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Résumé en français

Jan 19 12:12:52 DEBUG repo: using cache for: fedora
Jan 19 12:12:52 DEBUG not found updateinfo for: Fedora 25 - x86_64
Jan 19 12:12:53 DEBUG repo: using cache for: rpmfusion-free-updates
Jan 19 12:12:53 DEBUG not found deltainfo for: RPM Fusion for Fedora 25 - Free - Updates
Jan 19 12:12:53 DEBUG not found updateinfo for: RPM Fusion for Fedora 25 - Free - Updates
...
Jan 22 10:51:50 DDEBUG Command: dnf -y update VirtualBox-5.1
Jan 22 10:51:50 DDEBUG Installroot: /
Jan 22 10:51:50 DDEBUG Releasever: 25
Jan 22 10:51:50 DDEBUG Base command: upgrade
Jan 22 10:51:50 DDEBUG Extra commands: [’VirtualBox-5.1’]
Jan 22 10:51:50 DEBUG repo: using cache for: virtualbox
Jan 22 10:51:50 DEBUG not found deltainfo for: Fedora 25 - x86_64 - VirtualBox
Jan 22 10:51:50 DEBUG not found updateinfo for: Fedora 25 - x86_64 - VirtualBox

Table 1: Quelques enregistrements produits par DNF, le gestionnaire de paquet de Fedora. Ces
enregistrements concernent l’utilisation de DNF au travers de quelques types d’évènements. Cet
exemple d’enregistrement est simple : chaque ligne est décomposable en un triplet (date, type
d’évènement générique, description de l’évènement).

De nos jours, de nombreuses informations sont enregistrées informatiquement. Un exemple
de telles informations est donné par le tableau 1. Les enregistrements de cet exemple sont ceux du
gestionnaire de paquet DNF pour la distribution linux Fedora. Chaque enregistrement, représenté
par une ligne, est composé de quelques caractères. Chacune de ces lignes est composée d’une date,
un type d’évènement et de la description de l’évènement. Un usage évident de tels enregistrements
concerne l’activité d’un système informatique. Leur intérêt est le même que pour la videosurveil-
lance : détecter des activités malveillantes ou, du moins, enregistrer chaque activité en cas de
malveillance. L’activité de sites web tels qu’Amazon, Google ou Facebook pour ne citer que les
plus gros et l’activité de composants informatiques tels que les processeurs et les disques durs sont
deux exemples de tels enregistrements. Dans le cadre de l’activité d’un site web, l’enregistrement
classique des pages visitées correspond au format 〈UID,date, page〉. Le tableau 2 illustre de tels
enregistrements produits par Apache2. Pour cet exemple, l’UID, c’est-à-dire l’identifiant utilisa-
teur, est l’adresse IP utilisée pour la requête. Pour un utilisateur, chaque log correspond à date
a été demandée une certaine page. Ces informations permettent de reconstruire le parcours et
les habitudes de chaque utilisateur. De ce fait, les parcours menant à des comportements profita-
bles, comme des achats pour l’exemple d’un site d’e-commerce, peuvent être étudiés à travers ces
données et aider les décideurs à réorganiser leurs sites web ou proposer des offres commerciales.
Une remarque intéressante concernant cet exemple est que les systèmes d’enregistrements ont été
créés dans le but de gérer l’activité de serveurs informatiques et non pour des raisons commer-
ciales. C’est un exemple d’usage secondaire qu’il peut être fait des données. De telles analyses
sont de plus en plus communes du fait de l’important volume de données stocké dans les serveurs

3



4

37.59.178.104 - - [04/Feb/2018:12:33:47 +0000] "POST /xmlrpc.php HTTP/1.1"
37.59.178.104 - - [04/Feb/2018:12:33:49 +0000] "POST /xmlrpc.php HTTP/1.1"
157.55.39.150 - - [04/Feb/2018:12:58:45 +0000] "GET /robots.txt HTTP/1.1"
207.46.13.145 - - [04/Feb/2018:12:58:49 +0000] "GET / HTTP/1.1"
115.231.219.32 - - [04/Feb/2018:16:57:47 +0000] "GET /manager/html HTTP/1.1"
115.231.219.32 - - [04/Feb/2018:16:58:02 +0000] "GET /manager/html HTTP/1.1"
115.231.219.32 - - [04/Feb/2018:16:58:34 +0000] "GET /manager/html HTTP/1.1"
207.46.13.145 - - [04/Feb/2018:17:01:47 +0000] "GET / HTTP/1.1"
37.59.222.30 - - [04/Feb/2018:17:33:14 +0000] "GET /wp-login.php HTTP/1.1"
37.59.222.30 - - [04/Feb/2018:17:33:14 +0000] "GET /administrator/index.php HTTP/1.1"
37.59.222.30 - - [04/Feb/2018:17:33:14 +0000] "GET /admin.php HTTP/1.1"

Table 2: Quelques enregistrements produits par le serveur HTTP Apache2. Ces enregistrements
correspondent à des connexions distantes à un site web. Ces enregistrements ont été simplifiés pour
l’exemple et ne contiennent plus que les informations essentielles : l’adresse IP de connexion, la
date et la page web accédée.

d’entreprises et de la transformation qu’opère les techniques de fouille de données sur l’industrie
et le commerce.

D’autres types de données peuvent être enregistrées sans être liées à l’activité informatique.
Un exemple de telles données est celui des bases de données médico-administratives. Une part
importante de la population française est assurée par l’assurance maladie et les remboursements
effectués par cette assurance sont enregistrés dans de tels bases. Ces remboursements peuvent
concerner des délivrances de médicaments, des séjours hospitaliers mais aussi des consultations
médicales. De tels enregistrements conduisent à la production de très grands volumes de données
qui requièrent une infrastructure importante pour les maintenir et les analyser. De telles données
sont initialement collectées pour des raisons administratives mais le SNDS1 a été créé dans le but
de promouvoir leur utilisation dans le cadre de recherches médicales.

Le type des données enregistrées est de plus en plus complexe. Les données du tableau 2
concernant l’activité d’un site web pourraient, par exemple, être enrichies par de nouvelles infor-
mations telles que le temps passé sur chaque page, l’aire de la page affichée à l’écran ou le type
d’appareil utilisé pour accéder à cette page. Ces données pourraient aussi être enrichies par des
enregistrements extérieurs concernant, par exemple, la mise à jour des profils utilisateurs. Une
des dimensions de grand intérêt parmi ces données est le temps. Des évènements tels que les
délivrances de médicaments, les utilisations d’un processeur ou les accès à une page web sont
datés et l’information temporelle est essentielle pour décrire des différences entre, par exemple,
une régularité et un pic de consommation. De telles données sont appelées séquentielles si le
temps est décrit par l’ordre des occurrences ou temporelles si le temps est décrit numériquement.
Dans cette thèse, seules les données représentées par un ensemble de séquences temporelles sont
considérées. Chaque élément de cet ensemble, c’est-à-dire chaque séquence, représente les enreg-
istrements décrivant une certaine entité. Par exemple, pour des enregistrements d’un site web, une
séquence concernerait un utilisateur. Le tableau 3 illustre la représentation sous forme d’ensemble
de séquences des enregistrements du tableau 2. Dans cet exemple, nous faisons l’hypothèse que
les requêtes provenant de l’adresse IP 37.59.222.30 sont malveillantes car trois requêtes provenant
de cette adresse tentent d’accéder au panneau d’administration et ce, exactement à la même date.
Un exemple de motif intéressant pourrait décrire de telles requêtes malveillantes en les différen-
ciant d’autres requêtes comme, par exemple, celles provenant de l’adresse IP 207.46.13.145 qui
concernent le crawler web Bingbot (utilisé par Microsoft pour le moteur de recherche Bing).

Un grand nombre d’informations est contenu dans ces bases de données et un défi d’intérêt est

1SNDS: Système National des Données de Santé https://www.snds.gouv.fr/SNDS/Accueil

https://www.snds.gouv.fr/SNDS/Accueil
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IP address Sequence
37.59.178.104 (/xmlrpc.php, 12:33:47), (/xmlrpc.php, 12:33:49)
157.55.39.150 (/robots.txt, 12:58:45)
207.46.13.145 (/, 12:58:49), (/, 17:01:47)
115.231.219.32 (/manager/html, 16:57:47), (/manager/html, 16:58:02),

(/manager/html, 16:58:34)
37.59.222.30 (/wp-login.php, 17:33:14), (/administrator/index.php, 17:33:14),

(/admin.php, 17:33:14)

Table 3: Représentation sous forme de séquences temporelles du tableau 1.2. Dans cet exemple,
une séquence est composée des évènements concernant les requêtes d’une même adresse IP. Un
évènement est une requête associée à une date.

donc d’exploiter ces données pour en extraire de nouvelles connaissances. Ce défi se décompose en
deux questions : Comment exploiter de grands ensembles de données et qu’est-ce qui est cherché
dans ces données ?

L’analyse de ces données peut être faite à l’aide de modèles statistiques pour lesquels le but est
de montrer qu’un comportement, par exemple une stratégie commerciale, a un impact significatif
sur les données. Cette approche est utile pour valider une hypothèse, c’est-à-dire, une stratégie
donnée. Par exemple, des cliniciens pourraient vouloir tester si un nombre significatif de patients
traités a été guéri. Ces mêmes cliniciens pourraient aussi avoir une intuition sur l’effet secondaire
d’un médicament, écrire cette intuition sous forme d’hypothèse statistique pour finalement tester sa
significativité sur les données. Par exemple, un traitement peut être bon pour la population générale
mais les cliniciens voudraient valider qu’il l’est aussi, ou non, pour des populations spécifiques
définies par leur genre, leur âge, etc.

Dans certains cas, aucune hypothèse statistique n’a été établie pour expliquer les comporte-
ments contenus dans les données. Un traitement des données plus important est donc nécessaire
pour identifier de tels comportements. Extraire des comportements intéressants apparaissant dans
les données et satisfaisant un ensemble de contraintes utilisateurs semble être une solution efficace
pour ce problème. Dans ce cas, l’automatisation de cette tâche est nécessaire. En effet, ce n’est pas
raisonnable d’explorer manuellement les données du fait de leur volume. Les algorithmes dédiés
à cette tâche seraient donc utilisés en tant qu’assistant pour la génération d’hypothèses.

Le choix de cette thèse est donc d’explorer le champ des approches d’extraction de motifs pour
extraire des hypothèses concernant les comportements intéressants apparaissant dans les données.
Les motifs sont des objets qui décrivent des comportements satisfaisant certaines contraintes et
qui apparaissent dans les données. La contrainte classique utilisée dans ce cas est la contrainte
de fréquence minimale. Un motif satisfaisant cette contrainte est extrait si et seulement si ce
motif apparait au moins x fois dans les données. Dans ce cas, le paramètre x doit être défini
par l’utilisateur. Les exemples classiques d’analyse de paniers de consommateurs, l’analyse de
ce qui est acheté par les consommateurs dans les magasins, utilise les itemsets comme modèle
de motifs. Un itemset est un motif ne considérant que les co-occurrences d’évènements (appelés
items dans ce cas). Un exemple d’itemset extrait dans ce cas d’application serait (abricot, baguette,
chocolat) qui décrit que abricot, baguette et chocolat sont achetés dans le même panier. Pour les
enregistrements séquentiels et temporels, de nombreux modèles de motifs ont été proposés tels
que les motifs séquentiels [Agrawal and Srikant, 1995], les épisodes [Mannila et al., 1997] ou les
chroniques [Dousson and Duong, 1999]. Le choix de modèle de motifs dépend du type de données
et de la représentation des connaissances désirée par l’utilisateur.

Afin de proposer un algorithme d’extraction de motifs utilisable par des experts de domaines
variés et donc des données variées, le modèle de motifs extraits par un tel algorithme doit être
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générique, expressif, extractible et interprétable.

Comme introduit plus tôt, la contrainte utilisateur dédiée à l’extraction de motifs la plus com-
munément utilisée est la contrainte de fréquence minimale. La fréquence d’un motif est la pro-
portion des données dans laquelle ce motif apparaît. Le terme de support est utilisé dans le cas
où le nombre absolu d’occurrences est calculé et non la proportion de celles-ci. A partir de ces
définitions, l’ensemble des comportements fréquents apparaissant dans les données peut être re-
tourné à l’utilisateur. Pour déterminer si un motif est fréquent ou non, la démarche classique est
de demander à l’utilisateur de définir lui-même le seuil de fréquence. Par exemple, si l’utilisateur
définit ce seuil comme étant égal à 20% des données, un motif fréquent est un motif apparaissant
au moins dans 20% des données. Ce choix du seuil de fréquence permet de régler la généricité du
modèle de motifs.

Dans le cas des séquences temporelles, l’approche classique pour définir la fréquence est de
considérer le nombre de séquences temporelles dans lesquelles un motif est trouvé. Par exemple,
un motif concernant la délivrance de médicaments possédant une fréquence de 20% des séquences
décrit un comportement apparaissant chez 20% des assurés. Un autre exemple de motif fréquent
serait un motif fréquent caractérisant une requête malveillante. Dans ce cas, connaître ce type de
motif aiderait à reconnaître de futures requêtes malveillantes et, par exemple, bannir les adresses
IP associées.

L’ensemble des motifs fréquents peut pourtant être si volumineux qu’il serait difficile de
l’extraire ou d’en tirer une information utile. Par exemple, pour des séquences de délivrances
de médicaments, une proportion importante des motifs fréquents impliquerait l’aspirine ou le
paracétamol. Détecter que de tels médicaments sont fréquemment délivrés n’est pas réellement
utile pour les cliniciens. Un grand nombre de motifs inintéressants est ainsi généré par les algo-
rithmes d’extraction de motifs fréquents. En outre, l’ensemble des motifs fréquents peut contenir
des connaissances déjà connues du fait de l’existence de comportements réguliers inintéressants.
De ce fait, certains travaux ont été réalisés sur d’autres types de contraintes utilisateurs qui leur
permettraient de contraindre l’ensemble des motifs extraits afin d’être plus intéressants.

La contrainte étudiée dans cette thèse est la contrainte de croissance minimale. Cette con-
trainte requière un jeu de données dont les séquences sont labellisées. Ces labels sont utilisés pour
définir des classes de séquences et donc, un motif discriminant, c’est-à-dire un motif satisfaisant
la contrainte de croissance minimale, est un motif qui apparait plus souvent dans les séquences
d’une classe que dans les autres. Par exemple, pour des séquences associées à des personnes, les
classes pourraient être relatives à leur âge ou leur genre. Utiliser de tels labels permet d’extraire
des comportements spécifiques associés uniquement, par exemple, aux femmes ou aux jeunes.

Les motifs discriminants sont plus intéressants pour l’utilisateur car ils représentent de poten-
tielles réponses aux questions de celui-ci. Par exemple, les séquences du tableau 3 pourraient être
labellisées par l’utilisateur comme requête malveillante ou non. A partir de ces labels, les motifs
discriminants extraits concerneraient ce qui est récurrent parmi les requêtes malveillantes mais ne
l’est pas, ou moins, parmi les autres.

Pour des ensembles de séquences labellisées, les motifs discriminants sont plus intéressants
que les motifs fréquents car ils :

• sont utilisables dans un outil de détection automatique (par exemple de comportements
malveillants)

• permettent de donner un aperçu de ce que pourrait être un comportement spécifique (par
exemple un comportement malveillant)

Ce second point est l’atout majeur des motifs discriminants. Contrairement aux meilleurs algo-
rithmes de classification, tels que les réseaux de neurones profonds, la classification faite par des
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motifs est explicable. De ce fait, les motifs discriminants peuvent être utilisés pour retourner des
hypothèses de travail aux décideurs ou utilisés dans un processus de classification supervisée par
l’utilisateur. Dans le contexte de la pharmaco-épidémiologie, les labels peuvent être associés aux
résultats des traitements. Dans ce cas, le but est d’extraire les motifs qui discriminent l’un de ces
résultats, par exemple la guérison de patients, par rapport aux autres. Les cliniciens peuvent ainsi
découvrir et comprendre pourquoi un traitement est efficace dans certains cas et non dans d’autres.

Les motifs discriminants sont toutefois moins extractibles que les motifs fréquents. La con-
traint de croissance minimale n’est pas anti-monotone comme l’est celle de fréquence minimale
et les astuces des algorithmes classiques ne peuvent donc pas être utilisées pour extraire ce type
de motifs. De plus, peu de travaux ont tentés d’extraire des motifs discriminants incluant une
information temporelle. Choisir où séparer la dimension temporelle afin d’obtenir des motifs dis-
criminants n’est pas simple. Par exemple, la séquence associée à l’adresse IP 37.59.222.30, est
considérée malveillante entre autres choses car elle contient trois évènements apparaissant exacte-
ment à la même date. Mais il est envisageable de considérer la séquence associée à l’adresse IP
115.231.219.32 comme malveillante car elle contient trois évènements apparaissant dans un inter-
valle de temps très court. Dans cet exemple concis, ces deux séquences peuvent être distinguées
manuellement de la séquence associée à l’adresse IP 207.46.13.145 mais une telle distinction de-
viendrait plus compliquer pour des milliers de séquences. Extraire effectivement des motifs tem-
porels discriminants est donc un défi important du fait de sa difficulté et de l’intérêt de la dimension
temporelle à différencier des motifs. C’est donc à ce défi que cette thèse s’est attaqué.

Contributions

La contribution initiale de cette thèse a été le choix du modèle de chroniques pour représenter des
comportements temporels. Une chronique est un couple (E ,T ) tel que E est un multi-ensemble
d’évènements et T un ensemble de contraintes temporelles s’appliquant à E . La figure 1 illustre
plusieurs exemples de chroniques. Pour toutes ces chroniques le multi-ensemble d’évènements
E correspond à Abricot, Baguette et Chocolat. Pour la chronique C1, l’arrête allant de Chocolat
à Baguette signifie que Baguette apparaît au moins 1 unité de temps après Chocolat. L’unité de
temps n’est pas définie ici mais elle pourrait typiquement être fixée au jour.

L’intérêt de ce choix de modèle est de représenter des comportements intéressants dans le con-
texte de la pharmaco-épidémiologie. Ce choix cible particulièrement l’expressivité temporel du
modèle de chronique et les précédents usages des chroniques de le domaine médical. L’expressivité
temporelle des chroniques est importante pour le contexte de la pharmaco-épidémiologie du fait de
l’importance du temps dans le domaine médicale. Par exemple, qu’une délivrance de médicaments
soit hebdomadaire ou mensuelle ne conduira pas aux mêmes résultats et ces deux régularités de
délivrance doivent donc être considérées différentes. Le modèle de chronique a donc été adopté
par les cliniciens et autres membres du projet pour son expressivité.

Les contributions de cette thèse, centrées sur le modèle de chroniques, se regroupent en trois
parties :

• L’extraction de chroniques discriminantes

• La généralisation des chroniques discriminantes et l’étude de leur interprétabilité

• L’application de l’extraction de chroniques discriminantes sur un cas d’étude de pharmaco-
épidémiologie

La première contribution de cette thèse a donc été de proposer la tâche d’extraction de
chroniques discriminantes. L’extraction de chroniques fréquentes ou d’autres motifs discrim-
inantes ont été étudiés avant ce travail mais pas la combinaison des deux.
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C1:

Chocolat Baguette
[1,+∞[

Abricot
[1,+∞[

C2:

Baguette Chocolat
[1,+∞[

Abricot
[1,+∞[

C3:

Chocolat Baguette
[2,3]

Abricot
[1,+∞[

C4:

Chocolat

Baguette

[2,5]

Abricot
[3,6]

C5:

Chocolat

Baguette
[-2,2] Abricot

Figure 1: Illustrations de chroniques représentant plusieurs comportements temporels basés sur
les évènements concernant les achats : Abricot, Baguette et Chocolat.
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L’avantage du modèle de chronique est d’être plus expressif que des motifs plus standard
tels que les motifs séquentiels. La différence principale entre ces deux modèles de motifs est
la façon de représenter la dimension temporelle. Là où les motifs séquentiels représentent la
dimension temporelle uniquement par de la séquentialité, c’est-à-dire par l’ordre temporel des
évènements, les chroniques représentent le temps numériquement et ne contraignent pas forcément
les évènements à apparaître dans un ordre séquentiel donné. Par exemple, le comportement d’une
personne achetant du chocolat puis une baguette puis des abricots peut être représenté par un motif
séquentiel. L’ordre séquentiel décrit la différence avec d’autres motifs tels que, par exemple, une
baguette puis du chocolat et enfin des abricots. Ces deux comportements sont aussi représentables
par des chroniques. Les chroniques C1 et C2 de la figure 1 représentent respectivement ces deux
comportements. Mais il est aussi possible de représenter des comportements tels qu’acheter une
baguette entre 2 et 3 jours après avoir acheté du chocolat puis ensuite acheter des abricots. Ce
comportement est illustré par la chronique C3. Pour ce comportement, une information temporelle
numérique a été ajouté à la séquentialité des évènements. Un autre exemple, serait l’achat d’une
baguette entre 2 et 5 jours après l’achat de chocolat et l’achat d’abricots entre 3 et 6 jours après
l’achat du chocolat. Ce comportement est illustré par la chronique C4. Dans ce cas, il n’y a
aucune séquentialité entre les évènements concernant l’achat d’une baguette et l’achat d’abricots.
Un dernier exemple serait l’achat d’une baguette entre 2 jours avant l’achat de chocolat et 2 jours
après. Dans ce cas une information temporelle est donnée et l’occurrence de ces deux évènements
est contrainte, mais aucune séquentialité n’a été imposée. L’achat d’une baguette peut tout à fait
arriver avant ou après l’achat de chocolat. Ce comportement est illustré par la chronique C5.

L’expressivité du modèle de chronique peut donc permettre de décrire des comportements
discriminants que les motifs séquentiels ne peuvent pas décrire. Cela rend d’autant plus intéressant
l’extraction de chronique discriminante mais c’était un défi important d’extraire effectivement
de tels motifs. En effet, la représentation numérique du temps rend plus difficile le choix des
bornes des contraintes temporelles. Les combinaisons de toutes possibilités bornes ne peuvent pas
être énumérées en temps raisonnable pour d’autres données que des données d’exemple et une
heuristique efficace doit donc être utilisée pour n’extraire qu’un-sous ensemble intéressant de ces
combinaisons.

L’algorithme d’extraction de chroniques discriminantes DCM proposé dans cette thèse s’appuie
sur l’heuristique incomplète de l’algorithme d’apprentissage de règles numériques Ripperk pour
extraire efficacement des contraintes temporelles discriminantes. Pour un multi-ensemble d’évènements
donné, il est possible de représenter l’ensemble de ses occurrences temporelles sous la forme de
données tabulaires qu’un algorithme d’apprentissage de règles numériques pourra ensuite utiliser.
L’algorithme DCM énumère donc l’ensemble des multi-ensembles d’évènements fréquents puis
retourne l’ensemble de leurs occurrences temporelles à Ripperk afin d’obtenir des règles numériques
que seront ensuite traduites en contraintes temporelles discriminantes. L’association des multi-
ensembles fréquents et de ces contraintes temporelles discriminantes permet finalement de générer
un ensemble de chroniques discriminantes.

L’efficacité de DCM à effectivement extraire les chroniques discriminants un ensemble de
séquences temporelles a été évaluée sur données synthétiques. Des séquences labellisées positives
ou négatives ont été générées à partir de chroniques discriminants ces deux labels. L’algorithme
DCM a effectivement extrait les chroniques discriminants les séquences positives et négatives.
Cette évaluation nous a ainsi permis de montrer que l’heuristique de Ripperk, quoique incomplète,
extrait effectivement les contraintes temporelles permettant de discriminer les ocurrences d’un
multi-ensemble.

L’intérêt de l’expressivité des chroniques discriminantes a ensuite été évaluée en comparant les
résultats de chroniques discriminantes extraites en matière de précision, utilisées pour classifier
de nouvelles séquences, avec les résultats obtenus à partir de motifs séquentiels discriminants.
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Cette évaluation a été effectuée sur données réelles. Les résultats ont montré que l’utilisation des
chroniques discriminantes pour classifier des séquences temporelles était plus intéressante pour
certains jeux de données que l’utilisation de motifs séquentiels discriminants. Cette évaluation
permet donc de justifier l’intérêt de la dimension temporelle pour la classification de séquences et
l’intérêt des chroniques à représenter cette dimension.

La seconde contribution de cette thèse concerne la généralisation des chroniques et l’étude
de leur interprétabilité. Le choix du modèle de chroniques a été fait pour son expressivité et son
interprétabilité mais l’interprétabilité des chroniques n’a jamais été clairement étudié précédem-
ment. Une généralisation du modèle de chronique discriminante a donc été proposé et la définition
de différents types de chroniques généralisées a permis de comparer leur interprétabilité. L’idée de
la généralisation des chroniques est de remplacer Ripperk par n’importe quel autre algorithme de
machine learning. Dans le cas d’algorithmes de machine learning construisant des modèles plus
complexes que des règles numériques, les motifs obtenus ne seraient donc plus des chroniques
mais une forme généralisée de celles-ci. Un algorithme de machine learning plus expressif ex-
trait des chroniques généralisées plus expressives mais impacte négativement leur interprétabilité.
Le compromis entre, ce gain en expressivité et cette perte d’interprétabilité, est comparé pour
plusieurs types de chroniques généralisées. Ce compromis est d’autant plus important pour des
chroniques discriminantes puisqu’elles peuvent être utilisées dans un contexte de classification.
Grâce à ce contexte de classification, il est donc possible d’évaluer le gain en expressivité d’un
type de chronique généralisée en se basant sur la précision de celui-ci à classifier de nouvelles
séquences. La comparaison des différents résultats en matière de précision obtenus par plusieurs
types de chroniques généralisées a donc pu être effectuée sur un ensemble de jeux de données réels
et synthétiques.

Pour terminer, la troisième contribution de cette thèse a été d’extraire des comportements liés à
l’épilepsie grâce aux chroniques discriminantes sur un cas d’étude de pharmaco-épidémiologie
: GENEPI. Le jeu de données associé à cette étude concerne des personnes épileptiques pour
lesquelles un traitement stable a duré au moins un an, mais qui ont finalement été hospitalisées
pour au moins une crise d’épilepsie.

Ce travail fait parti du projet PEPS (Pharmaco-Epidémiologie des Produits de Santé) porté par
le CHU de Rennes et financé par l’ANSM (Agence Nationale de Sécurité du Médicament). Le
but principal de ce projet est de mener des études de pharmaco-épidémiologie. L’étude GENEPI
en est l’une d’elles. Le but initial de cette étude était de valider l’association entre une hospital-
isation pour crise d’épilepsie et une substitution d’un médicament anti-épileptique princeps à un
médicament anti-épileptique générique. Un nombre important de pré-traitement avait à l’origine
dû être fait pour tester statistiquement cette seule hypothèse. Parmi ces pré-traitements, les plus
notables sont la qualification de période de stabilité et de substitution de médicaments princeps à
générique. Nous avons donc décider d’extraire des chroniques discriminantes à partir de ce jeu de
données :

• Pour ne confirmer qu’aucune chronique discriminante relative à l’hypothèse précédente n’a
été extraite (les résultats de l’étude l’ont rejetée).

• Pour explorer plus profondément le jeu de données en extrayant des comportements tem-
porels discriminants qui pourraient intéresser les cliniciens.

Les chroniques extraites ont finalement identifié des substitutions entre médicaments anti-
épileptiques mais pas entre princeps et génériques. Ces chroniques ont de plus discriminé ces
substitutions au travers de leur dimension temporelle. Une telle précision dans la description d’un
comportement est plus difficile à obtenir au travers du processus classique d’étude de pharmaco-
épidémiologie mais est pourtant obligatoire pour répondre aux questions les plus complexes des
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cliniciens. De plus, l’automatisation de l’exploration de l’espace de recherche nous a permis de
généraliser le contexte de l’étude originale. Les chroniques extraites ont finalement été validées
par les cliniciens et des pistes d’améliorations de l’extraction et d’extraction d’autres types de
comportements ont été proposées. Les résultats obtenus confirment l’utilité d’une telle approche
dans la réalisation d’étude de pharmaco-épidémiologie.

Cette thèse contribue finalement à l’extraction de motifs temporels et en souligne l’importance.
En effet, les hypothèses de travail données par les chroniques discriminantes extraites aux experts
sont très importantes. De telles hypothèses de travail sont difficilement obtenable en utilisant des
méthodes classiques de classification de séquences telles que les réseaux de neurones profonds.
Par exemple, les motifs extraient à partir du jeu de données GENEPI sont compréhensibles par les
cliniciens. Un algorithme de classification dit "boîte noire" pourrait bien sûr obtenir une meilleure
précision. Mais, dans cette thèse, l’idée défendue est qu’une faible amélioration en matière de
précision ne peut justifier une perte de l’interprétabilité du modèle.
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Chapter 1

Introduction

Jan 19 12:12:52 DEBUG repo: using cache for: fedora
Jan 19 12:12:52 DEBUG not found updateinfo for: Fedora 25 - x86_64
Jan 19 12:12:53 DEBUG repo: using cache for: rpmfusion-free-updates
Jan 19 12:12:53 DEBUG not found deltainfo for: RPM Fusion for Fedora 25 - Free - Updates
Jan 19 12:12:53 DEBUG not found updateinfo for: RPM Fusion for Fedora 25 - Free - Updates
...
Jan 22 10:51:50 DDEBUG Command: dnf -y update VirtualBox-5.1
Jan 22 10:51:50 DDEBUG Installroot: /
Jan 22 10:51:50 DDEBUG Releasever: 25
Jan 22 10:51:50 DDEBUG Base command: upgrade
Jan 22 10:51:50 DDEBUG Extra commands: [’VirtualBox-5.1’]
Jan 22 10:51:50 DEBUG repo: using cache for: virtualbox
Jan 22 10:51:50 DEBUG not found deltainfo for: Fedora 25 - x86_64 - VirtualBox
Jan 22 10:51:50 DEBUG not found updateinfo for: Fedora 25 - x86_64 - VirtualBox

Table 1.1: Some lines in the log file of DNF, the package manager of Fedora. This log file is
dedicated to record the usage of DNF by recording some types of event. This is an example of
logs were each record is simple. Each line can be decomposed as a timestamp, a generic event
type and a string describing in more detail what happened.

Nowadays, a lot of information is recorded into logs. An example of such logs recorded by
the DNF package manager of Fedora is given by Table 1.1. Each record, represented by a line,
is composed by few characters. On each line, we can find a timestamp, an event type and a
description of the event. One obvious usage of such log is done to record computer activity. The
purpose of such record is the same as video surveillance: detect malicious activity or, at least,
save information in case of malicious activity. The activity of websites like Amazon, Google
or Facebook for the biggest ones and the usage of the hardware components like CPU or hard
drive disks are two examples of such recorded activities. For a website activity, the standard logs
tracking the pages visited by users on the website could have the format 〈UID, timestamp,where〉.
The Table 1.2 illustrates such type of logs produced by Apache2. In this case the UID is a user ID
if the user is logged in but it can also be IP addressed as in Table 1.2 or information that could allow
to track the user. For this user, each log corresponds to where (s)he was on the site for a specific
timestamp i.e. when (s)he was on the website and from where (s)he came. This information can
allow to rebuild the browsing and habits of this user. Thereby, the paths leading to profitable
behaviors like, for example, purchases, can be studied through those data and support stakeholders
to reorganize the websites or make commercial offers. One interesting remarks about this example
is that web log collection system has been created for server management purposes and not for
commercial reasons. This is an example of secondary usage of data. Such kind of analysis is more

19
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37.59.178.104 - - [04/Feb/2018:12:33:47 +0000] "POST /xmlrpc.php HTTP/1.1"
37.59.178.104 - - [04/Feb/2018:12:33:49 +0000] "POST /xmlrpc.php HTTP/1.1"
157.55.39.150 - - [04/Feb/2018:12:58:45 +0000] "GET /robots.txt HTTP/1.1"
207.46.13.145 - - [04/Feb/2018:12:58:49 +0000] "GET / HTTP/1.1"
115.231.219.32 - - [04/Feb/2018:16:57:47 +0000] "GET /manager/html HTTP/1.1"
115.231.219.32 - - [04/Feb/2018:16:58:02 +0000] "GET /manager/html HTTP/1.1"
115.231.219.32 - - [04/Feb/2018:16:58:34 +0000] "GET /manager/html HTTP/1.1"
207.46.13.145 - - [04/Feb/2018:17:01:47 +0000] "GET / HTTP/1.1"
37.59.222.30 - - [04/Feb/2018:17:33:14 +0000] "GET /wp-login.php HTTP/1.1"
37.59.222.30 - - [04/Feb/2018:17:33:14 +0000] "GET /administrator/index.php HTTP/1.1"
37.59.222.30 - - [04/Feb/2018:17:33:14 +0000] "GET /admin.php HTTP/1.1"

Table 1.2: Some logs of the HTTP server Apache2. The logs are simplified here to be only IP
addresses, timestamps and accessed web pages.

and more common due to the tremendous amount of data that is hidden in company servers and
that the data mining revolution may transform as business nuggets.

Other data can be recorded without being firstly linked to computer activity. Another exam-
ple is the medico-administrative databases. A great part of the French population is insured by
the national healthcare program, and the reimbursements are recorded in such database. Those
reimbursements are done for drug deliveries, hospital stays but also medical consultations. Some
care pathway described by this information can be seen as a patient log. This leads to big sets
of data requiring a big infrastructure to manage and analyze them. These data are collected for
administrative reasons but the French SNDS1 has been created in order to promote their use for
medical research purposes.

The type of the recorded data is more and more complex. From the previous example on
website activities, we can enrich the logs with new information like the time spend on the page,
the page subarea displayed on the screen or the device used to access the website. The data
can also be enriched with exogenous logs like logs concerning the update of the user profiles.
A highly valuable dimension of these data is the time. Events like drug deliveries, CPU usages
or web connections are timestamped and the temporal information is essential to describe some
differences between, for example, regularity and consumption peak. We call such type of data
sequential traces if the time is described by the order of occurrence of the events or temporal if the
time is described numerically. In this thesis we consider only data represented by a set of temporal
sequences. Each element of this set represents records that describe an independent entity. For
example, in website logs, a way to represent the log set for which each element concerns a user. A
temporal sequence is a temporal trace concerning a website user or an insured person. Table 1.3
illustrates a sequential representation of the logs in Table 1.2. In this example, we can assume that
request from 37.59.222.30 are malicious because three requests from this address attempt to access
the administrator panel at the same timestamps. An example of interesting pattern could describe
such malicious requests to discriminate them from, for example, requests from 207.46.13.145
which are requests from the web crawler Bingbot (used for the Microsoft search engine Bing).

A lot of information is then contained in these record bases, and a great challenge is to exploit
these data to discover new knowledge. The challenge is twofold: How can we process those big
sets of data and what is searched in those data?

Data analysis can be done with statistical models for which the goal is to show that a given
strategy or behavior is good or bad. This approach is useful to validate a hypothesis i.e. the given
strategy. For example, clinicians would like to test whether the significant number of patients

1SNDS: Système National des Données de Santé (National System for Healthcare Data) https://www.snds.
gouv.fr/SNDS/Accueil

https://www.snds.gouv.fr/SNDS/Accueil
https://www.snds.gouv.fr/SNDS/Accueil
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IP address Sequence
37.59.178.104 (/xmlrpc.php, 12:33:47), (/xmlrpc.php, 12:33:49)
157.55.39.150 (/robots.txt, 12:58:45)
207.46.13.145 (/, 12:58:49), (/, 17:01:47)
115.231.219.32 (/manager/html, 16:57:47), (/manager/html, 16:58:02),

(/manager/html, 16:58:34)
37.59.222.30 (/wp-login.php, 17:33:14), (/administrator/index.php, 17:33:14),

(/admin.php, 17:33:14)

Table 1.3: Sequential representation of the logs in Table 1.2. In this example, a sequence is
composed by the events of an IP address. An event is a web page request at a specific timestamp.

treated by a drug was healed. They can also have an intuition about adverse drug reaction, trans-
form it as a hypothesis to evaluate it statistically and check such intuition on the data. A treatment
can be good for the global population but we want to validate that this is the same for more specific
population defined by their gender, their age, etc.

In some cases, no statistical hypothesis is known to explain some behaviors in datasets. A
heavy process is so needed to identify those behaviors. Extracting interesting behaviors existing
in a dataset satisfying a set of user constraints seems to be an efficient solution for this problem.
Automation is needed in this case. It is not reasonable to explore the data manually due to their
large size. Such algorithm will be used as an assistant for hypothesis generation.

The choice of this thesis is to explore the field of pattern mining to extract hypotheses of inter-
esting behaviors from data. Patterns are objects that describe behaviors satisfying some constraints
and that are found in datasets. The standard constraint used for this is the minimal frequency con-
straint where a pattern is extracted if and only if this pattern occurred at least x times in the data.
In this case, the parameter x has to be defined by the user. The basic example of market-basket
analysis, the analysis of what is bought in specific shops, uses itemset as pattern model. An itemset
is a pattern only considering co-occurrence of events (or items in this case). For the example of
market-basket analysis (bread, butter, chocolate) is an itemset that describes that bread, butter and
chocolate are bought together. For sequential and temporal logs, several behavior models have
been proposed such that sequential patterns [Agrawal and Srikant, 1995], episodes [Mannila et al.,
1997] or chronicles [Dousson and Duong, 1999]. The choice of the pattern model depends on the
data type and the knowledge representation expected by the user.

To propose an algorithm for various experts analyzing various types of temporal trace, the
behavior model extracted by such algorithm is needed to be (i) generic, (ii) expressive, (iii) ex-
tractable and (iv) interpretable.

Generic The model genericity is the ability of a model to represent knowledge for various data
domain. It concerns not directly the use of an algorithm by the experts but its robustness. Indeed,
an expert extracting behaviors for his/her type of traces does not need a generic model but only
a model fitting his/her data. An ad hoc model fitting the data can then be better than a generic
model for the expert criteria. However, a generic model fits more likely new data and then the
research done for it can be reused for new data. Furthermore, a generic model proven to be good
for previous data type can be seen more robust than an ad hoc model.

Extractable The extractability of a model concerns the property of a model to be extracted by
an efficient algorithm. This is mainly related to the number of possible behaviors that the model
can represent and so, the expressiveness of the model. Let’s compare two models m1 and m2, if m1
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generates theoretically less combinatorial possibility than m2, it used to practically generates less
behaviors than m2 for a specific dataset and so the extraction is simpler.

As said for the expressiveness, too complex a model would be hardly extractable, in terms of
computational time or memory space. Indeed, the number of possible behaviors generated through
the model would be so big that the extracted behaviors require more memory than the initial data.

Interpretable The interpretability of a model is a complex property that is discussed with more
details in Section 5.1. This property is related to the understandability of the extracted behaviors
done by the expert and the intelligibility of the knowledge represented by those behaviors. Similar
to the extractability, if a model is too complex, the description of the extracted behaviors could be
difficultly interpretable.

Expressive The expressiveness of a model is its capacity to discriminate behaviors. It is an
important trait as it often requires a trade-off with the extractability and interpretability of the
model. If an expert needs to extract new knowledge from a dataset, the model dedicated to extract
this knowledge needs to be complex enough to describe it. The use of too simple a model would
lead to the extraction of too simple knowledge, potentially already known by the expert. On the
other hand, the choice of a too complex model could limit the extractability and interpretability of
the model. A model has to be chosen to be expressive enough to represent the knowledge in the
data.

The most common user constraint dedicated to extract such patterns is the minimal frequency.
The frequency of a pattern is the proportion of data in which this pattern occurs. The term of
support is used for the absolute number of occurrences and not the proportion. Based on these
definitions, all the frequent behaviors found in the data will be returned to the expert. To determine
if a pattern is frequent or not, the standard way is to ask to the expert to provide a threshold. For
example, a frequent pattern is a pattern occurring at least in 20% of the data. This is a way to tune
the genericity of the model.

In the case of temporal sequences, the standard way to consider the frequency is to consider
the number of temporal sequences in which a pattern is found. For example, a pattern concerning
drugs delivered with a frequency of 20% described a behavior occurring for 20% of the insured
population. Another example of frequent pattern could be a frequent malicious request pattern. In
this case, knowing such patterns could help to recognize future similar malicious requests and, for
example, blacklist the IP address.

But the frequent pattern set can be so big that the pattern set will be difficultly extractable and
useless. For example, in drug delivery sequences, a big part of the frequent sequential patterns
involves aspirin or paracetamol. Knowing that such drugs are frequently delivered is not really
useful for clinicians. A lot of uninteresting patterns will be generated by frequent pattern mining
algorithms. Furthermore, the frequent pattern set can contain already known knowledge due to
very common or not interesting regular behaviors. Thereby, some works have been done on generic
user constraints that could allow him/her to constrain extracted patterns to be more interesting for
him. It can be simple constraints like maximal frequency where the too frequent patterns are not
presented to the user. Some other constraints concern the complexity of the extracted behaviors
like the length of the extracted patterns where the number of events concerned by the pattern is
restricted by a lower and upper bounds. Some constraints are specified on the pattern set, for
example, the maximal or closed patterns. With the latter constraint, a pattern is extracted if there
is no larger pattern containing it with the same frequency. Such pattern set constraint reduces the
information redundancy.

The constraint that is studied in this thesis is the discriminancy. This constraint requires dataset
of labeled sequences. Labels are used to define class of sequences and a discriminant pattern is
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a pattern that occurs more likely for a class than another. For example, for sequences concerning
people, the class label can be the gender or age categories. Using those labelsn we can then extract
the behaviors concerning, for example, women or young people.

Discriminant patterns are more interesting for users because they represent potential answers
to the user question. For example, the sequences in Table 1.3 could be labeled by the user to be
malicious request or not. From those labels, the extracted discriminant patterns will concern what
is recurrent in malicious requests and not in the other.

For datasets of labeled sequences, discriminant patterns are more interesting than frequent
patterns:

• to be used in an automatic detection tool of malicious behaviors

• to give insights about what a malicious behavior is

This second point is the main upside of discriminant patterns. In contrary to the best approaches of
classification like deep neural networks, the classification made by a pattern is explicable. Thereby,
discriminant patterns can be used to give insights to stakeholders or in classification process super-
vised by humans. In the pharmaco-epidemiology context, the class labels can also be the treatment
results. In this case, we want to extract the patterns that discriminate an outcome, for example the
patient healing, from other possible outcomes. In such a way, the clinician can discover and un-
derstand why the treatment was successful in some cases and not in some others.

Discriminant patterns are, however, less extractable than frequent patterns. Discriminant con-
straint is not anti-monotonic and standard algorithmic tricks of frequency constraints does not hold.
In contrary to the frequent patterns, it is not possible to extend a discriminant pattern until it is no
more discriminant to extract them all. Such property is discussed later in chapter 4. Furthermore,
few works have tried to extract discriminant patterns including temporal information. Choosing
where to split the temporal dimension to obtain discriminant patterns is not simple. For example,
the sequence with IP address 37.59.222.30, is considered malicious among other things because
the three events occurred at the same timestamp. But we could also think that the sequence with
IP address 115.231.219.32 is malicious because the three events occurred within a short period. In
this small example, we can split those two previous sequences manually with the sequence with IP
address 207.46.13.145 but it becomes more difficult with thousands of sequences and as many dif-
ferent cases. There is so a challenge to effectively extract discriminant temporal patterns because
the time is in many cases very important to represent patterns.

Contributions

The initial contribution of this thesis was to choose to work on the chronicle model to represent
temporal behaviors. A chronicle is a couple (E ,T ) such that E is a multiset of events and T a set
of temporal constraints applied to the multiset E . Figure 1.1 illustrates several chronicles. Chroni-
cles are more formally defined in section 2.2.1. The aim of this choice was to represent interesting
behavior for the pharmaco-epidemiological context. This choice was focused on the temporal ex-
pressiveness of the chronicle model and the previous usage of chronicles in medical domain. The
temporal expressiveness of the chronicle is important for the pharmaco-epidemiological context
because the temporal dimension of the medical data is very important. For example, a weekly drug
delivery or a monthly one will not have the same outcome on the health and have to be considered
differently. The chronicle model had been adopted by the clinicians and other members of the
project for this expressiveness.

The following contributions of this thesis are threefold:
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C1:

Chocolate Bread
[1,+∞[

Apple
[1,+∞[

C2:

Bread Chocolate
[1,+∞[

Apple
[1,+∞[

C3:

Chocolate Bread
[2,3]

Apple
[1,+∞[

C4:

Chocolate

Bread

[2,5]

Apple
[3,6]

C5:

Chocolate

Bread

[-2,2] Apple

Figure 1.1: Chronicle illustrations of several temporal behaviors based on the buying events Apple,
Bread and Chocolate.

1. the discriminant chronicle mining task

2. the study of patterns interpretability

3. a pharmaco-epidemiology case study

The first contribution is to propose the discriminant chronicle mining task. The extraction
of frequent chronicles and some discriminant temporal patterns were previously studied but not
this combination.

The upside of the chronicle model is to be more expressive than standard patterns like se-
quences. The main difference between these two models of pattern is the way to model the tem-
poral dimension. Where the sequential patterns represent the temporal dimension only by sequen-
tiality, i.e. what is the temporal order of the events, chronicles represent the time numerically and
so events are not constrained to occur in a sequential order but to occur with timestamps satisfying
temporal constraints. For example, the behavior of a person buying chocolate then bread and then
apple can be represented by a sequential pattern. The sequential order describes the difference
between another pattern that could be bread and then chocolate and then apple. These two be-
haviors can be represented by chronicles. They are illustrated by chronicles C1 and C2 on Figure
1.1, respectively. But we can also represent behaviors like buying bread between 2 or 3 days after
chocolate and then apple. This behavior is illustrated by the chronicle C3 on Figure 1.1. There
is in this behavior a temporal information in addition to the sequentiality. We can also describe
non-sequential behavior with patterns like buying bread between 2 and 5 days after chocolate and
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apple between 3 and 6 days after chocolate. This behavior is illustrated by the chronicle C4 on
Figure 1.1. In this case bread and apple occurs after chocolate but there is no sequentiality between
the last two events. Finally, a temporal constraint between two events can also be non-sequential.
The chronicle model can describe the behavior of buying bread between 2 days before and 2 days
after chocolate. This behavior is illustrated by the chronicle C5 on Figure 1.1.

The expressiveness of the chronicle model describes discriminant behaviors that sequential
patterns cannot describe. This make discriminant chronicle mining interesting but it is an important
challenge to effectively extract such patterns.

The second contribution concerns the interpretability of the chronicle model. The choice of
the chronicle model was made for its expressiveness and its interpretability but the interpretability
of chronicles was not studied before. The interpretability of the chronicle model is so studied and
a generalization of the chronicle model was proposed to position the chronicle interpretability in
a set of temporal patterns. This interpretability is highlighted for discriminant patterns because
we can use them in a classification context. Thanks to this classification context, we compare the
interpretability of several sets of patterns by taking into consideration their different accuracy to
classify benchmark datasets. A trade-off between, the interpretability of the pattern model, and,
the accuracy, is finally highlighted through those comparisons. This leads to study this trade-off
considering the interpretability of the pattern themselves and, on the other side, the interpretability
of the pattern set as a whole.

The third contribution is the extraction of epileptic behaviors through the discriminant chron-
icle mining task on a case study dataset: GENEPI. This dataset concerns epileptic people and is
made of patients with a stable regular treatment during at least 1 years but were hospitalized for at
least one epileptic seizure.

This work is a part of the PEPS project. The main goal of this project is to conduct pharmaco-
epidemiology studies. The GENEPI study was one of them. The goal of this study was to fur-
ther assess the association between seizure-related hospitalization and generic substitution of anti-
epileptic drugs. A lot of work was done to process the dataset in order to statistically assess this
hypothesis. We decide then to extract discriminant chronicles from this dataset:

• To confirm that no chronicle relative to the previous hypothesis is extracted (previous result
was negative).

• To explore more deeply the dataset by extracting discriminant temporal behaviors that are
interesting for clinicians.

Extracted results are finally discussed and ways to improve the extraction or extract other types
of behaviors are proposed.

The following sections are gathered into two chapters: the state of the art and the contributions.
State of the art of temporal and supervised pattern mining will be firstly presented. The three
contributions are then presented and finally discussed.
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Chapter 2

Temporal pattern mining

One of the domains to which belongs the discriminant chronicle mining task is the temporal pattern
mining. This part presents the different notions and works related to chronicles. In this chapter, the
expressiveness of the chronicle model is detailed. This expressiveness is more important than the
expressiveness of the other state-of-the-art patterns. Such difference of expressiveness is earned
thanks to the management of the temporal dimension.

Temporal pattern mining is a research field that proposes and studies algorithms to extract
interesting behaviors from temporal data. This is a specialization of the pattern mining domain
where the temporal dimension is considered important to describe interesting behaviors.

Since there are various forms of temporal dataset for which specific algorithms have been
proposed, this chapter is focused on the mining of some sequence sets. A temporal sequence, in
this case, is a set of timestamped events. Additional information can be added to sequences that
did not directly concern the event format like a label information.

More formally, let E be a set of event types and T be a temporal domain where T ⊆ R.
An event is a couple (e, t) such that e ∈ E and t ∈ T. We assume that E is totally ordered by
≤E. A sequence is a tuple 〈SID,〈(e1, t1),(e2, t2), ...,(en, tn)〉,L〉 where SID is the sequence index,
〈(e1, t1),(e2, t2), ...,(en, tn)〉 a finite event sequence and L ∈ L where L is a label set. Sequence
events are ordered by ≤T defined as ∀i, j ∈ [1,n], (ei, ti)≤T (e j, t j)⇔ ti < t j ∨ (ti = t j ∧ ei <E e j).

SID Sequence Label
1 (A,1), (B,3), (A,4), (C,5), (C,6), (D,7) +
2 (B,2), (D,4), (A,5), (C,7) +
3 (A,1), (B,4), (C,5), (B,6), (C,8),(D,9) +
4 (B,4), (A,6), (E,8) −
5 (B,1), (A,3), (C,4) −
6 (C,4), (B,5), (A,6), (C,7), (D,10) −

Table 2.1: Set of six sequences labeled with two classes {+,−}.

Table 2.1 represents a set of six sequences containing five event types (A, B, C, D and E) and
labeled with two different labels L= {+,−}. A concrete example of real dataset using this format
could be a dataset of care pathways. In such dataset, the event types represent real medical events
like drug deliveries, hospitalization or medical consultation. Let the event type A to be the delivery
of drug A. The event (A,1) is then the delivery of the drug A at the timestamp 1. Let the time
unit be days. A sequence made of (A,1), (B,3) corresponds to the drug delivery of A followed
two days later by the drug delivery of B. In such type of dataset, the most common use of the
SID is to represent each patient by a sequence. Thus, the sequence 1 in Table 2.1 beginning by
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(A,1), (B,3) corresponds to a patient for whom we know that a drug A was delivered and two
days later a drug B was delivered. If this dataset concerns patients that were exposed to a disease,
the + label could correspond to a positive outcome and the − label to a negative one. We then
know that patient 1 was treated with specific drugs at specific timestamps and was healed. The
label information is presented here with the format of sequences but will be really used in the next
chapter for supervised pattern mining (chapter 3).

This representation of sequences is not the only existing but is adapted to the use of tem-
poral pattern mining done in the next part of this thesis. As an example of other representa-
tion of sequences, the sequences are represented in the format 〈(A),(B,C),(D)〉 in [Agrawal and
Srikant, 1995] where the time dimension is reduced as an order between the events. In this exam-
ple (A),(B,C) means that A occurs before (B,C) and (B,C) means that B and C occurs at the same
time.

2.1 Sequential pattern mining

Sequential patterns only take the temporal order of events into account. Reviews [Masseglia et al.,
2004, Mabroukeh and Ezeife, 2010, Mooney and Roddick, 2013] did the state of the art of the
sequential pattern mining, the different associated algorithmic approaches and their applications.
This section is improved by these previous reviews while focusing on the mining of sequence
sets. All those algorithms are grouped together because they extract subsequence. In their works,
sequences are both data and the pattern shape. I will refer to these sequences as standard sequential
patterns in order to dissociate the sequences as data and sequences as patterns.

According to [Mooney and Roddick, 2013], the sequential pattern mining problem was first
addressed by [Agrawal and Srikant, 1995] and was defined as follows:

"Given a database of sequences, where each sequence consists of a list of transac-
tions ordered by transaction time and each transaction is a set of items, sequential
pattern mining is to discover all sequential patterns with a user-specified minimum
support, where the support of a pattern is the number of data-sequences that contain
the pattern."

We could then highlight two families of algorithms dedicated to extract such patterns: Apriori-
based and pattern growth algorithms. The main difference between these two families introduced
by the pattern growth algorithms is the candidate generation step. In practice, it is the search space
exploration strategy that differentiate those families. The Apriori-based algorithms use mainly a
breadth-first search strategy what leads to an important candidate generation step. On the other
hand, the pattern growth algorithms use mainly a depth-first search strategy.

This taxonomy is similar to that in the other review [Mabroukeh and Ezeife, 2010]. In the first
review a distinction is made for the Apriori-based algorithms by separating the horizontal and the
vertical database formats. On the other hand, the review made in [Mabroukeh and Ezeife, 2010]
focus more on the difference with a third algorithm family: the early-pruning algorithms.

2.1.1 Standard sequential patterns

We will call standard sequential patterns, patterns for which each pair of events or itemsets of the
pattern is constrained to occur in a specific order. This is the type of pattern introduced in the
first paper on sequential pattern mining [Agrawal and Srikant, 1995] and more commonly called
sequence. In this section we then present the definition of standard sequential patterns and some
algorithms dedicated to extract such patterns with the same taxonomy as [Mooney and Roddick,
2013].
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2.1.1.1 Definition

In this part we will use the standard definition of sequential patterns [Masseglia et al., 1998] and
adapt it to our previous definition of dataset illustrated in Table 2.1.

Definition 1. Let I = {i1, i2, ..., im} be a set of literals called items. An itemset is a non-empty
set of items. A sequence s is a list of itemsets ordered according to their timestamp. It is denoted
by 〈s1,s2, ...,sn〉 where s j is an itemset. A k-sequence is a sequence of k items (or of length k). A
sequence 〈s1,s2, ...,sn〉 is a subsequence of another sequence 〈s′1,s′2, ...,s′n〉 if there exist integers
i1 < i2 < ... < in such that s1 ⊆ s′i1 ,s2 ⊆ s′i2 , ...,sn ⊆ s′in . For short, we denote that s is a subsequence
of s′ by s⊆ s′.

The original Definition 1 describes what is a sequence and so in this section, a standard se-
quential pattern. The set of literals I corresponds to our set of event types E. It is the vocabulary
used to generate the dataset. From this vocabulary we can compose complex events that are called
itemset. These itemsets are sets of events constrained to occur at the same timestamp. An itemset
of events A, B and C is denoted (A,B,C). Two events (A,1) and (B,1) will so be represented as the
itemset (A,B). It is worth noticing that itemsets are sets and not multisets i.e. an event can occur
at most once per timestamp.

A standard sequential pattern is a totally ordered set of those itemsets. For example, the se-
quence s1 = 〈(A,B,C),(D)〉 describes a case where observe A, B and C at the same timestamp and
then D i.e. tA = tB = tC < tD. An event may occur several times in a standard sequential pattern if
it occurs in several itemsets. An example of such pattern is 〈(A,B,C),(A)〉.

A subsequence is a subset of events preserving sequential constraints. For example, {A,B,D}
is a subset of {A,B,C,D} and so if we preserve the sequential constraints tA = tB < tD we obtain
〈(A,B),(D)〉 a subsequence of s1. On the other hand s2 = 〈(A,B,D)〉 is not a subsequence of s2
because, for s2, tA = tD but for s1, tA < tD.

From the definition of subsequence, the support supp(s) of a pattern s is defined as the number
of sequences in which s occurs. If a pattern s is a subsequence of a sequence s′ of the dataset, we
can say that s occurs in s′. Then the support of s in a sequence set S can be formally defined as
supp(s) = |{s′ ∈S |s ⊆ s′}|. We can use this formal definition in our case by transforming our
sequences in the sequential pattern format. For a sequence s, for each timestamp t j for which we
observe at least one event (ei, t j), we can create an itemset regrouping all event types with same
timestamp. We then call a pattern s frequent if supp(s)≥ σmin where σmin is specified by the user.
Such parameter can also be called σ [Masseglia et al., 1998] or min_supp [Mooney and Roddick,
2013] in the literature. Alternatively we call frequency the proportion of sequences in which the
pattern occurs.

2.1.1.2 Apriori-based algorithms

This section presents the different algorithms based on a candidate generation step to extract the
frequent set of standard sequential patterns in a sequence set.

The first algorithms of this family were based on horizontal databases. A horizontal database is
a database for which the sequences are ordered using the temporal dimension. Table 2.1 illustrating
such database type.

The first Apriori algorithms dedicated to mine frequent sequential patterns are proposed in
[Agrawal and Srikant, 1995]. In the problem statement of the paper, the definition of a maximal
sequence is given. A sequence s is said maximal if s is not contained in any other frequent
sequence. Using the previous definition of a subsequence, a maximal sequence s is defined such
that @s′,, s′ is frequent, s ⊆ s′ and s′ 6= s. This definition is then used to reduce the number of
extracted patterns.



32 CHAPTER 2. TEMPORAL PATTERN MINING

Customer Id Transaction time Items Bought
1 June 25 ’03 30
1 June 25 ’03 90
2 June 10 ’03 10,20
2 June 15 ’03 30
2 June 20 ’03 40,60,70
3 June 25 ’03 30,50,70
4 June 25 ’03 30
4 June 30 ’03 40,70
4 July 25 ’03 90
5 June 12 ’03 90

Customer Id Customer Sequence
1 〈(30),(90)〉
2 〈(10,20),(30),(40,60,70)〉
3 〈(30,50,70)〉
4 〈(30),(40,70),(90)〉
5 〈(90)〉

Table 2.2: On the left, the customer transaction database example proposed in [Agrawal and
Srikant, 1995]. On the right, the transformed customer sequence version.

Customer Id Transformed
Customer Sequence

Mapped Transformer
Customer Sequence

1 〈{(30)},{(90)}〉 〈{1},{5}〉
2 〈{(30)},{(40),(70),(40,70)}〉 〈{1},{2,3,4}〉
3 〈{(30),(70)}〉 〈{1,3}〉
4 〈{(30)},{(40),(70),(40,70)}〉 〈{1},{2,3,4}〉
5 〈{(90)}〉 〈{5}〉

Table 2.3: The transformed custom sequences as presented in the original example. The dataset be-
fore the transformation is that one shown in Table 2.2. The itemset set used for the transformation
is {(30),(40),(70),(40,70),(90)} mapped with {1,2,3,4,5}.

The proposed algorithms are all split in five phases: (i) Sort Phase, (ii) Litemset Phase, (iii)
Transformation Phase, (iv) Sequence Phase and (v) Maximal Phase. The first phase is a processing
of the data. The goal of this phase is to process a customer transaction database like illustrated by
Table 2.2 and to generate a sequence set. Table 2.2 illustrated such database and the associated
sequence set. This phase is optional if the data are already sequence sets.

The second phase is called Litemset Phase for large itemset phase. In this paper, a large itemset
or by extension a large sequence is simply an itemset or a sequence satisfying the minimal support
constraint. It is commonly called a frequent itemset or a frequent sequential pattern. In this phase,
the algorithm enumerates the set of all the frequent itemsets FI and by extension the set of all the
frequent 1-sequences since this is {〈 f 〉| f ∈FI}. The set of all frequent itemsets FI is denoted
L in the original paper but the notation is modified here to prevent the confusion with the label
L in the sequence definition. The example given in the original paper sets the minimal frequency

Algorithme 1 The next(k) function heuristic given for AprioriSome.
Require: k : integer, |Ck| : candidate k-sequence set size, |Fk| : frequent k-sequence set size
1: hitk← |Fk|/|Ck|
2: if hitk < 0.666 then
3: return k+1
4: if hitk < 0.75 then
5: return k+2
6: if hitk < 0.80 then
7: return k+3
8: if hitk < 0.85 then
9: return k+4

10: return k+5



2.1. SEQUENTIAL PATTERN MINING 33

σmin to 25% of the number of sequences. It is similar to say that the patterns must occur in at least
two sequences to be frequent because the sequence set contains five sequences and the support
of a sequential pattern is inevitably a positive integer. The frequent itemsets extracted from the
sequence set in Table 2.2 with such σmin are (30), (40), (70), (90) and (40,70). To match those
itemsets in the data in the following step, they are all associated with contiguous integers. The goal
of such procedure is to optimize the matching of a specific itemset in the following phase. The
example proposes to associate (30), (40), (70), (40,70), (90) with 1,2,3,4 and 5 respectively.

The third phase, the Transformation Phase, uses frequent itemsets to transform the database
before the mining phases. Table 2.3 shows the transformation of Table 2.2 with the previously
extracted itemsets (i.e. the frequent ones). The transformation is done by replacing each item-
set i of a sequence by the set of frequent itemsets included in i. For example, it can be no-
ticed on Table 2.3, that the second sequence of Table 2.2 〈(10,20),(30),(40,60,70)〉 becomes
〈{(30)},{(40),(70),(40,70)}〉 and then 〈{1},{2,3,4}〉 using the associated integers. The advan-
tage of this phase is twofold:

• The infrequent items are directly pruned.

• Each itemset can be easily matched because it is now represented as an item.

The transformation can also be done using the mapping integers to match efficiently the itemsets
occurring or not in each transaction. This transformation is also shown for the example on table
2.3.

The fourth phase, the Sequence Phase, is the mining phase. Three versions of this phase are
given to produce three algorithms: AprioriAll, AprioriSome and DynamicSome. The difference
between AprioriAll and the two others is that it is designed to compute all the frequent sequences
while the others are designed to only compute the maximal sequences. The Maximal Phase is so
designed for AprioriAll and is the pruning of all the non-maximal sequences from the extracted
frequent sequence set.

• AprioriAll: This version of the algorithm is based on a recursive candidate generation. Each
candidate k-sequence set is generated from the frequent (k− 1)-sequence set. The mining
procedure is initialized from the frequent 1-sequences computed in the Litemset Phase until
a k for which none of the candidate sequences are frequent. A k-sequence is generated as a
candidate if all it (k− 1)-subsequences are frequent. For example, the sequence 〈1,2,3,4〉
is a candidate if 〈1,2,3〉, 〈1,2,4〉 and 〈2,3,4〉 are frequent. The support of a candidate
sequence is finally tested by a pass on the data.

• AprioriSome: This version of the algorithm try to improve the mining of maximal sequential
patterns done by AprioriAll. This is done by using a next(k) function where next(k) = k+1
is the default function used by AprioriAll. This function will choose for which candidate
k-sequences the algorithm will traverse the data to compute the support. The frequent k-
sequence is denoted Fk and the candidate k-sequence set is denoted Ck.

For example, using the function next(k) = k+ 2 means that C2 and C3 are computed from
F1 but only F3 is computed by a pass on the data. The candidate set C2 is not pruned by a
pass on the data. Thereby, C3 is potentially bigger if F2 would be computed but it saves at
least an iteration on the data. The next k for which Fk will be computed will then be 5.

When this forward generation stops, all the sets Fk for which the sets Ck were computed
have to be computed too. The backward generation going from the maximal k to 1 begins
then. As only the maximal sequences have to be extracted, the candidate sequences of Ck−1
that are subsequences of at least one sequence of Fk can be pruned without traversing the
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data. For example, if F3 is known and F2 as to be computed, all the sequences of C2 that
are subsequences of at least one sequence of F3 can be pruned. This can be done using the
definition of a maximal sequential pattern. As a maximal sequential pattern is a frequent
pattern that is not a subsequence of another frequent pattern, the subsequences of a maximal
pattern are not maximal. Then, the subsequences of Fk included in Ck−1 cannot be maximal
and so are not interesting for the task of maximal sequential pattern mining.

This step is recursively repeated until all the Fk sets are extracted. The intuition behind the
use of a forward step for some Fk and a backward step for the others is to balance the trade-
off between the time wasted in enumerating non-maximal sequences versus enumerating
extensions of small candidate sequences. The next(k) function used by the authors in their
experiments is given by algorithm 1.

• DynamicSome: The idea of DynamicSome is the same as for AprioriSome but without gen-
erating the Ck sets for which the Fk sets are not computed. The example given is based on
a step parameter set up to 3. It is equivalent to use the function next(k) = k+3 in Apriori-
Some. Unlike for AprioriSome, the algorithm starts with an initialization step. For step = 3,
the initialization computes C2 and C3 and then F3. This frequent initial sequence set will
then be used for each candidate generation step. The forward step is then similar to the
AprioriSome forward step but all the candidate sets are not generated: to compute Fk+step,
Ck+step is computed by joining sequences of Ck and Cstep. Finally, the backward step differs
from AprioriSome in the computation of Ck, that has to be computed if missing. The authors
reported in the experiments section that this algorithm generates too many candidates and
ran out of memory.

These algorithms are not the most efficient in terms of memory consumption and computa-
tional complexity and more recent algorithms are preferred to extract standard sequential patterns.
However, they highlight the difficulty encountered when trying to explore the search space of
frequent sequential patterns.

The algorithm GSP [Srikant and Agrawal, 1996] is proposed by the same authors to overcome
some limitations they observed in their previous algorithms. The extensions of the first Apriori
algorithms into GSP included time constraints: minimal and maximal gap constraints, sliding
windows constraint and item taxonomies. To introduce taxonomies in the algorithm, the authors
propose the new definition 2 for the items.

Definition 2. Let I = {i1, i2, ..., im} be a set of literals, called items. Let T be a directed acyclic
graph on the literals. An edge in T represents an is-a relationship, and T represents a set of
taxonomies. If there is an edge in T from p to c, p is called a parent of c and c a child of p
(p represents a generalization of c.) The taxonomy can be modeled as a directed acyclic graph
(DAG) rather than a tree to allow for multiple taxonomies. A node x̂ is an ancestor of x (and x a
descendant of x̂) if there is an edge from x̂ to x in transitive-closure(T ).

The definition of the support is also extended. A transaction T (an itemset in a sequence)
contains an item x ∈ I if x is in T or x is an ancestor of some item in T . By extension, a
transaction T contains an itemset y⊆I if T contains every item of y.

The sliding window proposed in GSP is a generalization of the itemset definition. The items of
an itemset are no more constrained to occur at the same time but in a sliding window. The parame-
ter window-size defined by user is the maximal size of those windows. An itemset y = (i1, i2, ...in)
satisfies this constraint if the difference between the timestamps of its first item ti1 and its last item
tin is lower or equal to window-size. More formally tin − ti1 ≤ window-size. For example, the pat-
tern 〈(A,B),C〉 occurs in sequence 1 of Table 2.1 with window-size = 2 because there is a mapping



2.1. SEQUENTIAL PATTERN MINING 35

with (A,1),(B,3),(C,5) where tB− tA ≤ window-size so A and B can be considered to occur at the
same time and tC > tB what makes C following B.

The minimal and maximal gap constraints are similar to the sliding window constraint but
they do not compare the first and last item timestamps of the same itemset but of two following
itemsets. Let s = 〈s1,s2, ...,sn〉, start-time(si) the timestamp of the first item of si and end-time(si)
the timestamp of the last item of si, the minimal gap constraint is defined as start-time(si)− end-
time(si−1) > min-gap, 2 ≤ i ≤ n. The maximal gap constraint is defined as start-time(si)− end-
time(si−1) ≤ max-gap, 2 ≤ i ≤ n. It is worth noticing that the minimal gap constraint is a strict
inequality but not the maximal constraint. It is a convenient definition to set min-gap = 0 for
no minimal gap constraint but still avoiding the overlap of two itemsets i.e. the last item of the
first itemset occurs before the first item of the second itemset. In the example with the pattern
〈(A,B),C〉 and the sequence 1 of table 2.1 the pattern matches the mapping (A,1),(B,3),(C,5)
for max-gap = 2 because tC− tB ≤ 2 but not for min-gap = 2 because it does not satisfy because
tC− tB > 2.

Those new definitions imply then more computational time to check if a pattern occurs in a
sequence.

The mining phase works then like for the previous Apriori algorithms. Candidate sequences
are generated in a first step and then pruned if they are detected infrequent. To adapt this paradigm
to the sliding window and gap constraints, the notion of contiguous subsequence is introduced.
This notion is introduced by definition 3.

Definition 3. Given a sequence s = 〈s1,s2, ...,sn〉 and a subsequence c, c is a contiguous subse-
quence of s if any of the following conditions holds:

• c is derived from s by dropping an item from either s1 or sn.

• c is derived from s by dropping an item from an element si which has at least 2 items.

• c is a contiguous subsequence of c′, and c′ is a contiguous subsequence of s.

For example, consider the sequence s = 〈(1,2),(3,4),(5),(6)〉. The sequences 〈(2)(3,4)(5)〉,
〈(1,2),(3),(5),(6)〉 and 〈(3),(5)〉 are some of the contiguous subsequences of s. However, 〈(1,2),
(3,4),(6)〉 and 〈(1),(5),(6)〉 are not.

Based on this definition, the candidate k-sequences set is generated by joining the frequent
(k−1)-sequences and then pruning the candidate for which a contiguous subsequence is not fre-
quent. The interest of this type of subsequence is that if the candidate sequence satisfies the gap
constraints, the contiguous subsequences satisfy it too. So if a contiguous subsequence is not
frequent, neither is the candidate sequence.

More constraints and techniques to extract standard sequential patterns were studied after this
paper. Some monotone and anti-monotone constraints were listed and reviewed in [Pei and Han,
2002]. Those properties are important in algorithm optimization as it allows to efficiently prune
the pattern search space. Those properties are linked to the pattern lattice as presented latter for
the SPADE algorithm [Zaki, 2001].

The PSP [Masseglia et al., 1998] algorithm achieve the exact same task as GSP. The difference
between the two algorithms is the organization of the candidate sequences. A prefix-tree is used
to optimize the memory space and the access time to the candidate sequence set.

The SPIRIT [Garofalakis et al., 1999] algorithm was proposed to tackle the pattern flood prob-
lem and allow the user to control the shape of the extracted pattern set. The purpose of SPIRIT
is to mine sequential patterns constrained by regular expressions. The user uses SPIRIT to extract
sequential patterns satisfying a regular expression that (s)he gives as parameters. The algorithm
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is build as GSP and the use of the regular expression constraint in the mining process is similar
as for the gap constraints. The algorithm is proposed with different heuristics for checking the
satisfaction of the constraint during the candidate generation step. Those different heuristics are
used to balance the trade-off between the complexity of the constraint checking and generated a
great number of candidates.

A different use of the databases is handled with MFS [Zhang et al., 2001]. When the previous
algorithms only consider extracting once the frequent sequence set of a database, MFS is designed
to extract the frequent sequence set using a previous extraction. The idea is that if the user wants
to mine the frequent patterns periodically, the frequent pattern set can be different if the database
is updated but will remain similar as the previous extraction. The algorithm then has to be used
each time the user wants to update the frequent pattern set but all the previous extracted knowledge
has not to be forgotten. The algorithm generates so, candidates using the previous extracted set.
This allows to generate fewer candidates and so to do less data scans in comparison with GSP. The
major source of efficiency improvement presented by the authors is the early checking of supports
of the long sequences.

Like PSP for GSP, the RE-Hackle [Albert-Lorincz and Boulicaut, 2003] try to improve the
efficiency of the SPIRIT algorithms by using more efficient structure. In this case, RE-Hackle
uses what the authors called a Hackle-tree to represent the regular expression. Those RE-Hackle
trees are trees for which the nodes are operators or subsequences called atomic sequences. This
representation allows a more efficient evaluation of the potential satisfaction of the regular expres-
sion by a pattern. They finally compare the proposed heuristic associated with such trees with two
heuristics of SPIRIT and conclude that RE-Hackle boosts the performance of sequential pattern
mining under regular expressions.

MSPS [Luo and Chung, 2008] extends the improvement of GSP introduced by PSP. To im-
prove the breadth-first search strategy used by the first Apriori algorithm family, a sampling step
is done to generate local maximal frequent patterns. The goal of this sampling is to forbid the can-
didate generation of the subsequences of those maximal patterns. Indeed, if a pattern is frequent,
all its subsequences are frequent and then, their supports not have to be checked.

SID Sequence Label
1 (A,1), (A,4), (B,3), (C,5), (C,6), (D,7) +
2 (A,5), (B,2), (C,7), (D,4) +
3 (A,1), (B,4), (B,6), (C,5), (C,8),(D,9) +
4 (A,6), (B,4), (E,8) −
5 (A,3), (B,1), (C,4) −
6 (A,6), (B,5), (C,4), (C,7), (D,10) −

Table 2.4: Vertical format of Table 2.1.

A new approach to extract the pattern set is proposed with the algorithm SPADE [Zaki, 2001].
The SPADE algorithm is based on a lattice-based approach. The hyper-lattice is defined by the
subsequence relation on the sequence set. Examples of such lattice are given by Figure 2.1 or by
Figure 2.2 for a sublattice bounded by a given maximal pattern. This representation shows that, as
explained for AprioriAll, all subsequences of a frequent sequence are frequent. But it also makes
apparent that the search has not to be restricted to a purely bottom-up search. The authors propose
then to use other strategies to extract the frequent sequences than the breath-first search like the
depth-first search. Consequently, it improves memory management because the whole candidate
sequence set has not to be saved.

The second contribution of the paper is to represent the data in a vertical format. The horizontal
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Figure 2.1: An example of hyper-lattice of sequential patterns. The order is defined by the subse-
quence relation. This figure was extracted from [Zaki, 2001].

format is the format illustrated by Table 2.1. In this format the events contained by a sequence are
ordered firstly by their timestamp and then by their symbols. It is the opposite of the vertical
format: the events are firstly ordered by their symbols and then by their timestamps. Table 2.4
illustrates the vertical format of Table 2.1.

In this format, all the events in a sequence are not ordered firstly by their timestamp but by
their symbol.

Based on this algorithm, the authors also proposed cSPADE [Zaki, 2000] that allows to mine
sequential patterns under constraints. The constraints proposed by cSPADE are the followings:
(i) sequence length limitation, (ii) minimum or maximum gap constraints, (iii) time windows, (iv)
item constraints and (v) sequences predictive of one or more classes. The time window constraint
is different with the sliding window of GSP because it is a window in which the whole sequence
have to occur. The predictive sequences can only be mined from dataset where each sequence has
a label. This last constraint will be discussed with more details in Section 3.2.

The SPAM [Ayres et al., 2002] algorithm can be seen as an improvement of SPADE like
PSP is an improvement of GSP. SPAM uses a depth-first search with pruning mechanisms for
optimization and a vertical representation of the databases. One of the improvements is done in
the database design that uses a bitmap representation. One limitation of this approach is that it is
only useful if all the data fit into the main memory.

The CCSM [Orlando et al., 2004] algorithm is an improvement of SPADE only dedicated for
the breadth-first search strategy. To overcome many problems associated with this type of strategy,
CCSM uses a cache system that stores immediate id-lists for future reuse.

The LAPIN [Yang et al., 2005] and LAPIN-SPAM [Yang and Kitsuregawa, 2005] algorithms
are based on the observation that if the last position of an item α is smaller than, or equal to,
the position of the last item in a sequence s, then item α cannot be appended to s as a (k+ 1)-
sequence extension in the same sequence. To exploit this observation, a specific table contains
the last position information for each item in each sequence. The LAPIN-SPAM combines this
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Figure 2.2: An example of sublattice bounded by the maximal sequential pattern 〈(D),(BF),(A)〉.
This figure was extracted from [Zaki, 2001].

improvement with the SPAM algorithm.

2.1.1.3 Pattern growth algorithms

Many limitations of AprioriAll were overcome with the next iterations of sequential pattern mining
algorithms. Indeed, the memory limitation can be overcome thanks to a depth-first search strategy
and numerous improvements were proposed to obtain faster algorithms. But in the worst case, the
candidate generation step will still suffer from producing a set with an exponential size. As a scan
of the data has to be done to check every length of candidate set, such generation is expensive in
time complexity. The pattern growth paradigm removes the need for the candidate generation and
for the pruning steps that are used in the Apriori type algorithms. This is done by compressing the
database representing the frequent sequences into a frequent pattern tree. This tree is finally used
to generate the subdatabases containing subsets of the frequent sequence set and those databases
can be mined separately.

The FreeSpan [Han et al., 2000a] algorithm is the first pattern growth algorithm. To gen-
erate the projected subdatabases, FreeSpan starts like other algorithms with the enumeration of
all frequent 1-sequences. The set of frequent 1-sequences (items) is then ordered by support in
descending order. The given example of such list is flist = 〈a : 4,b : 4,c : 4,d : 3,e : 3, f : 3〉.

Each 1-sequences will then be used as a pivot to generate a database containing this item and
the previous item in the list. For example, the database based on a will contain a. The database
based on b will contain a and b. To avoid a redundant extraction of a same pattern in each base, the
pivot 1-sequence has to be a subsequence of the extracted patterns. For example, all the patterns
extracted from the base with b as pivot will contain b. Thereby, there is a balance between (i)
the databases with few items from which the most frequent patterns will be extracted and (ii) the
databases with a lot of items but from which only patterns based on the less frequent items will be
extracted.
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Figure 2.3: trace representation and two windows example as illustrated in [Mannila et al., 1997].
The window size is set to 5 in this example.
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Figure 2.4: Three examples of episodes. Episode E1 is a serial episode. Episode E2 is a parallel
episode.

The generation of the projected databases is then improvement with the PrefixSpan [Han et al.,
2001] algorithm.

Through this overview of the state of the art, it can be noticed that standard sequential patterns
were much studied. Optimized algorithms are efficiently implemented for this type of pattern
and can be used to extract patterns from big set of data like in industrial environment. As an
example, the FP-growth [Han et al., 2000b] and PrefixSpan [Han et al., 2001] algorithms were
both implemented for Spark [Zaharia et al., 2010] in the MapReduce [Dean and Ghemawat, 2008]
framework. The adaptation of FP-growth is described in the literature [Li et al., 2008].

The extraction of knowledge from datasets using such algorithms is, however, limited by the
standard sequential pattern model. The total order between the whole set of events and the reduc-
tion of the temporal domain as sequentiality do not allow to extract some interesting behaviors.
More expressive patterns were so needed to extract knowledge from temporal data where the tem-
poral information is strongly linked with the interesting behaviors.

2.1.2 Partially ordered patterns

The total sequential order defined on the itemset of a sequential pattern can be too constrained to
extract some recurrences in a sequence set. Some patterns like episodes [Mannila et al., 1997],
when extracted from traces, or partially ordered patterns [Fabrègue et al., 2013], when extracted
from sequence set, were proposed to relax this constraint. In [Achar et al., 2012], a framework
is proposed to generalize and unify the different algorithm dedicated to frequent episode mining
based on the Apriori framework.

Such type of patterns was initially introduced to mine traces [Mannila et al., 1997]. The
difference between trace and sequence set is that for traces the goal is to mine patterns occurring
in one single long sequence. Support computation is different for those two types of data. For
example, in the method proposed for the introduction of episodes is the number of windows in
which the episode occurs. An example of such stream and window is by Figure 2.3. Two windows
can be overlapping as illustrated by the figure 2.3 but they have a fixed size defined by a user
parameter.

An episode φ is defined by a graph φ = (V,≤,g) such that V is a set of nodes, ≤ is a partial
order on V and g : V → E is a mapping function associating each node with an event type in E.
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Figure 2.5: Two examples of temporal-annoted sequences as they are illustrated in their original
paper [Giannotti et al., 2006]. The temporal constraints of those TAS are integers.

Figure 2.4 illustrated episodes mapping the events A, B and C. Two specific types of episodes are
considered: the serial and the parallel episodes. An episode is a serial episode if and only if the
partial order relation ≤ is a total order. Serial episodes are equivalent to the sequential patterns
presented in the previous section. In the opposite way, an episode is a parallel episode if and only
if the partial order ≤ is trivial i.e. there are no constraints on the relative order of events.

The extraction of the whole set of frequent episodes or partially ordered patterns is generally
more complex than the whole set of frequent standard sequential patterns. Thereby, it can be useful
to extract a subset of the frequent episodes. The definition of parallel and serial episodes are then
often used to extract such subset. The patterns extracted are so more expressive than the standard
sequential patterns without being too complex to be extracted.

Nonetheless, such type of patterns lacks of a numerical representation of the time or at least a
representation more expressive than the sequentiality.

2.2 Mining of patterns including numerical temporal information

Even if sequential pattern mining is the most studied subdomain of temporal pattern mining, some
approaches tried to include a numerical information in the patterns. Standard sequential patterns
were extended is temporal-annoted sequences (TAS) in [Giannotti et al., 2006]. The difference
between standard sequential pattern and TAS is that the gap duration between two events is con-
strained by a temporal constraint. This constraint can be set up by a number to fix the gap or by
intervals. TAS use numbers for temporal constraints. It is illustrated by Figure 2.5. These numbers
are positive what makes TAS be standard sequential patterns constrained by temporal constraints
between the events.

Other approaches propose to extract patterns by constraining the absolute occurrences of
events. In [Guyet and Quiniou, 2011], a temporal pattern corresponds to a set of events con-
strained by absolute temporal intervals. As the events are allowed to have a starting and an ending
timestamps, the matching of a pattern is relaxed as a similarity with the occurrences of the event
set. Similar patterns are extracted in [Moskovitch and Shahar, 2015] by constraining relatively the
events. Those patterns include, however, not temporal information as they use the Allen’s temporal
logic [Allen, 1984].

Finally, the chronicle model, firstly introduced in [Dousson and Duong, 1999] seemed to be the
more expressive and so the more adapted to extract interesting behaviors from temporal databases.
This model will be detailed in the rest of this section and studied in this thesis.

This section presents so the chronicle model and the different chronicle mining approaches
preceding this work. The chronicles are expressive temporal patterns that constrain numerically
the temporal dimension and without being limited to sequential constraints. These patterns can be
drawn as graphs.
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Figure 2.6: Example of three chronicles occurring in Table 2.1 (cf. Examples 1 and 4). No edge
between two events is equivalent to the temporal constraint ]−∞,∞[.

2.2.1 Chronicle definition

A temporal constraint is a tuple (e1,e2, t−, t+), also noted e1[t−, t+]e2, where e1,e2 ∈E, e1 ≤E e2
and t−, t+ ∈T∪{−∞,+∞}, t−≤ t+. A temporal constraint e1[t−, t+]e2 is said satisfied by a couple
of events ((e, t) ,(e′, t ′)) iff e = e1, e′ = e2 and t ′− t ∈ [t−, t+].

A chronicle is a couple (E ,T ):

• The set E = {{e1...en}}, ei ∈ E and ∀i, j,1 ≤ i < j ≤ n, where ei ≤E e j is a multiset, i.e. E
can contain several occurrences of a same event type.

• The set T is a temporal constraint set: T = {e[a,b]e′ | e,e′ ∈ E , e≤E e′}. As the constraint
e[a,b]e′ is equivalent to e′[−b,−a]e, we impose the order on items, ≤E, to decide which
one is represented in the chronicle. Moreover, while e = e′, we can obtain two different
chronicles which are equivalent: one based on e[a,b]e′ where a≥ 0 and one other based on
e′[−b,−a]e. In such case we choose the positive one because it seems to be a more natural
representation. Intuitively, two similar events can always be ordered: one is the earliest
of their type in the sequence and the other is the latest. The positive temporal constraint
represents this order.

Example 1. Figure 2.6 illustrates three chronicles represented by graphs. Chronicle C = (E ,T )
where E = {{e1 =A,e2 =B,e3 =C,e4 =C,e5 =D}} and T = {e1[−1,3]e2, e1[−3,5]e3, e2[−2,2]e3,
e2[4,5]e5, e3[1,3]e4} is illustrated at the top left. This graph is not complete. No edge between
two events is equivalent to the temporal constraint ]−∞,∞[, i.e. there is no constraint.

It can be noticed that chronicles are temporal constraint networks [Dechter et al., 1991]. Such
temporal constraints are interdependent in such a way that we have to take care of, on the one
side, their inconsistency and, on the other side, of their redundancy. Dechter et al. proposed an
algorithm to reduce temporal constraints of a chronicle to an equivalent minimal chronicle, i.e. a
chronicle with minimal interval lengths.

Example 2. Figure 2.7 illustrates reduced chronicles equivalent to C1 and C2 from Figure 2.6. We
see that the difference between C1 and C ′1 is the edge B[−2,2]C for C1 and the edge B[1,2]C for
C ′1. Indeed, as we have A[4,5]C and A[2,3]B, it is not possible to observe C 2 time units before
B. If B occurs 2 time units after A, C must occur 2 or 3 time units after B to satisfy A[4,5]C. If
B occurs 3 time units after A, C must occur 1 or 2 time units after B to satisfy A[4,5]C. As 3 was
not in the original temporal interval [−2,2], we obtained with this reasoning the new temporal
constraint B[1,2]C.
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Figure 2.7: The chronicles C ′1 and C ′2 are respectively the reduced chronicles of C1 and C2 of
Figure 2.6.
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Figure 2.8: Example of a chronicle specialization/generalization. C4 and C5 are generalizations of
C3. C4 has a more general multiset and C5 has more general temporal constraints.

The reasoning is the same for C2 except that the interval between A and the second C is initially
]−∞,+∞[. By adding the lower bounds of the temporal constraints between A and the first C (−3)
and between the two C (2) we obtain the lower bound between A and the second C (−1) and by
adding the upper bounds (1 and 4) we obtain the upper bound (5).

Given two chronicles C1 = (E1,T1) and C2 = (E2,T2), we define the partial order � where
C1 � C2 if E2 ⊆ E1 and there is a strictly increasing function f where ∀i, j, 1 ≤ i < j ≤ |E2|, 1 ≤
f (i)< f ( j)≤ |E1|, ei,e j ∈E2, e f (i),e f ( j) ∈E1, e f (i)[a,b]e f ( j) ∈T1, ei[a′,b′]e j ∈T2, e f (i)[a,b]e f ( j)⊆
ei[a′,b′]e j. If C1 � C2 and C1 6= C2, we say that C1 is more specific than C2. On the contrary, C2
is more general than C1.

Example 3. Figure 2.8 illustrates a chronicle C3 = (E3,T3) and two more general chronicles
C4 = (E4,T4) and C5 = (E5,T5). We have C3 � C4 because E4 ⊂ E3 and the only constraint in T3
is shared by T4. On the other hand we have C3 � C5 because E3 = E5, but T3 has a more specific
constraint than T5. In fact, T5 having no constraint, any additional constraint is more specific.

2.2.1.1 Chronicle support

Let s = 〈(e1, t1), ...,(en, tn)〉 be a sequence and C = (E = {{e′1, ...,e′m}},T ) be a chronicle. An
occurrence of C in s is a subsequence of s, s̃ = 〈(e f (1), t f (1)), ..., (e f (m), t f (m))〉 such that 1) f :
[1,m] 7→ [1,n] is an injective function, 2) ∀i, e′i = e f (i) and 3) ∀i, j, t f ( j) − t f (i) ∈ [a,b] where
e′i[a,b]e

′
j ∈ T . It is worth noting that f is not necessarily increasing. In fact, there is a difference

between (i) the order of the chronicle multiset defined on items, ≤E, and (ii) the order of events in
sequences, ≤T, defined on the temporal domain. The chronicle C occurs in s, denoted C ∈ s, iff
there is at least one occurrence of C in s. The support of a chronicle C in a sequence set S is
the number of sequences in which C occurs: supp(C ,S ) = |{s ∈S | C ∈ s}|. Given a minimal
support threshold σmin, a chronicle is frequent iff supp(C ,S )≥ σmin.

Example 4. Chronicle C (see Figure 2.6 at the top left), occurs in sequences 1, 3 and 6 of Ta-
ble 2.1. We notice there are two occurrences of C in sequence 1. Nonetheless, its support is
supp(C ,S ) = 3. This chronicle is frequent in S for any minimal support threshold σmin lower



2.2. MINING OF PATTERNS INCLUDING NUMERICAL TEMPORAL INFORMATION 43

Figure 2.9: The chronicle pattern-growth step as illustrated in [Cram et al., 2012].

or equal to 3. The two other chronicles, denoted C1 and C2, occur respectively in sequences 1 and
3; and in sequence 6. Their supports are supp(C1,S ) = 2 and supp(C2,S ) = 1.

The support of chronicles is anti-monotone using the previously defined partial order �. In-
deed for two chronicles C1 and C2 and a sequence set S , C1 � C2 implies supp(C1,S ) ≤
supp(C2,S ). This property derives from the fact that the most specific chronicle C1 cannot occur
in more sequences than C2 because it is more constrained. This property has been formally proved
and used in previous works on chronicles [Dousson and Duong, 1999, Cram et al., 2012, Huang
et al., 2012, Alvarez et al., 2013].

2.2.2 Chronicle mining approaches

The paper introducing frequent chronicle mining [Dousson and Duong, 1999] works on alarm
logs. The algorithm used to mine frequent chronicles is based on the generate and test framework
(i.e. Apriori based). The algorithm firstly selects the frequent temporal constraint to be used for the
generation. In the paper, it is called the discovering of chronicles of size 2. At most one temporal
constraint is selected for a pair of events. Then, it combines these pairs of events to generate larger
chronicles to evaluate. This algorithm is so not complete but it was an early version of chronicle
mining algorithm.

HCDA [Cram et al., 2012] is a generalization of the Dousson’s algorithm [Dousson and Duong,
1999] to extract the complete set of chronicles. The main difference between the two approaches is
the selection of frequent temporal constraints. In HCDA, all possible frequent temporal constraints
are used to enumerate the frequent chronicles. Figure 2.9 illustrates the enumeration process.
It is based on a breadth-first search strategy. At first step the whole set of frequent temporal
constraint is extracted. This set corresponds to the set of chronicles with two events. The candidate
chronicles are then generated by adding new temporal constraints to a frequent chronicle before
its frequency test. Figure 2.9 illustrates how the complete set of chronicle is extracted from the
smallest chronicles.

Frequent chronicle mining is used in [Huang et al., 2012] to extract frequent behaviors in
clinical pathways. The main difference between the two previous approaches is that the chronicles
are extracted from a sequence set but not a trace. The issue implied by the difference between
occurrence number and sequence number is tackled by the constraint that each event may occur at
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most one time per sequence. Similarly to Cram et al., the complete set of frequent chronicles is
extracted.

ASTPminer [Alvarez et al., 2013] is an apriori based algorithm that extracts the complete set of
frequent chronicles from a sequence set. The datasets on which this algorithm is used are obtained
from polysomnography tests in patients with sleep apnea–hypopnea syndromes. Contrary to the
Huang et al. approach, a same event can occur several times in a sequence. This implies a big
time complexity. To tackle this, a window size constraint of 80 seconds, i.e. the constraint that all
events of a chronicle occur in a window of 80 seconds, is used to reduce the size of the extracted
pattern set.

Several other works dedicated to the fault diagnosis domain are based on chronicles matching
and learning [Quiniou et al., 2001, Morin and Debar, 2003, Cordier et al., 2007, Vásquez et al.,
2017]. For example, HCDA is extended in HCDAM [Subias et al., 2014] to learn chronicles from
multiple sequences. This work is more similar to the extraction of chronicles from a sequence set
but still define the support as the total number of occurrences of a chronicle and not the number of
sequences in which the chronicle occurs.

Efficient algorithms have already been proposed to extract frequent chronicles. [Cram et al.,
2012] have defined the frequent chronicle lattice and proposed a complete algorithms to extract
them. Finally, the chronicle model was used in medical contexts. The chronicle model is expres-
sive and represents interesting behaviors for clinicians.

But the frequent chronicle mining task seems to be not sufficient to be used for pharmaco-
epidemiology. The set of frequent chronicles is large even with reasonable minimal support. Fur-
thermore, the sequence label information is very important for our application and is not used by
such approaches. We then have to fill this gap by proposing the discriminant chronicle mining.



Chapter 3

Supervised pattern mining

The extraction of all behaviors contained in a dataset is often too expensive in terms of time and
memory. For example, in a dataset containing n different event types, 2n itemsets can be extracted
from it. The minimal support constraint help to extract a pattern subset but this set can be still
huge and contains some redundancy. Unfortunately, it is so difficult for a user to look at the whole
set of extracted patterns and so difficult to learn knowledge from it.

Algorithms were designed to extract a smaller pattern set than the frequent pattern set or at
least more interesting for the user. This interestingness can be defined by the user with constraints.

In the following part, we are reviewing approaches that considers interesting the discriminant
patterns i.e., patterns that occur more in a subset of sequence than in the others. Those approaches
are based on a label information on each sequence. This label information is represented on the
dataset of Table 2.1 by an attribute apart from the sequence. The user has to define to which
class correspond each sequence to extract the behaviors that are discriminant for each class. For
example, in a pharmacoepidemiology context, the dataset could represent a specific population
where each person will be treated for a disease. The class label could be the result of the treatment.
The dataset of Table 3.1 illustrates such dataset.

3.1 Discriminant rule mining

The discriminant rule mining is the domain of discriminant pattern mining techniques special-
ized to extract discriminant behaviors from relational data. Relational data and sequential data
are different because the length of each example is stated where the length of sequences can be
variable.

SID Healthcare pathway Treatment result
1 (Drug A,1), (Drug B,3), (Drug A,4), (Drug C,5), (Drug C,6) Good
2 (Drug B,2), (Drug D,4), (Drug A,5) Good
3 (Drug A,1), (Drug B,4), (Drug C,5), (Drug B,6), (Drug C,8) Good
4 (Drug B,4), (Drug A,6), (Drug E,8) Bad
5 (Drug B,1), (Drug A,3), (Drug C,4) Bad
6 (Drug C,4), (Drug B,5), (Drug A,6), (Drug C,7), (Drug D,10) Bad

Table 3.1: Dataset example for the pharmaco-epidemiology domain. Each sequence represents the
healthcare pathway of a patient. The label information is the treatment result for a disease. An
application of discriminant pattern mining on such dataset could be to extract behaviors mostly
occurring for good treatment result or on the contrary mostly occurring for bad treatment.

45
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ID Radius Texture Perimeter Area Smoothness Compactness Diagnostic
842302 17.99 10.38 122.8 1001 0.1184 0.2776 M
842517 20.57 17.77 132.9 1326 0.08474 0.07864 M

84300903 19.69 21.25 130 1203 0.1096 0.1599 M
84348301 11.42 20.38 77.58 386.1 0.1425 0.2839 M
84358402 20.29 14.34 135.1 1297 0.1003 0.1328 M
843786 12.45 15.7 82.57 477.1 0.1278 0.17 M
844359 18.25 19.98 119.6 1040 0.09463 0.109 M

84458202 13.71 20.83 90.2 577.9 0.1189 0.1645 M
844981 13 21.82 87.5 519.8 0.1273 0.1932 M

84501001 12.46 24.04 83.97 475.9 0.1186 0.2396 M
845636 16.02 23.24 102.7 797.8 0.08206 0.06669 M

84610002 15.78 17.89 103.6 781 0.0971 0.1292 M
8510426 13.54 14.36 87.46 566.3 0.09779 0.08129 B
8510653 13.08 15.71 85.63 520 0.1075 0.127 B
8510824 9.504 12.44 60.34 273.9 0.1024 0.06492 B

Table 3.2: A subset of the relational dataset: Wisconsin Diagnostic Breast Cancer (WDBC). Each
line corresponds to a woman, identified by the ID attribute, concerned by breast cancer. The
numerical attributes are measures obtained from a digitize image of a fine needle aspirate of a
breast mass. The last attribute is the diagnostic of the cancer: benign (B) or malignant (M).

Relational data are so different from sequential data but algorithms dedicates to extract dis-
criminant patterns from relational data can be used for extracting subsets of discriminant patterns
or to learn a behavior from a pattern set as it is shown in the following parts. The dataset of Table
3.2 is an example of such type of dataset.

One of the standard approach to handle relational data is to learn decision trees. Standard algo-
rithms dedicated to extract decision trees are ID3 [Quinlan, 1986], C4.5 [Quinlan, 1993] or CART
[Breiman et al., 1984]. In this case, only one decision tree is learned to classify the whole dataset.
An example of decision tree dedicated to the classification of Table 3.2 is given by Figure 3.1. In
this example, the values are quantitative. The decision tree can so be built using the order defined
on the numbers. But such tree can also build for qualitative values. For example, an attribute
could be the color and its value domain {blue,red,green}. A node of the decision tree based on
the color could then separate the examples for which color = blue from the examples for which
color 6= blue. Several implementations of decision trees do not make a difference between quali-
tative and quantitative values. It is the case of the implementation made in scikit-learn [Pedregosa
et al., 2011] where all values are numbers. Quantitative values have to be mapped with integers to
be used by such implementation. For example, {blue,red,green} could be mapped with {0,1,2}.
Thereby, color 6= blue could be described by color > 0. Random decision forests [Ho, 1995, Ho,
1998] are designed to handle more complex data using several decision trees.

Another approach to handle such data is to extract ordered rules. When extracted from a
dataset, an ordered rule set as to be read sequentially. Indeed, the second rule of the set covers
only examples that are not covered by the first rule. An example of such rule set for dataset of
Table 3.2 is:

1. texture > 15.71 → Diagnostic = M

2. smoothness≤ 0.1075 AND compactness≤ 0.127→ Diagnostic = B

In this example, the second rule is not true for the example with ID = 844359 but as this example
covers was already covered by the first rule, the rule set perfectly classify the dataset. Such rule
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radius

M: 8, B: 0 texture

M: 3, B: 0 smoothness

M: 1, B: 0 M: 0, B: 3

≥ 13.71 < 13.71

> 15.71
≤ 0.1571

> 0.1075 ≤ 0.1075

Figure 3.1: A decision tree classifying the examples of dataset in Table 3.2. Each node of the tree
is an attribute used to split the dataset. The label on each edge define the examples concerned by
each subtree. The number of each example concerned by the split is given in the leaves.
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set can be seen as a compressed and simpler decision tree [Quinlan, 1987], however, rule learning
systems initially outperformed decision tree learners [Pagallo and Haussler, 1990, Weiss and In-
durkhya, 1991]. One of the best algorithms of the state of the art to extract such numerical rules
is Ripperk [Cohen, 1995]. The Ripperk algorithm was designed to be competitive with C4.5rules,
a rule learning algorithm derived from the decision tree learning algorithm C4.5 [Quinlan, 1993].
The two algorithms have similar results in terms of error rates but Ripperk is much faster the
C4.5rules. The Ripperk algorithm is also designed to efficiently process noisy datasets.

The previous approaches handled mainly numerical data but some other are specific to sym-
bolic data. It is the case for emerging patterns, subgroup discovery and contrast set. A review of
those three domains and the unifying of the definitions of those domains is done in [Novak et al.,
2009].

3.2 Discriminant temporal pattern mining

For large datasets, the number of temporal patterns may be huge and not equally interesting. Ex-
tracting less but more significant patterns becomes the goal in this case. The first research direc-
tions specified additional constraints on the expected sequential patterns [Pei et al., 2002] including
constraints on patterns, on their occurrences or on the pattern set. More recent approaches try to
use soft constraints, such as preferences, instead of hard constraints. For example, in [Lakshmanan
et al., 2013], the temporal patterns are ranked according to their correlation with a particular pa-
tient outcome. It enables the expert to identify the potentially most interesting patterns easily.
Nonetheless, their number is not reduced.

Mining discriminant sequential pattern can be seen as an additional hard constraint on the
expected patterns. Several definitions related to the notion of discrimination have been proposed.
Novak et al. [Novak et al., 2009] reviewed these approaches, including emerging patterns [Dong
and Li, 1999], contrast patterns [Bay and Pazzani, 2001], subgroup discovery [Herrera et al., 2011]
and more recently Exceptional Model Mining [Duivesteijn et al., 2016]. All these approaches
have been explored for itemset mining and can be easily extended to sequential pattern mining.
But extracting quantitative temporal constraints, such in chronicle patterns, becomes too complex
when applying the same complete strategy, and target algorithms have to be proposed. In our
framework, the discrimination constraint is based on the growth rate of pattern frequency, which
is similar to the emerging pattern approach.

Compared to all studies on frequent temporal data mining, there are only few proposals to
mine discriminant temporal patterns. One of the first approaches dedicated to extract discrimi-
nant temporal patterns used inductive logic to extract patterns with quantified inter-event duration
[Quiniou et al., 2001]. Discriminant sequential patterns were also extracted in [Salle et al., 2009].
The extracted patterns using this approach are chronicles but an expert knowledge is needed to
bound the search space.

3.3 Pattern-based classification

An alternative approach for learning how to label sequences is the pattern-based classification
[Bringmann et al., 2011]. Pattern-based classification is a subdomain of sequence classification. A
survey of this domain is done in [Xing et al., 2010]. The general purpose of sequence classification
is to build efficient classifiers to label sequences. In pattern-based classification, patterns are ex-
tracted and then are used as rules or as features in a (standard) classifier, such as a SV M classifier.
Figure 3.2 illustrates classification based on itemsets. Even if the original dataset and pattern type
are different, the illustrated process is the same for temporal patterns. Before the classification
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Figure 3.2: Illustration of the pattern-based classification process extracted from [Bringmann et al.,
2011]. In this example, the patterns are itemsets but the process is the same for temporal patterns.

task, it can be useful to prune the extracted pattern set to remove those useless or keep those more
useful for classification. In some cases, useful patterns (e.g. the frequent ones) can be directly
selected and avoid an inefficient post-processing step. Batal et al. [Batal et al., 2013] proposed to
use discriminant temporal pattern as potentially interesting subset of frequent patterns. Their tem-
poral patterns, called minimal predictive temporal patterns, are couples of an itemset and Allen’s
temporal relations constraining the itemset occurrences [Allen, 1984]. The principle of minimal
predictive temporal patterns selection is to compare a pattern P with those include in it to prune
the search tree if P is enough predictive. The predictive measure is the confidence. In [Fradkin
and Mörchen, 2015], timestamped event sequences are described by binary features encoding the
presence/absence of a patterns. Feature vectors are then classified by a SV M classifier. Their most
accurate approach extracts all frequent sequential patterns and use them all as features. The large
number of extracted patterns and their redundancy is a problem for the efficiency and the accuracy
of the SV M classifier. Fradkin et al. proposed several strategies to reduce the number of pattern
to use in SV M. Different approaches (BIDE-D, BIDE-DC, SMBT and SMBT -FS) dedicated to
discriminant pattern mining are developed and tested to reduce this number while keeping as high
as possible the accuracy.

The main drawback of these approaches is their interpretability. The strength of pattern mining
approaches is the interpretability of their outputs. This is an essential property we would like in our
application field. But, extracted patterns are used as features for the classifier which is a black box
for the expert. In such cases, the expert cannot relate a pattern to a behavior. Our approach consists
in extracting patterns that hold the discrimination information such that they can be individually
interpreted.

Discriminant temporal patterns are finally used to present a few number of patterns to the
experts [Fabrègue et al., 2014]. In this paper, discriminant patterns are extracted from hydro-
ecological data and the goal of the proposed approach is to support analysts to extract knowledge
from those data. This approach does not extract discriminant patterns, but it selects those that
satisfy a discrimination constraint among the frequent patterns. This post-processing approach
misses potentially discriminant patterns that may be useful for experts.

For the great expressiveness of chronicles and their algorithmic properties, we are interested in
frequent and discriminant chronicles mining. Our work continues previous work about chronicle
mining and discriminant temporal pattern mining. As in [Fabrègue et al., 2014], our goal is to
support clinicians to extract knowledge from data then our patterns must be interpretable rules
but we could not rely on a black-box classifier to provide a good accuracy. Mining discriminant
chronicles is a compromise between interpretability and accuracy.

A simple way to do pattern based classification is by using association rules [Ma and Liu,
1998]. The classification is then done like for C4.5Rules or Ripperk but the associated items are,
in this case, patterns.

In [De Smedt et al., 2017], sequential patterns are extracted in a declarative way to classify
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SID Sequence Label
1 (A,1), (A,2), (B,3), (C,5), (D,6) +
2 (A,2), (D,4), (C,5), (B,7) +
3 (A,1), (B,4), (C,4) +
4 (B,4), (A,6), (E,8), (C,400) -
5 (B,1), (A,3), (C,400) -
6 (A,1), (B,7), (D,10), (C,600) -

Table 3.3: Dataset example that highlights the importance of numerical temporal information in
discriminant patterns. In this dataset, the sequential pattern 〈A,B〉 is not discriminant but a pattern
constraining the duration between A and C to be lower than 400 is.

sequences. The patterns are directly extracted to classify the sequences. The results are hugely
better than in [Fradkin and Mörchen, 2015].

Finally, an accurate method to do temporal pattern-based classification is proposed in [Borne-
mann et al., 2016]. In this work temporal patterns are itemsets for which each item that has starting
and ending timestamps are constrained to match as most as possible a defined interval. The classi-
fication is then done using the similarity of the real occurrences of each itemset and the associated
interval constraints.

3.4 Positioning

We choose to focus this thesis work on the discriminant chronicle mining task because of a lack
of discriminant expressive pattern mining approaches.

The chronicle model was initially chosen to be the most expressive temporal pattern model
while being sufficiently interpretable and graphically representable. Chronicle was preferred over
the sequential patterns because of the numerical description of the time. Discriminant sequential
pattern mining approaches were already studied but the lack of numerical information concerning
the duration could lead to avoid interesting behaviors. Table 3.3 illustrates a dataset for which
numerical temporal information is essential to describe the discriminant behavior based on A and
C. Sequential patterns could only describe that A is always followed by C or C followed by A
but those behaviors are not discriminant and not frequent respectively. Chronicles could easily
describe this behavior by constraining C to occur at most, for example, 50 days after A.

On the other hand, we could not choose an expressive temporal pattern model without the
discriminant dimension. Thereby, previous works on frequent chronicle mining were not usable
in our context. Extracting sets of frequent chronicles from pharmaco-epidemiology data leads to a
lot of uninteresting patterns. For example, the majority of the frequent chronicles extracted from
the GENEPI dataset contained an event linked to a paracetamol delivery.

The discriminant chronicle model and the discriminant chronicle mining task were so needed.
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Chapter 4

Discriminant chronicle mining

Discriminant pattern mining is dedicated to mine patterns that are discriminant for some dataset
in comparison to others. It aims at identifying patterns in structured and labeled examples that can
be used to classify new examples. In this work, we aim at mining labeled temporal sequences,
i.e. sequences of timestamped events. Our objective is not to predict future events but to assign a
label to a sequence.

Sequence classification can be encountered in numerous application fields: comparing groups
of customers (e.g. large family vs single child family), analyzing supermarket purchase data, iden-
tifying behavior of customers (who churns vs loyal customers), etc. Our application field is the
analysis of care pathways, i.e. sequences of medical events of a patient (drugs deliveries, hospital
stays, etc.): we would like to characterize care pathways relatively to some patient diseases. The
objective is to identify therapeutic sequences that may favor diseases. In all these contexts, the
temporal dimension may be discriminant. For instance, a short delay between the delivery of two
adverse drugs may help discriminate patients, sick from healthy patients. This is especially impor-
tant for clinicians. By taking quantitative temporal constraints into account, we aim at improving
classification accuracy in order to provide better insights to data scientists.

Discovering such patterns raises important challenges both in the fields of pattern mining and
machine learning. On the one hand, pattern mining approaches are based on a (exhaustive) search
strategy in a structured version space. Our objective is to discover quantitative temporal informa-
tion. This generates too large a search space for applying classical approaches. On the other hand,
machine learning algorithms have difficulties to handle structured data such as sequences. As a
consequence, we propose a specific pattern model and a new approach that combines solutions
from these two research fields.

In this chapter, we explore temporal patterns called chronicles [Dousson and Duong, 1999].
A chronicle is a set of events linked by quantitative temporal constraints. In constraint satisfac-
tion domain, chronicle can be seen as temporal constraint network [Dechter et al., 1991]. These
complex but highly expressive patterns enable to take into account the quantitative temporal di-
mension of the data contrary to classical sequential patterns that capture only the sequentiality
between events.

The remaining of the article is organized as follows. Next section presents related works.
The section 4.1 introduces the discriminant chronicle mining task, while section 4.2 presents the
DCM algorithm, our solution for this task. Section 4.4 presents how to take decision from a set
of chronicles. Section 4.5 evaluates the DCM algorithm. After a first round of experiments on
synthetic data, we compare the results of discriminant chronicles in classification context with
those of discriminant sequential patterns [Fradkin and Mörchen, 2015] on UCI datasets.
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SID Sequence Label
1 (A,1), (B,3), (A,4), (C,5), (C,6), (D,7) +
2 (B,2), (D,4), (A,5), (C,7) +
3 (A,1), (B,4), (C,5), (B,6), (C,8),(D,9) +
4 (B,4), (A,6), (E,8) −
5 (B,1), (A,3), (C,4) −
6 (C,4), (B,5), (A,6), (C,7), (D,10) −

Table 4.1: Set of six sequences labeled with two classes {+,−}. This table is the same as the table
2.1 in the section 2.2.1.

C

A

B
[-1,3]

C

[-3,5]

[-2,2]

D
[4,5]

C
[1,3]

C1

A

B
[2,3]

C

[4,5]

[-2,2]

C2

A

C

[-3,1]

C
[2,4]

Figure 4.1: Examples of three chronicles occurring in Table 4.1 (cf. Examples 1 and 4). No edge
between two events is equivalent to the temporal constraint [−∞,∞]. This figure is the same as the
figure 2.6 in the section 2.2.1.

4.1 Discriminant chronicles

In this chapter we address the task of mining sequence sets with timestamped events. More specif-
ically, we have a supervised mining task. Each sequence of the dataset is labeled. From another
point of view, we can say that sequences are categorized in several classes. We are interested in dis-
covering patterns that are more frequent in one class than in the others. To take time into account,
we search for patterns called chronicles [Dousson and Duong, 1999]. This section introduces more
formally the basic definitions related to the discriminant chronicle mining task.

Let S + and S − be two sets of sequences, and σmin ∈ N+, gmin ∈]1,∞[ be two user-defined
parameters. A chronicle C is discriminant for S + iff supp(C ,S +)≥ σmin and supp(C ,S +)≥
gmin× supp(C ,S −). In other words, a chronicle is discriminant iff its growth rate g(C ,S ) is
above the given threshold gmin. To take into account the special case of a null support in negative
sequence set, the growth rate is defined as follows:

g(C ,S ) =

{
supp(C ,S +)
supp(C ,S −) if supp(C ,S −)> 0
+∞ otherwise

.

Contrary to the minimal support constraint which is anti-monotone, the minimal growth con-
straint is not. This is due to the independence of supp(C ,S +) and supp(C ,S −). For example, a
chronicle C is not discriminant for gmin = 2 with supp(C ,S +) = 10 and supp(C ,S −) = 10 but
C1 which is more specific than C is discriminant with supp(C ,S +) = 10 and supp(C ,S −) = 5
and C2 which is more specific than C1 is not discriminant with supp(C ,S +)= 2 and supp(C ,S −)=
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Algorithme 2 Algorithm DCM for discriminant chronicle mining
Require: S +, S − : sequence sets, σmin : minimal support threshold, gmin : minimal growth threshold
1: M← EXTRACTMULTISETS(S +, σmin) . M is the frequent multiset set
2: C← /0 . C is the discriminant chronicle set
3: for all ms ∈M do
4: if supp

(
S +,(ms,T∞)

)
≥ gmin× supp

(
S −,(ms,T∞)

)
then

5: C← C∪{(ms,T∞)} . Discriminant chronicle without temporal constraints
6: else
7: for all T ∈ EXTRACTDISCRCONSTRAINTS(S +, S −, ms, gmin, σmin) do
8: C← C∪{(ms,T )} . Add a new discriminant chronicle
9: return C

5 and so forth. This property makes the mining of discriminant chronicles more difficult than stan-
dard chronicle mining because it is not possible to conclude that all the more specific chronicles
of a not discriminant chronicle are not discriminant either.

Example 5. With chronicle C of Figure 4.1, supp(C ,S +) = 2, supp(C ,S −) = 1, where S +

(resp. S −) is the sequence set of Table 4.1 labeled with + (resp. −). Considering that g(C ,S ) =
2, C is discriminant if gmin≤ 2. For chronicles C1 and C2, supp(C1,S +)= 2 and supp(C1,S −)=
0 so g(C1,S ) = +∞ and supp(C2,S +) = 0 and supp(C2,S −) = 1 so g(C2,S ) = 0. C2 is not
discriminant, but C1 is for any gmin value.

The support constraint, using σmin, prunes the infrequent, and so insignificant, chronicles. For
example, a chronicle like C1 such that g(C1,S ) = +∞ but supp(C1, S +) = 2 is discriminant
but would not be interesting for a bigger sequence set because it generalizes only two sequences.
Pruning can be done efficiently thanks to the anti-monotonicity of support. More specifically, if
a chronicle1 (E ,T∞) is not frequent, then no chronicle of the form (E ,T ) will be frequent. This
means that temporal constraints may be extracted only for frequent multisets.

Extracting the complete set of discriminant chronicles is not interesting because it may con-
tain discriminant chronicles with same multiset and similar temporal constraints. Such chronicles
could match an almost similar set of sequences and could be considered as redundant for the an-
alyst. It is preferable to extract chronicles whose temporal constraints are the most generalized.
The approach proposed in the next section efficiently extracts a set of meaningful discriminant
chronicles above given support and growth rate thresholds.

4.2 DCM algorithm

The DCM algorithm is detailed in Algorithm 2. The algorithm extracts discriminant chronicles in
two steps: First, it extracts frequent multisets, which are chronicles without temporal constraints,
and then it mines discriminant temporal constraints from these multisets.

At first, line 1 (EXTRACTMULTISETS) extracts M, the frequent multiset set in S +. This task
is described in Section 4.2.1. In a second step, lines 3 to 8 extract the discriminant temporal con-
straints of each multiset. The naive approach would be to extract discriminant temporal constraints
for all frequent multisets. A multiset E (i.e. a chronicle (E ,T∞)), which is discriminant, may yield
numerous similar discriminant chronicles with most specific temporal constraints. We consider
them as useless and, as a consequence, line 4 tests whether the multiset ms is discriminant. If so,
(ms,T∞) is added to the discriminant patterns set without more specification of the temporal con-
straints. Otherwise, lines 7-8 generate chronicles from discriminant temporal constraints identified
by the routine EXTRACTDISCRCONSTRAINTS. This routine is detailed in Section 4.2.2.

1T∞ is the set of temporal constraints {e]−∞,+∞[e′ | e,e′ ∈ E }.
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4.2.1 Multiset mining

This section elaborates on the frequent multiset mining. Compared to frequent itemset mining, it
takes care of the cardinality of items i.e. its number of repetitions.

This task can be easily solved by applying a regular frequent itemset mining algorithm on
a transaction set encoding multiple occurrences of a same item as several items. Such dataset
used for multiset mining contains a transaction for each positive sequence in the initial temporal
sequence set. For each transaction, an item a ∈ E occurring n times in a sequence is encoded by n
items: Ia

1 , . . . , I
a
n .

SID Items

1 IA
1 IA

2 IB
1 IC

1 IC
2 ID

1

2 IA
1 IB

1 IC
1 ID

1

3 IA
1 IB

1 IB
2 IC

1 IC
2 ID

1

Table 4.2: The transaction set obtained from the positive sequences of the dataset of the table 4.1
to extract multisets.

Example 6. Table 4.2 shows the transaction set obtained for the set of temporal sequences of
Table 2.1 (page 29). The transactions correspond only to the positive sequences. Each transaction
contains the same number of items as the number of events in the corresponding sequence. In first
transaction, the two occurrences of the events of type A became two distinct items IA

1 and IA
2 .

A frequent itemset of size m, (Iek
ik )1≤k≤m, extracted from this dataset is transformed into the

multiset containing, ik occurrences of the event ek. Frequent itemsets with two items Iek
ik , Iel

il such
that ek = el and ik 6= il are redundant and, thus, these itemsets are ignored to avoid generating
several times the same multiset. This could be tackled by adding pattern constraints into the
itemset mining algorithm. Practically, we implemented a post-processing step.

Example 7. For σmin = 2, the itemset {IA
1 , I

B
1 , I

C
1 } is frequent in the dataset of the table 4.2 since

it occurs in each transaction. Then, the extracted itemset is translated as the multiset {{A,B,C}}
because IA

1 , IB
1 and IC

1 correspond to one occurrence of A, one occurrence of B and one occurrence
of C respectively. Another frequent itemset is {IA

1 , I
B
1 , I

C
2 }. This itemset is frequent for σmin = 2

because it occurs in the two transactions 1 and 3. It can be translated as the multiset {{A,B,C,C}}
because IC

2 corresponds to two occurrences of C. To avoid redundancy, itemsets containing two
items referring to the same event will be ignored. An example of such itemsets is {IA

1 , I
B
1 , I

C
1 , I

C
2 }.

This itemset is ignored because it has the same support as {IA
1 , I

B
1 , I

C
2 } and contains both IC

1 and IC
2

that are equivalent to IC
2 alone.

4.2.2 Temporal constraint mining

The general idea of EXTRACTDISCCONSTRAINTS is to extract discriminant temporal constraints
using a classical numerical rule learning task [Cohen, 1995].

Let E = {{e1..en}} be a frequent multiset. A relational2 dataset, denoted D , is generated with
all occurrences of E in S . As C = (E ,T ) � (E ,T∞), D is sufficient to describe the entire
occurrences set of C . The numerical attributes of D are inter-event duration between each pair

2In some context, relational dataset designates a dataset whose organization is based on a relational data model. In
our context, the relational model designed an attribute-value dataset, i.e. a single relation.
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SID AA→B AB→C AA→C Label
1 2 2 4 +
1 2 3 5 +
1 −1 2 1 +
1 −1 3 2 +
2 −3 5 2 +
3 3 1 4 +
3 3 4 7 +
3 5 2 7 +
3 5 −1 4 +
5 −2 3 1 −
6 −1 −1 −2 −
6 −1 2 1 −

Table 4.3: Tabular dataset for the multiset {{A,B,C}} corresponding to its occurrences in table 4.1.

(ei,e j) where ei,e j ∈ E and ei ≤E e j, denoted by Aei→e j . An example is labeled by its sequence
label (L∈L). If a sequence has several occurrences of E , then each occurrence yields one example.

A rule learning algorithm induces numerical rules from D . A rule has for conclusion a label
and its premise is a conjunction of conditions on attribute values. Conditions are inequalities in
the form: Aei→e j ≥ x∧Aei→e j ≤ y, where (x,y) ∈ R2

. Such a rule is translated as a temporal
constraint set, T = {ei[x,y]e j}. Infinite temporal constraint bounds are used to represent the lack
of conditions. For example, the condition Aei→e j ≥ x is translated as ei[x,∞[e j. The couple (E ,T )
is then a potential discriminant chronicle. At this stage, we are not sure that the chronicle is
discriminant for the sequences. In fact, the rule learning algorithm extracts discriminant temporal
constraints based on the dataset D . The multiple instances of the multiset have to be carefully
managed. We will discuss about this limitation in Section 4.3.

Example 8. Table 4.3 is the relational dataset obtained from the occurrences of {{A,B,C}} con-
taining by the dataset of Table 4.1. The attribute AA→B denotes the duration between A and B. We
can see on Table 4.3 that an example contains the SID of the sequence, the duration for each
pair of events and the label of the sequence. It is worth noticing that several examples may
come from the same sequence. The rule AA→C ≥ 2 =⇒ + characterizes almost all the exam-
ples labeled by + in Table 4.3 and characterizes all the different SID labeled by +. It is trans-
lated into the discriminant temporal constraints {A[2,∞[C} which gives the discriminant chronicle
C = ({{e1 = A,e2 = B,e3 =C}},{e1[2,∞[e3}).

It is interesting to notice that the discriminant temporal constraints {A[−1,∞[B, B[3,∞[C}
is less discriminant from the point of view of the dataset of Table 4.3, but it also discriminates
perfectly the sequences, as it occurs in all positive sequences (at least for one multiset instance)
and no negative sequence.

4.2.2.1 Rule learning for discriminant temporal constraint extraction

We want to obtain rules from numerical data to translate them into temporal constraint sets. Those
rules have to be unordered to be translated independently from the others.

The rule learning task is done in practice by the Ripperk algorithm [Cohen, 1995], a relational
rule learning algorithm. This algorithm was selected because of its high accuracy and because
it allows the extraction of unordered rules. An unordered rule is independent from the others.
Thereby, each rule of an unordered rule set is still true if read alone. It is not true for ordered
rules. The problem with ordered rules learners (e.g. CN2, C4.5) comes with the validity of a rule
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SID AA→B AB→C AA→C Label
1 2 0 2 +
1 2 2 4 +
1 2 1 3 +
2 0 1 1 +
3 0 2 2 −
4 2 1 3 −

Table 4.4: Relational dataset for the multiset {{A,B,C}} (different of 4.3 and no correlated with
Table 4.1) to show the limitation of Ripperk in multiple instance cases.

at position n. This rule is valid only if the previous n−1 rules are not valid. Thereby if a chronicle
set is based on ordered rules, some chronicles may not be discriminant if read alone.

Ripperk splits the dataset in two parts: Grow and Prune. Grow is used to construct the con-
junction of conditions discriminating examples of one class with respect to the others. Growing
stops when it is no longer possible to add a condition to the conjunction that improves accuracy.
Prune is used to prune the constructed rule. If the conjunction is more discriminating without its
last condition, this rule is removed from the conjunction and the last new condition is tested until
the accuracy can no longer be improved. This approach allows to manage the overfitting made on
Grow. If the accuracy is not satisfied for this conjunction of conditions, the search stops for that
label. Otherwise the conjunction is returned as a rule, the examples associated with it are removed
from Grow and the search starts again. The aforementioned steps are repeated for each label of
the dataset.

However, the rules generated by Ripperk may not be discriminant or not frequent. Such case
occurs because the support of rules generated by Ripperk is based on the number of examples and
not the number of sequences. Since several examples can be generated by a single sequence, those
two numbers can be different. Thereby, the definition of support for a rule extracted by Ripperk is
different from our definition of support. To restore the correctness i.e. to only return discriminant
patterns, the support and growth rate of each rule are recomputed and the rules detected as not
frequent or not discriminant are pruned. This solution does not ensure that discriminant chronicles
are extracted, even if one exists, i.e. all extracted chronicles could be pruned. However, such
solution does not add computational heaviness and is sufficient to guarantee the correctness of the
approach. The main idea behind the possibility that Ripperk can extract no discriminant rules,
even if one exists, is the selection of the best rule covering a set of examples made by Ripperk.

Example 9. Since each perfect discriminant rules that could be extract from Table 4.4 covers only
one example and then will be overfitting, the first candidate rule for an algorithm like Ripperk
should be R1 : AA→B ≤ 2∧AA→B ≥ 2 =⇒ +. This rule will be validate on the Prune set and the
generation will stop because there will be no more enough positive examples in the Grow set.

R1 will be finally pruned because its growth rate is equal to 1 and the extraction will not keep
any chronicle despite the rule R2 : AB→C ≤ 1∧AB→C ≥ 1 =⇒ + that could be discriminant for
a minimal growth rate of 2.

The choice of using a rule learning algorithm based on an incomplete heuristic, in this case
a heuristic based on the MDL principle (Minimum Description Length), is required for computa-
tional reasons. However, Ripperk combines (1) a reasonable algorithmic complexity – the compu-
tation times remain reasonable, (2) good classification performance – the extracted chronicles are
therefore well representative of the dataset – and (3) reduced rule sets – retrieved chains remain
easily interpretable [Lattner et al., 2003].
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4.3 Dealing with the multiple instance issues

The problem of learning rules on objects that could produce several examples in the learning sets
is a known problem and is studied by the multiple instance learning domain. Thereby, solutions
have been developed to tackle our issue where Ripperk generates not frequent or not discriminant
rules.

4.3.1 Multiple instance problem

Figure 4.2: (a) The traditional supervised machine-learning scenario. (b) Multi instance learning.
Figure from [Foulds and Frank, 2010] based on a similar diagram in [Dietterich et al., 1997].

The multiple instance learning [Foulds and Frank, 2010] refers to the counting problems which
happens when a pattern appears multiple times in an object. Figure 4.2 shows the general dif-
ferences between (a) the traditional supervised machine-learning scenario and (b) the multiple
instance learning. Both scenarios have for goal to apply processes on some objects to produce
a result. In the more specific context of rule learning on tabular data, the goal is to learn rules
describing objects. The difference between the two scenarios is that, in traditional supervised
machine-learning scenario, we can represent an object as a single feature vector but, in multiple
instance learning, an object is described by a set of instances.

Figure 4.3: The original figure from [Dietterich et al., 1997] showing two possible shapes of a
same molecule.

Initially, multiple instance learning was used for drug activity prediction [Dietterich et al.,
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C2

A

B C
[2,3]

Figure 4.4: Example of not discriminant chronicle that could be extracted by Ripperk. This chron-
icle is not discriminant because it occurs both in one positive and one negative sequences in the
Table 4.1 but could be extracted because it covers two different occurrences in positive sequences
in the Table 4.3.

SID AA→B AB→C AA→C Label
1 2 1 3 +
2 0 1 1 +
3 0 2 2 −
4 2 1 3 −

Table 4.5: A mono-instance dataset for the multiset {{A,B,C}} containing the witnesses of the table
4.4.

1997]. In drug activity prediction, the goal is to construct a model predicting which kind of drug
will bind to a target molecule. Since drug is generally itself a small molecule, the multiple instance
scenario occurs when a drug can have several shapes. Figure 4.3 is an example of such molecule
for which several shapes are possible. In such context, the shape of the molecule can have an
impact on the drug activity. The rule learning dataset becomes so a set of examples corresponding
to all the shapes of the studied drugs and their known activity on the target molecule. Since the
support of a rule must be the number of drugs covered by this rule and not the number of drug
shapes, it becomes necessary to use multiple instance learning algorithms on those data.

In our case, an object is a sequence and the multiple instances are the multiple occurrences of
a multiset in this sequence. This situation is encountered when building the dataset (cf. Table 4.3)
and distorts the count of objects validating a standard conjunction of rules. For example, when
rows 1 and 2 in the Table 4.3 are covered by a rule, they must only count for an object (i.e. a
SID). The rule learning algorithm used to extract the discriminant temporal constraints, in our
case Ripperk, can then extract rules that are not discriminant in a multiple instance context.

Example 10. Figure 4.4 is an example of a chronicle that could be generated by the rule AB→C ≤
3∧AB→C ≥ 2 =⇒ +. This rule is discriminant for a standard rule learning algorithm as it covers
more positive than negative examples in the table 4.3 but, since the first two examples correspond
to the same sequence, this rule is not discriminant according to our definition of support.

4.3.2 Witness selection for Ripperk

An alternative solution to the post-processing of Ripperk results would be to use methods adapting
multiple instance datasets for standard machine learning algorithms. For example, the miSV M
approach [Doran and Ray, 2014] identify for each object which instance has to be used by the
classifier. This instance is seen as a witness of the object class. One possible approach for our
algorithm would be to pre-process the dataset using the miSV M algorithm in order to identify the
witness instances. In such a case, Ripperk would be applied on a mono-instance dataset.

Example 11. The table 4.5 is an example of witnesses dataset that the miSV M algorithm could
compute from Table 4.4. Since there is no more duplicate occurrences, Ripperk will extract the
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rule R2 : AB→C ≤ 1∧AB→C ≥ 1 =⇒ + that is really discriminant and no more R1 : AA→B ≤
2∧AA→B ≥ 2 =⇒ +.

This solution seems to be the most reliable. However, it adds an important complexity to
the process of extracting temporal constraints. Furthermore, too many patterns could be removed
by such approach. This high removal of patterns can be explained by the choice of only one
witness per sequence. The hypothesis made for witness selection, i.e. the hypothesis that there
is only one example describing the specificity of an object, is a very strong hypothesis. In our
case, the hypothesis made is that discriminant chronicles can be extracted considering only one
occurrence of each multiset in a sequence. This hypothesis overrules the potential co-occurrences
of discriminant patterns.

4.3.3 A multiple instance rule learning algorithm: MITI

Several rule learning algorithms for multiple instance rule learning have been proposed in the
literature [Chevaleyre and Zucker, 2001, Dietterich et al., 1997, Gärtner et al., 2002]. Replace the
use of Ripperk by one of those algorithms could be a good solution for this problem. Since none
of them extract unordered rules, we can use a multiple instance decision tree learning algorithm
like MITI [Blockeel et al., 2005]. Using such algorithm, a discriminant temporal constraint will
be a branch of the decision tree leading to a discriminant and frequent enough conclusion.

Taking into account multiple instances directly in the rule learning step would therefore neces-
sarily be done with adding computational complexity. Since multiple instances are rarely encoun-
tered in our applications, we have focused on computational efficiency by correcting the results
with the post-processing strategy. Furthermore, the Ripperk accuracy is in general cases equivalent
or better than this of multiple instance algorithms.

4.4 Decision based on discriminant pattern sets

The decision based on the extracted discriminant chronicles is not the main idea of this chapter,
however, we need to describe the general principles since we use it as evaluation. A discriminant
chronicle extracted for a class can be seen as a rule for which an occurrence of this chronicle
implies the associated label. We can extract rules of the form µ(C ,s) =⇒ li for each class where
C is a chronicle, s a sequence, µ the mapping function determining if C occurs in s and li the
label of the ith class. The discriminant chronicle mining task extracts patterns that also occur in the
classes different from that initially discriminated. Moreover, two extracted discriminant chronicles
could have been extracted for different growth rates and supports. Therefore it is possible to have
to predict the label of a sequence s, the two rules µ(C ,s) =⇒ li and µ(C ′,s) =⇒ l j where li 6= l j

and µ(C ,s) = µ(C ′,s) = 1. In such case we have to apply an order on the extracted rule set to
make a decision.

To order the chronicles, we choose to use a measure based on the same growth rate definition
that we use to extract them. Discriminant chronicles can have different support and in the case
of two discriminant chronicles C∞ and C∈ extracted for l1 and l2 respectively, supp(C∞, l1) = 10,
supp(C∞, l1) = 0, supp(C∈, l2) = 100 and supp(C∈, l2) = 1, we could prefer to use C∈ before C∞

even if C∞ has a better growth rate. The reason for this preference is due to a wider covering of C∈
and, thereby, a lower sensibility to the false positive rate. We choose to recompute the growth rate
of each chronicle with adding a virtual sequence to the negative support. This measure is currently
used in the subgroup discovery domain and is presented in [Herrera et al., 2011] as the precision

measure Qg(R) =
T P

FP+g
where, in our case, T P = supp(C , li), FP = supp(C , li) and g is set up

to 1.
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4.5 Benchmark

This section is dedicated to evaluate the efficiency of our algorithm on synthetic and real data.
The real datasets have been used for other pattern-based classification approaches [Fradkin and
Mörchen, 2015, Bornemann et al., 2016].The DCM implementation is written in C++ and relies
on pre-existing implementations of LCM [Uno et al., 2004] and Ripperk [Cohen, 1995].

4.5.1 Synthetic data

In this section, we show the results of the evaluation of DCM on synthetic data.

4.5.1.1 Dataset generation

The general principle of the simulator is to generate sequences based on two different chronicles
C+ and C−. In a first step, one of these chronicles is assigned to every sequence of the two
datasets S + and S − such that C+ (respectively C−) is introduced mainly in the dataset S +

(respectively S −) (see Figure 4.5). In a second step, the chronicle assigned to the sequence is
used as a “template”: the sequence holds the items of the chronicle with timestamps randomly
drawn but satisfying the temporal constraints, and additional random items. For each sequence,
the chronicle to used to define its “template” and then random items are generated to introduce
noise.

C+

C−

S +

C−

C+

S −

Figure 4.5: Distribution of chronicles C+ and C− in sequence datasets S + and S −.

The dataset S = S + ∪S − contains labeled sequences (L = {+,−}). Sequences labeled
with + (respectively −) are then characterized by C+ (respectively C−). Two parameters manage
the introduction of these chronicles: f̂min and ĝmin.

• The parameter f̂min is the percentage of sequences in the majority class in which a chronicle
appears.

• The parameter ĝmin is the ratio between the sequence numbers of the two classes in which
this chronicle appears.

The objective of the experiment is to evaluate the ability of DCM to extract correct discriminant
temporal constraints. To this end, we use chronicles for C+ and C− that differ only on one
temporal constraints. The more similar the chronicles, the harder the mining task.

More precisely, the BaseN datasets have been created from chronicles based on the same mul-
tiset {{A,B}} of size 2. Therefore each chronicle has a unique time interval. For each dataset, the in-
tervals of C− and C+ overlap more or less. For all these datasets, we set C+=({{A,B}},{A[3,10]B});
we set C−= ({{A,B}},{A[7,8]B}) to generate Base1. Base2, Base3, Base4 and Base5 are generated
using similar constraints for chronicles C−: respectively, A[6,8]B, A[4,8]B, A[4,9]B and A[4,10]B.
These chronicles are illustrated in the Table 4.6.

It is important to notice that the discriminant mining task does not aim at extracting C+ and
C− from S . Its goal is to extract patterns describing the maximum number of occurrences of C+
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Dataset C+ C− Expected discriminant chronicles

Base1
A B

[3,10]
A B

[7,8]
A B

[−∞,6]
A B

[9,+∞]

Base2
A B

[3,10]
A B

[6,8]
A B

[−∞,5]
A B

[9,+∞]

Base3
A B

[3,10]
A B

[4,8]
A B

[−∞,3]
A B

[9,+∞]

Base4
A B

[3,10]
A B

[4,9]
A B

[−∞,3]
A B

[10,+∞]

Base5
A B

[3,10]
A B

[4,10]
A B

[−∞,3]

Table 4.6: Chronicles introduced in each dataset type and expected discriminant chronicles for
S + in those datasets for each pair of introduced chronicles. As discriminant chronicles of Base1
are more general than those of Base5, Base1 sequences are easier to discriminate than those of
Base5.

and the minimum number of occurrences of C−. The third column of Table 4.6 gives the expected
discriminant chronicles to extract.

For each dataset type BaseN , the results are averaged over 20 datasets generated independently.
The simulator is set to generate by default datasets containing 800 sequences. The average length
of sequences is 10. The size of the vocabulary is set at 50 items and f̂min and ĝmin are respectively
set to 80% and 10%.

The ability of DCM to extract the correct patterns is evaluated by comparing the sets of ex-
tracted patterns with the expected patterns. Two measures are used: ∆c(m,m̂) the coverage ratio and
∆g(m,m̂) the growth ratio. The variable m and m̂ denote extracted and expected patterns respectively.

• ∆c(m,m̂) =
|{s ∈S + | m ∈ s}∩{s ∈S + | m̂ ∈ s}|

|{s ∈S + | m̂ ∈ s}|
is a coverage ratio similar to the uni-

lateral Jaccard similarity [Santisteban and Tejada-Cárcamo, 2015] coefficient and repre-
sents the ratio between the number of sequences of the S + class containing one occurrence
shared by m and m̂ and the number of sequences in S + containing m̂. This measure deter-
mines how much similar are the sets of sequences labeled as positive by the two patterns. It
is a recall measure.

• ∆g(m,m̂) =


min

(
g(m,S )

g(m̂,S )
,1
)

, if g(m̂,S ) <+∞

1 , if g(m,S ) = g(m̂,S ) =+∞

0 otherwise

is the growth ratio and represents the ratio of the growth rates of m to m̂.

For each expected patterns m̂, a single pair (∆c(m,m̂),∆g(m,m̂)) is retained such that ∆c(m,m̂) is the
highest for any extracted pattern m and that ∆g(m,m̂) is the highest if there are several ∆c(m,m̂)

maximal. To simplify the notations, (∆c,∆g) is used to denote this pair. In addition to the previous
measure used as recall, we use this measure as accuracy.

4.5.1.2 Results

Figure 4.6 shows the extraction results of DCM on the 20 datasets generated for each BaseN . The
coverage ratio is given in abscissa and the growth ratio in ordinates. Given a coverage ratio ∆g
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Figure 4.6: Scatter plots of the extracted patterns represented by (∆c,∆g) for each dataset. For each
expected discriminant pattern m̂ only the best extracted pattern m according to (∆c(m,m̂),∆g(m,m̂))
is used in these plots. The dot size represents the number of extracted patterns.

and a growth ratio ∆g, the dot size gives the number of chronicles similar to one of the expected
chronicles (see Table 4.6). This number is the sum of patterns for the 20 datasets, meaning that
the maximal dot size is 40 for database 1 to 4 (20 datasets with 2 expected patterns) and 20 for
database 5.

The biggest dots per database, from 1 to 5, represent respectively 31, 40, 30, 30 and 15 ex-
tracted chronicles that was expected.

We notice on Figure 4.6 that DCM extracts at least 75% of the expected discriminant patterns
in each dataset a discriminant pattern whose coverage and growth ratios are perfect (∆c = 1 and
∆g = 1). In addition, for the Base4 and Base5 datasets, DCM does not extract any patterns for
certain introduced discriminant patterns, but only 1 out of 40 for Base4 and 2 on 20 for Base5.

To explain these errors, we extract chronicles from the same dataset with a minimum growth
rate of 1.1. With this setting, all expected Base4 patterns match with at least extracted pattern
(with at least ∆c = 1 and ∆g = 0.83). It is worth noting that the extracted pattern corresponding to
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∆c = 0.47 for the first extraction of the Base4 patterns reaches the same ∆c and ∆g ratios (∆c = 1
and ∆g = 0.83).

These results on simple synthetic data show that DCM actually extracts the discriminating pat-
terns with robustness. For datasets that can only be discriminate through the temporal dimension,
DCM extracts the useful discriminant temporal constraints representing the expected discriminant
patterns.

4.5.2 BIDE-D comparison

We compare DCM to the BIDE-D algorithms on datasets from [Fradkin and Mörchen, 2015].
These datasets come from a variety of applications. In order to compare DCM with BIDE-D
because these datasets are neither as simple as blocks nor as Auslan2, we chose to focus on asl-bu,
asl-gt and context.

• asl-bu: The intervals are transcriptions from videos of American Sign Language expressions
provided by Boston University [Papapetrou et al., 2005]. It consists of observation interval
sequences with labels such as head mvmt: nod rapid or shoulders forward that belong to
one of 7 classes like yes-no question or rhetorical question.

• asl-gt: The intervals are derived from 16-dimensional numerical time series with features
derived from videos of American Sign Language expressions [Starner et al., 1998]. The
numerical time series are discretized into 2−4 states. Each sequence represents one of the
40 words such as brown or fish.

• context: The intervals are derived from categoric and numeric data describing the context of
a mobile device carried by humans in different situations [Mäntyjärvi et al., 2004]. Numeric
sensors are discretized using 2−3 bins chosen manually based on exploratory data analysis.
Each sequence represents one of five scenarios such as street or meeting.

These datasets are databases of intervals interpreted as sequential databases by considering
beginning and ending boundaries of an interval as two distinct events.

The couple 〈C ,L〉 of discriminant chronicles C and label L ∈ L, is used to predict the label
of a sequence. A label L will be predicted for a sequence in case this sequence contains the
chronicle C . In the case of several chronicles appearing in the sequence, we label the sequence
with the predicted label by the chronicle with the highest growth rate. This simple classification
method is more accurate than the use of a standard machine learning classifier to evaluate the
extracted chronicles. On the other hand, discriminant chronicles accuracy would not be overrated
compared to BIDE-D approaches. Indeed, the BIDE-D approaches use a SV M classifier and SV M
is generally more accurate than a simple rule-based classifier.

The results discussed below are presented in Table 4.7. We set a size limit of 6 items per
chronicle in order to limit the number of patterns. The results presented in [Fradkin and Mörchen,
2015] are given in Table 4.8.

On asl-gt BIDE-D outperforms DCM. Where accuracy ranges from 27.31% for σmin = 0.6
to 82.94% for σmin = 0.2 for BIDE-D, it hardly exceeds 30% for discriminant chronicles. The
standard deviation of BIDE-D and DCM are similar. Many patterns are extracted but are poorly
distributed among the dataset labels. While discriminant chronicles can represent discriminant
sequential patterns, these bad results on asl-gt are due to a lack of discriminant patterns. This lack
is due to the large number of classes that are 40 for asl-gt. As a result, a single pattern is difficulty
discriminant. The results obtained for BIDE-D are due to the selection of the best discriminant
patterns and not to a minimal growth rate threshold. Thereby, even if there is no discriminant
sequential patterns in asl-gt, the BIDE-D approaches extract some patterns to use in the classifier.
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gmin

dataset σmin 2 3 4 5

asl-bu 0.4 52.64 (±2.21) 49.20 (±0.51) 52.41 (±3.51) 48.28 (±1.99)
0.5 51.26 (±1.31) 51.72 (±1.99) 49.66 (±6.82) 48.51 (±5.60)
0.6 51.72 (±3.35) 50.34 (±3.58) 44.14 (±3.31) 39.08 (±3.72)

asl-gt 0.2 31.55 (±0.91) 31.61 (±0.92) 30.20 (±1.82) 30.15 (±0.92)
0.3 31.17 (±0.44) 29.18 (±1.53) 27.75 (±1.58) 26.96 (±1.89)
0.4 27.34 (±2.10) 25.82 (±0.42) 25.91 (±0.12) 25.32 (±0.19)
0.5 25.44 (±0.34) 25.20 (±0.13) 24.68 (±0.50) 24.12 (±0.41)
0.6 24.30 (±0.42) 23.92 (±0.53) 23.89 (±0.52) 23.13 (±0.44)

context 0.2 64.78 (±2.83) 57.39 (±4.76) 46.09 (±3.89) 53.48 (±6.07)
0.3 56.09 (±5.83) 42.61 (±7.62) 52.61 (±3.22) 36.96 (±7.53)
0.4 47.83 (±4.07) 39.57 (±3.57) 50.43 (±5.41) 47.39 (±4.96)
0.5 53.91 (±4.46) 38.70 (±0.97) 30.43 (±5.10) 47.83 (±7.37)
0.6 50.87 (±2.48) 34.78 (±4.35) 30.87 (±4.18) 28.70 (±4.46)

Table 4.7: Mean accuracy (in %) with respect to σmin (minimal support threshold), gmin (minimal
growth rate threshold) for different datasets.

On asl-bu DCM performs slightly worse than BIDE-D. The accuracy using gmin = 2 is equiv-
alent from σmin = 0.4 to σmin = 0.6, whereas the number of extracted patterns is reduced from
more than 30,000 to 1,600. DCM’s accuracy exhibits better performance than BIDE-D in terms
of standard deviation. We can notice that asl-bu is a difficult type of dataset for chronicle mining
due to multiple occurrences of the same event types. As a result we do not obtain a result for
σmin = 0.2 or σmin = 0.3. DCM takes too long time and does not end for these parameters within
the 12 hour timeout.

Finally, on context, DCM outperforms BIDE-D in accuracy. The accuracy standard deviation
is higher than for the two other datasets but is, however, similar to the one of BIDE-D. We
note that the low results of BIDE-D approaches may be due to the use of a different minimum
support threshold strategy for this dataset. The difference in the number of patterns extracted by
the σmin = 0.2 or σmin = 0.6 parameters is much smaller than for asl-bu. The count goes from 360
patterns for σmin = 0.2 and gmin = 2 to 145 for σmin = 0.6 and gmin = 4.

We conclude from these results that discriminant chronicles as rules can produce similar and
sometimes better accuracy than sequential patterns as features. Furthermore, our results show
that it seems easier to obtain a good accuracy for datasets containing few classes (e.g. context: 5
classes) than datasets for which the sequences are distributed in a large set of classes (e.g. asl-gt:
40 classes). Indeed, a large class number implies a generalization problem. A pattern discrim-
inating a class against 39 other classes has to be more specific than a pattern discriminating a
class against 4 other classes. This generalization problem comes from the unbalanced distribution
between positive and negative sequences that requires to be very specific to obtain discriminant
patterns. This problem is less important for the BIDE-D approaches because the SV M classifier
learns combinations between discriminant patterns extracted for a subset of classes to generalize it
for all classes. Thereby, the SV M classifier can predict a class without using discriminant pattern
for this class but it is not possible with discriminant chronicles used as rules. The definition of an
extracted discriminant patterns is also different for DCM and BIDE-D and affects this generaliza-
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dataset σmin BIDE-C BIDE BIDE-D (k=90) BIDE-DC (k=90)

asl-bu 0.2 60.01 (± 5.47) 59.71 (± 4.87) 52.91 (± 4.15) 56.01 (± 4.62)
0.3 58.05 (± 4.90) 58.50 (± 4.40) 52.83 (± 4.03) 57.89 (± 5.00)
0.4 57.74 (± 4.03) 58.42 (± 4.15) 53.06 (± 3.91) 59.03 (± 5.09)
0.5 57.74 (± 4.03) 58.42 (± 4.15) 53.06 (± 3.91) 59.03 (± 5.09)
0.6 55.25 (± 5.58) 58.80 (± 4.37) 53.44 (± 4.18) 57.21 (± 5.40)

asl-gt 0.2 82.78 (± 1.31) 82.94 (± 1.07) 82.30 (± 1.52)
0.3 73.16 (± 1.33) 73.14 (± 1.43) 73.17 (± 1.32)
0.4 53.38 (± 1.11) 53.40 (± 1.11) 53.36 (± 1.05)
0.5 33.67 (± 1.43) 33.70 (± 1.41) 33.68 (± 1.43)
0.6 27.31 (± 0.72) 27.31 (± 0.72) 27.31 (± 0.72)

context 0.7 53.47 (± 6.80) 37.36 (± 3.73) 51.53 (± 6.93)
0.8 48.75 (± 7.29) 48.89 (± 6.34) 47.92 (± 5.94)
0.9 26.25 (± 4.08) 27.08 (± 3.78) 26.53 (± 4.27)

Table 4.8: Mean accuracy (in %) with respect to σmin (minimal support threshold) and the different
methods proposed in [Fradkin and Mörchen, 2015] for different datasets. The methods BIDE-
D and BIDE-DC extract discriminant sequential patterns. BIDE and BIDE-C extract frequent
sequential patterns. Support thresholds used to obtain results from context are much higher than
for the other datasets.

tion problem. A pattern is extracted by DCM if its growth rate is greater than a threshold. In this
case, it is possible to extract no patterns for a threshold. A pattern is extracted by BIDE-D if its
growth rate is one of the highest. Thereby, it is ensured that some patterns will be extracted and
used as features by the classifier. Finally, DCM is easy to set up while a grid search is needed to
obtain the parameters of the SV M that use the sequential patterns as features (the standard SV M
parameter C is a power of 10 and is tested from 10−3 to 103).

4.6 Conclusion

Chronicles mining was already known but in a task of frequent chronicle mining. The originality
of this work is the mining of discriminant chronicles. To the best of our knowledge, no previous
work on discriminant chronicles mining, neither on any discriminant pattern mining studies with
quantitative temporal information. The DCM algorithm has been proposed to solve this problem.
It allows, on the one hand, to take into account a rich temporal information in comparison with
algorithms dedicated to discriminant sequential patterns mining and, on the other hand, to con-
strain the extracted chronicles with a minimal growth rate constraint. This algorithm relies on rule
learning to discover the discriminant rules efficiently from quantitative attributes. Furthermore,
DCM is a modular algorithm because different rule learning algorithms can be used to extract the
discriminant temporal constraints.

The experiments using the Ripperk algorithm showed that DCM was able to extract discrim-
inant chronicles efficiently. Comparisons in terms of accuracy between DCM and the BIDE-D
[Fradkin and Mörchen, 2015] algorithms showed that discriminant chronicles extracted with DCM
are able to compete with state of the art approaches without having to involve a classifier like SV M.
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The patterns extracted by DCM can be interpreted by experts.
The "global model" dedicated to classification is not the main goal of discriminant chronicles

mining. Furthermore, we did not design discriminant chronicles mining as local pattern discovery
to construct a global model like for the LeGo [Knobbe et al., 2008] framework. Discriminant
chronicles mining has been thought in the context of hypothesis generation:

• The association of a chronicle to a class label is a possibly interesting hypothesis to further
investigate.

• Each extracted chronicle has to be interpreted independently.

Classification is used to evaluate the capacity of DCM to generalize sequences. Such interest
of the chronicle model has to be more deeply studied in the following parts.



Chapter 5

Interpretable temporal pattern-based
classification

We are interested in extracting patterns that will be presented to the experts. This requires to have
easily interpretable patterns. We mainly work on temporal data, specifically temporal sequence
sets. Temporal patterns are dedicated to catch the complexity of temporal sequences. Thereby, we
only interest in this type of pattern. In temporal pattern model set, chronicle seems to be a good
model to represent complex candidate behaviors with good interpretability.

The number of extracted frequent patterns can be huge for large datasets then the whole pattern
set can be difficult to manage. It could not be presented as it to the experts:

1. They will be overwhelmed by the mass of pattern data.

2. Navigate in those data will consume a lot of time that they may not take.

3. The computing time to extract all those patterns could not be reasonable.

Furthermore, the interest of a frequent pattern mining approach is limited. It generates more results
than in the original analyzed dataset. In this case, read the original dataset could be easier than
read the extracted pattern set.

Methods dedicated to extract less but more interesting patterns can be useful to represent a
concise set of new knowledge. When the data are labeled, one interesting constraint to extract
less but more interesting patterns is the minimal growth rate constraint. This constraint prunes the
frequent pattern set to keep only the pattern occurring more in a class than the others. A pattern
satisfying this constraint for a label is said discriminant for it. But in practice, such constraint is
not good enough to really prune the frequent pattern set. The use of incomplete heuristics like
the use of Ripperk for extracting discriminant chronicles is then needed to reduce the size of the
pattern set.

It is not easy to evaluate the ability of a pattern or a pattern set to represent knowledge. Some
papers use the argument of authority that experts found the extracted patterns are interesting or
useful or that the results match the expert knowledge to validate their approaches [Fabrègue et al.,
2014, Fabrègue et al., 2013, Huang et al., 2012]. This type of conclusion is necessary when the
goal of the approach is to propose a better solution than the existing one to a practical problem.
But it is limited to generalize the interest of the approach to other problems. Indeed, this way of
evaluation is difficulty reproducible and does not seem appropriate to evaluate the efficiency of
the pattern model in general. Some works try to provide objective measures through pattern-based
classification [De Smedt et al., 2017, Fradkin and Mörchen, 2015].

69
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Classification has the advantage to sum up an approach to a bunch of interpretable measures
like accuracy, recall, f-measure, etc. The hypotheses done here are: (i) if the model can discrimi-
nate the dataset classes and (ii) if the algorithm dedicated to extract this pattern type from a dataset
covers sufficiently well the whole dataset, then the model accuracy in terms of classification will
be good. Through these hypotheses we could then compare the algorithm and/or pattern model to
determine which one is the best to extract/represent the knowledge of a dataset.

An issue occurs when we try to experiment pattern-based classification: How do we use pat-
terns in classification? Most of the works on temporal pattern-based classification based classifi-
cation on a black box classifier [Batal et al., 2013, Fradkin and Mörchen, 2015]. Each sequence
is transformed into a feature vector such that each feature fi of a feature vector v j is a boolean
b j

i such that b j
i = 1 if the pattern Pi occurs in the sequence s j and otherwise b j

i = 0. Then, these
feature vectors are classified using accurate classifiers such that SV M. This approach generates
generally accurate models but does not give direct information about the classification power of
the pattern set or its interestingness. This lack of information is due to the use of such classifiers.
It is not a problem when the goal is to build an accurate classifier. But it is difficult to correlate
the classification results with the classifier model or with the pattern set. Thereby, a black box
classifier could not be used to evaluate the interestingness or the classification power of a pattern
set through objective measure like accuracy.

In [Fradkin and Mörchen, 2015], we can notice that the best accurate approach is the one
using BIDE i.e. using the whole set of frequent sequential patterns to be used as features. The
classification power of a pattern set used as features is related to the capacity of the classifier to
use the good patterns. The best quality of a pattern set to improve the accuracy in such context is
to cover as large as possible the whole dataset. That is why the whole frequent pattern set provides
the best results.

With such conclusion, studies like [Batal et al., 2013, Fradkin and Mörchen, 2015] try to reduce
the number of patterns used as features while reducing at least the accuracy. We can suppose that
a smaller pattern set with same accuracy is more interesting than the initial one but the accuracy
power comes still from the classifier. The accuracy obtained by the classifier using all frequent
patterns is then a baseline for the other classifiers. From this accuracy, we can then evaluate the
trade-off between the loss of accuracy and the gain in interpretability.

The use of a black box classifier only provides the information that the pattern set contains
enough knowledge or not to classify a dataset. On the other hand, if the classifier is difficultly
interpretable, it is more difficult to know if an expert could apprehend this knowledge. It is contrary
to the goal of the pattern mining task that is to extract interpretable new knowledge. We are then
also interested in an interpretable classification method dedicated to evaluate a pattern set. As for
the pattern set, the best accuracy obtained by the best black-box classifier could be a baseline to
evaluate the loss of accuracy using interpretable classifiers.

We are then interested by two levels of interpretability in pattern-based classification:

1. the interpretability of the pattern type

2. the interpretability of the classification process

In this chapter we will begin by defining generalized chronicles and classification using this
type of pattern. This definition will then be used to constrain this work on a subset of temporal
patterns. Later, we will discuss the generalized chronicle interpretability and the trade-off between
the accuracy and the interpretability. Finally, we will use several types of generalized chronicles
to classify synthetic and real datasets to experimentally test this trade-off.
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5.1 Generalized chronicles

In this section, we define generalized chronicles to our case study. To illustrate our definitions,
several examples of temporal pattern models are presented and compared. For those models, we
choose an occurrence mapping function using the numerical temporal information of the multiset
occurrences.

From chronicle definition in section 2.2.1, a temporal pattern P = (E ,µT ) is a general-
ization of a chronicle C = (E ,T ) where E is a multiset and T is generalized as an occurrence
mapping function µT . For a pattern P = (E ,µT ), we can define µT as µT : N|E |→ [0,1] where
the domain N|E | contains all the potential occurrences of the multiset E where an occurrence is
represented by the timestamps of each event in E . Defining the codomain of µT as [0,1] corre-
sponds to define µT (o) as the similarity between o and the pattern P . In practice, the standard
temporal and sequential pattern such that chronicles, sequential patterns or episodes are defined
with {0,1} as codomain of µT . In this case, an occurrence o of a multiset E can only be exactly
an occurrence of the pattern P = (E ,µT ) with µT (o) = 1 or exactly not an occurrence of P
with µT (o) = 0.

Example 12. For chronicles the occurrence mapping function µT corresponds to the mapping of
the temporal constraints T in the occurrences of the multiset. From the definition of a chronicle
occurrence in Section 2.2.1.1, we can formally define µT for chronicle as:

µT (o) =
{

1 i f ∀ei[a,b]e j ∈T ,a≤ o j−oi ≤ b
0 otherwise

Example 13. For sequential patterns, the occurrence mapping function corresponds to the order
between the events of the multiset. For example, the sequential pattern 〈a,b,c〉 could be rep-
resented as the temporal pattern P = (E ,µT ) where E = {{a,b,c}} and µT corresponds to the
matching of the order of the three events. This type of pattern can be defined as chronicle with
its own µT . To do this, T as to be defined for sequential patterns. Let O = {<,>,=} be the set
of operators used to define sequential patterns. The temporal constraint set can be now defined as
T = {(i, j,≶) | ei,e j ∈ E ,ei ≤E e j,≶∈O}. A sequential pattern P can then be defined for such
T as P = (E ,µT ) for µT defined by:

µT (o) =
{

1 i f ∀(i, j,≶) ∈T ,oi ≶ o j

0 otherwise

Example 14. The example above describe one way to define a new µT for sequential patterns.
This is just one way to do it because, for example, we could use the same µT as for chronicle in
example 12 and simply constraining the temporal constraint set T . The temporal constraint set
T will be the same except that the domain of the temporal constraint will be constrained like that
T = {ei[a,b]e j | ei,e j ∈ E ,ei ≤E e j, [a,b] ∈ {[0,0], [1,+∞[, ]−∞,−1]}}. We consider [1,+∞[ and
]−∞,−1] to use inclusive bounds like in our chronicle implementation but those constraints are
equivalent to ]0,+∞[ and ]−∞,0[ if the temporal domain T is included in R.

Example 15. As the last example, we can relax the definition of sequential patterns to obtain
partially ordered patterns1 [Fabrègue et al., 2013] (or episodes). To do this we can include a new
operator≈ in the set O from the example 13 that defines no order relation i.e. ∀oi,o j,oi ≈ o j↔>.
We can also model this type of pattern from the example 13 by relaxing the definition of T
itself. As the difference between sequential and partially ordered patterns is that there is no order

1Partially ordered patterns are patterns for which the events are partially ordered and not a set of patterns that are
partially ordered.
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relation between some events for the second model of patterns, we can just define T as a set of
relations on some pair of events. Formally, for partially ordered patterns, T can be defined as
T = {(i, j,≶) | ei,e j ∈ E ′,ei ≤E e j,E ′ ⊆ E ,≶∈O}. Finally, we can also define partially ordered
patterns from the definition of the example 14 by adding [−∞,+∞] to the possible interval for
a temporal constraint. T will then be defined as T = {ei[a,b]e j | ei,e j ∈ E ,ei ≤E e j, [a,b] ∈
{[0,0], [1,+∞[, ]−∞,−1], ]−∞,+∞[}}.

All pattern models of the previous examples can be represented with a µT function with the
codomain {0,1}. Those pattern models could be represented by a generic µT function validating
or not the constraints of T or not. This definition of temporal pattern can also be extended to
pattern models that could not be represented by the chronicle model. For example µT could be
a SV M classifier. Like the temporal constraints of chronicles, the SV M classifier of this type of
pattern will be used to determine whether an occurrence of a multiset E of a pattern P = (E ,µT )
is an occurrence of the pattern P itself or not.

5.1.1 Discriminant generalized chronicles

The temporal pattern definition presented above can be extended for discriminant temporal pat-
terns. The goal of a discriminant pattern is to represent a behavior of a certain class in the data.
We can then define a discriminant temporal patterns as a temporal pattern for which the µT func-
tion will give information on the label corresponding to the occurrence of the multiset and not only
if the occurrence corresponds to the pattern. More formally for a label set L, µT can be extended
from µT : N|E |→ [0,1] to µT : N|E |→ [p1, p2, ..., p|L|+1] where 0≤ pi ≤ 1 and p|L|+1 correspond
to the dissimilarity with all the known labels. This is an extension of the previous definition of µT

because each pi corresponds to the use of µT : N|E |→ [0,1] on the data of the label li ∈ L. One
more pi is used as p|L|+1 to represent the case when an occurrence seems not linked to any label
from L. It is useful to define [p1, p2, ..., p|L|+1] with only the constraint 0≤ pi ≤ 1 for cases where
an occurrence could be linked to several labels. If each sequence is labeled with one and only one
label, it can be interesting to define the vector [p1, p2, ..., p|L|+1] as a probability vector. This is

done by constraining [p1, p2, ..., p|L|+1] with the constraint
|L|+1

∑
i=1

pi = 1.

Example 16. For example, we can extend the definition of chronicle proposed in the example 12
to the definition of discriminant chronicle. A discriminant chronicle is a chronicle extracted for a
certain label. For a discriminant chronicle C extracted for a label li, we can then define that µT (o)
equals a vector such that pi = 1 and ∀ j, j 6= i, p j = 0 if o is an occurrence of C or a vector such
that p|L|+1 = 1 and ∀ j, j 6= |L|+ 1, p j = 0 if o is not an occurrence of C . Formally µT can be
defined as:

µT (o) =
{

pi = 1,∀ j, j 6= i, p j = 0 i f ∀ei[a,b]e j ∈T ,a≤ o j−oi ≤ b
p|L|+1 = 1,∀ j, j 6= |L|+1, p j = 0 otherwise

Example 17. The example 16 can also be adapted to obtain the same pattern model as the one
explained in Section 4.4 to use chronicles as rules. To determine which chronicle should be used
for labeling, a biased growth rate was computed for each chronicle and the chronicle occurring
in a sequence with the highest growth rate was used for the labeling. Such type of pattern can
easily be handled by a µT function returning a probability vector for an occurrence. The biased

growth rate Qg =
supp(C , li)

supp(C , li)+ supp(C , li)+g
of a chronicle C extracted for the label li can be

integrated in µT (o) with pi = Qg and p|L|+1 = 1−Qg if o is an occurrence of C . Formally we
obtain the definition:
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SID AA→B AB→C AA→C Label
1 2 2 4 +
1 −1 2 1 +
2 5 −2 3 +
3 3 0 3 +
5 −1 3 1 −
6 6 −1 5 −

SID AA→B AB→C AA→C Label
1 1 1 1 +
1 −1 1 1 +
2 1 −1 1 +
3 1 0 1 +
5 −1 1 1 −
6 1 −1 1 −

Table 5.1: On the right, the tabular dataset for the multiset {{A,B,C}} corresponding to its occur-
rences in Table 4.1 and encoding for discriminant partially ordered mining. On the left, the original
occurrence dataset.

µT (o) ={
pi = Qg, p|L|+1 = 1−Qg,∀ j, j 6= i, j 6= |L|+1, p j = 0 i f ∀ei[a,b]e j ∈T ,a≤ o j−oi ≤ b
p|L|+1 = 1,∀ j, j 6= |L|+1, p j = 0 otherwise

An issue with this definition is that the definition of µT (o) depends on Qg and the definition
of Qg depends on the support of the chronicle that depends on µT (o). In practice Qg have to be
computed in the first step using the classical definition of chronicle and then this type of pattern
can be extracted in a second step.

5.1.1.1 Discriminant partially ordered patterns

This section describes the discriminant partially ordered patterns as they are implemented and
extracted in the experiment section 5.2. Partially ordered patterns [Fabrègue et al., 2014, Fabrègue
et al., 2013] is the name of patterns equivalent to episodes [Mannila et al., 1997] but extracted from
sequence sets. In example 15 of Section 5.1 dedicated to the generalization of the chronicle model,
we formalized the partially ordered pattern model by redefining the temporal constraint set T in
several ways. The one that is interesting for this section is the one defining T as a set of temporal
constraints T = {ei[a,b]e j | ei,e j ∈ E ,ei ≤E e j, [a,b] ∈ {[0,0], [1,+∞[, ]−∞,−1], ]−∞,+∞[}}.

The goal here is to extract different types of patterns than chronicle while reusing the DCM
principle. It is possible to constrain our algorithm of discriminant chronicles mining to extract
pattern with a similar definition of T . Indeed, at the step where we transmit the relational dataset
encoding the occurrences of a multiset to Ripperk, we can modify this dataset to avoid numerical
rule extraction. This can be done by replacing all strictly positive integers by 1 and all strictly neg-
ative integers by −1. One problem could be the artificial satisfaction of the constraints [−1,−1]
and [1,1] due to the replacement of all the integer lower than −1 and all the integer greater than 1
respectively. For example, the table 4.3 in Section 4.2.2 will be replaced by the table 5.1. How-
ever, this problem is solved by Ripperk that prunes unnecessary constraints and so that prefers
the rules translated by ]−∞,−1] to [−1,−1] if the dataset did not contain integers lower than −1
and prefers [1,+∞[ to [1,1] if the dataset did not contain integers greater than 1. Extracted pat-
terns after this modification can be defined by the temporal constraint set T = {ei[a,b]e j | ei,e j ∈
E ,ei ≤E e j, [a,b] ∈ {[0,0], [0,+∞[, [1,+∞[, ]−∞,−1], ]−∞,0], ]−∞,+∞[}}. Our version of par-
tially ordered patterns is then a more generalized definition than the standard definition [Fabrègue
et al., 2014, Fabrègue et al., 2013] due to the possible constraint [0,+∞[ and ]−∞,0] that can be
interpreted as "at same time or after" and "before or at same time" respectively. For example, the
pattern P = ({{A,B,C}},{B[0,+∞[C}) could be extracted from Table 5.1 with supp(P,S +) = 2
and supp(P,S −) = 1.
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5.1.2 Classification based on generalized chronicles

As described in section 3.3, the classification of sequences based on pattern sets is a well-studied
way to classify sequences. Pattern-based classification may have two goals:

• Be a standard classification model. As in [De Smedt et al., 2017], the pattern-based classi-
fication can be done to obtain a good classifier. The patterns are then extracted in this way
and are not initially dedicated to be studied apart from the classifier.

• Be a way to characterize a pattern set. As in [Fradkin and Mörchen, 2015], the pattern-based
classification is done directly to obtain a good classifier but to obtain objectives measure
for a pattern set. In this way we may prefer to extract a pattern set for reasons that make it
interesting without optimizing the accuracy that it can produce. For example in [Fradkin and
Mörchen, 2015], they compare small sets of discriminant patterns and the set of all frequent
closed patterns in terms of accuracy. The set of all frequent closed patterns frequently obtain
better results but they consider the other pattern sets to be more interesting. The important
measure is then not the accuracy itself but the difference of accuracy produce by the two
pattern sets. This measure is used to determine if the selection of a more interesting pattern
set does not hide too hardly the knowledge useful to obtain a good accuracy.

This is this second way that we consider in this section. The classification of sequences based
on generalized chronicles is useful for us as an objective way of comparison of several models of
generalized chronicles.

Figure 5.1 represents the standard scheme of classification based on generalized chronicles.
The classification process is split in two parts dedicated to the main steps: (i) the pattern mining
and (ii) the decision process. In the first step patterns are extracted from a train set according to
the definition of their pattern model. In the second step the patterns are used by a classifier to label
the sequences of a test set. We then have to define how to construct a classifier using generalized
chronicles.

In recent papers [Fradkin and Mörchen, 2015, De Smedt et al., 2017], sequential patterns are
used as features in classifiers. In this case, a feature is represented by a boolean corresponding
to the occurrence of a pattern in a sequence. We can so transform a sequence into a feature
vector i.e. an occurrence vector. A dataset is then transformed in a feature vector set i.e. a feature
matrix. This process does not rely on a specificity of the sequential patterns and can be done with
chronicles. The example 18 shows how it can be done on the example of the previous chapter
4.1. Standard classifiers like decision trees or SV M classifiers are able to treat such data. The
classification is then done by such classifier on datasets transformed into feature matrices. The
validation set illustrated on Figure 5.1 is different from the standard definition of validation set.
In this scheme the validation set is useful to fit a classifier on pattern occurrences and then can be
seen as the train set for this classifier. The difference made between the train and validation sets
is done to limit the overfit that could be done during the pattern mining step. If a pattern is very
frequent in the train set but not in the other sets, the classifier should not give it a strong importance
using the validation set.

Example 18. For this example, we apply the feature transformation process on the dataset of Table
4.1in section 4.1. The same dataset is included on the left of Table 5.2. To produce the occurrence
matrix we consider the chronicles of Figure 5.2. The dataset on the right of table 5.2 represents
this matrix. We can observe that the matrix is composed of the occurrences of each chronicle in
each sequence. As C occurs in the first sequence, the corresponding value in the matrix is 1. On
the other hand, as C2 does not occur in the first sequence, the corresponding value in the matrix
is 0. The goal for a classifier is then to associate each feature vector to a label. For example, we
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Train set

Multisets Multiset occurrences Pattern model

Pattern mining

Patterns
(Multiset, Temporal constraints)

Validation set Classifier construction

Test set Decision process

Objective measures
Accuracy, Recall, ...

Pattern interpretability

Decision interpretability

Figure 5.1: Temporal pattern-based classification scheme where the temporal pattern mining step
goes from the train set to the patterns (the red node) and the classification goes from the patterns
to the obtained objective measures (the blue node).

can associate the vector 〈1,1,0〉 to the label +. Feature selection approaches can also be applied
on this dataset. Such approach could detect that C is useless as feature because occurrences of C1
are more correlated to the label than C and cover the sequences that could be classified using C .
Finally, this example cannot produce a perfect classifier because there is no difference between the
feature vectors of sequences 2, 4 and 5 while they are labeled differently. The vector 〈0,0,0〉 will
then potentially be associated with the label − but with an error for sequence 2.

Using the previous definitions, this case corresponds to a matrix of occurrence mapping func-
tion results for occurrence mapping functions defined as µT : N|E |→ [0,1]. We want so to extend
the notion of feature vectors to vectors of occurrence mapping function results for the other type
of occurrence mapping function. Formally, for a set of patterns P and a sequence s the feature
vector of s obtained from P is defined as 〈µTi(o)|Pi = (Ei,µTi) ∈ P and o is an occurrence of Ei

in s〉. In our cases we do not extract at most one occurrence per sequence but a bag of occurrences
per sequence. The occurrence mapping functions have then to handle occurrence bags or have to
merge the different results to produce a feature. This merge is needed to avoid the generation of
feature vectors with different lengths. The case of multiple instance management for linear SV M
patterns is described below in paragraph 5.1.2.1.
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Figure 5.2: Example of three chronicles. This figure is the same as the figure 2.6 in the section
2.2.1.

SID Sequence Label
1 (A,1), (B,3), (A,4), (C,5), (C,6), (D,7) +
2 (B,2), (D,4), (A,5), (C,7) +
3 (A,1), (B,4), (C,5), (B,6), (C,8),(D,9) +
4 (B,4), (A,6), (E,8), (C,9) −
5 (B,1), (A,3), (C,4) −
6 (C,4), (B,5), (A,6), (C,7), (D,10) −

SID C C1 C2 Label
1 1 1 0 +
2 0 0 0 +
3 1 1 0 +
4 0 0 0 −
5 0 0 0 −
6 1 0 1 −

Table 5.2: On the left, the set of six sequences labeled with two classes {+,−} previously used as
an example in the section 2.2.1. On the right, the corresponding feature matrix corresponding to
the occurrences of the chronicles of Figure 5.2.

5.1.2.1 Patterns based on linear SV M

This section describes the implementation of the classification based on linear SV M patterns. In
this section and the following, the patterns using a linear SV M as occurrence mapping function
will be called linear SV M patterns. We will now describe the implementation of the classification
process using linear SV M pattern as features. The difference with the discriminant chronicle min-
ing presented in Section 4.2 is that the kernel is trained in one single step contrary to the several
"one against all" step for the discriminant chronicle. The relational dataset used to construct such
classifier contains so potentially more than two labels. The occurrence mapping function of such
pattern will then choose to which class belongs an occurrence of a multiset. For the discriminant
chronicles, it was only an answer if this occurrence relies to the class for which this pattern was
extracted. The difference corresponds then to the difference between the definition of the occur-
rence mapping function for the generalized chronicles and the occurrence mapping function for
the discriminant generalized chronicles. This difference is mainly favorable to the linear SV M
pattern in classification. Intuitively, this improvement of the classification accuracy can be related
to the final classifier that has to manage fewer features and more qualitative features.

Each frequent multiset will then generate exactly one pattern. To reduce the number of ex-
tracted patterns and so the computation time, standard constraints on multisets can be used like
minimal/maximal size, top-k frequent selection for each class or closure. A pattern could also be
pruned from the pattern set if its training score i.e. accuracy on the train set is lower than a minimal
threshold.

To merge the decision of the different patterns, a linear SV M is then trained on a validation
set using the decision of all the patterns as features. The classification step is finally done on each
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sequence of the test set using this decision tree on the vector of the pattern decisions. We try to use
decision tree or naive bayes classifiers instead of the global linear SV M but they produced lower
results.

Multiple instance management Similar to discriminant chronicle mining task, all classifiers
lead to the same problem of multiple instances when a multiset occurs several times in a sequence.
We have to manage this problem firstly in the training step and secondly in the labeling step.

For the training step, we consider all the occurrences of a multiset in a sequence as examples
this multiset for the sequence label. This involves the strong assumption that all occurrences of a
multiset influence on the sequence label. Some other assumption like the selection of a witness
occurrence [Andrews et al., 2003] or one of those listed in [Foulds and Frank, 2010] could have
been used. This assumption is potentially wrong in many cases but there is not better concrete
alternative. It is a strong difference with the use of discriminant chronicles because we can learn
wrong patterns. The validation set will, however, allow to prune those patterns if they are not
relevant for classification. Even if this assumption could involve wrong decision for a label, the
set of decision made from the whole pattern set can soften this effect.

For the labeling step, we want to train a final classifier using the evaluation of each pattern. We
tried then 3 formats of prediction as features for the patterns: (i) a label format, (ii) a cardinality
format and (iii) a normalized cardinality format.

Let S be a set of sequences, L be the set of labels in S and P a pattern set. For the label
prediction, we want to predict the label of s for each s ∈ S . Each pattern will then vote for
the label that best fits the sequence. To do this, each sequence s is encoded as a feature vector
< l1, ..., li, ..., ln > where li ∈ L and li is produced by the decision of pi = (Ei,Ti) ∈P on the
occurrence set of Ei in s. The label li decided by the pattern pi is in this case the most common
label predicted by pi on each occurrence of Ei in s. For the cardinality format, the pattern produce
a weighted vote for each label. As this pattern chooses a label for a sequence among several
occurrences, the cardinality format allows to obtain the number of occurrences leading to the vote
of a label. With this format, the multiple-instance assumption is not included in the occurrence
mapping function of the pattern but transferred to the global classifier. The feature vector becomes
of the form < c1,1, ...,ci, j, ...,cn,m > where ci, j ∈ N+, li ∈L and p j ∈P and ci, j is the number
of occurrences of E j in s for which p j predicted li. Finally, the normalized cardinality prediction

has the same form as the cardinality prediction but is a feature vector of ĉi, j ∈R+ where ĉi, j =
ci, j

n j
and where n j is the number of occurrences of E j in s. This format seems fairer if some sequences
generate too different numbers of occurrences for a multiset than others.

5.1.3 Temporal pattern interpretability

To explain what is called interpretability in this chapter, we based our definitions on some of
the definitions of the state of the art listed in [Lipton, 2016]. The interpretability of a pattern
or a pattern set can have many different definitions. Lipton [Lipton, 2016] regroups then the
different uses of the term "interpretability" in their different meaning. Thereby, we cannot use the
interpretability as an axiom. In this section, we define what is the interpretability in our case and
what interests us in interpretability.

5.1.3.1 Pattern set interpretability

We will first define what an interpretable pattern set is and why we want this pattern set to be
interpretable. The definition that interests us concerning the pattern set is the transparency of
an interpretable model. Transparency is introduced by Lipton [Lipton, 2016] as the opposite of
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opacity or blackbox-ness. Transparency describes the ability of understanding the mechanism by
which the model works. For a pattern sets, we will define transparency as the ability of under-
standing what knowledge is caught by it. Transparency is detailed in three subdefinitions: (i)
simulatability, (ii) decomposability and (iii) algorithmic transparency.

Simulatability The simulatability of a model is the ability of this model to be contemplated
at once. For pattern set, it is the ability to contemplate all the patterns at once. For pattern-
based classification it includes the classifier parameters. The simulability of a pattern set relies
mainly on the cardinality of the pattern set. The simulability of a pattern set also relies on the
complexity of the pattern model. If the pattern model and the patterns are simple, the pattern set
can be big and still simulatable. The evaluation of the simulatability of a model is subjective as it
involves the cognition capacity of the human who has to understand the pattern set and so different
humans can understand different types of models. Nonetheless, Lipton [Lipton, 2016] defines that
this subjectivity can only span several orders of magnitude due to the limited capacity of human
cognition.

Decomposability The decomposability of a model is that each part of the model admits an in-
tuitive explanation. Lipton [Lipton, 2016] linked it to the intelligibility definition in [Lou et al.,
2012]. A standard pattern set is naturally decomposable because each pattern is independent from
the other. For pattern-based classification, it can be difficult to give an intuitive explanation to a
parameter. The decomposability of a pattern set relies so more on the interpretability of the pattern
model itself than on the ability to read a pattern without the rest of the pattern set. To improve the
interpretability of each independent pattern in this decomposition, it can be useful to represent the
pattern set using visual or text artifact. For example, we can cite the graphical representation of a
chronicle as a graph.

Algorithmic transparency The last notion of transparency is the algorithmic transparency. Two
examples of algorithmic transparency are given in [Lipton, 2016]: linear models and deep neural
networks. The first is considered transparent because we can prove its convergence and understand
the shape of the error surface. The second lacks of algorithmic transparency because we cannot
guarantee that they will work on new problems. For pattern-based classification it will mainly
depend on the algorithm used to construct the classifier.

5.1.3.2 Pattern model interpretability

To obtain an interpretable pattern set, each pattern has to be interpretable. To obtain such patterns,
we have to choose an interpretable pattern model and so define what is an interpretable pattern
model. In our case, we use the pattern mining task as an automatic hypothesis generation. As we
want those hypotheses to be meaningful for the user, the patterns have to be interpretable.

Among the Lipton characteristics, I choose two characteristics that I want to find in an inter-
pretable pattern and so in an interpretable pattern model: (i) informativeness and (ii) causality.

Informativeness The informativeness is closely linked to the unsupervised learning task. The
unsupervised learning task relies on the exploration of the data, an algorithm explores data and
produces a model containing information. Even if the task of discriminant temporal pattern min-
ing is at first sight a subdomain of supervised learning tasks, we still need informativeness to use
temporal patterns in human decision. The informativeness of a model is needed in a weak su-
pervision context. In this case, the supervision is used as context to bound the exploration of the
data but does not define precisely what has to be learned. The supervised learning task is then
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used in context closer to the unsupervised learning where the goal is to explore the specificity of a
dataset that does not occur in a more general dataset. An informative pattern is then potentially an
interpretable hypothesis.

Causality The causality is the purpose of an interpretable pattern seen as a hypothesis. It is not a
property we want to observe in a pattern model that we define interpretable. But this is a property
that we want to test for a result pattern. The standard learning task and so the standard pattern
mining task make associations and learn the correlations occurring in the data. To effectively use
the knowledge represented by a pattern in a human decision, the causality of the pattern as to be
tested to validate the hypothesis relying in it.

Figure 5.3: Graphical representation of the classification of several occurrences of a multiset
{{A,B,C}}. AB corresponds to the temporal duration between the event A and B and BC is the same
for B and C. The graph on the left represents a classification made using temporal constraints like
those used in chronicles. The blue one corresponds to BC ≤ 2, the green one to AB ≤ 2 and the red
one to AC ≥ 1. The graph on the right represents a classification made using linear constraints like
for a linear classifier. The blue one corresponds to BC ≤ AB+1 and the green one to BC ≥ AB−1.
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Figure 5.4: Graphical representation of the chronicle corresponding to the temporal constraints
used on the left plot of the figure 5.3.

5.1.3.3 Trade-off between interpretability and accuracy

Constraining the pattern models and the extracted pattern sets to be interpretable as a cost. Indeed,
some models are designed to catch complex knowledge but are difficultly interpretable. Not using
those models can imply to miss those knowledge and so produce a lass accurate classifier. In
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this section, we will use the example of the chronicles. The temporal constraints of chronicles
are formally constrained to be conjunctions of inequations between a single event interval and an
integer. Some complex knowledge like proportionality between pairs of interval cannot be caught
by the chronicle temporal constraints but could be caught by more complex model like pairs of
multiset and linear constraint set.

For example, we have the representation of two discriminant temporal patterns on the figure
5.3. Several occurrences of the multiset {{A,B,C}} are distributed between two classes, the pos-
itive one (green points) and the negative one (red points). The figure on the left corresponds to
the chronicle represented by the figure 5.4. We can see that this chronicle discriminates perfectly
a subset of the green occurrences of {{A,B,C}} but the knowledge contained in this chronicle is
more specific than the knowledge represented by the second pattern. Because of this lack of gen-
eralization, the chronicle set have to represent each subgroup of positive occurrences to approach
the general knowledge. Here, using chronicle as an interpretable pattern model implies to obtain a
bigger pattern set and so a less simulatable pattern set due to a less accurate model.

On the other hand, we have on the figure on the right a temporal pattern using more complex
linear constraints. The pattern defined by those constraints is: (E = {{A,B,C}}, T = {BC ≥
AB− 1,BC ≤ AB+ 1}). This pattern is much more interesting because it groups all the positive
occurrences and none of the negative. This pattern represents the knowledge useful to discriminate
the occurrences of the two classes but it is more difficult to represent and, if it was extracted with
a black box algorithm, more difficult to read.

There is a trade-off between, the interpretability of the pattern model, the interpretability of
the pattern set and the accuracy of the patterns. In this example we have a trade-off in accuracy
between the interpretability of the pattern model and the accuracy. But the loss of accuracy implied
by using the chronicle model in this example can be compensated if we extract a chronicle set
covering the same occurrence set than the pattern with linear constraints. This implies another
trade-off between the accuracy and the interpretability of the pattern set. In this case we can
improve the accuracy by reducing the simulatability of the pattern set. Or improve the accuracy
by using a less decomposable model.

5.2 Experiments

In this part, we compare different results obtained in pattern-based classification using discriminant
partially ordered patterns, discriminant chronicles or using patterns with linear SV M as occurrence
mapping function. The choice of a linear SV M mainly relies on the computational time required
to build such classifier. Indeed a more complex classifier based on kernels like rb f or polynomial
kernels was prohibitive for the experiments. This comparison is done to highlight the different
notions of the interpretability and the trade-off between those notions and the accuracy that could
be implied by a pattern model used in temporal pattern-based classification.

5.2.1 Experimental setup

The goal of those experiments is to evaluate the trade-off between the discriminant chronicle model
and a model using more complex temporal constraints in terms of accuracy. To do this, we have to
compare the different ways to use linear SV M patterns in pattern-based classification to obtain the
best results in terms of accuracy. Then we could compare those results with the previous results
obtained for classification based on chronicles. We classify two types of datasets: (i) two synthetic
datasets designed to linear constraints and (ii) the datasets for which we obtained previous results
for the discriminant chronicle model (section 4.5).
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For the two types of experiments, several parameters were used to set up the classification
based on linear SV M patterns:

• Minimal support: Like for the discriminant chronicle mining step, the linear SV M patterns
have to be extracted using a minimal support parameter. This parameter will be used to
prevent from learning linear SV M for infrequent multiset i.e. on too few examples. By
default, the same minimal support as for chronicles will be used.

• Minimal and maximal size of multiset: Those parameters are used to constrain the set of lin-
ear SV M patterns to be small enough. The size of the multiset E is defined as its cardinality
|E |. By default, the minimal size is set to 2. The goal of this setting is to ignore multisets
containing only one event and so multisets that could not be temporally constrained except
on the absolute timestamp of this single event. The maximal size parameter is more efficient
to limit the computational complexity of the approach. With a maximal size parameter set
up to 4 or 5, we can expect to catch sufficiently complex patterns to represent all the be-
haviors occurring in the datasets while avoiding training linear SV M on too big relational
datasets.

• The top-k frequent parameter: Another option based on the multiset set to limit the size of
the pattern set is to prune the multiset set with a top-k constraint. Only the k most frequent
multisets are used to generate linear SV M patterns. When this constraint is used, the default
k parameter is set to 90 as for BIDE-D approaches [Fradkin and Mörchen, 2015].

• Condensed representation of the multiset set: To avoid redundancy in the pattern set, the
multiset set can be extracted in a condensed representation. To do this, we use the parame-
ters provided by the Eclat implementation in PyFIM [Borgelt, 2003]: (i) all the patterns, (ii)
the set of closed patterns [Pasquier et al., 1999], (iii) the set of free patterns and (iv) the set
of maximal patterns [Pasquier et al., 1999]. The most used condensed multiset sets are the
closed and the free multisets. The intuition behind using the closed patterns is that it is use-
less to extract patterns based on two similar multisets a and b if a⊆ b and supp(a)= supp(b)
because the whole information of a is in b. The intuition behind using the free patterns is the
same as for the closed but the conclusion is the opposite. If supp(a) = supp(b) and a ⊆ b,
we prefer to keep a because it contains the core knowledge and potentially not the frequent
noise.

• C parameter for each linear SV M in a pattern: The C parameter is a standard parameter for
a SV M classifier. This parameter is generally set up with a power of 10 and the default
setup is 1. The lower the parameter is, the more the classifier will penalize errors in the
model. One drawback of a low value for C is to overfit the training data and learn model too
different from the reality. On the other side, a bigger C will produce a less accurate classifier
but with a lower risk of overfit. In general, too low or high C parameters result in a huge
computational time.

• global SV M kernel: Contrary to the SV M classifier of each pattern, the use of another kernel
for the global SV M does not increase the computational time. Thereby, it may be interesting
to evaluate kernels like rb f or polynomial instead of simply using a linear SV M.

• C parameter for the global SV M: Like for the SV M classifier in each pattern, the global
SV M can be set up using different C.

• Features format: As detailed in Section 5.1.2.1, there is not one objective features format
produced by each patterns due to the multiple instance problem. We tested then the three
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Algorithme 3 Interval sequence generation
Require: xb,xe: bounds of the random interval for x, tb, te: bounds of the random interval for tBb , tAb : beginning

timestamp of A, k: proportionality parameter, n: number of sequences to generate
1: S ← /0 . S is the sequence set
2: for i = 1 to n do
3: x a random number such that x ∈ [xb,xe]
4: tBb a random number such that tBb ∈ [tb, te]
5: S ←S ∪{{(Ab, tAb),(Ae, tAb + x),(Bb, tBb),(Be,btBb + kxc)}} . Generate a new interval sequence as a set of

events.
6: return S

formats presented in Section 5.1.2.1 as parameters of the classification using linear SV M
patterns.

5.2.1.1 Synthetic data

The goal of experiments on synthetic data is to prove that it exists dataset, at least synthetic,
on which classifiers based on linear SV M patterns are more accurate than classifiers based on
discriminant chronicles. In fact, the goal is to experimentally test the example described by Figure
5.3. As described in Section 5.1.3.3, chronicle fail to find the underlying behavior where linear
SV M can.

The template used to generate datasets containing proportional behaviors is as follows:

• Each sequence contains two intervals: A and B.

• The two intervals are represented in the data by their beginning and ending events: Ab, Ae,
Bb and Be.

• Two sequence classes are distinguished by the way interval are randomly generated: more
precisely we control the proportionality between the duration of A and the duration and B
i.e. tAe− tAb = kC(tBe− tBb) where kC depends on class C.

In practice, to generate different datasets we have to determine some parameters. For the first
dataset, we choose to generate two classes as it is illustrated in figure 5.5. For this dataset, we have
generated 100 sequences for each class. The sequence set of the first class S + was generated
using algorithm 3 using the parameter set: xb = 1, xe = 9, tb = 1, te = 29, tAb = 15, k = 2 and
n = 100. The sequence set of the second class S − was generated using the parameter set: xb = 1,
xe = 9, tb = 1, te = 29, tAb = 15, k = 1 and n = 100. The length of interval A noted x is an integer
randomly chosen in the interval [1,9]. The beginning event Ab occurs in each sequence at the
timestamp 15. The beginning event Bb timestamp is an integer randomly chosen in the interval
[1,29]. This noise generation is done to reduce the discriminant power of behaviors that are not the
proportionality. In the positive dataset, the length of B is equal to the length of A. In the negative
dataset, the length of B is twice the length of A. The behaviors discriminating the whole positive
set and the whole negative set are then 2(tAe− tAb) = tBe− tBb and tAe− tAb = tBe− tBb respectively.

For the second dataset, we choose to generate three classes as it is illustrated in figure 5.6. We
still have the positive and negative classes but we added to this dataset the other class. For this
dataset, we generated 1000 sequences for each class. The parameters for the random intervals are

unchanged and Ab still occurs at the timestamp 15. To generate this dataset, k was set to
1
2

, 1 and
3
2

in other, negative and positive classes respectively.
The difference of complexity between those two datasets will allow us to evaluate the robust-

ness of discriminant chronicles for such dataset type.
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Figure 5.5: Interval representation of the first synthetic dataset. On the left, the positive dataset
contains sequences for which interval B is 2 times bigger as interval A. On the right, the negative
dataset contains sequences for which interval B length is equal to interval A length.
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Figure 5.6: Interval representation of the second synthetic dataset. On the top left, the positive
dataset contains sequences for which interval B is 1.5 times bigger as interval A. On the top right,
the negative dataset contains sequences for which interval B length is equal to interval A length.
On the bottom, the dataset of the class other contains sequences for which interval A is 2 times
bigger than interval B.
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5.2.2 Results

This section presents and discusses the results obtain by the experiments previously detailed.

5.2.2.1 Synthetic data

In this section, we will present the classification accuracy measures for three pattern models on
the synthetic datasets. Those three pattern models are discriminant partially ordered patterns,
discriminant chronicles and linear SV M patterns. We present the accuracy results of those three
pattern models in ascending order. Those accuracy results confirm the intuition that a sequential
pattern model like partially ordered patterns produce the worst accuracy compared to two temporal
pattern model. They also confirm that the linear SV M model produces the best accuracy that is
almost perfect. Finally, those results show the trade-off between the interpretability of the model,
the interpretability of the pattern set and the accuracy. The limit of this trade-off is also shown for
the too simple model that is the partially ordered patterns on this type of dataset.

Partially ordered patterns The best accuracy for discriminant partially ordered patterns on the
first synthetic dataset was 0.6606 with a standard deviation of 0.0744 for the parameters minimal
support σmin = 0.2, minimal growth rate gmin = 2 and a linear SV M to use the partially ordered
patterns as features. Those accuracy results are low. However, those results were expected for such
type of patterns on a dataset dedicated to linear temporal constraints. As a partially ordered pattern
contains only sequential information, it is not able to describe different sizes of interval. Even if
those partially ordered patterns are not able to catch the real behavior introduced in the dataset,
the extracted partially ordered patterns have caught behaviors indirectly introduced by the random
generation parameters. The extracted partially ordered pattern P1 = ({{Ab,Ae,Bb,Be}},{tBb <
tAb , tAb < tBe}) is graphically represented on the top left of Figure 5.7. This partially ordered pattern
represent the higher probability that B begins before A but ends after the begins of A in the positive
sequences than in the negative sequences. This is due to the setup of the generation that makes
B twice longer in the positive sequences than in the negative sequences. This partially ordered
pattern is interesting because it sums up three different sequential patterns. They are graphically
illustrated on Figure 5.7 by the subfigures (i), (ii) and (iii). Those patterns describe 3 interval
relations between A and B:

• B overlaps A: This relation is represented by figure 5.7(i). This case exists only in the
positive sequences because B has to be longer than A. To obtain this behavior in a sequence,
tBb has to be lower than tAb = 15. As tBb is randomly chosen in the interval [1,29], P(tBb <

tAb) =
14
29

. Then, tBb + 2x has to be bigger than tAb + x i.e. tAb − tBb < x. As x is randomly

chosen in the interval [1,9], x must be greater than 1 for tBb = 14, greater than 2 for tBb = 13,
etc. We have then 36 pairs of randomly chosen x and tBb that generates this behavior. As

we have 29 possible values for tBb and 9 for x, the probability of B overlapping A is
36

261
'

13.79%. The pattern representing B overlapping A is a prefect discriminant pattern, but its
support is normally lower than the minimal support of 20% used as parameters and so it
could not be extracted as it. The pattern P1 is then a less discriminant generalization of B
overlap A that is sufficiently frequent to be extracted.

• B begins before A and they end at same time: This relation is represented by figure 5.7(ii).
Similar to the previous case, B has to be longer than A and so this case exists only in se-
quences of class +. In this case we still have the constraint that tBb < tAb . In this case
we do not have the constraint that tAb − tBb is lower than x but that tAb − tBb is equal to x.
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Thereby only 9 combinations are possible to obtain tBb + x = tAb based on the 9 possible
values for x. The probability that "B begins before A and that they end at same time" is

then
9

261
' 3.45% far below the minimal support. The disjunction between cases (i) and

(ii) and so another prefect discriminant pattern but occurring only in
45
261
' 17,24% of the

positive dataset. This pattern can be represented by our model of partially ordered patterns
with adding the constraint tBe ≥ tAe to the temporal constraint set of P1.

• B begins before A and ends during A: This relation is represented by the subfigure (iii) of
5.7. This case is definitely less discriminant than the two others because it could occurs in
positive and negative sequences. In this case we still have the constraint that tBb is lower
than tAb . We will now compute the probability of this behavior in the positive sequences. To
have B ending after that A begins, we need that tAb− tBb be lower than 2x. To have B ending
before that A ends, we need that tAb − tBb be greater than x. We have then the constraint
x < tAb− tBb < 2x and so x+ tBb < tAb and 2x+ tBb < tAb . By enumeration, we obtain 32 com-

binations of x and tBb satisfying those constraints and then a probability of
32
261
' 12.26%

to generate this behavior in a positive sequence. We will now compute the probability of
this behavior in the negative sequences. In addition to the constraint tBb < tAb , we need that
tAb − tBb < x. This was previously computed for the case (i) and so, the probability to gen-

erate this behavior in a negative sequence is
36
261
' 13.79%. This last case is then mostly

not discriminant and as more chance to occur in negative than in positive sequences but its
frequency allows P1 to be sufficiently frequent with a probability of occurring in a positive

sequence equals to
77

261
' 29.50% and a probability of occurring in a negative sequence

equals to
36
261
' 13.79%. The pattern P1 is not perfectly discriminant but it is sufficiently

frequently generated according to a minimal support of 20% and sufficiently discriminant
for a minimal growth rate of 2.

This is an example of the trade-off between the interpretability of the model, the interpretability of
the pattern set and its accuracy. In this case we choose to discriminate such dataset with patterns
that are easily readable and understandable and can be considered interpretable at a first glance.
The pattern set of this pattern model seems to be interpretable because it is easily decomposable.
This pattern model is not able to catch the real discriminant behavior introduced in the dataset
and several induced behavior as to be extracted to obtain a reasonable accuracy if we use them for
classification. If we extract patterns with a minimal support lower than 20% we could generate
the pattern catching the subbehaviors (i) and (ii) of P1 and so maybe improve the accuracy thanks
to more discriminant patterns. On the other hand, if we use a lower minimal support, we will
extract more patterns and so generate a bigger pattern set. If the pattern set grows too much,
the simulatability of the pattern set will significantly decrease and so the pattern set will be less
interpretable. Choosing those parameters and so patterns like P1 allows then to produce few
patterns easily interpretable but that roughly discriminate the dataset classes.

Chronicles The best accuracy for discriminant chronicles on the first synthetic dataset was
0.8981 with a standard deviation of 0.0432 for the parameters minimal support σmin = 0.2, mini-
mal growth rate gmin = 2 and a linear SV M to use the chronicles as features. The accuracy for the
same parameters but using chronicles as rules is 0.8538 with a standard deviation of 0.0669 using
the precision measure Qg with a bias parameter g = 1 to sort them. With g = 0 the accuracy is
0.8481 with a standard deviation of 0.0608. This difference seems to be not significant. Without
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Figure 5.7: The discriminant partially ordered pattern P1 extracted for a classification run on the
first synthetic dataset and the sequential cases (i), (ii) and (iii) that it represents. This partially
ordered pattern was extracted for a support of 24 in the positive sequences and 7 in the negative
sequences. This represents 30% of positive sequences and 8.75% of negative sequences of the
train set.

the strategy to predict one of the most represented classes, here the positive one, this accuracy fell
to 0.7306 with a standard deviation of 0.0865. The proportion of misclassified sequences is then
1− 0.7306 = 0.2694 and so the accuracy without the strategy plus half of the misclassified se-
quences 0.8653 corresponds to the accuracy with the strategy. The strategy for predicting the label
of a sequence not covered by the chronicles could then to randomly choose the sequence label for
the sequences not covered by discriminant chronicles. Using or not a minimal size constraint set
up to 4 for the extraction of the discriminant chronicles did not impact significantly the accuracy
results, the following examples of extracted patterns will so contain the 4 events Ab, Ae, Bb and Be.

As expected results in terms of accuracy are much better for the chronicle model than for the
partially ordered pattern model. It can be simply explained through the dataset generation using
numerical parameter for the temporal information. Those parameters can be more precisely caught
by a model like the chronicle model than the partially ordered pattern model because the second
one does not represent the temporal information with numerical values.

Chronicles extracted for one of the classification runs are illustrated by Figure 5.8. The chron-
icles C1 and C4 were extracted for all runs. The chronicle C2 was extracted for all but one run.
The chronicle C3 was extracted for several runs or was replaced by similar chronicles. For two
runs, only the chronicles C1, C2 and C4 were extracted. Each of those four chronicles describes a
part of the proportionality of the generation for specific subset of the search space.

• The most general chronicle is C1. The constraint ”Bb→ Be”≥ 10 is based on the fact that x
is an integer randomly chosen in the interval [1,10[. This chronicle is more general than the
other because it will always be discriminant for datasets for which the length A is equal to
the length B in the negative sequences and B is bigger than A in the positive sequences. The
constraint ”Bb→ Be” ≥ 10 could be generalized as ”Bb→ Be” ≥ b for x randomly chosen
in the interval [a,b[. However, even if this chronicle is discriminant for those cases, the high
frequency of the chronicle C1 is implied by the fact that B is twice longer than A.

• The chronicles C2 and C4 discriminate both subsets of the search space where ”Bb→ Be” <
10 i.e. subsets not covered by C1. The chronicle C2 is built like the chronicle C1 but specify
the maximal length of A i.e. the maximal x that it covers. The first constraint ”Ab→ Ae”≤ 4
defines the cases that are not covered by C1 because for ”Ab → Ae” > 4 i.e. x > 4, ”Bb →
Be” ≥ 10. The second constraint ”Bb → Be” ≥ 6 works like ”Bb → Be” ≤ 10. For all the
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Figure 5.8: The discriminant chronicles extracted for a classification run on the first synthetic
dataset. The chronicles C1, C2 and C3 discriminant the positive sequences and the C4 discriminate
the negative sequences. The chronicles C1, C2 and C4 are perfectly discriminant and were extracted
for a support of 40, 20 and 45 respectively. The chronicle C3 was extracted for a support of 20 in
positive sequences and 9 in negative sequences.

negative examples for which x ≤ 4, we are sure that the length of the interval B is lower
than 6 because of the length of B equals x too. The chronicle C4 is constructed like C2 as it
covers cases not covered by C1 but is the opposite of C2 because it discriminates negative
sequences and not positive sequences. As the length of B is 2x in positive, the chronicle C4
describe that if x≥ 5 and the length of B is lower than 10 then it is a negative sequence.

• The chronicle C3 tries to cover a subset of the sequences not covered by C1, C2 and C4
i.e. those where x ≤ 4 and the length of B is lower than 6. Like for the discriminant par-
tially ordered pattern P1, C3 could be divided in subcases perfectly discriminant and more
generally, we could describe each possible value of x by a discriminant chronicle for the
positive sequences and another for the negative sequences but those chronicles will have a
probability to occur in a sequence of their class of 1/9' 11.11% that is below the minimal
support constraint set up to 20%.

As the chronicle model is not able to catch the proportional behavior used to generate this
dataset, we observe another trade-off between the interpretability of the pattern set and the accu-
racy. By securing the simulatability of the pattern set by constraining the chronicles to occur at
least in 20% of the sequences of the class that they discriminate, the accuracy is not perfect. It
is worth mentioning that it is possible to discriminate perfectly the dataset with 9 chronicles de-
scribing the 9 possible values for x. If those chronicles discriminate the positive sequences, the
classifier will have to label a sequence s as positive if one of those chronicles occurs in s and as
negative if not.

The accuracy of the discriminant chronicles used as features in a linear SV M is lower for
the second dataset than for the first one but still good. For the same parameter set as for the
first dataset, the discriminant chronicle model obtained the accuracy of 0.7861 with a standard
deviation of 0.0214. The discriminant chronicles used as rules obtained the accuracy of 0.7555
with a standard deviation of 0.0473. Without the strategy to predict one of the most represented
classes, here the positive one, this accuracy fell to 0.6222 with a standard deviation of 0.0321.
Like for the first dataset, a non-negligible part of the accuracy is obtained by the classifier and not
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the chronicle themselves. The gain of accuracy obtained by this strategy, here 0.1333 is near to be
a third of the not good classified sequences. It suggests that the not good classified sequences are
mostly uniformly distributed on the sequences. Constraining the size of the extracted chronicles
to be greater or equal to 4 has still no significant impact on the accuracy. The chronicle C1 of
figure 5.8 is still extracted for this dataset. The other extracted chronicles discriminate subset of
the search space mostly like C2 and C4 and some represent the trade-off between the frequency
and the growth rate like C3. The mean number of extracted chronicles is 6 for a minimal support
of 20%.

The discriminant chronicle model is an understandable model that can obtain a good accu-
racy even on dataset containing behaviors that cannot be caught directly by chronicles. This good
accuracy implies an impact on the simulatability of the pattern set. For the first dataset, 4 chron-
icles were used to classify the dataset were 1 linear constraints could perfectly discriminate the
sequences. For the second dataset, 6 chronicles were used to represent the behavior of 2 linear
constraints. We could then generalize the notion of informativeness of a pattern to the informa-
tiveness of a pattern set. Are the extracted chronicle set informative enough to deliver to the user
the proportional behavior used to generate the dataset?

linear SV M patterns As expected, using linear SV M with default classification parameters pro-
duce a perfect classifier for the first synthetic dataset. Using a parameter of minimal size set up to 4
did not change this result but generate a unique discriminant pattern. Thereby, the interpretability
of the pattern set is reduced to the interpretability of a pattern while the accuracy is the best. For
the second dataset the linear SV M classifier is not perfect even if we modify the parameter C of
the SV M. Some sequences are misclassified and this leads to a mean accuracy of 0.9551 with a
standard deviation of 0.0089. Like for the first dataset, using a minimal size constraint set up to 4
did not impact significantly the accuracy.

We then obtain one unique pattern for each dataset that can be used as or in a classifier to
perfectly label the first dataset or to label with a very good accuracy the second one. By choosing
a model that we consider less interpretable than the two others, we maximize the interpretability
of the pattern set and the accuracy. Like for the generalization of the notion of informativeness to
a pattern set, we might want to compare the interpretability of a pattern set and the interpretability
of a pattern if this pattern is the only one extracted. To be more specific, we might want to compare
the interpretability of a linear SV M pattern with the interpretability of a chronicle set if they both
respond to the same question like in this example.

5.2.2.2 BIDE-D datasets

In this section, we present the results of classification using linear SV M patterns as features on
the BIDE-D datasets. The classification is done for several parameter sets. The results are then
compared with the previous results obtained by classification using discriminant chronicles as
features or as rules. Finally, we discuss those results and the differences implied by each parameter
set to highlight the advantages and disadvantages of both approaches.

The two figures 5.10 and 5.9 show the results of the experiments in classification on the dataset
asl-bu using linear SV M patterns as features. Figure 5.10 is dedicated to the experiments using k =
90 for the topk constraint applied on the multisets and the figure 5.9 is dedicated to the experiments
not using this constraint. Table 5.3 shows the 10 best parameter sets sorted by accuracy.

Firstly, we can see on table 5.3 that the best parameter set is: minimal support = 0.2, top k
= 0, max size = 3, eclat target = c and global SV M C = 0.1 for an accuracy of 0.7298 with a
standard deviation of 0.0542. As we were not able to compute the accuracy of a classifier using
discriminant chronicles as features on asl−bu for a minimal support of 0.2, we will compare the
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Figure 5.9: Accuracy boxplot for temporal patterns using linear SV M as temporal constraints
used as features in a linear SV M on the asl-bu dataset for different minimal support. Each boxplot
represents 20 runs for those parameters obtained by two 10-cross validation. Different facets are
generated for the use of closed multisets (eclat_target=c), generator multisets (eclat_target=g) or
all frequent multisets (eclat_target=a) and different values for the C parameter of the classifier
using the patterns as features A topk constraint was used to limit the number of patterns with
k = 90.

Figure 5.10: Same experiment that for the figure 5.9 without the topk constraint.
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accuracy
mean std

support topk max_size eclat_target classifier_C

0.2 90 3 c 0.1 0.7298 0.0542
0.3 4 0.7286 0.0548
0.2 0 3 0.7250 0.0560
0.3 5 0.7250 0.0702
0.2 90 4 1 0.7238 0.0730

0.01 0.7202 0.0463
0.3 0 0.1 0.7179 0.0652
0.2 3 a 0.01 0.7179 0.0590
0.3 0.1 0.7167 0.0646
0.2 5 c 100 0.7143 0.0921

Table 5.3: The top 10 parameter sets in terms of accuracy (mean and standard deviation) on the
asl-bu dataset.

results of linear SV M patterns and discriminant chronicles for a minimal support equals to 0.3. For
a minimal support equals to 0.3, the best accuracy produced by the linear SV M patterns is 0.7286
with a standard deviation of 0.0548. The other parameters associated to this result are the same
that for the previous result except that the max size is set to 4 instead of 3. Those results are then
much better than the best result of discriminant chronicles that was 0.6736 for a standard deviation
of 0.0555. We can notice that the best result of discriminant chronicles is obtained for a minimal
support of 0.6. For this support, the best accuracy of the linear SV M patterns is 0.6762 with
a standard deviation of 0.0634. The results of the discriminant chronicles are not significantly
better than this result but we can see that all results of discriminant chronicles are greater than
this result. Thereby, the classification using linear SV M patterns as features does not produce a
significant better result than the classification using discriminant chronicles as features for each
minimal support.

We can observe on figures 5.9 and 5.10 that the accuracy results are not always proportional
with the minimal support. This behavior could be observed for discriminant chronicles but not
in such proportions. For example, on Figure 5.10 we can see that for the parameters eclat target
= c and global SV M C = 0.1, the accuracy results obtained for a minimal support equals to 0.2
or 0.4 are greater than 0.6 but for a minimal support equals to 0.3 lower than 0.4. This seems to
be non-intuitive because we expect to obtain a better accuracy or at least not a lower accuracy by
adding features to the classifier.

Another observation that we can do on those plots is the influence of the minimal support on
the accuracy. The naive intuition is that more the minimal support is low, more the accuracy is
high, or at least, not lower than for a higher minimal support. The reason behind this intuition
is that a lower minimal support will produce more patterns and so more knowledge. With this
new knowledge we can then hope to obtain a good accuracy for more sequences. At least, we can
hope to obtain a similar accuracy because the pattern set obtained for a higher minimal support
is contained in the new pattern set. The necessary knowledge to obtain the same accuracy as a
higher minimal support is also extracted for a lower minimal support and should lead at least to
this accuracy. But this intuition is not always validated by figures 5.9 and 5.10.

We can for example see a stable accuracy on Figure 5.9 for parameters eclat target = c and
SV M C = 1. The accuracy is not better on this plot for the lowest minimal support threshold but
they are not significantly lower either. We can then think that the same knowledge was used to
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obtain the same accuracy. But for the same eclat target, we can observe that for SV M C = 0.1, there
is a great difference in term of accuracy between a minimal support of 0.6 and a minimal support
of 0.5. In the first case we obtain the accuracy of 0.6726 with a standard deviation of 0.0583
and in the second the accuracy of 0.3452 with a standard deviation of 0.0743. We can notice that
the accuracy for the next minimal support is equal to 0.6393 with a standard deviation of 0.0605.
There is then one configuration that produce bad results but close to other good configurations.
This is not a problem in an optimization context. We just have to use cross-validation to test all
the parameter sets and select the most optimal. But this is a problem in terms of interpretability
of the model. How can we interpret this difference of accuracy obtained by different values for
parameter C. We can obtain a difference greater than 0.3 with only changing a parameter of the
global classifier. But we cannot link only this value to a bad accuracy because it is included in the
parameter set used to obtain the best accuracy. This relies then to a bad simulatability of the global
classification process because it is difficult to understand why a parameter set will produce a good
accuracy, and a similar other one a bad accuracy.

We observe the same behavior comparing the two figures 5.9 and 5.10. Even if the best results
are obtained with the top k constraint set to 90, we can see on those figures than it is difficult to
choose if it is good for the accuracy to use it. Using or not this constraint to improve the accuracy
depends on the rest of the parameters and it can even be different if we change the minimal support.

Finally, which of closed multiset set, generator multiset set or all the frequent multisets are the
best sets is also not easy to answer. The closed multiset set produces the best results and none of
the parameter sets based on the generator multiset is in the top 10 of the best parameter set 5.3.
But it also depends on the other parameters and there is not a best multiset set for all the parameter
sets even if we set the minimal support.

Those results on real datasets highlight the fact that a more complex model does not always
improve significantly the accuracy results. When the goal of a classifier is to be interpretable, it
seems then that a simpler model producing similar accuracy results is preferable. Furthermore,
the best results obtained with linear SV M patterns are obtained for some specific parameter sets.
Using a model with fewer parameters and so potentially producing more simulatable pattern sets
will be preferable.

5.3 Conclusion and perspectives

The interpretability is, for learning models or a pattern models, a desired property but difficult
to prove. For example, I firstly stated that chronicle is an interpretable pattern model without
knowing exactly what this interpretability meant. This interpretability was then extended to the
pattern-based classification interpretability. For this type of interpretability, I noticed a difference
between: (i) the interpretability of a linear SV M classifier using chronicle as features and (ii) the
interpretability of a simpler model using the most relevant discriminant chronicle in a sequence as
a rule. I manage then to determine which properties I wanted to find in an interpretable model to
define the interpretability concept.

From Lipton’s definitions [Lipton, 2016], I determined two definition categories of the inter-
pretability for patterns: (i) pattern models interpretability and (ii) pattern sets interpretability and
by extension the use of pattern sets in classification. Those definitions lead to a trade-off when
choosing the good pattern model for a specific task. At first glance, we can see a trade-off between
the pattern model interpretability and the accuracy of the classifier using patterns as features. But it
is often possible to produce a sufficiently big pattern set to obtain a good accuracy with a classifier
using simple patterns as features. We observe then a second trade-off between the interpretability
of the pattern model and the interpretability of the pattern set. A more interpretable pattern model
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can produce a less interpretable pattern set if it requires more patterns to represent knowledge.
We have the choice to improve the accuracy with a more complex pattern model and potentially

less interpretable or more patterns and a less interpretable pattern set. The accuracy is then used
as an evaluation of this trade-off. We need more patterns to obtain a good accuracy with a simple
pattern model and a more complex pattern model with a small pattern set.

Finally, those intuitions were experimentally tested. Firstly, we generated synthetic datasets
that could highlight the trade-off between the complexity of the model and the size of the pattern
set. We extracted then from those datasets several types of temporal patterns that we group in the
generalized chronicle framework. This experiment showed that some patterns are more appropri-
ated for certain types of datasets. We obtained a great difference between the results obtained with
discriminant partially ordered patterns and with discriminant chronicles.

The synthetic datasets were generated from a behavior that could not be caught by these pattern
models. However, we obtained a good accuracy of classification using discriminant chronicles as
features and a bad one using the discriminant partially ordered patterns as features. This can be
explained by the fact that the discriminant behaviors in the synthetic datasets are only correlated
with temporal information. The sequential representation of the time done by the partially ordered
patterns is then not sufficient enough to catch frequent discriminant behaviors in the dataset. On
the other hand, even if the chronicles are not designed to catch the discriminant behaviors of
the dataset, the specific cases that they caught were sufficiently frequent to be used as features.
Moreover, the sequentiality could not represent certain specific cases of the datasets where it will
be possible to generate a discriminant chronicle for each sequence of the dataset i.e. overfitting
the dataset and then obtain a perfect classifier. Then, there is a trade-off for some pattern model
between the complexity of the model and the size of the pattern set to produce a good classifier but
too simple model on certain types of dataset cannot produce good classifiers even with a pattern
for each sequence.

The second observed difference is between the chronicles and the linear SV M patterns. For
linear SV M patterns, we obtain a perfect accuracy for the simple synthetic datasets and a near to
be perfect accuracy for the other synthetic datasets. It is worth noting that those accuracy results
are obtained using only one pattern as feature. In this case the interpretability of the pattern set is
reduced to the interpretability of the pattern and switching the classifier has hardly any impact on
the result. For chronicles, the accuracy is quite good but not perfect. Several chronicles are needed
to produce a good classifier. We see then a different gap between those two models of patterns than
between partially ordered patterns and chronicles. Here, the chronicle model can produce a perfect
model with a bigger pattern set but the minimal support parameter regulates the size of the pattern
set. If we want to obtain a perfect classifier, we then have to choose between two options: (i) a
single pattern of a model that we consider less interpretable or (ii) numerous patterns of a model
that we consider more interpretable. It is not obvious to answer which of a pattern of chronicles
or a single linear SV M pattern is the most interpretable. Even if chronicles are considered more
interpretable, too big a pattern set of chronicles will be less interpretable than a unique linear SV M
pattern.

Finally, we classified real datasets using both chronicles and linear SV M patterns. This exper-
iment shows that a classifier based on linear SV M patterns is not significantly more accurate than
a classifier based on chronicles in each case. Indeed, at the opposite of the previous case where
the partially ordered patterns were not an interesting choice for our synthetic dataset because they
do not catch the temporal information, it can be useless to use too complex a model if it does not
improve the accuracy.

All those experiments lead to two conclusions:

1. There is not a best pattern that optimizes in all cases the trade-off between the two categories
of interpretability and the accuracy.
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2. A model considered less interpretable can produce more interpretable pattern sets if it is the
most suitable for a type of dataset.

These results can be used as guidelines to choose the most suitable pattern model for a task.
It is useless to choose too complex a model if a simple one does the same task. It is also use-
less to choose too simple a model that will generate a deluge of pattern that could finally not be
interpretable.

The perspectives of this work could then be twofold: (i) Explore the domain of the interpretable
pattern models and (ii) explore the generalization of chronicles that are not interpretable.

Even using the definitions given in Section 5.1 and the other Lipton’s definitions, it remains
difficult to define objectively a pattern model or a pattern set as interpretable or not. Thereby, we
still lack an objective measure for interpretability. Such measure could replace the use of the ac-
curacy in classification, and cardinality of the pattern set to evaluate the results of a pattern model.
We could then categorize the different pattern models in a hierarchy of interpretable models.

Pattern-based classification is initially designed to produce interpretable classifiers or at least
classifiers based on interpretable features. However, pattern-based classification can produce very
good accuracy results as shown in recent paper [De Smedt et al., 2017]. The second perspec-
tive will be then to explore the possible choices of pattern model for pattern-based classification
without the interpretability constraint.
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Chapter 6

Case study: Discriminant chronicle
mining for pharmaco-epidemiology

Pharmaco-epidemiology is the study of the uses and effects of drugs and healthcare products in
real life within well-defined populations. In other words, the main goal of pharmaco-epidemiology
studies is to analyze the correlations between occurrences or co-occurrences of medical events
(drug consumption, hospitalization, diseases, etc.) for specific populations. From these analyses,
the pharmaco-epidemiologists attempt, for example, to prevent bad uses of drugs or adverse effects
of drug co-occurrences.

An example of pharmaco-epidemiology study is the analysis of anti-epileptic drug substitution
for epileptic people (GENEPI study [Polard et al., 2015]). A substitution to another anti-epileptic
drug can occur with generic drugs. An epileptic person could then switch from a treatment based
on a brand-named anti-epileptic drug to a treatment based on similar generic drug (same molecule
and same dosage). The question raised by pharmaco-epidemiologists is: "Can a generic substitu-
tion imply an epileptic seizure?".

The standard way to conduct such study starts by elaborating a hypothesis to assess. Its first
specifies the patient to study. After this step, cohorts are created and studied within a desired
period. After the data collection, a statistical model is constructed to valid or not the initial hy-
pothesis of the study. This straightforward way of conducting studies explore only one hypothesis
at a time.

But they would also be interested in discovering new type of substitution and explore multiple
hypotheses that may explain epileptic seizures. For instance, the substitution for a dosage to
another or from a molecule to another. And maybe more complex care pathways than just two
static behaviors.

6.1 Pharmaco-epidemiology based on the SNDS

The SNDS is a French medico-administrative database. Medico-administrative databases collect
data concerning the medical domain with administrative purposes. In the case of the SNDS, all the
reimbursement made by the French public healthcare insurance are recorded. Figure 6.1 illustrates
what is contained by such databases. In this illustration, the main database regroups all information
about the insured people. This is a true and fair view of the real database. In this database, basic
information like surnames, forenames, dates of birth or gender are stored. Information collected
through logs is stored in the additional subbases. For example, one base is dedicated to pharmacy
service reimbursements. The sequence of all the pharmacy services of a specific insured can be
built based on the information of those two bases. The figure 6.2 illustrates the data that we obtain
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Figure 6.1: Illustration of the information diversity contained in medico-administrative databases.
The grey subbases represent the datalogs and the green subbase represent the knowledge used to
design the base or already known.

from the SNDS. The data are represented by a healthcare pathway list denoted patients. In this
global list, each pathway is represented by three different event pathways and metadata. These
three lists, denoted prestations, prestationsMedicament and prestationsBiologie, are relative to
medical consultations, drug deliveries and biology laboratory services, respectively. In these lists,
events are described by generic information such that, begin and end timestamps, the performer or
the prescriber ids, and by specific information. For example, the event in prestationsMedicament,
described from line 18 to line 24, begins and ends at timestamp 20090826 and is a drug denoted
A12AX in the Anatomical Therapeutic Chemical (ATC) Classification System and 3387873 in the
CIP hierarchies.

The advantage of using the SNDS instead of standard pharmaco-epidemiology cohorts is
twofold:

1. The data are already available. Pharmaco-epidemiology studies do not have to wait the end
of data collection to study them.

2. The data covers a large population. The French insured population is about several tens
of millions of people. Well-defined population like, for example, the epileptic people, will
then be well represented by those bases even if a great majority of the whole database is not
relative to epileptic people. Studying such data ensures then to avoid the bias implied by to
small cohort.

The first advantage of using the SNDS for pharmaco-epidemiology is the data availability.
Data have been collected in the SNDS for many years. Using such database will save the time that
would have been spent by collecting the data from a cohort. Furthermore, this can also reduce the
study cost because the construction of a cohort needs some material and human resources.

The second advantage of such approach is the large population covered by this database. In-
deed, the French insured population is several tens millions of people for several years. A great
part of data that could be obtained by cohorts can be substituted by subsets of this database.

The main drawback of using medico-administrative databases for pharmaco-epidemiology
studies is that these databases are not designed for this purpose but only for reimbursement man-
agement. The data have to be processed for removing useless information for pharmaco-epidemiology
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1 {’patients’: [{
2 ’birthYear’: ’1960’,
3 ’localisation’: ’018218’,
4 ’sexe’: ’2’,
5 ’uid’: ’1’,
6 ’prestations’: [{
7 ’begin’: ’20101123’,
8 ’end’: ’20101123’,
9 ’performer’: {’type’: ’S.1’, ’uid’: ’A1933529.1.0’},

10 ’prescriber’: {’type’: ’S.1’, ’uid’: ’A1933529.1.0’},
11 ’type’: ’1111’}, {
12 ’begin’: ’20100315’,
13 ’end’: ’20100315’,
14 ’performer’: {’type’: ’S.1’, ’uid’: ’A1933529.1.0’},
15 ’prescriber’: {’type’: ’S.1’, ’uid’: ’A1933529.1.0’},
16 ’type’: ’1111’}, ...],
17 ’prestationsMedicament’: [{
18 ’begin’: ’20090826’,
19 ’end’: ’20090826’,
20 ’medicament’: {’atc’: ’A12AX’, ’cip’: ’3387873’},
21 ’performer’: {’type’: ’A.50’, ’uid’: ’A1543517.0.50’},
22 ’prescriber’: {’type’: ’S.1’, ’uid’: ’A1533560.1.0’},
23 ’quantityMedicament’: ’1’,
24 ’type’: ’3313’}, {
25 ’begin’: ’20090701’,
26 ’end’: ’20090701’,
27 ’medicament’: {’atc’: ’N03AX09’, ’cip’: ’3389843’},
28 ’performer’: {’type’: ’A.50’, ’uid’: ’A1543517.0.50’},
29 ’prescriber’: {’type’: ’S.1’, ’uid’: ’A1533560.1.0’},
30 ’quantityMedicament’: ’3’,
31 ’type’: ’3313’}, ...],
32 ’prestationsBiologie’: [{
33 ’begin’: ’20091009’,
34 ’biologie’: ’519’,
35 ’end’: ’20091009’,
36 ’performer’: {’type’: ’A.30’, ’uid’: ’A1960457.0.30’},
37 ’prescriber’: {’type’: ’S.1’, ’uid’: ’A1933529.1.0’},
38 ’type’: ’3211’}, {
39 ’begin’: ’20091009’,
40 ’biologie’: ’592’,
41 ’end’: ’20091009’,
42 ’performer’: {’type’: ’A.30’, ’uid’: ’A1960457.0.30’},
43 ’prescriber’: {’type’: ’S.1’, ’uid’: ’A1933529.1.0’},
44 ’type’: ’3211’}, ...]}, ...]}

Figure 6.2: Data example obtained from the SNDS. The data are represented in JSON format. This
example represents a list of patient healthcare pathways. In this list, we can see one pathway. The
pathway description begins with metadata as the birth year (line 2), the gender (line 4) or the ref-
erence patient ID (line 5). The different recorded events of this example are then described in the
three lists: prestations, prestationsMedicament and prestationsBiologie. They correspond respec-
tively to the medical consultations, to the drug deliveries and to the biology laboratory services,
respectively.
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studies like prices and reimbursement rates but also for completing them [Moulis et al., 2015].
Indeed, there is a gap between the administrative semantic and the medical information. The

translation from one to the other requires strong knowledge in the domain. For example, we
can see on Figure 6.1 that several ontologies are linked with the SNDS bases. Several of these
ontologies are used to understand what type of events are logged in the SNDS. For example,
the drugs are described by their code in the international ATC taxonomy. In the Anatomical
Therapeutic Chemical (ATC) classification system, the active substances are divided into different
groups according to the organ or system on which they act and their therapeutic, pharmacological
and chemical properties. Drugs are classified in groups at five different levels. An issue with
such taxonomy is that a drug or a chemical substance can have several codes. For example, the
alprostadil is classified by codes beginning by C01EA and G04BE. It means that if we consider
the alprostadil delivery as an event, all the codes linked to it have to be processed using the ATC
taxonomy. Thereby, the processing of such data to be used for a specific study can be difficult.
Issues may be encountered with disease encoding.

Furthermore, a part of the data is not accurate, incorrect or incomplete. For example, in the
case of the SNDS, only the delivery of a drug is known and not the real medication time. It is due
to the fact that the logged information dedicated to the reimbursement is done in the drugstore and
not when the medication is really taken. Thereby, an event of drug delivery could be logged but
the drug never took. Hypotheses then have to be done based on known guidelines to deduce the
real medication time. Diagnoses made by doctors are also missing from the SNDS, a reimburse-
ment was done for a specific out-hospital consultation but the reason is unknown. We only have
disease information for hospital stays. Finally, the human factor may also impact the data quality.
Practitioners have to fill this information accurately. This is our assumption even if we know that
is not necessarily true. The quality of the data requires a great effort to combine them with expert
knowledge.

The ANSM/PEPS project challenge was to conduct such pharmaco-epidemiology studies based
on the SNDS data. The work done in this thesis is dedicated to improve the data exploration that
is difficultly doable manually due to the data complexity and volume.

PEPS is the French acronym for Pharmaco-Epidémiologie des Produits de Santés that means
pharmaco-epidemiology of the healthcare products. This project, supported by the University
Hospital of Rennes, gathers different scientific partners in a consortium which conducts pharmaco-
epidemiology studies. This project is funded by ANSM (Agence National de Sécurité du Médica-
ment et des produits de santé) which is the French Agency for the Safety of Health Products. The
goal of this funding for the ANSM is to improve the carrying out of studies independent of the
pharmaceutical industry.

6.2 GENEPI

The GENEPI study (GENeric substitution of anti-EPIleptic drugs) is a typical example of pharmaco-
epidemiology study conducted as part of the PEPS project. The expected outcomes were to evalu-
ate the potential of the SNDS for pharmaco-epidemiolgy studies and to develop new data analytic
tools dedicated to epidemiologist needs. Details and results of this study are described in [Polard
et al., 2015].

The goal of this study was to further assess the association between seizure-related hospi-
talization and generic substitution and provide the necessary evidence to inform clinician and
patient decisions. Clinicians working on this study tried to validate or invalidate the hypothesis
that a switch from a brand-named anti-epileptic drug to a generic anti-epileptic drug can imply an
epileptic seizure.

To do this, the studied population had to be defined. Indeed, the whole set of people for whom
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Figure 6.3: Illustration of the heathcare pathway of patients concerned by GENEPI. The index
event is the hospitalization with epilepsy diagnosis represented by the red rectangle on the illustra-
tion. Before this, a 3-day induction period is removed from the data. The case and control periods
are the two 3-month exposure window occurring before the induction period.

we know such switch or seizure is not adapted to test the hypothesis. For example, it is difficult
to conclude from care pathways representing people who have seizures after substitutions if they
often have seizures. The clinicians chose then to consider only the controlled epilepsy patients
i.e. people known to have a stable treatment before than the seizure occurred.

To be sure to obtain data concerning generic substitution, a larger population was requested
from the SNDS. The data obtained from the SNDS concern all adult patients affiliated to the
French national health insurance scheme, 18 years old or older in January 2009, who had at least
one reimbursement between 2009 and 2011 for at least one of the following anti-epilieptic drugs:
carbamazepine, lamotrigine, levetiracetam, topiramate, or valproic acid, referred to as selected
anti-epilieptic drugs (see Appendix B). These drugs had a brand name and at least one "A-rated"
generic form available on the French market by this time (2009-2011) and were widely prescribed
for epilepsy, allowing identification of epilepsy patients. They were extracted from the SNDS
database using their ATC codes: N03AF01, N03AX09, N03AX14, N03AX11 or N03AG01.

The collected data were then pruned to remove specific populations that could bias the re-
sults. Patients with a medical history of cancer and women who gave birth within the study pe-
riod were excluded because of the high risk of repeated seizures as well as patients receiving
fatty acid derivatives through formulations registered as mood-stabilizing drugs such as valpro-
mide (DEPAMIDE) or divalproex sodium (DEPAKOTE) who may not be epilepsy patients. The
events related to cancer or birth were detected by their ICD-10 codes. The International Statistical
Classification of Diseases and Related Health Problems (ICD), is a taxonomy similar to ATC but
dedicated to the diseases.

Finally, the target population is selected from the remaining data. To study the effect of generic
substitution on epileptic seizures, patients known to be hospitalized for such seizure between Jan-
uary 2010 and December 2011 were selected. Such selection is made by selecting all patients
concerned by an event with the ICD-10 codes G40.x (epilepsy) or G41.x (status epilepticus) as
codes of interest in primary or secondary hospital discharge diagnosis position. The controlled
epilepsy patients were at last defined to have a hospitalization-free period for the epilepsy ICD-10
codes of at least a year before the selected hospitalization. Furthermore, a regular dispensation
was defined as at least 10 dispensation claims within a year for the same anti-epileptic drug.

After all those pre-processing steps, a statistical model was designed to test the hypothesis. For
each patient, a case cross-over was done. In this case, the case period i.e. the three months before
the hospitalization for epileptic seizure was compared with the control period i.e. three months
before. Figure 6.3 illustrates the studied periods of the healthcare pathway. The statistical model
lies in four cases: the people for whom a generic substitution occurs in both phases, those for
whom a generic substitution occurs only before the seizure, those for whom a generic substitution
occurs only in the first phase and those for whom no generic substitution occurred. Table 6.1
regroups the different number of patients in each case. Intuitively, the epileptic seizure seems to
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Case period
No Yes

Control No 7222 478
period Yes 491 188

Table 6.1: Number of patients according to the occurrence of brand-to-generic substitution in
case and control periods. The majority of patients is not concerned by generic substitutions. The
number of patients for which a generic substitution occurs only in the case period is similar to the
number of patients for which generic substitution only occurs in the control period.

not be correlated with generic substitution occurring in case period. The conclusion of this study
was negative i.e. the hypothesis was invalidated [Polard et al., 2015].

6.3 Discriminant chronicle mining for pharmaco-epidemiology

Based on the previous description of the GENEPI study, we can highlight some weakness in the
standard process of a pharmaco-epidemiology study:

• The selection of the targeted population takes a lot of times.

• The temporal dimension is weakly taken into account.

• Only one kind of substitution was studied for only 5 different types of event.

Regarding the first point, a way to reduce the time allocated to the selection of patients is to
use an expressive formalism to discriminate the patients. Furthermore, this formalism has to be
usable through an efficient tool extracting a set of patients from data. The chronicle model is a
good formalism for this task. The tool in this case is not a discriminant chronicle mining algorithm
but a chronicle matching algorithm. Matching chronicles in big sets of patients can be efficiently
done and we propose then to use such formalism in the project.

The chronicle model can also improve the description in temporal behavior for the study.
Firstly, the chronicle model can be used to represent the behavior of controlled epilepsy. It can
be used to represent regular treatment periods used in GENEPI study as illustrated by the left
chronicle on Figure 6.4. But we could imagine more constrained regular treatment period as
illustrated by the right chronicle on Figure 6.4. This illustrates how a simple model can empower
epidemiologists in their analysis. Secondly, chronicles could represent more complex behavior
than the occurrence or not of a generic substitution in a period.

The discriminant chronicle mining is the logical continuation of the use of a temporal formal-
ism for matching patients. Instead of just describing one hypothesis with a chronicle, we want to
automate this approach by extracting a set of chronicle that could be interesting hypotheses. The
care pathways in which such hypotheses represented by chronicles occur could then be selected to
be further analyzed. The involvement of the clinician will then be greatly reduced along the study
pipeline. The chronicles extracted by our algorithm not only introduced the temporal dimension
in the hypotheses but also specified what the interesting temporal behaviors that could be studied
are. From an extracted set of chronicles, each hypothesis represented by a chronicle could be au-
tomatically assessed as statistically significant or not. The next parts of this chapter present the
extraction of discriminant chronicles from the GENEPI dataset, their meanings as hypotheses and
the conclusion that we can draw.

The following sections present the application of DCM to study the care pathways of epileptic
patients contained by the GENEPI dataset. To extend this study and exploit the dataset beyond
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Figure 6.4: The chronicle on the left illustrates the behavior matched for the regular treatment
period in GENEPI. The chronicle on the right is an example of a more complex behavior that
could be wanted for regular treatment period.

the original study, we are interested in discovering other drug co-occurrences that could imply
epileptic seizures using a more precise description of the temporal dimension, the DCM algorithm
is used to extract patterns of drug deliveries that discriminate seizure occurrences.

6.4 Positive and negative datasets construction

This section presents the transformation of medical database into a dataset of labeled sequences.
This transformation is required to apply the DCM algorithm and has important consequences on
the results and their interpretation. In fact, depending on input data (event types, sequence lengths,
etc.), the extracted patterns may change a lot. We compared several sequence encodings and the
one proposed below appears to be the most interesting.

Our dataset was obtained from the SNDS database which contains a lot of tables with a large
number of attributes (cf. section 6.1). Two important choices are required to obtain datasets of
labeled sequences: 1) the choice of the set of events on which sequences will be built and 2) the
sequence labeling.

The care pathway of each patient is the collection of timestamped drugs deliveries and hospi-
talization diagnosis from 2009 to 2011. All other care events have been ignored in this study. For
each drug delivery, the event identifier is a tuple 〈m,grp,g〉 where m is the ATC code of the active
molecule, g∈ {0,1} such that g = 1 when drug is generic and g = 0 when it is a brand-named drug
and grp is the speciality group. The speciality group identifies the drug presentation (international
non-proprietary name, strength per unit, number of units per pack and dosage form). Some drugs
are not available in a generic format or have only consumption mode. For some others, the infor-
mation seems to be missing. The event identifier representing such drugs is in this case equivalent
to their ATC drugs.

Two other formats representation of drug deliveries were used before this one: by ATC and by
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CIP1 codes. The issue with ATC is the lack of information of this representation. For example,
the ATC code does not contain the information that a drug was delivered in its generic or brand-
named format. Discriminant behaviors like, for example, those describing generic substitutions
are impossible to extract from such data. Furthermore, the representation is too coarse to show
interesting behaviors and no discriminant chronicles could be extracted.

The issue with the CIP representation is at the opposite of the issue for the ATC representation.
With the CIP, all drugs that are not contained by same packaging are different. For example, two
drugs containing the same molecule and of the same specificity are different if the pill numbers
in the packages are different. This leads to few frequent behaviors and then to no extracted dis-
criminant chronicles. The choice of the triplet as event identifier is a trade-off between the CIP
information and the ATC generalization.

A case-crossover protocol, presented in Section 6.2, has been adapted to label sequences.
This protocol is often used in pharmaco-epidemilogy studies. It studies the possible causes of
an outcome using a patient as his/her own control. In our case, the patient outcomes are seizure
events of epileptic patients. But in our case, the patient is not only his/her own control. All the
case sequences are compared with all the control sequences. We have so a global control and a
global case datasets.

A case and a control sequence are generated from each patient healthcare pathways. Drugs
delivered within the 90 days before induction yield the case sequences and those delivered within
the 90 days before the case sequence, i.e. the 90 to 180 days before induction, yield the control
sequences. A 3-day induction period is defined before the first seizure of each patient. For the
comparison, the experiment was also done with 60, 120 and 150 days instead of 90. In the original
study, they evaluated the sensibility of the analysis with both 28-day periods for control and case
periods and 1 and 5-day induction period. The results were unchanged.

At the end of the data preparation, the dataset contained two sets of 8,379 labeled sequences,
and contains 127,191 events corresponding to 1,716 different drugs.

6.5 Experiments and results

Set up with σmin = 5.10−3, i.e. 42 patients2, and gmin = 1.4, we generated 777 discriminant chron-
icles that discriminate the case sequences from the control sequences of 90 days. Chronicles
involved 510 different multisets and 128 different event types. Similar results were obtained with
sequence durations of 60, 120 and 150 days. For comparison, 535 chronicles were extracted for the
dataset containing sequences of 150 days with the same parameters. The main difference between
those two datasets is that chronicles are discriminant in the "150 days" dataset for higher gmin. For
example, 487 chronicles are discriminant for gmin = 1.8. Our intuition is that regular treatments
are more easily discriminated from punctual deliveries when the sequences are larger. Larger dis-
criminant chronicles are extracted from the 150 days dataset than from the 90 days dataset and
these chronicles describe more accurately the underlying discriminant behavior.

Three types of pattern are of specific interest for clinicians: (1) sequences of anti-epileptic
generic and brand-named drug deliveries, (2) sequences of same anti-epileptic drug deliveries,
(3) sequences with anti-epileptic drug deliveries and other types of drug deliveries. According
to these criteria, we selected 55 discriminant chronicles involving 16 different multisets to be
discussed with clinicians. We choose to focus the remaining of this section on chronicles related
to valproic acid (N03AG01 ATC code, with different presentations) because it is the most frequent

1The CIP code is a French code related to marketing authorization. Thereby, this code can be used to describe a
specific drug packaging with specific dosage and speciality group.

2This number of patients have been initially estimated important by epidemiologist to define a population of patients
with similar care sequences associated to seizure.
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C1 C2
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Figure 6.5: Four discriminant chronicles describing switches between same type of valproic acid
(N03AG01) generic (G 438) and brand-named (R 438). supp(Ci,S +) respectively for i = 1 to 4
equals 43, 78, 71 and 43 and supp(Ci,S −) equals 23, 53, 39 and 30.

.

Figure 6.6: Extracted chronicle describing repetitions of valproic acid (N03AG01) generic (G
438). This chronicle is one of the most related to epileptic seizures with a growth rate greater than
2: supp(C ,S +) = 50, supp(C ,S −) = 17.

anti-epileptic drug occurring in the dataset but our results contain similar chronicles related to
other anti-epileptic drugs like levetiracetam or lamotrigine.

6.5.1 Taking into account time in brand-to-generic substitution

We start with patterns representing switches between different presentation of N03AG01. Figure
6.5 illustrates all discriminant patterns that have been extracted. It is noteworthy that all chronicles
have temporal constraints, this means that multisets without temporal constraints are not discrimi-
nant. These results are consistent with [Polard et al., 2015] which concluded that brand-to-generic
anti-epileptic drug substitution was not associated with an elevated risk of seizure-related hospi-
talization. But temporal constraints was not taken into account in the later. The four extracted
chronicles suggest that for some small patient groups, drug switches with specific temporal con-
straints are more likely associated to seizure.

The first two chronicles represent delivery intervals lower than 30 days, from brand-to-generic
and generic-to-brand respectively. The third one represents an interval between the two events that
are greater than 30 days but lower than 60 days. The discriminant temporal constraints of the last
one could be interpreted as [67,90] because of the bounded duration of the study period (90 days).
This chronicle represents a switch occurring more than 60 days but most of the time less than 90
days.

These behaviors may correspond to unstable treatments. In fact, anti-epileptic deliveries have
to be renewed every month, thus, a regular treatment corresponds to a delay of ≈ 30 days between
two anti-epileptic drug deliveries.

We next present in Figure 6.6 an example of discriminant chronicle that involves three deliv-
eries of N03AG01 (no chronicle involves more deliveries of this anti-epileptic drug).

The growth rate of this chronicle is high (2.94). It is easy to understand and, with their discrim-
inant temporal constraints, it can be represented on a timeline (see Figure 6.7). It is noteworthy
that the timeline representation loses some constraint information. The first delivery is used as
starting point (t0), but it clearly illustrates that the last delivery occurs too late after the second
one (more 30 days after). As well as previous patterns, this chronicle describes an irregularity in
deliveries. More precisely, the irregularity occurs between the second and the third deliveries as
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Figure 6.7: Timeline representation of the chronicle illustrated by Figure 6.6.

N03AX09
R 431

N03AX09
R 431

N03AX09
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[12, 17]

[33, +∞]

Figure 6.8: Chronicle describing repetitions of lamotrigine (N03AX09) brand-named (R
431). This chronicle occurs twice more times in case sequences than in control sequences:
supp(C ,S +) = 42, supp(C ,S −) = 21.

described by the discriminant temporal constraints [42,53] and [72,83].

Similar chronicles were extracted for other types of anti-epileptic drugs. Figure 6.8 illustrates
such chronicle. The chronicle of Figure 6.8 is similar to chronicle of Figure 6.6 but with lamot-
rigine delivery events instead of valproic acid delivery events. It has a lower growth rate than the
previous chronicle (2 against 2.94). This chronicle is still very discriminant as it occurs twice more
times in the case sequences than in the control sequences. The behavior described by the chronicle
is also more deviant regarding the guideline. In France, anti-epileptic drugs are delivered monthly.
This chronicle describes cases where two lamotrigine deliveries occur between 12 and 17 days one
after the other. We conclude that this chronicle also describes delivery irregularities that are de-
viant from the delivery guidelines. Such irregularity in epileptic treatment represents an unstable
treatment and is known by clinicians to be correlated with seizures.

We conclude from observations on the previous two types of patterns that the precise numerical
temporal information discovered by DCM is useful to identify discriminant behaviors. Analyzing
pure sequential patterns does not provide enough expression power to associate switch of same
anti-epileptic deliveries with seizures. Chronicles, specifying temporal constraints, allow us to
describe the conditions under which a switch of same anti-epileptic deliveries is discriminant for
epileptic seizures.

6.5.2 Example of a complex chronicle leading to new hypotheses

Clinicians found the chronicle presented in Figure 6.9 interesting, as it is at first sight not corre-
sponding to an expert knowledge. It illustrates a potential adverse drug interaction between an
anti-epileptic drug and a drug non-directly related to epilepsy, more especially aspirin (B01AC06),
prescribed as an anti-thrombotic treatment. The discriminant temporal constraints imply that as-
pirin and paracetamol (N02BE01) are delivered within a short period (less 28 days). There is
no temporal relations between these deliveries and the deliveries of valproic acid. But their co-
occurrence within the period of 90 days is part of the discriminatory factor.

After a more thorough analysis of patient care pathways supporting this chronicle, clinicians
made the hypothesis that these patients were elderly people, treated for brain stroke. It is known
for seriously exacerbating epilepsy and increasing seizure risk.
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Figure 6.9: A chronicle describing co-occurrences between anti-thrombosis drugs (B01AC06) and
valproic acid which is more likely associated to seizure: supp(C ,S +) = 42, supp(C ,S −) = 20.

6.6 Conclusion

We showed in this chapter that discriminant chronicle mining is a good method to explore pharmaco-
epidemiology data and more especially to generate interesting hypotheses. In comparison with the
efforts needed to produce a statistical model answering the question "Can an anti-epileptic generic
substitution implies an epileptic seizure?", our discriminant chronicle mining algorithm generated
easily a set of interesting pharmaco-epidemiology hypotheses. The set of discriminant chronicles
was sufficiently small to be manually explored and analyzed.

However, the pre-processing of the dataset was not as simple as we imagined it. The main
difficulty was to choose the good representation for the events. Indeed, a too general description
of events leads to inefficient discriminant behaviors and too precise a description of events and
to not enough frequent behaviors. We provide, after some iterations, an event representation that
allows us to extract interesting discriminant chronicles.

Several iterations were required to effectively extract interesting patterns. These iterations
were based on event representation using ATC or CIP taxonomies. However, the automation of
the mining process allows us to be little involved in this process. Parameters was set up and, if the
results were not good, they were adjusted to obtain the desired results. This approach involves the
expert to evaluate the results and to guide the exploration but not to describe all the hypotheses
and construct their models. Using the discriminant chronicle mining is finally a great time saving
for the experts.

Finally, discriminant patterns have been presented to clinicians who conclude to their poten-
tial interestingness to explore care pathways supported by chronicles. The main interest of this
experiment was to show that some interesting patterns can be extracted and that clinician can actu-
ally understand them. Contrary to black-box approaches that can efficiently discriminate different
dataset type, this approach enables to bring insights to the expert about large data at hand. Further-
more, discriminant chronicle mining shows results in accordance with the previous results obtain
through a standard study process. No discriminant chronicle linked only a generic substitution with
an epileptic seizure and improved the study by describing the cases where a substitution (generic
to brand-named and brand-named to generic) was related with an epileptic seizure. The extracted
discriminant chronicles were also not limited to the substitution and described, for example, brain
stroke cases.

This application of discriminant chronicle mining on care pathways shows that this approach
is really useful for the automation of pharmaco-epidemiology study and hypothesis generation.
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Chapter 7

Conclusion

The contributions of this thesis are threefold: (i) the discriminant chronicle mining task, (ii) the
study of chronicles interpretability and (iii) a pharmaco-epidemiology case study.

The discriminant chronicle mining was introduced through the evaluation of the chronicle
model to be relevant to represent temporal behaviors. Our application objective was to identify
such temporal behaviors in care pathways and thus to conduct pharmaco-epidemiology studies.
The chronicle model was chosen because it can represent complex and insightful temporal behav-
iors.

We proposed the discriminant chronicle mining task to improve the interestingness of the ex-
tracted patterns. Algorithms were already implemented to extract frequent chronicles efficiently.
But in many different contexts, sequences can be labeled. The supervised dimension of the dis-
criminant chronicle mining task allows the user to describe which behaviors are interesting. An
effective and modular algorithm called DCM was proposed to solve this task. The discriminant
chronicle model is effectively extractable.

Thereby, we brought a new expressive model of discriminant temporal patterns and an algo-
rithm to effectively extract them. Because of the ability to express quantitative temporal constraints
and the flexibility of the constraint order, discriminant chronicles subsumes the state of art of the
discriminant temporal patterns. This model is more expressive than discriminant sequential pat-
terns [Fradkin and Mörchen, 2015] and partially ordered patterns [Fabrègue et al., 2014] thanks
to the temporal constraints. It is also more expressive than temporal annotated sequences (TAS)
[Giannotti et al., 2006] with the management of non-sequential constraints.

The efficiency of discriminant chronicles to represent the dataset from where they were ex-
tracted was compared to sequential patterns through the comparison of pattern-based classification
accuracy. Results have shown that discriminant chronicles are efficient as features in pattern-based
classification. Such results on various types of datasets highlight the genericity of our approach.

Comparison of different temporal pattern models in terms of classification accuracy leads us
to the question of the extracted pattern set interpretability. Indeed, we choose the chronicle model,
among other possible models (for example neural networks or linear discriminant analysis), for its
interpretability. The intuition was that the chronicle model is more interpretable than accurate
model like deep neural network. This intuition is reinforced by the justifications used to promote
pattern mining and pattern-based classification. For example, the abstract of [Bringmann et al.,
2011] presents pattern mining as:

Pattern mining can help to obtain models for structured domains, such as graphs
and sequences, and has been proposed as a means to obtain more accurate and more
interpretable models.

But we did not define what an interpretable model is before. A legitimate question is so: "Is the
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chronicle model effectively interpretable?" To confirm this intuition, we needed to compare mod-
els based on their interpretability. To focus the comparison of several temporal pattern models,
we generalized the notion of discriminant chronicle to a set of discriminant temporal pattern mod-
els. We defined then generalized discriminant chronicle interpretability through state-of-the-art
definitions [Lipton, 2016] and highlighted the difference between several generalized discriminant
chronicle models in terms of interpretability. We highlighted a trade-off between the interpretabil-
ity of a model and its classification accuracy. We compared the accuracy and interpretability of
several models experimentally on synthetic and real datasets.

Then, we analyze care pathways in the context of pharmaco-epidemiology studies. Through
this application, we highlighted the importance of using chronicle mining in such studies:

• It improves the temporal representation of interesting behaviors.

• It enables to automatically explore a large search space of potentially interesting chronicles.

Indeed, complex discriminant behaviors were extracted as discriminant chronicles from the GENEPI
dataset. In the original study, only sequentially behaviors were characterized (i.e. generic substi-
tution). The discovered chronicles identified similar substitution but also temporal information
characterizing the care pathways. Such precision in behavior description is more difficult to ob-
tain with the standard process of pharmaco-epidemiology study, and a mandatory to answer their
complex questions. Furthermore, the automation of the search space exploration allowed us to
generalize the original study. We did not extract discriminant chronicles describing a generic sub-
stitution in correlation with an epileptic seizure in accordance to the original study. We extended
the search to other discriminant behaviors. Our results on GENEPI study were validated by clini-
cians. This confirms that the approach is useful to conduct pharmaco-epidemiology study.

This thesis contributes and highlights the importance of temporal pattern mining. Indeed, the
insights given by extracted discriminant chronicles to experts are very important. Such insights
are difficultly obtainable using standard classification methods like deep neural networks. For
example, the patterns extracted in GENEPI dataset are understandable by clinicians. A black box
classifier could have better accuracy. In this thesis, the defended idea is that a slight improvement
of accuracy must not be worth losing human interpretability.

7.1 Discussion and perspectives

In this section we discuss the different contributions of this thesis and their perspectives. These
perspectives range from algorithmic improvements to the imagination of an objective interpretabil-
ity measure.

7.1.1 Application

We have to think about how to deliver the algorithm to be used by clinicians. At the time of the
case-study experiments, we first did experiments and then discussed the results with clinicians.
The goal of such release would be that clinicians do the experiments themselves. More generally,
we have to think about how to release the DCM algorithm to be used in a epidemiology study
platform. Furthermore, the way to represent lots of chronicles have to be elaborate. Indeed, the
DCM algorithm produces in some cases numerous patterns.

The initial idea of this work was to design a tool dedicated to support temporal data manage-
ment. Figure 7.1 illustrates the proposed process scheme. This tool was thought as a whole data
mining processing chain from the data pre-processing step (3) and then the pattern mining step (1)
to the evaluation of the results (2).
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Figure 7.1: Illustration of the sequential pattern mining tools imagined at the beginning of the
thesis. The rectangle dashed box was thought to be a language dedicated to the temporal data
management.

In this thesis, we proposed a generic pattern mining algorithm that can be used within this tool
(4) and proposed some way to evaluate the results. The perspectives dedicated to the generalization
of discriminant chronicles and the evaluation of the interpretability would improve these points.
Two components of the tool are still missing:

• The management of the pre-processing step (3)

• The user interface

One of the most challenging issues to tackle is the management of event taxonomies. This
appears to be very important in the context of pharmaco-epidemiology. Such improvement would
lead to merge the pre-processing step and the pattern mining step: the goal would be to extract
patterns as much as possible from the raw data. We model a first proposition of such reconciliation
exploring declarative pattern mining approach [Guyet et al., 2017].

The remaining works to do is so focus on the user interface. An idea of such interface would
be to propose a domain specific language for querying care pathways. Such language has to be
expressive enough to allow the user to request complex data management while being easy to use.

7.1.2 Discriminant chronicle mining algorithm

Some issues are remaining in our implementation of the discriminant chronicle mining algorithm.
The first issue concerns the multiple instance problem (see section 4.3). The algorithm Ripperk

is used to extract discriminant numeric rules because it is one of the most efficient algorithms to
produce such rules. The issue is that Ripperk is not dedicated to handle multiple instance problems.
Indeed, there is a difference between the number of occurrences covered by a rule and the number
of sequences covered by this same rule. Thereby, some not discriminant rules could be extracted
instead of discriminant rules because of this problem. We have so no guarantee that Ripperk will
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extract at least one discriminant rule for a multiset even if one exists. We can so highlight two
weaknesses in our approach:

• There is no evaluation of the coverage of the search space done by DCM.

• We are not able to propose a solution based on a multiple instance algorithm that offers the
same or best results than Ripperk. At the moment, our attempts to use multiple instance
classifier failed to improve our results and deeper studies are still to be done.

One attempt was done by using MIT I [Blockeel et al., 2005] instead of Ripperk but the evaluation
in terms of classification accuracy promote Ripperk as best algorithms for temporal constraint
mining. It is interesting to notice that this work is the first to make the link between temporal
sequences and multiple instance learning. There is certainly interesting theoretical questions to
explore and algorithms to propose with an explicit management of this problem.

The perspectives concerning the multiple instance management are twofold. On the one hand,
the evaluation of the search space coverage by the extracted discriminant chronicles by a formal-
ization of the discriminant chronicle lattice. With a formalization of the discriminant chronicle
search space, it would be easier to evaluate which type of chronicle is missing and how to improve
or correct the Ripperk strategy. Such formalization could be obtained by extended those done for
sequential patterns in formal concept analysis domain [Buzmakov et al., 2013, Otaki et al., 2014].
Such formalization will not directly solve the multiple instance problem but will allow to evaluate
what is lost by not manage it.

On the other hand, the multiple instance domain is large and the right strategy to extract tem-
poral constraint was presumably already studied. The choice of the better algorithm and the better
multiple instance strategy can then be done experimentally by comparing a large collection of
multiple instance algorithms.

Another issue of the algorithm application concerns the event granularity. We call here event
granularity the level at which two different events are considered similar or not. For exam-
ple, one sequence can be 〈(banana,1),(orange,2),(bread,3)〉 at a certain event granularity and
〈( f ruit,1),( f ruit,2),(bread,3)〉 at another. Case study of chapter 6 shown that it can be difficult
to extract discriminant behaviors when the event granularity is too high i.e. too many events are
considered similar. In the previous example, the event granularity level using f ruit as event type
is too high if the discriminant behaviors are specific to banana or to orange but not both. For
example, when drugs were only described by their ATC code, no discriminant chronicles were ex-
tracted. On the other hand, when drugs were described by their CIP code i.e. the most finest grain
for drugs, no discriminant chronicles were frequent. We had to choose a compromised granularity
where drugs were described by a triplet between ATC and CIP. But even with this compromise,
extracted chronicles were rare and not very discriminant. We see in this example how difficult is
the data preparation phase.

A perspective of improvement of handling such data would be to use hierarchical events in
chronicle mining. The potential benefits would be twofold:

• Extracted discriminant behaviors could cover a larger population. Indeed, some extracted
chronicles are rare because of few events that could be generalized. Using similar events
but more generalized could improve the frequency of such chronicles without decrease too
highly their growth rate. For example, if the discriminant behavior hidden in a dataset is
"Buy a banana and then another fruit", the actual algorithm will extract all the chronicle de-
scribing the combinations of banana and another fruit. If the fruit contained by the dataset
are banana, orange and raspberry, one chronicle could be extracted for each of the three
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multisets: {{banana,banana}}, {{banana,orange}} and {{banana,raspberry}}. The discrim-
inant chronicle based on multiset {{banana, f ruit}} will so describe a behavior more general
and so more frequent. It would provide fewer patterns with individual better significance.

• The pre-processing step of data would be easier without choosing the event granularity. All
the information of the hierarchy would be contained in the dataset and the best granularity
will be chosen by the algorithm for each pattern. It would prevent from doing the tedious
data preparation task.

Such improvement could be done by extending sequential pattern mining with hierarchical
approaches like LASH [Beedkar and Gemulla, 2015]. In the case of an extension of LASH, the
additional complexity due to hierarchy management could be partially absorbed by the capacity.

7.1.3 Generalized discriminant chronicles

Comparison of pattern model interpretability in section 5 shown that simple models can effectively
represent behaviors even in datasets containing complex behaviors. For example, the discriminant
partially ordered patterns described behaviors of the synthetic dataset of chapter 5 even if this
dataset was constructed on a complex temporal behavior. Thereby, losing interpretability for in-
creasing accuracy by using more complex models would be justified only in case of significant
increase of the accuracy.

The generalized discriminant chronicle mining is limited by the choice of the pattern model
that will describe discriminant behaviors. If the dataset behaviors are not homogeneous in terms of
complexity, improving the accuracy by using a more complex model will artificially penalize the
pattern set interpretability. Thereby, a solution is to represent the simplest behaviors using more
interpretable models and the most complex behaviors by the most complex model. This would
justify a loss of interpretability only for the behaviors that are not or not sufficiently covered by
the desired interpretable model. Such approach will then allow to:

• classify datasets with the same accuracy as the best classifiers

• represent each behavior with the most as possible interpretable pattern model

Thereby, there will be no more trade-off between interpretability and accuracy because the least
interpretable model will be used to represent behaviors that are not representable by the most
interpretable model.

Furthermore, such approach could highlight the genericity of the generalized discriminant
chronicle mining algorithm. Indeed, a mixed pattern set can be extracted by the same algorithm.
The difference with the actual algorithm would be the choice of which method to use to compute
the occurrence mapping functions.

The generalization of discriminant chronicles we proposed was focus on the temporal dimen-
sion. Other data dimensions could be used to enrich the chronicle model and could increase the
model accuracy. For example, the dataset dedicated to rule extraction done by Ripperk could be
enriched by sequence metadata. In the pharmaco-epidemiology context, an example of metadata
for healthcare pathways is the age. The rules extracted by Ripperk will contain conditions of the
age≤ x. For example, the condition age≤ 60 specifies that the chronicle describes a discriminant
behavior that only matches patients younger than 60 years old. The previous example could be
generalized to other metadata such that gender or location.

Such approach is extendable to patterns like negative chronicles. In this case, the non-occurrence
of events between two events of the multiset will be a dimension to discriminate. Table 7.1 illus-
trates a negative occurrence dataset from which the discriminant negative chronicle illustrated by
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SID AA→B AB→C AA→C A ?D−→ B B ?D−→C A ?D−→C Label
1 2 2 4 False False False +
1 −1 2 1 False False False +
2 5 −2 3 False True False +
3 3 0 3 False False True +
5 −1 3 1 False False True −
6 6 −1 5 True False False −

Table 7.1: Example of dataset describing the occurrences of multiset {{A,B,C}}. In this dataset
there is two types of attributes: numerical attributes and boolean attributes. The duration between
two events and the occurrence of an event between two others. For example, A ?D−→ B corresponds
to the occurrence of D between A and B.

A

B
¬D

C

[-2,2]

Figure 7.2: Example of discriminant negative chronicle that could be extracted from the dataset
on Table 7.1. The constraint ¬D between the events A and B specify that no occurrence of D can
be found between A and B.

Figure 7.2 could be extracted. With A = apple, B = bread, C = chocolate and D = dumplings, the
negative chronicle on Figure 7.2 will a represent a behavior matching the sequence where occur
A, B and C but not D between A and B. This allows a greater expressiveness for the model: in
this example, we can extract two specific behaviors where the one for which the dumplings are
bought between apple and bread is different from the other one. The formalism of the generalized
chronicle will be unchanged but in this case it is the occurrence definition that will be extended to
any vector of attributes considered interesting to be discriminant.

7.1.4 Measures of interpretability

Interpretable models and, more particularly, interpretable pattern models are presented in this work
as useful to give insights to domain experts and stakeholders. The goal of such knowledge discov-
ery is to give insights to stakeholders. It aims as identifying the specificities of different classes
described in a dataset. In this case, an interpretable model is not dedicated to automatically classify
new examples but to highlight behaviors that would have been difficult to find manually.

Chapter 5 initiates the specification of interpretability. More efforts have to be done to make
it more operational. Thereby, the comparison between two models requires a great degree of sub-
jective assessment. A general agreement could define that a pattern model is interpretable or more
interpretable than another but such agreement is not common and could differ for different popu-
lations. For example, data scientists could argue that a linear model is interpretable but clinicians
could not agree.

A perspective of improvement of the work done on generalized discriminant chronicle in-
terpretability is the definition of an objective interpretability measure. Such measure could be
interesting to design a generalized discriminant chronicle model for a specific application. The
model interpretability would be presented to the final user as the accuracy power of the model.
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In accordance with Lipton’s thoughts [Lipton, 2017] such measure has to be defined with or at
least validated by the stakeholders, for example clinicians in the pharmaco-epidemiology context.
Indeed, the definition of interpretable models has to be defined by a larger population than the
researchers in data analysis domain. Furthermore, each domain could have its own definition of
interpretable models. If the goal of an interpretable model is to be interpretable by domain experts
or stakeholders who are not data scientists, the definition of interpretability has to be defined by
them.

A way to construct such interpretability measure could be done through experiments on users.
Such experiment will be based on the evaluation of several models by domain experts. One dif-
ficulty to do such experiment is to find enough relevant datasets and associated domain experts
to ensure the quality of the evaluation. Another difficulty is to formalize the evaluation of the
participants. However, such experiments would be useful to describe interpretable models and to
learn what is effectively required as interpretability for the domain experts. Lipton wrote that "we
must move past the word interpretable and decide which definitions to focus on" [Lipton, 2017]
and such experiment could guide us to those definitions to focus on.

This work was based on the subjective opinion that temporal pattern mining is one of the most
promising approaches to give insights and support stakeholders. Foundations of this opinion are
the interpretability and explanability of the patterns. Patterns seem to be interpretable and explain-
able due to their simplicity and the simplicity of the measure for which they are extracted such that
the support. But this assumption remains to be evaluated more objectively. The work presented
in this thesis was dedicated to highlight the interestingness and interpretability of temporal pattern
mining. An improvement of this work such that a measure of interpretability will help to pro-
mote temporal pattern mining as a good assistant tool for stakeholders. Furthermore, in a context
where a right to explanation is claimed, temporal pattern mining seems to be a pertinent option
face to popular but difficultly explainable classification models such that deep neural networks or
bayesian approaches.
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ANSM Agence Nationale de Sécurité du Médicament (French Agency for the Safety of Health
Products). 10, 98

ATC Anatomical Therapeutic Chemical Classification System. 96, 98, 99, 101, 102, 105, 110

CIP Code Identifiant de Présentation (Presentation Identifier Code): code required for drug mar-
keting authorization decision in France. 96, 102, 105, 110

DCM Discriminant Chronicle Mining. 9, 53, 55, 62–68, 73, 100, 101, 104, 107, 108, 110

GENEPI GENeric substitution of anti-EPIleptic drugs: name of a pharmaco-epidemiology study
conducted in the University hospital of Rennes [Polard et al., 2015]. 10, 11, 25, 50, 95,
98–101, 108

PEPS Pharmaco-Epidemiologie des Produits de Santé (Pharmaco-Epidemiology of Healthcare
Products). 10, 25, 98

SNDS Système National des Données de Santé (National System for Healthcare Data). 4, 20,
95–99, 101

UCI University of California, Irvine: reference to the dataset repository created in this university
https://archive.ics.uci.edu/ml/index.php. 53

115

https://archive.ics.uci.edu/ml/index.php


116 Glossary



Appendix A

DCM implementation

The DCM algorithm used in chapter 4 to extract discriminant chronicles was implemented in C++
en based on the original code of Ripperk writted in C. This code was deposited at the Agence de
Protection des Programmes under the number: IDDN.FR.001.440018.000.S.P.2017.000.20700.
The DCM algorithm sources are available on the INRIA GitLab: https://gitlab.inria.
fr/ydauxais/DCM.

The following pages are the README file of the DCM git deposit. It provides information
about the software usage and its main parameters.

An alternative implementation of DCM has been implemented in Python with the purpose to
experiment generalized discriminant chronicles. This version enables to easily change the occur-
rence mapping function and associated classifiers. The sources of this implementation are available
on the INRIA GitLab: https://gitlab.inria.fr/ydauxais/GDC-PBC.
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DCM

DCM (Discriminant chronicle mining) is a C++ implementation of two chronicle
mining task. The extraction is done from set of temporal sequences.

• Discriminant chronicle mining: The main purpose of DCM is to extract
discriminant chronicles from a positive dataset in comparison to a negative
dataset. A chronicle will be considered discriminant if its support in the
positive dataset is greater than gmin times its support in the negative
dataset. The parameter gmin has to be defined by the user before the run.
The implementation of this task in DCM is not complete as it will not
extract the whole set of discriminant chronicles. This task has been detailed
in Discriminant chronicle mining: Application to care pathways.

• Frequent chronicle mining: DCM contains also an implementation
of the frequent chronicle mining task. The implementation of this task
is complete according to the definition that the bounds used for the
temporal intervals of the chronicles must occur in the dataset. This part
of the implementation has not been maintained for a while and could
contains some bugs. This implementation was used for the experiments in
Chronicles mining in a database of drugs exposures.

License

This code, except files present in Ripper/ripper/code, is written by Yann
Dauxais and belongs to the University of Rennes 1. This code is licensed
under the BSD License - see the LICENSE.md file for details. This code
is deposited at the Agence de Protection des Programmes under the num-
ber: ‘IDDN.FR.001.440018.000.S.P.2017.000.20700’. The files present in Rip-
per/ripper/code belong to AT&T and were written by William W. Cohen.

Setup

To compile DCM, just use the CMakeLists.txt in the root directory.

mkdir build
cd build
cmake ..
make
cd ..

If the compilation is successful, the executable Extract will be present in the
bin directory.



Requirements

The compilation requires a GCC version greater or equal than 4.9 (supporting
the flag --std=c++0x and the <regex> implementation).

The implementation includes <boost/program_options.hpp> that must be
installed.

Examples

The directory examples contains the two subdirectories ECG and BIDE-D.

The directory ECG includes the two datasets d214lbbb_H141.dat and
d214pvc.dat. Those datasets was generated from the MIT-BIH Arrhythmia
database.

The directory BIDE-D includes a translation in our format of the datasets
provided here.

The sequences in those datasets are represented using the line format.

The uses of the command ./bin/Extract examples/ECG/d214lbbb_H141.dat
-d examples/ECG/d214pvc.dat -f 0.8 -g 2 will return 4 discriminant chron-
icles:

C: {["qrs[abnormal]", "qrs[abnormal]", "qrs[abnormal]"]}
0, 1: (686, 881)
0, 2: (-inf, inf)
1, 2: (539, 894)
f: 125/20

C: {["qrs[abnormal]", "qrs[abnormal]", "qrs[abnormal]",
"p_wave[normal]", "p_wave[normal]"]}
0, 1: (-inf, inf)
0, 2: (-inf, 1861)
0, 3: (-173, inf)
0, 4: (706, inf)
1, 2: (653, 1011)
1, 3: (-inf, inf)
1, 4: (-inf, 706)
2, 3: (-inf, inf)
2, 4: (-inf, inf)
3, 4: (-inf, 1653)
f: 116/0

C: {["qrs[abnormal]", "qrs[abnormal]", "p_wave[normal]"]}
0, 1: (1402, 1705)
0, 2: (544, 1384)



1, 2: (-inf, inf)
f: 119/41

C: {["qrs[abnormal]", "qrs[abnormal]", "p_wave[normal]",
"p_wave[normal]", "p_wave[normal]"]}
0, 1: (-inf, inf)
0, 2: (-inf, inf)
0, 3: (-inf, inf)
0, 4: (-inf, 1564)
1, 2: (-inf, inf)
1, 3: (-inf, inf)
1, 4: (-172, inf)
2, 3: (-inf, inf)
2, 4: (-inf, inf)
3, 4: (-inf, 1355)
f: 117/30

Those chronicles are the discriminant chronicles of the positive dataset
d214lbbb_H141 in comparison to the negative dataset d214pvc which occurs
in at least 80% of the sequences of the positive dataset and 5 times in the
positive than in the negative.

For example, for the first chronicle, {["qrs[abnormal]", "qrs[abnormal]",
"qrs[abnormal]"]} corresponds to the multiset of the chronicle. The events
are separated by commas. The line 0, 1: (686, 881) corresponds to a tem-
poral constraint of the chronicle. 0 and 1 correspond to indices in the mul-
tiset, it is so a temporal constraint between the first and the second occur-
rences of qrs[abnormal]. The temporal interval is defined by (686, 881)
what means that the temporal constraint is "qrs[abnormal]" [686, 881]
"qrs[abnormal]". Finally, f:125/20 corresponds to a positive support of 125
and a negative support of 20.

Argument options

The DCM parameters are listed in the help of the executable. To print this help,
use the parameter --help or simply run the executable without parameters.

Usage: Extract input_file fmin [options]
Positional Options (required):

-i [ --input_file ] arg input file containing dataset to mine (string)
- positive dataset if --disc is used
positional : input_file

-f [ --fmin ] arg minimal frequency threshold (number)
Number of sequences if >= 1 (support)
Percent of positive sequences number else
positional fmin



General Options:
--help Display this help message
-d [ --disc ] arg Extract discriminant chronicles using this file as

negative dataset
-u [ --IBM ] Use IBM format for files instead of sequence per

line
--mincs arg Minimum size of extracted chronicles
--maxcs arg Maximum size of extracted chronicles
-c [ --close ] Extract frequent closed chronicles or discriminant

chronicles from closed multisets if --disc is used
-j [ --json ] Output format is json instead of plain text
-v [ --verbose ] The program will speak

Discriminant chronicles Options:
-g [ --gmin ] arg Minimal growth threshold

default : 2

Frequent chronicles Options:
-a [ --all_different ] Extract chronicles with multisets containing at most

one occurrence of an event
-w [ --cwm ] arg Define the maximal windows size for temporal

constraints
-n [ --not_calc_freq ] If used, doesn't calculate exact frequency it's know

bigger than fmin
ignored if --close is used
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Appendix B

ATC descriptions

This appendix is dedicated to the event identifiers used in chapter 6.
The first table, Table B.1, associates the different ATC codes and their meanings. The column

ATC03 class corresponds to the meaning of the first 3 characters of the ATC code.
The second table, Table B.2, associates the event identifiers in the chronicles presented in

chapter 6 and their occurrences in the french drug register. it is worth to notice that the number of
drugs represented by those identifiers is quite heterogeneous. Where brand-name identifiers only
refer to one specif drug, the others refer to about ten drugs. The paracetamol is here an exception
as it refers to a great number of drugs.

ATC ATC03 class name
B01AC06 anti-thrombotic agents acetylsalicylic acid
N02BE01 analgesics paracetamol
N03AF01 anti-epileptics carbamazepine
N03AG01 anti-epileptics valproic acid
N03AX09 anti-epileptics lamotrigine
N03AX11 anti-epileptics topiramate
N03AX14 anti-epileptics levetiracetam

Table B.1: Description of the ATC codes used in chapter 6.

ATC speciality group GRS occurrences
B01AC06 ASPIRINE UPSA 325MG GELULE 28

ASPIRINE PROTECT 100 MG CPR GASTRORESISTANT 90
ASPIRINE PROTECT 100 MG CPR GASTRORESISTANT 30
CARDIOSOLUPSAN 100MG PDR ORALE 28
KARDEGIC 75MG PDR ORALE SACHET 30/153,45
ASPIRINE PROTECT 300MG CPR 30
KARDEGIC 160MG PDR ORALE SACHET 30
KARDEGIC 300MG PDR ORALE SACHET 30
CLARAGINE 300 MG CPR 30
CLARAGINE 300 MG CPR 30

N03AG01 G 438 VALPROATE DE SODIUM QUALIMED LP 500MG CPR 30
VALPROATE DE SODIUM SANDOZ LP 500MG CPR 30
VALPROATE DE SODIUM BIOGARAN LP 500MG CPR 30
VALPROATE DE SODIUM TEVA LP 500MG CPR 30
VALPROATE DE SODIUM SANDOZ 500 MG CPR SEC 30
VALPROATE DE SODIUM RPG LP 500MG CPR 30
VALPROATE DE SODIUM TEVA SANTE LP 500 MG CPR SEC 30
VALPROATE DE SODIUM TEVA SANTE LP 500MG CPR 30
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VALPROATE DE SODIUM EG LP 500MG CPR 30
VALPROATE DE SODIUM MERCK LP 500MG CPR 30
VALPROATE DE SODIUM ZENTIVA LP 500MG CPR 30
VALPROATE DE SODIUM ARROW 500 MG CPR SEC 30
VALPROATE DE SODIUM ALTER LP 500MG CPR 30

N03AG01 R 438 DEPAKINE CHRONO 500MG CPR 30
N03AX09 R 431 LAMICTAL 100MG CPR DISP 30
N02BE01 PARACETAMOL NOR 500 MG CPR 16

PARACETAMOL SANDOZ 500 MG CPR EFF 16
PARACETAMOL BGR 500 MG CPR 16
PARACETAMOL RPG 500MG PDR SAC 12
PARACETAMOL QUALIMED 500MG CPR 16
BRILIVO 500 MG CPR 16
PARACETAMOL GNR 500 MG CPR 16
PARACETAMOL RANBAXY 500 MG GELULE 16
PARACETAMOL RATIOPHARM 500 MG GELULE 16
PARACETAMOL RATIOPHARM 1 000 MG CPR EFF SEC 8
DOLIPRANE 150MG PDR ORALE SACHET 12/0,81 G
DOLIPRANE 100MG PDR ORALE SACHET 12/0,54 G
PARACETAMOL ZYDUS 1 G CPR 8
PARACETAMOL EVOLUGEN 500 MG GELULE 16
DAFALGAN 500MG GELULE 16
PARACETAMOL RATIOPHARM 500 MG CPR EFF 16
PARACETAMOL SANDOZ 500MG GELULE 16
PARACETAMOL ARROW 1G CPR EFF SEC 8
PARACETAMOL MYLAN 1G CPR EFF SEC 8
DAFALGAN 500 MG CPR SEC 16
PARACETAMOL TEVA 500MG CPR EFF 16
DAFALGAN PEDIATRIQUE 3 % SOL BUV 1/90 ML
DOLIPRANE 200MG PDR ORALE SACHET 12/1,08 G
PARACETAMOL ARROW 500 MG CPR 16
DOLKO 1G CPR 8
PARACETAMOL ALMUS 1G CPR 8
PARACETAMOL SANDOZ 1 G CPR SEC 8
PARACETAMOL TEVA 1 G CPR EFF SEC 8
PARACETAMOL EG 500MG CPR 16
DOLIPRANE 2,4% SS SUCRE SUSP BUV 1/100 ML
DOLIPRANE 300MG SUPPO 10
DOLIPRANE 200MG SUPPO 10
PARACETAMOL EG 1 G CPR 8
PARACETAMOL BIOGARAN 1G CPR 8
PARACETAMOL TEVA 500MG CPR 16
PARACETAMOL EG 1G CPR EFF SEC 8
PARACETAMOL MYLAN 500MG GELULE 16
PARACETAMOL TEVA 1G CPR 8
PARACETAMOL BIOGARAN 500MG CPR EFF 16
DOLKO 60MG/2ML SOL BUV FL 1/90 ML
PARACETAMOL TEVA SANTE 1000 MG CPR SEC 8
DOLSTIC 100 MG/ML SOL BUV 1/60 ML
PARACETAMOL GNR 1 G CPR SEC 8
EFFERALGAN 500MG CPR 16
PARACETAMOL BIOGARAN 500MG GELULE 16
DOLIPRANE 1G AD SUPPO 8
DAFALGAN 600MG SUPPO 10
CLARADOL 500MG CPR EFF 16
DOLKO 500MG PDR ORALE SACHET 12
DOLIPRANE 100MG SUPPO 10
CLARADOL 500MG CPR SEC 16
PARACETAMOL EG 500MG GELULE 16
DOLKO 500MG CPR SEC 16
PARACETAMOL WINTHROP 1 G CPR SEC 8
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PARALYOC 250MG LYOPHILISAT ORAL 10
PARACETAMOL IREX 500MG CPR 16
PARACETAMOL BIOGARAN 500MG CPR 16
CLARADOL 120MG ENF NR CPR EFF 12
PARACETAMOL GNR 500 MG CPR 16
PARACETAMOL TEVA SANTE 500 MG CPR 16
DOLIPRANE 500MG PDR ORALE SACHET 12
DOLIPRANE 500MG CPR 16
PARACETAMOL G GAM 1G CPR EFF SEC 8
DOLKO 170MG SUPPO 10
DAFALGAN 150 MG PDRE EFFERV SOL BUVABLE SACHET 12
DAFALGAN 80 MG SUPPO 10
PARACETAMOL GNR 500MG CPR 16
DAFALGAN 80 MG PDRE EFFERV SOL BUVABLE SACHET 12
DAFALGAN 150 MG SUPPO 10
DOLIPRANE 1G PDR ORALE SACHET 8/5,4 G
DAFALGAN 300 MG SUPPO 10
PARACETAMOL ARROW 1G CPR 8
PARACETAMOL ZENTIVA 500 MG CPR 16
DOLIPRANE 1G CPR EFF SEC 8
EFFERALGAN 1G CPR EFF 8
DAFALGAN 1 G CPR 8
PARACETAMOL TEVA 300 MG PDRE SOL BUV SACHET 12
PARACETAMOL ZYDUS 500 MG GELULE 16
PARACETAMOL AHCL 1 G CPR 8
PARACETAMOL ARROW 500MG CPR EFF SEC 16
DOLIPRANE 1000 MG GELULE 8
PARACETAMOL TEVA 500 MG PDRE SOL BUV SACHET 12
DOLIPRANE 50MG PDR ORALE SACHET 12
EXPANDOL 500MG CPR 16
PARACETAMOL BIOGARAN 1G CPR EFF SEC 8
PARACETAMOL SANDOZ 500 MG CPR 16
PARACETAMOL RPG 500MG GELULE 16
PARACETAMOL G GAM 500MG CPR EFF 16
PARACETAMOL ACTAVIS 500 MG CPR 16
PARACETAMOL CRISTERS 500 MG GELULE 16
DOLSTIC 100 MG/ML SOL BUV 1/30 ML
DOLIPRANE 350MG SUPPO 10
PARACETAMOL ISOMED 1 000 MG CPR EFF SEC 8
PARACETAMOL ISOMED 1 000 MG CPR 8
PARACETAMOL ZYDUS 500MG CPR 16
PARACETAMOL RATIOPHARM 1G CPR 8
DOLIPRANE 150MG SUPPO 10
EFFERALGAN 500MG CPR EFF SEC 16
PARACETAMOL BIOGARAN 1 000 MG PDRE SOL BUV SACHET 8
PARACETAMOL RPG 500MG PDR ORALE 12
PARACETAMOL BAYER 500MG CPR EFF 16
DAFALGAN 1G CPR SEC 8
DOLIPRANE 125MG PDR ORALE SACHET 12
DAFALGAN 500 MG CPR 16
PARACETAMOL BIOGARAN 500 MG CPR 16
PARACETAMOL MYLAN 1 G CPR SEC 8
PARACETAMOL CRISTERS 1 G CPR 8
PARACETAMOL ALMUS 500MG CPR 16
PARACETAMOL ALTER 1G CPR 8
PARACETAMOL ACTAVIS 1000 MG CPR SEC 8
PARACETAMOL BIOGARAN 300 MG PDRE SOL BUV SACHET 12
PARACETAMOL ISOMED 500 MG CPR 16
PARACETAMOL BAYER 500MG CPR 16
PARACETAMOL ARROW 500MG CPR 16
DOLIPRANE 250MG PDR ORALE SACH 12
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PARACETAMOL ALTER 1G GRANULES EFF SACH 8
PARALYOC 125MG LYOPHILISAT ORAL 10
PARACETAMOL ARROW 500 MG GELULE 16
PARACETAMOL RATIOPHARM 500MG CPR 16
DOLIPRANE 1G CPR 8
PARACETAMOL ARROW 500 MG GELULE 16
PARACETAMOL ISOMED 500 MG CPR SEC 16
PARACETAMOL RPG 1 G CPR SEC 8
PARACETAMOL RPG 500MG CPR EFF 16
DAFALGAN 250 MG PDRE SUSP BUVABLE SACHET 12
PARACETAMOL RPG 500MG CPR 16
EFFERALGAN PEDIATRIQUE 30MG/ML SOL BUV 1/90 ML
DOLIPRANE 170MG SUPPO 10
DOLIPRANE 80MG SUPPO 10
FEBRECTOL 500MG CPR 16
FEBRECTOL 250MG CPR DISPERSIBLE 12
PARALYOC 50MG LYOPHILISAT ORAL 10
PARACETAMOL MYLAN 500 MG GELULE 16
PARACETAMOL IVAX 500MG CPR 16
PARACETAMOL TEVA 500 MG GELULE 16
FEBRECTOL 125MG CPR DISPERSIBLE 12
DOLKO 80MG SUPPO 10
PARACETAMOL GENODEX 500MG CPR 16
BRILIVO 1000 MG CPR SEC 8
PARACETAMOL ACTAVIS 500 MG CPR SEC 16
PARACETAMOL QUALIMED 1 G CPR SEC 8
PARACETAMOL WINTHROP 1 G CPR EFF SEC 8
PARACETAMOL EG 500MG CPR 16
PARACETAMOL EG 500MG CPR EFF 16
PARACETAMOL CRISTERS 500 MG CPR 16
PARACETAMOL RANBAXY 1 G CPR 8
PARALYOC 500MG LYOPHILISAT ORAL 16
ALGODOL 500MG CPR 16
PARACETAMOL MYLAN 500MG CPR EFF 16
PARACETAMOL GRUNENTHAL 1 G CPR 8
PARACETAMOL SANDOZ 1G CPR EFF SEC 8
PARACETAMOL TEVA 1 000 MG PDRE SOL BUV SACHET 8
PARACETAMOL BIOGALENIQUE 500 MG GRAN SUSP BUV SACHET 12
PARACETAMOL MYLAN 500MG CPR 16
PARACETAMOL MERCK 500 MG GELULE 16
PARACETAMOL ARROW 300MG PDR ORALE SACH 12
PARACETAMOL BIOGARAN 500 MG PDRE SOL BUV SACHET 12
DOLIPRANE 500MG GELULE 16
DOLIPRANE 300MG PDR ORALE SACHET 12/1,62 G
PARACETAMOL ARROW 500MG PDR ORALE SACH 12
EXPANDOL 500 MG PDRE SOL BUV SACHET 12
DAFALGAN 1G CPR PELLICULE 8
PARACETAMOL ARROW 1G PDR ORALE SACH 8
GELUPRANE 500MG GELULE 16
BRILIVO 1000 MG CPR 8
PARACETAMOL SET 500 MG CPR 16
DOLIPRANE 500MG CPR EFF 16

Table B.2: Association of the event identifiers used in chapter 6 and the occur-
rences in the french register.
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Résumé

De nombreuses données sont enregistrées dans le cadre d’applications variées et leur analyse est
un challenge abordé par de nombreuses études. Parmi ces différentes applications, cette thèse est
motivée par l’analyse de parcours patients pour mener des études de pharmaco-épidémiologie. La
pharmaco-épidémiologie est l’étude des usages et effets de produits de santé au sein de populations
définies. Le but est donc d’automatiser ce type d’étude en analysant des données.

Parmi les méthodes d’analyses de données, les approches d’extraction de motifs extraient des
descriptions de comportements, appelées motifs, caractérisant ces données. L’intérêt principal de
telles approches est de donner un aperçu des comportements décrivant les données. Dans cette
thèse, nous nous intéressons à l’extraction de motifs temporels discriminants au sein de séquences
temporelles, c’est-à-dire une liste d’évènements datés. Les motifs temporels sont des motifs re-
présentant des comportements par leur dimension temporelle. Les motifs discriminants sont des
motifs représentant les comportements apparaissant uniquement pour une sous-population bien
définie. Alors que les motifs temporels sont essentiels pour décrire des données temporelles et que
les motifs discriminants le sont pour décrire des différences de comportement, les motifs temporels
discriminants ne sont que peu étudiés. Dans cette thèse, le modèle de chronique discriminante est
proposé pour combler le manque d’approches d’extraction de motifs temporels discriminants. Une
chronique est un motif temporel représentable sous forme de graphe dont les nœuds sont des évè-
nements et les arêtes sont des contraintes temporelles numériques. Le modèle de chronique a été
choisi pour son expressivité concernant la dimension temporelle. Les chroniques discriminantes
sont, de ce fait, les seuls motifs temporels discriminants représentant numériquement l’information
temporelle.

Les contributions de cette thèse sont : (i) un algorithme d’extraction de chroniques discrimi-
nantes (DCM), (ii) l’étude de l’interprétabilité du modèle de chronique au travers de sa générali-
sation et (iii) l’application de DCM sur des données de pharmaco-épidémiologie.

L’algorithme DCM est dédié à l’extraction de chroniques discriminantes et basé sur l’algo-
rithme d’extraction de règles numériques Ripperk. Utiliser Ripperk permet de tirer avantage de
son efficacité et de son heuristique incomplète évitant la génération de motifs redondants. La gé-
néralisation de cet algorithme permet de remplacer Ripperk par n’importe quel algorithme de
machine learning. Les motifs extraits ne sont donc plus forcément des chroniques mais une forme
généralisée de celles-ci. Un algorithme de machine learning plus expressif extrait des chroniques
généralisées plus expressives mais impacte négativement leur interprétabilité. Le compromis entre
ce gain en expressivité, évalué au travers de la précision de classification, et cette perte d’inter-
prétabilité, est comparé pour plusieurs types de chroniques généralisées. L’intérêt des chroniques
discriminantes à représenter des comportements et l’efficacité de DCM est validée sur des données
réelles et synthétiques dans le contexte de classification à base de motifs. Des chroniques ont fina-
lement été extraites à partir des données de pharmaco-epidemiologie et présentées aux cliniciens.
Ces derniers ont validés l’intérêt de celles-ci pour décrire des comportements d’épidémiologie
discriminants.
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Abstract

Data are recorded for a wide range of applications and their analysis is a great challenge addressed
by many studies. Among these applications, this thesis was motivated by analyzing care pathway
data to conduct pharmaco-epidemiological studies. Pharmaco-epidemiology is the study of the
uses and effects of healthcare products in well-defined populations. The goal is then to automate
this study by analyzing data.

Within the data analysis approaches, pattern mining approaches extract behavior descriptions,
called patterns, characterizing the data. Patterns are often easily interpretable and give insights
about hidden behaviors described by the data. In this thesis, we are interested in mining dis-
criminant temporal patterns from temporal sequences, i.e. a list of timestamped events. Temporal
patterns represent expressively behaviors through their temporal dimension. Discriminant pat-
terns are suitably adapted for representing behaviors occurring specifically in small subsets of a
whole population. Surprisingly, if temporal patterns are essential to describe timestamped data
and discriminant patterns are crucial to identify alternative behaviors that differ from mainstream,
discriminant temporal patterns received little attention up to now. In this thesis, the model of dis-
criminant chronicles is proposed to address the lack of interest in discriminant temporal pattern
mining approaches. A chronicle is a temporal pattern representable as a graph whose nodes are
events and vertices are numerical temporal constraints. The chronicle model was chosen because
of its high expressiveness when dealing with temporal sequences and also by its unique ability to
describe numerically the temporal dimension among other discriminant pattern models.

The contribution of this thesis, centered on the discriminant chronicle model, is threefold: (i) a
discriminant chronicle model mining algorithm (DCM), (ii) the study of the discriminant chronicle
model interpretability through its generalization and (iii) the DCM application on a pharmaco-
epidemiology case study.

The DCM algorithm is an efficient algorithm dedicated to extract discriminant chronicles and
based on the Ripperk numerical rule learning algorithm. Using Ripperk allows to take advan-
tage to its efficiency and its incomplete heuristic dedicated to avoid redundant patterns. The DCM
generalization allows to swap Ripperk with alternative machine learning algorithms. The extracted
patterns are not chronicles but a generalized form of chronicles. More expressive machine learning
algorithms extract more expressive generalized chronicles but impact negatively their interpretabil-
ity. The trade-off between this expressiveness gain, evaluated by classification accuracy, and this
interpretability loss, is compared between several types of generalized chronicles. The interest
of the discriminant chronicle model and the DCM efficiency is validated on synthetic and real
datasets in pattern-based classification context. Finally, chronicles are extracted from a pharmaco-
epidemiology dataset and presented to clinicians who validated them to be interesting to describe
epidemiological behaviors.
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