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Introduction

Three related subjects: tensor models, Hurwitz numbers and Macdonald-Koornwinder
polynomials are studied in this thesis. I would like to make some general remarks about
these subjects and the structure of my thesis. More details will be given right below in
each dedicated section of this introduction and in the corresponding chapters in the main
text.

Tensor models are generalizations of matrix models as an approach to quantum gravity
in arbitrary dimensions (matrix models give a 2D version). Matrix models (and more gen-
erally, random matrices) have been playing an important role in mathematics and physics,
particularly in integrable systems, quantum field theories, string theory and statistical
mechanics. Tensor models are comparatively young, and their significance has been con-
tinuously rising due to their rich properties. In this thesis, I study a specific model called
the quartic melonic tensor model. The specialty of this model is that it can be transformed
into a matrix model, which is very interesting by itself. With the help of well-established
tools, I make an analysis of this equivalent matrix model and compute the first two leading
orders of its 1/N expansion.

Hurwitz numbers count the number of weighted ramified coverings of Riemann sur-
faces. They can also be interpreted as the number of ways of factorizing permutations in
the symmetric groups. They are important in enumerative geometry and combinatorics.
On one hand, there has been a sustained effort to obtain explicit formulas for them. My
main contribution lies in this direction. I found an explicit formula for a class of numbers
called one-part double Hurwitz numbers with completed 3-cycles. On the other hand,
Hurwitz numbers have been shown to have connection with a handful of other signifi-
cant objects such as matrix models, integrable equations and moduli spaces of complex
curves. The best understood case is single (or simple) Hurwitz numbers. As applications
of my explicit formula, I show that the one-part double Hurwitz numbers with completed
3-cycles satisfy some similar properties as in the case of simple Hurwitz numbers. This
suggests that there should be a deeper (algebraic/geometric) structure behind these new
numbers.

From their very definition, Hurwitz numbers are linked to symmetric polynomials
which are fundamental objects in algebraic combinatorics and representation theory. The
algebra of symmetric polynomials, as a vector space, has a particularly important basis
formed by the Schur polynomials. One of the most important advances in the theory of
symmetric functions is the introduction of a two parameter deformation of Schur poly-
nomials by Macdonald in 1987. He also realized that his polynomials can be defined as
multivariate orthogonal polynomials associated to the root system of type A and thus nat-
urally generalized to every root system. For the case of non-reduced root system BCn,
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the definition was made previously by Koornwinder, and thus the polynomials are named
after him. They are very general in the sense that all the Macdonald polynomials associ-
ated to the classical (i.e., non-exceptional) root systems are specializations of the Koorn-
winder polynomials. One of the most important problems in symmetric function theory
is to decompose a symmetric polynomial in the Macdonald basis (it is an established con-
vention that when one talks about Macdonald polynomials without further specifications,
one means those associated to the root system of type A). The obtained decomposition
(in particular, if the coefficients are explicit and reasonably compact) are called a Little-
wood identity. In this thesis, I study many recent Littlewood identities proved by Rains
and Warnaar by combining many old and new results about Macdonald and Koornwinder
polynomials. My own contributions include a proof of an extension of one of their iden-
tities and partial progress towards generalization of one another.

My thesis is organized as follows.

The first chapter studies the quartic melonic tensor model. In the first part, I review
some basic tools of matrix models. The tools are the 1/N expansion, the saddle point
method and the Schwinger-Dyson equations. Then a general introduction about tensor
models is given. The quartic melonic tensor model is then introduced and shown to be
equivalent to a multi-matrix model. Using the mentioned tools, I make an analysis of this
matrix model. The main results are stated and proved in Sect.1.5 and Sect.1.6.

The second chapter collects some well-known material about symmetric functions that
will be used in the next two chapters. It also serves the purpose of fixing many notations.
In particular, the Schur polynomials, and their famous two-parameter deformation, the
Macdonald polynomials are discussed.

The subject of the third chapter is Hurwitz numbers. First, I recall some familiar
facts about the symmetric groups. The general Hurwitz numbers are defined in a com-
binatorial (and algebraic) way, and shown to count ramified coverings of Riemann sur-
faces. Then, I review some connections between (certain classes of) Hurwitz numbers and
integrable equations, moduli spaces of curves, matrix models and the Chekhov-Eynard-
Orantin topological recursion. Subsequently, in Sec.3.8, I define the double Hurwitz num-
bers with completed cycles. In fact, the special case of one-part double Hurwitz numbers
with completed 3-cycles will be studied in detail. In the last two sections, I present my
own contributions: an explicit formula for these particular numbers and some interesting
implications.

In the fourth and last chapter, I study Littlewood identities. First, I define the Koorn-
winder polynomials and recall some of their essential properties. Second, I define the
virtual Koornwinder integrals, which are the main technical tools. The known evaluations
of these integrals are stated. Third, I review the new bounded Littlewood identities dis-
covered by Rains and Warnaar. Finally, in the last section, I present a full proof of an
extension of one of these identities and some partial progresses towards another case.

The appendices contain some complementary materials on technical results used in
this thesis.
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0.1 Tensor models

The first part of this thesis is about tensor models, which were introduced in physics
as an approach to the fundamental problem of quantum gravity in arbitrary dimensions
[4, 80]. Since the emphasis in the main text is their mathematical aspects, let us in this
introduction discuss their physics. As it is well known, the two pillars of modern physics
are quantum mechanics and Einstein’s general theory of relativity . While quantum me-
chanics governs the physical universe at small scales, general relativity governs it at large
scales. Both of them have been extensively confirmed by experiments. However, they
seem to contradict each other. Indeed, no one has been able to combine them into a sin-
gle consistent framework (while the combination of quantum mechanics and Einstein’s
special theory of relativity was a tremendous success). This is the problem of quantum
gravity.

Quantum mechanics carries the message that the physical world is inherently random.
The word "inherently" is crucial: the phenomena do not just appear random to us because
we lack information, they are random by nature. General relativity carries another mes-
sage, that the physical world is geometric: the stress-energy tensor equals a combination
of the Ricci tensor and the metric tensor. It then becomes natural to approach quantum
gravity via "random geometry". Not only the particles are behaving randomly, the space-
time itself can be random. Besides, not only matter is discrete, but space-time could also
not be smooth as it apparently appears. In other words, one wants a theory of a quantum
particle in a quantum space-time, if one is ready to take the language that far.

Among many problems, one is that it is already difficult to define what random ge-
ometry means. There may be not a canonical answer to that question. Indeed, at the
moment, the researchers pursue many different definitions. Tensor models give an ap-
proach. A good account of the state of the art can be found, for example, in [41, 79]. The
fundamental idea is discretization of geometric "spaces" (I want to avoid the mathemat-
ical word "manifolds" because physicists also consider geometric objects which are not
manifolds in the mathematical sense). For example, in two dimensions, one can ask if one
glues randomly the triangles along the edges, what type of surfaces one will obtain at the
end? The same question is posed for higher dimensions.

Mathematically, a tensor model is an integral over the space of tensors. Ultimately it
is just a multiple (real or complex) integral. The main question concerning such integrals
is their behavior in the limit N →∞, where N is the dimension of the underlying vector
spaces (suppose that all the spaces involved are of the same dimension). More specifically,
the model considered in this thesis is called quartic melonic model. All the definitions
and notations will be explained in the main text. Let us here resume the main results.

The quartic melonic tensor model is defined by the following measure (Def.1.4.6):

dνT :=
1

ZT,0
exp

[
ND−1

2

(
T · T

)]
dµT ,
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In particular, we want to study the partition function

ZT =
1

ZT,0

∫
dµT exp

[
−ND−1

(
1

2
(T · T ) +

λ

4

D∑
c=1

(T ·ĉ T ) ·c (T ·ĉ T )

)]

=:

〈
exp

[
ND−1

2
· λ

4

D∑
c=1

(T ·ĉ T ) ·c (T ·ĉ T )

]〉
νT

.

Here, T · T and T ·ĉ T are certain sums over repeated indices of the tensors. Introducing
the intermediate Hermitian matrix fields, we can write ZT as a multi-matrix integral.
Technically, the transformation is via the Gaussian integral formula. Matrix integrals are
special cases of tensor integrals, and much more well studied. It turns out that the obtained
matrix model is very interesting on its own. The observables of the two models are related
explicitly via the Hermite polynomials in Thm.1.4.2.

Then the main result concerns the matrix model (Thm.1.5.1):

Theorem 0.1.1. The eigenvalue resolvent Wc(x) of a matrix of any color c ∈ [[1, D]]
expands, up to next-to-leading order, as:

Wc(x) =
1

x− α +
1√
ND−2

(1− α2)

(
x±

√
x2 − 1

(1− α2)

)
+ o

(
N

D−2
2

)
. (1)

This is equivalent to the following statements concerning the "generalized" eigenval-
ues (the meaning of the word "generalized" will be clear in the main text). In the limit
N → ∞, the eigenvalues of each matrix M (c) collapse to a point α ∈ C in the leading
order, and are distributed with respect to the Wigner semi-circle law in the next-to-leading
order. However, as it will be explicitly mentioned and explained, my collaborators and I
have not succeeded in proving that the saddle point method used to derive this result is
rigorous. However, the final result is correct as an equivalent formulation of Thm.1.5.1 is
also made. It is Thm.1.6.1, whose rigorous proof via the Schwinger-Dyson equations is
given:

Theorem 0.1.2. In the N →∞ limit, the matrix resolvent W̃c(z) satisfies

W̃c(z)2 = (1− α2)zW̃c(z)− (1− α2). (2)

One immediate corollary is the dominant (leading) order of ZT (Cor. 1.5.2):

Corollary 0.1.3. The partition function ZT is given by:

ZT = cN,D,λ exp

[
ND

(
−Dα

2

2
− log

(
1 + iDα

√
λ/2
))

+ o
(
ND
)]
, (3)

where cN,D,λ is a certain constant.

In fact, the next-to-leading order behavior of the eigenvalues also give us the next
order inside the exponential of ZT . However, the expression is too cumbersome to be
recorded.
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0.2 Hurwitz numbers
The objects of the second part of the thesis are Hurwitz numbers, introduced by Hur-

witz in 1891 [46, 47]. They count automorphism classes of branched covers of Riemann
surfaces. Equivalently, Hurwitz numbers count the number of ways a permutation can be
factorized into others under certain constraints. This in turn implies formulas for them
which contain the irreducible characters of the symmetric groups. In this thesis, I will
start with the algebraic definition and show that the geometric interpretation holds.

It turns out the Hurwitz numbers are connected with a host of domains of contem-
porary mathematics. In the main text, I will discuss their connection with matrix mod-
els [13], integrable systems [72], moduli spaces of complex curves [29] and the topologi-
cal recursion of Chekhov-Eynard-Orantin [32].

The direction that I pursue is to find explicit formulas. My main contribution is an
explicit formula for one-part Hurwitz numbers with completed 3-cycles (Thm.3.9.1) (the
notations will be explained in the main text):

Theorem 0.2.1. Given g ≥ 0, d > 0, let β be a partition of odd length of d and s be an
integer such that 2s = 2g − 1 + l(β). Then we have:

H
g,(2)
(d),β =

s!ds−1

2s

g∑
h=0

(2s− 2h)!

h!(s− h)!12h
d2h
[
z2(g−h)

]∏
i≥1

(
sinh(iz/2)

iz/2

)ci
(4)

=
s!ds−1

2s+2g

g∑
h=0

(2s− 2h)!

h!(s− h)!3h
d2h

∑
λ`(g−h)

ξ2λS2λ

|Autλ| . (5)

From this theorem, I also prove some corollaries. The first is the strong polynomiality
of one-part Hurwitz numbers with completed 3-cycles (Cor.3.10.1).

Corollary 0.2.2. Hg,(2)
(d),β , for fixed g, is a polynomial of the parts of β and satisfies the

strong polynomiality property, i.e. it is polynomial in β1, β2, . . . with highest and lowest
degrees respectively 3g + l(β)−3

2
and g + l(β)−3

2
.

Secondly, I define and compute some "combinatorial Hodge integrals" to give some
clues and supports to the conjecture that an ELSV-type formula should exist for one-part
Hurwitz numbers with completed 3-cycles. I find that these combintorial Hodge integrals
satisfy a property similar to the λg theorem of Faber and Pandharipande [35]. It is the
content of Thm.3.10.2:

Theorem 0.2.3. For b1 + . . .+ bn = g+ n−1
2

, the lowest combinatorial Hodge integral is
given by:

〈〈τb1 . . . τbnΛ2g〉〉g =

(
g + n−1

2

b1, . . . , bn

)
Cg,n, (6)

with

Cg,n =
(2g + n− 1)! (22g−1 − 1)

(2g)!
(
g + n−1

2

)
!23g+n−3

2

|B2g|. (7)

Furthermore, I prove that the lowest degree combinatorial Hodge integrals satisfy the
string and dilaton equations (Thm.3.10.3):
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Theorem 0.2.4. String equation: For g ≥ 0, n ≥ 1, n odd, b1, . . . , bn ≥ 0, b1+. . .+bn =
g + n+1

2
:

〈〈τ 2
0 τb1 . . . τbnΛ2g〉〉g = (2g + n)

n∑
i=1

〈〈τb1 . . . τbi−1
τbi−1τbi+1

. . . τbnΛ2g〉〉g. (8)

Dilaton equation: For g ≥ 0, n ≥ 1, n odd, b1, . . . , bn ≥ 0, b1 + . . . + bn = g + n−1
2

(minus here is not a misprint):

〈〈τ0τ1τb1 . . . τbnΛ2g〉〉g = (2g + n)

(
g +

n+ 1

2

)
〈〈τb1 . . . τbnΛ2g〉〉g. (9)

Here we assume that 〈〈.〉〉=0 if there is some τ<0 inside.

Finally, I deduce an explicit formula for the top degree combinatorial Hodge integrals
(Thm.3.10.4).

Theorem 0.2.5. For b1, . . . , bn ≥ 0, b1 + . . .+ bn = 3g + n−1
2

, we have:

〈〈τb1 . . . τbn〉〉g

=
1

23g+n−1
2

g∑
h=0

(2s− 2h)!

h!(s− h)!3h

∑
λ`(g−h)

∑
~a∈D2g−2h(~b)

ξ2λR2λ,P~a

|Autλ|

(
g + n−1

2
+ 2h

b1 − a1, . . . , bn − an

)
. (10)

0.3 Koornwinder polynomials and Littlewood identities

As we will see, Hurwitz numbers are by definition intimately connected to symmetric
polynomials. The third and final object of my study is symmetric orthogonal polynomials
associated to the (classical) root systems. Specifically, I study the most general family for
the classical root systems, the Koornwinder BCn symmetric polynomials.

Symmetric polynomials have a long history and remain among the main objects stud-
ied in algebraic combinatorics and representation theory. It was realized very early that
certain symmetric combinations of the zeros of a polynomial are given neatly by its coeffi-
cients. However, the most interesting symmetric polynomials were discovered later. They
are called Schur polynomials (although first appeared in Jacobi’s works [49]). The main
reason for the particular importance of Schur polynomials is that they occur naturally in
the representation of the symmetric groups, general linear groups, and unitary groups. For
example, they are the characters of finite-dimensional irreducible representations of the
general linear groups (this significant fact is due to Schur).

Schur polynomials satisfy a lot of remarkable algebraic and combinatorial properties,
some of which will be described in Chapter 2. There are many generalizations (deforma-
tions by one or many parameters) of Schur polynomials. The most important may be the
two parameter deformation defined by Macdonald in 1987 [64]. The Macdonald poly-
nomials also generalize many famous polynomials such as those of Hall-Littlewood [62]
and Jack [48].
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Macdonald observed further that his polynomials can be defined as orthogonal poly-
nomials with respect to a certain density attached to root systems, the original case cor-
responding to the root system of type A. So Macdonald generalized his construction to
all root systems [63] (he also defined non-symmetric versions). For the non-reduced root
system BCn, the definition was first given by Koornwinder [58], thus the polynomials
in this case are named BCn Koornwinder polynomials. They are very general as all the
Macdonald polynomials associated to the non-exceptional root systems are specialization
of the Koornwinder polynomials.

Beside being important objects of study by themselves, these polynomials are con-
nected to many other significant topics such as double affine Hecke algebra [24], discrete
integrable systems [11, 20], Hurwitz numbers [43], elliptic hypergeometric series and
identities [77].

In this thesis, I am interested in Littlewood identities. A Littlewood identity is a de-
composition of a symmetric polynomial in the basis of Macdonald polynomials Pλ(; q, t) 1,
in particular if the coefficients of this decomposition are reasonably explicit and compact.
The origin of my work is the paper [75] of Rains and Warnaar. They use new properties
of Koornwinder polynomials to prove several new bounded Littlewood identities. As it
will be explained in the main text, their identities are indexed by rectangular partitions or
half-partitions of maximal length. They conjecture some identities indexed by partitions
or half-partitions 2 of different shapes, in particular, near-rectangular ones. I present the
proof of one of their conjectured formulas, and partial progress towards another.

For example, Rains and Warnaar proved the following decomposition of a (Cn, Bn)
polynomial 3 indexed by rectangular partitions of maximal length (times a simple factor)
into Macdonald polynomials of type A (all the notations will be explained in the main
text):

Theorem 0.3.1. For x = (x1, . . . , xn), m a nonnegative integer and a a complex number,

∑
λ

aodd(λ)boa
λ;m(q, t)Pλ(x; q, t) =

(
n∏
j=1

xmj (1 + axj)

)
P

(Cn,Bn)
mn (x; q, t, qt), (11)

where odd(λ) is the number of odd parts of λ and

boa
λ;m(q, t) := boa

λ (q, t)
∏
s∈λ

a′(s) odd

1− q2m−a′(s)+1tl
′(s)

1− q2m−a′(s)tl′(s)+1
.

Indeed, the polynomial in the right hand side is indexed by the maximal rectangular
partition mn (if λ is a partition whose length exceeds n then P (Cn,Bn)

λ (x; q, t, qt) = 0). As
one can see, the coefficients are uniformly given by a reasonably compact expression.

My main result is the following extension to the case in which the polynomial is
indexed by near-rectangular partitions (Thm.4.4.5)

1. Without further specifications, Macdonald polynomials mean those attached to the root system of
type A.

2. A half-partition is a non-increasing finite sequence (a1, a2, . . . , an) such that ai ∈ { 12 , 32 , . . .} for
1 ≤ i ≤ n.

3. As it will be explained, this polynomial is a specialization of an approriate Koornwinder polynomial.
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Theorem 0.3.2. For positive integers m, n and r an integer such that 0 ≤ r ≤ n, one has∑
λ

odd(λ)=r

boa
λ;m,r(q, t)Pλ(x; q, t) = (x1 . . . xn)mP

(Cn,Bn)

mn−r(m−1)r(x; q, t, qt), (12)

where

boa
λ;m,r(q, t) = boa

λ (q, t)
∏

s∈λ/1r
a′λ(s)even

1− q2m−a′λ(s)tl
′
λ(s)

1− q2m−a′λ(s)−1tl
′
λ(s)+1

.

The previous theorem is the r = 0 case of this theorem. I also obtain some partial
results for the case (Bn, Bn) which will be presented in Subsec.4.4.3.

As applications, Rains and Warnaar show that their Littlewood identities, together
with the Weyl-Kac formula for the character of integrable highest-weight modules of
affine Lie algebras [53] and hypergeometric identities associated to root systems, imply
new combinatorial character formulas. Under specialization of variables, these character
formulas become new Rogers-Ramanujan-type identities associated to affine Lie algebras.
They also conjecture many generalizations of their Littlewood identities. Studying these
questions is a future project of mine.
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1
Tensor models in mathematical physics

First, I will recall the necessary concepts and tools for matrix models. Then, I will
introduce the general framework of colored tensor models and define the quartic melonic
model that will be studied in detail. Using Gaussian integral formula, this model is trans-
formed to a multi-matrix model. With the help of well-known tools, I compute the first
two orders of the 1/N expansion of this matrix model. This in turn implies the corre-
sponding expansion of the tensor model. My new results are contained in Sec.1.5 and
Sec.1.6.

1.1 Introduction to matrix models

Before studying tensor models, we review its origin, matrix models for two reasons.
First, tensor models are direct generalizations of matrix models. Second, matrix models
have been more developed in the sense of that there are more tools and results. Indeed, in
this thesis, I translate a tensor model into a matrix model, and use tools for the latter to
obtain information about both of them.

To start with, matrix models are the name used by physicists for matrix integrals. A
matrix integral is simply an integral over a set of matrices. In the language of probability,
studying matrix integrals also means studying (particular classes of) random matrices.
Random matrices were first considered in statistics by Wishart [89](the reader is invited
to consult the classic book by Mehta, one of the main contributors to the field [66]). Later,
physicists realized that matrix integrals could be used to investigate the two dimensional
case of quantum gravity (see for instance the survey [27] or the book [65]). Pursuing this
idea, tensor models were introduced to study quantum gravity in higher dimensions.

One of the most fascinating aspects of matrix integrals is that they are intimately
related to a whole range of important concepts of contemporary mathematics such as in-
tegrable hierarchies, enumerative geometry, orthogonal polynomials, intersection theory
of moduli spaces of complex curves, 2D topological field theories and Frobenius mani-

15
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folds. Due to this universality, they might be named "special functions for 21st century".
Without trying to be exhaustive, I just want to direct the reader’s attention to a sample of
recent research [3,14,19,31]. In another direction, random matrices are now a very active
topic in probability and applications. They pose challenging analytic and probabilistic
questions, and find a wide variety of applications in statistics, wireless communication,
statistical physics, and many other disciplines; see for instance [1, 5, 92].

For this thesis, the most important tool is the 1/N expansion which was first observed
by ’t Hooft [85] (N is the size of the matrices). It was a combinatorial observation based
on a fundamental concept in theoretical physics, namely Feynman diagrams. In subse-
quent developments, Feynman diagrams have invaded a significant part of mathematics
(even some domains which do not have direct connection with physics such as number
theory). This expansion enables elegant solutions to some difficult combinatorial and ge-
ometrical problems (for instance [7], [59, Chapter 3]). Computing the coefficients of the
1/N expansion is a problem which has led to important and surprising advances in many
other questions across mathematical physics, combinatorics and algebraic geometry.

The hope is that the same richness will be discovered in tensor models. However, at
the moment, despite many impressive advances, the corresponding analytic, algebraic and
combinatorial tools are still considerably less developed in the tensor models framework.

Finally, although not technically used in this thesis, I want to mention the two follow-
ing issues of matrix models whose corresponding versions for tensor models have been
the long term goal for this work.

The first is the widely open problem of studying the double (or more) scaling limits
of the models. This limit means letting the size of matrices tend to infinity and some
other parameters tend to certain critical values in keeping certain constraints between
them. In physics, the double scaling limit might provide a road to the non-perturbative
definition of string theory and thus has attracted activities from this area. In fact, physicists
have derived many results about this limit for various models using physical intuition and
arguments. Mathematicians have succeeded in proving many predictions of physicists,
but many physical results are still waiting for mathematical proofs.

The second is the Chekhov-Eynard-Orantin (CEO for short) topological recursion [33,
34]. Initially, this recursion of topological nature was found to solve certain classes of
matrix models. One now knows a handful of mathematical objects, some quite distant
to matrices at first look, which are governed by the same recurrence. The recurrence is
the same, only the initial data differ case by case! Our hope is that by solving tensor
models, we may someday discover some similar universal recurrences. Indeed, after this
work was done, Dartois et Bonzom [8] showed that the melonic quartic tensor model
considered in this thesis satisfies the blobbed topological recursion, a new extension of
the CEO recursion introduced by Borot [17].
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1.2 A review of tools via specific models
In this chapter, given a (probability) measure dµ and a function f , we denote the

expectation of f by

〈f〉µ :=

∫
fdµ.

In physics language, such expectations are often called correlation functions or correla-
tors. I will often follow the physics terminology.

1.2.1 A prototypical matrix integral: Hermitian one-matrix integral
with polynomial potential

There is a natural measure on the space of N × N Hermitian matrices HN which is
invariant by conjugation:

dM =
N∏
j=1

dMjj

∏
1≤j<k≤N

d(<Mjk)d(=Mjk).

It is easily seen that a N × N Hermitian matrix M is uniquely parametrized by N2 real
parameters

Mii(i = 1, . . . , N),<Mjk,=Mjk(1 ≤ j < k ≤ N).

Let dµH be the following Gaussian measure onHN

dµH :=
1

Z0

e−
N
2

Tr(M2)dM,

where Z0 is the constant such that dµH is a probability measure, i.e.

Z0 =

∫
HN

dM exp

[
−N

2
Tr
(
M2
)]
. (1.1)

As it is well known, Gaussian integrals are the cornerstones of (perturbative) quantum
field theories. This is the reason for which this and other classes of integrals (measures)
were introduced in mathematical physics. In the case at hand, we want to study the
following integral:

Z[t, N ] =
1

Z0

∫
HN

dM exp

[
−N

(
1

2
Tr
(
M2
)

+ Tr [Vt(M)]

)]
=:
〈
e−NTr[Vt(M)]

〉
µH
,

(1.2)

where t = (t1, t2, . . . , tn) for a fixed n ∈ N is a set of parameters and

Vt(M) :=
n∑
k=1

tkM
k.
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The parameters are chosen such that the integral converges. For example, we can assume
that n is even and tn > 0. If the reader wants, she/he can assume that n = 4 and only t4
does not vanish. The function Z[t, N ] is often called a partition function.

There are two approaches to study Z[t, N ]. The first is the analytic approach in which
the first main question is about the global dependence on t, particularly in the limit N →
∞. Analytic questions are receiving much attention; however, in this work, I follow
the other route. I consider the integral as a formal integral. What this means is that I
essentially only try to compute the derivatives of the integral with respect to t at t = 0.
More generally, a formal identity of the form

F (z1, . . . , zm)
formal
=

∞∑
k1,...,km=0

Fk1,...,kmz
k1 . . . zkm/k1! . . . km!

means simply

∂k1+···+kmF

∂zk11 . . . ∂zkmm
(0) = Fk1,...,km .

1.2.2 1/N expansion

The most important result (although it has only been proved for a limited numbers
of models) that we will need is the 1/N expansion. It goes as follows. In the formal
interpretation, we have

Z[t, N ]
formal
=

∞∑
k1=0

. . .
∞∑

kn=0

1

k1! . . . kn!
(−N)k1+···+kntk11 . . . tknn

〈[
Tr
(
M1
)]k1 . . . [Tr (Mn)]kn

〉
µH
.

(1.3)

Since Z[t, N ] = 1 +O(t), we can define the free energy F [t, N ] = lnZ[t, N ], again as a
formal series in t.

A surprising thing happens when F [t, N ] is considered as a series in N . Regrouping
the powers of N order by order, we get

F [t, N ]
regrouping powers of N

=
∑
g≥0

N2−2gFg(t) (1.4)

It is nontrivial that only the even powersN2−2g do not vanish. Such an expansion is called
a 1/N expansion. In this particular case, it is also aptly called a topological expansion,
with g playing the role of the genus of surfaces as explained below.

Notice that here, we have made two consecutive non-rigorous steps. First we ex-
changed the sum and the integral in (1.3), and second we regrouped the powers of N in
(1.4). The interesting fact is that in this case, the final result is correct. That is the con-
tent of the following two theorems of Ercolani and McLaughlin [30]. The first theorem
justifies the asymptotic expansion.
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Theorem 1.2.1. [30] There is an open region U ⊂ Rn containing 0 , and N0 > 0, so
that for t ∈ U and N > N0, the N →∞ asymptotic expansion

F [t, N ] = N2F0(t) + F1(t) +N−2F2(t) + . . . (1.5)

holds true. The meaning of the expansion is that if terms up to order N−2k are kept, the
error term is bounded byCN−2k−2, where the constantC is independent of t for all t ∈ U .
For each j, the function Fj(t) is an analytic function of the vector t in a neighborhood of
0. Moreover, the asymptotic expansion of the derivatives of F [t, N ] can be calculated via
term-by-term differentiation of the above series.

The second theorem gives the following interpretation of Fg(t):

Theorem 1.2.2. [30] For g ≥ 0, we have

Fg(t) =
∑
ki≥1

1

k1! . . . kn!
(−t1)k1 . . . (−tn)knmg(k1, . . . , kn), (1.6)

where mg(k3, . . . , kn) is the number of maps of genus g with kj j-valent vertices for
j = 1, . . . , n.

Here, a map of genus g means a map on a surface of genus g.

Definition 1.2.1. A mapM = (G,S) on a surface S is a graphG embedded in the surface
S such that if we cut S along the edges of G, all the pieces we get are homeomorphic to
the open disc D = {z ∈ C, |z| < 1}.

The same phenomenon happens for many other matrix integrals. The proofs often
involve very technical analytic details. I do not try to survey the strongest results in this
direction; the interested reader can consult for instance the paper [15] in which strong
results are obtained via a delicate study of the Schwinger-Dyson equations. These equa-
tions, introduced below, are also important in my study. I will return to analytic issues
when we transform matrix integrals into ordinary multiple integrals for the eigenvalues.
What I am interested in is how to compute explicitly the expansion given its existence.

In general, the 1/N expansion of matrix integrals often counts interesting combinato-
rial and geometrical objects. In fact, many objects which seem totally unrelated to matri-
ces have been shown to be counted by (often ingenious) matrix integrals. The computation
of this expansion has led to many important results, one of which is the topological recur-
sion of Chekhov, Eynard and Orantin mentioned above. To be historically correct, Eynard
and Orantin put the solution of the Schwinger-Dyson equations in a universal form but
the solution had been obtained in important cases (but written in forms which obscured
its universal structure) in the works of Ambjorn, Chekhov, Jurkiewicz, Kristjansen and
Makeenko.

Let us discuss how we can compute Z[t, N ] (in the formal sense). To make the dis-
cussion simple, yet retain the most essential points, suppose that n = 4 and only t4 does
not vanish. Denote the partition function by Z[t4, N ] for short. We have

Z[t4, N ]
formal
=

1

Z0

∞∑
k=0

(−Nt4
4

)k ∫
HN

dM exp

[
−N

2
Tr
(
M2
)] (

Tr(M4)
)k
. (1.7)



20 CHAPTER 1. TENSOR MODELS IN MATHEMATICAL PHYSICS

We can identify HN
∼= RN2 , where M 7→ (x1, . . . , xN2) such that x1, . . . , xN are Mii;

xN+1, . . . , xN2 are <Mjk,=Mjk (the order is not important here).
For M ∈ HN , one observes the following fact

Tr(M2) =
N∑

i,j=1

MijMji =
N∑
i=1

M2
ii + 2

∑
1≤j<k≤N

((<Mjk)
2 + (=Mjk)

2) = (Bx, x),

where B = diagonal(1, . . . , 1, 2, . . . , 2), where there are N entries equal to 1 and N2−N
entries equal to 2. Thus the matrix integral is a Gaussian integral. Applying Eq.(B.1) in
the Appendix, one obtains

Z0 =

(
2π

N

)N2/2

2−N(N−1)/2.

We also have

Lemma 1.2.3. For arbitrary indices i, j, k, l, we have

〈MijMkl〉 =
1

N
δilδjk. (1.8)

Now we can use the Wick formula B.0.1 to compute any correlation functions of
interest. For example

〈Tr(M4)〉 =
∑
i,j,k,l

〈MijMjkMklMli〉

=
∑
i,j,k,l

(〈MijMjk〉〈MklMli〉+ 〈MijMkl〉〈MjkMli〉+ 〈MijMli〉〈MjkMkl〉)

= 2N +
1

N
.

The same approach can be used to compute more complicated correlation functions of the
form 〈(Tr (M2m))

n〉, and eventually Z[t4, N ]. However, this method cannot be carried
out very far in practice due to huge complexities as the power of 1/N grows. A more
efficient method is to transform the matrix integral into a multiple integral of eigenvalues
as follows.

Writing M = U−1DU where U is unitary and D = diag(λ1, . . . , λN) and integrating
over the unitary group, one finds that Z[t, N ] can be expressed in the eigenvalue variables
as (the proportional constant can be evaluated explicitly)

Z[t, N ] ∝
∫ N∏

i=1

dλi∆({λj})2 exp

[
−N

(
1

2

N∑
j=1

λ2
j +

N∑
j=1

Vt(λj)

)]
, (1.9)

where ∆ is the Vandermonde determinant:

∆(x1, . . . , xn) :=
∏

1≤i<j≤n

(xi − xj).

Then, one can use orthogonal polynomials to compute the integral on the right hand side.
This approach is very powerful for studying asymptotic behavior of this integral, see for
instance [25, 26].
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1.2.3 Saddle Point Method
If we cannot compute all Fg and Zg, we may set for ourselves the more modest goal

of computing the first few orders. Due to Eq.(1.9), one needs to study a multiple integral.
One basic tool to study the asymptotic of multiple integrals is the classical saddle point
method which is recalled in App.C.

The integral on the right hand side of Eq.(1.9) is nearly an integral of Laplace type.
The difference is that the number of variables is N grows to infinity (by the way, the
parameter α in Thm.C.0.1 equals N in this case). The Laplace’s theorem does not work
in this situation. However, it can be used to get a quick understanding. Furthermore,
the results it gives are in many cases the right ones (this is true for the integral we are
considering and for the integral issued from the quartic melonic tensor model). Once one
gets the results, one may try to find a proof by other methods.

Let us apply the saddle point method for the integral on the right hand side of Eq.(1.9).
The integrand can be rewritten as exp (−N2S({λk})) where

S({λk}) =
1

N

(
1

2

∑
j

λ2
j +

N∑
j=1

Vt(λj)

)
− log

(
∆({λj})2

)
. (1.10)

In this case, the saddle point approximation gives the correct asymptotics. Thus one has
to look for the extremum of S({λk}). The equations for that are

0 =
1

N
λν +

1

N
V ′t (λν)−

1

N2

∑
i 6=ν

1

λν − λi
, (1.11)

for ν = 1, . . . , N . These equations can be solved in the N →∞ limit by introducing the
resolvent

W (x) :=
1

N

N∑
i=1

1

x− λi
.

We have

W (x)2 =
1

N2

∑
1≤k,j≤N
k 6=j

( 1

x− λk
− 1

x− λj

) 1

λk − λj
− 1

N
W ′(x).

The first term of the RHS can be computed from the saddle point equations, giving

W (x)2 =
2

N

N∑
k=1

λk + V ′t (λk)

x− λk
− 1

N
W ′(x).

Therefore

W (x)2 = 2(x+ V ′t (x))W (x)− 1

N
W ′(x)− 2 +

N∑
k=1

V ′t (λk)− V ′t (x)

x− λk
. (1.12)

The last term is a polynomial because V ′t is a polynomial. At the leading order, the
second term of the right hand side of Eq(1.12) can be discarded and the equation becomes
algebraic and solvable. We shall follow this strategy to compute the next-to-leading order
distribution of the matrix formulation of the quartic tensor model.
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1.2.4 Schwinger-Dyson Constraints (Equations)
Schwinger-Dyson constraints (or equations) are relations between correlation func-

tions coming from integration by parts. Simple idea as it may seem, these equations are
very powerful. In the subsequent section, I will use them to study the quartic melonic
tensor model. In a larger context, they are the starting point for the discovery of the
Chekhov-Eynard-Orantin topological recursion.

They are often derived from the fact the integration of a total derivative is zero (one
chooses the measures which satisfy this condition). Consider the following probability
measure on HN (the Schwinger-Dyson equations are more cumbersome when written
with respect to the Gaussian measure)

dµH,t =
1

Z0,t

exp

[
−N

(
1

2
Tr
(
M2
)

+ TrVt(M)

)]
dM.

To keep the expressions compact, in this subsection, denote 〈f〉H,t simply by 〈f〉. With
proper assumptions about Vt, we have

0 =
1

Z0,t

∫
HN

dM
∂

∂Mij

[(
Mk+1

)
ij

exp

(
−N

(
1

2
Tr(M2) + TrVt(M)

))]
.

A simple manipulation of this equation gives

0 =
1

N

k∑
i=0

〈
Tr(M i)Tr(Mk−i)

〉
−
〈
Tr(Mk+2)

〉
−
〈
Tr
(
Mk+1V ′t (M)

)〉
. (1.13)

Define the connected resolvents by

Wn(x1, . . . , xn) :=

〈
Tr

1

x1 −M
. . .Tr

1

xn −M

〉
c

,

Remark. For functions f1(M), . . . , fn(M), the number 〈f1(M) . . . fn(M)〉c is called a
joint cumulant or a connected correlator. It is defined as follows

∑ tk11 . . . tknn
k1! . . . kn!

〈fk11 . . . fknn 〉c := log〈et1f1+···+tnfn〉.

Thus one has for example 〈f〉c = 〈f〉 and 〈fg〉c = 〈fg〉 − 〈f〉〈g〉.
Multiplying both sides of the equality (1.13) for each value of k by x−k−2 and sum-

ming over k, we get

0 = W (x, x) +W (x)2 −
(
x+ V ′t (x)

)
W (x)− P (x), (1.14)

where P (x) is a polynomial. This is the first (lowest order) Schwinger-Dyson equation.
We can repeat the same trick by observing that

0 =
∑
ij

∫
HN

dM∂Mij

[
(Mn1)ij TrMn2 . . .TrMnk exp

[
−N

(
1

2
Tr
(
M2
)

+ TrVt(M)

)]]
.
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for every n1, . . . , nk. The manipulations are not too difficult, yielding the higher Schwinger-
Dyson equations

Wn+2(x, x, I) +
∑
J⊂I

W1+|J |(x, J)W1+|I−J |(x, I − J) +
n∑
i=1

∂

∂xi

Wn(x, I − xi)−Wn(I)

x− xi
=N

[(
x+ V ′t (x)

)
Wn+1(x, I)− Pn(x; I)

]
, (1.15)

where I = (x1, . . . , xn) and Pn is a polynomial.
At first sight, it seems impossible to solve these equations. However, under the hy-

pothesis that all the resolvents have 1/N expansion, it was shown that the coefficients of
these expansions can be computed by a simpler recursion called the topological recur-
sion. This is the important result of Chekhov, Eynard and Orantin [23, 33]. In fact, this
recursion works for more general matrix models; however one should know that in many
cases, the existence of the 1/N expansion has not been proven. Even more surprising
and important is the fact that this recursion is universal in some sense. It has been shown
to govern many combinatorial and geometric objects, several of which are not obviously
related to matrix models. Universality means different problems require different initial
conditions, but the recursion is basically always the same. Indeed, one motivation for our
work in tensor models is to see whether some new universal recursions can be discovered.

1.3 Introduction to tensor models in physics and combi-
natorics

In this and subsequent sections, I describe the general framework of tensor models
and study in details the quartic melonic model. My contributions, obtained with Dartois
and Eynard, are presented in Sec.1.5 and Sec.1.6. The results are published in [71].

Tensor models are generalization of matrix models. They were first studied in [4, 80]
in order to give a description of quantum gravity in dimension D > 2 as a field theory
of space-time (and not on space-time). Indeed, the field theory thus obtained generates
Feynman graphs that may have an interpretation as a D-dimensional space (but this space
is not a manifold in general).

Like in other quantum field theories, each of these graphs comes with a quantum
amplitude computed by the Feynman rules. Unfortunately, unlike the case of matrices,
these amplitudes turn out to be very difficult to handle analytically because of the lack
of tools and theoretical understanding of this new tensor world. In addition, it is a well
known fact that the geometry of three and higher dimensional spaces is considerably more
involved than the 2D geometry. This is the source of difficulties when one tries to give a
combinatorial and geometrical description of the theory.

To avoid these difficulties, colored tensor models were introduced by Gurau in 2011
[39]. Many seemingly unsolvable difficulties of the early tensor models can be overcome
in this setting. The most important issue solved by colored tensor models is the lack of
1/N expansion. Gurau [40] showed that colored tensor models possess 1/N expansion
and gave a combinatorial description of all the orders of this expansion. In contrast with
matrix models, this expansion is not topological. Indeed the parameter governing this
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expansion, called the degree, is not a topological invariant of the space corresponding to
the Feynman graph. This is expected since the topology of three dimensional spaces is
not simple. While the geometric interpretation of this parameter is still unclear, it can be
computed quite easily from the combinatorial description of the Feynman graphs.

Another important advantage of these new tensor models is that they enable a non-
ambiguous description of the observables 1 of the models [9]. This allows leading as well
as next-to-leading orders computations. In fact, in our work, we recompute these orders
using matrix model techniques.

The tensor model which I will study is among the simplest ones. It is called the quartic
melonic model. It can be written equivalently as a multi-matrix model. The saddle point
equations and Schwinger-Dyson equations can then be used to study it.

The plan of our study of tensor models is as follows:

— Sec.1.4 introduces the general setting of colored tensor models. Then the quartic
melonic tensor model is defined and its matrix formulation is derived. We end
this section by establishing Thm.1.4.2, which gives a simple relation between the
observables of the tensor model and the associated matrix model.

— Sec.1.5 is devoted to saddle point computations of the eigenvalue distribution at
leading order and next-to-leading order (NLO).

— Sec.1.6 describes the Schwinger-Dyson equations, which are more suited for rigor-
ous computations. The results of Sec.1.5 are proved from these equations.

1.4 General framework of tensor models

In this section, I introduce the general framework of tensor models so that the reader
can appreciate their mathematical and physical significance. For more details, the reader
can consult for example the survey [79] by Rivasseau, one of the main contributors to
this field. In this work, my collaborators and I transform the tensor model of focus into a
matrix model and entirely use matrix tools to analyze it.

1.4.1 Tensor invariants and generic 1-tensor models

We construct tensor models in a similar way to the construction of matrix models.
In almost every case, the integrand of a matrix model is constructed from the GL(N)
invariants of the matrices.

Consider a rank D tensor T and its complex conjugate T , i.e., a tensor with complex
conjugated entries, once a particular choice of basis has been made. Thus T belongs
to the space V1 ⊗ · · · ⊗ VD endowed with a Hermitian product and T belongs to the
canonical dual V ∗1 ⊗ · · · ⊗ V ∗D. Here, V1, . . . , VD are complex vector spaces. Fix a basis
of V1 ⊗ · · · ⊗ VD. Denote by Ti1···iD and T i1···iD the components of T and T in this and
the dual basis. Require for simplicity that dimVj = N for all j.

1. An observable can be simply understood as an expectation value.
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Figure 1.1 – On the left the 4-colored fundamental melon. On the right, an example of a
3-colored melonic graph.

The tensor model should be invariant under the action of GL(V1) × · · · × GL(VD).
Let (g1, . . . , gD) ∈ GL(V1) × · · · × GL(VD), denote by R(gi) the matrix representation
of gi on Vi. The action of (g1, . . . , gD) on the tensor T transforms it to:

T ′j1···jD = R(g1)j1i1 · · ·R(gD)jDiDTi1···iD . (1.16)

In the dual vector space, the action of (g1, . . . , gD) on the tensor T is

T
′
j1···jD = R(g1)−1

j1i1
· · ·R(gD)−1

jDiD
T i1···iD . (1.17)

Here, and in the following, the repeated indices are summed. Thus all the polynomial
invariants are obtained by contracting the jth index of a T with the jth index of a T , in
which case all the R and R−1 matrices cancel out. One obtains the tensor invariants as
TTTT · · ·TT with a contraction pattern between them that respects the position. Such
invariants are often called trace invariants.

The index contraction patterns can be graphically represented by D-edge-colored bi-
partite graphs (hence the name colored tensor models).

Definition 1.4.1. A D-edge-colored bipartite graph is a graph with, say v black vertices
(standing for T ) and v white vertices (standing for T ) such that only vertices of different
colors are connected by edges and exactly D edges of D different colors are attached to
each vertex.

The color of an edge indicates the position of the index being contracted. We draw
some examples of such graphs for D = 3 in Fig.1.1. The colors are indicated as numbers
along the edges.

Thus, the first graph corresponds to the invariant Ti1...i4T i1...i4 (remember that the re-
peated indices are summed), while the second graph corresponds to the following invari-
ant (see Fig.1.2, the example is intentionally complicated to illustrate that the graphical
representation is quite efficient to encode cumbersome algebraic expressions)

Ti1i2i3T j1i2j3Tj1k2j3T i1l2l3Tm1l2l3T n1k2n3Tn1p2p3T q1p2p3Tq1q2n3Tm1q2i3 .

Note that until now, D-edge-colored bipartite graphs only serve the purpose of being
alternative encoding of tensor invariants which will appear in the definition of tensor
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Figure 1.2 – The second graph of Fig.1.1 with explicit indices.

models. The interesting and important fact is that the Feynman diagrams which encode
the 1/N expansion of colored tensor models are also D-edge-colored bipartite graphs.
Thus, the combinatorics of colored tensor models is the combinatorics of these graphs.
The two most important notions concerning these graphs are the jackets and the degree.
Since combinatorics is not the tool that I will use, I will only record here the formal
definitions without trying to clarify many associated conceptual and technical issues. The
definitions look quite abstract and unmotivated without deeper insights. The interested
reader is invited to consult the original paper [40].

Definition 1.4.2. Let τ be cyclic permutation of D colors. A colored jacket J (τ) is an
edge-colored ribbon graph associated to aD-colored graph G with as 1-skeleton the graph
G and with faces made of graph cycles of colors (τ q(1), τ q+1(1)), modulo the orientation
of the cycle (i.e. τ−1 leads to the same jacket).

As such there are (D−1)!
2

jackets for a D-edge-colored graph. Each jacket J leads to a
cellular decomposition of a surface and thus comes with a genus gJ .

Definition 1.4.3. The degree ω(G) of a colored graph G is defined as

ω(G) :=
∑
J (G)

gJ , (1.18)

where the sum runs over all jackets associated to the graph.

Remark. For D = 2 (matrix case), the degree reduces to the genus of the only jacket
associated to the graph.

Now we can give a definition of tensor models. Denote by dµT the following measure

dµT =
N∏

i1,...,iD=1

d<(Ti1,...,iD)d=(Ti1,...,iD).
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The domain of integration is R2ND unless explicitly mentioned otherwise. Tensor models
are integrals of the following type

Definition 1.4.4. A D-dimensional tensor model is defined by the partition function:

Z[N, {tB}] =

∫
dµT exp

(
−ND−1

∑
B

N−
2

(D−2)!
ω(B)tBB(T, T )

)
, (1.19)

where B runs over certain D-colored graphs indexing the invariants. The tB are the cou-
pling constants; the one corresponding to the only invariant of order 2 is often fixed to
1/2. The number B(T, T ) is the invariant of T and T indexed by the graph B.

Remark. In this thesis, studying a model given by a partition function means firstly study-
ing the derivatives of the partition functions with respect to the coupling constants at 0.
As one can see immediately, it is equivalent to the problem of studying moments of a
certain measure (not always a probability measure).

Definition 1.4.5. A D-colored graph G is said to be melonic if and only if ω(G) = 0.

In exact analogy with the matrix models case, the integral (1.19) can be interpreted
as a sum over certain Feynman diagrams. These Feynman diagrams are discretisation
of D-dimensional "pseudo-manifolds" [79]. It is for this reason that tensor models were
introduced to study random geometries and quantum gravity in arbitrary dimensions. The
interested reader is invited to consult the literature for more details. I just want to make
the following comment. The Feynman diagrams for colored tensor models are also D-
edge-colored bipartite graphs. 2 It is proved in [40] that the 1/N expansion is ordered by
the degree of the Feynman graphs: the smaller the degree of a Feynman graph, the more
dominant it is. In other words, the degree plays the same role for tensor models as the
genus plays for matrix models.

1.4.2 Quartic melonic tensor models and intermediate field represen-
tation.

The specific model that I am going to study is the quartic melonic tensor model in
D dimension. The adjective "melonic" indicates that we choose as interaction terms the
simplest ones, i.e., represented by melonic D-colored graphs such as those in Fig. 1.1.

In order to write the model, let us introduce some notations. Denote by C = {1, . . . , D}
the set of colors. We write T · T for the contraction of all the indices of T with all the
indices of T . We also introduce the following partial scalar product between T and T .
For Y ⊂ C, we denote by T ·Y T the contraction of indices of T and T which belong to Y .
Moreover we denote Ŷ = C − Y . If Y contains one element, we denote it by its element
for simplicity.

2. Do not confuse Feynman graphs and graphs indexing the invariants in the definition of the models
although both of them are D-edge-colored bipartite graphs!
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Figure 1.3 – On the left: one of the interaction term. On the right: its splitting with the
intermediate matrix fieldM (i) of color i (the image is just suggestive and does not contain
any "hidden" meaning).

Definition 1.4.6. Let λ be a positive real number. The quartic melonic tensor measure is
defined as follows

dνT :=
1

ZT,0
exp

[
−ND−1

(
1

2
(T · T ) +

λ

4

D∑
c=1

(T ·ĉ T ) ·c (T ·ĉ T )

)]
dµT , (1.20)

where

ZT,0 =

∫
dµT exp

(
−N

D−1

2
T · T

)
. (1.21)

The quartic interaction term (the term following λ) is represented graphically in Fig.1.3.
For any reasonable function f(T ), denote the corresponding correlator by 〈f〉T . Of par-
ticular interest is the partition function of the quartic melonic model

ZT = ZT (N, λ) := 〈1〉T

=
1

ZT,0

∫
dµT exp

[
−ND−1

(
1

2
(T · T ) +

λ

4

D∑
c=1

(T ·ĉ T ) ·c (T ·ĉ T )

)]
, (1.22)

where λ is a positive real number (the coupling constant).
Now we will writeZT in terms of a matrix integral. For each color c ∈ C, we introduce

an intermediate Hermitian matrix field M (c) to split the interaction terms (T ·ĉT )·c(T ·ĉT ).
This is pictured on the right hand side of Fig. 1.3 (note that the image is just suggestive
and does not contain any "deeper" meaning). This allows us to construct a matrix model
that is equivalent to the tensor model under consideration; equivalent in the sense that all
correlation functions of the two models match.
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Technically, we use the following case of the Gaussian integral formula:

exp
(
−ND−1λ

4
(T ·ĉ T ) ·c (T ·ĉ T )

)
=C̃N,D,λ

∫
HN

dM (c) exp

[
−N

D−1

2
Tr
((
M (c)

)2
)
− i
√
λ

2
ND−1Tr

((
T ·ĉ T

)
M (c)

)]
.

(1.23)

where C̃N,D,λ is a constant, i is the imaginary unit, and
∫
HN

dM (c) is the integral over
Hermitian matrices as before.

Rewriting the tensor model using this representation of the interaction term, we get
the mixed form of the partition function:

ZT =
C̃N,D,λ
ZT,0

∫
dµT

∫
(HN )D

D∏
c=1

dM (c)

exp

[
−N

D−1

2
T

(
1
⊗D + i

√
λ

2

D∑
c=1

Mc

)
T

]
exp

[
−1

2

D∑
c=1

Tr(M2
c)

]
, (1.24)

where we have introduced the notation Mc = 1
⊗(c−1) ⊗ M (c) ⊗ 1

⊗(D−c) for any
c = 1, . . . , D. The symbol ⊗ denotes the Kronecker product. For our purpose, we will
only need the following property of this product.

Lemma 1.4.1. Suppose that A and B are two square matrices of size m and n respec-
tively. Let λ1, . . . , λm be the eigenvalues of A and µ1, . . . , µm be those of B. Then the
eigenvalues of A×B are

λiµj, i = 1, . . . ,m; j = 1, . . . n.

It follows that

Tr(A⊗B) = TrA · TrB and det(A⊗B) = (detA)m(detB)n.

Integrating out the T and T ’s (using again the Gaussian integral formula), we obtain
the matrix form of ZT :

ZT = CN,D,λ

∫
(HN )D

D∏
c=1

dM (c) det −1
(
1
⊗D + i

√
λ/2

D∑
c=1

Mc

)
× exp

(
−1

2

D∑
c=1

Tr(M2
c)

)
, (1.25)
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where CN,D,λ is a constant. This is the intermediate field representation of the T 4

melonic tensor model.

Definition 1.4.7. The corresponding matrix model measure is defined to be

dνM := CN,D,λ

D∏
c=1

dM (c) det −1
(
1
⊗D + i

√
λ/2

D∑
c=1

Mc

)
exp

(
−1

2

D∑
c=1

Tr(M2
c))

)
.

(1.26)

For a reasonable function f
(
M (1), . . . ,M (D)

)
, denote by 〈f〉M the corresponding

matrix correlator. The relation between the tensor and matrix correlators is given in the
following

Theorem 1.4.2. We have:

〈Tr (Θc)
p〉T =

(2i
√

2√
λ

)p 〈
TrHp

(
M (c)

)〉
M
, (1.27)

and 〈
Tr
(
M (c)

)p〉
M

=

〈
TrHp

( √
λ

2i
√

2
Θc

)〉
T

, (1.28)

where Θc = (T̄ ·ĉ T ) is a matrix, and Hp is the Hermite polynomial of order p.

Proof. Consider the mixed matrix-tensor representation 1.24. One can write 〈Tr(Θp
c)〉 as:(

ND−1
√
λ/2

2i

)p

〈Tr(Θp
c)〉

=
C̃N,D,λ
Z0

∫
dµT

∫
(HN )D

D∏
d=1

dM (d) exp

(
−1

2

D∑
d=1

Tr(M2
d))

)
×(

∂p

∂M
(c)
a1a2∂M

(c)
a2a3 · · · ∂M (c)

apa1

exp

(
−N

D−1

2
T

(
1
⊗D + i

√
λ

2

D∑
d=1

Md

)
T

))

with the convention that repeated indices are summed. Via integration by parts, one gets(
−iND−1

√
λ/2

2

)p

〈Tr(Θp
c)〉

=(−1)p
C̃N,D,λ
Z0

∫
dµT

∫
(HN )D

D∏
d=1

dM (d) exp

(
−N

D−1

2
T̄

(
1
⊗D + i

√
λ/2

D∑
d=1

Md

)
T

)
×(

∂p

∂M
(c)
a1a2∂M

(c)
a2a3 · · · ∂M (c)

apa1

exp

(
−1

2

D∑
d=1

Tr(M2
d)

))
.
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Recall the definition of Hermite polynomials Hp(x) = (−1)p exp(x
2

2
) dp

dxp
exp(−x2

2
). This

leads to: (
−iND−1

√
λ/2

2

)p

〈Tr(Θp
c)〉T = Np(D−1)〈Hp(M

(c))〉M

which simplifies to the first claimed equation. For the second equation it suffices to use the
Weierstrass transform. It is defined as the linear operator sending a monomial of degree
n to the corresponding Hermite polynomial Hn. Explicitly we have:

Hn(x) = e−
1
4
d2

dx2 xn, ∀x ∈ R.

Inverting the operator and using the property of Hermite polynomials d
dx
Hn(x) = nHn−1(x)

we get:

xn =

[n/2]∑
k=0

1

4k
n!

(n− 2k)!k!
Hn−2k(x).

This can be used to obtain:

〈
Tr
(
M (c)

)n〉
M

=

[n/2]∑
k=0

1

4k
n!

(n− 2k)!k!

( √
λ

2i
√

2

)n−2k 〈
Tr
(
Θn−2k
c

)〉
T
,

hence 〈
Tr
(
M (c)

)n〉
M

=

〈
Tr

(
Hn

( √
λ

2i
√

2
Θc

))〉
T

.

So this Theorem helps us to transit easily between the two models. This is the equiv-
alence between the two models that I have mentioned.

1.5 Saddle Point Equation of the Matrix Model

Although we could not prove that the saddle point method is rigorous for our problem,
it can give us a quick glimpse of the final results. In our case, it actually gives the correct
answer, as we will prove the results by the rigorous Schwinger-Dyson equations in the
next section. Without the results obtained by the saddle point method, it is difficult to
guess how to solve the Schwinger-Dyson equations. In the next two subsections, I am
going to carry out the saddle point computations for the leading and next-to-leading orders
of the eigenvalues of the matrices M (c). In order to state the main result, let us prepare
some notations.
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For 1 ≤ c ≤ D, denote the eigenvalues of M (c) by λ(c)
j , j = 1, . . . , N . First we write

the matrix model (1.25) in terms of eigenvalues.

Z = cN,D,λ

∫
RND

D∏
c=1

N∏
j=1

dλ
(c)
j exp

(
−N

D−1

2

D∑
c=1

N∑
j=1

(
λ

(c)
j

)2)
N∏

{jc=1}c=1···D

1

1 + i
√
λ/2

∑D
c=1 λ

(c)
jc

D∏
c=1

∆({λ(c)
j }j=1···N)2, (1.29)

where cN,D,λ is a constant (which can be computed explicitly, though we do not need
that). This can be rewritten as:

Z = cN,D,λ

∫
U

D∏
c=1

N∏
j=1

dλ
(c)
j exp

(
−NDS

(
{λ(c)

j }c=1···D
j=1···N

))
, (1.30)

where

S
(
{λ(c)

j }c=1···D
j=1···N

)
= − 1

2N

D∑
c=1

N∑
j=1

(
λ

(c)
j

)2

+
1

ND
log

[
D∏
c=1

∆({λ(c)
j }j=1···N)2

]

+
1

ND
log

[
N∏

{jc=1}c=1···D

1

1 + i
√
λ/2

∑D
c=1 λ

(c)
jc

]
. (1.31)

In the integral (1.30), we have changed the domain of integration RND to a complex
domain U which contains the extremum of S. This is possible thank to the Cauchy theo-
rem. The λ(c)

j are then not the eigenvalues of M (c) anymore. We will however call them
"generalized" eigenvalues.

Remark. With this change of the domain of integration, the physical meaning of each
term of S is well known. As usual, we have the Coulomb potential coming from the
Vandermonde determinant which separates the "generalized" eigenvalues away from each
other. The tensor product interaction between the different matrices leads to an interaction

term that pushes all the "generalized" eigenvalues towards i
√

2
λ

. Finally the Gaussian
term attracts all the "generalized" eigenvalues to zero.

Denote by {λ(c)?
j }c=1···D

j=1···N the critical point of S
(
{λ(c)

j }c=1···D
j=1···N

)
(under the hypothesis

that S has a unique critical point).

Definition 1.5.1. For each color c, the corresponding eigenvalue resolvent Wc is defined
as

Wc(x) =
1

N

N∑
k=1

1

x− λ(c)?
k

,

Then the main result is
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Theorem 1.5.1. The eigenvalue resolvent Wc(x) of a matrix of any color c ∈ [[1, D]]
expands, up to next-to-leading order, as:

Wc(x) =
1

x− α +
1√
ND−2

(1− α2)

(
x±

√
x2 − 1

(1− α2)

)
+ o

(
N

D−2
2

)
, (1.32)

where

α =
−1 +

√
1 + 2Dλ

2iD
√
λ/2

In particular, Wc does not depend on c up to the first two orders

The two next subsections are spent to derive this result.

1.5.1 Leading Order (LO) 1/N Computation

To keep the writing reasonably neat, since now, denote λ(c)?
j simply by λ(c)

j (we will
not need to use λ(c)

j with the meaning of being integration variables, so it is hoped that
no confusion will arise). The saddle point equations are given by ∂S

∂λ
(c)
k

= 0 for (k, c) ∈
[[1, N ]]× [[1, D]]. Thus we obtain the following equations:

0 =
∂S

∂λ
(c)
k

(1.33)

=− λ
(c)
k

N
+

1

ND

∑
1≤l≤N
l 6=k

1

λ
(c)
k − λ

(c)
l

− i
√
λ/2

ND

N∑
{jb=1}b 6=c

1

1 + i
√
λ/2(λ

(c)
k +

∑
1≤b≤D
b 6=c

λ
(b)
jb

)

Suppose that the eigenvalues can be expanded in the powers of N in the large N
limit. The expansion of the eigenvalues in the powers of N coming from the tensor model
scaling can be very different from that of matrix models. Since we do not know how to
solve these equations exactly, we make some hypotheses. First we see that the equations
are symmetric under the permutations of the color index c. This indicates that the saddle
point might obey λ(c)

k = λ
(d)
k for any c, d = 1 · · ·D. So we postulate this property. With

this in mind the equations rewrite:

0 =
λ

(c)
k

N
− 2

ND

∑
1≤l≤N
l 6=k

1

λ
(c)
k − λ

(c)
l

+
i
√
λ/2

ND

N∑
{jr=1}r=1,··· ,D−1

1

1 + i
√
λ/2(λ

(c)
k +

∑D−1
r=1 λ

(c)
jr

)
.

(1.34)

Assume the following Ansatz concerning the expansion of the eigenvalues λ(c)
k in

1/N :

λ
(c)
k = λ

(c)
k,0 +

λ
(c)
k,1√

N (D−2)
+

λ
(c)
k,2

N (D−2)
+ · · · .
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In fact, this Ansatz will give us reasonable results, although I do not claim that this is the
only possible expansion (but I have tried many). Under this assumption, the first and third
terms of the right hand side are leading whereas the second term is a sub-leadingO( 1

ND/2 )
term, by a simple counting argument.

First we compute λ(c)
k,0 = β (which do not depend either on k or c because the formula-

tion of the matrix model in terms of eigenvalues is totally symmetric with respect to their
exchange). As just discussed, we can neglect the second term in Eq. (1.34) and obtain:

β± =
−1±

√
1 + 2Dλ

2iD
√
λ/2

. (1.35)

We have to choose the ′+′ root in order to get a finite limit when λ → 0. This is α in
Thm.1.5.1. Note that since we changed the domain of integration, the fact that α is com-
plex is not contradictory, i.e. λ(c)

k are no longer interpreted as eigenvalues of Hermitian
matrices M (c). In resume, the term 1

x−α in Wc(x) is explained.
The immediate consequence is

Corollary 1.5.2. The partition function ZT is given by:

ZT = cN,D,λ exp

[
ND

(
−Dα

2

2
− log

(
1 + iDα

√
λ/2
))

+ o
(
ND
)]

(1.36)

We also get the 2-point function of the tensor model.

Corollary 1.5.3. The 2-point function G2(λ) = 1
N
〈T · T 〉T is given in the N → ∞ limit

by:

lim
N→∞

G2(λ) = lim
N→∞

1

N
〈TrΘc〉T =

2i
√

2√
λ
α =

2

Dλ

(
−1 +

√
1 + 2Dλ

)
. (1.37)

Proof. Recall the relation in Thm.1.4.2

〈Tr(Θp
c)〉T =

(
2i
√

2√
λ

)p

〈Tr(Hp(M
(c)))〉M .

In the N →∞ limit, we can compute 〈Tr(M (c))〉M at the saddle point approximation as∑
j λ

c
j = Nα. Since H1(x) = x, we get

〈Tr(Θc)〉T =
2i
√

2√
λ
Nα.

Remark. It is also feasible to compute the leading order of all the Tr(Θp
c).
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1.5.2 Next-to-Leading Order (NLO) Computation.

In this section, we want to compute λ(c)
k,1. In particular we see that it has interesting

"statistical distribution" properties. Inserting the expansion λ(c)
k = α+

λ
(c)
k,1√
ND−2

+O( 1
ND−2 )

in Eq. 1.34, we get, for every k = 1, . . . , N ,

0 =
α

N
+

λ
(c)
k,1√
ND
− 2√

ND+2

∑
1≤l≤N
l 6=k

1

λ
(c)
k,1 − λ

(c)
l,1

(1.38)

+
i
√
λ/2

ND

N∑
{jr=1}r=1,··· ,D−1

i
√
λ/2

1 + i
√
λ/2Dα +

i
√
λ/2

√
ND−2

(
λ

(c)
k,1 +

∑D−1
r=1 λ

(c)
jr,1

+O(1/ND−2)
) .

Keeping the dominant terms, we obtain

0 = λ
(c)
k,1(1− α2)− 2

N

∑
1≤l≤N
l 6=k

1

λ
(c)
k,1 − λ

(c)
l,1

− α2(D − 1)

ND−1

N∑
{jr=1}r=1,··· ,D−1

λ
(c)
jr,1
. (1.39)

By antisymmetry of the Vandermonde factor, summing over k gives

0 = (1−D)α2

N∑
k=1

λ
(c)
k,1 ⇒

N∑
k=1

λ
(c)
k,1 = 0.

Thus the third term of the right hand side of the Eq. (1.39) vanishes. We therefore obtain:

(1− α2)λ
(c)
k,1 −

2

N

∑
1≤l≤N
l 6=k

1

λ
(c)
k,1 − λ

(c)
l,1

= 0, (1.40)

which is the well known equation determining the critical point of the action for the GUE
ensemble and describing the large N limit of the Wigner’s semi-circle law. In order to
solve it, we introduce the (colored) resolvent for the NLO eigenvalues

Vc(x) =
1

N

N∑
k=1

1

x− λ(c)
k,1

.

As it is done in Subsec.1.2.3, Eq.(1.40) becomes

Vc(x)2 = (1− α2)(xVc(x)− 1)− 1

N
V ′c (x)

In the N → ∞ limit, the second term of the right hand side is subleading and can be
discarded. Hence the last equation becomes quadratic:

Vc(x)2 = (1− α2)(xVc(x)− 1), (1.41)
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and has the following solutions

Vc,±(x) = (1− α2)

(
x±

√
x2 − 1

(1− α2)

)
. (1.42)

The correct answer is the one with the minus sign because of the behavior of Vc(x) at the
limit x→∞, and we denote it simply by Vc. This explains the second term in Wc(x).

Remark. One notices that the NLO term for the 2-point function vanishes in this context.
Indeed the resolvent is the generating function of the traces of the matrix and the term in
front of 1/x2 is vanishing in the expansion of Wc(x).

1.6 Schwinger-Dyson Equations.

In this section, we use the Schwinger-Dyson equations to give a rigorous proof of an
equivalent result to Thm.1.5.1. In order to state the result, we need some new notations.

As suggested by the above study, we will consider the loop equations in terms of new
renormalized variables M̃ (c) defined by

M (c) = α1 +
M̃ (c)

√
ND−2

.

In fact the previous study showed that in the N →∞ limit, all the "eigenvalues" collapse
to a point α and the next to leading order term follows a distribution which is more regular
for a matrix model. The partition function ZT can be written in the following form:

ZT = CN,D,λ

∫
(HN )D

D∏
c=1

dM (c) det −1
(
1
⊗D + i

√
λ/2

D∑
c=1

Mc

)
exp

(
−1

2

D∑
c=1

Tr(M2
c)

)

= CN,D,λ

∫
(HN )D

D∏
c=1

dM (c) exp

(
−1

2

D∑
c=1

Tr(M2
c)− Tr log

(
1
⊗D + i

√
λ/2

D∑
c=1

Mc

))
.

(1.43)

In the new matrix variables, it becomes

ZT = CN,D,λ
exp
(
−ND

2
α2
)

ND−2

∫
(HN )D

D∏
c=1

dM̃ (c) exp
[
−N

2

D∑
c=1

TrM̃2
c − αN

D
2

D∑
c=1

TrM̃c

− Tr log
(
(1 + i

√
λ/2α)1⊗D + i

√
λ

2ND−2

D∑
c=1

M̃c

)]
,

(1.44)

with the obvious extension of the previous notation: M̃c = 1
⊗(c−1) ⊗ M̃c ⊗ 1⊗(D−c). For

simplicity, and because no confusion can arise, let us denote the correlators according to
the M̃ measure simply by 〈·〉.
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Definition 1.6.1. For each color c, define the matrix resolvent

W̃c(z) =
1

N

〈
Tr

(
1

z − M̃ (c)

)〉
.

Then we have the following equivalent to Thm.1.5.1

Theorem 1.6.1. In the N →∞ limit,

W̃c(z)2 = (1− α2)zW̃c(z)− (1− α2). (1.45)

In other words, W̃c satisfies the same Eq.(??) as Vc.

Proof. First, we construct the Schwinger-Dyson equations in terms of the M̃ ’s matrices.
For c = 1, . . . , D and for every positive integer k, it follows from

0 =
N∑

i,j=1

∫
(HN )D

D∏
d=1

dM̃ (d) ∂

∂M̃
(c)
ij

[(
M̃ (c))kij exp

{
−N

2

D∑
d=1

TrM̃2
d

− αN D
2

D∑
d=1

TrM̃d − Tr log

(
1
⊗D − α

N (D−2)/2

D∑
d=1

M̃d

)}]
that

0 =

〈
k−1∑
n=0

Tr
(
M̃ (c)

)n
Tr
(
M̃ (c)

)k−1−n
〉

−N
〈

Tr
(
M̃ (c)

)k+1
〉
− αN D

2

〈
Tr
(
M̃ (c)

)k〉
+

〈∑
p≥0

( α

N (D−2)/2

)p+1 ∑
{qi}i=1···D∑

i qi=p

(
p

q1, · · · , qD

)
Tr
(
M̃ (c)

)qc+k∏
i 6=c

Tr
(
M̃ (i)

)qi〉
.

The third term cancels with the p = 0 term of the last sum and gives us the Schwinger-
Dyson equations which are constraints between correlators

0 =

〈
k−1∑
n=0

Tr
(
M̃ (c)

)n
Tr
(
M̃ (c)

)k−1−n
〉
−N

〈
Tr
(
M̃ (c)

)k+1
〉

+

〈∑
p≥1

( α

N (D−2)/2

)p+1 ∑
{qi}i=1···D∑

i qi=p

(
p

q1, · · · , qD

)
Tr
(
M̃ (c)

)qc+k∏
i 6=c

Tr
(
M̃ (i)

)qi〉
.

(1.46)

In the sum of the Eq.(1.46), the only leading term in the N →∞ limit is the p = 1 term.
In this limit, the relevant equations read:

0 =

〈
k−1∑
n=0

Tr
(
M̃ (c)

)n
Tr
(
M̃ (c)

)k−1−n
〉
−N

〈
Tr
(
M̃ (c)

)k+1
〉

+α2N

〈
Tr
(
M̃ (c)

)k+1
〉

+ α2
∑
j 6=c

〈
Tr
(
M̃ (c)

)k
TrM̃ (j)

〉
. (1.47)



38 CHAPTER 1. TENSOR MODELS IN MATHEMATICAL PHYSICS

In the limit N →∞, the correlators factorize. It means that for l 6= m〈
Tr
(
M̃ (l)

)s
Tr
(
M̃ (m)

)t〉
=
〈

Tr
(
M̃ (l)

)s〉〈
Tr
(
M̃ (m)

)t〉
+O

(
N−(D−2)

)
. (1.48)

This factorization property can be proved by looking at the Feynman graphs of the
model 1.44. Let us compute the contribution of a Feynman graph G. Let E,F, V be
respectively the number of edges, faces and vertices of G. It can be easily seen that the
edges contribute as N−E , and the faces contribute as NF .

The contribution of the vertices is more involved. Expanding the potential we no-
tice that the linear term of the expansion vanishes with the term αN

D
2

∑
c TrM̃c. The

remaining term of the expansion can be represented as vertices of Feynman graphs that
are themselves made of k fat vertices of different colors c ∈ S ⊆ [[1, D]], |S| = k for
1 ≤ k ≤ D. Each fat vertex of color c is of valence pc ≥ 2. Each of this vertex comes
with a factor N

2−D
2

∑
pc+(D−k) (where D ≥ 3).

Since we are interested in the N → ∞ limit we focus on graphs that are made out of
"leading" vertices. These are the ones for which k = 1 and p := pc = 2 for a given c. The
factor coming with these vertices is N , it is the usual scaling for matrix models. One can
extend the argument for p ≥ 2 and find the scaling for such graphs G with E edges, F
faces and V vertices is

NF−E+
∑
v∈G[(2−D)+(pv−2) 2−D

2
+(D−1)] = Nχ(G)−(D−2)(E−V ),

with χ(G) the Euler characteristic of G. The leading graphs are thus the ones for which
(E − V ) vanishes and χ is maximum. Finally this scaling favors at leading order discon-
nected contributions maximizing χ(G). Thus the observables factorize as above.

The Eq.(1.47) becomes thus

0 =

〈
k−1∑
n=0

Tr
(
M̃ (c)

)n
Tr
(
M̃ (c)

)k−1−n
〉
−N

〈
Tr
(
M̃ (c)

)k+1
〉

+α2N

〈
Tr
(
M̃ (c)

)k+1
〉

+ α2
∑
j 6=c

〈
Tr
(
M̃ (c)

)k〉〈
TrM̃ (j)

〉
. (1.49)

Because of the symmetry, we have 〈Tr(M̃ (c))〉 = 0 for every c. Therefore Eq.(1.49)
becomes

0 =
k−1∑
n=0

〈
Tr
(
M̃ (c)

)n
Tr
(
M̃ (c)

)k−1−n
〉
−N

(
1− α2

)〈
Tr
(
M̃ (c)

)k+1
〉
. (1.50)

Summing Eq.1.50 over k weighted with zk and applying the same manipulation tricks as
in Subsec.1.5.2, we obtain the desired claim. Thus we have completed the proof of the
results obtained by saddle point computations.
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1.7 Conclusion and perspective
In this chapter, I have presented the computation of the leading and next-to-leading

orders of the quartic melonic tensor model via techniques from matrix models. The natu-
ral next step is to compute all the subsequent orders, and/or to show that they satisfy some
structural properties. Indeed, Bonzom and Dartois [8] have developed further this tensor-
matrix interplay initiated in this work and proved that the all-order correlation functions
of the quartic melonic tensor model satisfy the blobbed topological recursion defined by
Borot [12]. Are more general tensor models also linked to the topological recursion? This
is a question for the future.





2
Symmetric functions

This chapter serves the purpose of recalling well-known facts and fixing notations
about partitions and symmetric functions. Most of the material is taken from the classic
book of Macdonald [64]. The reader can go directly to the next two chapters for new
results.

2.1 Partitions

A (half-)partition λ is a sequence of non-increasing positive (half-)integers containing
only finitely many non-zero terms. To simplify the writing, we will only discuss partitions
if the analogues for half-partitions are obvious.

Let λ = (λ1, λ2, . . . ) be a partition. The length of λ, denoted by l(λ), is the number
of non-zero terms. The weight of λ, denoted by |λ|, is the sum of its part. We say λ is a
partition of |λ| and denote this by λ ` |λ|. We identify two sequences which differ only by
a string of zeros at the end. Denote the set of partitions of n by Pn, and let P = ∪n≥0Pn.

Another convenient way to write the partition λ is λ = (1m12m2 . . . ) which says
that exactly mi parts are equal to i. A partition can be visually represented by a Young
diagram (also called Ferrer diagram by some authors) (for example Fig.2.1). We identify
a partition and its diagram. The coordinate (i, j) of the boxes follows the same convention
as with matrices.

The conjugate of λ is the partition λ′ whose the diagram is obtained by reflection in
the main diagonal. For example, if λ = (4, 3, 2) then λ′ = (3, 3, 2, 1).

If λ and µ are partitions, we write λ ⊇ µ if λi ≥ µi for all i ≥ 1, i.e. the diagram λ
contains the diagram µ. The set-theoretic difference θ = λ − µ, more often denoted by
λ/µ, is called a skew diagram.

A skew diagram θ is called a horizontal m-strip (resp. a vertical m-strip) if |θ| = m
and θ′i ≤ 1 (resp. θi ≤ 1) for all i ≥ 1. In other words, a horizontal (resp. vertical) strip
has at most one square in each column (resp. row).

41
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Figure 2.1 – Young diagram λ = (4, 3, 2)

1 3 4 7
2 5 9
6 8

Figure 2.2 – A standard tableau of shape (4, 3, 2).

For a diagram λ, a tableau of shape λ is obtained by filling the squares of λ with
symbols taken from some alphabet. In this thesis, the alphabet is always taken to be the
set of integers from 1 to |λ|. A semi-standard tableau of shape λ is a tableau of shape
λ such that the entries increase weakly along each row and strictly along each column.
A standard tableau is a semi-standard tableau such that each number 1, 2, . . . , |λ| appears
exactly once (for example Fig.2.2).

Further definitions on partitions/diagrams are listed below. Let λ and µ be parti-
tions/diagrams.

1. We define µ ≤ λ if µ1 + · · · + µi ≤ λ1 + · · · + λi for all i ≥ 1. If µ ≤ λ and
µ 6= λ, we write µ < λ. This gives a partial order, called the natural or dominance
order, on the set of partitions. One total order which extends this partial order is
the reverse lexicographic ordering: λ >RL µ if the first non-vanishing difference
λi − µi is strictly positive.

2. The sum of two partitions λ and µ is defined as λ+ µ = (λ1 + µ1, λ2 + µ2, . . . ).

3. The number of even/odd parts of λ is denoted by even(λ)/odd(λ).

4. If λ ⊆ mn then mn − λ := (m− λn, . . . ,m− λ1).

5. The arm-length, arm-colength, leg-length and leg-colength of the square s = (i, j) ∈
λ are defined as follows (the subscript λ can be added if ambiguity needs to be
avoided):

a(s) := aλ(s) = λi − j, a′(s) := a′λ(s) = j − 1

l(s) := lλ(s) = λ′j − i, l′(s) := l′λ(s) = i− 1.

Thus a(s) (resp. a′(s)) is the number of squares on the row i which are on the
right (resp. left) hand side of s. Similarly, l(s) (resp. l′(s)) is the number of
squares on the column j which are below (resp. above) s. The hook length of s is
h(s) = a(s) + l(s) + 1. The statistic n(λ) is given by

n(λ) :=
∑
s∈λ

l′(s) =
∑
i≥1

(i− 1)λi =
∑
i≥1

(
λ′i
2

)
.
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6. For x, q, t ∈ C, define

C+
λ (x; q, t) :=

∏
(i,j)∈λ

(1− qλi+j−1t2−λ
′
j−ix)

=
∏

1≤i≤l(λ)=l

(qλit2−l−ix; q)∞
(q2λit2−2ix; q)∞

∏
1≤i<j≤l

(qλi+λj t3−i−jx; q)∞
(qλi+λj t2−i−jx; q)∞

, (2.1)

C−λ (x; q, t) :=
∏

(i,j)∈λ

(1− qλi−jtλ′j−ix)

=
∏

1≤i≤l

(x; q)∞
(qλitl−ix; q)∞

∏
1≤i<j≤l

(qλi−λj tj−ix; q)∞
(qλi−λj tj−i−1x; q)∞

, (2.2)

C0
λ(x; q, t) :=

∏
(i,j)∈λ

(1− qj−1t1−ix)

=
∏

1≤i≤l

(t1−ix; q)λi . (2.3)

In particular, for λ = (r), we have

C0
(r)(x; q, t) = C−(r)(x; q, t) =

r−1∏
j=0

(1− qjx) = (x; q)r,

C+
(r)(x; q, t) =

r−1∏
j=0

(1− qr+jx) = (qrx; q)r,

As usual, the Pochhammer symbols are defined as

(a; q)n : = (1− a)(1− aq) . . . (1− aqn−1),

(a; q)∞ : = (1− a)(1− aq)(1− aq2) . . . ,

(a1, a2, . . . , am; q)n : = (a1; q)n . . . (am; q)n,

(a1, a2, . . . , am; q)∞ : = (a1; q)∞ . . . (am; q)∞.

7. For s ∈ λ, let

bλ(s; q, t) :=
1− qa(s)tl(s)+1

1− qa(s)+1tl(s)
, (2.4)

and

bλ(q, t) :=
∏
s∈λ

bλ(s; q, t). (2.5)

2.2 The algebra of symmetric functions

Let F be a field of characteristic 0. Consider the algebra F [x1, . . . , xn] of polynomials
in n independent variables x1, . . . , xn with coefficients in F . The symmetric group Sn
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acts on F [x1, . . . , xn] by permuting the variables. A symmetric polynomial is one that is
invariant under this action. The symmetric polynomials form a subalgebra, denoted by

Λn := F [x1, . . . , xn]Sn .

It is a graded ring:

Λn := ⊕k≥0 Λk
n,

where Λk
n contains the homogeneous symmetric polynomials of degree k and the zero

polynomial.
We also often want to work with symmetric functions 1 in infinitely many variables.

Define the algebra of symmetric functions as the projective limit

Λ := lim
←−

Λn,

where the projective limit is taken in the category of filtered algebras with respect to the
homomorphism which sends the last variable to 0. Concretely, an element of this algebra
is a sequence f = {f (d)}d≥1, f (d) ∈ Λd such that the polynomials f (d) are of uniformly
bounded degree and stable under the restriction, i.e f (d+1)|xd+1=0 = f (d). However, if
confusion is absent, we will use the same notation for polynomials and their projective
limit version.

The algebra Λ has the following bases which are all indexed by partitions.
1. Monomial symmetric functions

For each α = (α1, . . . , αn) ∈ Nn, let

xα := xα1
1 . . . xαnn .

For a partition λ of length no more than n, the monomial symmetric polynomialmλ

is defined as

mλ(x1, . . . , xn) :=
∑

xα,

where the sum is over all distinct permutation α of λ. We shall use the same notation
mλ for the infinite variable version. The polynomials {mλ, l(λ) ≤ n} form an F -
basis of Λn. The symmetric functions {mλ, λ ∈ P} form a F -basis of Λ.

2. Elementary symmetric functions
For each integer r ≥ 1, the rth elementary symmetric function er is

er :=
∑

i1<i2<ir

xi1 . . . xir = m(1r).

Also, let e0 := 1. For each partition λ = (λ1, λ2, . . . ), define

eλ := eλ1eλ2 . . . .

The functions {eλ, λ ∈ P} form a F -basis of Λ. One also has

Λ = F [e1, e2, . . . ]

and the er are algebraically independent over F .

1. The word "function" is just conventional. They are in fact (formal) power series.
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3. Complete symmetric functions
For each integer r ≥ 0, the rth complete symmetric function hr is defined by

hr :=
∑
λ`r

mλ.

As before, let hλ := hλ1hλ2 . . . . Then the {hλ, λ ∈ P} form a F -basis of Λ. One
also has

Λ = F [h1, h2, . . . ]

and the hr are algebraically independent over F as in the case of elementary sym-
metric functions.

4. Power sums
For each r ≥ 1, the rth power sum pr is

pr :=
∑

xri = m(r).

As before define pλ = pλ1pλ2 . . . . The {pλ, λ ∈ P} form a F -basis of Λ. One also
has

Λ = F [p1, p2, . . . ]

and the pr are algebraically independent over F .
5. Schur functions

Let δ be the partition (n − 1, n − 2, . . . , 0). For a partition λ of length at most
n, define the following homogeneous anti-symmetric polynomials of degree |λ| +
n(n− 1)/2 in x1, . . . , xn

aλ+δ := det
(
xλi+n−ij

)
i,j=1,...,n

.

In particular

aδ =
∏

1≤i<j≤n

(xi − xj)

is the Vandermonde determinant that we have seen in the precedent chapter. Since
aλ+δ is divisible by each of the differences xi−xj(1 ≤ i < j ≤ n), aλ+δ is divisible
by aδ. The Schur function sλ is thus well defined by

sλ(x1, . . . , xn) := aλ+δ/aδ.

It is obvious then that sλ ∈ Λn. In fact, the Schur polynomials sλ(x1, . . . , xn) where
l(λ) ≤ n form an F -basis of Λn. Their infinite-variable version, also denoted by sλ
for convenience, form a basis of Λ.

Proposition 2.2.1. We have

sλ = det(hλi−i+j)1≤i,j≤n

for every n such that l(λ) ≤ n, and

sλ = det(eλ′i−i+j)1≤i,j≤m

for every m such that l(λ′) = λ1 ≤ m.
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2.3 Properties of the Schur functions

The Schur functions form perhaps the most important basis of Λ. In fact, they have
a fundamental significance in the representation theory of Lie groups, i.e., they are the
irreducible characters of the general linear group GLn. However, we shall not discuss
this story; instead, we shall discuss its properties related to the symmetric groups and
orthogonal polynomials of several variables.

Proposition 2.3.1. (Cauchy). The following identity holds∏
i,j

(1− xiyj)−1 =
∑
λ

sλ(x)sλ(y),

where the sum is over all partitions.

Define a symmetric scalar product on Λ by declaring that

〈pλ, pµ〉 := δλµzλ.

Then the Schur functions form an orthonormal basis for this pairing. This orthonormality
is equivalent to the Cauchy identity.

The Schur functions are intimately related to the combinatorics of Young diagrams
and tableaux. This connection makes them one of the most important objects in algebraic
combinatorics. Let us discuss some classic results in that direction.

For a tableau T filled with positive integers, write xT for
∏

s∈T xs. Let λ and µ be
partitions, define the skew Schur functions sλ/µ by requiring that the relation

〈sλ/µ, sν〉 = 〈sλ, sµsν〉

holds for all the partitions ν. In particular, sλ/∅ = sλ. We have

sλ/µ = det(hλi−µj−i+j)1≤i,j≤n

for every n ≥ l(λ), and

sλ/µ = det(eλ′i−µ′j−i+j)1≤i,j≤m

for every m ≥ l(λ′). It follows from either of these identities that sλ/µ = 0 unless λ ⊃ µ.
The following result establishes a very nice relation between Schur functions and tableaux

Proposition 2.3.2. Let λ ⊃ µ be diagrams, we have

sλ/µ =
∑
T

xT ,

where the sum is over all semi-standard tableaux T of shape λ− µ.

We have the Pieri’s rule for multiplying sλ with hr and er:
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Proposition 2.3.3. For µ a partition and r ≥ 1,

sµhr =
∑

λ−µ vertical r-strip

sλ,

sµer =
∑

λ−µ horizontal r-strip

sλ.

Finally, the Schur functions satisfy various Littlewood identities. Studying Littlewood
identities for more general classes of symmetric functions constitutes the main objective
of Chapter 4. Here are some examples from [64, p.76-79]∑

λ

sλ =
∏
i

(1− xi)−1
∏
i<j

(1− xixj)−1,∑
λ even

sλ =
∏
i

(1− x2
i )
−1
∏
i<j

(1− xixj)−1,∑
λ′ even

sλ =
∏
i<j

(1− xixj)−1,∑
λ

(−1)n(λ)sλ =
∏
i

(1− xi)−1
∏
i<j

(1 + xixj)
−1.

Among many applications, these identities can be used to find explicit generating func-
tions of plane partitions [64, p.80]. In the next section, the q, t-deformation of these
identities will be stated and proved.

2.4 Macdonald polynomials

The Macdonald polynomials are two-parameter deformation of the Schur functions
which preserve many essential properties. 2 Let q, t be complex parameters, and F =
Q(q, t). To keep the notations simple, denote again by Λn be the sub-algebra of symmetric
polynomials in F[x1, . . . , xn]. All the bases above are also bases of this new Λn. In the
following, an element of F[x1, . . . , xn] is denoted by f(; q, t) if the dependence on q, t
needs to be emphasized.

Definition 2.4.1. For any partitions λ and µ of length less than or equal to n, define the
q, t-Hall scalar product on Λn

〈pλ, pµ〉q,t := δλµzλ

n∏
i=1

1− qλi
1− tλi , (2.6)

where zλ :=
∏
i≥1

mi(λ)!imi(λ).

2. When one says Macdonald polynomials without any other specifications, it is implicitly supposed
that one is talking about those attached to the root systems of type A. As it will be explained soon, there
are Macdonald polynomials attached to other root systems.
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Theorem 2.4.1. There is a unique family of symmetric polynomials Pλ(x1, . . . , xn; q, t)
indexed by partitions of length less than or equal to n and depending on two parameters
q, t such that the following two conditions hold

1. Triangularity: Pλ(; q, t) = mλ +
∑

µ<λ cλµmµ, and

2. Orthogonality: 〈Pλ(; q, t), Pµ(; q, t)〉q,t = 0 if λ 6= µ.

Definition 2.4.2. The polynomials Pλ in the previous theorem are called the Macdonald
polynomials. If l(λ) > n, we set Pλ(x1, . . . , xn; q, t) = 0.

When q = t we recover the Schur polynomials, i.e.,

Pλ(x; t, t) = sλ(x).

Other specializations of q, t give well known families of polynomials such as those of
Hall-Littlewood and of Jack. Currently, there are many families of multivariate symmet-
ric and/or orthogonal polynomials related to the Macdonald polynomials which play a
crucial role in various domains such as integrable probability, algebraic combinatorics
and asymptotic representation theory (see for instance [10]).

The skew Macdonald polynomials Pλ/µ(; q, t) are defined by requiring that

〈Pλ/µ(; q, t), Pν(; q, t)〉q,t = 〈Pλ(; q, t), Pµ(; q, t)Pν(; q, t)〉q,t (2.7)

for every partition ν. One can prove that Pλ/µ(; q, t) = 0 unless µ ⊂ λ.
The Macdonald polynomials are also orthogonal with respect to another scalar product

associated to typeA root system. This property has been generalized to define (symmetric
and non symmetric) multivariate orthogonal polynomials associated to all root systems.
Such a generalization to the non-reduced root system BCn is described in Chap.4. In that
case, the polynomials are called the Koornwinder BCn symmetric polynomials. In fact,
all the Macdonald polynomials associated to classical (i.e., non-exceptional) root systems
are specialization of the Koornwinder polynomials.

Definition 2.4.3. Let |q|, |t| < 1, define the Macdonald density

∆(x; q, t) :=
∏

1≤i<j≤n

(xi/xj, xj/xi; q)∞
(txi/xj, txj/xi; q)∞

.

Definition 2.4.4. Let |q|, |t| < 1, define the following scalar product on F[x1, . . . , xn]:

〈f, g〉′q,t :=
1

n!

∫
Tn
f(x)g(x−1)∆(x; q, t)dT

=
1

n!
[1]f(x)g(x−1)∆(x; q, t), (2.8)

where Tn is the torus {|x1| = . . . = |xn| = 1}, [1]f means the constant term of f , and

dT =
dx1

2πix1

. . .
dxn

2πixn
.

We have
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Proposition 2.4.2. For any partitions λ and µ,

〈Pλ(; q, t), Pµ(; q, t)〉′q,t = 0 if λ 6= µ.

The polynomials Pλ(q, t) satisfy many remarkable properties. I only list here the
results that will be needed later. First, we can explicitly compute the quadratic norm for
〈·〉q,t
Proposition 2.4.3. We have

〈Pλ(; q, t), Pµ(; q, t)〉q,t =
1

bλ(q, t)
δλµ, (2.9)

where bλ(q, t) is introduced in Eq.(2.5).

This equation is equivalent to the Cauchy-Macdonald identity:

Proposition 2.4.4. Let m,n be positive integers. Then∑
λ⊂mn

(−1)|λ|Pλ(x1, . . . , xn; q, t)Pλ′(y1, . . . , ym; t, q) =
n∏
i=1

m∏
j=1

(1− xiyj). (2.10)

Second, we have the g- and e-Pieri rules:

Proposition 2.4.5. Let µ be a partition and r a positive integer.

1. g-Pieri rule: Let gr(x; q, t) be the symmetric polynomials defined by the generating
function

n∏
i=1

(tuxi; q)∞
(uxi; q)∞

=:
∑
k≥0

gk(x; q, t)uk.

Then we have

Pµgr =
∑
λ

ϕλ/µPλ, (2.11)

2. e-Pieri rule: We have

Pµer =
∑
λ

ψ′λ/µPλ. (2.12)

In (2.11) (resp. (2.12)), the sum is over partitions λ such that λ/µ is a horizontal (resp.
vertical) r-strip. The coefficients are given by

ϕλ/µ =
∏

s∈Cλ/µ

bλ(s)

bµ(s)
,

ψ′λ/µ =
∏

s∈Cλ/µ−Rλ/µ

bλ(s)

bµ(s)
.

Here, for λ and µ such that λ ⊃ µ, Cλ/µ (resp. Rλ/µ) is the union of the columns (resp.
rows) that intersect λ− µ.
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The Cauchy-Macdonald identity gives the branching formula for Macdonald polyno-
mials

Proposition 2.4.6. Let x1, . . . , xn, z1, . . . , zm be variables. Then

Pλ(x1, . . . , xn, z1, . . . , zm; q, t) =
∑
µ⊂λ

Pλ/µ(x1, . . . , xn; q, t)Pµ(z1, . . . , zm; q, t). (2.13)

In particular, in combination with the Pieri rules, we have

Corollary 2.4.7. Let n ∈ N. Then

Pλ(x1, . . . , xn, y; q, t) =
∑
µ

λ/µ is a horizontal strip

ψ′λ′/µ′(t, q)y
|λ/µ|Pµ(x1, . . . , xn; q, t) (2.14)

The Macdonald polynomials satisfy the following Littlewood identities, which can be
viewed either as evaluation of their generating functions or decomposition of symmetric
functions into the Macdonald basis. The following theorem is due to Macdonald [64,
p.349], and written in the following form by Warnaar [88].

Theorem 2.4.8. Let n ∈ N and a ∈ C. We have∑
λ

aodd(λ)boaλ (q, t)Pλ(x; q, t) =
n∏
i=1

(1 + axi)(qtx
2
i ; q

2)∞
(x2

i ; q
2)∞

∏
1≤i<j≤n

(txixj; q)∞
(xixj; q)∞

, (2.15)

∑
λ

aodd(λ′)belλ (q, t)Pλ(x; q, t) =
n∏
i=1

(atxi, q)∞
(axi; q)∞

∏
1≤i<j≤n

(txixj; q)∞
(xixj; q)∞

. (2.16)

Here, we define (oa (resp. el) stands for odd arm (resp. even leg))

boaλ (q, t) :=
∏
s∈λ

a(s) odd

bλ(s; q, t) and belλ (q, t) :=
∏
s∈λ

l(s) even

bλ(s; q, t).

Proof. The two identities are in fact dual to each other via the involution ωq,t

ωq,tPλ(; q, t) := bλ′(t, q)Pλ′(; t, q).

The reader is invited to consult Macdonald’s book for more information concerning this
duality. Given this, we thus only need to prove the second identity Eq.(2.16). First, let us
prove the case a = 0, i.e.,∑

λ′ even

belλ (q, t)Pλ(x1, . . . , xn; q, t) =
∏

1≤i<j≤n

(txixj; q)∞
(xixj; q)∞

(2.17)

Denote the left hand side of (2.17) by A(x1, . . . , xn; q, t). The case n = 1 trivially holds
because both sides of (2.17) equal 0. So by induction, we need to prove that

A(x1, . . . , xn, y; q, t) = A(x1, . . . , xn; q, t)
n∏
i=1

(txiy; q)∞
(xiy; q)∞

.
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We have

A(x1, . . . , xn; q, t)
n∏
i=1

(txiy; q)∞
(xiy; q)∞

=
∑
r≥0

gr(x1, . . . , xn; q, t)yr
∑
ν′ even

belν (q, t)Pν(x1, . . . , xn; q, t)

=
∑
r≥0

∑
ν′ even

belν (q, t)yrgr(x1, . . . , xn; q, t)Pν(x1, . . . , xn; q, t)

=
∑
ν′ even

∑
µ

µ/ν horizontal strip

belν (q, t)y|µ/ν|ϕµ/ν(q, t)Pµ(x1, . . . , xn; q, t) (Eq.(2.11))

=
∑
µ

∑
ν′ even

µ/ν horizontal strip

belν (q, t)ϕµ/ν(q, t)y
|µ/ν|Pµ(x1, . . . , xn; q, t)

For a given partition µ, there exists a unique partition ν satisfying both conditions in the
inner sum, i.e., ν ′i = 2bµ′i/2c. There exists also a unique partition λ such that λ′ is even
and λ/µ is a horizontal strip, i.e. λ′i = 2dµ′i/2c. It is easy to show that for λ, µ, ν related
in this way, one has

bel
λ(q, t)ψλ′/µ′(t, q) = bel

ν (q, t)ϕµ/ν(q, t).

Given this equality, one can write

A(x1, . . . , xn; q, t)
n∏
i=1

(txiy; q)∞
(xiy; q)∞

=
∑
µ

∑
λ′ even

λ/µ horizontal strip

bel
λ(q, t)ψλ′/µ′(t, q)y

|µ/ν|Pµ(x1, . . . , xn; q, t)

=
∑
λ′ even

∑
µ

λ/µ horizontal strip

bel
λ(q, t)ψλ′/µ′(t, q)y

|µ/ν|Pµ(x1, . . . , xn; q, t)

=
∑
λ′ even

bel
λ(q, t)Pλ(x1, . . . , xn, y; q, t) (Eq.(2.14))

=A(x1, . . . , xn, y; q, t).

Thus Eq.(2.17) is proven. For the case a arbitrary, we just need to expand the product

n∏
i=1

(atxi, q)∞
(axi; q)∞

=
∑
r≥0

argr(x1, . . . , xn; q, t),

and use the g-Pieri rule (2.11) again. The details are analogous to the above manipula-
tions.

Another identity was conjectured by Kawanaka in [54] and proven in [60]. The proof
is via a new identity of theta functions.
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Theorem 2.4.9. [54, 60] Let n ∈ N, we have

∑
λ

b−λ (q, t)Pλ(x; q2, t2) =
n∏
i=1

(−txi, q)∞
(xi; q)∞

∏
1≤i<j≤n

(t2xixj; q
2)∞

(xixj; q2)∞
, (2.18)

where

b−λ (q, t) :=
∏
s∈λ

1 + qa(s)tl(s)+1

1− qa(s)+1tl(s)
.

In [75], Rains and Warnaar prove many generalizations of these identities. They also
prove that their identities imply new combinatorial character identities for affine Lie al-
gebras, which in turn, imply new Rogers-Ramanujan-type identities associated to affine
Lie algebras. These Littlewood identities of Rains and Warnaar are the object of study in
Chap.4. In particular, I have been able to prove one of their conjectured identity and make
partial progress on another.



3
Hurwitz numbers

The symmetric groups are very classical objects. Indeed, they are the genesis of mod-
ern group theory. After a quite long dormant time, they have become again, since the
eighties of the twentieth century, a central object of study, particularly in algebraic combi-
natorics, (ordinary and modular) representation theory and probability. Hurwitz numbers
play an important role in the renaissance of this interest. These numbers are beautifully
connected with other parts of mathematics such as matrix models, integrable systems and
enumerative algebraic geometry. After some general discussions about the whole context
of Hurwitz numbers, my own contributions are described in the sections 3.9 and 3.10. The
main results are an explicit formula for one-part double Hurwitz numbers with completed
3-cycles and its implications.

3.1 Irreducible characters of the symmetric groups

I will briefly recall the representation theory of the symmetric groups (for a detailed
account, see for instance [22]). The main objects that we need are actually (complex)
irreducible characters, not irreducible representations themselves. The reader can skip
this section and the next one if the material is familiar to her/him. We always assume that
the ground field is C.

Let Sd be the symmetric group, i.e., the group of all permutations of {1, 2, . . . , d}. It
is well-known that the irreducible representations of a finite group G are indexed exactly
by its conjugacy classes. In the case of Sd, a conjugacy class consists of permutations
with identical cycle factoring structure. Thus, the irreducible representations of Sd are
indexed by the partitions of d.

For λ and µ partitions of d, denote by χλµ the evaluation of the irreducible character
χλ at the conjugacy class µ. It can be shown that χλµ is an integer (à priori, it is a complex

53
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number). In particular, the dimension of the irrep λ is given by

dimλ = χλ(1d).

The dimension can be computed by the following nice combinatorial rule

Proposition 3.1.1. For λ ` d, dimλ is the number of standard tableaux of shape λ.

The dimension of λ can also be computed by the famous hook-length formula of
Frame, Robinson, and Thrall [36]:

dimλ =
d!∏

s∈λ h(s)
, (3.1)

where for each box s ∈ λ, h(s) is its hook length. Later, it will be convenient to have the
following normalized characters:

χ̂λµ :=
χλµ

dimλ
,

and

fµ(λ) := |cyc(µ)| χ
λ
µ

dimλ
= |cyc(µ)|χ̂λµ, (3.2)

where cyc(µ) is the set of permutations whose cycle structure is µ. The irreducible char-
acters satisfy the following orthogonality relations

Proposition 3.1.2.
1

d!

∑
ν`d

|cyc(ν)|χλνχµν = δλµ, (3.3)

and
|cyc(µ)|
d!

∑
λ`d

χλµχ
λ
ν = δµν . (3.4)

The irreducible characters can be calculated by the following formula of Frobenius,
although it is not the most efficient way.

Proposition 3.1.3. (Frobenius) For µ ` n, we have

pµ =
∑
λ`n

χλµsλ, (3.5)

where p and s are the power sums and the Schur polynomials respectively.

Reciprocally, by the orthogonality of irreducible characters, Frobenius’s formula is
equivalent to

sλ =
∑
µ`n

z−1
µ χλµpµ. (3.6)

Although the irreducible characters χλ are classical, they remain largely mysterious,
mostly because of their great combinatorial complexity. I list below some open questions
that have attracted my attention. It might be helpful for the readers of this thesis.
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1. The Kronecker coefficients g(λ, µ, ν), for λ, µ, ν partitions of n, are defined as
the multiplicity the irreducible representation ν in the representation λ ⊗ µ. By
definition, they are non-negative integers. They are the coefficients in the following
decomposition

χλχµ =
∑
ν`n

g(λ, µ, ν)χν .

It is not obvious from the definition but it can be shown that g(λ, µ, ν) is symmetric
in all three arguments. Some experts have called them the most challenging, deep
and mysterious objects in Algebraic Combinatorics [74]. The outstanding open
question is to find a combinatorial or geometrical description for these coefficients.
Their cousin, the Littlewood-Richardson coefficients have indeed beautiful combi-
natorial and geometrical interpretation. In particular, the problem of positivity, i.e.,
deciding whether g(λ, µ, ν) > 0 is still unsolved (while the same question for the
Littlewood-Richardson coefficients has been answered).
A concrete version of the positivity problem is the Saxl conjecture which states that

g(ρk, ρk, λ) > 0

for all λ ` k(k + 1)/2 and ρk = (k, k − 1, . . . , 1).
2. A reciprocal view of χ̂λµ was put forward by Kerov and Vershik [87] to study their

asymptotics (the normalised version turns out be more suitable than the original
one for this purpose). Rather than considering χ̂λµ as function of µ, these authors
consider them as function of λ. Fixing the "shape" of µ, they ask questions about
the asymptotics of χ̂λµ when n = |λ| tends to infinite. Of course, one does not expect
to get a uniform answer for the limits, i.e., certainly the way we fix µ and let λ grow
influences the final limit.
To fix the idea, let us state the celebrated Kerov-Vershik asymptotic formula, al-
though it might not be the strongest one available currently. A good exposition
of this and relevant results is given in the book [22]. Let h be a positive integer
and ρ = (ρ1, . . . , ρh) be a partition such that ρh ≥ 2. Let µ =

(
ρ, 1n−|ρ|

)
and

σ = (ρ1 − 1, . . . , ρh − 1).

Proposition 3.1.4. We have the following asymptotic formula

χ̂λµ =
ρ1 . . . ρh

[n]|ρ|
pσ[Cont(λ)] +O

(
1

|λ|

)
,

where the constant in O
(

1
|λ|

)
depends only on ρ. Here pσ is the power sum,

Cont(λ) = {{i− j, (i, j) ∈ λ}} is the multi-set called the content of λ, and

[n]k := n(n− 1) . . . (n− k + 1)

for n, k ∈ Z.

Similar asymptotic problems for generalizations (deformations) of the characters
of the symmetric groups have also been studied (the reader can start with the short
survey article [84]).
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3. A vaguer question concerns explicit formulas for the characters χλµ. In fact, there is
only one explicit formula which was discovered ten years ago by Lassalle [22, 61].
Unfortunately, the formula is extremely complicated (as expected!).

3.2 Group algebra of the symmetric groups

Let Sd be the symmetric group. Rather than following the convention for composing
functions, we multiply the elements of Sd from left to right. As usual, for a ringR, define
theR-group algebraRSd as the set of formal linear combinations of elements of Sd with
coefficients in R. The addition and multiplication on RSd are naturally defined. In this

thesis, I will only use R = Q. Let QS =
∞⊕
d=0

QSd. Let Zd be the center of QSd and

Z =
∞⊕
d=0

Zd. An element a ∈ Zd is also called a central element.

Definition 3.2.1. For a partition µ of d, let Cµ :=
∑

g∈cyc(µ) g.

The following result is fundamental.

Proposition 3.2.1. The elements {Cµ, µ ` d} form a basis for the algebra Zd.

Proof. We observe that an element A =
∑

g∈Sd agg of QSd is central if and only if ag =

awgw−1 for every w, g ∈ Sd. Since the conjugate action of Sd on itself, i.e. w.g := wgw−1

is transitive, every element Cµ is central and every central element is a linear combination
of the Cµ. Furthermore, it is obvious from the definition that the elements Cµ are linearly
independent. Thus they make a basis of Zd.

The main problem concerning us is to study the structure constants of the commutative
algebra Zd (and Z) with respect to the basis Cµ, and related ones. These constants can be
interpreted as counting factorization of a permutation into others with certain conditions.
They (with different normalisations) are commonly called (connected or disconnected)
Hurwitz numbers (the precise definition will be given in the next section).

The algebra Zd has another basis consisting of elements Fλ, λ ` d defined as follows

Fλ =
dim(λ)

d!

∑
µ`d

χλµCµ. (3.7)

Equivalently, due to the orthogonality of the irreducible characters, one has

Cµ = |cyc(µ)|
∑
λ`d

χ̂λµFλ.

Proposition 3.2.2. The central elements Fλ form a basis of orthogonal idempotents, i.e.,
FλFµ = δλµFλ.
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Proof. Let λ and µ be two partitions of d. Let V λ be the irreducible module corresponding
to λ. Each central element acts on V λ as a multiplication by a scalar due to the Schur
lemma. Thus the matrix representation of Cµ on V λ is bIdimλ, where b is a complex
number and I is the identity matrix. We have

b =
1

dimλ
Tr(Cµ) =

1

dimλ

∑
g∈cyc(µ)

Tr(g) = fµ(λ).

This equation, together with the definition of Fλ and the first orthogonality of the irre-
ducible characters, implies that that Fλ acts identically on V λ, and trivially on V ν for
ν 6= λ. This is equivalent to the claim.

For each a ∈ Zd, let ga(λ) be the coefficients in the decomposition

a =
∑
λ`d

ga(λ)Fλ,

i.e., aFλ = ga(λ)Fλ. The number ga(λ) is the constant by which the element a acts
in the irreducible representation λ as multiplication. We have the following proposition
which will be used to connect the combinatorics of the symmetric groups with integrable
equations:

Proposition 3.2.3. For any element

a =
∑
µ`d

aµ
Cµ

|cyc(µ)| ∈ Zd

the following equation holds∑
µ`d

aµpµ1pµ2 · · · =
∑
λ`d

ga(λ) dim(λ)sλ(p),

where p and s are respectively the power sums and the Schur functions.

Proof. By definition,

ga(λ) =
∑
µ

aµχ̂
λ
µ.

Thus, we have ∑
λ

ga(λ) dim(λ)sλ =
∑
λ

∑
µ

aµχ
λ
µsλ(p) =

∑
µ

aµpµ

according to the Frobenius character formula Eq.3.5.

We will often need to compute ga(λ) for an arbitrary central element a and irreducible
representation λ. The tool is the Jucys-Murphy elements [52, 68].
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Definition 3.2.2. The Jucys-Murphy elements of the group algebra Zd are the following
sums of transpositions: X1 := 0 and

Xk := (1, k) + · · ·+ (k − 1, k) for k = 2, . . . , d. (3.8)

These elements are not central, however we have the following results

Proposition 3.2.4. 1. The elements X1, . . . , Xd commute pair-wise and thus generate
a commutative subalgebra of QSd.

2. An element of QSd is central if and only if it can be written as a symmetric polyno-
mial of the elements X1, . . . , Xd.

3. Let a = P (X1, . . . , Xd) ∈ Zd, where P is a symmetric polynomial. Then

P (X1, . . . , Xd)Fλ = P (Cont (λ))Fλ,

where Cont(λ) is the content of the Young diagram λ. In other words,

ga(λ) = P (Cont (λ)) .

Proof. 1. Let 2 ≤ k < l ≤ d. The difference between XkXl and XlXk can only
happen at the multiplications (jk)(jl) versus (jl)(jk) and (jk)(kl) versus (kl)(jk)
for j < k. However one has

(jk)(jl) + (jk)(kl) = (jkl) + (jlk) = (kl)(jk) + (jl)(jk).

Thus XkXl = XlXk.
2. First to prove that symmetric polynomials in the JM elements are central, let us

prove a stronger statement. For 1 ≤ s ≤ d, we have

es(X1, X2, . . . , Xd) :=
∑

1≤i1<···<is≤d

Xi1 . . . Xis =
∑
µ`d

l(µ)=d−s

Cµ.

This follows from the fact that for a permutation of cycle structure µ, the min-
imal number of transpositions in its factorization as product of transposition is
k = |µ| − l(µ); and there is a unique minimal factorization (a1b1) . . . (akbk) such
that b1 < · · · < bk (we always write a transposition (ab) with convention a < b).
Since the elementary symmetric polynomials es generate the algebra of symmet-
ric polynomials, it follows that every symmetric polynomial of the JM elements is
central.
Now we prove that every central element is a symmetric polynomial of the JM ele-
ments. It suffices to construct a set of linearly independent symmetric polynomials
in X2, . . . , Xd indexed by the partitions of d. For µ = (µ1, . . . , µl) ` d with µl > 0,
let

Xµ =
∑

Xµ1−1
i1

. . . Xµl−1
il

,

where the sum is over all distinct monomials with i1, . . . , il distinct indices in
{2, 3, . . . , d}. Then it can be verified that Xµ’s are linearly independent. However,
the verification is long. The reader is invited to consult [22] for details.
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3. To prove this equation, we need to invoke some representation theoretic results.
The irreducible QSd module V λ has a Q-basis {vT} indexed by the set of standard
Young tableaux T of shape λ, called the Young’s orthogonal basis. It is an important
fact that these vectors are eigenvectors of the JM elements

XkvT = cT (k)vT , (3.9)

where cT (k) is the content of the box numbered k of T (remember that for a stan-
dard tableau T , there exists a unique box of T which is numbered k). Thus for any
polynomial f(X1, . . . , Xd), we have

f(X1, . . . , Xd)vT = f (cT (1), . . . , cT (d)) vT . (3.10)

In particular, if P is a symmetric polynomial (such that P (X1, . . . , Xd) is central)
then we can write

P (X1, . . . , Xd)Fλ = P (Cont (λ))Fλ.

3.3 Combinatorial definition of Hurwitz numbers

Let µ1, . . . , µk be partitions of d. Define the number N
(
d;µ1, . . . , µk

)
by

N
(
d;µ1, . . . , µk

)
:=
[
C(1d)

]
Cµ1 . . . Cµk =

[
Cµ1

|cyc(µ1)|

]
Cµ2 . . . Cµk ,

i.e., the coefficient of C(1d) in the linear decomposition of Cµ1 . . . Cµk . With varying
normalization, these numbers are called Hurwitz numbers.

From the definition of Cµ, one immediately notices that

N
(
d;µ1, . . . , µk

)
= #{(w1, . . . , wk) ∈ cyc(µ1)× . . . cyc(µk) | w1 . . . wk = 1}
= #{(w2, . . . , wk) ∈ cyc(µ2)× . . . cyc(µk) | w2 . . . wk ∈ cyc(µ1)}.

In general, a problem of counting permutation factorization is called a Hurwitz enumera-
tion problem. One has the following "explicit" formula due to Frobenius and Burnside:

Theorem 3.3.1. With the same notation as above,

N
(
d;µ1, . . . , µk

)
=
|cyc(µ1)| . . . |cyc(µk)|

d!

∑
λ`n

χλµ1 . . . χ
λ
µk

dim(λ)k−2
. (3.11)

Proof. The formula follows immediately from the formula expressing Cµ in terms of Fλ
and the idempotency of Fλ.
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This formula looks compact and is a useful theoretical tool, but of course not prac-
tical in most cases due to the lack of simple formulas for the irreducible characters.
Besides, there are just too many summands (the number of partitions of n grows as
exp(π

√
2n/3)/4n

√
3). However, in certain cases, most of the terms vanish and the for-

mula simplifies a lot. I will exploit this observation to calculate explicitly the one-part
double Hurwitz numbers with completed 3-cycles.

A surprising property of Hurwitz numbers is that while the dependency of each sum-
mand on µi is virtually incomprehensible, the final sum can be very nice. For example, a
proper normalization makes the sum polynomial (or piece-wise polynomials) in the parts
of µi in some cases.

We now give a geometric definition (in fact it was the original definition given by
Hurwitz [46]) and prove its equivalency with the combinatorial one.

3.4 Hurwitz numbers count ramified coverings of the 2-
sphere

Let Covd(µ1, . . . , µk) be the set of isomorphism classes of weighted degree d (both
connected and disconnected) coverings of P1 ramified over k fixed points of P1 with
ramification profiles given by µ1, . . . , µk. The weight of a covering is defined to be the
inverse of the order of its finite automorphism group. 1 The disconnected Hurwitz number
H(d;µ1, . . . , µk) is defined to be the weighted sum over Covd(µ1, . . . , µk), i.e.,

H(d;µ1, . . . , µk) :=
∑

f∈Covd(µ1,...,µk)

1

|Aut(f)| (3.12)

If we restrict ourselves to connected coverings, we have connected Hurwitz numbers, de-
noted by H?(d;µ1, . . . , µk). The connection between connected and disconnected num-
bers follows the general inclusion-exclusion principle of enumerative combinatorics. That
is, the generating function of disconnected numbers is the exponential of a well chosen
generating function of connected ones.

The Riemann-Hurwitz formula gives us the Euler-Poincaré characteristic of the cover:

2− 2g = l(µ1) + · · ·+ l(µk)− (k − 2)d. (3.13)

Thus one might prefer keeping track of g rather than d. We will denote Hg(µ
1, . . . , µk) =

H(d;µ1, . . . , µk) in such occasions (and always suppose that the Riemann-Hurwitz for-
mula holds).

Theorem 3.4.1. We have the following equality between geometric and combinatorial
Hurwitz numbers:

H(d;µ1, . . . , µk) =
1

d!
N
(
d;µ1, . . . , µk

)
.

1. Let f, g : X → Y be two coverings of Riemann surfaces. They are called isomorphic if there is
a biholomorphic mapping σ : X → X such that f = σ ◦ g. An automorphism of f is a biholomorphic
mapping τ : X → X such that f = τ ◦ f . Two isomorphic coverings have isomorphic automorphism
groups, Eq.3.12 is thus well defined.
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Proof. For each tuple of permutations (w1, . . . , wk) ∈ cyc(µ1)×. . . cyc(µk), the Riemann
existence theorem assures that there exists a covering of the sphere with branching at the
points P1, . . . , Pk ∈ CP 1 specified by wi’s precisely when w1 . . . wk = 1. For each
tuple (w1, . . . , wk) satisfying this property, the corresponding covering is unique up to
isomorphism. It follows that one has a well-defined map

ψ : {(w1, . . . , wk) ∈ cyc(µ1)× . . . cyc(µk) | w1 . . . wk = 1} → Covd(µ1, . . . , µk).

Since for each f ∈ Covd(µ1, . . . , µk), |ψ−1(f)| = d!/|Aut(f)|, it follows that

H(d;µ1, . . . , µk) =
1

d!
#{(w1, . . . , wk) ∈ cyc(µ1)× . . . cyc(µk) | w1 . . . wk = 1}.

Remark. — The cover corresponding to w1, . . . wk is connected if and only if theses
permutations generate a transitive subgroup of Sd.

— The counting of covering of surfaces of higher genus is also linked to the counting
of permutation factorization. Let Covgd(µ

1, . . . , µk) be the isomorphism classes of
coverings of degree d of a surface S of genus g ramified at exactly k points with
profiles µ1, . . . , µk ` d. Then∑

f∈Covgd(µ1,...,µk)

1

|Aut(f)|

=
1

d!
#{(a1, . . . , ag, b1, . . . , bg, w1, . . . , wk) ∈ S2g

d × cyc(µ1)× . . . cyc(µk) |
[a1, b1] . . . [ag, bg]w1 . . . wk = 1}

=(d!)2g−2|cyc(µ1)| . . . |cyc(µk)|
∑
λ

χλµ1 . . . χ
λ
µk

(dimλ)k+2g−2
. (3.14)

There are still at least two other ways to view and compute Hurwitz numbers. The
first one is about maps on surfaces (see Def.1.2.1). For a ramified covering π : X → P1,
we can associate two maps on X . Let y1, . . . , yk ∈ P1 be the ramification points and an
arbitrary point y ∈ P1 − {y1, . . . , yk}. Let P be a polygon whose vertices are y1, . . . , yk.
Then π−1(P ) is a map onX . Alternatively, let St(y, y1, . . . , yk) a "star" connecting y with
y1, . . . , yk. Then π−1(St) is a also map on X . With careful definitions, we can interpret
Hurwitz numbers as numbers of maps satisfying certain conditions. See [59] for a gentle
introduction, and [28, 81] for newer results.

Another way to interpret Hurwitz numbers is via tropical graphs [21]. The advantage
of the graph-theoretic approaches is that one can sometimes obtain elementary proofs via
explicit bijections. Furthermore, these graphs and bijections are interesting subjects of
study by themselves.

3.5 Hurwitz numbers and integrable hierarchies
The first connection between Hurwitz numbers and integrable equations was made ex-

plicit by Okounkov [72], although the general connection between enumeration problems
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and integrable equations had been known before. More specifically, Okounkov proved
the following theorem about the double Hurwitz numbers. In our notation, they are

H

d;µ, ν, (21d−2), . . . , (21d−2)︸ ︷︷ ︸
k

.

Theorem 3.5.1. Let q, u, p1, p2, . . . , p
′
1, p
′
2, . . . be variables. The generating function

H(p,p′, u, q) :=
∑
d,k,µ,ν

qdukpµp
′
νH

d;µ, ν, (21d−2), . . . , (21d−2)︸ ︷︷ ︸
k

 /k!

is a tau function of the Toda lattice hiearchy (where the "time" variables are p1, p2, . . . , p
′
1, p
′
2, . . . ).

The sum runs over all d, k ∈ Z+, and µ, ν partitions of d such that

g = 1 +
k − l(µ)− l(ν)

2
∈ Z+.

As usual pµ := pµ1pµ2 . . . .
2

A particular case of this result is that the generating function of single (or simple)
Hurwitz numbers is a tau function of the Kadomtsev-Petviashvili (KP) hierarchy (which is
a reduction of the Toda lattice hierarchy). To simplify the exposition, I will restrict myself
to this special case. The Toda lattice hierarchy is in fact defined in the same framework,
with slightly more complicated details. Further developments concerning the connection
between Hurwitz numbers and tau functions can be found for example in the works of
Alexandrov, Guay-Paquet, Harnad, Natanzon, Orlov among others [2,38,43,44,69]. The
basics of KP integrable hierarchy are recalled in App.A.

Theorem 3.5.2. Let u, p1, p2, . . . be variables. The generating function

H(u; p1, p2, . . . ) :=
∞∑
k=0

∞∑
d=0

∑
µ`d

H

d;µ, (21d−2), . . . , (21d−2)︸ ︷︷ ︸
k

 pµ1pµ2 . . .
uk

k!

is a KP τ -function.

Proof. Denote for short the central element C(21d−2) by C2. Applying Prop. 3.2.3 for the
element a = Ck

2 , we obtain

H(u; p1, p2, . . . ) =
∑
d≥0

∑
µ`d

1

d!
pµ1pµ2 . . .

[
Cµ

|cyc(µ)|

]
euC2

=
∑
µ

eg2(µ)udim(µ)

|µ|! sλ(p)

2. Do not confuse pµ for power sums, although there is eventually a reason to use this notation. In this
theorem, just consider pi as variables.
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where g2(µ) is a constant such that C2Fµ = g2(µ)Fµ. Since C2 = X2 + · · · + Xd, Prop.
3.2.4 implies that

g2(µ) =
∑
s∈µ

c(s) =
1

2

l(µ)∑
i=1

[(
µi − i+

1

2

)2

−
(
−i+

1

2

)2
]
.

Thus the generating function H(u; p1, p2, . . . ) belongs to the Orlov-Shcherbin family de-
scribed in Thm.A.0.1 with yi = eui.

Remark. The function g2 is a shifted power sum that will be introduced in a subsequent
section. We also have

g2(λ) =
d(d− 1)

2
χ̂λ(211d−2).

3.6 Connection with moduli spaces of curves
The celebrated Ekedahl-Lando-Shapiro-Vainshtein (ELSV) formula connects single

Hurwitz numbers with intersection numbers on the moduli space of stable curves

Theorem 3.6.1. [29] For any partition β of d whose length is n, we have

H(g, β) := H

d; β, (21d−2), . . . , (21d−2)︸ ︷︷ ︸
k

 = C(g, β)

∫
Mg,n

1− λ1 + λ2 − . . .+ (−1)gλg
(1− β1ψ1) . . . (1− βnψn)

,

(3.15)

where

C(g, β) = k!
n∏
i=1

ββii
βi!

.

Here, the parameters are connected by the Riemann-Hurwitz formula

k = 2g − 2 + d+ n.

The spaceMg,n is the moduli space of stable curves of genus g with n marked points. On
this space, λi is a certain cohomology class of dimension i, and ψi is a certain cohomology
class of dimension 1.

The integral on the right hand side of Eq.(3.15) are certain intersection numbers on
this moduli space. The precise definitions are not needed for us. The reader is invited to
consult the book [59] for a excellent exposition of this important result.

In other words, P g (β) := H(g, β)/C(g, β) is polynomial in β1, . . . , βn and the (lin-
ear) Hodge integrals are given by:

〈τb1 . . . τbnλk〉g :=

∫
Mg,n

ψb11 . . . ψbnn λk = (−1)k
[
βb11 . . . βbnn

]
P g (β) . (3.16)
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Another ELSV type formula has been found for the so-called orbifold Hurwitz num-

bers, i.e, double Hurwitz numbers H

d;α, β, (21d−2), . . . , (21d−2)︸ ︷︷ ︸
k

 with α = (am) by

Johnson, Pandharipande and Tseng [51]. And more recently, some special cases of the
orbifold version of Zvonkine’s r-ELSV formula are proved by Borot and collaborators
in [16], which are based on the anterior works of Shadrin and collaborators (cited in the
preprint). The r-spin Hurwitz numbers studied in this preprint are the single version of
Hurwitz numbers with completed cycles, whose double version will be the object of my
study in later sections. It is an important and challenging problem to find other ELSV
type formulas.

To widen the perspective and connect with the first chapter, it is worth mentioning that
the intersection numbers can be calculated via a matrix integral. This is a classic result of
Kontsevich [57]. Again, an excellent exposition is available in the book [59]. For the sake
of completeness, let us state Kontsevich’s theorem. Let Λ be a diagonal N × N matrix
with positive entries Λ1, . . . ,ΛN on the diagonal. Consider the Konsevich model given by
the following integral

K := log

[
1

CΛ,N

∫
HN

e
i
6

TrM3− 1
2

TrM2ΛdM

]
, (3.17)

where

CΛ,N :=

∫
HN

e−
1
2

TrM2ΛdM. (3.18)

It is obvious thatK is a symmetric function of Λ1, . . . ,ΛN . We will regard it as a function
in a different set of variables. Let t0, t1, . . . be the following variables

tj := −(2j − 1)!!Tr
(
Λ−2j−1

)
.

Kontsevich proved the following

Theorem 3.6.2. The function K is a formal power series in the variables t0, t1, . . . with
rational coefficients and a τ - function of the KdV hierarchy (which is a reduction of the
KP hierarchy). Furthermore[

tb00 . . . tbss
b0! . . . bs!

]
K(t0, t1, . . . ) = 〈τ b00 . . . τ bss 〉. (3.19)

3.7 Hurwitz numbers, matrix models, and the topologi-
cal recursion

Single Hurwitz numbers can be computed from a matrix integral. Let u, t, p1, p2, . . .
be variables, consider the following generating function for the disconnected single Hur-
witz numbers H(g, µ):

Z(p, u, t) :=
∞∑
g=0

∑
µ

H(g, µ)pµu
2g−2 t|µ|

(2g − 2 + |µ|+ l(µ))!
. (3.20)
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The generating function for the connected numbers is

F (p, u, t) :=
∞∑
g=0

∑
µ

H?(g, µ)pµu
2g−2 t|µ|

(2g − 2 + |µ|+ l(µ))!
= logZ(p, u, t). (3.21)

Borot, Eynard, Mulase and Safnuk [13] proved the following theorem

Theorem 3.7.1. [13] Let N be a positive integer and V : C→ C be the function

V (x) = −x
2

2
+ u(N − 1/2)x+ (log(u/t) + iπ)x− u log (Γ(−x/u)) + Ct,

with

Ct = −1

3
u2

(
N2 − 3

2
N + 2

)
+

1

2
u(N − 1) log (u/t) .

Then we have the following equality

Z(p, u, t) =
u−N

2

N !

∆(R)

∆(v)

∫
HN

e−
1
u

Tr(V (M)−MR)dM,

where v = (v1, . . . , vN) is a tuple of N parameters such that

pk = u
N∑
i=1

vki ,

and, R := diag(log v1, . . . , log vN).

Finally, Hurwitz numbers have been shown to satisfy the topological recursion by
Eynard, Mulase and Safnuk [32]. The proof is based on the cut-and-joint equations. To
state this property, we need to use yet another generating function. Let t, x1, x2, . . . be
variables. For each n ∈ N, define

H(g)(x1, . . . , xn) :=
∑
l(µ)=n

t|µ|
∏n

i=1 µiMµ(x1, . . . , xn)

(2g − 2 + |µ|+ n)!
H(q, µ),

where Mµ(x) :=
∑

σ∈Sn
∏n

i=1 x
µi
σ(i) are the un-normalized symmetric monomials.

Theorem 3.7.2. Let E = (L, x, y) be the following Lambert spectral curve L = {(x, y) ∈
C2|ye−y = tex}, x(z) = −z + log(z/t) and y(z) = z. Denote by ω(g)

n (z1, . . . , zn) the
symmetric differential forms defined by the topological recursion as in Def.D.0.4 with the
initial data being the Lambert spectral curve. Then the following equations hold true

H(g)(v1, . . . , vn) =
ω

(g)
n (z1, . . . , zn)

dx(z1) . . . dx(zn)
,

where the variables vi are such that vi = ex(zi).
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3.8 Double Hurwitz numbers with completed cycles

In this and the remaining sections, I describe my own results concerning double Hur-
witz numbers with completed cycles [70]. First, I follow closely the exposition in [82] to
give an algebraic definition of these numbers.

3.8.1 Shifted symmetric functions

Let Q[x1, . . . , xd] be the algebra of d-variable polynomials over Q. The shifted action
of the symmetric group Sd on this algebra is defined by:

σ(f(x1 − 1, . . . , xd − d)) := f(xσ(1) − σ(1), . . . , xσ(d) − σ(d)) (3.22)

for σ ∈ Sd and for any polynomial written in the variables xi − i.

Example 3.8.1. σ(x2
1x2) = (xσ(1) − σ(1) + 1)2(xσ(2) − σ(2) + 2).

Denote by Q[x1, . . . , xd]
? the sub-algebra of polynomials which are invariant under

this action. It is isomorphic with the usual algebra of symmetric polynomials. Define the
algebra of shifted symmetric functions as the projective limit

Λ? := lim
←−

Q[x1, . . . , xd]
?,

where the projective limit is taken in the category of filtered algebras with respect to the
homomorphism which sends the last variable to 0. Concretely, an element of this algebra
is a sequence f = {f (d)}d≥1, f (d) ∈ Q[x1, . . . , xd]

? such that the polynomials f (d) are of
uniformly bounded degree and stable under the restriction, i.e f (d+1)|xd+1=0 = f (d).

3.8.2 Two bases of the algebra of shifted symmetric functions

Definition 3.8.1. For any positive integer k, define the corresponding shifted symmetric
power sum:

pk(x1, x2, . . .) :=
∞∑
i=1

((
xi − i+

1

2

)k
−
(
−i+

1

2

)k)
. (3.23)

In the following, we are only interested in evaluating these functions on partitions.
That is, for a partition λ = (λ1 ≥ λ2 ≥ . . . .), we define pk(λ) := pk(λ1, λ2, . . .). As
usual in symmetric function theory, for any partition µ, define pµ = pµ1pµ2 . . .

The functions {pµ, µ ∈ P} form a basis of Λ?. Another important basis is given in the
following proposition of Kerov and Olshanski [56].

Proposition 3.8.1. The functions {fµ, µ ∈ P} given in Eq.(3.2) are shifted symmetric
functions, and form a basis of Λ?.
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3.8.3 Completed cycles
Consider the following linear isomorphism

φ : Z→ Λ?

Cµ 7→ fµ. (3.24)

Definition 3.8.2. For any partition µ, the completed µ-conjugacy class Cµ is defined as

Cµ := φ−1(pµ)/
∏
i≥1

µi!.

Of special interest are the completed r-cycles (r) := C(r), r ∈ N. Here, (r) is the 1-part
partition of r.

Some first completed cycles are:

0!(1) = (1)

1!(2) = (2)

2!(3) = (3) + (1, 1) +
1

12
(1)

3!(4) = (4) + 2(2, 1) +
5

4
(2)

3.8.4 Double Hurwitz numbers with completed cycles
Let α and β be two partitions of a positive integer d, whose lengths are m and n

respectively. Let g, r and s be three non-negative integers such that rs = 2g− 2 +m+n.

Definition 3.8.3. Disconnected double Hurwitz numbers with completed (r + 1)-cycles
are defined by the following formula

H
g,(r)
α,β :=

1∏
i≥1 αi

∏
j≥1 βj

∑
λ`d

χλα

(
pr+1(λ)

(r + 1)!

)s
χλβ. (3.25)

We often omit the superscript (r) if it is fixed in advance. Since the completed 2-cycle
is equal to the ordinary 2-cycle, the double Hurwitz numbers Hg,(1)

α,β are just the ordinary
double Hurwitz numbers.

We are mostly interested in the dependence of Hg,(r)
α,β on (the parts of) α and β, given

fixed g, r, l(α) and l(β). The numbers obtained in the case m = 1, i.e. α = (d) are
called one-part double numbers. In this case, the sum is simplified a lot, and we can get
an explicit and compact formula for r = 2.

The double Hurwitz numbers with completed cycles are the answers for the following
factorization counting problem. We just need a simple adaptation of what Shadrin, Spitz
and Zvonkine did for simple Hurwitz numbers with completed cycles in [83, Section 2.2].
Define a (g , r , α, β)-factorization fac(g, r, α, β) as a factorization in Sd of the following
form:

h1 . . . hsg1g2 = 1, (3.26)
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where rs = 2g − 2 + l(α) + l(β), g ∈ Z+, g1 ∈ cyc(α), g2 ∈ cyc(β), and each hi ∈ Sd
appears in (r + 1) with a coefficient ci 6= 0. The weight of this factorization is defined as

w(fac) :=
s∏
i=1

ci.

Proposition 3.8.2. We have the following equality:∑
fac ∈{(g,r ,α,β)−factorizations}

w(fac) =
d!

|Aut(α)||Aut(β)|H
g,(r)
α,β . (3.27)

Proof. Since {Cλ|λ ` d} form a basis of ZQSd, we can write:

(r + 1)
s
CαCβ =

∑
λ`d

aλCλ. (3.28)

By definition, ∑
fac ∈{(g,r ,α,β)−factorizations}

w(fac) =
[
C(1d)

]
(r + 1) . . . (r + 1)︸ ︷︷ ︸

s

CαCβ,

where the right hand side means the coefficient of C(1d) = Id ≡ 1 in the product following
it. Consider the left regular representation of QSd, i.e. the action of QSd on itself by
multiplication on the left. A main theorem of the representation theory of the symmetric
groups [59, Thm.A.1.5] gives us the decomposition of this representation into irreducible
ones:

QSd =
⊕
λ`d

dim(λ)Vλ.

Here, dim(λ) is the dimension of the irreducible representation λ of Sd (as we defined in
the section 3.8.2) and dimVλ = dim(λ). The action of an element B ∈ ZQSd in Vλ is
multiplication by a number Lλ(B), i.e. the matrix L(B) representing B is diagonal:

L(B) = diagλ`d

 Lλ(B)︸ ︷︷ ︸
dim(λ)2times

 .

In particular, we can compute:

Lλ(Cα) = fα(λ) = |cyc(α)| χλα
dim(λ)

,

Lλ((r + 1)) =
1

(r + 1)!
pr+1(λ) =

1

(r + 1)!

l(λ)∑
i=1

((
λi − i+

1

2

)r+1

−
(
−i+

1

2

)r+1
)
.

Now let us take the trace of the action in the left regular representation of the two sides of
the equation (3.28). The right hand side gives d!a(1d) since

TrL(g) =

{
d! if g = 1,

0 otherwise,
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while the left hand side gives

Tr
(
L((r + 1))sL(Cα)L(Cβ)

)
=
∑
λ`d

dim(λ)2Lλ(Cα)Lλ(Cβ)Lλ((r + 1))s.

Finally, we get:

[
C(1d)

]
(r + 1) . . . (r + 1)︸ ︷︷ ︸

s

CαCβ =
1

d!

∑
λ`d

dim(λ)2Lλ(Cα)Lλ(Cβ)Lλ((r + 1))s

=
|Per(α)||Per(β)|

d!

∑
λ`d

χλαχ
λ
β

(
pr+1(λ)

(r + 1)!

)s
=

d!

|Aut(α)||Aut(β)|H
g,(r)
α,β .

In the last line, we used:

|cyc(α)| = d!

|Aut(α)|∏αi
.

3.9 One-part numbers with completed 3-cycles

This section contains my main contribution, an explicit formula for one-part double
Hurwitz numbers with completed 3-cycles, i.e. the case r = 2. Let β be a partition of d
of odd length n (the constraint rs = 2g − 2 + l(α) + l(β) forces so). Let s = g + n−1

2
.

We write β in three ways, each of which is convenient in each specific context.

(β1, β2, . . .) = (1n12n2 . . .) = (`n` . . . qnq) . (3.29)

Here, ` and q are the smallest and greatest numbers appearing in β. If a number i does not
appear in β, we have ni = 0. For later use in the proofs, introduce also ci = ni for i ≥ 2
and c1 = n1 − 1. We have

∑
i ci = n− 1 and

∑
ici = d− 1.

The main theorem that I obtained is

Theorem 3.9.1. [70] Given g ≥ 0, d > 0, let β be a partition of odd length of d and s
be an integer such that 2s = 2g − 1 + l(β). Then we have:

H
g,(2)
(d),β =

s!ds−1

2s

g∑
h=0

(2s− 2h)!

h!(s− h)!12h
d2h
[
z2(g−h)

]∏
i≥1

(
sinh(iz/2)

iz/2

)ci
(3.30)

=
s!ds−1

2s+2g

g∑
h=0

(2s− 2h)!

h!(s− h)!3h
d2h

∑
λ`(g−h)

ξ2λS2λ

|Autλ| . (3.31)

There is strong similarity with the case of ordinary one-part double Hurwitz numbers
obtained by Goulden, Jackson and Vakil [37, Thm.3.1]. Their formula is



70 CHAPTER 3. HURWITZ NUMBERS

Theorem 3.9.2. [37, Thm.3.1] For g ≥ 0, β ` d and s = 2g − 1 + l(β),

H
g,(1)
(d),β = s!ds−1

[
z2g
]∏
i≥1

(
sinh(iz/2)

iz/2

)ci
=
s!ds−1

22g

∑
λ`g

ξ2λS2λ

|Autλ| .

For the proof of Thm.3.9.1, we need the following preparatory results. First, one
computes that:

p3

((
d− k, 1k

))
=

(
d− k − 1

2

)3

−
(
−k − 1

2

)3

= 3d

((
k − d− 1

2

)2

+
d2

12

)
.

(3.32)

Remark. The fact that p3

((
d− k, 1k

))
has the form a(k + b)2 + c, where a, b, c do not

depend on k turns out to be crucial for my method. Unfortunately, pr+1((d − k, 1k)) for
r ≥ 3 do not have the form a(k+ b)r + c , so I could not obtain a compact formula by the
same strategy.

Lemma 3.9.3. We have the following irreducible character evaluation:

χ
(d−k,1k)
β = (−1)k

[
zk
]

(1 + z + . . .+ z`−1)(1− z`)n`−1
∏
i≥`+1

(1− zi)ni

= (−1)k
[
zk
]∏
i≥1

(1− zi)ci

= (−1)k
`−1∑
h=0

n`−1∑
j`=0

n`+1∑
j`+1=0

. . .

nq∑
jq=0

(−1)
∑
i≥l ji

(
n` − 1

j`

)(
n`+1

j`+1

)
. . .

(
nq
jq

)
δk,h+

∑q
i=` iji

.

(3.33)

Here, δx,y := 1 if x = y, and 0 otherwise. This lemma is well known, and can be
derived from the Murnaghan-Nakayama rule (see, for instance, [37, p.59]).

For j ≥ 1, let ξ2j = [x2j] log(sinhx/x) and

S2j =
∑
k≥1

k2jck = −1 +
∑
k≥1

k2jnk = −1 +
∑
k≥1

βk
2j,

i.e. S2j is a power sum for the partition, shifted by 1. For a partition λ , let ξλ = ξλ1ξλ2 . . .
and Sλ = Sλ1Sλ2 . . . and 2λ = (2λ1, 2λ2, . . .).

Lemma 3.9.4. The following formula holds true:

[
z2k
]∏
i≥1

(
sinh(iz/2)

iz/2

)ci
= 2−2k

∑
λ`k

ξ2λS2λ

|Autλ| . (3.34)
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Proof. We have

∏
i≥1

(
sinh(ix)

ix

)ci
= exp

(∑
i≥1

ci
∑
j≥1

ξ2ji
2jx2j

)
= exp

(∑
j≥1

ξ2jS2jx
2j

)
=
∑
λ

ξ2λS2λ

|Autλ|x
2|λ|.

The proof is finished upon setting x = z/2.

Lemma 3.9.5. Let Sp(k, x) :=
∑k−1

h=0(h+ x)p. Then

Sp(k, x) =

[
zp

p!

]
exz
(
1 + ez + . . .+ e(k−1)z

)
. (3.35)

Proof. Indeed,

∞∑
p=0

Sp(k, x)
zp

p!
=

k−1∑
h=0

ez(h+x) = ezx
(
1 + ez + . . .+ e(k−1)z

)
.

Let us now prove Thm.3.9.1.

Proof. By definition, we have

H
g,(2)
(d),β =

1

d
∏
βj

∑
λ`d

χλ(d)

(
p3(λ)

6

)s
χλβ.

It is well known that χλ(d) = 0 except for λ = (d− k, 1k), k = 0, . . . , d− 1, in which case
it is equal to (−1)k. So

H
g,(2)
(d),β =

ds−1

2s
∏
βj

d−1∑
k=0

((
k − d− 1

2

)2

+
d2

12

)s

(−1)kχ
(d−k,1k)
β

=
ds−1

2s
∏
βj

[
ts

s!

] d−1∑
k=0

exp

{
t

((
k − d− 1

2

)2

+
d2

12

)}
(−1)kχ

(d−k,1k)
β

=
s!ds−1

2s
∏
βj

[ts] exp

(
td2

12

) d−1∑
k=0

exp

{
t

(
k − d− 1

2

)2
}

(−1)kχ
(d−k,1k)
β .

We first treat the sum separately:

A =
d−1∑
k=0

exp

{
t

(
k − d− 1

2

)2
}

(−1)kχ
(d−k,1k)
β

=
`−1∑
h=0

n`−1∑
j`=0

n`+1∑
j`+1=0

. . .

nq∑
jq=0

exp

t
(
h+

∑
i≥`

iji −
d− 1

2

)2


× (−1)
∑
i≥l ji

(
n` − 1

j`

)(
n`+1

j`+1

)
. . .

(
nq
jq

)
(Lem.3.9.3).
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. Now expand the exponential and sum over h first :

A =

nl−1∑
j`=0

n`+1∑
j`+1=0

. . .

nq∑
jq=0

(−1)
∑
i≥` ji

(
n` − 1

j`

)(
n`+1

j`+1

)
. . .

(
nq
jq

) ∞∑
p=0

tp

p!

`−1∑
h=0

(
h+

∑
i≥`

iji −
d− 1

2

)2p

=
∞∑
p=0

(2p)!tp

p!

[
z2p
] (

1 + ez + . . .+ e(`−1)z
)
e−

(d−1)z
2 ×

×
n`−1∑
j`=0

n`+1∑
j`+1=0

. . .

nq∑
jq=0

ez
∑
i≥` iji(−1)

∑
i≥` ji

(
n` − 1

jl

)(
n`+1

j`+1

)
. . .

(
nq
jq

)
(Lem.3.9.5).

=
∞∑
p=0

(2p)!tp

p!

[
z2p
]
e−

(d−1)z
2

(
1 + ez + . . .+ e(`−1)z

) (
1− e`z

)n`−1
∏
i≥`+1

(
1− eiz

)ni
=
∞∑
p=0

(2p)!tp

p!

[
z2p
]
e−

(d−1)z
2

∏
i≥1

(
1− eiz

)ci .
Finally we get:

H
g,(2)
(d),β =

s!ds−1

2s
∏
βj

[ts] exp

(
td2

12

) ∞∑
p=0

(2p)!tp

p!

[
z2p
]
e−

(d−1)z
2

∏
i≥1

(
1− eiz

)ci
=
s!ds−1

2s
[ts] exp

(
td2

12

) ∞∑
p=0

(2p)!tp

p!

[
z2p−n+1

]∏
i≥1

(
sinh(iz/2)

iz/2

)ci
=
s!ds−1

2s

s∑
h=0

(2s− 2h)!

h!(s− h)!12h
d2h
[
z2s−2h−n+1

]∏
i≥1

(
sinh(iz/2)

iz/2

)ci
.

To pass from the first line to the second, we write 1 − eiz = −2eiz/2 sinh(iz/2) and use∑
i ci = n − 1,

∑
i ici = d − 1 and

∏
i i
ci =

∏
βj . There is also the factor (−1)

∑
ci =

(−1)n−1 = 1 since n is odd.
Note that 2s = 2g − 1 + n, so we are taking the coefficient of z2(g−h). Because

the lowest degree of the series in z is 0, the summing index h actually runs from 0 to g.
Finally, we get the first claimed equality:

H
g,(2)
(d),β =

s!ds−1

2s

g∑
h=0

(2s− 2h)!

h!(s− h)!12h
d2h
[
z2(g−h)

]∏
i≥1

(
sinh(iz/2)

iz/2

)ci
.

The second equation in the theorem follows from Lem.3.9.4,.

3.10 Some corollaries

As it was done in [37], I will prove some fairly important implications of Thm.3.9.1.
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3.10.1 Strong Polynomiality
Our formula gives immediately the strong polynomialty of 1-part double Hurwitz

numbers with completed 3-cycles. In fact, double Hurwitz numbers with completed
cycles of any size satisfy the strong piecewise polynomiality, i.e. they are piecewise
polynomial with the highest and lowest orders respectively (r + 1)s + 1 − m − n and
(r + 1)s + 1 − m − n − 2g. This is proved in [82]. For one-part numbers, piecewise
polynomiality becomes polynomiality. Our formula can be viewed as an illustration of
this fact through an explicitly computable case.

Corollary 3.10.1. Hg,(2)
(d),β , for fixed g and n, is a polynomial of the parts of β and satisfies

the strong polynomiality property, i.e. it is polynomial in β1, β2, . . . with highest and
lowest degrees respectively 3g + n−3

2
and g + n−3

2
.

The polynomial is divisible by ds−1, but unlike the case of ordinary double Hurwitz
numbers, 2sH

g,(2)
(d),β/s!d

s−1 depends on the number of parts of β for g ≥ 1. See the com-
ment after [37, Corollary 3.2].

3.10.2 Connection with intersection theory on moduli spaces of curves
and "the λg theorem"

In [82], the authors conjecture that for every r ≥ 1, there exist moduli spaces X(r)
g,n of

complex dimension 2g(r + 1) + n− 1 such that we have the following ELSV formula:

H
g,(r)
(d),β =

s!

d

∫
Xg,n

1− Λ2 + Λ4 − . . .+ (−1)gΛ2g

(1− β1Ψ1) . . . (1− βnΨn)
, (3.36)

where we fix the degrees of the rational cohomology classes Λ2k ∈ H4rk
(
X

(r)
g,n

)
and

Ψi ∈ H2r
(
X

(r)
g,n

)
.

A similar conjecture was previously made by Goulden, Jackson and Vakil [37] for
ordinary double Hurwitz numbers, i.e. the case r = 1. To support their conjecture, they
made a thorough combinatorial study and found many similarity between "combinatorial
Hodge integrals" and the "real" ones such as those defined by Eq.(3.16) .

Following them, let us define the combinatorial Hodge integrals for b1, . . . , bn ≥ 0
and 0 ≤ k ≤ g:

〈〈τb1 . . . τbnΛ2k〉〉g : = (−1)k
[
βb11 . . . βbnn

](
d
H
g,(2)
(d),β

s!

)

= (−1)k
[
βb11 . . . βbnn

](
d

H
g,(2)
(d),β(

g + n−1
2

)
!

)
. (3.37)

We will not keep the superscript (2) to save space. This "intersection" number vanishes
unless b1 + . . . + bn + 2k = 3g + n−1

2
. The order of 〈〈τb1 . . . τbnΛ2k〉〉g is defined to be

b1 + . . .+ bn.
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We are going to evaluate the lowest order terms, i.e. the terms with k = g. In [35],
Faber and Pandharipande proved the so-called λg conjecture (which is also a consequence
of the unresolved Virasoro conjecture):

〈τb1 . . . τbnλg〉g = cg

(
2g − 3 + n

b1, . . . , bn

)
. (3.38)

Recall the left hand side notation in Eq.(3.16). By computing 〈τ 2g−2λg〉g, they found

cg =
22g−1 − 1

22g−1(2g)!
|B2g|,

where B2g is a Bernoulli number (B0 = 1, B2 = 1/6, B4 = −1/30, B6 = 1/42, . . .). In
analogy with Eq.(3.38), the following combinatorial version is proved in [37, Prop.3.12]:

〈〈τb1 . . . τbnΛ2g〉〉r=1
g = cg

(
2g − 3 + n

b1, . . . , bn

)
. (3.39)

Their symbol 〈〈.〉〉r=1
g is defined in a similar way as in Eq (3.37), with a different normal-

isation; for precise details, see [37, Eq.25]. It is quite remarkable that the same constant
cg appears in both cases.

Here, thank to Thm.3.9.1, we can also easily evaluate 〈〈τb1 . . . τbnΛ2g〉〉g.

Theorem 3.10.2. For b1 + . . .+ bn = g + n−1
2

, the lowest combinatorial Hodge integral
is given by:

〈〈τb1 . . . τbnΛ2g〉〉g =

(
g + n−1

2

b1, . . . , bn

)
Cg,n, (3.40)

with

Cg,n =
(2g + n− 1)! (22g−1 − 1)

(2g)!
(
g + n−1

2

)
!23g+n−3

2

|B2g|. (3.41)

Proof. To compute 〈〈τb1 . . . τbnΛ2g〉〉g, we have to do two steps. The first consists of
extracting the lowest term in the polynomial dHg,(2)

(d),β/s! , i.e. the h = 0 term in the sum
(3.30), and extracting the constant term of S2λ, which is (−1)l(λ), in the sum over all
partitions λ of g. The result is:

(2s)!ds

s!2s+2g

∑
λ`g

(−1)l(λ)ξ2λ

|Autλ| =
(2g + n− 1)!dg+

n−1
2(

g + n−1
2

)
!23g+n−1

2

∑
λ`g

(−1)l(λ)ξ2λ

|Autλ| .

Then the second step is computing the coefficient of βb11 . . . βbnn of this expression. The
final result is

〈〈τb1 . . . τbnΛ2g〉〉g = (−1)g
(
g + n−1

2

b1, . . . , bn

)
(2g + n− 1)!(
g + n−1

2

)
!23g+n−1

2

∑
λ`g

(−1)l(λ)ξ2λ

|Autλ| . (3.42)
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On the other hand, using (3.30), we have:

〈〈τgΛ2g〉〉g = (−1)g [dg]
dH(d),(d)

g!

= (−1)g [dg]
dg(2g)!

2gg!

[
z2g
] z/2

sinh z/2

sinh dz/2

dz/2

=
(2g)!

g!2g
(−1)g

[
z2g
] z/2

sinh z/2

=
22g−1 − 1

g!23g−1
|B2g|. (3.43)

Comparing (3.42) and (3.43), we obtain the explicit evaluation for the sum
∑

λ`g
(−1)l(λ)ξ2λ
|Autλ|

and get the desired claim.

We observe a strong similarity with the results quoted above. The main difference
is the dependence on n of the factor Cg,n. A geometric explanation would be of great
interest.

3.10.3 Dilaton and string equations
Goulden, Jackson and Vakil proved that their combinatorial Hodge integrals for or-

dinary double Hurwitz numbers satisfy the string and dilation equations [37, Prop.3.10].
Here I prove that the lowest terms satisfy the (modified) string and dilaton equations for
every genus g. The situation for higher terms is not clear to me.

Theorem 3.10.3. String equation: For g ≥ 0, n ≥ 1, n odd, b1, . . . , bn ≥ 0, b1 + . . . +
bn = g + n+1

2
:

〈〈τ 2
0 τb1 . . . τbnΛ2g〉〉g = (2g + n)

n∑
i=1

〈〈τb1 . . . τbi−1
τbi−1τbi+1

. . . τbnΛ2g〉〉g. (3.44)

Dilaton equation: For g ≥ 0, n ≥ 1, n odd, b1, . . . , bn ≥ 0, b1 + . . . + bn = g + n−1
2

(minus here is not a misprint):

〈〈τ0τ1τb1 . . . τbnΛ2g〉〉g = (2g + n)

(
g +

n+ 1

2

)
〈〈τb1 . . . τbnΛ2g〉〉g. (3.45)

Here we assume that 〈〈.〉〉=0 if there is some τ<0 inside the brackets.

Proof. For the string equation:

〈〈τ 2
0 τb1 . . . τbnΛ2g〉〉g =

(
g + n+1

2

b1, . . . , bn

)
Cg,n+1

=

(
g + n−1

2

)
!(b1 + . . .+ bn)

b1! . . . bn!
Cg,n

(2g + n+ 1)(2g + n)

2
(
g + n+1

2

)
= (2g + n)

n∑
i=1

〈〈τb1 . . . τbi−1
τbi−1τbi+1

. . . τbnΛ2g〉〉g.
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For the dilaton equation:

〈〈τ0τ1τb1 . . . τbnΛ2g〉〉g =

(
g + n+1

2

0, 1, b1, . . . , b2s+1

)
Cg,n+1

=

(
g + n−1

2

b1, . . . , bn

)
Cg,n(2g + n)

(
g +

n+ 1

2

)
= (2g + n)

(
g +

n+ 1

2

)
〈〈τb1 . . . τbnΛ2g〉〉g.

Finally, let us make the following remark concerning the Virasoro constraints. Con-
sider the following generating function

F :=
∑
n≥1

1

n!

∑
b1,...,bn≥0

〈〈τb1 . . . τbnΛ2g〉〉g
tb1 . . . tbn

(2g + n− 2)!!
(3.46)

Then the string and dilaton equations can be written as follows:(
− ∂2

∂t20
+
∞∑
i=0

ti+1
∂

∂ti

)
F := L−1F = 0 (3.47)(

− ∂2

∂t0∂t1
+ 1 +

∞∑
i=0

iti
∂

∂ti

)
F := L0F = 0 (3.48)

It is easy to check that [L0, L−1] = L−1. They look like two lowest Virasoro constraints.
It would be interesting to investigate if we have higher Virasoro-like constraints as well.
And of course, it would be of great interest to investigate string and dilaton equations for
higher order integrals, i.e. for 〈τb1 . . . τbnΛ2k〉 with k < g.

3.10.4 Explicit formulae for top degree terms
Finally, let us show how to compute the top degree terms

〈〈τb1 . . . τbn〉〉g := 〈〈τb1 . . . τbnΛ0〉〉g.
They are sometimes called Witten terms because of the celebrated Witten’s conjecture
[90]. In order to state the result, we need some notations. For any partition λ, we have the
expansion of pλ in the monomial symmetric functions mµ:

pλ =
∑
µ`|λ|

Rλµmµ. (3.49)

From the definition of pλ and mµ, one can see that Rλµ is equal to the number of ordered
partitions 3 π =

(
A1, . . . , Al(µ)

)
of the set {1, . . . , l(λ)} such that for 1 ≤ j ≤ l(µ):

µj =
∑
i∈Aj

λi.

3. Do not confuse between a partition of a number and a partition of a set. A partition of a set S is a set
of pairwise disjoint subsets {S1, S2, . . .} of S such that S = S1 ∪ S2 ∪ . . . .
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For 2j ≤ b1 + . . .+ bn, denote

D2j(~b) := {(a1, . . . , an) , ai even, ai ≤ bi, a1 + . . .+ an = 2j} .

For a vector ~a, denote P~a the associated partition, i.e. the rearrangement of the compo-
nents of ~a in non-decreasing order.

Theorem 3.10.4. For b1, . . . , bn ≥ 0, b1 + . . .+ bn = 3g + n−1
2

, we have:

〈〈τb1 . . . τbn〉〉g

=
1

23g+n−1
2

g∑
h=0

(2s− 2h)!

h!(s− h)!3h

∑
λ`(g−h)

∑
~a∈D2g−2h(~b)

ξ2λR2λ,P~a

|Autλ|

(
g + n−1

2
+ 2h

b1 − a1, . . . , bn − an

)
.

(3.50)

Proof. To compute 〈〈τb1 . . . τbn〉〉g, we have to do two steps. First, we need to extract the
highest degree term in dHg

(d),β/s!. The result is:

ds

2s+2g

g∑
h=0

(2s− 2h)!

h!(s− h)!3h
d2h

∑
λ`(g−h)

ξ2λp2λ

|Autλ| , (3.51)

where p2λ = p2λ(β1, β2, . . . ) is the power sum. Then we compute the coefficient of
βb11 . . . βbnn of this expression to obtain 〈〈τb1 . . . τbn〉〉g.

Using the obvious fact that [xa11 x
a2
2 . . .]mµ(x) = 1 if µ = P~a and 0 otherwise, we

obtain the desired result.

In particular, for g = 1, we have

Corollary 3.10.5. For n ≥ 1, b1, . . . , bn ≥ 0 and b1 + . . .+ bn = n+5
2

:

〈〈τb1 . . . τbn〉〉1 =
(n+ 1)!

3× 2
n+7
2

[
1

n

(
n+5

2

b1, . . . , bn

)
+

n∑
i=1

(
n+1

2

b1, . . . , bi−1, bi − 2, bi+1, . . . , bn

)]
,

(3.52)
where

( n+1
2

b1,...,bi−1,bi−2,bi+1,...,bn

)
= 0 if bi − 2 < 0.

One can compare this formula with the following Hodge integrals overM1,n which
can be found, for instance, in [59, Prop.4.6.11]:

Proposition 3.10.6. For d1 + . . . dn = n, we have:

〈τd1 . . . τdn〉1 :=

∫
M1,n

ψd11 . . . ψdnn =
1

24

(
n

d1 . . . dn

)(
1−

n∑
i=2

(i− 2)!(n− i)!
n!

ei(d1, . . . , dn)

)
,

(3.53)

where ei is the i-th elementary symmetric function:

ei(d1, . . . , dn) =
∑

j1<...<ji

dj1 . . . dji





4
Koornwinder polynomials and
Littlewood identities

The subject of this chapter is bounded Littlewood identities. First, I define and prove
some basic properties of Koornwinder polynomials. Then the virtual Koornwinder inte-
grals are introduced. Their known evaluations are the main technical tool. After that, I
discuss several new bounded Littlewood identities proved by Rains and Warnaar in [75].
My main results, presented in the last section, concern the extension of two of these iden-
tities. More specifically, I give a full proof of a conjectured formula stated in their paper,
and make partial progress towards another (see Subsec.4.4.2 and Subsec.4.4.3).

4.1 Koornwinder polynomials

The polynomials which concern us are theBCn symmetric Koornwinder polynomials,
which were introduced by Koornwinder in [58]. There are many equivalent ways to define
them. One of those is via a q-difference equation as follows.

Let q, t, t = (t0, t1, t2, t3) be complex parameters and K = Q (q, t, t). Let n be a pos-
itive integer and x = (x1, . . . , xn) be indeterminates. We denote x−1 := (x−1

1 , . . . , x−1
n ),

x = (x1, . . . , xn−1, x
−1
n ).

Let W = Sn n (Z/2Z)n be the hyper-octahedral group, which is the Weyl group of
the finite root system of type Bn (and Cn). The group W can be viewed as the group of
permutations of {1, 1, . . . , n, n} such that w(i) = w(i) for any w ∈ W and i = 1, . . . , n

(with the convention that i = i). This group acts on x by permutation and inversion.
More specifically, each w ∈ W is a permutation of 2n symbols {x,x−1} which satisfies
w(x−1

j ) = w(xj)
−1. As usual, it acts on K [x±1] by transposition, i.e.,

(wf)(x1, . . . , xn) := f(wx1, . . . , wxn).

79
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Denote by ΛBCn = K [x±1]
W the subalgebra of Laurent polynomials which are in-

variant under W . It has the following basis indexed by the partitions of length less than
or equal to n:

mλ =
∑
w∈W

xwλ =
∑
w∈W

(wx1)λ1 . . . (wxn)λn . (4.1)

The polynomials mλ are called monomial BCn symmetric functions.

Definition 4.1.1. Define the Koornwinder difference operator

D(n)
x = D(n)

x (q, t; t0, . . . , t3)

:=
n∑
j=1

[
aj(x1, . . . , xn)

(
Txj ,q − 1

)
+ aj(x

−1
1 , . . . , x−1

n )
(
Txj ,q−1 − 1

)]
, (4.2)

where

aj(x1, . . . , xn) =
(1− t0xj)(1− t1xj)(1− t2xj)(1− t3xj)

(1− x2
j)(1− qx2

j)

×
∏

1≤k≤n
k 6=j

(1− txjxk)(1− txjx−1
k )

(1− xjxk)(1− xjx−1
k )

, (4.3)

and (Txj ,qf)(x1, . . . , xn) = f(x1, . . . , qxj, . . . , xn) for any function f of n variables.
For each partition λ of length less than or equal to n, define the Koornwinder eigen-

value

E
(n)
λ = E

(n)
λ (q, t; t0, . . . , t3) =

n∑
j=1

[
t0t1t2t3q

−1t2n−j−1
(
qλj − 1

)
+ tj−1

(
q−λj − 1

)]
,

(4.4)

It is not obvious from the expression of D(n)
x that the image of a BCn symmetric Lau-

rent polynomial is a Laurent polynomial since à priori, the images are rational functions.
In fact, one can prove that

Proposition 4.1.1. D(n)
x is an endomorphism of the vector space ΛBCn .

Proof. Let f ∈ ΛBCn . Since D(n)
x is BCn symmetric, g := D

(n)
x f is BCn symmetric.

One thus only needs to verify that g is a Laurent polynomial, that is the denominators in
D

(n)
x are finally all canceled. From the expression of D(n)

x , what we have to prove is that
for every j, the function g, considered as a complex function of xj , has vanishing residue
at the following points

xj = ±1,±q1/2,±q−1/2, x±1
k (∀k 6= j).
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We compute the residue at xj = 1, xk to illustrate; the remaining points are completely
analogous. For xj = 1,

Res
xj=1

g =− (1− t0)(1− t1)(1− t2)(1− t3)

2(1− q)
∏

1≤k≤n
k 6=j

(1− txk)(1− tx−1
k )

(1− xk)(1− x−1
k )

× (f(x1, . . . , q, . . . , xn)− f(x1, . . . , 1, . . . , xn))

+
(1− t0)(1− t1)(1− t2)(1− t3)

2(1− q)
∏

1≤k≤n
k 6=j

(1− txk)(1− tx−1
k )

(1− xk)(1− x−1
k )

×
(
f(x1, . . . , q

−1, . . . , xn)− f(x1, . . . , 1, . . . , xn)
)

=0,

since

f(x1, . . . , q, . . . , xn) = f(x1, . . . , q
−1, . . . , xn).

Now for xj = xk (without loss of generality, suppose that j < k), we first prove that

Res
xj=xk

[aj(x) (Txi,q − 1) + ak(x) (Txk,q − 1)] f = 0.

Indeed, this residue is equal to

(1− t0xk)(1− t1xk)(1− t2xk)(1− t3xk)
(1− x2

k)(1− qx2
k)

∏
1≤l≤n
l 6=j,k

(1− txkxl)(1− txkx−1
l )

(1− xkxl)(1− xkx−1
l )

× xk(1− tx2
k)(1− t)

1− x2
k

[−f(x1, . . . , qxk, . . . , xk, . . . , xn) + f(x1, . . . , xk, . . . , qxk, . . . , xn)]

= 0,

due to the symmetry of f . By the same calculation, we also have

Res
xj=xk

[
aj(x

−1) (Txi,q−1 − 1) + ak(x
−1) (Txk,q−1 − 1)

]
f = 0.

Thus Res
xj=xk

g = 0.

Remark. A more conceptual proof based on the language of root systems is given in the
original paper of Koornwinder [58].

The operator D(n)
x has the following property which is essential for the construction

of the Koornwinder polynomials.

Proposition 4.1.2. The operatorD(n)
x is upper-triangular in the basis {mλ}, more specif-

ically

D(n)
x mλ =

∑
µ≤λ

cλµ(q, t; t0, t1, t2, t3)mµ.

Its eigenvalues (diagonal entries) are E(n)
λ . The eigenvalues are generically (i.e., for

generic values of parameters) pairwise distinct.
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Proof. The partial order on partitions defines a natural partial order on monomials. One
simply defines xλ ≥ xµ if and only if λ ≥ µ. First, we show that only partitions µ such
that µ ≤ λ enter into the decomposition. It is equivalent to showing that every monomial
xµ = xµ11 . . . xµnn in D(n)

x mλ such that µ1 ≥ µ2 ≥ · · · ≥ µn ≥ 0 satisfies xµ ≤ xλ. This
follows immediately from the observation that the factors in front of the scaling operators
Txi,· of D(n)

x all have the form P (x)
Q(x)

where for every j, the degree of xj in P is equal to its
degree in Q.

Now we show that the diagonal entries are E(n)
λ . The coefficient of mλ in D(n)

x mλ is
equal to the coefficient of xλ in D(n)

x xλ. For 1 ≤ j ≤ n, we have

aj(x1, . . . , xn)
(
Txj ,q − 1

)
xλ11 . . . xλnn

=xλ11 . . . xλnn
(
qλj − 1

) (1− t0xj)(1− t1xj)(1− t2xj)(1− t3xj)
(1− x2

j)(1− qx2
j)

∏
1≤k≤n
k 6=j

1− txjxk
1− xjxk

.
xk − txj
xk − xj

=t0t1t2t3q
−1tn−1

(
qλj − 1

)
xλ11 . . . xλnn

∏
1≤k≤n
k 6=j

xk − txj
xk − xj

+ lower terms

=t0t1t2t3q
−1tn−1

(
qλj − 1

)
xλ11 . . . xλnn

×
(

1 +
(1− t)xj
x1 − xj

)
. . .

(
1 +

(1− t)xj
xj−1 − xj

)(
t− (1− t)xj+1

xj − xj+1

)
. . .

(
t− (1− t)xn

xj − xn

)
+ lower terms

=t0t1t2t3q
−1t2n−j−1

(
qλj − 1

)
xλ11 . . . xλnn + lower terms.

In the above equations, "lower terms" are understood in the sense of the mentioned partial
order on monomials. The last equation is just the natural consequence of this partial order
that for i < j, xi is privileged in calculating the higher term. Similarly

aj(x
−1
1 , . . . , x−1

n )
(
Txj ,q−1 − 1

)
xλ11 . . . xλnn

=(q−λj − 1)xλ
(xj − t0)(xj − t1)(xj − t2)(xj − t3)

(x2
j − 1)(x2

j − q)
∏

1≤k≤n
k 6=j

(xjxk − t)(xj − txk)
(xjxk − 1)(xj − xk)

=(q−λj − 1)xλ
∏

1≤k≤n
k 6=j

xj − txk
xj − xk

+ lower terms

=(q−λj − 1)xλ

×
(
t− (1− t)xj

x1 − xj

)
. . .

(
t− (1− t)xj

xj−1 − xj

)(
1 +

(1− t)xj+1

xj − xj+1

)
. . .

(
1 +

(1− t)xn
xj − xn

)
+ lower terms

=(q−λj − 1)tj−1xλ + lower terms.

Summing over j the two results, we get the desired claim about E(n)
λ .

The main consequence is that this operator is generically diagonalisable with 1-dimensional
eigenspaces. It leads us to the following
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Definition 4.1.2. For each partition λ of length less than or equal to n, the BCn Koorn-
winder polynomial Kλ(x) = Kλ(x1, . . . , xn; q, t; t0, . . . , t3) is the unique solution of the
q-difference equation [

D(n)
x − E(n)

λ

]
Kλ(x) = 0 (4.5)

such that

Kλ(x) = mλ(x) +
∑
µ<λ

cλµmµ(x) ∈ K[x±1]W . (4.6)

If l(λ) > n, we set Kλ = 0.

In particular, {Kλ} form a basis of K[x±1]W . It is clear from the definition that Kλ

is invariant under permutations of t0, t1, t2, t3. In the following, in order to make the
expressions look neat, we shall often omit the parameters whenever no confusion can
arise. Without explicit writing, we always assume that the parameters q, t; t0, t1, t2, t3
appear in that order.

To the best of my knowledge, there is no known algorithm to compute the Koorn-
winder polynomials. Even for small partitions λ, the expression of Kλ can be very com-
plicated. There is actually an explicit formula for polynomials corresponding to one-part
partitions λ = (r) found by Hoshino, Noumi and Shiraishi [45] (see Thm.4.4.2).

The Koornwinder polynomials satisfy many remarkable properties. First, they are
orthogonal polynomials which generalize the celebrated 5-parameter univariate orthogo-
nal polynomials of Askey and Wilson [6, 58]. To state this orthogonality property, let us
define the Koornwinder density

∆K = ∆K(x; q, t; t0, . . . , t3) :=
n∏
j=1

(
x±2
j ; q

)
∞∏3

r=0

(
trx
±1
j ; q

)
∞

∏
1≤j<k≤n

(
x±1
j x±1

k ; q
)
∞(

tx±1
j x±1

k ; q
)
∞

, (4.7)

where in the last product, all four combinations of signs are allowed. For complex param-
eters q, t, t0, t1, t2, t3 of modulus strictly less than 1, one can define the following scalar
product on K [x±1]:

〈f, g〉 :=
1

|W |

∫
Tn
f(x)g(x−1)∆K(x)dT

=
1

2nn!
[1]f(x)g(x−1)∆K(x), (4.8)

where T and dT are respectively the n-dimensional unit torus and the natural measure on
it defined in Def.2.4.4. Now we can state an equivalent definition of Kλ.

Proposition 4.1.3. The Kλ are the unique family of polynomials in K[x±1]W such that:

1. Kλ(x) = mλ(x) +
∑
µ<λ

cλµmµ(x), and

2. 〈Kλ, Kµ〉 = 0 if λ 6= µ.
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Proof. It suffices to prove that D(n)
x is symmetric with respect to the scalar product, i.e.,

〈D(n)
x f, g〉 = 〈f,D(n)

x g〉,

for every f, g ∈ ΛBCn . Let

∆+
K(x) =

n∏
j=1

(
x2
j ; q
)
∞∏3

r=0 (trxj; q)∞

∏
1≤j<k≤n

(
xjx

±1
k ; q

)
∞(

txjx
±1
k ; q

)
∞

so that ∆K = ∆+
K(x)∆+

K(x−1). We have

∆+
K(x)−1Tx1,q∆

+
K(x) =

∏3
r=0(1− trxj)

(1− x2
j)(1− qx2

j)

n∏
k=2

(1− tx1xk)(1− tx1/xk)

(1− x1xk)(1− x1/xk)
= a1(x).

Thus

(a1(x)Tx1,qf(x)) ∆+
K(x) = Tx1,q

(
f(x)∆+

K(x)
)
.

Therefore ∫
Tn

(a1(x)Tx1,qf(x)) ∆+
K(x)g(x−1)∆+

K(x−1)dT

=

∫
Tn
Tx1,q

(
f(x)∆+

K(x)
)
g(x−1)∆+

K(x−1)dT

=

∫
Tn
f(x)∆+

K(x)Tx1,q−1

(
g(x−1)∆+

K(x−1)
)
dT

=

∫
Tn
f(x)

(
a1(x−1)Tx1,q−1g(x−1)

)
∆+
K(x)∆+

K(x−1)dT.

By interchanging x1 and x±1
i , and summing over all of the obtained equations, we indeed

get the claimed symmetry of D(n)
x .

A key property of the Koornwinder polynomials that will be used to prove the bounded
Littlewood identities is the following BCn Cauchy identity of Mimachi:

Proposition 4.1.4. [67]For x = (x1, . . . , xn) and y = (y1, . . . , ym), we have∑
λ⊂mn

Kmn−λ(x; q, t; t0, . . . , t3)Kλ′(y; t, q; t0, . . . , t3)

=
n∏
j=1

m∏
k=1

(
xj + x−1

j − yk − y−1
k

)
= (x1 . . . xn)−m

n∏
j=1

m∏
k=1

(1− xjy±1
k ) (4.9)

The proof of this theorem is long and involved, the interested reader is invited to
consult the original paper [67]. Note that q and t are exchanged in the second polynomial
in the sum. We will also need the explicit quadratic norm evaluation:
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Proposition 4.1.5. [76] The quadratic norm of Koornwinder polynomials with respect
to the Koornwinder density is

N
(n)
λ (q, t; t0, t1, t2, t3) :=

〈Kλ(; q, t; t0, t1, t2, t3), Kλ(; q, t; t0, t1, t2, t3)〉
〈1, 1〉

=
C−λ (q; q, t)C+

λ (t2n−3t0t1t2t3; q, t)C0
λ(tn, tn−2t0t1t2t3; q, t)

∏
0≤i<j≤3C

0
λ(tn−1titj; q, t)

C−λ (t; q, t)C+
λ (t2n−2t0t1t2t3/q; q, t)C0

2λ2(t
2n−2t0t1t2t3; q, t)

,

where all the notations are defined in Sec.2.1.

It is known that all other Macdonald polynomials associated to classical root systems
can be obtained from the BCn Koornwinder polynomials. More specifically, we have

Proposition 4.1.6. [75,86] TheAn−1 Macdonald polynomial Pλ(q, t) is the highest order
term of Kλ (note that Pλ(q, t) is homogeneous). The other Macdonald polynomials can
be obtained by specialising the parameters as follows.

1. For λ a partition of length at most n,

P
(Cn,Bn)
λ (x; q, t, t2) = Kλ(x; q, t;±q1/2,±t1/22 ). (4.10)

2. For λ a partition or a half-partition of length at most n,

P
(Bn,Bn)
λ (x; q, t, t2) = Kλ(x; q, t; t2, q

1/2), (4.11)

P
(Bn,Cn)
λ (x; q, t; t2) = Kλ(x; q, t; t2, t2q

1/2), (4.12)

where

Kλ(x; q, t; t2, t3)

=

Kλ(x; q, t;−1,−q1/2, t2, t3) λ is a partition,

Kλ−(1/2)n(x; q, t;−q,−q1/2, t2, t3)
n∏
i=1

(x
1/2
i + x

−1/2
i ) λ is a half-partition.

3. Let λ be a (generalized) partition or a half-partition of length at most n, where
the part λn can be negative but satisfies −λn−1 ≤ λn ≤ λn−1. Denote λ̄ :=
(λ1, . . . , λn−1,−λn). Then, we have

P
(Dn,Dn)
λ (x; q, t) = P

(Bn,Bn)
λ (x; q, t, 1), (4.13)

if λn = 0, and

P
(Dn,Dn)
λ (x; q, t) + P

(Dn,Dn)

λ̄
(x; q, t) = P

(Bn,Bn)
λ (x; q, t, 1), (4.14)

P
(Dn,Dn)
λ (x; q, t)− P (Dn,Dn)

λ̄
(x; q, t) = P

(Bn,Cn)
λ−(1/2)n(x; q, t, q1/2)

n∏
i=1

(
x
−1/2
i − x1/2

i

)
,

(4.15)

if λn 6= 0.
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I will not define what P (R,S)
λ for a pair of admissible root systems (R, S) are. The gen-

eral construction is completely analogous to that of Koornwinder polynomials (by trian-
gularity with respect to the monomial symmetric functions and orthogonality with respect
to a well chosen density attached to the root system R). We can of course take the above
formulas as the definition for (R, S) = (Bn, Bn), (Bn, Cn), (Cn, Bn), and (Dn, Dn). The
interested reader should consult the book [63] for a uniform treatment of all root systems
(including exceptional ones).

4.2 Virtual Koornwinder integrals
The virtual Koornwinder integrals are the main technical tools used by Rains and

Warnaar to prove new bounded Littlewood identities [75,76]. They are defined as follows.
For f ∈ ΛBCn , define

I
(n)
K (f ; q, t; t0, t1, t2, t3) := [K0(; q, t; t0, t1, t2, t3)]f. (4.16)

Note that although K0 = 1, I(n)
K is not the constant term of f . Similarly, for f ∈ Λ, define

IK(f ; q, t, T ; t0, t1, t2, t3) :=
[
K̃0(; q, t, T ; t0, t1, t2, t3)

]
f, (4.17)

where K̃ is the infinite variable version of a lifting of K (see [76, Sec.7] for details). If
the specialization of parameters hits the poles of of K̃λ, i.e., if

t0t1t2t3 = q2−λi−jti+λ
′
jT−2, (i, j) ∈ λ,

then T must be specialized before other parameters. The relationship between the two
virtual integrals is:

I
(n)
K (f ; q, t; t0, t1, t2, t3) = IK(f ; q, t, tn; t0, t1, t2, t3). (4.18)

Remind that if no confusion arises, we will omit writing the parameters. A corollary
of the orthogonality property 4.1.3 is that:

Corollary 4.2.1. For q, t, t0, . . . , t3 of magnitude < 1, and f ∈ ΛBCn ,

I
(n)
K (f) = Z−1

∫
Tn
f(x)∆K(x)dT = 〈f, 1〉/〈1, 1〉, (4.19)

where

Z = 〈1, 1〉 =

∫
Tn

∆K(x)dT =
n∏
j=1

(t, t0t1t2t3t
n+i−2; q)∞

(q, ti; q)∞
∏

0≤r<s≤3(trtsti−1; q)∞
. (4.20)

The parameters are understood in a consistent way.

The evaluation of 〈1, 1〉 is known as Gustafson’s integral [42]. In general, it is hard
to compute explicitly the virtual Koornwinder integrals. The known evaluations are as
follows.
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Theorem 4.2.2. (Rains and Vazirani [75, p.30], [78, Thm.4.1]) For every partition µ, we
have

IK(Pµ(; q, t); q, t, T ;±t1/2,±(qt)1/2) = χ(µ′even)
C0
ν (T 2; q, t2)

C0
ν (qT 2/t; q, t2)

C−ν (qt; q, t2)

C−ν (t2; q, t2)
(4.21)

where ν := (µ′/2)′ = (µ1, µ3, . . . ) and χ(µ′even) = 0 if µ′ is not even, i.e., at least one
part of µ′ is odd, and equals 1 if µ′ is even. Recall the definition of C0,−

λ in Sec.2.1.

The proof of this theorem is based on the affine Hecke algebras. The next proposition
is due to Rains [75, p.30]. It is a consequence of the recent works of Rains on multivariate
elliptic hypergeometric functions and identities.

Theorem 4.2.3. For every partition µ,

IK(P (; q, t); q, t, T ;−1,−q1/2,−t1/2,−(qt)1/2)

= (−1)|µ|
C0
µ(T ; q1/2, t1/2)

C0
µ(−q1/2T/t1/2; q1/2, t1/2)

C−µ (−q1/2; q1/2, t1/2)

C−µ (t1/2; q1/2, t1/2)
(4.22)

Two variants for I(n)
K are available [75, Thm.3.4, Thm.3.5].

Theorem 4.2.4. For µ a partition of length at most 2n, let

µ̃ = (µ1 − µ2n, . . . , µ2n−1 − µ2n).

Then we have:

I
(n)
K

(
Pµ(x±1 , . . . , x

±
n ; q, t); q, t;±1,±t1/2

)
= (−1)µ2nI

(n−1)
K

(
Pµ(x±1 , . . . , x

±
n−1,±1; q, t); q, t;±t,±t1/2

)
=

{
A

(2n)
µ/2 (q, t) if µ̃ is even

0 otherwise,
(4.23)

where µ/2 := (µ1/2, µ2/2, . . . ).

Theorem 4.2.5. For ν a partition of length at most 2n+ 1, let

ν̃ := (ν1 − ν2n+1, . . . , ν2n − ν2n+1).

Then we have

I
(n)
K

(
Pν(x

±
1 , . . . , x

±
n , 1; q, t); q, t;−1, t,±t1/2

)
= (−1)ν2n+1I

(n)
K

(
Pν(x

±
1 , . . . , x

±
n ,−1; q, t); q, t; 1,−t,±t1/2

)
=

{
A

(2n+1)
ν/2 (q, t) if ν̃ is even

0 otherwise,
(4.24)
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4.3 Bounded Littlewood identities

One fundamental problem in the theory of symmetric functions is calculating the tran-
sition matrix between two bases (one of them is often the Schur or Macdonald basis). Of
course, due to the great complexity of involved objects, it is hopeless to compute the full
transition matrix. However, we are only interested in those matrix coefficients which have
a nice and reasonably compact expression. Let us formalize the question

Problem: Let R be a symmetric polynomial, calculate the coefficients of the ex-
pansion of R in the Macdonald basis Pλ, i.e. calculate cλ such that

R =
∑
λ

cλPλ.

Such an equation, particularly when R and cλ are all reasonably simple, is called a
Littlewood identity. If the sum runs over a finite number of partitions, it is further called
a bounded Littlewood identity.

Lemma 4.3.1. Let x = (x1, . . . , xn) and y = (y1, . . . , ym). Then

(−1)|µ|[Pλ(x; q, t)](x1 . . . xn)mKmn−µ(x; q, t; t0, t1, t2, t3)

=(−1)|λ|[Kµ′(y; t, q; t0, t1, t2, t3)]Pλ′(y
±; t, q) (4.25)

Proof. Indeed, combining the Macdonald-Cauchy identity 2.4.4 and the Mamichi-Cauchy
identity 4.1.4, we obtain∑

λ⊂mn
(−1)|λ|(x1 . . . xn)mKmn−λ(x; q, t; t0, t1, t2, t3)Kλ′(y; t, q; t0, t1, t2, t3)

=
∑

λ⊂(2m)n

(−1)|λ|Pλ(x; q, t)Pλ′(y
±; t, q).

Equating the coefficients of Pλ(x; q, t)Kµ′(y; t, q; t0, t1, t2, t3), one finds the desired equa-
tion.

Thus one can interchangeably do the computation in the bases Pλ orKλ. Taking µ = 0
in Eq.(4.25), one obtains

Corollary 4.3.2. For any partition λ,

[Pλ(x; q, t)](x1 . . . xn)mKmn(x; q, t; t0, t1, t2, t3)

=(−1)|λ|[K0(y; t, q; t0, t1, t2, t3)]Pλ′(y
±; t, q)

=(−1)|λ|I
(m)
K (Pλ′(t, q); t, q; t0, t1, t2, t3). (4.26)
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Rains and Warnaar [75] proved various bounded Littlewood identities which express
the decomposition of rectangular-shaped Macdonald polynomials 1 associated to B,C,D
root systems into those associated to A system. The implications of these identities in-
clude new combinatorial formulas for highest weight characters of affine Lie algebras,
new identities of Rogers-Ramanujan type associated with affine Lie algebras, and new
Kaneko-Macdonald-type hypergeometric identities.

Their Littlewood identities are stated in the following theorems. The reader is invited
to look at the discussions in [75, Ch.4] to know about the earlier identities of which these
identities are generalization.

The first bounded Littlewood identity of Rains and Warnaar is for P (Cn,Bn)
mn (x; q, t, qt).

In the next section, I will prove an extension to the case of near-rectangular polynomials
P

(Cn,Bn)

mn−r(m−1)r(x; q, t, qt); it is Thm.4.4.5. It was conjectured by Rains and Warnaar in their
paper.

Theorem 4.3.3. For x = (x1, . . . , xn), m a nonnegative integer and a a complex number,

∑
λ

aodd(λ)boa
λ;m(q, t)Pλ(x; q, t) =

(
n∏
j=1

xmj (1 + axj)

)
P

(Cn,Bn)
mn (x; q, t, qt), (4.27)

where

boa
λ;m(q, t) := boa

λ (q, t)
∏
s∈λ

a′(s) odd

1− q2m−a′(s)+1tl
′(s)

1− q2m−a′(s)tl′(s)+1
.

Note that boa
λ;m(q, t) = 0 if λ1 > 2m + 1, thus the sum is over partitions lying inside

the rectangular ((2m + 1)n). This explains the adjective "bounded". Also, for λ an even
partition

boa
λ;m(q, t) = boa

λ (q, t)
∏
s∈λ

a′(s) even

1− q2m−a′(s)tl
′(s)

1− q2m−a′(s)−1tl′(s)+1
. (4.28)

Proof. First, let us prove the case a = 0, in which Eq.(4.27) is equivalent to

(−1)|λ|I
(m)
K (Pλ′(t, q); t, q;±q1/2,±(qt)1/2) =

{
boa
λ;m(q, t) if λ is even,

0 otherwise.

Following Thm.4.2.2 with (T, µ) = (tm, λ′), we have (−1)|λ|I
(m)
K (Pλ′(t, q); t, q;±q1/2,±(qt)1/2)

vanishes unless λ is even in which case it is equal to

C0
(λ/2)′(q

2m; t, q2)

C0
(λ/2)′(q

2m−1t; t, q2)
.
C−(λ/2)′(qt; t, q

2)

C−(λ/2)′(q
2; t, q2)

.

1. It means the polynomials indexed by rectangular Young diagrams.
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Now suppose that λ is even, we show that this expression equals boa
λ;m(q, t). From the

definition, one has, for every partition ν

C0
ν (a; q, t) = (−a)|ν|qn(ν)t−n(ν′)C0

ν (a−1; t, q),

C−ν′(a; q, t) = C−ν (a; t, q).

Thus

(−1)|λ|I
(m)
K (Pλ′(t, q); t, q;±q1/2,±(qt)1/2)

=
(q
t

)|λ|/2 C0
λ/2(q−2m; q2, t)

C0
λ/2(q1−2m/t; q2, t)

.
C−λ/2(qt; q2, t)

C−λ/2(q2; q2, t)

=
∏
s∈λ/2

1− q2m−2a′(s)tl
′(s)

1− q2m−2a′(s)−1tl′(s)+1

1− q2a(s)+1tl(s)+1

1− q2a(s)+2tl(s)

=
∏
s∈λ

a(s) odd

1− q2m−a′(s)tl
′(s)

1− q2m−a′(s)−1tl′(s)+1

1− qa(s)tl(s)+1

1− qa(s)+1tl(s)
.

To save space, I did not put subscripts under the arm-length etc. It is understood that
when the product is over the boxes of a partition, the lengths are calculated with respect
to this partition. Thus in the last line, the lengths are calculated with respect to λ, while
in the line before it, they are calculated with respect to λ/2. The reader is advised to draw
a small example of an even partition λ to see the last equality.

Because λ is even, odd arm-lengths correspond to even arm-colengths. Therefore, the
last product is indeed equal to boa

λ;m(q, t) in the form given by Eq.(4.28). Thus the case
a = 0 of Eq.(4.27) is proved.

Now, for the case a arbitrary, note that

n∏
i=1

(1 + axi) =
n∑
r=0

arer(x1, . . . , xn).

Therefore, by the e-Pieri rule Eq.(2.12), it suffices to show that

aodd(λ)boa
λ;m(q, t) =

∑
µ even

λ/µ vertical strip

a|λ/µ|ψ′λ/µ(q, t)boa
µ;m(q, t)

Given λ, there is a unique µ satisfying the two conditions in the sum, i.e., µi = 2bλi/2c.
Note that then |λ/µ| = odd(λ). Thus, we are led to showing that

boa
λ;m(q, t) = ψ′λ/µ(q, t)boa

µ;m(q, t).

The m-dependent parts on both sides agree:

∏
s∈λ

a′λ(s) even

1− q2m−a′λ(s)tl
′
λ(s)

1− q2m−a′λ(s)−1tl′λ(s)+1
=

∏
s∈µ

a′µ(s) even

1− q2m−a′µ(s)tl
′
µ(s)

1− q2m−a′µ(s)−1tl′µ(s)+1
.
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So it remains to show that

boa
λ (q, t) = ψ′λ/µ(q, t)boa

µ (q, t).

This follows easily from the definition of these quantities.

The second identity of Rains and Warnaar concerns P (Bn,Bn)

(m2 )
n . In Subsec.4.4.3, I obtain

some partial progresses towards the generalization to the near-rectangular case. For m a
positive integer and λ a partition, let (ol stands for odd leg)

bol
λ;m(q, t) :=

∏
s∈λ

l(s) odd

1− qa(s)tl(s)

1− qa(s)+1tl(s)−1

∏
s∈λ

l′(s) odd

1− qm−a′(s)tl′(s)−1

1− qm−a′(s)−1tl′(s)
.

We note that bol
λ;m(q, t) = 0 if λ2 > m. Also note that unlike the case of boa

λ;m, the m-
independent part of bol

λ;m is slightly different from the conventional bol
λ .

Theorem 4.3.4. For x = (x1, . . . , xn) and m a nonnegative integer,∑
bolλ;m(q, t)Pλ(x; q, t) = (x1 . . . xn)

m
2 P

(Bn,Bn)

(m2 )
n (x; q, t, 1) (4.29)

where the sum is over partitions λ ⊂ mn such that mi(λ) 2 is even for 1 ≤ i ≤ m− 1.

The identity (4.29) can be dissected into two following identities:

Theorem 4.3.5. For x = (x1, . . . , xn) and m a nonnegative integer,∑
λ′ even

bolλ;m(q, t)Pλ(x; q, t) = (x1 . . . xn)
m
2 P

(Dn,Dn)

(m2 )
n (x; q, t), (4.30)∑

λ′ odd
λ1=m

bolλ;m(q, t)Pλ(x; q, t) = (x1 . . . xn)
m
2 P

(Dn,Dn)

(m2 )
n (x̄; q, t). (4.31)

For m a positive integer and λ a partition, let

bel
λ;m(q, t) := bel

λ(q, t)
∏
s∈λ

l′(s) even

1− qm−a′(s)tl′(s)
1− qm−a′(s)−1tl′(s)+1

.

Note that bel
λ;m(q, t) vanishes unless λ1 ≤ m.

Theorem 4.3.6. For x = (x1, . . . , xn) and m a nonnegative integer,∑
λ

bel
λ;m(q, t)Pλ(x; q, t) = (x1 . . . xn)

m
2 P

(Bn,Bn)

(m2 )
n (x; q, t, t), (4.32)

Furthermore, they proved the following generalization of the Kaneko identity (2.18)

2. Recall that mi(λ) is the multiplicity of i in λ.
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Theorem 4.3.7. For x = (x1, . . . , xn) and m a nonnegative integer,∑
λ

b−λ;m(q, t)Pλ(x; q2, t2) = (x1 . . . xn)
m
2 P

(Bn,Cn)

(m2 )
n (x; q2, t2,−t), (4.33)

where

b−λ;m(q, t) := b−λ (q, t)
∏
s∈λ

1− qm−a′(s)tl′(s)
1− qm−a′(s)−1tl′(s)+1

.

They also proved two identities for the Hall-Littlewood polynomials whose q-analogues
are not known.

Theorem 4.3.8. For x = (x1, . . . , xn) and m a nonnegative integer,∑
λ1≤2m

h
(2m)
λ (t2, t3; t)Pλ(x; t) = (x1 . . . xn)mP

(BCn)
mn (x; t, t2, t3) (4.34)

Theorem 4.3.9. For x = (x1, . . . , xn) and m a nonnegative integer,∑
λ1≤m

h
(m)
λ (t2; t)Pλ(x; t) = (x1 . . . xn)

m
2 P

(Bn)

(m2 )
n(x; t, t2) (4.35)

Here h(m)
λ (a, b; q) is a certain generalisation of the Rogers-Szego polynomials; the

reader is invited to consult [75] for details.

4.4 Near-rectangular bounded Littlewood identities

The bounded Littlewood identities in the previous section are decomposition of (R, S)
Macdonald polynomials indexed by rectangular partitions or half-partitions of maximal
length (which is the number of variables). A natural next step is to consider near-rectangular
(half-)partitions of maximal length, i.e., (half-)partitions mn − 1r = (mn−r(m− 1)r). In
fact, Rains and Warnaar propose this question at the end of their paper. I would like to
thank Warnaar for suggesting to me that this question is doable.

Problem: Compute the decomposition number [Pλ] (x1 . . . xn)mP
(R,S)
mn−1r .

4.4.1 Preparatory results
First we transform this question into a computation of virtual Koornwinder integrals.

Let µ = (1r) in Lem.4.25, we obtain

[Pλ(x; q, t)](x1 . . . xn)mKmn−1r(x; q, t; t0, t1, t2, t3)

= (−1)|λ|+r[K(r)(y; t, q; t0, t1, t2, t3)]Pλ′(y
±; t, q), (4.36)
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for λ ⊂ (2m)n.
Due to orthogonality, we have the following formula for aBCn symmetric polynomial

F (the parameters are understood in a consistent way):

[Kµ]F =
〈Kµ, F 〉
〈Kµ, Kµ〉

=
〈1, KµF 〉
〈Kµ, Kµ〉

=
I

(n)
K (KµF )

Nµ

.

Thus, we get

[Pλ(x; q, t)](x1 . . . xn)mKmn−1r(x; q, t; t0, t1, t2, t3)

=(−1)|λ|+r
I

(m)
K

(
K(r)(y; t, q; t0, t1, t2, t3)Pλ′(y

±; t, q)
)

N
(n)
(r) (t, q; t0, t1, t2, t3)

. (4.37)

Our strategy is that ifK(r) is simple enough, we can expandK(r)Pλ′ in the Macdonald
basis and use the known evaluations of virtual Koornwinder integrals to proceed.
Remark. We must be careful in specializing the parameters. The rule of thumb is that we
should specialize only after having simplified every repeated factor. Sometimes, the order
in which we specialize the parameters does matter. We shall explicitly mention that in
necessary cases.

For example, we make the following remark concerning the specialization t = q−1.
We shall see in a moment that it is more convenient to work with the following normalized
version of one-row Koornwinder polynomials

fr(y; t, q; t0, t1, t2, t3) :=
(q; t)r
(t; t)r

K(r)(y; t, q; t0, t1, t2, t3).

We also notice that N (n)
(r) (t, q; t0, t1, t2, t3) always has the following factorization

N
(n)
(r) (t, q; t0, t1, t2, t3) =

(t; t)r
(q; t)r

Ñ
(n)
(r) (t, q; t0, t1, t2, t3),

where Ñ (n)
(r) (t, q; t0, t1, t2, t3) is finite at t = q−1. Of course, (t−1; t)r = 0 for r ≥ 1

by definition, thus N(r)(t, t
−1; t0, t1, t2, t3) is not defined for r ≥ 1. But with this new

normalization, we have

[Pλ(x; q, t)](x1 . . . xn)mKmn−1r(x; q, t; t0, t1, t2, t3)

=(−1)|λ|+r
I

(m)
K (fr(y; t, q; t0, t1, t2, t3)Pλ′(y

±; t, q))

Ñ
(n)
(r) (t, q; t0, t1, t2, t3)

. (4.38)

Now, there is no problem in specializing t = q−1, for all r.
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The cases we are going to consider only require the following special evaluations of
the quadratic norm:

Lemma 4.4.1. 1. For (t0, t1, t2, t3) = (±t1/2,±(qt)1/2), we have

Ñ
(n)
(r) (q, t;±t1/2,±(qt)1/2) =

(t2n; q)r
(qt2n−1; q)r

. (4.39)

2. For (t0, t1, t2, t3) = (±1,±t1/2), we have

Ñ
(n)
(r) (q, t;±1,±t1/2) =

(qrt2n−2; q)r(t
2n, t2n−1; q2)r

(qr−1t2n−1; q)r(qt2n−1, qt2n−2; q2)r
. (4.40)

Proof. We just need to apply the general formula. For the first identity, we get

Ñ
(n)
(r) (; q, t; (±t1/2,±(qt)1/2)

=
(qr+1t2n−1,±tn,±qtn,±q1/2tn,±q1/2tn; q)r

(qrt2n; q)r(qt2n, qt2n−1; q)2r

=
(t2n; q)r

(qt2n−1; q)r
.

Notice that there is a huge cancellation in the above product which is the result of straight-
forward computation. For the second identity,

Ñ
(n)
(r) (q, t;±1,±t1/2)

=
(qrt2n−2,±tn,±tn−1,±tn−1/2,±tn−1/2; q)r

(qr−1t2n−1; q)r(t2n−1, t2n−2; q)2r

=
(qrt2n−2; q)r(t

2n, t2n−1; q2)r
(qr−1t2n−1; q)r(qt2n−1, qt2n−2; q2)r

.

Two nice particular cases are q = t and q = t−1:

Ñ
(n)
(r) (t, t;±1,±t1/2) = 1

Ñ
(n)
(r) (t−1, t;±1,±t1/2) =

(1− t2n) (1− t2n−1)

(1− t2n−r) (1− t2n−r−1)
.

Definition 4.4.1. Define the symmetric polynomial gr(x; q, t) by

n∏
i=1

(tuxi; q)∞
(uxi; q)∞

=
∑
r≥0

gr(x; q, t)ur,

and the symmetric Laurent polynomial Gr(x; q, t) := gr(x
±; q, t).

Hoshino, Noumi and Shiraishi [45] proved the following formulas for one-row Koorn-
winder polynomials:
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Theorem 4.4.2. [45] Let fr(x; q, t; t0, t1, t2, t3) := (t;q)r
(q;q)r

K(r)(x; q, t; t0, t1, t2, t3). Then
we have - we denote the parameters by a, b, c, d to make the formula look nicer:

fr(x; q, t; a,−a, c,−c) =
∑
k,l≥0

2k+2l≤r

Gr−2k−2l(x; q, t)

×(qa2/c2; q2)k (q3−rt1−n/c2; q2)k (q2−2rt2−2n/c4; q2)k
(q2; q2)k (q1−rt1−n/c2; q2)k (q3−2rt2−2n/a2c2; q2)k

(
t2

a2

)k
× (c2/qt; q)l (q

−rt−n; q)2k+l

(q; q)l (q2−rt1−n/c2; q)2k+l

· 1− q−r+2k+2lt−n

1− q−rt−n
(
t2

c2

)l
, (4.41)

and

fr(x; q, t; a, b, c, d)

=
∑
i,j≥0
i+j≤r

fr−i−j(x; q, t;±a,±c)(−b/a; q)i(q
1−rt1−n/cd; q)i

(q; q)i(−q1−rt1−n/ac; q)i

× (q1−rt−n; q)i+j(−q1−rt1−n/ac; q)i+j(q
1−2rt2−2n/a2c2; q)i+j

(q2−2rt2−2n/abcd; q)i+j(q1/2−rt1−n/ac; q)i+j(−q1/2−rt1−n/ac; q)i+j
(t/b)i

× (−d/c; q)j(q1−rt1−n/ab; q)j
(q; q)j(−q1−rt1−n/ac; q)j

(t/d)j (4.42)

Fortunately, for special parameters which we need, the formula is significantly sim-
plified.

Lemma 4.4.3. We have

fr(x; q, t;±t1/2;±(qt)1/2) = Gr(x; q, t). (4.43)

Proof. According to the formula (4.41), we have

fr(x; q, t;±t1/2;±(qt)1/2)

=
∑
k,l≥0

2k+2l≤r

Gr−2k−2l(x; q, t)
(1; q2)k(q

2−rt−n; q2)k(q
−2rt−2n; q2)k

(q2; q2)k(q−rt−n; q2)k(q2−2rt−2n; q2)k
tk

× (1; q)l(q
−rt−n; q)2k+l

(q; q)l(q1−rt−n; q)2k+l

1− q−r+2k+2lt−n

1− q−rt−n
(
t

q

)l
.

Because (1; q)n = 0 for n > 0 by definition, and (1; q)0 = 1 by convention, only the term
with k = l = 0 survives. Thus we get the claimed equality.

Lemma 4.4.4. We have the following identity

fr
(
y; q, t;±1,±t1/2

)
= Gr(y; q, t)+∑

0≤k≤b r2c−1

Gr−2−2k(y; q, t)
(q/t; q2)k(q

2−2rt−2n; q2)k
(q2; q2)k+1(q3−2rt1−2n; q2)k+1

· t
2k+1(qt− 1)(1− q4−2r+4kt−2n)

q
.
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Proof. According to the HNS formula, we have

fr
(
y; q, t;±1,±t1/2

)
=

∑
k,l≥0

2k+2l≤r

Gr−2k−2l(y; q, t)
(q/t; q2)k(q

3−rt−n; q2)k(q
2−2rt−2n; q2)k

(q2; q2)k(q1−rt−n; q2)k(q3−2rt1−2n; q2)k
t2k

× (1/q; q)l(q
−rt−n; q)2k+l

(q; q)l(q2−rt−n; q)2k+l

1− q−r+2k+2lt−n

1− q−rt−n tl

Because of the factor (1/q; q)l, l can only be 0 or 1. For these two values of l, the
following simplification takes place:

(q3−rt−n; q2)k
(q1−rt−n; q2)k

· (q−rt−n; q)2k+l

(q2−rt−n; q)2k+l

· 1− q−r+2k+2lt−n

1− q−rt−n = 1,

for all k. Thus

fr
(
y; q, t;±1,±t1/2

)
=

∑
0≤k≤b r2c

Gr−2k(y; q, t)
(q/t; q2)k(q

2−2rt−2n; q2)k
(q2; q2)k(q3−2rt1−2n; q2)k

t2k

−
∑

0≤k≤b r2c−1

Gr−2−2k(y; q, t)
(q/t; q2)k(q

2−2rt−2n; q2)k
(q2; q2)k(q3−2rt1−2n; q2)k

· t
2k+1

q
.

Finally, we can gather the two terms of each Gi together and get:

fr
(
y; q, t;±1,±t1/2

)
= Gr(y; q, t)−∑

0≤k≤b r2c−1

Gr−2−2k(y; q, t)
(q/t; q2)k(q

2−2rt−2n; q2)k
(q2; q2)k+1(q3−2rt1−2n; q2)k+1

· t
2k+1(1− qt)(1− q4−2r+4kt−2n)

q
.

Two particularly nice cases are t = q and t = q−1:

fr
(
y; t, t;±1,±t1/2

)
= Gr(y; t, t)−Gr−2(y; t, t),

fr
(
y; t−1, t;±1,±t1/2

)
= Gr(y; t−1, t).

4.4.2 Near-rectangular (Cn, Bn) bounded Littlewood identities
Having set up all the necessary tools, we can now give a proof for the following

conjectured formula of Rains and Warnaar, which is a generalization of Thm.4.3.3 (which
corresponds to the case r = 0).

Theorem 4.4.5. For positive integers m, n and r an integer such that 0 ≤ r ≤ n, one has∑
λ

odd(λ)=r

boa
λ;m,r(q, t)Pλ(x; q, t) = (x1 . . . xn)mP

(Cn,Bn)

mn−r(m−1)r(x; q, t, qt), (4.44)



4.4. NEAR-RECTANGULAR BOUNDED LITTLEWOOD IDENTITIES 97

where

boa
λ;m,r(q, t) = boa

λ (q, t)
∏

s∈λ/1r
a′λ(s)even

1− q2m−a′λ(s)tl
′
λ(s)

1− q2m−a′λ(s)−1tl
′
λ(s)+1

.

Proof. Following Eqs.(4.38),(4.43), (4.39), Eq.(4.44) is equivalent to

(−1)|λ|+r
(tq2m−1; t)r

(q2m; t)r
I

(m)
K

(
gr(y

±; t, q)Pλ′(y
±1; t, q); t, q;±q1/2,±(qt)1/2

)
=

{
boa
λ;m,r(q, t) if odd(λ) = r,

0 otherwise,

for λ ⊂ (2m)n. Using the g-Pieri rule

grPλ′ =
∑
µ

µ/λ vertical r-strip

ϕµ′/λ′Pµ′ ,

we get

I
(m)
K

(
gr(y

±; t, q)Pλ′(y
±1; t, q); t, q;±q1/2,±(qt)1/2

)
=

∑
µ

µ/λ vertical r-strip

ϕµ′/λ′(t, q)I
(m)
K

(
Pµ′(y

±1; t, q); t, q;±q1/2,±(qt)1/2
)

=
∑

µ, µ even
µ/λ vertical r-strip

ϕµ′/λ′(t, q)
C0
ν (q2m; t, q2)

C0
ν (q2m−1t; t, q2)

C−ν (qt; t, q2)

C−ν (q2; t, q2)
,

where ν = (µ/2)′ = (µ′1, µ
′
3, . . . ). Note that the condition µ is even is equivalent to

µ′2i−1 = µ′2i for i = 1, 2 . . . .
Given λ, the two conditions in the sum uniquely fix µ. More specifically, µi =

2dλi/2e. In particular, |µ/λ| is the number of odd rows of λ. Thus for the sum to be
non vanishing, the number of odd rows of λ must be r. For such λ we have

I
(m)
K

(
gr(y

±; t, q)Pλ′(y
±1; q, t); t, q;±q1/2,±(qt)1/2

)
= ϕµ′/λ′(t, q)

C0
ν (q2m; t, q2)

C0
ν (q2m−1t; t, q2)

C−ν (qt; t, q2)

C−ν (q2; t, q2)
.

In the proof of Thm.4.3.3, we have shown that

C0
ν (q2m; t, q2)

C0
ν (q2m−1t; t, q2)

C−ν (qt; t, q2)

C−ν (q2; t, q2)
= boa

µ;m(q, t).

Therefore we are left with proving that

(tq2m−1; t)r
(q2m; t)r

ϕµ′/λ′(t, q)b
oa
µ;m(q, t) = boa

λ;m,r(q, t). (4.45)
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First we prove that

ϕµ′/λ′(t, q)b
oa
µ (q, t) = boa

λ (q, t). (4.46)

Indeed, we have

ϕµ′/λ′(t, q) = ϕ′µ/λ(q, t) =
∏

s∈Rµ/λ

bλ(s; q, t)

bµ(s; q, t)
,

whereRµ/λ is the set of rows of µwhich intersect µ/λ. Consider such a row, and denote its
boxes from left to right by 1, 2, . . . , 2k. Note that this row of λ contains boxes 1, . . . , 2k−
1. Then the contribution of this row to ϕ′µ/λ(q, t) is (we will omit the parameters (q, t) for
conciseness)

bλ(1) . . . bλ(2k − 1)

bµ(1) . . . bµ(2k)
.

We see that bλ(2i − 1) = bµ(2i) for i = 1, . . . , k. Furthermore bλ(2)bλ(4) . . . and
bµ(1)bµ(3) . . . are exactly the contribution of this row to boa

λ and boa
µ respectively. Since

this is true for every row in Rµ/λ, and since the contributions of remaining rows to boa
λ and

boa
µ are equal, (4.46) is true.

It remains to prove that the factors containing m and r match. Indeed, we have∏
s∈µ

a′µ(s) odd

1− q2m−a′µ(s)+1tl
′
µ(s)

1− q2m−a′µ(s)tl
′
µ(s)+1

=
∏
s∈λ

a′λ(s) even

1− q2m−a′λ(s)tl
′
λ(s)

1− q2m−a′λ(s)−1tl
′
λ(s)+1

.

Multiplying this with (tq2m−1;t)r
(q2m;t)r

indeed gives them, r-dependent part of boa
λ;m,r(q, t), which

is ∏
s∈λ/1r
a′λ(s) even

1− q2m−a′λ(s)tl
′
λ(s)

1− q2m−a′λ(s)−1tl
′
λ(s)+1

.

The proof is therefore completed.

4.4.3 Near-rectangular (Bn, Bn) Littlewood identity
Now we try to find the near-rectangular generalization of Thm.4.3.4. In this case, we

have to deal with the computation of

[fr(y; t, q;±1,±q1/2)]Pλ′(y
±1; t, q)

=
I

(m)
K

(
fr
(
y±1; t, q;±1,±q1/2

)
Pλ′ (y

±1; t, q) ; t, q;±1,±q1/2
)

Ñ
(m)
(r) (t, q;±1,±q1/2)

Following Lem.4.4.4, the first step is to compute I(m)
K

(
gk (y±1; t, q)Pλ′ (y

±1; t, q) ; t, q;±1,±q1/2
)
.

Although I cannot find a complete answer for this, I can characterize the condition under
which this quantity does not vanish and compute it for a special case.
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Theorem 4.4.6. We have

I
(m)
K

(
gk
(
y±1; t, q

)
Pλ′
(
y±1; t, q

)
; t, q;±1,±q1/2

)
= 0

unless |λ| + k is even and one of the two following sets of conditions holds (they are not
exclusive, however):

1. λ1 − λ2 ≤ 1, λ3 − λ4 ≤ 1,. . . and the number of pairs (λ2i−1, λ2i), i ≥ 1 whose
difference is 1, denoted by de, satisfies de ≤ k. The subscript e is for "even"; the
reason will be explained in the proof.

2. λ2 − λ3 ≤ 1, λ4 − λ5 ≤ 1,. . . and the number of pairs (λ2i, λ2i+1), i ≥ 1 whose
difference is 1, denoted by do, satisfies do ≤ k. The subscript o is for "odd".

Proof. Using the g-Pieri rule and Thm.4.2.4, we have

I
(m)
K

(
gk
(
y±1; t, q

)
Pλ′
(
y±1; t, q

)
; t, q;±1,±q1/2

)
=

∑
µ,µ1≤2m

µ/λ vertical k-strip

ϕµ′/λ′(t, q)I
m
K

(
Pµ′
(
y±1; t, q

)
; t, q;±1,±q1/2

)
=

∑
µ,µ1≤2m

µ/λ vertical k-strip
µ̃′ even

ϕµ′/λ′(t, q)A
(2m)
µ′/2 (t, q), (4.47)

where

µ̃′ :=
(
µ′1 − µ′2m, . . . , µ′2m−1 − µ′2m, 0

)
,

and for ν a partition or half-partition of length at most n,

A(n)
ν (q, t) :=

∏
1≤i<j≤n

(qtj−i−1, tj−i+1; q2)νi−νj
(qtj−i, tj−i; q2)νi−νj

.

If µ̃′ is even then |µ| = |λ|+k is even. So for the sum (4.47) to be non zero, λ and k must
satisfy this condition.

Now, µ̃′ is even if and only if either µ′ is even or µ′ is odd. Note that µ′ is even if and
only if µ1 = µ2, µ3 = µ4, . . . . And µ′ is odd if and only if µ2 = µ3, µ4 = µ5, . . . .

Given λ, let us analyze how a partition µ satisfying three conditions in the sum of
Eq.(4.47) is obtained. We examine separately two cases.

1. Case 1: µ′ is even.
Because µ′/λ′ is a vertical strip, we must have λ1 − λ2 ≤ 1, λ3 − λ4 ≤ 1, . . . . We
must also have de ≤ k. Then, the condition that |λ|+k is even implies that k−de is
even. We see that µ is obtained by adding a box to each row λ2i if λ2i = λ2i−1 − 1.
The remaining k − de boxes are added arbitrarily (but making µ/λ a vertical strip)
to pairs λ2i = λ2i−1 (including pairs of empty rows).
For later use, we observe one case in which µ is uniquely determined: de = k. In
that case, µ′/2 = dλ′/2e.
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2. Case 2: µ′ is odd, i.e. µ′1, . . . , µ
′
2m are odd.

In particular µ′2m ≥ 1, thus µ1 = 2m. Therefore λ1 = 2m − 1 or 2m. And again,
because µ′/λ′ is a vertical strip, we must have λ2 − λ3 ≤ 1, λ4 − λ5 ≤ 1, . . . . We
also have do ≤ k and λ1 + k − do is even. If λ1 = 2m− 1, we add a box to it. The
way we add remaining boxes to the other rows of λ is similar to the first case above.
For later use, we observe two cases in which µ is uniquely determined: λ1 = 2m
and do = k; or λ1 = 2m − 1 and do = k − 1. In both cases, we have µ′/2 =
bλ′/2c+ (1/2)2m.

In conclusion, the claim is proved.

Remark. Note that a partition λ can give rise to both even and odd µ′ (there may be
many even and many odd). This is reason for which I can not figure out how to simplify
Eq.(4.47). For example, consider m = 1 and k = 1. For λ = (2, 1), we can get either
µ = (22) or µ = (2, 12).

However, there is one case in which the sum in Eq.(4.47) is simplified. It is the cases
where only even µ′ arises, and is uniquely determined. For example this condition is
satisfied if de = k.

Proposition 4.4.7. Suppose that de = k. Then

I
(m)
K

(
gk
(
y±1; t, q

)
Pλ′
(
y±1; t, q

)
; t, q;±1,±q1/2

)
= ϕ′µ/λ(q, t)A

(2m)
µ′/2 (t, q),

where µ′ = 2dλ′/2e.
We want to transform the result to an expression without reference to µ. At the mo-

ment, I can only do that for the following partitions:

Theorem 4.4.8. 1. Let a1 > a2 > · · · > ar > 0 be integers. Consider the partition
λ = (a1, a1 − 1, a2, a2 − 1, . . . , ar, ar − 1). Then there is a unique partition µ such
that µ′ is even and µ/λ is a r-vertical strip, that is µ = (a1, a1, a2, a2, . . . , ar, ar).
The consequence is that

I
(m)
K

(
gk
(
y±1; t, q

)
Pλ′
(
y±1; t, q

)
; t, q;±1,±q1/2

)
=bocl

λ (q, t)
∏
s∈λ

l′(s)even

1− q2m−a′λ(s)tl
′
λ(s)

1− q2m−a′λ(s)−1tl
′
λ(s) + 1

, (4.48)

where "ocl" stands for odd co-leg:

bocl
λ (q, t) :=

∏
s∈λ

l′(s) odd

bλ(s; q, t).

2. Let 2m > a1 > a2 > · · · > ar > 0 be integers. For the partition λ = (2m, a1, a1 −
1, . . . , ar, ar − 1), there is a unique partition µ such that µ′ is odd and µ/λ is a
r-vertical strip, that is µ = (2m, a1, a1, . . . , ar, ar). The consequence is that

I
(m)
K

(
gk
(
y±1; t, q

)
Pλ′
(
y±1; t, q

)
; t, q;±1,±q1/2

)
=bpecl

λ (q, t)
∏
s∈λ

l′(s)odd

1− q2m−a′λ(s)tl
′
λ(s)−1

1− q2m−a′λ(s)−1tl
′
λ(s)

, (4.49)
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where "pecl" stands for positive even co-leg, i.e., 3rd, 5th,. . . rows:

bpecl
λ (q, t) :=

∏
s∈λ

l′(s)=3,5,7,...

bλ(s; q, t).

Proof. I will only give a proof for the first case. The second case is just a minor variation.
Denote ν = (µ′/2)′. By definition of ϕ′, we have in this case

ϕ′µ/λ(q, t) =
∏
s∈µ

l′µ(s) odd

bλ(s; q, t)

bµ(s; q, t)

We have

A
(2m)
ν′ (t, q) =

∏
s∈ν

1− q2m−a′ν(s)t2l
′
ν(s)

1− q2m−a′ν(s)−1t2l′ν(s)+1

∏
s∈ν

1− qaν(s)t2lν(s)+1

1− qaν(s)+1t2lν(s)
.

Under the 1-to-1 correspondence which associates to each box (i, j) ∈ ν the box (2i, j) ∈
µ, the second product of A(2m)

ν′ (t, q) can be seen to be equal to∏
s∈µ

l′µ(s) odd

bµ(s; q, t).

Furthermore, under the 1-to-1 correspondence which associates to each box (i, j) ∈ ν the
box (2i− 1, j) ∈ λ, the first product in A(2m)

ν′ (t, q) can be written as

∏
s∈λ

l′(s)even

1− q2m−a′λ(s)tl
′
λ(s)

1− q2m−a′λ(s)−1tl
′
λ(s) + 1

.

By combining these observations, one obtains the claimed identity (4.48).





A
KP tau functions

I follow closely the exposition of Kazarian and Lando in [55]. Let V be the infinite
dimensional vector space of semi-infinite Laurent series in one variable z. Elements of V
are series of the form

c−kz
−k + c−k+1z

−k+1 + . . . .

The vector space V has the standard basis consisting of the monomials zk, k ∈ Z.

Definition A.0.1. The semi-infinite wedge space Λ
∞
2 V (of charge 0) is the span of vectors

of the form

vµ = zm1 ∧ zm2 ∧ . . . ,

where µ is a partition and mi = µi − i. Note that the condition that µ is a partition is
equivalent to mi ≥ −i for all i ≥ 1, m1 > m2 > . . . , and mi = −i for all sufficiently
large i.

Define a scalar product on Λ
∞
2 V by declaring that the basis {vµ} is orthonormal.

A special role is played by the vacuum vector which corresponds to the empty partition

v∅ := z−1 ∧ z−2 ∧ . . . .

A more picturesque description for Λ
∞
2 V is available via the Maya diagrams and Dirac’s

sea. I refer the reader to [50], where the link between the semi-infinite wedge and double
Hurwitz numbers is also discussed.

Let Λ be the algebra of symmetric functions. We consider the Schur functions sλ
as functions, more precisely (formal) power series, of power sums pk (rather than the
more "primitive" variables on which pk depend). The pk will be used as variables for the
integrable PDEs.
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We have the following isomorphism, called the boson-fermion correspondence, be-
tween Λ

∞
2

0 V and Λ. For i ∈ Z, denote by ẑi the shift operator acting on V

ẑi : V → V

zm 7→ zm+i.

for m ∈ Z. This action extends to the space Λ
∞
2 V by the Leibniz rule. 1

For a vector v ∈ Λ
∞
2 V , denote

〈v〉 := 〈v, v∅〉 .

Definition A.0.2. The boson-fermion correspondence is the following isomorphism:

BS : Λ
∞
2

0 V → Λ (A.2)

v 7→
〈

exp

(
∞∑
i=1

pi
i
ẑ−i

)
v

〉
. (A.3)

For i ∈ Z+, this correspondence takes the operator ẑ−i to the operator i ∂
∂pi

, and ẑi to
the multiplication by pi. In fact, this correspondence is simply the isomorphism which
sends vλ to sλ for every partition λ.

Now let us introduce directly the famous τ -functions of the KP hierarchy without
defining the equations for which they solve.

Definition A.0.3. Let β1(z), β2(z), . . . be Laurent series in the variable z such that for all
i large enough,

βi(z) = z−i + ci1z
−i+1 + ci2z

−i+2 + . . . .

The τ -function (corresponding to {βi}) is defined as

τ(p1, p2, . . . ) := BS (β1 ∧ β2 ∧ . . . ) . (A.4)

In other words, expand β1 ∧ β2 ∧ . . . in the basis {vλ}:

β1 ∧ β2 ∧ · · · =
∑
λ

cλvλ.

Then,

τ(p1, p2, . . . ) =
∑
λ

cλsλ(p1, p2, . . . ).

1. For any operator g acting on V , define its (linear) action on Λ
∞
2 V in the following way:

g
(
zi1 ∧ zi2 ∧ . . .

)
:= g

(
zi1
)
∧ zi2 ∧ · · ·+ zi1 ∧ g

(
zi2
)
∧ . . . . (A.1)
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An important family of τ -functions of the KP hierarchy which are closely related to
the combinatorics of the symmetric groups is the Orlov-Shcherbin family [73]. For a set
of variables yi, i ∈ Z, and a partition µ, let

yµ :=
∏
s∈µ

yc(s),

where c(s) is the content of the box s. Recall that if s is at row i and column j, c(s) :=
j − i.

Theorem A.0.1. The generating function∑
µ

yµ
dim(µ)

|µ|! sµ(p1, p2, . . . ),

where the sum is over all partitions, is a τ -function for the KP hierarchy.

Proof. It can be checked directly that this generating function is the τ -function corre-
sponding to the following βi:

βi :=
1

u−i

∞∑
j=0

uj−i
zj−i

j!
,

where u0 = 1 and

ui =


i∏

j=1

yj i > 0,

1/
0∏

j=i+1

yj i < 0.





B
Gaussian integrals

LetA be a positive definite symmetric n×nmatrix, and (, ) be the usual scalar product
in Rn, then the following famous identity holds∫

Rn
e−

1
2

(Ax,x)dx1 . . . dxn = (2π)n/2 (detA)−1/2 . (B.1)

The integral on the left hand side is called a Gaussian integral. We will also need the
following variant (by a simple shifting of variables). Let b ∈ Rn, then∫

Rn
e−

1
2

(Ax,x)+(b,x)dx1 . . . dxn = e
1
2

(b,A−1b)(2π)n/2 (detA)−1/2 . (B.2)

The measure dµ = (2π)−n/2 (detA)1/2 e−
1
2

(Ax,x)dx is called the Gaussian measure. The
matrix C = A−1 is called the covariance matrix, and we have 1

〈x1〉 = 0, 〈xixj〉 = Cij.

The pleasant feature of the Gaussian measure is that we can compute 〈f〉 for any
polynomial f in the following simple way. First, by symmetry, notice that if f(x) is
a monomial of odd degree then 〈f〉 = 0. Second, we can reduce the computation for
arbitrary polynomial to that of degree 2 by the Wick formula:

Theorem B.0.1. Let f1, . . . , f2k be linear functions of x1, . . . , xn. Then

〈f1 . . . f2k〉 =
∑
〈fp1fq1〉 . . . 〈fpkfqk〉,

where the sum is taken over all permutations p1q1 . . . pkqk of {1, 2, . . . , 2k} such that
p1 < p2 · · · < pk, p1 < q1, . . . pk < qk.

1. Please do not confuse with the notation of the previous appendix. Here, 〈〉 denotes the expectation
value with respect to the measure dµ.
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For more details, the reader can consult for example the book [59].



C
Saddle point method

A comprehensive account can be found in [91]. I only quote a theorem which is
relevant to this thesis. The saddle point method concerns Laplace-type integrals, which
are of the following form

J(α) =

∫
D

g(x)e−αf(x)dx, (C.1)

where D is a possibly unbounded domain in Rn and α is a large positive parameter.
Assume that both f and g are infinitely differentiable in D. Furthermore, assume the
following conditions

— The integral J(α) converges absolutely for all α > α0.

— For every ε > 0, ρ(ε) > 0 where

ρ(ε) = inf{f(x)− f(x0) : x ∈ D and |x− x0| ≥ ε}.

— The Hessian matrix

H =

(
∂2f

∂xi∂xj

)
x=x0

is positive definite.

The second condition implies that the function f has a minimum at a unique point, say
x0. Under these assumptions, we have

Proposition C.0.1. Laplace’s asymptotic expansion:
If x0 is an interior point of D, then the integral J(α) has an asymptotic expansion of

the form

J(α) ∼ e−αf(x0)

∞∑
k=0

ckα
−n/2−k, as α→∞,
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where the ck are constants. In particular,

c0 = (2π)n/2 (detH)−1/2 g(x0).



D
All-order expansion and the topological
recursion

One of the motivations behind our work on tensor models is to see whether the
Chekhov-Eynard-Orantin topological recursion, or a modified version of it, works in this
context as well. In fact, after the work presented in this thesis, Dartois and Bonzom [8]
have succeeded in showing that the quartic melonic tensor model satisfies an extension
named the blobbed topological recursion proposed by Borot [12]. For the sake of com-
pleteness, in this appendix, I define this topological recursion in following [34]. The
reader is invited to look at this review article for much more information.

First, we recall some facts about Riemann surfaces.

Definition D.0.1. A spectral curve E is a triple (L, x, y) where L is a compact Riemann
surface and x, y are two analytic functions on some open domains of L.

Definition D.0.2. A spectral curve (L, x, y) is called regular if two conditions hold

— the differential form dx has a finite number of zeros, all of which are simple,

— the differential form dy does not vanish at the zeros of dx.

From now on, let (L, x, y) be a regular spectral curve. Denote by a1, . . . , am ∈ L the
zeros of dx. They are also called branch points. Their simplicity condition implies that
for any z close to ai, there is exactly one point z 6= z in the neighborhood of ai such that

x(z) = x(z).

The point z is called the conjugate of z. A compact Riemann surface L of genus g ≥ 1 1

can be equipped with a symplectic basis (not unique, but we will fix an arbitrary choice)

1. The letter g without bar will be reserved for the "genus" of the topological recursion; the two things
are unrelated
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of 2g non-contractible cycles such that

Ai ∩Bj = δij, Ai ∩ Aj = 0, Bi ∩Bj = 0.

The surface L has a g-dimensional vector space of holomorphic differential forms. There
exists a unique basis du1, . . . , dug such that∮

Ai

duj = δij.

The corresponding Riemann matrix of periods τ is defined to be

τi,j =

∮
Bi

duj.

This matrix is symmetric and its imaginary part is positive definite.

Proposition D.0.1. On L×L, there is a unique bilinear differential B(z1, z2) having one
double pole at z1 = z2 and no other pole, and such that,

B(z1, z2) ∼z1→z2
dz1dz2

(z1 − z2)2
+ regular, and ∀i = 1, . . . , g,

∮
Ai

B(z1, z2) = 0.

The bidifferential B is called the Bergman kernel.

Definition D.0.3. For any z0 ∈ L and any z close to a branch point, define the recursion
kernel

K(z0, z) := −1

2

∫ z

z′=z

B(z0, z
′)

(y(z)− y(z))dx(z)
,

where the path in the integral is taken in a small neighborhood of the concerned branch
point.

Now we have all the necessary notions to define the topological recursion. We are go-
ing to define recursively a sequence of symmetric meromorphic n-forms ω(g)

n (z1, . . . , zn)
on L⊗n with n = 1, 2, . . . and g = 0, 1, 2, . . . .

Definition D.0.4. Let (L, x, y) be a regular spectral curve. Denote J = {z1, . . . , zn}.
Define

ω
(0)
1 (z) := −y(z)dx(z), ω

(0)
2 (z1, z2) := B(z1, z2), (D.1)

and for 2g − 2 + n ≥ 0,

ω
(g)
n+1(z0, J) :=

∑
Res
z→ai

K(z0, z)

[
ω

(g−1)
n+2 (z, z, J) +

g∑
h=0

′∑
I⊂J

ω
(h)
1+|I|(z, I)ω

(g−h)
1+n−|I|(z, J − I)

]
,

(D.2)

where the leftmost sum is over all the branch points (zeros of dx). The apostrophe over
the rightmost sum means that we exclude the terms with (h, I) = (0, ∅) or (g, J).

Notice that Eq.(D.2) is a recurrence in 2g−2+n (of course this quantity is understood
to be associated to ω(g)

n )).
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The ω(g)
n satisfy many remarkable properties, one of which is that they are symmetric.

This is not obvious from the definition because, in Eq.(D.2), the first variable is treated
in a completely different way from others. The interested reader is invited to consult [34]
for more details.
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Contributions aux modèles de tenseurs, nombres de Hurwitz et polynômes de
Macdonald-Koornwinder

Contributions to tensor models, Hurwitz numbers and Macdonald-Koornwinder
polynomials

Résumé
Dans cette thèse, j’étudie trois sujets reliés : les modèles de
tenseurs, les nombres de Hurwitz et les polynômes de
Macdonald-Koornwinder. Les modèles de tenseurs géneralisent les
modèles de matrices en tant qu’une approache à la gravité
quantique en dimension arbitraire (les modèles de matrices donnent
une version bidimensionnelle). J’étudie un modèle particulier qui
s’appelle le modèle quartique mélonique. Sa spécialité est qu’il
s’écrit en termes d’un modèle de matrices qui est lui-même aussi
intéressant. En utilisant les outils bien établis, je calcule les deux
premiers ordres de leur 1/N expansion. Parmi plusieurs
intépretations, les nombres de Hurwitz comptent le nombre de
revêtements ramifiés de surfaces de Riemann. Ils sont connectés
avec de nombreux sujets en mathématiques contemporaines telles
que les modèles de matrices, les équations intégrables et les
espaces de modules. Ma contribution principale est une formule
explicite pour les nombres doubles avec 3-cycles complétées d’une
part. Cette formule me permet de prouver plusieurs propriétés
intéressantes de ces nombres. Le dernier sujet de mon étude est
les polynôme de Macdonald et Koornwinder, plus précisément les
identités de Littlewood. Ces polynômes forment les bases
importantes de l’algèbre des polynômes symmétriques. Un des
problèmes intrinsèques dans la théorie des fonctions symmétriques
est la décomposation d’un polynôme symmétrique dans la base de
Macdonald. La décompostion obtenue (notamment si les
coefficients sont raisonablement explicits et compacts) est nommée
une identité de Littlewood. Dans cette thèse, j’étudie les identités
démontrées récemment par Rains et Warnaar. Mes contributions
incluent une preuve d’une extension d’une telle identité et quelques
progrès partiels vers la généralisation d’une autre.

Abstract
In this thesis, I study three related subjects: tensor models, Hurwitz
numbers and Macdonald-Koornwinder polynomials. Tensor models
are generalizations of matrix models as an approach to quantum
gravity in arbitrary dimensions (matrix models give a 2D version). I
study a specific model called the quartic melonic tensor model. Its
specialty is that it can be transformed into a multi-matrix model
which is very interesting by itself. With the help of well-established
tools, I am able to compute the first two leading orders of their 1/N
expansion. Among many interpretations, Hurwitz numbers count the
number of weighted ramified coverings of Riemann surfaces. They
are connected to many subjects of contemporary mathematics such
as matrix models, integrable equations and moduli spaces of
complex curves. My main contribution is an explicit formula for
one-part double Hurwitz numbers with completed 3-cycles. This
explicit formula also allows me to prove many interesting properties
of these numbers. The final subject of my study is
Macdonald-Koornwinder polynomials, in particular their Littlewood
identities. These polynomials form important bases of the algebra of
symmetric polynomials. One of the most important problems in
symmetric function theory is to decompose a symmetric polynomial
into the Macdonald basis. The obtained decomposition (in
particular, if the coefficients are explicit and reasonably compact) is
called a Littlewood identity. In this thesis, I study many recent
Littlewood identities of Rains and Warnaar. My own contributions
include a proof of an extension of one of their identities and partial
progress towards generalization of one another.

Mots clés
modèles de tenseurs et matrices, nombres de
Hurwitz, fonctions symmétriques, polynômes de
Macdonald-Koornwinder, identités de Littlewood.

Key Words
tensor models, matrix models, Hurwitz numbers,
symmetric functions, Macdonald-Koornwinder
polynomials, Littlewood identities.

L’UNIVERSITÉ NANTES ANGERS LE MANS


	Tensor models
	Hurwitz numbers
	Koornwinder polynomials and Littlewood identities
	Tensor models in mathematical physics
	Introduction to matrix models
	A review of tools via specific models
	A prototypical matrix integral: Hermitian one-matrix integral with polynomial potential 
	1/N expansion
	Saddle Point Method
	Schwinger-Dyson Constraints (Equations)

	Introduction to tensor models in physics and combinatorics
	General framework of tensor models
	Tensor invariants and generic 1-tensor models
	Quartic melonic tensor models and intermediate field representation.

	Saddle Point Equation of the Matrix Model
	Leading Order (LO) 1/N Computation
	Next-to-Leading Order (NLO) Computation.

	Schwinger-Dyson Equations.
	Conclusion and perspective

	Symmetric functions
	Partitions
	The algebra of symmetric functions
	Properties of the Schur functions
	Macdonald polynomials

	Hurwitz numbers
	Irreducible characters of the symmetric groups
	Group algebra of the symmetric groups
	Combinatorial definition of Hurwitz numbers
	Hurwitz numbers count ramified coverings of the 2-sphere
	Hurwitz numbers and integrable hierarchies
	Connection with moduli spaces of curves
	Hurwitz numbers, matrix models, and the topological recursion
	Double Hurwitz numbers with completed cycles
	Shifted symmetric functions
	Two bases of the algebra of shifted symmetric functions
	Completed cycles
	Double Hurwitz numbers with completed cycles

	One-part numbers with completed 3-cycles
	Some corollaries
	Strong Polynomiality
	Connection with intersection theory on moduli spaces of curves and "the g theorem"
	Dilaton and string equations
	Explicit formulae for top degree terms


	Koornwinder polynomials and Littlewood identities
	Koornwinder polynomials
	Virtual Koornwinder integrals
	Bounded Littlewood identities
	Near-rectangular bounded Littlewood identities
	Preparatory results
	Near-rectangular (Cn,Bn) bounded Littlewood identities
	Near-rectangular (Bn,Bn) Littlewood identity


	KP tau functions
	Gaussian integrals
	Saddle point method
	All-order expansion and the topological recursion

