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Abstract

This thesis addresses problems of security in the French grid operated by RTE, the
French “Transmission System Operator” (TSO). In this context, security entails keep-
ing every piece of equipment in the grid within its defined operational limits. For
instance, all transmission lines must transport less than a certain power to avoid the
expansion of electrical conductors due to overheating. Several factors, including
progress in sustainable energy, electricity market efficiency, and novel consumption
patterns (e.g. electric cars, solar panels), push TSO’s to operate the grid closer to its
security limits, without (obviously) sacrificing a high quality of service. To this end, it
is essential to make the grid “smarter”, or in other words propose more advanced algo-
rithms than the currently used optimization methods, which rely on computationally
inefficient simulators of the physical grid.

To tackle this issue, this manuscript explores the benefits of applying artificial
neural networks, recently re-renamed “deep learning”, to this problematic. Such
methods and other machine learning algorithms have seen a recent surge of interest
given their capacity of learning from examples. In many areas of application that
previously required a lot of human expertise and engineering, such as computer vision
and natural language processing, these methods delivered performant solutions, which
are distributed widely in the consumer market and have greatly improved upon previous
state-of-the-art. This mini-revolution has happened very rapidly over the past few
years, largely due to the increase in computing power (particularly the availability of
relatively affordable graphics cards), allowing researchers to train in a matter of days
these "data hungry" algorithms. After training, the resulting systems are generally
more effective and efficient than other baselines handcrafted by human engineers.

In this context, following the footsteps of other pioneers in this field who have
explored applications of neural networks to power systems, we propose novel deep
learning algorithms and architectures to assist the decisions of human operators
(TSO dispatchers). Our goal is to offer, in real time, a reasonable set of actions that
dispatchers can choose from, to resolve or prevent problems from occurring on the
grid. One of the first alleys to be explored is to imitate past actions of dispatchers. To
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that end, RTE has a large collection of historical grid states that we have been fortunate
enough to have access to for our experimental work. Our main contributions are:

• Data preparation: Preparing data for training is a daunting task. RTE stores
complete snapshots of the grid, including when and where power is produced
and consumed, as well as grid topology (pattern of line interconnections). Since
topology changes are the preferred flexibility used by dispatchers for cost-
effectiveness reasons, our first contribution has been to extract from real histori-
cal data relevant impactful actions of dispatchers (as opposed to maintenance
maneuvers). In [10] we introduced a novel counterfactual method: "What if a
change didn’t occur?"

• Guided Dropout: The main algorithm we developed, “guided dropout”, allows
us to emulate physical simulators of power flows, providing fast and accurate
approximations [14, 13, 12]. The inputs to the system are “injections” (pro-
ductions and consumptions) and a topology indicator (not the full pattern of
inter-connections). Our system generalizes not only with respect to new in-
jections (generalization) but also with respect to new topologies it has never
encountered during training (super-generalization). This can be interpreted as an
instance of zero-shot transfer learning (generalization to new unseen situations).

• "At scale" applications: We have explored various impactful applications of
our algorithm in the context of power transmission. We established the viabil-
ity of the approach with numerical experiments demonstrating computational
feasibility on grids of realistic sizes.

In a nutshell, the "guided dropout" algorithm allows us to predict the consequences
on power flows following a grid willful or accidental modification (i.e. action or
contingency). We tackle this issue by separately encoding the two types of inputs
we have, injections and topologies, via two separate channels: (1) Continuous data
(injections = productions and consumptions) are introduced in a standard way, via a
neural network input layer; (2) Discrete data (grid topologies) are encoded directly in
the neural network architecture. The neural network architecture is then dynamically
modified based on the power grid topology, i.e. each topology corresponds to a pattern
of connections in the neural network. This is achieved by switching on or off the
activation of hidden units depending on the state of the power grid. Compared to other
approaches, the main advantage of this technique lies in its ability to predict the flows
even for previously unseen grid topologies. It is able to extrapolate the results of unary
actions seen during training when combining actions at test time. We explored two
types of scenarios in our applications: predictive mode and preventive mode.
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• Predictive mode: The "guided dropout" algorithm, introduced in [14], predicts
power flows in high voltage power grids after contingencies (accidental changes
in topology, e.g. due to line rupture in a storm). Power flow could be predicted
up to 99% precision on standard study cases (using the MAPE - Mean Absolute
percentage error) with a 300 times speedup compared to physical grid simulators
based on Kirchoff’s law. The neural network could also accurately predict power
flows for unseen contingencies, without detailed knowledge of the grid structure.
In this sense, it is a big step towards emulating the physical simulator for a given
power grid without its full description, which can be seen as another advantage
over the simulator since it requires this complete information to compute the
flows.

• Preventive mode: In [13] we showed that guided dropout can be used to rank
contingencies that might occur in the order of severity. This may be used by
operators to prioritize pro-active studies and concentrate on the most critical
eventualities. In this application, we demonstrated that our algorithm obtains the
same risk as currently implemented policies while requiring only 2% of today’s
computational budget. We train on only 0.5% of the total grid configurations,
thus showing that the algorithm can handle grid cases never seen before. This
last framework was further refined in [12] by complementing our machine
learning approach with targeted simulations carried out by a physical simulator
(such as those currently used in operational processes). In this last paper, we
demonstrated that we can accurately predict the risk 1 taken when operating
a grid state in a given topology with a precision higher than 95% in cases for
which this overall computation was previously infeasible.

In conclusion, we have demonstrated that machine learning, and in particular
deep learning, could be used to accurately predict power flows given productions and
consumptions as well as a grid topology and contingencies on the designated grid.
This fast approximation can be used to replace or to complement physical simulators
when computational efficiency is a concern and loss of precision is not critical given
uncertainties in the data. The fact that the proposed neural network architecture does
not need a full description of the grid elements (physical properties as well as observed
connectivity) is a desirable property since it is hard to know it exactly in advance
before real-time operations.

1See E. Karangelos and L. Wehenkel, “Probabilistic reliability management approach and criteria
for power system real-time operation,” in Power Systems Computation Conference (PSCC),2016, IEEE,
2016, pp. 1–9. Equation 3 for a formal definition of this risk.



Résumé en français

Cette thèse porte sur les problèmes de sécurité sur le réseau électrique français ex-
ploité par RTE, le gestionnaire de réseau de transport électrique (GRT). Dans ce
contexte, la sécurité consiste à maintenir chaque équipement du réseau dans ses lim-
ites opérationnelles. Par exemple, toutes les lignes de transport doivent transporter
moins qu’un certains courant pour éviter la dilatation des conducteurs électriques
due à surchauffe. Plusieurs facteurs, notamment les progrès en matière d’énergie
renouvelable, l’efficacité du marché de l’électricité ainsi que les nouveaux modes de
consommation (voitures électriques, panneaux solaires), poussent les GRT à exploiter
le réseau électrique plus proche de ses limites de sécurité, sans sacrifier une qualité
élevée du service. Pour ce faire, il est essentiel de rendre leréseau "plus intelligent".
Ceci peut être effectué via l’utilisation d’algorithmes plus avancés que les méthodes
d’optimisation actuelles s’appuyant principalement sur des simulations physiques,
inefficaces sur le plan informatique.

Ce manuscrit explore les avantages de l’application des réseaux de neurones artifi-
ciels, récemment rebaptisés "deep learning", à cette problématique. De telles méthodes
ont récemment connu un regain d’intérêt en raison de leur capacité d’apprentissage à
partir d’exemples: dans de nombreux domaines d’application qui nécessitaient aupara-
vant beaucoup d’expertise humaine et d’ingénierie, comme la vision par ordinateur et
le traitement du langage naturel. Ces méthodes ont fourni des solutions performantes
qui sont largement diffusées et qui se sont considérablement améliorées par rapport
à l’état actuel des connaissances. Cette révolution s’est produite très rapidement au
cours des dernières années, en grande partie grâce à l’augmentation de la puissance de
calcul (en particulier la disponibilité de cartes graphiques relativement abordables),
permettant aux chercheurs de former en quelques jours ces algorithmes "avides de
données". Après la formation, les systèmes qui en résultent sont généralement plus
efficaces et efficients que d’autres systèmes de référence fabriqués à la main par des
ingénieurs humains.

Dans ce contexte, à l’instar d’autres pionniers dans ce domaine qui ont exploré
les applications des réseaux de neurones artificiels à d’autres aplications (vision par
ordinateur, compréhension du langage naturel), nous proposons des algorithmes et
des architectures d’apprentissage profond novateurs pour aider les opérateurs humains
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(dispatcheurs) à prendre des meilleures décisions. Notre objectif est d’offrir, en temps
réel, un ensemble raisonnable d’actions parmi lesquelles les dispatcheurs peuvent
choisir, pour résoudre ou prévenir les problèmes sur le réseau électrique. Pour ce faire,
RTE dispose d’une importante collection d’états du réseau électrique auxquels nous
avons eu la chance d’avoir accès pour nos travaux expérimentaux. Nos principales
contributions sont :

• Préparation des données: La préparation des données pour l’apprentissage est
une tâche ardue. RTE stocke des instantanés complets du réseau, y compris
quand et où l’électricité est produite et consommée, ainsi que la topologie
du réseau (schéma d’interconnexions de lignes). Puisque les changements de
topologie sont la flexibilité préférée des répartiteurs pour des raisons de coût,
notre première contribution a été d’extraire des données historiques réelles
les actions pertinentes des dispatcheurs. Dans [10] nous avons introduit une
nouvelle méthode contrefactuelle : "Et si un changement ne s’était pas produit
?"

• Guided Dropout: L’algorithme principal que nous avons développé, “‘guided
dropout”’, nous permet d’émuler des simulateurs physiques de flux d’énergie,
fournissant des approximations rapides et précises [14, 13, 12]. Les entrées
dans le système sont des "injections " (productions et consommations) et un
indicateur topologique (et non le schéma complet des interconnexions). Notre
système généralise non seulement en ce qui concerne les nouvelles injections
(généralisation) mais aussi en ce qui concerne les nouvelles topologies qu’il n’a
jamais rencontrées pendant la formation (super-généralisation). Cela peut être
interprété comme un exemple de "0 shot learning" (généralisation à de nouvelles
situations jamais vues).

• Passage à l’échelle: Nous avons exploré diverses applications industrielles
de notre algorithme dans le contexte des réseaux électriques. Nous avons
établi la viabilité de l’approche à l’aide d’expériences numériques démontrant
l’applicabilité des méthodes développées sur des réseaux électriques de taille
réalistes.

En résumé, l’algorithme de "guided dropout" permet de prédire les conséquences
sur les flux d’électricité à la suite d’une modification volontaire ou accidentelle du
réseau. Nous abordons ce problème en codant séparément les deux types d’entrées
que nous avons, les injections et la topologie, via deux canaux séparés : (1) Les
données continues (injections = productions et consommations) sont introduites de
manière standard, via une couche d’entrée réseau neuronal ; (2) Les données discrètes
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(topologies du réseau électrique) sont codées directement dans l’architecture réseau de
neurones. L’architecture du réseau de neurones est ensuite modifiée dynamiquement
en fonction de la topologie du réseau électrique. Chaque topologie correspond à un
schéma de connexions dans le réseau de neurones. Ceci est obtenu en activant ou
désactivant des unités cachées en fonction de l’état du réseau électrique. Par rapport à
d’autres approches, l’avantage principal de cette technique réside dans sa capacité à
prédire les flux, même pour des topologies de réseau jamais observées auparavant. Le
réseau de neurones est capable d’extrapoler les résultats des actions unitaires observées
pendant la formation en combinant les actions au moment du test. Nous avons exploré
deux types de scénarios dans nos applications:

• Mode prédictif: L’algorithme "guided dropout", introduit dans [14], prédit les
flux d’énergie dans les réseaux électriques haute tension après des imprévus
(changements accidentels de topologie, par exemple suite à une rupture de ligne
dans une tempête). Le flux de puissance pourrait être prédit jusqu’à 99 % de
précision sur des cas d’étude standard (à l’aide du MAPE - Erreur absolue
moyenne en pourcentage) avec un temps de calcul 300 fois plus faible que celui
des simulateurs de grille physique basés sur les lois de Kirchoff. Le réseau
neuronal pourrait également prédire avec précision les flux de courant en cas
d’imprévus non observés durant l’entraînement, sans connaissance détaillée de la
structure du réseau électrique. En ce sens, c’est un grand pas vers l’émulation du
simulateur physique sans la description complète du réseau électrique. Ceci peut
être considéré comme un avantage par rapport au simulateur puisque celui-ci
nécessite cette information complète afin de calculer les flux.

• Mode préventif: Dans [13] nous avons montré que le "guided dropout" peut
être utilisé pour classer les contingences qui peuvent survenir par ordre de grav-
ité. Ceci peut être utilisé par les opérateurs pour prioriser les études de manière
proactive et se concentrer sur les plus critiques. Dans cette application, nous
avons démontré que notre algorithme permet d’obtenir le même risque que les
politiques actuellement mises en place tout en n’exigeant qu’environ 2% du
budget informatique actuel. Nous nous entraînons sur seulement 0.5% du total
des configurations du réseau électrique. Ceci montre ainsi que l’algorithmedu
guided dropout peut traiter des cas de grille jamais vus auparavant. Ce dernier
cadre a été affiné dans [12] en complétant notre approche d’apprentissage ma-
chine par des simulations ciblées réalisées par un simulateur physique (comme
celles actuellement utilisées dans les processus opérationnels). Dans ce dernier
article, nous avons démontré que nous pouvons prédire avec précision le risque
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2 pris lors de l’exploitation d’un état de grille dans une topologie donnée avec
une précision supérieure à 95% alors même que ce calcul global était auparavant
irréalisable.

En conclusion, nous avons démontré que l’apprentissage automatique, et en partic-
ulier l’apprentissage en profondeur (deep learning), pouvait être utilisé pour prédire
avec précision les flux de courant en fonction des productions et des consommations
ainsi que de la topologie du réseau électrique. Cette approximation rapide peut être
utilisée pour remplacer ou compléter les simulateurs physiques lorsque l’efficacité des
calculs est préoccupante et que la perte de précision n’est pas critique étant donné les
incertitudes dans les données. Le fait que l’architecture de réseau neuronal proposée ne
nécessite pas une description complète des éléments de la grille (propriétés physiques
ainsi que la connectivité observée) est une propriété souhaitable puisqu’il est difficile
de la connaître exactement à l’avance avant les opérations temps réel.

2Voir E. Karangelos et L. Wehenkel, " Probabilistic reliability management approach and criteria
for power system real-time operation ", Power Systems Computation Conference (PSCC),2016, IEEE,
2016, pp. 1-9. Equation 3 pour une définition formelle de ce risque.
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"Direct Current" (DC) approximation is a linearization of the power flow equa-
tions. Typically, this model is used as an approximation of an "alternating
current" more realistic solution of the same power flow equations. 14

activation function In the neural network literature, activation functions are appliedelement-
wise to the hidden units of a neural network. This allows a neural network to
represent some non linear mappings between inputs and its outputs. Most fre-
quent activations are the sigmoid, the linear activation function, or the ReLU..
33

architecture (when referring to neural network): The architecture of a neural network
represents how the computation are performed in this neural network. For
example, it can be the number of layers,the number of units per layer, but can
also include which layer is connected to which other oneetc. 59

bus In a "power grid", a bus is where all objects ("power lines", injections", etc.) are
connected together. If two objects are connected together, they are on the same
bus.. 4, 5, 45

dispatcher In a power system context, a dispatcher is a person in charge of maintain-
ing, in real time, 24h a day, 7 days a week the power grid in a secure state. His
job implies performing topological changes, anticipating risk that may cause
problem in the future, or even make sure that a "planned outage" can be operated
in real time (i.e. that it will not cause any issues). 22

dropout it is a technique commonly used in the neural network community since
its introduction in Srivastava et al. [46]. The main objective is to improve the
performance of neural networks on unseen example by randomly killing units
of a neural network at training time.. 61

generalization In the machine learning literature, this terminology is used to denote
the capacity for a learned model (for example a neural network) to make good
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prediction on unseen data, even if these data have neverbeen observed during
training. The assumption behind the generalization is that these new data must
come from the same distribution as the training set.. xxiv, 64, 84

guided dropout it’s a neural network architecture developed during this PhD that
allows to predict power flows rapidly given only partial topological information
about the topology. It is presented in detail in chapter 5.. 2, 61, 62, 64, 65, 68,
71, 73, 74

Hades2 is the load-flow solver currently in use at RTE. This solver is being used as
the ground truth when generating the power system dataset in this manuscript..
12, 52, 78, 81

injection is an object that inject (or extract) power from a "power grid". Most often,
if the value of power injected is positive it can be called a "production" or "gen-
erator". If this value is negative, it can be denoted as a "load" or "consumption".
xv, 4, 30, 31, 34, 56, 59, 60, 62

linear activation function Is the most simple activation function, that doesn’t change
its input, often use at the last layer, when making predictions for a regression
problem:

Linear(t)def= t

. xxi

load (also called consumption) represents the consumer that withdraw power from
the grid. In this manuscript this can either be aggregation of citizens (city)
or big industrial consumers. Consumptions are a subset of the more generic
terminology "injection". xv, 3, 4, 31, 62

MAPE (Mean Absolute Percentage Error) is a way to measure the error made by
predicting values ŷyy when the true values are yyy in percentage. It’s formal definition
is :

MAPE(ŷyy,yyy) =
1
N ∑

1≤k≤N

∣∣∣∣ ŷyyk− yyyk

yyyk

∣∣∣∣
. xx, 38, 97, 105, 106

neural network is a machine learning model described in Chapter 3. In this manuscript,
to avoid confusion, the terminology "network" will always refer to "artificial
neural network" and not to a "graph" nor a "(power) grid". xvi, 29, 32, 34, 35,
64, 90
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outage In a power system context, a contingency is a disconnection of one or multiple
lines of a power grid due external event. We speak of "unplanned outage" if this
external event has not been anticipated, such as the fall of a tree or a windstorm.
On the contrary, "planned outage" are operated most of the time for maintenance
reason: repainting a tower for example. xxi, 20, 78

plain architecture In the "guided dropout" setting, the plain architecture is a neural
network architecture with all units connected. It does not necessarily corresponds
to a possible encoding of actions τττ . xvi, 62, 64, 67

power flow is a mathematical problem representing the Kirchhoff’s equations that a
grid in a quasi static regime must verify. Most of the time, it takes the form of a
non convexproblem, with non convex constraints. It is solved using dedicating
solver, such as "Hades2", the one currently in use at RTE. 12, 52

power grid aims at transmitting the power from the productions to the consumers.
In all this manuscript, a grid will be the power system infrastructures managed
by TSO. In this manuscript, to avoid confusion, the terminology "grid" denotes
exclusively a power grid, and wont’ be used as meaning "graph" nor a "(neural)
network". Gridsare composed of "power lines" interconnecting "buses" . 4, 30,
59–61

production (also called generator or power plant) is an entity that injection power in
a transmission power grid. It isalso the main object that can maintain a certain
voltage amplitude at a given bus. Productions are a subset of the more generic
terminology "injection". xv, 3, 26, 31, 62

ReLU (Rectifier Linear Unit) is an activation function widely used by the deep neural
network community. It is defined as:

Relu(t)def=max(0, t)

. xxi, xxiv

Réseau de Transport dÉlectricité (RTE) is the French TSO. It is also the company
in which the PhD took place. 1, 12

RMSE Root Mean Squared Error is a way to measure the error made by predicting
values ŷyy when the true values are yyy. It represents the variance of the error. It’s
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formal definition is :

RMSE(ŷyy,yyy) =
1
N

√
∑

1≤k≤N
(ŷyyk− yyyk)

2

. 38, 99

sigmoid (or hyperbolic tangent) was the most common non linearity for hidden units
of neural network, now replaced by the ReLU. It’s formula is either:

sigmoid(t) def=
1

1+ e−t (1)

tanh(t) def=
2

1+ e−2.t −1 (2)

= 2.sigmoid(2t)−1 (3)

. xxi

substation is a physical place where object are interconnected. Typically, one of the
end of a line arrives at a substation, and then is routed to a specific "bus" in this
substation. 4, 103

super generalization This is a terminology we adapted from the generalization. For
the problem of predicting flows based on injections and partial topological infor-
mation, the "super generalization" property is the ability to predict accurately
the flows even when the topology has not been observed during training. This
deviatesfrom the standard "generalization mainly because the test distribution
(never observed topology) is different from the training distribution.. 61, 64, 84

superposition theorem It is a theorem used in the power system community to com-
pute the flows or the voltage in some circuit. It states that “for a linear system
the response (voltage or current) in any branch of a bilateral linear circuit having
more than one independent source equals the algebraic sum of the responses
caused by each independent source acting alone, where all the other independent
sources are replaced by their internal impedances” (source: wikipedia).. 70

test set In machine learning, a test set is a dataset use to report final error of machine
learning algorithms. Data of this test set are never seen at training time: this
dataset is not used to find the optimal parameters, nor involved in the selection
of meta parameters.. 35
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topology In a power system, a topology represents how the objects (productions,
loads and power lines) are interconnected with one another. This terminology
is used both do denote this interconnection at a grid level, in this case we refer
it as "grid topology" and at a substation level, in this case called "substation
topology". The "grid topology" is exactly the list of the "substation topologies"
for each substation of the power grid.. 5, 49

training set In machine learning, a training set is a dataset used to find the optimal
parameters of a model. Generally, only data of this training set are used to
compute gradient and adjust the model parameter. 60, 84

transmission line is a generic term used to denote everything that allows power to
flow in a "power grid". More specifically, in this manuscript a line will allowthe
current to flows between 2 "buses" . xv, 4, 30, 31, 59, 88

Transmission System Operator (TSO) The entity responsible for managing the "trans-
mission power grid". 1, 4, 60





Chapter 1

Background and motivations

This work has been motivated by an industrial problem: how to manage as efficiently
as possible a power grid in a changing environment given the occurring Energy Transi-
tion. This work has been carried out at (Réseau de Transport d’Électricité) Réseau
de Transport dÉlectricité (RTE) the French Transmission System Operator (Trans-
mission System Operator (TSO)) in charge of managing the security of the power
grid. In Europe, RTE is one of the largest TSO. It is responsible for managing a
powergrid counting approximately 10 000 powerline representing more than 100 000
km covering the entire French territory. While electricity is today a common good
that people take for granted, the complexity of managing the powergrid is rising and
becoming even more challenging for TSO’s: the average annual total power demand
has stopped increasing, new behaviors are emerging, and the public acceptance of new
infrastructures has become very low.

TSO’s, and RTE, in particular, have decided to investigate new methods in order to
help them tackle these new challenges. Among the methods explored, RTE chose to fo-
cus especially on “machine learning” methods to handle recurrent real-time situations
by leveraging the use of historical data, leaving time to operators to work on atypical
cases. This work took place at a time when a lot of enthusiasm followed the renaissance
of artificial neural networks (re-baptized "deep learning" methods (e.g. [23], [28],[3]),
leading to a profusion of new inspiring publications. Deep learning techniques have
become pervasive in computer vision and natural language processing applications
[54]. That is the main reason why “deep learning” techniques have been the main
focus of this work.

To help tackle this problem, RTE has a lot of data at its disposal. Every 5 mins,
from 2011 to the present time, a full snapshot of the grid is stored. The first part of
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this work has been dedicated to understanding this dataset: which information can be
extracted from these data? How to use them? During this first phase, we also acquire
insights on how a powergrid is operated, and what are the issues “operators” (people
in charge of the security of the power grid, also called “dispatchers”) are coping with
today. After understanding what properties are required for a learning machine that
could possibly be used by RTE, we started to devise a method to generated realistic
semi-synthetic datasets. Using synthetic dataset has multiple advantages. First, the
quantity of data generated can be adapted to the difficulty of the task, as well as
the size of the powergrid studied. Most importantly, we have some control over the
dataset. Operators perform actions on the power grid to solve different problems not
necessarily related to the issues treated in this work. More details about the real data
are provided in chapter 4. Finally, once the developed method obtains good results on
a synthetic dataset at a relevant scale, the developed algorithm has been tested on the
French dataset.

This work is organized as followed:

• In Chapters 2 and 3 we present the basics of the powersystem and of “machine
learning”. In these two first chapters, we also introduce some notations and try
to expose the model of a “perfect operator” and expose how we could use this
modeling to suggest relevant actions to real-time operators.

• Chapter 4 introduces the dataset we are using in this work. This includes
descriptions of the French dataset available in this work and the method to
generate synthetic, but realistic data.

• In Chapter 5 we introduce the main method developed in this work, that we
called guided dropout. This method is also detailed in this chapter, and some
interpretations of how it works are also developed.

• In Chapter 6 we show the main results of this work.

• Finally, Chapter 7 concludes with a discussion on the results obtained and on
further work that is being pursued at the moment.



Chapter 2

Power system description

2.1 Power grid description

In this chapter, we introduce the objects and concepts that we use for the modeling
and the simulation of power grids, focusing on the ones required for the operation
of such a system. First, we introduce what a power grid is. Then, we explain what
are the equations we are using for explaining the behavior of a power grid (we are
aware these equations are approximations, we will elaborate on these approximations
in the dedicated sections). Finally, we present a solver for these equations, as well as a
method to approximate these flows: the DC approximation, an approximation widely
used in the power system community, that will serve as a baseline for our model.

2.1.1 Utility of a power grid

The electrical system on the French territory is divided into different parts, operated by
different actors: production (supply), transmission, distribution (consumption, load).

The first sector is production: The main sources of power generation are thermal
power plants (nuclear, fuel, gas, or coal power plants), hydropower plants (dam, run-of-
the-river) or coming from other renewable sources (mostly wind or solar panels). Each
of these power sources has their specificities but in our case, they will be collectively
referred to as production.

The second sector is consumption. In this manuscript we adopt the TSO stand-
point: consumer is not a single house, but rather an aggregate of customers, e.g. a
small town, or a big industrial firm. Such consumers are connected to the high voltage
power-grid through a low voltage grid (last mile grid) called “Distribution Grids” and
operated by “Distribution System Operators” (DSO). This entire last mile grid is called
a load. In our modeling, this distribution grid is not included into the “power grid”.
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The last sector of the electricity landscape is the power grid. It is operated by
Transmission System Operator (TSO). This will be the main focus of this thesis.
One role commonly assigned to TSOs is to make sure every consumer can withdraw
the amount of power they need when they want, wherever they are. TSOs are in charge
to ensure the security of supply for the consumers, maintaining the system reliability
at a defined level. This aspect of their work is what we are interested in. It is further
described in Section 2.2 of this manuscript.

In most European countries, producers/suppliers, distribution system operators
(DSO), and transmission system operators (TSO) are three distinct entities since the
European Energy Market was designed and launched in 2000. Additionally, in most
cases, the power grid (transmission part) is a State monopoly. This impacts our work
in the following way: the producers and consumers have specific behaviors and TSOs
have to provide them a fair, transparent and efficient access to the grid. This drives
our modeling choice, separating the infrastructure of electricity transportation (the
power grid) from producers (modeled as productions) and consumers (including the
distribution grids, modeled as load). TSOs have the power grid under their control, but
but they must have when operating this transmission powergrid, a minimal impact on
the behavior of the consumers and/or producers.

In order to introduce and illustrate vocabulary and notations, we show in figure
2.1a a schematic representation of a power grid. This power grid is composed of
several types of entities: eight transmission lines (n = 8), denoted by l1, . . . l8, three
consumptions or loads c1,c2,c3, and two productions or power plants p1 and p2.
The main focus of this work will be the configuration of the grid, defined by the
connectivity of the power lines, and not so much the power injected in terminal nodes
(productions and consumptions).

A "substation" is a physical location in which the different components are
connected, switching devices allow to change the connectivity between components
and to create electrical buses1 At substations, dedicated transformers interconnect
distribution grids and the transmission grid (for simplicity these transformers are
modeled as load), and switching devices interconnect transmission line to ensure
the long distance transmission of power. It is also at substations that power plants
are connected to the rest of the grid. For brevity, in our manuscript, productions
and consumptions will be both referred to as "injection" and power lines, also

1When modeling a powergrid as a graph, a bus denotes the nodes of a graph, and all objects
interconnecting two buses (power lines, transformers, etc.) are the edges of this graph. The terminology
“bus” is then equivalent to a “node” in this context. However, in the power system community, “node”
sometimes refers to the concept of “busbar” illustrated in Figure 2.1b.
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called "transmission lines" will refer to entities connecting (at least) two substations
to allow power to flow between substations of the power grid. Other devices are
connected to the powergrid, such as transformers between different voltage levels,
phase shifter transformers (that play important roles in managing the flows), reactor
and capacitors banks (mostly used to control the voltages) and HVDC (High Voltage
Direct Current) coupled with AC/DC converters. These devices (and others), as well as
their associated properties and controls, are not directly addressed in this work. They
are however modeled by the power flow solver we are using, even though we don’t
explicitly describe their behaviors in this work.

For most substations, TSOs can decide how to route power. To that end, substations
may include one or several “busbar” to which objects (injections or transmission lines)
are connected. Thanks to these “busbar” it is possible to have multiple buses in the
same substation. A bus ensures the electrical interconnection via circuit breakers (See
Figure 2.1b). This implies that two objects can enter the same substation, and not
be interconnected. Buses allow the TSO to disconnect a line, e.g. for maintenance
reason, or to control the current flow by diverting it. An example of a substation is
provided in Figure 2.1b. For example, in Figure 2.2, we show how a TSO could divide
the first substation into two separate buses. Note that in the displayed schema, there is
no direct connection between bus 1 and bus 2: the only way to go from the first bus
to the second one is through another substation. The way the injections and lines are
interconnected with each other is denoted by topology. There are 2 concepts behind
this term. When referring to a whole power grid, we will speak of "grid topology".
Interconnection in a specific substation is denoted by "substation topology".

2.1.2 Injections and flows

As explained in the previous section, from the TSO point of view, injections are
imposed by external actors. In this subsection, we expose how given injections result
in "steady state" power flows.

Since today most parts of the power grid are operated in alternating current (AC)
– as opposed to direct current (DC)–, we focus exclusively on describing AC power
flows.

As is known [30], AC power transmission systems are described by a number
of variables introduced in this section: voltage and current intensity. Both voltage
and current are described by magnitude and phase (also referred to as "angle"). We
hereby explain how to compute these magnitudes and angles at each bus of the grid
from available data, and how to use them for determining flows on power lines. The
process of computing flows given injections is called a "power flow". The equations we
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l1
↑

sub_2

l2
↑

sub_3

l3
↑

sub_4

l4
↑

sub_5

↓ p1

(b) Zoom in the structure of the first substa-
tion (sub. 1). Disconnectors allow connect-
ing objects (lines or injections) to buses; a
coupling breaker allows to connect the two
busbars together, or contrarily to isolate
them from each other thus forming two
independent buses.

Fig. 2.1 Schematic representation of a small power grid (2.1a) and zoom in the structure
of the subtation 1 (bottom left substation - 2.1b).

describe are valid for a fixed voltage frequency, and in a quasi-stationary regime
where productions and loads are balanced (e.g. the sum of all the power produced
by all productions is equal to the sum of all power consumed and the sum of the
losses). Typically, if a power line is disconnected, the resulting flows computed with
this method reach a steady state within a few minutes (1 or 2 typically) after the
disconnection. We are not interested in this work in transient phenomena occurring
over shorter periods of time, however, this phenomenon can be a dramatic importance
for powergrid operations in some cases. Finally, as we already motivated, the equations
will be shown only for the three main types of objects we are interested in: productions,
loads and powerline.

In this subsection, we denote by G a grid with m buses and n power lines. In the
examples of Figure 2.1, we have m = 5 and n = 8, but in the example of Figure 2.2
n = 8 still, but m = 6. In practice, the number of electrical buses on a power grid is
not constant: it changes depending on how the TSO operates the grid and the chosen
topology at each substation.

For each bus k ∈ {1, . . . ,m}, let θk be the voltage angle and |vk| the voltage
magnitude of this bus. If a power line l2 connects bus j and bus k, we will denote
by z j,k its "impedance". The impedance represents the physical properties of this
powerline, in most modeling of a transmission power grid, it is a complex number

2Or any other objects: HVDC, transformers etc.
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open

close

busbar 1

busbar 2

↓ c1

l1
↑

sub_2

l2
↑

sub_3

l3
↑

sub_4

l4
↑

sub_5

↓ p1

(a) Representation of a possible way to split the
substation 1 in two distinct electric bus.

c1

c2

c3

p1

p2

sub. 1

sub. 2
sub. 3

sub. 4

sub. 5
l4

l8l1

l5 l6

l7

l2 l3

(b) Representation of the power grid shown
in 2.1a after splitting the substation 1 in
two buses.

Fig. 2.2 Schematic representation of the power grid shown in 2.1a, for which substation
1 has been split into two independent electrical buses. Bus 1 is colored in blue / dashed-
dotted and regroup load c1 and powerlines l1 and l2. Bus 2 is represented in orange /
dashed and is made of production p1 and powerlines l3 and l4.

(i.e. includes both a resistance and a reactance - more information can be found in
[30]). It happens that the equations are better yet written when taking into account the
admittance. The admittance is defined as y j,k

def= 1
z j,k

. If no power line connects bus j to
bus k, it is equivalent to having a power line with an admittance of 0.

As shown in [31], if we denote by ik→ j the current (complex number) flowing
between bus k and bus j, we have:

ik→ j = yk, j(v j− vk) (2.1)

This equation is illustrated in figure 2.3b. Note that in case there are other elements3

connected to one end of a power line, the admittance yk, j considered in Equation 2.1
takes into account these other object. So the current flow ik→ j will not be, in that case,
the current flow on the power line. We prefer not entering in this detailed modeling.
For more information on this issue, see [30].

Kirchhoff’s law (illustrated in Figure 2.3a) state that everything entering in a bus
must go out. This a special case of the conservation of energy law . If we denote by
i→k the current injected at bus k (typically by a productions or by a loads) this entails

3We made the choice, for clarity, not to model all the objects present in a power grid. Such object
connected to one end of a powergrid can include shunts of selfs. More about their modeling can be
found in [30] for example.
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that:

i→k +
m

∑
j=1, j ̸=k

ik→ j = 0 (2.2)

↙ ↘

↖

bus k

i1→k i2→k

i j→k i→k

bus 1 bus 2

bus j

Kirchoff’s current law:
i1→k + i2→k + i3→k + i→k = 0

(a) Illustration of Kirchoff’s bus law, which is
a particular case of the conservation of energy.
Nothing is created (nor destroyed) in a bus.

→ bus kbus j← y j,k
i j→k

i j→k = y j,k.(v j− vk)

y j,k = g j,k + ¡b j,k ∈ C

(b) Definition of the admittance y (and the con-
ductance g and susceptance b). We denoted by
¡ a complex number such that ¡2 =−1, often
denoted by j in the power system literature.

Fig. 2.3 Representation of Kirchhoff’s equations. Left (Figure 2.3a) is the Kirch-
hoff’s bus law. Right (Figure 2.3b) illustrates the link between current and i, admittance
y and voltages v.

By substituting 2.1 in 2.2 we get:

i→k +
m

∑
j=1, j ̸=k

yk, j(v j− vk) = 0 (2.3)

The equation can be written for the full powergrid using matrix notations. Let Y
(commonly called the admittance matrix) be the m×m matrix :

Y
def=


−∑ j ̸=1 y1, j y1,2 . . . y1,m

y1,2 −∑ j ̸=2 y2, j y2,3 . . .
...

y1,m y2,m . . . −∑ j ̸=m y2, j

 (2.4)
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Then is that case, the equations showed in 2.3 can be written as: i→1
...

i→m

= Y

 v1
...

vm

 (2.5)

Let’s now define pk (called active power) and qk (called reactive power) such that,
by denoting by sk = i→ kv̄k, we have, for the power injected at bus k:

sk = pk︸︷︷︸
active power injected

+¡ qk︸︷︷︸
reactive power injected

(2.6)

And in the same manner, for the active (resp. reactive) power pk→ j (resp. qk→ j)
flowing from bus k to bus j:

sk→ j = ik→ j ∗ v̄k (2.7)

sk→ j = pk→ j︸︷︷︸
active power flow

+¡ qk→ j︸︷︷︸
reactive power flow

(2.8)

In these notations, ¡ is the complex number such that ¡2 =−1. It is often called i
by the mathematical community (this can be confused with the electrical current in
our case) or by j by the power system community. We prefer to reserve the letter j
for free variables. We will also define : g j,k and b j,k such that y j,k = g j,k + ¡bi,k. Then,
from equation 2.5, if we split real part and imaginary part, with our notations, we get,
for each bus k of our power grid:

0 =−pk +
m

∑
j=1
|vk||v j|

(
gk, j.cos(θk−θ j)+bk, j sin(θk−θ j)

)
for the active power

0 = qk +
m

∑
j=1
|vk||v j|

(
gk, j.sin(θk−θ j)−bk, j cos(θi−θk)

)
for the reactive power

(2.9)
The equations 2.9 describe the relations between the different quantities, especially

between the voltage angle and magnitude (θ and |v|) and the active and reactive power
flow (p and q). A power flow solver, such as Hades2 computes some of these quantities
from the others. Let’s clarify what are the unknowns and what are inputs (that will be
provided to the simulators) in the equations 2.9.

The gk, j and bk, j are physical properties of the power lines, they need to be provided
to the power flow solver.
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We also know how much active power (pk) is being supplied or withdrawn at bus
k: this is an input of our problem. For each bus (except for a particular bus, chosen as
"slack bus"4 where we impose θ = 0), θk are unknown and must be computed by the
power flow.

Depending on whether or not a generation unit able to do voltage control is
connected to the node, either qk is the input and |vk| is computed, or the other way
round In this explanation, we will adopt a simplified but unrealistic setting, where there
are no limits on the amount of reactive power a production can absorb or produce5.
This implies that, if a production unit is connected to a specific bus, it will maintain a
given voltage magnitude setpoint, in that case, the unknown is qk. If no production
units are connected6 to a bus k, then the unknown is |vk|. A summary of the variables
provided as input and the unknowns can be found in table 2.1.

Table 2.1 Summary of the variables computed by a power flow solver. There is at
least one slack bus per power grid (where θ = 0 is ensured), every other bus is either
"PV" (meaning values of P - active value - and V - voltage magnitude - are given,
which is often the case for buses where productions are connected), or "PQ" (meaning
values of P and Q - reactive value - are provided).

Bus type Description
Is the variable provided in inputs ?

θk pk |vk| qk

"Slack" bus at least one per grid yes no yes no
"P,V" bus a production is connected no yes yes no
"P,Q" bus no production+ is connected no yes no yes

+ Remember that sometimes, due to physical properties, some productions behave
like a load. Rigorously, a bus can be "P,Q" even if a production unit is connected to it.

As we stated in the previous section, we are mostly interested in this work in two
types of variables. We explained in the previous paragraph (in a simplified setting)
how the injections (productions and consumptions) impact the flows. Now let’s detail
the impact of the topology. It has an impact on the admittance matrix Y , as it can
change its size, and change the value of its coefficients. The topology has no impact on
the physical relationships exposed in 2.9: these remain correct7 even if the topology is

4For some more advanced solvers, there are multiple slack buses. But as this work does not focus
on power flow solvers, we detail here only the case where one single slack bus is present.

5Sometimes, due to physical properties of the production unit, a production will behave like a load:
instead of providing a fixed voltage magnitude, it will produce (or absorb) a given amount of reactive
power q. A more detailed description of this phenomenon is presented in [30].

6Or if a generation unit is connected, by certain physical limits prevents it to fix such voltage level.
7Under our assumptions.
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evolving. An example of such changes is illustrated in Figure 2.4, where the topology
of substation 1 of the powergrid showed in figures 2.1a and 2.2 is changed.

S4

S3

S2

S5

i2→A
i3→A

i4→A

i5→A

ip2→A

ic1→A

bus A

{
i2→A + i3→A + i4→A + i5→A+

ip2→A + ic1→A = 0

(a) Illustration of the Kirchhoff’s current flow
equation in the substation 1 of the figure 2.1,
where everything is connected to a single bus.

S4

S3

S2

S5

i2→A
i3→A

i4→B

i5→B

ip2→Bic1→A

bus A

bus B

{
ip2→A + i2→A + i3→A = 0 bus A
{ic1→B + i4→B + i5→B = 0 bus B

(b) Illustration of the Kirchhoff’s current flow
equations in the substation 1 of the figure 2.2,
where two independent buses exist.

Fig. 2.4 Impact of the topology on the powerflow equations. Here only the current
flow equation is written for 2 topologies of the same substation (sub. 1) of the grid
showed in Figure 2.1 (left) and Figure 2.2 (right).

The third and last variable of interest for our problem is the flows. Here we detailed
how to obtain the power flow from the θk, |vk| and the physical parameters gk, j and
bk, j. We can deduce the flows on each power lines using the equations 2.1, and 2.8 to
compute the active, reactive and current flow flowing from bus k to bus j. The relations
are:

pk→ j = |vk| |v j| gk, j.sin(θk−θ j) (2.10)

qk→ j = −|vk| |v j| bk, j.cos(θk−θ j) (2.11)

ik→ j =

√
p2

k→ j +q2
k→ j

√
3.|vk|

(2.12)

A closer study of what these equations entail can be found in [31], and is developed in
section 2.2.1 of this manuscript.
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The process to compute θk and |vk|, as well as the power line flows is called a
power flow computation8 It requires a simulation engine which solves a sequence of
non linear equalities The simulation engine used for generating the synthetic dataset
in this work is called "Hades2". It is a proprietary software owned by Réseau de
Transport dÉlectricité (RTE). Its functioning is described in the subsection 2.1.3. A
freeware version can be found at http://www.rte.itesla-pst.org/.

2.1.3 Powerflow solver

The problem 2.9, with variables |v|, q and θ is a non linear non convex problem.
Multiple methods are available in the literature to solve it. A first historical solution
to solve such a problem is the "Fast Decoupled Load Flow" method [47]. The main
idea behind it is to take advantage of the weak coupling between active (and angle)
on one side and reactive (and voltage magnitude) on the other side to reduce the need
of expensive matrix factorization, and sparing computation time. One of the main
issues of such methods is that they are not able to provide results sufficiently accurate,
especially in the most stressed conditions. This is not the method adopted in Hades2.
Among many others, we can mention a relatively new method called the "Holomorphic
Embedding Load-Flow Method" [50] It has been recently developed and transforms
the load-flow problem into a holomorphic function (i.e. a function that output values in
the complex number), and to use some "complex analysis" methods9 to approximate
the load flow solution as a series of polynomials. The power flow "Hades2" solves a
sequence of non-linear problems using for each of them an iterative process, derived
from the Newton-Raphson method.

The first step consist in assigning initial values to all the variables. This is usually
done using some heuristic. Then an iterative process, described in Algorithm 1 is used,
sometimes multiple times.

There are two main stopping criteria for this algorithm:

• Either ∑k ∆pk ≈ 0 and ∑k ∆qi ≈ 0, in this case the load-flow "converged" : it has
successfully found a suitable solution

• Or the number of iteration reaches a pre-determined maximum number, in which
case, the solver is said to have "diverged". No suitable solution has been found.

The divergence can occur for different reasons, the two most important ones being:

8Sometimes “power flow computation” is abbreviate more simply by “power flow”
9Here "complex" stands for "complex number" and is not related to "complexity" or "difficulty".

http://www.rte.itesla-pst.org/
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Input: Admittance matrix Y , Slack node ID, p→k∀k, q→k∀k ∈ {P,Q buses},
|vk|∀k ∈ {P,V buses}

Output: |v j| and θ j for all buses of the power grid
Initialization :

1:
∣∣v j
∣∣← 104%vnom and θ j← 0

Main loop :
2: while Stopping criteria not met do
3: ∆p j =−p j +∑

m
k=1 |v j||vk|

(
g j,k.cos(θ j−θk)+b j,k sin(θ j−θk)

)
4: ∆q j =−q j +∑

m
k=1 |v j||vk|

(
g j,k.sin(θ j−θk)−b j,k cos(θ j−θk)

)
Compute the "Jacobian" matrix :

5:

J =

[
∂∆p
∂∆θ

∂∆p
∂∆|v|

∂∆q
∂∆θ

∂∆q
∂∆|v|

]

6: invert it, ie compute J−1

Compute missmatch for |v| and θ :
7: [

∆θ

∆|v|

]
=−J−1.

[
∆p
∆q

]
Update the new values

8: |v j|= |v j|+∆|v j|
9: θ j = θ j +∆θ j

10: end while
11: return |v j| and θ j

Algorithm 1: Generic (simplified) power-flow solver based on the Newton-
Raphson method. This algorithm shows the algorithm used in power flow solver.
Such solvers, such as Hades2 uses this routine more than once in the process of
computing flows, and this routine is optimized in multiple fashion that we don’t
detailed here.

• the instance of the problem shown in equation 2.9 has no solution for the specific
input data. In the case of synthetic data, this can happen if a sufficiently high-
quality standard is not met. Alternatively, in the case of actual data (coming
from a powergrid snapshot) this probably mean the system is not stable. This
lack of stability may be, for example, an indicator of a potential black-out.

• The starting point used is too far from the solution: a Newton-Raphson scheme
is used to solve a non-convex problem. There is no theoretical guarantee it will
converge to a desirable solution.
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2.1.4 The DC approximation

In the power system community, a common approximation is used. This approxima-
tion is called the "Direct Current" (DC) approximation, and as such suffers some
drawbacks. It is sometimes poor, especially when the power grid is prone to voltage
problems and should avoid being used in these cases. This approximation is scarcely
used for real-time operation at RTE, though it can be used in other areas such as grid
development planning for example.

Despite these drawbacks, it has two main advantages: it cannot diverge (always
gives a solution, provided that all information to compute it are available), and it is fast
to compute. This is used as a baseline method in the experiments shown in this work
when it makes sense to use it (e.g. when all the information are available regarding
the line characteristics, the production and loads as well as a full description of the
topology of the powergrid).

In comparison with the equations shown in 2.9, the DC modeling make three
important simplifications, each one being the topic of the following paragraphs of this
subsection:

1. the resistance r of a line is much less than its reactance x

2. for two connected buses (let’s say j and k) the difference θ j−θk is small

3. the voltage amplitude
∣∣v j
∣∣ at each bus j is very close to its setpoint value.

The impact of each of these simplifications on the simplified version of the power-flow
equations explained in 2.9 will be discussed in a separated paragraph.

rrr <<<<<< xxx: This assumption entails that there are no losses on a system solved using
the DC approximations. This makes particular sense for high voltage power grids
which have a high conductance x through power lines compared to their resistance r.
This assumption has an effect on the admittance y j→k of the powerline between bus j
and bus k. By omitting the subscript j→ k this gives us:

y j→k =
1

z j→k
=

1
r+ ¡x

=
r2

r2 + x2 − ¡
x

r2 + x2

And by definition of g and b, we have :

y = g+ ¡b
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thus :

g =
r2

r2 + x2 →r→0
0 (2.13)

and

b =
−x

r2 + x2 →r→0

−1
x

(2.14)

So the power flow equations become:

0 =−p j +
m

∑
k=1
|v j||vk|

(
b j,k sin(θ j−θk)

)
0 = q j +

m

∑
k=1
|v j||v j|

(
b j,k cos(θ j−θk)

)

θθθ iii−−−θθθ kkk ≈≈≈ 000: This will allow us to linearize the trigonometric functions sin and cos
that will be approximated by the identity and the constant 1, giving:

0 =−p j +
m

∑
k=1
|v j||vk|b j,k(θ j−θk)

0 = q j +
m

∑
k=1
|v j||vk|b j,k

∣∣vvv jjj
∣∣≈ |vvv|nom : This last hypothesis is made to make the problem completely linear,

as |v| will be constant. In practice, this is justified by the fact that voltages are always
operated around a reference value. This assumption results in:

p j =
m

∑
k=1,k ̸= j

b j,k(θ j−θk) (2.15)

0 = q j +
m

∑
k=1

b j,k (2.16)

Recall that from the way the admittance matrix Y is defined (see equation 2.4) 0 =

q j +∑
m
k=1 b j,k. The second equation can then be ignored. Thus, the only remaining

unknowns are the θs. And, by combining the definition of the admittance matrix Y
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and the assumption made in 2.13 and 2.14, the equation 2.15 can be written:
p1

...

pm

= Y.


θ1

...

θm

 (2.17)

The DC equations can then be solved by any method allowing to solve a linear system,
for example by inverting the matrix Y .

2.2 Security criteria

In the previous section, we saw how the productions and loads induce some flows on
lines. In this section, we will explain why TSO have to manage the current on the
power lines to maintain the system in security at all times. We know from the previous
sections that injections condition flows on power lines. In the first subsection, we
explain why large flows are dangerous for both the powergrid infrastructures and its
surrounding. Then we explain what is the actual security protocol implemented by
most TSO today. Lastly, we emphasize some of its limits and expose new security
criteria.

2.2.1 Thermal limit and "N" security

The injections induce flows, as we explained in the previous section. These flows in-
duce themselves some current, that will heat the power line. This heating phenomenon
is called "Joule’s Effect" and is the main cause for losses on the transmission network.
In fact, the losses on a powerline lk→ j that connects bus k to bus j, and with resistance
rk→ j are equal to rk→ j.

∣∣ik→ j
∣∣2.

Joule’s effect has another impact on the power grid. It heats the conductor the
powerline is made of. Because of this metal thermal expansion, the lines get closer
to the ground, a phenomenon called "sag". The more current, the more heat hence
the more sag. If it gets too close to the ground, a house, or even a pedestrian, the air
insulating layer becomes thinner and beyond a certain distance there exists a risk for a
short circuit, damaging the infrastructure but most importantly this can be lethal for
surrounding population.

To avoid these possibly dramatic consequences, each power line lk→ j has a "thermal
limit", that we denote by l̄k→ j. It can be further understood as the line capacity to
transmit power. If the current flow

∣∣ik→ j
∣∣ on this line is above this threshold for some

time (for example 5 minutes), a protection will automatically act on the powerline and
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disconnect it from the powergrid (the effect of these protections can be understood as
the opening of the disconnectors at both ends of the power grid).

These protections have drawbacks. When a line is disconnected, it often increases
the flow in some other power lines as the flow on this opened line gets redispatched
on the grid. These other powerlines could themselves overheat, and be automatically
disconnected one after the other. This phenomenon is called a "cascading failure", and
can lead to a black-out: i.e. a deficient grid state where no line is in service in a huge
area, preventing customers to use electricity, and producers to sell their production.
Additionally, putting the lines back in service and restoring the grid is a delicate
operation that can take time, as it can require the visual inspection of a maintenance
team. Hence outages of power may last several hours.

In order to avoid such dramatic events, the TSO ensures that the flow in each
line is below the thermal limit at all times. This is often called "N" security. This
"N" meaning "when the powergrid is complete10, when there are still n power lines
available". This criterion is not the one currently used by most TSO. In the next
subsection, we will detail the "N-k" security criteria

2.2.2 "N-k" security

The "N" security is the first step, but it is not enough. Transmission grids often
cover vast areas and are composed of thousands of lines. The French power grid,
operated by RTE (short for "Réseau de Transport d’Électricité", the French TSO)
counts approximately 10.000 powerlines, covering all the French territory with a total
of more than 100.000 km of powerlines.

Considering such large grid, the probability that a "bad" event (such as a birds
nest, a thunderstorm, too much wind or snow) causes an equipment failure (also called
short circuit) cannot be neglected. For example, for the entire French power system,
there have been 261 600 short circuits from 1994 to 201711. This corresponds on
average to 10 900 short-circuit a year, most of them being of very short duration (a
few milliseconds). The Figure 2.5 shows the histogram of the duration (in hour) of
unplanned line disconnection after short circuits. As we can see, most of these lines
are repaired on the day they occur. We also observed a multi-modal distribution, with
2 other modes centered around 24h and 48h: this is due to the difficulty of repairing
the power lines during night hours (an inspection in the field must be performed before
any other actions and requires to send a crew or a helicopter to do it and if the weather

10Complete here refer to the state where each powerline is connected except the one disconnected for
maintenance operation (planned outage).

11Removing the most dramatic events due to the "Lothar" and "Martin" windstorms from December
26th, 27th, and 28th, and the Klaus windstorms of January 23rd, 24th and 25th 2009.
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Fig. 2.5 Histogram of the duration of line disconnections for those lasting more than 1
minutes and having been repaired in less than 72 hours.

conditions are unfit to such operations). We can also observe that most of the power
lines are repaired less than 10h after the short circuit happens. This repairing process
is not an exogenous random process but the results of a risk assessment policy. If the
risk assessment policy is modified, for example by introducing a new security criterion,
this time could be impacted and should not be taken as constant. This issue will not be
addressed in this work.

TSO then often operate their powergrid using the "N-1" security criterion. This
criterion states that, if any single element12 in the powergrid were to be damaged, the
flow in every power lines should still remain below its thermal limit. If this is not the
case, a "curative action" must be implemented to set the power grid back in security
before the protection disconnects the concerned lines. A more formal definition of a
"curative action" will be detailed in the section 2.3 of this chapter. The "N-1" means
here "if the powergrid loses one component, then there would still be n−1 power lines
available (below their thermal limit)".

Assessing the "N-1" security of a powergrid today requires a lot of computational
resources. It requires a first load-flow to compute whether or not the grid is in "N"
security, and n more load-flows to simulate the impact of the failure of each powerline,

12We remain loose about the terminology equipment here on purpose. This rule has some differences
depending on the TSO’s. In its most strict version an equipment can be anything on the grid: from a
tower to a powerline, to a busbar for example.
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i.e. compute the resulting flows on each line of the grid, after the possible failure of
this element.

If TSOs were to compute the security in "N-2", i.e. taking into account external
causes that could lead to the disconnection of two power lines, it would require
n(n+1)

2 +1 load flows computations. With n = 104, the approximate number of power
lines in the French power grid, this would lead to evaluate ≈ 5.107 load flows. The
current software takes of the order of 100ms to compute one load flow. Assessing
the "N-2" security would require the equivalent of 5.106s of sequential computation
(approximately 2 months).

Another possibility would be to parallelize this computation: in that case, TSO
would need approximately 16 667 cores to perform these 5.107 load-flows in less
than 5 minutes. This explains why TSOs limit themselves today to the "N-1" security
assessment, that takes "only" a few minutes of sequential computation per grid state
considered13. On the contrary, assessing higher order security, such as considering the
failure of all possible triplets of elements, is today impossible for TSOs. Enforcing
these higher order security measure has not been a priority in the past: the probability
of suffering two lines disconnection is almost negligible compared to the probability
of suffering one unplanned outage. This was true when the powergrid was operated
in real time. The introduction of more and more complex equipment, the switching
from centralized highly controlled generation units towards intermittent renewable
energy sources and the difficulty to build new heavy infrastructures is calling to study
the powergrid on an even longer time horizon. If this temporal window is longer than
10h, the probability to have two lines disconnected becomes much higher: one line
can disconnect at a given date, and another a few hours later, while the first one has
not yet been repaired.

2.2.3 New conceptual security frameworks

Nowadays, many changes are occurring. The loads are more and more complex: some
new behaviors are emerging. Disruptive technologies, such as electric cars, might
have a big impact on the power grid, as well as "prosumers" i.e. people that possess
batteries, solar panel or wind turbine at home, and depend less on the power grid for
their power supply.

The environment is also changing on the production side. An increasing amount of
energy is now produced via renewable sources, wind turbines, and solar panels. This
has two main impacts. First, they are weather dependent. As the weather is difficult to

13We note that in both cases, RTE is effectively using HPC (High-Performance Computing) and
parallel processing to reduce the computation times.
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forecast days in advance, it is even harder to predict how much power will be produced.
Even worse, they can only produce when the weather conditions are suited: you cannot
control them, while traditional sources of energy are more easily controllable.

Moreover, the current energy market (where traders can sell and buy electricity
almost in real time) has an increasing role in power demand. What used to be done
over the counter, between big producers, long time in advance, is now happening at
a much quicker rate (every 15 minutes in some cases), between a greater number of
actors: producers, traders etc.

The power grid is, therefore, facing new challenges. But in the meantime, in most
industrial countries, such as France, the average annual power demand has stopped
increasing. Building new heavy infrastructures (e.g. new power lines) is becoming
hard to justify in this context, moreover, the public acceptance of such infrastructure
impacting the landscape becomes very low. This means that new flexibilities have
to be found on the actual power grid to tackle the challenges addressed by this new,
difficult to predict and to control environment. This also implies that the current aging
infrastructures must be operated closer to their limits while keeping a really high
quality of service, including few blackouts, and no electricity shortage.

To tackle these new challenges, RTE has recently participated in two European
pojects. The first one, ITESLA ("Innovative Tools for Electrical System Security
within Large Areas" of which a full description is available at http://www.itesla-
project.eu/) focused on large pan European systems. It also aimed at simulating the
impact of contingencies on the system taking into account how TSOs operate (i.e. by
trying to find corrective remedial actions that bring back the system states inside
their nominal ranges, should an outage occur. ) This project counted many aspects,
addressing many issues faced by TSO today (handling power grid at a pan European
level, taking into account dynamical phenomena ignored by steady-state modeling
exposed here etc.). The most relevant aspects of this project for this work is a proposed
workflow for classifying contingencies in multiple categories:

1. Learning "security rules". This training will not be performed in real time
and consider historical records of past power grid states, as well as new, but
realistic, grid states. These security rules aim at classifying the contingencies
(failure of equipment) into 4 parts:

• "good": the grid is still in security after the outage;

• "curable": there exist at least one curative action that can be implemented,
and that allows the power grid to get back in security after the outage;

http://www.itesla-project.eu/
http://www.itesla-project.eu/
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• "preventive needed": there is no corrective action that can, alone, be
implemented in real time and totally cure the grid. But if a specific action
had been implemented a few hours before, some curative actions would
set back the grid in a secure state

• "not handled": no known action can cure the power grid if this outage were
to occur.

2. Applying "security rules" in real time to assess the dangerousness of con-
tingencies on a grid state. A careful simulation would only be carried out for
contingencies that are not in the "good" category. This would allow reducing the
computational cost (provided that the "security rules" are fast to assess). This
reduction in the computational cost could allow us to evaluate the security of
a higher number of grid states, in a Monte Carlo like framework for example,
provided that we are able to generate realistic and plausible future scenarios.

The second project is more theory-oriented. It is the GARPUR European project
("Generally Accepted Reliability Principle with Uncertainty modelling and through
probabilistic Risk assessment" see https://www.sintef.no/projectweb/garpur/ for
complementary informations). It evaluates the flaws of today’s security policy (the
"N-1" criterion) and gives some recommendations on how to better take into account
the new environment in which the power grid is operated.

One of the outcomes of this project was the definition of a probabilistic reliability
criterion that should replace the N-1 rule, and which is expected to lead to a better
social-welfare. The definition of such a reliability criterion can be found in [26] for
example.

In this chapter and the rest of the manuscript, z will denote an outage (disconnection
of a powerline due to external causes). For example, z1 corresponds to "the power line
1 is disconnected". Each outage z is associated to a cost c(z). This cost should take
into account multiple components, such as the cost of the corrective action that taken
after the occurrence of outage z (if any), as well as the cost of service interruptions
(blackout) implied by outage z. The outage z also has a probability of occurrence, that
we will denote by p(z) that depends, among other factors, on the weather conditions14

, on the aging of the infrastructure and on the way the maintenance has been performed
on this specific equipment. In this framework, the risk of a grid state s = (xxx,yyy,τττ)15

14There is a higher chance that a line trips (i.e. that an automaton detects an anomaly and disconnect
this powerline) during a thunderstorm for example.

15For a sake of simplicity, we detail the work performed on this project supposing that this grid state
s is deterministic. The GARPUR methodology also takes into account possible stochastic powergrid
states. More details about the GARPUR project can be found at https://www.sintef.no/projectweb/
garpur/.

https://www.sintef.no/projectweb/garpur/
https://www.sintef.no/projectweb/garpur/
https://www.sintef.no/projectweb/garpur/
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where xxx are the injections, yyy the flows and τττ represents the topology is then:

R(s)︸︷︷︸
total risk

= ∑
z∈A

p(z)︸︷︷︸
Probability of occurrence

. c(z;s)︸ ︷︷ ︸
Associated cost

(2.18)

where A denotes the set of all possible contingencies that the system can endure.
The "N-1" strategy can be interpreted as a particular case of the more generic

GARPUR reliability criterion, where heavy assumptions are made. It can be seen as ne-
glecting all contingencies resulting in more than two lines disconnections (i.e. restrain
A to single contingencies), associating the same cost c(z) for all single contingencies
and supposing that each disconnection has the same probability of occurring p(z). As
explained before, new flexibilities in the operations of the power grid must be found,
and even if the "N-1" security policy has proven to be successful in the past, it must be
refined in the future.

However, and despite its flaws, the “N-1” approach presented the great benefit of
simplicity, while there are multiple difficulties in the computation of the proper risk
defined in equation 2.18. First, A is an extremely large set of contingencies. For
a power grid counting n power lines, card(A ) > 2n (recall that n is the number of
powerlines of the system). A power grid can count n = 10.000 powerlines, making
the computation impossible to carry out (210 000 is a number with 3.011 digits). The
estimated number of atoms in the universe "only" has approximately 82 digits). Hence,
at the moment the GARPUR framework corresponds to a sound approach but is not
tractable with the current tools available to the TSO’s. Secondly, there is no easy
way to compute the cost associated with an outage c(z;s) in most of the cases. The
simulation of a loss of a power line must be carried out using really complex simulators,
that can take into account multiple phenomena that are most of the time ignored by
power flow solvers. For example, power flow solvers make the hypothesis the power
grid is in "steady state", which does not hold when the power grid is heavily stressed
for example.

2.3 Modeling a perfect operator

In the previous sections, we discussed the definition of a power grid and the kind
of problem it could face. In this section, we explain how a power grid is operated
i.e. what is a "perfect dispatcher". This section is organized as followed. First, we
explain what actions the operator can perform to maintain a given reliability level.
Then we expose a model of what a perfect operator could do. This model has been
introduced in the GARPUR methodology.
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2.3.1 Possible actions

We can distinguish two main types of actions. “Corrective remedial actions” can
be implemented after a problem arises. They are often quick to implement and are
mostly related to topology. On the contrary “preventive remedial actions” must be
performed before the arising of outage z. Most of the preventive actions are related to
“redispatching”, i.e. connecting or disconnecting a production for example. This can
take up to a few hours. Table 2.2 shows in more detail the main actions dispatchers
can perform. Some are impossible to do in real time, for example starting and ramping
up quickly a nuclear power plant to a desired production level. Indeed, a power
plant needs sometimes more than 8 hours in order to be connected to the power grid.
Similarly, power plants need some time to cool down, and once started, they must
produce electricity for at least a few hours, so switching off a power plant cannot
always be performed.

Other types of action are used only in extreme cases because they can damage
either the TSO infrastructure or the power quality on the customer side. We include
these types of action, but they are seldom used. Such actions include reducing the
voltages everywhere or performing load shedding for example.

Table 2.2 Description of some actions implemented by operators+ when a problem
appears, as well as their related cost and their applicability in a curative action setting:
can they be applied rapidly or do they have important implementation time?

Name Description Implementation time priority
topological action change buses at substa-

tions
few minutes∗ high

renewable curtailment reduce wind / solar
panel production to a
given threshold

few minutes to few
hours

average

demand side management pay consumers for re-
ducing their consump-
tion at a given time

must be decided a day
before usually

low

redispatching imposing producers to
produce more / less

few minutes to few
hours (

low

load shedding cut off an aggregate
of consumers within an
area

a few hours (with cau-
tion, under some condi-
tions)

very low

sub-nominal voltage setting decrease nominal volt-
age Vn by 5%

few seconds to few
minutes†

extremely low

+ This table is a brief presentation of some of the actions an operator can perform.
∗ Some reconfiguration needs more than a few minutes to be performed in certain
cases. These cannot be used in real time.
† This depends if the production units is connected or not to the power grid, is it’s
already producing or not, and of the type of the productions (thermal, hydraulic, etc.)
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To cure a real problem, we will call π the corrective remedial actions action
a dispatcher can perform. This can be a complex action, for example starting a
production unit one day in advance, and modifying the topology when the outage
occurs. This notation comes from the "reinforcement learning framework", where the
"policy", i.e. a function that chooses the (best) action to do in a given state is denoted
by π . In other fields, such as the optimal control literature, this function is often called
u.

This action π can be implemented in two separated parts. The preventive part,
implemented in advance, before any outage arises. This part can include starting a new
power plant or paying industrials to consume less for example. This preventive part
is associated with a cost of CP(π,s) and depends only on the system state s and the
chosen action π .

The action π can also have a corrective part. The corrective part will only be paid
if an outage occurs. For example, we could choose to perform a topology change in
substation 1, only if the power line 3 is disconnected due to external causes. To this
corrective cost is associated with a cost of CC(π,s,z). This cost is dependent on the
outage z considered.

In any case, the power grid state after applying the action π will be denoted by
s⊙π .

2.3.2 Assisting operator with machine learning

In the previous subsection, we showed that operators can take different actions in real
time. In this section, we report how the GARPUR framework models the decision-
making process: this is what we call the "operator’s problem". We will explain what a
"good" remedial action π is, and how we can quantify it. Our formulation is largely
inspired by the GARPUR framework and is shown in [26] equation 1 for example.
The dispatcher should take the action π that minimizes some quantity, that takes into
account multiple aspects of the security criterion. The cost of an action includes its
preventive cost CP, its corrective cost CC. Both these costs depend on the outage
considered, e.g. the cost of the fall of lines 1 is not the same as the cost of fall of
powerline 2. The GARPUR framework doesn’t enforce that a policy π must prevent
any blackout: this is taken into account by associating a cost to the power grid state
s⊙π if outage z arises. The best action π∗ that an operator can choose for a grid state
s is16:

16In the GARPUR framework is also presented a method to take into account uncertainties in the
grid state s e.g. if injections are not known perfectly in case of forecasted grid state for example. As we
already stated, we don’t consider it in the modeling of the operator we present here.
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π
∗ = argminπ

{
CP(π,s)︸ ︷︷ ︸

Preventive cost

+

∑
z∈A

p(z)︸︷︷︸
probability of occurrence of z

( CC(π,s,z)︸ ︷︷ ︸
Corrective cost of z

+ c(z;s⊙π)︸ ︷︷ ︸
cost of fixing the power grid︸ ︷︷ ︸

cost of the grid after outage z arises

)

}

(2.19)

Finding the best action π∗ is a really difficult task. It has the same level of
computational complexity as the one involved in computing the risk of a power grid
state defined by the GARPUR methodology (see Equation 2.18). The problems come
from the huge set of possible contingencies and the difficulty to accurately simulate
the behavior of the powergrid for some of these contingencies and for all the credible
uncertainties17. Thus, solving the optimization problem 2.3.3 is not tractable relying
solely on the methods currently used by TSO’s. As stated in the introduction, recent
progress in “machine learning” and especially “deep learning” methods achieved good
performances in multiple domains, such as computer vision [21], natural language
processing [43], and game playing (with the Go [44] or the game of poker [5]). In
this work, we show that these deep learning methods can be implemented to assist
operators. The main algorithm developed, called "guided dropout" allows to learn the
outputs of a simulation engine based on physical laws (in our case Hades2) and is able
to rapidly compute:

• the effect of taking action π on grid state s, i.e. computing the state s⊙π

• the effect of a given contingency z on the grid states s or s⊙π

• the risk as defined in equation 2.18 by taking into account a more important
number of contingencies compared to what operators study nowadays.

In this thesis, we do not address directly the problem of finding the optimal policy
π∗ explicitly. Our goal is to assist operators to make decisions as best as possible
according to this criteria. The implementation of the proposed method, at least in a
first version, would remain in the hands of the operators.

17The problems of assessing uncertainties in powergrid state will not be addressed in this work
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2.3.3 Related works

In this section, we provide some insight into other methods that have been used in the
power system community to tackle the operator’s problem.

One of the first method that can be seen as solving the operator’s problem is the
OPF "Optimal Power Flow", and has been first formulated by Carpentier in 1962 [7].
This problem, part of the continuous optimization, aims at finding the best dispatching
strategy for productions units such as to minimize the losses for example. When
coupled with the "N-1" security criteria (a simplification of the equation 2.18 presented
page 22), the formulation of the "OPF" can be refined and is therefore referred at
"SCOPF" for "Security Constrained Optimal Power Flow". This approach has been
developed for example in [34] or [6].

In these papers, the main control variables are the productions and the constraints
of the problem are the Kirchhoff’s equations and the thermal limits on the lines. Our
work is more focused on the topology since topology is under TSO’s control. These
previous methods are not particularly fitted, even though some adaptation exists to
take into account some topological actions ([41] or [55]). We decided to focus our
work on assisting operators rather than optimizing the problem presented in equation .
That’s we decided not to pursue the work presented in these papers.

2.3.4 Summary

In this chapter, we detailed the different elements present in a power grid. In this work,
the mains elements will be:

• the productions, that produces the power;

• the loads, that consumes the power;

• the transmission lines that allows the power to flows from the productions to the
loads.

The way the power flows on the power lines depends on many factors, for example
the physical properties of the power lines and follows Kirchhoff’s laws. In this work,
all the productions and loads values have been gathered in a vector denoted by xxx. On
the other hands, the flows on each powerlines of the grid are denoted by yyy.

Some flexibility exists on a power grid. Under certain circumstances, operators
can change the way the powerlines are interconnected with one another. The way
these powerlines are connected is denoted by "topology", and the action to modify
it is called "topological change". The topology has an impact on the power flows on
the power grid. This is one of the preferred way to manage a power grid and ensure
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it remains in security. In this work, the topology is represented by a vector of {0,1},
called structural vector and denoted by τττ .

Today, the process of computing the flows from the productions and the loads xxx and
the topology τττ is called "a power flows computation" and carried out with slow, but
accurate simulators. The main contributions of this work is to be able to approximate
this computation. By using machine learning, we show that we could gain a 300 times
speed up in computation time, while still being accurate. The developed learning
machine is also able to generalize to new topologies, a phenomenon we call "super
generalization".

The methodology adopted, as well as the data we used to train such learning
machine and the results that are achieved on controlled experiments as well as on
experiences carried out on real data. However, the next chapter introduces the basis of
"learning machines" and some theory behind them.





Chapter 3

Artificial Neural Networks

In the previous chapter, we formalized what a would be “perfect operator” could
perform. Unfortunately, this problem is nowadays intractable relying only on methods
used by TSOs. Machine learning can be an alternative to assist operators and tackle
some of the problems exposed in the previous chapter. In this chapter, we introduce the
basics of “machine learning” and neural network. We also show how some of these
methods compare with each other using the small test case presented in the previous
chapter, as an example to show how the results on more real datasets will be presented
in future chapters.

This chapter is organized as follow. The first section details first the linear re-
gression, one the oldest statistical model to finish on a short description of the neural
network. The second section detailed, on a small example, how the concepts intro-
duced in the first section can be implemented to solve the problem of predicting power
flows on a small size powergrid.

3.1 From linear regression to artificial neural networks

The original idea behind a deep artificial neural network comes from a machine
introduced by Rosenblatt in [40] called the "perceptron". The first section of this
chapter is devoted to understanding how this learning machine works. As a first step,
we introduce linear methods, that can be seen as a particular case of a neural network.
Then we detail how the linear regression has been improved in the literature. Then we
provide an introduction to deep learning. Finally, the last section reports the methods
we used to train our models.



30 Artificial Neural Networks

3.1.1 Linear regression

Linear regression is a statistical tool used to model data since the mid-1800’s. The
general principle is to predict an univariate outcome y ∈ R, with p input variables
xxx ∈ Rp. For example, this model allows to predict the flow on the transmission line 1
given all the injections on the power grid shown in Figure 2.1a.

One could build a prediction ŷ for the variable y by making a linear combination
of variables xxx with some weights www, with dim(www) = (p,1). Given N data points
(xxx j,y j)1≤ j≤N , such a linear combination for example for xxx j (dim(xxx j) = (1, p)) can
be written1 as

ŷ j = xxx j.www (3.1)

Linear regression searches the linear combination of xxx that minimizes the distance
between ŷ and y given some distance function d. More formally, this solves the
optimization problem shown in 3.2 with respect to the coefficient vector www.

wwwopt = argminwww∈Rp ∑
1≤ j≤N

d(y j,xxx j.www) (3.2)

In the case of a linear regression, the distance d is often the l2 norm, defined as :

l2(z, t)
def=(z− t)2 (3.3)

There exist multiple algorithms to find the best parameters wwwopt. For example in
[16] (equation 3.6 page 45) Friedman et al. show that2:

wwwopt = (X ′X)−1X ′Y (3.4)

where X is the "design matrix" of size (N, p): the jnth row of this matrix being row

vector xxx j (of size p). Y is the (N,1) column vector such that Yj
def=y j. We denote by X ′

the transpose of matrix X . In this formulation, wopt is a column vector of size (p,1).
Another method to solve this optimization problem is via gradient descent. It is

shown in [16], that the linear regression problem is convex, so a gradient descent
algorithm can be applied to its resolution. Such an algorithm is described below in the
Algorithm 2:

1The following formulation does not explicitly mention a bias in its formulation. In fact, the bias
can be added by concatenating a constant "1" to each vector xxx j.

2Supposing that the matrix X ′.X is invertible, where X ′ denotes the transpose of matrix X .
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Input: (xxx j)1≤ j≤N and (y j)1≤ j≤N and learning rate λ

Output: www with dim(www) = (p,1)
Initialization :

1: www← [0, . . . ,0]
Main loop :

2: while Stopping criteria not met do
3: Compute gradients:
4: for k ∈ [1,2, . . . , p] do

5: ∇wk←
∂ ∑1≤ j≤N||y j−xxx j.www||2

∂wk
6: end for
7: Update the coefficients:
8: wk← wk−λ ∇wk
9: end while

10: return www
Algorithm 2: Resolution of a linear regression by gradient descent

injection 1

injection 2

injection 3

injection 4

injection 5

flows on line 1

flows on line 2

flows on line 3

flows on line 4

flows on line 5

flows on line 6

flows on line 7

flows on line 8

w1,1
w2,1
w3,1
w4,1
w5,1

Output
layer

Fig. 3.1 Representation of a linear model that computes the flows yyy on each power
line of the system shown in figure 2.1 from the injections xxx. The green dots (left)
represent the inputs, in this case the 5 injections (2 productions and 3 loads). The
purple dots (right) show the output, in our example the flows on the transmission lines.
Each straight line represents a coefficient w j,k of the weight matrix W . We highlighted
the coefficients for predicting the flow on power line number 1 (first column of W ).



32 Artificial Neural Networks

3.1.2 Extensions of the linear regression

Improving performance Variants of the linear model exist, that can show better
performance (on unseen data) in practice. For example, when one can be looking for
sparse parameters www (in the lasso regression [49]), i.e. searching among vector www for
which the majority of coefficients are 0. One could also penalize parameter www that
have bigger norm. This leads to the ridge regression [24]. Both of these problems
can be solved in the elastic-net linear regression framework ([35], [57]), where the
optimization problem solved is:

wwwopt = argminwww ∑
1≤ j≤N

d(y j,xxx j.www)+ λ1 ||www||1︸ ︷︷ ︸
Lasso penalty

+ λ2 ||www||2︸ ︷︷ ︸
Ridge penalty

(3.5)

This model sometimes leads to better performance, e.g. a lower error on unseen data.
And it has another advantages: it allows us to compute a linear regression, even when
the design matrix XX ′ is not invertible.

Handling multiple outputs One of the limits of the previous model is that it can
only predict a single outcome. In practice, this model can deal with cases where y
counts n > 1 dimensions. In that case, it is called "multiple outputs linear regression".
In our case, it can be used for example for predicting the flow on each line of the power
grid rather than the flow on a single power line. Such a model is, in fact, equivalent to
fitting n independent linear regressions and stacking the coefficients3. Mathematically,
this takes exactly the form given in 3.2, but instead of having p coefficients www, now
W is matrix of shape (p,n), we speak of "weights matrix", and prefer the upper case
notation W to the bold lower www. All the other equations remain the same when adopting
these notations.

Non-linear extensions The two previous extensions are not the only extension that
can be built on the linear regression methodology. In fact, it is possible to fit non-linear
least square estimators, to impose constraints on the set describing the weights etc. A
more detailed view about all these methods can be found in [25] for example. In the
next chapter, we detail the neural network, another statistical model that is part of
the non-linear models.

In this section, we saw the basis of statistical learning, with linear regression. We
provided some methods that generalize in some sense the linear regression. In the next
section, we will expose another learning machine call the artificial neural network.

3Under the hypothesis where the linear regression is not penalized.
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3.1.3 Artificial Neural Network

The major issue of linear regression lies in its inability to learn the non-linear mapping
between the inputs and the outputs. In most real-world applications, as in our specific
problem of flow prediction, outputs are not linear combinations of the inputs. Different
kinds of models allow to tackle these non-linearities between inputs xxx and outputs yyy.
We choose to focus on the “artificial neural networks”. In [40], Rosenblatt introduced
a learning machine loosely inspired by the brain architecture. Today the terminology
"artificial neural network" is preferred. His idea is to introduce some hidden layers
of units within the network as intermediate predictors which gradually transform
the information and learn the relation between inputs and outputs. It is equivalent
to stacking multiple linear regressions. If only linear combinations were performed
within these hidden layers, the model would remain linear. To allow non-linearities in
the model, people often perform a non linear element-wise operation for each hidden
unit before passing its value to the next layer. This non linear operation is called an
“activation function”.

∀ 1≤ l ≤ (η−1), hhh(l+1) = φl

(
hhh(l).W (l)

)
(3.6)

where φl is the "activation function" of layer l and W (l) its weight matrix. In the
above equation, η is the number of layer of our neural network. The representation
of such a "multilayer neural network" is shown in figure 3.2. If, similarly to linear
regressions, a dataset of (x j,y j)1≤ j≤N is available, training a multilayer neural network
on this dataset means solving the following optimization problem:

WWW opt = argminWWW ∑
1≤ j≤N

d(y j,h(η)) (3.7)

where WWW is the object containing all the weights matrices W (l) for each layer l of the
neural network.

There exist various algorithms to perform this optimization as shown in [19]
(chapter 4 section 3, and chapter 8 in particular). The most common approach is to
use the "stochastic gradient descent" algorithm. The gradients are computed with the
back-propagation algorithm described in [32], which is the application of the chain
rule.

The stochastic gradient descent algorithm is really similar to the gradient descent
algorithm showed in Algorithm 2. The main difference lies in the minibatch selection.
Instead of computing the gradient for the entire dataset (line 4 of the algorithm 2 where
the index j run through all the training set: 1 ≤ j ≤ N) this algorithm selects only,
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Input: (x j)1≤ j≤N and (y j)1≤ j≤N and learning rate λ and minibatch size b
Output: WWW (stacking of the η weights matrices) WWW l

j,k is the coefficient at position
j,k of the weight matrix of the lth layer.
Initialization :

1: WWW ← random tensor
Main loop :

2: while Stopping criteria not met do
3: (xk,yk)1≤k≤b← random sampling of b example of (x j,y j)1≤k≤N
4: for l ∈ [1,2, . . . ,η ] do
5:

∇W l ←
∂ ∑1≤k≤b

∣∣∣∣∣∣yk−h(η)
∣∣∣∣∣∣

2

∂W (l)

6: end for
Update the coefficients

7: W p←W p−λ .∇W p

8: end while
9: return w

Algorithm 3: Stochastic gradient descent algorithm

uniformely at random, b elements (line 5 of algorithm 3 where only k examples are
seen).

A representation of an artificial neural network is shown in figure 3.2. On this
figure, we can see a neural network with 5 inputs (the 5 injections) showed in green,
8 outputs (blue) each one representing the flows on a particular power-line of the
power-grid. This neural network counts only 1 hidden layer of 6 units represented in
red dots. The weight matrices W (1) (resp. W (2)) is represented by all the coefficients
linking green units to red units (resp. red units to blue units). The non-linearities φ1

and φ2 are not represented in this schematics.
Besides the ability to learn non-linear functions, the neural network offers mul-

tiple advantages compared to a linear regression. In contrast with shallow linear
regressions detailed in Section 3.1.1, some parameters are "shared" for all outputs. As
we explain in section 3.1.1, learning a linear regression with n outputs is equivalent to
fitting n separate linear regressions. As we can see on figure 3.2, this is not the case
for neural networks, as the weight matrix W (1) is used in the prediction of all flows
on the grid. The role of this weight matrix is to transform the injections (green units)
into different variables (red units) that can be used to predict the outputs (blue units).
An internal representation is being learned.
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Fig. 3.2 Representation of a neural network, also called "fully connected neural
network" with 5 inputs (green circles - left), 8 outputs (blue circles - right). It counts
one hidden layer of 6 layers, represented by the the 6 centered red circles. The straight
gray lines represents the connections (weights) and the two weights matrices W (1) and
W (2) have been represented.

3.1.4 Training procedure

The previous models were specific cases of a broader literature called "statistical
learning" or "machine learning". In this section, we will briefly explain the precautions
we used when training our models, and report the errors in this manuscript.

The goal of "machine learning" is to use a finite dataset to and learn something from
it. For example, in a regression setting, the dataset often has the form {(xxxi,yyyi)}1≤i≤N ,
where N is an integer representing the size of the dataset. The objective is to learn
the best function fwwwopt that depends on the parameters www such that fwwwopt minimizes the
distance between data fwwwopt(xxx) and the corresponding yyy.

Because we want to estimate how well our estimator fwwwopt performs even on unseen
data pairs (xxx,yyy). The error computed on unseen data is called the "generalization
error". It is common to evaluate its performance on an unseen dataset. This dataset,
not used to find the parameters wwwopt is called a "test set". It is not used in any way,
except to report the error.

Let’s explain why this test set is used only once. Let’s suppose we have multiple
models that we want to compare. For example, in the predictions of the flows on
power line 1, one could use the value of all the injections as input, or just restrain it
to a subset of these. We could use the same "test set" but it will decrease the quality
of approximation of this dataset. Indeed, informally the odds of finding a model that
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works on this specific test set increases with the number of models tested, even if these
models have not learned anything. The more this test set is looked at, the less useful
it will be to approximate the generalization error: the selected model will be the one
that performs the best on the test set, and not the one that performs the best in all
unseen dataset. To avoid this problem, people often use a set to validate which model
among the tested method is the best to suit their need on a separate "validation set".
The validation set is then used to select the model (for example the input vector, the
learning rate etc.) that will be used.

So, to summarize what we explained in this section.

• The goal of machine learning is, given a class of functions f parametrized by
weights www:

– to compute which is the best representative fwwwopt ,

– best meaning that fwwwopt allows to minimize the error on a unseen test dataset

• To achieve this task, data are often split4 into three:

– Training set: is used to train the model: Given a class of functions fwww, it
will be used to select wwwopt.

– Validation set: is used to choose the best class of functions among differ-
ent one. The process is the following: for each class of functions, train
the model coming from this class (compute wwwopt for each class of model).
Then compute the error on the validation set for each fwwwopt . And select the
one that has the lowest error on this set.

– Test set: is used to report the error on the final model. It is not used
otherwise. Error reported on this manuscript are then an approximation of
the generalization error.

This whole procedure has been strictly observed throughout this manuscript. Un-
less explicitly indicated, errors reported are errors on the test set.

3.2 Predictions of flows and first deep neural networks

In the previous sections, we explained how to train 2 different statistical models: the
linear regression, and the multilayer perceptron (also called fully connected (deep)

4There exist multiple method to split them. One commonly used is to randomly assign each example
of a given dataset to one of the Training, Validation or Test set. This random assignment have been
observed in for the error reported in this manuscript.
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neural network). In this section, we will show how these models can be used to solve
the problem presented in 2.3. Then we will explain how to generate synthetic yet
realistic data on which we perform some first experiments as well as the experimental
protocol and the quantitative metrics used to report the results. In the last part, we
evaluate the performance of these two models to predict the flows of the power grid
presented in 2.1a.

3.2.1 Motivations

In section 2.3, we adopt a formalism that allows us to model a “perfect operator”. We
also emphasized our main contribution is to be able to assess rapidly the impact of
contingencies (denoted by z) and operator’s actions π on the power grid so that the
power grid remains in security.

The main issue is to compute the flows given some injections and topology. Once
the flows are computed, assessing whether or not the power grid is in security is a
simple task, as only n comparisons must be carried out: one for each power line to
assess if the flows are below their thermal limit or not.

In the machine learning literature, xxx often denotes the inputs of the problem. In our
case, xxx will be the vector of all the injections. The values that we want to predict, the
flows in our case, will be denoted by yyy. To differentiate between the actual flows5 and
the one predicted by our model, the prediction will always be hatted. So yyy will be the
ground truth, the value that we need to predict, and ŷyy will be the value predicted by the
model. Typically, ŷyy will be obtained by a neural network, parameterized by weights WWW
: ŷyy = NN(xxx;WWW ).

This representation, which is standard in the machine learning literature, is not
sufficient for our needs as we have another type of inputs: the topology of the power
grid, as well as the outage z and the operator decision π . We decided to group all this
in a vector that we chose to name “structural vector” and denote by τττ .

The problem we are trying to address is then to find a suitable neural network
architecture NN that, once the weights WWW have been optimized, is able to predict
accurately the flows on the power grid in different configurations τττ and different
injections xxx. The relation we are really interested in is then:

ŷyy = NN(xxx,τ;WWW ) (3.8)

5By "actual" here, we mean the flows computed with the physical simulator Hades2
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In the next subsection, we report some first results obtained by a neural network.
The main focus of this section is to introduce the concepts that are used to report
results for more systematic experiments, more than the problem tackled itself.

3.2.2 Flow prediction in a fixed grid state

This section is devoted to present the first results of two learning machine algorithms.
Both aim at predicting flows i j on all line j of the power system given the active values
of the injections (p(p) and c(p)) for a fixed power grid topology. So in this setting, we
have dim(xxx) = 5, dim(yyy) = 8 and dim(τττ) = 0 (no grid topology variants). The first
model is a linear regression model, and the second one is an artificial neural network
with one hidden layer of 10 units. The activation function used is the hyperbolic
tangent.

The Figure 3.3 shows the learning curve of our models. In the y-axis is reported
the training error (the l2 error in this experiment) as a function of the training step
performed when running Algorithm 2 for the linear regression model as well as the
artificial neural network.

The dashed orange line presents the learning curve of the linear model, and the
plain blue line the one of the artificial neural network. As we clearly see, the artificial
neural network is almost all the time able to perform better than the linear model,
except maybe at the very beginning of the learning. Moreover, these curves clearly
exhibit one of the limits of the linear model: it is not able to learn a good linear
relationship between the input and the output.

Table 3.1 Quantitative results on the predictions of flows using a fixed grid topology
by linear regression and Artificial Neural Network ("ANN"). The errors reported are
the MAPE and RMSE defined respectively in Equation 3.9 and Equation 3.10

Model name MAPE (%) RMSE (A)

DC approximation∗ 8.64 75.4
Linear regression 14.7 78.7
ANN 888...111777 444777...000

∗ The DC approximation is detailed in chapter 2.

More informations about the performance of these models can be found in the Table
3.1 where the Mean Absolute Percentage Error (MAPE), defined in Equation 3.9
and the Root Mean Squared Error (RMSE), defined in Equation 3.10 are presented.
These two error measures are commonly used when facing regression tasks. The
MAPE is the average error, measure in percentage, and is scale invariant. The RMSE
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corresponds to the square root of the l2 norm, and can be interpreted as being the
(empiric) standard deviation of the error. As we see on this table, the linear regression
model performs poorly, even in this very simple setting6. This is the main reason why
we will not use it in more challenging settings, not even as a baseline and will prefer
the DC approximation. On the contrary, the artificial neural network is doing pretty
well on this task, outperforming the DC approximation in terms of relative error and
RMSE.

MAPE(ŷyy,yyy) =
1
N ∑

1≤k≤N

∣∣∣∣ ŷyyk− yyyk

yyyk

∣∣∣∣ (3.9)

RMSE(ŷyy,yyy) =
1
N

√
∑

1≤k≤N
(ŷyyk− yyyk)

2 (3.10)
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Fig. 3.3 Learning curve (i.e. the training error with respect to the number of itera-
tion) of the linear regression model (orange dashed curve) and the artificial neural
network (plain blue curve), trained on a fixed grid topology. Results presented here
are computed on the training set.

In this subsection, we introduced some losses, the MAPE, and the RMSE often
used in the literature when evaluating the performance of machine learning models
in a context of regressions. We also explain how we could compare multiple models,
motivate why we will not use simple linear regression, and introduce the "Learning
curves" that can be used to decide if a model performs well in practice.

6Lots of data are available for predicting flows on a small grid without considering any topology
variants at all.
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In the next subsection, we will discuss some related work in the literature that also
applies machine learning to power system problematics, and see how they are related
to the problem treated in this manuscript.

3.2.3 Machine learning for power system analysis

As showed in the previous chapter, the goal of this manuscript will be to help operators
to solve the problem presented in Equation 2.3.3, recalled here:

π
∗ = argminπ

{
CP(π,s)︸ ︷︷ ︸

Preventive cost

+

∑
z∈A

p(z)︸︷︷︸
probability of occurrence of z

( CC(π,s,z)︸ ︷︷ ︸
Corrective cost of z

+ c(z;s⊙π)︸ ︷︷ ︸
cost of fixing the power grid︸ ︷︷ ︸

cost of the grid after outage z arises

)

}

(3.11)

Some authors have presented a method to directly solve this problem. This is
the case in [26] where Karangelos et al. directly address the problem formulated in
2.3.3. Their idea is to relax the optimization problem formulation by making some
assumptions on the power grid. For example, they use of the DC approximation and
linearize the formulation of the costs CP and CC etc.

All these approximations allow to cast the modeling of a perfect operator into a
"Mixed Integer Linear Programming"7 for which solvers exists. They use them to
solve this problem on two medium size instances (studying the IEEE-RTS 96 grid
introduced in [20]) and compare themselves to the "N-1" security criteria8. We did not
pursue in this direction mainly because we believe this optimization problem won’t
scale for instances of the size of the French power grid. Also, we believe that artificial
neural networks, fed with a lot of data, can be built their own representation of the
power grid thus excluding the need of making such complex assumptions. One of
the major drawbacks of the neural networks yet is the consistency. Being the DC
approximation, or other methods, the flows yyy are compatible with the known structural
constraints (Kirchhoff’s law are respected). This property is not necessarily met if ŷyy is
obtained by machine learning algorithms.

Others have used machine learning to address power systems related issues. Most
papers in this literature, address the problem of classifying grid states according to
given security criteria (e.g. [51], [52], [42]). Other papers address the problem of

7A specific type of problem encountered in the optimization literature
8See section 2.2.2 for more information about this security policy.
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building a "security index" of a power grid by taking into account both the flows and
the voltages limits ([48]) using artificial neural networks or other learning machines
(for example "restricted Boltzmann machines"). Compared to our problem, most of
these paper assume that the topology of the power grid is known and that no corrective
action, apart from re-dispatching, can be implemented. This is the main reason why
we did not pursue in these directions.

In other papers, people adopt a two-stage decision-making process. They consider
the real-time operation to be a subproblem of one in a much longer time horizon([15],
[9] ). Such example of longer time horizon problem includes the maintenance per-
formed on the grid: What is the best period of time to repair towers? In both cases, the
main focus is the longer time horizons, and less care has been taken to model how the
operator reacts in real time. In this manuscript, on the contrary, the focus is on daily
operation.





Chapter 4

Data presentation

As presented in Chapter 2, we address the problem of assisting human operators to
operate power grids, in today’s changing context, using machine learning. We aim
at increasing security and reducing costs, or maintaining the same level of quality of
service even when complexity rises. This section will be devoted to giving an overview
of which data are available to us at RTE, the so-called "power grid snapshots" and the
limitations in using them to learn predictive models.

As we motivated in the previous chapters, machine learning can be used to tackle
the problem of assisting the operators in their choices. A dataset {inputs, outputs}
should be available to learn the machine learning models, as we explained in Chapter 3.
In Chapter 3 we also motivate our choice to write the dataset as {(xxx,τττ,yyy)}, where xxx is
the vector with all the injections, τττ is the structural vector that depends on the topology
of the powergrid and yyy are the flows on all the powerlines. In this chapter, we expose
how to built this dataset to learn our models. This chapter is divided as followed,
in the first section we explain how we use the French dataset and its limits. In the
second section, we detailed how we generated some synthetic but realistic dataset to
properly benchmark and further select learning models and architecture in controlled
experiments. Finally, we show some work to label the French powergrid snapshots
with the decisions that were taken and explain how this work will be used in further
studies at RTE to learn with supervision to make decisions.

In this work, in all cases, the flows yyy are computing the simulators based on
Kirchhoff’s law Hades2 from the injections xxx and the topology1. The major difference
between real and simulated dataset lies in the way the injections and the topologies
are obtained. For the experiments on real datasets, the injections and the topologies
are retrieve from a historical dataset. We didn’t perform any action on them. On the

1This topology is encoded by the structural vector τττ for some experiments, τττ can encode for multiple
topologies.
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contrary, the simulated datasets allow us to explore more systematically the impact of
topologies on the neural network performances: all relevant topologies are simulated.
This allows the performing of systematic yet realistic experiments in these cases. A
summary of the datasets used in this work is presented in Table 4.2.

Table 4.1 Summary of the datasets used in this work. In this work we will use two
kinds of datasets. The first one is real data, an extraction of the French powergrid
snapshots described in Section 4.1. The second is used in controlled experiments and
is described in Section 4.2.

French dataset Synthetic dataset

injections xxx retrieved from the snapshots sampled

Description of τττ lines disconnection
line disconnections or
buses reconfiguration

flows yyy computed via the simulator Hades2

Training Set
fraction of the snapshots∗

for given time period
injections sampled+

controlled topology
Validation Set
Test Set

Super Test Set
fraction of the grid new structural vector τττ ,
snapshots taken after never observed in the
the end of the training set training / validation / test set

∗ For each time period, the sampling of which grid states goes into which dataset has
been done uniformly at random. If a grid state is selected in one dataset, it is not in the
others. A grid state is chosen to be at most in the Training set, the Validation set or the
Test set.
+ The training set, the validation and the test all contain different grid states. There are
no grid state that are present in two of these dataset.

4.1 French powergrid

In this section, we describe the data at our disposal, e.g. that data that can be used
for training machine learning models or to validate approaches developed to assist
operators.

Every 5 minutes, a comprehensive snapshot of the grid state is recorded and stored.
We have available data from November 1st, 2011, to present times. Let’s denote by
{gt}1≤t≤N this collection of N powergrids, each gt being the powergrid description at
time t.
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4.1.1 Description of the French dataset

For each grid state gt , we have access to all the injections, approximately 7 000 loads
and 3 000 productions, including active power values, reactive power values, and
voltages. This makes 30,000 variables solely for the injections.

On these snapshots, the flows on each powerline are also recorded. The French
High Voltage and Extra High Voltage power grid count approximately 10,000 lines,
and for each of them, information about flows in active and reactive power, and in
current units is stored for both ends of the powerline, which makes 6 informations
for a single powerline. Globally 60,000 variables related to flows are stored every 5
minutes.

On a power grid, there are also buses, which are mathematical descriptions of how
the objects (e.g. productions, loads, lines etc.) in the grid are interconnected. The
French extra high voltage counts approximately 6 400 buses. To redirect flows, as we
explained in Chapter 2, operators can act on different breakers. In the France High
Voltage and Extra High Voltage power grid, we count more than 30 000 breakers each
being either open or closed. So a single grid state counts 30 000 boolean variables2.

We have at our disposal approximately N = 600,000 power grids snapshots, repre-
senting more than 820 GB of compressed data for grid snapshots solely.

One pitfall of these big data is the lack of annotations. Changes in grid topology are
recorded: we know precisely by observations what substations have changed between
two timestamps. But we cannot know what caused such changes. Are these changes
routine maneuvers carried out to check whether components are properly working?
Are these due to maintenance operations? Or are these preventive or curative remedial
actions taken by operators to protect the grid?

We are interested in the latter category, but they count for less than 10% of the
total number of actions3. This is not the only problem of this dataset. Sometimes, to
perform a single curative actions operators must change the topology of more than
one substations; in our dataset, these changes will not be linked: we will observe the
two changes, but we don’t know they are made for the same purpose. On the contrary,
sometimes changes the configuration of substation can take more than 5 minutes4 and
a single change for an operator will, in fact, be split on multiple powergrid snapshots.
Finally, the lack of annotations in the data implies an even more challenging task:

2To be precise, the data we are using doesn’t have this precision. Only the nodal topology is
available, meaning that we don’t have the state of each breaker, but solely the. The powergrid is rather
described as a graph with powerlines as edges of this graph, and buses as its nodes. To the node of this
graph, are connected productions, loads etc.

3This ratio comes from expert knowledge. Most of the operator’s maneuvers are in fact to ensure that
all breakers can be fully maneuvered or changing the topology surrounding a maintenance operation.

4Recall that 5 minutes is the rate at which the data are stored.
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disentangle what causes a change, and what are its consequences. For example,
imagine that a line falls due to a windstorm, then the operator changes (rapidly) the
topology of one substation and disconnects another line. In this (extreme) scenario,
we would just see all three actions happening at once, without knowing that they are
inter-related.

4.1.2 Maintenance operations

In this subsection, we explain how we could use the raw powergrid French snapshots
to check whether or not the developed methodology is suitable for real dataset. First
results on experiments are carried out in Chapter 7.

Dividing the grid into smaller subgrid First, to reduce the complexity of the
dataset at our disposal, we decided to study independently 2 parts of the French
powergrid. We focus on the Extra High Voltage (all equipment operated at more than
200kV) of two regions of France. We choose two different areas to make sure our
model was able to generalize to more than part of the power grid. The "Toulouse" area,
which is located at the south west of France, and the "Marseilles" area located at the
southeast. We chose this two regions mainly because the Apogee project, in which
this Ph.D. took place, involves operators from these two regions. This was easier to
refer to them than to operators coming from other parts of France.

The “Toulouse" area counts 246 consumptions, 122 productions and 387 lines. It is
divided in 192 substations often split in a variable number of buses. The “Marseilles"
area is composed of 377 loads, 75 productions and 260 transmission lines. It counts
140 substations for the part we studied.

Studying the impact of planned line disconnections While operating a powergrid,
operators take various decisions. Some regular maneuvers are performed each day at
approximately the same time, to adapt the topology of the powergrid to the variations
of the demand. Operators know when these actions are performed but it is really
difficult to recover such decisions in the database available as we only observe actions
without knowing their purpose. However, we know these actions are performed at
approximately the same time when the power grid faced approximately the same load.
A learning machine, provided with these information as input should be able to predict
the flows accurately. This is supported by results in the chapter 6. This fact explains
why the number of buses in the real dataset is changing a lot. To face the peak total
demand and avoid overheating often operator must decide to connect the pieces of
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equipment in some substations to different buses and in others to merge different buses
into one.

Other types of actions are the one performed after maintenance operation. When
a line is disconnected for maintenance operations, operators will adjust the topology
of the powergrid surrounding the powerline disconnected. This happens extremely
rarely, and lost of care must be taken by modeling these phenomena. In fact, as
always when dealing with the historical dataset that we used, we know that this or
this powerline has been disconnected from the powergrid, but we are not able to
extract easily what are the consequences (actions performed by the operators) of this
planned disconnection. We hope to build a neural network that will be robust to this
phenomenon, e.g. an architecture that given a powerline disconnected for maintenance,
is able to accurately predict the flows, even when given only the (partial) information
about the real topology of the grid.

This problem is however of high interest for RTE. Indeed, RTE needs to address
the security of the power grid even with given partial information about the topology,
on forecasted grid state. For example, suppose a power line must be disconnected
tomorrow to perform some maintenance operations. Will the powergrid remain safe
after the removal? Today, the only way to answer this question is to build a full grid
forecast, which requires to forecast each injection of the powergrid, then to have a
forecast of the full topology, to eventually perform some security assessment based on
this forecasted grid state. With a statistical method that does not take into account the
full description of the topology, it might be easier and cheaper to assess this day-ahead
security. In the last part of Chapter 6 page 77, we show that the guided dropout model
performs better than the baselines on this problem.

4.1.3 Summary of the use of French Dataset

In this section, we motivated why we used only part of the French powergrid to study
our models. We also explained why we gave partial information about the topology as
an encoding of τττ (different topologies can be encoded by the same τττ). A summary of
these dataset can be found in table 4.2.

4.1.4 Limitations in using a real dataset

This approach, however, is not perfect, and even extracting the right flows and injec-
tions from our dataset can be a tedious task (the same powerline see its name changed
for example). The quality of data is also varying in time. Historical data comes from
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Table 4.2 Summary of the composition of the French dataset used in this work.
We used 2 distinct part of the French dataset for 2 periods of time with a different
number of grid states in the training set and different part of the grid. Two different
regions are used to test the methods in different conditions and ensure the results are
not specific to one type of grid.

Toulouse Area Marseilles Area

Number of injections xxx
246 loads 377 loads

122 productions 75 productions
Number of powerlines yyy 387 260
Number of powerlines τττ 387 260

Beginning January 1st 2012 January 1st 2017
End May 31st 2017 February 28st 2018

Training Set 80% of the dataset∗ 10 000 grid states∗

Validation Set 10% of the dataset∗ 1 000 grid states∗

Test Set 10% of the dataset∗ 1 000 grid states∗

Super Test Set
All the powergrid states from 1 000 grid states∗ from

June 1st 2017 to March 1st 2018 to
July 31st 2017 March 31st 2018

∗ Sampling has been done uniformly at random. If a grid state is selected in one
dataset, it is not in the others. A grid state is chosen to be at most in the Training set,
the Validation set or the Test set.

sensors placed at various location on the grid, event though RTE dispose of a large
number of sensors, we show an increasing quality of the data stored over time5.

We have the guarantee that the flows can be computed (by a physical solver) if
we know the injection and the topology. But, because our dataset is not labeled, and
because information is not available at the time the decision must be made, only partial
information about the topology can be given to a learning machine. In this setting,
learning with this dataset is a really challenging task. This task is made even more
challenging by the fact that multiple operators are operating the grid. One operator
could prefer action π1 compared to action π2 while another operator could chose π2

compared to π1.
That is why we decided to first demonstrate the performance of our models on

simulated datasets. And then to assess their fitness to handle historical dataset. In
the next subsection, we explain the method we used to generate some synthetic yet
realistic dataset.

5This quality can be assessed by tools developed by RTE, for example, if, after removing the noise
in the dataset, a load flow solver, such as Hades2 is not able to find a solution that satisfies the physical
laws, this may indicate data of lower quality.
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4.2 Generation of synthetic data, experiments on a syn-
thetic power grid

In the previous section, we motivated how we can use the French powergrid snapshots
to test our models. We also developed why it is a challenging task. In this section, we
present how we generated a synthetic dataset. The advantage of a synthetic dataset
is that we place ourselves in a controlled experiment, where we know everything.
Especially, we can decide how the injection and the topology are varying, which, for
example, allows us to benchmark our models with the DC approximation.

In this section, more precisely, we detail how we sample the injections xxx. The
topology τττ are sampled differently according to the problem studied (see Chapter 6 for
more detail). And, the flows yyy are computed using the powerflow simulator Hades2.

We used the library [56] which provides power grid states snapshots for various
grids, very often used in the literature. For each snapshot, a vast quantity of data
is available, with a precise description of the topology (i.e. how the powerlines,
productions and loads are interconnected with each other). The simulator also provides
the physical properties of the power lines (their resistance and reactance), and of
the productions (the maximum power it can produce for example). Finally, such
snapshots also contain initial values for loads and sometimes for productions too. We
will suppose this is the repartition of loads and productions in a "standard situation",
and denote it xxx = (p1, p2, . . . , pnb prod,c1,c2, . . . ,cnb load). A "standard situation" being
a grid state with a non-extraordinary event: the total demand is approximately the
average total demand that would be observed throughout the year, there is no storm,
nor heat wave, the grid is not particularly stressed by any external factor.

Care has been taken to generate injections as realistically as possible. We used our
knowledge of the French Power Grid to ensure that:

1. the statistical distribution of the total demand (sum of all individual loads) is the
same as the one observed for the French power grid;

2. the statistical distribution of each individual active load is the same as the one
coming from the real French power system;

3. the ratio reactive value over active value is the same as the one observed in the
real system for each load
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4. we emulated the maintenance of the production by disconnecting them with
different probability: one for winter and one for summer to mimic seasonalities
in maintenance requirement or economic offer and demand adequacy6.

To achieve such results, we split the sampling of the injections into 3 parts, each
one making a specific paragraph of this manuscript:

1. Sampling active value of each load.

2. Sampling reactive value of each load.

3. Sampling active value for each production.

4.2.1 Sampling active loads

In this subsection, the active value of a load j will be called c(p)
j, p being a common

way to denote active value in the power system community. We choose to represent
the stochasticity of the active loads with:

c(p)
j = ρ jcref

j (4.1)

where ρ j is a random variable that follows a distribution that requires: to take into
account spatiotemporal behavior in the observed loads of the real system7

To ensure that the distribution of the total demand is the same as the one observed
in the French power grid, we decided to separate ρ j into two components:

ρ j = ρ
corr

ρ
uncorr
j (4.2)

where ρcorr is the "correlated noise", representing the spatio temporal correlation of
the loads: it is the same for all loads in the system. This correlated noise is drawn
according to the French total load of 2012 that can be downloaded at https://www.rte-
france.com/fr/eco2mix/eco2mix-telechargement. This parameter ρcorr represents for
example the time of the year (demand is on average higher in winter than in summer
for example) and the time of the day (the peak demand is often at noon or at 7pm).
On the contrary, ρuncorr

j represents the local variation around the tendency represented
by ρcorr. It is different for each load, and is drawn according to a log normal distri-
bution, with mean 1, and variance as a free parameter. In most of our experiments,

6some productions units are too expensive, and are disconnected in summer when the consumption
is usually lower

7For example, people usually wake up approximately at the same time (temporal phenomenon).
Some spatial correlations are also observed for geographically close loads due to weather, for example,
two neighbors often have their heaters turned on at the same time if it freezes outside.

https://www.rte-france.com/fr/eco2mix/eco2mix-telechargement
https://www.rte-france.com/fr/eco2mix/eco2mix-telechargement
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we used a variance such that 95% of the time, ρuncorr
j ∈ [0.90,1.1]. In this setting,

average
(

ρuncorr
j

)
= 1 and standar-deviation

(
ρuncorr

j

)
= 0.05.

(a) Representation of a load curve for 2 weeks
for a real data. Vertical dotted lines represent
the start of a new day

(b) Representation of a load curve for 2 weeks
for a generated data. Vertical dotted lines
represent the start of a new day

Fig. 4.1 Comparison of real data (left) and generated data (right), for a single active
load.

4.2.2 Sampling reactive loads

At this point, for each load j, the active demand c(p)
j has already been sampled. In

this subsection, we expose how to compute the reactive demand based on this. We
denote by c(q) j the reactive load value of load j. In the power system community, the
assumption:

c(q) j = tan(φ).c(p)
j (4.3)

We used snapshots of the French powergrid, to compute the ratio c(q)

c(p) . We stored
all the values computed, and used them to draw a tan(φ) j for each individual load
according to their distribution in the real power system denoted D(tan(φ)). Finally,
the reactive load is obtained through:

c(q) j = tan(φ) j.c(p)
j, where tan(φ) j ∼D(tan(φ)) (4.4)

This is a rough simplification of the reality. For the true system, this distribution
D(tan(φ)) depends on many factors, for example the time of the year, the outside
temperature8, the presence / absence of industrial firm connected to a particular loads
or the underground cables in the distribution network for example. We think that by
sampling independently with a fixed empirical distribution D(tan(φ)), we don’t loose
too much generality.

8Heater and air conditioner don’t have the same properties with respect to the reactive value



52 Data presentation

4.2.3 Sampling productions

Productions are often disconnected for maintenance or economical reasons. We want
to mimic this in our sampling strategy. That is why, for each production, we sample
first if the production was disconnected or not with a Bernoulli law that has different
parameters according to the time of the year. This corresponds to having: 10% of
productions disconnected in winter, and 20% in summer. With these two parameters,
we want to take into account two factors: productions are sometimes disconnected
due to external causes (both in summer and in winter) and more productions are
disconnected in summer, because traditionally the demand is lower, and producers
favor this period to operate maintenance.

The voltages for the production nodes are set to their nominal values. Once the
voltages have been set, the reactive power that needs to be injected by the production
is computed by the power flow solver Hades2.

One of the cause leading to a divergence of a load-flow solver is an imbalance
between total production and total loads. In theory, a quasi stationary power system
satisfies the equation:

∑
production j

p(p)
j = ∑

load k
c(p)

k + losses (4.5)

A solver will adapt if this equation is not perfectly satisfied by the input data, but a too
high mismatch will lead to a divergence. In fact we observe on the French power grid
that the total production is approximately 1.02 times the total demand9. We mimic
this phenomenon in our simulations and at the same time, we make sure not to have a
deterministic behavior for the productions. So we decided to first sample the values of
each production to target the total demand increased by 2% via:

p(p)′
j = pref

j.u j.1.02
∑load k c(p)

k

∑prod k pref
k

(4.6)

where u j ∼U [0.8,1.2], the uniform distribution between 0.8 and 1.2.
Once this has been done, we add an extra step to scale the production to ensure the

relation ∑production j p(p)
j = 1.02∑load k c(p)

k holds perfectly:

p(p)
j = p(p)′

j.1.02∗ ∑load k c(p)
k

∑prod k p(p)′
k

(4.7)

9These 2% corresponds approximately to the losses in the power grid, mostly due to Joule’s effect.
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4.2.4 Discussion

This sampling is, of course, a simplification of the reality. Among all the simplifications
that were made, a few of them will be discussed here.

First, we don’t take into account load types. In reality, behind a load, there
are various different behaviors. Industrial loads will not behave the same way as
residential ones: industrial loads will have a smoother pattern, whereas residential
loads are heavily impacted by weather conditions (people switching on a heater or
air conditioning when it is colder) or on the hour of the day (people leave for work
on weekday for example). We don’t take these phenomena into account. We believe
this has not a strong impact on the evaluation of the performances of our models: our
simulation scheme tends to simulate a wider range for every load.

Second, we also neglect the different types of productions. For example, a pro-
duction injection power from renewable energy sources will have a behavior more
stochastic (and more difficult to forecast), with higher variations than a nuclear power
plant. This has a great impact on the grid operational processes since renewable energy
sources are by nature intermittent. Our model, however, allows the prediction of flows
given some injections. We believe the estimation quality of this model to be properly
evaluated even if the lack of specific renewable energy sources in our dataset.

Lastly, all the loads will have the same pattern. Each individual load follows the
historical French power distributions, the multivariate distribution of all the loads does
not follow a realistic distribution: for example the correlation between load 1 and
load 2 will have exactly the same distribution as the correlation between load 2 and
load 3, and depends only on the individual noise injection when sampling active loads
(denoted by ρuncorr in equation 4.1). We believe the impact of this hypothesis to be
small on our simulation results for one main reason: a broader space is covered by our
simulations scheme if a sufficiently high value of ρuncorr is set; the sampling strategy
we adopted includes the real distribution.

4.3 French grid state snapshots: disentangling grid events
to identify operator’s actions and their purpose

In chapter 7, we reported how we could use the unlabeled dataset at our disposal to
test the performance of our algorithms. In this section, we expose a method that allows
to partially label the data at our disposal. This method is a first step that will be used
in the work pursue by others Ph.D. student taking place at RTE.

This method provides a dataset (xxx,τττ,yyy,τττ∗) whereas in most part of this manuscript
(xxx,τττ,yyy) denotes a powergrid state and τττ∗ is an action taken by operators on powergrid
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described by injections xxx, topology τττ and flows yyy to solve a possible security issue.
This will be used as a first step to perform “imitation learning” for another Ph.D.student
focusing on reinforcement learning for powergrid operations.

This methodology is also the start of a more ambitious work pursued by RTE.
In this work, the objective is to allow operators to interact with machine learning
techniques to relabel the actions in the powergrid snapshots. This is an ongoing work
carried out by another Ph.D. student.

This section will be divided as followed. First, we expose the method developed to
partially labeled the dataset. Then we report some results that were obtained by the
method. Finally, we expose the limitation and discuss the further use of this method as
well as the generated dataset.

The material exposed in this section comes from the published work: Donnot, B.
and et al. (2017). Introducing machine learning for power system operation support.
In IREP Symposium, Espinho, Portugal

4.3.1 Labeling the dataset

In the previous sections, we explain some of the problems we have with working
with real data. We modeled in the chapter 2 how today’s operators act on the power
grid, and why they prefer, in most cases, use topological actions i.e. reconfiguring line
inter-connections, rather than cutting productions or consumptions. More precisely,
in this thesis, when we refer to modifications in network topology, we mean re-
configuring the way in which lines, transformers, productions and loads are connected
in sub-stations. Using years of historical data collected by the French Transmission
Service Operator (TSO) “Réseau de Transport d’Electricité" (RTE), we developed
novel machine learning techniques to extract from this dataset, actions that could have
been performed to ensure the security of the power grid.

Today, a grid is considered to be operated in “security" (i.e. in a secure state)
if it is inside a zone of “constraints", which includes that power flowing in every
line does not exceed given limits. The operators must avoid ever getting in a critical
situation, which may lead to a cascade of failures (circuit breakers opening lines
automatically to protect equipment, thus putting more and more load on fewer and
fewer lines), ultimately leading to a blackout. To that end, it is standard practice to
operate the grid in real time with the so-called “N-1 criterion”: this is a preventive
measure requiring that at all times the network would remain in a safe state even if
one component (productions, lines, transformers, etc.) would be disconnected. The
idea of this labeling method is to simulate the counterfactual powergrids: “what if no
topological actions had been performed”. This allows us to evaluate the grid with a
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“security function”, namely a function of a grid state evaluating whether it is secure or
not by returning a list of security criteria not met. This is performed by algorithm 4. In
this algorithm, gt denotes the powergrid at time t and S is a function that implements
a security criteria, such as the “N-1”: given a power grid states, it returns a list of
possible security violations.

Input: {gt}tmin≤t≤tmax , hmax, S
Output: {(t, h, s, g̃t,h)}

Initialisation :
1: res←{}

Main loop :
2: for t ∈ [tmin, tmax] do
3: for h ∈ [0,hmax] do
4: create grid g̃t,h with the same injections than gt+h and the same topology

than gt
5: S = S(g̃t,h)
6: if (S ̸= /0) then
7: for s ∈ S do
8: res.append((t, h, s, g̃t,h))
9: end for

10: end if
11: end for
12: end for
13: return res

Algorithm 4: Algorithm for finding unsafe networks. Observed grid states are
denoted by gt . Counterfactual grid states are denoted by g̃t,h.

The output of Algorithm 4 is a list of security criteria not met in a stressed grid (the
“counterfactual grids g̃t,h" in which we suppress topological actions happening between
t and t +h from the historical dataset). At this stage, we have possibly really complex
topological changes that can cure a power grid. In practice only approximately 10%
of the actions performed are made for security issues (as explained in the previous
subsection). So we need a way to extract the relevant actions, among these performed
actions between t and t +h. This is done using a brute force approach, implemented
in Algorithm 5. The idea is to test all combinations of these unary actions and store
the results if it solves the problem.

More formally, we suppose in the historical dataset gt+h is secure. So if g̃t,h is
not, this means that at least one topological action performed between t and t +h can
set the powergrid back into its security domain. This property is guaranteed by our
methodology: by definition, g̃t,h is the powergrid that has the same injections than
gt+h and the same topology as gt . So the only difference between g̃t,h and gt+h is the
topology. Thus, if g̃t,h is not secure, but gt+h is, this means a topological action can set
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back g̃t,h into a secure regime. The algorithm to extract all the topological actions that
can cure the powergrid g̃t,h is presented in Algorithm 5.

Input: {gt}tmin≤t≤tmax , {(t, h, s, g̃t,h)}, S
Output: {(s,τ, g̃)}

Initialisation :
1: res←{}

Main loop :
2: for t,h,s, g̃ ∈ {(t, h, s, g̃t,h)} do
3: Compute the topological changes between gt and gt+h, assign it to Γ

4: for τ ∈ subset(Γ) do
5: if not s ∈ S(g̃⊙ τ) then
6: res.append((s, g̃,τ))
7: end if
8: end for
9: end for

10: return res
Algorithm 5: Algorithm for extracting minimal remedial actions.

4.3.2 Results

We apply Algorithm 4 and Algorithm 5 to part of the French powergrid. In this work,
we developed an API that allows us to modify efficiently, using a python script, the
topology of the power grid, or changing the amount of power produced or consumed
by injections. This has been built on top of RTE proprietary software Hades2, and
it is also possible to launch a power flow computation and retrieve the results in
approximately 300ms on the modified powergrid. We tested these algorithms on real
data coming from January 1st 2012 and June, 30st 2012 (6 months, N = 45 393 grid
states). For each grid state gt we used expert knowledge from operators to determine
the set of counterfactual grid states ĝt,h that will be simulated. We chose to simulate
H = 14 of these counterfactual grid states per time stamps (for h varying in 5,10,15,30
mins, then 1;1,5;2;3;4;5 hours, and 23h, 23h30 and 23h45). Running Algorithm 4
alone required the computation of N×H = 635 502 counterfactual grids ĝt,h.

Assessing the "N-1 security" of all these grid states would require n > 10 000 load-
flow computations for each of these 635 502 grids states10, meaning approximately
N×H× n ≈ 640 000 000 load flows. If we suppose we can perform 3 power flow
computations per sec, this is approximately 2 500 days of sequential processing. That
is too much for this proof of concept. That’s why we decided to assess only the security

10As explain in Chapter 2 assessing this security requires to run 1 load flow per powerline. The
French powergrid counts 10 000 powerlines.
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based on the "N security criteria"11 that requires only the computation of 1 power flow
per grid state ĝt,h, so solely 635 502 load flow computations.

Among these 635 502 grid states, 63 215(10%) are not secure according to our
security criteria. These 63 215 grid states have been stored, and are accessible to other
people at RTE who will use it. In particular, the Ph.D. student working on applying
reinforcement learning methods to solve power system related issues.

On average there are approximately 3 topological changes on the whole French
powergrid between two consecutive powergrid gt and gt+5min. Running Algorithm
5 for all the subset of changes would require also a lot of computations power: for
example if 15 actions are performed between t and t +2 hours, then there would be
215 = 32 768 possible combinations of such actions. To simulate all these combinations
would take a lot of time, and be mostly wasteful in computer resources, knowing that
only 10% of actions are relevant. For this reason, in Algorithm 5 we decided to
simulate only unary actions, one at a time: if we take back the example where 15
different changes occur, this lead to simulate 15 different grid state. This restriction is
also motivated by experts knowledge, it is quite rare that experts need to perform 2
actions in order to solve problems happening in real time. This explains why, among
the 63 215 ĝt,h found not secure, applying Algorithm 5 allows us to find 44 041(75%)

unary actions that solved the issue on this grid. To obtain such results, more than
2 000 000 load-flows were performed.

This is an encouraging result, but more needs to be done. These actions are not yet
validated by expert operators, some might be real actions, but others can be caused to
imperfection in the solving methods. Also, the amount of computations required is
really important. We made some assumptions to reduce it, but a more generic approach,
for example by approximating load-flows with neural networks (i.e. a machine learning
emulator), can be carried out to gain computational speed. Another solution could
also be to supplement the slow (but accurate) simulator with a fast machine learning
emulator, the latter pruning first the most trivial cases and the former carrying out
simulations to full precision for a handful of promising actions. The main methodology
we present in this work will be used in this settings when it will be mature enough to
handle bigger powergrids of the size of the French one.

4.3.3 Discussion and limits

In this section, we described the historical dataset and explained why it is difficult
to use it (due to unlabeled data). We proposed a method to extract actions in this

11Recall that the "N" security criterion consists in checking that the current flow in all the powerlines
is below their thermal limit. So only 1 power flow per grid state is necessary to assess the security of
the powergrid based on this criteria
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historical dataset that could have been taken by operators in order to maintain a power
grid in “a safe state", using machine learning techniques. Finally, we reported some
results about the application of this technique to real French dataset.

This re-labeling is a non-trivial problem because (1) many actions performed
on the grid are not protective actions (they may include maintenance actions and
miscellaneous maneuvers); (2) there is no centralized and uniform record of why given
actions are performed; (3) the consequences of not performing given actions are not
observed, hence it is difficult to assess how effective given protective actions may be.

We devised and implemented an algorithm based on the causal concept of counter-
factuals, which allows us to identify actions that have had beneficial effects (or more
precisely, without which the network would have incurred adverse effects). But these
methods have some drawbacks. The main one is that it can only be used to identify
topological curative actions. It also requires a lot of computational resources even in
using a simplified version of the security assessment protocol. And finally even though
we have the guarantee that these algorithms produce actions that effectively set back
the powergrid in a safe state, we don’t know if these actions are relevant or not: some
of the actions identified by this method might be due to limitations of the power flow
solver for example.

This task of labeling is highly challenging and will be pursued by another Ph.D.
student that will start her work in the coming weeks. All the work pursue in this
section has been carefully stored on multiple servers, and can be reused by yet another
Ph.D. student as part of his thesis on “reinforcement learning”. This database can be
used for example as the first step to train an artificial agent by imitating the operators’
decisions for example



Chapter 5

The “Guided Dropout” methodology

In this chapter, we present the main methodology developed in this manuscript, called
"Guided Dropout". This methodology contains both a dedicated neural network
architecture and operations that give plasticity to it.

The guided dropout methodology addresses the problem of rapidly assessing
the values of the flows yyy on all transmission lines of the power grid, knowing the
injections values xxx and some actions τττ on this grid. This methodology is indeed
particularly suited for problems with conditional variables, such as the grid topology,
which modulates the system’s response from a reference condition or state. Guided
dropout is also a way to deal with the problem having both discrete and continuous
variables in input (see Section 5.2). Our main application for this architecture is
the predictions of flows in a powergrid. But we believe our methodology is more
generic, and able to tackle broader tasks in multiple applications domains, some of
such applications are discussed in Section 5.4.2.

In Section 5.1, we present the inspiration of the proposed algorithm, as well as the
vocabulary used in the rest of the chapter. In Section 5.2, we expose the algorithm in
detail. Finally, in Section 5.3, we derive mathematical properties of this algorithm.

The material in this section is based on the work:
Donnot, B., Guyon, I., Schoenauer, M., Marot, A., and Panciatici, P. (2018d). Fast
power system security analysis with guided dropout
and
Donnot, B., Guyon, I., Liu, Z., Schoenauer, M., Marot, A., and Panciatici, P. (2018a).
Latent Surgical Interventions in Residual Neural Networks. working paper or preprint
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5.1 Introduction

In this section, we introduce the motivation of the guided dropout algorithm. We
first give the specifications of the method and then detail some related work in the
literature.

5.1.1 Specifications

In the problem we are tackling, we are dealing with a specific dataset, where data
can be written as (xxx,τττ,yyy). In our main application, xxx will be the injection and yyy the
powerflows. Both will be continuous variables. Our main contribution is to develop
and analyze a new way of encoding the structural variables τττ that are discrete in
our application domain (power grid topology: buses reconfiguration or power lines
disconnection in our main applications).

To be usable by Transmission System Operator (TSO)s, a neural network must
have some specific properties.

• It should be able to learn in a reasonable amount of time (a few days at most)
how to compute flows from injections and topology given historical data. It
needs to be generic enough so that it adapts to multiple topology τττ .

• As explained in Chapter 4, we cannot know exactly what causes some changes
in the historical dataset. So the model should be able to deal with partial
topological informations. For example, it could still be able to predict the
flows even if provided only with the information "this powerline is taken out
for maintenance reasons" without the actual knowledge of what operators have
changed following this maintenance operation.

• It should learn with little data available. The withdrawal of a powerline does
not happen very often, neither does an unplanned line disconnection. That’s
why the learning machine must be able to adapt its knowledge to scenarios that
are rarely seen.

• And most importantly, it should be able to generalize to unseen scenario as
simulators enable. For example, one could want to assess what happens after two
lines are disconnected at the same time, even though this specific configuration
has never been observed in the training set.
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5.1.2 Background

Our new algorithm was inspired by the computer vision work of Srivastava et al. [46],
who introduced a technique called “dropout” to regularize convolutional neural net-
works (i.e. make them more resistant to overfitting) and improve the generalization
error. Previously, people where using l1 and/or l2 penalizations to improve general-
ization (see elastic net, Equation 3.5 page 32). This was sometimes called “weight
decay” [29] in the neural network literature. The new idea of Srivastava et al. was
to regularize by randomly killing hidden units in the neural network while training.
However, when making predictions, all units were reactivated, and their output was
scaled: activation at test time was multiplied by the probability to be connected at
training time.

Gal et al. showed in [17] that dropout can be interpreted as a joint learning of
multiple models in one single architecture. This is illustrated in figure 5.1. The dropout
is equivalent to training, in one single architecture, multiple different neural networks.
Our novel algorithm, the “guided dropout” proceeds in a similar way and enjoys
the same superposition properties. However, rather than randomly killing hidden
units i.e. averaging multiple random neural networks for a regularization purpose,
the Guided Dropout algorithm activates units selectively guided by the underlying
power grid topology, as explained in more details in section 5.2. Although Guided
Dropout is very similar to classical dropout in its mathematical formulation, it has
a completely different aim and effects. Dropout randomly kills units and acts as a
regularizer, guided dropout doesn’t kill units randomly anymore and acts as a way to
encode some properties inside the architecture of a neural network.

Our method also combines ideas from residual networks [21], and conditional
computation (e.g. [4]). The idea behind the conditional computation is to adapt the
architecture of a neural network depending on its inputs. Both the weights and the
architecture are trained. This conditional computation has been adapted with success
by [43] for automatic translation. More recently Minhui Zou et al. [58] showed
that adding some units inside an already trained neural network is enough to bias its
predictions. This work is based on the same idea: the guided dropout consists of
adding units at the heart of a residual neural network.

Guided dropout can also be seen as a transfer learning approach [38]: we train
a neural network to generalize across domains (each domain is represented by a
structural vector τττ). We demonstrate (experimentally and theoretically under some
conditions) that our predictive models are indeed capable of transfer learning and
exhibit a “super generalization” property that can be seen as a zero shot learning:
The neural network generalizes to new domains (i.e. new τττ) for which it was never
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Fig. 5.1 Representation of 2 fully connected neural networks sharing the same plain
architecture (the same pattern of connections: 5 inputs layers, 2 hidden layers each
having 5 layers, and one output layers). On the left is a fully connected neural network,
on the right is shown a possible network seen during training, where crossed unit have
been dropped (activation forced to be 0). The image comes from [46] (Figure 1).

trained. This is made possible by encoding domains in the neural network architecture.
A similar line of work has been pursued by other authors: in [27] for "one-shot
learning", in [33] for "few shot learning", and in [45] for "zero shot learning", although
with quite different approaches. To be fair, in our problem, the "zero shot" learning
property comes from the combination of independent unary actions, which makes it
fall in the "combinatorial generalization" domain as explained in [2] for example.

5.2 Description of the guided dropout methodology

In this section, we present the guided dropout methodology in a general context. The
objective is to approximate a function yyy = S(xxx;τττ) that maps input data xxx to output data
yyy. This system S is parameterized by a discrete structural vector τττ , taking values in an
intervention space.

In our application domain, the variable xxx represents injection (i.e. the power
produced by productions and consumed in loads), yyy is the flows in all the power lines,
and τττ represents the topology of the power grid1. In our application, the topology τττ

can either represent a choice from the operators (e.g. when an operator chooses to
modify how the powerlines are interconnected) or be external causes that impact the
powergrid (e.g. a windstorm hits some tower and a powerline is disconnected). Both
these applications are treated in this work. Most of the time we don’t distinguish if
the structural vector τττ is modified by the operator, at the hands of RTE, or if it has
external causes.

1In some applications, τττ will not represent the complete topology of the power grid.
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The rest of this section will be organized as follows. First, we recall notations used.
Then we develop the neural network architecture and finally, we give some intuitions
on why this methodology achieves good results.

5.2.1 Notations and definitions

Let xxx∈X ⊂Rp be the input vector of the system (dim xxx= p= number of injections in
the power system application), yyy ∈ Y ⊂Rn the output vector (dim yyy = n = number of
lines in the power system application), and τττ ∈ {0,1}α the action vector (dim τττ = α).

The action space is represented as a binary vector (denoted by τττ and called
structural vector) without any particular encoding of this discrete topology τττ . In
particular, unary actions (i.e. single power line disconnection in the power system
application) are not necessarily one-hot encoded and therefore α is not necessarily
equal to the number υ of unary actions. If one-hot encoding of the topology τττ is used
and unary action z1 is encoded with τττ{1} = (1,0,0, . . .) and unary action z2 is encoded
with τττ{2} = (0,1,0, . . .), then double action z1,2 is encoded with τττ{1,2} = (1,1,0, . . .).
In general, double action z1,2 is encoded with τττ{1,2} = τττ{1}⊕ τττ{2} (element-wise "or"
operation). More generally, let τττI be the overall structural vector in {0,1}α which
combines any unitary action such that τττI =

⊕
i∈I τττ{i}. Here I ⊂ {1, . . . ,υ} where

υ is the number of unary actions. In the case of the one hot encoding we have then
υ = α .

We could also have chosen to encode unary action z1 is encoded with τττ{1} =

(1,1,0, . . .) and unary action z2 with τττ{2} = (0,0,1,0, . . .). For example. The combi-
nation of structural vector τττ would be performed as described in the previous paragraph.
The major difference would be that in this case υ < α , as some of the action z would
be encoded in two distinct dimension of τττ .

For any encoding of actions, by convention, τττ /0 = (0,0, . . .) will represent the
absence of action, corresponding to the system in its reference topology.

Recall of other notations yyy = S(xxx;τττ) be the ground truth of the system’s response
to input xxx in structural vector τττ . The ground truth here will be given by the physical
simulator. In contrast, the approximation made by the neural network will be denoted
ŷyy = NN(xxx;τττ). For this work, and unless explicitly specified, hatted variables are
always the results of a statistical model. On the contrary, the ground truth is denoted
with non-hatted variable (e.g. yyy).
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Simple generalization vs. super generalization Similarly to other learning prob-
lems, for any fixed structural vector τττ , training data pairs {xxx,yyy} are drawn i.i.d.
according to an unknown probability distribution2.

We call simple generalization the capability of ŷyy = NN(xxx;τττ) to approximate
yyy = S(xxx;τττ) for test inputs xxx not pertaining to the training set. When τττ values are
drawn i.i.d. from training domain distribution T train that remains the same in
training and test data (this covers in particular the case of a fixed τττ), the term simple
generalization is also used.

Conversely, if values of τττ are not drawn similarly in training and test data,
i.e. τττ is drawn according to a certain distribution T test ̸= T train for the test data, we
speak about super generalization. "Zero shot learning" is a particular case of super
generalization when the domain τττ has not been seen at all during training. For our
specific application, zero shot learning is important: new topological situations happen
all the time when managing a power grid, and the neural network should not provide
false results in these cases. Note in this work we are not interested in all possible types
of super generalization. We focus on, possibly unseen, combinations of seen structural
vectors τττ .

5.2.2 Guided dropout intuitions

To illustrate the idea behind the guided dropout, we will use a system S that has
5 inputs units xxx = (x1,x2,x3,x4,x5), 7 outputs units ŷyy = (ŷ1, . . . , ŷ7) and 3 possible
independent actions υ = 3. We choose to illustrate the functioning of this algorithm
on a one-hot encoding of actions, so we have dim(τττ) = 3.

We will learn this system with a neural network with 3 hidden layers each having
6 hidden units. This neural network will be called the plain architecture. It is
represented in figure 5.2a.

The main idea of the proposed guided dropout methodology proposes to kill units
depending on the structural vector τττ . Hence the name "guided dropout". The dropout
of units is guided by the structural vector τττ , describing the topology in this setting.

This is illustrated in Figure 5.2. In Figure 5.2b, some units have been switched off
in the second hidden layer. This is always the case: when no actions are performed,
the neural network has fewer units. In practice then, when we choose to activate units
when powerlines are disconnected, the terminology "guided drop in" would be more
suited as in facts units are added when the corresponding unit of the structural vector
is 1. We preferred, however, keeping the name "guided dropout".

2In our setting, xxx is drawn randomly, but S(xxx;τττ) is a deterministic function implementing Kirchhoff’s
circuit laws. No noise term is involved in the calculation of yyy from xxx.
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In Figure 5.2c, action z1 encoded by τττ =(1,0,0) is made, one more unit is activated.
Which units are concerned by this action is chosen randomly once among the units that
are in the plain architecture (Figure 5.2a) but not used in the architecture encoded for
τττ = τ /0 (Figure 5.2b). This procedure is applied for all unary actions zi, as can be seen
in Figures 5.2c, 5.2d and 5.2e. In practice, each time a guided dropout network has
been trained, this procedure has been applied. We didn’t notice any particular impact
on the results. We believe the random choice of masks has little impact on the final
outcome of a guided dropout network.

The encoding of unary actions is the only free parameter of the guided dropout
algorithm. Once set, all the actions that can be encoded by τττ can be represented by
our neural network architecture by adding the units that are added component-wise.
This is showed in Figure 5.2f where units activated for τ{1} = 1 and τ{3} = 1 are both
activated.

The main idea of the guided dropout is to reflect a combination of actions by
modifying the architecture of the neural network in a deterministic way. The super
generalization properties of the guided dropout, i.e. its capacity to predict the real
output yyy even when in unseen structure τττ , comes from the combinations of unary
actions in the system S: there is a relation between S(xxx;(1,0,1)) and S(xxx;(1,0,0)) and
S(xxx;(0,0,1)).

The method we propose is more generic than the one described here. It can be
modified in multiple fashions:

• One neuron was assigned per unary action. This can be adapted depending on
the problem. For example, 2 units can be activated when τ1 = 1 (as opposed
to Figure 5.2c where only 1 was). This will be the case when a non one hot
encoding of the actions z is chosen.

• One layer is impacted by the guided dropout (second hidden layer in our ex-
ample), but multiple such layers can be stacked at different parts of the neural
network.

• We choose to activate units when components of τττ are 1, but this can be the
opposite: i.e. deactivating units instead of activating them. This last is conflicting
with the encoding of the action. For example, we could have chosen to encode
the reference topology (i.e. the one where all lines are connected) by τττ ref =

[1,1, . . . ,1], and to encode the action z1 by τττ{1} = [0,1,1, . . . ,1]. The impact of
this change is not extensively studied in this manuscript. In early experiments,
we found that using this encoding performed not as well as the proposed one
for the power system application. In our domain, more data are available for the
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reference topology. In this setting, it is harder for a neural network to predict
with a different topology. Having more units to predict a more difficult problem
may explain why the proposed method (adding units) performs better than this
other methodology (removing units).

In any case, we note that at least one neuron per dimension of τττ for the layer of which
the guided dropout is applied is required. Otherwise, some configurations of τττ will
have the same encoding in the neural network, thus leading to the same predictions ŷ.
If zero neuron is used in the structural vector τττ to encode an action, the information
that this action is performed is not given to the neural network. This implies that
dim(τττ) = α > υ , the number of actions.

5.2.3 Final Neural network architecture

In the previous subsection, we introduced the concept behind guided dropout algorithm.
In this section, we will propose a different view of this algorithm.

One of the problems of the previous methodology was that in the guided dropout
layer, there are two different types of units: units that are sometimes present, sometimes
absent (in dashed red in figure 5.3a), and units that are always present. This makes
things more difficult for us to interpret. For example, in the reference architecture, all
these units are disconnected, and there are only 3 units to propagate the information
from the encoder E to the decoder layer D. In this modeling, the information on the
guided dropout block is intermixed between information specific to the structural vector
τττ (red dashed connections) and information that always propagates (gray connections).
We decided to switch to a residual architecture to fix this issues. This new architecture
is showed in Figure 5.3. Compared to the previous neural network architecture, the
new one, based upon residual models reduces the number of free parameters. It is also
easier to distinguish between the model in its reference structure τττ = [0,0, . . . ], and to
isolate the impact of each unary action mathematically in this new architecture.

In this new architecture, let’s denote by hhhxxx the latent representation of xxx after going
through the encoder E and by hhhτττ the transformation by the guided dropout block of
hhhxxx affected by structural vector τττ . These number are shown on Figure 5.4. Formally,
these numbers are defined as:

hhhxxx
def=EEE(xxx) (5.1)

hhhτττ

def=ddd(eee(hhhxxx)⊙ τττ) (5.2)

= ddd(eee(EEE(xxx))⊙ τττ)
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ŷ1

ŷ2
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ŷ5

ŷ6
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Fig. 5.2 Schematic representation of the guided dropout methodology. First
choose a "plain architecture", i.e. the number of layer, and the number of units
per layer, but also the non linearity etc. For this example, the plain architecture is
composed of 3 hidden layers, of 6 units each. Then we chose which neurons will be
activated / deactivated depending on the structural vector τττ that encodes the topol-
ogy (showed here on Figures 5.2c, 5.2d and 5.2e. Then combinations of actions are
performed by adding / removing units, as shown in Figure 5.2f.
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(a) Original guided dropout neural net-
work as described in Section 5.2.2. Dashed
lines represent connections that can be acti-
vated / deactivated depending on the action
vector τττ .
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ŷ2

ŷ3
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(b) ResNet guided dropout neural archi-
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connections.

Fig. 5.3 Comparison of guided dropout architectures. Original architecture (left)
and ResNet architecture (right) for the guided dropout algorithm. Gray straight line
represent regular connections, always present and not impacted by the structural vector
τττ . The red dashed line represent connections that can be activated and deactivated
depending on the structural vector τττ . Finally, on Figure 5.3b, black bended connections
represent the "copy operator": the element on the left is copied to the right.

The proposed guided dropout (GD) model represented schematically in Figure 5.4
(top) is given by:

ŷyy = DDD(EEE(xxx)+ddd( eee(EEE(xxx))⊙ τττ︸ ︷︷ ︸
some units are masked depending on τττ

)) (5.3)

where EEE and eee (encoders) and DDD and ddd (decoders) are all differentiable functions. The
⊙ operation denotes the element-wise multiplication.

In the reference structure τττ = [0,0, . . . ] Suppose the system is in the reference
topology τττ /0, predictions are made according to ŷyy = DDD(EEE(xxx)). Indeed, assuming that
d(000) = 000, for τττ /0 = (0,0,0, . . .), we have ddd(eee(EEE(xxx))⊙τττ) = d(τττ /0) = 000, thus the guided
dropout block lets the information flow directly, without modification. Only E and D
are needed to perform a prediction in a "reference state" (encoded by τττ = τττ /0).

Outside the reference structure τττ ̸= [0,0, . . . ] In that setting, the forward pass
through this neural network is:

ŷyy = DDD(hhhxxx +ddd(eee(hhhxxx)⊙ τττ))

ŷyy = DDD(hhhxxx +hhhτττ) (5.4)
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On the contrary, if one of the components of τττ is non null (τττ ̸= τ /0), e.g. if an action
is performed, some components of hhhxxx⊙τττ will be non null. In this case hhhτττ (= EEE(xxx)⊙ τττ)

can be non zero because τττ will have at least a non null component. And as we can
see in equation 5.4 (or in figure 5.4) , the results of this activation will be added to hxxx

before the information is processed by D. In this setting, hτττ is exactly the modifications
of hxxx induced by τττ being non zero. This phenomenon will be further developed in the
next subsection.

5.2.4 Interpretation and latent spaces

One possible interpretation of the guided dropout is the following. Input data xxx, from a
manifold X , are first processed by an encoder E that transforms them into a vector hhhxxx.
Then, if no action is performed, this vector hhhxxx is decoded via D to make the predictions

GD architecture:

Injection
xxx EEE(·)

eee(·) ⊙τττ

Structure

ddd(·)
⊕ DDD(·) Flows

ŷyy = NN(xxx;τττ)

GD Block

dim p hxxx, dim h dim α hτττ , dim h dim l

One Hot architecture:
Injection

xxx
τττ

Structure

EEE(·)
eee(·) ddd(·)

⊕ DDD(·) Flows
ŷyy = NN(xxx;τττ)

regular "ResNet block"

dim p+α dim h dim α dim h dim l

Fig. 5.4 GD and baseline architecture. The main novelty of the GD architecture is
that interventions are introduced by performing an element-wise multiplication ⊙ with
a binary vector τττ , which has the effect of selectively activating or deactivating units.
The baseline architecture instead includes a standard residual network block [21].
Interventions are introduced as additional inputs to the first block. In both architectures,
multiple ResNet or GD blocks may be stacked.
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ŷyy = DDD(hhhxxx). In this setting, hhhxxx can be seen as the latent representation of the input xxx,
once encoded by the function E.

The effects of e and d are a bit different. e takes as input hhhxxx and will encode it in
hhhτττ

(
def=ddd(eee(hhhxxx)⊙ τττ)

)
. So their role is to encode the manifold H in which the data are

mapped with encoder E, into a "action manifold" in which action τττ is applied (through
the element wise multiplication). Then this actions space is decoded with d and the
effect of action τττ is then translated into a shift of hxxx by hhhτττ into the manifold H .

The guided dropout algorithm can then be interpreted as an encoder E which
transforms inputs xxx ∈X into a subspace hhhxxx ∈H . In the standard configuration
(defined by being encoded with τττ = τττ /0), this subspace is decoded to represent the
flows yyy as can be showed in the figure 5.5.

A change in τττ will be propagated in this architecture by adding a perturbation that
depends both on the inputs xxx via hhhxxx and on the perturbation encoded by τττ . So the
(learned) latent representation hhh = hhhxxx +hhhτττ is, by construction, built such that additive
perturbation in this latent space results in the proper output predictions.

A parallel between the guided dropout methodology and the superposition theo-
rem can be made. This theorem can be used to compute some flows when a generator
or a load is added in a circuit, for example, 3. Adopting this point of view, the guided
dropout will learn a representation H of the input manifold X . On this manifold, the
modification induced by τττ (denoted by hhhτττ ) are added to the representation of the data
hhhxxx, thus superposing modifications conditioned by τττ to the state hhhxxx.

Fig. 5.5 Schematic representation of the guided dropout algorithm, seen as an
encoder / decoder. On the left is showed the input data manifold X . A point xxx of
this manifold is transformed into hhhxxx. Then the action τττ will translate this value on the
manifold. Finally, the output value will be computed by applying function D.

3We emphasize that this theorem is valid when the topology of the circuit doesn’t change, which
is not our setting. This is only an analogy and we agree the guided dropout is not the encoding of the
superposition theorem into a neural network.
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5.3 Super-generalization of GD for a system with ad-
ditive perturbations

In this section, we mathematically prove the super-generalization property of the
guided dropout algorithm in some limited setting. Recall that super-generalization
is the ability to predict efficiently the outcome yyy of a system S when tested on new
structural vector τττ (while for regular generalization τττ is drawn similarly in the test
set as it was during training). Although our mathematical proof rests on simplifying
assumptions that do not hold in practice, we show in the experimental section (see
chapter 6) that guided dropout exhibits super-generalization under a broad range of
practical settings. The benefit of our limited theoretical analysis is to provide some
justification and insight regarding the super-generalization. We also wanted to recall
that this super generalization comes from the combination of unary actions that has
been seen during training, this is effective in our setting because S(xxx;(1,1,0 . . . ,0)) can
be predicted using S(xxx;(1,0,0 . . . ,0)) and S(xxx;(0,1,0,0 . . . ,0)). Super generalization
does not apply to a new unary action for example. In particular, we suppose then the
guided dropout has seen every unary action during training.

We consider in this section a system S with additive perturbation (formally defined
in Theorem 1). We begin by proving a theorem about super-generalization in the case
of "perfect predictions" (meaning that NN(xxx;τττ) = S(xxx;τττ)) in standard generalization
(i.e. same τττ at training and test time). Then we generalize this result to the noisy case
of imperfect predictions.

5.3.1 Perfect prediction case

Theorem 1. Consider a system S(xxx,τττ) that satisfiesS(xxx;τττ /0) = F(xxx)

S(xxx;τττ{i}) = F(xxx)+ εi(xxx), i = 1, . . . ,c
(5.5)

and

S(xxx;τττ
I ) = F(xxx)+ ∑

i∈I
εi(xxx), for some I ∈ {0,1}α with |I | ≥ 2 (5.6)

for some (unknown) deterministic functions F(xxx),ε1(xxx), . . . ,εc(xxx). Then, for a guided
dropout architecture NN(xxx;τττ) with linear submodules ddd and DDD and that can make
perfect predictions on training data triplets (xxx,τττ,y) coming only from training set
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defined by equations (5.5), this network also makes perfect predictions on data coming
from a broader test domains given by equation (5.6).

Proof. Recall that the GD architecture NN(xxx;τττ) gives predictions

ŷ = NN(xxx;τττ) = DDD(EEE(xxx)+ddd(eee(EEE(xxx))⊙ τττ)) ∈ R

Since we assumed n = 1, DDD is actually a scalar linear function. By writing τττ =

(τ1, . . . ,τc) = ∑
c
i=1 τiτττ

{i}, we can use the linearity of ddd and DDD to write the output of
GD as

ŷ = DDD

(
EEE(xxx)+ddd

(
eee(EEE(xxx))⊙

c

∑
i=1

τiτττ
{i}

))

= DDD

(
EEE(xxx)+

c

∑
i=1

τiddd
(

eee(EEE(xxx))⊙ τττ
{i}
))

= f0(xxx)+
c

∑
i=1

τi fi(xxx)

where
f0(xxx) = DDDEEE(xxx)

fi(xxx) = DDDddd
(

eee(EEE(xxx))⊙ τττ
{i}
)
, i = 1, . . . ,c.

As NN(xxx;τττ) makes perfect predictions for any data point (xxx,τττ,y) coming from
training domain, i.e. τττ ∈ T train = {τττ /0,τττ{1}, . . . ,τττ{c}}, for any xxx ∼ D(X ) and any
τττ ∈T train, we have

S(xxx;τττ) = NN(xxx;τττ)

which means that the following equalities hold

F(xxx) = f0(xxx)

F(xxx)+ εi(xxx) = f0(xxx)+ fi(xxx), ∀i = 1, . . . ,c.

So we must have
F(xxx) = f0(xxx)

εi(xxx) = fi(xxx), ∀i = 1, . . . ,c.

for almost all xxx. As in our case the distribution D(X ) of xxx doesn’t depend on τττ (i.e.
the distribution of xxx is the same for τττ ∈T train AND for τττ ∈T test), the above equality
also holds for xxx in target domains. So when we use the trained NN(xxx;τττ) to make
predictions for τττ ∈T test = {τττI , |I | ≥ 2}, the equality

NN(xxx;τττ
I ) = f0(xxx)+

c

∑
i=1

τi fi(xxx) = f0(xxx)+ ∑
i∈I

fi(xxx) = F(xxx)+ ∑
i∈I

εi(xxx) = S(xxx;τττ
I )
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holds with probability 1 for any τI , which concludes the proof.

The above theorem shows that under some conditions, guided dropout is indeed
capable of performing super-generalization: making good predictions on unseen
test domains : τττ ∈ T test ̸= T train. The fact that ddd and DDD are linear is essential for
capturing the additivity of perturbations. For other types of perturbations such as the
multiplicative case defined as follows

S(xxx;τττ
I ) = F(xxx) ∏

i∈I
(1+ εi(xxx)),

GD can achieve similar results if DDD has, for example, exponential-like behavior (i.e. it
transforms additions to multiplications).

On the other hand, the fact that Theorem 1 works for any unknown functions
εi(xxx) makes the results very general. We can consider for example linear perturbation
with εi(xxx) =WWW ixxx, constant additive perturbation with εi(xxx) = ααα i or heteroskedastic
perturbations with εi(xxx) = ααα iG(zzz) for a fixed function G, etc. And all these types of
perturbation are special cases of the above theorem.

5.3.2 Imperfect prediction case

Theorem 1 gives a strong theoretical guarantee, but the condition of making perfect
predictions on the training domain is too strong to be satisfied in practice. So we
now investigate the case with imperfect predictions, i.e. the case where we don’t
require exact learning on training domains, for τττ ∈ T train. To do this, we first need
to introduce a notion of distance between functions to deal with. As we used mean
square error (MSE) in our paper for the regression problem, the distance we use will
be defined in the same flavor. Let µ be a probability measure on X =Rp and f ,g two
functions from X to Y = Rl . We define the distance dµ( f ,g) between f and g to be

d2
µ( f ,g) =

∫
X
∥ f (xxx)−g(xxx)∥2dµ(xxx).

Here ∥ · ∥ represents the ℓ2-norm on Rl . Notice that this distance depends on the
probability measure µ . If we put µ = D(X ) (the ground truth distribution of xxx) and
write y = g(xxx), the right hand side becomes nothing but the generalization error4 of
f . If we instead put µ = 1

m ∑
m
i=1 δxxxi (the empirical distribution), the RHS becomes

4We remind that in our problem setting, the function to be learn S(·,τττ) is deterministic (solutions of
differential equations), the labels y are thus deterministic given xxx and τττ . So we don’t need to consider
the joint distribution on the pair (xxx,y).
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MSE test error (or training error). We are now ready to formulate our theorem on the
imperfect prediction case.

Theorem 2. Let S(xxx;τττ) be a system satisfying the same conditions (5.5)(5.6) in
Theorem 1. Let NN(xxx;τττ) be a guided dropout architecture with linear submodules ddd
and DDD such that

dµ

(
NN(·,τττ /0),S(·,τττ /0)

)
≤ d0

dµ

(
NN(·,τττ{i}),S(·,τττ{i})

)
≤ di, i = 1, . . . ,c.

(5.7)

for some constant d0,d1, . . . ,dc ∈ R. Then for any I ⊂ {1, . . . ,c}, we have

dµ

(
NN(·,τττI ),S(·,τττI )

)
≤ (|I |+1)d0 + ∑

i∈I
di. (5.8)

Proof. According to (5.5) and (5.6) in Theorem 1, we can write S(·,τττ /0) = F and
S(·,τττ{i}) = F + εi. And since ddd and DDD are linear, we can write NN(·,τττ /0) = f0 and
NN(·,τττ{i}) = f0+ fi according to the same argument in the proof of Theorem 1. Then
we can rewrite (5.7) as

dµ ( f0,F)≤ d0

dµ ( f0 + fi,F + εi)≤ di, i = 1, . . . ,c.

Because the distance dµ defined above satisfies triangle inequality (and is translation
invariant), we have

dµ

(
NN(·,τττI ),S(·,τττI )

)
= dµ

(
f0 + ∑

i∈I
fi,F + ∑

i∈I
εi

)

= dµ

(
f0 + ∑

i∈I
[( f0 + fi)− f0],F + ∑

i∈I
[(F + εi)−F ]

)
≤ dµ( f0,F)+ ∑

i∈I
dµ( f0 + fi,F + εi)+ ∑

i∈I
dµ( f0,F)

≤ d0 + ∑
i∈I

di + ∑
i∈I

d0

= (|I |+1)d0 + ∑
i∈I

di,

which concludes the proof.

Theorem 2 shows that as long as guided dropout approximates well the ground
truth functions 5.5 by fitting data from training domain, its error on any test domain
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is bounded by a weighted sum of the errors on training domains. This can indeed be
considered as a super-generalization property. Notice that the weight of d0 is larger
than that of the others, which suggests we should make more efforts on improving the
accuracy of the predictions on data coming from τττ = τττ /0.

Theorem 1 is a special case of Theorem 2 by putting d0 = d1 = · · ·= dc = 0. At
last, we emphasize that the distance dµ is a very flexible notion and can be considered
as generalization error or more importantly, test error in practice. We can even have
different µ in different distribution (one for the training set, and one for the test set)
and the proof is still valid.

In this section, we mathematically proved that the guided dropout algorithm had
some super generalization properties. If actions combine linearly, then a guided
dropout architecture with linear decoders d and D will be able to make predictions
with bounded error even on unseen actions τττ /∈ T train, where T train is the training
distribution of actions τττ . This proof has been performed in the simplify settings of
additive perturbations, but we believe our method to be more generic, and be able to
combine actions non linearly. This is showed in more detail in the chapter 6 page 77.

5.4 Discussion

In the previous sections, we developed the guided dropout methodology and mathemat-
ically showed the "super generalization" property observed in practice. In this section,
we try to develop insights about this method by comparing it to a physical simulator or
to link it to other literature where an approach close to ours has been developed.

5.4.1 Comparison with a solver

In this subsection, we explain the main differences between the use of guided dropout
methodology and the use of a solver based on Kirchhoff’s laws (as the one detailed in
chapter 2 for example).

The first difference, if properly used, a solver will probably be more accurate than
this neural network. And in such a critical environment, accuracy is important.

But, a solver is in general slower than a neural network. Early experiments report a
speedup of around 1 000 could get achieved with neural networks compare to solvers
currently at used at RTE for example. With fewer computations, an operator could
have faster results and have more time to take critical actions for example. Or, when
studying forecasts, i.e. possible grid states for the future, this speed up could be used
to study a higher number of powergrid states in the same times for example. This
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approach is developed in the ITESLA and GARPUR frameworks, as we developed in
chapter 2 via proxy.

One major difference also lies in the quantity of data needed to perform a com-
putation of flow given some injections. A solver requires all physical properties of
all objects (e.g. productions, loads, lines etc.) of the power grid, whereas our method
is data-driven. This entails two major differences. On the first hand, a carefully
engineered optimizer has well-known properties, and it’s possible to rely on experts
on the power system community to check its result. On the other hand, if some data
are wrong, misinterpreted, or unavailable at the time of the study (such as the exact
topology of the power grid for example), it is not possible to use a simulator, or once
have also to forecast the missing variables (e.g. the topology), which may be a really
hard problem.

5.4.2 Related works

We have recently become aware of parallel work from[37] and [8] in which the authors
also encode actions by switching off some neurons, in application to frame predictions
in video games, when the player’s actions are known. Our method differs however
in multiple ways. First, the problem treated and the application are different: In our
application to power grids, there is no temporal dependency between the inputs xxx and
the outputs yyy (steady state modeling); in theirs, temporal aspects play a key role. Also,
in the proposed methodology, we are rather interested in studying combinations of
unseen actions by switching on and off some units. This induces that Oh et al. have
focused their work on long-term frame forecasting (recurrent use of the architecture to
forecast frame after frame) while this work is more focus on combinations of actions
in a single grid state. We then believe this work to be novel and interesting for both
the power system community as well as the machine learning audience.

The "next frame prediction" problem could also be addressed by our method if xxx
represents the previous frame, yyy would be the next frame to be predicted, and τττ the
action performed between the previous frame xxx and the frame we want to predict yyy.
This line of work will not be addressed in the work.



Chapter 6

Guided dropout Applications

In this section we introduce the main applications of the guided dropout algorithm
developed in this work. Recall from Chapter 2 that the operator must find the action
π∗ that minimizes a given cost1. If we denote by p the probability of occurrence of a
outage z, by s = (xxx,τττ,yyy) a grid state and by π an action an operator can take and ⊙
is the binary operator representing the application of a action on a power grid: s⊙π

means "applying action π on grid state s. The optimal action is modeled as:

π
∗ = argminπ

{
CP(π,s)︸ ︷︷ ︸

Preventive cost

+

∑
z∈A

p(z)︸︷︷︸
probability of occurrence of z

( CC(π,s,z)︸ ︷︷ ︸
Corrective cost of z

+ c(z;s⊙π)︸ ︷︷ ︸
cost of fixing the power grid︸ ︷︷ ︸

cost of the grid after outage z arises

)

}

(6.1)

All the applications detailed here have the goal to help him achieve it. Two
problems are addressed in the three following sections:

• Flow prediction: Evaluate how power flows are affected by “contingencies”
occurring on the powergrid (e.g. a line breaking), with the objective of simulating
situations faster than with the physical simulator. This allows the operator to
compute rapidly the state after an outage s⊙ z, or to compute in a short period
of time if action π is good for the power grid or not through the computation of
grid state s⊙π .

• Assisting operators: The goal is to provide an estimation, in real time, of
what are the most dangerous contingencies z, i.e. the one that could trigger

1More details have been provided about this modeling in the section 2.3.2 pages 24 and following.
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cascading failures for example, so that the operator can take some preventive
actions. Another application is to evaluate, in real time, the overall (would be)
strain put on the grid, combining all (would be) contingencies, which we call
“risk”. The higher it is, the more careful the operator needs to be. If the risk is
too high, the operator could receive an alarm, and perform an action that could
set back the power grid in a least dangerous state for example.

This chapter is divided into two parts. In the first section, we report results of
the guided dropout algorithm on two problems consisting in predicting flows from
injections and topology when 1) some lines are disconnected 2) the topology of the
grid changes. Flow prediction is a first step in assisting operators. But it is not enough.
In the second section, we study a problem more related to assisting operators. Still,
on synthetic datasets, we report how guided dropout allows to rank contingencies
(allowing possibly better reaction time for operators) and on risk estimation (indicating
a possibility of a blackout). These two last applications are direct metrics that can
allow building trust with real-time operators. More work on these metrics and how
they can be used on real dataset are on the way, and first results are shown in Chapter
7.

6.1 Predictions of flows

In this section, we explain how the guided dropout algorithm can perform better
than some baselines in the predictions of power flow after a outage occurs or after a
change of reconfiguration of the buses. These results were obtained in a synthetic and
controlled experimental environment.

The material in this section is based on the work:
Donnot, B., Guyon, I., Schoenauer, M., Marot, A., and Panciatici, P. (2018d). Fast
power system security analysis with guided dropout and
Donnot, B., Guyon, I., Liu, Z., Schoenauer, M., Marot, A., and Panciatici, P. (2018a).
Latent Surgical Interventions in Residual Neural Networks. working paper or preprint

In all this section, the dataset for which the models are used is {(xxx,τττ,yyy)}, with xxx
being the injections, sampled with the method described in Chapter 4, τττ is topology
variations detailed in subsection 6.1.2 and yyy is the current flows on each powerline of
the power grid. These flows yyy are computed using the simulator Hades2.

In this first application, we are interested in predicting the flows yyy (in amps only)
on the 186 powerlines of the powergrid described in section 4.2, given some injections
xxx only. In this experiment, to be fair with the baseline coming from the power system
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community, xxx includes only the active productions and active loads. No voltage
information is provided, nor reactive load values.

Controlled experiments are performed on a standard medium-size benchmark from
"Matpower" [56], a library commonly used to test power system algorithms [1]. We
use case118, a simplified version of the Californian power grid. This test case includes
99 consumptions, 54 productions (dim xxx = 153), and 186 power lines (dim yyy = 186).

This section is organized as followed. First, we explain the baseline methods.
Then we detailed how the data have been generated. We then report the experiments
performed that demonstrate empirically the performance of the guided dropout method-
ology. Lastly, we sum-up what has been demonstrated in these experiments and their
limits.

6.1.1 Baseline methods

We compared the performance of our proposed Guided Dropout (GD) method with
multiple baselines, from other classical neural network models to a widely used
physical approximation in power systems. A summary of these baselines can be found
in Table 6.1, and their detailed description is given in the following paragraphs.

One Model is a brute force approach that does not scale well with the size of
the power grid. One neural network is trained for each τττ . A power grid with n
lines would require training n(n−1)/2 neural networks to implement all “n-2” cases.
Beside, confronted to a novel situation, unseen outages in training set, for example,
this approach wouldn’t allow making predictions in that case. We show this model as
some kind of lower limit on the loss we can achieve with neural networks.

One Variable (OV) is our simplest encoding allowing us to train one network for
all “n-1” cases. One single input variable encodes which line is disconnected (0 for
no line disconnected, 1 for line 1 is disconnected, 2 for line 2, etc.). However, it can’t
generalize to “n-2” cases. Again, this model has little interest, as it can’t allow making
predictions on unseen outages.

One Hot (OH) is a reference architecture, which allows us to generalize to “n-2”
cases. If n is the number of lines in the power grid, n extra binary input variables are
added, each one coding for connection/disconnection. This encoding is widely used
in the machine learning literature when dealing with discrete variables like the line
disconnections vector τττ in our problem.

The DC approximation is an approximation of the AC (Alternative Current) non-
linear powerflow equations. It neglects reactive power and permits to quickly compute
an approximation of power flows using a matrix inversion, given a detailed physical
model of the grid. The power equations then look similar to the classical equations of
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electricity. This approximation is detailed in section page 80 and bellow. It is a relevant
approximation for transmission power grid as it is usually accurate within 5-10% error
on power flows. However, it is not used today at RTE for daily operations. In this
experiment, we used only active loads values and active productions as inputs of our
neural network. This is done to ensure a fair comparison with the DC approximation.

On the contrary to the DC approximation, adding other informations to a neural
network is relatively easy. We expect the informations about reactive load value and
production voltage setpoint to improve the performance of our method. However, this
study has not been performed.

Table 6.1 Description of the baselines in the experiments for predicting power
flows.

Encoding of τττ Super
Gen.?∗

Comments

One Model One neural network is
trained for each τττ

no Unusable in practice.
Not tested on buses re-
configuration.

One Var (OV) One single input vari-
able encodes which line
is disconnected (0 for no
line disconnected, 1 for
line 1 is disconnected, 2
for line 2, etc.)

no Not tested on buses re-
configuration.

One Hot (OH) n extra binary input vari-
ables are added, each
one coding for connec-
tion/disconnection

yes

DC approximation Common baseline used
in the power system
community

yes Not a neural network,
doesn’t need to be
trained.

∗ “Super Gen.?” here denotes the fact, for a model learned on a dataset, its capacity to
be used, without retraining, on unseen structural variables τττ . It does not presume any
performance on the super generalization set.

6.1.2 Dataset Generation

In this section, our goal is to demonstrate empirically that multiple grid topologies
can be modeled with a single neural network. Our purpose is to provide fast current
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flow predictions (measured in Amps), for given injections xxx and given topologies,
to anticipate whether some lines might exceed their thermal limit should an outage
occur. Recall that both of the following experiments are conducted on a medium size
benchmark grid from Matpower [56] with n = 186 lines, 99 loads, and 54 injections.
We want to assess the robustness of the guided dropout methodology in two different
settings:

• When powerlines are disconnected from a power grid. Doing so, we hope the
guided dropout model can be used to predict which powerline, if disconnected
by windstorm, for example, causes other powerlines to exceed their thermal
limits. If such a power line exists, operators should then take specific actions to
cure the grid.

• With a broader class of topological changes: when buses are reconfigured. This
experiment demonstrates the possibility to use the neural network to assess if a
given topological action (change of topology) made by an operator is good or
bad for the power grid for example.

Both these problems are useful to be able to propose, in real time, actions that would
benefit the security of the power grid, or even detect possible weakness in advance. In
the next paragraphs, we detail the method used to generate these datasets. Note that xxx
are sampled with a method described in Chapter 4, and yyy is computed with Hades2.
The major differences on these datasets it about what τττ represents, and how it is built.
Following paragraph focus then on the description of τττ .

Line disconnections In this setting we want to test whether or not, if a power line
where to be disconnected, the grid would remain safe. For this experiment, τττ encodes
the presence/absence of a power line. For example τττ i = 1 means that powerline i is
disconnected. We won’t consider any other topological changes in this experiment.

For the training, validation and test set, we use all the 187 variants of grid topologies
with zero or one disconnected powerline. For each of these 187 different τττ , we sample
10 000 different injections set xxx and use Hades2 to compute the resulting flows yyy. This
resulted in an “n-1” dataset of 1,870,000 samples (we include in the “n-1” dataset
samples for the reference topology)2 Among this dataset, 50% is used for training,
25% for hyper-parameter selection, and 25% for testing.

We built another dataset for evaluating the performance of our model on unseen
topologies τττ . Uniformly at random, we sample 200 cases of pairs of disconnected

2Note that this "n-1" dataset include cases where one line has been disconnected and cases where no
lines have been disconnected.
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lines (“n-2” dataset), out of 186 ∗ 185/2 to assess whether or not the model could
"super generalize" to unseen configurations. This model is then tested on 200 different
τττ (each having exactly 2 components equal to 1) out of 186∗185/2 = 17205 possible
τττ . For each of these τττ , as we did for the other datasets, we sampled 10 000 different
injections xxx and run Hades2 to compute the flows. This results in a “n-2” dataset of
2,000,000 samples.

Buses reconfiguration In this setting, we want to rapidly assess the current flows
yyy if a given action (topological changes) is performed. Topology changes consist in
reconfiguring line connections in one or more substations (see Figure 6.1). To perform
this study, we adopted the following modeling. The reference topology showed for
a small example in Figure 6.1a, where everything is interconnected is encoded by
τττ = τ /0 = [0,0, . . . ,0]. On most powergrid, it is possible to reconfigure the buses in
some substation. An example of such reconfiguration, for a small example, is showed
on Figure 6.1b. This would correspond a "unary change" (as it affects only one
substation) and is encoded for example by τττ = [1,0, . . . ,0]. There is only one 1 as the
change is unary.

c1
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p1

p2

sub. 1

sub. 2
sub. 3

sub. 4

sub. 5
l4

l8l1

l5 l6
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(a) Reference topology, is encoded by τττ =
[0,0, . . . ,0]
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sub. 1

sub. 2
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sub. 4

sub. 5
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l8l1
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(b) Reconfiguration of substation 1 in two
buses. This topology is encoded by τττ =
[1,0, . . . ,0] for example.

Fig. 6.1 Illustration of bus reconfiguration at substation 1. Compare to the refer-
ence topology (everything is connected to everything) showed on the left (Figure 6.1a),
the substation 1 is split into two independent buses on the right (Figure 6.1b).

This encoding is a somewhat different from others encoding. Let’s focus on some
of the difference. To each possible unary topology action correspond a unique vector
τττ . We hence have the property sizeof(τττ) = number of unary topological changes.
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Combining two or more unary topological change on different substations is
done the usual way, by making an element wise "or" operation3. This encoding is
injective (two different topologies are encoded by two different τττ). The main difference
compare to previous encoding of τττ is that the encoding is not surjective (some τττ doesn’t
encode for a real grid state). For example, τττ(1) = [1,0,0, . . . ,0] encodes for change of
topology in substation 1. Now let’s assume τττ(2) = [0,1,0, . . . ,0] encodes also for a
topology in substation 1 (different from the reference and from τττ(1)), then the vector
τττ{1,2} = [1,1,0, . . . ,0] doesn’t code a valid grid state. In fact the topology of substation
1 cannot take 2 different values. This is has absolutely no impact on the task we are
trying to achieve. An operator choose certain topology for certain substations, the
corresponding vector τττ counts as much 1 as the number of substations where the
topology is not the reference topology.

With all the precautions needed4 we counted 11 558 possible unary actions (corre-
sponding to single bus splitting or merging, compared to the reference topology) in
the case118 powergrid of Matpower. For this experiment, we sampled randomly 100
different possible changes among the 11 558 relevant changes. This imply that, for
this experiment dim(τττ) = 100.

To build the dataset, we sampled 50 000 different inputs xxx in the reference topology
(τ /0), and use Hades2 to compute the flows yyy. Then for each unary action τττ(i) (among
the 100 that have been selected), we sampled 1000 inputs xxx. This resulted in a dataset
of 150 000 rows. 70% of this dataset has been used for training, 15% as a validation set
for hyperparameters selection and 15% as a test set to report errors on this manuscript.

The super test dataset is composed of 1500 combination of two unary actions
among the pairs of valid possible binary actions. Then, for each of these 1500 τττ{i, j},
we sampled 100 inputs xxx. We used the same physical simulator (Hades2) to compute
the yyy from the xxx and the τττ . The super-generalization set counts then 150 000 rows,
corresponding to 150 000 different triplets (xxx,τττ{i, j},yyy).

A summary of the composition of each dataset is shown in Table 6.2.

6.1.3 Results

In this section, we expose the results of both of these experiments. In both cases we
show a phenomenon that we call super-generalization: with the “guided dropout”
topology encoding. A neural network, trained with unary action5, generalizes to binary

3This is described in more details in chapter 5
4We impose that the power grid must be represented as a connected graph, or that no loads or

productions get disconnected.
5Action being powerline disconnection or buses reconfiguration depending on the experiment
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Table 6.2 Summary of the composition of the dataset for assessing the flows on
controlled experiments.

Lines disconnections Buses reconfiguration

injections xxx sampled (see Chapter 4, Section 4.2 page 49)

Description of τττ τττ i = 1 line i is disconnected τττ i = 1 ith topology apply
dim(τττ) = 186 dim(τττ) = 100

flows yyy computed via the simulator Hades2

Training Set+

at most one line disconnected
at most one substation with a
topology different from its
reference’s

Validation Set+

Test Set+

Super Test Set exactly 2 lines disconnected exactly two substations with
a different topology than their
reference’s

Counting 200 different τττ Counting 1500 different τττ

+ The training set, the validation and the test all contain different grid states. There
are no grid state that are present in two of these dataset.

actions cases. We first report the results on the powerline disconnection dataset, then
on the more challenging buses reconfiguration one.

On powerline disconnection Figure 6.3 shows generalization and super gener-
alization learning curves for the various methods. We recall that, as explained in
Chapter 3, "generalization" in this case is the property to obtain good performance
on a test set similar to the training set (so in this example in a test set where at most
one powerline have been disconnected at a time), and the "super generalization" is
the ability to predict accurately flows in an unseen grid topology (in this case "n-2"
dataset, when no double line disconnections have been observed in the training set).
For reasons given above, super-generalization can only be achieved by One Hot and
Guided Dropout, which explains that Figure 6.3-b has only two curves. The DC
approximation is represented as a horizontal dashed line (since it does not involve
any training). The test error is represented on a log scale. Hence, it can be seen in
Figure 6.3 that neural networks are very powerful at making load flow predictions since
the “One Model” approach (yellow curve) outperforms the DC approximation by an
order of magnitude.6 However the “One Model” approach is impractical for larger grid

6We note in the yellow curve some slight over-fitting as evidenced by the test error increase after 10
training epochs, which could be alleviated with early stopping.
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Fig. 6.2 Grid of 118 buses (nodes). We show the L2 error in Amperes on a log scale
as a function of training epochs. The neural network in both cases is trained for all
“n-1” cases with multiple examples of injections. (a) Regular generalization. Test
set made of (all) test injections for “n-1” cases. (b) Super-generalization. Test set
made of a subset of test injections for “n-2” cases. Error bars are 25-75% quantiles
over 10 runs having converged.

sizes. The “One Hot” approach is significantly worse than both “Guided Dropout” and
“DC approximation”. Of all neural network approaches, “Guided Dropout” gives the
best results, and it beats the DC approximation for “n-2” cases (super-generalization).

The super-generalization capabilities of neural networks trained with “Guided
Dropout” are obtained by combining in a single network “shared” units trained with
all available data for many similar (yet different) grid topologies and specialized
units activated only for specific topologies. Indeed, power grids, like many industrial
systems, operate most of the time around nominal conditions. Given the nature of
such operations, it is hence interesting to learn a reference model for our system in
these nominal conditions for which we have a lot more observations and only dedicate
few additional units to encode those occasional changes. This economy of resources,
similar in spirit to weight sharing in convolutional neural networks, performs a kind
of regularization. Obtaining a good performance on new “unseen” grid topologies
(not available for training) is the biggest practical advantage of “Guided Dropout”:
Acquiring data to train a model for all “n-2” cases for the Extra High Voltage French
power grid (counting ≃ 1,400 nodes, ≃ 2,700 lines) would require computing ≃ 50
million power flow simulations, which would take almost half a year, given that
computing a full AC power flow simulation takes about 300 ms for RTE current
production software. Conversely, RTE stores almost all “n-1” cases as part of “security
analyses” conducted every 5 minutes, so the “n-1” dataset is readily available.
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Fig. 6.3 Synthetic data on a 118 node grid. We show the MSE error in Amperes on
a log scale as a function of training epochs. Neural networks are trained with 15000
injections, for the reference topology τττ /0 and unary changes τττ(i). (a) Regular gen-
eralization. Test injections for unary changes τττ(i). (b) Super-generalization. Test
injections for binary changes τττ(i j). Error bars represents the [20%, 80%] intervals,
computed on 30 independently trained model.

On buses reconfiguration We compared the proposed guided dropout method with
two benchmarks: the DC approximation and the one hot. We optimized the L2 (mean-
square) error, using the Adam optimizer from Tensorflow. To make the comparison
least favorable to the guided dropout architecture, all hyper-parameters of the neural
network (learning rates, number of units, etc.) were optimized by cross-validation for
the baseline network architecture.

The results are shown in Figure 6.3 indicate that the guided dropout method
(blue curves) performs better than the DC approximation (black dashed line) both
for regular generalization and super-generalization. In contrast, the one hot neural
network architecture (green curves) does not outperform the DC approximation in the
super-generalization case (Figure 6.2b).

Figure ?? indicates that the guided dropout architecture may possibly be slightly
under-fitting since it is outperformed by the baseline one hot encoded neural network
for regular generalization. This can be explained by the fact that the baseline network
has many more available connections to learn from (no unit in the inner layer being
disabled). Adding more hidden units in the guided dropout might yield yet better
performance.

Figure 6.2b shows that the baseline neural network architecture is not viable: not
only does it perform worse than the DC approximation, but its variance is quite high.
While it is improving in regular generalization with the number of training epochs, its
super-generalization performances get worse.
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6.1.4 Conclusion of this work

Our comparison of various approaches to approximate “load flows" (predictions of
power flows in electricity transmission grids) using neural networks has revealed
the superiority of “Guided Dropout”. It allows training a single neural network
to predict power flows for variants of grid topology (powerline disconnection or
buses reconfiguration). Specifically, when trained on all variants with one unary
modification, lines disconnection or substations buses reconfiguration, the network
generalizes to variants with BINARY modifications. Given the combinatorial nature
of the problem, this presents a significant computational advantage. We can also note
that the guided dropout performances do not decrease whether it treats a problem of
lines disconnections or a more complex problem of buses reconfigurations. This result
is quite promising.

We empirically demonstrated on standard benchmarks of AC power flows that our
method compares favorably with several reference baseline methods including the
DC approximation used by the power system community, both in terms of predictive
accuracy and computational time. In daily operations, only “n-1” situations are
examined by RTE because of the computational cost of AC simulations. “Guided
Dropout” would allow us to rapidly pre-filter alarming “n-2” situations, and then
to further investigate them with AC simulation. Preliminary computational scaling
simulations performed on the Extra High Voltage French grid indicate the viability
of such hybrid approach: A neural network would be ≃ 300 times faster than the
currently deployed AC power flow simulator.

Our target application is to pre-filter serious grid contingencies such as com-
binations of line disconnections that might lead to equipment damage or service
discontinuity. This line of work is further examined in the next sections.

6.2 Operator decisions support

In the previous section, we explained how the guided dropout methodology could be
used to accurately predict flows even on some unseen grid configuration τττ . In this
section, we explain how this can be embedded in a tool to help operators make better
decisions. We detail how a neural network trained with guided dropout on only a small
subset of contingencies can be used to assist operators. For the brevity of notation,
a grid state (xxx,τττ,yyy), with xxx being the injections, yyy the flows and τττ a modeling of the
topology is denoted by s in this section.

Material in this sections comes from the papers: Donnot, B., Guyon, I., Schoenauer,
M., Marot, A., and Panciatici, P. (2018c). Anticipating contingengies in power grids
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using fast neural net screening. In IEEE WCCI 2018, Rio de Janeiro, Brazil and
Donnot, B., Guyon, I., Marot, A., Schoenauer, M., and Panciatici, P. (2018b). Opti-
mization of computational budget for power system risk assessment. working paper or
preprint

This section is organized as followed.
First we will introduce notations and formulate the problem. The first subsection

details how we could mathematically formulate "assisting" operators. We detailed
two possible applications: the first one is ranking the dangerous contingencies, from
the more dangerous to the least dangerous. The second one is the to provide, given a
security criteria, how secure is a power grid states.

Then we present the methodology for this two applications. First the methodology
adopted for ranking contingencies is explained. Then we detailed how the method to
rank contingencies can be adapted to allow a real time risk estimation.

Finally we report the results of the two methodologies on a standard benchmark
of the litterature. The security criteria used is the "N-2" security criteria. This is not
possible to simulate it currently for TSO, yet this proposed methodology is able to
perform this computation.

6.2.1 Notations and problems formulation

We always analyze a situation corresponding to fixed injection in this section and
sometimes omit xxx for brevity of notation. We also omit to specify time ordering,
although states are time ordered. What we denote by z ∈Z are sudden would-be
(potentially disruptive) events, corresponding to a change in grid topology, such as
a line disconnection, assuming injections remain constant. We denote by z{i} the
disconnection of line i and more generally by zI (I being a subset of {1,2, . . . ,n}) the
disconnection of all the powerlines in the set I . With this notation, z{1,2} corresponds
to the outage where powerlines 1 and 2 are disconnected. Contingencies are encoded
with a vector τττ , such that contingencies zI is encoded with: τττ i = 1∀i ∈ I and
τττ i = 0∀i /∈I . For example z{1,2} is encoded by τττ = [1,1,0,0, . . . ,0].

An outage z might arise with probability p(z)7 and is associated with a loss function
L(z;s). In our application context, we assume that L(z;s) is the {0,1} loss, with 0
meaning that the outage z arising in state s is innocuous and 1 that it is risky or “bad”
or "dangerous" for our system (i.e. at least one transmission line, still in service after

7For instance, events z might be single line disconnections occurring with probability p(z) = ζ (1)
or double line disconnections occurring with probability p(z) = ζ (2) = ζ (1)2.
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z arose, exceeds its thermal limit)8. Thus:

L(z;s) =



0 “No current flowing on any line

exceeds the line thermal limit

after outage z

in grid state s”⇒ OK

1 “Otherwise”⇒ “Bad” event

(6.2)

The “severity score” ψ(z;s) of a outage z on grid state s is defined as:

ψ(z;s)
def= p(z).L(z;s) (6.3)

This represent the expected loss of this outage. This is the loss of this outage weighted
by its probability of occurrence.

We are interested in evaluating the risk taking into account all single and double
outage. This leads to neglect all higher order contingencies. Today, operators take
into account mainly the risk a single power lines disconnection when following the
"N-1" security criteria9. This approach is an improvement from the "N-1" security
criteria towards the formulation of the risk recalled in Equation 6.1. First, it takes
into accounts double outage, which the "N-1" doesn’t. And secondly it does not
assume all contingencies have the same probability of occurring. It also does not
implies that their cost is the same. In the proposed modeling, this means that Z the set
all considered contingencies is composed of Z = {z,z is a single or double outage}.
And, as the powergrid counts n = 186 powerlines, |Z |= n.(n−1)/2 = 17205. We
can now define the total risk, as being the overall strain put on the grid. This is done
by considering the severity score of all contingencies:

Rmax(s) = ∑
z∈Z

ψ(z;s) (6.4)

= ∑
z∈Z

p(z)L(z;s) (6.5)

8This is a simplification. The real damage of the grid would endure after outage z would require
computing a full "cascading failure" (as presented in [22] for example), which is computationally too
expensive to calculate presently, even for a small test case like ours.

9This criterion is more detailed in Chapter 2
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Finally, we observe that, if V ⊂Z is a set of contingencies, then we have:

Rmax(s) = ∑
z∈Z

p(z)L(z;s) (6.6)

= ∑
z∈V

p(z)L(z;s)+ ∑
z/∈V

p(z)L(z;s) (6.7)

This is true for any set V . The way we define this set V allows us to estimate accurately
this risk Rmax(s).

6.2.2 Methodology

In this subsection, we describe the method that allows to rank contingencies in decreas-
ing order of gravity, i.e. with the one having the most important severity score ψ(z;s)
first. Given a computation budget, this ranking allows to use the real physical simulator
only on the most dangerous one, and thus to evaluate the risk Rmax(s) accurately. The
exact methods to perform these two tasks is developed in the next paragraph.

Outage ranking

Here we show how to rank contingencies z (encoded in our neural network by τττ) with
respect to their estimated severity score ψ̂(z;s) for a given system state s. In this work
L̂(z;s) denotes the approximation of the true loss provided by an neural network,
trained on simulated data generated using a high-end load flow simulator. The data are
simulated with the method described in 4.2. Consider a fixed grid state s and a given
outage z, we denote by fi the flow, computed with the high-end simulator, on the inth

line of grid s after outage z occurs, and by f̄i the thermal limit for this line.

Summary of the workflow Here is a summary of workflow for the ranking process.
More detailed about each of this step is provided in the next paragraph. Let s be the
considered grid state.

1. For each outage z :

(a) Assess the flows f̂i on each powerline of the grid after outage z using an
artificial neural network

(b) Compute the score L̂i, for each line to be above its thermal limit f̄i.

(c) Compute the score for the grid to be unsecure after outage z:

L̂(z;s)
def= max

1≤i≤n
L̂i(z;s)
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(d) Assign a score ψ̂(z;s) to the outage z

2. Rank the outages z according to their score ψ̂(z;s)

Detailed workflow We propose to first train a neural network with “guided dropout”,
as described in [14] to approximate rapidly the power flow for the given grid state s
and outage z. We denote by f̂i the flow predicted by our proxy (in this case our neural
network) for the inth line of the power grid.

It has been observed that neural network tend to be "overconfident" in their pre-
dictions (see for example [36]). This overconfidence could lead to a bad ranking in
practice with dramatic effects. We propose to calibrate the score of our neural network
to take into account a fixed (yet calibrated) uncertainty by assuming:

∀i,( fi− f̂i)∼N (0,σi) (6.8)

where σi represents the model uncertainty for line i. We calibrate the vector σσσ (of
dimension n) using a calibration set distinct from the training set the neural network
was trained on and also distinct from the final test set we use to evaluate performance.
During our experiments, this calibration set has the same distribution as the test set.
It is composed of 100 different grid states. And for each grid states a all single and
double contingencies have been simulated.

On this calibration set, we compute the true values fi, using the high-end simulator,
and the predictions f̂i coming from our proxy (neural network). Then, σi is set to:

σi
def=

1
number of simulations

. ∑
simulations

( f̂i− fi)
2 (6.9)

These σi’s are then used to compute the scores L̂i that a given line is above its
thermal limit as:

L̂i
def=1−Fσi( f̄i− f̂i) (6.10)

where Fσi is the cumulative density function of the Normal law with mean 0 and
variance σi.

This gives us a score for each power line. For our problem, a grid is said to be “
non-secure” after outage z, if at least one of its line is above its thermal limit. The
score of the power grid, in state x after outage z, is then obtained by:

L̂(z;s)
def= max

1≤i≤n
L̂i(z;s) (6.11)
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We have now defined L̂(z;s). If all outages z were equiprobable (ζ (1) = ζ (2)), we
could use this approximation for ranking. In practice, some events occur more often
than others and therefore must be prioritized accordingly: as some event occur more
often, it’s natural to place them first on the sorted list.

The first thing we tried was to rank directly the outages z with respect to their
relative cost p(z)L̂(z;s). This worked, but this order tends to be really conservative: all
the single outages were ranked first. This is not surprising given the relative simplicity
of the error modeling10 To remedy this problem, we tried various weighting schemes,
and found that scaling the “n-1” event relatively to the “n-2” events with the logarithm
of ζ (1)/ζ (2) leads to the best results in almost every situation (z;s), and use this for
the ranking. To wrap up, all the grid states and outages are sorted with respect to their
"scores" ŝ(z;x) defined as:

ψ̂(z;x)
def=


L̂(z;x)× loge

(
π(1)

π(2)

)
if z is a single outage

L̂(z;x) otherwise

(6.12)

Risk estimation

In this section we try to provide an accurate estimation of the total risk Rmax(s) of
the grid state s. We recall that this risk is computed on all single and double outage.
Today operators do not consider this kind of risk systematically in daily operation
planning. Our objective here is to use the same computational budget as what operators
do today (i.e. computing exactly n power flow using a high-end simulator) and still be
able to estimate the total risk. In order to evaluate our method, we denote by η the
computational budget at our disposal, knowing that we are more interested in cases
where η ≈ n.

Summary of the workflow Here we summarize the workflow of this risk estimation.
This workflow is really similar to the one used for ranking outages. We recall here the
ranking process to present a complete workflow. The ranking is detailed in the next
paragraph, however.

1. For each outage z :

10There is a 103 relative factor between ζ(1) and ζ(2), so for a double outage zi, j to be simulated
before a single one zi, this would mean that L̂(zi, j;s)> 103.L̂(zi;s). But, we made various hypotheses,
in particular, that the error on the flow where normally distributed (see equation 6.8) which is not the
case in reality. In general we have then L̂(zi;s)−L(zi;s)>> 10−3. Even if the outage zi is harmless
(i.e. L(zi;s) = 0), this would imply L̂(zi;s)> 10−3, so this single outage would be ranked before any
"n-2" outage, which of course is not true in practice.
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(a) ∗Assess the flows f̂i on each powerline of the grid after outage z using an
artificial neural network

(b) ∗Compute the score L̂i, for each line to be above its thermal limit f̄i.

(c) ∗Compute the score for the grid to be not secure after outage z:

L̂(z;s)
def= max

1≤i≤n
L̂i(z;s)

(d) Assign a score ψ̂(z;s) to the outage z. This step is also present in the
ranking section, but it is slightly modified here compared to the ranking
procedure.

2. ∗ Rank the outages z according to their score ψ̂(z;s)

Then, once this has been performed:

1. For the η top-ranked outages (i.e. the most dangerous for the power grid accord-
ing to the neural network):

• Assess its risk L(z;s) using the slow simulator

• Sum the risk for each such most dangerous outages

2. For all the other outages (lowest ranked outages, the ones that are the least
dangerous for the powergrid)

• Assess its estimated risk L̂(z;s) using only machine learning

• Sum the risk for each such least dangerous outages

3. Add up the two cumulated risk

∗ denote the steps already developed in the previous subsection to rank the outages.
We do not cover their detail again in the detailed work-flow.

Detailed workflow The first steps of this application are identical to the steps per-
formed to compute the ranking. We do not recall them here. Thanks to Equation 6.11,
recalled for clarity:

L̂(aux)(z;s)
def= max

1≤i≤n
L̂i(z;s)

we have an estimator L̂(aux)(z;s) of the loss of outage z on grid state s. This is a biased
stochastic estimator11 of the true risk L(z;s): E

(
L̂(aux)(z;s)

)
̸= L(z;s). If we take the

11The stochastic aspect comes from the training data. A different training dataset would lead to a
different estimator.
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expectation over all possible training set, our estimator will not converge to the true
value of the risk. One novelty of this method is to create an unbiased estimator of this
quantity. To remove this bias, we proceed in two steps. First, we estimate this bias on
the calibration set:

b(z;s)
def=Ecalibration set

(
L̂(aux)(z;s)

)
−L(z;s) (6.13)

and we subtract this bias to the previous estimator to get an unbiased estimator of L(z;
s):

L̂(z;s)
def= L̂(aux)(z;s)−b(z;s) (6.14)

This "evaluated loss" L̂(z;x) is an unbiased estimator12 of the loss of the outage z:
L(z;x). An unbiased estimator of the severity score of outage z on situation x is then:

ψ̂(z;s)
def= L̂(z;s)p(z) (6.15)

After having ranked the outages in decreasing score, we use the slow simulator to
compute the risk of the most dangerous outages z, given the available computational
budget η . Formally, let Vη be the set of the η most dangerous outages according to the
estimated severity score. We have estimated with the simulator based on Kirchoff’s
laws the risk:

R(η ;s) = ∑
z∈Vη

p(z)L(z;s) (6.16)

We then reuse the approximations ψ̂(z;s) of ψ(z;s) to define the residual risk
(i.e. the risk of not computing accurately the set of outages in Z −Vη ):

R̂Residual(Vη ;s) = ∑
z/∈Vη

p(z)L̂(z;s) (6.17)

Note that this is an estimator of the residual risk. This is the reason why it is hatted.
And finally the estimation of the risk is given by:

R̂max(η ;s) = R(Vη ;s)+ R̂Residual(Vη ;s) (6.18)

This is the application of Equation 6.7 where V = Vη

12We have: E(L̂(z;s)) = E(L̂(aux)(z;s))− b. But, by definition b
def=E

(
L̂(aux)(z;s)

)
−L(z;s). Thus

E(L̂(z;s)) = E(L̂(aux)(z;s))− (Ecalibration set

(
L̂(aux)(z;s)

)
− L(z;s)). If, as we supposed the calibra-

tion is good enough to do the approximation: Ecalibration set

(
L̂(aux)(z;s)

)
≈ E

(
L̂(aux)(z;s)

)
. Finally

E(L̂(z;s)) = E(L̂(aux)(z;s))− (E
(

L̂(aux)(z;s)
)
−L(z;s)) = L(z;s).
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6.2.3 Results

In this subsection, we expose the results of the two methods, each in one following
paragraph. But first, let’s introduce the way the datasets have been generated.

Dataset generation We tested our methods on the case118 of matpower that we
already use in the previous section. We use the same method (i.e. detailed in Chapter
4) to sample some injections xxx and use Hades2 to compute the flows yyy from the
injections and the topologies. The topology of the powegrid has been kept constant,
and only changes due to lines disconnection (outages z) are affecting this topology. We
generate 500 different grid states changing the injections xxx of the initial grid provided
in Matpower.

On these 500 cases, we then computed, still using the high-end simulator Hades2,
the full "N-1" (making 500× 186 = 93 000 load flow computations). Among this
dataset, 75% have been used for training our model, and the rest (25%) for finding
the best architecture and meta-parameters (learning rate, number of units per layer,
number of layers, etc.) for the neural networks. Note that to be able to estimate the
overall generalization of our method, we don’t train our neural network on double
outages.

For the calibration dataset, we simulate 100 different grid states x and the full
"N-1" and "N-2" for all of these simulations. The test set is also composed of 100
different grid states, and their full "N-1" and "N-2" (i.e. we simulate all single and
double lines disconnections). The grid states in the test set are different from the one
of the calibration set and the one in the training/validation set and have never been seen
during either training or meta parameters estimation. We also want to emphasize that
the distributions of the test set (representing the data the network will be tested on) and
the distribution of the training set (data available for training the model, corresponding
to what operators do today) are different: the test set is composed of single and double
outages whereas the training has only single outages. This test set is similar to the
Super Test set of the previous experiments on the flows computations.

Outages ranking In this paragraph, we report the errors on the problem of ranking
the outages. We compare 4 different models.

• Operators The first one consists in the approach taken today by operators: they
evaluate first all single outage, and then all the double outages.

• G. Dropout trained n-1 only The second model is the guided dropout trained with the
dataset described in the previous paragraph.
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• G. Dropout We use the same architecture (with the same meta parameters)
but this time we also trained them on some double s (5000 sampled uniformly
among the 17 205).

• Ideal Corresponds to the ideal ranking. This is an oracle, it cannot be com-
puted in practice and represents what we should do if we knew the exact order.
Computing it requires to simulate with a real simulator all contingencies, their
associated score, and to rank them according to this.

A proper ranking can be evaluated in multiple ways. We try to focus on 3 mains
metrics:

• Gini coeff. [18] (between 0 and 1, 1 is best) is a measure commonly used in
the literature to evaluate ranking and also a measure of inequalities. It evaluates
globally how the ranking performs compared to an ideal ranking.

• R(η=n)
Rmax

: we do the ratio between the risk we don’t assess and the the total risk
for the top n outages. Recall that the risk R(η = n) is defined at equation 6.16.
This error measure is bounded between its Ideal value, that uses all the budget
properly, to 1 not a single outages ranked among the top n is dangerous. The
lower it is, the better the model performs. It evaluates how well the ranking
performs on the top n outages.

• C(R∗) is defined the minimum number η , such that R(η = n) is lower or equal
to R∗. R∗ being the risk taken into account by operators today. The lowest is the
best. It measures how well the ranking is doing on the first few outages.

As observed on Table 6.3, the neural network method is always better that the TSO
operator strategy, with respect to all metrics. The most promising results of Table 6.3
is in the 3rd row: the neural networks perform as well as the optimal strategy: the
most dangerous outages observed are always ranked among the first one, and on the
contrary, on the top-ranked outages, there are only the most dangerous. On average,
we need to simulate only 3−4 outages to achieve a residual risk below the risk taken
by operators. This is at the sale of this problem a speedup by a factor of more than 50.
Given that we scale the ratio of "bad" outages to be representative of the French power
grid, we expected speed-up in the same order of magnitude (10 fold improvement)
for the French Extra High Voltage powergrid. We can achieve that with both neural
networks, even the network trained only on “n-1” data.

As in every ranking problem, there is a tradeoff between the hit rate (detecting
true “bad” outages) and the false alarm rate (falsely diagnosing harmless outages as
“bad”). From the point of view of ensuring the security of a power grid, the severity of
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Table 6.3 Comparison of methods on the whole test set (mean over all s considered±
one standard deviation). Gini coefficient (between 0 and 1, 1 is best), the risk R(η = n)
for a maximum computational budget η = n and computation cost C(R∗) ensuring
that the risk R(η = n) remains below R∗ (in test data). For both R(V ∗) and C(R∗),
smallest is best.

Operators
G. Dropout

trained n-1 only
G. Dropout Ideal

Gini coeff.
0.41
±0.04

0.52
±0.04

0.95
±0.01 1.00

R(V ∗)
Rmax

0.59
±0.04

0.58
±0.04

0.46
±0.03

0.44
±0.03

C(R∗) 186
3
±2

3
±2

3
±2

both types of errors is not symmetric. It is far more important to have a high hit rate
than a low false alarm rate. The Gini coefficient does not capture such imbalance but
C(R∗) does. What is practically important to ensure the adoption of the method by
the power system community is that the risk curve R(η) decreases very fast, ensuring
that the “hit rate” be high initially. Remarkably, both neural networks rank first the
“bad” single outages, then chose among the worst “n-2” outages. The neural networks
privileged a high “hit rate” over lowering the “false alarm rate”, a risk-averse behavior,
which is expected to operate power systems in security.

Risk Estimation For this particular task, our baseline is to use only machine learning
to provide an estimation of the total risk. This is a benchmark against our method, that
uses a computational budget of η = n, the number of powerlines in the power grid.

Figure 6.4 presents the risk of the 100 grid states of the test set: the true risk 13

Rmax is represented in blue and is computed with the "physical simulator" according
to the equation 2.18. In orange, we show the estimated risk R̂max. In operational
processes, the true risk Rmax is unknown. For clarity in the representation, the 100 test
set situations have been sorted in increasing order of Rmax.

As we can see in Figure 6.4 (orange points), an estimate of the overall risk is
possible. Our estimate R̂max is quite close on average of the total risk Rmax. The
MAPE is 8.7%: Globally, we are also able to predict which situations will be the
riskiest: the Pearson correlation coefficient between the estimate and the true values
is 0.96: there exists almost a linear relationship between the proposed estimate and

13This is not available in practice as it would require too many calls to the physical simulator.
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Fig. 6.4 Comparison of two possible risk evaluation. In this figure, we compare
the true risk (in blue) and and the estimation of the risk (in orange) using : machine
learning only (on the left - with the estimator R̂(0;s)) and the proposed methodology
that relies on a physical simulator (right with the estimator R̂(η = n;s) comparable
computationally to what operators are doing today). Errors are reported for the 100
grid cases of the test set.

the actual true value. But, for the most interesting cases, where the true risk is the
highest (rightmost part of the histogram), the performance decreases. These are the
most interesting cases for the TSO but the empirical risk estimation is below the true
risk, which can be misleading when making decisions based on this indicator. This
estimation of the risk only relies on machine learning. This has limitations as we just
exposed. In the next subsection, we will explain how a careful use of a "physical
simulator", e.g. an algorithm that computes flows based on physical properties of the
system (Kirchoff’s laws for example) can increase the precision of the estimation of
the risk.

Once allowed a computational budget of η = n, the results for this new estimate of
the risk are presented in figure 6.4 (green points). As we can see, there is a significant
improvement. Using a slow simulator can drastically help increase the precision of
the risk. The MAPE between this new estimate and the real value is 2.5% compares
to 8.7% with the machine learning only. The main drawback of this approach is that
we only evaluate what happens for a fixed computational budget η = n. In Figure 6.5
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we vary the computational budget η (in x-axis) and report the MAPE between the
evaluation of the risk R̂max(η ;s) (in y-axis) for the 100 grid states s of the test set.

Fig. 6.5 Precision depending on the computational budget η . This figure represents
the MAPE gap between R̂max(η ;s) and Rmax(s) for the 100 grid states s of the test
set as a function of the number of calls to the physical simulator η . The error bars
represent the [25%−75%] confidence interval. As shown in the figure, only η5% ≈ 60
calls to the physical simulator are needed to have an error in the risk estimation bellow
5%. There is a sharp increase in error when the simulator is called only a few times.
The detailed explanation about this phenomenon can be found in Section A.2 of
appendix page 121 and following.

Figure 6.5 shows that the error on the risk R̂max(η ;s) decreases after a few calls
to the simulator when η > 20. This is not proper to the error14 used, the same shape
is obtained when considering other error measures (such as the RMSE). The error is
divided by 3 if we compare the error on the Rmax and the error on the residual risk
after n calls to the physical simulator. This is not surprising: the neural network makes
a good job in ranking the outages but seems to struggle in the prediction of the severity
score ψ(z,s) especially for the most dangerous outages z. Using the simulator on these
cases to asses this score with precisions solves this problem.

6.2.4 Conclusion

In both controlled experiments analyzed in this section, we showed that the guided
dropout algorithm could be used to effectively assist operators in its daily tasks.

Our proposed methods rank outages efficiently: identifying first the dangerous
single outages. This quick estimation could be used by operators either to spend

14In this case the MAPE
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more time in studying the most dangerous outages or to make better use of their
computational budget by studying other types of outages not systematically considered
today (e.g. double outages).

We showed that our method allows us to also aggregate the risk induced by all
outages and compute how secure our insecure a power grid would be overall. This
tools can be used to assess various “would be” scenarios, for example testing whether
an action (e.g. change of topology) would benefit to the power grid (evaluating the
risk before and after a potential application of this action). It could also be used as an
alarm in real time: if the risk is higher than a threshold, an action must be performed
rapidly to prevent a potential blackout, for example.



Chapter 7

Forward looking work

We presented in the previous section systematic experiments that indicate the potential
of our method. To go beyond this initial proof of concept, we conducted a number of
experiments on real data with two objectives:

• Demonstrating that our method scales up to grid sizes commensurate with
systems of actual interest to RTE.

• Evaluating how close we are from having a solution viable for deployment.

• Identifying directions of future research.

One limitation of experiments in real data is that analyses such as those of the
previous chapter relying on controlled experiments, that cannot be replicated stricto-
sensu in the real French powergrid. The principal limitation we are facing is the
lack of annotations in real data, as detailed in Chapter 4, and particularly annotations
concerning the accidental or intentional of changes in grid topology: we only have
records of the state of the grid, not what triggered modifications.

In this chapter, we nevertheless attempted to work with real data and go as far as
possible to demonstrate our methodology in a realistic setting. In particular, we study
two possible ways to apply our methodology directly to real powergrid snapshots:

• We present early work we carried out and aiming at labeling a posteriori the
actions that have been taken by operators for security reasons. This work, based
on the concept of "counterfactual" requires a lot of computational resources and
inspired another Ph.D. thesis at RTE that will combine both machine learning
and experts to relabel this dataset.

• We also present early results in the approximation of the flows from the French
powergrid snapshots. The methodology developed in the previous chapter to
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rank outages and computing is a much better approximation compared to the
N-1 security criteria (detailed in Chapter 2). This is an ongoing work at this
stage.

This chapter is organized as followed. First, we present work on the labeling the
French powergrid. Then we present early results on the application of the guided
dropout methodology on part of the French power grid. Finally, we conclude the whole
work.

7.1 Real use case: application of the guided dropout
on real data

In this section, we use some real data coming from the French extra high voltage power
grid to solve a problem that is today interesting for RTE. We apply the guided dropout
algorithm to real data coming from the French powergrid. These dataset have been
described in Chapter 2 4 pages 43 and following.

We recall that for various reasons detailed in Chapter 4 we decided to study
the problem of predicting the security of the powergrid after some lines have been
disconnected for maintenance operations. In this section, we report errors on real
datasets. These errors are not what really interests TSOs and in particular RTE, that
are more interested in predicting whether or not an outage is dangerous. More suited
metrics, e.g. similar to the one used in Chapter 6 Section 6.2 for example are under
study to validate really the method on these data.

As in every application treated in this work, the dataset is composed of (xxx,τττ,yyy)
with xxx being the injections (productions and loads) of the French area studied, yyy the
flows on the power line. τττ is the structural vector encoding whether or not a given
powerline is connected or disconnected from the powergrid. On the contrary to what
we have done in the controlled experiments, τττ is not the full description of the topology.
The baseline is made by switching a residual block instead of a guided dropout block.
We emphasize that in this setting, it would not be fair to compare ourselves with the
DC approximation. The DC approximation requires the full description of the topology
and in these applications, we want to evaluate the performance of a learning machine
that does not require this detailed description.

More generally, using real dataset implies some major differences compared to the
studies performed in the previous subsections.

• Data is much noisier. This is true whenever using data coming from industrial
processes. The powergrid we are studying is evolving, some lines change of ID
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in the dataset, some physical properties are changing too (for example RTE might
decide to add new lines between 2 substations or to increase the maximum
capacity of some other lines on the grid).

• Because we are studying steady-state powergrids, it is possible to obtain the
powerflows given the injections and the topology. This was what we did in
the controlled experiments of the previous subsections. Here the problem is
more complicated, as we provide only partial information about topology to the
neural network. The information is partial because the neural network has no
information about which lines is connected to which others.

• The neural network architecture is "blind" from a lot of topological changes.
The only topological information provided to the neural network is whether a
powerline is absent or present. It has no knowledge about topological changes
that not induced by the removal from the grid of a powerline. We hope the neural
network can adapt to these changes, that are made by operators either regularly
(adapting the topology of the powergrid is a cheap way of handling variations
of total demand) or should have low impact on the flows (a test if a breaker is
still functioning normally is not performed if it has a risk of endangering the
powergrid).

This challenge is assessed using two different experiments. In the first one, we
used data coming from the Toulouse area to assess the capability of the guided dropout
algorithm to predict flows on historical data, if the training data comes from historical
data only. We see that even if the guided dropout performs better than the baseline,
the results are not good enough to be used in real time operational processes. On the
"Marseilles" area, we augmented the French dataset by disconnecting randomly some
powerlines also during training, with the hope of improving the performance of our
models.

Toulouse Area

We first start by reporting some error experiments on the Toulouse area, located at
the south west of France. For this experiment, we trained a model with raw French
powergrid snapshots from January 1st 2012 to May 31st 2017.

We evaluate the performance of our model in two different settings:

• Test set: when the test dataset is drawn from a similar distribution as the training
dataset. This is done by evaluating error on data withdrawn uniformly at random
from the training period. This corresponds to the error where the model can be
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Fig. 7.1 Real data from the ultra high voltage power grid. We show the MSE
error in Amperes on a log scale as a function of training epochs. The neural network
in both cases is trained from data until May 2017 with real data. (a) Regular
generalization. Test set made of randomly sampled data in the same time period as
training data. (b) Super-generalization. Test set made of the months of June and July
2017.

often retrained, even in real time. Indeed, in a real time process, if a model can
be often retrained, the distribution of the data it will be tested on (the few next
time steps) is close to the one it is trained on.

• Super test set: this dataset is composed of the two following months of data.
In this case, the model is asked to predict the flows for the months of June and
July 2017. This dataset is a super test as we defined it in this manuscript. In
other frameworks,e.g. time dependent statistical estimations such as time series
forecasting, what we refer to as "super test" in denoted by "test set" more simply.
We kept the "super test set" denomination because the topologies seen in this
dataset, for the structural variables τ are not the same in training set and in this
dataset.

Figure 7.1 displays the learning curves obtained on these real data. We arrive at
the same conclusions as in the previous subsection: the guided dropout model is able
to learn a similar distribution than the one it is trained on (figure 7.1a).

The guided dropout architecture can also generalize to unseen grid states better
than the reference architecture (figure 7.1b), which is a critical property for the applica-
tion. The baseline architecture performs well on data distributed similarly to training
data (figure 7.1a) but does not super-generalize as well as the guided dropout. On
this dataset, the MAPE90 error for the guided dropout is on the order of 17− 18%
(approximately 25% for the baseline one hot architecture), which is higher than what
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operators would consider as acceptable. This poor performance can be explained: in
the test dataset, some lines that are connected in the test set have never been observed
disconnected in the training set. The guided dropout algorithm doesn’t know how to
handle it.

In the next subsection, we report errors for another area of France where this
problem have been tackled by randomly disconnecting lines in the training also. This
process adding simulated data in the training is similar to what people are doing in
other fields (such as natural language processing or computer vision) and is often called
data augmentation, as detailed in [39] in the application context of image classification
for example.

Marseilles area

This real power grid is composed of 377 loads, 75 productions and 260 transmission
lines. In this experiment, we aim at assessing the ability of the guided dropout to have
sufficient performance on a more complex industrial problem. Moreover, τττ is here a
very high dimensional binary vector (of dimension 260), and there is very little control
over the values taken by τ in the Train and Test sets.

The data generating process is the following. In the training set, 10,000 sets of
power production, consumption (x) and partial grid topology (τ) are taken uniformly at
random among the powergrid snapshots of 2017 and January and February 2018. We
generated 40 more tuples by randomly disconnecting one line in τ and this 40 times.
We then have 410,000 tuples (x,τ). This is done so as to increase the probability for
each line to be disconnected at least one time in the Train set. Otherwise, many lines
would always be observed as closed during training.

The test set is composed of 1000 drawn also uniformly at random in these same
periods of time. No extra powerlines are disconnected in the test set. Grid states on
the test set have never been observed in the training set.

In the Supertest set, the tuples (x,τ) are sampled from the month of March 2018
(which is never observed in the training set). But then the same procedure is applied,
except that there is no forced line disconnection.

Every configuration of τ present in the Test set were previously observed in the
Train set. In the meantime, we know that there are configurations of τ present in the
Supertest set that were never observed in the Train set: data in the test dataset are not
drawn with the same distribution as the one in the training dataset.

The metric used to assess the performance of our models is the MAPE for the 90%
(denoted by MAPE90) of largest flow in Amps (A) for each line in absolute value. This
metric insists on the error for the largest values for each line, which reflects the will



106 Forward looking work

Test (MAPE90) Supertest (MAPE90)
One hot 4.8%±0.1% 17.3%±0.5%
Guided dropout 444...222%±±±000...111% 111444...222%±±±000...444%

Table 7.1 Results of experience on the Marseilles area. We present the average
(±standard deviation) of the MAPE90 (MAPE compute on the 10% highest true value
for each power line) for two models: the baseline and the guided dropout. Both model
are trained on 10 000 grid states, uniformly at random sampled among year 2017 and
the 2 first months of 2018. A process of data augmentation has been used (random
line disconnection in this training set). Error are reported for the Test set (1 000 grid
cases drawn uniformly at random for the same period as the training set) and Supertest
(1 000 drawn uniformely at random for the month of March 2018).

to assess the security of the system in extreme conditions. It is a lot more important
to be accurate for flows that are large, than for flows that are almost 0. Moreover,
high power flows also mean a more important non-linearity of the system. For this
application, the MAPE90 is below than 5% for all the learned models (whether guided
dropout or the one hot architecture). On this dataset the performance of the guided
dropout and the baseline are similar. These models have been fully trained (the error is
still decreasing) this can be seen as a requirement for a real application derived from
these experiments: each of this models has been trained for less than 24 hours.

Table 7.1 shows the average performance for both the Test and Supertest and the
standard deviation. One can observe that the guided dropout net consistently has a
better accuracy for both cases. The difference is flagrant on the Supertest, as the
MAPE90 is approximately 3 points lower for the guided dropout net than for the
baselines, which is approximately a 17% gain in accuracy.

Compare to the experiment without data augmentation of the first part, this error is
lower (drop from 17% to 14% here). But data augmentation alone is not enough to
use such a method for real-time operations support: the error remains too high.

Conclusion on this preliminary work

In previous experiments, we studied how the developed methodology was working on
a real dataset. Experiments lead to two major conclusions:

• The guided dropout performs better than the baseline in most interesting use
case

• Errors on the Test set are reasonable1, but the errors on the Super Test set are
too high.

1Today, operators take most of the time some margin, and these margins are approximately 5% of
the thermal limits. Having 5% error could then be considered as a "reasonable" error.
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These preliminary results are encouraging in many different ways.
First, in the controlled experiments the gap between test error and super test error

did not increase too much. We hope that with a better understanding of the guided
dropout methodology, we could get the same property when using real dataset. Work
is being pursued at this time to better understand the properties of the guided dropout,
and we hope, with a new Ph.D. student to be able to publish a journal paper on the
guided dropout.

Secondly, the experimental setup was not really representative of a possible use
in real time. Training neural network from scratch, in this case, took approximately
a few hours (12 to 24 hours), and the Super Test period last for 1 or 2 months. This
might seems a bit extreme, and the neural network could be re-learn every week for
example. Also, neural networks have the interesting property: they can be “fine-tuned”
[53]. This process consists in reusing previously trained neural network weights as
a starting point to train another one on a different dataset. This is widely used in the
neural network community for image processing and could be used in this setting
as well. First, a neural network could be trained using the whole historical dataset,
then, each night, the model would be retrained using the most recently acquired data.
That way, the distribution of the data the neural network is tested will be closer to the
distribution it has been trained on. We could expect to get closer to the error on the
Test set that way.

Finally, a framework closer to the one developed in Section 6.2 of Chapter 6 could
be adopted. In fact, for TSOs the most important property is to be able to predict
accurately whether or not an outage will push the grid outside of its security domain.
The fact that flows are not predicted accurately enough doesn’t necessarily mean the
method will perform poorly on this detection. Assessing whether or not all double
outages (two powerlines disconnecting from the grid) is not possible for tools used by
TSOs as it would require too much computation. If the developed method could allow
to do it, even partially, that could still be used by TSOs. Work in this direction is being
performed at the moment.

7.2 Conclusion

In this section, we detailed how the guided dropout methodology can be used to predict
flows from the French powergrid snapshots. Compare to the systematic experiments
on simulated datasets, this problem is much harder, especially because only partial
information is provided to the neural network: the neural network is blind of some
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topological changes, e.g. changes that are independent of the presence / absence of a
power line.

On these more complicated cases, the guided dropout model performs better than
the neural network baseline. Compared to most models in use today, this allows TSO
to approximate flows without a complete information about the powergrid topology.
This model achieves relatively good performances on data similar to which they have
been trained on. This is a major result: guided dropout can be used for grid operations.

It has still struggle to approximate the flows on completely unseen topologies2.
This denotes more a problem on the evaluation metric. In fact, TSOs are not really
interested in approximating flows, they want to know if the powergrid will be in
security or not. More work on this aspect could be carried out. Defining more precisely
and computing this evaluation metric will be the focus of future studies.

Another way to improve the performance on these new topologies would be to
retrain the neural network more often. A period of more than a month has been used
to test the algorithm, algorithm that can be learned in a few hours, and that has the
property of being “fine-tuned”. Another method to improve the results would be to
learn not only from realized snapshots but on powergrid studied by the operators for
example.

2The topologies at the grid level in the test set are not observed in the training set. On the contrary,
most of the topologies at each substations are not observed in the training set, but not all necessarily.



Chapter 8

Conclusion

The main objective of this doctoral thesis was to develop and study a method to help
TSOs take better decisions in a changing environment. Power grids are evolving, in
an environment facing unprecedented transformations with the introduction of new
market rules, new ways in which power is consumed (through the introduction of
self-consumption and the emergence of new behaviors, such as electric cars) and
produced (power is increasingly produced using renewable intermittent energy sources
such as solar and wind), as well as the diminishing public acceptance for new heavy
infrastructures. All these factors combined, make power system operations more
complex than ever before. Methods currently in TSO’s hands might reach their limits
with these new challenges. The “renaissance” of deep learning methods, - including
breakthroughs in a number of diverse areas from computer vision, to natural language
processing or in some games such as Go or poker - offer an opportunity to adapt these
methods to power system issues.

In this report, we begin by modeling the ideal operator and demonstrating how
machine learning could lead to better decision-making in Chapter 2. In Chapter 3, we
explore briefly some methods used within the machine learning community, principally
neural networks.

Chapter 4 details the data available at RTE for this work. We also discussed the
fact that this dataset was not labeled (only the actions are recorded while their causes
and consequences remain unknown) and explained what it was necessary to build an
artificial dataset to perform some controlled experiments that allow a validation of the
developed methodology. Compare to what people generally do in machine learning,
our dataset can be formalized as (xxx,τττ,yyy) with xxx being the value of the injections, yyy
a vector representing the flows on the power line. Both these vectors are continuous
variables. The specificity of our problem is that the mapping between xxx and yyy is
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parametrized by the vector τττ . This structural vector τττ represents the information
available for the topology of the powergrid.

In Chapter 5 the main model developed in this work is described. It consists in
adapting the architecture of a neural network depending on the structural vector τττ

rather than to adding this vector as an input which is the case in model present in
the literature. This way of encoding the topology forces the neural network to learn
pertinent representations allowing it to generalize to unseen structural vector τττ . In this
chapter, we also mathematically show, in a simplified setting, that this method was
indeed capable of extrapolating knowledge to cases where τττ is not observed.

Finally in Chapter 6, we report some results of the proposed methodology and
compare it to different baselines. The first consists of the “DC approximation” (a
linearization of the power flow equations used in the power system community) and a
neural network with topology added as an input. In all the settings studied, we showed
that the guided dropout methodology outperformed both these baselines. This chapter
also elaborates on two possible uses of machine learning to help operators: by ranking
outages by severity and by assessing in real time how sensitive a powergrid is with
respect to some probabilities of power line failure.

In this work, we eventually opened the path to a potential widespread use of deep
learning methods in power system applications. This work has perspectives in multiple
areas, as detailed in Chapter 7. First, some work can be carried out to label the French
dataset and allow its use to check in more detail the validity of any machine learning
methodology. We proposed a first possible approach in this labeling task relying
solely on machine learning. This project of labeling will be pursued by another Ph.D.
candidates at RTE, as her work focuses on using hybrid methods for this task: using
both machine learning and expert operators for this difficult task.

Another way to continue this work would be to evaluate our models based on
metrics that takes into account in a more precise fashion the properties sought by
TSO’s today. and to validate in a more systematic way the use of machine learning
methods on real datasets coming from the French powergrid snapshots. This work is
an ongoing process, and with another Ph.D. candidate recently hired by RTE, we hope
to be able to publish some results on this method in a journal paper. This paper will
also be the occasion to test the robustness of our methods in problems not necessarily
related to power systems.

In this work, we proved, at least in controlled experiments, that machine learning
could allow TSOs to predict flows accurately on snapshots, even in unseen cases. We
focused on assessing whether an outage would endanger a powergrid, or whether an
action proposed by operators could “cure” a power grid. One of the natural extensions
of this assessment would be to propose relevant actions to operators in real time along
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with a time horizon. This work will be pursued by a Ph.D. candidate at RTE whose
thesis will focus on “reinforcement learning”.

We envision several possible directions for future research. First, within the realm
of power system applications, our proposed architecture could be used to learn to di-
rectly propose curative or preventive actions, trained from dispatcher historical actions.
Having a neural network capable of mimicking dispatchers is a first step towards fully
automating the control of grid operations, possibly refined by reinforcement learning.
Secondly, outside of the field of power systems, our architecture may find applications
for problems having a mix of continuous and discrete input variables.
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Appendix A

Appendix

A.1 Bus splitting, impact of topology on power flow
equations

We will illustrate this changes through an example. Let’s consider the figures 2.1a and
2.2b. Both powergrids are identical, except that in the second one, compared to the
first 1, the substation 1 is split into 2 buses. For clarity, we report only the active part
of the equations 2.9, only for the buses in the first substation and suppose that for every
power lines in this network bk→ j ≡ b and gk→ j ≡ g, b and g being constants. Let’s
also suppose that, in both cases c1 withdraw a amount of active (resp. reactive) power
−P (resp. −Q) from the power grid, and that the production p2 inject an active power
P′ and has a voltage magnitude setpoint |V |. Lastly, all the substations that are not the
substation 1 are operated with one single bus. We will name these buses accordingly:
the bus number 2 will be the bus in the second substation, the bus number 3 the bus in
the third substation etc.

In Figure 2.1a, everything is interconnected at substation 1: it counts only 1 bus,
that we will name C. It has a production connected to it, os it is a "PV" node according
to the nomenclature of Table 2.1, and the unknowns are qC and θC. For this bus C, the
equations are:{

0 =−pC

m

∑
j=1
|vC||v j|

(
g.cos(θC−θ j)+bsin(θC−θ j)

)
(A.1)

But at this buses, the power injected pC is pC = P′−P. Finally, we now that |vC|= |V |,
the setpoint voltage magnitude of the production p2 connected to it. Moreover, we
know, from Figure 2.1a, that this bus C is connected to bus 2 through line 2, to bus 3
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through line 2, to bus 4 through line 3 and to bus 5 through line 4. This gives:
(P′−P) = |v||v2|(g.cos(θC−θ2)+bsin(θC−θ2)) [→ bus 2 through power line 1]

+ |v||v3|(g.cos(θC−θ3)+bsin(θC−θ3)) [→ bus 3 through power line 2]

+ |v||v4|(g.cos(θC−θ4)+bsin(θC−θ4)) [→ bus 4 through power line 3]

+ |v||v5|(g.cos(θC−θ4)+bsin(θC−θ4)) [→ bus 5 through power line 4]
(A.2)

Now let’s derive the equations for the configuration in Figure 2.2b. In this figure,
we can see there are now 2 buses in this substation. Let’s note them C′ and D′. C′

denotes the bus 1 where production p1 and power lines l3 and l4 are connected (blue
bus) and D′ represents the bus where c1 and power lines l1 and l2 are connected (orange
bus). The equations become:{

0 =−pC′
m

∑
j=1
|vC′||v j|

(
g.cos(θC′−θ j)+bsin(θC′−θ j)

)
for bus C′ (A.3){

0 =−pD′
m

∑
j=1
|vD′||v j|

(
g.cos(θD′−θ j)+bsin(θD′−θ j)

)
for bus D′ (A.4)

We now a production is connected to bus C’. This implies that |vC′|= |V | the setpoint
value of the production, and that pc′ = P′, since the only object connected to this node
is the production p2. We also know that bus C’ is connected to bus 2 via line l1 and
bus 3 via line l2. In the same manner, we have pD′ = P and C′ is connected to bus 4
via line l3 and to bus 5 via line l4. The two equations above then becomes:{

P′ = |v||v2|(g.cos(θC′−θ2)+bsin(θC′−θ2)) [→ bus 2 through power line 1]

+ |v||v3|(g.cos(θC′−θ3)+bsin(θC′−θ3)) [→ bus 3 through power line 2]

(A.5){
−P = |vD′||v4|(g.cos(θD′−θ4)+bsin(θD′−θ4)) (→ bus 4 through power line 3]

+ |vD′||v5|(g.cos(θD′−θ4)+bsin(θD′−θ4)) [→ bus 5 through power line 4]

(A.6)

The table A.1 sum up all these equations, obtained for substation 1, and for the
active part only1. As we can, this change in topology of substation 1 has multiple
impact. Firstly there are more variables in the second case (when there are 2 nodes in
this substation) because there are more buses in the power grid. Secondly there is only
1 equation that describe the kirchoff’s law in this substation in the first case (left part
of the Table A.1) and 2 equations when there are 2 buses. The main thing to remember

1The reactive part
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is that a change in a substation topology deeply changes the equations describing the
grid and can lead to very different solutions.

Table A.1 Transformation of the load flow equations related to the first substation of
the power grid showed in Figure 2.1a when the topology changed in the one described
in Figure. 2.2b. Only the active part are showed here, and only for the buses of the
first substation.

Power grid configuration of

Figure 2.1a Figure 2.2b

(P′−P) = |v||v2|(g.cos(θC−θ2)+bsin(θC−θ2)) P′ = |v||v2|(g.cos(θC′−θ2)+bsin(θC′−θ2))
→ bus 2
through line 1

+|v||v3|(g.cos(θC−θ3)+bsin(θC−θ3)) +|v||v3|(g.cos(θC′−θ3)+bsin(θC′−θ3))
→ bus 3
through line 2

+|v||v4|(g.cos(θC−θ4)+bsin(θC−θ4)) −P = |vD′||v4|(g.cos(θD′−θ4)+bsin(θD′−θ4))
→ bus 4
through line 3

+|v||v5|(g.cos(θC−θ4)+bsin(θC−θ4)) +|vD′||v5|(g.cos(θD′−θ4)+bsin(θD′−θ4))
→ bus 5
through line 4

A.2 Machine learning and risk estimation

In the related section of the manuscript, showed in Chapter 6, Figure 6.5 (recalled
hereafter for clarity), there were a phenomenon that has not been explained in the main
manuscript: before decreasing the error on the estimation of the risk R̂ and the true
risk R increases.

In this section, we give an explanation about this phenomenon. In fact, this is
due to the structure of the risk considered. We recall the risk of a powegrid, and the
estimator of the risk used in the section:

R(s) = ∑
z∈A

p(z).L(z;s) (A.7)

R̂(η ;s) = ∑
z∈Vη

p(z).L(z;s)︸ ︷︷ ︸
Evaluate the most dangerous with the simulator

+ ∑
z/∈Vη

p(z).L̂(z;s)︸ ︷︷ ︸
Rely on machine learning only for the least dangerous one

(A.8)

where A is the set of all considered outages, in this case all single and double outages,
p(z) is the probability of occurrence of outage z, and L(z;s) is the cost associated to
this contingency when power grid is in state s. Recall that the methodology for this
estimation was to first rank the contingencies, and then group the η first contingencies
in a set denoted by Vη .

We can explain this phenomenon of increasing error in two possible ways. The first
one is that the estimated loss is ill predicted with the neural network. The estimator
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Fig. A.1 Precision depending on the computational budget η This figures repre-
sents the MAPE between R̂max(η ;s) and Rmax(s) for the 100 grid states s of the test set
as function of the number of calls to the physical simulator η . The error bars represent
the [25%−75%] confidence interval. As showed in the figure, only η5% ≈ 60 calls to
the physical simulator are needed to have an error in the risk estimation bellow 5%.
We show an increasing of the error when the simulator is called only a few times. The
detailed explanation about this phenomenon can be found in Section A.2 of appendix
page 121 and following.

R̂(η = 0;s) is however unbiased. So replacing ill predicting values with correct
values introduces a bias, that leads to an higher error. An example that illustrates this
phenomenon is detailed in Table A.2.

Table A.2 Illustration of the bias introduced in the estimation of the risk by simu-
lating only the most dangerous outages. In this small example, R = 1+2+1+5+3+
4+6+7+6 = 35, R̂(η = 0) = 1.2+2.3+1.2+4.7+3.7+4.2+5.5+6.5+5.3 =
34.6, and if the top 2 contingencies, bold faced in the table bellow, that are evaluated
with the true simulator this gives R̂(η = 2;s) = 0.8+2.3+1.2+4.7+3.7+4.2+666+
777+5.3 = 35.6. So we in fact have

∣∣R− R̂(η = 0)
∣∣< ∣∣R− R̂(η = 2)

∣∣ which explains
the phenomenon observed.

z1 z2 z3 z4 z5 z6 z7 z8 z9
True loss p(z).L(z;s) 1 2 1 5 3 4 6 7 6
Estimated loss p(z).L̂(z;s) 1.2 2.3 1.2 4.7 3.7 4.2 5.5 6.5 5.3



Titre: Méthode d’apprentissage profond (deep learning) pour prévoir les flux dans les réseaux de transports d’électricité:
nouvelles architectures et algorithmes.
Mots clés: apprentissage, super grid, optimisation
Résumé: Cette thèse porte sur les problèmes de sécurité sur le
réseau électrique français exploité par RTE, le Gestionnaire de
Réseau de Transport (GRT). Les progrès en matière d’énergie
durable, d’efficacité du marché de l’électricité ou de nouveaux
modes de consommation poussent les GRT à exploiter le réseau
plus près de ses limites de sécurité. Pour ce faire, il est essentiel
de rendre le réseau plus "intelligent". Pour s’attaquer à ce prob-
lème, ce travail explore les avantages des réseaux neuronaux
artificiels.
Nous proposons de nouveaux algorithmes et architectures
d’apprentissage profond pour aider les opérateurs humains
(dispatcheurs) à prendre des décisions que nous appelons "
guided dropout ". Ceci permet de prévoir les flux électriques
consécutifs à une modification volontaire ou accidentelle du
réseau. Pour se faire, les données continues (productions et
consommations) sont introduites de manière standard, via une
couche d’entrée au réseau neuronal, tandis que les données
discrètes (topologies du réseau électrique) sont encodées di-
rectement dans l’architecture réseau neuronal. L’architecture

est modifiée dynamiquement en fonction de la topologie du
réseau électrique en activant ou désactivant des unités cachées.
Le principal avantage de cette technique réside dans sa capacité
à prédire les flux même pour des topologies de réseau inédites.
Le "guided dropout" atteint une précision élevée (jusqu’à 99%
de précision pour les prévisions de débit) tout en allant 300 fois
plus vite que des simulateurs de grille physiques basés sur les
lois de Kirchoff, même pour des topologies jamais vues, sans
connaissance détaillée de la structure de la grille. Nous avons
également montré que le "guided dropout" peut être utilisé
pour classer par ordre de gravité des évènements pouvant sur-
venir. Dans cette application, nous avons démontré que notre
algorithme permet d’obtenir le même risque que les politiques
actuellement mises en œuvre tout en n’exigeant que 2% du
budget informatique. Le classement reste pertinent, même pour
des cas de réseau jamais vus auparavant, et peut être utilisé
pour avoir une estimation globale de la sécurité globale du
réseau électrique.

Title: Deep Learning Methods for Predicting Flows in Power Grids: Novel Architectures and Algorithms
Keywords: deep learning, super grid, optimization
Abstract: This thesis addresses problems of security in
the French grid operated by RTE, the French “Transmission
System Operator” (TSO). Progress in sustainable energy, elec-
tricity market efficiency, or novel consumption patterns push
TSO’s to operate the grid closer to its security limits. To this
end, it is essential to make the grid “smarter”. To tackle this
issue, this work explores the benefits of artificial neural net-
works.
We propose novel deep learning algorithms and architectures
to assist the decisions of human operators (TSO dispatchers)
that we called “guided dropout”. This allows the predictions
on power flows following of a grid willful or accidental modi-
fication. This is tackled by separating the different inputs: con-
tinuous data (productions and consumptions) are introduced in
a standard way, via a neural network input layer while discrete
data (grid topologies) are encoded directly in the neural net-
work architecture. This architecture is dynamically modified

based on the power grid topology by switching on or off hidden
units activation’s.
The main advantage of this technique lies in its ability to pre-
dict the flows even for previously unseen grid topologies. The
"guided dropout" achieves a high accuracy (up to 99% of preci-
sion for flow predictions) with a 300 times speedup compared
to physical grid simulators based on Kirchoff’s laws even for
unseen contingencies, without detailed knowledge of the grid
structure. We also showed that guided dropout can be used to
rank contingencies that might occur in the order of severity. In
this application, we demonstrated that our algorithm obtains
the same risk as currently implemented policies while requiring
only 2% of today’s computational budget. The ranking remains
relevant even handling grid cases never seen before, and can
be used to have an overall estimation of the global security of
the power grid.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France


	Table of contents
	List of figures
	List of tables
	Glossary
	1 Background and motivations
	2 Power system description
	2.1 Power grid description
	2.1.1 Utility of a power grid
	2.1.2 Injections and flows
	2.1.3 Powerflow solver
	2.1.4 The DC approximation

	2.2 Security criteria
	2.2.1 Thermal limit and "N" security
	2.2.2 "N-k" security
	2.2.3 New conceptual security frameworks

	2.3 Modeling a perfect operator
	2.3.1 Possible actions
	2.3.2 Assisting operator with machine learning
	2.3.3 Related works
	2.3.4 Summary


	3 Artificial Neural Networks
	3.1 From linear regression to artificial neural networks
	3.1.1 Linear regression
	3.1.2 Extensions of the linear regression
	3.1.3 Artificial Neural Network
	3.1.4 Training procedure

	3.2 Predictions of flows and first deep neural networks
	3.2.1 Motivations
	3.2.2 Flow prediction in a fixed grid state
	3.2.3 Machine learning for power system analysis


	4 Data presentation
	4.1 French powergrid
	4.1.1 Description of the French dataset
	4.1.2 Maintenance operations
	4.1.3 Summary of the use of French Dataset
	4.1.4 Limitations in using a real dataset

	4.2 Generation of synthetic data, experiments on a synthetic power grid
	4.2.1 Sampling active loads
	4.2.2 Sampling reactive loads
	4.2.3 Sampling productions
	4.2.4 Discussion

	4.3 French grid state snapshots: disentangling grid events to identify operator’s actions and their purpose
	4.3.1 Labeling the dataset
	4.3.2 Results
	4.3.3 Discussion and limits


	5 The ``Guided Dropout'' methodology
	5.1 Introduction
	5.1.1 Specifications
	5.1.2 Background

	5.2 Description of the guided dropout methodology
	5.2.1 Notations and definitions
	5.2.2 Guided dropout intuitions
	5.2.3 Final Neural network architecture
	5.2.4 Interpretation and latent spaces

	5.3 Super-generalization of GD for a system with additive perturbations
	5.3.1 Perfect prediction case
	5.3.2 Imperfect prediction case

	5.4 Discussion
	5.4.1 Comparison with a solver
	5.4.2 Related works


	6 Guided dropout Applications
	6.1 Predictions of flows
	6.1.1 Baseline methods
	6.1.2 Dataset Generation
	6.1.3 Results
	6.1.4 Conclusion of this work

	6.2 Operator decisions support
	6.2.1 Notations and problems formulation
	6.2.2 Methodology
	6.2.3 Results
	6.2.4 Conclusion


	7 Forward looking work
	7.1 Real use case: application of the guided dropout on real data
	7.2 Conclusion

	8 Conclusion
	References
	Appendix A Appendix
	A.1 Bus splitting, impact of topology on power flow equations
	A.2 Machine learning and risk estimation


