is the molecular volume in the crystal and we assumed no mass flux in the crystal bulk.
The left-hand side of Eq. (2.8) is the mass of the molecules detached or absorbed in the crystal
as a consequence of the movement of the LC interface. The first term in the right-hand side
is the corresponding mass variations of crystal type molecules in the liquid. The second term
accounts for the diffusion flux at the interface (in the liquid).

Assuming that the substrate is impermeable at the LS interface, we have

j · n̂s = 0 , (2.9)

with n̂s the LS interface normal.
The crystallization/dissolution rate vn−n·uC is assumed to depend linearly on the departure

from equilibrium
vn − n · uC = Ων(c− ceq) , (2.10)

where ν is a kinetic coefficient and ceq(x, y, t) the local equilibrium concentration. In the ideal
limit, where the activity coefficient is equal to 1, we have

ceq = c0e
Δμ/kBT , (2.11)

where Δμ is the local chemical potential of the crystal at the interface and c0 is the equilibrium
concentration for an interface in an infinitely large crystal far from the substrate (solubility).
The chemical potential at the LC interface reads [39, 142, 143]

Δμ(x, y, t)

Ω
= γ̃ : κ+W ′(x, y, h) + (

ρC
ρL

− 1)(εnn + p0) , (2.12)

where γ̃(x, y) is the stiffness tensor, κ is the curvature tensor, W ′ = ∂hW (x, y, h) is the disjoining
pressure and p0 a reference pressure. The potential W (x, y, h) depends on x and y to account
for the possible spatial heterogeneities of the substrate height hs, and of the substrate material
properties. The liquid stress tensor is defined as εij = ε′ij − δijp with ε′ij = η(∂juLi + ∂iuLj),
and the index n indicates the normal direction. Equation (2.12) is similar to the usual Gibbs-
Thomson effect which relates chemical potential and curvature. However, there are two extra
terms. The first one accounts for the presence of a substrate via the interaction W ′. The second
one, proportional to the liquid-crystal density ratio, accounts for the energy cost associated with
the volume change during the phase transformation [? ]. One example where this latter term
intervenes is when considering gravity. This is included adding ρgz in the pressure that enters
in εnn which leads to the well-known contribution (ρC − ρL)gh in the chemical potential [? ].

Finally, since the crystal is a rigid body, the global force balance on the crystal reads

FC =

‹
LC

dS [−n̂ · ε′ + n̂(γ̃ : κ+W ′)] , (2.13)

where the surface integral is performed along all the LC interface (since we discard crystal rota-
tions, we do not consider the equilibrium of torques). This relation is derived in Appendix A.3.1.

The system of equations reported above describes the dissolution or growth dynamics of a
rigid crystal interacting with an inert and impermeable substrate. In the following, we specialize
the discussion to the contact region (see Fig. 2.1 ).
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Chapter 2. The Model

2.3 Contact region

In this section, we re-write mass conservation and force balance in a form which makes use of the
geometry of the contact region. We assume that the LS and LC interfaces exhibit no overhang.

For any field g(x, y, z) defined everywhere in the liquid, we consider the following integrated
quantity along z

〈g〉(x, y) =
ˆ hs(x,y)

h(x,y)
dz g(x, y, z). (2.14)

As explicitly showed in Appendix A.4.1, using the incompressibility condition Eq. (2.1), the
immobility of the substrate Eq. (2.4), and global mass conservation at the LC interface Eq. (2.3),
we obtain a two-dimensional equation for liquid mass conservation

vCz
ρC
ρL

= −∇xy · 〈uLxy〉 − ∂t(hs − h) , (2.15)

where hs has been inserted for convenience using the relation ∂ths = 0. Here and in the following,
vectors with the index xy indicate a two-dimensional vector in the x, y plane without the z
component. In addition, we have used the geometric relations

n̂ =
(−∇xyh, 1)

[1 + (∇xyh)2]1/2
, (2.16)

vn =
∂th

[1 + (∇xyh)2]1/2
, (2.17)

and we have defined the crystallization-dissolution rate along z

vCz = ∂th− uCz + uCxy · ∇xyh . (2.18)

Similarly (see Appendix A.4.2), using Eqs. (2.8) and (2.9), mass conservation for the solute
concentration c can be re-written in a two-dimensional form

vCz

Ω
+ ∂t〈c〉+∇xy · 〈uLxyc〉 = −∇xy · 〈jxy〉 . (2.19)

In order to write the force balance at the contact, we make use of three additional physical
assumptions. First, we assume that the pressure outside the contact is approximately constant
and equal to pext. Second, we assume that the interaction term vanishes, i.e. W ′ ≈ 0, away from
the contact. Third, we assume that viscous stresses ε′ vanish outside the contact region. Then,
force balance Eq. (2.13) is re-written as

FC =

¨
contact
dS [n̂(p− pext) +W ′(x, y, h))− n̂ · ε′] . (2.20)

This equation makes use of fact that the total force exerted by surface tension or by a constant
external pressure on a crystal of arbitrary shape vanishes

‹
LC

dS n̂(γ̃ : κ) = 0.

‹
LC

dS n̂ pext = 0. (2.21)

These two identities are proved in Appendix A.5.4.
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2.3. Contact region

2.3.1 Lubrication limit in the contact region

Here, we show that the lubrication limit, based on the small slope approximation, allows one
to express the quantities integrated along z in Eqs. (2.15), (2.19) and (2.20), thereby leading to
closed-form equations for three quantities. The two first quantities are time and space-dependent
fields: the pressure p and the thickness of the liquid film

ζ(x, y, t) = hs(x, y)− h(x, y, t). (2.22)

The third quantity is the time-dependent crystal velocity uC .
The lubrication limit [141] makes use of a disparity of length scales: the lateral extent of the

variations along the film is assumed to be large x ∼ O(ε−1) as compared to the film thickness
ζ = (hs − h) ∼ O(1) with ε � 1. The mathematical procedure to derive these equations is well
known [41, 141], we therefore only provide the main steps of the derivation. More details are
given in Appendix A.5. Formally, we identify a small parameter ε = h0/l, where l is the typical
extent of the contact region and h0 is the typical gap between the crystal and the substrate.
Spatial coordinates then scale with this small parameter as x ∼ y ∼ � ∼ h0/ε, and z ∼ h0.
Furthermore, assuming that the typical fluid velocity parallel to the substrate is uLxy ∼ u0, we
also consistently choose uLz ∼ εu0, pressure p ∼ ηu0/(εh0), and time t ∼ h0/εu0.

Conservation and transport laws

Substituting these scalings of physical variables in the model equations we obtain the lubrication
expansion [41, 141]. To leading order in ε, Eq. (2.2) reduces to

∂zp = 0 , (2.23)

−∇xyp+ η∂2
zuLxy = 0 . (2.24)

The first equation indicates that the pressure does not depend on z, but only on x, y, and t.
Solving the second equation using the boundary conditions Eqs. (2.4) and (2.5) results in a
Poiseuille (parabolic) flow for uxy,

uLxy = −(hs − z)(z − h)

2η
∇xyp+

hs − z

ζ
uCxy . (2.25)

Integrating over the film thickness, we obtain

〈uLxy〉 = − ζ3

12η
∇xyp+

ζ

2
uCxy . (2.26)

Combining Eqs. (2.15) and (2.26), we obtain

vCz
ρC
ρL

= ∇xy ·
[
ζ3

12η
∇xyp− uCxy

ζ

2

]
− ∂tζ . (2.27)

Recalling that ρL is constant and and uS = 0, this equation reduces to the Reynolds equation
Eq. (1.13) when there is no growth or dissolution, i.e. vCz = 0.

A similar procedure is applied to the concentration field. Assuming c ∼ O(1) we obtain to
leading order from Eqs. (2.6) and (2.7)

∂z[D(c)∂zc] = 0 . (2.28)

Integrating this relation, and using local conservation of mass at the boundaries Eqs. (2.8)
and (2.9), we obtain

∂zc = 0 (2.29)
showing that the concentration does not depend on z. We may now write Eq. (2.19) in the
lubrication limit using Eq. (2.7) and Eq. (2.26) as

vCz

Ω
+ ∂t[ζc]−∇xy ·

[
ζ3

12η
c∇xyp

]
+

uCxy

2
· ∇xy[cζ] = ∇xy · [ζD(c)∇xyc] . (2.30)
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Slow surface kinetics

Another consequence of the lubrication expansion is that the left-hand side of Eq. (2.10) is equal
to the local growth-dissolution rate (along z)

vCz ≈ Ων(c− ceq) , (2.31)

where from Eq. (2.18) the local growth rate is

vCz = −∂tζ − uCz + uCxy · ∇xyh , (2.32)

up to terms of order O(ε2). When the kinetic constant is small, ν = O(ε), from Eq. (2.31), the
concentration is given by

c = ceq +
vCz

Ων
. (2.33)

Fast surface kinetics

The assumption of a finite attachment-detachment kinetic constant ν ∼ O(1), corresponds to
the limit were surface kinetics is fast as compared to transport by diffusion. Indeed, in the
lubrication limit since vCz ∼ O(ε) and c ∼ O(1) in Eq. (2.31), finite kinetics implies

c = ceq(x, y, t) . (2.34)

The same result can trivially be obtained letting ν → ∞ in Eq. (2.31). Hence for finite
attachment-detachment kinetics, the concentration in the lubrication limit is equal to the lo-
cal equilibrium concentration. This is the consequence of the slenderness of the liquid film which
implies slow diffusion along the confined crystal surface, leaving ample time for local equilibration
of the concentration via attachment and detachment at the LC interface.

Chemical potential

The chemical potential enters in the model via Eq. (2.11). Thus, the equilibrium concentration
appearing in Eqs. (2.33) and (2.34) is

ceq = c0e
Δμ/(kBT ) ≈ c0

(
1 +

Δμ

kBT

)

where the last equality holds when assuming linearized Gibbs-Thomson relation.
Let us compare the different contributions of the chemical potential. The lubrication expan-

sion imposes p ∼ O(ε−1). For disjoining forces to be able to balance viscous forces, we choose
W ′(x, y, h) ∼ O(ε−1). As a consequence, the pressure term and the interaction term in Eq. (2.12)
are of the same order of magnitude. In addition, since the curvature κ ∼ ∂xxh ∼ ∂yyh ∼ ε2 is
small, only large stiffnesses γ̃ ∼ O(ε−3) can make the capillary term γ̃ : κ relevant. However
even if surface stiffness is not so large, the capillary term can be relevant in two cases: (i) if the
curvature locally blows up, and (ii) far from the substrate where the potential term W ′ can be
neglected. We will see in the following that these conditions can be reached during the dynam-
ics. In order to include all relevant cases in the following we keep the capillary term so that the
chemical potential reads:

Δμ(x, y, t)

Ω
= γ̃1∂x1x1

ζ + γ̃2∂x2x2
ζ +W ′(x, y, h) + (

ρC
ρL

− 1)(p0 − p) , (2.35)

where x1 and x2 are the directions of principal curvature, and γ̃1, γ̃2 are the related surface
stiffnesses [1].
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Force balance

Finally, since W ′ is of the same order as p in the lubrication limit, force balance Eq. (2.20) reads

FCz =

¨
contact

dA (p− pext +W ′(x, y, h)) ,

FCxy =

¨
contact

dA

[
ηuCxy

ζ
− (p− pext)∇xy(hs − ζ

2
)

]
,

(2.36)

(2.37)

where dS reduces to dA = dxdy as a consequence of the lubrication expansion. To derive the
last relation (see Appendix A.5.3), we have assumed that p = pext is constant and ζ is large
enough for W ′ to be negligible at the boundary of the contact zone.

As a summary, we have derived a thin film model for the contact region during dissolution
and growth, which consists of two differential equations Eqs. (2.27) and (2.30) for the coupled
two-dimensional space and time dependent fields p and ζ, and an additional vectorial integral
constraint Eqs. (2.36) and (2.37) which determines the time-dependent crystal velocity uC . This
system of equations, which is a central result of this thesis, is not only nonlinear but also nonlocal
due to the force balance equation. In the following, to reduce the complexity of the equations
we make some simplifying assumptions.

2.4 Simplifications and geometries

We consider a single contact and assume:

(i) equal and constant densities between the liquid and the crystal ρC = ρL;

(ii) no lateral crystal motion uCxy = 0 and no lateral force FCxy = 0;

(iii) a diffusion constant independent of concentration D(c) = D;

(iv) a flat substrate: hs independent of x and y. We use the interaction potential U , defined by
U(ζ) = W (x, y, h). It follows that W ′(h) = ∂hW (h) = −∂ζU(ζ) = −U ′(ζ).

(v) small concentrations Ωc � 1;

We also define the supersaturation as

σ =
c− c0
c0

. (2.38)

In addition for the sake of simplicity, we will often assume (see Chapters 3 and 4) a linearized
(local) thermodynamic relation, Δμ/(kBT ) � 1 so that ceq ≈ c0(1 + Δμ/(kBT )). The simplifi-
cations introduced above imply that the chemical potential reads (see Eq. (2.12))

Δμ

Ω
= γ̃1∂x1x1

ζ + γ̃2∂x2x2
ζ − U ′(ζ) . (2.39)

Finally, we consider two simple geometries. The first one is a one-dimensional ridge (Fig. 2.2),
which is invariant along y, and left-right symmetric with h(x) = h(−x). The second geometry is
an axisymmetric contact (Fig. 2.3), the shape of which depends only on the distance r from the
origin in the x, y plane. In the following, we will often refer to the symmetric ridge as 1D, and
the axisymmetric contact as 2D.
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Figure 2.2: Sketch of a symmetric ridge. The crystal interface depends only on x. The substrate is
represented by the plane in blue.

2.4.1 Symmetric ridge

Consider first the ridge case obeying the x → −x symmetry, with a system length 2L. Assuming
ρC = ρL, the integration of Eq. (2.27) leads to

p = pext + uCz

ˆ L

x
dx

12ηx

ζ3
. (2.40)

Inserting this expression into Eq. (2.36) provides us with a nonlocal relation between the crystal
velocity and the surface height:

2uCz

ˆ L

0
dx

ˆ L

x
dx′

12ηx′

ζ3
= FCz + 2

ˆ L

0
dxU ′(ζ) . (2.41)

This equation relates the sum of the load and interaction forces between the crystal and the
substrate on the right-hand side, to the forces caused by viscous dissipation in the film on the
left-hand side. In the viscous term, the crystal velocity uCz is multiplied by the hydrodynamic
mobility of the crystal which depends on the interface profile ζ. The expression of this mobility
is well known and has been reported previously in the literature [42].

Using Eq. (2.27), assuming no lateral motion, constant diffusion and equal densities ρL = ρC ,
and in the limit of small concentrations Ωc � 1, Eq. (2.30) takes a simple form1

∂tζ = −DΩ∂xζ(∂xc)− uCz . (2.42)

It should be remarked that a final consequence of this geometry is that γ̃2 in Eq. (2.39) is
irrelevant since we are left with only a single principal direction of curvature.

2.4.2 Axisymmetric contact

Let us now consider an axisymmetric contact. Using cylindrical coordinates in a contact zone of
radius R, we obtain equations that are similar to those of the symmetric ridge:

2uCz π

ˆ R

0
dr r

ˆ R

r
dr′

6ηr′

ζ(r′)3
= FCz + 2π

ˆ R

0
dr rU ′(ζ) , (2.43)

∂tζ = −DΩ
1

r
∂r

[
rζ(∂rc)

]
− uCz . (2.44)

In the following chapters we will mainly make use of this formulation of the problem which has
the advantage to still have the numerical cost of a 1D problem but describes a 2D surface. While
the 1D ridge is important for understanding the consequences of geometry (as for instance found

1 Note that even though in the lubrication limit the advection term in the concentration disappears, an effect
of advection was still present in Eq. (2.30) due to the term depending on ∇xyp. Here, the assumption of dilute
limit Ωceq � 1, cancels also this term. It follows that hydrodynamics effects reduce solely to viscous dissipation in
the force balance equation Eq. (2.36) (or Eqs. (2.41) and (2.43)).
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2.5. Summary of relations for slow surface kinetics

Figure 2.3: Sketch of an axisymmetric contact. The crystal profile is invariant with respect to the
azimuthal angle φ and depends only on the radial distance r. The substrate is represented by the plane in
blue.

in bearing problems – see Section 1.2.1), the 2D axisymmetric geometry is better suited for
comparison to real systems. Finally, it should be noted that in the axisymmetric geometry the
surface tension γ(θ, φ) is isotropic with respect to the azimuthal angle φ, and anisotropic with
respect to the polar angle θ. It follows that γ̃1 = γ̃2.

2.4.3 Chemical potential

In the two geometries considered above the chemical potential at the liquid-crystal interface
Eq. (2.39), reduces to

Δμ

Ω
= γ̃κ− U ′(ζ) , (2.45)

where the stiffness is, as a consequence of the lubrication limit, γ̃ = γ(0) + γ′′(0) (see Ap-
pendix A.5). Finally, the curvature is given in the lubrication limit (small slopes) by

κ1D = ∂xxζ , or (2.46)

κ2D = ∂rrζ +
∂rζ

r
, (2.47)

for a 1D contact and a 2D axisymmetric contact, respectively. The derivation of κ2D is illustrated
in Appendix A.6.

2.5 Summary of relations for slow surface kinetics

The evolution equation of the interface given by Eq. (2.42) or Eq. (2.44) can be expressed in a
more convenient way considering it together with Eq. (2.33). This provides an implicit equation
for the local growth rate given by

vCz = ∂x[ζΩD(∂xceq)] + ∂x[
ζD

ν
(∂xvCz)] , (2.48a)

vCz =
1

r
∂r[rζΩD(∂rceq)] +

1

r
∂r[r

ζD

ν
(∂rvCz)] , (2.48b)

where the former applies to the 1D ridge and the latter to the axisymmetric contact. Using
Eq. (2.32) the evolution of the profile is given by

∂tζ = −vCz − uCz (2.49)

where uCz is determined by the force balance expression Eq. (2.41) or Eq. (2.43). As discussed
previously, the equilibrium concentration depends on the profile via the chemical potential. For
instance in the linearized case we have from Eqs. (2.11) and (2.45)

ceq = c0

[
1 +

Ω

kBT

(
γ̃∂rrζ +

γ̃

r
∂rζ − U ′(ζ)

)]
,
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for the axisymmetric geometry and

ceq = c0

[
1 +

Ω

kBT

(
γ̃∂xxζ − U ′(ζ)

)]
,

for the symmetric ridge.

2.6 Summary of relations for fast surface kinetics

The above equations suggest also a criterion to assess the typical lateral length scale above
which diffusion should be the limiting mass transport process. Indeed, comparing the two terms
containing vCz in Eq. (2.48), we obtain

l20 ≈ Dζ

ν
. (2.50)

This lengthscale can be for instance compared to the total length (1D) or radius (2D) of the
contact. Above l0 we can then combine Eq. (2.34) and Eqs. (2.42) and (2.44) to obtain the
evolution equations in the fast surface kinetics regime:

∂tζ = −DΩ∂x[ζ(∂xceq)]− uCz , (2.51a)

∂tζ = −D
1

r
∂r

[
rζ(∂rceq)

]
− uCz . (2.51b)

As in the slow surface kinetics limit discussed above, uCz is given from the force balance
by Eq. (3.3) or Eq. (3.4), and the equilibrium concentration is expressed via Eq. (2.11) with
Eq. (2.45).

2.7 Numerical scheme and boundary conditions

The two cases discussed above, namely fast precipitation or diffusion dominated kinetics and slow
precipitation kinetics, are solved using an explicit second order Euler scheme in time. The details
of the algorithms used are exposed in Appendices B.1 and B.2. Even though the fast precipitation
kinetics case is in principle included in Eq. (2.48b) by choosing a large kinetic constant ν,
for computational efficiency it is convenient to develop a specific code to solve Eq. (2.51a) or
Eq. (2.51b).

In the following, we discuss the conditions adopted at the boundary of the integration domain.
These are crucial for the numerical solution and physical interpretation of the results. We consider
initially a fixed simulation box, i.e. a contact zone with a constant size. This assumption is
valid if the typical time scales of the phenomena happening within the contact area are faster
than the evolution of the contact size. This approximation will be referred to as the quasi-static
approximation and will be discussed and questioned in different places in this thesis. We have also
investigated the more complex case of a laterally expanding or shrinking contact. The technical
details are given in Appendix B.3. This scheme will be used in practice in the last chapter of this
thesis when addressing the problem of the crystallization force. The main programs developed
for this work are uploaded on github at https://github.com/lucagl/codes_thesis. They are
open source and can be downloaded and compiled on Linux.

Assuming a macroscopic constant concentration bath outside the contact zone, we choose at
the boundary of the integration domain rbc to fix the supersaturation σbc. A second boundary
condition is given by imposing a constant film width ζ(rbc) = ζbc. Since we assume the interaction
potential U(ζ) to be constant outside the contact area, ζbc has to be chosen large enough to ensure
that U ′(ζbc) ≈ 0. In the case of a constant system size, we have rbc = R with R (or L in 1D) the
size of the simulation box. For compactness, we will only present the axisymmetric case. The
discussion can be trivially extended to the case of a 1D ridge.
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2.7. Numerical scheme and boundary conditions

2.7.1 Boundary conditions for a fixed simulation box

We start from the general case Eq. (2.48b). Using the definition of supersaturation and Eq. (2.33)
we have

σ(r) =
c(r)− c0

c0
=

ceq(r)

c0
− 1 +

vCz(r)

c0Ων
(2.52)

where c0 is the concentration in equilibrium with a macroscopic (flat and isolated) crystal far
from the substrate (solubility). Recalling the expression for the local velocity Eq. (2.32), the
condition of fixed film width at the boundary implies that ∂tζbc = 0 so that

vbcCz = −∂tζbc − uCz = −uCz . (2.53)

Combining the latter relation with Eqs. (2.11) and (2.52), we obtain a condition on the chemical
potential at the boundary,

exp[Δμbc/(kBT )] = (1 + σbc +
uCz

c0Ων
) (2.54)

which, in the limit of a small supersaturation, simplifies to

Δμbc/(kBT ) = (σbc +
uCz

c0Ων
) . (2.55)

where uCz depends on the profile via Eq. (2.43).
In the case of the diffusion limited regime (fast surface kinetics), using c(r) ≈ ceq(r) or

equivalently ν → ∞, Eq. (2.55) reduces to

exp[Δμbc/(kBT )] = σbc + 1 , (2.56)

or in the limit of small supersaturations:

Δμbc/(kBT ) = σbc . (2.57)

At the center of the contact, r = 0 we impose ∂rζ = 0 for symmetry reasons. In addition, since
∂rceq ∼ ∂rΔμ and ∂rΔμ is odd with respect to ζ, the concentration flux −D∂rc vanishes.

Finally, assuming constant width and supersaturation at the boundary, to solve numerically
the crystal evolution at slow surface kinetics one has to couple Eqs. (2.43), (2.48b) and (2.49) to
the boundary conditions Eqs. (2.53) and (2.54) (or Eq. (2.55) when assuming linearized thermo-
dynamic relation). In the case of fast surface kinetics Eqs. (2.43) and (2.51b) have to be solved
imposing Eq. (2.56) (or Eq. (2.57)).

2.7.2 Boundary conditions for an expanding simulation box

The case of a crystal expanding laterally is technically more complex. While the conditions at
the center of the crystal are identical to those discussed above, here an interpolation procedure
is used to determine the height, the chemical potential and local growth rate at the boundary of
the discretized integration domain. The boundary itself rbc(t) can take arbitrary positions and
is not necessarily on the discretization grid. In general, rbc(t) is located between the last grid
point and the penultimate point. Whenever rbc(t) crosses a grid point a new grid point is added
or removed from the lattice to maintain rbc between the last point and the penultimate point.
Details on the numerical scheme are given in Appendix B.3.

The crystal moves laterally with velocity ṙbc = vl. From the condition of fixed film width at
the boundary ζ(rbc) = ζbc, we have ζ̇bc = ∂tζbc + vl∂rζbc = 0 and using Eq. (2.49)

− vbcCz − uCz = −vl∂rζbc . (2.58)

We also have from Eq. (2.52)

vbcCz = Ωνc0(σbc + 1− eΔμbc/(kBT )) . (2.59)

As compared to the case of a simulation box of fixed size, we now have an additional unknown,
which is the velocity vl of the contact expansion. We therefore need to impose an additional
physical condition.
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Figure 2.4: Sketch of the geometrical scheme used to derive Eq. (2.62) in the hypothesis that the crystal
surface is an arc of circle outside the contact region. The crystal is observed laterally along r. The gray
rectangles represent the two parallel walls.

Double contact

A possible choice of third constraint is to fix the curvature at the boundary, κbc. Given that
U ′(ζbc) vanishes, this is equivalent to fixing the chemical potential (or equivalently the equilibrium
concentration) at the boundary Δμbc = Ωγ̃κbc. We combine Eqs. (2.58) and (2.59) to express vl
as

vl = ∂rζ
−1
bc [uCz +Ωνc0(1 + σbc − eΔμbc/(kBT ))] . (2.60)

The problem can then be solved numerically combining Eqs. (2.43), (2.48b) and (2.49) with the
interpolation scheme discussed above and the conditions at the boundary Eqs. (2.59) and (2.60).
In general, κbc can depend on time and should be derived from an analysis of the matching of
the fields outside the contact. However, the curvature at the boundary has a simple geometrical
interpretation in the special case of a double parallel contact as the one represented in Fig. 2.4
when ν is small. Indeed in this limit, the growth rate outside the contact region is constant
and thus the curvature is uniform. If the two walls are separated by a distance 2d a good
approximation of the curvature is

κbc(t) =
[√

1 + (∂rζbc(t))2 (d− ζbc)
]−1

+
1

d+ rbc
. (2.61)

Assuming that the surface profile outside the contact is an arc of circle (isotropy with respect to
the polar angle), we can further simplify the previous expression:

κbc(t) =
[√

1 + (∂rζbc(t))2 (d− ζbc)
]−1

. (2.62)

This approximation converges to the correct value when rbc � d. The error is maximum when
rbc � d. In the latter case, if the shape of the crystal is a sphere, the approximation under
estimates curvature by a factor two because it only considers one of the two principal curvatures2.
Assuming small slopes, and large contacts separation we have κbc ≈ 1/d independent of time.

The system of a crystal confined between two walls is particularly meaningful when addressing
the problem of the force of crystallization in absence of an external load. In particular the
geometry implies zero vertical rigid body velocity uCz = 0. Note that this simplifies both the
evolution equation

∂tζ = −vCz , (2.63)

with vCz given by Eq. (2.48b), and the lateral expansion (or shrinking) velocity of the the
simulation box

vl = ∂rζ
−1
bc [Ωνc0(1 + σbc − e

Δμbc
kBT )] . (2.64)

In the limit of large kinetic constants ν → ∞ this formulation breaks down and vl diverges. In
this case a different boundary condition in addition to Eqs. (2.58) and (2.59) has to be imposed.

2Note that all the preceding relations were obtained in the small slope limit. In contrast, Eqs. (2.61) and (2.62)
include finite angles to describe the interface between two substrates.
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Figure 2.5: Sketches of the three main case studies discussed in the following chapters. In the
axisymmetric geometry, the grey area is a section of the crystal projected along r. Black rectangle:
substrate. Light blue: liquid solution.

(a) Dissolution of a single con-
tact induced by an external load.
The shape represented is the one
observed for a finite exponential
disjoining pressure.

σ > σ0

σ0

(b) Formation of a cavity on the con-
fined surface of a crystal growing on
a substrate. Supersaturation outside
the contact region: σ. Supersatura-
tion in the center of the contact re-
gion: σ0.

vlvl

(c) Crystal growing in a pore. A
crystallization pressure normal
to the substrate can be observed.

However, we cannot find a suitable condition without solving the evolution of the diffusion field
outside the contact region which is beyond the scope of this work.

2.8 Summary

In this chapter, we introduced a general model of growth and dissolution of a confined rigid
crystal. This model describes the non-equilibrium dynamics within the contact region using a
continuum thin film equation and accounts self-consistently (in the lubrication regime) for surface
tension effects, for the microscopic interaction potential between the crystal and the substrate,
for surface kinetics and for non-equilibrium transport processes such as diffusion and liquid flow.
A number of simplifying assumptions (such as considering an axisymmetric contact) were invoked
in order to obtain a description that is simpler both for the interpretation of the results and for
numerical efficiency.

Some variants of the model including or not the effect of surface precipitation/dissolution
kinetics were discussed. We also introduced the quasi-static approximation which assumes a
constant contact size (no lateral expansion or shrinking). We finally presented a method to
include the lateral expansion of the contact.

In the following, as illustrated in Fig. 2.5, we will apply these model variants to different
problems:

(a) Pressure solution, Chapter 3: Fast surface kinetics, linearized thermodynamic relation be-
tween chemical potential and concentration in 1D ridge or 2D axisymmetric contacts of
constant size. Results: effects of the functional form of the disjoining pressure on the mor-
phology within the contact and on the dissolution rates.

(b) Cavity formation in confined growth, Chapter 4: Fast or slow surface kinetics and linearized
thermodynamic relation in an axisymmetric contact of constant size. Results: characteriza-
tion of the conditions for the formation of a cavity.

(c) Crystallization force, Chapter 5: Slow surface kinetics, full exponential relation between
chemical potential and concentration and no rigid vertical displacement of the crystal (uCz =
0) in an expanding axisymmetric contact. Results: description of the non-equilibrium crys-
tallization force.

The different approximations will be critically discussed throughout this thesis with respect to
concrete case studies.
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CHAPTER 3

Pressure Solution

In this chapter, we explore the problem of dissolution under an external load, known as pressure
solution. In particular, we focus on the effect of the functional form of substrate-crystal interactions.
In steady state, diverging (power-law) repulsions are found to lead to flat contacts with a monotonic
increase of the dissolution rate as a function of the load. Forces induced by viscous dissipation then
surpass those due to disjoining pressure at large loads. In contrast, finite repulsions (exponential)
lead to sharp pointy contacts with a dissolution rate independent of the load and the liquid viscosity.
This sharp tip of the profile is regularized by the effect of surface tension. Ultimately, in steady state,
the crystal never touches the substrate when pressed against it. This last result is independent of
the nature of the crystal-surface interaction.

3.1 Introduction

We presented in the Introduction the phenomenon of stress-induced dissolution or pressure so-
lution. We showed that this phenomenon is important in geological systems [61] and can lead to
a complex phenomenology both regarding observed dissolution rates [68, 84, 90] and emerging
morphologies [65, 68, 83].

Pressure solution usually takes place at surfaces separated by a thin film of solution from
the confining wall (pore surface or other crystal). We also reported that interactions (disjoin-
ing pressures) are present between the solid surface and the confining substrate. The effect
of such microscopic interactions is however in general ignored in existing continuum modeling
approaches [63, 82, 124]. Nevertheless, these interactions should be important since they can
combine with the spontaneous remodeling of the surface via dissolution and growth to determine
the contact morphology and dynamics. The standard theory describing surface-surface interac-
tion is the DLVO approach [43]. However, DLVO was found to be accurate at all separations only
for smooth crystalline surfaces in dilute electrolyte solutions [46]. Indeed, for other surfaces and
solutions, significant deviation, especially at short range (few nanometers), were reported in the
literature, where different authors have revealed the existence of additional repulsive interactions
at short distances (a few nanometers) referred to as hydration forces [46, 48, 49]. These inter-
actions, the exact mathematical form of which is still a matter of debate, are often recognized
to be exponentially decaying. Beyond hydration forces, other specific interactions include [43]
oscillations at the molecular scale due to liquid ordering, solute-induced effects, depletion effects,
etc (see Fig. 1.11b). Owing to this wide variety of behaviors, we here focus on two simple and
generic classes of repulsive interaction potentials, with exponential or power-law dependence on
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the distance. These two classes of interactions respectively exhibit the fundamental property of
inducing finite or diverging forces when the distance vanishes.

Our first goal is to question the role of the form of the interaction potential on the dynamics
of pressure solution. A second goal is to identify the consequences of hydrodynamic advection
in the thin liquid film. Indeed, in the absence of dissolution or growth, the hydrodynamics of
squeezed films (see Section 1.2.1) is known to lead to an evolution of the thickness of the film
exhibiting a non-trivial dependence on the solid geometry and dimensionality [42]. The novelty
here is that the geometry of the dissolving surface evolves in time, and emerges from a coupling
between different forces and mass transport processes at play in the system.

In the framework of the model introduced in the previous chapter, we will focus on the
investigation of steady-states surface profiles with a fixed contact area. The dissolution rate is
found to increase indefinitely with increasing load in the case of diverging repulsions. Viscosity
effects then become relevant for large enough loads. However, in the case of finite repulsions, the
dissolution rate is independent both on the viscosity and on the load at large loads.

Moreover, as expected intuitively, the shape of the solid is flattened in the contact region for
diverging repulsions. However, we find sharp and pointy contact shapes for finite repulsions. In
the limit of large loads, surface tension is found to be irrelevant for diverging repulsions, while
it is crucial in the case of finite repulsions to regularize the pointy shapes at small scales.

We have also investigated the effect of dimensionality via the comparison of one-dimensional
ridge contacts, and two-dimensional axisymmetric contacts. Dimensionality does not induce
any qualitative change in the behavior of pressure solution for diverging repulsions. However,
for finite repulsions and when surface tension is neglected, the minimum distance between the
dissolving solid and the substrate decreases exponentially with the load in the ridge geometry,
while it reaches zero for a finite force in the axisymmetric case. Surface tension then comes into
play at large enough loads, and forbids touching contact in the axisymmetric geometry.

3.2 Simulation details

We tackle the problem of pressure solution using the model presented in the previous chapter
at constant contact size and in the fast precipitation regime. We expect indeed that given
the reduced separation induced by the external load, diffusion should be slower than surface
kinetics. This assumption is used in most pressure solution creep models [87]. Inspired by
tribology studies [42], we also consider the effect of dimensionality.

For the symmetric ridge (1D), using Eq. (2.51a) with Eq. (2.11) and the linearized Gibbs-
Thomson relation Δμ/(kBT ) � 1, we have

∂tζ = −B∂x

[
ζ∂x(γ̃∂xxζ − U ′(ζ))

]
− uCz , (3.1)

where by definition

B =
DΩ2c0
kBT

. (3.2)

is an effective mobility combining D the diffusion constant, Ω the volume of crystal type
molecules, c0 the solubility, kB the Boltzmann constant and T the temperature. Let us recall
the expression for the crystal velocity (dissolution rate) uCz given by

2uCz

ˆ L

0
dx

ˆ L

x
dx′

12ηx′

ζ3
= F 1D

Cz + 2

ˆ L

0
dxU ′(ζ) . (3.3)

For the axisymmetric contact from Eq. (2.51b) we have to solve

2uCz π

ˆ R

0
dr r

ˆ R

r
dr′

6ηr′

ζ(r′)3
= F 2D

Cz + 2π

ˆ R

0
dr rU ′(ζ) , (3.4)

∂tζ = −B
1

r
∂r

[
rζ∂r(γ̃∂rrζ +

γ̃

r
∂rζ − U ′(ζ))

]
− uCz , (3.5)
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where the quantity proportional to the surface stiffness γ̃ is the mean curvature in axial symmetry
(see Appendix A.6). As illustrated in the previous chapter, the surface stiffness is given by γ̃ =
γ(0) + γ′′(0) where γ(θ) is the anisotropic surface energy depending on the angle θ = arctan ∂rζ
(or in 1D θ = arctan ∂xζ). Finally, in the following we will assume the quasistatic limit. This
approximation is discussed in more details in Section 3.4.4.

3.2.1 Interaction potentials

We chose to study two generic types of repulsive interaction potentials. The first one diverges
when the film thickness ζ vanishes

U(ζ) =
A

ζn
, (3.6)

where A is a constant. In practice, numerical results have been obtained with n = 3. However,
we will keep an arbitrary exponent n in the discussions.

The second type of potential exhibits a finite repulsion when ζ → 0

U(ζ) = Ae−
ζ

λ , (3.7)

where λ is a decay length representing for instance the Debye length in the case of electrostatic
interactions [43].

The essential difference between these potentials is that Eq. (3.6) leads to an infinite repulsion
force when ζ → 0, whereas this force is finite for Eq. (3.7).

3.2.2 Normalization

In order to perform simulations and to analyze the results of the model, we write the model
equations in a dimensionless form and identify the relevant dimensionless parameters. A similar
procedure, with slight variations in the choice of the normalization, will be adopted in all the
following chapters.

For conciseness, we only show the scaled equations in 1D. All variables appearing in normal-
ized units are labeled with a top bar. In the case of the power law repulsion, Eq. (3.6) with
n = 3, we have

∂t̄ζ̄ = −∂x̄

[
ζ̄∂x̄(∂x̄x̄ζ̄ +

1

ζ̄4
)
]
− ūCz , (3.8a)

ūCz

ˆ L̄

0
dx̄

ˆ L̄

x̄
dx̄′

24η̄x̄′

ζ̄3
= F̄Cz − 2

ˆ L̄

0
dx̄

1

ζ̄4
, (3.8b)

where ūCz, η̄ and F̄ are the rescaled velocity, viscosity and external force, respectively. For the
exponential repulsion Eq. (3.7), we have

∂t̄ζ̄ = −∂x̄

[
ζ̄∂x̄(∂x̄x̄ζ̄ + e−ζ̄)

]
− ūCz , (3.9a)

ūCz

ˆ L̄

0
dx̄

ˆ L̄

x̄
dx̄′

24η̄x̄′

ζ̄3
= F̄Cz − 2

ˆ L̄

0
dx̄ e−ζ̄ . (3.9b)

We start by defining the dimensionless repulsion strength Ā. For the exponential potential
we set Ā = A/γ̃, while for power-law repulsions with the case n = 3, we use Ā = A/(γ̃λ3).
The normalized film thickness is ζ̄ = ζ/λ, and the normalized coordinates are x̄ = xĀ1/2/λ,
ȳ = yĀ1/2/λ. The normalized time is defined as t̄ = tBγ̃Ā2/λ3. Notice that the scale λ is
imposed by the expression of U in the case of an exponential repulsion, while it is an arbitrary
lengthscale corresponding to the actual film width in the case of power-law repulsions.

The normalized repulsion strength Ā comes into play in spatiotemporal scales but not as a
parameter of the normalized equations. As a consequence, it cannot change the model behavior
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qualitatively. The only parameters explicitly appearing in the normalized equations are the
normalized viscosity η̄, and external load F̄Cz. The normalized viscosity reads

η̄ =
B

λ2
η =

DΩ2c0
λ2kBT

η .

Since the loads have different dimensionality in 1D (force per unit length) and 2D (force), their
normalization is different

F̄ 1D
Cz =

F 1D
Cz

γ̃Ā1/2
,

F̄ 2D
Cz =

F 2D
Cz

γ̃λ
.

The boundary conditions introduce three additional dimensionless parameters. The normalized
system size

L̄ =
LĀ1/2

λ
, or R̄ =

RĀ1/2

λ
, (3.10)

the normalized film thickness at the boundary

ζ̄bc =
ζbc
λ
, (3.11)

and the normalized supersaturation

σ̄bc =
kBTλ

Āγ̃Ω
σbc. (3.12)

Below, all simulations are performed with normalized variables and coordinates. However, the
analysis of the equations is performed in physical coordinates to make the physical interpretation
more transparent.

3.2.3 Simulations parameters

Simulations are performed with L̄, R̄ = 100, substrate position h̄s = 2, film thickness at the
boundary ζ̄bc = 12, and boundary supersaturation σbc = 0. The discretization bin size is Δx̄ = 0.2
for most simulations. However in some cases, to be able to resolve the contact shape at very high
external forces (see Section 3.3.2 and Fig. 3.6), it was necessary to increase the spatial resolution
up to 16 times. Details on the numerical scheme are given in Appendix B.1.

The simulations were always started with a flat profile (see top panel of Fig. 3.1). When
applying a concentration higher than the equilibrium one at the boundary, we observe crystal
growth: the crystal translates downward by addition of growth units at the surface, and uCz < 0.
When applying an external load, FCz with the sign in the positive direction hence pushing the
crystal towards the substrate, we observe dissolution, i.e. pressure solution and uCz > 0. The
latter case is the main focus of this chapter.

3.3 Results

As an illustrative example, we show in Fig. 3.1 the numerical solution for the profile of a 1D
ridge obeying Eqs. (3.1) and (3.3) when an external load pushes the crystal upwards against the
substrate, and when the interaction is in the form of a singular repulsion Eq. (3.6). A similar
shape is observed when solving Eqs. (3.4) and (3.5) for an axisymmetric contact looking at the
section along the radius. The simulation shows that the interface profile reaches a steady state
characterized by a constant crystal velocity (dissolution rate) and fixed interface position.

60



3.3. Results

(a)

(b)

(c)

Figure 3.1: Snapshots of the numerical solution of Eq. (3.1) representing a dissolving contact ridge (1D).
Size of the simulation box L̄ = 100 (physical size L ≈ 1μm) under an external pressure p = 26MPa. The
viscosity is η̄ = 0.5. The crystal-substrate interaction is diverging at contact and given by Eq. (3.6). The
crystal is in white and the black arrows are proportional to the crystal velocity uCz. The time increases
from the top panel to the bottom one. (a): initial condition. As an example using physical constants
related to calcite (see Section 3.4.1), physical time frames are: (b) 10s, (c) 6.7min. The colormap (in
arbitrary units) shows the amplitude of the x component of liquid velocity field uLxy, as obtained from
Eqs. (2.25) and (2.40). The vertical scale is in nanometers. The substrate is located at hs = 2nm.
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Chapter 3. Pressure Solution

As discussed earlier in Section 2.3.1, in the contact region and in the absence of blow-up of
the curvature, we expect the surface tension contribution to the interfacial chemical potential to
be small in front of the disjoining pressure term. Since large loads imply large U ′(ζ) from the
force balance Eqs. (3.3) and (3.4), this further suggests that surface tension effects are negligible.
Discarding this contribution, steady-state solutions with a constant profile i.e. ∂tζ = 0, obey
respectively in 1D or 2D

0 = ucz −B∂x[ζ∂xU
′(ζ)] , (3.13a)

0 = ucz − B

r
∂r[rζ∂rU

′(ζ)] . (3.13b)

This equation is integrated as

x2

2B
uCz = Ũ(ζ(r))− Ũ(ζ0) , (3.14a)

r2

4B
uCz = Ũ(ζ(r))− Ũ(ζ0) , (3.14b)

where ζ0 = ζ(0), and Ũ(ζ) is defined via the relation

Ũ ′(ζ) = ζU ′′(ζ) , (3.15)

which, up to an additive constant leads to Ũ(ζ) = ζU ′(ζ) − U(ζ). Since we expect physically
that the interaction potential tends to a constant as ζ → ∞, i.e. that U(∞) is a constant, then
Ũ(∞) should also be a constant. Therefore, Ũ cannot increase indefinitely when ζ → ∞ on the
r.h.s. of Eqs. (3.14a) and (3.14b). As a consequence, there are finite xm or rm where ζ → ∞
and they obey

x2m
2B

uCz = Ũ(∞)− Ũ(ζ0) , (3.16a)

r2m
4B

uCz = Ũ(∞)− Ũ(ζ0) . (3.16b)

Since ζ diverges at some finite distance xm or rm from the center of the contact, the size of the
contact in steady-state pressure solution is always finite.

In the limit of large forces, we expect ζ0 to become small. The situation then turns out to be
very different depending on how Ũ(ζ0) behaves when ζ0 is small. The following sections discuss
separately the cases of finite and diverging interaction potentials U(ζ), corresponding to finite
or diverging Ũ(ζ) as ζ → 0.

3.3.1 Singular repulsion: power law case

Let us start with the analysis of the results for a singular power-law repulsion between the crystal
surface and the substrate. Combining Eq. (3.6) and Eq. (3.15) we find

Ũ(ζ) =
−(n+ 1)A

ζn
. (3.17)

Inserting this expression in Eqs. (3.14a) and (3.14b), provides us with the steady-state profile:

ζ(x) =

(
ζn0

1− x2/x2m

)1/n

, (3.18a)

ζ(r) =

(
ζn0

1− r2/r2m

)1/n

. (3.18b)
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h̄
(r̄
)

r̄

Figure 3.2: Flattened steady-state observed for a singular power-law crystal-substrate repulsion. Cross
section of the steady state profile projected along r̄ (solid line) dissolving under an external load, F̄Cz = 108,
at η̄ = 1 against a flat substrate (h̄s = 2). Geometry: axisymmetric contact in a simulation box of size
R̄ = 100. The interaction with the substrate is a singular power law repulsion, Eq. (3.6) with n = 3.
The red dashed line is the analytical prediction from Eq. (3.18) with rm = R and ζ0 ≈ 0.29 as a fitting
parameter.

These profiles diverge at x = xm or r = rm, which is related to the minimum distance in the
contact via Eqs. (3.16a) and (3.16b)

x2m =
2B(n+ 1)A

ζn0 uCz
, (3.19a)

r2m =
4B(n+ 1)A

ζn0 uCz
. (3.19b)

The distance xm or rm at which the profile diverges should a priori be distinguished from the size
of the contact region. Indeed far away from the substrate, the influence of the potential vanishes,
and as a consequence surface-tension effects should become dominant, so that Eq. (3.14) is not
valid anymore. Let us define Lc as the half-width of the contact region in 1D, and Rc as the
radius of the contact region in 2D. An intuitive definition of the contact region is the zone which
is close enough to the substrate to be under the influence of the interaction potential U .

For large contacts, we expect that the distance separating xm and Lc, or rm and Rc should be
negligible as compared to the size of the contact region. As a consequence, we assume xm ≈ Lc

or rm ≈ Rc. Furthermore, we perform simulations with a fixed ζbc, which is large as compared
to ζ0 but small as compared to the size L, or R of the simulation box. Thus, the contact region
should fill most of the simulation box, and finally, we expect xm ≈ Lc ≈ L or rm ≈ Rc ≈ R. In
Fig. 3.2 we show the steady state cross section obtained from the simulation (solid line) at large
times, which is in good agreement with Eq. (3.18) using rm = R (dashed line) and ζ0 as a fitting
parameter. Using Eq. (3.19) and the fitted value of ζ0 we obtain a value for uCz. For instance
in 2D with F̄ = 108 and R̄ = 100, this procedure leads to ζ̄0 = 0.290 and ūCz = 0.022 to be
compared with ζ̄0 = 0.291 and ūCz = 0.016 measured directly in the numerical solution of the
full model. The agreement with the numerical results improves as the external load is increased.
A similar agreement is obtained in 1D. As a consequence, the profile is well predicted at large
forces, and we can safely use it in the force balance equation.
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(a)

(b)

(a)

(b)

Figure 3.3: Dissolution rate observed for a (singular) power-law repulsion (n = 3) as a function of
the applied load. Geometry: axisymmetric contact. Lines represent asymptotic analytical predictions
with R̄c = R̄ = 100: solid blue line, hydrodynamic regime Eq. (3.22b); dashed red line, diffusion regime
Eq. (3.23b). (a): η̄ = 1, the symbols show simulation results obtained using different boundary thickness
ζbc. (b): η̄ = 10−3. The results are shown in normalized units.

In 1D, using Eq. (3.18) with Eq. (3.19a) and xm = Lc we obtain from force balance Eq. (3.3)

F 1D
Cz

Lc
= 24ηφ

(n+ 3

n

) n
√
π

(n+ 3)

( 1

BA(n+ 1)

) 3

n
(L2

c

2
uCz

)n+3

n

+ φ
(n+ 1

n

)
2n

√
πA− 1

n

( 1

B(n+ 1)

)n+1

n
(L2

c

2
uCz

)n+1

n

,

(3.20)

where
φ(z) =

Γ(1 + z)

2Γ(32 + z)
,

with Γ the Euler-Gamma function.
Similarly, in 2D force balance Eq. (3.4) imposes

F 2D
Cz

πR2
c

= 12η
n2

(2n+ 3)(n+ 3)

( 1

BA(n+ 1)

) 3

n
(R2

c

4
uCz

)n+3

n

+
n2

2n+ 1
A− 1

n

( 1

B(n+ 1)

)n+1

n
(R2

c

4
uCz

)n+1

n

,

(3.21)
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Figure 3.4: Dissolution rate as a function of the applied load for power law (singular) repulsion.
Geometry: axisymmetric contact. The viscosity is η̄ = 10−1. Lines represent analytical predictions with
R̄c = R̄ = 100, circles indicate simulation results. Solid blue line, hydrodynamic regime Eq. (3.22b);
dashed red line, diffusion regime Eq. (3.23b). The black dashed line represents the expected threshold
between the two regimes according to Eq. (3.25). The results are shown in normalized units.

(some technical details about the derivation of this relation can be found in Appendix C.1.1).
Using 3.21, we find two separate regimes depending on the value of η: For large viscosities we
identify a hydrodynamic regime

u1DCz = C1D
h L

− 3n+6

n+3
c

(F 1D
Cz

η

) n

n+3

, (3.22a)

u2DCz = C2D
h R

− 4n+6

n+3
c

(F 2D
Cz

η

) n

n+3

, (3.22b)

while for small viscosities a diffusion regime is found, with

u1DCz = C1D
d L

− 3n+2

n+1
c (F 1D

Cz )
n

n+1 , (3.23a)

u2DCz = C2D
d R

− 4n+2

n+1
c (F 2D

Cz )
n

n+1 . (3.23b)

The expressions of the constants C1D
h , C2D

h , C1D
d , C2D

d are reported in Appendix C.1.1. In Fig. 3.3
we compare the prediction Eqs. (3.22b) and (3.23b) using Rc = R (solid and dashed lines) and
the results in 2D obtained from the complete numerical solution of the model (circles). The
analytical prediction is in good agreement with the numerical solution for large external loads.

In order to probe the sensitivity of the results with respect to the value of the film thickness
at the boundary ζ̄bc, we monitored the consequences of the variation of ζ̄bc. We found small
quantitative effects but no influence on the qualitative behavior of the relevant observables. This
is exemplified with the variations of the dissolution rates in the top panel of Fig. 3.3.

Using Eq. (3.19) to eliminate uCz in the expression of the force Eqs. (3.20) and (3.21), a
relation between external load and the minimum thickness ζ0 can be obtained, which is found
to be in good agreement with the simulations. For the sake of concision, the expression of this
relation in 2D and its comparison with the numerical solution of the full model are shown in
Appendix C ( Eq. (C.8), and Fig. C.1). As an additional remark Eqs. (3.20) and (3.21) show
that there is no substantial difference between one and two dimensions except, as expected from
dimensional analysis, a different scaling of FCz and uCz with the contact size.

Finally, it is interesting to assess what is the critical length and load separating the diffusive
and hydrodynamic regimes. Equating the expressions of the velocity in the two regimes, for the
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ridge case we find that the critical size above which the force is dominated by diffusion effects is
given by

L∗ = B1Dη
n+1

2 F 1D
Cz , (3.24)

while for the axisymmetric contact

R∗ = B2Dη
n+1

4 (F 2D
Cz )

1/2 , (3.25)

where B1D and B2D are constants reported in Appendix C.1.1. Hence, at a fixed force, large
contacts will be dominated by diffusion. Also, as the external load is increased at constant
contact size the hydrodynamic term in the force balance become dominant. Once again, good
agreement with the simulations is found as illustrated in Fig. 3.4. Here using Eq. (3.25), with
R̄∗ = 100, η̄ = 0.1, n = 3 (since in simulations units B = 1 and A = 1/3, B2D ≈ 5.4) we expect
the diffusion limited regime approximately for F̄Cz < 3.5 × 104 and the hydrodynamic regime
otherwise. The threshold indicated in the figure by the dashed vertical line corresponds to the
observed trend.

3.3.2 Finite repulsion: exponential case

In the case of an exponential repulsion, Ũ(ζ = 0) is finite. As a consequence, the behavior of
steady-state solutions is different. First, the dissolution rate is asymptotically independent of
the load. Second, the shape of the contact is sharp and pointy. Third, in the absence of surface
tension, touching contact (i.e. ζ = 0) would be observed in 2D for a finite loading force but not
in 1D. Finally, as opposed to what observed so far, surface tension becomes relevant at large
enough forces preventing contact in 2D.

Without surface tension

Neglecting surface tension we proceed in a similar way as in the power-law case. Recalling
Eq. (3.15) and using the exponential interaction potential Eq. (3.7), we find

Ũ(ζ) = −A

λ
(λ+ ζ)e−

ζ

λ . (3.26)

As opposed to the power-law repulsion case, the function Ũ(ζ) cannot be inverted explicitly.
Therefore, ζ cannot be explicitly obtained from Eq. (3.14). However, since Ũ is a monotonic
function of ζ, it is still possible to compute r as a function of ζ without ambiguity from Eq. (3.14).

In the large force limit since we expect ζ0 � λ (this will be confirmed below using force
balance) and since Ũ(0) is finite, we find that the dissolution rate reaches a constant value
independent of the load and of the viscosity. Indeed, from Eq. (3.16):

u1DCz ≈ B
2A

L2
c

(1 +
ζ0
λ
)e−

ζ0
λ , (3.27a)

u2DCz ≈ B
4A

R2
c

(1 +
ζ0
λ
)e−

ζ0
λ . (3.27b)

Taking the limit ζ0 → 0, we find

u1DCz = B
2A

L2
c

, (3.28a)

u2DCz = B
4A

R2
c

. (3.28b)

Again assuming that Lc ≈ L, or Rc ≈ R at large forces, these results are confirmed in Fig. 3.5
from the comparison with the numerical solution of the full model. The different viscosities,
indicated by circles (η̄ = 1000), triangles (η̄ = 1) and squares (η̄ = 0.001), affect the absolute
value of the applied force needed to reach the plateau but not the plateau value itself.
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Figure 3.5: Dissolution rate as a function of the external load for an exponentially decaying crystal-
substrate interaction which is finite at touching contact. Geometry: 1D ridge contact. Triangles η̄ = 0.5,
squares η̄ = 5×10−4, circles η̄ = 5×102. Dashed line: analytical prediction Eq. (3.28a) using L̄c = L̄ = 100
and ζ0/λ = 0. The results are in normalized units.

A second consequence arising from the finiteness of the exponential interaction is the sharp
pointy shape of the steady-state profile showed in Fig. 3.6. Indeed, since Ũ ′(ζ = 0) = 0 from
Eq. (3.15), we have Ũ(ζ) ≈ Ũ(0) + Ũ ′′(0)ζ2/2 for ζ � λ. Using this expansion into Eq. (3.14)
and letting ζ0 → 0, we find that the profile ζsing in the center of the contact region is a singular
wedge in 1D and a cone in 2D :

ζsing ≈
(

uCz

BŨ ′′(0)

)1/2

|x| =
(uCz

BA

)1/2
λ|x| , (3.29a)

ζsing ≈
(

uCz

2BŨ ′′(0)

)1/2

|r| =
( uCz

2BA

)1/2
λ|r| . (3.29b)

When ζ0 � λ, the complete profile for arbitrary ζ (i.e. smaller or larger than λ) can be obtained
from Eqs. (3.14) and (3.26). Using the axisymmetric contact, with Rc = R and uCz given
by Eq. (3.28b) this expression (dotted blue line) is found to be in good agreement with the
simulation in Fig. 3.6. Better agreement (red dashed line) can be reached using the numerical
value of uCz obtained from the simulation (which is equivalent to assuming a slightly smaller
effective size, Rc < R). Nevertheless as shown by the inner panel in Fig. 3.6, close to the tip the
numerical solution is smooth and exhibits a parabolic shape. This regularization of the singular
tip is discussed in the next section and is due to the contribution of the surface tension.

Using Eq. (3.3), force balance in 1D now reads:

F 1D
Cz

Lc
=

[
12ηB

A

λ3
ψ1(

ζ0
λ
) +

A

λ
ψ2(

ζ0
λ
)
]( e

ζ0
λ

1 + ζ0
λ

) 1

2

, (3.30)

where the function ψ1 and ψ2 defined in Eqs. (C.14) and (C.15) exhibit the following limits

lim
z→0

ψ1(z) =
√
2 ln

1

z
+ C1 ,

lim
z→0

ψ2(z) = C2 ,

with C1 ≈ 1.645 and C2 ≈ 0.8398. It follows that, when ζ0 � λ and ζ0 � λ exp[−C2/(12
√
2η̄)],

we have
F 1D
Cz ≈ 12

√
2η̄

LcA

λ
ln(

λ

ζ0
) . (3.31)
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Figure 3.6: Pointy steady-state for a (finite) exponential repulsion. Cross section of the steady state
profile projected along r̄ (solid line) dissolving under an external load F̄Cz = 1.7× 105, at η̄ = 1 against
a flat substrate (h̄s = 2). Geometry: axisymmetric contact in a simulation box of size R̄ = 100. The
interaction with the substrate is a finite exponential repulsion, Eq. (3.7). Blue dotted line: analytical
prediction Eq. (3.5) assuming the contact area to be equal to the surface size R. Red dashed line: analytical
prediction Eq. (3.5) with a smaller contact size Rc. The inner plot shows a zoom of the tip.

This relation indicates that the minimum distance in the contact region decreases exponentially
with the applied load in 1D. The prediction Eq. (3.30) using Lc = L, which is represented
in Fig. 3.7 by the red solid line, compares well with the numerical results (red circles) when
ζ0 is not too small. Note that this type of asymptotic logarithmic behavior of the force with
respect to the minimum separation is reminiscent of the 1D inclined slider bearing discussed in
Section 1.2.1 [42].

In addition, we obtain in 2D (some details of the derivation are reported in Appendix C.1.2)

F 2D
Cz

πR2
c

=
[
12ηB

A

λ3
ψ(

ζ0
λ
)

e
ζ0
λ

1 + ζ0
λ

+
A

4λ
(
2ζ0
λ

+ 1)
e−

ζ0
λ

1 + ζ0
λ

]
, (3.32)

where the function ψ obeys
lim
z→0

ψ(z) = (1− ln 2) .

Hence, within this approximation, the LC interface touches the substrate (i.e. ζ0 = 0) for a finite
force

F 2D
c =

[
12ηB

A

λ3
(1− ln(2)) +

A

4λ

]
πR2

c . (3.33)

The external force is plotted as a function of ζ0 in Fig. 3.7. Equation (3.32) with Rc = R
is represented by the blue solid line and has to be compared with the blue squares obtained
by direct numerical integration. Once again, Eq. (3.32) agrees with the numerical results for
external forces that are not too large: F 2D

Cz < F 2D
c .

With surface tension

An inspection of Fig. 3.7 reveals that the agreement between the predicted force-minimum dis-
tance relation and the full numerical solution of thin film equations is accurate only when the
forces are not too large. However, as we keep increasing the external load, this prediction (solid
lines) fails to reproduce the numerical results. As anticipated previously, the shape of the crystal
close to the tip (see inner panel of Fig. 3.6) is not well described by Eq. (3.16). Indeed, as ζ0 → 0,
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Figure 3.7: Minimum film thickness of the liquid film as a function of the applied load. The plot shows
the minimum distance ζ̄0 between the crystal and the substrate versus the external load normalized by
surface area S̄ (scaled pressure). Red, ridge contact (1D); blue, axisymmetric contact (2D). Circles (1D)
and squares (2D) show the numerical results; Solid lines report the analytical predictions neglecting surface
tension Eqs. (3.30) and (3.32) blue and using L̄c = L̄ = 100, R̄c = R̄ = 100; Dashed lines: prediction
adding the singular contribution of the surface tension term Eqs. (3.35a) and (3.35b) to the previous
expression, and using the parameters uCz and ∂xxζ0 or ∂rrζ0 from the simulations. Dashed-dotted lines:
full analytical prediction using Eqs. (3.37a) and (3.37b). 1D viscosity, η̄ = 0.5; 2D viscosity, η̄ = 1. The
results are in normalized units. The critical force in 2D Eq. (3.33) provides the maximum value of F̄ 2D

Cz /S̄
for the solid blue line and corresponds to p ≈ 3.3MPa.

the curvature at the tip diverges, leading to the singular pointy shape reported in Eq. (3.29).
Thus, surface tension effects proportional to the curvature become relevant.

We here resort to a simple matching procedure to account for the consequences of surface
tension. First, in the tip region for x < x∗ or r < r∗, where x∗ and r∗ are the tip width in 1D
and 2D respectively, a Taylor expansion of ζ leads to:

ζtip = ζ0 +
x2

2
∂xxζ0 , (3.34a)

ζtip = ζ0 +
r2

2
∂rrζ0 , (3.34b)

where ∂rrζ0 and ∂xxζ0 are the second derivatives of ζ calculated at x = 0 or r = 0.
Using this solution let us compute the contribution of the tip region to force balance Eqs. (3.3)

and (3.4). We obtain

F 1D
tip =2

Ax∗
λ

(
1− ζ0

λ
− ∂xxζ0

x2∗
6λ

)
+ η

6πuCz√
2(∂xxζ0)3/2ζ

3/2
0

, (3.35a)

F 2D
tip =

πAr2∗
λ

(
1− ζ0

λ
− ∂rrζ0

r2∗
4λ

)
+ η

6πuCz

(∂rrζ0)2ζ0
, (3.35b)

where we used ζ/λ � 1 in the tip region. From this expression, it appears that, if x∗ or r∗
is not increasing too fast when the load increases and ζ0 → 0, the dominant term is the one
proportional to the viscosity.

To confirm the validity of this statement, we checked that the increase of the force at small ζ0
is well predicted by adding the singular contribution corresponding to the last term of Eqs. (3.35a)
and (3.35b) to the previous expressions. The result reported in Fig. 3.7, agrees well with the
deviations at small ζ0. However, this relation is still not fully predictive, since we used ∂xxζ0
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Figure 3.8: Curvature at the tip as a function of the tip-substrate gap ζ̄0. Red circles: simulations result
for the wedge contact (1D); Blue squares: simulations result for the axisymmetric conical contact (2D).
Sizes of the simulation boxes are L̄ = R̄ = 100; dashed red and blue lines analytical prediction using the
solution of Eq. (C.26),Eq. (C.20), respectively using the the assumption Lc ≈ L, Rc ≈ R. The results are
in normalized units.

and ∂rrζ0 obtained from the numerical solution. In order to find an additional relation linking
ζ0 and ∂xxζ0 or ∂rrζ0, we match the solutions far from and close to the tip.

Far from the tip, we assume a small deviation δζ from the singular solution Eq. (3.29),
leading to ζ = ζsing + δζ. To find an expression for δζ we insert the previous relation into the
full steady-state differential equation in the presence of curvature terms

0 = uCz +B∂x

[
ζ
(
γ̃∂xxζ − U ′(ζ)

)]
, (3.36a)

0 = uCz +B
1

r
∂r

[
rζ

(
γ̃∂rrζ +

γ̃

r
∂rζ − U ′(ζ)

)]
, (3.36b)

for the 1D and 2D respectively. Matching the height and the slope of the tip solution Eq. (3.34)
with the perturbative solution outside the tip region ζ = ζsing + δζ at some position x∗ or r∗
leads to two equations. These two equations are used to obtain x∗ or r∗, and ∂xxζ0 or ∂rrζ0, as
a function of ζ0. We, therefore, have a profile with two regions that is completely determined by
ζ0. Since ζ is expected to be small, we perform calculations in the limit ζ � λ. The details of
the derivations are quite cumbersome, and is therefore reported in Appendix C.2.

Two important remarks are in order. First, due to the correction δζ, the profile becomes
wider when approaching the tip region in agreement with the shape observed in the full numerical
solution in Fig. 3.6.

As a second remark, the matching analysis suggests that ∂xxζ0 and ∂rrζ0 tend to a constant
for ζ0 → 0. Using these results in the expression of the force, we obtain asymptotically a power
law dependence of the force on ζ0

F 1D
tip =

12πηγ̃3/2Bλ3/2

C
3/2
1D

√
2AL2

c

1

ζ
3/2
0

+ non singular terms , (3.37a)

F 2D
tip =

24πηγ̃2Bλ2

C2
2DAR

2
c

1

ζ0
+ non singular terms , (3.37b)

where the constants C1D = ∂x̄x̄ζ̄0(ζ̄0 = 0) and C2D = ∂r̄r̄ ζ̄0(ζ̄0 = 0) are the values of the
normalized second derivatives at the tip when ζ̄0 → 0. From simulations, we find C1D ≈ 0.017
and C2D ≈ 0.015 (see Fig. 3.8). Note that we used the approximated expression of the dissolution
rates uCz given by Eq. (3.28).
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Table 3.1: Summary of the asymptotic regimes at large loads following the notation of Eq. (3.38). For
exponential potentials in the absence of surface tension effects, the dependence of uCz and ζ0 on the load
and system size is not a power-law. In 1D the dependence is logarithmic Eq. (3.31), and in 2D ζ0 vanishes
(i.e. the crystal touches the substrate) for a finite force F 2D

c Eq. (3.33).

Repulsion Power-Law Exponential

Regime Hydrodyn. Diffusion 1D no surf. tens. 1D surf. tens. 2D no surf. tens. 2D surf. tens.

η̄ ≥ 1 η̄ � 1 F 1D
Cz � F 1D

c F 1D
Cz � F 1D

c F 2D
Cz < F 2D

c F 2D
Cz � F 2D

c

αu
n

n+3
n

n+1 0(constant) 0(constant) 0(constant) 0(constant)

βu −4n+6
n+3 −4n+2

n+1 −2 −2 −2 −2

αζ − 1
n+3

−1
n+1 exponential −2/3 ζ0 → 0 as F 2D

Cz → F 2D
c −1

βζ
2

n+3
2

n+1 exponential −4/3 −2

The sum of the contribution without surface tension Eqs. (3.30) and (3.32) with the contribu-
tion of the tip Eqs. (3.37a) and (3.37b), are presented in Fig. 3.7 by the dashed-dotted lines. The
agreement with the full numerical solution is not quantitative but is satisfactory considering the
heuristic character of the matching procedure. Fitting the numerical results with power laws at
large forces, we obtain for the wedge-like contact FCz ∼ ζ−1.3

0 to be compared with the prediction
FCz ∼ ζ

−3/2
0 from Eq. (3.37a), while for the conical contact FCz ∼ ζ−1.1

0 to be compared with
FCz ∼ ζ−1

0 from Eq. (3.37b).
As a final comment, the critical force for which surface tension becomes relevant is given by

Eq. (3.33) in 2D. In 1D, comparing Eqs. (3.31) and (3.37a) by

F 1D
c ≈ 24ηB

A

2λ3
Lc ,

up to logarithmic corrections.

3.4 Discussion

To summarize, we found that for large external loads the dissolution rate uCz and minimum
distance ζ0 between the dissolving crystal and the substrate obey scaling laws

uCz ∼ Fαu

CzL
βu
c ζ0 ∼ F

αζ

CzL
βζ
c (3.38a)

uCz ∼ Fαu

CzR
βu
c ζ0 ∼ F

αζ

CzR
βζ
c , (3.38b)

where FCz is the external load and Lc or Rc are the contact sizes for the ridge and the axisym-
metric contact, respectively. The exponents αu, βu, αζ , βζ displayed in Table 3.1 are found to
depend on dimensionality (ridge or axisymmetric), on viscosity, and on the type of interaction
potential (diverging as a power-law or finite at contact).

3.4.1 Orders of Magnitude

Before discussing precise systems, we provide some orders of magnitude describing the energy
scale of the interactions. Various experiments and standard textbooks [43] indicate that the
order of magnitude of disjoining pressures is typically U ′ ∼MPa when the distance between the
surfaces is ζ ∼ nm. For exponential interactions with decay length λ ∼ nm (corresponding
e.g. to the Debye length or to hydration scales), we obtain that A ∼ λU ′ ∼ mJ · m−2. As a
consequence, the dimensionless repulsion strength (see Section 3.2.2) is Ā = A/γ ∼ 10−2. For
power-law interactions, with a typical distance λ ∼ nm, we have A ∼ U ′λn+1. As a consequence,
we also find Ā = A/γλn ∼ 10−2.

We now consider two different crystals: calcite CaCO3, and sodium chlorate NaClO3. For
calcite we use [144]: solubility at 25◦C c0 ≈ 1024m−3 (solubility of calcite can in general span
between 1023 and 1025m−3), molecular volume Ω ≈ 100Å3, ionic diffusion constant [145] D ≈
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10−5cm2/s, water-solution interfacial tension [146, 147] γ ≈ 100mJ and T ≈ 300K. For each
variable y in physical units, and the corresponding variable ȳ in normalized units, we define the
rescaling factor sy from the relation y = syȳ. These rescaling factors have to be applied to the
simulation results to recover physical units. In the case of Calcite, we have the following orders
of magnitude:

sζ = O(1 nm)

sx = O(10 nm)

st = O(10−1s)

sp = O(MPa)

sη = O(102Pa s) .

Considering now NaClO3 with [92, 148] c0 ≈ 1028/m3(at 25◦C), Ω ≈ 1003, D ≈ 10−5cm2/s,
γ ≈ 10mJ, and T ≈ 300K, using the same assumption on the interaction range and strength, we
have Ā = 10−1 and:

sζ = O(1 nm)

sx = O(1 to 10nm)

st = O(10−6s)

sP = O(MPa)

sη = O(10−2Pa s) .

As an illustrative example of the use of these rescaling factors, simulations were performed in a
box of normalized width 100 with an initial distance equal to 1 between the dissolving crystal
and the substrate. For both calcite and sodium chlorate, this corresponds to thicknesses of the
order of the nanometer. In addition, contact widths are ∼ 1μm for calcite, and ∼ 100nm to 1μm
for sodium chlorate.

Some remarks are in order. First, the order of magnitude of the relevant pressures does
not depend much on the system. In contrast, the order of magnitude of the timescale and of
the relevant viscosities depend strongly on the solubility c0, which can vary by many orders of
magnitude from one material to another.

As discussed previously for dissolution with singular (power-law) repulsions, one could dis-
criminate between diffusive and hydrodynamic regimes. The simulation results show that the
high viscosity regime (hydrodynamic regime) is expected for η̄ ≥ 1 (top panel of Fig. 3.3) for
FCz/S ∼ 102MPa to 10GPa with S = πR2, and micro-metric crystals (R̄ = 100 ↔ R = 1μm).
For calcite this would be expected for η ∼ 102 Pa s which is much larger of the value for water
(≈ mPa s). As a consequence, for this system the observation of such a regime should be diffi-
cult in natural environments. However, for highly soluble salts such as NaClO3, we would need
η ∼ 10mPa much closer to the value of water. Therefore the hydrodynamic dissolution regime
should be easier to observe with salts.

However, physical parameters such as viscosity and diffusion can also depend on pressure,
temperature, pH or be affected by phenomena inherent to confinement. For example, large
pressure [149, 150] and nanoconfinement are known to lead to changes in the viscosity value.
As discussed in Section 1.2.3, nanoconfinement when an electrical double layer is present on the
surfaces could indeed promote higher effective viscosities (electro-viscosity) [51, 54].

3.4.2 Comparison with existing literature

Since it relates deformation strains, contact size and stress on single contacts dissolution (eventu-
ally connecting it to the overall grain compaction problem) in an axisymmetric geometry, Weyl’s
model [33] is a first natural candidate for comparison to our model. Weyl predicts that

uCz = 8DλbFCz/R
2
c , (3.39)
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where D is the diffusion constant, λ is the film thickness, b a linear stress coefficient linking local
solute concentration with the applied stress and Rc is the contact size.

As discussed in Section 1.4.3 of the introduction, other models consider the phenomena at
the scale of the grain rather than the contact region [62, 63, 87, 89, 124]. Rutter [82] summarizes
most of the previously cited models (for diffusion controlled kinetics) and also treats the global
problem at the thin film contact area, as done by Weyl. In cylindrical symmetry and for small
external stresses, Rutter [82] predicts

ε̇ = 32C0DwV FCz/(RgTρCd
3) , (3.40)

while for high external stresses (> 100MPa) he finds

ε̇ = 40c0Dw exp[FCzV/(2.3RgT )]/(d
3ρC) , (3.41)

where ε̇ is the strain rate, c0 is the concentration at the interface, ρC is the crystal density, D is
the diffusion at the grain boundary, w is an effective width, Rg is the gas constant and d is the
grain size (proportional to the contact size).

The relations predicted by Weyl and Rutter are in general not in agreement with our pre-
dictions both for power law repulsion and finite exponential repulsion Eqs. (3.22b), (3.23b)
and (3.28b). However, in the case of finite exponential repulsion our model report similar scaling
with the contact area, R−2

c (assuming ε̇ ∼ uCz/Rc and d ∼ Rc [84]). Globally, the absence of de-
scription of microscopic physical ingredients such as viscosity, interaction potential, and surface
tension in these models lead to a very different and non-specific behavior.

Previous modeling attempts have also addressed the regime of slow interface kinetics [62, 124].
They suggest that the dissolution rate could then be independent of the contact area. In this
regime, power-law relations between strain rate and applied stress are also proposed if the system
is characterized by nonlinear surface rates [61, 62]. It is interesting to remark that in our
framework power laws relations are obtained as a consequence of disjoining pressure effects in
a purely diffusion driven model. However, given the comparable diffusivity of ions at small
separations to that of bulk reported for some materials [46, 89], the investigation of the slow
dissolution limit is an interesting perspective to be explored with our modeling approach.

A number of experimental observations have suggested power law relations between strain
rates (crystal velocity) and applied stress and or grain size [61, 68, 85]. This is compatible with
the results we obtained for the singular repulsive power-law potential in Eqs. (3.22a), (3.22b),
(3.23a) and (3.23b) and Fig. 3.3. However, Croizé et al. [84] underline that though there exists
a positive correlation between the strain rate and the applied stress, this dependence is weak.
With the support of both original measurements on calcite pressure solution and data from the
literature, they claim that other effects such as the grain size are likely to be dominant. These
observations are consistent with the scenario predicted for exponential interaction in Eq. (3.28)
and Fig. 3.5.

Using the pressure range 1 to 103MPa, which is the one usually considered in pressure solu-
tion experiments, the velocities (dissolution rates) obtained by our simulations are 10−3 to 10−1nm s−1

for calcite and 10−1 to 10μms−1 for sodium chlorate. The observable usually reported in pressure
solution experiments is the strain rate. Experimental values of the strain rates for calcite [61, 84]
vary between 10−9s−1 and 10−4s−1. Using ε̇ = uCz/Rc as the definition of the strain rate [84],
we obtain values between 10−6s−1 and 10−4s−1, compatible with the experimental ones. For
NaClO3, because of the faster timescales due to the much higher solubility, the dissolution rate
and as a consequence the strain rate increases of a factor of about 105. This is in disagree-
ment with the literature [85], where similar orders of magnitude as those of calcite are found.
Such discrepancy could be caused by the fact that in our system exhibits an under-saturated
concentration bath at the boundaries of the contact. In multi-contact systems where the liquid
reservoir per contact is finite, the global supersaturation of the bath should increase due to the
release of crystal molecules in the liquid. This should lead to a decrease in dissolution rates. The
study of such interactions between different contacts is, therefore, an important perspective for
our modeling approach to address systems with multiple contacts.
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Figure 3.9: Sketch of a spherical crystal dissolving against a substrate by pressure solution. Right panel:
the first and last frame of Fig. 3.1 representing the evolution to a steady state (for a diverging disjoining
pressure). The time to reach the steady state is the relaxation time, trelax. The notations are given in the
text.

As far as the morphology of the contact is concerned, some experiments on quartz grains
aggregates [83] showed that in addition to relative smooth interfaces, irregular ridge and plateau
structures can develop at the grain contacts after undergoing pressure solution. The appearance
of point-like and ridge-like singularities for exponential repulsions in our model could be a first
step towards the understanding of these morphologies.

In general, further experimental investigation involving observations at the scale of a single
microscopic contact would be useful to test our model predictions.

3.4.3 Quasi-static approximation

Finally, one major assumption of our study is the constant size of the contact region. While
specific needle-like crystal shapes may indeed present a constant contact area during dissolution,
it is clear that more general shapes, e.g. conical or spherical crystals would exhibit a growing
contact area as dissolution proceeds. In addition redeposition of material outside the contact
could also change the contact area during pressure solution. Our description could still hold if
the change in the contact area was slower than the relaxation of the crystal profile within the
contact. Such a separation of timescales, where a steady-state is reached within the contact as
if the contact size was constant at all times, is a definition of the quasistatic approximation.

In the following, we discuss the validity of this approximation. Effects such as redeposition,
growth, or dissolution outside the contact are assumed to be smaller than the dissolution in the
contact region. The different variables appearing below are represented in Fig. 3.9.

From dimensional analysis of Eq. (3.5) neglecting the contribution of surface tension, the
relaxation time trelax towards a stead-state profile ζs(r) with a contact of size Rc is

trelax ∼ R2
c

BŨ ′(ζs)
. (3.42)

In addition from force balance Eq. (3.4), we have

FCz ∼ R2
cU

′(ζs) . (3.43)
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Since U ′(ζs) ∼ Ũ ′(ζs), we find

trelax ∼ R4
c

BFCz
. (3.44)

Assuming a small angle at the edge of the contact (see Fig. 3.9) θext = π − θtl, where θtl is the
contact angle, dissolution induces a growth velocity for the contact radius

Ṙc =
uCz

θext
. (3.45)

We must therefore require that the relaxation time is smaller than the time associated with the
growth of the contact radius:

trelax � Rc

Ṙc

, (3.46)

leading to
R4

c

BFCz
� Rcθext

uCz
. (3.47)

For example in the case of a power-law potential in the diffusion-dominated regime, uCz is given
by Eq. (3.23b), and this condition leads to

FCz � A

θn+1
ext Rn−1

c
. (3.48)

Using the relation stated above in this subsection A ∼ U ′λn+1, and the force balance FCz ∼ R2
cU

′,
we finally obtain a simple condition

θext � λ

Rc
. (3.49)

With similar calculations, considering the case of an exponential repulsion one obtains exactly
the same result as in Eq. (3.49). Since we assumed λ/Rc ∼ 10−5 above (with λ ∼nm and
Rc ≈ 100μm), this result suggests that for angles not too small θext � 10−5, the quasistatic
approximation should be valid.

Within this approximation, the dissolution rate and the contact radius will depend on the
shape of the dissolving solid. For example for a cone of half angle θcone, assuming no redeposition
outside the contact region, the radius of the contact area obeys

Ṙc = uCz tan θcone . (3.50)

Similarly, for a sphere of radius R0 (see Fig. 3.9), we have

Ṙc = uCz

(
R2

0

R2
c − 1

)1/2

. (3.51)

At constant force, since uCz ∼ Rβu
c from Eq. (3.38b), we find for the conical case that

Rc ∼ t1/(1−βu) , (3.52)

and
uCz ∼ tβu/(1−βu) . (3.53)

For the spherical case when Rc � R0 we have

Rc ∼ t1/(2−βu) (3.54)

and
uCz ∼ tβu/(2−βu) . (3.55)
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Choosing again the example of power-law repulsion in the diffusion limited regime where βu =
−(4n+ 2)/(n+ 1), we find uCz ∼ t−(4n+2)/(5n+3) and uCz ∼ t−(2n+1)/(3n+2) for the conical and
spherical cases respectively.

It is interesting to compare the relations above for the contact radius Eqs. (3.52) and (3.54),
to the scaling law for contact island observed by Dysthe et al. [90], Rc ∼ t1/3. These authors
interpret this exponent with the help of an analogy with the standard diffusion limited phase
separation scaling of spinodal decomposition.

Assuming a power-law repulsion, thus βu = −(4n + 6)/(n + 3) (hydrodynamic regime) or
βu = −(4n+2)/(n+1) (diffusion regime), it is not possible to obtain for a positive and finite n an
exponent 1/3, both in the spherical and conical cases. However, with an exponential repulsion,
we have βu = −2. This corresponds to Rc ∼ t1/4 in the spherical case and Rc ∼ t1/3 in the
conical one. Thus, within the approximations discussed above, we obtain for a finite exponential
repulsion in the conical case the same scaling law than in the experiments of Dysthe et al.,
and a scaling law for the spherical crystal which is not too far from their results too. This
suggests, as an alternative interpretation based on a simplified single contact picture, that the
observed power-law relations for the time evolution of the contact could depend on the underlying
interactions.

3.4.4 Limitations of the model

One should keep in mind that there are limits in the application of our continuum model. For
instance, when ζ0 reaches the molecular scale, the continuum approach will break down and
one should resort to different models based on molecular methods. An interesting step in this
direction was recently proposed in the literature using Kinetic Monte Carlo simulations [121].
Atomistic simulations may also allow one to include atomic steps, which were shown to be
relevant for pressure solution experiments [151].

Moreover, one of the approximations used in our study of pressure solution is the linearization
of the Gibbs-Thomson relation. The full nonlinear expression of the Gibbs-Thomson relation
must be kept when U ′(ζ) � kBT/Ω. At room temperature kBT/Ω ∼ 1MPa for molecular
crystals, and kBT/Ω ∼ 1GPa for atomic crystals. As discussed at the beginning of this section,
we may assume maximum disjoining pressures U ′ of the order of the MPa, and the assumption
U ′(ζ) � kBT/Ω although not systematically valid, should apply in many cases. As discussed in
Appendix C.3, our analysis can be extended to the case where the full nonlinearity of the Gibbs-
Thomson relation is kept. This leads to similar results as those discussed above in the presence
of an exponential potential. The only important difference appears for power-law interactions
where the functional form of the dissolution rate and minimum distance with the force are not
power-law anymore. Instead, they exhibit an essential singularity as discussed in Appendix C.3.

Another limitation of our model is the absence of elastic or plastic displacements in the
solid. However, our results show that even in the absence of elasticity or plasticity, significant
shape changes can be observed in contact zones due to dissolution or growth kinetics in the
presence of disjoining pressure effects. Hence, elasticity or plasticity are not the only pathways
towards flat contact shapes in pressure solution, and dissolution alone is a sufficient mechanism.
Beyond displacements, elasticity also gives rise to an additional contribution to the chemical
potential [6] ∼ Ωσ2/2E, where E is the Young modulus and σ is the elastic stress tensor. For
this contribution to be dominant as compared to that coming from disjoining pressure ΩU ′, one
should have stresses larger than (2EU ′)1/2. Taking U ′ ∼MPa, and E ∼ 10GPa, we obtain that
stresses should typically exceed 102MPa for elastic effects to be relevant in the chemical potential.
In addition, pointy morphologies such as those obtained in our model for finite repulsions should
lead to a concentration of stresses which could result in significant elastic or plastic effects.
Further studies in this direction are needed.

Another important assumption of the model is that of equal densities between the liquid
and the solid, ρL = ρC . The general consequence of dropping this assumption would be that
hydrodynamic effects should be stronger, since (see also Section 1.1.5) dissolution induced flow
depends on liquid-solid density ratio. As far as steady-state are concerned, assuming that the
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effect of the density difference is small on the chemical potential (see Eq. (2.35)), the asymptotic
results given here should be qualitatively unaffected. Indeed, the remaining effect will be in the
force balance equation via the pressure Eq. (2.27) so that it is sufficient to consider an effective
viscosity given by ηeff = ρC/ρL η. As far as the dynamical picture is concerned, the effect of
ρL �= ρC is difficult to assess without resorting to numerical approaches. This is a direction of
research which needs further investigations.

3.5 Summary

We have applied the model exposed in Chapter 2 to study pressure solution against a flat wall in
ridge-like (1D) and in axisymmetric (2D) contacts. We assumed the fast surface kinetics limit,
with a fixed contact size and linearized Gibbs-Thomson relation.

We have considered two different types of repulsions between the substrate and the crystal.
These led to specific behaviors. In the case of a power-law repulsion diverging at contact, the
crystal interface flattens under load, and the dissolution rate exhibits a power-law dependence on
the load and the contact size. A change in this power-law is found at large loads and viscosities
when the forces induced by viscous dissipation surpass those due to disjoining pressure.

In contrast, a finite exponential repulsion produces pointy contacts and a dissolution rate
asymptotically independent of the load and of the viscosity. For large loads, the sharp pointy
shape of the tip is regularized by surface tension, and the force balance is dominated by viscous
effects. Touching contact (i.e. ζ0 = 0) is never reached. Analytic results indicate that the tip
could touch the substrate only in 2D in the absence of surface tension.
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CHAPTER 4

Confined Growth and cavity formation

We study the evolution of growing crystals after sedimentation or heterogeneous nucleation on a
substrate. Our thin film model shows that a a cavity forms on the surface confined by a flat wall.
The cavity appears when growth cannot be maintained in the center of the contact region due to
an insufficient supply of growth units through the liquid film between the crystal and the wall. A
similar behavior is observed in an experiment on sodium chlorate crystals (NaClO3) performed in
the University of Oslo. We obtain a non-equilibrium morphology diagram specifying the conditions
under which a cavity forms. This diagram is characterized by a linear critical curve separating a flat
growth regime and a regime featuring a cavity. Simulations and experiments support this result.
We then study the case where the thickness of the liquid film between the crystal and the wall
is reduced down to the nanoscale. Two new observations are in order. First, in the presence of
an attractive van der Waals contribution to the disjoining pressure, the formation of the cavity,
which previously appeared continuous, becomes sub-critical (discontinuous). In addition, there is a
minimum supersaturation required to form a cavity. Second viscosity becomes relevant and hinders
the formation of the cavity. We demonstrate that there is a critical value of the viscosity above
which no cavity forms. The critical viscosity increases as the square of the thickness of the liquid
film. A quantitative discussion of model materials such as calcite, sodium chlorate, glucose, and
sucrose is also provided.
Finally, we find that the morphology diagram describing the transition can be reformulated to
account for slow surface kinetics.

4.1 Introduction

Here, we wish to discuss the growth dynamics with the simplest type of contact, i.e. with a
flat, rigid, and impermeable wall. We assume the seed crystal to be already present in the
solution and to be stable and focus on the subsequent growth by the effect of a supersaturated
solution. Crystals can be directly formed on substrate surfaces —such as during heterogeneous
nucleation [152, 153, 154, 155, 156], or can be sedimented on substrates due to gravity. We show
that confinement leads to the formation of a cavity in the growing crystal. The cavity forms due
to insufficient material supply in the center of the contact. After their formation, cavities can
expand up to the edge of the contact, leading to growth rims that have been observed in force
of crystallization experiments since the beginning of the 20th century [33, 95, 96, 104]. We will
discuss separately the case of “large” film thicknesses – between 10 and 100nm, and “small” film
thicknesses – smaller than 10nm.
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As discussed in Section 2.6 and Eq. (2.50), if the contact size is larger than a typical length
scale l0, the system kinetics is limited by diffusion transport (fast surface kinetics). We initially
assume the contact sizes to be larger than l0 so that the limit of fast surface kinetics applies.

The first system we consider is designed to describe growth after sedimentation on a substrate
and is inspired by experiments on sodium chlorate performed by Felix Kohler and Dag Kristian
Dysthe in Oslo University. In these experiments, the crystal is weakly maintained against the
substrate due to its own weight, and the liquid film thickness is in the range from 10 to 100nm
due to the presence of nano-scale roughness or dust between the crystal and the substrate. Our
thin film model provides qualitative agreement and in some aspects quantitative agreement with
experiments on NaClO3. We also find a relatively simple description of the conditions under
which cavities form. In particular, the main statement of this first part is that cavity formation
can be described in terms of a morphology diagram.

We then focus on the consequences of reducing crystal-substrate separation down to the
nanoscale, where novel ingredients come into play. The first ingredient is the functional form
of the disjoining pressure. Indeed, at this scale we expect (see Sections 1.2.2 and 3.1) a van
der Waals attraction to be present [43, 45]. This gives rise to a minimum in the interaction
potential which corresponds to an equilibrium thickness for the liquid film. This distance is
usually in the scale from 1 to 10 nm [43]. In the presence of such a minimum, heterogeneous
nucleation can occur on the substrate because there is a gain of energy when a crystal grows with
an interface in this minimum. Hence, this second scenario could describe growth along a flat
substrate after heterogeneous nucleation. We will show that in this case a similar morphology
diagram is obtained but the transition, becomes discontinuous. Furthermore, beyond a critical
value of the viscosity cavities cannot appear. We here also extend the quantitative discussion to
other materials such calcite and sugars.

In the last part, we consider the limit of slow surface kinetics. Surface kinetics becomes
relevant when the contact size is small enough (at most microns for salts), and when the film
thickness is large enough to allow for sufficiently fast transport by diffusion. Slow kinetics leads
to a drop in the growth rate. Moreover, cavities can still form. Finally, a generalization of the
morphology diagram, initially introduced for diffusion limited kinetics, is formulated.

4.1.1 Summary of model equations

In this chapter, all systems are modeled using a constant contact size. We also assume axisym-
metric geometry and linearized Gibbs-Thomson relation. The evolution equations are:

∂tζ = −ΩD

r
∂r[rζ∂rc(r)]− uCz , (4.1)

c(r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c0 +
c0

kBT

[
Ω(γ̃∂rrζ +

γ̃

r
∂rζ − U ′(ζ))

]
= ceq(r)

or
vCz

Ων
+ c0 +

c0
kBT

[
Ω(γ̃∂rrζ +

γ̃

r
∂rζ − U ′(ζ))

]
(4.2a)

(4.2b)

uCz 2π

ˆ R

0
dr r

ˆ R

r
dr′

6ηr′

ζ(r′)3
= FCz + 2π

ˆ R

0
dr r U ′(ζ) . (4.3)

where Eq. (4.2a) corresponds to the limit of fast attachment kinetics and Eq. (4.2b) includes the
contribution of surface kinetics. The term in the square brackets of Eqs. (4.2a) and (4.2b) is the
chemical potential at the interface

Δμ

Ω
= γ̃κ− U ′(ζ)

with the curvature κ = ∂rrζ − ∂rζ/r.
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The interaction potential U(ζ) and the external force FCz are chosen differently depending on
the system considered. The interaction potential will determine the typical separation between
the crystal and the substrate hereafter denoted by h.

In the first part, inspired by the Oslo experiments, the film thickness is controlled by the
presence of nano-scale roughness or dust between the crystal and the substrate. This leads to
film thicknesses between h = 10nm and 100nm. We consider the crystal gravitational buoyancy
force to maintain the confined surface in the vicinity of the substrate and a repulsive interaction
potential which forbids thicknesses smaller than h.

In the second part, we consider separations of the order of the nanometer and include a
van der Waals long-range attractive force combined to a short-range repulsion giving rise to a
minimum in the interaction potential corresponding to h. In this case, we discard gravitational
force which are negligible.

In the first two parts we will make use of Eqs. (4.1) and (4.3) with Eq. (4.2a), in the third
part, to account for slow kinetics, Eq. (4.2b) will be used to express the concentration at the LC
interface.

4.2 Morphology diagram and comparison to UiO experiment

Cavity formation is observed in experiments using optical microscopy with sodium chlorate
crystals (NaClO3) growing in the vicinity of a glass surface. Similar results are obtained using
our continuum model. The comparison between simulations and experiments demonstrates that
the appearance of the cavity is a robust phenomenon relying on a small number of ingredients.

In particular, we show that the birth of the cavity is characterized by a non-equilibrium
morphology diagram describing the balance between growth rate and mass supply. This diagram
is found to be robust with respect to variations in the system properties such as crystal anisotropy,
disjoining pressure amplitude, and transport coefficients. Indeed, despite their differences, both
experiments and simulations collapse on the same diagram.

4.2.1 Experimental setup and preliminary observations

The experimental setup developed in the University of Oslo (UiO) allows one to control the
solution supersaturation while measuring the confined crystal surface topography. A NaClO3 seed
crystal with a volume of ∼ 1mm3 is placed in a 60 μl chamber filled with a saturated NaClO3

solution. The solubility c0(T ) of NaClO3 is strongly temperature dependent [157, 158]. The
temperature of the sample chamber and oil immersion objective is controlled with a long-term
precision of 1 mK. By adjusting the temperature T below or above the equilibrium temperature
Teq, to obtain growth or dissolution, the relative saturation σb =

(
cb − c0(T )

)
/c0(T ) can be

controlled with an accuracy of 0.1%. The equilibrium point, cb = c0(Teq), is identified when
the crystal exhibits roundish edges and neither grows nor dissolves. The high nucleation barrier
of NaClO3 prevents the appearance of other seed crystals in the chamber that could affect the
concentration of the bulk solution [159].

The confined crystal interface is observed from below using reflection interference contrast
microscopy (RICM) based on the interference between reflections from the glass interface and
the confined crystal interface (see fig.4.1). Using a specialized objective, a high power LED
light source, and a 16bit camera this method allows for a measurement of the distance ζ(r)
between the crystal and the glass with nm precision [160]. Due to the presence of dust grains
on the substrate, the distance ζ(r) cannot be decreased below a minimum value which ranges
from 10nm to 80nm. In all measurements, the lateral extent 2L of the crystal facet facing the
substrate is determined by tracking the edges with a precision of 15nm.

During growth when the size 2L exceeds a critical value, which depends on the average film
width h and on the supersaturation σb, a cavity forms within the contact region. Snapshots of the
temporal evolution slightly above the threshold are shown in Fig. 4.1. The corresponding surface
plots are shown in Fig. 4.2A. The appearance of the cavity can be interpreted as a consequence
of a lower growth rate in the central part of the facet as compared to the parts closer to the
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Figure 4.1: A: Experimental setup and observations performed in UiO. A growing crystal is placed
against a glass substrate. The crystal surface profile is determined with nm accuracy by RICM using the
interference between the light reflected by the crystal interface (shown in red) with the light reflected by
the glass-solution interface (shown in blue). B: RICM images showing the formation of a cavity as growth
proceeds. Snapshots just before the start of cavity formation, 15min later, and 35min later. Crystal size:
188μm x 192μm, supersaturation: σb = 0.093, distance to the glass substrate: h = 51nm.

facet edges. Intuitively, this lower growth rate is due to confinement limiting the diffusive mass
supply from the bulk liquid.

4.2.2 Simulation details

In order to mimic the experimental conditions where thicknesses smaller than h are forbidden
by dust grains, we consider the repulsive potential

U(ζ) = A f
(ζ − h

λ̄h

)
, (4.4)

where A and λ̄ are constants, and f(x) = e−x/x is a Yukawa-like term. Even though in the model
we neglect the hydrodynamic flow induced by the density difference between the crystal and the
solution during growth, we keep the density difference as the origin of the gravitational force FCz

maintaining the crystal on the substrate. In the following, we show the relevant dimensionless
variables and parameters used to solve the evolution equations and relate them to their physical
counterpart.

Let us explicitly separate the interaction amplitude A into two contributions: one representing
a dimensionless amplitude ā and one containing the physical units A [J/m]. We therefore rewrite
the interaction potential as:

U(ζ) = āA
e

−(ζ−h)

hλ̄

ζ − h
, (4.5)

where λ̄ is a dimensionless constant representing the interaction range. It follows that A =
āA/(hλ̄).

The evolution equations Eqs. (4.1), (4.2a) and (4.3) were solved in a dimensionless form.
After rescaling, the only parameters appearing in the equation are the dimensionless repulsion
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strength ā and range λ̄, and the dimensionless external force F̄ and viscosity η̄:

∂t̄ζ̄ = −1

r̄
∂r̄

{
r̄ζ̄∂r̄

[
∂r̄r̄ ζ̄ +

∂r̄ ζ̄

r̄
− Ū ′(ζ̄)

]}
− ūCz , (4.6a)

ūCz 2π

ˆ R̄

0
dr̄ r̄

ˆ R̄

r̄
dr̄1

6η̄r̄1
ζ̄3

= F̄Cz + 2π

ˆ R̄

0
dr̄ r̄Ū ′(ζ̄) , (4.6b)

where the superscript ′ indicates a derivative taken with respect to ζ̄ and

Ū(ζ̄) =
(
ā
e

−(ζ̄−1)

λ̄

ζ̄ − 1

)
(4.7)

is the normalized interaction. Defining Ā = A/(γ̃h), the normalized film thickness and radial
coordinate are ζ̄ = ζ/h and r̄ = rĀ1/2/h = r/l respectively. Where we defined the radial length
scale l = h/Ā1/2. Recalling that B = DΩ2c0/(kBT ), the normalized external force and time are
F̄Cz = FCz/(γ̃h) and t̄ = Bγ̃ht/l4, respectively. Other relevant dimensionless quantities are the
normalized system size

R̄ = R/l , (4.8)

the normalized viscosity

η̄ =
DΩ2c0
h2kBT

η , (4.9)

the normalized supersaturation

σ̄ =
kBT l

2

Ωγ̃h
σ , (4.10)

and the dimensionless vertical crystal velocity

ūCz =
l4kBT

h2γ̃DΩ2c0
uCz . (4.11)

When not indicated differently, we choose ā = 10−3 for definiteness. From simulations it appears
that (see Fig. 4.6) the repulsion amplitude ā in Eq. (4.5) does not influence the results over
a large span of conditions. The dimensionless range λ̄ of the repulsion potential is kept small
λ̄ = 10−2 so that the liquid film thickness is approximately equal to h in all simulations. Inspired
by the experimental observations we consider a separation of h = 80nm. Finally, we set l = 1μm.
As a consequence, the size of a simulation box required to match experimental crystal sizes from
10 to 100μm, ranges from R̄ = 10 to 100 in normalized units.

In experiments, the crystal surface facing the substrate is a facet. As discussed in Sec-
tion 1.1.2 surface stiffness is expected to diverge for faceted orientations [1] leading to a singular
crystal shape. Such singularities cannot be handled by our continuum model where the crystal
shape always exhibits a smooth profile. However, we approach the behavior of a facet using
γ̃ = 102J/m2, roughly 103 times larger than the expected surface tension γ(0) ∼ 0.1J/m2 [92].
This estimate of the effective stiffness was obtained by requiring that σ̄ and ūCz (Eqs. (4.10)
and (4.11)) are close to the experimental values. Using large but finite values of the stiffness at
facets, as discussed in Section 1.1.2, is a standard strategy in continuum models which include
anisotropy [16, 17].

From the experimental observation that the vertical size of the crystal is roughly equal to its
lateral extent along the substrate, the gravitational buoyancy force maintaining the crystal on
the substrate is assumed to be proportional to the cube of the diameter FCz ≈ Δρg(2R)3, where
g is the gravitational acceleration and Δρ is the solid-liquid density difference. Note that we
keep the density difference as the origin of the gravitational force but, as discussed in Chapter 2,
we neglect its effect on the hydrodynamic flow and chemical potential. Assuming T = 300K,
other relevant parameters for NaClO3 are [148, 157, 161] c0 = 9.9mol L−1, Δρ = 103kgm−3,
and Ω = 4.17 × 10−5m3mol−1. The viscosity of the saturated solution η = 7mPas is obtained
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Chapter 4. Confined Growth and cavity formation

Figure 4.2: 3D view of cavity formation at the confined crystal interface. A: Surface plot of the
distance ζ(r) between crystal interface and glass substrate from the RICM images reported in Fig. 4.1B.
B: Simulation result showing axisymmetric steady states with film width h = 50nm, supersaturation
σbc ≈ 0.004 and thickness ζbc = 1040nm at the edge of the simulation box of radius R. The surface plots
represent only the contact region of radius L < R with supersaturation σb = σ(L) < σbc at their edge.
From left to right : R = 60μm, L ≈ 20μm, and σb ≈ 0.0011; R = 65μm, L ≈ 28μm, and σb ≈ 0.0014;
R = 70μm, L ≈ 37μm, and σb ≈ 0.0019.

from an extrapolation from measurements at lower saturations [162]. A similar extrapolation
of experimental data for diffusion [163] suggests D smaller than 0.4 × 10−9m2s−1. We chose
D = 0.13× 10−9m2s−1 for definiteness.

We solved numerically Eq. (4.6) in a circular simulation box of fixed radius R, with fixed film
width ζ(R) = ζbc and supersaturation σ(R) = σbc at the boundary of the integration domain.
We chose ζbc = 1040nm. However, as shown in the following (see Fig. 4.5), the value of the
thickness at the boundary does not influence the results.

All simulations were started with a flat contact region. Steady-state profiles are reached at
long simulation times. They are reported in Fig. 4.2B for increasing sizes R of the simulation
box. As in the experiments, we find that a cavity forms when the size of the crystal exceeds a
critical value. As shown in Fig. 4.2B, the effective extent of the contact is smaller than the total
radius R of the simulation box. Hereafter, we indicate the effective contact radius with L. This
shall not be confused with the notation in the previous chapter which referred to
the total size of a 1D ridge.

Despite the absence of growth-induced expansion of the contact size in simulations, a good
qualitative agreement is obtained with the experiments. This agreement suggests that the qua-
sistatic assumption is valid, i.e. the evolution of the lateral crystal size is slow enough to have a
negligible influence on the diffusion field in the contact region.

4.2.3 Non-equilibrium morphology diagram

Based on this hypothesis of quasistatic dynamics, the threshold for cavity formation can be
deduced from mass conservation. Within the thin film approximation, the concentration does
not depend on the z coordinate, and mass balance for a disc of radius r and constant thickness
h of liquid film centered in the contact region reads

πr2Jk = −2πrhJd(r), (4.12)

where Jk = |uCz|/Ω is the mass flux entering the crystal per unit facet area, and Jd(r) =
−D(dc/dr) denotes the diffusion flux entering into the liquid volume. The modulus is introduced
since growth velocities are negative with our conventions. The concentration is integrated as

c(r) = cb − Jk
4hD

(
L2 − r2

)
, (4.13)

where c(L) = cb is the concentration at the edge of the contact region. It follows that the local
supersaturation σ(r) = c(r)/c0 − 1 decreases toward the center of the facet. In particular in the
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Figure 4.3: Interpolation procedure to determine critical supersaturation at a given size. The central
width of the contact, ζ0, is plotted against the boundary supersaturation. The simulation box radius is
R = 50μm.

center we have:

σ(0) = σ(L)− |uCz|L2

4hDc0Ω
. (4.14)

We expect that when a cavity is present in the center of the contact, the chemical potential in
ζ0 = ζ(r = 0) is Δμ(0) < 0. This follows from the observation that the presence of a cavity
implies U ′(ζ0) ≈ 0 (assuming that it is deep enough for the interaction with the substrate to
vanish in the center) and κ(ζ0) < 0. On the contrary, before the cavity forms the interface
is approximately flat κ(ζ0) ≈ 0 and U ′(ζ0) > 0, leading to Δμ(0) > 0. The formation of the
cavity occurs between these two situations, thus the chemical potential should be close to zero
at the transition. We therefore identify the transition with the condition Δμcav(0) ≈ 0, where
the label cav indicates a critical value for cavity formation. Note that σ = exp[Δμ/(kBT )] − 1
in the diffusion limited scenario considered here (see Eq. (2.56)). As a consequence, the criterion
Δμcav(0) = 0 is equivalent to the condition σcav(0) = 0. This corresponds intuitively to the
fact that growth can be maintained in the central region only if the supersaturation is positive
at r = 0. This is confirmed by the numerical solution of Eq. (4.6) showing that a cavity starts
forming approximately when the supersaturation vanishes in the center of the contact.

We therefore obtain as condition for cavity formation that σ(0) ≤ 0. From Eq. (4.14) this
corresponds to

|uCz| ≥ 4DΩc0σb
h

L2
= β , (4.15)

where β = 4DΩc0σbh/L
2, and σb = σ(L) = cb/c0 − 1. In the following, we show how the critical

values of the parameters σb and L are in practice calculated in simulations.

4.2.4 Determination of transition line and contact size in simulations

As shown in Fig. 4.3, the transition appears continuously in simulations: we do not observe any
discontinuity in the growth rate or in other properties at the transition.

To assess the value of the critical supersaturation we proceeded as follows. We performed
a series of simulations at a given box radius R, usual conditions imposed at the edge of the
simulation box σbc and ζbc. In all simulations, the initial condition is a flat profile in the contact
region placed at ζ̄ = 1. We then wait until the system attains a steady state, i.e. the growth rate
uCz and interface position ζ reach time-independent values. As shown in Fig. 4.3 for a given box
radius, we observe that the film thickness at the center of the contact ζ(r = 0) = ζ0, changes
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Figure 4.4: Crystal steady-state profiles in normalized units projected along r̄ and for different normalized
film width ζ̄bc at the boundary of the integration box. The substrate is represented by a shaded rectangle.
The crystals are at the transition: the boundary supersaturations are the critical ones. The simulation
box radius is R̄ = 50. The normalized effective contact radius L̄, boundary σ̄bc and contact σ̄b = σ̄(L̄)
supersaturations are: dashed red line L̄ ≈ 23, σ̄bc ≈ 0.033, σ̄b ≈ 0.011; black line L̄ ≈ 21, σ̄bc ≈ 0.051,
σ̄b ≈ 0.016; blue dashed-dotted line L̄ ≈ 17, σ̄bc = 0.077, σ̄b = 0.022.

as we increase σbc. First, at low supersaturations, we can identify an initial regime where ζ0 is
roughly constant: this corresponds to growth with a flat contact. At higher supersaturations,
however, the central width ζ0 starts to increase linearly to the applied boundary supersaturation.
To estimate the critical boundary supersaturation σcav

bc , we consider the intersection of the linear
fits of these two regimes. For illustrative purposes, this is represented by the dashed lines in
Fig. 4.3. Once the critical boundary supersaturation σcav

bc is estimated (red vertical line), we
perform a simulation at σcav

bc to evaluate the critical growth rate, ucavCz .
As shown in Fig. 4.4, the typical profile obtained at the transition presents a contact ra-

dius L which is smaller than the total simulation box R. We determine L from the condition
ζ(L) = h+ 20 λ̄h. Finally, using Eq. (4.2a) and the definition of σ we assess the corresponding
supersaturation at the edge of the contact radius from

σb = σ(L) =
Δμ(L)

kBT
=

Ω

kBT

[
γ̃κ(L)− U ′(ζ(L))

]
, (4.16)

where κ = ∂rζ/r + ∂rrζ is the mean curvature of the crystal interface. The procedure is then
repeated for different sizes of the simulation box and the results can be used to obtain the three
parameters Lcav, σcav

b and ucavCz , which are used to build the morphology diagram.
Finally, we monitored the effect of the imposed film thickness ζbc at the edge of the integra-

tion domain on the observed critical size and supersaturation. Using the procedure described
previously with different ζbc, we obtain good data collapse for the transition line in the (σb, L)
plane. This is shown in Fig. 4.5 for ζ(L) = h + 20 λ̄h. The collapse is less satisfactory for
ζ(L) = h + 15 λ̄h and ζ(L) = h + 10 λ̄h. As a consequence, we used ζ(L) = h + 20 λ̄h for
determination of the morphology diagram.

4.2.5 Determination of the transition in experiments

In the experiments conducted in UiO, the transition was explored performing growth cycles.
This procedure allows one to explore an entire range of supersaturations with a single sample.
For each cycle, the surface profile ζ(r) was monitored during growth at fixed supersaturation.
Then the critical size at which the cavity forms was recorded. As soon as the depth of the
cavity exceeded 15nm, the temperature was increased to attain a saturation value at which the
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Figure 4.5: Collapse of the transition line in the (σb, L) plane using different fixed film width ζbc at the
edge of the simulation box.

cavity closes again. Once the interface is flat, the entire procedure was automatically repeated
with a different growth supersaturation. The vertical growth rate uCz could be obtained from
the increase of the depth of the cavity just after its formation. This method assumes that the
growth rate at the bottom of the cavity is negligible leading to a deepening which is only due to
the growth rate uCz of the contact region outside the cavity. However, since the lateral growth
rate uCx is easier to determine than uCz from the growth of the cavity, uCz was determined
from a linear interpolation of the relation between the two velocities based on a large number
of measurements. The ratio uCx/uCz was found to be roughly independent of L, h, and σb. In
addition, geometrical corrections were used to evaluate β for elongated and inclined crystals.
This is discussed in the supplemental material of [106] together with further technical details.

4.2.6 Results and comparison

Simulation results reported in Fig. 4.6B support the prediction of Eq. (4.15) since a transition
line is observed in the (uCz/D, β/D) plane separating a flat growth regime and growth featuring
a cavity. However, the slope α ≈ 0.61 is slightly lower than the expected value α = 1.

One striking property of the transition line is its robustness with respect to the variation
of the physical parameters that do not enter into Eq. (4.15). Indeed, as shown in Fig. 4.6B,
large variations in gravitational force FCz, and of the interaction amplitude A, lead to negligible
changes in the transition line position. Furthermore, increasing or decreasing one of the transport
coefficients D or η by a factor of 10 also does not affect the transition line.

The experimental measurements reported in Fig. 4.6A, also agree with a linear behavior of
the transition line in the (uz/D, β/D) plane. Diffusion constants D = 0.093 · 10−9m2s−1 or
D = 0.057 · 10−9m2s−1 respectively provide quantitative agreement with the slopes predicted by
Eq. (4.15) or by simulations in Fig. 4.6B. These constants are consistent with an extrapolation
of the values of D reported in the literature [163]. Indeed, direct quantitative measurement of
the diffusion constant at saturation is difficult due to crystal nucleation.

There are differences between experiments and simulations. Looking at Figs. 4.1 and 4.2 it
can be seen that in the experiments the cavity emerges from a perfectly flat facet and is less
smooth than in simulations. This is a consequence of our model non-singular anisotropy (finite
stiffness) and small slope approximation forbidding abrupt discontinuities on the surface.

A second qualitative observation is the random opening and closure of the cavity observed
in experiments. The results reported above correspond to the lower boundary of the stochastic
transition regime. Such fluctuations could be attributed to a nucleation-like process associated
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Figure 4.6: Non-equilibrium morphology diagram for cavity formation. A Transition line in experiments
for different crystals. The results are plotted assuming D = 0.0935× 10−9m2s−1 which allows for a perfect
correspondence with Eq. (4.15). B Transition line in simulations. Colored filled dots are obtained for
repulsion strength ā, viscosity η or diffusion D, and external force FCz, different with respect to the main
set of simulations.

with the competition between thermal fluctuations, and surface tension driven closure of the
cavity. Since we have not modeled fluctuations, this cannot be captured in our simulations. As
an additional difference, the value of the film thickness h affecting the growth rate in simulation
results (since from Eq. (4.11) uCz is proportional to h), has no noticeable effect on the growth
rate in experiments (see also supplemental material of [106]). This latter observation shows that
our model does not catch the details of the kinetics as observed in experiments.

However, it is interesting to note that despite these differences, both experiments and simu-
lations collapse on a linear transition line. The robustness of this linearity can be traced back
to the fact that it depends only on two ingredients: mass conservation, and diffusion-limited
mass transport, as discussed above in the derivation of Eq. (4.15). The results in the following
sections, where we study systems that are different from the one considered here, show similar
transition diagrams further supporting the robustness of the morphology diagram.

4.3 Nano-confinement: Restrictions to the transition and discon-
tinuity

We here investigate the novel phenomenology arising when assuming a reduced separation, of the
order of the nanometer, between the crystal and the substrate. As discussed in the introduction,
to account for the physics of thin films with nano-scale thickness, the disjoining pressure U(ζ)
should include an attractive van der Waals contribution. This is combined with a power law
repulsion at short distances to account for short-range repulsions due to hydration forces observed
at this scale [46, 48, 49].

We show that the presence of an attraction makes the transition discontinuous. Indeed,

88



4.3. Effect of nano-confinement

various quantities, such as the depth of the cavity, exhibit a jump at the transition. In addition,
there is a minimum supersaturation needed to induce cavity formation. However, the non-
equilibrium morphology diagram describing the occurrence of the cavity remains unaffected as
compared to the case where disjoining pressure is purely repulsive.

As a second ingredient which becomes relevant when the film thickness is decreased down to
the nanoscale is viscosity. Indeed we observe that viscosity hinders the formation of the cavity.
We also show the existence of a critical viscosity above which cavities cannot form. We determine
the value of the critical viscosity and find it to be proportional to the square of the film thickness.
This result can also be reformulated as the existence of a critical thickness below which the cavity
will not form for a given viscosity.

In this section, we also make use of analytical derivations to gain better insight into the
critical behavior of the viscosity and of the supersaturation. The possibility to handle the
problem analytically is another consequence of the attractive well. Indeed the existence of a
minimum in the interaction allows one to resort to a perturbative analysis with respect to a
well-defined equilibrium position of the crystal interface.

We here accompany the presentation of model results with a broad semi-quantitative discus-
sion of the nano-confined growth of various materials, viz., calcium carbonate, sodium chlorate,
glucose, and sucrose. Although they belong to disparate classes of materials, with time-scales
ranging from second to geological times and contact lengthscales from microns to centimeters,
our modeling approach suggests that their behavior can be globally classified based on a small
number of dimensionless physical parameters.

4.3.1 Simulation details

We consider a system with a confinement geometry similar to that of the experiments in Sec-
tion 4.2: a growing crystal is separated from a flat, impermeable and inert substrate by a thin
film of solution. However, here, the film thickness is assumed to be of the order of nanometers.

The system can also be visualized in Fig. 4.7. In this figure, the white area is the crystal
projected along the radius separated from the substrate (dark-blue rectangle) by the liquid film.
The hydrodynamic velocity of the liquid is represented by the color map as done in Fig. 3.1 of
Chapter 3. We also assume as before a macroscopic solution reservoir at the boundary of the
simulation box.

Since we focus on small distances ζ, we need to account for the van der Waals contribution
to U(ζ), which is usually attractive for a liquid film between two solids [43]. We also included
a short-range repulsive term to account for a generic effective repulsion preventing contact. The
interaction potential then reads

U(ζ) =
A

12π

(
− 1

ζ2
+

2h

3ζ3

)
, (4.17)

where A is the Hammaker constant and h the equilibrium thickness. It follows that the disjoining
pressure appearing in Eq. (4.2a) is

U ′(ζ) = A
( 1

ζ3
− h

ζ4

)
, (4.18)

where A = A/6π. Here we consider no external force since we expect gravity effects to be
negligible as compared to Van der Waals attraction at this scales. Thus FCz = 0 in Eq. (4.3).

In practice, as done in the previous section, the dynamical equations were solved in normalized
units:

∂t̄ζ̄ = −1

r̄
∂r̄

{
r̄ζ̄∂r̄

[
∂r̄r̄ ζ̄ +

∂r̄ ζ̄

r̄
−

( 1

ζ̄3
− 1

ζ̄4

)]}
− ūCz , (4.19a)

ūCz 2π

ˆ R̄

0
dr̄ r̄

ˆ R̄

r̄
dr̄′

6η̄r̄′

ζ̄3
= F̄Cz + 2π

ˆ R̄

0
dr̄ r̄

( 1

ζ̄3
− 1

ζ̄4

)
. (4.19b)
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Table 4.1: Constants used in the simulations of nano-confined growth. Other parameters intervening
in the scalings are assumed to be independent of the system considered. These are the temperature
T = 300K, the interaction strength A = 10−21J and the typical separation h = 1nm. Surface stiffnesses
at the crystal water interface are assumed equal to surface tensions and are rough estimations due to
lack of data and/or to large variability of it found in the literature. The last two columns indicate the
bulk diffusion and viscosity at saturation. These are often not known in the literature for concentrated
solutions so that their saturation value needs to be extrapolated.

Material c0 Ω [Å3] γ̃ [mJ/m2] D [10−9m2/s] η [mPas]

CaCO3
a 1025 59 100 0.8 1

NaClO3
b 6 1027 69 10 0.3 7

Glucose c 3 1027 194 100 0.2 10
Sucrose d 3.5 1027 355 100 0.2 100

a References [145, 147] Calcium carbonate is in general characterised by a wide range of solubility due to its
strong dependency on carbon dioxide presence. The value in absence of CO2 at 25◦ is [144] c0 = 0.013g/L ≈ 1023.
However this value can increase of about two orders of magnitude when CO2 is present as is the case in natural
environments as sea water [164]. We assume the latter.
b References [92, 157, 162, 165] Data for the diffusion coefficient at saturation was not found. We estimated this
value by extrapolating at higher concentration from [163]. Similarly we extrapolated the data for the viscosity
from [162].
c References [166, 167] There is lack of data for surface tension of glucose-water interfaces. We assume γ̃ ≈ 100mJ/m2

as suggested by some experiments on sucrose [168].
d References [166, 168, 169]. Diffusion constant was assumed similar to that of Glucose.

Defining the dimensionless repulsion strength Ā = A/γ̃h2, the normalization is identical to the
previous case where now h represents the minimum of the interaction. The only parameter
explicitly appearing in the normalized equation is the dimensionless viscosity

η̄ =
Bη

h2
=

DΩ2c0
kBTh2

η . (4.20)

A large value of η̄ indicates a strong influence of viscosity. Since η̄ ∼ h−2, viscosity effects are
seen to be important when h is small.

Two sets of simulations with different dimensionless viscosities, η̄ = 10−5 and η̄ = 10−2, were
performed. They respectively aim at modeling low solubility crystals such as calcium carbonate
(CaCO3), and highly soluble crystals like salts and sugars. For the latter class, we focused on
sodium chlorate (NaClO3), which was used in the previous section and glucose. The parameters
used are given in Table 4.1. Given the system under study, we also assume a film thickness
h = 1nm for all materials considered.

The value of the dimensionless viscosity depends on the physical parameters as described
by Eq. (4.20). The viscosities used for the simulations are rough estimations. For instance
glucose normalized viscosity actually lies in an intermediate regime between η̄ = 10−2 and
η̄ = 10−1. Some exploratory simulations were also performed at viscosities higher than 10−1.
Larger viscosities could be encountered in other natural materials as more complex sugars. In
the case of sucrose for instance, we have η ≈ 100mPa so that η̄ > 1 at saturation [169].

Finally, the value of the normalized repulsion strength Ā is not fixed by the radial scale l,
as done in the previous section, but chosen following the same lines as in Section 3.4.1. For
simplicity we assume A ≈ 10−20J [43] to be the same for all materials considered. Assuming
some specific values for γ̃ and h, we can then calculate Ā = A/γ̃h2 = A/6πγ̃h2. In any case, the
qualitative behavior is not influenced by Ā which does not appear explicitly in the normalized
equations, and only contributes to the spatial and temporal scales on which phenomena can be
observed.

90



4.3. Effect of nano-confinement

r

z

Figure 4.7: Simulation screenshots representing a section of an axisymmetric growing crystal (white).
Time flows from top to bottom. The normalized supersaturation is for both panels σ̄bc = 0.21. Left
column η̄ = 10−2; right column η̄ = 10−1, the cavity is not observed. The unit of the vertical scale is
1nm. The substrate is located at hs = 2nm. The scale of the horizontal axis depends on the material.
For instance for NaClO3 the radial scale unit is 3.2nm. The color-map represents the liquid velocity in
normalized units. Red color: positive velocities (flow from left to right); blue: negative velocities; green:
vanishing velocity. The physical liquid velocity depends on the material, for instance in the left panel for
NaClO3 its maximum value (darker color) is uL ≈ 66μm/s.

4.3.2 Discontinuous transition

As in the previous section, we solved Eqs. (4.1), (4.2a) and (4.3) numerically in a circular simu-
lation box of fixed radius R, fixed film width ζ(R) = ζbc, and fixed supersaturation σ(R) = σbc
at the boundary of the integration domain. In all simulations, we were able to reach a steady
state characterized by a constant growth rate and crystal interface profile. We observe that for
low enough viscosities η̄, a cavity appears when increasing the simulation box radius R, or the
boundary supersaturation σbc . In Fig. 4.7 we show two examples of simulations. The two sim-
ulations were realized using different normalized viscosities η̄, and keeping the other parameters
fixed. Simulations at higher viscosity, e.g. η̄ = 0.1, do not show the appearance of a cavity.

For the two set of simulations considered, namely η̄ = 10−2 and η̄ = 10−5, we studied the
steady state profiles close to the transition. In Fig. 4.8 we show as an example the variation of the
normalized width ζ̄(0) = ζ̄0 of the film in the center of the contact as a function of the normalized
supersaturation σ̄bc, and for fixed box size R̄ = 40. Each dot corresponds to a steady state reached
in a single simulation. Considering a surface which is initially flat and in the minimum of the
interaction potential (ζ̄0 = 1), and gradually increasing the supersaturation σ̄bc, we observe a
sharp jump in the value of ζ̄0 at the transition (“forward” transition). This process corresponds
to black circles and blue squares in Fig. 4.8. However, if we start with a system beyond the
critical supersaturation, thus featuring a cavity, and slowly decrease the supersaturation σ̄bc,
the transition is not observed at the same point, but at a lower supersaturation (“backward”
transition). This is represented by red and yellow triangles in Fig. 4.8. Hence, the transition
exhibits hysteresis.
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Figure 4.8: Film thickness at the center of the contact ζ̄(r = 0) = ζ̄0 versus supersaturation σ̄bc at the
boundary of the simulation box at different normalized viscosities η̄. The size of the simulation box is
R̄ = 40. The vertical axis is in nanometers. The size of the simulation box R and the supersaturation scale
depend on the material. Calcium Carbonate, red triangles and black circles: R = 400nm, σbc = 0.014× σ̄bc;
Sodium Chlorate, yellow triangles and blue squares: R ≈ 127nm, σbc = 0.017 × σ̄bc; Glucose, yellow
triangles and blue squares: R ≈ 400nm, σbc = 0.05× σ̄bc.

A similar discontinuity with hysteresis is observed when looking at the crystal growth rate
|uCz|. However, as discussed in Appendix D.2 and shown in Fig. D.1, the discontinuity in |uCz|
is more apparent in the forward transition than in the backward transition.

For both the width at the center of the contact and the growth rate, no qualitative difference
is observed between simulations at η̄ = 10−2 and η̄ = 10−5. The main difference lies in the shift
of the transition towards larger supersaturations when the viscosity is increased.

4.3.3 Non-equilibrium morphology diagram

In analogy with Section 4.2, we represent the location of the transition1 (when existing) in the
plane with axis defined by the left hand side and right hand side of

α|ucavCz | = 4DΩc0σ
cav
b

h

L2
cav

. (4.21)

Following Section 4.2, here the heuristic multiplicative constant α is introduced in order to
capture quantitatively the simulation results.

In order to build the non-equilibrium morphology diagram we need to evaluate the observables
Lcav and σcav

b appearing in Eq. (4.21). The procedure is similar to the one adopted is the previous
section. First, we determine the couple R and σbc at the transition from the σbc - ζ0 plot (Fig. 4.8).
Then, we consider the contact radius L from the condition that ζ(L) exceeds the equilibrium
position h by 1%. Finally, as before, we obtain σcav

b using the linearized thermodynamic relation
in the fast attachment regime Eq. (4.16). The procedure is repeated for simulations at different
box sizes and viscosities, and on the different branches of the hysteresis curve.

The results, shown in Fig. 4.9, confirm the prediction of a straight transition line passing
through the origin in the (|uCz|, 4DΩc0σbh/L

2) plane. Interestingly, the forward and the back-
ward transitions roughly collapse on the same line. The differences in mass transport kinetics

1Here there is a subtle difference in the arguments used in Section 4.2.3 to derive the transition line. In this
case, due to the form of the interaction, the interface needs to be sufficiently far from the substrate in order to
escape the attractive well in h. Thus there is a region where a cavity still does not form but with U ′(ζ0) < 0 (see
Fig. 4.10). It follows that here the threshold is expected in principle at a value Δμcav(0) < 0. The results suggests
however that this value is very small and the assumption Δμcav(0) ≈ 0 is still robust. This is related to the critical
supersaturation of section Section 4.3.4 (which is also an effect quantitatively small).
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Figure 4.9: Non-equilibrium morphology diagram for different materials and transition pathways. The
scaled viscosity η̄ is assumed to be 10−5 for CaCO3, and 10−2 for NaClO3 and Glucose.

between different materials however lead to differences in the orders of magnitude of the critical
vertical growth velocity ucavz (from about 0.1 to 100nm). A linear fit for the slope of the transition
line leads to α = 0.65± 0.04. This result is close to the value α ≈ 0.61 obtained in Section 4.2.6.
However, the system studied in Section 4.2 was different, with a purely repulsive potential and
a load to maintain the crystal close to the substrate. This result suggests that the constant α
could be robust with respect to the details of the model potential.

4.3.4 Critical supersaturation and critical viscosity

To understand how viscosity can affect the transition we resort to a perturbative analysis of the
steady-state solution. This is done assuming that, just before the transition, the profile deviates
slightly from the equilibrium configuration ζ = ζeq + δζ, with ζeq ≈ h. The perturbation δζ,
derived in Appendix D.1, exhibits a concave parabolic profile:

δζ =
uCz

4BhU ′′(h)

(
r2 − L2 +

4γ̃

U ′′(h)

)
− Δμb −Δμeq

ΩU ′′(h)
, (4.22)

where Δμb = Δμ(L), and U ′′(h) is the second derivative of the substrate-crystal interaction
potential with respect to ζ, calculated in the equilibrium position. The agreement between the
perturbative solution and the full profile is good as illustrated in Fig. 4.10.

Hence, the thickness ζ0 in the center of the contact increases as the supersaturation increases
even in the absence of a cavity. This result suggests a simple mechanism for cavity formation.
We use the standard result of the linear stability analysis of an infinite flat profile of thickness
ζ, which indicates that the surface of the crystal should be stable when U ′′(ζ) > 0, and unstable
when U ′′(ζ) < 0. This is similar to usual spinodal decomposition [170]. The initial profile
with ζ = h is constant and in the minimum of the potential, with U ′′(h) > 0 corresponding
to a stable configuration. Considering now a non-equilibrium profile with a concave parabolic
ζ(r), an approximate criterion for the cavity to form is that the thickness ζ0 = ζ(r = 0) at
the center of the contact reaches the inflection point ζcav of the potential, where U ′′ changes
sign, i.e., U ′′(ζcav) = 0. This scenario is consistent with a discontinuous transition since upon
destabilization the thickness ζ0 in the center of the contact becomes larger than ζcav. Once
the instability is initiated, the larger ζ0, the larger U ′′(ζ0), and the stronger the destabilization,
leading to a self-amplifying feedback2. Note once again that this behavior is reminiscent of

2This is true at least in a finite range for ζ0. When ζ0 becomes very large, U ′′(ζ0) decreases allowing for steady
state to be attained.
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Figure 4.10: Section of the crystal profile close to the transition. The black zone at the top represents
the substrate. The black line is the simulation result. The vertical axis is in physical units. The horizontal
axis scaling depends on the material (via the constant Ā). Simulation parameters: size of the box R̄ = 40,
supersaturation at the boundary of the integration domain σ̄bc = 0.2. The dashed red line is obtained
from Eq. (4.22) with L, uCz, Δμb measured in the simulation.

spinodal instabilities [171, 172, 173].
Using this simple argument, i.e. ζ0 = ζcav, and in the limit of large contacts, we find an

expression for the critical supersaturation:

σcav
b ≈ AΩ

3kBTh3

(1 + 12η̄

1− 12η̄

)
. (4.23)

The details of the derivation are reported in Appendix D.1.
As a first consequence of Eq. (4.23), the critical supersaturation σcav

b is expected to reach
a finite value σ∗

b , when the viscosity vanishes. This result differs from the behavior of purely
repulsive potentials observed in Section 4.2, where vanishingly small supersaturations are able
to destabilize large crystals. This difference is intuitively understood from the fact that the
supersaturation here needs to be large enough to lead to an escape of the crystal surface from
the potential well at ζ = h. Thus the thermodynamic force related to supersaturation Δμ/Ω must
be larger than the disjoining force dragging the interface towards the minimum of the potential
U ′(ζcav) ≈ (ζcav−h)U ′′(h). Since σb = Δμb/kBT , we obtain that σ∗

b = (ζcav−h)U ′′(h)/(ΩkBT ),
which is identical to Eq. (4.23) when η̄ = 0 and U is given by Eq. (4.17). This result, which states
that the the critical supersaturation σcav

b is expected to reach a constant value when the viscosity
vanishes and the size is large, is confirmed by simulations in Fig. 4.11 for small viscosities (blue
and red triangles). However, the predicted value σ̄∗

b ≈ 0.33 is larger than the value observed in
simulations σ̄cav

b (L → ∞) ≈ 0.12. Going back to physical variables σ = σ̄AΩ/(kBTh
3), we find

that the critical supersaturation at vanishing viscosities is small σ∗
b ∼ 10−2 to 10−3 for h ∼ 1nm.

Since σ∗
b ∼ h−3, the critical supersaturation decreases quickly when the equilibrium thickness h

increases, and σ∗
b < 10−5 for h = 10nm. Hence, this phenomenon could be difficult to observe in

experiments where it is difficult to precisely control nanometric separations or have such a small
resolution for the supersaturation3.

The expression Eq. (4.23) also provides information about the consequences of viscosity. For
example, it agrees qualitatively with Fig. 4.8, where higher viscosities were shown to lead to a
transition at higher supersaturations. In Fig. 4.11, we show the normalized critical (forward)
supersaturation σ̄cav

b at different normalized viscosities as obtained by simulations. This again
3We are only aware of the work of Désarnaud et al. [102] where they reach a similar resolution (≈ 2× 10−5) for

the supersaturation.

94



4.3. Effect of nano-confinement

η̄∗

∼
∼
∼
∼

η̄

σ̄
c
a
v

b

∼

σ̄∗
b

 0

 0.2

 0.4

 0.6

 0.8

 1

10-5 10-4 10-3 10-2 10-1

L   32
L   60
L   110
L   140
L   229

Figure 4.11: Critical supersaturation for the appearance of a cavity as a function of viscosity, as obtained
by simulations for the forward transition (initially flat contact). The results are reported in normalized
units. The critical supersaturation diverges at η̄∗ ≈ 0.34. For larger normalized viscosities, cavities
are not observed in simulations independently from the size of the contact (shaded area). The critical
supersaturation converges to a fixed value when the contact size increase at fixed viscosity, as predicted
by Eq. (D.16) and Eq. (4.23). At vanishing viscosity the critical supersaturation is σ̄∗

b ≈ 0.12 (red and
blue triangles). Cavities cannot be observed independently from the size of the contact below this value
(shaded area).

confirms good qualitative agreement with Eq. (4.23), since it agrees both with the increase of
σcav
b with increasing η̄, and with the divergence of σcav

b for a finite value of η̄.
However, Eq. (4.23) is quantitatively inaccurate. For example, the observed threshold at

η̄∗ ≈ 0.034 is lower than the predicted value η̄∗ = 1/12 ≈ 0.08. Despite the absence of a
quantitatively accurate expression for the critical supersaturation as a function of viscosity, it is
possible to obtain quantitative insights about the critical viscosity using the morphology diagram
and a suitable expression for the growth rate uCz.

Indeed, inserting the parabolic profile ζeq + δζ of the film in the contact in the force balance
equation Eq. (4.3), leads to a second relation valid below the transition

uCz =
−4Bh(Δμb −Δμeq)(

6B
h2 η + 1

2 − 4γ̃
L2U ′′(h)

)
L2Ω

, (4.24)

where Δμb is the interface chemical potential at the edge of the contact region, Δμb = Δμ(L).
This relation has to be combined with the expression for the equilibrium chemical potential, that
for an attractive interaction reads

Δμeq ≈ 2Ω

L

√
−2γ̃U(h) , (4.25)

The details of the derivation of Eqs. (4.24) and (4.25) are presented in Appendix D.1. Equa-
tion (4.24) exhibits quantitative agreement with simulation results as illustrated in Fig. 4.12.

Here, we wish to focus on steady-states close to the threshold of cavity formation. Since
Δμeq ∼ 1/L from Eq. (4.25), this term can be neglected far from equilibrium and for large
system sizes where cavity formation occurs. For the same reason, we neglect the term of order
1/L2. Finally, assuming the supersaturation is small, we have Δμb = kBTσb, and we obtain

uCz ≈ −4hDΩc0σb
(6η̄ + 1/2)L2

. (4.26)

It follows from Eq. (4.26) that, as the viscosity increases, the growth rate uCz decreases. In
addition, for low viscosities, the growth rate is independent of the viscosity.
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Figure 4.12: Growth rate |uCz| as a function of the viscosity shown in normalized units before undergoing
the transition (flat growth) for different sizes. The dots are simulation results, the dashed lines were
computed using Eq. (4.24) with L and Δμb(η) (see Eq. (4.16)) measured in simulations and Δμeq given
by Eq. (4.25). The value of the contact size L varies weakly when the viscosity is varied.

Inserting Eq. (4.26) in Eq. (4.21), we find the critical value of the viscosity above which the
cavity cannot form

DΩ2c0
kBTh2

η∗ = η̄∗ =
2α− 1

12
≈ 0.025± 0.007 . (4.27)

Interestingly, if we assume the idealized case to hold (α = 1), we would have obtained η̄∗ = 1/12
as in Eq. (4.23). Even though Eq. (4.26) and Eq. (4.27) rely on some approximations —based
on our perturbative analysis and on the heuristic character of the parameter α— we find that
Eq. (4.27) provides a reasonably accurate prediction close to the value η̄∗ ≈ 0.034 from the full
numerical solution of the model.

The experimental consequences of this result can be presented in two different ways. First, we
may assume that disjoining pressure effects lead to a fixed film thickness, assumed for example
to be h ≈ 1 nm. Then, using Eq. (4.27) and considering the materials listed in Table 4.1, we find
η∗ ≈ 3.7×103 mPas for calcite, η∗ ≈ 12mPas for sodium chlorate, η∗ ≈ 4.6mPas for glucose and
η∗ ≈ 1.2mPas for sucrose. Cavity formation should be hindered or suppressed by viscosity effects
when these values are equal to, or smaller than the values of viscosity at saturation reported in
the last column of Table 4.1. These are 1, 7, 10 and 100mPas, respectively. Thus, for example,
we do not expect a cavity to appear for Sucrose while Calcite could feature a cavity. Conclusions
on glucose or sodium chlorate are more difficult since the value of the critical viscosity is close
to the viscosity at saturation.

The threshold can be reformulated in a different manner. Indeed, since the value of the
critical viscosity increases as the square of h there is a critical thickness h∗ above which a cavity
can form for a given system. Using the bulk viscosity at saturation, we find h∗ ≈ 0.016nm for
CaCO3, h∗ ≈ 0.76nm for NaClO3, h∗ ≈ 1.5nm for glucose, and h∗ ≈ 9.2nm for sucrose. These
results once again state that cavity formation should be suppressed for Sucrose with nanoscale
confinement. For other materials with smaller viscosities, the main effect of viscosity should be
to shift the transition as shown in Fig. 4.8 and Fig. 4.9. In general, when the film thickness is
larger than h ≈ 10nm as in Section 4.2, we expect cavities can form for most materials.

For different densities ρC �= ρL, as also observed in the previous chapter, we expect viscosity
effects to be enhanced. However, further analysis of the model would be necessary to reach
quantitative conclusions.
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4.4 Effect of surface kinetics

In both systems discussed above (with purely repulsive potentials, or potentials with a minimum)
we assumed that mass transport via diffusion was slower than surface kinetics. We indeed expect,
given the slenderness of the films considered, that in general transport in the contact region
should be significantly reduced with respect to its bulk counterpart. In this section, we discuss
the consequences of dropping this assumption.

First, we show that the morphology diagram describing the formation of the cavity can be
generalized to include this scenario in a simple way. Second, we observe that one can still predict
the velocity of the confined surface (before cavities form) in the presence of an attractive crystal-
substrate interaction, as done with Eq. (4.26). As discussed in detail at the end of this section,
this allows us to predict the shape of a crystal growing in the vicinity of a substrate where the free
surfaces follow standard surface kinetics limited growth (see Frank construction in Section 1.1.4).
These findings are supported by the numerical solution of the model equations in the slow surface
kinetics limit (using Eq. (4.2b) instead of Eq. (4.2a) in Eq. (4.1)).

Let us initially determine when the effects of surface kinetics should be relevant. As discussed
in Chapters 1 and 2 attachment-detachment kinetics at the crystal surface is described by the
kinetic constant ν which accounts for the proportionality between the departure from equilibrium
in the liquid close to the surface and the growth rate. The kinetic coefficient has the dimensions
of a velocity. This process acts in series with diffusion in the liquid D. Between two parallel
planes separated by the distance h, the mobility, defined as the ratio between total current in
the xy-plane 〈jxy〉 (see also Chapter 2 and Appendix A.4) and the driving force ∇xyc, is equal to
Dh as seen for instance in Eq. (4.1). The length scale emerging from the combination of these
two processes is

l0 =

√
Dh

ν
.

As discussed in Section 2.6, this length scale can also be obtained by simple comparison of the
terms proportional to vCz in Eq. (2.48) (or identically Eq. (4.34a) later in this section). In
the above relation, we have assumed, as in the previous sections, that the typical scale of the
thickness is ζ ≈ h. For crystals larger than l0, the limiting mass transport process is diffusion,
while for crystals smaller than l0, the limiting process is surface kinetics.

Unfortunately, kinetic constants are difficult to assess precisely in experiments, this is why
the values reported in the literature can be very different for the same material. For salts, a large
span of kinetic constant are reported ( ν ∼ 10−5 to 10−3ms−1 [76]). Considering NaClO3, even
if we assume a large diffusion constant (compare to e.g. Table 4.1) D ∼ 10−9m2s−1, a thickness
h ∼ 100nm, and the smallest kinetic constant ν ∼ 10−5 ms−1, we find l0 ∼ 3μm. This number
is small as compared to the experimentally relevant crystal sizes used in Section 4.2.1. Hence,
we can safely assume that in the UiO experiments the formation of the cavity occurs within the
diffusion-limited regime for NaClO3.

However if for instance we consider a material such as CaCO3 characterized by much slower
surface kinetics, the scenario could be different. Indeed, values of ν reported for CaCO3 range
between 10−7 to 10−4ms−1 [174, 175]. Considering again D ∼ 10−9m2s−1, h ∼ 100nm and
assuming the smallest kinetic constant, we find l0 ∼ 30μm.

This is why slow surface kinetics might be relevant also in confined growth for some materials.
The general fact that even in confined geometries there exist cases in which surface kinetics
combines with diffusion, as discussed in Section 3.4, is also suggested by experiments on pressure
solution [46, 63].

4.4.1 Generalized morphology diagram

In Section 4.2.3, we discussed the conditions for cavity formation. The derivation was based on
the observation that a cavity should appear when Δμ(r = 0) ≈ 0, and on mass conservation,
Eq. (4.14). These relations are unaffected by surface kinetics.
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However, the relation between chemical potential and supersaturation σ is affected. In the
case where we account for surface kinetics, the supersaturation at the interface is given by
Eq. (2.52),

σ(r) =
ceq(r)

c0
− 1 +

vCz

c0Ων
.

From the thermodynamic relation Δμ(r) = kBT ln[ceq(r)/c0], we can thus express the interfacial
chemical potential as

Δμ(r) = kBT ln
(
− vCz(r)

νΩc0
+ 1 + σ(r)

)
. (4.28)

When considering steady states we have from the definition of vCz (see Eq. (2.18)) that vCz =
−uCz. This in particular allows to express the steady state interface chemical potential in the
center of the contact as

Δμ(0) = kBT ln
( uCz

νΩc0
+ 1 + σ(0)

)
. (4.29)

The relation above can be related to the condition for cavity appearance Δμcav(0) = 0, giving a
relation for the velocity at the transition

ucavCz = −σ(0)νΩc0 . (4.30)

Recalling the expression of the supersaturation in the center of the contact deduced from mass
conservation Eq. (4.14) we also have:

σ(0) = σb − |uCz|L2

4hDc0Ω
.

Combining the latter relation with Eq. (4.30), we obtain the following generalized transition
criterion:

|ucavCz | =
Ωc0σ

cav
b

αL2
cav/(4hD) + ν−1

, (4.31)

where we included the phenomenological constant α observed in simulations for fast surface
kinetics (ν → ∞), such as the one measured from the slope of the transition line in Fig. 4.6 or
in Fig. 4.9.

4.4.2 Growth rate before the transition

When the crystal-substrate interaction is attractive, following the same lines of Section 4.3
and Appendix D.1, it is possible to find an analytical expression for the steady-state crystal
velocity below the transition in the limit of slow attachment kinetics. The derivation in Sec-
tion 4.3.4 was based on a perturbative analysis of the steady-state solution ζ ≈ ζeq + δζ with
ζeq ≈ h, where h is the minimum of the crystal-substrate interaction potential (U ′(h) = 0), and
δζ is a small perturbation. Consider Eq. (4.1) with Eq. (4.2b). Since in steady-state (∂tζ = 0)
vCz = −uCz, and uCz is a constant, we have ∂ruCz = 0. As a consequence, steady-state equa-
tions for slow and fast surface kinetics are identical (Eq. (D.1)). Thus we obtain a parabolic
steady state profile similar to that derived for the fast surface kinetics limit (Eq. (4.22)) and
represented in Fig. 4.10. Since the crystal velocity depends on this profile via Eq. (4.3), one
obtains an expression for the velocity before the formation of the cavity identical to Eq. (4.24),

uCz =
−4Bh(Δμb −Δμeq)(

6B
h2 η + 1

2 − 4γ̃
L2U ′′(h)

)
L2Ω

,

with the equilibrium chemical potential given by Eq. (4.25),

Δμeq ≈ 2Ω

L

√
−2γ̃U(h) .
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Once again, the only difference is the link between Δμb and the supersaturation (Eq. (4.28)).
Computing the linearized form of Eq. (4.28) in r = L and using the steady-state condition
vCz = −uCz, we have

Δμb = kBT (σb +
uCz

Ωc0ν
) . (4.32)

Using this expression in Eq. (4.24) we finally obtain in the limit of large contacts and large
supersaturations (Δμeq ≈ 0)

uCz ≈ −hDΩc0σb
(3/2η̄ + 1/8)L2 + hDν−1

, (4.33)

where h is the equilibrium position of the interaction, in the minimum of the attractive well (see
Eq. (4.17)). This formula generalizes Eq. (4.26) including the effect of surface kinetics.

4.4.3 Simulations details and results

We here proceed to verify numerically the analytic conclusions of the previous sections, i.e.: i)
cavity formation is described by the generalized transition line obeying Eq. (4.31), ii) Eq. (4.33)
is a good estimate of the velocity before the transition.

Recalling Eq. (4.1), we now have to express the concentration by Eq. (4.2b). From the
definition of vCz we rewrite these equations in a more compact way:

vCz =
1

r
∂r[rζΩD(∂rceq)] +

1

r
∂r[r

ζD

ν
(∂rvCz)] , (4.34a)

2uCz π

ˆ R

0
dr r

ˆ R

r
dr′

6ηr′

ζ(r′)3
= FCz + 2π

ˆ R

0
dr rU ′(ζ) , (4.34b)

ceq = c0 +
c0

kBT

[
Ω

(
γ̃∂rrζ +

γ̃

r
∂rζ − U ′(ζ)

)]
, (4.34c)

∂tζ = −vCz − uCz . (4.34d)

Note that we used the linearized thermodynamic relation, ceq ≈ c0(1+Δμ/(kBT )). As discussed
in Section 4.4 and Appendix B.2, Eq. (4.34a) can be solved numerically by matrix inversion for
vCz. This solution at each time step gives the evolution of the interface ∂tζ using Eq. (4.34d).

We consider the same set-ups as in Section 4.2 and in Section 4.3. The former is characterized
by a purely repulsive disjoining pressure and represents, for instance, the evolution of a crystal
after sedimentation on a substrate. The latter includes an attractive term in the disjoining
pressure and could be associated with growth after heterogeneous nucleation. In the first case,
U is given by Eq. (4.4) and FCz is the gravitational buoyancy force. In the second case U is
given by Eq. (4.17) and FCz = 0. We also use a small normalized viscosity, η̄ = 10−6, in order
to focus on the dependence on the kinetic constant ν in Eq. (4.33).

Choosing the time scale associated to diffusion as a reference, the normalization of the equa-
tions is identical to that of Section 4.2.2 or Section 4.3.1 depending on the interaction considered,
with an additional normalization for the kinetic constant given by

ν̄ =
l2

hD
ν , (4.35)

where l is the crystal size length scale defined previously. The boundary conditions are also
identical to those used previously: fixed supersaturation σbc and width ζbc at the edge of the
(constant) integration box, at r = R.

Morphology diagram

The constant α in Eq. (4.31) can be determined in the fast surface kinetics regime from the
slope of the transition lines in the morphology diagrams discussed previously. In Fig. 4.6 we
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Figure 4.13: Generalized non-equilibrium morphology diagram for different normalized surface kinetics
constants ν̄. The constant α appearing in the vertical axis is equal to 0.61. The dashed line is a reference
line of slope one passing through the origin. The fact that the data for the attractive case does not exactly
pass through the origin is a consequence of the non-vanishing σb for L → ∞ (see Eq. (4.23)). Results are
in normalized units.

had α ≈ 0.61. In Fig. 4.9, where we considered nano-confinement, the measured slope α ≈
0.65 was a result of an average between simulations at η̄ = 10−2, at η̄ = 10−5, and the two
branches (“forward” and “backward”) of the hysteresis curves. Here, we obtain α using the
smallest viscosity, η̄ = 10−5. Using the data obtained at this viscosity (black squares and red
circles in Fig. 4.9) the fitted slope is again α ≈ 0.61. Therefore we use this value in Eq. (4.31).

We computed the generalized non-equilibrium morphology diagram using the same proce-
dures as in the previous sections. Indeed, the transition appears in the same way as in the
diffusion limited regime: We observe analogous continuous (repulsive interaction) or discontinu-
ous transitions (attractive interaction) with hysteresis. The result are shown in Fig. 4.13. The
data is reported in code units for a large span of values of the surface kinetic constant, from
ν̄ = 10−3 to ν̄ = 100, together with the results in the fast attachment limit (filled blue squares
and red circles, and empty black squares) obtained in the previous sections. For the attractive
case, we again considered the two different branches of the transition. All the data point collapse
very well on the transition line given by Eq. (4.31) (slope equal to one).

As discussed in Appendix D.3 and shown in Fig. D.2, it is also interesting to plot the transition
line without assuming the heuristic constant α (or equivalently fixing α = 1). In this plot, we can
observe that the slope of the transition line ranges from ≈ 0.6 for the fast kinetics case, to ≈ 1
when the effect of slow kinetics is dominant. In this representation, the slope of the morphology
diagram is sensitive to the underlying kinetic mechanisms. This could be an interesting direction
of research in experiments to probe the kinetic constant ν indirectly for a given material.4

Let us compare the values of the normalized kinetic constant, discussed so far, to physical
quantities. This allows one to evaluate when deviations to the transition line obtained assuming
dominant diffusion kinetics Eq. (4.15) should be observed. As a preamble, we note that in
normalized units the generalized transition line Eq. (4.31) reduces to

|ūcavCz | =
σ̄b

α L̄2

4 + ν̄−1
. (4.36)

4Additional important improvements on the interpretation of the morphology diagram have been achieved in
Ref. [176].
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The fast surface kinetics limit is simply given by the above with ν̄−1 = 0. Let us assume that
the typical lateral scaling of the crystal is l = μm, that the film thickness h ranges from 10
to 100nm and that the smallest crystal contact considered is L = 10μm (in the simulations
we have explored contacts at most small as L̄ ≈ 8). For salts as sodium chlorate let us take
ν ≈ 10−3ms−1 [76, 148], and D ∼ 10−10m2s−1 (as suggested by the discussion in Section 4.2.6
and [163]). This corresponds to a normalized kinetic constant ν̄ (see Eq. (4.35)) from about 102

to 103. From Eq. (4.36) with L̄ = 10, we find that the inclusion of the term ν̄−1 would constitute
a negligible correction to the denominator, smaller than 0.1%.

However, if we consider for instance CaCO3 and use ν ≈ 10−6ms−1 [174, 175], we have ν̄
from about 10−1 to 10−2. Confronting this value to Eq. (4.36) and assuming again L̄ = 10, it
can be observed that now the exclusion of the term ν̄−1 would imply an error from about 100%
to 1000% in the denominator. Thus, this correction is necessary.

These observations are also confirmed by the numerical results showed in Appendix D.3 in
Fig. D.2, where the data points at ν̄ = 102 are not distinguishable from results obtained in the
fast surface kinetics limit, whilst those computed using ν̄ = 10−1 or 10−2 are well separated from
them.

Growth rate

Finally, we compare simulation results to the analytic expression for the velocity before the
transition Eq. (4.33). This is shown in Fig. 4.14 for different values of the normalized kinetic
constant ν̄. In the left panel, we consider the attractive case (with interaction given by Eq. (4.17)).
The analytic expression (dashed red curve and open circles) compares very well to the simulation
result (black filled circles). The value of L and σb appearing in Eq. (4.33) are extracted from the
simulations. We also account for corrections coming from the equilibrium chemical potential 5.

In the right panel, we consider the repulsive interaction case. When the term ν−1 dominates,
the prediction (red empty triangles and dashed curve) is accurate with respect to simulations
(black filled triangles). However, deviations are observed in the diffusion limited regime, i.e. for
large ν̄ in Fig. 4.14b. Indeed, for a repulsive disjoining pressure there is no formal proof that
Eq. (4.33) is correct. In particular, in this case, we cannot define an equilibrium position h to
be used in the perturbative analysis.

4.5 Discussion

4.5.1 Comparison with existing literature

To the best of our knowledge the only modern works, before [106], precisely discussing the
appearance of rims are those of Røyne and Dysthe [104] and Li et al. [105]. These authors
mainly focused on measuring the rim width and also described in detail step dynamics and
surface topography. In general, our results are not suited for a detailed comparison with their
observations since we did not analyze rim width nor surface roughness.

Note that Ref. [104] suggests that for large crystals the rim width is of order l0 =
√

Dh/ν
where D is the bulk diffusion, h the film thickness (assumed constant) and ν a kinetic constant
for surface growth. Furthermore, for crystal sizes comparable to l0 they also expect (but not
observe directly) that rims should not form. Our findings do not agree with this conclusion since
we demonstrated that, in the framework of our model, we can still find conditions for which rim
can form for crystal sizes below l0.

5Since the contact considered are not very large (L̄ ≈ 25). From Eq. (4.24), we have

uCz ≈ −hDΩc0 [σb +Δμeq/(kBT )]

L2/8 + hDν−1

where Δμeq ∼ 1/L is given by Eq. (4.25) and the viscosity term has been neglected since small. In the repulsive
case we assume Δμeq = 0.

101



Chapter 4. Confined Growth and cavity formation

Figure 4.14: Normalized growth rate below the transition at different normalized kinetic constants
compared to the predictions given by Eqs. (4.24) and (4.32) with Eq. (4.25). Terms of order 1/L2 in the
denominator are neglected. Simulations are realized at small η̄ = 10−6 hence in the vanishing viscosity
regime (see Fig. 4.12). For the repulsive interaction we assumed Δμeq ≈ 0. The parameters L and σb are
extracted from the simulations. This is why we refer to semi-analytic results. The simulation in box is for
every simulation R̄ = 40.
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|ū C
z
|

 0.0004

 0.0005

 0.0006

 0.0007

10-3 10-2 10-1 100 101 102

Repulsive pot.
anaytical

Simulations
Semi-analytic

(b) The interaction is given by Eq. (4.5). Filled
black triangles: simulation results. Here super-
saturations are chosen close to the transition
(σ̄bc changes for every point). This enforces for
each simulation an average film width close to h.
First point on the left L̄ = 14.6, σb ≈ 0.48 last
point L̄ = 16.8 σb ≈ 0.02. Open red triangles:
semi-analytic results.

4.5.2 Shape of a crystal growing on a substrate

We have developed a framework to describe the morphology and growth velocity of the confined
surface. In particular, in the presence of an attractive interaction, we showed that Eq. (4.33) is
an accurate prediction of the growth rate at the confined surface if no cavity is present or before
a cavity forms. In order to obtain the global shape of a crystal growing on a substrate, we need
in addition to determine the shape evolution outside the contact. In the case of diffusion-limited
dynamics, this would require the full 3D solution of the diffusion equation which is beyond
the scope of this thesis. However, for surface limited kinetics in the general anisotropic case
the growth at the free faces is simply characterized by an orientation dependent velocity (see
Section 1.1.4). A combination of the growth velocity outside and inside the contact leads to a
generalization of the Frank construction [6] which allows one to determine the growth shape.

For instance, assuming for simplicity an isotropic crystal (see Fig. 4.15), in the hypothesis of
surface driven growth outside the contact region, the free faces of the crystal move with velocity
u0 = νΩc0σ with σ the bulk supersaturation outside the contact area. This expression is obtained
assuming a macroscopic crystal. Indeed, from Eq. (2.10) we expect for a large curvature radius
and far from the substrate ceq ∼ c0 (i.e. κ ≈ 0 and U ′ ≈ 0). Using Eq. (4.33), and the definition
of critical diffusion length scale l20 = hD/ν, the velocity of the confined surface is given by

uCz =
u0

(32 η̄ + 1
8)

L2

l20
+ 1

, (4.37)

where η̄ = B/h2η is the normalized viscosity defined in Eq. (4.9). As illustrated in Fig. 4.15
taking as reference frame the center of the crystal on the substrate, we define the radius of the
island R, the contact size L, the contact angle θtl and the vertical width of the crystal h0. We
then have R = R0+u0t with R0 the initial size of the seed crystal, L2 = R2−h20, and θtl = π− θ
with tan θ = L/h0. Equation (4.37) then can be combined to the above relations to describe the
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Figure 4.15: Sketch of a macroscopic crystal growing in the vicinity of a substrate, for instance, after
heterogeneous nucleation. The evolution of the confined surface can be determined via Eq. (4.33) before a
cavity appears. Notations are given in the text.

evolution of h0 and θtl:

ḣ0(t) =
u0l

2
0

(3/2η̄ + 1/8) (R(t)2 − h0(t)2) + l20
(4.38a)

R(t) = R0 + u0t (4.38b)

θtl = π − arctan

(
R2

h20
− 1

)1/2

. (4.38c)

The previous equations can be solved numerically. Since ḣ0 ∼ R−2 ∼ t−2, the height of the
contact will reach a finite value h∞ as t → ∞. The fact that h∞ is finite is the central result of
this section. From the above observations it also follows that θtl → π/2.

This description will break down if a cavity appears under the contact since we do not know
the expression of the velocity of the confined face with a cavity. The discussion of this section
applies for example to the initial stages of growth after heterogeneous nucleation on a substrate.
The evolution should follow Eq. (4.38) until cavity appears (at L ≥ Lcav) or for cases in which
cavity does not appear as such those discussed in Section 4.3 (highly soluble sugars and reduced
separation with the substrate).

These results can be generalized for anisotropic growth outside the contact. Since h∞ is finite,
the asymptotic Frank shape will always be half of the free asymptotic shape, i.e. the Frank shape
truncated by a plane passing through its center.

4.5.3 The heuristic constant alpha

The constant α, which accounts for the deviation from the expected slope of one in the mor-
phology diagrams, seems to be robust with respect to details of the model as demonstrated by
Figs. 4.6, 4.9 and 4.13. However, the physical reason for which this correction is observed is still
not elucidated. Figure D.2 seems to suggest that the constant α might be an indication of an
overall over-estimation of the surface area. Indeed, in Eq. (4.31) α appears at the denominator
only in front of the term proportional to L2 and theoretically predicted slope of one are indeed
observed when 1/ν � 1. In the following, we argue that this interpretation is not satisfactory.
This emerges when comparing how the estimation of the contact radius L performs with respect
to different observables.

For instance, as illustrated in Fig. 4.5 the method used to compute L in Section 4.2 gave very
good data collapse with respect to boundary conditions. This is not observed with alternative
estimators.
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Other inconsistencies with this interpretation emerge when considering the prediction of the
growth rate below the transition. To illustrate this, let us consider the case of nano-confinement
with an attractive interaction where uCz is given by the analytic formula Eq. (4.33). This
prediction is compared with simulations in Figs. 4.12 and 4.14a (note that in the former figure
also the y scale is logarithmic). A detailed inspection of the results reveals that perfect match
between the analytic curve and the simulation points could be realized by increasing the contact
radius of about 5%. However, if we now consider the morphology diagram in the diffusion limited
scenario, α is ≈ 0.6 (we measured 0.61 in Fig. 4.6 or or 0.65 in Fig. 4.9). This would correspond to
a correction accounting for an over-estimation of the contact radius of about 20%. If we assume
that even in Fig. 4.14b the discrepancy is partially due to erroneous contact radius estimation,
then better agreement (though never as good as in the attractive case) could be achieved with
corrections of the contact radius leading to an under -estimation of contact area of about 10%
(corresponding to α ≈ 1.2). These observations demonstrate that the natural interpretation of
α as a consequence of bad surface area estimation is not adequate.

Finally, α could also account for inaccurate estimations of the film width h. Indeed, it is
not obvious that the average width under the contact area is h (before the cavity form). We
assumed h to be enforced through the interaction potentials Eqs. (4.5) and (4.17), but its value
in principle can depend on other parameters as for instance the supersaturation. However, from
numerical results, looking for instance at Figs. 4.4 and 4.10 (where for the scaling adopted one
has to compare to h̄ = 1), close to the transition we observe ζ(r) ≈ h in the contact area. This
does not support the hypothesis that α accounts for inaccurate evaluations of h.

4.5.4 Limitations of the model

Facets and effective stiffness

Some limitations of our approach are discussed in this section. The first one concerns the difficulty
to analyze strongly anisotropic crystals which exhibit facets. Indeed, the stiffness γ̃ is expected
to diverge at facetted orientations.

In Section 4.2, to obtain quantitative agreement with the experiments we had to assume a
stiffness γ̃ = 102Jm−2, whilst surface tension is γ ≈ 0.1Jm−2 [92], leading to a ratio γ̃/γ around
103. As discussed in Section 1.1.2, it is common to find in the literature non-singular anisotropic
continuum models to describe facetted surfaces. These models employ a regularization of the
surface tension by means of a small parameter ε leading to γ̃(0)/γ(0) ∼ ε−1 [16, 17]. For instance
in [17] ε is taken between 10−2 and 6 × 10−4 leading to stifnesses 102 to 1.6 × 103 larger than
surface tension, in agreement with the factor used here.

Below, we provide a hand-waving discussion for the choice of the order of magnitude of the
stiffness used in our simulations to match the experiments on NaClO3. Neglecting the interaction
with the substrate, the chemical potential of the crystal interface Δμ is proportional to the
product of the molecular volume Ω, surface stiffness γ̃, and surface mean curvature κ. In the
presence of a facet –which is a singular flat and spatially extended part of the surface profile –
the curvature κ of the crystal surface and the stiffness γ̃ are not well defined. However, within a
non-singular continuum model such as that used in our simulations, we expect that κ is similar
to the inverse of the radius R of the crystal. We therefore have Δμ ∼ Ωγ̃/R.

As discussed in Chapter 2, within the diffusion-limited regime, fast attachment-detachment
kinetics lead to fast relaxation towards local equilibrium and thus a small departure from equi-
librium between the solid and the liquid at the crystal surface. From this observation, and
assuming small supersaturations, we also derived the relation Δμ = kBTσ. We therefore obtain
γ̃ ∼ kBTσR/Ω. Assuming R ∼ 102μm, and using typical supersaturations for NaClO3 in the
UiO experiments σ ∼ 10−1, we find γ̃ ∼ 6× 102Jm−2. This order of magnitude is in agreement
with the value ∼ 102Jm−2 used in simulations.

In the regime of nano-confined crystals, we did not assume ad hoc values of the stiffness. If we
apply a similar assumption, the results do not change qualitatively. Indeed, this will not change
the measured slope α of the non-equilibrium phase diagram nor the value of the critical viscosity
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since these quantities are independent of the stiffness. However, the numerical value of some
physical observables would change. If we assume an effective stiffness about 103 - 104 times the
surface tension, crystal growth velocities (see Fig. 4.9) should be reduced by the same factor. In
addition, due to our stiffness-dependent normalization of space variables, our simulations would
correspond to larger crystal sizes (by a factor 10 - 100).

In order to reproduce the details of the anisotropy of the experimental shape, one promising
strategy is to describe explicitly the dynamics of atomic steps, as suggested by previous studies
of facet instabilities during free growth [29, 177].

Nano-confinement and transport

As discussed also in Sections 1.4 and 3.4, a second difficulty is to use continuum models to de-
scribe the consequences of nano-scale confinement on diffusion and hydrodynamics. It is known
for example that diffusion constants in water can vary significantly with confinement [40]. In
contrast, the hydrodynamic description of water with bulk viscosity is known to be quantitatively
accurate for separations larger than ∼ 1 nm [40]. At the nanoscale, liquids can also be structured
in the vicinity of solid surfaces. For example, layering may lead to oscillations in the disjoining
pressure [43]. Additional confinement effects specific to solutions appear when the liquid film
thickness is decreased up to values that are comparable to the size of the solute molecules. Such
confinement effects could be observed, e.g., for sucrose which exhibits a molecular size of the
order of one nanometer. Globally, using continuum models to probe nanoscale hydrodynamic
effects is a challenge. In order to reach quantitative accuracy, such methods must be based on
effective models which are calibrated on molecular simulations to account for possible deviations
from the bulk behavior. This strategy should allow one to describe some of the consequences of
confinement by means of the thickness-dependence of physical parameters such as the diffusion
constant and the viscosity. Achieving this goal would be an important step toward the quanti-
tative modeling of crystal growth with nanoscale confinement. Indeed, modeling of the growth
process in standard molecular dynamics simulations is difficult due to prohibitive computational
time.

Thermal fluctuations and liquid flow

Another phenomenon which comes to the fore at the nanoscale is thermal fluctuations. While the
model discussed here is purely deterministic, atomistic simulations such as Molecular Dynamics
of Monte Carlo Simulations [121] can account for fluctuations. Thermal fluctuations could trigger
the random opening and closure of the cavity observed in the experiment with NaClO3.

Larger-scale fluctuations or perturbations, such as those due to convection or stirring in the
bulk fluid outside the crystal, should not be relevant here, since they influence mass transport at
scales larger than the thickness of the diffusion boundary layer �BL = D/uL at the free surface
of the crystal, which is itself larger than the film thicknesses h considered here. Indeed, taking
D ∼ 10−9m2/s, we would need a very large hydrodynamic velocity uL ≈ 1 to 100cm/s outside
the contact region for �BL to reach a scale comparable to that of the liquid film in the contact
from h ≈ 1 to 100nm.

4.6 Summary

We have shown in this chapter that when a growing crystal is placed in the vicinity of a flat
wall, a cavity can form in the surface of the crystal facing the wall. The appearance of a cavity
can be formulated in terms of a non-equilibrium morphology diagram characterized by a straight
transition line passing through the origin. Despite differences with the model, e.g. with respect
to crystal anisotropy, such a behavior is consistent with recent experiments on NaClO3.

The robustness of this description is confirmed when considering systems at reduced separa-
tions where the non-equilibrium morphology diagram is found to be unchanged (with a similar
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value of the phenomenological constant α). In this case, other quantitative examples are dis-
cussed considering materials ranging from poorly soluble minerals (calcite) to high soluble sugars.
However, some differences are observed at the nanoscale. First, we show that an attractive van
der Waals interaction induces a discontinuous (subcritical) transition with hysteresis. Second,
due to the nanoscale width of the liquid film separating the crystal and the confining wall, vis-
cosity becomes relevant. The effect of viscosity is to shift the transition toward larger crystal
sizes and larger supersaturations. Furthermore, the formation of the cavity can also be prevented
by sufficiently large viscosities. We estimated the relevant critical viscosity above which no cav-
ity should appear. In practice, such condition could be realized for instance for sucrose which
exhibits a large viscosity at saturation.

In the last part, we showed that these phenomena should also be observed in systems where
surface kinetics is slow. In particular, the transition line can be reformulated to account for small
kinetic constants ν.6 Finally, we derived an analytic expression of the crystal interface velocity
of a flat confined surface accounting for the combined effects of viscosity, diffusion, contact size,
and surface kinetics. This expression could be used to predict crystal shapes in the vicinity of
a substrate for example in the initial stages of growth after heterogeneous nucleation for surface
limited kinetics. The results show that before a cavity forms the crystal can only be shifted up
by a finite height due to growth at the confined surface.

6Additional important improvements on the interpretation of the morphology diagram have been achieved in
Ref. [176].
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CHAPTER 5

Crystallization force: beyond the equilibrium thermodynamic picture

In this chapter, we study the crystallization force exerted by a growing crystal located between two
parallel substrates. We first discuss equilibrium and show that our model accounts for the expected
thermodynamic crystallization pressure. We then address the question of the out of equilibrium
crystallization force by letting the crystal grow laterally. We find two out of equilibrium regimes:
i)For small surface kinetic constants, the crystal exerts a crystallization pressure which is close to its
equilibrium value. ii) For larger surface kinetic constants, a dramatic pressure drop is observed. We
show that the latter is correlated to a transition characterized by the kinetic pinning of the triple line
followed by the formation of a macroscopic film. Using both analytic arguments and simulations, we
show the transition to depend only on the ratio between the diffusion constant and the product of
the pore thickness (via the curvature of the growing surface outside the contact) times the surface
kinetics constant.

5.1 Introduction

Crystallization force is the force that a crystal exerts on the surrounding medium when confined,
for instance in a pore of a host material. Among the type of phenomena observed in confined
growth, this is currently the one attracting the highest interest as demonstrated by the significant
number of recent studies on the topic [76, 93, 100, 102, 178]. This interest is in particular
driven by the crucial role of crystallization force in the weathering of buildings and historical
heritage [75, 99].

However, as extensively discussed in Sections 1.3.2 and 1.4.3, there is still need of further
insight from a theoretical perspective. Indeed, on the one hand, technical difficulties have limited
the number of experiments able to measure such force directly. On the other hand, although
significant understanding has been achieved for the equilibrium problem [35, 127], the existing
theoretical approaches for out of equilibrium systems [76, 130, 132] do not account for microscopic
ingredients at the contact (such as surface tension and disjoining pressures) and still strongly
rely on equilibrium thermodynamics. Here, we study a simple “sandwich” geometry where an
axisymmetric crystal grows between two flat and parallel walls (Hele-Shaw channel). Further-
more, we use a time-dependent simulation box to allow for lateral growth following the approach
presented in Section 2.7.2.

In particular, we find that the interplay between diffusion and surface kinetics controls a
detachment transition, consisting in the arrest of the triple line followed by the formation of a
macroscopically thick liquid film between the expanding crystal and the substrate. The transition
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Figure 5.1: Sketch of the interpolation between the macroscopic crystal profile ζ∞eq (r) (far from the
substrate) and the actual equilibrium profile ζeq(r) (black line) for both repulsive ζ∞eq = ζ∞rep (red dashed
line), and attractive ζ∞eq = ζ∞att (blue dashed line) crystal-substrate interaction potential. The black dashed
line represents a flat equilibrium profile in the contact region, ζeq0 . The gray rectangle is the substrate.
The area in the circle represents the region where contributions to the line tension γtl come from.

appears to depend on the ratio between a characteristic transport rate, depending on diffusion
and pore size, and surface kinetics. After the transition, a dramatic drop in the crystallization
pressure is observed although the crystal keeps growing laterally.

5.2 Thermodynamic Equilibrium

As discussed in the previous sections, the chemical potential is given by

Δμ = Ω
[
γ̃κ(ζ)− U ′(ζ)

]
,

with γ̃ the stiffness, κ(ζ) the curvature of the crystal profile and U ′(ζ) the crystal-substrate
disjoining force. At equilibrium we have Δμ(ζeq) = Δμeq where Δμeq is a constant. Let us
consider the equilibrium profile of a macroscopic crystal1 far from the substrate ζ∞eq characterized
by the property U ′(ζ∞eq ) = 0. The equilibrium chemical potential is then given by

Δμeq

Ω
= γ̃κ(ζ∞eq ) , (5.1)

corresponding to the habitual Gibbs-Thomson relation (Laplace pressure) for a free crystal in
the absence of a substrate. On the other hand, assuming the contact size to be large enough for
the equilibrium profile to be flat in the center of the contact ζeq0 = ζeq(0), we also have

Δμeq

Ω
= −U ′

0 , (5.2)

where U ′
0 = U ′(ζeq0 ). Let us define with the name triple line the crossover between these two

regions at a distance rrl from the center of the contact. We consider an axisymmetric crystal
and define the equilibrium force Feq as the global force on the equilibrium crystal arising from
the disjoining forces (see also the force balance Eq. (2.43) with uCz = 0)

Feq = −2π

ˆ R

0
dr

[
rU ′(ζeq)

]
, (5.3)

where R � rtl. The equilibrium shape outside the contact is the solution of Eq. (5.1), and reads:

ζ∞eq (r) =
Δμeq

4Ωγ̃
(r2 − r2tl)−

Feq

2πγ̃
ln

r

rtl
+ ζ∞tl . (5.4)

1The adjective “macroscopic” refers to a crystal which exhibits some part of its surface which is far enough
from the substrate for the interaction to be negligible.
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The details of the calculations are given in Appendix E.1. The precise definition of rtl is to some
extent arbitrary. In the following, we will use different conventions depending on the nature
of the contact, e.g. adhesive (minimum in the interaction potential) or purely repulsive. These
features are illustrated in Fig. 5.1. Using the fact that the chemical potential is constant (see
above), we finally obtain two independent relations describing the system at equilibrium:

Feq

2πγ̃

1

rtl
=

Δμeq

2Ωγ̃
rtl − ∂rζ

∞
tl , (5.5a)

γ̃

2
(∂rζ

∞
tl )

2 = ΔU +
Δμeq

Ω
(ζ∞tl − ζeq0 ) +

γ0tl
rtl

, (5.5b)

with ΔU = U∞−U0, U∞ = U(ζeq(r � rtl)) ∼ 0, U0 = U(ζeq0 ) and ζ∞tl = ζ∞eq (rtl). The last term in
the above equation γ0tl is the line tension neglecting the excess volume (energetic cost associated
to the difference in the number of particles between the real profile and the macroscopic one).
The line tension represents the difference between the free-energy associated to a contact with a
straight triple line (1D), and the one of the corresponding macroscopic configuration composed
only of a macroscopic profile far from the substrate and a flat interface profile in the contact
region (see Appendix E.1.1). Its expression together with the derivations of the above relations
are given in Appendix E.1.

Equation (5.5a) characterizes the equilibrium force balance whilst Eq. (5.5b) is linked to the
equilibrium shape of the profile at the triple line. Finally, one should note that the position of the
triple line provides a definition of the contact radius L at equilibrium. The contact radius has a
central role in assessing the crystallization pressure P = FCz/(πL

2). This is why it is important
to characterize the triple line at equilibrium. Indeed, as discussed in Section 5.4, rtl can be used
to benchmark the methods which estimate in practice the contact radius from simulations. In
the following, this will allow us to realize reliable estimations of the contact radius to compute
the pressure in out of equilibrium dynamics.

5.2.1 Equilibrium pressure with an attractive interaction

In the case of an attractive interaction, one has a perfect analogy with usual wetting concepts.
First of all, as commented in Appendix E.1, if we consider the problem of a confined solid with
zero external force we expect for a large crystal Δμeq/Ω = 0. Zero equilibrium chemical potential
using Eq. (5.5b), implies in the small slope limit the usual Young relation plus a contribution
from the line tension which vanishes for macroscopic crystals (rtl → ∞):

γ̃

2
(∂rζ

∞
tl )

2 ≈ γ̃(1− cos θtl) = ΔU +
γ0tl
rtl

, (5.6)

with ΔU = U∞ − U0 = −U0 > 0 (using U∞ ≈ 0), and θtl the contact angle2. In order to keep
this well defined contact angle relation when Δμeq �= 0, we use the relation

ζ∞tl = ζeq0 , (5.7)

as a conventional definition of the triple line position rtl.
Then, combining Eq. (5.5a) together with Eq. (5.5b) and the definition ζ∞tl = ζeq0 we obtain

Δμeq

Ω
=

Feq

πr2tl
+

1

rtl

[
8γ̃(ΔU +

γ0tl
rtl

)
]1/2

, (5.8)

where the sign in front of the square root is chosen from physical consideration. At equilibrium
and in the dilute limit one has the standard thermodynamic relation Δμeq = kBT ln(1 + σ) [35],

2Note that in Eq. (5.6) γ0
tl = γtl is not an approximation. Indeed, as shown in Appendix E.1, the limit of

Δμeq = 0 coincides with the limit of zero excess volume at the triple line.
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Chapter 5. Crystallization force

where the equilibrium supersaturation σ is constant and uniform through the film and in partic-
ular equal to the one away from the contact region (the boundary supersaturation bath σbc in
the numerical scheme). It follows that we can write

Peq =
kBT

Ω
ln(1 + σ)− 1

L
[8γ̃(ΔU +

γ0tl
L
)]1/2 (5.9)

where Peq = Feq/(πL
2) is the equilibrium pressure with L = rtl as the contact radius. Equa-

tion (5.9) is equivalent to the standard thermodynamic expression of Correns and Steinborn [98]
for L → ∞. Hence we can consider this expression as a generalization of Correns’s expression
which includes surface tension and wetting corrections for small crystals.

5.2.2 Equilibrium pressure with a repulsive interaction

As ΔU tends to zero, in Eq. (5.5b) the contact angle ∂rζ
∞
eq (rtl), defined at ζ∞eq (rtl) = ζeq0 , will

tend to zero as well. In particular, for a repulsive potential since U0 > 0, there is no crossing of
the macroscopic profile with the line ζ = ζeq0 (see Fig. 5.1). This is why we need to assume a
different definition of the triple line position. We choose to impose

∂rζ
∞
eq (rtl) = 0 . (5.10)

The first consequence of this convention is that the equilibrium contact angle relation Eq. (5.5b)
gives a relation for the discontinuity (ζ∞tl − ζeq0 ) of the macroscopic profile at the triple line:

Δμeq

Ω
(ζ∞tl − ζeq0 ) = −ΔU +

γtl
rtl

. (5.11)

This relation has no practical use for the determination of the equilibrium force but can be used to
predict the shape of the profile far from the substrate according to Eq. (5.4) if the other variables
are known. From the definition of the triple line Eq. (5.10), the relation between equilibrium
force and chemical potential is from Eq. (5.5a) simply given by

Feq

πr2rl
=

Δμeq

Ω
. (5.12)

Finally, using again the link between equilibrium supersaturation and interface chemical potential
in the dilute limit, we recover the expression of Correns [98]

Peq =
kBT

Ω
ln(1 + σ) (5.13)

given that the contact size is L = rtl with rtl defined through Eq. (5.10).
It interesting to note that in this case, neither the functional form of the interaction nor

effects linked to surface free energy play a role in the equilibrium pressure. In addition, the
pressure Peq is independent of the contact size.

5.3 Simulation details

Our goal now is to investigate how the crystallization pressure is affected by non-equilibrium
growth conditions. As a preamble, we will verify that our model and numerical scheme can
reproduce the equilibrium relations.

In order to do so, we consider the system illustrated in Fig. 2.5c, where a crystal is confined
by a double contact separated by a distance 2d (pore size). For simplicity, as done in the
previous chapter we consider an axisymmetric geometry. However, here we solve the system
equations with an expanding simulation box as illustrated in Section 2.7.2. Also, in contrast to
the previous chapters, we use the full nonlinear (exponential) relation between local interfacial
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5.3. Simulation details

chemical potential and concentration but assume, given the geometry, zero vertical rigid body
velocity, uCz = 0. Using Eqs. (2.11), (2.45), (2.48b) and (2.64) we have the following system of
equations:

∂tζ = −1

r
∂r[rζΩD(∂rceq)]− 1

r
∂r[r

ζD

ν
(∂r(∂tζ)] , (5.14a)

ceq = c0e
Δμ/kBT , (5.14b)

Δμ = Ω

[
γ̃∂rrζ +

γ̃

r
∂rζ − U ′(ζ)

]
, (5.14c)

vl = −∂tζbc
∂rζbc

= ∂rζ
−1
bc [Ωνc0(1 + σbc − e

Δμbc
kBT )] , (5.14d)

where vl is the velocity of the edge of the simulation box. Note that the terms multiplied by
the stiffness in Eq. (5.14c) represent the axisymmetric curvature. The relation for the lateral
contact velocity, Eq. (5.14d) depends on the boundary width ζbc, chemical potential Δμbc, and
supersaturation σbc. In particular, at the boundary we have from Eq. (5.14c)

Δμbc

Ω
= (γ̃κbc − U ′(ζbc)) ≈ γ̃κbc , (5.15)

where we assumed as usual that the film width at the boundary is large enough for the interaction
with the substrate to vanish. The curvature at the boundary itself depends on the pore size and
evolves during the integration according to3

κbc =
[(

1 + (∂rζbc(t))
2
)1/2

(d− ζbc)
]−1

. (5.16)

We sometimes use an alternative boundary conditions where the curvature can be held fixed at
the boundary. Globally, the quantities which are fixed in the integration are the film width at
the boundary ζbc, the pore thickness d, and the bulk supersaturation outside the contact region
σbc. The interaction potential appearing in Eq. (5.14c) is identical to that of Section 4.2,

U(ζ) = āA
e

−(ζ−h)

hλ̄

ζ − h
, (5.17)

where ā and λ̄ are dimensionless constants representing respectively the repulsion amplitude and
range, and the constant A [J/m] contains the physical units. Finally the force is calculated from
the axisymmetric force balance equation Eq. (2.43) (with uCz = 0):

F = −2π

ˆ rbc(t)

0
dr rU ′(ζ) , (5.18)

with rbc(t) the boundary of the integration domain (here growing vl = ṙbc(t)). The evolu-
tion equations are solved in normalized units following the numerical scheme illustrated in Ap-
pendix B.3. The normalized equations read

∂t̄ζ̄ =
1

r̄
∂r̄

[
r̄ζ̄ exp(Δμ̄)∂r̄Δμ̄

]− 1

r̄
∂r̄

[
ζ̄

ν̄
∂r̄(∂t̄ζ̄)

]
(5.19a)

Δμ̄ = [∂r̄r̄ ζ̄ +
1

r̄
∂r̄ ζ̄ − ā(

e
−(ζ−1)

λ̄

ζ − 1
)′] (5.19b)

v̄l = ∂r̄ ζ̄
−1
bc [ν̄(1 + σbc − exp(Δμ̄bc)] (5.19c)

(5.19d)

3Note that this expression is not exact since it approximates the constant-curvature surface outside the contact
region by an arc of circle (thus assuming isotropy). For detailed discussion and schematics see Section 2.7.2.
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where the superscript ′ indicates derivative taken with respect to ζ and we directly inserted
Eq. (5.14b) in Eq. (5.14a). Note that above we do not have a bar over the supersaturation
σ. Indeed, we here choose a normalization which makes physical supersaturation correspond to
the same quantity in code units (σ̄ = σ). Remark also that two alternative time scales can be
used in the normalization of time, the diffusion one and the one linked to surface kinetics ν.
We choose as previously the diffusive time scale. Then the dimensionless interaction amplitude
is ā = Ω/(h2kBT )A, and dimensionless variables are the normalized width ζ̄ = ζ/h, radius
r̄ = r/l with l2 = Ωγ̃h/(kBT ), and time t̄ = kBTc0D/(γ̃h) t, where as in the previous section
l is the rescaling factor to be applied to the radial distances. Beyond the constants λ̄ and ā
describing the potential, and the supersaturation σbc, another constant appearing in Eq. (5.19)
is the normalized kinetic constant

ν̄ =
l2

Dh
ν =

Ωγ̃

DkBT
ν . (5.20)

Equation (5.19)s have to be supplemented with a condition on the (normalized) curvature at the
boundary of the integration domain Eq. (5.16). We then define the normalized pore half width

d̄ =
h

l2
d . (5.21)

The relation above is derived from the condition that 2d must have the same scaling as κ−1.
Finally, the profile obtained via Eq. (5.19) at each time step is used to compute the crystallization
force via Eq. (5.18). This introduces the two last relevant normalized observables: the normalized
crystallization force

F̄ =
F

hγ̃
, (5.22)

and the normalized crystallization pressure

P̄ =
Ω

kBT
P , (5.23)

where P = F/πL2 with L = l L̄. We choose the normalized interaction amplitude to be ā =
Ω/(h2kBT )A = 10−3. This choice for example corresponds to a minimum separation enforced
by the interaction h ≈ 10nm, with Ω ∼ 10−28m3, kBT ∼ 10−21J, and – to have a similar order
of magnitude as in DLVO-type forces at nano-metric separation [43] – Ā ∼ 10−12J/m. The
interaction range is held fixed to λ̄ = 10−2 in all simulations. In any case, as illustrated in
Appendix E.2 at equilibrium, simulation results show that the choice of ā has no impact on
steady-state results.

In the following, we will focus on qualitative discussions. Hence, results will be given in code
units. However, some orders of magnitude for NaCl will be given. This choice is motivated by the
recent experimental work of Désarnaud et al. [93] and Naillon et al. [76] where they use a similar
configuration as the one adopted here. Parameters for NaCl are: [131, 179] c0 = 3.7 1027, γ̃ = γ
with γ ≈ 10−1Jm−2, Ω = 45Å , D = 10−9m2s−1. As discussed previously, kinetic constants of
salts are reported to span a wide range of values: ν = 10−3 to 10−5ms−1 [76]. Finally, in principle
also here the question of the correct value of surface stiffness known to diverge for anisotropic
facetted crystals arises (see discussion in Sections 1.1.2 and 4.5.4). Hence when physical units
are given, we will also present results at a larger stiffness γ̃ = 102Jm−2 as that discussed in
Section 4.2.

5.4 Equilibrium simulations and contact area determination

To validate the simulations and choose a method to estimate the contact radius L, we first
performed equilibrium simulations. These are implemented imposing a fixed curvature κbc, su-
persaturation σbc and width ζbc at the boundary of the integration domain. The width at the
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5.4. Equilibrium simulations and contact area determination

Figure 5.2: Left panel: Contact radius estimated in the different manners listed in the text compared to
the target value rtl. The simulation box is R̄0 = 40.6. At high supersaturations, all estimations converge
to the correct value. Furthermore, this value is close to the total simulation box. Right panel: Equilibrium
pressure, P/(πL2) versus boundary concentration using criterion c) to compute L, the dashed line is the
analytic thermodynamic expression from Eq. (5.13).
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boundary is chosen to be large enough for the interaction to be vanishing. Since vl = 0 at
equilibrium, equilibrium simulations correspond to

0 = ∂rζ
−1
bc [Ωνc0(1 + σbc − e

Δμbc
kBT )] , (5.24)

so that, using Eq. (5.15), the curvature at the boundary is given by

κ0bc(σbc) =
kBT

γ̃Ω
ln(1 + σbc) . (5.25)

The simulations were started with a flat contact of size R0. As expected the results are found
to be independent of the initial conditions, as illustrated in Appendix E.2. The system reaches
equilibrium after some equilibration time: the concentration is constant along all the profile
and equal to the imposed value c0(1 + σbc). The profile is stationary, zero mass flux is reached
(see Appendix B.4) and a constant equilibrium force is observed. The time evolution of the
crystallization force is illustrated in Fig. E.1 in Appendix E.2, where the force reaches a plateau
corresponding to its equilibrium value. We also observe, as expected, that variations of the
kinetic coefficient do not affect the simulation results but only influence the timescale needed to
equilibrate the system.

We then evaluated the equilibrium pressure. To do so, one has to estimate the contact radius
L. In practical experiments, the determination of the contact area realizing a perfect match with
the equilibrium prediction could be delicate. In our framework, a measure that would realize
a perfect agreement with the usual thermodynamic relation Eq. (5.13) consists in identifying L
with the triple line rtl defined from ∂rζ

∞
eq (rtl) = 0. However, this definition is not operationally

accessible in out-of equilibrium simulations since it is valid only at equilibrium.
In the left panel of Section 5.4 we show different methods of estimation of the contact radius

based on geometrical observations. These are:

a) L = maxr[ζ
′′(r)],

b) L = minr[U
′′′(ζ)],

c) L = maxr[U
′′(ζ)].

We compare this estimations to the target value rtl obtained from Eq. (5.12) given Feq from
numerical solution and Δμeq = kBT ln(1 + σbc). Whilst collapse of the alternative estimations
of L on the desired value rtl is always obtained in the limit of large supersaturations and con-
tacts, discrepancies are observed at lower supersaturations. This analysis suggests that the best
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Figure 5.3: Blue curve: crystal profiles projected along r. Shaded area: pore walls. In both simulations
σ = 0.1 and d̄ = 100. The vertical axis is downscaled and separation between the two profile is arbitrary
and does not reflect the boundary curvature. The radial size is in code units. The box radius represented
below (origin in the center of the figures) is R̄∞ = 200. Top panel ν̄ = 10−3. Bottom panel ν̄ = 4× 10−2.
In physical units the total simulation box size is 2R∞ = 1.2μm using γ̃ = 100mJ, or 2R∞ = 40μm using a
103 times larger effective stiffness. The the time scale is ≈ 10−7s× t̄ or ≈ 10−4s× t̄ (effective stiffness).
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estimate of the contact area is given by the position of the maximum second derivative of the
interaction along the profile,

L = max
r

[U ′′(ζ(r))] . (5.26)

Using this criterion, we obtain very good agreement with the thermodynamic prediction as shown
in the right panel of Section 5.4. Therefore in the following when calculating non-equilibrium
crystallization pressure, we will use Eq. (5.26) to compute the contact area.

Note that this calculation is performed on points of the crystallization grid, hence they are
affected by discretization. More refined interpolation schemes could be conceived but would
result in a slower computation.

Finally, as illustrated in details in Appendix E.2, we tested the effect of variations of the
potential amplitude ā on the equilibrium pressure and on the relaxation dynamics. We observe
no variations of the equilibrium force and contact radius when varying ā by several orders of
magnitude. Since the interaction is purely repulsive, this is in agreement with Eq. (5.13). This is
a central result. On the contrary, according to Eq. (5.9), for sufficiently small contacts we would
expect an effect of the interaction potential on the equilibrium pressure when the interaction is
attractive. Exploratory simulations also reveal no effects of the choice of the thickness ζbc at the
boundary of the integration domain on the equilibrium pressure.

5.5 Out of equilibrium results

Simulations are started using equilibrium profiles of size R̄0 = 40.6. Then lateral growth is
allowed by letting the boundary curvature evolve according to Eq. (5.16) at a fixed pore size
2d, and fixed supersaturation at the boundary σbc. We observe that the slope ∂rζbc tends to a
constant value for large integration times. It follows from Eq. (5.16) that the curvature at the
boundary, after a transient regime, is roughly constant.

We initially compared simulations with different normalized kinetic constant ν̄. For small
ν̄, the profile is flat in the contact region as illustrated by the top panel of Fig. 5.3. The
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5.5. Out of equilibrium results

Figure 5.4: Out of equilibrium time evolution of crystallization force and pressure at different kinetic
constants ν̄. Left panel, crystallization force. Right panel, corresponding pressure. The black curves
are reference equilibrium values computed from equilibrium simulations. Bottom panel, corresponding
time evolution of the contact area. Identical colors refer to the same simulation. For all simulations the
boundary supersaturation is σbc = 0.1, the half box size is d̄ = 100, and the boundary width is ζbc = 8.1.
Results are reported in code units. For NaCl: physical time scale is ≈ 10−7s × t̄ or ≈ 10−4s × t̄ using
larger effective stiffness; ν ≈ 1ms−1 × ν̄ or ν ≈ 10−3ms−1 × ν̄ using larger effective stiffness. The pore
size corresponds to d = 100nm or d = 100μm for the larger stiffness.
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width of this film is ζ(0) = ζ0 ≈ h, where h is the typical thickness scale enforced by the
disjoining pressure (Eq. (5.17)). Looking at the relative (time-dependent) crystallization force,
such dynamics corresponds to an increasing force with time (red curve in Fig. 5.4a). Interestingly,
when considering the corresponding crystallization pressure (red line in Fig. 5.4b) P̄ = F̄ /(πL̄2)
with L̄ calculated via Eq. (5.26), after a short transient time P̄ reaches a plateau. The plateau
oscillates around a stationary value very close to the equilibrium crystallization force that one
would obtain at the same boundary supersaturation, P̄eq = ln(1 + σbc). This reference value is
represented by the black line in Fig. 5.4b. The oscillations are an artifact due to the fact that
L is computed on discretized grid points. This discretization error can also be seen in the red
curve in Fig. 5.4c representing the time evolution of the contact. Similar behaviors are observed
at different supersaturations.

When one considers higher kinetic constants a new phenomenology emerges. As illustrated
in the bottom panel of Fig. 5.3, we observe after a given integration time a sudden pinning of
the triple line with a macroscopic film forming and a remaining contact patch in the center.
Considering again the evolution of the normalized contact size L̄ (dashed violet curve), after
an initial increase – corresponding for instance to the first two frames of Fig. 5.3 – L̄ reaches a
quasi-stationary value (slowly decreasing) which represents the size of the remaining patch (as
the one in the third frame of Fig. 5.3). However, the corresponding pressure (dashed violet line
in Fig. 5.4b) vanishes. This is explained by the drop observed in the force (left panel). This
drop corresponds to a progressive separation of the remaining contact from the substrate after
the formation of the macroscopic film. This secondary progressive separation in the center is not
large (not visible from Fig. 5.3) but is sufficient to cause a drop in the disjoining pressure. We
also observe that after the transition and at large integration times, the contact size L of the
patch reduces slowly. Even though direct numerical inspection is difficult due to the prohibitively
large surface sizes reached, we expect that eventually the contact will disappear. Indeed, at the
boundary of the patch, far from the concentration supply, the system gains energy dissolving at
the positively curved interface and recrystallizing in the neighboring negatively curved area.

Finally, looking at the blue line in Fig. 5.4b we note a third intermediate regime. In this case,
pressure appears to be finite but clearly lower than the equilibrium value. This type of regime
is observed when ν is close but below the value for which the macroscopic film forms. This case
can be observed comparing the blue and red curves in Figs. 5.4a and 5.4c. By direct inspection
of the profiles, it appears that the contact corresponding to the curve right below the transition
(blue) is slightly more distant from the substrate than the one corresponding to slower lateral
growth (red). This explains the lower plateau in the pressure. The plateau value of these type
of intermediate regimes seems also to depend on the boundary condition ζbc. Furthermore, the
convergence to the plateau is extremely slow. This makes computational integrations difficult
because of the very large system sizes needed to converge. In particular simulation with large
ζbc converge much slower. It turns out that simulations which are stable with respect to the
boundary conditions (see following) are those characterized by such large ζbc. This is why we
are not in the position to draw any quantitative conclusion on these intermediate regimes. We
thus discard these cases in the following discussion and focus on the origin of the detachment
transition.

In the following, we derive a criterion for the onset of the kinetic pinning of the triple line
and systematically analyze the dependence of this threshold on the simulation parameters.

5.5.1 Criterion for detachment

Here we provide an heuristic derivation that suggests a criterion for detachment. Let us consider
the evolution equation,

∂tζ =
1

r
∂r [rζΩD(∂rceq)] +

1

r
∂r

[
r
ζD

ν
(∂r∂tζ)

]
. (5.27)

If we assume steady state at large integration times, ∂tζ − vl∂rζ = 0, we have ∂tζ = vl∂rζ.
Since vl depends only on the boundary condition via Eq. (5.14d), it is a constant with respect
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to variations of r and we can write

vl∂rζ =
1

r
∂r [rζΩD(∂rceq)] +

1

r
∂r

[
r
ζD

ν
vl(∂rrζ)

]
. (5.28)

Using the relation ceq = c0 exp(Δμ/kBT ), the definition of Δμ Eq. (5.14c), and integrating
between r0 and r we obtain

vl

(
rζ − r0ζmf −

ˆ r

r0

dr ζ

)
=

rζΩ2Dceq
kBT

∂r(γ̃∂rrζ +
γ̃

r
∂rζ − U ′(ζ)) + vl

rζD

ν
∂rrζ , (5.29)

where r0 is a point within the detached film of stationary (macroscopic) thickness ζmf . Terms
at r = r0 on the right hand side vanish. We now let r → rbc, where rbc(t) is the system size,
then, assuming as usual U ′(ζ(rbc) = ζbc) ≈ 0, the term into parenthesis in the right hand side
of Eq. (5.29) is the curvature at the edge of the integration domain κbc. Since the curvature is
expected to be constant far from the substrate, we assume that the derivative of the curvature
vanishes at the boundary. Rearranging the previous terms and using the definition of κbc we
have (

−r0ζmf

rbcζbc
− 1

rbcζbc

ˆ rbc

r0

dr ζ

)
=

D

ν
(κbc − 1

rbc
∂rζbc) , (5.30)

leading to (
1− ζmf

ζbc
+O(

1

rbc
)

)
=

D

ν
(κbc − 1

rbc
∂rζbc) . (5.31)

In the second line we assumed that the region interpolating between ζmf and ζbc is small as
compared to rbc. Assuming that for t → ∞ rbc(t) is large and ∂rζbc � rbc, we have(

1− ζmf

ζbc

)
=

D

ν
κbc . (5.32)

For a stationary macroscopic film to exist, ζmf must be finite (and positive) leading to the
criterion:

D

ν
κbc < 1 . (5.33)

Let us compare in detail this expected threshold with simulation results. First one has to
assess a criterion to determine the transition event systematically. Inspired by the shape of the
profile after the appearance of the macroscopic film, we define the observable film thickening, ζf
given by

ζf = min
r

[∂rrζ(r)] . (5.34)

This quantity, after the transition corresponds to the location of the triple line pinning (right
after the remaining contact patch). Before the transition, since the central area is flat and no
concavity is present in ζ(r), ζf gives the width of the film under the contact.

In Fig. 5.5 we show ζ̄f as a function of ν/(κbcD) for different normalized pore half widths
d̄ and boundary thicknesses ζbc at large integration times. First of all, we observe that ζ̄f is
constant for low values of ν/(κbcD) and close to 1 (h in physical units, the typical crystal-
substrate separation) representing the growth of a compact crystal. Then for ν/(κbcD) ≥ 1 we
observe an abrupt increase of ζf representing the detachment. Provided that the integration time
is large enough, the values after the transition can be identified with the stationary macroscopic
film thickness, ζf (t → ∞) = ζmf . For large d and ζbc, and when d � ζbc, the transition point
saturates at the expected threshold ν̄/κ̄bc = 1 (indicated by the black dashed vertical line) in
agreement with Eq. (5.33). Furthermore, in this case the transition can be reformulated in terms
of pore thickness (walls separation). Indeed, for d � 1 the curvature from Eq. (5.16) is κbc ≈ d−1.
It follows that we can rewrite the condition for detachment as

ν∗ ≈ D

d
, (5.35)
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Figure 5.5: Film thickening in the detachment zone with respect to kinetic constant and curvature ratio.
Results are obtained measured at large integration times for simulations at different normalized half film
thickness d̄ and boundary width ζ̄bc. All simulations use a supersaturation at the boundary of the contact
zone σbc = 1. The vertical dashed line represents the position of the transition as expected from Eq. (5.33).
Results are in code units.

with ν∗ the critical kinetic coefficient and d the half pore thickness. Since it relates quantities
which should be more accessible in experiments, this expression is more convenient for experi-
mental investigations. Remark that in code units this condition reduces simply to

ν̄∗ ≈ 1

d̄
. (5.36)

Finally, we study the influence of the supersaturation on the detachment. This is shown in
Fig. 5.6 for a fixed normalized pore size 2d̄ = 200. As illustrated in the left panel, the effect
of supersaturation on the location of the transition is small. In addition, this effect seems to
vanish for large supersaturations. In the right panel of the same figure, we show the effect of the
supersaturation on the time evolution of the crystallization pressure slightly above the transition
(characterized by an asymptotic drop). The supersaturation affects significantly the relaxation
time: for small σbc the decrease of P is slower. Due to very long relaxation times, for small σbc
the simulation times required to reach the asymptotic state can be prohibitive.

To summarize, we have observed three asymptotic non-equilibrium regimes for the pressure
at a given bulk supersaturation outside the contact region. These regimes seem to depend
exclusively on how the kinetic constant compares to the boundary curvature (or pore width).
These regimes are:

i) The crystallization pressure is indistinguishable from the equilibrium one; no detachment of
the interface.

ii) An intermediate regime where the crystallization pressure reaches an asymptotic value below
the equilibrium value but finite; no detachment of the interface.

iii) The crystallization pressure and force asymptotically vanish: detachment of the interface,
kinetic pinning of the triple line and formation of a macroscopic film.
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5.6. Discussion

Figure 5.6: Effect of supersaturation on (left panel) or after (right panel) the transition. All simulations
at normalized half pore size d̄ = 100 and normalized boundary width ζ̄bc = 22.1. Left panel, (small) effects
on critical surface kinetics constant ν∗. Right panel, effects on time scales for pressure decrease after the
transition. Physical units for NaCl are given in Fig. 5.4.
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5.6 Discussion

5.6.1 Limitations and perspectives

Elasticity and facets

A limitation of our model, as also discussed in the case of pressure solution, is the absence
of elastic strain in the crystal and the substrate. This might become important when large
crystallization pressures are generated or when considering the possibility of non-hydrostatic
stresses [35, 92].

A second limitation discussed in the previous chapter, is to account for strongly anisotropic
crystals presenting facets. To obtain quantitative agreement with experiments on faceted crystals,
we have used a ratio γ̃/γ ∼ 103. However, the value of the stiffness γ̃ does not change the results
qualitatively. Finally, our main result, i.e. the criterion for detachment Eq. (5.33), is independent
of γ̃.

The macroscopic film

The detachment transition corresponds to the point where diffusion and surface kinetics are
comparable. However by construction, our model for the motion of the interface outside the
contact is valid only in the limit where surface kinetics is the slowest process. Hence, we are
reaching the limits of validity of our model, and we need to have a critical view of the simulation
results above the threshold. For instance, Eq. (5.32) suggests a relation for the macroscopic
thickness above the transition:

ζmf ≈ ζbc(1− D

ν
κbc) . (5.37)

As shown in Appendix E.3 this relation compares well to numerical results. However, the film
thickness in Eq. (5.37) depends on the imposed thickness at the boundary ζbc which is non-
physical. Hence, if on the one hand the detachment transition is found to be robust with respect
to boundary conditions, on the other hand Eq. (5.37) confirms that our modeling approach is
not adapted to describe the evolution of the interface beyond the detachment transition.
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Improvements of the model could be achieved including the full solution of the diffusion
transport problem in the bulk outside the contact as done in Refs. [126, 130, 131]. However,
these types of models can have also difficulties to converge when large kinetic constants are
used [131].

A full exploration of the parameter space would be important to investigate some analogies.
Indeed, on the one hand, we think that at the transition the observed phenomenology presents a
striking similarity with the Landau-Levich transition [180, 181]. The Landau-Levich transition is
a dynamical transition that occurs when drawing a solid out of a liquid bath. Above a threshold
velocity, a film is entrained at the surface of the solid. Furthermore, after the detachment
transition, the morphology observed in the simulations is similar to that observed in viscous
fingering (Saffman-Taylor fingers) [182], or solidification and dendrites in a channel [183]. In
addition, as surface kinetics becomes faster, morphological instabilities similar to the Mullins &
Sekerka instability discussed in the introduction are expected to take place. A future perspective
of our work is to try to formalize these analogies. This goes together with the development of a
consistent formulation of the model able to describe the dynamics after the transition.

5.6.2 Comparison with existing literature

At equilibrium, we showed with Eq. (5.9) that for attractive interactions and small crystals, we
expect a correction to the crystallization pressure from the interaction potential and the line
tension. This is different to usual equilibrium crystallization pressure expressions accounting for
surface tension effects in small crystals. For instance using the standard formula as found in
Scherer [35] or Steiger [128] one would have in dilute limit and for isotropic surface free energy:

Peq =
kBT

Ω
ln(1 + σ)− γ̄κ , (5.38)

with γ̄ an isotropic surface tension or an effective mean surface tension and κ the curvature of
the crystal. Let us compare this expression with our findings for an attractive interaction. Using
Eqs. (5.5b) and (5.7) in the small slope limit, Eq. (5.9) can be rewritten as:

Peq =
kBT

Ω
ln(1 + σ)− 2

rtl
γ̃θ∗tl , (5.39)

where rtl is the radius of the triple line, and θ∗tl = π− θtl, with θtl the equilibrium contact angle.
The above expression is similar to Eq. (5.38). However, the curvature κ is given by the term
2θ∗tl/rtl. The angle θ∗tl accounts for the interaction with the substrate and the line energy via
Eq. (5.6). Finally, our formula contains the stiffness γ̃ instead of the surface tension γ due to
the anisotropy of the crystal. Beyond the fact that anisotropy, line tension, and interactions are
not explicitly considered in standard formulations, we have shown the crucial role of the choice
of definition of the contact area. In our view, existing approaches are ambiguous on this point.
For instance, we showed (Eq. (5.13)) that there are definitions of contact area for which the
(repulsive) interaction with the substrate and surface tension effects are irrelevant independently
from the crystal size.

As discussed in the introduction, out of equilibrium models of crystallization force are seldom
found in the literature. To the best of our knowledge, the existing approaches have followed
strategies which focus on solving the transport problem around the crystal and deduce the
crystallization force via the Correns’s equilibrium formula Eq. (5.13) or improved formulations
(accounting for instance for the ionic number and non-ideal behavior) [35, 127, 128]. Some of
these models are very sophisticated and are able to couple many phenomena including elasticity
and crack generation and evolution, via coupled finite element, finite volume, and phase fields
methods [130]. However, the resolution of these models is at the scale of the pore, with a poor
description of the crystal interface and no inclusion of microscopic interactions between crystal
and substrate nor surface tension effects. Furthermore, the systematic use of the equilibrium
formulation of the crystallization force is in our view unsatisfactory.
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Despite the general differences with current approaches, some analogies can be found with
the work of Naillon et al. [76]. These authors claim that a sufficient condition to generate
a large crystallization pressure is Da2 � 1. This argument is based on the observation that
Da2 � 1 implies a large supersaturation in the contact region and on the assumption that the
crystallization pressure is given by the equilibrium expression Eq. (5.13).

The dimensionless constant Da is known as Damköhler number [184] and represents the com-
petition between precipitation rate (chemical reaction rate) and transport phenomena rate. In
[76] the authors define Da =

√
dρCν/(ΔcD) with Δc a typical concentration for the onset of

crystallization with respect to a reference equilibrium one. Within our model, we can reformu-
late the condition of detachment in terms of a dimensionless Damköhler number. The natural
definition of Da is for us

Da =
dν

D
. (5.40)

With this definition, the detachment corresponds to Da = 1. Therefore at a given supersatu-
ration, Da < 1 would imply a finite crystallization pressure close to the equilibrium prediction.
This is similar to the conclusion of Naillon et al. However, our criterion is different since we
obtained a sharp transition (Da = 1) for the drop of the crystallization pressure based on the
non-equilibrium dynamics of the crystal interface within the contact (detachment transition)
maintaining a constant supersaturation bath at the edges of the contact. In contrast, the inter-
pretation of Naillon et al. relies on the concentration field outside the contact and assumes an
equilibrium pressure within the contact.

As far as experiments are concerned, we showed that for repulsive interactions and small
pore sizes we agree with the usual thermodynamic equilibrium description. Hence our results
compare well to the experimental results of Désarnaud et al. [93] which are compatible with
equilibrium predictions. However, better quantitative performance from our model could be
achieved including the effect of chemical activities or accounting for the presence of more than
one ionic species in the solute. For instance, the latter effect implies that the pressure obtained
by Correns formula should be multiplied by a factor n = 2 when considering 1-1 salts as NaCl.
We could account for corrections due to the number of ions using nΔμ/Ω = γ̃κ − U ′(ζ) as the
definition of chemical potential.

Finally, it is interesting to assess the critical kinetic constant ν∗ for some specific materials.
Choosing a pore size of order 10μm (similar to the order of magnitude used in [76, 93]), and
using the diffusion constants reported in Table 4.1, we would have for instance ν∗ ≈ 10−4m/s
for Calcite and ν∗ ≈ 10−5m/s for Sodium Chlorate. In crystallization force experiments NaCl is
often considered. Using [179, 185] D ∼ 10−9m2s−1 we expect again ν∗ ≈ 10−4m/s. A similar
value can be found using sodium sulfate [186] considered one of the most damaging agents during
crystallization pressure [75, 100]. Precise evaluation of surface kinetics constants are difficult and
few data are available in the literature. In general, as commented in the previous chapter, the
range of values of surface kinetic constants of salts is 10−5 to 10−3ms−1 [76]. It follows that
according to our results, significant crystallization forces should not build up for pores larger
than 100μm.

If we assume precipitation rate of ν ≈ 10−3ms−1 for NaCl as Naillon et al. [76], our analysis
suggests that vanishing crystallization force should be observed asymptotically. In particular, in
[76] the authors report that, despite an initial bulk supersaturation of σ = 0.7, in less than 1s
they observe a pressure corresponding to the equilibrium pressure at σ = 0.005. Using Eq. (5.13)
this value corresponds to P̄ ≈ 5× 10−3. We assume the same parameters as in [76]: d = 10μm,
ν = 10−3ms−1, and σbc = 0.7. The rest of the parameters are those given in Section 5.3. From
the simulation, we extracted the time needed to observe a drop of the crystallization pressure to
P̄ ≈ 5× 10−3. In physical units, this corresponds to trelax ≈ 0.02s, a much shorter time than the
one declared in [76]. Eventually, at longer times the pressure keeps decreasing and tends to zero.
The observation of a shorter transient time could be due to the fact that the supersaturation is
artificially held fixed outside the contact zone in our simulations. This continuum supply of mass
can accelerate the process. Another hypothesis is that this difference in time scale is due again
to the fact that in the experiments the crystal is faceted. Thus we should account for strong

121



Chapter 5. Crystallization force

anisotropy via the effective stiffness. Simulation using the effective stiffness γ̃ = 102Jm−1 lead
to trelax ≈ 0.4s. This is compatible with the transient time observed in [76].

5.7 Summary

We showed in this chapter that using a Hale-Shaw geometry formed by two parallel flat sub-
strates, our model is able to describe the force of crystallization. The approach was validated by
demonstrating in details that we can reproduce analytical predictions on the equilibrium crys-
tallization pressure. We pointed out the crucial role of the definition of the contact area on the
finite size corrections of the crystallization pressure.

Using a purely repulsive interaction, we found that high crystallization pressures, close to the
ones expected at equilibrium, should be obtained for materials characterized by a slower surface
kinetics.

In particular, we found a transition at a critical kinetic coefficient which depends on the ratio
between pore size and diffusion. After the transition, we observe a kinetic pinning of the triple
line leaving a central contact patch and giving birth to a macroscopic film. Simultaneously with
the transition, we also observe a drop in the crystallization force and pressure. This transition is
only weakly dependent on other parameters such as the supersaturation. The model, however,
is not able to describe consistently the phenomenology after the transition because we did not
include the description of diffusion transport away from the contact region. The investigation of
such a regime would be interesting in order to compare with the film thickness selection of the
Saffman-Taylor fingers problem. The coupling of the crystal shape and the diffusion field outside
the contact region is thus an important future development of this model.

Another direction of investigation would be to fill the gap between growth with a vertical
growth rate uCz �= 0 and negligible load, which gives rise to rims, as discussed in Chapter 4,
and growth without vertical growth rate uCz = 0, which gives rise to a force, as discussed here.
The intermediate case with a vertical growth rate decreased by a load indeed corresponds to the
seminal experiment of Becker and Day [95].
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Conclusions and perspectives

In this thesis, we presented a continuum model to describe crystals growing or dissolving in
confinement. We assumed that the confinement is caused by one or more walls separated from
the crystal by a thin liquid film (lubricated contacts), and we focused on the dynamics within
a single contact. The model considers the coupled effect of hydrodynamics, surface tension,
crystal-substrate interactions, diffusion in the liquid, and surface kinetics.

The first case study we addressed was dissolution against a substrate due to an external
load (pressure solution). We showed that the morphology of the contact and the dissolution
rates can behave very differently depending on the functional form of the interaction with the
wall. In particular, a diverging (power-law) interaction leads to a flattened contact and power-
law relations between the dissolution rate, applied load and contact size. The exponents of
these laws depend on the viscosity of the liquid in the film. Indeed, the value of viscosity
determines two regimes: one dominated by hydrodynamic dissipation and one by disjoining
forces. However, when the interaction is finite (exponential) the surface profile becomes pointy
and the dissolution rate exhibits an asymptotic value independent of the applied load. Moreover,
although the disjoining pressure is finite, no touching contact (zero film thickness) is achievable
due to the coupled effect of viscous dissipation and regularization of the tip shape by surface
tension. We also considered the effect of dimensionality by comparing results for a 1D ridge and
a 2D axisymmetric contact. We found that touching contacts in 2D could be observed for a finite
load only in the absence of surface tension.

The second system we considered is an axisymmetric crystal growing on a substrate, e.g.,
after sedimentation or heterogeneous nucleation. In particular, we focused on the phenomenon
of cavity formation on the confined crystal surface facing the substrate. In collaboration with
Felix Kohler and Dag Kristian Dysthe (UiO) who performed experiments on NaClO3, we showed
that cavity formation can be described by a non-equilibrium morphology (“phase”) diagram
characterized by a straight transition line passing through the origin. The model also suggests
a more general formulation of the transition line accounting for slow surface kinetics. Globally,
the results indicated that the morphology diagram should be robust with respect to system
details like the form of the disjoining pressure or the type of material. The functional form of the
disjoining pressure influences the continuity of the transition. While a purely repulsive interaction
leads to a continuous transition, an attractive well in the interaction provokes discontinuity with
hysteresis at the transition. We also studied the effect of viscosity and found that beyond a critical
viscosity, or better a critical film thickness, the cavity cannot form. This phenomenon is expected
in experiments only at nanometric separations and for some highly soluble materials (e.g. sugars).
Finally, we proposed a framework to describe the time evolution of the global shape of a growing
crystal on a substrate which accounts for viscosity, diffusion, surface kinetics constant, and bulk
supersaturation. This applies only for materials where growth at the unconstrained surfaces is
driven by surface kinetics and before a cavity forms in the contact region.

We finally discussed the force of crystallization in a Hale-Shaw geometry, i.e. the (axisymmet-
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ric) crystal is confined between two parallel walls. First, we discussed the equilibrium pressure
and showed that the definition of the contact area is crucial. According to our definition of
contact area, we expect corrections to the usual equilibrium pressure formula only in the pres-
ence of an attractive crystal-substrate interaction. Furthermore, we showed that equilibrium
expressions found in the literature including the contribution of (isotropic) surface tension in
small crystals should be modified. We then considered growth focusing on the non-equilibrium
force and pressure of crystallization. We found two main regimes. A low surface kinetic constant
regime, in which the crystallization pressure is roughly equal to the equilibrium pressure at the
same bulk supersaturation. A higher surface kinetic constant regime, where the crystallization
force vanishes asymptotically. This regime is characterized by a kinetic pinning of the triple
line leading to the formation of a macroscopic film with a remaining contact patch in the center
(detachment transition). This process is controlled by the ratio between the diffusion constant
and the distance between the walls. The detachment transition presents a striking qualitative
resemblance to the Landau-Levich transition. Furthermore, above the transition, the selection
of the film width exhibits strong similarities with the viscous fingering problem (Saffman-Taylor
fingers). The selection mechanism for the macroscopic film thickness remains an open question.
Solving this problem would require to include the full solution of the diffusion problem outside
the contact region. This is an important perspective of our work.

Other future developments of this work can be envisioned. Some of them are relatively
simple and can be addressed within the current model or with minor modifications. The first
one would be, due to the relevance in the current scientific debate [187], to address the effect
of slow surface kinetics in pressure solution. Other natural developments include for instance to
consider the effect of different shapes of the substrate on the growth or dissolution dynamics,
or to simulate indentation problems where the crystal and the substrate are brought together
by a time-dependent external force. Another short-term direction of research would also be to
evaluate the effect of a laterally expanding contact on the problem of cavity appearance and
pressure solution (dropping the quasi-static assumption).

Some perspectives are more complex and can require major modifications in the model equa-
tions. These consist in withdrawing some of the simplifying assumptions of the model. The most
relevant ones are, in our opinion, crystal rigidity and equal densities between the crystal and
the liquid. The inclusion of elastic effect would, for instance, improve the description of pressure
solution. This would allow one to make link with the well known Asaro-Tiller type instabilities
(arising from elastic effects) [67, 92].

In general, the difference of density between the crystal and the liquid should enhance hy-
drodynamic effects (see in the introduction Section 1.1.5). However, the density difference also
affects the chemical potential. The consequences of this effect would require further investiga-
tions. Finally, another important perspective would be to include atomic steps in the model.
This would provide a better description of faceted crystals.

To conclude, we hope that this work will foster new directions in the study of confined crystal
growth and dissolution. In particular, the thin film model could become a systematic tool to
investigate these type of problems. Indeed, the model is relatively simple given the complexity of
the ingredients involved. The simplicity and the consequent transparency in the interpretation,
we think, is the essential added value of our contribution. This allows to recognize the relative
importance of the mechanisms at play in confined growth and dissolution problems.
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APPENDIX A

Model derivation

In this appendix, more details on the mathematical relations used to derive the model presented
in Chapter 2 are given. We use the following conventions and definitions:

• h is the position of the liquid-crystal interface LC and hs the position of the liquid-substrate
interface LS.

• Subscript xy indicate two-dimensional vectors in the xy plane.

• Similarly ∇xy · a = ∂xax + ∂yay.

• dr = dxdydz is the infinitesimal volume element and dS = dxdy
√

1 + (∇xyh)2 is the
infinitesimal surface element.

• The normal to the LC interface (oriented towards the liquid) is given by

n̂ =
(−∇xyh, 1)

[1 + (∇xyh)2]1/2
.

• The interface normal velocity (oriented towards the liquid) is given by

vn =
∂th

[1 + (∇xyh)2]1/2
.

To derive the relations below we assume zero surface excess for total and crystal molecule type
densities. In the following we will often assume for generality a time dependent liquid velocity
ρL(x, y, z, t) (even though keeping the incompressibility condition ∇ · uL = 0). Indeed, most of
the relations hold even with this general formulation. This could account for instance for spatial
inhomogeneities. However, for simplicity from Appendix A.4 we will use (as declared from the
beginning in the main text) constant liquid density ρL.

A.1 Global mass conservation

The total mass is the sum of the total mass of the solid units and the total mass of the liquid
(neglecting surface mass excess):

M =

˚
(L)

drρL +

˚
(C)

drρC . (A.1)
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This quantity must be conserved, that is ∂tM = 0 up to terms at the boundaries of the system
that are discarded here. The evolution of the total mass is then given by

∂t

˚
(L)

drρL =

˚
(L)

dr∂tρL −
‹

(LC)
dSρLvn ,

∂t

˚
(C)

drρC =

‹
(LC)

dSρCvn ,

(A.2)

where we used for convention that the interface velocity vn is positive towards the liquid and
that the crystal density is constant ∂tρC = 0. Also, we have used that ∂ths = 0 to have no
contribution from the LS interface. Using the continuity equation

∂tρL = −∇ · (ρLuL) ,

∂tρC = −∇ · (ρCuC) ,
(A.3)

and the divergence theorem we find

∂tM =

‹
(LC)

dS(ρLuL · n̂− ρLvn − ρcuC · n̂+ ρCvn) , (A.4)

where we used that since at the LS interface, since the substrate is immobile and impermeable,
we have (Eq. (2.4)),

uL(z = hS , t) · n̂S = 0 . (A.5)

From the condition that conservation must be local, we have at the interface the usual relation
[30], Eq. (2.3) in the main text

ρL(uL · n̂− vn) = ρC(uC · n̂− vn) . (A.6)

A.2 Crystal mass conservation

The total number of crystal-type molecules (or atoms) reads:

NC =

˚
(C)

drΩ−1 +

˚
(L)

drc . (A.7)

Here we assume that the solid is rigid, i.e. elastic deformations are small leading to negligible
changes in the solid molecular volume Ω.

We then impose local conservation of the total number of atoms/molecules of the crystal-type
in the volume and at the (LC) interface, ∂tNC = 0. The contribution of the bulk concentration
reads

∂t

˚
(L)

drc =

˚
(L)

dr∂tc−
‹

(LC)
dScvn . (A.8)

Then using mass conservation for the concentration:

∂tc+ uL · ∇c = −∇ · j , (A.9)

where j is the diffusion flux, we obtain

∂t

˚
(L)

drc =

˚
(L)

dr(−uL · ∇c−∇ · j)−
‹

(LC)
dScvn ,

=

˚
(L)

dr(−∇ · (uLc)−∇ · j)−
‹

(LC)
dScvn ,

=

‹
(LC+LS)

dS(n̂ · uLc+ n̂ · j− cvn) .

(A.10)
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In the second line, we have used the incompressibility of the fluid

∇ · uL(r, t) = 0 , (A.11)

and in the third one the divergence theorem. Since the substrate is immobile and impermeable,
from Eq. (A.5), we have at the LS interface

j · n̂S = 0 . (A.12)

It follows that, as done previously we can drop the subscript (LS) in Eq. (A.10). Similarly,
assuming no diffusion mass flux within the bulk of the crystal, we have for the crystal contribution

∂t

˚
(C)

drΩ−1 =

‹
(LC)

dS(vn − n̂ · uC)Ω
−1 . (A.13)

Note that we used that the normal to the LC interface and the interface velocity are oriented
towards the liquid. Finally, neglecting the excess density contribution we have

0 =

˚
(L)

dS[(n̂ · uL − vn)c+ n̂ · j+ (vn − n̂ · uC)Ω
−1] , (A.14)

leading to Eq. (2.8) in the main text,

(vn − n̂ · uC)Ω
−1 = (vn − n̂ · uL)c− n̂ · j . (A.15)

A.3 Energy changes

We here derive the expression of the time variation of the energy in the system. This allows
obtaining the conditions of mechanical equilibrium. Assuming no heat transfer, the total energy
variation is given by

∂tFLC + ∂tEkin + ∂tFbulk , (A.16)

where we label with F the free energy and separated its bulk contribution from the liquid-crystal
interface contribution and with Ekin the kinetic energy due to liquid motion and dissipation and
crystal motion. We proceed in evaluating each term of the previous expression.

Bulk free energy

Defining as fL(c) the bulk free energy density and as fC the crystal free energy density the total
bulk free energy reads

Fbulk =

˚
(C)

drfC +

˚
(L)

drfL(c) , (A.17)

and considering the movement of the crystallization front its time derivative reads

∂tFbulk =

˚
(C)

dr∂tfC +

˚
(L)

dr∂tfL(c)

+

‹
(LC)

dS(fC − fL(c))vn . (A.18)

Using local mass conservation Eq. (A.9) and incompressibility Eq. (A.11), we have

∂tfL(c) = f ′
L(c)(−uL∇c−∇ · j)

= −∇ · (uLfL(c) + f ′
L(c)j) + j · ∇f ′

L(c) (A.19)
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The crystal has a similar contribution, but with no diffusion mass flux j. As a consequence,

∂tFbulk =

˚
(L)

dr j · ∇f ′
L(c)

+

‹
(LC)

dS[(n̂ · uL − vn)fL(c) + f ′
L(c)n̂ · j)]

−
‹

(LC)
dS(n̂ · uC − vn)fC ,

(A.20)

where, as done previously, we used that there is no contribution form the LS interface uL · n̂ = 0.

Interface free energy

At the interface, we have to consider two different contributions. One comes from the surface
free energy, γ, and the other from the interaction per unit area with the substrate (disjoining
pressure, see Section 1.2.2) W . We therefore write

FLC =

‹
(LC)

dSγ +

‹
(LC)

dxdyW [h(x, y);x, y] . (A.21)

where h = hs − ζ is the position of the interface. The derivative reads [15]

∂tFLC =

‹
(LC)

dSvnγ̃ · κ+

‹
(LC)

dxdy∂thW
′ , (A.22)

with κ the curvature tensor and γ̃ the stiffness tensor given in 1D by γ̃ = γ(θ) + γ′′(θ), and
W ′ = ∂zW (x, y, z). From the expression of the normal velocity and of dS, we can write

∂tFLC =

‹
(LC)

dS vn(γ̃ · κ+W ′) . (A.23)

Kinetic energy

Let us now consider the kinetic energy term. From [141] (p. 143, eq. 5.19 ) we have that the
local variation of free-energy in the liquid is given by

∂t

(
ρLu

2
L

2

)
= ∇ ·

[
−uL

(
ρLu

2
L

2
+ p

)
+ ε′ · uL

]
− ε′ : (∇⊗ uL) + uL · fL , (A.24)

where ε′ij = η(∂juLi + ∂iuLj) with i, j representing the Cartesian components x, y, z, is the
viscous stress tensor, fL is an external body force acting on the liquid and ⊗ is the tensor
product. Assuming that the solid density is constant ∂tρC = 0 and using that ρC∂tuC = fC
where fC is an external force density on the crystal,

∂t

(
ρCu

2
C

2

)
= uC · fC . (A.25)

In the spirit of the Stokes limit (Re << 1), we neglect inertial terms ρu2L,C . Integrating the two
equations and using the divergence theorem we then have an expression for the total variation
of kinetic energy in the system given by

∂tEkin =

‹
(LC+LS)

dS [−n̂ · ε · uL]

+

˚
(L)

dr
[−ε′ : (∇⊗ uL) + uL · fL

]
+

˚
(C)

dr uC · fC ,

(A.26)
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where we defined εij = ε′ij − pδij .
Let us separate the term n̂ · ε · uL in components normal and parallel to the interface :

n̂ · εL · uL = εLnn(n̂ · uL − n̂ · uC) + (n̂ · ε)‖ · (uL − uC)‖ + n̂ · εL · uC , (A.27)

where using local mass conservation Eq. (A.6), we rewrite

(n̂ · uL − n̂ · uC) =
(
1− ρC

ρL

)
(vn − n̂ · uC) , (A.28)

and from the no slip hypothesis at LC and LS

(uL − uC)‖ = 0 . (A.29)

Using that n̂SuL = 0, we are then left with

∂tEkin = −
‹

(LC)
dSεLnn

(
1− ρC

ρL

)
(vn − n̂ · uC)

+

‹
(LC)

dS n̂ · εL · uC

−
˚

(L)
dr ε′ :

[
(∇⊗ uL) + (∇⊗ uL)

T
]

+

˚
(L)

dr uL · fL +

˚
(C)

dr uC · fC .

(A.30)

A.3.1 Global force balance

We can now combine the three energetic contribution calculated:

∂tFLC + ∂tEkin + ∂tFbulk

=

‹
(LC)

dS[(n̂ · uL − vn)fL(c) + f ′
L(c)n̂ · j)]

+

‹
(LC)

dS[−(n̂ · uC − vn)fC + vn(γ̃ · κ+W ′)]

−
‹

(LC)
dS

[
εLnn

(
1− ρC

ρL

)
(vn − n̂ · uC) + n̂ · σL · uC

]

−
˚

(L)
dr ε′ :

[
(∇⊗ uL) + (∇⊗ uL)

T
]

−
˚

(L)
dr M [∇f ′

L(c)]
2

+

˚
(L)

dr uL · fL + uC · FC .

(A.31)

In the previous expression we introduced the the total force acting on the crystal

FC =

ˆ
(C)

drfC = Fint
C + Fext

C , (A.32)

where Fint
C is the internal contribution coming from the liquid and the interface and Fext

C is an
external contribution or load.
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Considering only the LC contribution and using from local mass conservation Eqs. (A.6)
and (A.15) to rewrite the second term of Eq. (A.20), we have

∂t(FLC + Ekin + Fbulk)LC

=

‹
(LC)

dS

[
−ρC
ρL

fL(c) + f ′
L(c)(Ω

−1 − ρC
ρL

c)

]
(vn − n̂ · uC)

+

‹
(LC)

dS [fC + γ̃ · κ+W )] (vn − n̂ · uC)

−
‹

(LC)
dS

[
εLnn

(
1− ρC

ρL

)]
(vn − n̂ · uC)

+

‹
(LC)

dS
[−n̂ · σL + n̂(γ̃ · κ+W ′)

] · uC .

(A.33)

We recognize two type of contributions:
i) Crystal motion terms, proportional to uC .
ii) Crystal growth/dissolution terms, proportional to vn − n̂ · uC .

The first term represents internal forces acting on the crystal. These terms must balance
with the total internal force Fint

C introduced in Eq. (A.32):

0 = Fint
C +

‹
(LC)
dS [−n · σL + n(γ̃ · κ+W ′)] . (A.34)

Assuming no dissipation in the solid bulk, we have Fint
C = −Fext

C leading to the final relation
(Eq. (2.13) in the main text):

Fext
C =

‹
(LC)
dS [−n · σL + n(γ̃ · κ+W ′)] . (A.35)

A.4 Planar currents

We now consider flow rate and mass conservation in the film integrating liquid velocity and
concentration flux over the channel height, z. From now on we assume for simplicity the liquid
density to be constant, ρL.

A.4.1 Total flow

Let us now define the (x, y) planar current:

〈uLxy〉(x, y) =
ˆ hS(x,y)

h(x,y)
dz uLxy(x, y, z) . (A.36)

The divergence of the current reads

∇xy · 〈uLxy〉(x, y) = ∂x

ˆ hS(x,y)

h(x,y)
dz uLx(x, y, z) + ∂y

ˆ hS(x,y)

h(x,y)
dz uLy(x, y, z)

= uLxy(x, y, hS(x, y)) · ∇xyhS(x, y)− uLxy(x, y, h(x, y)) · ∇xyh(x, y) +

ˆ hS(x,y)

h(x,y)
dz∇xy · uLxy(x, y, z)

= uLxy(x, y, hS(x, y)) · ∇xyhS(x, y)− uLxy(x, y, h(x, y)) · ∇xyh(x, y)−
ˆ hS(x,y)

h(x,y)
dz ∂zuLz(x, y, z)

= − [uLz(x, y, z)− uLxy(x, y, z) · ∇xyz]
z=hS(x,y)
z=h(x,y) ,

(A.37)
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where the last term of the third line is obtained from the incompressibility condition Eq. (A.11).
Since the substrate is immobile (with or without slip), one has uL(z = hS) · n̂ = 0, leading to

uLz(x, y, hS(x, y))− uLxy(x, y, hS(x, y)) · ∇xyhS(x, y) = 0 . (A.38)

In addition, at z = h(x, y), we have from Eq.(A.6)

vn = uL · n+
ρC
ρL

(vn − uC · n) . (A.39)

Finally from the definition of vn and n̂, using the previous relations inEq. (A.37) we have

∂th(x, y) = ∇xy · 〈uLxy〉(x, y) + ρC
ρL

[∂th(x, y)− uCz + uCxy · ∇xyh(x, y)] . (A.40)

From this relation together with the definition of the local growth rate vCz (Eq. (2.18)) we obtain
Eq. (2.15) in the main text. This relation indicates that the width hs − h changes locally either
because of a flow 〈uLxy〉 in the xy plane, or because of a crystallization-dissolution process, which
corresponds to the second line. This relation can be written in a different way

uCz−uCxy ·∇xyh = ∇xy · 〈uLxy〉(x, y)+(
ρC
ρL

−1) [∂th(x, y)− uCz + uCxy · ∇xyh(x, y)] . (A.41)

Here, we observe that when ρL = ρC , as it will always be assumed in this work, the source term
of the 2D flow 〈uLxy〉 is controlled only by the crystal velocity uC .

A.4.2 Concentration current

Let us repeat a similar derivation for the diffusion flux associated with the solid units in the
liquid. We define

〈j〉xy =

ˆ hS(x,y)

h(x,y)
dz jxy , (A.42)

then

∇xy〈j〉xy = [jxy · ∇z]z=hS

z=h +

ˆ hS(x,y)

h(x,y)
dz∇xy · jxy . (A.43)

Using mass conservation of the concentration c in the liquid bulk Eq. (2.6), we find

∇xy〈j〉xy = [jxy · ∇xyz]
z=hS

z=h −
ˆ hS(x,y)

h(x,y)
dz ∂zjz −

ˆ hS(x,y)

h(x,y)
dz ∂tc

−
ˆ hS(x,y)

h(x,y)
dz uLxy · ∇xyc−

ˆ hS(x,y)

h(x,y)
dz uLz∂zc .

(A.44)

From incompressibility Eq. (2.1),

∇xy〈jxy〉 = [jxy · ∇xyz − jz + c∂th]
z=hS

z=h

− ∂t

ˆ hS(x,y)

h(x,y)
dzc−

ˆ hS(x,y)

h(x,y)
dz∇xy · (uLxyc)−

ˆ hS(x,y)

h(x,y)
dz ∂z(uLzc)

= [jxy · ∇xyz − jz + c(∂th+∇xyz · uLxy − uLz)]
z=hS

z=h

− ∂t

ˆ hS(x,y)

h(x,y)
dz c−∇xy ·

ˆ hS(x,y)

h(x,y)
dz uLxyc .

(A.45)

Using mass conservation at the LS and LC interfaces Eq. (2.6), we then obtain

∇xy〈j〉xy = −Ω−1(∂th+∇xyh · uCxy − uCz)− ∂t

ˆ hS(x,y)

h(x,y)
dz c−∇xy ·

ˆ hS(x,y)

h(x,y)
dz uLxyc , (A.46)
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which is finally written in a compact form as

Ω−1(∂th+∇xyh · uCxy − uCz) + ∂t〈c〉+∇xy · 〈u〉Lxyc = −∇xy〈j〉xy . (A.47)

This corresponds to 2D mass conservation. Using the definition of the local growth rate Eq. (2.18),
the previous equation can be rewritten as reported in the main text, Eq. (2.19).

A.5 Lubrication expansion

We here show the standard rescaling adopted when applying the so-called lubrication expansion
or small slope limit. We define a small parameter ε = h0/� � 1 where � is the typical extent of
the adhesion patches in the plane x y. We may then define normalized order one coordinates:

X =
εx

h0
, (A.48a)

Y =
εy

h0
, (A.48b)

Z =
z

h0
. (A.48c)

Following the usual procedure for the lubrication expansion [41], defining a characteristic velocity
UO, we also use normalized velocities:

ULXY =
uLxy

U0
, (A.49a)

ULZ =
uLz
εU0

, (A.49b)

where the last equation is a consequence of incompressibility ∇xyuLxy + ∂zuLz = 0. Assuming
parallel flow in the film (Poiseuille flow) ∇xyp ∼ η∂2

zuLxy and that the characteristic time is
given by �/U0 we have:

P =
εh0p

ηU0
, (A.50a)

T =
εU0t

h0
. (A.50b)

It is useful in the following to consider the effect of lubrication expansion on the LC normal n̂,
and the velocity of the interface vn are

N̂ =
(−ε∇XY H, 1)

[1 + ε2(∇XY H)2]1/2
, (A.51a)

Vn =
εU0∂TH

[1 + ε2(∇XY H)2]1/2
. (A.51b)

Global mass conservation Eq. (A.6) (Eq. (2.3) in the main text) implies that also uCz scales as
ε if the liquid crystal density ratio is finite:

UCZ =
ρL
ρC

εU0 . (A.52)

Lubrication expansion also implies the curvature tensor of the interface to be simply given by
the laplacian, κ ≈ ∇2ζ(x, y, t). Finally, given that in the geometries considered θx = arctan ∂xζ
in 1D and θr = arctan ∂rζ in 2D with r2 = x2 + y2, lubrication implies that the stiffness tensor
is at the dominant order

γ̃ = γ(θ) + γ′′(θ) ∼ γ(0) + γ′′(0) . (A.53)
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A.5.1 Liquid velocity

The liquid velocity obeys to Navier-Stokes equation. This equation in absence of body force and
for an incompressible fluid read

ρL∂t(uL) + ρL∇ · (uL ⊗ uL) = −∇p+∇ · ε′ . (A.54)

We can write

εRe(∂TULXY + (UL · ∇)ULXY ) = −∂XY P + ∂2
ZULXY + ε2∇2

XY ULXY , (A.55a)

ε3Re(∂TULZ + (UL · ∇)ULZ) = −∂ZP + ε2(∂2
ZULZ + ε2∇XY ULZ) . (A.55b)

Assuming Reynolds number Re = ρU0h0/η at most of order one, in the lubrication approximation
ε → 0 we obtain to leading order

−∇XY P + ∂2
ZUXY = 0, (A.56)
−∂ZP = 0 . (A.57)

Note that Eq. (A.55) implies that it is sufficient to assume Stokes equation Eq. (2.2) for the fluid
(Re � 1). As a consequence P depends only on X,Y , and UXY exhibits a simple quadratic
form

UXY =
Z2

2
∇XY P +AZ +B , (A.58)

where P , A and B are 3 unknown functions of X,Y which do not depend on Z. These functions
are determined by the no-slip boundary conditions, and we find

ULXY = −(Hs − Z)(Z −H)

2
∇XY P +UCXY

HS − Z

HS −H
. (A.59)

Then, from Eq.(A.36)

〈ULXY 〉 =
ˆ Hs

H
dZULXY = −(Hs −H)3

12
∇XY P +

Hs −H

2
UCXY . (A.60)

In physical coordinates

〈uLxy〉 = −(hs − h)3

12η
∇xyp+

hs − h

2
uCxy , (A.61)

which corresponds to Eq. (2.26) with ζ = hs− h.

A.5.2 Concentration field

Assuming a finite concentration c ∼ O(1) ∼ ε0, and Fick’s law for the diffusion flux j = −D(c)∇c,
Eq. (2.6) can be written in normalized quantities as

εU0(∂T c+ ULXY c+ ULZc) =
ε2

h0
[D(c)∇XY c] +

1

h0
∂z[D(c)∂zc] . (A.62)

To leading order, we obtain:

∂Z
[
D
(
c(X,Y, Z)

)
∂Zc(X,Y, Z)

]
= 0 . (A.63)

Similarly the boundary conditions Eqs. (2.8) to (2.10) reduce to leading order to

JZ(H) = D(c)∂Zc(X,Y,H) = 0 , (A.64)
∂Zc(X,Y,Hs) = 0 , (A.65)
εU0VCz = ν(c(X,Y,H)− ceq(X,Y )) , (A.66)
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where H = h/h0 and Hs = hs/h0 are the dimensionless LC interface and substrate position in
lubrication expansion, respectively. In the last relation we assumed ν to be comparable to ε in
general. This corresponds to the limit of slow attachment. A first integration of Eq. (A.63) leads
to

JZ = −D(c(X,Y, Z))∂Zc(X,Y, Z), (A.67)

where JZ depends on X,Y but does not depend on Z. From Eq. (A.64), we have JZ = 0, so
that ∂Zc(X,Y, Z) = 0, and c(X,Y, Z) is independent of Z.

Fast attachment

The case of fast attachment kinetics follows from Eq. (A.66) when assuming ν ∼ O(1) ∼ ε0.
Indeed this gives to leading order

(c− ceq) = 0 . (A.68)

implying c(X,Y,H) = ceq(X,Y ).

A.5.3 Force balance

In the following, the subscript ext is used to indicate quantities fixed by external constraints.
Since the surface energy exhibits translational invariance with respect to the displacement

of the whole crystal, the surface stiffness contribution of the force balance vanishes (see Ap-
pendix A.5.4):

0 =

‹
(LC)
dSn̂(γ̃ · κ) . (A.69)

In addition, the integral of the normal vector vanishes (see Appendix A.5.4), so that

0 =

‹
(LC)
dS n̂ pext . (A.70)

As a consequence, the global force balance from Eq. (2.13) reads

Fext
C =

‹
(LC)
dS [−n̂ · ε′ + n̂(p− pext +W ′)] , (A.71)

where ε′ is the viscous stress tensor ε′ij = η(∂juLi + ∂iuLj).
Now, assuming that both viscous dissipation and the deviation from the external pressure

are small outside the contact, the non-vanishing contribution of the integral are in the contact
only, leading to

Fext
C =

ˆ
dx

ˆ
dy(1 + (∇h)2)1/2[−n̂ · ε′ + n̂(p− pext +W ′)] . (A.72)

Projecting this relation on ẑ:

Fext
Cz =

ˆ
dx

ˆ
dy (1 + (∇h)2)1/2[−n̂ · ε′ · ẑ+ n̂ · ẑ(p− pext +W ′)] . (A.73)

To leading order in the lubrication expansion p ∼ ε−1, ∇xyh ∼ ε, uLz ∼ ε, uLxy ∼ 1, h ∼ 1. It
follows that also ε′ij = η(∂iuLj + ∂juLi)/2 ∼ ε, so that we are left with (Eq. (2.36) in the main
text)

Fext
Cz =

ˆ
dx

ˆ
dy [p− pext +W ′] . (A.74)

In addition, the tangential force balance reads

Fext
Cxy = Fext

C − ẑ (Fext
C · ẑ) =

ˆ
dx

ˆ
dy (1+ (∇h)2)1/2[−(n̂ · ε′)xy + n̂xy(p− pext+W ′)] . (A.75)
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To leading order in the lubrication limit

Fext
Cxy =

ˆ
dx

ˆ
dy [−η∂zuLxy|z=h −∇h (p− pext +W ′)] . (A.76)

Using Eq.(A.59) we have

η∂zuLxy|z=h = −hs − h

2
∇p− ηuCxy

hs − h
. (A.77)

Integrating by parts and using the gradient theorem for the W term

Fext
Cxy =

ˆ
dx

ˆ
dy

[
ηuCxy

hs − h
− (p− pext)∇hS + h

2

]
+

˛
ext
d�extn̂extxy

[
W (h) + (p− pext)

hS − h

2

]
.

(A.78)
From the B.C. p = pext outside the contact, the second term in the integral over the boundary of
the domain vanishes. If we also assume a constant height h = hbc at the boundary, or if hbc is large
as compared to the range of the potential, then W (hbc) should be constant, and

¸
extd�extn̂extxy = 0

( the integral of the normal vector on a closed line vanishes, see Appendix A.5.4).
Finally,

Fext
Cxy =

ˆ
dx

ˆ
dy

[
ηuCxy

hs − h
− (p− pext)∇hS + h

2

]
. (A.79)

corresponding to Eq. (2.37) in the main text.

A.5.4 Identities resulting from translational invariance of the free energy

Here we derive some integral identities that are used in the main text. These identities express
the fact that the total force resulting from a translational invariant energy must vanish.

Consider a generic free energy functional FD acting over a domain D in d dimensions and
with boundary ∂D in (d − 1) dimensions. Let us assume that its variation can be written as a
surface integral

δF =

˛
∂D

dS (δr · n̂)δFD
δr

, (A.80)

where δr is a d-dimensional infinitesimal variation of the domain boundary.
Let us now assume that FD is invariant under translations. Then, δF must vanish under

infinitesimal translations, i.e. when δr = dr is an arbitrary constant (independent on space
coordinates). As a consequence

0 = dr ·
˛
∂D

dS n̂
δFD
δr

. (A.81)

Since this is true for any dr, we find that the force acting on the domain surface vanishes:

0 =

˛
∂D

dS n̂
δFD
δr

. (A.82)

This relation is valid for arbitrary shapes of the domain D.
In particular, consider the surface energy

FS =

˛
∂D

dS γ(n̂) , (A.83)

whose variation is given by ˛
∂D

dS n̂ (κ : γ̃) = 0 , (A.84)

where γ is a general surface tension (function of the orientation), γ̃ is the stiffness tensor and κ
is the curvature tensor. In the special case where the surface tension is isotropic, i.e. γ does not

137



Appendix A. Model derivation

depend on n̂, we obtain a known equality: the integral of the mean curvature times the normal
vector of an arbitrary (sufficiently regular) surface vanishes[188]˛

∂D
dS n̂ H = 0 , (A.85)

where H is the mean curvature.
Finally, another useful relation is obtained when choosing an energy proportional to the

volume of the domain D: ˛
∂D

dS n̂ = 0 . (A.86)

We find that the integral of the normal vector vanishes on any closed regular surface.

A.6 Mean curvature in axysimmetric contact

Here, some useful definitions for the 2D axysimmetric system are given. In cylindrical coordinates
the gradient and divergence operators read:

∇f(r, θ, z) = ∂rf r̂+
1

r
∂θfθ̂ + ∂zf ẑ (A.87)

∇ · F =
1

r
∂r(rFr) +

1

r
∂θFθ + ∂zFz (A.88)

The mean curvature can be derived using the definition in [189, 190]. As showed from
Weatherburn [189] in cylindrical coordinates the surface can be defined by an implicit function
f(r, θ) = (r cos θ, r sin θ, h(r, θ)) = 0, where h(r, θ) is the height of the crystal surface. This
reduces to (r cos θ, r sin θ, h(r)) = 0 in the axial-symmetry case. The mean curvature is given by

κ =
1

H2

(
EN − 2FM +GL

)
(A.89)

The different terms appearing in the previous equation are

E = |t̂1|2
G = |t̂2|2
F = t̂1 · t̂2

H2 = EG− F 2

where t1 = ∂rf and t2 = ∂θf are the tangent to the curves r = constant and θ = constant,
respectively. Defining the norm to the surface as

n̂ =
t̂1 × t̂2

H

in axial-symmetry we have

t̂1 = (cos θ, sin θ, ∂r)

t̂2 = (r sin θ,−r cos θ, 0)

n̂ =
(r∂rh cos θ, r∂rh sin θ,−r)[

1 + (∂rh)2
]1/2

r

The other terms appearing in Eq. (A.89) are defined as

N = n̂ · (∂θθf)
L = n̂ · (∂rrf)
M = n̂ · (∂rθf)
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Using these definition we obtain the following result for the mean curvature

κ = − ∂rrh[
1 + (∂rh)2

] 3

2

− ∂rh/r[
1 + (∂rh)2

] 1

2

, (A.90)

reducing in the lubrication limit to Eq. (2.47) of the main text.
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APPENDIX B

Numerical methods

This appendix shows some technical details of the numerical integration procedure adopted
to solve the model equations in the different regime considered. For compactness, only the
axisymmetric contact is here shown. The symmetric ridge case (1D) is completely analogous.

Space-time is discretized on a lattice of M = R/Δr bins and N = T/Δt time steps. Functions
on the lattice are labeled as y(r, t) = ykj where the subscript j = 1 . . . ,M represents the lattice
position and the superscript k = 1, . . . , N represents time. We use a forward Euler scheme for
the numerical solution of the evolution equations [191]. The scheme is second order in space and
first order in time. This proves to be stable if the time increment is sufficiently small. Indeed,
since the model’s partial differential equations are of order four (see for instance Eq. (3.5)),
using as hand-waving argument a simple von Neumann stability analysis, we expect that for a
fourth-order PDEs in a forward scheme the time increment goes as Δt ∼ Δr4 [191]. In most
of the simulations we performed Δr̄ = 0.2 (in code units). Only for some specific calculations
presented in Chapter 3 it was necessary to reduce this number.

Except for time evolution constraints, the major source of numerical cost is the system size.
This is relevant, as it will be shown in section B.2, when solving the equation accounting for slow
surface kinetics, Eq. (2.48b). Indeed, in this case, an M x M matrix has to be inverted. This
matrix can become particularly large when considering expanding simulation boxes as done to
study the problem of the crystallization force (see Chapter 5).

In the following, we will express the evolution equation in terms of absolute interface position
h = hs − ζ. We will also use normalized variables so that only η̄ and ν̄ appear explicitly in the
equations whilst the other constant (D,Ω,c0, kBT ) are taken equal to one. In the following
sections, we will drop the bar on the rescaled variables for economy of notation.

Finally, an important technical point is the correct implementation of the conditions at the
boundary. As illustrated in Section 2.7, these are: fixed boundary height hkM = hbc ∀k and fixed
boundary supersaturation. A third condition on the curvature at the boundary is introduced
only in the specific case of a laterally expanding simulation box (Chapter 5).

B.1 Numerical scheme for fast surface kinetics

Let us recall the evolution equation for the axysimmetric contact in the fast surface kinetics
regime and in code units (D = Ω = c0 = 1)

∂th =
1

r
∂r[rζ(∂rceq)] + uCz ,

where uCz is the rigid body crystal velocity given by Eq. (2.43).
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We introduce the concentration flux defined as

J = ζ∂rceq , (B.1)

where ζ = hs − h. Given this definition the evolution equation can be rewritten as

∂th =
1

r
∂r(rJ) =

J

r
+ ∂rJ . (B.2)

Let us recall the relation between the equilibrium concentration and the chemical potential
(Eq. (2.11) in the main text)

ceq = c0e
μ/kBT ∼ c0(1 +

μ

kBT
) ,

where the last relation is valid when assuming small concentrations (linearized Gibbs-Thomson
relation). Note that we dropped the Δ symbol in front of the chemical potential to avoid confusion
with the discretization increment. Given the initial profile at time zero h0j , for j = 1, . . . , (M −1)

we can then determine the time derivative ∂th
k by computing the following. First by definition

we have

Jk
j = exp(μk

j )
ζkj
2Δr

(μk
j+1 − μk

j−1) , (B.3)

or when assuming linerized thermodynamic relation as in Chapters 3 and 4

Jk
j =

ζkj
2Δr

(μk
j+1 − μk

j−1) . (B.4)

The chemical potential itself is linked to the profile by Eq. (2.45) and the curvature Eq. (2.47):

μk
j = − 1

Δr2
(hkj+1 − hkj−1 − 2hkj )−

1

2(jΔr)Δr
(hkj+1 − hkj−1) + U ′(ζkj ) . (B.5)

Finally the derivative of J is simple given by

∂rJ
k
j =

1

2Δr
(Jk

j+1 − Jk
j−1) . (B.6)

At the boundaries, namely j = 0 (r = 0) and j = M (r = R) we cannot use symmetric derivatives
as done above. For the center, we exploit that by symmetry consideration we have ∂rh

k
0 = 0.

Using de l’Hopital relation we have

∂th
k
0 = 2∂rJ

k
0 =

1

3Δr
(8Jk

1 − Jk
2 ) , (B.7)

where the last equality is obtained using that from the parity of h Jk
0 = 0 and ∂rrJ

k
0 = 0. From

similar considerations it follows also that

μk
0 =

2

Δr2
(hk2
6

+
5hk0
2

− 8hk1
3

)
. (B.8)

On the boundary r = R, we have that hkM = hbc and μk
M = μbc = log(σbc + 1). In the case

we assume small supersaturations (Chapters 3 and 4), this reduces to μbc = σbc. We can then
compute Jk

M by a backward scheme:

Jk
M =

ζbc
2Δr

(3μbc − 4μk
M−1 + μk

M−2) , (B.9)

where ζbc = hs − hbc. Finally the time evolution hk+1
j can be determined by Euler forward

integration:
hk+1
j = hkj + ∂th

k
j + ukCz , (B.10)

where uCz is obtained from simple numerical integration of Eq. (2.43) considering the profile at
time k.
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B.2 Numerical scheme for slow surface kinetics

Let us recall the evolution equation for the axysimmetric contact when surface kinetics is slow:

vCz =
1

r
∂r[rζ(∂rceq)] +

1

r
∂r[r

ζ

ν
(∂rvCz)] ,

where vCz = ∂th− uCz is the local interface velocity. Note that in the limit ν → ∞ we recover
Eq. (2.51b). We introduce similarly to what done in the previous section with the concentration
flux J defined in Eq. (B.1), the local growth flux Q:

Q =
1

ν
ζ∂rvCz . (B.11)

Thus, following the same lines of Appendix B.1 we rewrite the interface evolution equation as

v =
1

r
∂r(rJ) +

1

r
∂r(rQ) =

J

r
+ ∂rJ +

Q

r
+ ∂rQ , (B.12)

where we dropped the label Cz from v. For the term Q we have similarly to J that

Qk
j =

ζj
2νΔr

(vkj+1 − vkj−1) . (B.13)

Since v appears also in the left hand side of Eq. (B.12) we explicitly use ∂rQ = ∂rζ∂rv + ζ∂rrv
in order to solve for v:

∂rQ
k
j =

1

ν

(
ζkj+1 − ζkj−1

2Δr

)(
vkj+1 − vkj−1

2Δr

)
+ ζkj

(
vkj+1 − vkj−1 − 2vkj

Δr2

)
. (B.14)

It follows that Eq. (B.12) together withEqs. (B.3), (B.6), (B.13) and (B.14) defines a linear
system

vk = (Ak)−1 · bk . (B.15)

Above we define the vector bk as

bkj = ∂rJ
k
j +

Jk
j

rkj
, (B.16)

for j = 1 . . .M − 1, and the matrix Ak as

Ak
i,j = δi,j

(
2

ζki
Δr2ν

+ 1

)
− δi,j+1

(
ζki

Δr2ν
+

∂rζ
k
i

2Δrν
+

∂rζ
k
i

2Δrrki ν

)

+δi,j−1

(
ζki

Δr2ν
− ∂rζ

k
i

2Δrν
− ∂rζ

k
i

2Δrrki ν

)
,

(B.17)

for i = 1 . . .M−1 and j = 1 . . .M−1. The derivative ∂rζki is computed using the same symmetric
second order scheme as the first parenthesis in Eq. (B.14), and ri = iΔr represents the distance
from the center and the i-th position. Finally, at the center of the crystal surface we have

bk0 = 2∂rJ
k
0 =

1

3Δr
(8Jk

1 − Jk
2 ) ,

Ak
0,0 =

5ζk0
νΔr2

+ 1 ,

Ak
0,1 = − 16ζk0

2νΔr2
,

Ak
0,2 =

ζk0
3νΔr2

,

Ak
0,j>2 = 0 .

(B.18)
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In the first equation we used de L’Hopital relation and that Jk
0 = 0. Similarly the last three

relations follow from observing that 2∂rMk
0 reduces to 2ζk0∂rrv

k
0 . The conditions at the boundaries

follow from Section 2.7:

bkM = vkbc = −ukCz ,

Ak
M,M = 1 ,

Ak
M,j �=M = 0 .

(B.19)

Finally we determine the evolution of h by explicit Euler integration

hk+1
j = hkj +Δt(∂th)

k
j = hkj +Δt(vkj + ukCz) (B.20)

where vkj is computed by matrix inversion through Eq. (B.15) and ukCz is computed from the
numerical integration of Eq. (2.43) at the time step k.

B.3 Numerical scheme for lateral growth

Whilst the evolution equations do not vary with respect to the previous case, new boundary
conditions have to be introduced to account for lateral expansion of the contact.

We define rbc as the continuum out of lattice position of the boundary of fixed height h(rbc) =
hbc. The point rbc can be viewed as a virtual coordinate not belonging to the lattice. Let us
label with R the penultimate point on the grid.The lattice itself will grow or shrink of one bin if
rbc > R+Δr or rbc < R−Δr, respectively. The value of rbc, from an initial condition r0bc > R,
will evolve in time according to

rk+1
bc = rkbc + vkl Δt , (B.21)

where vl is the lateral velocity of the contact defined in Eq. (5.14d). We then have to impose a
relation linking hbc to the last point of the crystal profile on the lattice position hM :

hkM = hbc −Δbc(∂rh)
k
M , (B.22)

where Δbc = rk+1
bc − Rk and (∂rh)

k
M can be calculated using the backward derivative. Equa-

tion (B.22) is used to deduce the new point when the box is expanded. It follows that hM+1 is
given by

hkM+1 = (1 +
3Δbc

2Δr
)−1

[
hbc − Δbc

2Δr

(
hkM−1 − 4hkM )

)]
, (B.23)

where we used the second order backward calculation of (∂rh)kM . The case of shrinking (Δbc < 0)
is given by the above equation with M = M−2. Similarly, we interpolate the boundary chemical
potential and local growth rate using

μk
M = (1 +

3Δbc

2Δr
)−1

[
μbc − Δbc

2Δr

(
μk
M−2 − 4μk

M−1)
)]

. (B.24)

Using the same interpolation for the boundary value of vCz we redefine the boundary condition
of the matrix Ak given in Eq. (B.17). The non zero terms of the last line are now

ÃM,M = 1 +
3Δbc

2Δr
,

ÃM,M−1 = −2Δbc

Δr
,

ÃM,M−2 = −Δbc

2Δr
.

(B.25)

The lateral velocity, as reported in the main text, is given by

vkl = (∂rh
−1
bc )

k
[
ukCz +Ωνc0

(
1 + σbc − exp(μk

bc/(kBT )
)]

(B.26)
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where σbc = σ(rbc) and μk
bc = μ(rbc)

k are the supersaturation and chemical potential outside the
contact zone, respectively. Remark that the former is a constant parameter, the latter depends
on time via the curvature at the boundary defined in Eq. (2.62),

κbc(t) =

[√
1 + ((∂rhbc)k)

2
(d− ζbc)

]−1

, (B.27)

width d the half walls separation in the geometry considered in the main text, Section 2.7.2.
Using the definition of the axisymmetric curvature we have (∂rrhbc)

k = −κbc − (∂rhbc)
k/rkbc so

that the derivative at the boundary appearing in the above equations can be expressed as

(∂rhbc)
k =

hkM − hkM−1 − (Δr2

2 +ΔbcΔr)κk−1
bc

Δr + (Δr2

2 +ΔbcΔr)/(rkbc)
(B.28)

where κk−1
bc is Eq. (B.27) computed at the previous time step. To use this second order scheme

for Eq. (B.28) proves to be more stable than a first order scheme (simply using hkM and hkM−1).
Finally, the last element of the vector bk defined in Eq. (B.16) is

bkM = vbc = Ωνc0[1 + σbc − exp(μk
bc)] . (B.29)

To conclude, during the integration the system evolves as for the fixed simulation box case
according to Eq. (B.15) with the boundary conditions above Eqs. (B.24), (B.25) and (B.29).
Then Eq. (B.23) is called when a bin is added or removed in the lattice.

B.4 Conserved quantities during numerical integration

An observable which is computed during the numerical integration is the variation of mass. This
can be used not only to check if the numerical scheme is consistent (mass is conserved) but also
to monitor if a steady-state has been reached. The total mass in 2D and for an axysimmetric
system is defined as

M(t) = 2π

ˆ rbc

0
dr rh(r, y) , (B.30)

with rbc the total radius of the integration domain. For a fixed contacts rbc = R, with R the
simulation box radiuson the lattice.

Assuming the general case of a small surface kinetics, the time derivative of the mass is

Ṁ = 2π

ˆ R

0
dr r∂t(hs − h(r, y)) = −2π

ˆ R

0
dr r

[
1

r
∂r(rJ) +

1

r
∂r(rQ) + uCz

]
= −(2πRJ(R) + 2πRQ(R) + πR2uCz) ,

(B.31)

where we used the flux introduced in Eqs. (B.3) and (B.11) and that for symmetry J(0) = Q(0) =
0. It follows that during numerical integration a consistency check is to compare the evolution
of the total mass, from M(t+Δt) = M(0) + ΔtṀ(t), using the last line of Eq. (B.31) and the
direct calculation in Eq. (B.30).

Furthermore, it should be noted that steady state Ṁ = 0 corresponds to

J̃ = J(R) +Q(R) +
R

2
uCz = 0 . (B.32)

In the case of fast surface kinetics where we make use of Appendix B.1 and Eq. (2.43), we
have the same expressions as above but with Q = 0.
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B.4.1 Expanding (shrinking) box

In this case, the evolution of the total mass reads:

Ṁ = 2π∂t

[ˆ rbc

0
dr r(hs − h(r, y))

]

= −2π

ˆ rbc

0
dr r

[
1

r
∂r(rJ) +

1

r
∂r(rQ) + uCz

]
+ ∂trbcrbc(hs − h(rbc))

= −(2πrbcJ(rbc) + 2πrbcQ(rbc) + πr2bcuCz) + 2πrbcvlζbc ,

(B.33)

where vl is defined in Eq. (5.14d) and ζbc = hs−hbc is the boundary width fixed by the integration
scheme. Note that this thesis in practice we limit our analysis for the case of a crystal growing
in a Hele-Shaw channel, thus uCz = 0 in the equation above. The quantities Q(rbc) and J(rbc)
can be computed using a first order scheme:

J(rbc) =
ζbc
Δr

(μk
M − μk

M−1) , ,

Q(rbc) =
1

νΔr
ζbc(v

k
M − vkM−1) .

(B.34)

In the case explored in this work, namely uCz = 0, the steady state condition is ζ̇ = 0

vlζbc = J(rbc) +Q(rbc) , (B.35)

Note that equilibrium (zero fluxes) then implies vl = 0.
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APPENDIX C

Derivations of analytical relations in pressure solution

C.1 Steady state in the absence of surface tension

Using the axisymmetric system (2D), we here illustrate how to derive some relations of Sec-
tions 3.3.1 and 3.3.2. In 1D an analogous procedure is applied. In 2D, a single integration of
Eq. (3.13) leads to

r

2
uCz = Bζ∂rζU

′′(ζ) . (C.1)

Using the previous relation to express the differential rdr as a function of dζ and considering
only the contribution of the contact area, we can rewrite Eq. (3.4) in a more convenient form:

FCz = 2π

ˆ Rc

0
r12ηB dr

ˆ ζ(Rc)

ζ(r)
dζ

U ′′(ζ)
ζ2

− 2π

ˆ Rc

0
dr rU ′(ζ(r)) . (C.2)

C.1.1 Singular power law repulsion

Using Eq. (3.18) together with Eq. (3.6) in Eq. (C.2), we find

F 2D
Cz = 12ηC1(rm, Rc) (R

2
cuCz)

n+3

n + C2(rm, Rc) (R
2
cuCz)

n+1

n , (C.3)

where

C1 = B
n(n+ 1)πA

n+ 3

{ −R2
c

ζn+3(Rc)
+

nr2m
(2n+ 3)ζn+3

0

[
(
R2

c

r2m
− 1)

n+3

n + 1
]( r2m/R2

c

4B(n+ 1)A

)n+3

n
}

C2 =
πn2Ar2m
(2n+ 1)

[
(
R2

c

r2m
− 1)

2n+1

n + 1
]( r2m/R2

c

4B(n+ 1)A

)n+1

n

.

For large external loads, we have rm ∼ Rc and ζ(r = Rc) � ζ0, leading to Eq. (3.21).
The constants used in the main text in Eqs. (3.22a), (3.22b), (3.23a) and (3.23b) were ob-

tained considering that one of the two terms in Eq. (C.3) dominates in the force balance depend-
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(a)

(b)(b)

(a)

Figure C.1: Minimum film thickness ζ0 as a function of the applied load for a (singular) power law
repulsion. Geometry: axisymmetric contact. Lines represent analytical predictions extracted from
Eq. (C.8) with R̄c = R̄ = 100, circles indicate simulation results. Solid blue line, hydrodynamic regime;
dashed red line, diffusion regime. (a) η̄ = 1; (b) η̄ = 10−3. The results are given in normalized units.
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C.1. Steady state in the absence of surface tension

ing on the value of the viscosity. Their expressions are

C1D
h =

2
(
BA(n+ 1)

) 3

n+3

(
24n

√
π

n+3 φ(n+3
n )

) n

n+3

(C.4)

C2D
h =

4
(
BA(n+ 1)

) 3

n+3

(
12πn2

(2n+3)(n+3)

) n

n+3

(C.5)

C1D
d =

2BA
1

n+1 (n+ 1)(
2n

√
πφ(n+1

n )
) n

n+1

(C.6)

C2D
d =

4BA
1

n+1 (n+ 1)(
πn2

2n+1

) n

n+1

. (C.7)

As discussed in the main text, the force can also be written as a function of the distance ζ0
between the substrate and the crystal surface at the center of the contact:

F 2D
Cz

πR2
c

= 12ηB
n2(n+ 1)A

(2n+ 3)(n+ 3)

( 1

ζ0

)n+3
+

n2A

(2n+ 1)

( 1

ζ0

)n+1
, (C.8)

leading to the asymptotic scaling reported in Section 3.5. These results are confirmed by the
numerical solution as showed in Fig. C.1.

Finally, as shown in Fig. 3.4, we have explored the transition between the diffusion and
hydrodynamic scaling laws. This was done using an intermediate viscosity, η̄ = 0.1, and looking
at the dissolution rates in a 2D contact of size R̄c ≈ R̄ = 100. The constants appearing in
Eqs. (3.24) and (3.25) are:

B1D =
[ 24B(n+ 1)φ

(
n+3
n

)
(n+ 3)

[
2φ

(
n+1
n

)]n+3

n+1

]n+1

2 1

nA
√
π

(C.9)

B2D =
[12B(n+ 1)(2n+ 1)

n+3

n+1

(2n+ 3)(n+ 3)

]n+1

4 1

n
√
Aπ

. (C.10)

C.1.2 Finite exponential repulsion

In the case of a finite exponential repulsion, manipulations similar to those presented in the
previous section lead to the following form of the force balance relation

F 2D
Cz = 48η

πB2A2

λ3uCz
ψ(

ζ0
λ
) +

πBA2

λ

(2ζ0
λ

+ 1
)e− 2ζ0

λ

uCz
, (C.11)

with
ψ(z0) = λ

ˆ ∞

z0

dz e−z
(
e−z + zEi(−z)

)
, (C.12)

where Ei is the exponential integral defined as

Ei(x) = −
ˆ ∞

−x

e−s

s
ds . (C.13)

Inserting the expression of uCz from Eq. (3.28b) into Eq. (C.11) we obtain Eq. (3.32).
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C.1.3 1D case

In 1D, the derivations are similar to the 2D case. We obtain Eq. (3.30) where the two functions
ψ̃1 and ψ̃2 are defined as:

ψ̃1(z0) =

ˆ ∞

z0

e−z(e−z + zEi(−z))

[(1 + z0)e−z0 − (1 + z)e−z]
1

2

dz , (C.14)

ψ̃2(z0) =

ˆ ∞

z0

ze−2z

[(1 + z0)e−z0 − (1 + z)e−z]
1

2

dz . (C.15)

C.2 Surface tension contribution in finite repulsion

We here report a derivation of the relation between the second derivative of the interface ∂xxζ0
or ∂rrζ0 and the minimum film width ζ0. This relation is obtained through a procedure where
we match the two approximate solutions at the tip ζtip in Eq. (3.34), and far from the tip ζsing
in Eq. (3.29).

C.2.1 1D case

In 1D we proceed as follows. Integrating two times Eq. (3.36a) we have

0 =
x2

2B
uCz − A

2λ
(ζ2 − ζ20 ) + γ̃

(
ζ∂xxζ − ζ0∂xxζ0 − 1

2
(∂xζ)

2
)
, (C.16)

where we used the parity condition ∂xζ0 = 0 and the expansion of Ũ , (given for the exponential
repulsion by Eq. (3.26)), up to second order in ζ: Ũ ≈ A(−1 + ζ2/(2λ2)).

Adding a perturbation δζ to ζsing = ω|x| given by Eq. (3.29a) we have

ζfar = ζsing + δζ , (C.17)

with
ω =

(uCz

BA

) 1

2

λ . (C.18)

We then insert this relation in Eq. (C.16) to determine δζ far from the tip. Neglecting the terms
of smaller than δζ for large x we find

δζ = γ̃
−1

2ω
2 − ζ0∂xxζ0
A
λ2ωx

. (C.19)

We define x∗ as the value of x at which we match the solutions ζsing and ζtip. We obtain two
independent relations. The first one accounts for the matching of the surface profiles at x = x∗,
leading to ωx∗ + δζ(x∗) = ζ0 + ∂xxζ0x

2∗/2. The second relation comes from the matching of the
slopes ω+ ∂xδζ(x)|x∗ = ∂xxζ0x∗. Combining the two relations we obtain the following system of
equations

3

2
∂xxζ0x

2
∗ − 2ωx∗ + ζ0 = 0,

ωx∗ − γ̃
(ω2

2
ζ0∂xxζ0

) λ2

Aωx∗
= ζ0 +

∂xxζ0
2

x2∗ .
(C.20)

C.2.2 2D case

In the axisymmetric system (2D) we follow a similar procedure. However, extra terms connected
to the different expression of the curvature appear. Following the same steps as for the derivation
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of Eq. (C.16), we Eq. (3.36b) two times. Then, given the parity condition and the expansion of
Ũ for small ζ, we obtain

0 =
r2

4B
uCz − A

2λ
(ζ2 − ζ20 )+

γ̃
(
ζ∂rrζ − 2ζ0∂rrζ0 − 1

2
(∂rζ)

2 +
ζ∂rζ

r
−
ˆ r

0
dr′

(∂r′ζ)
2

r′
)
.

(C.21)

To derive an explicit expression for the correction to ζsing, we insert its expression Eq. (3.29b)
plus a perturbation δζ in Eq. (C.21). Thus Eq. (C.21) becomes

0 = − A

λ2
ωrδζ − γ̃

(
(∂rrζ0)

2 r
2∗
2

+ 2ζ0∂rrζ0

)
+

γ̃
(1
2
ω2 − ω2 ln(

r

r∗
) + ω

δζ

r
+ 2ω

ˆ r

r∗

dr
∂rδζ

r
+ ωr∂rrδζ

)
.

(C.22)

where now in 2D
ω =

( uCz

2BA

) 1

2

λ . (C.23)

Note that the integral term of Eq. (C.21) was rewritten as follows
ˆ r

0
dr

(∂rζ)
2

r
=

ˆ r∗

0
dr

(∂rζtip)
2

r
+

ˆ r

r∗

dr
(∂rζsing)

2

r

= (∂rrζ0)
2 r

2∗
2

+ ω2 ln(
r

r∗
) + 2ν

ˆ r

r∗

dr
∂rδζ

r
.

(C.24)

If in the matching procedure, for r � r∗, we keep only dominant terms, as done above for the 1D
case, we would obtain δζ ≈ 1/r. Since this does not behave properly we make a crude approxi-
mation and keep only one higher order term ωδζ/r to account for higher order contributions in
Eq. (C.22) ( indeed, as r → r∗ the integral term vanishes and we expect the other relevant term
r∂rrδζ to be of the same order as ωδζ/r). With these assumptions we find

δζ = γ̃
1
2ω

2 − 2ζ0∂rrζ0 − ω2 ln r
r∗

− 1
2(∂rrζ0)

2r2∗
A
λ2ωr − γω 1

r

. (C.25)

As before to obtain the matching between the two solutions ζtip and ζsing we use two conditions.
First, we consider the matching of the thicknesses ωr∗+δζ(r∗) = ζ0+∂rrζ0r

2∗/2. A second relation
accounts for the matching of the slopes ω+ ∂rδζ(r)|r∗ = ∂rrζ0r∗. Since in this case ∂rδζ(r) does
not diverge for r → 0, and since r∗ is assumed to be small, we neglect the contribution ∂rζ|r∗ in
the slope. This lead to the following system of equations:

ωr∗ + γ̃
(ω2

2
− 2ζ0∂rrζ0 − (∂rrζ0)

2

2
r2∗
)( A

λ2
ωr∗ − γ̃η

1

r∗

)−1
= ζ0 + ∂rrζ0

r2∗
2
,

∂rrζ0r∗ = ω .

(C.26)

C.2.3 Numerical solution

Inserting the asymptotic analytical expression of the dissolution rate uCz, Eq. (3.28), in the
definition of ω Eqs. (C.18) and (C.23), we solved numerically the linear systems of Eqs. (C.20)
and (C.26) using minpack routine [192]. We obtain values of x∗ (r∗) and of ∂xxζ0 (∂rrζ0) for
a given minimum distance ζ0. The results, displayed in Fig. 3.8, are represented by the dashed
lines and compared with the simulation results. In particular we find (in normalized units) for
ζ0 = 0, ∂x̄x̄ζ̄0 ≈ 0.0167 and ∂r̄r̄ ζ̄0 ≈ 0.0153.
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Appendix C. Derivations of analytical relations in pressure solution

C.3 Beyond the linearization of the Gibbs-Thomson relation

A simple substitution allows one to include the effect of the exponential term in the analysis of
the contact profile in the absence of surface tension:

U ′(ζ) → kBT exp[
U ′(ζ)
kBT

]. (C.27)

This leads to a different definition of Ũ from the relation

Ũ ′(ζ) = ζU ′′(ζ) exp[
U ′(ζ)
kBT

]. (C.28)

The same procedure as that discussed in Section 3.3 can then be applied with this new expression
for Ũ .

For power-law potentials, this leads to an essential singularity in Ũ when ζ → 0:

Ũ(ζ) = ζkBT

⎛
⎝e

−Anζ−n−1

kBT −
E1+ 1

n+1

(
Anζ−n−1

kBT

)
n+ 1

⎞
⎠ , (C.29)

where

Em(z) =

ˆ ∞

1
dt
e−zt

tm
. (C.30)

This essential singularity appears in the relation between uCz and the minimum thickness ζ0
when ζ0 → 0:

uCz = 4B[Ũ(ζ0)− Ũ(∞)]. (C.31)

In contrast, there is no significant change in the case of an exponential potential. Indeed, the
central property of being finite when ζ0 → 0 is not affected by Eq. (C.27). Thus, the exponential
potential again leads to a pointy shape, and constant dissolution rate obeying Eq. (3.28). More-
over, the details of the regularization of the tip due to surface tension can be affected but we do
not expect major changes.
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APPENDIX D

Analytic relation for cavity appearance and supplementary material

D.1 Perturbation analysis in presence of an attractive interaction

Using a perturbative approach from the equilibrium solution of Eqs. (4.1), (4.2a) and (4.3), we
here derive approximate expressions for the growth rate and the critical supersaturation.

As a preamble, we characterize the equilibrium solution itself. Steady-state solution of
Eq. (4.1) with Eq. (4.2a) obey

0 = B
1

r
∂r[rζ∂r(γ̃∂rrζ +

γ̃

r
∂rζ − U ′(ζ))] + uCz . (D.1)

The equilibrium solution is a particular steady-state equation obeying uCz = 0 and

γ̃∂rrζeq +
γ̃

r
∂rζeq − U ′(ζeq) =

Δμeq

Ω
, (D.2)

where Δμeq/Ω is a constant which corresponds to the equilibrium chemical potential. The radius
of the contact region is denoted as L. Multiplying Eq. (D.2) by 2πr, and integrating between the
center of the contact at r = 0 and a radius r = R > L, we find a relation between the equilibrium
chemical potential and the slope at the boundary of the integration domain

Δμeq

Ω
=

2γ̃

R
∂rζeq(R) , (D.3)

where we have used the relation 2π
´ R
0 rdrU ′(ζ) = 0, corresponding to the equilibrium force

balance Eq. (4.3). A second relation can be found when multiplying Eq. (D.2) by ∂rζeq and
integrating with respect to r:

γ̃

2
(∂rζeq(R))2 −ΔU =

Δμeq

Ω
(ζeq(R)− ζeq(0))− γ̃

ˆ R

0

(∂rζ)
2

r
dr , (D.4)

where ΔU = U(ζeq(R))− U(ζeq(0)). Equation (D.4) relating the surface slope ∂rζeq(R) outside
the contact to the depth of the potential well ΔU , is equivalent to a generalized form of the
Young contact angle condition. The integral term in the second equation is related to the effect
of line tension. In the following, we will neglect this term.

We now assume that the equilibrium profile is flat ζeq(r) ≈ h with U ′(h) = 0 for r ≤ L.
Then, we expect ζeq(L) ≈ ζeq(0) ≈ h, and combining Eq. (D.4) and Eq. (D.3) we find

Δμeq ≈ 2Ω

L

√
−2γ̃U(h) , (D.5)
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Appendix D. Analytic relation for cavity appearance and supplementary material

where we assumed that the interaction potential vanishes far from the contact region U(ζ(r >
L)) ≈ 0. Note that under these approximations the right hand side of Eq. (D.4) vanishes, and
this equation is the small slope limit of the Young contact angle condition.

Consider now a system below the transition, so that no cavity is present. The crystal surface
profile is then expected to be close to the equilibrium profile. We therefore consider the difference
δζ(r) = ζ(r)− ζeq(r) between the steady-state solution and the equilibrium solution to be small.
Expanding Eq. (D.1) to linear order in δζ(r), and integrating two times, we find

γ̃∂rrδζ +
γ̃

r
∂rδζ − δζU ′′(ζeq)− uCz

2B

ˆ L

r
dr′

r′

ζeq(r′)
=

Δμb −Δμeq

Ω
, (D.6)

where we have used the parity of ζ(r) and Eq. (D.2), and we have defined the chemical potential
at the edge of the contact zone Δμb = Δμ(L) with Δμ(L) given by Eq. (2.45). Assuming again
that in the contact area r < L the equilibrium profile is flat ζeq ≈ h, Eq. (D.6) can be rewritten
as:

γ̃∂rrδζ +
γ̃

r
∂rδζ − δζU ′′(h)− uCz

4Bh
(L2 − r2) =

Δμb −Δμeq

Ω
. (D.7)

A particular solution of this equation is a parabola:

δζ =
uCz

4BhU ′′(h)

(
r2 − L2 +

4γ̃

U ′′(h)

)
− Δμb −Δμeq

ΩU ′′(h)
. (D.8)

A comparison between this solution and the profile obtained from numerical integration is shown
in the main text in Fig. 4.10 for crystal close to the transition. The agreement is very satisfactory.

D.1.1 Viscosity effect on the growth rate

Applying a similar procedure to the force balance expression in Eq. (4.3) we have to leading
order

uCz2π

ˆ L

0
dr r

ˆ L

r
dr′

6ηr′

ζ3eq(r
′)

= 2π

ˆ L

0
dr rδζU ′′(ζeq)) . (D.9)

Using Eq. (D.6) to express the right hand side, we are left with

uCz2π

ˆ L

0
dr r

ˆ L

r
dr′ r′

( 6η

ζ3eq(r
′)
+

1

2Bζeq(r′)

)
== −πL2Δμb −Δμeq

Ω
+ 2πγ̃L∂rδζ(L) . (D.10)

As done previously we assume that in the contact area r < L, the equilibrium profile is ζeq ≈ h.
With this assumption the previous relation reduces to

uCz

(6η
h3

+
1

2Bh

)L4

4
= −L2Δμb −Δμeq

Ω
+ 2Lγ̃∂rδζ(L) . (D.11)

Using Eq. (D.8) to express the last term in the right hand size we have

L4

4

[(6η

h3
+

1

2Bh

)
− 4γ̃

L2BhU ′′(h)

]
uCz = −L2Δμb −Δμeq

Ω
. (D.12)

We then obtain (Eq. (4.24) in the main text):

uCz =
−4Bh(Δμb −Δμeq)(

6B
h2 η + 1

2 − 4γ̃
L2U ′′(h)

)
L2Ω

. (D.13)

As showed in the main text in Fig. 4.12 the comparison between this relation and the direct
numerical solution of uCz proves to be satisfactory.
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Figure D.1: Normalized growth rate |ūCz| versus supersaturation σ̄bc at the boundary of the simulation
box for different normalized viscosities η̄. The size of the simulation box is R̄ = 40. The system size
and scales of the axes depend on the material. Calcium Carbonate, red triangles and black circles:
R = 400nm, σbc ≈ 0.014× σ̄bc, uCz ≈ 6.7× 10nm/s× ūCz; Sodium Chlorate, yellow triangles and blue
squares: R ≈ 127nm, σbc ≈ 0.017 × σ̄bc, uCz ≈ 2.1 × 105nm/s × ūz; Glucose, yellow triangles and blue
squares: R ≈ 400nm, σbc ≈ 0.05 · σ̄bc, uCz ≈ 5.5 × 104nm/s × ūCz. Vertical dashed lines indicate the
critical supersaturation at the boundary of the simulation box for forward and backward transitions. Their
color is the same as that of the corresponding symbols.

D.1.2 Viscosity effect on the critical supersaturation

As discussed in the main text, we expect the cavity to appear when ζ0 > ζcav, where ζ0 is the
width at the center of the contact, and ζcav is defined by the relation U ′′(ζcav) = 0. Given
Eq. (4.18) and assuming again ζeq ≈ h, we find ζcav = 4/3h and δζcav = ζcav − h = h/3. Let us
recall Eq. (D.8) and consider the correction to ζ0:

δζ(0) =
uCz

4BhU ′′(h)

(
4γ̃

U ′′(h)
− L2

)
− Δμb −Δμeq

ΩU ′′(h)
. (D.14)

Now we use the condition δζ(0) = δζcav for the appearance of the cavity, and deduce the
corresponding critical value of the chemical potential at the boundary:

Δμcav
b −Δμeq

Ω
=

uCz

4Bh

(
4γ̃

U ′′(h)
− L2

)
− δζcavU ′′(h) . (D.15)

Using Eq. (4.24) we have

Δμcav
b −Δμeq

Ω
≈

δζcavU ′′(h)
(
6B
h2 η + 1

2 − 4γ̃
L2U ′′(h)

)
1
2 − 6B

h2 η
. (D.16)

Using again the identity Δμ = kBTσ, neglecting the last term in the denominator (∼ 1/L2) and
the equilibrium chemical potential (∼ 1/L), we obtain Eq. (4.23).

D.2 Growth rate hysteresis in nano-confinement

In Fig. D.1 we show the normalized growth rate ūCz as a function of the normalized supersatura-
tion at the boundary of the simulation box as obtained from the numerical solution of Eq. (4.19).
The growth rate responds roughly linearly to changes in the supersaturation, and a small jump
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followed by a change of slope is observed at the transition. Hysteresis is also found here but the
discontinuity is more apparent when increasing the supersaturation from an initially flat surface
(forward transition).

D.3 Probe the kinetic constant via the morphology diagram?

As discussed in the main text, when considering slow surface kinetics one has to use a generalized
formulation of the transition line, Eq. (4.31). In that relation, benefiting from what observed in
the fast surface kinetics limit (Figs. 4.6 and 4.9), we included the phenomenological slope α in
front of the term proportional to the contact area. However, it is also interesting to consider the
idealized limit (what would be expected without any input from simulation results) α = 1. This
leads to the transition line given by

|ucavCz | =
Ωc0σ

cav
b

L2
cav/(4hD) + ν−1

= β̃α=1 . (D.17)

Representing the same data used for producing Fig. 4.13 in the plane (uCz, β̃α=1) leads to
Fig. D.2. In this figure it can be observed that the data is bounded between two lines, one of
slope ≈ 0.6 and one of slope ≈ 1. The first corresponds to the limit of fast surface kinetics
(ν → ∞) the latter to the limit of slow surface kinetics (ν → 0). Intermediate values are mixed
regimes.

This explicitly shows that the morphology diagram is sensitive to the surface kinetic constant.
Therefore – assuming the observed slopes are not an artifact of our simulations (see the discussion
in Section 4.5.3) – this type of plots (or Fig. 4.13 in the main text) could be used in practice
to probe the kinetic constant ν of a crystal if the other parameters are known. This kind of
observations implies to fully explore the morphology phase diagram (thus one needs to observe
cavities). Nothing indicates this should be simple in general, as also suggested by the great care
taken to perform the experimental observations in Section 4.2 [106]. However, in experiments
surface kinetic constants are difficult to assess and their value is still debated [174, 193]. In front
of such technical difficulties, this approach might become reasonable.

156



D.3. Probe the kinetic constant via the morphology diagram?

-0.001

 0

 0.001

 0.002

 0.003

 0.004

 0  0.001  0.002  0.003  0.004

Felix
nano, fast

nano, fast, back
felix, nu =100
felix, nu =0.1

felix, nu =0.001
nano, nu =0.1

nano, back nu =0.1
nano, nu =0.005

nano, back nu =0.005
m = 0.991
m=0.893

m=0.61
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Figure D.2: Non-equilibrium morphology diagram were the y-axis is given by Eq. (D.17) (which does
not include the heuristic constant α). Slopes, m, range from ≈ 0.61 in the diffusion driven limit (black
empty squares), to ≈ 1 (blue empty triangles) in the slow surface kinetics limit. The former coincides
with the value of the heuristic constant α. Results are in code units.
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APPENDIX E

Crystallization force

E.1 Thermodynamic equilibrium

Let us recall the equilibrium relations illustrated in Appendix D.1. At equilibrium null fluxes
and rigid body velocity imply constant and uniform chemical potential Δμ(r) = Δμeq. Using
Eq. (2.45), we express the equilibrium chemical potential as a function of the equilibrium profile
and the interaction with the substrate:

Δμeq

Ω
= γ̃(∂rrζeq +

∂rζeq
r

)− U ′(ζeq) (E.1)

where γ̃ is the stiffness of the crystal surface. From this relation, we can derive two further
equations valid at equilibrium. The first one is exact and valid in all the domain. This is
obtained by multiplying Eq. (E.1) by ∂rζeqdr and integrating:

γ̃

2
(∂rζeq)

2 = U(ζeq(r))− U(ζeq(0)) +
Δμeq

Ω
(ζeq(r)− ζeq(0))

− γ̃

ˆ r

0

(∂r′ζeq)
2

r′
dr′

(E.2)

Let us introduce an equilibrium profile far from the substrate ζ∞eq where the label ∞ indicates
that this expression should approach the profile of a free crystal infinitely far from the substrate
and hence in absence of interactions so that U ′(ζ∞eq ) = 0∀r. We expect this profile to be solution
of the confined problem when r � rtl where the triple line position, rtl, is the point after
which ζeq ∼ ζ∞eq . Assuming the interaction to decay to zero far from the contact area, a second
equilibrium relation is

−
ˆ r∗

0
2πrdr U ′(ζeq) = Feq (E.3)

where r∗ � rtl. The integration of Eq. (E.1) on the increment 2πrdr between 0 and r for r ≥ rtl
leads to

∂rζ
∞
eq (r) =

Δμeq

2Ωγ̃
r − Feq

2πγ̃

1

r
, (E.4)

where we used that ζeq → ζ∞eq for r � rtl.
The previous relation can be integrated between rtl and r > rtl:

ζ∞eq (r) =
Δμeq

4Ωγ̃
(r2 − r2tl)−

Feq

2πγ̃
ln

r

rtl
+ ζ∞eq (rtl) (E.5)
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Let us here rewrite the last integral term in Eq. (5.5b) as

γ̃

ˆ r

0
dr

(∂rζeq)
2

r
= γ̃

ˆ r

rtl

dr
(∂rζ

∞
eq )

2

r
+

γ̃

ˆ r

0
dr

[(∂rζeq)2
r

−Θ(r − rtl)
(∂rζ

∞
eq )

2

r

] (E.6)

The first term in the right hand side of the previous equation can be calculated from Eq. (E.5):

γ̃

ˆ r

rtl

dr
(∂rζ

∞
eq )

2

r
=

Δμ2
eq

8Ω2γ̃
(r2 − r2tl)−

F 2
eq

8π2γ̃
(
1

r2
− 1

r2tl
)− μeqFeq

2πγ̃Ω
ln

r

rtl
.

(E.7)

When r � rtl, using Eqs. (E.6) and (E.7) we can then rewrite Eq. (E.2) as

Δμeq

Ω
(ζ∞eq (r)− ζeq(0)) =

γ̃

2
(∂rζ

∞
eq (r))

2 −ΔU+

+
Δμ2

eq

8Ω2γ̃
(r2 − r2tl)−

F 2
eq

8π2γ̃
(
1

r2
− 1

r2tl
)− μeqFeq

2πγ̃Ω
ln

r

rtl
+ Γtl ,

(E.8)

where ΔU = U(ζ∞(r))−U0 where U0 = U(ζeq(0)). We assume that U(ζ∞(r)) = U∞ for r � rtl
where U∞ ∼ 0 is evaluated outside the contact area. The term Γtl is given by

Γtl = γ̃

ˆ r

0
dr

[(∂rζeq)2
r

−Θ(r − rtl)
(∂rζ

∞
eq )

2

r

]
. (E.9)

We will show in the following that this term is related to the line tension.

E.1.1 1D line tension

Using a similar procedure for a one-dimension ridge contact we have in 1D the following relations:

γ̃

2
(∂xζeq)

2 = U(ζeq(x))− U(ζeq(0)) +
Δμeq

Ω
(ζeq(x)− ζeq(0)) (E.10a)

ζ∞eq (x) =
Δμeq

2Ωγ̃
(x2 − x2tl)−

Feq

2γ̃
(x− xtl) + ζ∞eq (xtl) . (E.10b)

Let us consider the equilibrium energy of a 1D crystal in the vicinity of a substrate. Defining
the surface energy γ(θ) with θ = arctan(∂xζ), it’s energy will be given by

Etot =

ˆ ∞

−∞
dx

[
γ(θ)[1 + (∂xζeq(x))

2]1/2 + U(ζeq(x))
]

≈
ˆ ∞

−∞
dx

[
γ(0) + γ̃

1

2
(∂xζeq(x))

2 + U(ζeq(x))

]
,

(E.11)

where the last relation is derived in the small slope limit (θ ≈ 0) and using the definition of
stiffness, γ̃ = γ(θ) + γ′′(θ). Let us consider a reference energy E0 given by an infinitely large flat
crystal in the vicinity of the substrate,

E0 =

ˆ ∞

−∞
dx (γ(0) + U0) , (E.12)

and express energies with respect to this reference:

ξtot = Etot − E0 =

ˆ ∞

−∞
dx

(
γ̃

2
(∂xζeq(x))

2 + U(ζeq(x))− U0

)
, (E.13)
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E.1. Thermodynamic equilibrium

where U0 = U(ζeq0 ) the energy of the flat equilibrium profile in the center ζeq0 = ζeq(x = 0). From
Eq. (E.10a)

ΔU(x) =
γ̃

2
(∂xζeq(x))

2 − (ζeq(x)− ζeq0 )
Δμeq

Ω
, (E.14)

width ΔU = U(ζ(x))− U0. We hence obtain

ξtot =

ˆ ∞

−∞
dx

[
γ̃(∂xζeq(x))

2 − (ζeq(x)− ζeq0 )
Δμeq

Ω

]
. (E.15)

Let us now consider the energy of a crystal given by a flat crystal plus the contribution far from
the substrate x > xtl:

ξmacro = Emacro − E0 =

ˆ xtl

−∞
dx (γ(0) + U0) +

ˆ ∞

xtl

dx

[
γ(0) +

γ̃

2

(
∂xζ

∞
eq (x)

)2
+ U

(
ζ∞eq (x)

)]

−
ˆ ∞

−∞
dx (γ(0) + U0) =

ˆ ∞

xtl

dx

[
γ̃

2

(
∂xζ

∞
eq (x)

)2
+ΔU

]
.

(E.16)

Since Eq. (E.14) is valid everywhere we have that

ξmacro =

ˆ ∞

xtl

dx

[
γ̃(∂xζ

∞
eq (x))

2 − (ζ∞eq (x)− ζeq0 )
Δμeq

Ω

]
. (E.17)

We define the line tension γtl as ξtot− ξmacro. It follows that the 1D line tension is here given by

γtl =

ˆ ∞

−∞
dx

{
γ̃ (∂xζeq(x))

2 − Δμeq

Ω
(ζeq(x)− ζeq0 )

−Θ(x− xtl)

[
γ̃
(
∂xζ

∞
eq (x)

)2 − Δμeq

Ω

(
ζ∞eq (x)− ζeq0

)]}
,

(E.18)

where Θ is the Heaviside function. This expression represents the difference between the free-
energy associated to a contact with a straight triple line (1D) and the one of the corresponding
macroscopic configuration composed only of a surface part (far from the substrate) and an
interface part (in the contact region). The terms proportional to the surface tension γ̃ account
for the energy of the triple line when expanding the contact, the second term proportional to
the chemical potential is the excess volume per line unit and represent the energy associated to
change the configuration from the macroscopic one to the real one ζeq(x).

Note that in the absence of an external force and when the disjoining pressure is attractive
we have that ζeq0 = ζmin where ζmin is the position of the minimum of the interaction and
Δμeq/Ω = U ′(ζmin) = 0. We can then define the line tension for Δμeq = 0 as

γ0tl = γ̃

ˆ ∞

−∞
dx

[
(∂xζeq(x))

2 −Θ(x− xtl)(∂xζ
∞
eq (x))

2
]
, (E.19)

where γtl(Δμeq = 0) = γ0tl. It should be observed also that a second consequence of considering
an attractive interaction is that since 0 = Δμeq/Ω = ∂xxζ

∞, it also follows that the slope of the
the profile far from from the contact is constant, ∂xζ∞eq (x) = ∂xζ

∞
eq (xtl).

Going back to the general case of arbitrary potentials, from the definition of γ0tl, Eq. (E.18)
can be written as

γtl = γ0tl −
Δμeq

Ω

[ˆ xtl

−∞
dx (ζeq(x)− ζeq0 ) +

ˆ ∞

xtl

dx
(
ζeq(x)− ζ∞eq (x)

)]
. (E.20)

Using that Δμeq/Ω = κ∞ ∼ 1/d with κ∞ the curvature at x � 1 and d as the half pore width,
the excess volume term is at most of order O(1/d). Assuming that d � 1, we choose in the
following to neglect the volume excess contribution, hence γtl ∼ γ0tl.
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Appendix E. Crystallization force

The integral term Γ defined in Eq. (E.9), can be related to the 1D line tension assuming
that rtl � 1 and neglecting excess volume (γtl ∼ γ0tl). Since we expect the integrand to be finite
only in a neighborhood of the contact point rtl, being ∂rζeq ∼ 0 for r � rtl and ∂rζeq ∼ ∂rζ

∞
eq ,

assuming r � rtl we can make the expansion r ∼ rtl + ε. We hence have

Γtl =
γ̃

rtl

ˆ ∞

0
dr

rtl
r

[
(∂rζeq)

2 −Θ(r − rtl)(∂rζ
∞
eq (r))

2
]

∼ 1

rtl
(γ0tl +O(

1

rtl
))

(E.21)

where we assumed that the 1D equilibrium profile is close to the 2D one for rtl � 1.

E.1.2 General relations

Finally, the two equations describing the crystal at equilibrium are Eq. (E.4) and Eq. (E.8)
evaluated in rtl,

Feq

2πγ̃

1

rtl
=

Δμeq

2Ωγ̃
rtl − ∂rζ

∞
tl , (E.22a)

γ̃

2
(∂rζ

∞
tl )

2 = ΔU +
Δμeq

Ω
(ζ∞tl − ζeq0 ) +

γ0tl
rtl

, (E.22b)

respectively, with ΔU = U∞ − U0, U∞ = U(ζeq(r � rtl)) ∼ 0, U0 = U(ζeq0 ), ζeq0 = ζeq(0) and
ζ∞tl = ζ∞eq (rtl). As discussed in the main text a third equilibrium relation can be derived for the
chemical potential. Considering the two asymptotic equilibrium solution, given by a flat profile
in the contact, and a profile far from the interaction, outside the contact, we indeed have

Δμeq

Ω
= −U ′

0 = γ̃κ(ζ∞) . (E.23)

This relation also provides boundary conditions for the curvature. It shows for instance that in
the case of an attractive interaction with a minimum and in the hypothesis of zero external force,
U ′
0 = 0 so that the macroscopic shape of the crystal far from the substrate is a line. However,

if the interaction is purely repulsive κ∞ �= 0 and the macroscopic profile outside the contact is
parabolic (see Eqs. (E.4) and (E.10b)).

We derive in the main text expressions of the equilibrium crystallization force distinguishing
two separate cases:

i) Attractive interaction. This will introduce a natural definition for the triple line, ζ∞tl = ζeq0
and lead to habitual contact angle relations.

ii) Repulsive interaction. We choose the triple line as the point where ∂rζ
∞
tl = 0.

The two scenarios are illustrated in the main text in Fig. 5.1.

E.2 Equilibrium simulations: Relaxation dynamics

In the equilibrium case (vl = 0), the force F , and contact area L, reach stationary values. These
values are used to compute the equilibrium pressure, P = F/(πL2), shown in the main text (right
panel of Section 5.4). From, the analytic equilibrium derivations (see above and Section 5.2),
we expect that the stationary values of these observables are not affected by the value of the
kinetic constant ν, and interaction amplitude ā. The former should only reflect on the kinetics
of the process but cannot influence steady states (thus equilibrium). The latter because of the
equilibrium relation Eq. (5.12), showing no effect of the disjoining pressure on the equilibrium
pressure for a purely repulsive interaction (given our definition of contact radius).

In Fig. E.1 we show the time evolution of the crystallization force and contact size of an
arbitrary initial profile. Whatever is the choice of ā and ν the curves reach stationary values. This
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E.3. Macroscopic film width after the detachment

Figure E.1: Time evolution of force and contact sizes in some exemplary equilibrium simulations. The
total size of the simulation box is R̄ = 40.6. All curves reach a stationary value. The equilibration time
depends on the kinetic constant ν. Two supersaturation at the boundary of the integration domain are
considered: σ = 0.1 and σ = 0.15. Their effect is to shift the plateaus. Left panel: crystallization force.
Right pane: contact size. Results are given in normalized quantities.

(a) The plot is cut on the top for better visualiza-
tion. The highest point of the red curve would
be F̄ ≈ 7800. Dashed lines are the asymptotic
equilibrium forces F̄eq at the given supersatura-
tion.
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stationary values as expected depend only on the supersaturation. Effects can be seen however
on the relaxation dynamics. In particular, η reflects on relaxation times as seen comparing the
fuchsia curves (higher ν) to the blue ones (smaller ν). In regard to the interaction amplitude
ā, this has only a very short transient effect on the initial dynamics which is due to the choice
of the initial condition. For instance, looking at the panel on the left, small ā provokes initial
small forces since the initial position of the interface is too far to “feel” the interaction. On the
contrary, larger forces are experienced when the interaction amplitude is large (red curve) due
to the initial position of the interface. Finally, we performed exploratory simulations to test the
effect of different boundary widths ζbc (not shown here). We found an effect on the contact size
and equilibrium force. However, these are perfectly balanced in the equilibrium pressure which
remains unaffected.

E.3 Macroscopic film width after the detachment

In this appendix we briefly illustrate that for a given width at the boundary ζbc, we can predict
the width of the detached film ζmf via Eq. (5.37):

ζmf ≈ ζbc(1− D

ν
κbc) .

Let us test this prediction assuming κbc ≈ d−1. In figure Fig. E.2 we show the film thickening ζf
in the neighborhood of the transition as a function of the kinetic constant ν as computed from
simulations for different values of the boundary film width ζbc. The results are compared to the
analytic prediction above (solid line with the corresponding color) showing a reasonably good
agreement. Higher discrepancies find for larger thickness ζbc at the boundary are probably due
to the slower relaxation time characterizing this type of simulations, so that they have not yet
converged to the asymptotic value ζf (t → ∞) ≈ ζmf .
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Appendix E. Crystallization force

Figure E.2: Pore half size ¯d = 100 and boundary supersaturation σbc = 0.1. The x-axis starts from 0.01
for better visualization. The dashed black line is a reference line indicating the compact crystal (film
thickening ζf ≈ 1). The area below is slightly opaque because not relevant.
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Abstract

This thesis discusses the modeling of growth and dissolution of confined crystals. We focus on the dynamics
within lubricated (or hydrophilic) contacts and derive a continuum thin film model accounting for diffusion,
surface kinetics, hydrodynamics, surface tension, and interactions with the substrate (disjoining pressure). The
model is applied to different geological problems.
First, we study dissolution induced by an external load (pressure solution). We find the functional form of the
disjoining pressure – finite or diverging at contact – crucial in determining steady-state dissolution rates and
morphologies. These forms respectively lead to load-dependent or load-independent dissolution rates, and to
flat or pointy surface profiles.
Second, we consider growth in the vicinity of a flat wall. We find that a cavity appears on the confined
crystal surface. We obtain a non-equilibrium morphology diagram describing the formation of the cavity in
agreement with experimental observations. When crossing the transition line, a cavity can appear continuously
or discontinuously depending on the form of the disjoining pressure (repulsive or attractive). For nanometric
film thicknesses, viscosity can hinder the formation of the cavity.
Finally, we address the question of the force of crystallization exerted by a crystal growing between two flat
walls. We point out the importance of a precise definition of the contact area to define the equilibrium pressure.
During growth, the triple-line undergoes a kinetic pinning transition depending solely on the ratio between the
diffusion constant, and the product of the surface kinetic constant and the distance between the walls. After
this transition, the crystallization force decreases to zero and a macroscopic film forms.

Résumé

Cette thèse traite de la modélisation de la croissance et de la dissolution de cristaux confinés. Nous nous
concentrons sur la dynamique dans les contacts lubrifiés (ou hydrophiles) et dérivons un modèle continu de
couche mince prenant en compte la diffusion, la cinétique de surface, l’hydrodynamique, la tension de surface
et les interactions avec le substrat (pression de disjonction). Le modèle est appliqué à différents problèmes
géologiques.
Premièrement, nous étudions la dissolution induite par une charge extérieure (dissolution sous contrainte).
Nous trouvons que la forme fonctionnelle de la pression de disjonction – finie ou divergente au contact – est
cruciale dans la détermination des taux de dissolution et des morphologies stationnaires. Ces formes conduisent
respectivement à des taux de dissolution dépendant ou indépendants de la charge, et à des profils de surface
plats ou pointus.
Deuxièmement, nous considérons la croissance à proximité d’un mur plat. Nous avons constaté qu’une cavité
apparaît sur la surface confinée du cristal. Nous obtenons un diagramme de morphologie hors équilibre en
accord avec les observations expérimentales. En traversant la ligne de transition, une cavité peut apparaître de
manière continue ou discontinue en fonction de la forme de la pression de disjonction (répulsive ou attractive).
Pour les épaisseurs de film nanométriques, la viscosité peut entraver la formation de la cavité.
Enfin, nous adressons la question de la force de cristallisation exercée par un cristal croissant entre deux parois
planes. Nous soulignons l’importance d’une définition précise de l’aire de contact pour définir la pression
d’équilibre. Pendant la croissance, la ligne triple subit une transition cinétique dépendant uniquement du
rapport entre la constante de diffusion, et le produit de la constante cinétique de surface et de la distance entre
les murs. Après cette transition, la force de cristallisation diminue jusqu’à s’annuler et un film macroscopique
se forme.
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