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Abstract

The thesis lies at the intersection of three disciplines : numerical methods, experimental
techniques, and machine learning. The primary aim of this work is to develop a group of
algorithms for characterization by inverse analysis of a material’s constitutive law. In the
field of material characterization, indentation test is especially attractive since it is considered
non-destructive, and may be performed even on a structure in service.

The test, similar to a hardness test, consists in penetrating an indenter into the surface
of the material. The force exerted on the indenter is recorded against the penetration depth
over a series of time instants, leading to a force-displacement (P-h) curve, which is the
most frequently used source of information for the identification of material properties.
However, the inverse problem based solely on this curve tends to be ill-posed, leading to non-
unique identification solution, i.e., the "mystical material pair", for whom the corresponding
force-displacement curves are almost identical despite the very different material properties .

The basic idea is then to complete the identification process with innovative experimental
measurements, such as laser microscope, which allows measuring the 3D residual imprint
after the withdrawal of the indenter. To address the advantage of this measurement over
P-h curve, we propose to construct, within a reduced affine space, a manifold of shapes
admissible to the postulated constitutive law, experimental and simulation setups, based on
synthetic data. The intrinsic dimensionality of the manifold limits the number of identifiable
parameters allowing to validate numerically experimental procedures.

Considering both the model and measurement errors, we develop a series of local manifold
learning algorithms to solve the inverse problem iteratively for experimental results obtained
in cooperation with INSA de Rennes. This approach allows us to characterize diverse metallic
materials of increasing complexity, based on actual experimental measurements. For example,
for the Hollomon’s law, the mystical pair is alleviated in using a single imprint, while for the
Voce law, a multi-depth experimental protocol is proposed to differentiate mystical siblings.





Résumé

Ce travail se situe à l’intersection des trois disciplines : méthodes numériques, techniques
expérimentales et du machine learning, a pour but de proposer une famille de techniques
d’identification par analyse inverse des lois de comportement en mécanique.

Dans le domaine d’identification des matériaux, l’indentation instrumentée est particuliè-
rement attractive, car elle permet de procéder à des essais non-destructifs sur l’échantillon ou
sur une structure en service. L’essai d’indentation, similaire à un test de dureté, consiste à
enfoncer la pointe de l’indenteur à une faible profondeur dans la matière tout en enregistrant
le déplacement en fonction de la force appliquée. L’identification des propriétés élasto-
plastiques des matériaux est basée alors sur l’exploitation de la courbe force-déplacement
(courbe P-h). Toutefois, le problème inverse est souvent mal posé et des problèmes d’unicité
mènent à la notion de paires de "matériaux mystiques" produisant, dans des conditions d’essai
donnés, des courbes P-h identiques, malgré des propriétés différentes.

L’idée de notre travail est de compléter la procédure d’identification en faisant appel à des
dispositifs expérimentaux récents, notamment à la microscopie laser, permettant de mesurer
la carte 3D de l’empreinte résiduelle obtenue après le retrait de l’indenteur. Pour aborder
la question de la richesse d’information de l’empreinte par rapport à la courbe P-h seule,
nous proposons de construire, dans un espace affine réduit, la variété des formes d’empreinte
admissibles au sens d’une loi de comportement et du modèle d’éléments finis de l’essai. La
mesure de la dimension intrinsèque nous indique alors le nombre maximal de paramètres
potentiellement identifiables. Cela nous permet de proposer et de valider numériquement des
nouveaux procédés expérimentaux, plus représentatifs, à partir des données synthétiques,
ainsi que des algorithmes d’identification associés.

La prise en compte de l’erreur de modèle et de l’erreur de mesure, nous mène ensuite à
proposer un ensemble d’algorithmes de projection d’empreintes expérimentales, réalisées
en collaboration avec l’INSA de Rennes sur la variété synthétique. Nous abordons alors le
problème d’identification des propriétés d’écrouissage de plusieurs matériaux de complexité
croissante et départageons des "jumeaux mystiques" par des essais de multi-indentation,
basés sur l’exploitation de l’empreinte seule ou en complément de la courbe P-h.
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Chapitre 1

Introduction

The research presented in this thesis grew out of a rapidly increasing need for data
analysis methods to obtain a deeper understanding of the complex physical phenomena in
the field of mechanical engineering. It endeavors to promote the integration of the two disci-
plines of manifold learning/non-linear dimensionality reduction (NLDR) and computational
mechanics. This introduction will now provide the motivations behind this work in Section
1.1, and a basic outline of the thesis in Section 1.2.

1.1 Background and motivations

Since several decades, the maturity of computational science and engineering has allowed
us to simulate complex phenomena with attention to details [9, 121], albeit at the expense
of an ever-increasing computing cost. Quite obviously, the outputs from finite element
(FE) simulations always contain massive information, for instance the displacement [40,
117], temperature and flow fields [130, 92] measured from a solid structure. On the other
hand, despite many techniques being practiced for centuries, new measurement systems and
methodologies are constantly emerging, which have not merely led to a huge leap in the
understanding of experimental mechanics, but to the explosion of the size of the collected data
as well. For example, the advent of Digital Image Correlation (DIC) allows an experimentalist
to examine, in detail, complex behavior that exists even in relatively simple mechanical tests
[142], and it has revolutionized the field of material science by providing significantly more
detailed information than previously available with strain gauge measurements. However, on
the other hand, this technique involves a considerable amount of data to deal with, Figure 1.1.
As a result, the demand for efficient data analysis methods is growing at an unprecedented
fast rate.
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The complexity of the collected data inevitably brings out a plethora of difficulties.
For example, in structural optimization problems, overwhelmingly complex geometrical
features will slow the algorithm down and make the process of finding global optima difficult.
Considering the inter-dependence of geometrical parameters that must be optimized for a
given objective function, a lighter yet efficient method is needed for processing the input
end (design variable) of optimization algorithms [118]. In addition to simplifying the input
side, reducing the output side, which typically contains massive data, is also required to gain
deep insights of the problem at hand. This in turn can be helpful to design the experiments
that need to be carried out. The characterization of material mechanical properties solved by
inverse analysis [95], among others, falls under this second heading, and will be chosen as
the current focus of this thesis.

FIGURE 1.1 3D DIC data of a thick, notched tension specimen are compared to data from a
LS-DYNA simulation : Maximum and minimum principal strains measured with DIC are
shown in (a) and (c), respectively. Simulated maximum and minimum principal strains are
respectively presented in (b) and (d) [142].

On the other hand, clearly benefiting from the heightened availability of digitized infor-
mation via the internet, machine learning (ML) began to thrive in the 1990s. Over time, the
field moved its goalpost from achieving artificial intelligence to tackling solvable problems
of a more practical nature [80]. Another subject that overlaps significantly with machine
learning is data mining. Although employing the same methods, the former focuses on
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prediction based on known properties learned from the training data, while the latter invests
itself in the discovery of previously unknown properties in the data. Figure 1.2 illustrates
the discovery of an intrinsic three-dimensional embedding from pixel image data. Up until
now, the great success of machine learning/data mining has been demonstrated various fields,
e.g., pattern recognition and image processing, and its inevitable mergeing with the field
of computational mechanics, propelled by the explosive complexity of models and data, is
becoming increasingly visible.

FIGURE 1.2 A dimensionality reduction problem from visual perception : the input consists
of a sequence of 4096-dimensional vectors, representing the brightness values of 64 pixel
by 64 pixel images of a face rendered with different poses and lighting directions. A three-
dimensional embedding of the data’s intrinsic geometric structure is learned from data mining
[147].

With all these in mind, one stumbles somewhat naturally upon the idea of bridging the
gap between these two fields. In this thesis, we make the first attempt to adapt manifold
learning methods to the problem of mechanical characterization. We will carefully study one
particular application in the field of material property identification using the instrumented
indentation test (IIT). The idea of data mining is applied to diverse indentation response
datasets with the aim of carefully and meticulously investigating the non-unique solutions
to the inverse identification problem. Meanwhile, richer and more complex information is
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proposed for use to perform more reliable characterization. The thesis is therefore conducted
with the three main motivations listed below :

Motivation 1 : Apply manifold learning approaches to computational
mechanics

The primary motivation of the thesis is to integrate the methods of computer science
(mainly manifold learning) in the realm of computational mechanics, especially when dealing
with large amounts of physical data, either simulated or experimentally measured. Given
that manifold learning approaches have rarely been used in solving mechanical problems,
their fundamental concepts, for instance, shape admissibility, intrinsic dimensionality and the
shape-manifold hypothesis, need to be targeted and adapted to general mechanical problems
in a first attempt.

Taking as an example the material characterization problem, we note that in recent years
it has been a popular way to characterize unknown materials by solving an inverse problem
using experimental measurements and the corresponding FE model [57, 33, 12]. In the
context of indentation, the experimental measurements refer mainly to the point-wise force-
displacement (P-h) curve and/or the increasingly popular high-accuracy field measurement,
i.e., the residual imprint. This latter, obtained by scanning the specimen after the test, produces
especially big amounts of data in 3D. However, the characterization problem remains a rather
challenging task due to the absence of an explicit relationship between material’s properties
and its (massive) indentation responses. It clearly shows that there is a great demand to
"intelligently" study the material plasticity encoded in the indentation responses.

Therefore, reducing the dimensionality of complex physical data and interpreting it within
a much more condensed space are understandably of substantial research interest. It bears
mentioning that this motivation is inspired by the common sense observation that real-life
data points are observed to fill up the space in which they are represented in a non-uniform
fashion, and they appear to agglomerate around a lower-dimensional hyper surface [132].

Motivation 2 : Investigate the identifiability of material parameters for
different constitutive laws

Early works dealing with the subject of material characterization may be found in [11, 89,
59, 106]. Up till today, researchers have been capable of probing several material elastoplastic
parameters by carrying out a single indentation test alone. The unicity of the solution obtained
is generally "accepted" if the same parameter values are found by iterations from different
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initial points. However, this is immature and the unique identification of parameters may be
influenced by various factors, e.g., the measured quantities and the indenter’s geometry. For
these reasons, we propose to investigate the identifiability of diverse material parameters by
analyzing the collected information, with the aid of manifold hypothesis and the estimate of
intrinsic dimensionality.

Generally, the intrinsic dimensionality of raw data describes the number of variables that
is needed to represent the original data. In the context of indentation-based identification,
the intrinsic dimensionality of indentation responses may serve as a primary estimate of the
number of identifiable parameters for a given experimental setup. This consideration could
help to pave the way towards the design of experiment to be carried out in identification
problems.

By this thesis, to address the above issue, two fundamental constitutive laws will be
studied with special attention : the two-parameter Hollomon’s power law and the three-
parameter Voce law. They are chosen for two simple reasons : (a) applicable to the majority
of metals and alloys, and (b) have the advantage of easier visualization of the manifold after
dimensionality reduction.

Motivation 3 : Propose new protocols for unique identification

A review of existing literature indicates that the big majority of research work focuses on
exploiting the recorded force-displacement curve during indentation test. However, the P-h
curve can sometimes be inexploitable in cases like spherical indentation [104, 103], since the
precise measurement of the displacement of the indenter tip requires the determination of the
frame compliance and the non-linear tip deformation.

In addition, multiple authors [34, 148] have reported since the last few decades a pheno-
menon of identical P-h curves being obtained for different materials, termed as "mystical
materials" [32]. This phenomenon unfortunately renders the solution to the inverse identifica-
tion problem non-unique. It is now widely recognized that the non-unicity issue is particularly
severe when self-similar indenters (mainly conical ones) are employed for the identification
of the well-known Hollomon’s equation for power law hardening.

A more complete and robust methodology would ostensibly involve combining the P-h
indentation curve with mapping the residual deformation or indentation imprint in an attempt
to provide more data for a reliable inverse identification [15, 136]. Though it does not in any
way resolve the previously mentioned issues with the P-h curve, it may allow for a greater
perspective for the unique characterization on account of the larger amount of exploitable
data available.
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All in all, a critical analysis of the available literature presents a solid argument for using
the imprint profile and this forms our third motivation for this thesis : to fully study the
characterization potential of the residual imprint and its possible influence on the non-unicity
of identification, and if possible, develop a protocol based on the use of the imprint. We
further note that it is appealing to solve this inverse problem within a reduced space since
the source of non-uniqueness could be more easily checked if the correspondence between
material parameter sets and indentation responses were readily visualized.

1.2 Outline

The thesis is organized in the following manner :
In the current chapter, we have presented the motivations of the current research on the

basis of a general analysis of the research background. The tasks to be accomplished are
divided into three main headings : to apply manifold learning approaches to the filed of
mechanics, to study the identifiability of material parameters using instrumented indentation,
and finally to propose new protocols to alleviate non-unicity of the solutions obtained in
inverse identification.

In Chapter 2, the state-of-the-art of related subjects is first reviewed in detail. Section
2.1.1 recalls recent developments in the field of machine learning approaches, with special
attention paid to those applicable in the field of computational mechanics. This is followed
by a comparison of some dimensionality reduction methods in Section 2.1.2. In Section 2.2,
we present a number of techniques that are employed in material characterization, while a
more detailed review in relating to indentation-based methods is provided in Section 2.3,
where both the reverse and inverse methods are covered. In Section 2.3.3, we also address
the non-uniqueness issue usually encountered in identification, which would be the principal
focus of our interest in Chapter 4 and 6.

So as to serve as a basis for the development of material characterization approaches
proposed in subsequent chapters, in Chapter 3 we introduce, in the context of problems in
mechanics, a comprehensive list of basic concepts relating to nonlinear manifold learning. The
manifold hypothesis, concept of shape admissibility and shape interpolation are all covered
in Section 3.1. The idea of constructing the global manifold in piece-wise fashion is also
briefly introduced in Section 3.2. In Section 3.3, a group of numerical tools are presented so
as to define the shape space in an exploitable manner, and a criterion to estimate the intrinsic
dimensionality is also proposed based on Local linear embedding (LLE). Finally, in Section
3.4 a material characterization problem based on stress-strain curve is employed to showcase
the application of the manifold method. In addition to validating the manifold hypothesis,
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we also obtain additional advantages such as the ability to glean a deeper understanding of
mechanical phenomena involved. It is highlighted that the maximum number of identifiable
independent material parameters appears to correlate with the intrinsic dimensionality of the
corresponding global manifold. The content of this chapter, along with two other applications
of manifold methods, resulted in a peer-reviewed journal paper [J2].

In Chapter 4 we apply the global manifold approach developed in Chapter 3 to the
characterization of a material’s elasto-plastic parameters using the instrumented indentation
test (IIT). In this chapter, we deal with synthetic data without added noise, with the aim of
studying the identifiability of Hollomon’s parameters in ideal conditions and investigating
possible influences of indenter geometries and of indentation setups in the simulation. In
addition to the force-displacement curve, another available indentation response, the residual
imprint, is also considered. The axisymmetric displacement field (obtained from spherical
indentation on an isotropic material) and P-h curve are treated either separately or together
to construct POD snapshots while studying global manifolds. By calculating the objective
(minimization) functions to be solved in inverse analysis within a rather large design space,
the difficulty in unique parameter identification with only the P-h curve is readily visible. The
advantages of using the imprints are demonstrated by presenting a one-to-one correspondence
between their projections in the low-dimensional shape-space and the material parameter
sets. The main results of this chapter can be found in [J3].

In Chapter 5, we validate the insights gleaned from the global manifolds in Chapter
4 by a series of iterative identification procedures. A family of local manifold learning
algorithms is developed to explore the design space in different ways, depending on the
previously acquired knowledge about the material. Only the useful portions of the manifold
are constructed in piece-wise manner, at a moderate computational expense. The identification
results confirm that the residual imprint will allow for an easier and unique identification of
Hollomon’s parameters, even for conical indenters, for which the non-uniqueness issue has
been extensively reported. On the other hand, we also try to generalize this conclusion to
the identification of Voce’s parameters, however, the failure here in getting a unique solution
suggests that a single indentation test could be insufficient and the non-uniqueness issue with
regard to the calibration of Voce law remains an open subject [C1, C2].

Our focus in Chapter 6 is then to investigate the source of the non-unicity in identifying
Voce law. To first rule out any possible inefficacy of the manifold principles and protocol
proposed, we carry out in Section 6.1 a series of identifications based on the uniaxial stress-
strain curve itself, which is universally accepted as fully interpreting an isotropic material’s
hardening behavior. The unique identification result obtained suggests that any failure of
accurate identification by the indentation test could be attributed to a possible interdependence
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between different Voce parameters with respect to the indentation responses. Then, in Section
6.2, we further underline that a single indentation test is inadequate to distinguish Voce
hardening materials, leading to the phenomenon of "mystical siblings". After comparing the
reconstructed constitutive behaviors, we divide these materials into two groups : the true and
false mystical pairs. For the latter, a multi-depth indentation technique is proposed in Section
6.3. The results reported in this chapter are the subject of [J5].

In Chapter 7, in place of synthetic data, the manifold-based identification protocol is
verified using experimentally measured indentation responses. Since the imprint is proposed
for obtaining unique solutions in Section 4.7, we retain the same as the focus of this chapter.
We underline in this chapter that the manifold approach permits the direct use of the experi-
mental imprint without any preprocessing, since the constructed imprint-manifold provides
us with a natural/physics-based way of smoothing the experimental response data. The three
metallic materials characterized include an AISI 1095 steel and two aluminum alloys : EN
AW-2017F and EN AW-5754F. In view of possible overlappings of lthe ocal searching spaces,
a discussion on the reuse of snapshots is anticipated in the closing comments, Section 7.6.
The main contributions of this chapter have been published in [J1].

Chapter 8 ends the dissertation with perspectives on future research.
In Appendix A, details about the preparation of specimens for indentation tests are given,

and partial identification results for the AISI 1095 steel is also provided in Appendix B.
Finally, we give in Appendix C some comments on the robustness of the proposed manifold-
based identification method with respect to such numerical parameters as the number of
retained POD modes, the order of polynomial basis in manifold approximation as well as the
number of snapshots.



Chapitre 2

Literature review on related subjects

The literature review described in this chapter is intended to describe the state of the
art in the subjects involved, and set the stage for the chosen orientations for the research
work that has been accomplished in this doctoral thesis. It is organized in the following
fashion : in Section 2.1.1, we first review the developments and approaches in the field of
machine learning which could potentially be applicable to the field of computational solid
mechanics. With added emphasis on the reduction of complex physical data, Section 2.1.2
summarizes and compares a series of linear and nonlinear dimensionality reduction methods
most frequently used in clustering. Then, focusing on the material characterization problem in
Section 2.2, we present a family of mechanical testing methods, in particular the instrumented
indentation test which is becoming more and more popular. Section 2.3 presents a dynamic
and detailed review of the evolution of indentation-based material characterization. Two
groups of methods, i.e., reverse and inverse analysis, are recalled in Section 2.3.1 and 2.3.2
respectively. Finally, we review all the previous work on the non-unicity issue in property
identification in Section 2.3.3.

2.1 Manifold learning approach

2.1.1 Machine learning in solid mechanics

Since its birth in the 1950s [99], artificial intelligence (AI) has evolved into knowledge-
based expert systems [18] and machine learning [131]. At the same time, the modern-day
maturity of computational engineering results in massive amounts of data while simulating
complex physical phenomena with attention to details. On the other hand, modern techniques
are trending towards high-precision measurements on a smaller and smaller scale. This
combination of high-precision measured and massively-sized simulated data has propelled
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the explosive growth of the field of machine learning, making it play an increasingly important
role in data-driven prediction and decision-making.

The categorization of machine learning tasks may vary according to diverse criteria.
Depending on the availability of input and output to/from the system at hand, [128] ge-
nerally classified machine learning tasks into three categories : supervised, unsupervised
and reinforcement learning. While it originally grew out of the fields of pattern recognition
and computational learning theory [60, 137], several applications in the field of computa-
tional mechanics may also be interpreted as belonging to the machine learning framework
[18, 62, 93, 85, 69]. Promising results have been reported so far in the parameterization of
material microstructures [160], in generation of computational patient avatars for surgery
planning in biomechanical field [62] as well as in model reduction in finite elasto-dynamics
[97, 98], among others.

Supervised learning attempts to "discover" a relationship between the inputs and out-
puts of training data. Some mature algorithms include decision tree learning [50, 127],
linear regression [101], Support Vector Machine (SVM) [42, 52, 149] and Artificial Neural
Networks (ANN) [162, 65]. Reduced Order modeling (ROM) in computational mechanics
[97, 98, 88, 30] may be classified in this category. This field has been gaining widespread
acceptance and is frequently used to approximate high-dimensional physical fields associated
with a design problem using a lower-order meta-model [49, 19, 159]. The more popular
methods at this point include Proper Orthogonal Decomposition (POD) [10, 41, 6], Proper
Generalized Decomposition (PGD) [35, 36, 55, 56] and the Reduced Basis (RB) methods
[116, 71, 68].

The corresponding unsupervised procedure is known as clustering since it attempts to
group data into different sets based on the measured ”distance” or their inherent similarities.
In this case, the inferred function will automatically label each sample entering the learning
system. Examples of linear approaches to unsupervised learning include Principal Component
Analysis (PCA) [76], Metric multidimensional scaling (MDS) [43] and Singular Value
Decomposition (SVD) [61], etc. The well-known Locally Linear Embedding (LLE) [132] and
Isomap [7] are unsupervised methods which have the capacity to generate highly nonlinear
embeddings. Applications of these algorithms in computational mechanics include reliability-
based design optimization (RBDO) [150, 70] and dimensionality reduction of input/output
of complex mechanical systems [121, 123].

Semi-supervised learning is a category that lies in between the first two. Even though
much of the output is unlabeled in this case, we observe a considerable improvement in
learning accuracy when it is used in conjunction with labeled data. Multi-fidelity optimization
[146, 72] and multi-level of parameters [47] are two examples of the same.
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Finally, in reinforcement learning, machine learning algorithms interact with a dynamic
environment so as to perform a certain goal with certain feedbacks in terms of "rewards" and
"punishments". However, a description of these algorithms, indispensable for the development
of autonomous cars as well as the famous computer program AlphaGo that plays the board
game Go, is beyond the scope of this thesis.

As stated previously, in this thesis, our interest lies in mechanical problems where the
data collected from FE simulations or from experimental measurement are high-dimensional.
For the sake of a better understanding of complex mechanical phenomena, dimensionality
reduction algorithms that attempt to condense the physical data or the model in a very light
and efficient manner can obviously be quite appealing. With these considerations, the current
research interest falls into the category of unsupervised learning. The related algorithms are
briefly summarized in what follows.

2.1.2 Dimensionality reduction algorithms

In this section, we review various representative algorithms with consistent terminology
and notation, and compare and contrast their capacities of interpolating or projecting new
points in the system as well as of evaluating the intrinsic dimensionality. A more detailed
survey of many of these algorithms may be found in [25].

Given a high-dimensional dataset XXX = {χχχ i}M
i=1 ⊂RN , we may assume in this dissertation,

without loss of generality, that the input observations/patterns χχχ1,χχχ2, · · · ,χχχM are centered on
the origin of the coordinate system, i.e., ∑

M
i=1 χχχ i = 0. The raw data, while high dimensional,

is essentially confined to a lower-dimensional subspace, whose dimensionality is termed as
the "intrinsic dimensionality", dint, which is defined as the minimum number of parameters
needed to represent the data without any loss of information [31]. By {ααα i}M

i=1 ⊂ Rm, we
denote the coordinates of the raw data described in the low-dimensional subspace. Note that
dint ≤ m ≤ N.

Principal component analysis (PCA)

In PCA, input patterns are projected in the lower-dimensional space by minimizing the
reconstruction error

εPCA =
M

∑
i=1

∥∥∥χχχ i −∑
j

αi, jφφφ j

∥∥∥2
, j = 1,2 · · ·m, (2.1)

where the vectors {φφφ j}m
j=1 define a partial orthogonal basis of the reduced space, and the

original data χχχ i is described by ααα i = (αi,1,αi,2, · · ·αi,m)
T in this space. Essentially, the
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subspace with minimum reconstruction error is also the subspace with maximum variance
[133], whose basis vectors are derived from the top eigenvectors of the covariance matrix

CCC =
1
M

M

∑
i

χχχ iχχχ
T
i . (2.2)

Using the directions corresponding to the eigenvectors as principal axes, an orthogonal
transformation is then performed to convert the raw data of (possibly correlated) variables
into a set of m linearly uncorrelated variables called principal components. The outputs of
PCA, namely the coordinates of input patterns in the subspace, are calculated as

αi, j = χχχ
T
i φφφ j. (2.3)

Note that, the eigenvalues of the covariance matrix in Equation 2.2 correspond to the projected
variances of the high-dimensional data along the principal axes. The number of significant
eigenvalues is thus an estimate of the dimensionality of the subspace, m, which contains most
of the variance of the raw data. Its choice depends on the spectrum of the eigenvalues where
a pronounced gap must exist between the mth and the (m+1)th eigenvalues.

Instead of eigenvalue decomposition on CCC, PCA may also be performed by singular value
decomposition (SVD) of the data matrix XXX . More details can be found in [76]. We will show
later that the basic geometric intuition behind PCA—i.e. maximizing variance—is also useful
for nonlinear dimensionality reduction algorithms.

Multidimensional scaling (MDS)

Unlike PCA, MDS attempts to find the subspace for the high-dimensional data that most
faithfully preserves the inner products between the input patterns. If the usual Euclidean dot
product is adopted, the objective of the minimization problem has the form

εMDS = ∑
i j
(χχχT

i χχχ j −ααα
T
i ααα j)

2. (2.4)

The solution is then found by performing eigenvalue decomposition on the Gram matrix GGG
where

Gi, j = χχχ
T
i χχχ j. (2.5)
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As with PCA, we retain the m largest eigenvalues {λi}m
i=1 and the corresponding eigenvectors

{vi}m
i=1. The low-dimensional representation of the raw data is thus computed as

αi, j =
√

λ jv j,i. (2.6)

Though based on somewhat different geometric intuitions, MDS yields the same output as
PCA since both methods essentially consist of a rotation of the coordinate system followed by
a projection into the subspace of highest variances. Quite obviously, the covariance matrix CCC
in PCA and the Gram matrix GGG in MDS lead to identical results in spectral decomposition in
view of the fact that GGG = XXXTXXX has the same rank and the same eigenvalues as the covariance

matrix CCC =
1
M

XXXXXXT.

On the other hand, MDS, though designed to preserve inner products, may be interpreted
as preserving pairwise distances. Knowing a priori the matrix of squared distances DDD,
composed of

di, j = ∥χχχ i −χχχ j∥2, (2.7)

the Gram matrix can also be derived from the transformation

GGG =
1
2
(III − llllllT)DDD(III − llllllT), (2.8)

in which III is the M×M identity matrix and lll = 1√
M
(1,1, · · ·1)T the uniform vector of unit

length. One can refer to [43] for more information on MDS and its extensions.

PCA and MDS are two representative linear methods for dimensionality reduction, and
they both generate faithful low-dimensional representations for input patterns confined to a
nearly linear structure. However, they could fail if the original data is highly nonlinear. For
this reason, nonlinear methods like Kernel-PCA, Isomap and LLE, among others, are used.

Kernel-based PCA (kPCA)

With a user-specified kernel, the linear operations of PCA are performed in a reproducing
kernel Hilbert space (also called a high-dimensional feature space), which is related to the
input by a possible nonlinear map

ΨΨΨ : RN → F

χχχ → γγγ
(2.9)

where F could have an arbitrarily large dimensionality. The essence of kPCA is first transfor-
ming the raw data in such a high-dimensional, implicit feature space before following the
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procedures of PCA. Adopting the zero-mean data assumption, the covariance matrix in F
turns to be

C̄CC =
1
M

M

∑
i

ΨΨΨ(χχχ i)ΨΨΨ(χχχ i)
T. (2.10)

Note that, kPCA does not necessarily carry out the map ΨΨΨ explicitly to the feature space. In
contrast, a kernel function is designated over pairs of data points

ki j := k(χχχ i,χχχ j) = ΨΨΨ(χχχ i)
T
ΨΨΨ(χχχ j). (2.11)

We note that the choice of kernel implicitly determines the mapping ΨΨΨ to the feature space.
The commonly used kernels are :
(a) polynomial kernels [51] :

k(χχχ i,χχχ j) = (χχχT
i χχχ j +1)d, (2.12)

(b) radial basis functions :

k(χχχ i,χχχ j) = exp

(
−
∥χχχ i −χχχ j∥2

2σ2

)
, (2.13)

and (c) Neural Network type [67] :

k(χχχ i,χχχ j) = tanh(χχχT
i χχχ j +b). (2.14)

Notice that the kernel function in Equation 2.12 is essentially a nonlinear map into the
high-dimensional space of all dth order monomials in the entries of an input vector. Here,
the dot product of vectors mapped by ΨΨΨ is calculated in a low-cost fashion. Besides, σ in
Equation 2.13 and b in Equation 2.14 are two parameters that depend on the problem at hand,
and therefore should be carefully chosen.

For the purpose of principal component extraction, the projections of raw data on the jth

eigenvectors in F are computed as

ααα j = (uuu j)TKKK, (2.15)

where uuu are eigenvectors solved from

Mλuuu = KKKuuu. (2.16)
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Besides, for an arbitrary observation χχχ that has not been considered when constructing KKK, its
nonlinear principal components may also be found with the aid of the kernel function

αααk =
M

∑
i=1

uuuk
i (Ψ(χχχ i)

T
Ψ(χχχ)), (2.17)

One should be aware that, even if χχχ is centered within the input space RN , it is non-trivial to
achieve this in F, as we can not explicitly compute the mean of the observations in feature
space. A work-around for this issue involves slight modifications of the above equations, and
can be found in [134].

Isomap

As described above, both PCA and MDS are "distance-preserving". However, the distance
between points that are far apart (in the sense of geodesic, or shortest path distance) on the
underlying manifold could sometimes be deceptively low, measured by their straight-line
Euclidean distance in the high-dimensional input space, Figure.2.1. To deal with the non-
linearity of data, Isomap preserves the intrinsic geometry of the data as captured in the
geodesic manifold distances [147]. Meanwhile, the major algorithmic features of PCA and
MDS (i.e., computational efficiency and global optimality) are inherited.

(a) Swiss-roll (b) S-shape

shortest-path distance

Euclidean distance

FIGURE 2.1 Inappropriate use of Euclidean distance (red line) in non-linear shape manifold.

The crux of matter is then estimating the geodesic distances between data points. For
neighboring points, their geodesic distances may readily be approximated by the Euclidean
distance, while for faraway points they are approximated by adding up a series of "short hops"
connecting neighboring points, Figure 2.1(a). The three main stages of Isomap include :



16 Literature review

1. Depict the neighborhood graph WWW for the input pattern, where Wi, j=0 if χχχ j is not in
the vicinity of χχχ i. The neighborhood can be determined by two different strategies :
either we choose all the k nearest neighbors of a given point, or we take all the data
points within an a priori defined radius r. We note that WWW may not necessarily be
symmetric ;

2. For the graph WWW , we define the edges weighted by the shortest paths dG(i, j). One
must be aware that dG(i, j) is merely an estimate of the geodesic distance along the
manifold (hyper-surface) dM(i, j), and may be obtained by using Floyd’s algorithm,
while other algorithms are found in [79] ;

3. Apply MDS to the resulting short-path distance matrix DDDG to track the features of
original data and embed in low-dimensional space.

We note that the Isomap method is trustworthy only if the local metric structure in the input
space is correctly estimated, i.e. a sufficient number of points must be sampled from the
structure. In this sense, the shortest path matrix converges to the geodesic distance.

Locally Linear Embedding (LLE)

Like many other algorithms, LLE discovers the nonlinear structure of high dimensional
data by exploiting their local symmetries of linear reconstruction. Generally, two common
steps are involved : learning the local geometry around each point and embedding high
dimensional data into a low dimensional space using the "learned" local information.

For the first step, the underlying geometric properties of the high dimensional data
are characterized by a weight matrix. The weights assembled in the ith row minimize the
reconstruction error of point χχχ i by its neighbors

ωωω i = argmin
ωi j

∥∥χχχ i −∑
j ̸=i

ωi jχχχ j
∥∥2
, (2.18)

where ωi j = 0 if point χχχ j is not the neighbor of point χχχ i. Like in Isomap, this weight matrix
is not necessarily symmetric, which may be explained by two reasons : on the one hand χχχ i is
the neighbor of χχχ j does not guarantee that χχχ j also lies in the neighborhood of χχχ i ; on the
other hand, even if they are neighbors to each other, the weights ωi j and ω ji probably do not
have the same value.

In LLE, the premise is that the local properties of the original data can be characterized
by W, which should, by design, interpret the embedded low dimensional data as well, leading
to

ααα i = argmin
ααα i

∥∥ααα i −∑
j

ωi jααα i
∥∥2
. (2.19)
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The cost function in the above minimization problem defines a quadratic form [132]

εLLE(ααα) = ∑
i j

Mi j(ααα
T
i ααα j), (2.20)

in which MMM is computed by

Mi j = δi j −ωi j −ω ji +∑
l

ωliωl j, (2.21)

where δi j = 1 if i = j, otherwise δi j = 0. LLE then finds the optimal lower-dimensional
embedding system by computing the bottom d +1 eigenvectors of MMM, where d is the desired
(used-defined) dimensionality of embedded space. Discarding the bottom eigenvector (the
corresponding eigenvalue is zero), the remaining d non-zero eigenvectors will then provide
an ordered set of orthogonal coordinates of original data in embedded space.

As a popular nonlinear dimensionality reduction method, LLE has key differences from
PCA, notably :

— LLE attempts to preserve the centroid of the neighborhood during the mapping,
whereas PCA does not make this hypothesis.

— LLE embeds the shapes into a lower dimensional space without explicitly providing
us the basis for this space, unlike PCA which permits the insertion of additional points
(belonging to the manifold) by projection, as opposed to re-performing the LLE.

— LLE is a global approach, and PCA can be implemented either globally or locally.

Comparison of algorithms

The properties of the algorithms discussed above are compared in Table 2.1. We note
that PCA and MDS are both global, linear methods which discover the low-dimensional
embedding by studying the connectivity of the dataset within a whole range, while the other
three methods intend to characterize the manifold around only a neighborhood. Though
being capable of discovering manifold’s non-linearity, more parameters, e.g., the number of
neighborhood points k, are required to be predefined for nonlinear methods. The choice of
k depends however on the number of total points, as well as the configuration of manifold
which in most cases is unknown and may vary depending on the problem at hand.
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TABLE 2.1 A comparison of diverse dimensionality reduction algorithms

Algorithm linear Neighborhood required Direct insertion of new points

PCA ✓ ✓

MDS ✓

k-PCA ✓ ✓

Isomap ✓

LLE ✓

On the other hand, in the context of material characterization, we always need to lo-
cate/project new points (basically experimental measurements) into the embedding space. It
turns out that only PCA and kPCA allow for direct insertion of new points in the reduced
space, while a recalculation of basis is always needed for the other methods.

2.2 Characterization of material properties

Material characterization is a fundamental field in material science, without which no
scientific understanding of engineering materials could possibly be ascertained. In practice,
there exists a great number of mechanical testing methods that aim to determine a material’s
geometry-independent properties, i.e., those intrinsic to the bulk material. A non-exhaustive
list of common tests includes : hardness testing, tensile testing, impact testing and fatigue
testing, most of which have now been standardized.

In addition, some full-field techniques have been proposed in the last several decades and
they are gaining an ever-increasing popularity in material characterization. [64] reviewed
the application of full-field measurement techniques until 2004 with a special interest in
composite materials. The nature of these techniques mainly includes the measurement of
displacement, strain or temperature. Vibration testing has also been employed as an alternative
mechanical test with the aim of characterizing mainly the elastic properties of materials. Its
wide utilization takes root in the strong dependence of vibration behavior on material elastic
parameters [83].

Tensile testing among others is commonly performed to characterize the constitutive
behavior of a material. However, the development of new materials like plastically graded
materials (PGM) [111] as well as the more recent developments in thin films [11] exposed
some of the limitations of conventional tensile testing. Moreoever, real engineering structures
seldom experience simple uniaxial states of stress in spite of the popularity of uniaxial
tension/compression method. It is therefore of great importance to perform tests on small
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scales, while stimulating a much complex stress state so as to fully capture the material’s
plastic behavior.

The instrumented indentation test [102, 143] has provided an exciting solution for this
problem, given its non-destructive nature and the complex state of stress produced during the
test. It has rapidly become an alternative to the conventional tensile test for characterizing
mechanical properties of materials, more importantly, leading to the knowledge of their
work hardening properties. This kind of test is similar to a standard hardness test [140],
where the hardness is determined by forcing a particular indenter into the material surface by
increasing the applied load until a user-defined value is reached, after which the load is either
held constant for a short duration before removal or immediately removed. The difference,
compared with a hardness test, being that we continuously record the indentation load P
and the indenter displacement h during both the loading as well as the unloading phases,
generating what we call the P-h curve, as shown in Figure 2.2.
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FIGURE 2.2 A typical force-displacement curve (h f and hmax are the residual and maximum
penetration depth, Pmax the maximum force).

Together with an improved understanding of the indentation mechanism and advances in
numerical methods, instrumented indentation has become an indispensable tool for probing
mechanical properties in recent years. Its successful applications have been achieved not
just for metals and alloys but also for ceramics [108, 107], hydrated nano-composites such
as concrete [39, 154, 77], polymers [152, 87], single crystals [129] and plastically graded
materials[106, 115, 59, 104, 103, 138, 4].

At this current stage, there are mainly two ongoing challenges that need to be addressed
head-on, related to material characterization. The first is the analysis and processing of
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massive data involved, for instance, the displacement field measured with a DIC system and
the 3D residual imprint scanned by using a Confocal Laser Scanning Microscope (CLSM).
This difficulty is due to the possible absence of direct/explicit relationship between the
collected indentation response data and the material parameters to be determined. Though
some specific procedures, like reverse and inverse identification, have been proposed to
replace the time consuming and expensive trial and error strategy, their abilities need to be
improved in order to deal with complex data. Secondly, more studies need to be carried out
on the unicity of the identification which has been rarely questioned. This can be vitally
important to choose what experimental testings need to be performed and how to perform
them.

2.3 Identification using the indentation test

Over the past 30 years, a steady rise has been seen in the use of indentation test in material
characterization. In this section, the two most employed methods, i.e., reverse and inverse
method, are reviewed. The concept of "mystical materials" is also introduced.

2.3.1 Reverse analysis

In the pioneering works, the loading and unloading segments of a typical P-h curve are
generally characterized by several geometric parameters (sometimes called "shape factors"),
e.g., the curvature C of the loading phase, the slope s at the beginning of the unloading phase
as well as the maximum and residual penetration depth, hmax and hf, Figure 2.2. A group of
closed-form dimensionless functions are constructed to relate indentation responses (mainly
these shape factors) to elasto-plastic properties [86, 141, 144]. The material parameters are
then "calculated" in reverse fashion by using these functions from the shape factors measured
from experimental P-h curve.

This procedure is accomplished by dimensional analysis (DA), the basic idea of which
is that physical laws do not depend on the arbitrariness in the choice of units of physical
quantities, and thus should allow the reduction of number of arguments in the functions
involved in a complex physical system. The strategy of dimensional analysis is :

1. select dependent/independent variables as well as independent parameters ;
2. identify independent dimensions among the independent parameters ;
3. apply the Buckingham Π−theorem 1 and define the dimensionless functions.

1. The Π−theorem states that if there exist a complex physical function which involves a certain number n0
of physical parameters, it can always be rewritten in terms of only n2 = n0 −n1 dimensionless parameters as
well as n1 independent parameters which correspond to the involved physical parameters [66].
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Assume we perform the test with a conical indenter (of half apex angle θ ) on a material
whose constitutive behavior is governed by three parameters : Young’s modulus E, initial
yield stress σy and isotropic hardening coefficient n. If the indentation force P is chosen as
a dependent variable, then the indenter penetration depth h, as a consequence, must be the
independent variable. Other parameters, like the mechanical properties of specimen as well
as those of the indenter can be classified as independent parameters. We consider the indenter
to be rigid and the friction between indenter and specimen is negligible, the independent
parameters include : E, σy, n, θ and Poisson’s ratio (ν). The P-h relationship then has the
form

P = fL(h,E,σy,n,ν ,θ). (2.22)

Except n, ν and θ which are dimensionless, we identify two independent dimensions for
the other three governing parameters, [E] = [σy] = MPa = N/m2 and [h] = m. Now using the
Π−theorem, we obtain

P = Eh2
Π(

σy

E
,n,ν ,θ), (2.23)

where Π is a dimensionless function whose explicit expression does not exist for complex
physical problem, for example, indentation test. By consequence, a smooth functional form
can be calculated over a wide range of parameter space by fitting sufficient number of
numerical forward analysis [44, 37].

We emphasise that the square dependence in Equation 2.23 between loading force and
penetration depth still holds true (except for the definition of the dimensionless function
Π) for pyramidal indenters since, like conical indenters, they are geometrically self-similar.
Besides, it should also be valid when the friction between indenter and specimen is non-
negligible. This is simply because no length scale is introduced in the modeling system as
given in Equation 2.22.

Note that, Equation 2.23 is in line with the analytical solution provided by [86], where
the force P is proportional to h2 during both loading and unloading phases, assuming a rigid
indenter is forced into elastic materials

P =
2Eh2

(1−ν2)π
tanθ =Ceh2. (2.24)

This observation was later generalized to the loading portion of the indentation test of a
rigid-plastic, or more general, an elasto-plastic material. The indentation loading curve can
subsequently be described by Meyer’s law

P =Chb (2.25)
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where b is not necessary an integer (b= 2 for conical indenters) and C is a constant determined
by material parameters and indenter geometries. Moreover, for cases where the indenter is
not necessarily rigid, the load required to penetrate into the solid may be written as

P = fL(h,E∗,σy,n,θ) (2.26)

where

E∗ =

[
1−ν2

E
+

1−ν2
i

Ei

]−1

(2.27)

is the reduced Young’s modulus, commonly introduced to include elasticity effect (Ei,vi) of
indenter [74].

Despite fruitful results reported[112, 75, 34, 2], we need to be aware that the functional
forms are no longer applicable when either the indenter geometry or material constitutive
model is changed. As a consequence, a large number of simulations are required to recalculate
the coefficients of these dimensionless functions, which can however be both time-consuming
and computationally expensive. We underline also that the Π−theorem only provides a
way of generating sets of dimensionless functions without indicating the most "physically
meaningful" expression and the choice of dimensionless parameters is thus non-unique. This
explains why different expressions were presented in the available literature [23, 28, 26].

2.3.2 Inverse identification

With the help of deterministic algorithms and FE simulations, the inverse method probes
material parameters by minimizing the discrepancy between the measured and simulated
indentation responses. Our literature review shows that the recorded P-h curve is the primary
information adopted, with the corresponding objective function defined in point-wise fashion :

Jh(µµµ) =
N1

∑
i=1

(
hs

i (µµµ)−he
i

he
max

)2

, (2.28)

where µµµ is the vector of material parameters to be identified ; hi is the instantaneous penetra-
tion depth of indenter at time instant i = 1,2,3 · · ·N1 ; the superscript "s" refers to "simulated"
by FEM, while the superscript "e" denotes "experimental". Mathematical programming
procedures are then used to identify the material properties µµµ by solving

µµµ
∗ = arg min

(
Jh(µµµ)

)
. (2.29)
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FIGURE 2.3 Schematic diagram showing pile-up/sink-in effects around the indenter tip [126].

Another approach consists of taking into account the residual deformation of the speci-
men’s surface at the end of the indentation test, as additional information to complement the
P-h curve [1, 145], since different materials generally exhibit diverse plastic pile-up or elastic
sink-in effects (Figure 2.3). A review of the existing literature reveals extensive research
on combining the traditional indentation test with the mapping of residual deformation
(indentation imprint) in order to provide more information for a reliable identification of
material properties [109, 105, 90, 13]. An atomic force microscope (AFM) was used by
[106] to measure the maximum pile-up observed at the end of the test and eventually obtain
a well-defined inverse problem for the Al2024 alloy. Imprint mapping was also employed for
the identification of bi-dimensional states of stress [14]. This method was later applied to
the identification of graded material properties of thin layers on a substrate in [11]. In the
inverse problem of property identification including the imprint shape, the cost function Jh in
Equation 2.29 is enriched with the term

Ju(µµµ) =
N2

∑
j=1

(
us

j(µµµ)−ue
j

ue
max

)2

, (2.30)

where u j denotes the vertical coordinate of a measured point j with the initial surface of
specimen serving as the reference plane ; N2 is the number of sample points chosen from
the specimen surface, and this value depends both on the resolution of the imprint scanning
instrument and the density of the FE mesh used. One issue is that the two sources of errors
given by Jh(µµµ) and Ju(µµµ) cannot be compared numerically. To alleviate this, [106] proposed
calibrating each term by a weighting coefficient so as to render them comparable, however,
this approach is somewhat ad hoc.

The traditional approach for the determination of plastic mechanical properties requires
that the indentation load/penetration depth response be obtained with sufficient accuracy and
precision [8, 153, 78]. It has been reported that even a small noise in the input data makes
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the accurate identification of parameters difficult [29, 156]. Our literature review shows
that the indenters have sometimes been simulated as perfectly rigid bodies with the aim of
eliminating the nonlinear tip deformation during the indentation test [22, 16]. Other works,
like [84], corrected a possible elastic deformation of the indenter by using a system reduced
modulus (Equation 2.27) computed from the Young’s modulus and the Poisson’s ratio of
both the indenter and the specimen.

Except for the deformation of the indenter tip, another factor that can greatly affect the
accuracy of the P-h curve is the indentation frame/machine compliance. Various methods
used for the determination of machine compliance can lead to different values of compliance
[111], and this is especially difficult in the nanometer scale [155, 78]. Moreover, for spherical
indenters (always not mono-bloc), the presence of compound between the indenter and the
indenter-holder can lead to a load-dependent compliance [153]. As a result, the obtained P-h
curve is inexploitable.

Moreover, another difficulty lies in determining the reference point, or detecting the
moment when the indenter comes into contact with the specimen surface. The importance
of detecting the start point has been pointed out by [63] to guarantee the accuracy of P-h
curve. [17] recommended to calculate the derivative of the indentation curve in order to limit
the effects of a false determination of the zero position. However, if we are interested in
solely using the imprint, this problem can be mitigated since a prescribed force is more easily
controlled even without knowing the initial contact.

2.3.3 Uniqueness of solution to inverse identification

In a typical identification procedure, it is expected that there exists a one-to-one corres-
pondence between the recorded data and the desired material parameters defining a postulated
constitutive law. Unfortunately, the indentation problem is frequently ill-posed, and the exis-
tence of different ”sibling” materials with distinct properties but nearly identical indentation
curves has been revealed more than once, almost since the emergence of the identification
method by inverse analysis [34, 148, 2].

Representative work has been reported in [32], where the authors employed the term
"mystical materials" to interpret the phenomenon of different parameter sets leading to
almost identical indentation P-h curves. A mystical material pair (M1, M2)θ=74◦ is obtained
by enforcing the equality of the curvature C of the loading curve (Figure 2.2) using a conical
indenter with apex angle θ = 74◦. The obtained P-h curves for the two materials are observed
to overlap with each other, Figure 2.4. Their corresponding uniaxial σ -ε curves are given in
the top-left inset.
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FIGURE 2.4 A mystical material pair, (M1, M2)θ=74◦ , observed by Chen et al. 2007.

Therefore, it is of great interest to improve the reliability of the inverse analysis by
including more information for parameter identification. Many researchers [37, 54] have
proposed adopting a dual sharp indenter to alleviate the non-uniqueness issue [53, 23, 26].
Taking the mystical pair illustrated in Figure 2.4 as an example, Chen et al. pointed out
that the curves may be distinguished by using dual-sharp indenters, and the difference
increases for extreme angles, e.g., θ = 63.14◦ and θ = 75.79◦ due to differences between
the plastic strain fields underneath differently shaped indenter tips [45]. On the other hand,
accompanied by the development of high-resolution scanning probe microscopy (e.g., AFM),
other solutions were also provided in [15, 12, 11, 125] to also take into account the residual
imprint measured with high precision and accuracy.

Although it has been shown that richer information may produce more reliable identifica-
tion results, the underlying reason has not been revealed or fully discussed, motivating the
study of identifiability of parameters in consideration of different indentation responses. Be-
sides, in spite of the information adopted, the identifiability seems to have a close relationship
with the geometry of the indenter in view of the fact that the non-uniqueness issue reported
mainly focused on sharp indenters [34, 32]. Moreover, to our knowledge, different simulation
setups (i.e., prescribed force or displacement) need to be compared to better understand
the problem, since the identifiability of parameters (or the sensitivities of cost function of
inverse optimization w.r.t. material parameters) may be influenced not only by the measured
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experimental response, but also by the way the simulation is carried out. To summarize, the
identifiability analysis carried out in this dissertation will answer the following questions :

— What is the influence of the indenter shape (spherical or conical) on the identification
result ? Is the non-uniqueness issue also present for spherical indenters ?

— Does the simulation setup, i.e., prescribed force or prescribed displacement in inden-
tation, have an influence on the identifiability of parameters ?

— How does the identifiability of parameters differ if different indentation responses
(P-h curve or imprint shape) are taken into account ?

— Finally, how many parameters can be identified with the measured response data ?



Chapitre 3

Nonlinear shape-manifold learning in
computational mechanics

This chapter is devoted to integrating the concepts of manifold learning in the field of
computational mechanics. The main reasons that motivate this multidisciplinary integration
include : the modern-day maturity of computational engineering producing vast amounts of
numerical and experimental data, and the availability of machine learning techniques aimed
at the automatic detection of data’s underlying structure. Some basic concepts as well as
several fundamental techniques will be presented in this chapter and these will serve as a
basis for the material characterization protocols presented in the subsequent chapters.

As a preamble to this chapter, we informally introduce the intuition of "manifold" and
"shape-manifold". As an important concept in mathematics, a manifold can be thought as a
surface of any shape within an arbitrarily high dimension. It does not necessarily have to be a
plane, i.e., it may be shaped like a folded sheet, a Mobius ring or a Klein bottle. Employing the
term "shape manifold", we intend to mean a group of shapes (after dimensionality reduction)
that confine themselves to a manifold. Within the context of computational mechanics, the
"shape" refers, in most cases, to diverse structures. It can however, in other cases, be the
physical fields of simulation. Note that "structure" and "shape", or even "field" will be
employed without special distinction in this chapter.

In the following, we firstly clarify in Section 3.1 some basic concepts involved in the
shape-manifold, which include the description of "shapes", shape admissibility, hypothesis
of shape manifold as well as shape interpolation and projection. Manifold construction and
local manifold walking algorithms are explained in Section 3.2. Other involved techniques
like Level set method (LSM) and intrinsic dimensionality estimation are presented in Section
3.3. For illustration purpose, we provide a simple 2D example drawn from the field of shape
optimization in Section 3.4.
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3.1 Basic concepts

In computational mechanics, the term ”shape” is defined in a rather wide range. It could
be either a regular geometric shape (design optimization), a final configuration of a structure
after plastic deformation (springback in metal forming) or even a continuous physical field
(flow field in engine design), depending on the problem at hand.

3.1.1 Shape description

Traditionally, geometric assessment in mechanics uses the Lagrangian approach that
attempts to represent a structural shape ΓΓΓ using a set of primitives : i.e., an array of radii,
lengths/thicknesses and angles. This is a very convenient approach in many cases with
straightforward geometries, but we quickly get in trouble with problems involving complex
structural shapes, e.g., an intricate design such as an engine intake with close to a hundred
geometric parameters [92], a formed/deep drawn post-springback shape that cannot be easily
expressed as a sum of primitives [121], a residual imprint of indentation test, etc.

The shortcomings of this approach in such cases are due to its inability to adequately
describe a complex structural shape ΓΓΓ without using a very large number of parameters, often
exceeding the intrinsic dimensionality dint of the design problem [164, 119]. In addition,
the Lagrangian technique does not allow us to easily perform operations such as comparing
two different shapes ΓΓΓ

(1) and ΓΓΓ
(2), or calculating the distance between two such shapes,

i.e., dist(ΓΓΓ(1),ΓΓΓ(2)), which is important for many applications, such as material property
characterization, among others. Another implication is the potential generation of inadmis-
sible/infeasible structural shapes before the meshing/solver phase in a computational chain,
which could lead to crashes of either the mesh generator or the FE/CFD solver. This is due to
the difficulties in expressing all the topological and software-related constraints needed to
convert a set of geometric parameters to an admissible shape for the problem at hand. The
difficulty of calculating gradients is another disadvantage when considering optimization.

Eulerian parameterization approaches are a very attractive option for describing complex
shapes or shapes with differing topologies without using geometric primitives. The idea is
to use a fixed cartesian grid to represent curves and surfaces using an indicator function χχχ .
Examples of Eulerian representations include pixel/voxel maps, and the more popular level
set approach first devised by Osher and Sethian [114] for numerically tracking fronts and free
boundaries. Allaire et al. [3] then combined the shape derivative introduced by Murat-Simon
[110] with the level set concept and recast the shape optimization problem into the topology
optimization framework of finding χχχopt using a Hamilton-Jacobi front propagation algorithm.
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Following this, the level set method has also been successfully used to characterize complex
shapes, for tracking damage growth [100] as well as for characterizing microstructures [82].

In all, using level set method, we can represent both the idealized shape as well as the
actual shape measurement from experiment.

3.1.2 Concept of shape admissibility

Interpolating between neighboring shapes (in Eulerian form) is an attractive and relatively
straightforward possibility. There remains however one factor of great importance : shape
admissibility for the problem at hand. Admissibility of a shape is a problem-dependent
characteristic and this can mean different things in different situations.

In shape optimization, an admissible shape is a shape that satisfies all the technological
constraints which are sometimes difficult to express (e.g., tangentiality, connectedness of two
sections). For a forming problem, an admissible shape, as defined in [121], represents an
actual post-springback shape that is possible to obtain with a given model by manipulating
the tool and process parameters in some fashion. This means that a desired target shape
may not be possible to obtain, and may therefore be an inadmissible shape for the forming
problem if we limit ourselves to realistic post-springback shapes. For a material identification
problem based on indentation imprint, using any kind of postulated constitutive law, an
admissible shape is a final deformed shape obtainable by manipulating the parameters in said
law. However, even though it is real, the experimental measured shape may not be admissible
for two reasons : the modeling error and the measurement error (although the first could
change depending on the chosen law and the second by applying an adapted smoothing
procedure).

It should be noticed that the shape admissibility is a completely user-defined concept.
Users or engineers need to determine what shapes are ”acceptable” and what shapes are not,
according to the case-specific problem at hand.

3.1.3 Concept of shape space

In most cases, we prefer to avoid generating inadmissible shapes, the key then is to
interpolate between neighboring admissible level set functions in a way that implicitly
satisfies all the admissibility constraints. Traditional shape morphing [48] is not useful in this
regard since it assigns an arbitrary set of control points and cannot guarantee admissibility
of intermediate shapes generated. So, we intend to develop the shape space Rm for a given
problem using a meta-model for the structural geometry based on the level set formulation.
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Some other work in this regard are those of [161] and [158], both of whom used radial basis
functions (RBFs).

Basically, the "shape space" (the vector space in which the solution to the mechanical
problem evolves) is determined by the problem as well as the manner in which the problem
is posed. While this concept, as an abstract notion, has been used in the field of Riemannian
geometry [135], there was no tangible way to manipulate this shape space in the context
of real life mechanical problems. To get a tangible description of shape space for a design
problem, we first assume a discrete representation of "shape" ΓΓΓ ∈RN , where N is the number
of points of definition of the complex shape. For a group of such complex shapes, numerous
algorithms exist to find out a reduced-order space, in which each point shall represent a
particular shape.

: inadmissible shape

: admissible shape

FIGURE 3.1 Concepts of shape space.

According to the concept of shape admissibility in Section 3.1.2, different shapes are
distinguished in shape space, Figure 3.1. The admissible and inadmissible shapes are denoted
by ΓΓΓ+ and ΓΓΓ−, respectively. Now let A be a set that collects all admissible shapes, then any
ΓΓΓ /∈ A should be inadmissible.

3.1.4 Hypothesis of the shape manifold

According to [119, 124], real-life data points are observed to fill up the space in which
they are represented in a non-uniform fashion, in fact, they appear to conglomerate around a
lower-dimensional hyper surface. We propose thus a fundamental hypothesis of the existence
of a smooth "shape manifold" M connecting all admissible shape, in the reduced dimensional
space Rm,m ≪ N, (see in Figure 3.2). The manifold M , on the other hand, may be regarded
as a continuous form of M and the space in which it evolves approaches the true "shape
space" of the particular problem with increasing m until N. Furthermore, even though the
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: inadmissible shape

: admissible shape

FIGURE 3.2 Shape manifold in shape space.

shapes are much more elegantly described in the shape space, the possible inter-dependence
of controlling parameters for a given problem prevents us from representing admissible
shapes exclusively. We thus make the assertion that in the m-dimensional shape space, there
lies a dint-dimensional manifold, where dint ≤ m ≤ N is the intrinsic dimensionality of the
problem at hand.

In summary, the characteristics of the shape manifold are :

1. all points on the manifold correspond to admissible shapes for the given problem ;

2. any point that lies outside the manifold corresponds to a NON-admissible shape ;

3. the manifold approaches the true shape space for a given design problem with increa-
sing grid resolution and sampling density ;

4. the manifold dimensionality dint is the intrinsic problem dimensionality.

That said, for some problems, the manifold can be composed of sub-manifolds unconnec-
ted to each other due to various constraints and non-continuity of the design space. One can
observe such an example in [92].

3.1.5 Shape interpolation

In optimization problems we look for an admissible shape that minimizes a given cost
function. We thus need to develop a way of interpolating between admissible instances of
shapes while staying in the shape space restricted to M . This means that the interpolation
itself must implicitly satisfy the full set of problem constraints so as to generate solely
admissible shapes. The reason for this is that a simple linear combination of two admissible
shapes will not necessarily be an admissible shape. This situation is illustrated in Figure
3.3 where linear interpolation between two admissible shapes ΓΓΓ

(1)
+ and ΓΓΓ

(2)
+ , at a given time



32 Nonlinear manifold learning approach

t, yields an inadmissible shape ΓΓΓ
(t)
− , while an interpolation on the manifold M gives an

admissible shape ΓΓΓ
(t)
+ . This interpolation in reality must rely on a numerical expression of

the manifold in the vicinity of an admissible shape, which will be presented in Section 3.3.2.

: inadmissible shape

: admissible shape

FIGURE 3.3 Shape interpolation along the manifold.

3.1.6 Shape projection

In inverse problems, we typically look for an admissible shape that is closest to the
(generally inadmissible) target shape obtained from experimental data. We can obtain the
closest admissible shape by simply projecting an inadmissible point onto the manifold. This
situation is illustrated in Figure 3.4 where the target shape is denoted by ΓΓΓ

T and its projection
on M is ΓΓΓ

∗.

: target/experimental shape

: closest feasible shape

FIGURE 3.4 Projecting a shape on to the manifold.

In identification problems with actual experimentally determined shapes, the target
shape ΓΓΓ

T is clearly not admissible due to the cumulative modeling and measurement errors
involved. In other words, the shape ΓΓΓ

∗ is the best shape that can be obtained with regard
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to the experimental data within the given constitutive law and the experimental setup. The
projection error is the distance between ΓΓΓ

T and ΓΓΓ
∗.

In springback minimization, the target shape, even without measurement error, may still
(and generally will) be inadmissible for design reasons. ΓΓΓ

∗ corresponds then to the shape
that is closest to the target shape, again within a given process model.

3.2 Step-by-step manifold construction

According to our fundamental hypothesis, a global manifold is defined as a smooth hyper
surface that connects all the admissible shapes for a given problem in applied mechanics.
However, generating this manifold for a large problem would entail heavy off-line simulations
for sufficient accuracy, since it is usually high-dimensional and nonlinear. The main idea
here is to project the desired shape onto the surface of shape manifold M without explicitly
constructing the global manifold. Instead, we propose an on-line approach which constructs
only the useful portion of M (local manifold) progressively and the final shape ΓΓΓ

∗ is then
estimated step-by-step.

FIGURE 3.5 Local manifold construction by "walking" along the global manifold.

Generally, we begin by obtaining a family of structural shapes ΓΓΓ
(i)
t=1 for an initial parameter

set µµµ0
t=1 and its k neighbors. These shapes can be described in a reduced shape-space, leading

to a point-set manifold M1 in using dimensionality reduction algorithms presented in Section
2.1.2. We then approximate the manifold locally around ΓΓΓ

0
t=1 by a hyper surface M 1. The

desired shape ΓΓΓ
T is then projected on to this local manifold to get the first estimation ΓΓΓ

∗
t=1

and its corresponding parameters µµµ∗
t=1 in design space. In the third step, another hyper

surface M 2 is generated around the new point ΓΓΓ
0
t=2 (which is equivalent to ΓΓΓ

∗
t=1) and we

project once again ΓΓΓ
T on the newly constructed local manifold. This procedure is repeated

till convergence.
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Note that the choice of k depends on the complexity of the problem (for example k = 3
in Figure 3.5), and the transition between point-set to smooth manifold can be completely by
Diffuse Approximation [120], as will be presented in Section 3.3.4

3.3 Numerical tools and methods

In order to define the "shape space" in an exploitable manner, we will first use LSM to
represent structural shapes. Next we can rely on the dimensionality reduction algorithms
proposed in Section 2.1.2 to compute the projection coefficients in the reduced shape space.
The inter-relationship between these projection coefficients will then be analyzed to obtain the
underlying shape manifold. Due to the simplicity of PCA, it will be adopted as an example.

3.3.1 Level set representation of structural shape

The level set function ϕ is interpreted here as a signed distance function which describes
the propagating front by the minimum distance of an arbitrary point x to ΓΓΓ (boundary of
shape or structure). By convention, the sign is positive if the point is outside and negative if
the point is inside the closed surface Ω. For open surfaces, the sign is positive if the point
is above and negative if the point is below, depending on the convention chosen for the
normals. The level set approach can thus represent a real-life structural shape Ω ∈R3 using a
three-state indicator function ϕ where

ϕ(x)< 0, x inside Ω

ϕ(x) = 0, x ∈ Γ

ϕ(x)> 0, x outside Ω

Therefore, the boundary of interest or the zero level set at any given time t can be located by
finding x(t) that satisfies

ϕ(x(t), t) = 0. (3.1)

The normal direction n̄ to the shape is obtained from

n̄ =
∇ϕ

|∇ϕ|
(3.2)
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and the curvature H = div(n̄). The typical approach to use the level set equation to propagate
a moving front over time is to differentiate with respect to time t which yields

∂ϕ

∂ t
+

∂x
∂ t

.
∂ϕ

∂x
= 0 (3.3)

giving the Hamilton-Jacobi equation to capture the front propagation of ϕ with a speed of v

∂ϕ

∂ t
− v|∇ϕ|= 0. (3.4)

Since the analytical form of ϕ is limited to simple geometries, we need to solve the above
equation to track the evolution of a general Γ. But for a given structural shape, the level set
function may be efficiently constructed using a fast marching algorithm and a fixed mesh of
a cloud of points representing the box D. A discrete value is assigned to each node of this
mesh corresponding to the closeness of the node x to the boundary Γ (Figure 3.6). This gives
us a signed distance function χχχ whose zero level set is then found using interpolation.
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FIGURE 3.6 Generating the signed distance function for a shape Ω using fixed mesh grid.

3.3.2 Shape space constructed by PCA

Now that we have a versatile and complete representation of a structural shape with a
discrete level set function χχχ , the next step is to develop a tangible representation of the "shape
space" where the structural shape evolves. There are, in theory, various ways to construct
the reduced space for complex "shapes". Any of the algorithm presented in Section 2.1.2
is applicable. We focus here on PCA which shall provide us with not only the projection
coefficients but also the orthogonal basis, allowing us to project new shapes to the same
space.
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Considering M level set functions χχχ(i), i = 1,2 · · ·M, who correspond to M admissible
shapes (or snapshots), we compute the deviation matrix

SSS =
[

χχχ(1)− χ̄χχ, χχχ(2)− χ̄χχ ... χχχ(M)− χ̄χχ

]
(3.5)

centered around the mean snapshot χ̄χχ . Any χχχ(i) can then be reconstructed by

χχχ
(i) = χ̄χχ +

M

∑
j=1

α
(i)
j φφφ j (3.6)

where
α
(i)
j = (φφφ j)

T(χχχ(i)− χ̄χχ); i, j = 1,2 · · ·M (3.7)

is the projection coefficient for the ith individual snapshot χχχ(i) on φφφ j. The projection basis,
or in other words the orthogonal basis of the constructed shape space, is derived from the
eigenvectors of the covariance matrix

Cs =
1
M

SSSSSST. (3.8)

As a result, the shape space is a M-dimensional space with φφφ 1,φφφ 2 · · ·φφφ M serve as its basis
and each single point in this space described by α-coordinates represents a shape in question.
Lastly, we have two remarks to make :

3.3.3 Intrinsic dimensionality estimation

A regular design problem usually involves a parameter array µµµ that may include the primi-
tives of geometrical shape, material and process parameters, etc. However, these variables are
not always independent, for example in the springback correction problem, the ad hoc chosen
parameters are sometimes redundant for the shape definition. For a better understanding of
the problem itself, the intrinsic dimensionality analysis is necessary. Intrinsic dimensionality
is basically the minimum number of variables needed to fully describe a problem. In this
work, it is denoted by dint . Several algorithms to detect intrinsic dimensionality of dataset are
critically reviewed in [25]. In the present work, motivated by [62], a criterion based on LLE
neighborhood preservation is proposed as an alternative solution.

LLE "discovers" the underlying nonlinear structure of high dimensional data by exploiting
the local symmetries of linear reconstruction. We recall from Section 2.1.2 that two common
steps are involved : learn the local geometry around each point and embed high dimensional
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FIGURE 3.7 The connectivity/vicinity of points before and after embedding.

data into low dimensional space using the local information. According to [132], LLE was
considered as a neighborhood preserving approach, meaning that neighboring points in a
typical vicinity probably remain in the same neighborhood in embedded system. However,
this property is not guaranteed by neither Equation 2.18 nor 2.19.

Here, one should be clear about the relationship between weights and neighborhoods. In
the original space, weights are calculated from neighborhoods, while in embedded space, this
weight matrix allows us to reconstruct a given point from its neighbors in the original space,
whereas these points could either be nearby or faraway in the embedded space provided
that the reconstruction error in Equation 2.19 is minimized. In this regard, LLE may be
considered as a weight preserving rather than a neighborhood preserving algorithm. Based
on this feature, we thus propose an intrinsic dimensionality criterion by evaluating the
faithfulness of embedding (or embedding error).

For illustration purpose, we define two coordinate systems X and Y, referring to the initial
and the embedded system, respectively. Let V(i) collect the k closest neighbors of X(i). We
first define an intersection operation ”∩” between V(i) and V( j) which returns the number of
common components in the two sets. Then card(V(i)

X ∩V(i)
Y ) provides the number of preserved

neighbors for point X(i) in two systems. As illustrated in Figure 3.7, card(V(1)
X ∩V(1)

Y ) =

card(V(2)
X ∩V(2)

Y ) = 2. Consequently, we propose the concept of ”neighborhood preserving
ratio” that quantifies the evolution of neighborhood before and after embedding,

γ(d) =

M
∑

i=1
card(V(i)

X ∩V(i)
Y|d)

k ·M
. (3.9)

where M is the number of sample points at hand. By design, this ratio varies between 0
and 1 and could provide us with an insight on the fidelity of embedding in low dimensional
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space. Generally, the bigger this value is, the better the neighborhood is preserved. We also
expect that the neighborhoods of each point change slightly if the embedding preserves the
original information, while change dramatically if the embedded dimensionality d is too
small to describe data properly. A telltale gap between γ(dint) and γ(dint −1) indicates that
the original data lie in a dint-dimensional space. Another way of evaluating the intrinsic
dimensionality is to choose a proper threshold value γcrit and calculate the neighborhood
preserving ratio in Equation 3.9 while increasing d until γ(d)> γcrit.

Detecting the intrinsic dimensionality is important in order to explicitly construct the
manifold in the reduced space, especially since we do not truncate the basis and retain all
coefficients. Note that while the algorithm is based on LLE, the actual embedding may be
computed using any of the methods introduced in Section 2.1.2.

3.3.4 Shape manifold construction

We now have the projection coefficients for different shapes, giving us a point-set mani-
fold in α-space. The next step then is to globally/locally approximate the shape manifold M
by interpolating between these "shape snapshots" by a smooth α-manifold

M (α1....αm) = 0 (3.10)

and thus implicitly represent all the technological/shape admissibility constraints on the
family of structural shapes χχχ(µµµ). Instead of employing all the M coordinates, only the first
m dominant ones will be chosen based on an estimate of the intrinsic dimensionality of the
problem at hand. In the Diffuse Approximation framework, the parametric representation of
M is approximated with polynomial basis p and the coefficient vectors a( j)

α j(µµµ) = pT(µµµ)a( j), j = 1,2 · · ·m, (3.11)

by minimizing the moving least-square error

a( j) = arg min
1
2

m

∑
i=1

ω
(
µµµ
(i),µµµ

)(
pT(µµµ(i))a( j)−ααα

(i)
j

)2
. (3.12)

Here, ω is the weighting function depending on the distance between evaluation point µµµ and
the selected snapshots µµµ(i), i.e., ω := ω(∥µµµ − µµµ(i)∥). The weights ωi plays a crucial role
in determining how the scattered points influence the smooth manifold, and it insures the
continuity and the locality of the approximation. It is defined as positive at µµµ(i) and decreases
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within a fixed region (called domain of influence) and vanishes outside. One such example is

ω(∥µµµ −µµµ
(i)∥) =

(
1− ∥µµµ −µµµ(i)∥

14

)2

. (3.13)

Though Diffuse approximation allows the transition from the point-set to smooth manifolds,
it would be difficult to make a general assessment for the accuracy of the approximation,
since the numerical error due to interpolation would depend on the problem dimensionality,
the neighborhood density (distances), number of neighbors, the degree of polynomial used
etc. A detailed analysis of the approximation error for a general problem, although not within
the context of the manifold is a central subject in [21].

3.4 An illustrative example : manifold approach in mate-
rial characterization

To help understand the manifold-related concepts presented above, we simply construct
in this section a series of manifolds considering diverse material constitutive behaviors as
special "shapes". The advantage of manifold protocol in predicting the number of identifiable
material parameters is illustrated on three different laws : the Hooke’s, the Hollomon’s and
the Voce law.

3.4.1 Material laws

In view of its simplicity, the Hooke’s law characterizing an elastic deformation using one
single parameter (Young’s modulus E) is omitted here, while the two other laws are briefly
presented as below.

Two-parameter Hollomon’s power law

Following [15, 32], the power Hollomon’s law is generally assumed for studying metallic
material. The stress-strain curve under uniaxial tension is given in the form

σ = Eε, for ε <
σy

E

σ = Kε
n, for ε ≥

σy

E

(3.14)

where σ is the uniaxial stress, σy the initial yield stress, ε the total strain and n the work
hardening exponent. The constant K = σy (E/σy)

n is obtained from the continuity constraint
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at σ = σy. This constitutive law generally defines a quasi-static material with isotropic power
hardening.

Three-parameter Voce equation

The Voce uniaxial σ -ε relationship is defined in piecewise fashion [163]{
σ = Eε

σ =
σy

1−m1
(1−m1e−m2εp)

(3.15)

with three parameters : σy and dimensionless m1 and m2, that control the plastic hardening
behavior. This description is of potential interest for calculating the so-called "representative
strain" using dimensional analysis [34, 44]. Its another variant

σ = σy +Q(1− e−γεp) (3.16)

depends on Q = σs −σy, which is the difference between the saturation stress σs and the
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FIGURE 3.8 Voce law with three hardening parameters : σy, Q and γ .

initial elastic limit. Essentially, Q = m1
1−m1

σy is a function of σy and m1. Like m2 in Equation
3.15, the parameter γ controls how "rapidly" the stress approaches the saturation level, and it
may vary in a range wide enough to accommodate large class of strain hardening engineering
materials : from bilinear elasto-plastic (γ = 2) to elastic-perfectly plastic (γ = 300), Figure
3.8.

Generally, in the identification of these two latter laws, we focus rather on the material
hardening/plastic properties whereas the Young’s modulus is considered known a priori. In
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this sense, respectively 2 and 3 parameters are to be probed in the identifications of the two
constitutive laws.

3.4.2 Comparison of manifolds based on σ -ε curves
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FIGURE 3.9 Illustrative stress-strain curves and the corresponding low-dimensional embed-
dings for (a)-(b) perfectly elastic (Hooke’s law), (c)-(d) Hollomon’s power law hardening,
and (e)-(f) Voce law hardening

For the Hooke’s law, we define a group of 50 tensile curves varying E ∈ [200 Gpa,800 Gpa].
For the other two material laws, a series of σ -ε curves are constructed based on an 11 levels
full factorial Design of Experiments (DoE) within the following parameter intervals (with



42 Nonlinear manifold learning approach

fixed E = 210 GPa) : σy ∈ [100 Mpa,300 Mpa] and n ∈ [0.1, 0.4] for Hollomon’s law, and
σy ∈ [300 Mpa,800 Mpa], Q ∈ [200 Mpa,400 Mpa] and γ ∈ [10, 60] for Voce hardening.

On the left of Figure 3.9, we show a series of representative stress-strain curves for
the three selected material constitutive laws. In this example, these σ -ε curves are directly
considered as the high-dimensional input "shapes". Instead of employing the level set me-
thod as presented in Section 3.3.1, they can be easily characterized by a vector of stresses
interpolated on a fixed grid of strains varying between 0 and 1. Following Equation 3.5-3.7,
for the corresponding stress-strain curves of each material law, we find out a reduced shape
space, into which the synthetic curves are projected. The analysis of resulting patterns of
points in the embedded space illustrated on the right of Figure 3.9 allows us to conclude that :

— for Hooke’s law, the set points corresponding to different instances of stress-strain
behavior of perfectly elastic material is readily observed to lie on a straight line in the
reduced space, Figure 3.9 (b) ;

— for Hollomon’s power law hardening materials, we observe that the projections are
arranged in a regular fashion, showing an intrinsicly 2D hyper-surface, Figure 3.9
(d) ;

— for Voce hardening law, we observe that the material behavior curves are mapped
to a 3D cloud of points, taking the form of a "multi-layer sandwich", Figure 3.9 (f)
(indicating an intrinsic dimensionality of 3 as expected).

We conclude that in all cases, the parameters defining the constitutive laws are independent in
view of an intrinsic dimensionality of 1, 2 and 3, respectively. Figure 3.9 may also promote us
to hypothesize a relationship between the number of identifiable parameters and the intrinsic
dimensionality of the manifold of admissible shapes within the reduced-order space. This
will be further validated in Section 6.1.

3.4.3 Classifying material behaviors

Then, we also try to plot the three manifolds w.r.t different material behaviors within
the same shape space. Unlike in Section 3.4.2, the sampled tensile curves are assembled
in a single snapshot matrix, on which we perform a global PCA, resulting in a reduced
basis ΦΦΦ

ela, ep. In this space we depict the projections of σ -ε curves for the three laws using
different colors, Figure 3.10.

Quite obviously, we observe that all the stress-strain curves are automatically clustered
into three groups of point clouds, which illustrates one of the potential advantages of manifold
method in predicting according to which law a material hardens. Suppose now that we have
an experimentally measured tensile curve for an unknown material, employing the manifold
hypothesis, we may try to predict which constitutive law the material most probably follows
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Hooke’s law

Voce law

Hollomon’s law

 

FIGURE 3.10 Reduced shape space constructed for three different constitutive laws.

by simply projecting this curve into the common shape space and examine its distances to
different point clouds.

Hollomon’s law

Voce law

intersection 

Reduced space:

FIGURE 3.11 Reduced space constructed for elasto-plastic materials hardening according to
either Hollomon’s or Voce law.
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We notice also that the 3D manifold w.r.t the Voce law in Figure 3.9 (f) seems to degrade
to a 2D one as in Figure 3.10. We attribute this to the possible influence of the Hooke’s
law, since its elastic behavior was designed to vary in a large range (E ∈ [200, 800GPa]) in
contrast to a fixed Young’s modulus for the other two laws. To verify this, we subsequently
focus only on elasto-plastic material behaviors and the curves belong to Hooke’s law are thus
eliminated form the snapshot matrix, and consequently another reduced shape space ΦΦΦ

ep is
reconstructed in Figure 3.11 for materials having the same elastic property, i.e., E = 210 GPa.
We observe a regular 3D point cloud for the three-parameter Voce law.
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FIGURE 3.12 Possibility of using two different laws to characterize similar materials.

More interestingly, an intersection is observed between the Hollomon’s and the Voce
manifold, Figure 3.11. We therefore choose, from this intersection zone, two close points
belonging to different material behaviors and reconstruct their tensile curves in Figure 3.12.
It is observed that the two material behaviors defined by two constitutive laws are quite
similar, which signifies that some materials could be characterized by either models. This
will be further investigated in Chapter 7 with engineering materials.

3.5 Closing remarks

In this chapter, we have first introduced the basic concepts involved in manifold lear-
ning approach. Several related numerical techniques, including level set method, intrinsic
dimensionality estimation, and manifold construction by dimensionality reduction algorithm,
were also presented. We have also provided a synthetic example based on several material
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constitutive laws to demonstrate the advantage of manifold method by illustrating the correla-
tion between the intrinsic dimensionality of problem and that of the corresponding manifold.
Moreover, another potential advantage of manifold in predicting which law a material follows
is also discussed.

In the next chapter, we make a further step towards the application of the proposed
approach to indentation-based material characterization. The data to be reduced will be
more complex, capturing the nonlinearity of the tested material. By using the same protocol,
we intent to investigate the identifiability of different plastic parameters while considering
different indentation responses : P-h curve and imprint.





Chapitre 4

Global manifolds based on diverse
indentation responses

In this chapter, we will concentrate on applying the manifold-learning approach deve-
loped in Chapter 3 to the problem of indentation-based material characterization. Unlike
conventional methods that focus on correlating P-h curves, the full-field measurement of resi-
dual imprint will be considered in addition. This subject is challenging from both the aspects
of dimensionality reduction as well as of material characterization, in view of the complexity
of the measured data and possible influences of indentation setup, e.g., the indenter geometry
and the applied boundary conditions.

Throughout this chapter, synthetic imprints and P-h curves are used without adding any
noise with the aim of first validating the manifold approach. A series of indentation responses
simulated by varying the material parameters will then be compared in the constructed
reduced order shape-space. Note that, in contrast with iterative identification process, only
analysis of objective function is involved at current stage. The existence or not of one-to-one
correspondence between material parameter set and indentation response is investigated.
Moreover, the advantages of imprint profile over P-h curve and the benefit of prescribing
displacement in simulation are also demonstrated.

This chapter is organized in the following manner : the indentation simulation model is
first presented in Section 4.1 with several fundamental hypothesis to set the stage for the
study in current chapter. Different conditionings in inverse identification are briefly discussed
in Section 4.2. Section 4.3 demonstrates the construction of diverse snapshots with regard to
different indentation boundary conditions. A series of global manifolds are then compared in
Section 4.4 for the purpose of visualizing possible existence of "mystical materials" that can
not be well distinguished by a single indentation test. In Section 4.6 some discussions are
anticipated with a view to the conditioning of indentation-based identification. We finally
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illustrate the existence of a unique solution in identifying Hollomon’s law in Section 4.7.
Closing remarks are given in Section 4.8

4.1 Finite element simulation

In the simulation of the indentation test, most of the forward analysis models [33, 16,
151, 22, 11] are based on the following hypotheses about the specimen and the indenters :

— the small compliances of the measuring system and of the indenter tip may be
neglected ;

— the bulk materials are considered as homogeneous and free from surface residual
stresses ;

— the penetration depth of the indenter tip is sufficiently deep, rendering both the "size
effect" and indenter tip bluntness negligible ;

— the Poisson’s ratio, albeit having a slight impact on the indentation response, is
considered as known a priori.

While some of these hypothesis may be too restrictive to be applicable to other cases,
they are still considered as acceptable when indenting the large majority of bulk materials
in micro-scale, especially for investigating the idenfiability of material parameters in using
different indentation responses.

4.1.1 Finite element model

Two different indenters are studied. One has a spherical tip with a radius of R = 0.5 mm,
the other is conical with a semi-opening angle of 70.3◦. The simplicity of their cylindrical
symmetry makes them appealing from a modeling standpoint, since the hypotheses of
homogeneity and isotropy of the material allows us to use a 2D axisymmetric model. On
the other hand, the conical indenter is also attractive because the complications associated
with stress concentrations at the sharp edges of the indenter are absent (in comparison with
pyramidal ones). The spherical indenter, available from many manufacturers, is widely used
especially for micro-scale indentation.

The discretizations of indenters and of the specimen are shown in Figure 4.1. A dense
mesh is employed near the interest zone where contact is present between the two pieces.
Besides, to approximate the semi-infinite domain condition, a rather large size of the specimen
is chosen, 50 mm×50 mm, and axisymmetric boundary conditions are selected for both the
specimen and the indenters. The indentation system is modeled with ABAQUS/Standard
involving 4394 four-node axisymmetric elements CAX4R for the specimen, 6070 elements
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Conical indenter Spherical indenterMaterial piece

50 mm

50 mm

mm

FIGURE 4.1 Finite element model of specimen and different indenter tips.

for spherical indenter and 510 elements for conical indenter. The contact interface between
the two pieces is characterized by Coulomb friction coefficient µ . For the two indenters,
Young’s modulus Ei = 600 GPa and Poisson’s ratio νi = 0.23 are assigned to approximate the
elastic properties of Tungsten carbide. The elasto-plastic behavior of the specimen is defined
by multi parameters of different constitutive models. In this chapter, the elastic deformation
of the specimen is characterized by Es = 210 GPa and νs = 0.3, referring to the mechanical
parameters of steel.

In this chapter, the power Hollomon’s law is assumed for the studied metallic material
following research works in the domain [15, 32]. In Abaqus simulation, the corresponding
plastic hardening property is interpreted in FE model by defining a table of von Mises stress
versus the equivalent plastic strain despite that both the stress and strain are second rank
tensors. This is simply based on the underlying assumption that the hydrostatic components
of both stress and strain are negligible which is fairly reliable for our case, i.e., elasto-plastic
metallic material.

It is also noticed that both indenters are considered geometrically perfect and no wear-out
is present. Though an elastic singularity is likely to be present at the tip of the cone [58],
the plasticity tends to decrease this effect and more evenly distribute the pressure [113].

(Avg: 75%)

S, Mises

 0.002
 51.80
103.59
155.39
207.18
258.98
310.77
362.57
414.36
466.16
517.96
569.75
621.54

FIGURE 4.2 Stress field in the specimen after indentation with a perfectly sharp indenter.
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Therefore, from numerical point of view, the elastic singularity will be attenuated when
an elasto-plastic model is concerned. By consequence, the material around the indenter tip
starts to plastify immediately from the beginning of contact while the maximal stress will
always be bounded by the current elastic limit according to the hardening model. This is
coincident with the simulation result (Figure 4.2) obtained with no finite radius on indenter
or modification to the standard FE procedure. As observed, the stress concentration is present
around the pile-up zone rather than at the indenter tip after indenter removal. The influenced
zone of singularity, in good agreement with [58], is rather small (around an element size)
thus can be neglected without an impact on the simulation.

4.1.2 Different boundary conditions

The typical indentation curve in Figure 2.2 is generally obtained from two main compo-
nents in the facility : the displacement sensor and the load cell. In the majority of situations,
the indentation test is carried out by forcing an indenter into the material surface by increasing
the applied load until a pre-defined threshold value is reached (namely prescribed force).
Another possibility is to control the whole procedure by a maximum penetration depth of the
indenter in the specimen, called prescribed displacement control. In both cases, the test cycle
involves two phases : the loading phase and the unloading phase.

From the experimental point of view, the same indentation response and therefore the
same kind of experimental information shall be obtained regardless of the way the experiment
is controlled ( by force or displacement). In the context of numerical simulation, though both
boundary conditions are applicable to match with a given final state of loading phase (that of
the experiment), the choice may influence the difficulty level of inverse identification, thus is
studied in Section 4.4.

4.2 The conditioning of the inverse identification problem

The condition number, or conditioning of a numerical problem, is a frequently used
concept to determine whether or not a problem is well-behaved. In the problem of the inverse
identification of material properties by indentation, we always "hope" to find the unique
parameter set that will produce the desired, i.e., the experimentally measured mechanical
response, which could either be the P-h curve or the residual imprint. For a simple two-
variable problem, Figure 4.3 shows the different types of conditioning that are frequently
encountered in inverse identification, they are :
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— ill-posed : A one-to-one correspondence does not exist between the material property
pairs, (µ1, µ2), and the indentation responses, or in other words, more than one pair
of material properties will produce nearly "indistinguishable" indentation responses,
cases (b) and (d).

— well-posed : Any two different materials may be distinguished by their indentation
responses, and as a result, there must be one and only one material parameter set that
will lead to the "desired" response after FE simulation, case (c) ;

— ill-conditioned : The unique identification of model input (material parameters) from
the indentation response, though possible in theory, is prone to large numerical errors
due to an attenuation of the difference between their indentation responses, case (e).

(c) well-posed

(d) ill-posed (II) (e) ill-conditioned

(a) two-parameter 

conceptual space
(b) ill-posed (I)

FIGURE 4.3 The three possible conditionings of an inverse problem : (a) input space of a
two-variable physical model, and (b)-(e) diverse situations of model outputs within condensed
space.

We observe that, for case (b), the output of the analysis model is insensitive to one of the
two parameters, µ1, and thus only µ2 can be correctly identified. Similarly, the simultaneous
identification of two parameters is impossible for (d) as well, since an interdependent
influence of the two parameters on the simulation output is observed. However, we still note
that the identification of one of the parameters is achievable if the other is known a priori.
In addition, for cases like (e), the identification of both parameters, though theoretically
possible, can prove to be a thorny task, especially with the presence of measurement errors.
(c) presents the only situation where we can readily identify both parameters.

Note also that the conditioning of the inverse analysis may vary significantly when
different sets of data are used, or when different boundary conditions are employed. The main
objective of this section is to understand the non-unicity in identification and to alleviate it
by designing different indentation tests. A general solution would be to involve additional
experimental data. However, the major concern is whether the supplementary data provides
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new information that is independent of that already obtained from the existing data. Therefore,
the study of the conditioning of the problem is of vital importance.

On the other hand, both the indentation curve and the residual imprint are high-dimensional
[91]. This renders the relationship between material parameters and indentation response
much less intuitive as illustrated in Figure 4.3. A condensed expression of the indentation
responses is therefore needed. The machine learning-inspired nonlinear dimensional reduc-
tion algorithms showcased in Section 2.1.2 may serve this purpose and will be employed on
indentation responses in the following of this chapter.

4.3 Describing indentation quantities in reduced space

In Section 4.3.1 we present first the characterization of indentation responses. After
performing dimensionality reduction on a series of indentation responses, these indentation
curves and imprints are then described in the reduced shape-space in Section 4.3.2.

4.3.1 Constructing snapshots from indentation quantities

As stated in the preamble, three kinds of information are employed for identification
in literatures : the P-h curve [112, 75, 34, 2], the residual imprint [94, 24, 136, 157] and
the combination of P-h curve and total/partial imprint[15, 11]. We shall start with a typical
imprint profile obtained for a homogenous material with an axisymmetric spherical indenter,
Figure 4.4. The vertical displacements of the surface nodes are interpolated over a grid of l
points and are stored in vector form

0 0.2 0.4 0.6 0.8 1 1.2 1.4
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undeformed surface

FIGURE 4.4 Snapshot definition depending on a typical imprint obtained from a spherical
indenter.

sssI = (z1,z2, · · · ,zl)
T (4.1)
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where l is chosen according to the density of FE mesh (for simulated imprints) or the
resolution of microscope (for experimental measured ones). The subscript "I" refers to
"imprint".
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FIGURE 4.5 Snapshot definition depending on P-h curves with different boundary conditions.

Unlike imprint, the indentation curve is a multi-value function between the force and
penetration depth. For the purpose of interpolating between different indentation curves, the
loading and unloading parts are considered separately. As a consequence, the P-h snapshots
have different descriptions, depending on the chosen boundary condition (natural/essential).
For a prescribed force case, Figure 4.5 (a), the penetration depths hi in both phases can be
interpolated over a series of given load increments, yielding hi = h(Pi), i = 1,2, · · · , p+q,
where p and q are the number of loading and unloading increments. The two phases are then
characterized by the snapshot vectors with subscript "L" and "U", respectively

sssL = (hL,1,hL,2, · · · ,hL,p)
T, sssU = (hU,1,hU,2, · · · ,hU,q)

T. (4.2)

Similarly, for the case where a maximum penetration depth hmax is prescribed (Figure 4.5
(b)), the same interpolation steps are followed except that we record forces for different
penetration depths : Pi = P(hi). It should be noted here that the unloading portion also
includes the segment overlying the h-axis. Consequently, the snapshot of indentation curve
obtained with prescribed displacement consists of

sssL = (PL,1,PL,2, · · · ,PL,p)
T, sssU = (PU,1,PU,2, · · · ,PU,q)

T. (4.3)

The concatenated P-h snapshot

sssC =

(
sssL

sssU

)
(4.4)
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then characterizes the whole indentation curve and guarantees the comparability of P-h
snapshots in identification. Finally, we can also construct a snapshot (of dimensionality
N = l + p+q) which combines the indentation curve with the imprint, reading

sss =

(
w× sssI

(1−w)× sssC

)
, w ∈ [0,1] (4.5)

where w is the weighting coefficient. We underline here that sssI and sssC are normalized before
concatenation since they may contain quantities with greatly differing units. This snapshot
degrades to Equation 4.1 for w = 1 and to Equation 4.4 for w = 0, and w = 0.5 signifies an
equal-weighted contribution of P-h curve and imprint profile. The influence of the parameter
w is studied in Section 4.6.3.

We point out that the level set method [96] can be generally used for indentation curve
without special attention paying to different boundary conditions. The reason why we choose
the current description rests with the formation of raw data (point-wise) collected during
indentation test. Similarly, a typical imprint can also be characterized using level set function
considering it as an open surface.

4.3.2 Reducing dimensionality of indentation snapshot by SVD

We begin with M numerical experiments defined by an appropriate DoE for the varying set
of design parameters µµµ(i), i = 1,2 · · ·M representing the material parameters to be identified.
Different indentation responses sss(i) = sss(µµµ(i)) extracted from FE simulation results are then
considered as snapshots. In this section, the imprints are employed to present the method
(Figure 4.6), and the general notation ”sss” is employed without any distinction. The centered
snapshot matrix SSS is given by

SSS = [sss(1)− sss,sss(2)− sss, · · ·sss(M)− sss], (4.6)

where sss is the mean snapshot

sss =
1
M

M

∑
i=1

sss(i). (4.7)

Singular value decomposition [61] of SSS yields

SSS = ΦΦΦΣΣΣVT, (4.8)

where the diagonal matrix ΣΣΣ contains the singular values σi, i = 1,2 · · ·M ; the left singular
vectors ΦΦΦ = [φφφ (1),φφφ (2) · · ·φφφ (M)] are right the eigenvectors of the covariance matrix CCC = SSSSSST
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FIGURE 4.6 A series of snapshots obtained for varying material parameters.

and are also called POD modes. Figure 4.7 gives the mean of all imprint snapshots from
Figure 4.6, as well as the modes scaled by the corresponding eigenvalues λi = σ2

i . All the
imprints are thus described in the reduced space

α
(i)
j =

(
φφφ
( j)
)T(

sss(i)− sss
)
, j = 1,2 · · ·M. (4.9)

In standard POD, one considers only m ≪ M significant modes corresponding to the
largest eigenvalues of the covariance matrix using the following criterion

err = 1− ∑
m
i=1 λi

∑
M
j=1 λ j

. (4.10)
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FIGURE 4.7 The mean snapshot and different POD modes scaled by the corresponding
eigenvalues.
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and by fixing a threshold for err. However, the difficulty lies in the choice of a proper
value for err. Another option to truncate the basis is inspired by estimating the intrinsic
dimensionality, where a telltale gap between eigenvalues can be observed. In this way, the
high-dimensional imprints are finally described in a reduced space of m-dimensionality. Note
that, in very rare cases, we will keep all the modes if the snapshots are already orthogonal.
However, in most cases, the reduction of the number of modes is still possible, and the effect
of adopting different numbers of modes will be analyzed in Appendix C.

4.4 Example shape manifold of indentation responses

To construct example manifolds considering different information, we perform a series of
simulations over a design/parametric space where n∈ [0.2, 0.3] and σy ∈ [200 MPa, 240 MPa].
The parameters are equal-spaced sampled from the design space to provide a graphical inter-
pretation of manifold’s dimensionality in the shape space. We are aware that these intervals
chosen for the two parameters are narrow, yet they allow us to depict a small patch of the
manifold which is sufficient to illustrate the manifold approach.

A series of databases, each containing 21×21 = 441 snapshots, are built up for indenta-
tion curves and imprint mappings or their combinations, with respect to different indenter
shapes and simulation setups. The corresponding manifolds are constructed using the pro-
tocol detailed in Section 4.3.2. As mentioned, the manifolds are presented in 3D in spite
that they evolve in RM without mode truncation. For illustration purpose, only the first three
coefficients are presented in subsequent figures although any other triplet of coefficients
could also be used to demonstrate the inter-relationship between α-coefficients.

4.4.1 P-h curve manifolds

We first consider only the indentation curves (w= 0). For the loading and unloading phase,
the same number of steps is chosen, i.e., p = q = 201, and the strategies presented in Figure
4.5 are employed to characterize each P-h curve with a vector of dimensionality 402×1. It
is noticed that the size of the snapshot corresponds to the number of loading/unloading steps
in experimental regime, while for simulation curves interpolation is always performed to be
coincident with the experimental one. While the relative influence of loading and unloading
parts could be studied separately, we still consider them as a whole, and a standard manifold
construction process is then followed to transform each indentation curve to a single point in
low-dimensional space. The results are shown in Figure 4.8 for different combinations of
experimental setups and indenter geometries.
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FIGURE 4.8 Manifolds based on indentation curve snapshots sssC, p = q = 201,w = 0.

It is observed that we obtain almost a single line if the indentation test is force-driven,
regardless of the indenter geometries (Figure 4.8 (a) and (b)), yet 2D manifolds in Figure
4.8 (c) and (d) for prescribed displacement boundary condition. According to different
conditionings illustrated in Figure 4.3, it appears therefore that, by modeling a displacement-
driven indentation processes, we shall have more chance to obtain a unique identification
solution. However, if we examine carefully different scales with which the manifolds in
Figure 4.8 (c) and (d) are depicted, it is immediately noticeable that these two manifolds, in
reality, are stretched along α1 direction and present an extreme "thin-and-long" characteristic.
With this consideration, the identification of both parameters remains difficult.

In this part, we observe with our reduced-order approach that the choice of prescribed
boundary conditions in simulation may have an impact on the identifiability of the measured
P-h curve, while the indenter geometries show less influence.

4.4.2 Imprint manifolds

Four different manifolds are also generated for the corresponding databases of residual
imprint mappings following the same routine as for indentation curves. Each imprint is
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characterized by the vertical displacements of 540 points sampled from one of the profile,
and is mapped into α−space, Figure 4.9.
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FIGURE 4.9 Manifolds based on imprint snapshots sI, l = 540,w = 1.

Unlike P-h curve manifolds, these obtained from the imprint mappings indicate, all
of them, a dimensionality of two. Thus the imprint is supposed to interpret more material
properties than the indentation curve, and we postulate that we are able to identify two
material parameters simultaneously. It is also suggested by the difference of curvature of the
manifolds that the inverse problem is slightly better-conditioned when the simulation is a
displacement-driven one. This will be further explored in Section 4.5.

Besides, we notice again that the same observation concerning the thin-and-long property
also holds for imprint manifolds, especially when the maximum force is controlled in
simulation. Therefore, scaling the manifold may help to distinguish the imprint shapes
represented by points in α−space. We expect this improvement will help us more accurately
identify both parameters, or at least, accelerate the convergence. However, this scaling
operation should be based on the knowledge of intrinsic dimensionality (we are not allowed
to scale the first two α-coordinates if the intrinsic dimensionality of the manifold is one,
otherwise a meaningless cloud of points is obtained). The influence of this scaling operation,
though pointed out here, will be further studied in Section 5.3 along with identification
procedures.



4.5 Solving the inverse identification problem in reduced space 59

4.4.3 Manifolds combining P-h curve and imprint
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FIGURE 4.10 Manifolds based on combined snapshot sss = [0.5sssI, 0.5sssC]
T.

Now we will employ all available information, i.e., the P-h curve sssC and the imprint
mapping sssI. Both of them are normalized before concatenating. First, w = 0.5 is adopted to
assign an equal-weighted contribution to the cost function defined by Equation 4.11.

The obtained manifolds are compared in Figure 4.10. Obviously, small difference is
observed in comparison with the forms of manifolds drawn from imprints in Figure 4.9.
Nevertheless, instead of a regular distribution of the snapshots, slight oscillations can be
observed, especially in Figure 4.10 (a) and (b). On the other hand, when inspecting the
respective scales on Figure 4.9 and 4.10, we observe that the ratio between the lengths of the
two primary axes (α1 and α2) is around 15 in Figure 4.10 (d) while 5 in Figure 4.9 (d). This
observation may be influenced by the choice of w thus is further studied in Section 4.6.3.

4.5 Solving the inverse identification problem in reduced
space

In a typical inverse identification problem, the experimental shape sssexp does not neces-
sarily belong to the manifold due to two main sources of errors : the model error and the
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measurement error. In this way, the solution to the inverse analysis is the set of parameter
values µµµ∗ with which the simulated admissible shape sss(µµµ∗) has the closest distance to the
experimental measured quantities, or in other words, minimizing the cost/objective function
in the reduced shape-space

ε = ∥αααexp −ααα(µµµ)∥, (4.11)

in which αααexp is the coordinate of experimental imprint sssexp in shape space, and is computed
as follows

αααexp = ΦΦΦ
T
(

sssexp − sss
)
. (4.12)

In the present section, we focus only on the manifolds for a spherical indenter. In place of
performing inverse identification, the objective function is computed over a large design space,
with respect to a pseudo-target sssexp simulated by using σy = 216 MPa and n = 0.255. By
ruling out possible model and measurement errors, we expect to observe a unique minimum
from the distribution of the objective function.

4.5.1 Objective function based on P-h curve

The distribution of the objective function in Equation 4.11 for w = 0 is presented in
Figure 4.11. It is not surprising that no unique solution can be found when we employ
only the P-h curve while using a prescribed force since the intrinsic dimensionality of the
corresponding manifold is one, Figure 4.8 (a). This is also consistent with the observation in
[104], where the error is computed as conventional point-wise discrepancy between measured
and simulated quantities.
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Besides, we note again that different boundary conditions in simulation may lead to slight
difference in the identifiability of material parameters with P-h curve. In Figure 4.11 (b), the
solution to inverse problem is still not unique despite that the number of local minima is
decreased. We consider thus, by controlling the displacement during inverse analysis, the
inverse problem should be slightly better posed. Here, by ”better conditioned”, we mean
that the parameters can be identified more easily, rather than that more parameters can be
identified.

4.5.2 Objective function based on imprints

Then, the residual imprint is considered and the error distributions computed from
imprint manifolds (Figure 4.9 (a) and (c)) are presented in Figure 4.12. Unlike in Figure
4.11 (a), even if the parameter sets (σy, n) that give almost the same minimal error lie in a
"thin-long valley", we are still able to extract the exact constitutive parameters µµµ∗ without
being caught by local minimum. The contour lines of the error distribution show a single
global minimum which allows the accurate identification of both material properties. These
results show a clear advantage of imprint in the identification procedure in comparison with
indentation P-h curve. On the other hand, we observe again that the situation is improved
when switching the boundary condition in simulation from prescribed force to displacement,
and the improvement is significant for imprint manifolds. The possible reasons behind this
phenomenon are discussed in Section 4.6.2.
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4.5.3 Objective function based on P-h curve and imprint

Finally, we consider the snapshots which combine the P-h curves and the residual imprints
in Figure 4.13. Once again, the contour lines demonstrate the possibility of identifying two
parameters simultaneously. A slightly better conditioning may be observed for Figure 4.13
(a) against Figure 4.12 (a) since more information is provided for identification. However,
when comparing Figure 4.12 (b) and Figure 4.13 (b), this influence seems to depend on
the choice of the value of w. Thereby, it can be concluded from the manifolds as well as
the corresponding error distributions that more information does not necessarily result in a
better-conditioned inverse problem, and a compromise needs to be found on both indentation
quantities.
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4.6 On the identifiablity of different parameters

In this section, the condition number is adopted to compare the quality of the global and
one of the local minima, i.e., point A and B in Figure 4.11-4.13. The influence of BCs and the
choice of weighting coefficient w in combining P-h curve and imprint are also investigated
in detail.

4.6.1 Sensitivity analysis

To enhance the understanding of identifiability of different material parameters, especially
when different simulation boundary conditions are employed, the sensitivity analysis is
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performed to quantify the influence of different parameters on the optimization criterion
(Equation 4.11). For consistency, the identification error was calculated with respect to a
pseudo-target sssexp simulated by using σy = 216 MPa and n = 0.255, allowing us to reuse
the error distributions calculated in Figure 4.11- 4.13. The two components of the gradient
∇(ε) = (∂ε/∂σy,∂ε/∂n) are computed as :

∂ε(µµµ)

∂σy
=

∆ε

∆σy
(σmax

y −σ
min
y )

∂ε(µµµ)

∂n
=

∆ε

∆n
(nmax −nmin)

. (4.13)

Here, the derivatives of the two parameters are approximated by a first-order forward
finite difference scheme. To avoid extra simulations, a step length of ∆σy = 2 MPa and
∆n = 0.005 are chosen in view that they are right the step length of the sampling grids in
design space. Superscripts ”max” and ”min” are employed for the upper and lower boundaries
of the two parameters in the purpose of rendering the two derivatives dimensionless. We
notice that, despite using the finite difference method, these sensitivities may be computed
analytically with an approximated polynomial expression of global manifold [20].
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FIGURE 4.14 Maps of −∇(ε) obtained from imprint manifolds in Figure 4.12 : (a) prescribed
force and (b) prescribed displacement.

Taking the graphs of cost functions for imprint manifolds (Figure 4.12) as an example, the
possible optimization trajectories are depicted by −∇(ε) for different simulation boundary
conditions in Figure 4.14. By design, the arrows point in the direction of the greatest rate of
decrease of the cost function. Therefore, as observed, the minimization problem converges
easily to point A regardless of the staring point in Figure 4.14 (b), while it is not the case of
Figure 4.14 (a).
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4.6.2 Conditioning number

Thus, to examine the quality of the optimal solution, the Hessian matrix, containing the
second-order partial derivatives of the cost function is computed by forward finite difference

HHH =


∂ 2ε

∂σ2
y

∂ 2ε

∂σy∂n
∂ 2ε

∂n∂σy

∂ 2ε

∂n2

 (4.14)

for point A : (216 MPa,0.255), where a global minimum should be found. By convention,
the condition number of the inverse problem κ(HHH) is defined as the ratio of the biggest
to the smallest singular values of the Hessian. It is a property of the problem and with a
low condition number a problem is said to be well-conditioned, while ill-conditioned for a
high condition number. All eigenvalues have to be positive for a minimum. We find that the
prescribed displacement boundary condition renders a better-conditioned inverse problem
by showing a condition number of 1.326 (Figure 4.12(b)), while κ = 6.1617 if the maximal
force is controlled (Figure 4.12(a)).

The above explains, from a mathematical point of view, why the inverse problem is
better conditioned when we perform the simulation with a prescribed maximal displacement.
From physical standpoint, we deem that, by the end of the loading phase, the imprint shapes
obtained with the same prescribed force are quite different for diverse material properties,
while this difference should be much smaller when maximal displacement is prescribed.
As a consequence, the unloading phase shall start with almost the same geometric imprint
configuration, but deforms differently from material to material due to different stress fields
at maximal penetration depth, allowing for easier differentiation between materials. For the
case of prescribed force, the residual imprint depends on both the loading and unloading
phases. The possibility of interference between the two phases may lead to less sensitive
indentation responses in the scope of our protocol.

4.6.3 The choice of weighting coefficient w

On the other hand, the conditioning numbers with respect to cost functions in Figure 4.13
(w = 0.5) are also calculated for solution point A, giving the value of 3.5269 and 3.5231 for
(a) and (b), respectively. This result is in line with the conclusion drawn at the end of Section
4.5 that more information employed for identification can, but not always, lead to a better-
conditioned problem. For this reason, we further study the influence of weighting coefficient
w. Results are given in Figure 4.15. The conditioning of inverse problem is improved and is



4.7 Unique identification of Hollomon’s law with only a conical indenter 65

approximately constant for 0.6 ≤ w ≤ 1. We also notice that, increasing the weight of the
indentation curve by reducing w decreases the quality of the optimum.
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FIGURE 4.15 The conditioning of the inverse problem for different values of weighting
coefficient w in Equation. 4.5 (prescribed displacement).

4.7 Unique identification of Hollomon’s law with only a co-
nical indenter

In the previous sections, we have observed from the manifolds that the power law
parameters can be identified using solely the residual imprint, and the well known non-unicity
issue presented in Section 2.3.3 appears to be alleviated, at least for spherical indentation
(Section 4.5 - 4.6). In this section, we attempt to confirm the validity of this observation for
self-similar conical indenters by observing distinguishable imprints for mystical material
pairs.
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FIGURE 4.16 Distinguishable residual imprints for the two mystical material pairs using
conical indenters.

Besides the mystical pair presented in Section 2.3.3, another pair with regard to θ =

63.14◦ is also considered. Figure 4.16 shows the residual imprints of the two mystical material
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pairs, (M1, M2)θ=74◦ and (M2, M3)θ=63.14◦ , after unloading at a maximum penetration depth
hmax = 0.1 mm. Similar to the case of spherical indentation, clear differences are, as expected,
observed around the pile-up zones, and both material pairs are no longer "mystical" when we
consider the residual imprint profiles.

We speculate therefore that the imprint mapping may possibly contain more "complete"
information of the material’s plastic behavior, thus rendering the inverse problem "better-
posed", at least for the current case (as far as isotropic elastoplastic materials with isotropic
hardening and rate-independent J2 plasticity are concerned). However, we must still be
cautious to rule out the existence of mystical materials for the imprint-based inverse problem.
In other words, we need to answer the question of whether or not there exist different
materials that reveal indistinguishable residual imprints.

For this purpose, we will compare a series of imprints in the low-dimensional space
constructed by using the approach presented in Section 4.3.2. FE simulations (assuming
conical indentation with θ = 74◦) are performed on 11× 11 instances from a factorial
DoE with material intervals : n ∈ [0.2,0.3] and σy ∈ [200 MPa, 240 MPa]. According to
Equation 4.6-4.9, every imprint corresponds to a single point in the shape space. Since the
intrinsic dimensionality of the shape space can not exceed the number of material parameters
being manipulated in the DoE (d = 2 for Hollomon’s hardening materials), the indentation
responses may be readily visualized in a 3D Cartesian coordinate system (Figure 4.17).
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FIGURE 4.17 Correspondence between the Design of Experiments and residual imprint
mappings in "shape space".

We observe that all imprints, reduced to single points, are clearly separated and show a
regular distribution (without overlapping or intersection). This clearly demonstrates a one-
to-one correspondence between the material parameters and the residual imprint mappings,
and further suggests the absence of two different material parameter sets that may lead to the
same (conical) imprint profile upon indenter withdrawal. For this reason, we may consider
the inverse identification problem based on the indentation imprint as well-posed.
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4.8 Closing remarks

In this chapter, a uniform pattern is developed for the characterization of diverse inden-
tation responses, i.e., the P-h curve and the imprint shapes. In addition, the identification
problem is transformed to a reduced shape-space by using dimensionality reduction algo-
rithms. Based on a series of databases built for imprint mappings and indentation curves, the
identifiability of two Hollomon’s parameters from an indentation test is studied using the
shape-manifold approach.

This chapter highlights the use of the manifold approach to estimate the maximum
number of independent material parameters that may be determined from an indentation
model. The computational findings through manifold and sensitivity analysis reveal that
more parameters can be identified when we consider the residual mapping of the specimen
after indentation, regardless of the indenter geometry or the experimental setup. However,
there are still fewer situations, e.g., employing the P-h curve with prescribed force boundary
condition, from which inaccurate identification results may be obtained.

On the other hand, the manifolds provide us with insight into different levels of difficulty
in material characterization when diverse boundary conditions are employed in simulation. It
is suggested to control the maximum penetration/displacement in simulations with the aim of
identifying material parameters more easily. However, we need to be aware that the number
of identifiable parameters still depends upon the experimental information at hand.

While proposed in the scope of instrumented indentation, the same approach is obviously
applicable to other methods of mechanical testing. In the next chapter, the insights gleaned
from Hollomon’s parameter identification using the global manifolds will be further validated
using local manifold approaches, and we will also attempt to generalize these conclusions to
the Voce hardening parameter identification.





Chapitre 5

Material characterization based on local
manifolds

We have so far applied the manifold protocol to simulated indentation responses in
Chapter 4, and a series of global manifolds were studied to investigate the identifiability of
Hollomon’s power law parameters. Some insights have also been gained on the influence of
simulation boundary conditions and the adopted indentation responses on the uniqueness
of the solutions to the identification problem. The computational findings based on both
manifolds and sensitivity analysis illustrated that the residual imprint may allow for an easier
and unique identification of Hollomon’s parameters, even for conical indenters, for which
the non-uniqueness issue has been extensively reported by different authors in the literature.

In the current chapter, these conclusions will be further verified by iterative identification
procedures, where the manifold will be constructed in piece-wise fashion at moderate
computational expense, with the help of local-manifold learning algorithms. We note on the
other hand that the insights gained in Chapter 4 are based on the hypothesis that the material
in study hardens according to the Hollomon’s power law. It is therefore natural to expect that
all these conclusions may be generalized to other similar material laws which may involve
more parameters. In this regard, this chapter is partly devoted also to the characterization of
the three-parameter Voce law.

In the following, the inverse identification problem is defined in Section 5.1 within the
framework of local manifolds. Several manifold learning approaches are then developed in
Section 5.2 to explore the design space either by exploration or intensification. The unique
identification of Hollomon’s parameters is verified using local-manifolds in Section 5.3,
while a failure with respect to that of the Voce law is presented in Section 5.4. Closing
remarks are finally given in Section 5.5
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5.1 Inverse identification problem based on local manifolds

To further illustrate the advantage of residual imprint over P-h curve in identification, we
propose in this section an on-line approach that constructs only the useful portion of M . For
this purpose, the inverse problem is generally solved in iterative fashion. The "pseudo-time"
of the identification, i.e., the iteration step number, is indexed by t.
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Experimental projection: 

Material parameter estimation:

NO Convergence?
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SVD
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Input:
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Experimental projection:
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Renewing design space: ,

FIGURE 5.1 Framework of material characterization using local manifold approach.

Within each iteration step t, instead of simulating a considerable number of M imprints
like in Section 4.3.2, only a few k snapshots are sampled around µµµ0

t (the current estimate of
material parameters) in the local searching domain. A portion of the global manifold Mt will
then be constructed from these snapshots, and we achieve an intermediate estimate µµµ∗

t by
virtue of the one-to-one correspondence between material set and points on manifold. This



5.2 Local manifold learning algorithm families 71

new estimate will then be chosen as the center of the vicinity to be exploited, i.e., µµµ0
t+1 = µµµ∗

t .
The above procedure are repeated until convergence is achieved for material parameters.

According to the fundamental hypothesis of imprint manifold, even assuming that the
indented material behaves exactly according to the postulated material law, the projection of
experimental imprint will not lie on the manifold M . The offset of αααexp from the imprint-
manifold takes roots in the measurement noise. Consequently, we propose performing the
identification in shape space by finding, in each iteration step t, the closest point ααα∗

t on Mt

such that
µµµ
∗
t = arg min

µµµ

dist(αααexp, ααα(µµµ)), α(µµµ∗
t ) ∈ Mt , (5.1)

where dist(αααexp, ααα(µµµ)) is the distance between the simulated sss(µµµ) and experimental imprint
sssexp shapes in α-space. Therefore, the identification of material properties can be carried out
in at most an k-dimensional space. We recall that k ≪ N, where N is the dimensionality of
the imprint shape vector sss used in Equation 4.6, and k is the number of neighborhoods to
construct each local-manifold.

Finally, we summarize the above mentioned steps in the flowchart in Figure 5.1. We note
that both the construction and approximation of local manifold are similar to the correspon-
ding steps for the global manifold as presented in Section 3.3.2 and 3.3.4, respectively. The
only difference is the use of less (k in stead of M) snapshots and lower-order polynomials.
However, different strategies may be adopted to define the local searching space in each
iteration step, evoking different local manifold algorithms which will be presented in detail
in the next section.

5.2 Local manifold learning algorithm families

In local-manifold learning, each local-manifold is constructed only using a part of the
whole design space, which is then explored based on the predictor-corrector strategy issued
from [81, 122]. In this section, we informally propose two manners of iteration : exploration
and intensification. The former corresponds to relocating iteratively the local-manifold of
interest (the neighboring manifold within which the experimental projection is projected),
while the latter attempts to gradually improve the accuracy of local-manifold for accurate
identification.

For illustration purposes, we adopt a global two-parameter-design space and a local
design window, with the width and height referring to the range of variation of the two
parameters at the current iteration step.
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5.2.1 panning

In this algorithm, the design window pans in the whole design space while the window
size remains unchanged (Figure 5.2). For the sake of clarity, only the snapshot located at the
center of each DoE is depicted. For the first iteration step, we calculate a prediction with the
points sampled within the initial design window. If the new prediction lies outside of this
window, we limit it to the window boundary and the next iteration window will be centered
around this new prediction. We repeat this process until the predicted point is positioned
almost in the center of the current window and no evolution of the searching domain is
observed. This strategy can be realized by using the following pseudo code, Algorithm 1.

Design space exploration by panning

initial estimation

prediction

experimental

Design space 
width

heigth

FIGURE 5.2 Panning iterations.

5.2.2 zooming

In this algorithm, the first DoE covers the entire (rather large) design space, after which
the window size is cut down with each subsequent iteration, as shown in Figure 5.3. Unlike in
panning algorithm, the new design window may not be centered around the estimate. Rather,
we compute an intermediate estimate to locate the subsequent searching domain with the
greatest possibility of capturing the properties of the experimental imprint. The new design
window is always reduced by half along each direction. Notice that, except renewing the
design space to be explored (green block), other procedures in the flowchart Figure 5.1 should
not be perturbed by either exploration manner. This process is repeated until the convergence
criterion in Equation 5.1 is satisfied.
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Algorithm 1 : panning

1: Initial parameter set : µµµ0
t=1 ;

2: % Define local-space to be explored
3: Fixed (small) window size : ∆µµµ ;
4: µµµmax

t = µµµ0
t +∆µµµ ;

5: µµµmin
t = µµµ0

t −∆µµµ ;
6: while TRUE do
7: Design of experiments by LHS : µµµ

(1)
t , µµµ

(2)
t , · · · , µµµ

(k)
t ;

8: Indentation response simulation : sss(1)t , sss(2)t , · · · , sss(k)t ;
9: Local-manifold space construction : s̄sst and ΦΦΦt ;

10: Experimental indentation measurement projection : sssexp → αααexp ;
11: Material parameters estimation : µµµ∗

t ;
12: % Checking convergence
13: if dist(µµµ∗

t+1,µµµ
∗
t )< εcrit then

14: EXIT LOOP ;
15: else
16: end if
17: Update material parameters : µµµ0

t+1 = µµµ∗
t ; t = t +1 ;

18: µµµmax
t = µµµ0

t +∆µµµ ;
19: µµµmin

t = µµµ0
t −∆µµµ ;

20: end while

Design space exploration by zooming

experimental

Design space 

design space center 

FIGURE 5.3 Zooming iterations.

5.2.3 panning & zooming

The panning & zooming method essentially combines both of the previous approaches.
As illustrated in Figure 5.4, the general idea behind this algorithm is the use of a panning
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Algorithm 2 : zooming

1: Initial parameter set : µµµ0
t=1 ;

2: Initial design space to be explored : [µµµmin
t , µµµmax

t ] ;
3: while TRUE do
4: Line 7-17 in Algortihm 1 ;
5: if µµµ∗

t < 0.5(µµµmax
t +µµµmin

t ) then
6: µµµmax

t+1 = 0.5(µµµmax
t +µµµmin

t ) ;
7: else
8: µµµmin

t+1 = 0.5(µµµmax
t +µµµmin

t ) ;
9: end if

10: end while

search at the beginning until the estimate for the next iteration lies inside the current design
space instead of on the boundary, after which the search scheme will be switched to zooming
in order to improve the accuracy of the local manifold.

Design space exploration by panning & zooming

initial estimation

prediction

experimental

Design space 

FIGURE 5.4 Combination of panning and zooming.

5.2.4 Floating search

We aware that the three above-mentioned algorithm should be chosen in considering the
existence of different priori information regarding the material properties. For instance, it is
suggested to employ the panning method to explore in a rather big space without (or with
less) priori knowledge of material properties, while the zooming method is suitable if we
have located a moderate space for given materials. The combined panning & zooming, almost
not restricted by the pre-knowledge, has a limitation of complex programming. Besides, in
rare cases, we may risk missing the optimal solution since the search zone is explored using
a dichotomizing strategy.
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Algorithm 3 : panning & zooming

1: Initial parameter set : µµµ0
t=1 ;

2: % Define local-space to be explored
3: Fixed (moderate) window size : ∆µµµ ;
4: µµµmax

t = µµµ0
t +∆µµµ ;

5: µµµmin
t = µµµ0

t −∆µµµ ;
6: Initial design space to be explored : [µµµmin

t , µµµmax
t ] ;

7: while TRUE do
8: Line 7-17 in Algortihm 1 ;
9: if µµµ0

t+1 on the boundary of design space then
10: panning strategy (Line 18-19 in Algorithm 1) ;
11: else
12: zooming strategy (Line 5-9 in Algorithm 2) ;
13: end if
14: end while

Initial 

Estimate

FIGURE 5.5 Floating search strategy.

Algorithm 4 : Floating search

Initial parameter set : µµµ0
t=1 ;

Initial window size : ∆µµµ t=1 ;
while TRUE do

µµµmax
t = µµµ0

t +∆µµµ t ;
µµµmin

t = µµµ0
t −∆µµµ t ;

Line 7-17 in Algortihm 1 ;
%Update parameters with shrinking coefficient
µµµ0

t+1 = µµµ∗
t ; t = t +1 ;

∆µµµ t+1 = ∆µµµ t ∗β ;
end while

Therefore, we additionally propose a modified zooming method, with which the already-
searched space could be searched again in order to make up for possible bad-estimation from
the previous step. In this algorithm, first of all, we use a user-defined multiplier β , namely the
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"shrinking ratio" of design space after iteration, that is designed to control the convergence of
the identification procedure. Secondly, and more importantly, each searching window needs
to be centered on µµµ0

t , which is also the estimate from last iteration µµµ∗
t−1, making it possible

to cover a portion of the design space that has already been searched. We have named this
algorithm a "Floating search", and the search pattern is shown in Figure 5.5. Quite obviously
in the figure, µµµ∗

t is equal to µµµ0
t+1. The floating search strategy is presented in the following

pseudo code, Algorithms 4.

5.3 Inverse identification of Hollomon’s parameters

Further validation examples involve the identification of material parameters employing
either the indentation curve or the imprint mapping. Two representative cases are studied for
brevity, and the advantage of imprint over indentation curve is underlined again by presenting
diverse identification results. The two cases involve the use of :

i. Spherical indenter & prescribed force & P-h curve ;

ii. Conical indenter & prescribed displacement & imprint ;

Besides, according to the discussion in Section 4.4.2, we propose to scale the manifold
coordinates according to its intrinsic dimensionality, providing us with a third case :

iii. Scaled manifold by conical indenter & prescribed displacement & imprint.

For the simulated experiment, the P-h curve and the imprint are obtained for elastic limit
σ∗

y = 200MPa and isotropic hardening coefficient n∗ = 0.275. The FE model presented in
Section 4.1 is employed for simulations. We intend to retrieve the two ”missing” constitutive
parameters by considering different snapshot setups. For simplicity sake, only the floating
search algorithm is used, while others will be verified with experimental data in later chapters.
The same initial parameter set (180,0.2) and identical shrinking coefficient β = 0.8 are
used to compare the influence of different measured quantities on identification. The final
identified parameters summarized in Table 5.1 are compared with their target values.

TABLE 5.1 A comparison of identified material parameters using different measured quanti-
ties.

Case σy σ∗
y Relative error n n∗ Relative error

(i) 194.33
200

2.84% 0.2808
0.275

2.1%
(ii) 199.90 0.05% 0.2750 0.01%
(iii) 200.00 0.00% 0.2746 0.15%
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FIGURE 5.6 Convergence of σy(left) and n (right).

For case (i), based on our previous knowledge, the two parameters can not be estimated
simultaneously since the identifiability of the P-h curve is poorer, demonstrated by the one
dimensional manifold. Even if the parameters converged to the "final" values with less
than 3% error, this identification result is still unacceptable in the absence of model and
measurement errors. More importantly, we have also verified that this identification result
turns out to be a local minimum of the error distribution in Figure 4.11 (a).

On the other hand, it is quite obvious that the two parameters are almost exactly retrieved
for the cases (ii) and (iii), where the imprint mapping is employed. The identification result
shows a maximum error of 0.05% for σy and 0.15% for n, highlighting once again the
advantage of employing imprint mapping.

The convergence patterns for the two parameters are given in Figure 5.6. We note that
the scaled manifold does not perturb the convergence, instead, the identification converges
with only 9 iterations compared with 17 for the non-scaled manifold. This is simply due
to the reason that the scaled manifold equilibrates the two sensitivity indices computed in
Section 4.6.1. Finally, the approximations of numerical quantities to the experimental target
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FIGURE 5.7 Convergence of the indentation curves (case i, iterations 1,2,3,9).
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are presented in Figure 5.7 and 5.8. Good convergence is found for both the indentation curve
and the residual imprint profile, thus validating the manifold-based identification protocol.
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FIGURE 5.8 Convergence of the imprint mappings (case iii, iterations 1,3,5,8).

5.4 Inverse identification of Voce parameters

We have so far demonstrated that, by employing local manifold methods, we are capable
of uniquely identifying the Hollomon’s power law parameters from the residual imprint,
regardless of the indenter geometry. In the current section, we intend to verify the validity of
this conclusion on Voce law. The choice of this law is primarily based on the observation that
many important engineering materials deviate significantly from the Hollomon’s behavior
[73, 163, 139], and the Voce law presenting a saturation stress is likely suitable for this family
of alloys.

5.4.1 Identifying Voce parameters

Analogously, a numerical imprint is employed as the target shape, and this synthetic
response is simulated following the protocol introduced in Section 4.1.1 with a maximal
penetration depth hmax = 0.1 mm, and using : µµµTarg : (σ∗

y , Q∗, γ∗)= (300 MPa,200 MPa,14).
By using the floating search algorithm along with β = 0.8, we attempt to identify the three
constitutive parameters.

An arbitrarily chosen combination of constitutive parameters µµµA : (430 MPa,350 MPa,100)
is set as the initial guess for future iterations. The identified material is noted as M4, and
the three parameters are compared with their reference values in Table 5.2. We observe that
we are able to retrieve the three parameters with reasonable accuracy by 16 iterations. A
maximum error of 2.14% is observed for the third parameter γ .
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FIGURE 5.9 Convergence summary for the three Voce parameters (M4) normalized by their
corresponding reference values (initial point µµµA).

TABLE 5.2 Identified Voce parameters using different initial points, E = 70GPa, ν = 0.33
and hmax = 0.1mm.

Identified material σy (MPa)
|σ∗

y −σy|
σ∗

y
Q (MPa) |Q∗−Q|

Q∗ γ
|γ∗−γ|

γ∗

M4 300.50 0.17% 200.88 0.44% 13.70 2.14%
M5 260.29 13.24% 201.15 0.57% 41.50 196.43%

In Figure 5.9, we present the convergence histories for the three Voce parameters, norma-
lized by their corresponding reference/nominal values, σ∗

y , Q∗ and γ∗. Figure 5.10 shows the
iteration history for the cost function Equation 5.1. Its steady decline confirms the robustness
of the identification algorithm. Several selected imprints simulated using the parameter values
µµµ∗

t are also compared with the target shape at various stages during the identification.
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FIGURE 5.10 Minimizing the discrepancy between the simulated (M4) and target (pseudo-
experimental) imprints (initial point µµµA).

Next, we also select µµµB : (200 MPa,600 MPa,140) as another initial point for the al-
gorithm. The convergence histories are shown in Figure 5.11, and the identified material
is denoted by M5. The final identified parameters are compared with those obtained when
starting from µµµA, in Table 5.2.
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FIGURE 5.11 Convergence summary for the three Voce parameters (M5) normalized by their
corresponding reference values (initial point µµµB).

As observed from Figure 5.11, despite stabilizing around a particular set of values, only
ONE of the three parameters (Q) converges correctly to the reference value. A large deviation
is seen for γ in particular, with an error of up to 200% ! Nevertheless, Figure 5.12 shows a
steady decline in the discrepancy between the identified and target imprints and we end up
with an acceptable error of 0.002.

For the two identified materials, we reconstruct their constitutive behaviors by using the
identified parameters listed in Table 5.2, and compare them in Figure 5.13. We observe that,
even in the case where both measurement and model errors are absent, it appears difficult to
accurately/uniquely identify the differences in the post-yield properties of the Voce law using
only the indentation imprint. In other words, the two identified parameter sets supposedly
form a "mystical pair", both minimizing the discrepancy with the "experimental" imprint.

1 3 5 7 9 11 13 15 17 19 21

0

0.01

0.02

0.03

0.04

0.05

Identified
Target

Iteration step

Im
p
ri

n
t 

d
is

cr
ep

an
cy

,

FIGURE 5.12 Minimizing the discrepancy between the simulated (M5) and target (pseudo-
experimental) imprints (initial point µµµB).

The corresponding indentation P-h curves are now compared to check whether the two
"mystical sibling" materials can be distinguished from each other by using all available
indentation responses. We note in Figure 5.14 that, despite the constitutive behaviors of the
two materials being clearly distinct, the two indentation curves are nearly overlapping. With
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FIGURE 5.13 A comparison of tensile curves for (M4, M5) rebuilt using Voce law with the
identified parameters.

these considerations, the combination of P-h curve and imprint does not seem helpful in the
current case. The questions we are asking then are :

Q1 : is this failure in characterization of Voce parameters due to the reduced-order space
and/or the optimization algorithm used in the inverse analysis ?

Q2 : does the collected/measured information from the indentation response not interpret
material plasticity adequately ?

These two questions will be addressed in the following chapter to investigate the root of the
problem of non-unicity with respect to Voce parameter identification.
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FIGURE 5.14 A comparison of indentation responses for a mystical material pair (M4, M5)
for Voce law.
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5.5 Closing remarks

In this chapter, to further verify this insights gained from global manifold, we proposed
to iteratively construct a series of local-manifolds with a moderate cost. A family of local-
manifold learning algorithms, including panning, zooming, panning & zooming as well as
floating search, were developed to explore the parametric space by means of intensification
and exploration. Three identification procedures were carried out to identify two Hollomon’s
parameters in considering different indentation responses. The identification results were
found to be coincident with what we have concluded from global manifolds in Chapter 4.

Furthermore, we have also identified in Section 5.4 a three-parameter Voce law in the
aim of generalizing the insights observed from Hollomon’s law. For a synthetic imprint, free
from model and measurement error, we obtained however two different material parameter
sets, both minimizing the inverse cost function. The non-unique solutions underlined that a
single imprint could be insufficient to characterize materials hardening according to Voce
law. We noticed also that even by combining with the P-h curve the unique identification
seems not to be possible either. With these considerations, new protocol needs to be proposed
with respect to Voce law and this is the focus of the next chapter.



Chapitre 6

On the uniqueness of Voce law
parameters’ identification

In the two previous chapters, the uniqueness issue with respect to the identification of
Hollomon’s material has been thoroughly studied under the framework of global and local
manifold. The mystical Hollomon’s materials have been demystified taking into account
the residual imprint. However, Section 5.4 indicates that the critical question of unicity still
remains unanswered for Voce parameters’ identification.

We therefore devote this chapter to investigating the source of this non-unicity. The two
questions that we posed at the end of Section 5.4 will be answered one after the other. To
first verify the efficacy of the manifold-based identification protocol, we will temporarily
leave the indentation context and consider using a different representation of the constitutive
behavior for the identification. Since the σ -ε curve is universally accepted to fully represent
the material plastic behavior, the robustness of the identification method can be easily
verified if we are able to perform a unique identification. Then, by examining the imprint
manifold as well as its intrinsic dimensionality, the inadequacy of a single indentation test
will be demonstrated. Finally, a deeper inspection is conducted on the "indistinguishable"
materials, and a new protocol is finally proposed to alleviate the non-uniqueness issue in the
identification problem.

In the remainder of this chapter, we first verify in Section 6.1 the efficacy of the manifold-
based identification procedure using a series of synthetic σ -ε curves. In Section 6.2, with the
help of the global manifold, we then illustrate the existence of indistinguishable materials by
a single indentation test. The concept of "mystical material pair" is extended from Hollomon’s
materials to Voce materials, the only difference being that two groups owe their respective
existence to different causes. The possibility of using the dual-sharp indentation technique to
distinguish these mystical materials is investigated in Section 6.3.1, and finally we propose a
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protocol to uniquely calibrate the Voce law using multi-depth indentation in Section 6.3.2.
Closing comments are provided in Section 6.4.

6.1 Unique identification from σ -ε curve

In this section, to first answer the question Q1 raised at the end of Section 5.4, we will first
verify the efficacy of the shape-manifold identification procedures for the three-parameter
law using tensile curves in place of the indentation responses.

6.1.1 Comparison of global manifolds for Voce law

We temporarily leave the indentation context in this section and revisit the uniaxial stress
strain (σ -ε) curves, directly considering them as the high-dimensional input "shapes". For
the convenience of readers, we recall here in Figure 6.1 several global manifolds based
on stress-strain curves of different constitutive laws in Section 3.4.2. It is observed from
the global manifold (f) that the three Voce parameters can be identified uniquely from the
stress-strain curve in view of the one-to-one correspondence between tensile curves and
points from manifolds, using interpolation techniques.

6.1.2 Local manifold identification of Voce law

For the sake of completeness, we carry out eight different identification procedures for
the Voce parameters by directly considering the uniaxial stress-strain behaviors as "shapes"
within the manifold approach using different starting points. The σ -ε curve obtained from
the set Mtrg : (σy,Q,γ) = (300 MPa,200 MPa,25) is used as the "target shape", and the
parameter set to be identified is located (by design) at the centroid of the cube enclosed by
the alternative eight initial points as vertices, as illustrated in Figure 6.2.

Table 6.1 lists the final estimates for the three parameters and the number of iteration
steps for each corresponding case. We note that, in all eight cases, we always converge to a
unique combination of parameters. A maximal difference of 0.16% and 0.1% is observed
for γ and Q with respect to their respective target values, thus the identification results are
considered unique in view of possible inaccuracy of the local manifold. Analogously, two
other identification procedures have also been carried out using Hooke’s and Hollomon’s
power law and we reach similar conclusions in both cases, therefore we have omitted the
corresponding iteration histories from this discussion. The inference proposed in Section
3.4.2 to correlate the number of identifiable parameters to the intrinsic dimensionality of
manifold is therefore validated by identification results.
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FIGURE 6.1 Illustrative stress-strain curves and the corresponding low-dimensional embed-
dings for (a)-(b) perfectly elastic (Hooke’s law), (c)-(d) Hollomon’s power law hardening,
and (e)-(f) Voce law hardening

On the other hand, it goes without saying that no iteration is really required for probing
material parameters from the uniaxial stress-strain constitutive law and that the identification
could be readily accomplished by simple curve fitting provided that the target σ -ε curve has
already been obtained from a tensile test. That said, the identification procedures presented
above, though redundant and bordering on overkill for this simple problem, still help us to
rule out any possibility of an inefficiency of manifold method or other issues surrounding
either the manifold hypothesis or identification algorithm we have used, and the first question
raised at the end of Section 7.4 is thus answered.
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Target value

FIGURE 6.2 The "target" material parameters (black dot) and eight different parameter
combinations chosen as initial points in parameter space.

TABLE 6.1 Voce parameters identified from various starting points using the stress-strain
curve.

Initial points σy [MPa] Q [MPa] γ Iter No.
1⃝ 299.96 200.08 25.02 34
2⃝ 300.08 199.86 24.96 34
3⃝ 299.92 200.12 25.04 25
4⃝ 299.93 200.10 25.04 21
5⃝ 299.93 200.19 25.03 23
6⃝ 299.97 200.03 25.02 28
7⃝ 299.96 200.11 25.02 23
8⃝ 300.02 199.95 24.99 33

Mtrg 300 200 25 –
Max error 0.03% 0.10% 0.16% –

6.2 Inadequacy of "single depth" indentation

6.2.1 Comparison of global indetation manifolds

We return now to the indentation responses : residual imprints for Hollomon’s and
Voce law, and P-h curve for Hooke’s since no plastic deformation is present. An analogous
procedure to the one explained in Section 6.1.1 is followed.

On the left of Figure 6.3, we show collections of representative indentation responses
for varying material parameters according to the DoE in Section 6.1.1. The indentation
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FIGURE 6.3 High-dimensional indentation responses and the corresponding embeddings for
different constitutive laws : (a)-(b) perfectly elastic (Hooke’s law) (c)-(d) Hollomon’s law,
and (e)-(f) Voce law.

responses projected into the shape space reduced to 3D are shown on the right, allowing for
the following observations :

— the feature of the point cloud for Hooke’s law is, once again, intrinsically unidimen-
sional, Figure 6.3 (b) ;

— for residual imprints obtained according to Hollomon’s power law, Figure 6.3 (c),
their 2D distribution in reduced shape-space confirms that the non-unicity issue does
not present itself in this case either, Figure 6.3 (d) ;

— for imprints based on Voce law (governed by three independent parameters, as shown
in the previous section, Figure 3.9 (e)-(f)), the point cloud appears to follow a more
complex behavior, locally approaching a quasi-2D hyper-surface, Figure 6.3 (f) ! As
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a consequence, the combination of material parameters identified assuming the Voce
law requires further investigation.

By excluding the inefficacy of manifold protocol in identification, we conclude that the
possibility of unique identification of Voce materials rests with the employed measurements,
which may or may not interpret all material plasticity in one test. We have by now answered
the second question raised in Section 5.4.

6.2.2 The concept of "true" and "false" mystical pairs

In Section 5.4, we have observed a mystical pair (M4, M5) obtained from two identifica-
tion procedures with different initializations. In this section, based on the manifold in Figure
6.3 (f), we intend to find out more mystical pairs and locate them in the parametric space to
investigate the source of non-unicity. To this end, the similarity between imprints needs to
be quantified so as to define mystical materials. Instead of using the objective minimization
function ε in Equation 4.11, following [46] we quantify the level of agreement between
experimental and simulated indentation responses with a dimensionless indicator : "goodness
of fit"

g = 1− ε

∥sss∗∥L2

, (6.1)

which varies between 0 and 1. A value of 1 represents a "perfect fit". Alternatively, imprints
giving g values close enough to 1 are considered indistinguishable, and we thus consider the
corresponding materials as a mystical pair.

For the 1331 imprint snapshots in Figure 6.3 (f), we plot in the σy-Q-γ space (Figure
6.4) the map of the goodness of fit, g, Equation 6.1, w.r.t the identification target Mt (σy =

550 MPa, Q = 300 MPa and γ = 110). All materials that produce nearly identical imprints
(with g > 0.995) after indentation—the blue points in the figure—are located within a "husk
of corn"-shaped zone, stretching along the diagonal direction (dashed-line). This is similar
to the results obtained for the case of non-unique identification of Hollomon’s power law
parameters for conical indenters in [104, 103].

We choose two siblings of Mt, i.e., M6 and M7, with extreme values of γ . Their corres-
ponding constitutive behaviors are compared in Figure 6.5. For Mt and M7, the σ -ε curves
are very close to each other and their saturation stresses at high strain level are the same.
We call them a "false mystical pair" due to the similarity of their constitutive behaviors.
We suggest for this group of mystical materials that the difficulty in unique identification
seems to be related to the parameterization of certain materials, rather than the indentation
mechanism, partly due to the compensation of underestimating of σy by overestimating γ .
Nevertheless, a clear difference can be observed between that of Mt and M6, and we term
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FIGURE 6.4 Goodness of fit (Equation 6.1) for the 1331 imprints using a spherical indenter.

them as a "true mystical pair", referring to materials with completely different rheological
behaviors, yet with nearly indistinguishable indentation responses.

0 0.1 0.2 0.3 0.4 0.5

0

200

400

600

800

1000

Material parameters:

M

6

7

7

FIGURE 6.5 Two mystical material pairs using the Voce hardening law : (Mt, M6) the true
mystical material pair, and (Mt, M7) the false mystical material pair.

Besides, by examining the corresponding material parameters, we note that there appear
to be more mystical siblings for materials with a higher γ . This is understandable, since γ

dominates mainly the transitional portion of the σ -ε curve, and for materials with higher γ ,
this transitional phase is relatively short and thus is difficult to be properly captured by the
indentation test.
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6.3 Alternative identification techniques

6.3.1 Dual-sharp indentation

Inspired by [27, 37, 32], dual-sharp indentation may be helpful to uniquely determine the
Voce parameters. As proposed in [46], for each indenter shape, a g-map characterizing the
similarity of imprints indented for different materials is first generated in form of " cloud"
points within the design space. Then, after superimposing multiple clouds (corresponding to
different indenter shapes), a "master cloud" is obtained (with the value associated with each
point equal to the average/minimum for that point). Finally, the best fit solution would be the
point in this master cloud with the highest value of g.
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FIGURE 6.6 Goodness of fit for Voce imprints using dual-sharp indentation with : (a) θ =
70.3◦, and (b) θ = 63.14◦.

We therefore build two other databases for the two sharp conical indenters with half apex
angle θ = 70.3◦ and θ = 63.14◦, respectively. Contrary to what one may expect, both M6

and M7 remain mystical siblings for Mt, as indicated in Figure 6.6. Even when the two clouds
are superimposed, the two materials are still present in the master cloud (the corresponding
cloud is omitted here). On the other hand, we observe additional mystical material siblings,
the distribution of which appears to follow the same direction as indicated in Figure 6.4. We
attribute this deterioration to the self-similarity of conical indenters.

In light of the above, we conclude that dual-sharp indentation may not improve the
identification results, and the unique inverse identification of Voce hardening parameters is
not guaranteed.
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6.3.2 Multi-depth indentation protocol

As seen in Figure 4.16, the difference between mystical materials can be observed around
the pile-up zone, and we speculate that this difference may be more pronounced with deeper
indenter penetration, producing an alternative way to differentiate between mystical siblings
of Voce hardening materials. Therefore, we propose in this section performing multiple
indentation tests using different indentation depths.
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FIGURE 6.7 Multi-depths indentation responses for the mystical material pair (M4, M5)R=0.5
(Figure 5.14).

For the mystical material pair (M4, M5) in Table 5.2, we perform three indentation tests
using the same spherical indenter. The maximal penetration depths are designed to equal
to 0.1 mm, 0.15 mm and 0.2 mm, respectively. The indentation responses are observed in
Figure 6.7. Also, we list in Table 6.2 the maximal pile-up heights observed from different
imprints, and we note that M4 and M5 become distinguishable in view of their increasing
difference of the pile-up heights.

TABLE 6.2 Comparison of pile-up heights for M4 and M5 with diverse penetration depths.

Indentation depth hmax = 0.1 mm hmax = 0.15 mm hmax = 0.2 mm
M4 0.0093 0.0169 0.0253
M5 0.0096 0.0184 0.0285

Difference 0.0003 0.0015 0.0032
Relative difference 3.13% 8.15% 11.23%

Then, following the same routine as for the dual-sharp indentation, we combine the three
databases obtained for different penetration depths by superposing the clouds of points in
the map of goodness of fit (Figure 6.8) to obtain a master cloud. We note that more than one
material parameter set lead to almost indistinguishable imprints for all levels of loads, which
means that the mystical materials, either "true" or "false", are still present for multi-depth
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indentation. However, fewer mystical siblings (i.e., the blue points) are observed compared
with either single (Figure 6.4) or dual-sharp indention (Figure 6.6). More importantly, it is
observed that M6, one of the true mystical material w.r.t. Mt , is excluded from the mystical
siblings.
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FIGURE 6.8 Goodness of fit for indentation imprints using multi-depths indentation : the
"true mystical material" M6 is readily separated from others.

In Figure 6.9, the material behaviors of all those mystical siblings are then plotted in blue
lines. We notice that all of them are constructed with relatively large values of γ (γ ≥ 50) and
their saturation stresses are almost the same, belonging thus to the "false mystical materials"
described in Section 6.2.2. On the other hand, we plot in the same figure the stress-strain
curve of M6 (red dashed line), which as a result can be readily distinguished from the "false
mystical materials". Thus, the "true mystical material" M6 is demystified with multi-depths
indentation.

To conclude, we consider multi-depth indentation as a possible approach to make the
difference between "true" and "false" mystical pairs for materials following Voce law. The
presence of false mystical siblings finds some of its roots in the parameterization of the
constitutive law, and partly in the inefficiency of indentation in capturing certain material
properties, γ for instance. However, this conclusion is based on a global manifold observation
and purely synthetic data, more verifications are required, thus the unique identification of
Voce parameters remains an unsolved problem to this day.
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FIGURE 6.9 "True" mystical material that is distinguished with multi-depth indentation.

6.4 Closing remarks

In this chapter, the source of the non-unicity problem in probing Voce parameters was
carefully investigated, and we found that this is essentially due to the inadequacy of a single
indentation test in capturing material plasticity. By defining an indicator of similarity between
imprints, we located, in the parametric space, a group of mystical siblings for the Voce law,
which were later divided into two groups : (a) the "false mystical pair" which has relatively
close uniaxial stress-strain curves, and (b) the "true mystical pair", whose constitutive
behaviors are quite different yet the indentation responses virtually indistinguishable.

We have also demonstrated that dual-sharp indentation, albeit useful for uniquely iden-
tifying Hollomon’s power law parameters, may not improve the identification results for
Voce hardening materials. However, multi-depth indentation, which tends to provide us with
more information about plastic deformation around pile-up zone, allows us to differentiate
between true and false mystical siblings.

That said, since Chapter 4, we have been focusing on purely numerical data without
adding any noise, therefore solid verification needs to be actively pursued as a future work.
In the next chapter, the gleaned insights will be verified by iterative identification procedures
using several experimental measured imprints. The manifold-based identification protocol as
well as the developed manifold learning algorithms will be employed to characterize three
engineering materials.





Chapitre 7

Identification from experimental imprint
obtained from spherical indentation

In the previous chapters, we have verified the efficiency of the manifold protocol using
synthetic data, where both measurement and model errors were clearly absent. In this chapter,
the identification approach in reduced shape-space is performed with actual experimental
measurements after spherical indentation on industrial alloys.

Since we have proposed the use of the imprint to alleviate the non-uniqueness issue in
previous chapters, we retain it as the primary focus of study in this chapter. Experimental
imprints were measured with a laser scanning microscope. A variety of engineering materials,
including the AISI 1095 steel and two different aluminum alloys EN AW-2017F and EN
AW-5754F, have been characterized by assuming both the Hollomon’s as well as the Voce
hardening laws. Different local-manifold learning algorithms, i.e., panning, zooming, panning
& zooming as well as "floating search" have been adopted.

This chapter is organized in the following manner : Section 7.1 presents the materials’
preparation and related details of the indentation testing. In Section 7.2, identification results
obtained by employing the different algorithms are compared for the AISI 1095 steel. Section
7.3 showcases the application of the manifold learning protocol combined with the "floating
search" algorithm on the two aluminum alloys. In Section 7.4, the three materials are also
characterized by assuming Voce hardening, showing the existence of materials that can be
characterized by different laws. We also present a comparison of tensile curves "rebuilt" from
the identified parameters for both material laws. Concluding remarks are given in Section
7.6.
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7.1 Materials and experimental techniques

Three materials were selected for this study : a spheroidized AISI 1095 steel, an aluminum
alloy EN AW-2017F and an aluminum alloy EN AW-5754F. These materials were selected
because of their fine and homogeneous microstructure which should lead to a good repro-
ducibility of the indentation tests. We chose the AISI 1095 steel as the main test case, with
which the robustness of the identification procedure will be carefully verified in Appendix C.

7.1.1 Test materials

The spheroidized AISI 1095 steel is an unalloyed steel containing approximately 1 % of
carbon that has been treated in order to transform the pearlite phase into cementite globules
and ferrite. It has a body-centered-cubic (BCC) structure [38]. The standard spheroidizing
annealing was carried out prior to delivery. The steel has the chemical composition shown in
Table 7.1. The microstructure of this steel, shown in the optical micrograph in Figure 7.1,
reveals a homogeneous and isotropic distribution of spheroidized cementite particles in a
ferritic matrix.

TABLE 7.1 Composition of the AISI 1095 steel used in this study given in % of weight
content.

C S P Mn Fe
0.90 -1.03 ≤ 0.05 ≤ 0.04 0.30 - 0.50 98.38 - 98.8

FIGURE 7.1 Microstructure of AISI 1095 steel.

The EN AW-2017F aluminum alloy is the second material with the chemical composition
shown in Table 7.2. For this alloy, fine particles of inter-metallic phases Al2Cu compounds
oriented toward the rolled direction can be distinguished in Figure 7.2.
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TABLE 7.2 Composition of the EN AW-2017F aluminum alloy used in this study given in %
of weight content.

Cu Mg Mn Si Fe Al
4.18 0.518 0.719 0.679 0.258 balance

FIGURE 7.2 Microstructure of EN AW-2017F alloy.

The third material is the EN AW-5754F aluminum alloy with the chemical composition
shown in Table 7.3. This alloy is frequently used in flooring applications due to its high
weldability and corrosion resistance. The microstructure showing the size and the distribution
of the AlMg2 compounds is given in Figure 7.3.

TABLE 7.3 Composition of the EN AW-5754F aluminum alloy used in this study given in %
of weight content.

Si Fe Mn Mg Al
0.4 0.4 0.5 3.2 balance

FIGURE 7.3 Microstructure of EN AW-5754F alloy.
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7.1.2 Indentation set-up and procedure

Indentation tests were conducted on the three samples using the setup shown in Figure
7.4. We have used an industrial indenter composed of a tip bonded to the indenter holder
(as opposed to a mono-block indenter which is a monolithic entity). The indenter has a
spherical tip (Figure 7.5) with radius R = 0.5 mm made of Tungsten Carbide with Ei = 600
GPa and νi = 0.23 (elastic properties measured by ultrasound), but the rest of the apparatus
is composed of steel. The advantage of this type of indenter is that it is easy to produce and
is available from many manufacturers. The disadvantage is that the mounting of the sphere
presents modeling difficulties, and may also lead to a nonlinear load-displacement response
in the assembly, thus is known to not give a very useful P-h curve on account of the presence
of compound between the indenter and the indenter holder.

FIGURE 7.4 Experimental set up for indentation.

FIGURE 7.5 Spherical indenter tip measured by a Scanning Electron Microscope(SEM).
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7.1.3 Analyzing the imprint shape

The experimental imprint shapes were measured using a metrological machine Altisurf
500 that works on the optical principle of chromatic confocal imaging (Figure 7.6). The
maximum measurement range of the system is 100×100×100 mm. The high-precision and
DC motorized shifting platform allows the movement of the sample being controlled along X
and Y axes with a minimum stepping of 0.1 µm.

Point laser source

Image sensor

Tube lens

Objective lens

Specimen to be measured

Confocal pinhole

Beam spliter

Illumination lens

EN AW-5754F

profile 1

profile 2

profile 3

profile 4

FIGURE 7.6 Confocal laser imaging setup and a typical scanned imprint on an aluminum
alloy EN AW-5754F.

The measurement of each imprint shape was performed by using a non-contact sensor,
i.e., CL2 Confocal chromatic probe, whose axial and lateral accuracy are 0.08 µm and 1.7
µm, respectively. In consideration of the used indenter and the size of our imprints, only a
vicinity of the imprint center (a 2mm×2mm zone) is scanned, and a rather large step length
of 10 µm was chosen to accelerate the measurement. As a result, each imprint was then
pixelized using a resolution of 200×200.

Considering the axial symmetry of indenter and material isotropy, 2D imprint profiles
instead of 3D mappings are employed for identification. One should note that a fast correcting
of the as-measured imprint is always applied before deducing each profile in the aim of
obtaining an imprint : (a) with a summit located in x = 0 ; and (b) with the undeformed
specimen surface on z = 0. In fact, (a) is required to match more easily with simulated imprint
from FE as illustrated in Figure 4.4, while (b) is due to a problem of parallelism between the
lower surface and the upper surface of the sample (correcting for planeness).

In the current work, the 3D imprint was "reduced" to a 2D profile (Figure 7.7) by using
the mean profile from 4 different profiles with axes of symmetry oriented at 45◦ with each
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other (see Figure 7.6). Of course, for anisotropic materials or pyramidal indentations, we
should use the entire 3D imprint.
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FIGURE 7.7 Experimentally measured imprints for the three considered materials.

The maximum values of the indentation force Pmax are 500 N, 360 N and 200 N, respecti-
vely, for the three studied materials. The reason these particular maximum loads were chosen
has to do with obtaining imprints of similar size for the three materials ( hmax/R ≃ 0.2). This
ratio is important since [32] showed that a sufficient accuracy of the results is obtained only
for a sufficiently high hmax/R ratio. Though proposed with regard to the loading-unloading
curve, it is still adopted for the imprint to neglect the bluntness of the indenter or size effect.
On the other hand, if extremely high value is chosen for this ratio, the results may be strongly
influenced by the choice of friction coefficient.

7.1.4 Experimental employment

When solving the inverse problem within the reduced shape-space, the distance between
imprints in Equation 5.1 may be computed in a variety of ways, the choice of the particular
method used depending mainly on the linearity of the manifold. For linear cases, the Euclidean
norm is accurate enough to characterize the distance, while for highly nonlinear manifold
like that shown in Figure 2.1, a geodesic distance is required. Note that if we define dist(·)
as ∥ · ∥L2, the convergence criterion in Equation 5.1 is equivalent to

sss∗t = sss(µµµ∗
t ) = argmin

sss
dist(s̃ssexp, sss(µµµ)), (7.1)

where s̃ssexp refers to the projection of the experimental imprint reconstructed from POD
modes

s̃ssexp = s̄ss+ΦΦΦΦΦΦ
T(sssexp − s̄ss) = s̄ss+ΦΦΦαααexp. (7.2)
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We are aware that in local manifold methods both ΦΦΦ and s̄ss, as well as αααexp are adaptive, and
the subscript t is omitted in Equation 7.2 for simplicity sake. Moreover, we recommend that
more attention be paid to the difference between s̃ssexp and sssexp.
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FIGURE 7.8 Projection of an experimental imprint to α-space.

Taking the imprint of AISI 1095 as an example, we compare s̃ssexp with the experimental
imprint sssexp in Figure 7.8. It is noticed that the measurement noise is smoothed out when
projecting noise data into the reduced space. This is understandable since both the mean
snapshot and POD modes are obtained from a series of smooth simulated imprints, and by
consequence, their linear combination s̃ssexp must be smooth as well. Therefore, the projection
of the experimental zig-zag imprint in α-space may be considered as a physics-based
smoothing procedure of experimental measurement. In this sense, the imprints are employed
directly as illustrated in Figure 7.7.

7.2 AISI 1095 STEEL test case

The manifold-based identification protocol proposed in previous chapters was first verified
by an axisymmetric indentation test on AISI 1095 steel using a spherical tip indenter with a
radius of 0.5 mm. Since the floating search method has been verified in Section 5.3, only the
identification results obtained by using panning, zooming and panning & zooming algorithms
are presented here while those obtained by floating search are provided in Appendix B.

7.2.1 Problem description

A power Hollomon’s law is assumed for the isotropic hardening, while the elastic portion
follows Hooke’s law. The hardening behavior is thus governed by three parameters : E, σy
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and n. The Young’s modulus E is fixed at 210 GPa and Poisson’s ratio ν 0.3. The other two
parameters : yield stress σy and strain hardening exponent n, controlling the plastic properties
need to be identified. Even if we already have a general estimate for the properties of the
above-mentioned material (σy ≈ 100 Mpa, n ≈ 0.3), the parameters are identified in a rather
large design space (n ∈ [0.1,0.5], σy ∈ [50 Mpa,400 Mpa]) so as to keep the material point of
interest away from the boundaries [5]. This will ensure sufficient accuracy during the inverse
analysis and allow us to test the robustness of the proposed methodology.

The same FE model as presented in Figure 4.1 (Section 4.1) is adopted, and the contact
interface between the indenter and the specimen was characterized by a Coulomb friction
coefficient of 0.1. The indentation force is progressively increased up to a prescribed value
(Pmax = 500 N) and the unloading phase is simulated in one step, resulting in a final imprint
shape after spring-back. We remind that the only indentation response used in identification
is the non-smooth residual imprint in Figure 7.7.

7.2.2 Results and discussion

Three manifold learning algorithms were used for the resolution of the identification
problem in this test case. A quadric polynomial basis (2D), containing 6 monomials, was
applied for the construction of the smooth manifold in Equation 3.11. Seven snapshots
were chosen in each DOE using Latin Hypercube sampling. These snapshots were then
decomposed using POD with a full basis of size 7, giving a set of α1,α2 · · ·α7 for each of
the 7 snapshots. In this subsection, we have used a full basis without truncation, leading to a
7-dimensional shape space. For the purpose of visualization, only the first three coordinates
were chosen.

We identify two plastic parameters of the steel in the α-space by using the convergence
criterion given in Equation 5.1 or 7.1. Note that this criterion in essence compares the physical
imprint shape with the simulated one, and is normalized as

ε1 =
∥s̃ssexp − sss(σy,n)∥

∥s̃ssexp∥
. (7.3)

In order to demonstrate the advantage of using the adaptive local imprint-manifold, we
have also calculated the error between the imprint shape obtained by simulation using the
identified parameters and the real experimental data

ε2 =
∥sssexp − sss(σy,n)∥

∥sssexp∥
. (7.4)
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Panning

The iteration history of identification using the panning algorithm is given in Table 7.4.
The design of experiments is centered around successive sets of σy and n. ∆σy and ∆n are the
sizes of the design window. The pattern of exploration of the total design space by panning
the design window is shown in Figure 7.9. Different symbols are used for odd and even
iteration numbers for clearer visualization. For overlapping windows, the snapshots may be
reused in order to save computing time.

TABLE 7.4 Iteration results using panning approach.

Iter σy n ∆σy ∆n ∥αααexp −ααα∗∥ ε1 ε2

1 205.0 0.225 30 0.05 0.0629 8.01% 8.78%
2 190.1 0.226 30 0.05 0.0327 4.15% 5.56%
3 175.1 0.239 30 0.05 0.0292 3.71% 5.16%
4 160.1 0.260 30 0.05 0.0219 2.79% 4.57%
5 145.1 0.275 30 0.05 0.0171 2.18% 4.20%
6 130.2 0.294 30 0.05 0.0118 1.50% 3.88%
7 115.4 0.312 30 0.05 0.0052 0.66% 3.58%
8 104.0 0.330 30 0.05 0.0030 0.38% 3.53%
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FIGURE 7.9 Panning iterations (Table 7.4).

Successive design spaces and corresponding local manifolds are shown in Figure 7.10-
7.12. The green diamond, denoting the projection of the experimental imprint in α-space,
converges to the center of the local coordinate system, which also implies that the estimated
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imprint converges to sssexp. The black dot in design space represents the current estimation
parameters corresponding to the point on M closest to the projection of the experimental
imprint.
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7.



7.2 AISI 1095 STEEL test case 105

0.3047 0.3172 0.3297 0.3422 0.3547

88.9795

96.4795

103.9795

111.4795

118.9795

1

2

3

4

5

6

7

exp

*
= 0.0030

1

2

3

Window in design space (iteration 8) Shape manifold (iteration 8)

FIGURE 7.12 Material parameters identification procedure by design space and local manifold
8.

The local manifolds in this panning method are not accurately approximated for the
simple reason that we are using only a quadric surface to approximate M in a relatively wide
range(∆σy = 30 MPa, ∆n = 0.05). With the panning method, we can only obtain a general
estimate for the material parameters. The accuracy may be improved by either increasing the
degree of the polynomial basis or by shrinking the size of the window. Another option is to
try to use more snapshots for a more accurate approximation of the local manifold, this will
be discussed in Appendix C.5.

Zooming

For this algorithm, the convergence of the material properties is shown in Table 7.5,
where σy stabilized around 105 MPa and n around 0.326. Clearly, the standard error ε2 has
stabilized at 3.6% after only 3 iteration steps, while the proposed error ε1 drops to around 1%
by using the projected imprint in shape space. Even though the error ε1 in the 4th iteration is
smaller than in the last one, we still prefer the material identified in the last step for the reason
that the local manifold is more accurate so we can obtain the projection of the experimental
imprint. This last manifold is considered accurate since the identification is carried out in a
small window size and the material parameters vary only in a small range : 2.5 MPa for σy

and 0.002 for n.

The iteration procedure in design space is shown in Figure.7.13. Also, imprint snapshots
at various stages and the experimental imprint are compared (Figure 7.14). It is clear that
the simulated imprint shapes will concentrate around the experimental one when the local
manifold patch decreases in size in subsequent iterations.
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TABLE 7.5 Iteration results using regular zooming approach.

Iter σy n ∆σy ∆n ∥αααexp −ααα∗∥ ε1 ε2

1 250.0 0.250 320 0.3 0.2512 31.97% 32.16%
2 99.79 0.394 160 0.15 0.0155 1.97% 4.25%
3 98.32 0.336 80 0.08 0.0150 1.90% 3.89%
4 98.65 0.331 40 0.04 0.0056 0.71% 3.59%
5 112.44 0.327 20 0.02 0.0147 1.87% 3.57%
6 105.80 0.326 10 0.01 0.0092 1.16% 3.54%
7 105.46 0.326 5 0.005 0.0079 1.01% 3.57%
8 105.79 0.326 2.5 0.002 0.0069 0.87% 3.57%
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FIGURE 7.13 Zooming steps (Table 7.5).
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FIGURE 7.14 Experimental imprint and numerical snapshots (zooming algorithm).

Panning & zooming

Finally, a combined algorithm of panning & zooming is applied. Similar estimates of the
material properties are obtained (Table 7.6). In the first four steps, the panning method is
introduced to iteratively locate the most promising zone, and during these steps the design
window remains of the same size. Next, the zooming algorithm is adopted in order to improve
the accuracy of the local manifold for better identification. The first searching algorithm is
automatically switched to the second one as soon as the estimate for the next iteration is
located inside the current window rather than on its boundary. The pattern of exploration in
design space is visualized in Figure 7.15.
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TABLE 7.6 Iteration results using panning & zooming.

Iter σy n ∆σy ∆n ∥αααexp −ααα∗∥ ε1 ε2

1 175.0 0.300 40 0.04 0.1989 25.31% 25.56%
2 155.0 0.280 40 0.04 0.0697 8.87% 9.62%
3 135.2 0.287 40 0.04 0.0175 2.22% 3.98 %
4 120.5 0.307 40 0.04 0.0083 1.05% 3.68%
5 107.0 0.326 20 0.02 0.0059 0.75% 3.54%
6 108.0 0.323 10 0.01 0.0121 1.53% 3.57%
7 106.7 0.323 5 0.005 0.0089 1.13% 3.56%
8 107.0 0.324 2.5 0.002 0.0096 1.22% 3.57%
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FIGURE 7.15 Combination of zooming and panning (Table 7.6).

Comparison of the three algorithms

For the purpose of comparison, the convergence patterns of material parameters identified
by the three different algorithms are depicted in Figure 7.16. The robustness of the identifica-
tion procedure in lower-dimensional α-space is confirmed by using different initial points
for the three algorithms which lead to almost identical material parameters. In addition, it
may also be concluded from the iteration histories that the combined zooming & panning
approach gives the best convergence for both parameters.



7.2 AISI 1095 STEEL test case 109

Convergence curve of hardening coefficient

(a) (b)Iteration step

Convergence curve of yield stress

Iteration step
1 2 3 4 5 6 7 8

n

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
panning

zooming

pannning & zooming 

1 2 3 4 5 6 7 8

σ
y

80

120

160

200

240

280
panning

zooming

pannning & zooming

FIGURE 7.16 Convergence patterns for the parametric identification of n and σy.

The identification error ε1 is shown in Figure 7.17. Obvious decreases are observed,
that stabilize at around 1%. It bears mentioning that this error is more reliable if the design
subspace/window is smaller at each iteration step, which is why the result in the 8th iteration
is preferable to that obtained in the 4th iteration in Table.7.5.
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FIGURE 7.17 Progressive reduction of the error estimation ε1 between the imprint shape
obtained with identified parameters and the experimental imprint reconstructed with POD
modes.

Other discussions are also made in Appendix C to demonstrate the robustness of these
alogorithms with respect to such parameters as the number of retained POD modes, the order
of polynomial basis in manifold approximation as well as the number of snapshots.
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7.3 SECOND TEST CASE : aluminum alloys

Different from the previous example, the floating search algorithm was chosen to cha-
racterize the two aluminum alloys : EN AW-2017F and EN AW-5754F. Exactly the same
protocol is followed to solve the inverse identification problem within the manifold space.
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FIGURE 7.18 Local manifold convergence for EN AW-2017F.

In Figure 7.18, we choose the alloy EN AW-2017F to demonstrate the decreases in size of
local manifolds along with the iterations, since a shrinking multiplier β = 0.8 (Algorithm 4)
was adopted. As expected, the distance between the experimental imprint (marked with green
diamonds) and the estimated admissible imprint on the manifold (represented by a black dot)
is minimized. We also note that the new estimate of each iteration converges towards the
origin of the coordinate system due to the reason that all the snapshots were centered before
POD/SVD. A similar result was also obtained for EN AW-5754F alloys, and thus has been
omitted here. The identified power-law parameters are summarized in Table 7.7.

TABLE 7.7 Summary of identified Hollomon’s hardening parameters for the two aluminum
alloys.

Material Parameters Floating search

EN AW-2017F
σy 254.8 MPa
n 0.178

EN AW-5754F
σy 83.73 MPa
n 0.174

The convergence patterns of material parameters identified for the two specimens studied
by the proposed floating manifold search algorithm are compared in Figure 7.19. It is fairly
clear that floating search approach gives a uniform and steady convergence of both plastic
parameters.
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FIGURE 7.19 Convergence patterns for the parametric identification of n and σy for for the
two aluminum alloys.

7.4 Characterizing three materials with Voce parameters

Thus far, the three hardening materials have been characterized by Hollomon’s power law
parameters. The imprints simulated with these parameters are in good agreement with the
measured ones. However, these identification results are obtained based on the a priori as-
sumption that most metallic materials will harden according to (or similar to) the Hollomon’s
power law, but this may not be the case each and every time we perform an indentation-based
identification.

TABLE 7.8 Summary of identified parameters for the three materials considering different
hardening behaviors.

Materials Hollomon’s Voce

σy (MPa) n σy (MPa) Q (MPa) γ

AISI 1095 107 0.324 128.39 575.04 30
EN AW-2017F 254.8 0.178 274.86 224.74 25.84
EN AW-5754F 83.73 0.174 94.5 122.61 12.71

It is of interest therefore to evaluate materials with different constitutive behaviors. This is
in fact a relatively simple matter since conducting the FE simulations using a different law and
thus the number of parameters to be identified do not in any way change the implementation
of the imprint-based identification protocol.

In this section, the three metallic materials are characterized by three Voce parameters
using the residual imprints (Sect.7.1.1). For simplicity sake, only the identified Voce para-
meters are tabularized in Table 7.8, while the detailed results regarding the local manifold
evolutions have been omitted.
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7.5 Discussions on the material constitutive behaviors

Other than indentation, tensile testing was also carried out on the three materials to
examine the identification results. In view of the homogeneity of the steel specimen, only one
tensile test has been performed, while for the two aluminum alloys, their tensile behaviors
were studied in three different directions : 0◦ (Rolling Direction : RD), 45◦ (Diagonal
Direction : DD) and 90◦ (Transversal Direction : TD). The stress-strain curves for the three
materials were measured until the necking phase. With the identified parameter sets in Table
7.8, we "recreate" the tensile curves corresponding to two different constitutive laws for three
materials, and compare them with those obtained by uniaxial tensile test in Figures 7.20-7.22.
We finally use the averaged tensile curves for the two alloys.
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FIGURE 7.20 Comparison of tensile curves for steel AISI 1095.

For AISI 1095, Figure 7.20 indicates that the material appears to harden according to
Hollomon’s power behavior rather than the Voce law, in view of the less discrepancy between
experimental tensile curve (blue line) and that reconstructed from the power law parameters
(red dot-dash-line). Despite that, we still observe that the initial elastic limit seems to be
underestimated. According to our knowledge of the material, the value between 107 MPa
and 128.39 MPa for σy is however reasonable.

Similarly, Figure 7.21 suggests that EN-AW 5754F can be considered as a Voce material.
Moreover, in view of the rather limited discrepancy with the curves identified from Hollo-
mon’s law, we consider that this material can also be characterized with power law hardening
parameters. In fact, this observation is in a good accordance with that we have drawn from
the global manifold in Sect.3.4.3 concerning materials that could be characterized by either
law.
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FIGURE 7.21 Comparison of tensile curves for EN AW-5754F alloy

For EN-AW 2017F characterized by both material laws, Figure 7.22 shows an obvious
gap between the reconstructed and the experimental tensile curves, despite the fact that both
simulated imprints correspond well to the experimental ones at convergence. We may be
tempted to chalk this up to the indentation size effect (ISE) and the heterogeneity of the
specimen. However, if we revisit (in Figure 7.3) the microstructures of the studied material
and estimate the size of the heterogeneities (< 10 microns) with respect to the radius of the
indenter (0.5 mm) or even with the size of the imprints obtained, we see that the ratio is very
low, allowing us to assume an almost homogeneous specimen.
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FIGURE 7.22 Comparison of tensile curves for EN AW-2017F alloy

Basically, we must remember that tensile testing is a more "global" method while inden-
tation is a "local" method. Even if the microstructure appears to be homogenous, we could
have a non-uniform evolution of residual stresses ergo hardening behavior, and indentation
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at different points will (as is usually the case) give different results. In addition, the material
itself may not necessarily be homogenous and isotropic, and may or may not follow an
isotropic hardening, not to mention that there is no guarantee that the hardening laws are
valid for the materials chosen. With these considerations in mind, we can rarely rebuild,
with the indentation-based identification parameters, the exact same tensile curves as the
experimental ones. Thereby, the material parameters identified in this section are acceptable.

7.6 Closing remarks

In this chapter, the manifold-based protocol for the identification of material work
hardening properties has been verified for three metallic materials, using only the imprint
shapes obtained after spherical indentation. Satisfactory results are obtained using a variety
of algorithms. The proposed manifold method allows us to directly compare the imprints
obtained by FE simulation (in the inverse analysis) with those obtained by actual indentation
on the sample specimens.

Almost identical power law work hardening parameter sets (σy,n) are obtained with
different algorithms even when starting from very different initial points for all tested
materials. This may suggest that the residual imprint alone guarantees the uniqueness of
inverse solution. We have also addressed that the non-smooth measurements were employed
directly in the developed method, since the constructed α-manifold provides us with a
natural/physics-based way of smoothing the imprint data of a real experiment. This smoothing
is based on the modes that capture the intrinsic features of imprint shapes governed by a
given constitutive law.

In addition, with the same imprints, the identification protocol was also applied to
calibrate a more complex constitutive law, i.e., the Voce hardening law, since the order
of the material law and thus the number of parameters to be identified do not in any way
change the application of the protocol. The convergence of the imprints illustrating that two
materials with different constitutive laws may lead to almost identical imprints after the
withdrawal of indenter. By comparison with the corresponding tensile curves obtained for
the three materials, we underline that the AISI 1095 behaves closer to the power law, while
EN AW-2017 appears to be a Voce material.



Chapitre 8

Conclusions and Perspectives

In this thesis, we have made a first attempt to fuse the fields of computer science, namely
dimensionality reduction and manifold learning, with the field of computational materials
science and mechanics so as to meet the latter’s urgent requirement of data analysis methods.
The focus is on reducing/projecting massive data, collected from either FE simulations or
advanced measurements, into a lower-dimensional space, in which an engineering problem
can be solved straightforwardly, or a better understanding of complex phenomena is readily
obtained. The work presented in this thesis spreads from methodology development to
engineering applications.

With respect to methodologies, we have clarified in Chapter 3, based on general shapes
within the context of computational mechanics, some basic concepts involved in the shape-
manifold. Having a special interest in inverse identification, we developed non-linear shape-
manifold learning protocols which are broadly applicable also to several other engineering
problems, e.g., shape optimization and design of deep drawing. With regards to different
features of the problem at hand, the dimensionality reduction algorithms reviewed in Section
2.1.2 may be implemented to the developed manifold protocol. In contrast with conventional
methods, the manifold technique allows the automatic detection of data’s underlying structure.
To avoid prohibitively high computational investment, we have also proposed a series of
local algorithms which tackle the same problem for moderate computational expense.

The developed methodology is then verified in Chapter 4 for an inverse identification pro-
blem based on a variety of indentation responses. The interests of the proposed methodology
are first validated using synthetic noise-free data. Moreover, the well-known "mystical mate-
rial" (w.r.t. the P-h curve) concerning the non-unicity of inverse identification of Hollomon’s
parameter is easily visualized in view of the correlation between the number of identifiable
parameters and the intrinsic dimensionality of the manifold. This insight in turn suggests that
we employ a "prescribed-displacement" boundary condition in simulation to formulate a
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well-posed inverse problem, and to mitigate the mystical siblings by considering the residual
imprint.

In pursuit of more general validation, in Chapter 5 we have extended the manifold
approach to the identification of material hardening parameters according to the Voce law.
The proposed method enables us to observe the non-unique solutions in parametric space,
which has been rarely reported in the available literature. This non-unicity is then throughly
investigated in Chapter 6, and in contrast to mystical material pairs w.r.t. Hollomon’s law
we have differentiated two groups of indistinguishable materials, i.e., the "true" and "false"
pairs, with the aid of a criterion, "goodness of fit". Again, by observing the solutions within
the reduced imprint-shape space, we discover that the presence of false mystical siblings is
partly due to the parametrization of the constitutive law, and partly due to the inadequacy
of indentation in capturing certain material properties (γ). That being said, we can still
exclude the true mystical materials by using the multi-depth technique. Further verification
on experimental indentation imprint is provided in Chapter 7 .

In this thesis, the application to the indentation-based identification problem may serve
primarily to target the dissemination of manifold learning approach in the field of compu-
tational mechanics. To our best knowledge, this merging of computational mechanics and
machine learning methods is a relatively new field which deserves more research interest. In
the following, we provide our perspectives on potential extensions based on the proposed
paradigms on this thesis :

— In the current work, the low-dimensional embedding of raw data is "discovered" by
using PCA or MDS, both are essentially linear methods. From a methodological point
of view, further comparison should be done with nonlinear manifold methods, like
ISOMAP and Locally Linear Embedding. The geodesic distance, though introduced
in Section 2.1 has not yet been adopted to formulate the cost function for minimization
problem. Therefore, there is a necessity to integrate it in the global manifold.

— As can be observed from Figure 7.9-7.13, any local-manifold algorithm exploits
the entire design space in such a manner that overlaps are observed for successive
local design spaces. Therefore, the local manifold learning algorithms could (and
should) be improved in order to "reuse" the snapshots when they are situated in the
design windows of the incoming iterations. Generally, two possible strategies may be
adopted : the first is to retain the same number of snapshots per iteration and to reuse
these from the previous iteration steps to yield a significant reduction in computation
time ; or the precedent snapshots fallen into current local space could be used as
supplementary information to improve the accuracy of the current local-manifold
approximation.
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— In addition to indentation imprint/P-h curve, other potential measurements from
testings like vibration testing and Digital Image Correlation could potentially be
attempted. Work on these applications as well as refining the application to material
characterization, in addition to improving the algorithms themselves, will constitute
another research area in the near future.
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Annexe A

Preparation of specimens

The tensile test and indentation specimens for the Al alloys were carefully sectioned with
a Precision Cut-Off Machine from a laminated hot rolled sheet of 6 mm thickness, while
the steel specimen was cut from a cylindrical bar of 30 mm radius. This was followed by
polishing using fine emery papers (up to 1200 grit) and diamond suspensions (6 and 3 µm)
for the purpose of avoiding roughness-related uncertainties.

TABLE A.1 Surface roughness measures for the studied samples.

Material root mean square Arithmetic average of
height of surface the roughness profile

Sq (µm) ISO 25178 Ra (µm) ISO 4287
AISI1095 0.047 0.021

EN AW-2017F 0.097 0.045
EN AW-5754F 0.053 0.028

Figure A.1 shows an example of the roughness profile obtained for the studied materials
and Table A.1 gives the values of the root mean square height of the surface Sq obtained
according the ISO 25178 standard for the studied materials. In this table, the values of the
arithmetic average of the roughness profile Ra according the ISO 4287 standard are also
provided.
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FIGURE A.1 Surface roughness profiles for the three materials.



Annexe B

Identifying AISI 1095 with floating
search algorithm

By fixing E = 210GPa, the hardening behavior of the material is characterized by iden-
tifying the yield stress σy and the strain hardening exponent n. We follow the procedures
demonstrated using the pseudo-code Algorithm 4 so as to construct the local manifold
piece-by-piece using the floating search algorithm.

To demonstrate the robustness of the algorithm, we consider three identification cases
with 3 different initializations :

A. σy = 175 MPa, n = 0.3,

B. σy = 155 MPa, n = 0.4 and

C. σy = 80 MPa, n = 0.25.

Furthermore, the "shrinking rates" of the search windows are different, we use β = 0.8 for
cases A and B, while β = 0.6 for case C. The experimentally measured imprint is obviously
the same with the one used in [93]. The numerical simulation of the loading and unloading
phases of the indentation test is performed with ABAQUS by using the FE model shown in
Fig. 4.1 using four-node axisymmetric elements (CAX4). The Coulomb friction coefficient
at indenter-specimen interface is set as equal to 0.1. The maximum value of the indentation
force Pmax is set to equal to 500N in order to obtain a moderate imprint.

A quadric polynomial basis (2D), containing 6 different terms, was applied for the
construction of the smooth manifold. 7 snapshots were chosen in each DoE using Latin
Hyper Cubic sampling. As earlier, the POD was performed with a full basis of size 7 without
truncation, although only the first three coordinates are shown here for visualization purposes.
The parameters were identified in the mathematical space by using the criterion as given in
Equation 4.11.
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The identified parameters with different initial points are compared in Table B.1. As
can be observed, almost identical results are obtained for the three cases, showing that
the material studied has an elastic limit σy of around 107 MPa and hardening coefficient
n = 0.324.

TABLE B.1 Summary of identified hardening coefficient for steel.

Cases parameters A B C

Starting values
σy 175 155 80
n 0.3 0.4 0.25

Solution
σy 105.54 107.04 107.09
n 0.3263 0.3242 0.3239

Cost function ε 0.0058 0.0052 0.0087

The different convergence patterns in design space are summarized in Figure B.1. They
demonstrate once again that, instead of attempting a global manifold construction, the design
space is searched in a piece-wise fashion and the search direction is determined automatically
using the manifold learning algorithm.
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FIGURE B.1 Convergence of design space with different values of β (shrinking coefficient).

Furthermore, Figure B.2 also presents the evolution of several local manifolds in which
the red points refer to the snapshots of each iteration, for Case B. As expected, the distance
between the experimental imprint (marked with green diamonds) and the estimated admissible
imprint on the manifold (represented by a black dot) is minimized. It is also noticed that,
at the 5th iteration, the local manifold is small enough so as to be regarded as a tangential
approximation of global manifold. Figure B.3 shows the identified imprint of each iteration
with the experimental one.

Finally, the convergence summary for the three identification cases is given in Figure B.4.
In addition to coincident identification results, the algorithm appears to begin converging
from the 5th step, an observation that is in line with the one from Figure B.2.
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Annexe C

Verification of local-manifold
identification method

In this section, the robustness of the manifold-based identification protocol is accessed on
the basis of various parameters involved in local manifold construction. For simplicity sake,
we focus on the characterization of AISI 1095 steel using the panning & zooming algorithm.

C.1 Truncation on POD modes

In our work, we aim to minimize the distance between the experimental and simulated
imprints in shape space. Thus, it is unnecessary to perform any truncation like in the tra-
ditional POD method. First of all, the optimization problem is already placed in a rather
low dimensional space, and computing the Eulerian distance is straightforward and easy. In
addition, for the sake of higher precision, we retain all POD modes, and we do not choose a
threshold value for POD truncation either. Moreover, the first several modes are dominant,
while the others are merely numerical noise with negligible amplitude (the corresponding
α-coordinates tend to zero). By consequence, their influence on the convergence criterion is
fairly limited. To verify this, we performed a series of identifications by employing different
number of modes (Table C.1).

TABLE C.1 Identified results with truncated POD modes.

Parameters nmod=2 nmod=3 nmod=4 nmod=5 nmod=6

σy 245 108.0 106.0 105.8 106.0
n 0.175 0.321 0.326 0.326 0.326

We observe that the values of σy and n almost stabilized for nmod ≥ 4. Thus, we would like
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to conclude that in order to identify material properties using the shape manifold learning
approach, the size of minimum orthogonal basis of the reduced shape space is nmod = 2l,
where l is the number of parameters. However, this is still open to discussion, and it is one of
the reasons why we prefer using all the modes without truncation.

C.2 Sensitivity to different prescribed loads

We test in this section the proposed methodology with a prescribed force of 300 N
(instead of the previously used 500 N in Section 7.2). Due to the absence of experimental
indentation data for this value, we first generated the pseudo imprint using the pre-defined
material parameter set : σy = 107 MPa, n = 0.324. Next, a 3% white noise was introduced
to the obtained imprint and finally, the "missed" parameters are identified (results shown in
Table C.2).

TABLE C.2 Identified results with prescribed force of 300 N.

Parameters Identified value reference value relative error

σy 109.7 107 2.52%
n 0.3208 0.324 0.99%

As the table indicates, acceptable errors are obtained (lower than the percentage of
introduced noise) when comparing with the pre-defined ones, and we may attribute this error
to the inaccuracy of the manifold and noise introduced. However, it must be mentioned that,
when using the proposed method, the maximum force needs to be large enough to involve
plastic deformations. Otherwise, imprint-based identification would be impossible since all
the deformation would be recovered after elastic spring back.

C.3 Inaccuracy of local manifold

We mentioned in Section 5.1 that when we project the experimental imprint onto the
shape space, even assuming that the indented material behaved exactly according to the
postulated plastic hardening law, the projection will never lie exactly on the manifold due to
noise in the measured data. While this statement is based on the fundamental hypothesis of
manifold, and it is only true for the an ”exact” manifold.

In the implementation of the current work, the local manifold is described by its parame-
tric form using (moving) least squares approximation, and thus it is inexact. Consequently,
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the offset of experimental imprint from the local manifold may be attributed to two factors
(assuming again that the indented material hardens according the power law)

1. inaccuracy of manifold ;

2. measurement noise.

In order to quantify these two errors, we adopt the manifold in Figure 7.12, and project
a smooth imprint simulated with the parameter set σy = 107 Mpa and n = 0.324 onto the
α-space. We obtain a distance of the projection to the manifold is 7.0×10−4, compared with
3.0×10−3 for the imprint with noise.

Thus, we may conclude that since the manifold is approximated in the vicinity of the
snapshot, and considering the simplicity of the problem itself, the error caused by measure-
ment error could be dominant compared with the error incurred by manifold inaccuracy. This
statement could be further explained by observing the accuracy of identification using even
lower-order polynomial basis in the next section.

C.4 The effect of polynomial basis

In present work, the global manifold is approximated progressively by lower-dimensional
local ones based on a set of snapshots in the vicinity of current evaluation point. A quadratic
polynomial basis has been adopted as it allows for gradient and Hessian evaluation. However,
the number of terms of quadratic basis increases rapidly with the number of parameters.
Therefore, we investigate a lower-order bilinear basis for the sake of reduction in the number
of snapshots per iteration. The essential significance of lower order polynomial basis will
be firmly highlighted when more parameters need to be identified. For example, in the case
where 5 parameters are involved, the number of snapshots per iteration needed for bilinear
and quadratic basis is 16 and 32, respectively.

By choosing the same initial evaluation for the two parameters, a comparison of bilinear
and quadratic basis are conducted and the results are given in Table C.3. Excepting for the
almost identical results, it is also observed that, as expected, the total numbers of simulations
for bilinear basis is less than that for quadratic basis, 50 compared with 56.

TABLE C.3 Identified results derived by adopting different polynomial basis.

Polynomial basis σy n Iterations Snapshots Total simulations

Quadratic 107.0 0.324 8 7 56
Bilinear 108.4 0.321 10 5 50
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C.5 The effect of number of snapshots k

In our fist test case on the steel, the local manifolds are approximated by a quadratic biva-
riate polynomial basis, in which 6 coefficients need to be determined. However, considering
the numerical instability of simulation, we have chosen 7 snapshots to construct the local
manifold so as to guarantee the unicity of solution to Equation 3.11 in the case where one of
the simulations does not converge.

To have a better understanding of the influence of the number of snapshots for each
iteration, we performed several identification procedures by adopting even more snapshots,
and the stability can be observed form Table C.4

TABLE C.4 Identified results using different number of snapshots.

Parameters k = 7 k = 8 k = 9 k = 10

σy 104.0 105.6 106.6 105.0
n 0.330 0.324 0.325 0.322
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