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Formalisation et applications des réseaux de neurones à la sécurisation d'applications mobiles 3D.

This thesis work is part of the 3D NeuroSecure project 1 . It is an investment project that aims to develop a secure collaborative solution for therapeutic innovation using high performance processing (HPC) technology to the biomedical world. This solution will give the opportunity for experts from different fields to navigate intuitively in the Big Data imaging with access via 3D light terminals. Biomedical data protections against data leaks are of foremost importance. As such, the client environment and communications with the server must be secured. In the following parts, we detail the 3D NeuroSecure, then we summarize and develop the problematics of this thesis, last we present the research directions that has been chosen as solutions to these problematics.

3D NeuroSecure

The 3D NeuroSecure project aims toward the opening of high performance processing to the biomedical world, by combining the exploitation of exascale level numerical simulations and 3D preclinical models for the development of new medicines. The ability to process massive volume of data in a decentralized and secured way is a major concern for the years to come. The Proof of Concept (PoC) of the 3D NeuroSecure project is an application to the Alzheimer disease. We will use 3D images of whole brains from microscopic scale imagery with atomic scale numerical simulations to select and develop molecules against new therapy targets that have been identified in the Alzeimer disease. The rendering of these 3D images on tablet computer with stereoscopic screen will enable to grasp the abundance and the complexity of the results in an intuitive manner, with a collaborative work mindset on confidential data. These secured tablets will open the path for multiple serious game applications that are not limited to therapy monitoring.

The 3D NeuroSecure project is carried by Neoxia 2 . The industrial partners are, Archos Logic Instrument 3 and TRIBVN 4 . The research laboratory partners are CEA-DAM 5 , CEA-DRF 6 , ESIEA-CVO 7 , URCA-(CReSTIC 8 and MaSCA 9 ).

1. http://www.3dneurosecure.com/ 2. https://www.neoxia.com 3. http://logic-instrument.com 4. http://www.tribvn.com 5. http://www-dam.cea.fr 6. http://www.cea.fr/drf 7. https://www.esiea.fr/expertise-confiance-numerique-securite 8. https://crestic.univ-reims.fr 9. http://www.univ-reims.fr/recherche/plateformes-technologiques/maison-de-la-simulation, 15923.html 3D NeuroSecure is a global secure solution that knocks down the different barriers that prevent the effective sharing of complex biomedical data and, more widely, of any restricted information. The end-toend security enables to use the whole potential of decentralized high performance processing on secured light terminals made available to managers and experts that need to analyze critical information and to collaborate remotely. The security aspect of the 3D NeuroSecure PoC is obvious, as much for information regarding the evolution of cerebral performance as for the patient evaluations.

The technological models of system protections show at the moment severe limitations. For the protection against malicious codes and attacks, the main reasons of the inefficiency are:

• Regular viral detection based on patern matching requires manual analysis of malware samples. It places the solution in reaction to the attack. Therefore, there is a gap between the initial detection of a new attack and the means to prevent it.

• State-of-the-art techniques based on Machine Learning (for instance [1], [2] and [3]) are not implemented in production for several reasons. A high number of false positives (FP) -even a tiny percentage of FP induces a large amount of false positives, because of the number of benign data volume -and intensive processing times from the binary reversing to the execution of the trained Machine Learning.

• A rapid growth of the virus signature databases that makes the processing more difficult especially on light terminals.

Mobile antiviruses often rely on cloud processing for their detection mecanisms, which makes it dependent on internet. As these terminals could be used in a closed network space, it is a limitation. The nature of the data to be protected restrict the use of cloud processing.

Other security solutions are relying on a secured environment launched in a virtual machine from the host system. It enables -on paper -to have a public environment available and to use secured applications. These VMs often use API that are not mastered to communicate with an host system they have to trust. Regardless, if an attacker takes control over the host system, it can corrupt the VM system or leak data in the case of a targeted attack.

The current solutions, while having practical strengths -as low false positive rates 10 and a low processing time -, have severe algorithmic, design and practical limitations that we have highlighted.

This thesis carry on the work of the DAVFI (Démonstrateur d'AntiVirus Français et Internationaux) project made at the ESIEA-CNS lab. and funded by FSN (Fonds national pour la Société Numérique) 11 . This project ended in september 2014. Its objective is to develop antimalware solutions for Windows, Linux and Android. It is a concern of French national security to rely on sovereign security solutions. Actually, commercial solutions are opaque from a user point of view, they have access to the whole exploitation system and they communicate on a regular basis with foreign servers of editors. A security solution that is not mastered for national security concerns is not acceptable. The DAVFI project answers this problematic. The antimalware solution designed for Android relies on a hardened version of the AOSP (Android Open Source Project). Security functions have been added on several layers.

• Kernel. protections against unknown code execution and physical attacks.

• System. integrity check, dynamic protection of sensitive resources.

• Applications. control of application installation. Only certified applications from the trusted store can be installed.

• Data. ciphering of user data and protection of authentication resources.

• Communications. ciphering of SMS and VoIP without central server (other than the signaling server).

All of these functionalities are extended and exploited in the 3D NeuroSecure project. 10. https://www.csoonline.com/article/2989137/linux/av-test-lab-tests-16-linux-antivirus-p roducts-against-windows-and-linux-malware.html 11. https://www.caissedesdepots.fr/fonds-national-pour-la-societe-numerique

Research directions

The present work emphasizes the creation of new algorithms, methods and tools that bring advantages over the current state-of-the-art of malware detection and artificial intelligence, but more importantly that can be used effectively in a production context. It is why, what is proposed here is often a compromise between what can be done theoretically and its applicability. Algorithmic and technological choices are motivated by a relation of efficiency and performance results. This thesis contributes to the state-of-the-art in the following areas:

• Static and dynamic analysis of Android applications, application web crawling

First, to search for malicious activities and vulnerabilities, one needs to design the tools that extract pertinent information from Android applications. It is the basis of any analysis. Furthermore, any classifier or detector is always limited by the informative power of underlying data. An important part of this thesis is the designing of efficient static and dynamic analysis tools for applications, such as a reverse engineering module, a network communication analysis tool, an instrumented Android system, an application web crawlers etc.

•

Feature selection for Machine Learning

The choice of features for Machine Learning is a crucial step for any classification algorithm. An optimized feature set reduces the overall running time and the accuracy of the classifier. We made extensive experimental study to choose the best feature selection/reduction method among a set of candidates. Moreover we observed that the normalization of the feature vector is really sensitive and crucial when it contains several feature type with their own range. We designed a method to treat these problematics, that is presented in this thesis.

• Neural Network initialization, training and anti-saturation techniques algorithm

Neural Networks are randomly initialized. It is possible to control the underlying random distribution in order to the reduce the saturation effect, the training time and the capacity to reach the global minimum. We have developed an initialization procedure that enhances the results compared to the state-of-the-art. We also revisited the ADAM [4] algorithm to take into account interdependencies with regularization techniques -in particular Dropout [5]. Last, we use anti-saturation techniques and we show that they are required to correctly train a neural network.

• FEA: a very fast classification / feature selection algorithm

We have designed an algorithm that enables very fast classification. While not having performance that outmatch state-of-the-art, it is useful to quickly assess the quality of a feature set.

• An algorithm for collecting the common sequences in a sequence group

The classic way of detecting a sample from a malware family is the manual reverse and analysis of malware samples. From this analysis, the common malicious parts are extracted to make a rule of detection. This algorithm is a new path of research toward the automatic creation of malware family detection rules. Malware code can be represented as multiple sequences of opcodes, and dynamic analysis of malware generate event sequences. Finding similarities in a group of sequences often involves studying their common subsequences or their common substrings. For this task, it is common to study their Longuest Common Subsequence. Nevertheless, for real case problems the solution rests upon the relevant common subsequences which are not necessarily the longest. In these cases, the sequence membership to a group is characterized by subsequences of any length. Heuristic algorithms for extracting short subsequences already exist, but no attempt to solve the problem systematically has ever been proposed. We propose a new algorithm for building the Embedding Antichain from the set of common subsequences. It is able to process and represent all common subsequences of a sequence set. It is a tool for solving the Systematic Characterization of Sequence Groups.

During the course of this thesis, the following tools have been developed:

• Glassbox: Android malware application dynamic analysis on real devices Researchers rely on dynamic analysis to extract malware behaviors and often use emulators to do so. However, using emulators lead to new issues. Malware may detect emulation and as a result it does not execute the payload to prevent the analysis. Dealing with virtual device evasion is a never-ending war and comes with a non-negligible computation cost. To overcome this state of affairs, we propose a system that does not use virtual devices for analyzing malware behavior. Glassbox is a functional prototype for the dynamic analysis of malware applications. It executes applications on real devices in a monitored and controlled environment.

• Smart Monkey: automated testing of Android Applications Dynamic analysis of Android application requires user inputs to execute the application functions.

Google shipped every Android phone with the monkey program that fire random user events to the selected application. Unfortunately, random events make it hard to reach deep functions of the application code. It is why we have developed a grey-box analysis tool that installs and test applications.

It is able to identify several fields of interest (email/password etc.) and fill them with believable data. Furthermore it systematically tests all visible functions and do not test a function twice. We experimented Smart Monkey and we show that it covers more code than the monkey program.

• Libmla: Machine Learning Algorithms Library Machine Learning starts to be, and will be a science used in every technological domain, without the requirement of an expert. The advancements of Deep Learning avoid the requirement of a feature extraction/selection process. However the learning algorithm and other internal parameters still need to be tweaked. Right now, Machine Learning still needs to be designed and configured by someone with experience to be effective. Last, while Deep Learning is very effective, it requires an astonishing amount of CPU/GPU power. Libmla is another direction of contribution to Machine Learning. We believe we can build IA algorithms with good performance but with far less resource. It is why Libmla is a growing open source project with the intent to deliver auto-configured, carefully optimized, efficient and easy to use machine learning algorithms. Right now, libmla is heavily focused of Machine Learning that fit the Malware Detection/Classification domain, but we intent to extend its original frame with actual use cases in other domains.

We presented our work through publications, conferences and articles of scientific vulgarization:

• International articles • International conferences without article

•
• Paul Irolla and Éric Filiol, (In)Security of Mobile Banking, Chaos Communication Congress 2014 13 .

• Paul Irolla, (In)Security of Mobile Banking... And of Other Mobile Apps, C0c0n 2015 14 .

• National publications and vulgarization articles

• Paul Irolla, Applications bancaires pour smartphone : une sécurité bâclée, SecuriteOff 2015 15 .

12. https://www.blackhat.com/docs/asia-15/materials/asia-15-Filiol-InSecurity-Of-Mobile-Ban king-wp.pdf 13. https://media.ccc.de/v/31c3_-_6530_-_en_-_saal_6_-_201412272145_-_in_security_of_mobile_ banking_-_ericfiliol_-_paul_irolla 14. http://is-ra.org/c0c0n/2015/speakers.php#Irolla_Paul 15. https://www.securiteoff.com/applications-bancaires-une-securite-baclee-12/

• Paul Irolla, La surveillance mondiale du Wifi, SecuriteOff 2015 16 .

• Paul Irolla, User tracking et Facebook : l'ère de la surveillance globale, SecuriteOff 2016 17 .

• Éric Filiol, Baptiste David and Paul Irolla, Virus informatiques et autres infections informatiques, Techniques de l'Ingénieur 2017, Ref H5440 V3.

The thesis is organized as follows. In the second chapter we present in detail the Android system and application internal mechanics, especially the functions that matters for our study. Then we discuss the current state-of-the-art static and dynamic analysis tools for Android applications, and the tools we have designed -namely Egide, Glassbox and libmla-android-reverse module. We expose current ways on collecting samples from public datasets to web crawling, and we present tools we have designed for this task namely Tarentula and Cygea-crawler. At last, we present un study of vulnerabilities and data leaks in legitimate applications, mobile banking to be precise and bring our conclusions. In the third chapter, we discuss the state-of-the-art of feature extraction, feature selection / reduction and neural networks classification. We present our choices for feature extraction and selection, supported with experimental studies. Then, we detail our neural network configuration, internal parameters and algorithms, supported by experimental studies. In the fourth chapter, we expose a new algorithm for studying the common subsequences between any group of sequences. We then apply it to the problem of malware family detection. Last, we present our full system of antimalware detection and its experimental results. In the fifth chapter, we present the limitations of the current study, the future evolution of the current work and we bring a conclusion. 16. https://www.securiteoff.com/dangers-dune-cartographie-mondiale-points-dacces-wi-fi/ 17. https://www.securiteoff.com/user-tracking-facebook-lere-de-surveillance-globale/ BIBLIOGRAPHY [1] Zhenlong Yuan, Yongqiang Lu, and Yibo Xue. Droiddetector : android malware characterization and detection using deep learning. Tsinghua Science and Technology, 21(1) :114-123, 2016. 14 [2] Justin Sahs and Latifur Khan. A machine learning approach to android malware detection. In Intelligence and security informatics conference (eisic), 2012 european, pages 141-147. IEEE, 2012. 14 [3] Brandon Amos, Hamilton Turner, and Jules White. Applying machine learning classifiers to dynamic android malware detection at scale. In Wireless communications and mobile computing conference (iwcmc), 2013 9th international, pages 1666-1671. IEEE, 2013. 14 [4] Malware is the general term for computer infection. It stands for malicious software. It describes a large variety of threats afflicting information and communication systems. Malware and its subcategories have been theoretically formalized by the work of Jürgen Kraus in 1980 [1], Fred Cohen [2], Leonard Adleman [3] and Éric Filiol [4]. However, due to the technical specificities of the Android operating system, we have established a classification dedicated to Android malware. It enables to grasp with precision the intentions of the malware author and the technical differences between malware programs. Motivations for writing a malware program is to obtain an advantage one way or the other. Often, this advantage is of financial aspects. It can be a direct way like tricking the user into purchasing a fake product or an indirect way like collecting personal information. Personal information can be monetized in three way mainly:

• It is internally used for one other activity such as targeted advertising, exploitation of account credentials, etc.

• Sold on the dark web. Actually, identity thieves buy anonymously personal information so we are able to evaluate the price for various pieces of information. The Experian company has released a study of the cost of personal information on the dark web and drawn a prize panel (Figure 2.1, source 1 ).

• Sold to data brokers and advertising companies.

We expanded the classification made by Kadir et al. [5]. Their work is focused on financial malware attacks ; we included other categories to characterize all malware kinds.

• SMS malware. In this category lies malware that sends SMS or call to premium numbers, that subscribes to paying services or that spreads by social engineering.

• Spyware. In this category lies malware that collect personal information once, on a periodical basis or in real time. Information collection often includes device technical information, contacts and messages, account credentials, microphone, camera, etc.

• Scareware. In this category lies malware that tries to scare users by social engineering and propose an answer to the threat in the form of a paying service or software.

• Banking malware. It is malware that steals one-time SMS of the two-factor identification or steals pin code -with tapjacking or a fake banking application.

• Ransomware. A malware that locks the phone, often encrypting personal data, and asks for a ransom to unlock and/or decrypt the phone.

• Dropper. A kind of malware whose goal is to install other malware either by social engineering or without the user's consent.

• Botnet. Malware that is able to control the phone through a backdoor. The infected phone becomes a part of a network -called roBOT NETwork -of controlled phones -called zombies.

• Activism. Often this type of malware uses SMS to spread propaganda messages to all contacts contained in the phone.

• Adware. This malware monetizes users through advertising in a way that is much more aggressive or sneaky than traditional advertising frameworks. For instance, ads for other malicious applications, aggressive advertising placements where the user is forced to click on them, or advertisements inserted in other applications. Often it is accompanied by an abnormally large collection of personal information without the consent of the user.

These are the main categories of malware that is currently found on smartphones. There are nevertheless other marginal motivations for the design of certain malware, as well as cases where the malware is not finalized and it is difficult to know its actual purpose. For these particular instances, we simply use the general category malware.

FIGURE 2.1 -Value of personal information on the dark web

We use a second way to categorize malware, through the technical levers it uses to accomplish their task. General trends emerge, so it is possible to draw up a limited list of these technical means.

• Fake app. A fake app is a seemingly legitimate app that does not provide any of the services it promises. In reality, it executes a malicious payload.

• Drive-by download. To prevent antivirus detection on phones or application markets, the payload is downloaded after installation.

• Backdoor. The malware sets up regular communication with a command and control server. This server gives orders following a panel of actions implemented in the application (collect data, send a message, contact a web site etc.), or else directly executes shell commands on the remote machine.

• Repackaging. The application is actually an existing legitimate application whose code has been modified to execute a malicious payload. Popular apps are mostly targeted. It is difficult for a user who has installed the application to realize that it is a corrupted version.

• Root exploit. The application takes control of the phone thanks to a vulnerability of the Android operating system, allowing it to obtain maximum rights (root) for a limited time or permanently. These vulnerabilities are corrected quickly when discovered. Nevertheless, many users do not update their system. In addition, some manufacturers take a long time to push security updates, besides those old versions of their model no longer evolve. In the latter case, the phone version is blocked and it will never receive security updates.

• Obfuscation. Some malware families try to slow the reverse engineering of their code by analysts. This slows down the creation of a detection rule or countermeasure. This set of techniques, called obfuscation, obscures code reading or execution.

• AV evasion. These malware implements techniques to pass the antiviral tests, or are in a position to disable or uninstall the antivirus on the user machines.

• VM evasion. Google Play has a dynamic application analysis procedure, called Bouncer2 . During this process the application is executed on a virtual machine, and the traces of its execution are collected. These traces enable the detection of potentially malicious applications before they are made available to users. Some malware set up countermeasures to this system. They detect virtual environments and hides their real behavior in this case.

• Tapjacking. Some techniques allow to display overlapping windows in a pernicious way. Either the user is not able to clearly understand what is displayed on the screen, or the window is invisible. This allows the malware to force the user to click on another window, such as to grant additional rights to an application, or to record keystrokes.

• Keylogger. The malware is able to record the keystrokes. Generally it is used to exfiltrate passwords.

• APT. A malware setting up an Advanced Persistent Threat is a malware able to rewrite its payload even after deletion in order to maintain an access on the machine.

We classify 279 malware families from 2010 to 2018 with the classification proposed. This is the most important information compilation work on Android malware families to date, to our humble knowledge. Some malware families have unique or unknown motivations. In these cases, they are classified in the general category of malware. Our sources for the creation of the table 17 are3 ,4 ,5 ,6 , [6] and [7].

Android and infection techniques

Android is a market opportunity for malware writers. Featuring an integrated application distribution platform, Google Play 7 , and many alternative markets, Android has become a prime target. To assess the trend of the evolution of Android malware, it is representative to look for the number of malware applications detected by antivirus companies. Kaspersky Lab. registered 10 million malware installation from 2004 to 2013, 2.5 million in 2014 and 8.5 million in 2016 [8].

The numbers are low because it is the number of malware installations detected by Kaspersky, it is therefore a subset of the malware applications in circulation (subset of users using kaspersky and subset of malware detected by kaspersky). What is important here is the evolution of the number of malware detections, and these figures are an index of this evolution.It shows that Android malware invasion is evolving in a fast pace.

In this section we explore the reasons for the full growth of malware, by what means they enter on the system and what they seek to obtain. Last, we expose an instance of a threat on the Android platform, the analysis of a sophisticated malware christened Godless, which had its moment of glory in 2016.

Malware growth

The use of Android OS has exploded and now is the most used platform in the world. Indeed for website access, Android has overcome Windows 8 . This is particularly due to Asian countries where Android is by far the most used OS, being the cheapest device offering an internet access.

Malware authors have business strategies similar to those of an entrepreneur: to reach a maximum of customers. Therefore, they have naturally turned to mobile apps. Whereas Android has an official market for distributing applications -Google Play -and several alternative markets. It is therefore an opportunity for malware authors to reach customers. They distribute their malware application as any other developer and wait for users to install them. As there is no human verification in these markets, an application with an attractive presentation and a description using popular keywords is sufficient for the spread. Conversely, in the Windows world malware authors often need to rely on shady strategies to spread malware programs (warez, scam, pornography, etc.).

Moreover, the habits of smartphone users are going against the security of their environment. We are conditioned to install a program whenever we want to use a service. To the contrary, on a personal computer we tend to use web services, so programs that run either on distant servers, either in the browser enclosure. On mobile, an installed program has access, potentially, to the whole phone functions and data. Users therefore tend to the overconsumption of unnecessary applications, which favors the installation of malware because installation is a trivial act. Finally, a smartphone is the device that focuses the most private information: contact list, SMS, personal and professional mails, photos, GPS position, bank accounts, etc. It is a gold mine for malware writers.

Incentive for data leakage: facebook study case

The installation of application for every service, combined with optimization of the network requests for smartphones, leads to data leakage opportunities that are not existing on personal computers. For instance, mail boxes are saved locally, to reduce network requests at its minimum necessary. That is the case for Gmail accounts, a copy of the mails is kept locally and the application only synchronizes those copies with the mail server. The problem is that these mails are stored in plain text on the phone. Any malware application succeeding a privilege escalation is able to recover all mails by simply accessing and reading the mail application directory.

Facebook is a mail box, before being a social network. Mail messages are presented in a chat fashion. The problem that we find with Gmail, we find it with Facebook. We have analyzed in 2016 what was stored on the phone with the Facebook application. After connecting for the first time to the account, we collected data that have been created locally:

$> adb shell su -c 'cat /data/data/com.facebook.katana/**/*' > data.dump

Once the data is recovered on the host machine, here are some regular expressions that reveal sensitive information: • Listing contacts phone numbers

Regex : /(\+33[67][0-9]+)/ Result : [...] +33625###### +33628###### +33632###### +33644###### +33648###### +33659###### +33660###### +33663###### +33666###### +33668###### +33674###### [...]

• Listing contacts private messages

Regex : /ONE_TO_ONE:.+?_[a-zA-Z]+\.(.+?)\{/ Result :

[...] 1377866######:0c713c6e8ea6######/I managed to reverse candy crash for fun 1377866######:0c713c6e8ea6######/But whatsapp seem much harder 1377866######:0c713c6e8ea6######/So much obfuscation [...] b2ef924d389f6cf57e2b0ddb85ea######vous faites quoi Lundi soir et mardi soir ? b2ef924d389f6cf57e2b0ddb85ea######Rien à priori [...]
This availability of personal information on smartphones is an inward attraction for malware authors.

Android OS security measures

Android has several security measures, organized in successive layers. The first is Bouncer 9 , a dynamic analysis system that run applications in a virtual environment for studying their behavior. It intervenes before the application publication on the Google Play and Google estimates that it prevents 40% of malware (last information from 2012). Next, at installation the application shows requests for permission of using special or sensitive Android functions. Each permission must also be dynamically validated the first time the application needs it. Therefore, users have different tools at their disposal for access control. Finally, each application runs in a dedicated sandbox. This term, in the Android context is to be taken with a grain of salt because this sandbox is not a virtual machine or a container as its name suggests. Each application runs with a single Linux user, who has restricted rights. It is not possible for an application to read or write to system files or to other application files.

There is natively, on Android, a level of security and of control greater than on other OS for the non-specialist. However the flaw lies in the user behavior. Social pressure, comfort or entertainment to use some application narrow the decision-making. Facebook has more than one billion users according to Google Play statistics whereas the application requires quasi-full access on the phone: device and applications history, identity, agenda, contacts, location data, SMS, photos / multimedia / files, storage space, camera, mic, Wi-Fi connection information, device ID and information about calls etc. This ease of giving quasi-full access to application is a boon for malware because users are accustomed to submit themselves to the growing appetites of companies for our private data. Because of user-tracking, there is a interest convergence of companies and malware authors.

Godless analysis

Godless is a malware family that appeared in 2016. It is a interesting case because it is a sophisticated malware. It uses a panel of techniques that can accurately represents what can be a malware Android. Every Godless app is a quality product. People use them being satisfied -unlike most malware. We analyzed two applications of this family, an alarm clock (Figure 2.2) and a multifunction tool (wifi, file sharing, cleaner etc.). This applications were created specifically for the purpose of distributing a payload. It does not contain exploits or payload, but it downloads them after installation (a.k.a. Drive-by download attack). Because of this it passes Google Play checks. The application waits until the phone screen turns off to download a root exploit library, libtemproot.so (Figure 2.

3).

This library contains various known root exploits access 10 . Overall this affects all Linux kernel versions less than 3.16.1. It is quite tedious to list with accuracy which version of Android for which manufacturer is vulnerable. But this list can be drawn up for the AOSP (Android Open-Source Project) which is the reference. 11 . It can be inferred that -except in special cases for a manufacturer -all versions of Android below 6.0 (Marshmallow) are potentially affected. It represents the vast majority of devices. If one of the exploits succeeds the payload is downloaded, otherwise nothing happens for this application. MoboWIFI is a multifunction application with wifi control, file sharing and device cleaning functions (Figure 2.4).

Android Version |API Level |Linux Kernel in AOSP ---------------------------------------------------- 1.
When the user screen turns off, the application runs all exploits contained in lib/x86/libgodlikelib.so, which is a library multiple root exploits like libtemproot.so in the first sample, except that it is embedded in the application.

If none of the exploits succeed, then the application downloads 5 files:

Both jar files are exploits (as java service) that enable the application to become device administrator and install other applications. The next two files are native libraries that enable to start linux daemons that are going to check continuously that the exploit services are started and they restart them if it is not the case. Then the application informs that an update is available (Figure 2.5).

MoboWIFI dynamically loads the Java code contained in the jar files, and the jar files execute the code from native libraries. Then the user sees an Android update popup. The update is actually making an installation request for Jewel-v2.apk.apk which is the malware payload. If the user installs it, immediately there is a request to pass the false update as as an administrator application. For a user who has already accepted to install this fake update, there is only a small step to make it admin. In the next section, we address another security point of view which is development flaws that enable a third party to gain advantages for malicious purpose. 

Malware applications in Google PlayStore

We have realized a experimental study to evaluate the number of malware in the PlayStore. It has been achieved with the help of Alexandre Dey, Loic Beheshti, Marie-Kerguelen Sido, Jeannaud Quentin and Sami Hammami ; M1 engineer students at ESIEA by the time of the study. This work has been the subject of a publication at ForSE 2018 [9]. Despite the protections put in place by Google, it is certain that malware applications exist on the Playstore such as Viking Horde [10], DressCode 12 or FalseGuide13 attacks have demonstrated. The aim of this study is to determinate the proportion of malware applications on the Google Play. We consider as malware any application intentionally causing harm or subverting the system intended function (this includes Adware), as well as manipulating information without user's express consent. To perform this study, we have designed a crawler able to simulate the download of an application and to bypass the downloading restrictions of Google Play. Then, with data from static analysis, we trained an Artificial Neural Network to discover new malware on the PlayStore. This neural network bases its detection on features that are extracted by reversing these applications. We call it Cygea, the complete system that allows you to download applications from the PlayStore, reverse applications, extract features, train a neural network and detect new malicious applications. This study has been realized in 2016.

Cygea PlayStore crawler

To collect set of applications from the Google PlayStore that is large enough to be statistically representative, we developed web crawler designed to massively download applications for the Google Play. This crawler is an open source project available online 14 . The Google PlayStore sets up a number of protections to prevent it from being cloned or analyzed. We explain here what are those protections and how we bypassed them.

First of all, there is no exhaustive list of the applications available on the PlayStore. Moreover, Google tends to bring out the most popular applications and to hide those less successful. Secondly, even though the communication with Playstore servers go through HTTPS, to allow only Android devices with a valid Google account, a proprietary protocol is used on top of it. This pro- tocol is based on Google protobuf 15 , and has not been officially described as of now, but has been, for the most part, reverse engineered (Figure 2.6).

Finally, any behaviour considered as not "human" (such as downloading a large amount of applications in a short time, or following the same pattern at fixed interval, etc.) is to be detected and leads to an account ban. Furthermore, the criteria to define whether or not a behaviour is normal seems to be changing every few weeks or months. Other researchers have described how they prevent account banning. Playdrone [11] crawls the entire Store using Amazon EC2 cloud services and thus connections come from multiple IP addresses. As for SherlockDroid [12], they limit the number of downloads by pre-filtering potential malware, and also, each connection goes through Tor. The first one require to use Amazon EC2 and the second one does not respond to our problematic, crawling the whole PlayStore. It is the reason why we have developed our own tool. On GitHub, we can find a Python script 16 that is able to communicate with the PlayStore. This script implements the basic functionalities of the store (search for applications, get the details, download, etc.) and needs only two elements to work with: a valid Google account and an Android Device ID (a unique token generated for each Android device). However, the tool is not designed for mass downloading and we modified it to suit our needs. To avoid being banned, we crowd-sourced the creation of 30 activated Google accounts (an Android device is required to validate an account before it is allowed to download from the PlayStore, and you can only create a few accounts from one device) and we try to put as much time as possible between two downloads from the same account (multiple minutes). We also generate an Android ID for every account thanks to androidcheckin 17 . When crawling, we keep the authentication token as long as it is possible to download applications and we renew the token each time it is invalidated. When an account is banned, the PlayStore servers return an error message when attempting to login. We use a list of HTTPS proxies to prevent our IP address from being blacklisted. To download an application knowing its package name is required, so we builded the list of package names hosted by the PlayStore. To do so, we use the search function with random words selected from a multilingual dictionary. Each search gives at most 250 results. From this point, we download applications that are free (we cannot download paid apps) and compatible with our fake device (we cannot download tablet specific apps without a compatible Android Device ID). To speed up the whole process, we split the dictionary between multiple processes and each of these spawns a thread provided with an account/device ID pair for each app to download (see Figure 2.7).

The crawler is designed to be scalable. Provided that we have enough accounts and Device IDs, it is possible to distribute the crawling across multiple machines. In our case, to synchronize the different processes, we store the applications inside a Cassandra NoSQL database 18 and before downloading a new one, we check if the application is absent from the database or not. The crawler has been used for two purposes. First, in October 2016, we generated a list of more than 2 millions FIGURE 2.7 -Cygea crawler architecture applications. In January 2017, we used it to download and extract features of 3650 applications, which constitute our sample set for this study. For this second usage, we used a laptop with a 2 core 4 thread intel CPU and the process took 2 weeks. Depending on the application, extracting the features can take up to 15 min while downloading takes less than one minute.

Feature analysis

We perform static analysis, and therefore, we extract all the features that can be interesting for classification directly from the APK file. To reverse applications, we use Androguard 19 written in Python. During the static analysis, we process the following information:

• General Information

This information is not directly used to perform the analysis, but more as a way to identify and contextualize it. We extract these information mainly from the application manifest. First, we retrieve the application common name (ex: Facebook Messenger) the package name (com.orca.facebook), and the version number. It enables to identify the application, but considering it is easy to repackage an Android application, we also use the SHA-256 hash of the APK. We extract the certificate used to sign the application. From this certificate, we can extract interesting information on the developer. We also collect information relative to the SDK version (minimal/maximal/target) and all intents statically defined.

• Classification Information These are the features on which the detection is based. They are retrieved by decompiling the DEX file in the application. This file store the java bytecode that will be executed by Dalvik (or Android RunTime). The state-of-the-art of static analysis feature is discussed in the next chapter, so here we expose our process for information purpose. Most of the information we extract is based on the opcodes, without the operands. We store the trigram frequencies. To use several Android API methods, Android applications need to ask for certain permissions (use network, bluetooth, access user information, etc.). Malware apps also need to ask for these permissions, and some permissions give access to more potentially malicious behaviour, and are therefore a good way to discriminate applications. Thus we collect permissions from the manifest. Finally, we extract the Android API call sequence. The Android API is a software interface used to access device related capabilities (sending SMS, manipulating the UI, etc.). Some of these tasks can be maliciously employed.

There is a total of 228 dalvik valid opcodes. We observed that applications were constituted on average of 80,000 to 100,000 opcodes. But a few applications go beyond a million opcodes. From these opcodes, we found a list of 500,000 unique trigrams. For the API calls, we recorded a total of 100,000 distinct ones. Finally we found 250 unique permissions. Therefore, if we wanted to represent applications inside vectors, the dimension of them would be greater than 600,000.

Even with neural networks being powerful tools, we must limit the number of entries to have an affordable solution. A common approach is to select the most relevant features based on statistical indexes. To optimize results on malware detection, we took the features most represented in malware while being the least represented in benign applications. A well known statistical method allows us to rank those features with this criterion, the TF-IDF indicator [13]. This method, originally used for document searching -especially in search engines -, can be adapted for our purpose. The TF or term frequency is the frequency of a word in a given text. The IDF or inverted document frequency the frequency of documents where the term appears. The more a word is represented, the less pertinent it becomes as a matter of selection, the lower the IDF value is. The TF-IDF is the product of these two values, thus, the higher the value is the most pertinent the result will be. In our case, things are slightly different. TF is the feature frequency in our malware database and IDF is the feature frequency in the benign dataset. We have then an indicator that grows if the feature is well represented in malware samples and diminishes if the feature is well represented in benign samples. Overall we chosed the top 12,175 features that exhibit the best TF-IDF score.

Classification

We use an artificial neural network to label new applications as malware or benign. To build it, we use a set of applications that are already labeled. We use the Drebin Dataset [14]. The Drebin Dataset is widely used in researcher community. At first we used the 5,585 malware and 2,201 benign applications as our training dataset. We have conducted a study on this initial set (see chapter 3) that shows that 42.5% of these applications can be regrouped into 592 (584 malware, 8 benign) sets of repackaged applications with the same code and only resources and a few strings that differ from one another. Therefore, we removed the duplicates from the Drebin Dataset, and we end up training on a set constituted of 2,891 malware APK and 2,178 benign ones.

Our neural network is a multilayer perceptron. A perceptron is one of the simplest structures in the Neural Network domain but, from previous experimentation using a single perceptron applied to malware detection, we deduced that this structure was sufficient for our problematic. The stateof-the-art of neural networks is presented in chapter 4, in the following paragraph we present the parameters we have used. More detail can be found on chapter 4.

The final neural network parameters are: 1 input and 1 hidden layer set to a sigmoid symmetric activation function , 12,175 entry nodes, 25 nodes on the hidden layer, 2 nodes on the output, expected results for a malware sample are (-0.95 ;0.95) and (0.95 ;-0.95) for a benign sample. The learning method is incremental (classic backpropagation), the learning rate is set to 0.25 and we use the FANN library on this study 20 . Last, we use the decision rule winner takes all. To cope with overtraining we use cross-validation with 20% of the dataset. 20% of the dataset is used to assess the performance of the trained neural network. The remaining 60% of the dataset is used to train the neural network. We selected the neural network state that produced the best results on the validation set.

To assess the performance of our neural network, we use the accuracy:

For all experiments, we use the accuracy as the main performance measure. It expresses the ratio of samples that are well classified, regarding their expected class (malware or benign):

• t p is the number of True Positive, i.e. the number of malware samples classified as such by the model. In chapter 3 (part 3.2.2) we present the state-of-the-art of static analysis with sequences of opcodes. Our result accuracy is on the top of the range of the state-of-the-art values (96.88%-98%).

Among the 3650 applications, the neural network classified 92 as being malicious. This represents 2.52% of our sample set. From this, and considering that our classifier is selected to be the most accurate and that false positive rate is roughly equal to false negative rate, assuming proportion of malware follows a normal distribution, using the normal estimation of the interval, we calculate the confidence interval of the proportion of malware on the PlayStore:

X -1.96 X(1 -X) n , X + 1.96 X(1 -X)
n With X our measured proportion and n the sample number. We can estimate with a 95% confidence level that the proportion of malware on the PlayStore sits between 2.01% and 3.03%. A few of these applications were manually tested and proved to be malicious. For instance, the application Battery King (now removed from the store) requires many permissions and uses them to leak information. The application also writes binary file on the machine and executes them afterwards. By allocating more resources (more accounts, Device IDs, CPU power, time, etc.) to the crawler, it would be feasible to crawl most of the Google PlayStore applications. The main bottleneck here is the time needed to extract the features from the applications. This is explained by the fact that Androguard is a really complete tool that does more than what we actually need. Considering the classifier, it shows great accuracy for only light computation time. The TF-IDF variant employed here also allowed us to target more precisely the important features without the need of deep knowledge in the Android malware domain. Classification capabilities could be enhanced by using a larger training dataset constituted of more recent and complex malware. Finally, we are sure that Google PlayStore houses a certain number of malware, and we estimate that this number was between 40,000 and 60,000 applications in 2017.

Application vulnerabilities

The security of the 3DNeuroSecure project relies on the security of user Android environment as a whole. Malware is a major part of attack sources, but the security of legitimate applications must also be acknowledged. Threats are multiples: development flaws leading to vulnerability exploitation, aggressive user tracking, backdoors, etc. We draw here a portrait of conceivable threats by presenting a study of the security of mobile banking application. Mobile banking is supposedly a domain where we expect a special attention to security. Mobile devices are the main intermediary between the user and Internet and there is no single aspect that is not impacted by mobility. Mobile devices are becoming more and more the unique entry point of our life. In this respect two main issues are critical:

• The security of our data and mobile environments. Vulnerabilities can be exploited to enable illegimitate access to them by an attacker.

• The protection of our privacy since personal data may naturally leak to providers/companies that are selling/proposing not only the devices but also different services. Most of the time, these companies and us, as customers, do not share the same interests.

In a mobile device, apps are in fact the most critical parts. We install them more or less voluntarily. Services are becoming available only via mobile application. Moreover as stated in the previous section, social pressure to use some application exists. They can have extensively access to the operating system and our data. They are suspected to do far more than the official actions they are supposed to do. In a word, can we trust them ? As far as mobile banking is concerned, those issues are, of course, even more critical. It relates not only to our money and assets but also to all the aspects of our life that are impacted by money: what we buy, what we do, etc. This is the reason why -without loss of generalities -we mainly focused on banking apps in this study. However the reader must keep in mind that from the code perspective there is no fundamental difference with other application domains. Insecurity and privacy are common issues which concern all apps. Vulnerabilities, data leaks, backdoor, agressive user tracking are sometimes hard to define exactly. The line between an acceptable and a unacceptable behavior in the world of legitimate application is not obvious and subjective. To frame how an application can be trustworthy, we designed a Trust Policy that application must follow to be considered trustworthy:

• It does not contain hidden functionalities. threat covered: backdoors.

• User information collection must be motivated by explicit functionalities. threat covered: aggressive user-tracking.

• Web communications and local data involving personal user information or cryptogragic secrets must be encrypted. threat covered: data leaks.

• The app does not contain known vulnerabilities. threat covered: vulnerabilities.

This study has been made in 2015 with application analysis that designed, namely Egide for static analysis and Panoptes for dynamic analysis. These are the precursors of the tools of this current thesis, details can be found in [15]. We first present the results regarding the app which is likely to be the most used application: Facebook, to illustrate our methodology. It represents the worst-case situation in terms of privacy violation and infringement. Then, we present the detailed results regarding the security of banking apps we have analyzed throughout the world. Overall it exposes a panel of threat for legitimate application that we consider as representative. It is worth mentioning that most banks have been contacted to provide (for free) all technical details. Up to now, only a very few have answered but did not take our recommendations into account. As a general observation is very difficult to identify the suitable contact point in a bank. Vulnerabilities of French applications have been corrected. The cases we present here are entry points to highlight wider scale problems in the world of smartphones.

Aggressive user tracking: Facebook case

What is user tracking ? It involves identifying and characterizing a user and quantifying all his interactions with a point of sale, a website or a mobile application. This optimizes content for users, usually for the purpose of improving sales. User tracking is the set of procedures implemented to collect personal information about consumers and their habits. This information classifies consumers to offer products they are more likely to buy. In addition, it allows companies to measure changes in behavior in the face of a change of environment in order to draw conclusions In order to illustrate how an application may undermine our privacy, a representative example is likely to be the Facebook application. This application is one of the most used app in the world and Facebook by nature contains a lot of user private information. However they are totally unaware of how their privacy is undermined. Facebook collects user-submitted data but what about information collection without the users knowledge ? From Facebook security policy 21 : What kinds of information do we collect ? Things you do and information you provide. Things others do and information they provide. Your networks and connections. Information about payments. Device information. Information from websites and apps that use our services. Information from third-party partners. Companies owned by Facebook.

In the previous section we have showed that sensitive personal data are stored in plain text. To expose what exactly Facebook collects, we performed dynamic analysis of http and https requests with Panoptes [15]. The first time the application is launched, a https POST request is made to Facebook servers 2.8.

Whereas with Panoptes we are able to get the plaintext of https requests, the data format is still under a cryptic form. Here is the reverse procedure to apply to determine what is going on:

1) Unescape url codes recursively.

2) Parse the output string as a JSON object.

3) Until the data superstructure is entirely reversed a) Try to parse each string in the JSON object as a JSON object. b) Try to decode each strings which seems to be in a base64 format, then: i) Try to unzip the result with gzip if the magic number is 1F8B.

ii) Read the result string with a Windows minidump reader like WinDBG.

At the end, we listed all variables that are exfiltred with their values. Let us summarize what information is leaking towards the Facebook servers:

• Bootloader used.

• Device model/manufacturer/serial/hardware/ROM.

• CPU model/architecture/version + Kernel version.

• Screen settings.

• The complete list of system applications. • Application settings.

• Security settings.

• Sound used for alarm alert.

• Spell checker settings and Screensaver settings.

• Notification settings (including used sound).

• Battery settings (including current energy level).

• Sounds/music settings, camera settings, Wifi connection settings. • Sdcard and memory size/free space/used space.

• Usual user tracking info (timestamp for each user action)

Reports have been made that Facebook applications (including Messenger and Facebook Lite) are also collecting SMS, call history 22 . This report from Ars Technica appears credible because of actual data proving it. Other reports states that Facebook collects private photos from phones, but we could not find soundproofs in theses reports or by ourselves. So we are not able to confirm or deny this statement. In conclusion, the user tracking of Facebook is very aggressive. From another point of view, if Facebook was not a known company, its application would be labeled as malware. We already show in a previous study that the Facebook application stores personal information in plaintext. Here we expose its aggressive user tacking strategy. This application is definitely not compliant with our trust policy.

Geolocation implications: the Sberbank case

Smartphones are able to locate us even indoors. A smartphone seeks to connect to the three closest satellites with GPS and locates itself by trilateration. When it cannot find them or does not have a GPS transmitter, it uses the three closest base transmitter stations. But if nothing is available, for instance in a building with thick walls, it relies on Wifi trilateration. In order for this last option to work, location providers like Google need to know the location of Wifi access points -but it is relevant for Apple, Microsoft and Yandex as well. How do location providers get these data ? We have analyzed the Sberbank application, and it is through this analysis that we got our answer.

This application offers additional services such as the location of the nearest automatic ATM that enables cash withdraw at a Sberbank account. But unlike the apps we know, it does not use Google Maps to display the destination. It is its Russian counterpart that it uses, Yandex Maps. The network communications analysis revealed a plaintext request, on the Yandex servers, containing the MAC addresses and the signal strength of the surrounding wifi access points (Figure 2.9). The server response is a file whose header is "FoundByWifi" followed by coordinates corresponding to the location of the nearest ATM. It was inside a building that the analysis was done. Looking at the server response, the location has not been made by GPS or Cell ID. It is by trilateration of nearby wifi access points (AP) that the location happened. This raises two questions. Firstly, does it make sense to scan surrounding wifi AP and to send this information in plaintext over the network ? This question being rhetorical, let us move on to the second question, how is it possible to locate a phone with wifi AP ?

With the received signal power and three wifi APs it is possible to approximate the position of the user -i.e. by trilateration. However the position of these wifi APs must be previously known. In our case we strongly doubt that Yandex came to France to locate the building AP. Google Maps uses the same process for indoor geolocation, with the exception that the application also retrieves SSIDs from access points and communications with Google servers are encrypted.

In 2012, a report 23 from the Federal Communications Commission claiming that Google Cars, these self-driving cars that roam the world to build Google Street View, were also scanning wifi AP and unencrypted web communications in their wake.

One would think that this is how Google built a gigantic database of wifi access points. However, it seems unlikely that this is the main method. Indeed other localization operators such as Apple, Combain, Microsoft, Mozilla or Yandex do not have access to the same methods as Google and yet they have also managed to build a colossal database of APs. On the other hand, Google Cars do not make it easy to update this database, while the global wifi mapping is constantly evolving.

The solution is simpler, cheaper and smarter. Cartographic applications like Maps actually collect data from wifi AP. Coupled with the latest reliable GPS or Cell ID data from smartphones of other users and ours, it is possible to trilaterate these access points. Since almost all smartphones contain a geolocation application, some of which are provided with the phone and cannot be uninstalled, we always have a agent that maps the surrounding APs on behalf of a large company.

The dangers of such a practice lie in information overlapping. This is what Glenn Wilkinson shows us with the snoopy-ng project at BlackHat in a presentation entitled "The Machines That Betrayed Their Masters" [16], rightly so. The speaker shows his audience photos of streets, houses and workplaces ; these are places regularly frequented by spectators. He is able to map the countries where the audience comes from, who has attended BlackHat for many years and more. How is it possible ?

Spoopy-ng is a program installed on a drone swarm, collecting Wi-Fi information, like AP and users wifi communications. The speaker actually uses this program on his personal machine to listen to wireless communications from smartphones in the room.

When a smartphone or laptop is not connected to an access point, it actively searches for access points that it knows, and automatically connects to it if it finds one. The device therefore continuously sends out a list of its known access points and awaits a response from one of them. Anyone listening to this wifi noise is able to retrieve this AP list (SSID). By storing this kind of information over time, and thanks to overlaps, it is possible to deduce from a smartphone -and by extension a person -its address, its place of work, its travel habits, its social circles, family, etc. It all depends on the duration and the perimeter of listening to wireless communications.

In the case of snoopy-ng, this is a proof of concept and what it can achieve is already impressive. Now back to our initial problem, location operations like Yandex, Google, Apple and Microsoft have a sort of snoopy-ng agent for every of their user. The intelligence power on every user they have at their disposal by cross-checking information is absolutely colossal. And this only covers information about wifi AP, which are just a drop in the ocean of data collection related to the use of connected devices.

It is possible to exclude APs from the automatic cartography of several agents. For this purpose, we must add "_nomap" to SSID of its access point, it is a code recognized by Google and Mozilla that will not use these access points in their mapping. Since there are currently no laws regulating this information and standards, this code is not recognized by other operators. For Android users with Google Maps, wifi location can be disabled in phone settings. Finally, to prevent our smartphone from displaying the list of known AP, there are two solutions: turn off the wifi when not in use and / or remove the dispensable AP from the list.

On a global scale, we have entered a society where interactions with a connected device is recorded, quantified and automatically analyzed. This case shows that even with legitimate application it is sometimes hard to draw a line on what is considered as acceptable behaviors and what is not. Data leakage and spying is also a matter of viewpoint.

Backdoor: JPMorgan case

Backdoor -in a legitimate application -is a flaw in the development process of the application that enables its designer to take a partial or total control of the smartphone where it is installed. Most of the time when we are talking about a backdoor, it means that the designer of the application has deliberately inserted a piece of code that can subvert the underlying system. In some cases it is hard to tell if that kind of development flaw is a feature, an error or a dramatic consequence of a bad architecture choice, but we must consider it as a backdoor -i.e. a deliberate choice to own a remote access to the system.

The present case is the account management application of the JPMorgan investment bank. When the app is first launched, it sends queries to servers owned by JPMorgan. The application receives the content of a variable named signature as response. The content length seemed too long to be the signature of an object because commonly signatures are cryptographic hash with a fixed length that usually range from 128 to 512 bits. So, we intrumented the application to see how this signature is used. To achieve this task, we used APImonitor 24 . It reverses the application, adds monitoring routines around targeted methods then it compiles back the application. Monitored methods have their arguments and return value dumped onto the logcat, which is the centralized logging system of Android. The results is shown on Figure 2.10.

In fact, a decryption routine is called on the message. It contains several sub-messages separated a specific pattern. The first sub-message is actually a signature, and then comes a list of application names that use root rights. This information enabled to find with precision the part the source code that process this data, by seeking the split pattern. This revealed an interesting discovery, one of his sub messages is used and executed as a shell command if it is present. In addition, if the phone is rooted, this command is executed with root privileges (Figure 2.11).

These shell commands are actually used by a security framework that check if the phone is rooted, which could indicate that a malware is present. The ability to execute shell commands allows JPMorgan to quickly respond to new threats by performing additional tests. However this process can be easily be used to take control of the phone remotely and in a targeted way. That is why it must be considered a backdoor.

A few months after JPMorgan was informed of this discovery, the application received an equally interesting update that is supposed to correct the backdoor. So we analyzed this new application: • The APImonitor tool no longer works either, when the application is instrumented it crashes.

• The java code related to the security framework has disappeared but a native library (crosscompiled c code for Android) has appeared. The security code has been deported to the library, making it more difficult to read.

The reverse engineering of the library has not produced anything significant, however, it is difficult to be 100% sure that the backdoor has not taken another form. Many efforts have been made to prevent us from analyzing this application, which maintains the doubt. We would not install this application on our phone, but everyone will make one own opinion.

Vulnerability to MITM attacks: Budgea, Bank of China cases

MITM -stands for Man In The Middle -is a category of attack where the attacker secretly has found a way to act as intermediary between two parties communicating. At the most basic stage of MITM attacks, the attacker listens to communications and transmits requests and responses to the original recipients. In the most advanced stages, it corrupts messages to execute a payload on the recipient computers. These kinds of attacks are countered by a proper implementation of cryptography in communications.

One the first banking application, Budgea, is an app that aggregates bank accounts from different companies and countries. That is to say that with a single login and password, the information from all accounts is centralized. We noticed, when studying how the app is handling user accounts, that the ALLOW_ALL_HOSTNAME_VERIFIER option is used for https connections. This option serves to bypass the domain verification of the contacted website. This means that the application accepts any valid certificate and therefore an attacker able to position himself between the application and the server -Man In The Middle attack -can redirect the connection to his server and thus recover the login and password of the target. This option is supposed to be used only during the development phase of the application, to facilitate functional testing. Officials have been warned of the problem and the flaw is now corrected.

The Bank of China case is interesting because the exploitation of the flaw is not as obvious as in some other cases we present here. The application does not use the playstore updates -either Google Play or Baidu App Store, its chinese counterpart -instead, it relies on its own update mechanism. When the app is started, it checks for updates on a server owned by Bank of China. If the app is not at it last version, it displays a link on an official market to download the last version. The app retrieves the link from the server response. The issue here is that all this process is done entirely in plaintext. A MITM attacker could corrupt the communication in order to send arbitrary links to the user. In particular, it could exploit the confidence of using a banking application to trick the user to install a malware that is visually similar to the bank application. It is called social engineering, i.e. the manipulation of people into performing unintended action -here installing a malware -or divulging information.

Vulnerable third party code: BNP, Canara Bank cases

Bad implementations of secure connections or account management between the application and the server is very rare for mobile banking. Banks know for long time how to implement this kind of functionalities, securely. Problems arise when a part of the development is contracted out.

For instance, the BNP bank promotes its additional services -insurance, alarm systems, loans, etc. -through its application. The problem is to entrust this work of advertisement distribution to an external company, Ad4Screen. The development of Android is still young and this kind of development is well mastered for websites. Hence, developers reuse the website code directly in Android application, through a web interface -the WebView -that enables the execution of html, css and javascript. Javascript code has the possibility to call Android API methods with the addJavascriptInterface function of the WebView. The problem here is that the web code is dynamically loaded from the Ad4Screen servers in plaintext. An MITM attacker is therefore able to corrupt the communication and execute arbitrary javascript code that have restricted access to the Android API. Moreover, obsolete versions of Android (API < 4.2, which is about 20% of users currently according to the latest Google report on distribution statistics), the function addJavascriptInterface contains a vulnerability that allows the code javascript to execute arbitrary shell commands or call any function of the Android API (Camera, SMS, Calls, app install etc.). After contacting the bank about this vulnerability, it is now fixed.

One of the oldest banks of India, Canara Bank, is surfing the wave of passbook / bankbook applications. This is an app that summarizes account information by including the balance and the latest moves quickly. However, it does not make it possible to generate bank tranfers. According to Google Play, the app counts between 100k and 500k downloads and the last update is from June 2014. What is wrong with this app ? All, absolutely all communications are in clear ! Anyone monitoring the network can collect login credentials, among others. Even better, when connecting to the server it displays a tutorial page that lists the commands for which the server responds, with the arguments to use and even an example (Figure 2.12).

The available functions range from AccountSummary to getCreditCardNumbers and Get_Balance. It is perfect for a hacker wishing to automate the process. A whois on the IP address of the server reveals that it does not even belong to the bank, but to a service company in Mumbai. The company offers solutions ranging from dedicated server service management to mobile application development. This is what happens when a serious work is entrusted to an unscrupulous service company without checking the result. 

Plaintext sensitive data: Norwegian mobile banking case

The use of cryptography, for sensitive application, should be used not only for communications but also for data locally stored. The user environment should be considered as a hostile one, and as a consequence no trust should be accorded to it.

We had the opportunity to analyze almost all Norwegian banking applications. They are built with few exceptions around a handful of models. The differences between several applications of the same model are the logo and the connection address to the bank server. All models are safe except for one that is used by 6 applications: Bank2, Vekselbanken, Storebrand, Cultura Bank, Totens Sparebank, Drangedal Sparebank. When a connection error to the server happens, the application writes the login, the password and the encryption key of the password in plaintext in the logcat ! (see Figure 2.13).

To provoke a network error not being particularly complicated, the question is: how to recover this data in the log files ? It is possible for applications to read the logs of other applications on Android versions below 4.1. For other versions, the most direct way is to flash the phone, install a root access (by installing a Cyanogen ROM for example) and use tools to recover deleted files. It is strongly recommended to encrypt the phone data to protect against attackers who may have physical access to the device (this option is available in the security settings of Android).

Conclusions

It is still more interesting to talk about a vulnerable application than a well-implemented and well-secured application. The vast majority of mobile banking application that we analyzed were entirely safe to use. We expect high standard of security for mobile banking, so as we found anyway a handful of serious vulnerabilities, we expect finding a greater amount of them in regular applications. In terms of geographical distribution, overall we see a slightly higher security awareness of Asian banks compared to European and American banks. Indeed we could see more regularly among Asian banks:

• Additional encryption measures for the password. Usually the only encryption used is that of communication (https). We suspect that Asian countries do not trust entirely trust the https protocol.

• A particular care to protect themselves from retro-engineering and dynamic analysis tools.

For instance, we could note more often the use of certificate pinning. This is a set of strategies to ensure that the SSL certificate of the contacted server is signed by a trusted authority recognized by the server and not by an authority that could have been maliciously embedded in the client system list. These techniques put a stick in the wheel of tools we rely on for interception of https communications.

For managing bank accounts, we recommend using a regular computer through a web browser. Smartphones should be considered a less secure environment than a computer and therefore avoid using services / data whose security is vital. The phones are not less safe because they suffer from a bad design, on the contrary the permission system of Android has no equivalent on other OS and it limits most of the capacities of malicious actions.

However it is our use of the phone that makes it less secure:

• It is constantly moved, forgotten and manipulated by others.

• It concentrates a lot of personal information and therefore arouses covetousness.

• We install applications when we could use online services. However, many services are only available through an application.

• It becomes mainly an object of entertainment and consumption and incidentally remains an object of communication, then it undergoes the inconsistent behaviors of its userscompulsive installation of gadget applications. The false impression of applications being free is also a problem in this sense: the real cost is measured here in bytes of personal information and available brain time.

There are still technical solutions to strengthen the security of our phone:

• Encrypt phone data.

• Use an antivirus product.

• Use open-source alternative applications when they exist. There is an alternative Android app market of Open Source applications called Fdroid25 .

• Common applications are not particularly aware of security issues, and may be the vector of attacks. It is difficult to expect a serious security on a phone that also mixes entertainment, consumption and social networks. Hence, a careful selection of what should be installed reduce infection vectors.

Last, it seems to us highly challenging to hope automating the process of vulnerability discovery as there is no obvious similarity of shapes between them or apparent recurring patterns. The process of application validation can be supported by semi-automatic tools that organize information for a fast look up of anomalies, but we chose to keep it manual.

CHAPTER 3

Sample & Feature Collection 

Sample Collection

Heuristic methods for malware detection are generally coming from the Data Mining domain. So they need to be based on sound statistical data to generalize on new data effectively. In other words, we need a representative sample set to have an excellent statistical reference set. So we worked on collecting of Android malware massively. This topic is rarely discussed in scientific articles on malware detection or just flown over. However this is a central topic in the context of heuristic detection, especially if we intend to build a heuristic antivirus which is competitive with the state of art in Android malware detection. The question that arises from this observation is how AV companies collect their malware samples ? Their main sources are most likely sample submission by customers/users/Virus Total and database sharing with other antiviral companies. We note that the databases of the tool Andrubis were fed 70% through the exchange of samples with the antiviral companies [1] (Table II, page 15). The second-largest source is labeled Source Unknown and is actually made of applications uploaded by individuals and companies. These are sources we, unfortunately, cannot access. Several academic institutions have malware sample share programs. We have identified and contacted each institution offering these programs. In addition, we have also collected samples from nonacademic datasets. Finally, we collected new samples by ourselves with web crawling techniques.

Places to Find Android Samples

Most of the datasets we present here did not exist at the beginning of this thesis. They appeared mostly between 2015 and 2017. Currently, it is quite easy to gather enough samples to conduct a study even on a large scale. We started with a few thousand malicious samples from Contagio-Dump 1 and around two thousand benign samples from Fdroid 2 . It was difficult to access more malware samples because IT security companies were reluctant to share their viruses. So we chose at the time to find samples that had not yet been discovered on the web through a mass collection program. We were able to get about 300,000 applications and we estimate that there are about 20,000 malware programs in this set. This estimate is based on average infection rates of different alternative markets. By the time we got these results, public malware datasets appeared whose samples were perfectly labeled. So we abandoned this direction to use these datasets instead. Here is an updated list of these datasets:

• (Academic) Drebin dataset 3 [2] 5585 labeled malware samples.

• (Academic) AndroTracker dataset 4 [3] 4554 unlabeled malware samples, 40292 benign samples.

• (Academic) M0Droid dataset 5 [4] 200 malware samples, 200 benign samples.

• (Academic) Android Malware Dataset 6 [5] 24553 malware samples divided into 71 malware family.

• (Academic) AndroZoo 7 Millions of unlabeled malware and benign samples. We downloaded up to 500000 malware samples and 500000 benign samples.

• (Public) Virus Share 8 35397 unlabeled malware samples.

• (Public) Contagio 9 1168 malware samples with known malware family (but it requires manual reorganization).

We designed scripts to automate mass download from the contagio dropbox, and to mass unzip the password-protected archives.

• (Public) Koodous 10 Millions of malware samples. It requires the use of an API and sample download is limited. We do not have used this source for this thesis.

Our contribution: Tarentula

It is possible to find Android apps on medias much less recommendable than the Google Play. And the goal of Tarentula tool is to explore these areas where it is assumed that the risk of encountering a malicious application is greater. We list the following channels of application sharing:

• Alternative application markets. These application repositories do not usually have virus countermeasures, test procedures, or special constraints for developers. Thus, it is obvious that the risk of encountering malware is higher than Google Play.

• Wild FTPs. A significant amount of FTP are indexed by search engines. With a Google search phrase like [intext:"index of" intext:"parent directory" intext:"name" intext:"last modified" intext:"size" intext:"description" intext:"apk" -site:com -inurl:php], we have access to tens of thousands of public FTPs that contain Android apps.

There is obviously no control over the content here. It is therefore a source of choice for us.

• Torrents. On torrent sharing sites, it is possible to find paid Android games, lots of applications of all kinds (usually warez). It is on this channel that we hope to find many malware applications, for obvious reasons.

Tarentula launches four simultaneous threads.

• The first one processes free proxy sharing sites like Hide My Ass 11 . Each of the proxies is tested. In particular, what is verified is that the public ip has been changed and is not leaked in the metadata of the web requests, and that the bit rate is acceptable. Some proxies do not allow access to all websites -especially Chinese proxies. When web crawling, if more than three times a page is not accessible, another proxy is tested. If this new proxy works, the old proxy is rejected from the viable proxy list.

• The second thread collects application download links on public ftps and alternative markets such as appchina, hiapk, nduoa, 3gyu or angeeks. The third thread collects Android application sharing torrents from sites like Kickass Torrent.

• The last thread continuously downloads applications from the list of web crawling links with a rotation on viable proxies. Tarentula ran on one month on a regular computer, allowing us to download around 300,000 applications.

Biases of Academic Datasets: the Drebin Study Case

We noted that academic datasets suffer from biases. It is important for the rest of the study to discuss the quality of our sample collection. The Drebin dataset [2] is the most supplied academic dataset of Android malware. Therefore it is the most used dataset in research papers on Android malware detection. The research community is using it for evaluation and comparison of their algorithms. We discovered that 49.35% of samples in this dataset has at least one other sample that is a repackaged version containing exactly the same sequence of opcode. The only differences between the original malware and the duplicated ones, in all cases, are the resources embedded and some strings in the code. For assessing the performance of malware detectors or classifiers, a part of the dataset is used for this purpose. So a major part of the testing set end up being the same samples that have been used in the training set.

This situation can lead us, the research community, to overrate the performance of algorithms we are designing. In the worst case, it leads us to wrong conclusions and wrong directions for future research. In this section, we present in detail the issue of duplication the Drebin dataset. Then we conduct an experiment where we test several classification algorithms on the Drebin dataset with and without the duplicates. Our results show that depending on the classifier the full dataset can lead from moderately (124%) to strongly (172%) underrated inaccuracy, and the order of performance of the algorithms is modified. Finally, we provide the list of unique malware samples from the Drebin dataset, available on Github12 . This study has been the object of a publication in 2018 in JICV [6].

Duplicates analysis

According to Google Scholar statistics, the Drebin paper has been cited 705 times. Moreover, it has the second position in the ranking of the most cited papers for the "Android malware" keywords. It appears to be one of the major papers in Android malware detection, and the Drebin dataset is the most widely used Android malware dataset in the research community. Researchers rely on this dataset to evaluate and compare the algorithms they are designing. Analyzing the opcodes sequences of Drebin samples led us to a discovery. A large part of the dataset is samples that share the exact same opcodes sequence. From a statistical point of view, it means that samples are interdependents. Therefore all performance measures made on the Drebin dataset are flawed and cannot represent the capacity of the evaluated algorithm to generalize on new data. The link between repackaged applications in the Drebin dataset has been studied in [7], so the fact that it contains repackaged is known. Otherwise, this fact has not been raised as an issue for previous or actual research. Our dataset contains 5,585 malware from the Drebin dataset and 2,201 benign samples from Fdroid 13 , a free and open source repository of Android applications. We use data from static analysis to feed the machine learning algorithms, namely the n-gram frequencies of opcodes sequences. The static analysis of Android application implies the reverse of Android applications to Java byte codes. These Java byte codes constitute a sequence of instructions that can be executed by the Android RunTime 14 , the Android Java virtual machine. We distinguish the operator byte code, called opcode, from the operand.

• Thanks to androguard 15 , the applications from the whole dataset were decompiled (excluding a few which raised unsolved exceptions). Once decompiled, it was possible to collect each opcode in order of appearance. For each application, the sequence was stored in a file.

• The program fdupes 16 was used to find the duplicates among the sequence files.

• For each set of duplicates, a script was used to compare the first element of the set to all others. To do so, applications were unzipped and diff 17 was used to determine which files are common within all archives.

Decompilation with androguard generated 7,625 files (5,459 malware, 2,166 benign) containing opcodes sequences for applications in the database. We grouped together equal sequences, to constitute a set. To summarize the results we gathered the sequence set sizes and quantity for the Drebin dataset (Table 3.1 and Figure 3.1). More precisely, fdupes indicated that 3,278 malicious applications and 31 benign ones are concerned by the duplication problem. These applications were sorted into 584 sets for the malware and 8 sets for the benign applications. A list of apk files whose codes are different was generated and is available on Github 18 . At last, 2,765 malware apps are unique (2,181 unique samples and 1 app chosen for each 584 malware duplicate set), which is 50.65% of the Drebin dataset. It means that 49.35% of the Drebin dataset is actually applications that have a duplicated source code.

Moreover, the analysis with diff highlighted three common cases:

• Applications share everything but their certificates.

• Only images and configuration files change.

• Binary files appear or disappear from the application.

Note: it may happen that diff found a difference between the .dex files (the file containing the dalvik bytecode) from two duplicated applications. We investigated and discovered that, despite sharing the exact same sequence of opcodes, classes in the code are named differently and therefore, the .dex are different.

Impact of the duplicates

The scope of this study is not about assessing the optimality of the data pre-preprocessing step, so the details are given for information purposes only. The features used for training the machine learning algorithms are the normalized frequencies of opcodes trigrams.

f n = f f max
Where f is the frequency of a trigram, f max is the maximum trigram frequency in the sample and f n is the normalized frequency. The normalization spreads the feature values between 0 and 1 and increases the accuracy of machine learning.

This produces millions of unique features. We use the Weka 19 software to test the performance of several algorithms. As the Weka implementation only accepts the full feature vectors (sparse matrix processing is not available), it is necessary to reduce the input data dimensionality. We select the most pertinent features according to their Mutual Information (a.k.a. Information Gain) [8] and their appearance frequency in the sample set. The first criterion is defined as follows:

MI(X; Y) = y∈Y x∈X p(x, y) log p(x,

y) p(x), p(y)

Where p(x, y) is the joint probability distribution function of X and Y, and p(x) and p(y) are the marginal probability distribution functions of X and Y respectively.

In our case X and Y are two variables defined, as follows:

∀ f ∈ F, ∀s ∈ S, X = 1 if f ∈ sF 0 else ∀s ∈ S, Y = 1 if s ∈ M 0 else
Where:

• F denotes the features set of all samples.

• S denotes the samples set.

• sF denotes the features set of the sample s. MI, in our case, quantifies the correlation between the presence of a feature and the fact that a sample is a malware. A feature can be strongly MI-correlated with maliciousness but rarely be found, in which case it does not globally contribute to the classification. It is why we select the top 5% MI-correlated and the top 5% most frequent features. After feature selection, each sample has a feature vector size of 21379.

Lastly, we need to define the performance measures we are using: For all experiments, we use the accuracy as the main performance measure. It expresses the ratio of samples that are well classified, regarding their expected class (malware or benign):

• t p is the number of True Positive, i.e. the number of malware samples classified as such by the model.

• t n is the number of True Negative, i.e. the number of benign samples classified as such by the model.

• f p is the number of False Positive, i.e. the number of malware samples classified as benign by the model.

• f n is the number of False Negative, i.e. the number of benign samples classified as malware by the model.

Accuracy :

acc = t p + t n t p + t n + f p + f n
The last percentages of accuracy is the most important and the most difficult to get. Between a first solution that cures 98% of a disease and a second solution that cures 99% of the same disease, the difference is that with the first solution, twice the number of patients die. So we defined a measure that characterizes this point of view. Inaccuracy underrating denotes the loss of accuracy, for a machine learning algorithm, from training with the duplicates to training without the duplicates. It is defined as follows:

i naccur ac y und er r at i ng = 1accur ac y nod up

1accur ac y d up

Where accur ac y d up is the accur ac y with the duplicates and accur ac y nod up is the accur ac y without the duplicates. In our illustrated example, if the second solution was inaccurate and had the same performance as the first, its inaccuracy underrating would be 200%.

In order to test the impact of the duplication problem, we use weka to classify sequences from the Drebin Dataset. Weka allows us to test various classification algorithms. For each algorithm, we validate the corresponding model using k-fold cross validation [9] with k set to 10. To determine the impact of the duplication problem, we focus on the accuracy rate (percentage of correctly classified instances). Our goal is not to provide a comparison between the various classification algorithms and thus, we did not try -more than necessary -to maximize accuracy by optimizing the machine learning hyperparameters. We use the following algorithms:

• Random Forest The results are presented in Table 3.2 and Figure 3.2.

As we can see from the table, removing the duplicates from the training dataset multiplies the inaccuracy from 124.17% to 172.41% depending on the classifier (146.07% average). The Support Vector Machine with Sequential Minimal Optimization underrates the inaccuracy the most because of the duplication, with an underrating of 172.41%. Moreover, it changes the performance order of the algorithms.

With duplicates we have: RF > ANN > SMO > REPTree > C4.5 > IBk

Without duplicates we have: RF > ANN > REPTree > SMO > C4.5 > IBk

This result shows a few algorithms which seem to outperform others when it is not the case in reality. It could change the conclusions of an article, because some algorithms are more affected by the duplicates than others.

Our experiments over the Drebin dataset show that 49.35% of the applications share their code with one or more application(s) in the dataset. We found that the differences between applications with the same code can be classified into three categories:

• The signature has been modified.

• Images or layout modification.

• Binary files.

The classifiers are trained to recognize data from the learning set, so keeping the duplicates can have an impact on the performance (erroneously high accuracy), because they will be on the test set as well. We conducted tests in order to determine this impact. We discovered that using the dataset with all the duplicates underrates the inaccuracy up to 172%.

This experiment brings a reasonable doubt over research results on the Drebin dataset. Most must have overrated performance on new applications, and some may bring invalid conclusions. Furthermore, it means that we need to assess the datasets we are using. We need to question their pertinence if we want realistic performance results. We have provided a list of unique applications from the dataset. It is available on Github 25 . We recommend using this list for any research using the Drebin dataset, and for those who want to test the impact of the duplication on their algorithms. Secondly, it shows that academic datasets must be assessed and their limits must be questioned.

Static Analysis

Static analysis is the study, often automated or semi-automated, of an executable or a source code without executing it. In the domain of software development, static analysis often involves automated tools that review code correctness, optimize it and warn about common development mistakes. In the domain of malware detection, executables are compiled source code. Hence in our domain, static analysis always implies the reverse engineering of Android executables. Then static analysis can be very different whether it is used for extracting features for machine learning or if it is used as a support for manual analysis. We cover both aspects in the following subsections, because our objectives are twofold: malware detection and vulnerability discovery. To reverse an Android application, we need to detail its construction. In the first subsection, we expose the composition of an Android package. In the second subsection we present the state-of-the art of static analysis and Android reverse engineering. In the last subsection we present our contributions, with the static analysis feature we use for the rest of this thesis.

Application Package

The Android PacKage (APK ) is the package file format used by the Android operating system for the installation of applications. It contains the compiled Java source code, resources, assets, certificates and the manifest file. An Android application package presents itself as a zip archive file with the .apk extension.

Source Code

While is possible to develop Android applications with multiple languages (HTML5 26 , Ruby 27 , Python 28 , C# 29 etc.), the generated code will always be Java code as it is what the Android system can execute. The Android Java code has nonetheless the capacity to execute native code via compiled shared libraries (.so) via the Java Native Interface (JNI 30 ) or HTML/CSS/JavaScript via the WebView 31 class. This normalization of the Android source code is an opportunity for malware detection as we can rely on a specific format and constraints for application analysis. Source code is compiled into Java Bytecode (.class) by the Java compiler then the dexer tooldx, which is part of the Android SDK -compile the class files into a binary file in the DEX format. This DEX file contains Dalvik Bytecodes, it is a Java Bytecode variant optimized for the Android System. The whole source code is packed into one file, decreasing the overall size 32 . All strings, especially package/class/method names are indexed. The DEX file format is illustrated in Figure 3.3 (source 33 ).

Dalvik is register-based contrary to the standard JVM which is stack-based. As processors also use registers, the Dalvik code is more easily mapped to the CPU registers. Moreover the stack of the JVM need a memory access, which is orders of magnitude slower than registers. This effect is balanced by capacity of the Just In Time (JIT ) compiler to turn stack operations into register operations. 

Manifest

The Android manifest file -AndroidManifest.xml -expresses meta information about the application that the Android system requires before any execution. It contains the following important information:

• Package Name

Every application is uniquely identified with a package name. Only one instance a package name can be installed on the Android OS. The naming convention is the following 34 : The name should be unique. The name may contain uppercase or lowercase letters ('A' through 'Z'), numbers, and underscores ('_'). However, individual package name parts may only start with letters.

• Version Name / Version Code

The version code identify the application version on the Google Play but what is actually displayed for the user is the version name.

• Permissions Permissions are shown to the user before the installation and it must accept them. It enables the application to access to specific API calls that often require to use peripheral devices of the phone (camera, micro, etc.), system applications (contacts, google services, etc.) or network/GSM capabilities. Misused or maliciously used, these API call can be harmful for the users.

Prior to Android API 23 (a.k.a. Android 6.0 Marshmallow), all permissions were treated the same way. From API 23 until now permissions are classified into two categories: normal and dangerous permissions. Normal permissions are granted on installation and dangerous permissions are granted on usage -once granted, it is permanent. However, most of the users ( 83%) do not pay attention to the permission, and only a tiny fraction of users have a comprehension of what are the permission and the consequences to grant them ( 3%) as shown in this study [11]. This system definitely helps to frame application behaviors to the contrary of programs running on a regular computer, but it is a weak security protection as the user is responsible for it usage. However it is an important feature for classification as permissions put a frame on application behaviors.

• Activity An activity is a visible window of the application. Android emphasizes the design of applications by activities. When an activity is not visible anymore, is it put in a paused state. Applications declare a main activity that will be started when the application is lunched.

• Intent Filters

Intents are signals sends to the Android system or to the application itself in order to execute a component. For instance, taking a photo or visiting a link can be done with an intent, requesting the capabilities of external applications. There are explicit and implicit intents.

Explicit intents make the Android system call the specified activity or service directly. The target and source of the intent must a component of the same application. Implicit intents are used to call a component of another application as shown in Figure 3.4 (source 35 ). (2) The Android System searches all apps for an intent filter that matches the intent. When a match is found, (3) the system starts the matching activity (Activity B) by invoking its onCreate() method and passing it the Intent.

The Android system receives the intent and target the first app component that have the corresponding intent-filter. An intent can be sent with arguments. It is why it is often the entry point of a vulnerability, as the intent parameters must be sanitized. Parameters are considered as unsafe values from the point of view of the targeted application.

• Receivers A receiver -short for BroadcastReceiver -is a component that is executed when a broadcast intent is received. Some receivers are symptomatic of malware behaviors like BOOT_-COMPLETED which is triggered when the phone boots.

• Services A service is a component that can run tasks in the background -when the UI is not visible. It can be triggered by broadcast intents like a receiver.

• Providers A provider is a component that is able to provide data that is managed by this application to another application. It encapsulates the data and provides an interface to share it. It can come along with a custom permission that another application must declare to use it. Providers can also be triggered with a broadcast intent.

Like the DEX file, the manifest file is binary encoded into a format named AXML to optimize the size and the processing time.

Assets & Resources

Assets and resources are two way of managing external files. Resources are able to provide alternative form of the same file -for different languages, OS, screen sizes and orientations. Resources are indexed with a unique identifier, and their paths are checked at compile time. They are classically XML configuration files and images. Last, resources are packaged into one binary file in the ARSC format. It is a binary XML -strings are indexed to save space. Assets, to the contrary of resources, are not indexed and are used only at the execution. Files can be stored in a free directory hierarchy -which is not possible with resources.

Certificates

Android applications are numerically signed to ensure that it has been packaged by its developer. It copes with the cases of developer identity theft and application corruptionvoluntary or not. The MANIFEST.MF and CERT.SF files list all package files with SHA1 fingerprint by default. The MANIFEST.MF file also contains meta information about the .apk package as developer information, package version, main class to be run, etc. The last part that constitutes the certification system of Android application is the CERT.RSA file that contains the signed content of CERT.SF along with the certificate chain of public keys used to sign the content. If the content is modified, the signature in CERT.RSA will not match content of CERT.SF.

Knowing how applications are made in detail enables to reverse engineer them. In the next part, we see what are the state-of-the-art tools for reversing Android applications and for static analysis applied to the security domain -not to be confused with code review. Last, we present our contribution to the state-of-the-art.

Android Reverse Engineering and Static Analysis Features

An objective of this thesis is the detection of Android malware. What features enable a machine learning algorithm to differentiate benign and malicious applications ? We give a review of the state of the art here, with motivations for our static feature choices. We distinguish two categories of static features: raw and complex features.

• Raw features are values extracted directly from the executable without any post-processing.

As an instance, presence of permissions, strings or a sequence of opcodes are raw features. They are the most efficient features to process as it involves only to read the executable.

• Complex features values obtained after the processing of an abstract representation of the executable or by inference. For instance, features from taint analysis, a control flow graph (CFG), call graph. Features captured from these abstract representations are often high-level information as structural or behavioral information.

What static analysis features are effective for classification and for what cost ? The processing cost of complex feature is taken into account because we want to design an efficient process. Studies use different classification algorithms and datasets to assess the effectiveness of their method. It is why, here, we are not able to give a definite answer to the question. We compare results mostly by their final accuracy, but its absolute value is not fully correlated with the feature choice -because of other algorithmic choices as previously stated. Instead we try to grasp a tendency for each feature to select the most promising ones. This tendency can be balanced with implementation constraints. For instance, we often rejected graph based complex features that have a high asymptotic complexity. Last, we test the selected features against a fixed classification algorithms and a fixed feature selection method. The chosen classification algorithm and feature selection method are detailed in the next chapters. Review of raw static features: • Presence of a permission (type: Boolean). A permission request is a clear sign of a behavior in an action range defined by the Android system. Generally these behaviors are sensitive from a security point of view. Used in a malicious way, this can harm the user. This is why the user must validate these permissions. Malware sometimes exploits a vulnerability to gain additional rights, but most of the time, they simply ask for the permission to act.

The list of requested permissions seems to be an important feature that allows to deduce a potentially malicious behavior. We list previous studies than only use permissions as classification feature. Leeds . 87.23% accuracy with a neural network on a 10-fold cross-validation dataset of 650 applications (325 benign, 325 malicious). Permissions appear to be effective to detect malware, but it is clearly not enough. We made statistics on our own dataset (5,585 malware samples, 2,206 benign samples) on Figure 3.5. It clearly shows that there is in fact great difference between the malware set and the benign set.

• Presence of an intent (type: Boolean). Intents are actions that an application asks the Android system to resolve. It can be the opening of a file, a web page or the sending of a block of data to another application. The system itself sends broadcast messages during special events. Applications can then declare components that react with these intents. It is the basis of inter-application communication. The components that react to intents are declared in the manifest. They can also be dynamically declared in the source code. We will also find the sending of intents in source code. Often malware abuses this system to perpetuate the execution of their malicious routines. With intents, malware can run as soon as the phone is turned on or when the screen is off. Studies that use only intents as classification feature achieve honorable accuracy. [13] on a dataset of 7,406 applications (1,846 benign, 5,560 malicious) with a Bayesian network. This is the only study that only uses intents as features. It is to be noted that Drebin [2] use intents as a part of their feature set with SVM on a split dataset (117,893 benign samples, 5,560 malware samples ; 66% learning, 33% testing). On our own dataset, the statistics of intent usage or declaration is shown in Figure 3.6. There are significant discrepancies between those distributions, making intents a good feature candidate.

• Presence of a certificate signature (type: Boolean). Only [16] use certificate signatures in their detection scheme. They show that, among their dataset of 4,554 malware samples, 70% of them use 24 unique signatures. This feature is a good candidate for creating a first filter that act as a blacklist.

• Opcode N-Gram frequency (type: Numeric). This method enables to identify malware with their code structure. Any byte code operation is constituted by an opcode (the operator code) and one or more operands (operator values). Values can vary arbitrarily from family sample to another due to string change and obfuscation. However it is difficult to change the structure of operators that constitutes the core logic. According to the literature, features based on the opcode sequence are very effective for both classification and detection problems. A common strategy to process the opcode sequence is to sum its n-gram occurrences. A n-gram is a sliding window of size n over the sequence. Shabtai et al. [17] obtained 96.88% using to top 1,000 opcode bigrams on the Malgenome dataset [18]. BooJoong Kang et al. [19] reported a 98% F-measure on a dataset of 2,520 with a SVM classifier. Niall McLaughlin et al. [20] obtained the accuracy of 98% with a CNN (Convolutionnal Neural Network) on the raw opcode sequence and 98% with bigrams and trigrams. The state-of-the-art clearly shows that opcode sequences produce potent features for classification.

• Android API call frequency (type: Numeric). The Android API is often the only entry point for accessing certain phone features. Information that identifies the phone or the user, access to SMS, calls, contacts, etc. Using these calls to the Android API in an unusual way may reveal mischievous behaviors. Researchers have already studied the usage of these API call sequences to the malware detection problem. DroidAPIminer [21] achieve 99% accuracy with KNN [22], on a dataset of 3,987 malware samples and 500 benign samples with split testing (66% learning, 33% testing). Feng Shen et al. [23] achieve 94.5% accuracy with a SVM classifier on a dataset of 3,899 malware samples, 3,899 benign samples with split validation (90% learning, 10% testing). It appears that API calls are also a feature with potent discriminative power.

• File / code sections size (type: Numeric). The goal of malware is to spread quickly. This is facilitated by a small file size, a reduced code that does not clutter useless libraries, etc. Statistical studies conducted by Ludovic Apvrille et al. [24] show that 30% of malware samples has a size lesser than 70000 bytes as opposed to 21% for benign samples. Ludovic Apvrille et al. [25] use the file size as part of their feature vector, with a combination of classifiers they obtain more than 99% accuracy with split testing. However it is hard to know the impact of the file size on the overall detection. File and sections sizes are probably a weak indicator, but is a feature easily collected.

• Whole source code as a byte sequence (type: N/A). The binary DEX file is used as a whole in the case of Deep Learning. A Deep Learning algorithm uses raw input data and learns which features are predominant. McLaughlin et al. [20] use the raw opcode sequence with a convolutional neural network, the results range from 80% to 98% accuracy depending of the size of the dataset. The disadvantage of this technique is its weakness to obfuscation. A simple padding of the DEX file or a manipulation of the DEX so that the malicious code is found at the end of the file and the detection is lapsed. Indeed, Deep Learning algorithms cannot take arbitrary sizes of input objects, they need fixed sizes. So in general, the DEX file is truncated if it is too big or padded if it is too small. Another drawback is the learning and execution time, that constraints the use cases.

Review of complex static features:

• Presence of a behavior defined by a rule (type: Boolean). Axelle Apvrille et al. [26] use the presence of predefined behaviors as part of their feature vector, with a combination of classifiers they obtain more than 99% accuracy with split testing. However it is hard to know the impact of the presence of predefined behaviors on the overall detection. We have experimented the use of static rules for detecting risky behavior. These rules were designed manually with the observation of malware source code. The list of detected behaviors is as follows:

• Reading SMS.

• Sending SMS.

• Phone calls.

• Application installation (social engineering).

• Application uninstallation (social engineering).

• Execution of a shell command (more specifically chown / chmod / mount / remount).

• Attempt to escalate privileges.

• Dynamic code loading.

• Using Java reflection.

• HTTP requests.

• File system parsing.

• Using native code.

• Track the position of the phone.

• Access to Android account information.

• Retrieving the number of this phone.

• Using a resource.

• Execute code when the phone starts. 60 • Sending mails.

• Modification of wifi settings.

• Access to advanced telephony features.

These behaviors, when found, do not mean that an application is malicious. Some of these behaviors clearly indicate that it is a malware, others indicate a potential malignancy. A statistical study on a base of 600 malware samples and 600 benign samples gives an idea of the nuance these characteristics bring (Table 3.3).

We can see that certain behaviors are frequent in malware and infrequent in benign applications like SuString, ShString, Runatboot, APNSettings, ChmodString, NativeCode. Other criteria are rarer but when present, indicate a high probability of malware like DynamicCo-deLoadingFromDEX and AskForAPKUninstall.

• Dependency graph. A dependency graph is an oriented graph representing the object dependency contained in the application. The nature of the objects studied can be diverse, so there are many different dependency graphs. In the article Profiling user-trigger dependence for Android malware detection, Elish et al. [27] study the relation between user entry points -UI actionnable items -and the Android API calls that are triggered. This study relies on the observation that malicious applications run malicious code without user intervention, whereas benign applications typically use Android API calls when the user does a specific action. The dependency graph starts with the entry points of a user action -ex: onClickListener -and follows calls in the form of a tree until all calls to the Android API from these entry points are counted. Some metrics are processed from the graph. Simple thresholds on these metrics enable the classification of applications as malware or benign software. The final accuracy is around 98% but it is unsure that proper statistical tests have been made (no mention of split or cross testing). In the article Structural detection of android malware using embedded call graphs, Gascon et al. [28] use call graphs to detect Android malware.

Only Android API calls are captured to reduce the distinct subgraphs. These graphs are then indexed to constitute a feature vector. To analyze a new sample, for each of its subgraphs the most similar is queried from the subgraph database. It sets then the corresponding index in the feature vector 1 to indicate the presence of this subgraph. Then the feature vector is used on a anomaly detector to single out malware samples from benign samples. The authors do not precise which anomaly detector is used. They obtain 93% accuracy on malware samples with 2% false negatives and 5.15% false positives on a test dataset of 2,200 malware samples and 13,500 benign samples. Dependency graphs seem to be a powerful tool for detecting malicious applications. However, there is still no consensus on the best way to use these graphs, what they should contain, as well as how to extract data suitable for Machine Learning. Added to this a relatively long graph generation and processing time compared to the other features mentioned above, it is a feature that we finally rejected for these different reasons after a preliminary study. Egide [29], a software that we developed prior to this thesis, allows to extract control flow graphs starting from every entry points. Initially planned for manual analysis of Android applications, we realized their inapplicability as an analysis support as well as the complexity to use them as a feature for a machine learning algorithm. Noting that the final performance of these dependency graphs are good but far from exceptional compared to other features, we chose efficiency and rejected its use. In Figure 3.7 we show an instance of a control flow graph from an application analyzed with Egide.

Existing tools for reversing Android application have different objectives. None of them have been designed for feature extraction, which is a crucial step for malware detection. The main tools to reverse apk are baksmali 37 , dexdump (tool avalaible in the Android SDK), Androguard 38 , radare 39 and Dedexer 40 .

• Baksmali is a disassembler for the DEX format. It transforms the whole source code into smali format which is a human readable version of the Dalvik Bytecode. The reverse is done on the hard drive and there is no API.

• Dexdump is a tool available in the AOSP. It is a frontend program on the libdex library which is used by the Android OS to process applications. It dumps the DEX file on the terminal with a human readable format. There is no API to control the program and it cannot be used for targeted reverse.

• code analysis, allows the creation of malware signatures, and reverse engineering. However it cannot be used for targeted reverse, but the whole process can be done in memory. Last, it transforms the code into smali.

• Radare is a set of programs for the analysis and reverse of binaries. Radare is able to process Android applications. It can reverse the DEX file and the Manifest. Moreover it can be used for targeted reverse of source code parts. It has numerous of functionalities for static analysis like control flow graph. However there is no prorammable API and the reverse is done on the hard drive.

• Dedexer can reverse the DEX file. However it is not suitable for our needs as there is no API, no targeted reverse and the reverse is output on the hard drive. Finally, as there is no tool that suits all our needs so we developed our own. This tool is part of the Libmla library and can reverse the whole APK in memory, make targeted reverse and extract exactly the features we need for Machine Learning.

Our Contribution: libmla-android-reverse

We realized that the existing tools would not allow us to build efficient technologies in a production context. Androguard is the fastest tool we have tested -cf. Cygea [30] -and it turned out to be the bottleneck of the project. That is why we chose to develop our own library of reverse engineering. We apply here a strategy adapted to our problem. Rather than designing a generalist tool which reverses and analyzes the applications, we are focused on extracting only the features we need. This constraint allow the development of an efficient tool, because only useful information is extracted. We use the libdex library (version 7.1 of Android), distributed with the AOSP. This library is used to read DEX files and that is what the Android dexdump tool uses. No documentation is provided with AOSP or available elsewhere, and no public project do use libdex to our knowledge. We extracted this library and made corrections for recompiling it on the libmla project. The code has been analyzed to understand how to master it in standalone mode. To process the Manifest file that is encoded, we were inspired by the AXML parser written in C++ of the project Jitana 41 . A final element that we thought was essential is the certificate that allows in certain cases to identify the author of the application. For this we used the OpenSSL c library. The overall architecture of the reverse engineering module is detailed in Figure 3.8.

A large part of the application source code is composed of external Java libraries. These libraries are, for the vast majority, benign code. Including it in the analysis is a waste of time and a dilution of the characteristics of malicious applications. That is why we have a list of common package names. We use it as a filter in the analysis. This method is effective for both the analysis time and the quality of the malware detector, but it will have to be improved for production. Indeed, malicious software can spoof the package name of a common librarie and thus bypass the detection. This is why we need to store into a database, fingerprints of codes from common libraries. This is a substantial work because it is necessary to follow the updates of libraries and to be able to accept small modifications of the code. In fact, according to the machine and the version of the software which compiled the application, which can lead to small differences in the code obtained during the reverse engineering. From an application we extract:

• The number of activities, receivers, providers, services and permissions.

• Declared permissions, static and dynamic intent-filters, intents used in the source code.

• Bigrams of strings defined in the source code. Using trigrams is impractical because in our dataset we get over a million unique trigrams, which borders the limits of the structures that manage features.

• Trigrams of method opcodes. We observed that using trigrams of method opcode regardless of basic blocks is more effective than using trigrams from basic block opcodes (cf. last chapter). • Trigrams of common library calls. Here, we do not restrict calls to the Android API, but calls from any library that has been filtered. Otherwise parts of the code logic would not be taken into account. Its effectiveness is also backed by the experimentation (cf. last chapter).

• SHA Fingerprints of all certificates declared in the META-INF directory.

On a regular computer with an Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz CPU, it takes 2m:59s:526ms to extract the features of 7,791 applications. On average the reverse and feature extraction process take 23ms. For our use case there is no competition with the available tools.

Dynamic Analysis

Application Execution

We developed a dynamic analysis tool that instruments the Android OS. Therefore having an in-depth understanding of the Android OS and how it executes the application is required. The first time an application is launched, it is translated into an optimized format depending on the CPU architecture. Prior to Android v4.4 the runtime system was the Dalvik Vvirtual Machine (DVM). This system has then been replaced with the Android RunTime (ART ). These two systems have different ways of optimizing the application as shown in Figure 3.9 (source 42 ). The DVM system performs bytecode verification, deducing code paths, mapping registers and deducing the Garbage Collector. An Optimized DEX (ODEX ) header is added to the code. It optimizes the data and dependency tables. Last, it changes some instruction with faster versions that eliminate table lookup. These instructions are unsafe to use outside of the frame of ODEX optimizations. The author of Abusing Dalvik Beyond Recognition 43 shows how to bypass the ODEX optimization routine and how to use these fast bytecode version to dynamically execute arbitrary code, hide the real code from analysts and break common reverse-engineering tools. The ODEX code is interpreted. Some hot portions of the code are compiled to native bytecode and/or inlined by the Just In Time (JIT ) compiler. Hot portions of the code are methods that are often used.

Hence, the more an application is running, the more it will be optimized -in theory. The ART system enhances the performance of application execution by compiling them to a native binary, in OAT format. This routine is called Ahead Of Time (AOT compilation. An OAT file is an ELF shared object file with sections containing OAT data:

• oatdata, that contains the OAT header and the original DEX file.

• oatexec, that contains the native code of the compiled method.

• oatlastword, a special symbol that marks the end of the native code section. A detailed explanation of the OAT format can be found in [31]. Their is no in-depth documentation on ART system, but its functioning is essential for the rest of our study. Therefore, we analyzed the Android Open Source Code (AOSP) version 5.1 to understand exactly how ART executes applications. ART exhibits three behaviors that are important for our study:

• The first time Android is launched, Java Android API libraries and applications are optimized and compiled to OAT.

• Each time a new application is installed, it is optimized and compiled to OAT format.

• Java methods can be executed in three ways: by an OAT JUMP instruction to the method address, by the ART interpreter for non-compiled methods (debugging purposes mostly), or via the Binder for invoking a method from another process or with Java Reflection. Details on the Android Binder can be found in [32] chapter 4.

Last note on application execution, almost every applications use calls to the Android API. It would be costly to load an instance of Android API with every applications. This is a reason why all applications are started with a fork of the same process, named Zygote. Zygote loads the Android API in memory and replaces every calls to the Android API with their actual address in memory.

Android Application Dynamic Analysis and Features

Dynamic analysis systems started being designed since 2010 [33] by the academic research, to circumvent the limitations of static analysis -namely, code morphism and obfuscation. Since that time, many systems have been released. For this study we have built a classification of a part of these systems, presented in Table 3.4. The classification takes into account three categories: the dynamic features collected by the analysis, the strategies set in order to automate application testing and finally the use of real devices in dynamic analysis systems history. We discuss the results on the following sub-sections.

Features Analyzed

Since the rise of Android dynamic analysis systems, the use of system calls have been the leading approach. System calls are the functions of the kernel space, available to the user space. It gives the capacity to manipulate hard drive files or to control processes. System calls can describe a program behaviors, from a low-level perspective. The collection of those calls can be achieved in two ways, mainly:

• Virtual Machine Introspection -This is a technique available for emulators, which enables the host to monitor the guest. It cannot be detected by the guest since it is out of its reach and it is therefore convenient for security analysis. Andrubis [1], CopperDroid [START_REF] Tam | Copperdroid : Automatic reconstruction of android malware behaviors[END_REF] and DroidScope [START_REF] Kwong | Droidscope : seamlessly reconstructing the os and dalvik semantic views for dynamic android malware analysis[END_REF] take advantage of VMI to retrieve, unseen by the target malware, all systems calls done by the guest Android virtual machine.

• Strace/ptrace -Strace is a Linux utility for debugging processes. It can monitor system calls, signal deliveries and changes of process state. Strace use the ptrace system call to monitor another process memory and registers. This second method is by far the simplest and the most straightforward one as the only task here is the automation of the strace execution. Moreover, it targets the system calls of the application directly. That is why this method has The paper is not clear enough on those details and we cannot be sure that it is an exhaustive list call (name)

Only the name of the call is used, in order to get the appearance frequency # Comment -No data ∼ Data exists but is irrelevant for this study been adopted in most of the literature, namely Crowdroid [34], Maline [START_REF] Dimjašević | Evaluation of android malware detection based on system calls[END_REF], [START_REF] Canfora | Detecting android malware using sequences of system calls[END_REF] and [START_REF] Vitor | Identifying android malware using dynamically obtained features[END_REF]. We have also chosen to use the strace utility for system calls monitoring. It is theorically possible that an application with root privileges tries to detect that its process is beeing debugged by strace. By calling strace on its own processes and issuing an error, the malware application can deduce it is under debug. Despite of this theoretical possibility, we found malware application currently able to do so.

System calls seem to give great results for classification. Maline reported 96% accuracy rate, and [START_REF] Canfora | Detecting android malware using sequences of system calls[END_REF] reported 94.9% accuracy rate on unseen applications with syscalls frequencies only. Actually syscalls capture low level behaviors of both Java code and native code.

The second most collected feature is taint tracking information as it reveals data leakage. It works by the instrumentation of the Dalvik VM interpreter. The information we do not want to leak is called a source. Some sources of personal data are tainted, like the phone number or the contacts list. Each time a tainted source or value is used in a method call, the DVM interpreter taints the returned value. With this simple mechanism, we can observe the propagation of the tainted information regardless of its transformations. A function that enables to transmit information outside of the system is called a sink, like network requests or SMS. If a tainted value is used in a sink, it means data source has leaked. It enables to detect data leakage even if this data have been ciphered or encoded. An application that leaks data is not necessarily a malware, as data leakage is the business of both malware and user tracking frameworks in commercial applications -which constitutes essentially a large part of goodware applications. Whereas this feature gives useful insights on the application behaviors for manual analysis, its utility for automatic malware detection needs to be proved. Moreover the implementation and execution of taint tracking are costly, which leads us not to choose this feature for now. Java calls is another feature of interest as it captures an explicit behavior of the application. There are several ways to collect them:

• Application instrumentation -This strategy does not need any modification of the Android source code and is not dependent on Android version. The application can be modified in order to dump targeted method parameters and return values. APImonitor [START_REF]Droidbox -apimonitor[END_REF] is a tool that enables the instrumentation of targeted Java calls. It reverses the application into smali, a human friendly format equivalent to the Java bytecode, with the baksmali [46] utility. Then, it adds monitor routines around the targeted calls and it recompiles the code with the smali [46] utility. This strategy is used by the authors of [START_REF] Vitor | Identifying android malware using dynamically obtained features[END_REF].

• DVM/ART instrumentation -The DVM (Dalvik Virtual Machine) or ART (Android Run-Time, Android API version ≥ 4.4) is the system that interprets and executes all the application instructions. All Java calls converge to this component. Hence, by hooking the execution of DVM/ART, one can monitor and control all Java calls, their arguments and their return values. That implies the modification of Android source code and its compilation to a custom ROM. This is the strategy we chose to use for collecting Java calls. We prefer this method for keeping the application behaviors pristine, and particularly not inducing additional bugs.

Andrubis [1] and DroidScope [START_REF] Kwong | Droidscope : seamlessly reconstructing the os and dalvik semantic views for dynamic android malware analysis[END_REF] use similar approaches for tracing method calls.

For the last features, they are highly marginal. Here, Andrubis reported the retrieval of targeted shared library calls. Another data are the network communications. Only Andrubis reported the utilization of features from network communications, but without any further details. Our system makes use of Panoptes [START_REF] Filiol | in)security of mobile banking... and of other mobile apps[END_REF] for gathering plain text and encrypted web communications. A recent study, [START_REF] Canfora | Acquiring and analyzing app metrics for effective mobile malware detection[END_REF], shows that the measures of resource consumption for malware detection is a promising trail. It reports 99.52% accuracy with global measures of CPU usage, Network usage, RAM usage and Storage I/O usage.

Automated Testing Strategies

Dynamic analysis does not consist of launching the application and waiting the malware to show its malicious behaviors off. Malware are using logic bombs for hiding the payload. Logic bombs are a malicious piece of code that is executed after a condition is triggered. It means we need to test each application as a real user could have done it. For achieving this objective, several strategies have been used in the past:

• Black Box testing strategies -This class of strategies does not take the application source code into account, it focuses on sending inputs in the application without any prior information. This is the commonly used strategy. Monkey44 is a dedicated tool created by Google for this task. It generates random events in a fast pace. Events range from system events (home/wifi/bluetooth/sound volume etc.) to navigation events (motion, click). Because of its capacity to quickly explore applications activities, it has been used by most of dynamic analysis systems (AASandbox [33], AppsPlayground [START_REF] Rastogi | Appsplayground : automatic security analysis of smartphone applications[END_REF], Andrubis [1], [START_REF] Vitor | Identifying android malware using dynamically obtained features[END_REF], [START_REF] Canfora | Detecting android malware using sequences of system calls[END_REF], [START_REF] Canfora | Acquiring and analyzing app metrics for effective mobile malware detection[END_REF], Maline [START_REF] Dimjašević | Evaluation of android malware detection based on system calls[END_REF]). Monkey is sometimes confused with Monkey Runner45 in the literature, which is a python library for writing Android test routines.

• White Box testing strategies -This class of strategies takes the application source code into account. It focuses on sending specific inputs in the application for triggering targeted code paths. It requires the information from the static analysis of the application. Parsing the code is needed, to find the target methods and all their triggering conditions. SmartDroid [START_REF] Zheng | Smartdroid : an automatic system for revealing ui-based trigger conditions in android applications[END_REF] and IntelliDroid [START_REF] Michelle | Intellidroid : A targeted input generator for the dynamic analysis of android malware[END_REF] determine all paths to sensitive API calls, then execute one of the paths to the target with dynamic analysis. Another kind of White Box testing strategy is symbolic execution where dynamic analysis is done by simulating the execution of the application static code. AppAudit [START_REF] Xia | Effective real-time android application auditing[END_REF] uses this technique for finding data leaks with symbolic taint tracking.

• Grey Box testing strategies -This class of strategies partially takes the applications source code into account. It focuses on testing all visible inputs the application declares or displays (UI). It usually takes the output of the application to generate the next inputs. Andrubis uses a Grey Box strategy when it tests all possible application services and activities, because they get the information from the application manifest. AppsPlayground also uses Grey Box testing with its Intelligent Execution where windows, widgets, and objects are uniquely identified to know when an object has already been explored. Grey Box testing have the advantages of using tests that applications are susceptible to respond, contrary to Black Box testing, without the requirement of processing a Control Flow Graph, as White Box testing. It is then the most efficient way of testing applications.

Real Devices

The use of real devices for dynamic analysis started with Crowdroid [34], a crowdsourced based analysis. Whereas this approach gives good results, one cannot ask users to execute real malware on their personal device. So this system can only be an option, when we have already a trained machine learning algorithm, to find malware in the wild.

BareDroid [START_REF] Mutti | Baredroid : Large-scale analysis of android apps on real devices[END_REF] is a system which manages real devices in large scale for dynamic analysis. Whereas BareDroid cannot be considered as a dynamic analysis system, because it does not analyze applications, it brought two major results for our study. First, real devices for dynamic analysis systems are a scalable solution financially and in execution time compared to virtual devices. Second, using real devices drastically improves features detected for malware families that often rely on emulator evasion like Android.HeHe, Android Pincer, and OBAD.

Our Contribution: Glassbox & Smart Monkey

Google reacted to the rise of malware with a dynamic analysis platform, named Bouncer [START_REF] Lockheimer | Android and security[END_REF], that analyzes applications before their release on Google Play. This security model is centralized and acts before the distribution of applications. Whereas this system suffers from limitations -like virtual device evasion -it has helped to reduce the malware invasion by 40% [START_REF] Lockheimer | Android and security[END_REF].

Android antivirus companies use another centralized security model which acts after the distribution of applications. Because applications have access to restricted resources and permissions, antivirus programs cannot perform their analysis -as it often requires root permissions and extensive resources. Hence, the static analysis is externalized onto the company servers. As a result, it can give quick responses -each application being analyzed just once. This is a shift of security model for the common user toward centralization.

Users have been used to decentralized security model for their personal computer, i.e. antivirus programs. This security model does not allow much room for maneuvre because any antivirus needs to be quick enough for not bothering the user -otherwise another quicker antivirus will be chosen. Whereas antiviruses have implemented heuristic algorithms, they are rather limited by the security model. Hence, the security model shifting is an opportunity for building more complex systems that require more resources to run. It enables security systems to use advanced research techniques like behavioral detection with dynamic analysis, or detection with features similarity from static analysis.

Malware authors made their strategy evolve with the rise of Bouncer and other dynamic analysis systems. They have started to hide the payload execution with emulation detection or/and the requirement of a user interaction. For example, the reverse of the sample [START_REF] Dharmdasani | Android.hehe : Malware now disconnects phone calls[END_REF] shows that malware applications are currently using emulation evasion. Emulator settings can be modified to mimic the appearance of a real device but there are a wide number of ways to detect Android emulation. Actually the tool Morpheus [START_REF] Jing | Morpheus : automatically generating heuristics to detect android emulators[END_REF] proves us this war is already lost as the authors found around 10 000 heuristics to detect Android emulation. So trying to modify the emulator to look real is probably a waste of time. In such condition, we need to redefine the problematic.

This is why we are presenting Glassbox, a dynamic analysis platform for Android malware applications on real devices. Glassbox is an environment for the controlled execution of applications, where the Android OS and the network are monitored and have the capacity to block some actions of the analyzed application. This environment is paired with a program that automates the installation, the testing of applications and the cleaning of the environment afterwards. We called this program Smart Monkey, as a reference to Monkey, the Android tool for generating pseudo-random UI event. The objective of Glassbox is to collect features for machine learning algorithm, to classify applications as malware or as benign. Glassbox (Figure 3.10) is a modular system distributed among one or several phones and a computer. Glassbox has been published in 2017 at ForSE [START_REF] Irolla | Glassbox : Dynamic analysis platform for malware android applications on real devices[END_REF]. Each part is detailed in the following sections.

Android Instrumentation

A custom Android OS has been made, based on the Android Open Source Project (AOSP) 46 . The objective here is to log dynamically each Java call of a targeted application. This involves hooking these calls, at a point where all of them pass through. We instrumented ART (Android RunTime) 47 , the Android managed runtime system that executes application instructions. A straightforward way of hooking Java calls is to instrument the ART interpreter. Unfortunately only a few calls are executed through it because most of the code is compiled into OAT and therefore it is not interpreted. We forced all calls to be interpreted by disabling several optimizations. The first one is the disabling of the compilation to OAT. That leads calls to be interpreted before being executed. But other optimization mechanisms come into play, namely direct branching and inlining.

The boot classpath contains the Android framework (Figure 3.11) and core libraries. They are always compiled in OAT resulting in a boot.oat file. This file is mapped into memory by the Zygote process, started at the initialization of Android. For launching an application, the main activity is given at Zygote in parameters. When Zygote is called that way, it forks and starts the given activity. It means that any application has access to the same instance of the Android framework and core libraries. Direct branching is an optimization that replaces framework/core method calls by their actual address in memory. So the calls do not pass through the interpreter. That optimization is 46. https://source.android.com/ 47. https://source.android.com/devices/tech/dalvik/index.html disabled.Then inlining is an optimization that replaces short and frequently used methods with their actual code. Although, it slightly increases the application size in memory, runtime performance are increased. As there is no method any more, it cannot be hooked in the ART interpreter. That optimization is also disabled.

Smart Monkey

Automated app testing

Logs

A monitoring routine is added to ART interpreter that logs any method call from a targeted application pid. A sample of a capture of Java calls is shown in annexes. All these modifications overload the global execution of Android. Whereas it is not noticeable for most of the applications, on gaming applications are visibly slow down by this approach. Lastly, the phone is shipped with a real SIM card for luring malware payloads with SMS/MMS/Calls. Many malware applications may use it for stealing money with premium numbers, and because we use a real SIM card it would actually cost us money. We modified the telephony framework of the Android API to reject all outgoing communications except for our own phone number. When a forbidden call is made, the calling UI pops and closes after one second around. This way does not crash applications that rely on calls and SMS.

Network Control & Monitoring

All communications of the instrumented phone pass through a transparent SSL/TLS interception proxy behind a wifi access point. This is set by Panoptes [START_REF] Filiol | in)security of mobile banking... and of other mobile apps[END_REF], a wifi man in the middle tool we have developed prior to this thesis. To understand how it works we need to describe a part of the TLS handshake. Here is the regular behavior of an https request on Android:

Android have a keystore of all root certificates the system trusts. When a SSL/TLS request is initialized, the requested server sends its certificate. It contains identifying information -like the domain name that must verify the contacted domain name -and a signature that can only be decrypted with the right root CA. The server certificate is tested with each trusted root CA, and if one matches the communication is accepted. Extended information on the TLS handshake can be found with the RFC 2246 memo [START_REF] Dierks | The tls protocol version 1.0[END_REF].

For our interception system to work, an SSL/TLS root certificate from a custom certification authority (CA) is implanted in the keystore of Android. When the device requests an https web page, the request goes through the proxy. It is parsed and a new one is initialized to be sent to the original recipient. The response is encapsulated in a new SSL/TLS response signed by our custom certificate. This custom certificate is dynamically generated with the recipient identifying information and our custom root CA private key. As the communication is signed by an authority of certification that is known by the client, Android accepts it without triggering any warning. Finally, all HTTP/HTTPS communications are logged and a report can be generated which is convenient for manual analysis if needed.

This system has been extended to support the manipulation of requests. The objective is to restrict the proliferation of malware and the damage that it may produce. As Glassbox runs malware, it may have a negative impact on its environment. An extreme mean could be to disconnect the system from internet but we would see less or no malicious behavior at all for numerous applications. Our design is a trade-off between safety and behavior detection:

• ClamAV [START_REF] Kojm | [END_REF] is used to detect known malware sent through the network. If a malware is detected, the payload is removed from the request and is redirected to Inetsim [START_REF] Hungenberg | Inetsim : Internet services simulation suite[END_REF], a server that simulates network services. It replies consistently to the requests. That way forbids the communication between the application and internet without crashing it.

• For all other requests, we assess the reputation of the domain name or IP address with the Web of Trust (WoT) 48 API. WoT is a browser extension that filters urls based on different reputation rating. These ratings come mainly from the users. If the request contacts a known address with a good reputation, we forbid the application under test to reach it, then it is redirected to Inetsim. The advantages are twofold. The application cannot damage a respectable website, and it pre-filters behaviors for classification.

Finally, features from communications content are collected and the WoT reputation scores as well. A sample of a network capture is shown in the annexes.

Automated Application Testing

Smart Monkey is an automated testing program, we have developed, based on Grey Box strategies. The context of the application is determined at runtime for the automatic exploration. We use UIautomator 49 , a tool that can dump the hierarchy tree of the current UI elements present on the screen. It enables us to monitor variables of each UI element at runtime. For a smart exploration, we need to know if we have already processed an element. Unfortunately, elements do not carry such a unique identifier. Nonetheless, we found that elements can be identified to some degree:

• Strong identification -Elements can have an associated ID string that developers set.

Concatenated to the current activity name we have robust identification, but for most of the elements this field is empty. With the same method, a content description is sometimes associated with the element. We can also use this for strong identification.

• Partial identification -If we do not have access to the previous values, which happens most of the time, we can use lesser discriminative values. Textfields can be set with an initial value, or a printed text can be associated with it. With no better available options we use the element dimensions to identify it. Obviously, when an element is partially identified, a risk of false positive is possible.

Moreover each element carries a list of actions it can trigger. Our automatic exploration consists of systematically triggering all actions of all elements for all activities. We do not try each combination of actions as it would not scale and be mostly redundant. To this basic general process we add targeted actions to trigger more sophisticated behaviors:

• Some textfields of interest are detected like phone number, first or last name, email address, IBAN, country, city, street addresses, password or pin code. These textfields are filled with consistent values accordingly. For this task, we use databases of realistic data (samples can be found in the annexes). Uncategorised textfields are filled with a pseudo-random string.

• The order of actions done matters. For example, login and password textfields must be filled before validating. In the exploration, filling textfields and check-boxes take precedence over the rest.

• An application can register a receiver for a broadcast Android event like the change of phone state or wifi state. It can be done statically in the application manifest or dynamically. Those dynamic receivers could be hidden from static analysis with obfuscation. To trigger the receivers code, we test applications with a list of broadcast events that are often used by malware (a partial list is given in annexes). Moreover, real SMS and phone calls are sent to the real device own number.

We finally use the Monkey program during the analysis. It can help to trigger behaviors requiring complex input combination that Smart Monkey could miss. At the end comes the cleaning phase. For our real device we keep a white list of regular processes and installed applicationsregular, system and device administrator applications. Non-authorized processes are killed and applications uninstalled. Important phone configurations like wifi, data network and sounds are reset to a predefined value.

Experimentation

We use the average coverage of basic blocks for quantifying the performance of the application code coverage. It is a measure of the performance of the Smart Monkey component of Glassbox.

Here are definitions of the vocabulary used in the experimentation:

• A basic block is an uninterrupted section of instructions. A basic block begins at the start of the program or at the target of a control transfert instruction (JUMP/CALL/RETURN). It ends at the next control transfert instruction.

• The basic block coverage for an application is the number of unique basic blocks executed at runtime divided by the number of unique basic blocks present in the source code.

• The average coverage of basic blocks is the sum of the basic block coverage of all applications divided by the number of applications.

Dataset

We use the AndroCoverage Dataset [START_REF]Androcoverage dataset[END_REF] for our experimentation. It contains 100 applications from F-Droid 50 , which is a repository of free and open source (FOSS) applications. We have manually selected them with the following criteria for each application:

• It does not depend on a third party library or application as an automatic tool would be unable to install it.

• It does not depend on root privilege. To meet the requirement of a maximum of testing tools configuration, we stick with regular privilege.

• It does not depend on local or temporary remote data. We want the application to be usable worldwide and in the long-term. This category excludes applications for a temporary event or a specific country.

Our goal is to use applications which show a large variety of different and steady behaviors. It is why we predict that performance on the AndroCoverage Dataset will be overestimated compared to the average of real applications. This dataset is to be used to compare the performance of different automated testing tools on the same ground.

The AndroCoverage Dataset is supplied with tools which instruments the application, adding monitoring routines for code coverage. These tools are partially founded on BBoxTester [START_REF] Zhauniarovich | Towards black box testing of android apps[END_REF], a tool for measuring the code coverage for Black Box testing of Android applications.

Methodology

Research community used different strategies for automated application testing, with different evaluation methods and different datasets. To promote the successful strategies for future researches on the domain, we need a standard for the experimentation. Otherwise, we cannot compare the results objectively. The research titled Automated Test Input Generation for Android: Are We There Yet ? [START_REF] Shauvik | Automated test input generation for android : Are we there yet ?(e)[END_REF] shows the re-evaluation on the same ground of 5 published automated testing tools for Android. The experimental results found is far from what have been claimed in the published papers. Moreover, according to this study, the Monkey program has the best performances above all at around 53% average coverage of statements on 68 selected applications. Either all researches on Android automated testing are not better than a random event generator or the evaluation methodology lacks pertinence. Our opinion is that a better methodology can highlight the contribution of main researches to the field. To summarize, these observations reveal several problems on the experimental results:

• (1) They are currently not reproducible.

• (2) They cannot be compared to each other.

• (3) They do not highlight the contribution of the evaluated testing method compared to Monkey program.

To answer those problems, we propose the following rules:

• (2) 51 A common performance measure. We propose the average coverage of basic blocks. Statement coverage (also called line coverage) is considered as the weakest code coverage measure by specialists in software testing. This metric should not be used when another one is available. For an argued reflection about coverage metrics, we refer to the paper What is Wrong with Statement Coverage [START_REF] Cornett | What is wrong with statement coverage[END_REF].

• (1)(2) A common dataset and common tools for instrumenting the applications. We propose the AndroCoverage Dataset [START_REF]Androcoverage dataset[END_REF].

• (1)(2) A common configuration -Monkey arguments, a fixed seed for every random number generator used and application versions. This information is either present in annexes of this document or on the AndroCoverage Github web page.

• (3) To assess the performance of the combination of both Monkey and the evaluated testing method (in our case it is Smart Monkey). Compared separately, the performance of Monkey and the evaluated method does not highlight new code paths that have been triggered by the evaluated method. A complex method would not seem successful whereas it would have triggered complex conditions that Monkey could never find. Moreover, the Monkey program is embedded in every Android device (real and virtual), it interacts in a very fast pace with the application and produces good results. Then, on an operational situation, it makes sense to use it in addition to any research tool.

Results

Smart Monkey usually runs Monkey at the beginning of the analysis. For a fair trial, we tested the performance of its code coverage with and without Monkey. The configuration of the Monkey tool has been described in annexes. The results are presented on Table 3.6.

The Monkey program tends to generate bugs with the instrumentation process. For a significant number of applications (16%) we are unable to get the coverage rate. We note that the same applications crash between Monkey and Smart Monkey so the crash rate has no effect on the performance comparison between both programs.

The raw results do not give enough insight of the contribution of Smart Monkey. We are interested in the new paths that have been triggered compared to the Monkey program. Therefore we calculate the increase of average coverage of basic blocks of Smart Monkey compared to Monkey: Where:

• smar t monke y ac is the average coverage of basic blocks of Smart Monkey.

• monke y ac is the average coverage of basic blocks of Monkey.

It means that the testing strategy we have set up in Smart Monkey leads to average increase of 13.52% of basic blocks coverage.

Dynamic analysis systems that allow internet communications are vulnerable to fingerprinting. Our platform is not an exception. For example, Bouncer [START_REF] Lockheimer | Android and security[END_REF] has been the target of remote shell attacks [START_REF] Percoco | Adventures in bouncerland[END_REF] that enabled the fingerprinting of the system. The malware gets some information on the system and sends it to a command and control server. Hence, the malware author can reshape the trigger conditions of the logic bomb. We accepted this risk for now. A solution halfway between shutting down all communications and no filtering at all could be to strip all outgoing information -POST request contents/GET url variables/Cookies/Metadata fields. This could lead to a loss of behaviors and the negative impact of such solution needs to be measured. Anyway a smart malware author will eventually find a way to leak remote shell outputs.

The network monitoring has limitations. First, it cannot currently handle all protocols like POP, IMAP and FTP so these protocols are simply blocked. In fact the communications are parsed, to get its content, the destination and the metadata. So this parsing needs to be changed for each protocol. It is an impossible task of adding one by one all protocols, so we would need to measure the protocol usage and implement the most used ones. At last, there is a countermeasure to our SSL/TLS interception, namely certificate pinning. The requirement of the interception is the implantation of a custom root certificate in the Android keystore of trusted certificates. An application can choose to discard the Android keystore and to embed its own. Therefore when a communication, encrypted with our custom certificate, is checked, the communication is rejected. This technique is used in many banking applications, as we have shown at Black Hat [START_REF] Filiol | in)security of mobile banking... and of other mobile apps[END_REF]. In fact the point of view of the bank is: the user OS cannot be trusted. Although we have no evidence that it happens for malware, it may be used by an avant-gardist malware and others would follow the trail. It is inconvenient for malware authors to buy a certificate signed by an authority of certification, as a payment trace could identify them. Despite of that, it is possible to get a valid certificate from Let's Encrypt 52 , or to control a legitimate server via hacking and use it as a relay for the C&C server. In these cases, certificate pinning could be used for hiding communications from analysts or interception systems. A counter to this technique is instrumentation. By monitoring arguments of the SSL/TLS encryption method, one can get the plaintext communications. We have done it manually for some banking applications [START_REF] Filiol | in)security of mobile banking... and of other mobile apps[END_REF] with APImonitor [START_REF]Droidbox -apimonitor[END_REF], but doing it automatically is another issue. Applications that use certificate pinning generally embed their own library for SSL/TLS encryption, so detecting dynamically which call is the SSL/TLS encryption method can be challenging.

Last, the cleaning phase of Glassbox fits the security needed for a prototype. However, to move to an operational situation with malware that could execute 0-day root exploits, we need a real factory-reset of the phone. This is why we plan to integrate the open source project BareDroid as a part of Smart Monkey, for its factory-reset capability on real device. This study contributes to the domain of dynamic analysis system for Android in three ways. First, we presented Glassbox a functional prototype of a platform that uses real devices, controls network and GSM communications to some extends and monitors Java calls, systems calls and network communication content. Second, we experimented Smart Monkey, an automatic testing tool with a Grey Box testing strategy. We showed that it enhances the application code coverage compared to the common Black Box testing tool called Monkey. Last, we presented a method of evaluation of automated testing tools to research community. This method covers the problems of reproducibility, the comparison with other works and of the contribution measurement of the tool. We made the dataset available on Github under the name AndroCoverage.

The next step is to use Glassbox on malware/benign applications and to use the features found on a machine learning algorithm. We are working on the classification of these data with a neural network.

CHAPTER 4

Neural Networks Neural networks is a vast and old field of study, in this part we have selected the elements of the neural network theory that is useful for this thesis and more precisely for the writing of libmla algorithms. We do not claim to cover the whole of the theory and practical problems, which elsewhere has already been formulated in depth in works such as Neural networks: a systematic introduction [1] and Deep Learning [2]. In a first section we describe the Theory of Neural Networks. Then, in the second section, we cover its problems of implementation. Last, we discuss Deep Learning and its applicability to the Android malware detection problem.

Neural Network Theory

In this part we introduce Machine Learning and Neural Networks. We extend the theory up to the training of a Multi-Layer Perceptron (MPL) . For various reasons such as speed of training and execution, and relatively low needs for training data -reasons that will be discussed later -it is towards this category of neural network that we went.

Introduction

The human mind has always been a subject of study, and more recently the intelligence. How does it work ? Can we replicate it ? Can we imitate it ? Can we build an intelligent machine ? During the 40s, a movement named Cybernetics came into being, composed of scientists from a wide range of domains. It has given rise to Artificial Intelligence, neuroscience and current social sciences. The Macy conferences were the source of Cybernetics as a study domain. They have been founded by Warren Sturgis McCulloh (1899-1969), researchers in neurology. He envisions, like Allan Turing, that functions of the mind could be described as mathematical functions. He published in 1943 with Walter Pitts, A logical calculus of the ideas immanent in nervous activity [3]. It is the first model of artificial neuron. The Macy conferences are a cross-domain group of mathematicians, logicians, anthropologists, psychologists and economists. Its objective is to promote a general science of the human mind operations. Arturo Rosenblueth presents, upon these conferences, Behaviors, purpose, and Teleology [4] published in 1943 with Norbert Wiener and Julian Bigelow. This article becomes the milestone of Cybernetics. In particular, it defines that an object is controlled by the margin of the error which separates, at any given time, from the objective the object tries to reach. It is the description of the mechanism of error feedback, which is nowadays the principle of neural network training algorithm.

Cybernetics is a unified vision of the domains of automatic, electronic and theory of information, applied to the control of systems. The work of Norbert Wiener in 1948, Cybernetics or Control and Communication in the Animal and the Machine [5] is the founding text of Cybernetics. One of the lesson of this book is any organism maintains its cohesion by means of acquisition, use, retention and transmission of information. It describes mechanisms of feedback and auto-regulation. It is the science of control of systems and information aiming at managing a system, by controlling its environment. Cybernetics bred the robotization of production, the control and regulation of global financial networks, new methods of management, neuromarketing, etc. In 1950, in a book published by the name Cybernetics and Society [6], Norbert Wiener predicts the end of human work, replaced by intelligent machines and warns political leaders against of the usages of Cybernetics, which would lead to mass unemployment, social exclusion and in the long run to the obliteration of democracy.

Currently, Artificial Intelligence is a vast scientific domain. The most advanced discipline of Artificial Intelligence is Machine Learning (ML), i.e. algorithms which are able to generalize the solution of a problem from samples of resolutions of this problem by men and women. Machine Learning is currently in use when the problem to solve is:

• Much too complex, meaning there is too much variables to be taken into account for a human being. For instance: the regulation of traffic lights to reduce traffic jam. It involves too many variables, because every action impacts the whole traffic of a city. This subject has been extensively studied and solutions with neural networks have been provided [7] [8] [9].

• Uninteresting and repetitive. For instance, transcription of audio recordings. Doctors currently use speech to text software with artificial intelligence (ex: Dragon1 ). Before that, this task was done -and is still done in some places -by medical secretaries.

• Not profitable regarding the cost. Artificial intelligence can do this task faster than a human, making it profitable.

More generally, Machine Learning is used to optimize processes and to discover relations between objects and categories. In particular neural networks are used in a wide range of application domains:

• IBM Watson: is able to understand and answer questions expressed in natural language. It won Jeopardy !, a general knowledge TV game ; it has been trained to diagnose diseases regarding symptom descriptions from patients.

• Google Deep Dream: is able to apply the style of an image over another one. • Recognition and generation of manuscript characters. In the example (Figure 4.2), a neural network are trained on the writing style of several authors. It is then able to produce an image from a digital text that mimics handwritten text. 

Definitions & Vocabulary

Any machine learning algorithm works with a dataset. We start by formalizing the dataset and its constituting elements. The dataset is composed of samples. For each sample, there is an input vector associated with an expected output vector.

Input variable, input vector, observation:

X = (x 1 , x 2 , . . . , x d )
Where:

• x i : descriptive variable, feature Where:

• y i is a real: quantitative variable, variable to predict. When y i is a real, the problem to solve is classified as regression, approximation or optimization.

• y i is an integer: qualitative variable, class, truth (0/1). When y i is an integer, the problem to solve is classified as discrimination.

• s: dimension of the output space.

A dataset composed of n samples, is represented by the following matrices: 

Dataset -Input       X 1 X 2 . . . X n       =      

Categories of Learning

There is two general categories of machine learning. The first one, supervised learning, is the training of an artificial intelligence for a task where we have a dataset containing examples of this problem, solved by humans. In the second one, unsupervised learning, we have data that have not been labeled. An artificial intelligence groups similar data together, producing clusters.

Supervised Learning

The learning rule is external to the system. To each input data, there is an expected output value, the learning algorithm processes the error between the expected output value and the actual output value and modifies the internal parameters accordingly. Some example of (corrective) supervised learning problems:

• Regarding some input vectors, (x 1 , x 2 ), and expected output values, f (x 1 , x 2 ) = e -x 1 + 2.e -x 2 , find an approximation of f (x 1 , x 2 ).

• Recognize the handwritten character 'c' in an image. Input vectors are the values of image pixels and the expected value is 1 when the character is 'c' and 0 otherwise.

The supervised learning category can be subdivided into two kinds of subcategories: corrective learning (previous examples) and reinforcement learning. In reinforcement learning, there is no expected output. An external system gives a cost value to the actual output, and the goal of the learning algorithm is to minimize the cost value.

Here is a non-exhaustive list of supervised learning algorithms:

• Neural network • SVM (Support Vector Machine)
• Decision Tree (or Random Forest -an aggregation of Decision Tree)

• HMM (Hidden Markov Model)

• Naive Bayes classifier

Unsupervised Learning -Clustering

The learning rule is internal to the system. It could be the extraction of recurrent patterns from input data or clustering similar samples. Then it is up to someone to give a meaning to these patterns/clusters. In this category of problems there is no expected output. The Figure 4.3 (public image) shows an example of a clustering algorithm (in this case, the OPTICS algorithm) on Gaussian noise.

In this problem, input vectors are coordinates of the points X i = (x i , y i ). The learning rule can use a variety of criteria to cluster data but it involves the distance between samples. Here is a non-exhaustive list of different algorithms: Unsupervised learning algorithms are a research direction less active than supervised learning. The way we currently use unsupervised learning is to find clusters on data. These clusters are then labeled by humans and finally the trained AI is often used to classify new instances. It is used as a trained supervised learning AI. Since we have at disposal huge quantities of labeled data for lots of different problems, we prefer using directly supervised learning as it is more efficient. Research in machine learning is quasi-exclusively oriented toward supervised learning algorithm, especially neural networks and deep learning. Nevertheless, unsupervised learning is the way AI will evolve from a dedicated task solver to a general intelligence that is able to solve problems for which it has received no training.

• K-mean clustering • Hierarchical clustering • Self-organizing map

Neural Networks -From a Biological Paradigm

In biology, information in neural network is stored on contact points between neurons. Other shapes of storage are known. Neural networks are complex systems that organize themselves.

Architectures of Neurons

Nervous system has different architectures regarding the regions of the cerebral cortex. Each of them is composed of similar blocks of neurons. When analyzing a human brain under a microscope, we can see different shapes of neurons in Figure 4.4 (source [10]).

There are around 10,000 specific types of neurons. Each of them have different characteristics and functions. In Figure 4.5 (credit : Thomas Deerinck and Mark Ellisaman, 2004) and 4.6 (source [11]) we show that neurons are organized in layers of similar neurons. Neurons emit and receive signals. Left branches are input transmission channels for information and is called dendrite. The dendrites receive information at the contact point of the synapse of other neurons. Output signal is transmitted by the axon. The size of the axon greatly vary regarding zones to connect. While most axons are microscopic, neurons of the spine have axons that go over a meter (the size of the spine). The core of the cell produces the required energy for its own operation.

We use these four elements of the neurons -dendrite, synapse, core and axon -to build a mathematical model of the neuron. These elements are regarded as the minimal element shaping the fundamental structure of a biological neuron. Formal neurons, for numerical processing, have by analogy input/output channels and a core. The synapes are simulated by a numerical weight on each input connection (that is also an output connection from a preceding neuron). 

Information Transmission Inside a Neuron

Information transmission between neurons is made by electrical discharges. It is not a simple electronic transport such that in a copper wire. Evolution came up to another solution involving positive and negative ions that move through semi-permeable membranes.

Salts, present in our body, dissolve into intra and extra cellular fluids producing ions. Sodium chloride (NaCl ) dissolves into positive sodium (Na + ) and in negative chlorine (Cl -). Other ions are present like potassium (K + ) and calcium (Ca 2 +). Permeability of membranes is determined by the number and the size of pores. Membrane channels are selectively permeable at sodium, potassium or calcium. In Figure 4.8 (source [1]), to the left it is the initial state of information transmission.

Positive ions go through the membrane, leading to a repulsion of negative ions. A potential difference arises, also known as inverse potential, and the system starts to behave like a little battery. Eventually, there is no more positive ion inside the membrane and the system become stable. The inverse potential is then of -80mV at equilibrium. The cell also owns sodium ions that have an equilibrium potential of 58mV. A phenomenon appears as soon as the cell comes to -80mV. It will not be detailed here, but pores start opening to let sodium ions get out and let potassium sodium come in. When all sodium ions are outside the cell, every pores open and the equilibrium potential of the cell becomes -70mV. Overall, this phenomenon is a change of polarity also known as potential for action (Figure 4.9, source [1]). Every perturbations, namely the opening and closing of channels are transmitted through the axon like falling dominos (Figure 4.10, source [1]).

Each neuron is a system that transmits an all or nothing kind of information. At this level, we can talk about digital transmission of information. Neuron can vary the frequency of the apparition of the potential for action. Actually, the message which is transmitted depends on the impulsion frequency. When the potential for action reach synapses, it frees neurotransmitters (Figure 4.11, source [1]). Some neurotransmitters attach to the ionic channels of the following neuron. There are different kinds of neurotransmitters. Some of them lead to the opening of potassium pores. In this case, we say the neuron is excited, and the mechanism of potential for action, that we described previously, is started. Other kinds of neurotransmitters lead to the closing of the ionic channels for a while. In that case, we say the neuron is inhibited, it is unable to start a potential for action for a short delay.

In neurons, the information is stored in the synapses. Extended repetitions of the excitation change the minimum level to excite a neuron, also known as the threshold of excitation. A similar mechanism happens for inhibiting neurotransmitters. It is this mechanism that enables the brain to learn.

From this biological paradigm comes the artificial neural network where the formal neuron is an elementary processor unit. On the first hand, we see how this unit works, and what are its capabilities and limitations. On the other hand, we build a network of formal neuron and we present a particular configuration, namely the multi-layer perceptron that is inspired by the neural architecture of the visual cortex. It is a general configuration that is able to solve efficiently a wide range of problems.

Formal Neuron

Description of a Formal Neuron

The neuron is the elementary processor of the neural network. The following figure represents the model of the formal neuron:

x 1 x 2 x 3 . . . x n s ϕ y a = s + n i =1 x i • w i y = h(a) w 1 w 2 w 3
w n

Where:

• x 1 . . . x n are the input data variables.

• w 1 . . . x w are the (synaptic) weights of the network. Each weight is associated with an input value.

• s is the activation threshold or the bias. Its purpose will be explained later.

• y is the neuron output.

• a is a weighted sum of inputs, this value is called the activation level of the neuron.

• h is called transfer function or activation function. There are several activation functions for different purposes.

• All the neuron variables are often bounded by the intervals [-1, 1] or [0, 1], but there is no formal obligation.

Common activation functions:

• Copy function (1). This function is often used when the neuron purpose is the approximation of a linear function.

(1):h(x) = x

• Step function (2). This function is used when the neuron learns to approximate a boolean function.

(

):h(x) = 1 if x > 0 0 else 2 
• Picewise linear function (3). This function is sometimes used for classification.

(

):h(x) =        1 if x > p x/p if -p < x < p -1 else 3 
, with 0 < p < 1

• sigmoid function ( 4). This function is preferred for classification.

(

):h(x) = 2 1 + e -k•x -1 -1 -0,8 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1 x y -1 -0,8 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 4 
(1) (2) (3) (4) 1 
The threshold is a parameter independent from the input which allows the activation curve to be shifted to the right or to the left. In fact, it gives the capacity to the neuron to correct biased data. Actually the threshold is also called bias. The threshold is a variable to be trained, as the weights. To simplify the representation of the neuron, we integrate the bias in the weights. It is equivalent to represent it as a threshold or a weight with a constant associated input at 1:

x 0 = 1 x 1 x 2 . . . x n ϕ y a = n i =0 x i • w i y = h(a) w 0 w 1 w 2 w n
At the beginning all weights are randomly set, then they are optimized step by step with a learning algorithm using a pool of known data. When this learning phase is over, the neuron is ready to process new data. For a single neuron, we can use the following simple learning algorithm of weight optimization:

Until the l ear ni ng is over , do

For each couple ( - → x , y ex ), in the learning dataset , do

a = n i =0 x i • w i y = h(a) e(t ) = y ex -y For each i ∈ [0, n], do w i (t + 1) = w i (t ) + µ • x i • e(t )

End for l ear ni ng is over if a st oppi ng cond i t i on has been r eached End for End until

Where:

• t is the current iteration of the learning process.

• e(t ) is the current error between the expected output and the actual output.

• µ is the learning coefficient, a value between 0 and 1 which controls the speed of the learning. With a greater µ, the learning will be faster, but less precise and vice versa.

Several stopping conditions can be used:

• The weights do not change anymore because they have reached their optimal value.

• The current error is below an arbitrary threshold.

• The learning algorithm has reached an arbitrary maximal iteration.

Learning with One Neuron

In this section we are going to see what we can learn with one neuron and its limitations. For both examples, the following neuron will be used:

x 0 = 1 x 1 x 2 ϕ y a = 2 i =0 x i • w i y = h(a) w 0 = 0.3 w 1 = 0.1 w 2 = -0.2
Where:

• w 0 = 0.3, w 1 = 0.1, w 2 = -0.2 • h(X) = 1 if X > 0 0 else • µ = 0.5
• The learning stops when the weight values converge, meaning that a pass on the whole dataset does not change any weight.

In the following examples, we train one neuron to learn the truth tables of two logic gates. For these examples, we train the neurons until the weight values converge. An iteration correspond to the training on one sample (a couple of x 1 , x 2 input values and their corresponding expected output y ex ). We train each samples from the dataset, and when we ran out of samples, we start again from the first sample of the dataset. We assume that the weights have converged when their values do not change when we train then with every sample of the dataset.

OR Logic Gate

We train the neuron to learn the OR logic gate truth table:

x 1 x 2 y ex 0 0 0 1 0 1 0 1 1 1 1 1 At t = 0: a = 0.3 y = 1 e(t ) = y ex -y = -1
As x 1 and x 2 are null, only w 0 is updated. We consider that weights have converged since their values do not change when we train them over each input of the learning dataset. The neuron is trained and is able the reproduce the exact outputs of the OR logic gate.

w 0 (t + 1) = w 0 (t ) + µ.x 0 .e(t ) = 0.3 -0.5 * 1 * 1 = -0.2 At t = 1: a = 0.1 -0.2 = -0.1 y = 0 e(t ) = y ex -y = 1 w 0 (t + 1) = w 0 (t ) + µ.x 0 .e(t ) = -0.2 + 0.5 * 1 * 1 = 0.3 w 1 (t + 1) = w 1 (t ) + µ.x 1 .

XOR Logic Gate

Train the neuron on the XOR logic gate truth table:

x 1 x 2 y ex 0 0 0 1 0 1 0 1 1 1 1 0
By applying the same method used on the OR logic gate, we find that the algorithm keep updating the weights endlessly. The weights do not converge. Hence our current neuron is unable to learn the XOR logic gate. In fact, a single neuron is able to find a linear separation within the inputs values in which each subset corresponds to an output value. In the first example, it was able to learn the OR logic because it is a problem which can be linearly separated. To the contrary, XOR cannot be linearly separated (Figure 4.12).

Intuitively, to bypass this limitation, a naive solution would be to use two neurons to learn XOR because the space is separated by two bounds. However, three neurons are mandatory to solve the XOR problem. A neuron is only able to learn a basic logic gate as OR, AND, NOR or NAND. But XOR is the composition of three basic logic gates: We can foresee that we can assemble neurons in a network for learning any kind of electronic system. A question still remains about more complicated problems, especially when we cannot list all possible inputs and outputs ? We will see in the next part how to build and use neural networks as a heuristic system to solve approximation and classification problems.

x 1 XORx 2 = (x 1 ORx 2 )AND(x 1 NANDx 2 ) 0 1 x 1 x 2 0 1 x 1 ORx 2 = 1 x 1 ORx 2 = 0 0 1 x x 2 0 1 x 1 XORx = 1 x 1 XORx 2 = 0 x 1 XORx = 0

(Artificial) Neural Network

The combination of formal neurons in network enables the resolution of problems of classification and approximation. . . . . . . . . .
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Overview of Neural Networks

Neurons can be arranged in many network architectures, for different tasks such as data compression or image recognition. One of the most common kind of artificial neural network (ANN), the Multi-Layer Perceptron (MLP), is described with the above scheme. In such network, each layer is composed by several neurons. A MLP is composed by: one input layer, one or more hidden layers and each neuron of the input and hidden layer is connected to each neuron of the next layer. i.e. each neuron output value of a layer becomes the input value of each neuron of the following layer.

In the ANN paradigm, everything is a neuron, but the input neurons do not process any data, its role is to feed the first hidden layer the input values from the samples. There can be several hidden layers, but one is sufficient to solve any problem. The number of neurons in the hidden layer is chosen but it corresponds to the complexity of the problem. There is no general method that helps us to guess this number in advance, we have to find it empirically.

The output layer has as many neurons as the problem needs outputs. In a classification problem, there are as much neurons as the number of classes. For instance, in a text classification problem with 6 different languages, we extract the 'a-z' character frequency to learn from labeled text the language frequency. In this case we would need a neural network with 26 input neurons, each holding the value of a character, and 6 output neurons. In the learning dataset, for each input text there would be a table of 26 input variables, and a table of 6 expected output values.

We have seen in the previous section how to train a single neuron, but it is not directly practicable for a neural network since the error e(t ) can only be calculated for the last layer. The learning algorithms for ANN try to transmit a part of current error to each neuron of the layer regarding their contribution to the error. The most common one is the Gradient Descent Backpropagation algorithm [12].

Gradient Descent Backpropagation

A general neural network representation:

y 0,0 = 1 i = 0 y 0,1 . . . y 0,N0 j = N 0 y 1,0 = 1 i = 1 y 1,1 . . . y 1,N1 j = N 1 y i ,0 = 1 i y i ,1 . . . y i ,Ni j = N i y L,1 i = L . . . y L,NL j = N L i j
Where:

• 0 ≤ i ≤ L is the iterator of the current layer, and L + 1 is the total number of layers.

• 0 ≤ j ≤ N i is the neuron iterator for the current i t h layer, and N i + 1 is the total of neurons in this layer.

In this network, an arbitrary neuron (i , j ), ∀i = 0, ∀ j = 0 is as follows:

x 0 i = 1 x 1 i x 2 i . . . x N i -1 i ϕ y i j ⇐⇒ x j i +1 a i j = N i -1 k=0 x k i • w k i j y i j = h i j (a i j ) w 0 i j w 1 i j w 2 i j w N i -1 i j
Where 0 ≤ k ≤ N i -1 is the iterator for the weight. It starts at 0 (the index of the bias weight) and stops at N i -1 (the neurons number for the previous layer i -1). h(x) is a known differentiable transfer function.

Let E(t ) = 1 2 N L j =1 (e jy Lj ) 2 be the quadratic error between the expected output -→ e and the actual output -→ y L . The goal of the training is to minimize this error. The error only depends on synaptic weights since all other variables are known. We can express the error as a function of weights of the entire network, so we can express it as:

E(t ) = E( ---→ w(t ))
With ---→ w(t ) = (w 0 00 , w 1 00 , . . . , w

N L-1 LN L
). At the next step, t + 1, of the learning algorithm the error must be lower

E(t +1) < E(t ) ⇐⇒ E( ------→ w(t + 1))-E( ---→ w(t )) < 0.
Weights at the next iteration (t +1) can be expressed as the weights of the current iteration (t ) with a small deviation ----→ ∆w(t ). We call this deviation, the direction of the weights. We set down ------→

w(t + 1) = ---→ w(t ) + ----→ ∆w(t ).
We are looking for a direction ----→ ∆w(t ) that lowers the error.

E(t + 1) = E( ---→ w(t ) + ----→ ∆w(t ))
The Taylor-Young theorem [13] at order 1 gives us an approximation of E(t + 1) around ---→ w(t ):

E(t + 1) = E( ---→ w(t )) + -------→ ∇E(w(t )) T . ----→ ∆w(t ) + o(|| -----→ ∆w(t )||)
As a reminder, The Taylor-Young theorem for multivariate functions is expressed as follows:

Theorem 4.1.1: Taylor-Young

Let f :R n → R be a k times differentiable function at the point a ∈ R n . f can be expressed such as

f (x) = k i =0 d i f-→ a ( ------→ (x -a) i ) i ! + o(|| -----→ (x -a) k ||) With -→ x k = (x 1 , . . . , x n ) k = (x 1 , . . . , x n , x 1 , . . . , x n , . . . , x 1 , . . . , x n ).
-→ x k has n.k components.

The differential of E( ----→ ∆w(t )) at the first order is:

d 1 E---→ w(t ) ( ----→ ∆w(t )) = -------→ ∇E(w(t )) T . ----→ ∆w(t ) With the gradient -------→ ∇E(w(t )) = ( ∂E(t ) ∂w 0 00 , ∂E(t ) ∂w 1 00 , . . . , ∂E(t ) ∂w N L-1 LN L ) By choosing the direction ----→ ∆w(t ) = -µ • -------→ ∇E(w(t ))
, µ > 0, our goal is to construct E(t + 1) such as E(t + 1) < E(t ). We get:

E(t + 1) ≈ E( ---→ w(t )) -µ.|| -------→ ∇E(w(t ))|| 2
As µ.|| -------→ ∇E(w(t ))|| 2 > 0, we found that with the chosen direction we get E(t + 1) < E(t ). Now we need to evaluate each:

∆w k i j = -µ • ∂E(t ) ∂w k i j
This requires to derive the neural network functions in reverse layer order (starting by the last layer). For each ∆w k i j , we need to derive until we get an expression that contains only known variables. First, we calculate the weight deltas for the last layer L:

∂E(t ) ∂w k Lj = 1 2 N L l =1 (e l -y Ll ) 2 ∂w k Lj = ∂ 1 2 • (e j -y Lj ) 2 ∂w k Lj = - ∂y Lj ∂w k Lj • (e j -y Lj ) ∂E(t ) ∂w k Lj = - ∂h(a Lj ) ∂w k Lj • (e j -y Lj ) = - ∂h( N L-1 l =0 x l L • w k Lj )
∂w k

Lj

• (e jy Lj )

∂E(t ) ∂w k Lj = -x k L • h (a Lj ) • (e j -y Lj )
As x k L , h (a Lj ) and (e jy Lj ) are all known variables, we get:

∆w k Lj = µ • x k L .h (a Lj ) • (e j -y Lj )
We introduce δ i j , a variable that represents the partial error of the neuron i j . For the last layer (i = L) we set down:

δ Lj = h (a Lj ) • (e j -y Lj )
The rule of weight modification, for the last layer, becomes:

w k Lj (t + 1) = w k Lj (t ) + µ • x k L • δ Lj
For the other layers 0 < i < L, we observe, when we derive, that ∂E(t )

∂w k i j
is dependent on all δ i +1, j because the term y i j ⇐⇒ x i +1, j appears in the derivation of all neurons from the next layer.

x 0 i = 1 x 1 i . . . x Ni-1 i a i j h(a i j ) = x i +1, j -δ i +1,2 • w j i +1,2 -δ i +1,1 • w j i +1,1 . . . -δ i +1,Ni+1 • w j i +1,Ni+1 ∂E(t ) ∂w k i j = - ∂x i +1, j ∂w k i j • N i +1 l =1 δ i +1,l • w j i +1,l ∂E(t ) ∂w k i j = -x k i • h (a i j ). N i +1 l =1 δ i +1,l • w j i +1,l
As the terms x k i , h (a i j ) and

N i +1 l =1 δ i +1,l • w j i +1
,l contains only known variables, we write down the final expression:

∆w k i j = µ • x k i .h (a i j ) • N i +1 l =1 δ i +1,l • w j i +1,l
We define δ i , j by recurrence for 0 < i < L such as:

δ i j = h (a i j ) • N i +1 l =1 δ i +1,l • w j i +1,l
Which leads to:

w k i j (t + 1) = w k i j (t ) + µ • x k i • δ i j (t )

Implementation of the Backpropagation Algorithm

The learning algorithm we described is known as stochastic gradient descent [12]. For each sample in the dataset, we propagate its input values in the network to obtain the error E(t ) between the expected output for this sample and the network output. Then we backpropagate the error and update the weights.

Input Propagation

1. Take a sample from the dataset, with input vector X and expected output Y. We start the processing at the first hidden layer.

2. Process the output value of each neuron of the current layer. The vector that contains all these output values becomes the new X.

3. If there is a next layer, go to it then go to step 2.

4. Process the error vector E(t ) = Y -X.

Error Backpropagation

Calculate the derivative of the transfer function h(x).

For the simple sigmoid function, h(x) = 1 1+e -x , we have:

h (x) = e -x 1 + e -x = h(x) • (1 -h(x))
2. Calculate the partial errors from the last layer:

δ Lj = h (a Lj ) • (e j -y Lj )
3. Calculate recursively all partial errors for the preceding layers:

δ i j = h (a i j ) • N i +1 l =1 δ i +1,l • w j i +1,l
4. Modify the weights with the formula:

w k i j (t + 1) = w k i j (t ) + µ • x k i • δ i j

Stochastic Gradient Descent Pseudo-Code

Until the l ear ni ng is over , do For each couple ( - → x , y ex ), in the learning dataset , do # Processing the ANN output For each layer i ∈ [0, L], do For each neuron j ∈ [0, N i ], do 99

a i j = N i -1 k=0 x k i • w k i j y i j = h i j (a i j )
End for End for # Processing the current error For each neuron j ∈ [1, N L ] of the output layer , do e j (t ) = y ex, jy j End for # Processing of the partial errors For each layer i ∈ [1, L] in r ever se or d er , do

If i == L For each neuron j ∈ [1, N L ], do δ Lj (t ) = h Lj (X Lj ) • e j (t )

End for Else

For each neuron j ∈ [0, N i ], do

δ i j (t ) = h i j (X i j ) • N i +1 l =0 δ i +1l (t ) • w j i l (t ) End for End if End for # Update of the weights For each i ∈ [0, L], j ∈ [0, N i ], k ∈ [0, N i -1 ], do w k i j (t + 1) = w k i j (t ) + µ • x k i • δ i j (t )
End for l ear ni ng is over if a st oppi ng cond i t i on has been r eached End for End until

Problematics of Neural Network Application

When setting up a neural network, one realizes that the algorithms presented in the previous section are not sufficient to obtain a functional artificial intelligence. Here we will see the problems of implementation of neural networks that we have solved and implemented in libmla. In the first part we see the problem of the saturation of the weights of the network, which prevents the network to learn or leads to overfitting. In a second part we deal with the problem of overfitting & overtraining, where the neural network is perfectly capable of classifying training data but has very low performance on unknown data. Next, we discuss the initialization of the neural network that plays an important role in the convergence of learning. In this part we contribute to the state-ofthe-art by proposing a simple method of initialization which gives good results. Finally, we expose implementation tricks, necessary to obtain a competitive speed of execution.

Saturation

The saturation effect appears very quickly on Multi-Layer Perceptrons (MLPs). During training, the weights take extreme values. This has several consequences. With a sigmoid transfer function, there is no intermediate value between the extreme output values (-1 and 1). There is therefore a loss of information, and a lower capacity to classify or approximate unknown entries because the network lacks flexibility. In addition, saturation makes it impossible to go back intermediate values. If it turns out that it is more optimal for the weight to go from positive to negative (or vice versa), this is no longer possible. If a majority of the weights of the neural network is in a saturated state, the network no longer learns and is stuck in that state. To solve this problem, two strategies are mainly used. 

Clipping the Derivatives

The first strategy, that is easy to set up, is the clipping of the derivative transfer function. In Figure 4.13, we show the sigmoid function and its derivative.

The derivative tends to zero for hightly negative or positive values. If a neuron is saturated, it exhibits extreme activation values, thus the derivative is near-zero. In fact, the more saturated the neuron, the less likely it is to return to a flexible state. By clipping the derivative for high values, the system keeps the flexibility to correct saturated units. In this case, the derivative does not correspond to the mathematical derivative. However the derivative has the correct sign, so the gradient direction is approximately the same. We implemented this strategy in libmla: 

L1 and L2 regularization

Another strategy is the penalization of the high weights of the network. L1 and L2 regularization [2] are commonly used to penalize high weights. The principle is to add the norm (L1 or L2) of the weights to the error function.

(L1):E(t ) = E( ---→ w(t )) + β • i |w i | (L2):E(t ) = E( ---→ w(t )) + β • 1 2 i w 2 i
With β, a known real positive. To know the new formula of the weight modification, we derive again the functions of the neural network. It is quite simple finally, since from the point of view of a specific weight w i , it is about deriving the terms: 

(L1):β • |w i | + c (L2):β • 1 2 w 2 i + c
w k i j (t + 1) = w k i j (t ) -µ • ∂E(t ) ∂w k i j (L1):w k i j (t + 1) = w k i j (t ) -µ • β.si g n(w k i j (t )) + µ • x k i • δ i j (t ) (L2):w k i j (t + 1) = w k i j (t ) -µ • β • w k i j (t ) + µ • x k i • δ i j (t ) (L2):w k i j (t + 1) = (1 -µ • β)w k i j (t ) + µ • x k i • δ i j (t )
Both L1 and L2 regularization drag the weight to zero -and in fact they are also called L1 and L2 weight decay. L1 does it by adding a constant term with the opposite sign of the weight and L2 does it by multiplying the weight by a constant between 0 and 1. Thus, at each iteration of the training algorithm, the absolute value of the weights are reduced, preventing saturation. β becomes a new hyperparameter of the network, that needs to be adjusted for the problem to solve. Since the weight decay of L2 is proportional to the weight, a fixed β value fit a broader range of problems. It is why we implemented L2 weight decay in libmla, instead of L1.

Overfitting

Overfitting is the empirical observation that an approximation or classification algorithm uses a model that is too complex to predict the objective function [1]. Overfitting appears when the gap between the error on the training data and the error on new samples is high. Figure 4.14 (public image, author Ignacio Icke) presents the difference of an overfitting classifier that has a model too complex and a balanced classifier that gives a simpler model that is more likely to be able to generalize on new data.

Overfitting in the neural networks comes mainly from 3 causes: the saturation of the neurons, an architecture too complex for the problem to be treated and the overtraining. The first case has been treated in the previous part. To the contrary, underfitting appears when the error on the training set is too high. The causes are the perfect opposites of the overfitting: near-zero weights, an architecture too simple and undertraining. Underfitting is easy to detect since the error on the training set stagnates, the model is not able to learn. We do not study in depth underfitting here as the cases we encountered it were rare and the causes, obvious -an hyperparameter with extreme value, or problems of feature set normalization.

The complexity of the architecture on MLPs is adjusted with the amount of hidden units. It is unreal to give a definite formula to get perfect number of hidden neuron, as the perfect one is very dependent on the feature size, the sample number, the problem complexity and other hyperparameters. A rule of thumb is that a good number of hidden units is comprised between the number of output units and the number of input units. In libmla, when this hyperparameter is not specified we set it to n (and 2 n when their is Dropout, see later) where n is the number of input units. We found, empirically, that it gives good results for most problems. However, it is ultimately another hyperparameter of the network to optimize.

Cross Validation

Overtraining is the observation that at one point, iterating again on the training algorithm increases the error on new data. To have a better understanding of this phenomenon, we introduce two concepts of a neural network:

• Knowledge. It is the ability of a neural network to remember (or to fit to) training data. In other words, the more knowledge the system has, the more likely it gives output values that fit to training data. In our case, knowledge is deduced from the error on the training data. The lower the error, the more the system has knowledge.

• Ability of Generalization. It is the ability of the system to give good results for an unknown input vector. It is measured by the error on samples that are not part of the training set.

We want a neural network with the best ability of generalization. At a point in the learning process, these two concepts are in conflict. In order to measure the ability of generalization, we test the performances of the network regularly on new data during the learning process. This technique is called Cross Validation. A fraction of the dataset (usually 20%) is reserved for the validation. At each iteration, the network error on the validation set is measured. Theoretically we obtain the type of curves presented in Figure 4.15 (source [2]).

In order to obtain the best network surely, simply save the best network state (i.e. the network that has the lowest error on the validation set) during the training, and load this state at the end of the training. The end of the training being given in this case by a maximum iteration of the algorithm.

Another approach, called early stopping, takes advantage of the existence of an optimal iteration to stop the training when it is reached. From the theoretical curves, it seems easy to implement early stopping. When the error on the validation set is above the one from the previous iteration, stop the training. Unfortunately, actual error curves from real problems look like the ones pictured [14] learning algorithm, stochastic weight update, dropout [15] and L2 regularization. These settings tend to produce noisy curves.

In these cases, early stopping is not possible to apply, as it is extremely hard to set up a rule that stops at the optimal operation. On cases with settings that produce less noisy curves (Figure 4.17) -same configurations without dropout and L2 regularization. By averaging the previous values of the validation curve, and comparing the previous averaged value with the current one, it is possible to implement effectively the early stopping. Several strategies can be adopted to cope with noise -like waiting that the curve is n time increasing -, but ultimately no strategy can determine the optimal iteration for the first training in Figure 4.17. Early stopping is a great theoretical tool but a dangerous one for actual problems. It is implemented in libmla, but we realized it does more harm than it helps. Hence, we do not use it.

Dropout

Dropout [15] is a technique that addresses the problem of overfitting and that speeds up the training process. This works by randomly disabling input layer and hidden layer neurons at each iteration of the training algorithm (Figure 4.18, source [15]). It prevents neurons from co-adapting too much. The initial paper [15] shows that dropout is equivalent to training 2 n thinned network from a neural network of n units. By averaging the prediction of these 2 n thinned networks, dropout achieve the regularization of the network, reducing overfitting. As a byproduct of the neuron disabling, the network is quicker to train.

The paper study the optimal proportion of neurons to be disabled. We followed the author recommendations and implemented in libmla 80% random disabling for the input layer and 50% random disabling for the hidden layer. It tends to make the training and validation curves very noisy (see Figure 4.16 where there is dropout compared to Figure 4.17 without it). However the resulting accuracy is really enhanced for most of problems. The network from Figure 4.16 achieve 98% accuracy on a spam detection problem with 10-fold cross validation [16], whereas the network from Figure 4.16 achieved 81.6% accuracy on the same problem. Dropout implementation has interdependencies with the implementation of other learning algorithms (ex: ADAM), that are not taken into account in Machine Learning libraries. Because some units are disabled during the training, the decay of momentums from the ADAM algorithm should be different for each neuron. 

Initialization

The initialization of neural networks has received little attentions in the recent years, and yet it is a necessary step in establishing effective training. The network weight matrix is randomly initialized. If by pure chance, this weight matrix is close to the result of a trained network of neurons obtaining good results, there is no training to be done. If the weight matrix is totally distant from the one of a trained neural network, in the best case the training will take an additional time for this matrix to find acceptable values, in the worst case the network will not converge. The initialization is that much of importance. The question now is: what control can we have on initialization ? It is obvious that if there was a method to initialize the weights in such a way that the network had good results from the first iteration ; there would be no need for a training algorithm. On the other hand, it is possible to control the randomness in such a way that the weights are in a disposition which allows a fast converge of the training.

Revisiting the Nguyen-Widow Method: the Distributed Bias Technique

The first compelling work on neural network initialization is the Nguyen-Widow method [17].

The key idea is that the first hidden layer must start to cover the input space evenly. The first step is to randomize uniformly the w k i 1 weights between -1 and 1. The second step is adjusting the magnitude of the --→ W i 1 vectors -i.e. the weight vector of each hidden neuron. The authors consider that the magnitude of weight vector should be relative to the size of the input space N. Let assume there are H hidden units. The goal is to make each hidden unit responsible for a slice of I/H size from the interval I of each input variable. The weight vector norms are then adjusted according to the formula:

| --→ W i 1 | = 0.7 • H 1 N
The 0.7 coefficient makes a slight interval interleaving between slices. Last, the bias of each neuron serves the purpose of moving the center of the weight distribution in order to cover the input space:

s i = uniform random number between -| --→ W i 1 | and | --→ W i 1 |
This method definitely enhanced the results of neural networks for all kinds of problems, as the authors shown in their paper and as we found in our experiments (see last chapter). However, it is unclear why this method works because the justification for the weight vector magnitude formula seems very vague. In the article, the neural networks used and the input space have low dimensionality. These numbers are very distant from the problem we are trying to solve and from most of problems solved by Machine Learning. By studying with a closer look their formula, we observe that for most of real problems the magnitude is 1. In Figure 4.19 we show 3 cases:

• Increasing of both H and N (same value).

• Setting the number of hidden neurons H to 100 and increasing N.

• Setting N to 100 and increasing H. Whatever be the case, the magnitude quickly and strongly tends to 1. In other words, what the Nguyen-Widow is actually doing is normalizing the weight vectorswhich happens to hold nice mathematical properties for the neural network, see next part -and distributing the bias evenly along the [-0.7, 0.7] interval. We can thus summarize this method by renaming it the Distributed Bias Technique that is really responsible for the performance enhancement. In fact, we see in the next part that there is an option far better than the normalization of the weight vectors. 

Controlled Variance of Initial Neuron Activations

Normalizing the initial weight vectors gives the guarantee that the initial activation levels are bounded. Indeed:

a i 1 = --→ W i 1 • - → X = n k w k i 1 • x k -| --→ W i 1 | • | - → X | ≤ a i 1 ≤ | --→ W i 1 | • | - → X |
With a i 1 the activation level of the neuron i of the first hidden layer, n the size of the input layer, --→ W i 1 = (w 0 i 1 , . . . , w n i 1 ) the weight vector of neuron (i , 1), [-1, 1]. This range is dependent on the constant used for the sigmoid, but for neural networks it is usually the range of intermediate values. Outside of this range, the function saturates and the neuron is likely to be in a saturated state. It is important that the initialization procedure let most of the neuron in a flexible state, it is as well important that this procedure produces initial activation levels that cover a wide range of the sigmoid transfer function -as shown in the previous part.

- → X = (x 0 , . . . , x n ) an input vector. If we normalize --→ W i 1 , a i 1 is bounded by | - → X |.

The sigmoid transfer function has a range of intermediate values in the range

Boundaries on a i 1 are not enough, as we know nothing about its distribution. We want to control its variance as well. We start by modeling each variable of the input vector X with U(0, 1) the uniform random distribution with minimal and maximal values 0 and 1. As a recall:

E(U(0, 1)) = 1 2 V(U(0, 1)) = 1 12
With E(X) and V(X) respectively the mean and variance of the random variable X. We want to control the underlying distribution U(-b, b) of W k i 1 such that the a i 1 variance is defined.

E(U(-b, b)) = 0 V(U(-b, b)) = b 2 3
of the feature vectors. Nevertheless, for convenience it is better to scale the weights of the network and keep the features pristine. Let d be the average norm of the input vectors.

V n 3.d 2 • --→ W i 1 • - → X = 1 27 • ( n.b d ) 2 hence, b = 27 • d n
So in the case where we can compute the average norm of feature vectors, the weights of the first hidden layer should be initialized by U -27

• d n , 27 • d n .
If we cannot compute the average norm of feature vectors, the first hidden layer should be initialized with U -3 n , 3 n . Let t be the number of hidden units. We are looking at a similar method to initialize the weights of the output neurons. We have t normal laws N(0, 1) that passe through symmetric sigmoid tranfert functions:

h(x) = 2 1 + e x -1
Determining V(a i L ), the variances of the activation levels for the last layer L is a challenging task, since we need to integrate h(N(0, 1)) and h(N(0, 1)) 2 . We opted for running a Monte-Carlo simulation with 100, 000, 000 samples. It could be interesting to get the theoretical variance, but simulation is far enough for our purpose. We found empirically that:

E(h(N(0, 1))) = 3.5675656302539516e -05 V(h(N(0, 1))) = 0.1736046409702093
The normal law N(0, 1), produces on average the same amount of positive and negative numbers and these numbers have on average the same absolute value. The simoid we use, h(x) = 2 1+e -x -1, has a central symmetry around 0, h(-x) = -h(x). With the normal law, for each h(a), there will be an h(-a). As h(a)+h(-a) = 0, the mean of this sigmoid-normal law is 0. The mean we empirically found is very close to 0, so we have a good confidence about the value of V(h(N(0, 1))). Let U(-z, z) be the uniform distribution that initializes the weights of the output layer. As there is t hidden units, the variance of the activation levels is approximately:

V(a i L ) = t k=1 V(w k i L • x k ) V(a i L ) = t k=1 (0.1736 • V(w k i L ) + 0.1736 • 0 + V(w k i L ) • 0) As V(U(-z, z)) = z 2 3 , V(a i L ) = 0.0578 • z 2 • t z = 1 0.0578 • t
Finally, we should initialize the output layer weights with the U -1 0.0578•t , 1 0.0578•t distribution, where t is the number of hidden units.

Last, it is common to use dropout. It sligtly modifies the formulas as a fraction only of the input neurons and hidden neurons are active at any time. Let r i and r h be respectively the dropout rate 109 

Hidden layer

U -

3 n•(1-r i ) , 3 n•(1-r i ) U - 27 1-r i • d n , 27 1-r i • d n 2 Outpout layer U - 1 0.0578•t •(1-r h ) , 1 0.0578•t •(1-r h ) U - 1 0.0578•t •(1-r h ) , 1 0.0578•t •(1-r h )
at the input and hidden layer -then, (1r i ) and (1r h ) are the rates of active neurons. Table 4.1 summarize the uniform laws we should use to initialize the neural network in each cases.

Implementation Tricks

In order to achieve a competitive implementation, it is necessary to implement low level optimizations. In this part we will discuss the detail of the floating point calculation, the mechanisms of the processor to make the most of its computing power as well as the approximation of the mathematical functions that are at the basis of neural network processing.

Floating point operations

Between two integers, there is an infinity of floating numbers, yet we represent them on 32 or 64 bits. There is therefore inevitably a trade-off between an abstract real number and its machine representation. The floating representation defined by the IEEE 754 [19] provides a number of mechanisms to overcome the technical limitations of this representation. These mechanisms cause a slowdown of the performance of the floating point processing. To name just a few of these mechanisms:

• Infinities & signed zero. Infinities can be positive or negative and are the result an overflow or a division by zero. Moreover the zero value is signed. When a small number is rounded and become zero, it keeps its sign. If a number is divided by -∞ it becomes -0. They are the usual cases when a number becomes -0. Except for some operation involving -0 itself or cases like -n •0, zero value are positive. Processing these special cases require checks and particular procedures.

• NaN. NaN (Not a Number) is an invalid state of the floating point. They are trigered by invalid operation like ∞ -∞, l n(-1), -1. Again, this special case requires a special processing.

• Denormal number. Also known as subnormal number. Regular floating points are normalized, meaning the exponent field is non-zero. The mantissa, plus an exponent at 1 serve to represent all floats from 2 to the last valid float before zero, FLT_MIN. When the exponent becomes zero, by the result of a division for instance, the mantissa serves to represent the numbers between FLT_MIN and zero. The processing of denormal number is usually slower than normal number.

With neural networks, it is common to have vanishing gradients or weights that tend to zero. Denormals will appear, it is an expected behavior. It is not a problem to remove the handling of denormals in the case where the network is well parametrized for the problem. Instead of being denormal, the number will be zeroed. However, if most weights or gradients are denormal numbers it means that the parameters of the network have a wrong order of magnitude. Either the initialization is bad, the learning coefficient or the regularization parameters are badly calibrated. Infinities and NaN should also not appear, if they do, it is mostly due to saturation. Disabling them speed up processing, but in an initial phase, all float checks should be enabled, to monitor signals of underlying problems. In libmla, we enable the following GCC optimizations regarding floating point calculation:

• -fno-signaling-nans. Do not trigger exceptions when a NaN is encountered.

• -fno-trapping-math. Compile code without math trapping routines (division by zero, underflow, overflow, inexact result and invalid operation).

• -ffinite-math-only. Assume that the arguments of operations are not NaN of infinities, allowing room for optimizations.

• -fno-math-errno. Do not set errno when executing single instruction functions (like sqrt).

• -fcx-limited-range. Do not reduce the range when performing complex division.

• -fno-signed-zeros. Ignore the sign of zeroes. In some cases, signed zeroes prevent simplification of expressions.

• -freciprocal-math. Allow the replacement the reciprocal of a value to be used instead of dividing. It can lead to optimizations with subexpression elimination.

• -fassociative-math. Allow the reordering of math operations for further optimization. Reordering can change the result of an operation because of the rounding errors.

All these options are enabled with the -ffast-math and -funsafe-math-optimizations flags. Denormals are disabled by setting the FTZ (Flush To Zero) or DAZ (Denormal Are Zero) CPU flags.

-ffast-math may enable these flags, but there is no guarantee. In the initialization of the neural network, we use: 

Vectorization with Template Metaprogramming

Machine Learning, and particularly neural networks, often involves operations on vectors and matrices. For ease of use, clarity and code maintainability it is preferable to work with dedicated classes that handle vectors and matrices, along with their usual functions -norm, normalization, scalar product, matrices product, etc. It avoids writing for loops, endlessly. Unfortunately, working with objects breaks the performance in quite a tragic way for two reasons. The first one is the creation of intermediate objects during operations. Ex:

M = M 1 + 2.M 2
Where M, M 1 and M 2 are matrices. This operation produces 3 intermediate matrices that store the results of the different operations before assigning them to M. The second reason is linked with the first one. The chain of operations is broken by these intermediate objects, disabling a large number of possible optimizations from the compiler and the CPU.

Template Metaprogramming is the development of full recursive classes with C++ templates. Templates is the evolution of preprocessor macros. Templates are also preprocessor directives, but they are specialized in the creation of classes and functions. The main difference between a macro and a template, is that a template can call another template. It opens the field of possibilities, enabling the creation for instance of a class that can deal with any primitive type. It is possible with Template Metaprogramming to make the compiler transforming: m = m1 + sqrt(2*m2);

Into:

for (i = 0; i < m.size(); ++i) for (j = 0; j < m.size(); ++j)

m[i][j] = m1[i][j] + sqrt(2*m2[i][j]);
No intermediate objects are used, the loops are kept very simple enabling compiler and CPU optimizations to take place. We implemented this technique in libmla.

Two strategies can be taken when writing efficient and effective code. We can make micro optimizations everywhere, retailed for the specific CPU architecture or we can write code that is in a good disposition to take advantage of compiler and CPU optimizations. Nowadays, it is very hard to beat compiler optimizations (that targets our specific architecture) with manual code optimizations -beyond the scope of algorithmic and structural optimizations, of course. Hence, we chose the second strategy for libmla. This way, we profit from the continuous improvement of compilers. In libmla, we use the -O3 and -march=native flags, enabling aggressive loop and vectorization optimizations targeting the current CPU architecture, especially the use of SIMD 3 .

Fast Approximation of Mathematical Primitives

The work in this part has been inspired by the paper A Fast, Compact Approximation of the Exponential Function [20]. The author manipulates the floating point representation of double precision (IEEE-754) to model the exponential function. This approximation competes in terms of error with table lookup approximation, but it is faster and does not need to store any data. We reused its method to compute an approximation of the exponential function for 32-bits floating point precision. In fact, the libmla neural network implementation is entirely in 32-bits floating point precision to take advantage of SIMD. Last, we deduced from the exponential approximation, the logarithm / square root / inverse square root / power functions.

32-bits floating point numbers are represented in the (-1) s (1 + m)2 x-x 0 form, where s is the sign bit (1 bit), m the mantissa (a binary fraction in the range [0, 1), represented on 23 bits) and x the exponent (on 8 bits), shifted by a constant bias x 0 (of value 127). The format can be manipulated by accessing the memory as a 32-bits integer. In particular, operations done on the exponent part (x) are exponentiated.

Let assume that we want to exponentiate y. Let u be a union of types {integer (noted i ), float (noted f )}. y must be left-shifted by 23 bits after the bias x 0 has been added. u.i = 2 23 (y + 127) computes 2 y for an y integer. If y is a floating point, its fractional part resides in the fractional part of u. f . This behavior is highly desirable because the fractional part (m) amounts to a linear interpolation between neighboring integer exponents. Therefore, this technique exponentiates floating points as well as a lookup table of 2 8 entries with linear interpolation. To compute e y :

e y = 2 y y = l n(2 y ) y = y l n(2)
Hence, y must be divided by l n(2) first. The exponential function approximation is given by the formula: Where a = 2 23 l n (2) , b = 127.2 23 and c is an adjustment parameter that serves to adjust the overall error between the approximation and the native function. In our case, values at the input of the sigmoid function (and therefore the exponential function) usually are in the range [-2, -2], so we optimized c in order to minimize the squared error between std::exp(x) and its approximation mla::exp(x). After testing values from 0 to 1, 000, 000 we found that c = 474976 is the best constant to minimize the error in that interval. We pushed further the method to find approximations for l n(x), (x) and 1 (x) . We also found an approximation for x y but it holds only for small x values, this approximation needs further study. All approximations are given in Figure 4.20.

For l n(y):

u. f = e y ⇐⇒ u.i = a.y + b -c u.i = u.i -b + c a ⇐⇒ u. f = y
Hence, to apply the l n function to y:

1. set u. f = y 2. return u.i * 1 a -b-c
a By observing that x = x 1 2 and 1/ x = x -1 2 , with the same type of reasoning we get an approximation of x and r sqr t (x) = 1

x . We benchmarked these approximations against their native implementations from the C++ standard library. Benchmarking is not as obvious at it may seem, as there is GCC optimizations, CPU internal optimizations, concurrent processes, cache management, etc. So, it is hard to be sure what we are benchmarking. We applied the following benchmark procedure to exclude most of the possible biases: 113 • For testing a function, we accumulate the return value of the function with a random input between 0 and 10 over 1, 000, 000 iterations. That way, neither the CPU or GCC can predict the return value of the functions and optimize them. The high number of iterations copes with concurrent processes that may stop the processing and pollute the cache.

• The accumulator is made volative, so GCC does not optimize it away.

• Several operations (dependent on previous results) are made on the accumulator in order it does not becomes 0, i n f or nan. The CPU processes operations differently with variables in those states.

• Before every benchmark we flush the L1, L2 and L3 caches by writing random numbers in an allocated table larger than the sum of the caches.

• The benchmark overhead is measured as a reference measure -i.e. the same code without the function calls. So for a benchmark we have 3 measures: the benchmark overhead, the approximation function and the native function.

• Benchmarks are run 5 times and for each measure, the best of 5 is chosen.

• GCC optimization options are set to O2.

• All tests have been made on a laptop with a Intel(R) Core(TM) i7-3740QM CPU @ 2.70GHz CPU.

The results are presented in Table 4.2. We took all precautions with benchmarking, but it is illusory to draw an exact performance ratio between the native and approximation version. From a computer to another, from a operation context to another, numbers will differ. What we can say with certainty is that the fast exponential and the fast logarithm are significantly quicker than their native counterparts. The square root function is not faster because the CPU of our computer has a square root instruction, and no program will beat a hardware instruction. We did not benchmark the r sqr t (x) as there is no native version in the C++ standard library ; it would be an unfair comparison.

In terms of error rate of these approximations, we calculated the approximation / native version ratio for small input ranges (corresponding to our use in neural networks). The error curves are presented in Figure 4. 21, 4.22, 4.23, 4.24. We observed the following maximal errors: 0.96 < ml a::exp(x) st d ::exp(x) < 1.02 0.97 < ml a::l n(x) st d ::l og (x) , x ∈]0, 0.9]U[1.2, +∞[< 1.06 Note that for l n(x) there is a high error around 1 as the function tends to 0. For the rest of the range the error is quite close to 0.

We use the exponential approximation in libmla currently. The others are not useful yet. As a final word for this part, we notice that error curves for the square root and the inverse square root have a fractal shape. Whatever the zoom (centered on zero) we use, the curve shape stay the same. Not that it means something in particular, but it is interesting to notice.

Deep Learning

Deep neural networks, which have shown remarkable successes in recent years in a multitude of fields [12], are essentially neural networks, distinguished primarily by their depth. The data passes through multiple layers of neurons. Each layer trains on a distinct set of features based on the output of the previous layer. As we go deeper into the network, the layers are able to recombine features from previous layers, leading to increased complexity of features learned. There is no feature selection process in Deep Learning, compared to classical Machine Learning. The network is fed with raw input data and the successive apposition of layers learns what features are important to the model. As a drawback, they require a large amount of computing power and a large dataset size to be effective.

Main Models

Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of neural network that has shown excellent results in various classification tasks and image recognition [12]. CNNs are based on the assumption that there are spatially-local correlations. This is enforced by maintaining a local connectivity between neurons of the adjacent layers. Stacking many such layers leads to filters, which can learn more global features. In CNNs there is also the idea of shared weights. Using the same weights across multiple hidden units allows for features to be detected regardless of their position in the sample -it is why these kinds of networks fit image processing. It is also an effective way of increasing learning efficiency by reducing the number of free parameters to be learned. CNNs can be described in terms of 4 primary functions:

• Convolution layer. This step involves the convolution of the input vectors with a linear filter and adding a bias term. Let h k i j be the k t h feature map at a hidden layer. Given weights w k and bias b k , h k i j can be computed as follows:

h k i j = (w k • x) i j + b k
The size of the feature map is affected by three parameters:

• Depth. This refers to the number of filters used for the convolution.

• Stride. This refers to the number of steps the filter slides over the input matrix. Larger strides produce smaller feature maps.

• Zero-padding. Zero-padding the input matrix, or wide convolution [21] can allow us to apply the filters to border values in the input matrix and control the size of the feature map.

• Non-linearity layer The purpose of the non-linearity is to account for the non-linearity in most real-world data. Different types of non-linear functions are used for various models including tanh, sigmoid, ReLU, etc. Rectified Linear Units (ReLU, h(x) = max(0, x)) is an element-wise operation that replaces all negative values in the feature map by zeros. In Deep Learning, ReLU has been shown to outperform sigmoid or tanh (which is essentially a symmetric sigmoid) in most cases [22]. Half of the neurons are activated, and sparse activation is preferred on deep architectures for feature selection (as a recall, it is the network that learns the feature selection in Deep Learning) and for processing time. Moreover, when stacking neuron layers it creates a vanishing gradient effect with sigmoid-like transfer function. Gradient values are multiplied together and as the derivative of sigmoid-like function tends to zero when their input tends to their extremum values, the gradient magnitude diminishes from a layer to one other. ReLU, having a constant or null derivative, solves the vanishing gradient problem.

Applying the non-linear function f N to h k i j we get the rectified feature map.

F = f N (h k i j ) = f N ((W k * x) i j + b k )
• Max-pooling layer. Max-pooling splits the input matrix into a set of non-overlapping spaces and, for each such sub-region, outputs the maximum value. It provides the following advantages:

• It reduces the computational load by eliminating non-maximal values.

• It gives us a sort of translational invariance [23]. In other words, by providing robustness to feature position it allows us to reduce the dimensionality of intermediate representations.

• Classification layer. Here, we employ a fully connected layer, which is a multilayer perceptron with a softmax transfer function (which is a form of generalized sigmoid, adapted for multiclass problems). The convolutional and pooling layers give us high-level features of the input matrix. The purpose of the fully connected layer is to classify the input based on these features. The layer is also a cheap way to learn non-linear combinations of these features. The output of the softmax activation is equivalent to a categorical probability distribution and makes sure that the sum of output probabilities of the fully connected layer is always 1.

Long Short-Term Memory Networks

Long-short term memory (LSTM) [24] is a variant of recurrent neural networks (RNNs). RNNs use recurrent connections within the hidden layer to create an internal state representing the previous input values. This allows RNNs to capture temporal context. This is why LSTM and RNN networks are adapted for learning sequential data. However, as the time interval expands, the updated gradient from backpropagation can decay or explode exponentially, referred to as the vanishing and exploding gradient problems respectively. This makes it difficult for RNNs to learn long-term dependencies. LSTM uses constant error carousel (CEC) to propagate a constant error signal through time, using a gate structure to prevent backpropagated errors from vanishing or exploding. The gate structure controls information flow and memory by tuning the value of CEC according to current input and previous context. A gate is essentially a pointwise multiplication operation and a nonlinear transformation that allows errors to flow backwards through a longer time range.

Study of Deep Learning Applied to Android Malware Detection

Deep Learning has received little attention in the security domain, so we wanted to test its effectiveness and the ease of setting it up compared to MLP. This study has been achieved with the help of Abhilash Hota, M2 engineer from ESIEA in France. A paper relating this study is also in submission, at the time I am writing this PhD manuscript.

Input Data & Dataset

We tested different input data and dataset size:

• Dataset 1. This was the first dataset that our models were trained on. It consists of the results of static analysis performed on 3,500 malware samples from the Drebin Dataset [25] and 2,700 benign samples from Fdroid4 . We took only unique samples from Drebin Dataset, in order to remove statistical bias in the experiment [26]. The neural networks were trained on opcode sequence of application source code, which is the sequence of Java bytecode operators. It was clear early on that deeper architectures were overtraining on such a limited dataset very quickly. This led us to create the second dataset.

• Dataset 2. We downloaded applications massively from Androzoo [27]. It is a growing collection of Android applications collected from several sources, including the official GooglePlay app market. It currently contains 7,412,461 different APKs, each of which has been (or will soon be) analyzed by tens of different antivirus products to know which applications are detected as malware. The APKs downloaded from Androzoo were verified against VirusTotal5 to build a dataset of 150,000 malware samples and 150,000 benign samples. Keeping computational constraints in mind, we restricted ourselves to application samples of size less than 4MB.

Preprocessing steps involved in machine learning applied to the security domain are very similar to those involved in machine learning applied to the Natural Language Processing (NLP) domain. In fact, the source code of a program is a language -even if it is not natural. It has words that assemble themselves into syntax to form a meaning. In the NLP domain, it is common to pretrain Deep Learning with a dedicated neural network that learns a numerical representation of words.

It is achieved with autoencoders [28]. It is a multilayer perceptron which learns to produce its inputs. It has an odd number of hidden layers and the middle one is thinner than the input layer. As the network learns to reproduce its inputs, the middle hidden layer acts as a compression algorithm, trained to compress the input samples. Autoencoders have many applications, but their capacity to compress data can be hijacked to learn an efficient representation of the input space. This kind of use to pretrain machine learning is currently made in two ways:

• The autoencoder is trained, then the input dataset is passed through the network until the middle layer. Then, the output of the middle hidden layer is used to produce a new sample. The whole dataset is transformed with this method.

• After the autoencoder training, the first layers until the middle hidden layer are used for building a new neural network, whose first layers are the ones from the trained autoencoder.

Modern neural networks that learn representation are based on autoencoders. Doc2vec [29] is an unsupervised algorithm that generates vectors for sentences, paragraphs or documents. Many neural network architectures require inputs to be fixed-length vectors. The bag-of-words [30] technique is one approach to this end, but has some drawbacks. It loses the ordering of the words and ignores semantics. Paragraph Vector, or doc2vec, was proposed as an unsupervised approach to learning fixed-length feature representations from variable-length texts, such as sentences, paragraphs or documents.

Every paragraph and every word are mapped to unique vectors which are averaged or concatenated to predict the next word in a given context. The paragraph label acts as a context memory. The paragraph vector stays consistent across all contexts from the same paragraph but not across paragraphs. The word vectors, however, are shared across paragraphs. In Figure 4.25 we present the architecture of doc2vec.

This approach was designed to resolve certain weaknesses in traditional bag-of-words models. It retains the semantics of the text and does not lose information about word order. The algorithm itself has two key stages: The input data are the sequences of raw bytes from the DEX file of the applications. These sequences are used to generate document vectors of length 300 representing each sample. We use two models of Deep Learning in our study: a CNN and a LSTM. The document vectors served as inputs for the convolutional neural networks. For the LSTM, the network is fed with the raw bytes.

Classification Models

For the experiment, we use 4 Deep Learning models, 3 CNNs and 1 LSTM with different internal and input configurations.

• CNN 1. This network, shown in fig. 4.26, consists of three 2D convolutional layers, each followed by ReLU units and maxpooling. An initial dropout layer is added to avoid overfitting. The final output is obtained through a fully connected layer and softmax activation. The document vectors of length 300 were reshaped into matrices of dimensions (30,10) and used as the input. Essentially the network would be treating it as an input image. Thus the use of 2D convolutions. The model is trained using NADAM [31]. This is a variation of ADAM [14] that employs Nesterov momentum instead of classical momentum. Hyperparameters was optimized over 50 trials. A 9:1 split was maintained for training and validation.

• CNN 2 This network has the same architecture as CNN 1, shown in fig. 4.26. However the difference is that larger document vectors of length 10,000 were generated and the input was a matrix of dimensions (100,100). The intention was to see if using larger document vectors would allow the network to learn better representations and thus be able to classify the samples better. The model is trained using ADAM. Hyperparameter optimization was performed by experimenting over 50 trials.

• CNN 3 This model is based on the MalConv architecture [32]. This architecture was developed for malware detection by ingesting PE files. Here, it has been modified to accept raw bytes from the dex files extracted from the APKs as the input sequences. The architecture, shown in fig. 4.28 is based on CNNs. Here the problem is treated similarly to a natural language processing problem. The input bytes are tokenized and an embedding layer learns representation for the tokens. Since the input here is in the form of row vectors instead of 2D images, we deploy a 1D convolutional layer. The gating layer determines the fraction of information that is sent to subsequent layers. The model is trained using ADAM. Hyperparameter optimization was performed by experimenting over 60 trials.

• LSTM 4 This model, shown in fig. 4.27, is based on LSTM cells. The model is trained using ADAM over 1,000 steps, with validation checks every 20 steps.

Experimental Results

Training time over Dataset 1 was shorter. However, due to less data the models would easily overfit. Accuracy over the training set would quickly reach about 98-99% but accuracy over the test set was limited to about 60-80%.

Dataset 2 gives much better results considering the increased amount of data available (Table 

Conclusions

Deep neural networks have shown excellent results in recent years and they show promise in the field of malware detection. In their current state of development, however, they present certain challenges. They require immense amounts of data and processing power to learn the features that make them successful. When it comes to endpoint device security in Android systems, most smartphones running the OS have resource limitations. As such, building a real-time monitoring and malware detection system would currently not be feasible using deep neural networks on the endpoint devices. Moreover as Deep Learning takes the raw byte code as input, it is very sensitive to slight modifications of the binary. It requires a fixed length input, so any shift of the binary bytes (like adding bloating code) breaks the detection. As such, deep neural networks that learn to detect malware based on static analysis would be subject to the same limitations as traditional signaturebased approaches. Malware authors have shown a considerable talent for avoiding signature detection systems. Adversarial neural networks have been very successful in fooling neural network based recognition systems [33] [34].

As such,it would be preferable to have deep neural networks running on the cloud and analyzing application behavior for applications available on the marketplaces, instead of running on endpoint devices for real-time detection. Potentially, unsupervised approaches to deep learning could be used to generate representations or signatures for malware. These signatures could then be used by more traditional signature-based detection systems on endpoint devices. There is a lot more scope for work in this field. The study presented here considers only static analysis or raw byte analysis. However the results do show promise and potential for dynamic analysis methods. Finding similarities in a group of sequences often involves studying their common subsequences or their common substrings [1]. In our case, Android malware detection/classification, we study the event sequences coming from the dynamic analysis of applications. For several reasons, these sequences are mostly made of benign events. This specific set up makes classic sequence similarity criteria useless without any machine learning. The sequence membership to a group is characterized by subsequences of any length. Heuristic algorithms for extracting short subsequences already exist, but no attempt to solve the problem systematically has been proposed. We propose a new algorithm for building the Embedding Antichain from the set of common subsequences (noted A Γ ). We show that this mathematical representation is very compact and embeds all common subsequences of a sequence set. It is a tool for characterizing a group of sequences. The construction of this representation reveals several complex subproblems. A few of them are solved in this study, along with practical implementations. Moreover, we solved different reduced problems and provided suboptimal solutions for the others. This study opens a new path that has cross-domain applications. Specifically, in the malware detection/classification domain the Systematic Characterization of Sequence Groups is a tool that can be used for automatic generation of malware family signatures and detection heuristics. We experimented A Γ for building an Android malware family detector, on the sequences of executed Android API calls and it yields the accuracy of 97.74%. The work in this chapter has been submitted at the ForSE 2019 conference.

Motivations

The classic method of detecting computer viruses is detection by pattern matching. When one or more samples of a malware family are found, analysts extract the characteristic features of the malware, called signature. It is often a sequence of opcodes, of library calls or strings in the executable that identify them. This process takes time and requires reverse engineering and malware analysis skills that only a few possess. That is why research currently focuses on Machine Learning to automate the malware detection process. However, the classical method is mostly used in industry and for individuals -in antivirus software. Requiring low computing power and offering a near-zero false positive rate, this is the method of choice still to date. We searched for methods and algorithms to automate the process of creating malware family signatures. Several samples of the same family of malware obviously have common features that differentiate them from other families of malware and benign software.

There are two ways of analyzing malware : static or dynamic analysis. Static analysis consists of reverse engineering the binary without execution. The source code can be rebuilt, as well as the different external resources used. The source code can be interpreted as a graph of calls of functions and instructions, when one knows the entry points -that is to say the functions that can be called from outside the program. On Android, for a given application, there may be dozens of entry points because an application must be able to react to lots of system events (the phone turns off, turns on, changes main application, etc.) in each activity of the application. The static analysis of the code in the form of Control Flow Graph can therefore generate dozens of graphs. Dynamic analysis consists of running the application in a controlled environment and retrieving traces of its execution. These traces are often system call sequences, Android API calls, I/O events, or network communications. The complexity of finding common characteristics between sequences is in essence much less than finding common characteristics between sets of graphs, so we moved to dynamic analysis.

We started from the assumption that malware applications from the same family run a specific sequence of events that characterize them. We do not know if this assumption is true or not, but this is the idea that founded the mathematical problem presented in this part, along with its resolution. The final results from the application of the Embedding Antichain to the malware classification problem shows that there some ground truth in this assumption, otherwise we would not been able to obtain a 97.74% accuracy.

The characteristic malicious sequence, however, can be scattered in a much larger mass of benign events. There are different reasons for that. An Android application manages many events related to the user interface, which are not a priori malicious. In addition, many malware families run their payload through repackaged applications, or through fake applications. The cases where an Android malware application contains only a payload being extremely rare, the malicious sequences of events are scattered in a stream of innocuous events.

Finally, the last problem is that Android applications are multithreaded. The reactivity of the user interface is dependent on it. Thus, on a time sequence of events, two consecutive events of a characteristic malicious sequence may be separated by dozens of events from another concurrent loop. We wanted a method that could handle these different problems, natively, and therefore a method that can be generalized to other problems. Another direction that can be taken, for the detection of viruses, is to pre-filter potentially malicious events in order to reduce the complexity of the problem.

Anyway we chose to design a deterministic algorithm able to handle these difficulties. The existing algorithms that study the similarity between sequences cannot handle these difficulties. Longest Common Subsequence (LCS) [2], sequence alignment algorithm [3], Levenstein [4], Smith Waterman [4], N-Gram based methods [4] (without any machine learning), are useless on this problem because the characteristic subsequence is a sparse data.

We started from the hypothesis that the set of common subsequences of a family of malicious sequences contains the information needed to establish a detection rule. Can we find a deterministic algorithm that is able to collect all common subsequences exactly between n sequences ?

The naive approach has a O( n i =1 2 |s i | ) complexity both in space and time where {|s|} i is the set of sequence sizes. That approach is highly impractical. We introduce the new problem of the Embedding Antichain of Common Subsequences and we show that this mathematical construction is a very compact representation of all common subsequences of a set of sequences. This mathematical object is new, to our humble knowledge, and the approach to determine the similarities within a group of sequence is also new -as it is not a statistical approach. As such, we found no state-of-the-art for building it, nor similar approaches.

We show how to build an approximation of this mathematical object, and that it is still an open problem. We explore the construction of a directed acyclic graph (DAG) from n sequences that can generate the Embedding Antichain of Common Subsequences (noted A Γ ). The complexity of the naïve approach shows us that it is a complex problem. We identified the hidden parameter of the complexity and we broke the problem into several subproblems. We first solve reduced versions of the subproblems to get a better understanding of the initial problem. Then we expose an algorithm that can build a suboptimal solution to this problem. At last we show how to use A Γ to measure more accurately the similarity between a sequence and a group of sequences -i.e. the Systematic Characterization of Sequence Groups.

This chapter is organized as follows. In section 2 we introduce the notations and definitions we use in the chapter. In section 3, we present the embedding antichain and its characteristics i.e. the object of our study. Sections 4 & 5 present a solution for an easier problem, the embedding antichain for sequences without intra-repetitions. In sections 6 & 7 we provide a sub-optimal solution for the embedding antichain for arbitrary sequences. In section 8 we experiment our final algorithm as a classifier for Android malware and we conduct an empirical study of its time and space complexity. Last, in section 9, we bring a conclusion to this chapter.

Notation & Definitions

Let A = {λ 1 , • • • , λ n }, n ∈ N be a finite alphabet of n symbols. A sequence s = (λ 1 , • • • , λ m ), m ∈ N is a serie of symbols. Let Ω be the set of all sequences over A . We define , a partial order over Ω, such that [5]:

({a}, {b}) ∈ Ω 2 , b a ⇐⇒ ∀k, b k = a n k
Where n 1 < n 2 < ... < n k is an increasing sequence of indexes. When b a, b is said to be a subsequence of a. An antichain A over Ω is a sequence set such as:

∀(a, b) ∈ A 2 , a = b ⇒ b a
Let S n be a sequence set of size n. We note Γ the set of common subsequences of S n . It is defined such that:

Γ = {γ ∈ Ω|∀s ∈ S n , γ s}
A Lower Set, L, is a set such that if s 1 is in L and s 2 s 1 , then s 2 is in L. Γ is, by definition, a Lower Set. A Γ-embed d i ng set is a set that generates Γ when we list all the unique subsequences of all its elements. For sake of simplicity, in the rest of the chapter, an embedding set is implicitly a Γ-embed d i ng set. A maximal element of Γ is a sequence that is not a subsequence of any other elements of Γ. Last, we use two common operators on graphs, namely the transitive reduction [6] and the transitive closure [6]. The formal definition of the transitive reduction of a directed graph G is: A directed graph G' is said to be a transitive reduction of the directed graph G provided that G' has a directed path from vertex u to vertex v, for any (u,v), if and only if G has a directed path from vertex u to vertex v, and there is no graph with fewer arcs than G' satisfying condition.

The formal definition of the transitive closure of a directed graph G is: A directed graph G' is said to be a transitive closure of the directed graph G provided that G' has an edge from vertex u to vertex v, for any (u,v), if and only if G has a directed path from vertex u to vertex v. 

The Embedding Antichain

We define the Embedding Antichain, noted A Γ , as the Antichain that generates Γ. Proposition 5.3.1. The Embedding Antichain is the minimal set that represents all common subsequences from n sequences.

Proof. A property of an Antichain is that it can generate a Lower Set of the subsequences of its elements. As there is a one to one correspondence between an Antichain and a Lower Set, the Embedding Antichain is unique and is constituted by the maximal elements of Γ. Hence, the Embedding Antichain is the minimal set that represents all common subsequences from n sequences.

The representation of the Embedding Antichain can be even more compact by constructing the minimal acyclic finite-state automata (AFSA) [7] of this sequence set, because elements of A Γ share symbols. It is a directed acyclic graph, that has one root node (named START ) and one leaf node (named END). When enumerating all paths from START to END, it generates A Γ . So our goal is to build a minimal DAG that generates exactly A Γ . In Figure 5.2, we show how A Γ represents Γ on a small example.

In Figure 5.3, we show an example of the construction of A Γ DAG from 4 more complex sequences. In this example, enumerating all paths of the DAG from START to END ends up generating A Γ . This DAG has been generated by an implementation of the algorithm we present in section 5.7.

The general idea in the study for A Γ DAG construction is starting with two sequences to initialize the DAG, then processing each other sequence one after the other. Our objective is to design an algorithm that has sufficiently low asymptotic complexity for operational applications.

We have identified that the number of intra-sequence symbol repetitions -i.e. multiple occurrences of the same symbol in a sequence -is a factor that has a very high impact on the branching factor and the number of nodes of A Γ DAG. To get a better understanding of the problem, we started solving a problem with a reduced difficulty by adding a constraint on sequences : the case where each sequence contains only unique symbols. We then expand the solution found for the subproblem to build a solution for the real problem. Throughout the article, we display instances of the algorithms on simple cases with words. The sequences that we use on our real application, and the output graph, cannot be displayed. They are simply too large.

For each of the following parts, the goal is to compute a DAG that generates A Γ by enumerating all possible paths from a node noted START to a node noted END. Sn = { "abcdd", "abddc" } Gamma = { "a", "b", "c", "d", "ab", "ac", "bc", "bd", "dd", "ad", "abc", "bdd", "add", "abd", "abdd" } A-Gamma = { "abc", "abdd" } 

The Embedding Antichain Between Two Sequences Without Intra-Repetions

As we show in the next parts, repeated symbols in a sequence are an important contribution to the complexity of the problem. Adding constraints to our problem helps to compartment the different subproblems.

The following algorithm computes a DAG that exactly produces A Γ when enumerating all possible paths from the START node to the END node. Each step is illustrated with an example, with the sequences ABCDEFGH and BDFAGHCE (Figures 5.4 Proof. The DAG nodes are common symbols and they are connected in increasing index orderincreasing from both sequences. It produces Γ, the set of all common subsequences, meaning that the DAG produces a Γ-embed d i ng set.
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Moreover let us assume that the DAG does not produce any antichain. Let us consider all the possible paths from START to END. The sequences have no intra-repetition, so each DAG symbol. It means that at least one path of the graph is a subsequence of one other path. It implies the following situation, considering 3 arbitrary nodes A, B and C:

A -> B B -> C A -> C
If A is connected to B and C, it means that C is not reachable from B because the algorithm connects the current node to the closest one then constraints the next connections to nodes that are not reachable by the added child.

Consequently, this algorithm exactly produces the DAG of A Γ for two sequences without repetition. As no arc or node can be removed without contradicting the previous properties, we also know that this is the minimal DAG that produce A Γ .

Note that all algorithms presented in this study are designed to be human readable. The practical implementations we have designed are highly optimized versions and they cannot be presented as such in a research paper. 

The Embedding Antichain of n Sequences Without Intra-Repetition

The strategy we chose for finding the minimal A Γ DAG of more than two sequences is incremental. We start with the previous algorithm for two sequences to get an initial A Γ DAG. Then we process the sequences one after the other. We have found that this problem we are solving is very similar to the problem of building a minimal acyclic finite-state automata (AFSA) [7] of a word set. In this domain, researchers also chose an incremental strategy. Nonetheless, there are two major differences between this problem and ours. On the first hand we cannot represent or know in advance the elements of the word set. In our problem the word set is the common subsequence set, and as shown previously it grows exponentially with the sizes of the sequences. As such, we cannot represent it at any point of the solution. On the other hand, our DAG must be a transitive reduction [6], meaning we cannot remove an edge from the graph without removing a path from a vertex v to a vertex w. Hence, any solution for building the AFSA in the litterature are of no help here. Moreover, our graph yields more constraints than the classical AFSA. The new DAG exhibits the following properties:

• The DAG must be a transitive reduction otherwise there would be a path that is a subsequence of one other path.

• Each symbol is unique in the DAG because in each sequence, symbols are unique.

• As we process new sequences, the graph cannot grow in terms of vertices because symbols are unique.

• Let n be a node from the new DAG. Its children cannot come before in the topological order of the current DAG and in the indexes of the new sequence to process. These constraints hold because symbols are unique both in the current DAG and in the sequence to process.

• An edge cannot exist in the new DAG if this edge is not in the transitive closure of the current DAG. In other words, a node B is reachable from A in the new DAG if B is reachable from A in the current DAG.

The following algorithm computes the minimal A Γ DAG and is illustrated with an example on three sequences ABCDEFGH , BDFAGHCE and EBGDFHAC . The first and second sequences have been processed by the algorithm from the previous section to generate an initial DAG (Figure 5.7). Proof. The algorithm starts essentially to connect all nodes to all others, excluding the impossible cases:
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• A node cannot connect to a node that has a lower or equal topological order.

• A node cannot connect to a node that has a lower or equal sequence index.

• A node cannot connect to a node that is not reachable in the transitive closure.

These three conditions of node connections cannot remove a common subsequence. As a consequence, by enumerating all paths from START to END, it generates all possible common subsequences. At this point the DAG is already Γ-embed d i ng . Then, by applying the transitive reduction, the graph become the minimal A Γ DAG because symbols are unique so there cannot be two equal paths in the DAG. As nodes have unique symbols, no edge can be removed from the transitive reduction of the DAG without removing a subsequence. Therefore the graph is minimal and its paths form an antichain. It is the minimal A Γ DAG.

The Embedding Antichain of Two Sequences

The intra-sequence symbol repetition invalidates the proof of the algorithm 5.4. To understand what symbol repetition induces, we applied Algorithm 5.4 on this new problem. We choose the sequences "absolumentsongeur" and "mensongeabsolu" (Figure 5.12) to illustrate the problematic.

The objective is to produce a minimal A Γ DAG. We note that the DAG does not represent an antichain, we have highlighted in Figure 5.12 two edges that produces sequences that are subsequences of longer paths from START to END. The DAG is also not minimal because we can merge the two nodes 'u' while being able to produce the exactly same unique paths. However the DAG produces a Γ-embed d i ng set. The DAG nodes are common symbols and they are connected in increasing index order -increasing from both sequences. It means that the DAG always produces a Γ-embed d i ng set.

We can easily make the DAG minimal by merging equivalent nodes at the end of the algorithm 5.4. Equivalent nodes are nodes with equal symbols that have exactly the same children or parents. When equivalent nodes are merged, a new node is created with children and parents from both equivalent nodes. However, designing an algorithm for finding the supernumerary edges (marked in red in Figure 5.12) is a challenging task regarding the fact that path enumeration in the graph has a polynomial complexity of high order.

Proposition 5.6.1. The worst case complexity of path enumeration of a minimal Γ-embed d i ng DAG is O(n k+1 ) where n is the maximal number of nodes from all topological levels and k is the number of topological levels.

Proof. We construct a DAG, denoted B, that contains all the sequences from a minimal Γ-embed d i ng DAG, denoted A. This DAG has n * k, n nodes in each topological level. The nodes from A are in B in the same topological levels. All nodes are connected to all nodes from its next topological level. B has n k+1 paths, so the worst case complexity of A is O(n k+1 ).

For the computation of the minimal A Γ DAG, we tried different methods. None of them can compute the minimal A Γ DAG with an acceptable algorithmic complexity. Our best attempt is founded on the fact that with reversed sequences for each DAG node, its children should be its parents and conversely. We note that applying 5.4 in forward and backward order leads to different DAG that are not equivalent when reversing children and parents. Relying on this observation, we reached an algorithm close to the solution: The backward pass is the equivalent to a forward pass with sequences in reverse order. 3. Apply the transitive reduction on both forward and backward graphs. If no edge has been deleted, go to step 5.
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4. Go to step 2.

5. Delete all edges that have no equivalent edge in the other step. An edge from vertex v to u from the forward step is considered equivalent to an edge from u to v from the backward step.

6. Some nodes can be left without parents, we call them orphan nodes. Link the orphan nodes to its parents in the forward and the backward DAG that have a common symbol and that still exists in the current DAG. If no such parent has been found, delete the orphan node.

7. Some nodes can be left without children, we call them single nodes. Link single nodes to its children in the forward and the backward DAG that have a common symbol and that still exists in the current DAG. If no such child has been found, delete the single node.

8. If an orphan or a single node has been deleted, go to step 6.

This algorithm works on the example with "absolumentsongeur" and "mensongeabsolu", as shown in Figure 5.13. However, when tested with longer sequences we noted that this additional constraint on the edges induces a problem and we found that this algorithm does not produce A Γ or a Γ-embed d i ng set, but a set that contains less or equal information. This problem arises when a forward path is equivalent to a backward pass but with different nodes.

The Embedding Antichain of n Sequences

Compared to the same problem without intra-repetition, processing the Γ-embed d i ng DAG of n + 1 sequences from the Γ-embed d i ng DAG of n sequences brings two new difficulties. The first one is that each node from the previous DAG, that has several matches in the new sequence, must be duplicated in the {topological level / sequence index} matrix. It means, when using Algorithm 5.7 for an arbitrary node, that it can connect to children that are duplicated, actually creating duplicated paths or supernunary subsequences. To cope with this problem, a node must not be connected to more than one duplicated child. The second problem is the introduction of duplicated paths as two different nodes can have the same symbols. Like in the previous section, we apply a {merge / transitive} reduction phase to remove the most part of it. If the previous graph is a Γ-embed d i ng DAG of n + 1 sequences then the result is a Γ-embed d i ng DAG, because none of the steps can remove a node or an edge that breeds a unique subsequence. Here is the full algorithm: Algorithm 5.7: Γ-embed d i ng DAG for n+1 sequences from a Γ-embed d i ng DAG of n sequences 1. Process a topological sort and the transitive closure of the DAG.

2. For each node in the DAG create a new node for each corresponding symbol in the sequence.

Every new node created at one iteration is called duplicated node.

3. Connect each new node, of topological level i and of sequence index j , to all new nodes that satisfy the following conditions:

• It comes from a node reachable in the transitive closure of the DAG.

• Its topological level is at minimum i + 1.

• Its sequence index is at minimum j + 1.

• The node has not been connected to another duplicated node.

4. Merge equivalent vertices. Equivalent vertices are two vertices that have the same symbol and the same children or the same parents. If it is not the first iteration of the merge phase and no vertex have been merged, stop the algorithm.

5. Process the transitive reduction of the current graph. If no edge has been deleted, stop the algorithm.

6. Go to step 4.

Experimental Results

In this part, we test our final algorithm on sequences coming from the dynamic analysis of benign and malware applications. The aim of the first experiment is to determine the time and space scalability of the algorithm. We identify parameters that influence the evolution of the processing time and the memory footprint of the program, then we show how the algorithm reacts under a large range of values. In the second experiment we explore a way of using the graph produced by our algorithm to detect if an application belongs to a particular malware family. For both our experiments, we explain in the first subsection exactly what are those sequences, how we collect them and how they are pre-processed.

Sequence Collection and Processing

We use a dataset of 719 Android malware and 521 benign samples. Malware samples come from the Drebin Dataset [8]. It is the most widely used malware dataset, in the domain of Android malware detection. In a previous study [9], we observed that a large part of malware samples from this dataset share the same opcode sequences -i.e. the bytecode sequence without the operand. A large part of malware applications use repackaging, this is why for two malware samples that share the same opcode sequence, the only changes are often strings, class names and assets. 49.35% of applications have this characteristic. We showed that it artificially boosts the performance of machine learning algorithms because samples that have been learned from the training set are also found in the testing set. So, in our experiment we only use malware samples that exhibit different opcode sequences, that way we get an unbiased performance result of generalization capacity of the algorithm. The benign samples come from F-Droid1 , a repository of Free and Open Source Android applications. These applications are not a priori malicious.

We chose to represent a sample by the sequence of Java calls to the Android API it executes during a dynamic analysis process. In chapter 3 we came to the conclusion that Android API calls are features with a potent discriminative power when it comes to classification. We use Glassbox [10] to collect the sequences of API calls.

The number of samples of the dataset is not high enough for a large scale experiment. We were contraint by the lack of resources, the lack of time and several technical constraints. Indeed, we only used one phone and many applications could not be executed on it. We would have needed a system of industrial quality. Many phones, covering a wide range of Android versions. A multicharge system to aliment the phones, since the dynamic analysis process consumes more battery than what the usb power supply produces when it connected to a computer. Another explanation is that most of the malware command and control servers are currently shut down. Academic dataset contains outdated malware applications. Hence, many applications are no longer working and therefore no longer produce dynamic data.

The application UI relies on polling loops to be reactive, and a large portion of the code logic is handled by loops. This results in repeated substrings within the sequence. These repeated substrings do not convey new information and hinder both the performance and efficiency of algorithms that process them. These artefacts, in the domain of biology are called tandem repeat2 . Lin & al. [11] also identified this problem in their study of system call sequences from the dynamic analysis of applications. They solved it by removing consecutive call repetition, i.e. tandem repeats of size 1. We designed a tandem repeat removal algorithm to increase both performance and efficiency of downstream algorithms. Let be t t r , a function that keeps only the first instance of every tandem repeat. For example: t r r ("aezezezabcd abcd ") = "aezabcd "

The algorithm we use is inspired from a naïve approach. Figure 5.14 shows this algorithm running on the previous example.

On the diagonal is the number of the iteration. To detect a tandem repeat, we run the matrix, noted m, downwards, starting from the current iteration on the diagonal, until we find a position where m(i , j ) = 1. The distance d , between the starting point and the first valid position is saved. Then, we run the matrix diagonally until a non-valid position is found, i.e. m(i , j ) = 0. We save the traveled distance, d . We have d = k.d +r with (k, r ) ∈ N 2 . Last we erase the k.d first positions from the diagonal. To erase a position (i , j ), we remove all (i , j ) and all ( j , i ) for all i possible positions. Then the matrix is reassembled. In our example, removal appeared at iteration 2 and 4. This naïve algorithm is obviously of O(n 2 ) time and space complexity where n is the sequence size. It is impractical. We noted that tandem repeat size in our data rarely exceeds 10. So we break the sequence in parts of random size -between 100 and 500 -and apply this algorithm on them. As the breaks can happen in the middle of a tandem repeat, we apply again this procedure until there is no change in the sequence or 3 times maximum. In this way, our tandem repeat removal algorithm has a time and space complexity of O(n). We identified three parameters that we can control and that influences the complexity: the number of sequences to process, the size of the sequences and the size of the alphabet. Then we use linear regression to find the best approximation of the complexity regarding each of these parameters. First, we define the statistical tools we use to qualify the following experiments. Last, we provide the experimental results along with the statistical evaluation. In this problem, we are unable to construct the worst cases for the algorithm to test its worst case complexity. Moreover we do not have enough real cases to have a fine grain control over the parameter we want to assess. To provide input data, we generate random sequences with control over the sequence size and the alphabet size. The following experiments give a general idea of the average asymptotic complexity for real cases albeit exceptions may occur for some particular patterns and configurations.

The coefficient of linear correlation, also known as Bravais-Pearson coefficient [12] is used exclusively to measure the linear relationship between X and Y:

r X,Y = Cov(X, Y) σ X σ Y
Where COV(X, Y) is the covariance between X and Y, σ X is the standard deviation of X. If Y = aX +b then r = ±1. Linear regression is the search of a couple ( â, b) that minimize:

f ( â, b) = n i =1 (y i -( âx i + b)) 2
With the least squared method, we get:

∆ Y/X : Ŷ = âX + b with â = Cov(X, Y) V(X) and b = ȳ -â x
Where V(X) is the variance of X. We can find other kind of relationship with the linear regression method. By transformation of X and Y to g (X) and g (Y), we can estimate the linear relationship between the transformed series. In this study, we assess the following relationships: 

Y = a.l og (X) + b (logarithmic relationship) Y = a X + b (squared root relationship) l og (Y) = aX + b (exponential relationship) 1 Y = aX + b (hyperbolic decline relationship)
The standard error of the estimation is a measure of the dispersion between the real series X, Y and the regression curve:

s Ŷ = 1 n n i =1 ( ŷi -y i ) 2
In Figure 5.15 is presented the effect of the variation of the number of sequences over the processing time.

The input data is random sequences of 100 characters. The alphabet is of size 5 and each character is uniformly distributed. The algorithm is very dependent on the number of intrarepetitions but we have no control over this parameter. To measure effectively the effect of the variation of the number of sequences, i.e. not being affected by random noise, for each DAG construction we keep the previous random sequences and we add 25 new random sequences. The plot clearly indicates a logarithmic or squared root relationship between the number of sequences and processing time. In Table 5.1 we present the coefficients of linear correlation and the standard deviation for each of the regression curves we tested.

While both squared root and logarithmic relationships have very high linear correlation coefficients, the square root relationship best fits to the serie. the computation time and the memory footprint evolve most probably as n where n is the number of sequences. This experiment also shows that the space complexity does not depend on the number of sequences (max(|V| + |E|) is always equal to 3, 325). The alphabet size is equal to 5 and the number of sequences is equal to 10. To cope with noise induced with the random intra-repetitions, at each iteration of a new DAG generation, we reuse the previous sequences and added a random character from the alphabet to them. The plot clearly shows an exponential relationship, and the correlation with it (in Table 5.2 and 5.3) is close to 1.

At first we calculated the correlation for the whole series but we found that the series are almost perfectly correlated with an exponential relationship for sequence sizes over 100. This is easily explained with some constant processing and structures to allocate that is not negligible for small sequences. Therefore the computation time and the memory footprint of Algorithm 5.7 evolve most probably as e n where n is the size of the sequences. Last, we measure the effect of the alphabet size over time and space (Figure 5.18 and 5.19).

The strategy here to cope with noise is to add progressively new characters with the minimal sequence change while preserving the uniform law of character random apparition. This is done, at each new DAG iteration, by replacing every character from all sequences by the new character with a probability of 1 a+1 where a is the previous size of the alphabet. Let assume that a character, c, have the probability of 1 a to be present at an index, i , of a sequence. At index i , c is replaced with a probability of 1 a+1 . Hence, c is present at index i with a probability of P(c) = 1 a . a a+1 = 1 a+1 . Consequently at the new iteration, characters follow a uniform law.

We tested the correlation of time and space series with an exponential decline and a hyperbolic decline in Figure 5.4 and 5.5.

The computation time and the memory footprint most probably evolve as e -a , where a is the size of the alphabet. 

Classification Experiment

The Γ-embed d i ng DAG contains common information between a group of sequences. To exploit these data for assessing if a new sequence belongs or not to a group, we need to define measures. Let us detail our approach. We collect common symbols between all sequences from a group, then we remove any non-common symbols from all sequences. These sequences are sorted by their length in increasing order. It becomes the order of sequence processing. As the shortest sequences are treated first, it is most likely that at each iteration, we get the smallest DAG possible.

We apply Algorithm 5.6 on the first two sequences and Algorithm 5.7 for the following ones. To assess if a new sequence belonging to the group, we use Algorithm 5.7 again with the DAG from the group. Then we define several measures that give indications about the changes on the DAG. The less the DAG is reduced, the most likely the new sequence belongs to the group because it shares a wide number of common subsequences.

Let N b , E b , P b be respectively the number of nodes, edges and paths (from START to END) in the DAG before the new sequence processing. Let N a , E a , P a be respectively the number of nodes, edges and paths in the DAG after the new sequence processing. We define three criteria: node expansion, edge expansion and path expansion noted N ex , E ex and P ex .

N ex = N a -N b N b , E ex = E a -E b E b , P ex = P a -P b P b
Algorithm 5.7 is very sensitive to outliers in sequence clusters. The sequence that share the less common subsequences with the group will reduce the graph the most. For that reason, we re-clustered malware families to get groups of sequences that are really close. To accomplish this task, we use a distance between two sequence clusters that favor common subsequences:

D(c 1 , c 2 ) = 1 |A c 1 ∩ A c 2 | , the inter-cluster distance D(c, c) = 1 |A c |
, the intra-cluster distance

Where A c is the set of symbols in the sequence cluster c. 0 < D(c 1 , c 2 ) ≤ 1. When the sequences in a group share a lot a common symbols, D tends to 0, and conversely when the sequences share just a few symbols, D tends to 1.

We have designed a hierarchical clustering to group similar sequences based on the D distance. At initialization, each sequence is within a separated cluster, then at each iteration, the clusters that have the lowest distance are merged. The common symbols between both clusters become the symbol set of the new cluster. In that sense, when clusters are created we lose the information about the individual sequences. To find the optimal number of cluster we minimize a Ward criterion [13]:

r = ∀c i ∈C D(c i , c i ) 2 ∀c i ,c j ∈C * C|i = j D(c i , c j ) 2
Where C is the set of clusters. At each iteration r is calculated and the iteration with the lowest r is considered as the optimal iteration. To promote clusters that are consistent regarding our problem, we added several constrains to the clusters:

• At least 50% of the points must be clustered • Clusters of size 1 are not considered (even in r calculation)

• Clusters of size below 20% of the maximal size among clusters are not considered (even in r calculation).

These rules ensure that small clusters are filtered -they are outliers regarding our problem -and that at least a majority of the malware dataset is taken into account. Another issue is that Android malware and benign applications share API patterns linked to the use of UI. The common subsequences derived from UI API calls is of little use on malware detection. Hence, to refine malware sequences, we first cluster benign applications, take the symbols sets of the valid clusters and subtract them from malware sequences 5.6.

Then we cluster malware sequences, results are presented in Table 5.7. We note that benign sequences are more diverse -48 / 521 benign sequences within selected clusters -than malware sequences -121 / 719 malware sequences within selected clusters. We use only malware clusters 0, 1 and 4 because they lead to Γ-embed d i ng DAG that are very fast to generate. Other clusters lead to DAG with more than 10 5 nodes and edges. They require too much computing time to generate. The approximation we get leads to errors, mostly added nodes and edges. These errors grow with the number and size of the common subsequences. For some pathological cases, the graph is constitued mostly by errors. So, before the graph is reduced by the node merging and transitive reduction phases, the intermediate graphs are already too big to be processed. A better approximation should enable more cases to be processed. This subject still requires extensive research, as it is a domain at its beginning.

Next, for each cluster we use leave-one-out cross validation. One sequence is removed from a cluster, then the Γ-embed d i ng DAG is processed from the rest. The sequence that has been left out is added to the DAG and we measure the node, edge and path expansion, the results are presented in Figure 5.8.

The standard deviation of {node, edge, path} expansion is used as a criterion of a sequence belonging to a cluster. We consider that a new sequence belongs a cluster if its {node, edge and path} expansion deviation from the mean is below the respective standard deviations. We tested all benign sequences and all malware sequences -that were not already belonging to a cluster. The results are presented in Figure 5.9.

A sequence is considered to be correctly classified if a sequence is predicted to belong in the right cluster for leave-one-out malware sequences or if the sequence is predicted to not belong to any of the clusters for the rest of the sequences. The overall results of 97.74% accuracy is close to the state-of-the-art (98% [14], 99% [15], 97.3-99% [16]). The limitation is that we could not make consistent Γ-embed d i ng DAG for the whole dataset. The process of DAG creation or clustering need improvement to enable a larger usage of the Γ-embed d i ng DAG. However it shows that this mathematical object (Γ-embed d i ng DAG) is useful for production applications.

Conclusion

This study contributes to the state-of-the-art by defining, formalizing and constructing a new representation for the common subsequences of a sequence set. It is called A Γ DAG. We showed that the A Γ DAG contains all information about the common subsequences and is expressed in a very compact form. We succeed to design an algorithm that is able to build this construction for sequence without intra-repetitions. For other sequences, we have designed an algorithm that is able to construct a structure close to the solution. We have conducted an empirical study of the time and space complexity of the final algorithm. The computation time evolve as n.e 0.043s-0.097a where n is the number of sequences, s the size of the sequence and a the size of the alphabet, considering that each sequence has an equal size and each character an equal chance to appear. The memory footprint evolves as e 0.026s-0.059a . We assessed its utility for classification heuristics. With simple metrics we came to 97.74% accuracy for singling out clustered malware from other applications with the sequence of their Android API calls executed during dynamic analysis. While it does compete with state-of-the-art malware detection with machine learning, it shows that Γ-embed d i ng DAG conveys enough information for classification. The exploitation of this representation for data mining needs further research. The implementation of this algorithm is a part of libmla (Machine Learning Algorithms Library).

CHAPTER 6

Experimental Results In this chapter, we put the neural network and feature extraction techniques presented earlier into practice. In the first section, we explain our feature selection process. In the second section, we optimize the hyperparaters of the neural network and we give final malware detection results. Last, we conclude the thesis.

Contents

Feature Selection

Feature selection is an important process in Machine Learning. Classification algorithm results are often limited by the quality of discriminative information given by the feature set. In this part we present a new algorithm for quickly evaluating a feature set. Then we optimize the feature from static and dynamic analysis.

Evaluation of Results

For all experiments, we use the accuracy as the main performance measure. It expresses the ratio of samples that are well classified, regarding their expected class (malware or benign):

• t p is the number of True Positive, i.e. the number of malware samples classified as such by the model. The feature set is usually optimized to enable a faster and better classification of downstream algorithms. Our feature set can take various forms and evaluating it requires to launch the training of a neural network. The neural network parameters also need to be optimized, and its parameters are dependent on the dimension and normalization procedure of the feature set. Moreover optimizing the feature set with the final neural network introduces biases in the results. And ultimately, the amount of necessary tests is too much time consuming. To handle this issue, we design a new algorithm, of linear space and time complexity regarding the feature set size, that is able to evaluate the discriminative quality of the feature set. This algorithm, named FEA (Fast Evaluation Algorithm), is a two-class classification algorithm which is extremely fast to train and execute. While its accuracy does not outmatch the state-of-the-art classification algorithm, it achieves results relatively close to them.

FEA speed allows to quickly evaluate the quality of a feature set. In the first part, we describe the algorithm and in the second part we show that it is as sensitive to the feature quality as any other classification algorithm. As it is as sensitive, it can serve the purpose of evaluation function.

Definition

Let F = {λ 1 , • • • , λ n } be the finite feature set of n possible features from S , the finite set of all samples. Let a class be a non-void set of samples. We define a positive class, C + , and a negative class, C -, such as {C + , C -} is a partition of S . Let S + and S -be two known sets of samples such as S + ⊂ C + and S -⊂ C -. Let ρ s i be the number of occurrences of the feature λ i in the sample s. To simplify, we will always write ρ i for ρ s i . We construct two vectors of feature occurrences, r + and r - such as :

r + = ∀s∈C +       ρ 1 ρ 2 . . . ρ n       r -= ∀s∈C -       ρ 1 ρ 2 . . . ρ n      
Let h : N → R + be a known transfer function. We can use :

h(x) = 1 - 1 1 + x Let H : N n → R n
+ be a transfer application such as :

H(X) =       h(x 1 ) h(x 2 ) . . . h(x n )      
For each feature λ i there is an associated weight w i . These weights come from the vector W that is calculated such as :

W = H(r + ) -H(r -)
Once W is set, the training phase is done. For a sample, s, whose class is unknown we process α, the following decision criterion :

α = W.H(r s ) = n i =1 w i .h(ρ i ) Finally : • s ∈ C + if α > 0 • s ∈ C ? if α = 0 • s ∈ C -else
Where C ? denote the rare case where the decision criterion is unable to help us decide to which class the sample s belongs. For sake of implementation simplicity we can either decide that C ? = C + or C ? = C -.

Several transfer functions have been tested :

h(x) = l n(1 + x) h(x) = 1 + x h(x) = 1 - 1 1 + x
The transfer function does not need necessarily to have an output value restricted in the interval [0, 1] but we found that using the last transfer function increase the accuracy.

Experimental Results

We evaluated FEA on 3 different problems :

• Windows malware detection. The CSDMC2010_API dataset [1] contains 766 sequences of windows API calls coming from the dynamic analysis of executables (320 benign and 446 malware programs). We use the frequency of the sequence trigrams as our base feature set.

• Spam message detection. The ling-spam dataset [2] contains 2893 mail messages (481 spam and 2893 benign messages). We preprocessed them by removing special characters (except for punctuation marks), normalizing spaces, removing some long words which were not part of common vocabulary, downcasing every characters and transforming any number series by special symbol (" [NUMBER] ") -as different numbers would be processed as different symbols, albeit the same conceptual object. Then we applied trigram analysis of the sequence of words (1 word is considered as 1 symbol in the sequence).

• Android malware detection. The M0DROID dataset [3] contains 400 Android applications (200 malware and 200 benign apks). We used our reverse engineering module presented in Chapter 3 to extract the sequence API calls, opcodes and strings (which are processed as sequences of characters). Then we use the combination of string bigrams, opcode trigrams and API call trigrams to build the initial feature set.

For each dataset, we set up 4 experiments :

• 10-fold cross validation on the raw feature set.

• 10-fold cross validation on the dataset of max-normalized frequencies. Each frequency is divided by the maximal frequency found in the feature vector, it spreads the values of the frequencies between 0 and 1.

• 10-fold cross validation on the dataset of max-normalized frequencies with feature vector normalization. The final feature vector is normalized (its norm is 1). 149 • 10-fold cross validation on the dataset of max-normalized frequencies with feature vector normalization. Then, we apply a feature selection phase. For each feature we calculate its appearance frequency ( f ) and its mutual information (mi ). Last, we keep only the 10% most relevant features regarding the mi • f criterion.

The accuracy of FEA is compared with SMO (Support Vector Machines using Sequential Minimal Optimization [4], J48 (C4.5 Decision Tree [5]), and BLR (Bayesian Logistic Regression [6]). All settings for this experimental part are summarized in Tables 6.1, 6.2, 6.3. Algorithm implementations come from Weka 1 with default parameters. To limit biases in the experiment, the same seed for the random split of the dataset has been used with k-fold testing. Tables 6.4, 6.5, 6.6 and 6.7 present the accuracy results for all datasets and feature set configurations. In the Android malware detection experiment, the feature set 3 failed to produce meaningful results. Feature vectors are too large (>40,000 inputs) for normalization. In fact, feature values tend to zero with that number of features. And for several algorithms, the results were not exploitable so we discarded this experiment. Figures 6.1, 6.2, 6.3 summarize the results for each dataset. The interpretation of the results is not obvious. FEA is reacting the most similarly to SMO. The top results are achieved for the same feature set. Moreover, results follow the same ups and downs -even if the amplitude is quite different. In the first experiment (dataset 1), BLR reacts badly to the vector normalization but other algorithms have similar reactions to the feature sets. So, BLR should be regarded as an outlier. In the second experiment, all algorithms react similarly to the change of feature set, even if the amplitude of the decrease FEA much bigger. In the last experiment, FEA results decrease from FS1 to FS2 like SMO and J48, but it increase from FS2 to FS4 like SMO and BLR. To summarize, FEA reacts to the change of feature set like the majority of the tested classification algorithm. We note that the accuracy of FEA drops dramatically when it is subject to vector normalization for a high vector size. Hence, overall it is a good algorithm for measuring quickly the feature set quality.

We benchmarked the processing time of every algorithm for 4 size of the feature set (Table 6.8. As FEA processing time is far behind every others and there is no ambiguity, we applied a simple benchmarking procedure (one benchmark for each algorithm and feature set size). We benchmarked the 10-fold testing time on a laptop with an Intel(R) Core(TM) i7-3740QM CPU @ 2.70GHz CPU and 2,900 samples for each experiment. Weka implementations are advantaged since they run on 2 CPU cores and FEA implementation use only 1 core. FEA is two to four orders of magnitude faster than its competitors. Table 6.11 presents the results of the feature set optimization of character sequences. Because of technical limitations the feature set with trigrams cannot be processed, so we directly moved to bigrams. We found that the max-frequency normalization is marginally helpful, but other normalizations are detrimental. Finally, we obtain a good compromise between feature set size and accuracy preservation, with a FS size of 2000. Last, the feature set of application metadata (FS4) and manifest data (FS5) do not need to be optimized, as there is no parameter to change.

Feature Set of Dynamic Analysis

We ran Glassbox [11] (cf. chapter 3) during several weeks to extract dynamic events from malware and benign applications. We use 929 malware samples from the Drebin Dataset [7] and 886 benign samples from Fdroid 8 . Dynamic analysis has many technical limitations as it is hard to make every application running properly. On this initial dataset only 756 malware samples and 535 benign samples produced meaningful results. We extracted the following data :

• The sequence of executed Java calls. From these initial sequences, we singled out the sequence of the Android API calls and the sequence of the rest of the calls -which have been defined by the developer or coming from external libraries.

• The sequence of system calls.

• The character sequence of the network communication. It is a full dump of the whole http protocol. It includes http traffic that is ciphered with TLS -Glassbox is connected to MITM wifi.

In this part, we want to assess the optimal feature set to classify applications. The following parameters are tested:

• Which sequence of Java calls is the best between the full sequence, the API call only sequence and the non-API call only sequence ?

• Which window size of the N-Gram analysis produces the best results ?

• Is the tandem repeat removal algorithm (cf. chapter 5) useful on these sequences ? Tandem Repeats are noted TR.

• Which feature normalization fit the current problem ? (cf.previous part).

• Which feature set size ?

Note that this experiment has been made with the first version of Glassbox. The results could be improved, by the time we are writing this manuscript. We realized that applications, being highly multithreaded and multi-processed, write concurrent sequences of events into the same one. We deeply enhanced the implementation of Glassbox to enable the following of every thread and process created. Now, one application is associated with dozens of Java call and system call sequences. Unfortunately, remaking the experiment would have pushed out of our deadlines. Table 6.12 presents the results of the optimization of the feature set of Java calls. We start by testing the accuracy of Java call, API and non-API sequences with trigrams and without any feature reduction and normalization. The API sequences perform a little better here. As the feature set sizes are not equivalent, we select the top 1,000 most relevant features but the API sequences are still the best option. Removing tandem repeats slightly increase the results. It is expected since code loops can bloat the sequence with repeated substrings. Testing the N-Gram window size reveals that bigrams are the most suited. Next, we test the normalization to apply and the best option is normalizing the feature variance. Then we find empirically that a good feature set is around 4,000. 9. While the accuracy of the experiment 17 is above, the increase in feature size is not worth the gain The results show that there is not a set of parameters that consistently deliver the best results for all feature sets. This is also the conclusion reached by Rojas in Neural networks : a systematic introduction [12]. Hence, neural network needs to be tweaked for every feature set. Despite this conclusion, we are able to draw general trends from the results :

• A number of hidden units equal to the FS size outmatch a number of hidden units of the square root the FS size. Doubling the number of hidden units often enhances the accuracy (4 cases over 7), but the tradeoff with the increase of processing time does not worth it. However, in the case of API call sequences it enhances the accuracy significantly.

• The use of Adaptative Learning Rate has mixed results. It enhances marginally the accuracy in 3 cases over 7 and hinders the accuracy marginally in the other cases. Hence, it has a minor impact.

• The use of Controlled Variance and Distributed Bias for initializing weights hinders the results in most of the cases. Hence, while providing strong mathematical boundaries, on our problem it should not be used.

• The use of ADAM 12 has mixed results. In 4 cases over 7, it significantly enhances the accuracy, in 2 cases over 7 it significantly hinders the accuracy and in the last case, the accuracy is hindered marginally.

• The use of Dropout in almost all cases significantly hinders the accuracy. The neural network we use is probably too small to take advantage of unit dropout.

• The use of L2 regularization significantly hinders the accuracy in all cases.

While multilayer perceptrons produce competitive accuracy, we have to admit they are no better than the FEA or the SMO algorithm on our problem. Even Deep Learning does not provide outmatching accuracy results (see. chapter 4) while requiring a large number of samples and processing time. As a conclusion, we observe that there is no perfect classification algorithm for Android malware detection. To build a robust antivirus solution, machine learning should be used in conjonction of pattern matching detection (i.e. the "classical" technique).

12. kingma2014adam 13. P 0 = { h = n where n is the FS size and h the number of hidden units, SGD learning algo., U(-0.77; 0.77) weight initialization, µ = 0.001, no regularization } 

Conclusion

The objective of this thesis is to secure the mobile environment of the 3DNeuroSecure solution. After preliminary studies, which have been the subject of conferences and scientific articles, we have chosen to focus research on the detection of malware with neural networks.

This objective has brought me to the field of other topics such as the collection of application datasets, application analysis, feature selection and implementation of a neural network. I have covered all these topics in depth, and I have brought solutions in terms of software production, method, theory and algorithms with the intention of contributing to the current state-of-the-art. Thus, I provided :

• Tarentula. An Android application web crawler able to massively collect applications from shady sources.

• A reverse engineering module for Android application, faster than any other public tools.

• Glassbox. A controlled environment for the dynamic analysis on real devices. It was the first of his kind, since the publication other similar systems have emerged.

• Smart Monkey. A system that automatically and methodically tests the user interface of Android applications. I proved that it accesses more application code blocks than the monkey program that is usually used.

• A method for the feature selection process, with a wide range of statistical tests and data to gather an insight of features.

• FEA. An extremely fast bi-class classification algorithm that allows to assess the quality of a feature set.

• Algoritmic improvements of multilayer perceptrons, along with mathematical justifications.

• Implementation innovations that allow neural networks to run faster.

• Libmla. A library for efficient Machine Learning on CPU. Hence, it contains a fast implementation of a neural network and all tools a scientist or an engineer needs to use it.

• A critical analysis of the state-of-the-art of all topics covered.

• The Embedding Antichain of Common Subsequences and its applications. It is a new mathematical object that enables to represent and work with all common subsequences of a sequence set. I described this new problem fundamental mathematics and I presented an algorithmic solution to it which, even if it is still an approximation of the abstract solution, already enables to produce meaningful results on malware classification.

During this thesis, I approached an unexpected problem which is the research and the use of common subsequences of a sequence set. Wanting to find him a deterministic solution, I worked a week, this week has turned into a month, and this month into 8 months. I finally gave up this track, because I did not believe to find convincing results quickly and to continue would have endangered my thesis. Six months later, I met in a short interval a PhD in my field and a PhD in physics. While discussing, I realized that one was looking for a solution to a problem very similar to mine that the other had also searched for a solution to a similar problem (but as it was not the main focus of his research at the time, he ended up giving up like me). They did not use the same words, the same concepts, but it was possible to transpose their problem into mine and vice versa, they were mathematically equivalent. This made me realize that my problem was a fundamental problem, that it could be useful to other people and that it was important, if not to solve it, to try to the end. This is why, The Embedding Antichain of Common Subsequences, is for me what I am most proud to present in this thesis. And it is, I believe, the beginning of a new field of study that has a wide range of applications.

After spending 3 years studying malware detection and machine learning, I think it is a heuristic detection that has a future and it is important to continue. Nevertheless, it will not replace the original quality of signature and rule detection techniques. This quality is the almost non-existent rate of false positive. It is therefore important that these new heuristic systems complement what already exists. A note on vulnerability detection, I do not think it is possible to have reliable heuristic detection. There will, probably, always need a manual analysis. This process is time consuming and expensive, so to have secure benign applications, it is necessary to have a dedicated market for reviewed applications, as it had been proposed with DAVFI (see introduction). The advantage of taking as a base object the sequence -sequence of opcodes, calls, characters, etc. -it is that the techniques that I have presented and implemented can be transposed to other types of data and operating systems. Hence, the method and implementations are applicable on Windows malware and network communications.

For someone who would like to resume my research, I advise dwelling on the FEA algorithm that has many potential and is far from being perfect. I thought for instance, using it to initialize the weights of a neural network. Because I was lacking the time, I have not deepened this path but I think it has a future. Moreover, the quick approximation of x y (cf. chapter 4) could be easily finalized. Only needing very little calculation of this type in libmla, I did not go further. In this chapter, we have seen that each feature set should be trained with different neural network parameters. To train a neural network with all feature sets, I considered training different neural networks with different parameters and then combining their trained hidden layers connected to a new output layer. Indeed, neural networks are bad for managing features that have nothing to do with each other, in terms of variance, mean and range. And normalizing them, so that they have the same shape, is not always desirable in terms of accuracy as I have shown in this chapter. Also, the management of different types of features by different neural networks, seems to me a sensible option with high potential. And that would accomplish the feature normalization in a way that does not damage their discriminative quality. Finally, I think it is of paramount importance to explore the representation of the subsequences of a set of sequences. A purely mathematical approach would make sense and would probably unlock the algorithmic path I started. précision du classificateur. Nous avons fait étude expérimentale approfondie pour choisir le meilleur ensemble de caractéristiques parmi un ensemble de candidats.

• Algorithmes d'initialisation, d'apprentissage et d'antisaturation des réseaux de neurones

Les réseaux de neurones sont initialisés de manière aléatoire. Il est possible de contrôler la distribution aléatoire sous-jacente afin de réduire le saturation, le temps d'entrainement et la capacité à atteindre le minimum global. Nous avons développé une procédure d'initialisation qui permet de contrôler la variance des niveaux d'activation initiaux. Finalement, nous utilisons des techniques anti-saturation et nous montrons qu'elles sont nécessaire pour former correctement un réseau de neurones.

• FEA : un algorithme de classification très rapide Nous avons conçu un algorithme permettant une classification de 2 à 4 ordres de magnitude plus rapide que les classifieurs usuels. Nous l'utilisons afin d'évaluer rapidement la qualité discriminative d'un ensemble de caractéristiques.

• Un algorithme pour représenter les séquences communes dans un groupe de séquences La manière classique de détecter un échantillon d'une famille de logiciels malveillants est la suivante : rétro-ingénierie et analyse manuelles des échantillons de logiciels malveillants.

A partir de cette analyse, les parties malveillantes communes sont extraites pour faire une règle de détection. Cet algorithme est une nouvelle voie de recherche vers la création automatique de règles de détection de familles de programmes malveillants. Le code d'un logiciel malveillant peut être représenté comme plusieurs séquences d'opcodes, et l'analyse dynamique des logiciels malveillants génère des séquences d'événements. Trouver des similitudes dans un groupe de séquences implique souvent d'étudier leur sous-séquences commune ou leurs sous-chaînes communes. Nous proposons une représentation compacte de l'ensemble de ces sous-séquences communes, baptisée Antichaine Englobante. Nous présentons un algorithme capable d'en construire une approximation. Cette représentation peut être utilisée pour caractériser un groupe de séquences, et donc définir des rêgles d'appartenance.

Tout au long de cette thèse, les outils suivant ont été conçus :

• Glassbox : Analyse dynamique des applications de logiciels malveillants Android sur des appareils réels Les chercheurs s'appuient sur une analyse dynamique pour analyser les comportements malveillants et utilisent souvent des émulateurs pour le faire. Cependant, l'utilisation d'émulateurs apporte ses propres faiblesses. Les logiciels malveillants peuvent détecter l'émulation et par conséquent n'exécute pas la charge utile pour empêcher l'analyse. Traiter avec l'évasion de périphérique virtuel est une guerre sans fin et est livré avec un coût de calcul non négligeable. Pour surmonter cet état de fait, nous proposons un système qui n'utilise pas de périphériques virtuels pour l'analyse comportement des logiciels malveillants. Glassbox est un prototype fonctionnel pour l'analyse dynamique des applications de logiciels malveillants. Il exécute des applications sur des appareils réels dans un environnement surveillé et contrôlé. 
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  float neuralNetwork::sigmoidDerivative(float x) { static float constexpr clampLimitPos = 4.0f, clampLimitNeg = -4.0f; static float const clampedValue = ((-2.0f) * SIGMOID_FACTOR * mla::exp(clampLimitPos)) / (std::pow(mla::exp(clampLimitPos) + 1.0f, 2.0f)); if (x < clampLimitNeg || x > clampLimitPos) { return clampedValue; } else { x = mla::exp(SIGMOID_FACTOR * x); return ((-2.0f) * SIGMOID_FACTOR * x) / (std::pow(x + 1.0f, 2)); } }
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  Training: compute word vectors W, softmax weights U, b and paragraph vectors D on already seen paragraphs • Inference: compute paragraph vectors D for new paragraphs by adding more columns in D and gradient descending on D while W, U, b are fixed.
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CHAPTER 2 Preliminary studies & background in Android Security 2.1 Android malware characterization 2.1.1 How to categorize Android malware

  

Diederik P Kingma and Jimmy Ba. Adam : A method for stochastic optimization. arXiv preprint arXiv :1412.6980, 2014. 15, 53, 104, 118 [5] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout : a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1) :1929-1958, 2014. 15, 104

  • Listing contacts with the relationship category

	Regex : /"displayName":"([^"]+)"\}.*?friendshipStatus":"([^"]+)".*?
	"contactType":"([^"]+)".*?"cityName":"([^"]+)"/
	Results :
	[...]
	Name : ###### #####
	Status : ARE_FRIENDS
	Type : USER
	City : Toulouse
	Name : #### ######
	Status : CANNOT_REQUEST
	Type : USER
	City : Laval (Mayenne)
	Name : ###### ## ###
	Status : ARE_FRIENDS
	Type : USER
	City : Paris
	[...]

  • t n is the number of True Negative, i.e. the number of benign samples classified as such by the model.• f p is the number of False Positive, i.e. the number of malware samples classified as benign by the model.• f n is the number of False Negative, i.e. the number of benign samples classified as malware by the model.

	True positive rate : t pr =	t p t p + f n
	False positive rate : f pr =	f p f p + t n

Accuracy : acc = t p + t n t p + t n + f p + f n

Contents 3.1 Sample Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3

  .1.1 Places to Find Android Samples . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.2 Our contribution : Tarentula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.3 Biases of Academic Datasets : the Drebin Study Case . . . . . . . . . . . . . .

49 3.2 Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3

  .2.1 Application Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.2.2 Android Reverse Engineering and Static Analysis Features . . . . . . . . . . . 57 3.2.3 Our Contribution : libmla-android-reverse . . . . . . . . . . . . . . . . . . . .

63 3.3 Dynamic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

  

	3.3.1 Application Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
	3.3.2 Android Application Dynamic Analysis and Features . . . . . . . . . . . . . . 66
	3.3.3 Our Contribution : Glassbox & Smart Monkey . . . . . . . . . . . . . . . . . . 69

TABLE 3 .

 3 1 -Distribution of application sequence sets

	Set size	Number of sets Set size Number of sets
	1 (unique sample)	2181	2	280
	3	119	4	39
	5	35	6	25
	7	12	8	7
	9	8	10	4
	11	4	12	5
	13	7	14	5
	16	3	17	3
	18	2	19	2
	20	1	21	3
	22	2	25	1
	29	1	34	1
	35	1	36	1
	37	1	38	1
	42	1	44	1
	53	1	54	1
	55	1	62	1
	83	1	92	1
	96	1	120	1
	128	1	-	-

FIGURE 3.1 -Distribution of application sequence sets (size > 1)
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TABLE 3 .

 3 2 -Accuracy with and without the duplicates

	• SMO 22
	• C4.5 Decision Tree 23

• REPTree

24 

20. http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/RandomForest.html 21. http://weka.sourceforge.net/doc.dev/weka/classifiers/lazy/IBk.html 22. http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/SMO.html 23. http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/J48.html 24. http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/REPTree.html Algorithm Accuracy (no dup.) Accuracy (dup.) Inaccuracy

TABLE 3 .

 3 3 -Rate of benign and malware samples exhibiting risky behaviors

	Feature	Benign samples rate	Malware samples rate
	AdvancedPHONEFeatures	1,1%	1.9%
	APNSettings	0,6%	26.9%
	AskForAPKUninstall	1,5%	12.6%
	ASEExecute	0,9%	1.7%
	ChmodString	4,8%	51.3%
	DynamicCodeLoading	35,4%	12.8%
	DynamicCodeLoadingFromDEX	0,2%	2.9%
	ForceAPKInstall	3,4%	77.3%
	GetACCOUNTS	1,4%	1.5%
	GetFromAssets	31,3%	77.5%
	GetFromResRaw	17,7%	39.7%
	GetPhoneNumber	1,6%	72.1%
	HTTPRequests	44,1%	96.6%
	LocationService	10,2%	40.1%
	MailSender	5,4%	29.6%
	MountString	2,2%	2.1%
	NativeCode	12,1%	50.8%
	PhoneCall	2,4%	12.8%
	Reflection	38,0%	29.8%
	RunatBOOT	7,0%	71.6%
	SMSReceiver	5,9%	57.4%
	SMSSender	3,1%	33.4%
	SMSSenderbyURI	4,5%	57.4%
	ShellExecution	17,5%	81.9%
	SuString	9,7%	68.5%
	ShString	9,5%	39.1%

TABLE 3 .

 3 4 -Comparative state of the art of dynamic analysis systems

	Reference			Tool name	Dynamic features used	App testing strategies	Objectives & comments
	Thomas Bläsing et al. 2010	[33]	AASandbox	System calls (name)	Monkey	Data for malware/benign classification # Virtual device
	Iker Burguera et al. 2011	[34]	Crowdroid	System calls (name)	Crowdsourced app interactions	Data for malware/benign classification # Real device
	Cong Zheng et al. 2012	[35]	SmartDroid	Taint tracking, + ?	UI brute force Restriction of execution to targeted activities	Data for classification or manual analysis # Virtual device
	Lok Kwong Yan et al. 2012	[36]	DroidScope	System call (all content) Java calls (all content) Taint tracking	-	Data for classification or manual analysis # Virtual device
						Monkey
	Vaibhav Rastogi et al. 2013	[37]	AppsPlayground	Taint tracking Targeted Android API Java calls	UI brute force Broadcast events	Malware/benign classification # Virtual device
						Text fields filling
					App Java calls (all content)	
	Martina Lindorfer et al. 2014	[1]	Andrubis	System calls (name, + ?) Shared libraries targeted calls (name, + ?) Taint tracking DNS/HTTP/FTP/SMTP/IRC	Monkey Broadcast events All possible app services All possible app activities	Data for classification or manual analysis # Virtual device
					(all content)	
	Mingyuan Xia et al. 2015	[38]	AppAudit	Taint tracking	∼	Malware/benign classification Data leak detector # Symbolic execution
	Vitor Monte Afonso et al. 2014	[39]	-	Targeted Android API Java calls (name) System calls (name)	Monkey Broadcast events	Malware/benign classification 96.66% accuracy # Virtual device
	Kimberly Tam et al. 2015	[40]	CopperDroid	System calls (all content) Binder data	Broadcast events Text fields filling, + ?	Data for classification or manual analysis # Virtual device
	Gerardo Canfora et al. 2015		[41]	-	System call (name)	Monkey	Malware/benign classification 94.9% accuracy (unseen applications) # Virtual device
	Marko Dimjašević et al. 2016	[42]	Maline	System call (name)	Monkey Broadcast events	Malware/benign classification 96% accuracy # Virtual device
	Michelle Y. Wong et al. 2016		[43]	IntelliDroid	Taint tracking	Targeted inputs leading to suspicious Android API calls	Data for classification or manual analysis # Virtual device
	Gerardo Canfora et al. 2016		[44]	-	Measures of resource consumption (CPU, Network, Memory, Storage I/O)	Monkey	Malware/benign classification 99.52% accuracy # Real device
	This work			Glassbox	Java calls (name) System calls (name) HTTP/HTTPS requests (all content)	Monkey UI brute force Broadcast events Text fields filling Real SMS/Call	Data for malware/benign classification # Real device

TABLE 3 .

 3 

	5 -Legend

+ ?

TABLE 3 .

 3 6 -Code coverage resultsMethodClasses average coverage Methods average coverage Blocks average coverage Crash rate

	Monkey	32.93%	35.05%	36.32%	16%
	Smart Monkey (w/o Monkey)	34.84%	36.68%	37.73%	0%
	Smart Monkey (with Monkey)	37.12%	41.6%	41.23%	16%
		smar t monke y ac monke y ac	= 1.1352		

  x 11 x 12 x 13 . . . x 1d x 21 x 22 x 23 . . .

											Dataset -Output	
								Y 1				y 11 y 12 y 13 . . . y 1s	
	. . .	. . .	. . .	. . .	x 2d . . .	    	    	Y 2 . . .	    	=	    	y 21 y 22 y 23 . . . y 2s . . . . . . . . . . . . . . .	    
	x n1 x n2 x n3 . . . x nd		Y n				y n1 y n2 y n3 . . . y ns	

  e(t ) = 0.1 + 0.5 * 1 * 1 = 0.6 At t = 2, no weight update since e(t ) = 0. At t = 3, no weight update since e(t ) = 0. At t = 4, we start to learn the truth table from the beginning and w 0 is updated with value -0.2.

	At t = 5, no weight update since e(t ) = 0.
	At t = 6:

y = 0, e(t ) = 1, w 0 (t + 1) = 0.3, w 2 (t + 1) = 0.3 At t = 7, no weight update since e(t ) = 0. At t = 8, we start to learn the truth table from the beginning and w 0 (t + 1) = -0.2. At t = 9, no weight update since e(t ) = 0. At t = 10, no weight update since e(t ) = 0. At t = 11, no weight update since e(t ) = 0. At t = 12, no weight update since e(t ) = 0.

TABLE 4 .

 4 1 -Uniform laws to use for a neural network initialization

	Case	no dropout no average norm		no dropout average norm
	Hidden layer		U -3 n , 3 n	U -27 • d n , 27 • d n
	Outpout layer U -	1 0.0578•t ,	1 0.0578•t	U -	1 0.0578•t ,	1 0.0578•t
	Case	dropout no average norm			dropout average norm

TABLE 4 .

 4 2 -Benchmark of the mathematical primitive approximations

						Exp	Log	Sqrt
		Benchmark overhead 18s:303ms:165µs:883ns	18s:335ms:487µs:613ns 18s:226ms:485µs:376ns
		Fast approximation		22s:421ms:997µs:819ns 22s:350ms:916µs:250ns 22s:197ms:376µs:928ns
			C++ STD function		28s:889ms:791µs:718ns	30s:426ms:509µs:496ns	18s:842ms:544µs:72ns
		1.02					y = mla::exp(x) / std::exp(x)
		1.01				
		1				
	y	0.99				
		0.98				
		0.97				
		-3	-2	-1	0	1	2
					x	

TABLE 4 .

 4 

	3 -Malware Detection Accuracy
		Dataset 1 Dataset 2
	CNN 1	67%	94.4%
	CNN 2	70%	95.1%
	CNN 3	89%	93.7%
	LSTM	70%	95.3%

TABLE 5 .

 5 

	1 -Correlation between the processing
	time and the number of sequences
		Ŷ = a X + b	Ŷ = a log X + b
	a	369.109	2996.071
	b	6703.207	-3310.605
	r	0.998	0.977
	s Ŷ	135.736	561.187

TABLE 5 .

 5 

		2 -Correlation between the processing
	time and the sequence size	
		l og (Y) = aX + b (size > 0)	l og (Y) = aX + b (size > 100)
	a	0.053	0.043
	b	2.641	4.349
	r	0.982	0.997
	s Ŷ	364762.214	78798.057

TABLE 5 .

 5 

		3 -Correlation between max(|V|+|E|) and
	the sequence size	
		l og (Y) = aX + b (size > 0)	l og (Y) = aX + b (size > 100)
	a	0.030	0.026
	b	4.682	5.388
	r	0.982	0.992
	s Ŷ	14223.207	7642.159

TABLE 5 .

 5 

	b

5 -Correlation between max(|V|+|E|) and the alphabet size

l og (Y) = aX + b 1/ Y = aX +

TABLE 5 .

 5 6 -Benign sequence clusters

	Cluster N o number of sequences number of common symbols
	0	15	289
	1	8	33
	2	16	23
	3	9	21

TABLE 5 .

 5 7 -Malware sequence clusters

	Cluster N o number of sequences number of common symbols
	0	15	34
	1	28	20
	2	33	75
	3	11	23
	4	22	17
	5	12	39

TABLE 5 .

 5 

	8 -Leave-one-out cross validation mea-
	sures			
	Cluster N o	0	1	4
	Node expansion mean	0% -2.455% -2.769%
	Node expansion standard deviation 0% 7.411% 12.262%
	Edge expansion mean	0% -2.469% -2.702%
	Edge expansion standard deviation 0% 7.673% 12.013%
	Path expansion mean	0%	0%	-1.705%
	Path expansion standard deviation 0%	0%	7.995%

TABLE 5 .

 5 

	9 -Classification results
		Correct classification
	leave-one-out malware clusters	59 / 65 (90.77%)
	malware sequences	654 / 654 (100%)
	benign sequences	499 / 521 (95.77%)
	overall	1212 / 1240 (97.74%)
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.2 FEA : Fast feature set Evaluation Algorithm

  

	Accuracy : acc =	t p + t n t p + t n + f p + f n
	6.1	
	• t n is the number of True Negative, i.e. the number of benign samples classified as such by
	the model.	
	• f p is the number of False Positive, i.e. the number of malware samples classified as benign
	by the model.	
	• f n is the number of False Negative, i.e. the number of benign samples classified as malware
	by the model.	
	True positive rate : t pr =	t p t p + f n
	False positive rate : f pr =	f p f p + t n
		147

TABLE 6 .

 6 1 -FEA test datasets

	Alias	Dataset Name	Reference	Description	Feature
	Dataset 1 CSDMC2010_API-dataset	[1]	Malware/Benign API call sequence	API trigram frequency
	Dataset 2	ling-spam-dataset	[2]	Spam/Ham mails	Word trigram frequency
						String bigram frequency +
	Dataset 3	M0DROID-dataset	[3]	Malware/Benign apk	Opcode trigram frequency +
						API trigram frequency
		TABLE 6.2 -FEA test algorithms		TABLE 6.3 -FEA test feature sets
		Algorithm Reference	Alias	Description
		FEA	This work	FS1	Raw trigram frequencies
		SMO	[4]		FS2	FS1 + max normalization
		J48	[5]		FS3	FS2 + normalized feature vectors
		BLR	[6]		FS4	FS3 + feature selection (top 10%)

TABLE 6 .

 6 1. https://www.weka.fr/

	4 -FEA accuracy results			TABLE 6.5 -SMO accuracy results
	FS1 Dataset 1 99.47% 96.33% 93.33% 93.59% FS2 FS3 FS4	%	FS1 Dataset 1 99.21% 98.82% 98.04% 98.04% FS2 FS3 FS4
	Dataset 2 96.85% 78.38% 66.60% 58.73%		Dataset 2 99.96% 99.68% 93.46% 90.21%
	Dataset 3 86.84% 84.47%	N/A	89.47%		Dataset 3 92.10% 91.84%	N/A	92.36%

TABLE 6 .

 6 

	6 -J48 accuracy results			TABLE 6.7 -BLR accuracy results
	FS1 Dataset 1 99.73% 99.86% 98.69% 99.34% FS2 FS3 FS4	%	FS1 Dataset 1 99.47% 99.60% 83.15% 60.44% FS2 FS3 FS4
	Dataset 2 98.30% 96.16% 95.12% 95.12%		Dataset 2 99.72% 99.79% 90.42% 88.52%
	Dataset 3 88.94% 86.84%	N/A	86.05%		Dataset 3 88.15% 92.63%	N/A	92.84%

TABLE 6 .

 6 8 -Classifier processing time

	FS size	1313	2625	5353	13243
	FEA	193ms	239ms	294ms	432ms
	SMO	9s :30ms	20s :830ms	44s :790ms	2min :30s :290ms
	J48	1min :14s :160ms 2min :36s :460ms 7min :6s :330ms 19min :14s :390ms
	BLR	6s :870ms	17s :10ms	36s :860ms	1min :45s

TABLE 6 .

 6 11 -(FS3):Feature set optimization of character sequences

	Exp. N°N-Gram	Norm	FS Size	Accuracy
	1	3gram	No	1,521,578	N/A 5
	2	2gram	No	7,544 6	0.973487
	3	2gram	Max-freq	7,544	0.973656
	4	2gram	Max-freq, std-norm	7,544	0.973235
	5	2gram	Max-freq, vect-norm	7,544	0.938312
	6	2gram	Max-freq	2000	0.969944 7

TABLE 6 .

 6 13 -(FS7):Feature set optimization of system call sequences

	Exp. N°N-Gram TR	Norm	FS Size Accuracy
	1	3gram	Yes	No	386	0.573985
	2	4gram	Yes	No	523	0.58293
	3	5gram	Yes	No	660	0.582068
	4	2gram	Yes	No	249	0.588517
	5	2gram	Yes	Std-norm	249	0.701813
	6	2gram	Yes	Max-freq	249	0.590366
	7	2gram	Yes	Std-norm, max-freq	249	0.71034
	8	2gram	Yes Std-norm, max-freq, vect norm	249	0.775408
	9	2gram	Yes	Vect norm	249	0.584448
	10	3gram	Yes Std-norm, max-freq, vect norm	386	0.771538
	11	3gram	Yes	Std-norm, max-freq	386	0.709565
	12	2gram	No	Std-norm, max-freq, vect norm	249	0.748235

Table 6 .

 6 16 sumarize the results of neural network training for the different parameters.

	Feature Set Analysis	Data	Parameter	FS size
	FS1	Static	API call sequence	2gram, CL, max-freq, std-norm, vect-norm	5000
	FS2	Static	Opcode sequence	6gram, CL 11 , std-norm, method opcode	1296
	FS3	Static	Character sequence	2gram, max-freq	2000
	FS4	Static	Manifest binary vector	N/A	476
	FS5	Static	Metadata	N/A	8
	FS6	Dynamic	API call sequence	2gram, no TR, max-freq, std-norm	3862
	FS7	Dynamic	System call sequence	2gram, TR, std-norm, max-freq, vect norm	249
	FS8	Dynamic Network com. sequence	2gram, TR, no norm	411

TABLE 6 .

 6 14. Adaptative Learning Rate 15. Controlled Variance, cf.chapter 4 16. Distributed Bias, cf.chapter 4 17. L2 regularization, cf. chapter 4 157 16 -Training feature sets = P 0 with h = n 0.916263 0.933195 0.956817 0.928338 N/A 0.874194 0.702932 0.638856 P 2 = (P 1 with ALR) 14 0.916526 0.933326 0.959182 0.926894 N/A 0.875806 0.696363 0.636646 P 3 = (P 2 with CV )15 

	Neural network parameter	FS1	FS2	FS3	FS4	FS5	FS6	FS7	FS8
	P 0	13	0.738813	0.92939	0.953537 0.928732 N/A 0.866935 0.677096 0.632779
	P 1 0.922825 0.910752 0.948286	0.92427	N/A 0.874194 0.685353 0.630566
	P 4 = (P 3 with DB ) 16	0.918494 0.916659 0.946579 0.917183 N/A 0.873387 0.674382 0.628905
	P 5 = (P 3 with ADAM )	0.915475 0.940151 0.910617 0.932931 N/A 0.881452 0.732169 0.64106
	P 6 = (P 5 with L2 ) 17	0.907075 0.886472 0.882925 0.916263 N/A 0.877419 0.680426 0.618423
	P 7 = (P 5 with Dropout )	0.914293 0.912718 0.730561 0.922038 N/A 0.883064 0.710175 0.621726
	P 8 = (P 6 with Dropout )	0.901431 0.845388 0.948286 0.899067 N/A	0.875	0.663915 0.612898
	P 8 = (P 8 with h = 2 • n)	0.935556 0.856154 0.935817 0.911408 N/A 0.883871 0.651773 0.611241

• Smart Monkey : test automatisé d'applications Android

  L'analyse dynamique d'une application Android nécessite des actions de l'utilisateur pour exécuter les fonctions de l'application. Google fournis le programme monkey chaque téléphone Android. Il déclenche des événements utilisateur aléatoires ciblant une application. Malheureusement, des événements aléatoires rendent difficile d'accéder aux fonctions profondes du code d'application. C'est pourquoi nous avons développé un outil d'analyse Grey Box qui installe et teste applications. Il est capable d'identifier plusieurs champs d'intérêt (email / mot de passe, etc.) et de les remplir avec des données crédibles. De plus, il teste systématiquement toutes les fonctions visibles et ne teste pas une fonction deux fois. Nous avons expérimenté Smart Monkey et nous montrons qu'il est capable de couvrir plus de code source des applications que le programme monkey.

• Libmla :

Bibliothèque d'algorithmes d'apprentissage automatique

  L'apprentissage artificiel commence à être et sera une science utilisée dans tous les domaines technologiques, sans avoir recours à un expert. Les avancées de l'apprentissage en profondeur évitent l'exigence d'un processus d'extraction / de sélection de caractéristiques. Cependant, l'algorithme d'apprentissage et d'autres paramètres internes doivent encore être modifiés. L'apprentissage artificiel doit encore être conçu et configuré par une personne ayant de l'expérience pour être efficace. Enfin, bien que l'apprentissage en profondeur soit très efficace, il nécessite une forte quantité de puissance CPU / GPU. Libmla est une autre direction de contribution à l'apprentissage artifiel. Il est capable de construire des algorithmes d'IA avec de bonnes performances, mais avec beaucoup moins de ressources. C'est pourquoi Libmla est un open source qui promeut l'utilisation d'algorithmes d'apprentissage automatique optimisés, efficaces et faciles à utiliser. À l'heure actuelle, libmla est fortement centré sur l'apprentissage automatique adapté au domaine de la détection de logiciel malveillants, mais nous avons l'intention d'étendre son cadre d'origine avec des cas d'utilisation réels dans d'autres domaines. Nous avons présenté nos travaux à travers des publications, des conférences et des articles de vulgarisation scientifique : : • Articles internationaux • Paul Irolla and Alexandre Dey, The duplication issue within the Drebin dataset, Journal of Computer Virology and Hacking Techniques, DOI 10.1007/s11416-018-0316-z. Black Hat Asia 2015 18 . • Paul Irolla, Glassbox : Dynamic Analysis Platform for Malware Android Applications on Real Devices, ICISSP ForSE 2017, DOI 10.5220/0006094006100621 • Paul Irolla. Systematic Characterization of a Sequence Group. ForSE 2019. • Abhilash Hota and Paul Irolla. Deep Neural Networks for Android Malware Detection.

	ForSE 2019.

• Workshops et conferences internationaux avec article • Paul Irolla and Éric Filiol, (In)Security of Mobile Banking... And of Other Mobile Apps, • Conferences

internationales sans articles •

  Paul Irolla and Éric Filiol, (In)Security of Mobile Banking, Chaos Communication Congress 2014 19 . • Paul Irolla, (In)Security of Mobile Banking... And of Other Mobile Apps, C0c0n 2015 20 . Applications bancaires pour smartphone : une sécurité bâclée, SecuriteOff 2015 21 . • Paul Irolla, La surveillance mondiale du Wifi, SecuriteOff 2015 22 . • Paul Irolla, User tracking et Facebook : l'ère de la surveillance globale, SecuriteOff 2016 23 . • Éric Filiol, Baptiste David and Paul Irolla, Virus informatiques et autres infections informatiques, Techniques de l'Ingénieur 2017, Ref H5440 V3.

• Publications et articles de vulgarisation nationaux

• Paul Irolla, 

https://www.experian.com/blogs/ask-experian/heres-how-much-your-personal-information-i s-selling-for-on-the-dark-web/

http://googlemobile.blogspot.fr/2012/02/android-and-security.html

https://www.cyber.nj.gov

https://github.com/mingyuan-xia/AppAudit/wiki/Android-Malware-Analysis-Report-Collection

https://sites.google.com/site/androidmalrepo/

https://code.google.com/archive/p/androguard/wikis/DatabaseAndroidMalwares.wiki

https://play.google.com

https://github.com/android-rooting-tools

https://blog.trendmicro.com/trendlabs-security-intelligence/dresscode-potential-impact-e nterprises/

https://blog.checkpoint.com/2017/04/24/falaseguide-misleads-users-googleplay/

https://github.com/AlexandreDey/cygea-playstore-crawler

https://developers.google.com/protocol-buffers/

https://github.com/dflower/google-play-crawler

https://github.com/nviennot/android-checkin

http://cassandra.apache.org/

https://github.com/androguard/androguard

https://github.com/libfann/fann

https://arstechnica.com/information-technology/2018/03/facebook-scraped-call-text-messa ge-data-for-years-from-android-phones/

http://transition.fcc.gov/DA-12-592A1.pdf

https://github.com/pjlantz/droidbox/tree/master/APIMonitor

https://f-droid.org

https://www.hidemyass.com

https://github.com/paul-irolla/drebin-nodup/tree/master

https://github.com/paul-irolla/drebin-nodup/tree/master

https://developer.android.com/guide/topics/manifest/manifest-element.html#package

https://developer.android.com/guide/components/intents-filters

We could not find information about a test set or cross validation and there is no dataset details which is highly dubious. However, the results are coherent with the state-of-the-art.

https://github.com/ytsutano/jitana

https://android.jlelse.eu/closer-look-at-android-runtime-dvm-vs-art-1dc5240c3924

http://archive.hack.lu/2013/AbusingDalvikBeyondRecognition.pdf

https://developer.android.com/studio/test/monkey.html

https://developer.android.com/studio/test/monkeyrunner/index.html

https://www.mywot.com/wiki/API

https://stuff.mit.edu/afs/sipb/project/android/docs/tools/help/uiautomator/index.html

https://f-droid.org/

This number and the following ones refer the problem number it solves

https://letsencrypt.org/

https://www.nuance.com/dragon/transcription-solutions.html

Considering that we do not change d value according with the ratio of activated units

https://www.moreno.marzolla.name/teaching/high-performance-computing/2017-2018/L08-SIMD. pdf

https://f-droid.org/en/

https://www.virustotal.com/en

https ://f-droid.org

https://meshb.nlm.nih.gov/record/ui?ui=D020080

https://f-droid.org/en/

This experiment appears to be the best compromise between accuracy and feature set size
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We note that all variables involved are independent. As a recall, for two independent random variables ( [18], p26): 2 Clearly, E(a i 1 ) = 0, as each of the weight has a mean of 0. For V(a i 1 ), we start by calculating all V(x k • w k i 1 ).

By the Law of Large Numbers, the activation levels a i 1 are distributed by a normal law N 0, n•b 2 9 . Meaning the more the input size increase, the higher the variance. Hence, neurons will likely to start in a saturated state. We want to control the variance of the activation, so we set the normal law of the activation levels to N(0, 1). Thus:

We started from the assumption that the variables of the input follow a uniform law U(0, 1). This assumption is likely to be false. Instead of analyzing the distribution of each of the variables -which at least a tedious task, and it is probably not possible to draw firm conclusions -, we take the hypothesis that, each feature follows its own distribution law. At the start of this study, input vectors had variables that follow the U(0, 1) law, so their norm would be on average:

The mean of the squared uniform law is given by: E(U(0, 1) 2 )

Hence,

We can then normalize the feature vectors in order they have a n 3 norm, averagely. At this point, knowing nothing about the feature distributions, the only control we have is over the norm CHAPTER 5 Systematic Characterization of a Sequence Group

Feature Set

In this part we use the FEA algorithm to evaluate the best feature set to be used for malware detection. We have two sets of data, one coming from the static analysis of applications and the second one coming from the dynamic analysis.

We want to build the most optimized feature set for the neural network. Parameters are numerous, interdependencies are probable and time is limited. Hence, we employed a strategy borrowed from dynamic programming, which is based on common sense. From a choice of parameters, we test each one, choose the best one and carry the newly optimized feature set to the next parameter testing. At some points, we backtrack on some parameters if we suspect strong interdependencies. All accuracy measures have been achieved with FEA (cf. previous part), and with SMO when FEA failed to produce results.

Feature Set of Static Analysis

We ran libmla-android-reverse (cf. chapter 2) on 5585 malware samples from the Drebin Dataset [7] without duplicates [8] and 2206 benign applications from F-droid 2 . The tool extracts:

• The sequences of common library calls (cf. chapter 2, libmla-android-reverse). We single out common library calls from other java calls. In fact, common libraries found in the app package are not reversed.

• The sequences of Dalvik opcodes -operators of a bytecode operation.

• The sequences of strings from the DEX string table.

• A binary vector representing the presence of each permission and intent declared in the manifest.

• Metadata. The activity count, receiver count, service count, permission count, provider count, DEX file size, resources size. We also collect a complexity measure of the DEX file. We approximate the Kolmogorov complexity [9] with the ratio of the size of the compressed DEX over the size of the uncompressed DEX.

To build the best feature set, we assess the following parameters:

• Does limiting the common library list to the Android API only improve or hinder the results ?

• Which window size of the N-Gram analysis produces the best results ?

• Is it better that opcode sequences are the sequence of operations from a whole method or from each code block ? As a reminder, code blocks are the smallest units of operation without memory jumps (cf. chapter 3, experimental part of the Glassbox section). • Which feature normalization fits the current problem ? We implemented 3 normalization techniques:

• Max-freq. Each feature is divided by the maximal feature in the vector.

• Vect-norm. The vector is normalized and its norm becomes 1.

• Std-norm. Each feature is divided by its standard deviation within the whole dataset. Hence, its variance becomes 1.

• The feature set size (noted FS size). We use the product of the Mutual Information [10] and the appearance frequency of each feature as a criterion to select the top ones. Table 6.9 presents the feature set optimization of common library call sequences. Restricting the common libraries to the Android API only hinders the results. Here and in most of the experiments, as we will see later, bigram frequency is often above trigram frequency. Accuracy is greatly improved with full normalization -maximum frequency, feature variance normalization and vector normalization. Last, we find a balance between accuracy and processing time with a feature set size of 5000. Table 6.10 presents the results of the feature set optimization of opcode sequences. FEA failed to produce results for the ngram of opcode sequences, so we used SMO instead which has relatively close behavior and an acceptable execution speed. Surprisingly, a large ngram window size improve the result. We notice that the feature size just slightly increase with the increase of the windows size. It means that there are not a wide amount of long opcode sequences, which is why increasing the window size is effective, the feature space does not become sparse. The variance normalization seems to be the only normalization technique that enhances the results. 6.13 presents the results of the optimization of the feature set of system calls. Results are pretty bad until the variance normalization comes in play. We found that full normalizationwith the maximum feature, variance and vector normalization -yields the best results. Interestingly, the tandem repeat removal hinders the results. It could be explained because system calls are a subdivision of a behavior unit (i.e. a function call). In fact a function call generally ends up calling many system calls at once. Hence, loops could breed very long tandem repeats that are not captured by our approximation. Moreover, the tandem repeats we remove are possibly part of a consistent behavior unit. In doing so we break the program core logic. Table 6.13 presents the results of the optimization of network communication sequences. Here, the FEA algorithm failed to provide valid results (50% accuracy like coin tossing). The samples that effectively produce network requests that can capture is quite low. Only 439 malware and 212 benign application constituted the dataset for testing the network feature set. FEA starts to be usable after a certain number of samples, as the matrix r + and r -need time to accumulate enough results -in particular, in presence of sparse data. So, we used the SMO algorithm. We did not find better than the feature set of bigram frequencies without any post-processing. Tandem repeat removal hinders the results but it was expected since network communication does not contain looping data, usually. So, here it just breaks the communication message.

Malware Detection with Static and Dynamic Analysis

Neural networks can be parametrized in numerous ways. In this part, we assess the following parameters :

• The number of hidden units.

• The use of Adaptative Learning Rate (noted ALR). It is a simple method to calibrate the learning rate during the training. The learning rate is modified regarding the error difference between two iterations of the learning algorithm. If the difference is positive, the learning rate is multiplied by 1.2. If the difference is negative, the learning rate is multiplied by 0.5.

• The use of Controlled Variance (noted CV ) for initializing weights. See chapter 4.

• The use of the Distributed Bias (noted DB) method for initializing weights. See chapter 4.

• The use of ADAM 10 learning algorithm instead of the gradient descent.

• The use of Dropout (cf. chapter 4).

• The use of L2 regularization (cf. chapter 4).

We use the optimized feature sets from the previous section. Table 6.16 sumarize the feature sets we used to train the neural network. As stated before, the normalization procedure is very dependant on the algorithm used afterward. While std-norm and vect-norm are effective for most algorithms, we observed that they breed terrible performance for neural networks. Only max-norm is effective, so for all feature sets we apply the max-norm normalization.