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Abstract

Organic semiconductors (OSs) have garnered a great attention in the recent years

due to their ease of processibility, optical and electrical property-tunability, and to

their cost-effectiveness. They form the class of materials most suitable for flexible

electronics and bioelectronics, especially in association with solution-processable in-

organic/hybrid materials. However, the charge mobility in these materials is strongly

affected by their structural and energetic disorder introduced by the defects that ‘trap’

the charge carriers. Depending upon the physical location of the traps and their distri-

bution in energy, they could significantly affect the charge transport in a device. The

present work strives to probe the interface and bulk defect states in polymer-based

diodes. In lieu of that, a part of the study involved characterizing the device with

and without encapsulation, using techniques to record steady-state current-voltage (I-

V) behaviour, transients of charge extraction by linearly increasing voltage (CELIV)

and dark-injection transient currents (DiTC), as well as photoluminescence (PL) and

electroluminescence (EL) off the devices. The same characteristics have been car-

ried out to observe the effect of ultra-violet (UV) light-soak on the devices. All the

tests were performed on three different polymers, namely P3HT, MDMO:PPV and

PCDTBT. The comparison of the encapsulated versus unencapsulated devices gives

an insight into characteristic differences in the measurables upon exposure to air and
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moisture. The light-soak tests indicate the modification of the cathode work function

after a UV-assisted oxygen desorption off the polymer/cathode interface. A simulta-

neous effort went into an in-situ investigation of charge transport dynamics in organic

semiconductors over wide time range at a microscopic scale.
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Chapter 1

Introduction

1.1 Semiconductor Electronics

Semiconductors are a class of materials that conduct electricity under favourable con-

ditions which otherwise are insulators. Conventionally, insulators are considered to be

‘high-resistivity’ and ‘wide-optical-bandgap’ materials at room temperature, to distin-

guish it from the ‘low-resitivity’ under proper ohmic contacts and ‘narrow-bandgap’

semiconductors. Some of the fascinating findings of semiconductors in their incep-

tion were Faraday’s observations of negative temperature coefficients in ‘Sulphuret

of Silver’[1], photovoltage by shining light on the surface of one of the electrodes of

the battery cell measured by Bacquerel[2] and the enhanced conductivity upon light

exposure on Selenium[3] discovered by W.Smith to mention few. A proper under-

standing was not given until the formulation of Quantum mechnanics in the early

twentieth century.

Inorganic semiconductors, especially Silicon (Si), Germanium (Ge), gave a kick-

start to the high speed electronics that we use today. The revolutionary invention of

the transistor based on polycrystalline Ge in 1947 by Bardeen, Brattain and Shockley
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[4, 5] has enabled a precise control of the electricity. With the ability to control the

crystallinity, purity and dopant concentration in these materials, it has made these

semiconductors superior material in the industry of electronics. Although Ge was the

first material the transitor was built upon, Si has superceded Ge in terms of appli-

cability owing to its abundance and its higher breakdown field endurance. Also the

relatively higher bandgap of Si leads to a lower dark current due to thermal charge

carriers. Doping Si was also a lot easier than Ge, as Si has the ability to form SiO2

readily, which in turn helps protecting the dopant atoms. From that point on, most

of the research and development went in purifying, improving switching speeds, re-

ducing the size and integrating with many components on a chip for compactness.

This goes on to show how the significance of stability and cost play a key role in a

product’s sustainability.

With the constantly increasing dependence on automated commodities and the

fast-depleting non-renewable energy resources, any additional sources of useful energy

and/or storage devices are sought the most at this point of time. Needless to point out

the impact of burning the fossil fuels has on the environment. One of the promising

sources to counter these issues is solar energy.

The electricity generation using sunlight, based on Si, came into practicality in

1954 from Bell Labs [6]. Largest share of the current market is dominated by silicon

based solar cells. Other thin-film based devices include a-Si, CdTe, GaAs, InGaAs,

Cu(In,Ga)Se2 (CIGS), which fill up rest of the photovoltaic market share. However

they do come with some setbacks and concerns. For example, Indium and tellurium

are scarce and expensive, cadmium is toxic (although CdTe, being highly stable prod-

uct, is not toxic), a-Si suffers from low carrier mobility, GaAs demands high purity
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for lattice matching in the case of multilayered devices etc. Although a-Si has a rela-

tively lower mobility, a-Si devices did find a place in the current market due to their

low-cost of production. Unlike c-Si, the a-Si can be deposited in the form of thin

films (1 − 2)µm at relatively low temperatures. This opened up the possibility of

depositing them on flexible substrates and over large areas. There is a constant drive

for flexible and large-area production towards the ‘printable electronics’ to further cut

down the cost[7]. Other potential candidates that fit into this spectrum are based on

small molecules, polymers, ceramics (most recently, the Perovskites), semiconducting

quantum dots - commonly termed as third generation photovoltaic materials.

Alongside are another elite group of compounds called metal oxides like ZnO,

TiO2, MoO3, V2O5 etc[8]. that are transparent in the optical spectrum. Their tun-

able conductivity and the advantage of being processed in the form of solution makes

them a promising category of compounds towards printed-electronics. Other areas

of technological advancements in hybrid electronics include displays based on elec-

trophoretics [9, 10, 11] and Organic Light Emitting Diodes (OLEDs) [12], flexible

batteries [13, 14], Organic Field-Effect Transistors (OFETs) [15], Radio Frequency

Identification (RFID) tags [16, 17], and more recently in bio-electronics, to mention

a few. Organic Semiconductors (OSs), although quite promising, come with setbacks

especially with the controlling the defect states that trap charges, fast aging and

stability.

Some of the (semi-)conducting polymers like polypyrrol (PPy), poly (3,4-ethylene

dioxythiophene) (PEDOT), polyacetylene (PA), polythiophene (PT), polyaniline (PANI)

etc., showed great potential in biological applications. In order to monitor, control
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and treat some of the biomedical issues, especially in-vivo, the organic-based elec-

tronic devices are the top priority. Their soft mechanical properties would make

them compatible with the soft biological tissues; their ease of chemical modification

helps to optimize case-specific changes. For example, Organic Electronic Ionic Pumps

(OEIPs)[18, 19] is used to transfer ions between two ion reservoirs electrophoreti-

cally. In another application, Organic Electrochemical Transistors (OECTs) based

sensor[20, 21], the conductivity of across source and drain is controlled by dop-

ing/dedoping the conducting polymer, ex. PEDOT:PSS, which is in contact with

the electrolyte by varying the bias to the electrolyte. A very good review of the

concepts and applications based on the organic conductors/semiconductors towards

organic bio-electronics has been put together in the book by Fabio Cicoira and Clara

Santato [22].

Clearly organic electronics seems to hold an optimistic future. But it is also

clear that unless they are cheaper, stable in behaviour and last longer, they may

not persevere in the market. The present work is focussed towards improving the

stability and longevity of the semiconducting polymers by understanding the charge

transport dynamics and the effect of bulk/interface defect states in the devices based

on polymers.

1.2 Motivation

The motivation behind the project was to study the spatial and energetic location of

defects states and how they would affect the charge transport in the organic semi-

conductors. Most of the photovoltaic devices based on either Bulk-Heterojunction

(BHJ) or bilayered or organic-inorganic hybrid type devices are commonly studied
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to improve their device efficiency. The present work however started with an in-

tent to understand one layer of active medium. This obviates the complexity of the

structure and helps disentangling the contributions of bulk from the interface affects.

Poly(3-hexylthiophene-2,5-diyl) (P3HT) was chosen to start with considering its al-

ready well-documented tests and hence it would serve us calibrate our measurements

and devices as well.

For a stable polymer like P3HT the measurements, like current-voltage charac-

teristics, changed over time when left inside the glovebox and even more drastically

when the tests were being performed outside the glovebox over extended periods of

time. In order to understand and distinguish the trap states due to extrinsic entities

like O2 and moisture from the intrinsic defects, the devices were studied both with

and without encapsulation. On a substrate with four devices, two of the devices were

encapsulated while the other two were not encapsulated. The encapsulation has also

enabled us to do multiple optical studies on the encapsulated devices with minimal

photodegradation of the active medium.

In order to speed up the process of degradation and/or oxidation of the polymers,

thereby modifying the trap states distribution, it was decided that the devices be

soaked under white light.

1.3 Layout of the Thesis

The Chapter 2 is a concise description addressing upto date literature review relevant

to materials and devices that were used in this work, as well as different characteriza-

tion techniques with an emphasis on the physics behind the techniques. A significant

portion of time that went towards device fabrication, caliberations, data acquisitions
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and building techniques to probe the device are detailed in Chapter 3.

Chapter 4 gives detailed tests, results and discussion on P3HT-based sandwich-

type diodes. The tests include the study of effect of encapsulation on the steady-state

dark current-voltage and dynamics through the Charge Cextraction by Linearly In-

creasing the Voltage (CELIV) and Dark-injection Transient Current (DiTC) charac-

teristics, along with Photoluminescence (PL) and Electroluminescence (EL) studies

as well. Further the same tests were performed to observe the effect of soaking the

devices under white and UV light. P3HT:PCBM-based devices were also tested in

order to compare the effect of unintensional defects induced by external factors to

that intensional electron traps and structural disorder introduced by adding PCBM

acceptor molecules.

Chapter 5 does a comparative study using P3HT, MDMO:PPV, PCDTBT poly-

mers with the same layered configuration as were used in Chapter 4. P3HT and

MDMO-PPV are of nearly same conduction edges but with an offset in the valence

band edges. PCDTBT is a low bandgap material with relatively deeper conduction

and valence band edges. The relative energy levels of the conduction and valence

bands with respect to the fixed contact work functions would help us identify the

plausible interface barriers. Each polymer has a different chemical structure and

hence different molecular conformation/morphology in a thin film; degree of crys-

tallinity and hence different glass transition temperatures. Comparision of the above

polymers and other kinds have been performed by Mateker et al. [23] in terms of pho-

tostability and degradation. The work presented in this chapter forms only fraction of

the complete picture considering the wide range dissimilarities of the three polymers.

However, the intention was towards finding the physical properties in terms of charge
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mobilities, dielectric permittivity, impact on the current voltage characteristics as

well as charge storage capacity from CELIV, interfacial properties etc. and to rule

out any insignificant possibility whereever possible, in order to simplify the overall

understanding.

Chapter 6 is constituted of all-imaging based on bright-field, fluorescence and

Laser Beam Induced Current (LBIC) on the above mentioned devices to check for the

effect of encapsulation like top-electrode pinholes and edge degradation, and UV illu-

mination. There are four appendices attached towards the end, in which Appendix B

and Appendix C describe the steps taken to calculate the charge mobilities from

space-charge limited current regime in I-V characteristics and CELIV, respectively.

The intention was also to highlight some of the difficulties and pitfalls associated

with the extracting the charge mobilities out of the so-called ‘simple’ techniques.

Appendix A and Appendix D include some supporting information in the aide of

Chapter 4 and Chapter 5, respectively.
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Chapter 2

Background

2.1 Organic Semiconductor Electronics

The electrical conductivity in an organic material is believed to be envisioned and

first realized by D.D. Eley in 1948 [24], followed by a systematic work of Akamatu and

Inokuchi [25, 26] which paved the way further towards organic semiconductor studies.

A very good compilation of analytical and experimental study of current injection in

solids like in valence crystals, ionic crystals, organic and inorganic molecular crys-

tals has been presented in the book called ‘Current Injection in Solids’ by Lampert

and Mark [27]. While there was no mention of conducting polymers in the book,

polymer electronics started gaining attention after Shirakawa’s accidental findings of

conduction in doped Polyacetylene.The book on ‘Conjugated Polymers and Molecular

Interfaces’ by Salaneck,Seki and Kahn[28], is a great resource on giving an overview

of most of the experimental observations and techniques employed on understanding

the role of the organic-organic and organic-contacts interfaces.

C.W. Tang [29] fabricated the first bilayered organic solar cell of about 1% effi-

ciency. A major problem with those organic solar cell was that the exciton diffusion
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length was less than 20nm and hence exciton recombination losses would dominate

over the charge dissociation. This problem was addressed by A.J. Heeger group [30]

by blending the acceptor molecules and donor polymer making Bulk Heterojunction

(BHJ) cells. This increases the probability of finding the interfaces for the exci-

ton dissociation, showing an improved efficiency of about 3%. Since then a lot of

research has gone into optimizing the cells in terms of material and morphology.

For example, selecting appropriate solvent and/or annealing of the solution-processes

polymer:molecule blended solar cells lead to a better morphology [31]. Likewise in

plasmonic solar cells, the emphasis is on scattering the incident light by the local-

ized surface plasmon resonances into the active medium [32] is another such strive.

Synthesizing stable low bandgap polymers for PVs in order to cover long wavelength

spectrum of sunlight is another interesting topic of research [33]. Conduction in or-

ganic semiconductors originates from the alternating double bonds along the chain of

the polymer or in a molecular unit. The interaction between the neighbouring molec-

ular units of a polymer leads to the opening up of the band gap and the improved

conductivity is due to the delocalization of charges over the overlapping π−π orbitals.

A very small energy difference between the two configurations where the double-bond

could prevail on either, but one, side of a carbon atom at a time, leads to a state of

degeneracy where the conduction without barrier can be assumed. Figure 2.1 shows

one such polymer called polyacetylene with two possible configurations. Note that

there are also conjugated polymers that can take non-degenerate configurations.
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(a) (b)

Figure 2.1: Skeletal formula of polyacetylene showing (a) two probable energetically
favoured configurations, (b) superposition of two equally probable configurations.

In contrast to the conjugated polymers, polymers like polyvinylene, polyallenes

etc. behave like an insulator in the absence of conjugation. The relatively longer single

bonds lead to lesser interaction between the basic units and hence minimal dispersion

in energy levels, leading to a larger energy gap. The conduction and valence bands

originate from the bonding structure of the polymers. In contast to their inorganic

counterparts, the band edges of organic semiconductors are usually not sharp but

instead they have tail states leading into the band gap. The tail states arise from

the intrinsic defects arising from the morphological disorder and differences in local

conditions that are ubiquitous to the amorphous nature of these polymers. There can

be unintentional extrinsic defects introduced before, during or post synthesis that

leads to mid-gap deep or shallow states [34]. Figure 2.2 shows a cartoon of density of

states distribution in energies in amorphous semiconductors in general.
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Figure 2.2: A schematic of the distribution of energy levels in amorphous solids. CB-
Conduction band, VB- Valence Band

Semiconducting polymer DoS

In order to understand the charge transport in these semiconductors better, it is

necessary to identify the conduction(valence) bands as well as the spatial and energetic

location of the trap states. Ultraviolet Photoelectron Spectroscopy (UPS) [35, 36, 37]

and Inverse Photoelectron Spectroscopy (IPES) [38, 39] techniques are often used

to identify the occupied and unoccupied energy states respectively. To determine

the gap states at the interface or bulk, tests have been done in either frequency-

domain [40, 41, 42], time-domain [43], or temperature-controlled steady state [44].

Impedance spectroscopy to reconstruct the trap-DoS in which a very small ac signal

perturbation is frequency-swept at various dc biases. MacKenzie et al. [43] used

transient photocurrent after a short optical pulse excitation to relate to the DoS of
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P3HT:PCBM based devices. It is very well understood now that molecular oxygen

physically adsorbed to the conjugated polymers can affect polymer’s conductivity,

where in most of the cases, act as a p-type dopant and/or as a mid-gap trap statess.

The electron affinity of O2 molecule is known to be about (0.451±0.007)eV [45], and

the ionization potential of most of the semiconducting polymers is between (5-6) eV.

The Electron Affinity (EA) values of the O2 in a polymer or its surface is different

from its value measured in gaseous, as the solid-state polarization effect due to the

surrounding material[46] needs to be taken into consideration.

The relatively weaker covalent bonds in polymers make them susceptible to photo-

oxidation and -degradation. Depending on their packing structure i.e. morphology

during film formation, or side chains that are modified to enhance their solubility

in a solvent and/or the functional groups attached to the polymer backbone, the

rate of these processes might vary. Photoxidation is the process where the polymer

gets oxidized in the presence of light. Photooxidation could be a reversible process

i.e. the initial state of the polymer could be retracted by using some processes like

thermal annealing or by vacuum pumping. However, prolonged exposure to light and

oxidizing agent may lead to irreversible photodegradation.
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(a) (b)

Figure 2.3: a) Jablonski diagram indicating routes of energy and charge exchange
phenomena between the sensitizer and an oxygen molecule [47], b) Energy levels of
various species associated with oxygen and water with respect to the energy levels of
the Polymer. Picture courtesy [46].

There have been studies already done in detail to understand the process of pho-

tooxidation and degradation [48]. For example, the electrophilicity of the molecular

oxygen and the nucleophilicity of the Sulphur atom in P3HT leads to a Charge Trans-

fer (CT) complex, when the two entities are in proximity. This was confirmed from

the increase in Electron Paramagnetic Resonance (EPR) signal of P3HT in the pres-

ence of O2 , and the effect was reversible[49]. The increase in signal is indicative of

the ionic character of the complex. The charge transfer complex formation of P3HT

with oxygen is shown in Figure 2.4(a). The photolysis of this complex, can lead to

generation of singlet oxygen 1O2 or superoxide ions (O·−2 ) which can further lead to

reversible or irreversible change to the CT state, as shown in the Figure 2.4(b). The

common consensus to date is that singlet oxygen is the key culprit in expediting the

polymer degradation process.



2.1. ORGANIC SEMICONDUCTOR ELECTRONICS 14

(a) (b)

Figure 2.4: a) Representation of Charge-Transfer complex of P3AT and oxygen [49],
b) Possible routes of chemical mechanisms involved in photolysis of a polymer in the
presence of molecular oxygen.[50].

Mechanism Photo and thermo-oxidation of P3HT was revisited by Manceau et

al [51]. Based on the infrared and UV-visible spectroscopy, the authors conclude that

the singlet oxygen doesn’t play a key role degradation mechanism, but instead it was

proposed that the oxidation of the side chains and followed by the degradation of

thiophene rings.The energetic location of these trap states would mostly determine

the overall device behaviour, and it is very important to include their contribution in

the physical model.

Different models have been proposed in order to describe the charge transport in

organic semiconductors. One of them being Multiple Trap and Release (MTR) model,

according to which, the charge remains trapped in a defect but with a non-zero prob-

ability of being excited to a continuum of states of the semiconductor, before being

trapped again by the defect. The propagation direction is decided by the bias applied.

The escape probability of the trapped electrons (holes) into the continuum of states

depends on the energy difference between the trap level and the conduction (valence)

band [52]. Hopping or percolation theory of conduction is the another model in which

the charge instantaneously hops between the neighbouring localized states [53, 54].
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A comprehensive review on the charge transport is given by Schmechel et al. [34] and

Klauk Hagen [55]. Experimentally, performing multiple techniques in conjunction is

the way to go to describe the charge transport in these disordered materials correctly

and consistently. It is quite important to track the dynamics ranging from ultrafast

sub-femtosecond phenomena like charge creation and separation to very slow detrap-

ping phenomena that range upto few seconds or even days. While varying strength

of the external perturbation in the form of optical or electrical pulses and probing

the relaxation processes is one of the ways, probing by varying the temperature or

pressure or even the gas type of the ambience are other commonly employed tests.

What follows next is a very brief description of some of the commonly used tech-

niques employed to charaterize the devices and physical phenomena ascribed to the

characteristics observed so far.

2.2 Characterization techniques and the device physics

2.2.1 Current-voltage characteristics in dark

Figure 2.5(a) below shows current-voltage characteristics in semi-logarithmic scale for

one of the diodes studied. The device is constituted of ITO/ZnO/P3HT/MoO3/Ag

on a glass substrate, Zinc Oxide (ZnO) is hole-blocking layer and Molybdenum Oxide

(MoO3) helps forming an ohmic contact to the polymer. In the forward bias, the

top metal contact (Silver, in this case) participates in hole-injection and Indium Tin

Oxide (ITO) forms the hole-collection side of the device making it a ‘hole-only’ device

at small voltages (about less than 2V). In the reverse bias, the ZnO prevents from

any hole-injection from the ITO side into the device, although there is some leakage

current.
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Figure 2.5: Current-Voltage characteristics in a) semilogarithmic scale, and b) log-
log scale where [1] represents the ohmic regime, [2] represents the diffusion- and
trap-limited regime and [3] represents trap-filled SCLC regime.

Ohmic Regime

In ohmic regime, denoted by (1) in the Figure 2.5(b), the current is mostly dominated

by the intrinsic thermally generated carriers, possibly from intentional or uninten-

tional donors whose energy levels are shallow with respect to the valence band.

From the Ohm’s law,

J = ep0µ(V/L) (2.1)

where p0 is thermally generated free hole concentration, µ is the hole mobility, L is the

device thickness and V is applied bias voltage. The ohmic behaviour terminates when

the injected charges are comparable to the thermally-generated charge density, p0. In

a more recent work, similar behaviour was shown to be followed by an insulator [56]

due to the diffusion current component although the current density varies inversely

proportional to L3 and not to L as in equation2.1. By measuring the charge and
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current densities using CELIV technique, one can measure the charge mobility in the

ohmic regime using Equation 2.1.

Diffusion-limited Current/trap-assisted regime

The diffusion current for a P-N junction type device is given by the classical Schockley

diode equation [57] is well known.

J = J0[e
(qV/ηkT ) − 1] (2.2)

where J0 is the reverse saturation current, and η is the ideality factor. For a Metal-

Insulator-Metal (MIM) kind, the current-voltage dependence is given by [57],

J =
qµN

v
(Vbi − V )[e(qV/kT ) − 1]

L[e(qVbi/kT ) − e(qV/kT )]
(2.3)

Space-charge Limited Current regime

Beyond the Ohmic regime, the voltage is high enough such that the transit time

for the charge injected to traverse the device, L/(µV ) , is shorter than the dielectric

relaxation time, (ǫ/σ), the device enters the deep trap filling regime followed by space-

charge limited regime. Charges injected and extracted ohmically is now only limited

by the uncompensated space-charge inside the device i.e. the charge being injected

experience an opposing field from the charges already present in the device. The

current-voltage characteristic follow the Mott and Gurney’s law (2.4) for a trap free

insulator where current through the device is proportional to the square of voltage.

J = (9/8)ǫ0ǫrµ0(V
2/L3) (2.4)
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The regime 3 in Figure 2.5(b) shows the current and voltage proportionality with

slope of about 2. The above equation assumes that the injecting/extracting contacts

are ohmic and that there is no built-in field due to difference in work functions of the

electrodes. This is accounted for by replacing the bias voltage, V, in equation2.4 by

V − Vbi, where Vbi is the built-in voltage

Considering only a single shallow trap level close to the conduction (valence) band,

the current-voltage characteristics are modified to the following equation (2.5),

J = (9/8)ǫ0ǫrµ0θ(V
2/L3)

where, θ =
ntrap

ntrap + nfree

(2.5)

Introducing a discrete shallow traps is a very simple case, although in general there

could be a distribution of traps states. For example, the current-voltage characteris-

tics derived for the case of exponential distribution of trap states, the space-charge

current-voltage characteristics follow the equation (2.6)

J ∝ V l+1/L2l+1 (2.6)

where l = T/Tt and Tt is the temperature parameter that describes the exponential

trap distribution such that Nt(E) = N0exp[(Ev − E)/kTt]. Nt is the concentration

of traps per unit energy, and Ev represents the energy level of the valence band edge.

The parameter l is derived for the gaussian distribution of traps by Steiger et al. [58].

However it was observed in some cases that the slope is more than 2, which has been

explained based on Murgatroyd’s work [59] that considers the field-dependence of
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mobility. An exponent of 3 is reported to be seen in the case pure insulators [60].

J ≃ (9/8)ǫµ0(V − Vbi)
2exp(0.89

√

((V − Vbi)/E0L)))/L
3 (2.7)

It has also been shown theoretically by Roichman et al. [61] and experimentally

by Tanase et al. [62] and Pasveer et al. [63] that carrier mobility strongly depends

on charge carrier density. According to their work, while at room temperature the

charge mobility depends on the charge density, at lower temperatures and higher

electric fields, the charge density dependence on the field is significant.

The above discussion on SCLC assumes that there is single carrier injection (ex-

traction) hence the radiative recombination has not been considered. However, it is

also of great interest to know the SCL current-voltage characteristics in the case of

double-carrier injection followed by recombination processes. Paramenter et al.[64]

showed that Mott-Gurney’s law of SCLC for single-carrier injection case can be ex-

tended to the double-carrier injection case by just replacing with the effective mobility

that is a function of electron and hole mobilities. Theoretical work Lampert et al. [60]

on the reduced SCLC due to recombination processes and higher ohmic current due to

enhanced minority carriers has been supported by my experimental work (Chapters

3 and 4) in polymer-based diode.

2.2.2 Current-Voltage characteristics under light

Most of the work presented in this thesis is aimed at understanding the physics of

organic semiconductors. However the idea behind initiating the project was to under-

stand and improve the material characteristics, in order to enhance the photovoltaics
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efficiency. Here I would like to introduce some of the device’s most common charac-

teristic parameters, so that one can appreciate the significance of these parameters in

the future discussion.

The mechanisms prior to observing the photocurrent off a solar cell can be cate-

gorized into following sequence:

• Exciton generation

• Exciton diffusion

• Exciton dissociation

• Charge carriers transportation/extraction

Photons absorbed by the active medium in a solar cell create electron-hole pairs

called excitons. The excitons must be able to diffuse to the nearest donor:acceptor

interface for dissociation. The excess energy i.e. the difference between the LUMO(or

HOMO) of donor and the LUMO(or HOMO) of acceptor, should be large enough to

overcome the binding energy of an exciton. At the interface the exciton splits into free

charge carriers to be transported to the respective electrodes with the help of built-in

field created by the difference in electrodes’ work functions. Therefore it is important

to chose electrodes for optimum performance of the device. These processes are shown

in Figure 2.6.

Organic materials have very high absorption coefficients in the order of ∼ 105cm−1

in the visible spectrum, allowing very thin active medium of about (100-300) nm to

absorb a large fraction of incident photons. One of the setbacks in organic semi-

conductors however is that most of them have large bandgap but narrow absorption

width. Hence only a small fraction of higher energy of optical spectrum overlaps with
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Figure 2.6: A cartoon depicting the mechanisms of exciton generation, diffusion,
dissociation and charge recombination/transportation. Reprinted with permission
from [65]

Solar spectrum. Some material engineering in this regard is being investigated to

cover up for the loss, for example, by introducing metal nanoparticles in the active

medium to enhance the absorption through Localized Surface Plasmon Resonancess

(LSPRs), or by making multilayer cells with various low-bandgap material [66] etc.

Unlike in inorganic material, the binding energy of excitons in Organic materials

is as high as (0.5-1)eV due to weak screening between charges offered by low effective

dielectric constant (3-5 as compared to ∼ 12 for silicon). In addition, the amorphous

nature of organic materials leads to shorter (few tens of nanometers) exciton diffusion

length. The problem of short diffusion length is circumvented in BHJ photovoltaics

by making the blend of donor:acceptor material types such that the two material

interfaces are available within the average diffusion length.

A serious limitation of BHJ OPVs is that there is a huge disorder in the blend

and the acceptor/donor do not always percolate towards the right electrode. There-

fore a fraction of the dissociated charges may end up unextracted and eventually

recombine with some trapped charges from earlier excitations. A common fix to this
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kind of situation is introducing charge-selective layers between the active medium

and electrodes. Although these layers do not prevent the flow of ‘uninvited’ charges

to an electrode, but instead mitigate the recombination losses which is prominent

at the direct polymer-electrode contacts due to surface defects. The photogenerated

charges that make their way to the electrodes are obtained as usable external cur-

rent. In short, for a very efficient photovoltaic device, the absorption spectra of the

active medium should cover the wide portion of solar spectrum, a very efficient ex-

citon dissociation, and as least recombination losses as possible before reaching the

electrodes.

A commonly presented figure of merit describing a solar cell behaviour is the

Power Convertion Efficiency (PCE). PCE is defined as ratio of maximum extractable

electrical power for the incident optical power. The efficiency of a solar cell is mea-

sured under standard conditions known as AM1.5 spectrum which simulates the solar

spectrum on Earths surface,and it is given by.

Efficiency, η =
FF ∗ Voc ∗ Isc

Pin

(2.8a)

Fill-Factor,FF =
Vmax ∗ Imax

Voc ∗ Isc
(2.8b)

From the definition, some of the important parameters are open-circuit voltage(Voc),

short-circuit current density (Jsc) and the product VmaxJmax, the maximum ex-

tractable power, as indicated in the figure 2.7. The fill-factor is dictated by the series

resistance (injection barriers and sheet resistances) and shunt resistance(for instance,

charge losses due to recombination and charge transport to unintended electrodes).

For a high-performance solar cell, the slope corrensponding to Rs should be as low as
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possible and the slope at zero bias should be as flat as possible for a high Rsh. One

should aim to improve the Jsc, VocorJsc ∗ Voc alongside the fill-factor for a better cell

performance.
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Figure 2.7: Current-voltage characteristics of a P3HT:PCBM-based BHJ device
tested under dark and light of intensity of 200mW/cm2.

Light soaking effects and stability issues

For organic semiconductors to find a niche in the photovoltaics market, it is quite im-

portant that they have longer life and a stable performance. It has already been docu-

mented that exposure of devices to light, especially in the presence of extrinsic agents

like oxygen, moisture etc., can drastically affect the device performance [67]. The

optical treatment not only affects the chemical structure of the active medium, but

can also modify the contact-semiconductor interface like the interface states, barrier

heights etc. For example, in the current-voltage characteristics of bulk-heterojunction
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solar cells, the light-soaking is known to cure the S-shape [68, 69], as shown in the Fig-

ure 2.8. Clearly the S-shape is detrimental to photovoltaics by reducing the fill-factor

and hence the efficiency. The possible causes for the s-shape is argued to be either

from the difference in the electron and hole mobilities [70] or due to inefficient charge

extraction at one of the contacts [71]. Likewise, Light soaking is also shown to reduce

the charges extracted in the CELIV experiment [72] emphasizing the modifications

to the interface energetics.

(a) (b)

Figure 2.8: The S-shape in current-voltage characteristics, that is usually observed in
organic photovoltaics, is cured by modifying the cathode contact interface by using
a) additional layer of material[71], or b) Ozone-plasma treatment of ITO substrates
before depositing active layer,[68].

Recombination types and losses

Recombination of polarons is one of the mechanisms responsible for reducing the

short-circuit current (Jsc) and the fill-factor (FF), thereby reducing the cell effi-

ciency. Recombinations can be radiative or non-radiative in kind. The recombination
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losses can be characterized under geminate and non-geminate recombination pro-

cesses. Geminate recombination is the recombination of the polarons that split at the

interface but fail to fully dissociate and are held back by weak coulomb attraction.

Non-geminate recombinations, like trap/surface assited recombinations or bimolecu-

lar recombination, are the recombinations of the dissociated carriers occur through

independent events. The bimolecular recombination may either follow Langevins or

Shockley-Read-Halls mechanism [73]. Langevins recombination happens when there

is a finite probability of finding the oppositely charged carriers from an uncorrelated

event. Shockley-Read-Hall recombination, on the other hand, occurs via levels in the

forbidden energy gap, introduced by impurities and lattice defects. It is basically

a trap-assisted recombination. Geminate recombinations are prominent when oper-

ating under short-circuit condition, but away from the short-circuit condition and

toward the open-circuit condition, both geminate and non-geminate losses affect the

I-V characteristics significantly [74, 75]. It is understandable that under flat-band

conditions, when the built-in field is annulled , the probability of finding the opposite

charge centers is quite high thereby increasing the non-geminate recombination losses.

Recent reports show that, under the flat-band conditions, the dissociation efficiency

of the photogenerated charges carriers and hence the geminate recombination may

be affected too. Earlier studies on the time scales over which different mechanisms

occur in OPVs are compiled here:

• The ultrafast charge transfer at acceptor:donor interface occurs usually between

(100-250)fs [76].

• Interchain energy transfer between polymer chains occurs over few 100s of pi-

coseconds, explained by forster-type hopping process [76, 77]
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• Geminate recombinations can occur upto few tens of nanoseconds (few nanosec-

onds in polyfluorene copolymer/PCBM blend systems).

• Radiative recombinative lifetimes of about 660ps was observed using time-

resolved photoluminescence studies. It was shown by probing the sample using

both TAS and PL techniques [78]. In the former case, the lifetime of decay

was 660ps that included losses due to all radiatively and non-radiatively recom-

bining excitons, where as only 200ps from the latter study is just due to the

radiative excitons, emphasizing the non-radiative routes of energy transfers.

• Charge transportation towards the electrode can take about few microseconds

to milliseconds [79].

2.2.3 Charge Extraction by Linearly Increasing Voltage(CELIV):

CELIV technique was intially designed by Juska et al. [80] to study the charge carrier

mobility and concentration in microcrystalline silicon (µc − Si : H). The technique

was deviced especially to the study very thin films of submicron thicknesses and those

that have relatively high conductivity.

Replacing Time of Flight(ToF) - For thin film devices, the photogeneration of

charges is across the full volume of the device, and hence the identification of the

kink indicating the transit time of the charges reaching the opposite electrode is com-

plicated which is already affected by the dispersive charge transport in amorphous

materials. Another important requirement for the ToF tests is that the photogener-

ated charges experience a constant electric field in presence of the external bias. In a

case where the semiconductor is doped(say, ∼ 1016cm−3), the formation of depletion
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layer at the interface of metal-semiconductor interfaces can alter the electric field dis-

tribution making it non-uniformly distributed across the device thickness with most

of the external supply voltage droping at the depleted interface, while little across

rest of the device. The higher the doping induced free thermal carriers, the shorter

the dielectric relaxation time(τσ = ǫǫ0
en0µ

). If the device is operated under low-field

conditions leading to a long transit time(ttr =
d2

µV
) such that ttr >> τσ, it is possible

that the photogenerated signal is already lost before reaching the respective electrode.

In addition to that optical excitation creates both kinds of charges. For bulk gen-

erated charges, the resultant mobility is biased towards the slower charge-type. In

dark-CELIV, only kind of charges are injected until they are in equilibrium before

extracting them. As the charge-scooping ramp starts immediately, the materials with

relatively higher conductivity i.e. shorter relaxation time, τsigma, can be studied with

dark-CELIV, which otherwise is a limitation for ToF. Dark-CELIV also has a limita-

tion that the initial injection voltage is limited to the voltage setpoint where SCLC

dominates. At and above this setpoint, the conductivity of the device for the spe-

cific charges is way to high and hence τsigma is very short, that fraction of additional

injected charges are already lost under thermal equilibrium.

In order to perform CELIV, it is necessary that there is one injecting/ohmic con-

tact and one blocking contact, so that only charges filled in the devices are extracted

and there is no additional injection of the charges from the opposite electrode during

the charge extraction process.
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Figure 2.9: Energy level alignment a) before and b) after contact, c) Charge density
redistributed after contact. The dotted line represents the fermi-level of the polymer,
ψi represents work functions of cathode (i=1) and anode (i=2), the dashed line in
blue band represent the negative acceptor ion shallow traps, + sign are the mobile
holes in the polymer.

CELIV - Analytical framework

According to Gauss’ law,

dE(x, t)

dx
= −

eN−

A

ǫ
0 ≤ x < l(t) (2.9a)

= 0 l(t) ≤ x < d (2.9b)

where l(t) is the space depleted of mobile or trapped charges, d is the device thickness,

ǫ is the dielectric permittivity of the active medium and N−

A the acceptor acceptor

entity density. The negative superscript indicates the acceptor molecule is ionized

negatively by accepting electron. Figure 2.9(a) and (b) show the energy level align-

ments between a cathode (ψ1), ptype semiconducting polymer and anode (ψ2) before

and after contact. The blue band with the dashed line (representing negative charge
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held by the shallow traps) close to the HOMO of the polymer represents the acceptor

dopants level and dotted line is the Fermi level of the polymer. The charge redis-

tribution within the device is approximated with abrupt step-like charge density as

shown in Figure 2.9(c).

Integrating Equation (2.9a) within the limits leads to,

E(x, t) =
−eN−

A x

ǫ
+ E(0, t) 0 ≤ x < l(t) (2.10a)

= E(d, t) l(t) ≤ x < d (2.10b)

with the boundary conditions E = E(0,t) at x = 0(Cathode contact) and E(d,t) at x

= d(Anode contact).

Integrating the Poisson’s equation over the full length of the device,

E(d, t)− E(0, t) =
−eN−

A l(t)

ǫ
(2.11a)

Voltage drop across the device in terms of electric field is,

V (t) =

∫ d

0

E(x, t)dx (2.12a)

=
−eN−

A l
2(t)

2ǫ
− [E(d, t)− E(0, t)]l(t) + E(d, t)d (2.12b)

=
eN−

A l
2(t)

2ǫ
+ E(d, t)d (2.12c)

In CELIV, V (t) = Rt − (Voffset − Vbi), where R is rate of change of voltage called

ramprate, t denotes time, Vbi is the built-in voltage and Voffset is the initial steady-

state offset voltage set before(after) the onset(termination) of ramp pulse.
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Equation of continuity, assuming no creation or destruction of charges, states

−→
∇ .
−→
J +

∂ρ

∂t
= 0 (2.13a)

Integrating the Equation (2.13a) through x, knowing that the current is from the

undepleted region (d-l(t)), gives

J = eµppE(d, t) = ep
dl(t)

dt
(2.13b)

⇒ E(d, t) =
1

µp

dl(t)

dt
(2.13c)

From the Equations (2.12c) and (2.13c), the time evolution of the the depletion region

in device is given by,

dl(t)

dt
+
epµp

2ǫd
l2(t) =

µV (t)

d
(2.14a)

Current density due to mobile holes is given by,

Jh(x, t) = epµpE(x, t) + ǫ
dE(x, t)

dt
(2.15a)

where the first term on the right hand side is contribution from field-dependent drift

current and second term is the displament current due to time-varying electric field

inside the device. By averaging out the internal current over the length of the device
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leads to,

J(t) =
1

d

∫ d

l(t)

epµpE(x, t)dx+
ǫR

d
(2.15b)

=
epµp

d
E(d, t)[d− l(t)] +

ǫR

d
(2.15c)

Only the free hole carriers in the region l(t) < x < d participate in the net current.

From Equation (2.13c) & (2.15c), the current transient is given by,

J(t) =
σ

µp
[
µpV (t)

d
−
σl2(t)

2ǫd
][1−

l(t)

d
] +

ǫR

d
for t < ttr (2.15d)

=
ǫR

d
for t > ttr (2.15e)

where ttr is the transit time of the slowest group of charges.

Voltage-step excitation:Dark-injection Transient Current(DiTC)

From the application of ramp pulse in CELIV, the voltage resets from the peak

in reverse bias to the offset voltage applied before the onset of ramp pulse. The

offset voltage could be in the contact-limited space-charge free(SCF) regime or be in

space-charge limited current(SCLC) regime. Using CELIV, therefore it is not only

possible to extract the information of charge stored, dielectric constant of the medium

and charge mobility distribution from the ’ramppulse-front’, but it is also helpful to

visualize the current transients from the rear of the ramp pulse. Depending on time

ranges that are being investigated, the current transients give information about the

transit time of the injected charges which depends on the transport parameters which

in turn depend on the defect structure of the specimen. It is also possible to study
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the trapping/detrapping phenomenon before the free and trapped charges reach an

equilibrium, which basically means one can watch the evolution of quasi-fermi level

in the device.

The Space-charge-limited Transients

Figure 2.10 shows DiTC of the device where the voltage steps up from -1.8V to the

offset voltage of 1.2V, which is in the SCLC regime. The device configuration used in

this figure is ITO/ZnO/P3HT/MoO3/Ag. Here MoO3 forms the ohmic contact for

hole injection, while ZnO serves as a hole blocking layer. From the J-V characteristics

in a P3HT-based device, it can be understood that the SCLC regime begins at voltage

higher than ∼ 650 mV for these devices. The initial fast rise in the signal is the

displacement current(∂E/∂t − ∞) due to the step signal input, followed by the RC

relaxation transient as the step voltage approaches constant value and then with an

overshoot(indicated by the arrow) before settling to the steady state current value.

The physical explanation for the overshoot of the current is explained as follows.

At the offset voltage, the current is mostly dominated by the diffusion component

with the high hole concentration that are injected at the anode interface and holes

that are extracted at the cathode interface. Under the influence of external voltage,

there is also a drift component that assists the charge transport to the opposite

electrode. However, as the charges approach to the opposite electrode, the depletion

zone between the cathode and leading edge of the injected charges gets shorter with

time. Therefore the electric field between the two edges rises with time. This in turn

causes the charges to be drawn faster towards the cathode, leading to the current

overshoot, shown in the Figure 2.10. The drift mobility of the holes can then be

determined using, µh,sclc = 0.786L2/tpeakV − bias, where L is the device thickness,
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tpeak is the current overshoot peak position, and Vbias is the applied voltage.
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Figure 2.10: Dark-injection current transient of a P3HT-based device, for a step
voltage of amplitude 3V from negative reverse bias towards forward biased offset
voltage of +900mV, which puts the device under SCLC regime.

The Contact-limited current transients Unlike in SCLC regime, the charge injected

into the device is very small compared to the net charge storage capacity of the

device (Qinj. < ǫA/L) at a given voltage. This could mean that charge injection was

contact-limited or that external optical pulse used for excitation is very weak. This

implies that the field inside the device can be considered almost constant across the

device (E = Vbias/L). Solving the drift-diffusuion equations (ignoring diffusion for

simplicity), the current density is given by,

j(t) = µQV/L2 (2.16)

Space-charge-free transit time is given by,ttr = L2/µV (2.17)
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Figure 2.11: Contact-limited dark current transients tested on the same P3HT-based
device.

where Q is the charge injected at t = 0. The injected charges undergo trap-

ping/detrapping and dielectric relaxation loses before attaining steady-state current.

Figure (2.11) shows the current transients after a step pulse drops from -3V to the

final bias set at 100mV. The current decay indicates two slopes. The fast component

is associated with dielectric relaxation process, while the slow one is associated with

charge trapping and detrapping phenomenon.

2.2.4 Photovoltage

The actual operating point of a photovoltaic device depends on the external load

attached to the PV cell, which is reminisced by the fourth quadrant (the lower right

quadrant in figure 2.7) of the light-IV characteristics. By flipping the sign of the

applied voltage, the Vext is same as built-in voltage (Vbi). The built-in voltage in the
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device is what leads to a measurable short-circuit photocurrent. It is important to

know the built-in voltage, (Vbi), precisely in order to be able to measure the charge

mobility accurately from the dark IV characteristics as well. One can find Vbi by

either electroabsorption spectroscopy [81], or by measuring the open-circuit voltage,

(Voc), [82] by saturating the device optically or from capacitance-voltage measure-

ments [41, 83]. The photovoltaic measurement is a simpler method to estimate the

built-in voltage though. The bias applied in order to nullify the photocurrent or

measuring photovoltage of the PV cell under saturation conditions is, an underesti-

mate but, a measure close to built-in voltage. The open-circuit voltage depends on

temperature, excitation light intensity, electrode work functions, morphology, density

of states of the active medium itself. Brabec et al. [84] showed experimentally that

Voc scales proportionally to the difference in potential corresponding to HOMO of the

donor and LUMO of the acceptor material, where the LUMO of the acceptor material

was tuned by choosing appropriate acceptor molecules (Fullerene derivatives). In the

same work, it was shown that the Voc was independent of the cathode work function

which was tuned from Calcium (φCa ∼ 2.87eV ) to Gold (φAu ∼ 5.1eV ). The change

in Voc was seen to be mere ∼ 200mV , while change in the cathode work function was

over 2 eV. This is explained on the possibility of band-bending of the semiconductor

at the surface due to metal-semiconductor bonding-induced surface states. The metal

contact’s work function would then be pinned to surface work function of semicon-

ductor irrespective of what metal is chosen. Mihailetchi et al.[85] showed that Voc for

a device with ohmic contacts on both sides is decided by the HOMO of the donor and

LUMO of the acceptor (with some loss in field due to the band bending inevitable at

the ohmic contacts), whereas for a device with non-ohmic contacts it is simply the
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(a) (b)

Figure 2.12: a) Open-circuit voltage versus reduction potential (or LUMO) of the
acceptor molecules, b) Dependence of open-circuit voltage on the cathode work func-
tion. Reprinted with permission from [84].

difference in contacts’ work functions.

Blakesley’s[86] theoretical work on Voc dependence on the effective bandgap of the

active media while considering disorder and recombination induced losses. Experi-

mental work was attempted by Garcia et al.[87] tried to show the effect of disorder

on the open-circuit voltage. In their work, two different kinds of acceptor molecules

(Phenyl-C61-butyric acid methyl ester (PCBM) and DPM6, both being fullerene

derivatives) were used to dope the donor material(P3HT) separately, in order to

measure the disordered DoS while keeping the LUMO of the acceptor same in both

the cases. Blakesley’s and Garcia’s work point to the common understanding that

higher the disorder, the smaller is the Voc. Likewise, Voc is shown to decrease with

the increase in temperature.

Depending on the Fermi level (i.e. on the doping concentration) of the semicon-

ductor and on the work-function of the metals/oxide-based contacts chosen, there can
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be ‘band-bending’ that needs to be taken into consideration so that the fermi-levels

of the two media align at the interface[88]. According to Mott-schottky model, it was

assumed that post-contact of a metal and semiconductor, the vacuum level is common

at the interface. However, it is now understood that the the vacuum levels may or

may not align at the interface and there could be a possible vacuum level ‘shift’. It

must however be borne in mind that there is no Vacuum level at the interface, but

it is concept adapted to conveniently describe the interface energetics. The Vacuum

level shift at the interface is explained as due to interfacial dipole formation as a re-

sult of chemical bonding between metal and semiconductor. The fermi-level pinning

is a direct consequence of these interface chemical-bonding states. UPS and Kelvin

Probe Microscopy (KPM) [89] are commonly used to measure the energy levels. The

vacuum level shifts are studied by measuring the bare metal contact first, followed by

layer-by-layer deposition of the organic material. Theoretical understanding of these

interface states can be found in Tung’s recent works and review [90] and Braun et

al.[91] for experimental investigations.

Zinc Oxide- adsorption and photodesorption of Oxygen- Tuning the Fermi level:

The ultimate goal for a high-efficiency device is to improve the built-in voltage,

in other words, obtain a high photovoltage. Especially in the case of inverted photo-

voltaic devices it is preferred that the work function of the bottom cathode contact be

low [92]. In lieu of this, Metal Oxides (MOs) that are used as interface buffer layers

offer tunability of their work functions to play with. MOs are known for their high

energy band gap, available with wide range of EAs and IPs. Their efficient orbital

hybridizations in an amorphous state, allows the charges in the medium very high

mobilities [93]. This unique combination of large optical band-gaps and high charge
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mobilities renders their use as tranparent (semi)conductors. With a proper choice of

materials, one can use them as buffer layers that can support transport of one type

of charge carrier, while blocking the other kind [94].

ZnO has an unintensional n-type semiconductor characteristics, the origin of which

is debated to be either from impurities like Hyderogen[95], or possibly be from native

defects Oxygen vacancies and cation interstitials[96]. Thin layers of ZnO or T iO2

overlaid on ITO surface are used to reduce the work function of ITO [97]. In the

presence of contaminants (like Oxygen, moisture) the real work function of these metal

oxides is pushed away from the conduction band, leading to larger work function.

Under UV light exposure, the oxygen molecules that are physisorbed/trapped in the

grain boundaries of the nanostructures of these MO can be released- the phenomenon

termed as photodesorption [98]. The work function of the MO therefore resumes to the

trap-free case. It has been one of the key components in my studies in understanding

the overall device behaviour. As you will notice in Chapter 3, multiple tests prompted

towards possible modification of the interface at the cathode (ITO/ZnO and Polymer)

which makes it very important to understand the energetics of these MO layers.
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Figure 2.13: Photophysics of conduction in ZnO in the presence of O2 defects on the
surface.[99]

2.2.5 Other Experiments

Transient photovoltage (TPV)/ Photocurrent (TPC):

The experimental technique as mentioned in [100] is used to measure the lifetime of

charge carriers in the device. The device is optically-saturated by soaking the device

in high intensities of white light while measuring the photovoltage. As the external

impedance is very high (∼ 1MΩ), the photogenerated charge carriers have nowhere

to go, but dissipate by recombination and/or by leaking slowly through the external

resistance. During this soak period, the device is excited with a weak short optical

pulse (∼< 1ns) and the transients of the pulsed photovoltage is recorded. The article

proposes that by measuring the decay time constant, one can deduce the lifetime of

charge carriers in the device. The experimental setup of TPC[100] is similar to TPV,

except that the device is operated under short-circuit conditions. The photocurrent
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is measured by measuring the voltage across a very small resistance (close to short-

circuit conditions). The area under the transient is integrated to measure the total

number of photogenerated charge carriers.

Transient Absorption Spectroscopy (TAS)/Time-resolved Fluorescence (TRF)

Transient Absorption Spectroscopy (TAS) [101] is one of the non-circuit (no elec-

trodes needed) experimental techniques used to probe the excited state kinetics of

the photoactive samples. This especially is a handy techique when there is little to

no luminescence efficiency, or in other words, probes all decay routes including radia-

tive and non-radiative ’dark’ channels. It is based on a pump-probe method, where

the sample is excited by an optical pulse whose wavelength is chosen to be with the

absorption spectrum of the sample, followed by a pump pulse (pulse width is subject

to how fast dynamics are to be resolved)at variable time delays. The change in the

probe absorbance spectrum is plotted for various delays between pump and probe.

In simple cases when there is an apriori knowledge of slow decay dynamics (assuming

slower than the fast photodiodes), the probe can be a continuous wave light. With the

fast photodiodes in availability, there is no need of varying time delays between pump

and probe. And where the absorption spectra of the excited state is known apriori,

the decay dynamics of a narrow band probe absorbance needs to be tracked using a

fast photodiode. Soon Y. W. et al. [102] used this technique to correlate the poly-

mer triplet state quantum yield and the singlet oxygen generation. TRF is a useful

technique when radiative recombination is the dominant decay channel. Like TRA,

TRF gives valuable information about the excited state relaxation processes.[103]
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Thermally Stimulated Current (TSC):

Thermally Stimulated Current (TCS) [104, 44] is used to measure trap levels and

their concentrations. The trap states in the device are filled either by applying a

bias or by soaking in light, while simultaneously reducing the temperature in order to

freeze the trapped charges. External bias or illumination is now cut-off, leaving the

device off thermal equilibrium. From this point, as the temperature of the device is

slowly increased, the trapped charges are released and the current reaches a maximum

before dropping to zero(almost). Thereby giving an estimate of the energetic location

of the trap states. The current maximum position and amplitude depends on the rate

of temperature sweep as well.
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Chapter 3

Experimental Setup

3.1 Introduction

This chapter focuses exclusively on the device preparation procedure and the ex-

perimental techniques employed to characterize them. Many cycles of tests had

been conducted on some of the samples over long periods of time intermittently.

When not under study, the devices were stored either in the dark place for the tests

that were performed over short periods of time or in the dark and dry-glovebox

(O2 < 10ppm,H2O < 5ppm) for long periods of storage. Prolonged optical and elec-

trical tests were possible especially on the devices that were encapsulated without

any significant degradation.

3.2 Sample Preparation

All the devices made and tested were two-terminaled and ‘sandwich-type’ in layer

stacking. Figure 3.1(a) on the next page shows the device configuration implemented

for the studies. The bottom-most material is a transparent glass substrate, followed

by a transparent conducting material Indium Tin Oxide (ITO). On top of that are a
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hole-blocking layer of ZnO, active medium based on P3HT, MDMO:PPV, PCDTBT,

P3HT:PCBM, finishing with a layer of MoO3 and silver. This configuration is referred

to as ‘inverted-type’ for the reason that the cathode is a stable low-workfunction

contact made out of ITO/ZnO, while silver is the top anode contact with relatively

higher work function. While the ZnO layer also serves as a hole-blocking layer in the

reverse bias, the Molybdenum oxide (MoO3) layer serves as ohmic contact between

silver and the active layer for hole injection, due to its very deep lying conduction

band edge.

(a) (b) Energy levels of the layers

before bringing them in contact

(c) LUMO and HOMO en-

ergy levels of the polymers

Figure 3.1: a) Device’ layer configuration, Band-edge energy levels of a) each layer of
the device and c) polymer used.

Contacts:

Zinc Oxide/ITO - Transparent bottom contact (cathode)

0.75 M of Zinc acetate dihydrate Zn(CH3COO)2 ·2H2O in 2-methoxyethanol

(CH3)2CHOH along with monoethanolamine (OHCH2CH2NH2) that acts as a

stabiliser [105]. The solution was stirred outside glovebox for 24 hours before spin-

coating on a freshly oxygen-plasma treated ITO coated glass substrates, in the open
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air conditions at room temperature (20℃). The spin-coating speed of 3000 rpm for

40 s was chosen to obtain a film thickness of about 40nm± 5nm.

Molybdenum Oxide/Ag - Top contact (Anode) Silver is the top contact serv-

ing as anode, while Molybdenum oxide facilitates a proper ohmic contact for all the

polymers mentioned above, with silver.

Active Media:

Poly (3-hexylthiophene-2,5-diyl),P3HT

P3HT of regioregularity (90-94)% and molecular weight of (50-70)kDa was used as

received from Reike’s metals. The solution of P3HT and dichlorobenzene was dis-

solved by stirring under dark conditions for 48 hours inside the glovebox. All the tests

carried out in Chapter 4 are with P3HT/dichlorobenzene concentration of 20 mg/mL.

Poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylenevinylene]

MDMO:PPV MDMO:PPV with molecular weight ∼ 50kDa was used as received

from Organic Nano electronic 1m. The polymer was stirred in dichlorobenzene for

about 48 hours under dark conditions inside the glovebox. A concentration of 7

mg/mL of the solution was used to prepare all the MDMO:PPV based devices de-

scribed in Chapter 5.

Poly[N-9’-heptadecanyl-2,7-carbozole

-alt-5,5-(4’,7’-di-2-thienyl-2’,1’,3’-benzothiodiazole)]

PCDTBT: PCDTBT with molecular weight (20-40)kDa was used as received from

Solariz. The polymer was stirred in dichlorobenzene for about 48 hours under dark
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conditions inside the glovebox. A concentration of 7 mg/mL of the solution was used

to prepare and test all the devices mentioned about in Chapter 5.

(a) P3HT (b) MDMO:PPV

(c) PCDTBT

Figure 3.2: Chemical Structures of the polymers. Image courtesy: Sigma-Aldrich,
www.sigmaaldrich.com

Device preparation: The glass substrates with etched ITO were cleaned by soni-

cating the slides in iso-proponol, soap water, distilled water and acetone for 5 minutes

sequentially. The air-dried slides were then cleaned further for surface contaminants

using oxygen plasma for 5 minutes. A layer of ZnO, prepared as mentioned above,

was spin-coated on top of the ITO side of the substrate in open air at an angular

velocity of 3000 rpm for 40 s and annealed at 180 ℃for 15 minutes. The open air

preparation, spin-coating and annealing is necessary to prepare n-type doped ZnO

layer. The active layers were spin-coated at 600 rpm for 60 sec inside the glovebox.

The spin-coated substrates were immediately transferred on to a hot plate at 120℃to

thermally anneal the active layers for 10 mins. The as-prepared substrates are then
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Layer Thickness (nm) Preparation Method Specifications
ITO 120
ZnO 40± 5 Spin-coating 3000 rpm for 40 s,

Tannealing ∼ 280℃
P3HT 180± 20 Spin-coating rr - (90-94)%

Mw -(50kDa-70kDa)
Mfr: Reike Metals

MDMO:PPV 190± 20 Spin-coating Mw ∼ 50kDa,
PDI 2.2
Mfr:1-m Materials

PCDTBT 70± 10 Spin-coating Mw=(20kDa-40kDa)
Mfr: Solariz

MoO3 7.0 ± 0.5 Thermal Evaporation Deposition rate 0.5A/s
Ag 100 Thermal Evaporation Deposition rate 0.5A/s

Table 3.1: Device’s layer-deposition methods and settings.

transferred within the glovebox into the physical vapour deposition chamber. The

MoO3 followed by Ag layer were thermally vapour-deposited at a vacuum pressure of

1E-6 mBar. The table below summarizes all the relavant information of each layer.

Encapsulation: The encapsulation of the devices were done using super glue 15350

single use epoxy 5 minutes set. An equal proportion of the resin and hardner of the

super glue was made just few seconds before the encapsulation procedure. A miniscule

drop of the mixture, just enough to cover the top electrode (∼ 0.07cm2, in our case),

was placed on top of the metal electrode, followed by gently pressing the glass cover

against the device. The encapsulation is let to set under ambient pressure for few

hours. The whole procedure of encapsulation is performed within the glovebox. The

current voltage characteristics were compared for the cases before and after (1 hour)

encapsulation and no noticeable differences were seen.
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Figure 3.3: Two off the four devices encapsulated using glass and epoxy super glue.

3.3 Experimental techniques and their set-ups

Current-Voltage Characteristics: The steady state current-voltage measurements

were performed using either Keithley 4200 SCS or Keithley 2400 SMUs. Although for

the observational purposes, the scans were performed by sweeping in both forward

and reverse directions, all the I-V characteristics presented here are those for forward

sweep i.e. by applying negative bias to the anode (Ag) and swept towards positive

bias with respect to the cathode (ITO). The hold time for after each step of incre-

ment in bias is set to be 500 ms. The halogen and Mercury arc lamps attached to

the optical microscope were used to perform light-IV characteristics and light-soaking

tests. The optical spectra of the two lamps are shown in the Appendix D.

Variation of device open-circuit voltage, Voc, with light soak:

The devices were soaked under halogen lamp at an intensity of about 60mW/cm2 to

record the Voc variation with the soak time. The Voc was meaured across the device

with the oscilloscope’s (Keysight infiniivision, DSO 2000 series) input resistance set

at 100MΩ. The excitation intensity fluctuations, although negligibly small, were

monitered using another Silicon photodiode. The data is acquired at fixed intervals

using Labview.

Charge Extraction by Linearly Increasing Voltage (CELIV):CELIV was used
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to extract the charges stored in the device at different injection levels. Figure 3.4(a)

shows the circuit used to perform CELIV and the Figure 3.4(b) shows a typical input

voltage and current dynamics through the circuit. The ramp signal of constant slope

and fixed ramp period is applied to circuit with the device under test (DUT) in series

with a 50Ω sensing resistor at a fixed repetition rate.

(a) (b)

Figure 3.4: a) Circuit diagram for CELIV, b) Typical input ramp voltage and corre-
sponding output signal in CELIV experiment.

The intial offset/injection level is varied in steps from reverse bias to forward bias.

The key idea of this experiment is to fill up the trap states with charges injected at

different levels at a steady state, before being extracted by the linearly increasing ramp

signal towards the reverse bias. The charges extracted are quantified by integrating

the current above the displacement current over the ramp period.

Dark injection current transients (DiTC): The pulse’s rear edge of CELIV

where the ramp drops from the peak to the different initial offsets has been studied

for DiTC. The ramp signal is designed using function/arbitrary waveform generator,

Agilent 33220A 20 MHz, while the output signal is monitored and acquired using

Keysight’s Infiniivision DSO-X 2000 series (GBW 200 MHz). The waveform gen-

erator was externally triggered due to the limited DAC depth bits, which otherwise
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would generate discrete steps of the ramp voltage when operated under low pulse

repetition rate.

Luminescence Studies: For the steady-state and time-resolved luminescence stud-

ies, the tests were carried out using Time-Correlated Single Photon Counting (TC-

SPC) technique. For photoluminescence transient studies, the sample under study

was excited with a polarized optical pulses of width ∼ 45ps at a wavelength of

(405±5)nm or (465±5)nm coupled into the optical microscope (Carl Zeiss). The fil-

ter set with excitation clean-up filter at the chosen wavelength, a dichroic mirror with

a cut-on wavelength at (488 ± 10nm) and an approriate emission filter was chosen,

depending upon the sample under test. The photoluminescence detection was carried

out under epifluorescence mode, where the objective that is used to excite the sample

is also the one to collect the emitted photons. The very low-light signal, a prerequisite

for the TCSPC technique, was directed towards the Avalanche Photodiodes (APDs)

(MPD, micro photon devices). The excitation intensity was chosen so that the ratio

of rate of emission to the excitation pulse repetition rate is less than 0.01 with the help

of a counter (Philips PM 6671 high resolution time/counter 120 MHz). This ensures

that there is either one photon or no photon detected per optical excitation in order

to avoid the ‘pile-up’ distortion. The NIM negative signal from the detector was fed

to the Ortec 436 100 MHz Constant-fraction discrimator (CFD), the output of which

was then fed to the ’START’ Time-to-Amplitude Converter input of the timing mod-

ule (SensL technologies). The clock output of the SensL module, was used as ’STOP’

input to the SensL itself as well as to trigger the laser excitation source for synchro-

nization. The arrival time of the detected photons with respect to the excitation
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pulse is then histogrammed over required length of time to record the luminescence

decay dynamics. The same set up was used for the electroluminescence tests except

that there is no filter set en route the luminescence emission detection. For low light

steady-state electroluminescence studies the square pulse from the CFD, correspond-

ing to the photon detected, was connected to NI-DAQ 6000 series card counter input.

For EL and simultaneous I-V characteristics, the Keithley 2400 SMU and the DAQ

were synchronized using Labview.

(a) (b)

Figure 3.5: a) Experimental set-up with optical microscope and external laser source
coupled into it, b) Detection side of the set-up for very low intensity photons detection
using APDs and other opto-mechanical elements for light collection and collimation.

For imaging purposes, the sample was excited using Mercury Arc lamp (HBO)

in conjunction with the same filter set described as above and the luminescence was

directed towards the CCD camera (AxioCam HRmTime) with controllable exposure

times. For steady-state photo and electroluminescence spectra, the emission signal

was steered towards the eyepiece of the microscope and captured using OceanOptics

spectrometer. The flip mirror that comes with optical microscope is used to steer the

signal either towards the camera and/ spectrometer or towards the APDs with a very
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good precision.

Topography and profiling: Atomic Force Microscope(AFM), Ambios Technolo-

gies, was used to scan for nanometric surface topology in non-contact mode for

roughness. For film thickness measurements, white light interferometer() and/or pro-

filometer was used.

Laser Beam Induced Current (LBIC): The LBIC scans were performed using

a diode laser at a wavelength 532nm as optical excitation, coupled into the inverted

optical microscope with focussing objective of numerical aperture 0.75. The diode

laser was electrically triggerred for optical pulse output of width 75µs and a repetition

rate of 440 Hz. A TTL output from the triggering source was used as reference signal

to the lock-in amplifier (LIA), while the photogenerated short-circuit current from the

locally excited device area is connected to signal input of the LIA in a transimpedance

mode. The average optical power at the focus of the objective was measured to be

(285 ± 5)nW , which for an excitation diameter of (4.0 ± 0.5)µm at the focus of

the objective. The excitation power was monitored using a silicon photodiode, PD1

(S2281, Hamamatsu Photonics) by measuring 20% of the power reflected off of the

quartz plate. The light reflected/scattered off the sample was collected by the same

objective that is used for excitation, and focussed onto a second Silicon photodiode,

PD2 (S2281-01, Hamamatsu Photonics). The sample was moved in steps of 5µm

using Thorlabs’ motorized stages . The motorized stage and data acquistion from the

LIA signal output, excitation reference of PD1 and scattered/reflected light detected

by PD2 is synchronized using Labview. The ActiveX controls of the stages were used

to control the stage positions, while NI-DAQ6000 data acquisition card was used to

acquire data from LIA, PD1 and PD2.



3.3. EXPERIMENTAL TECHNIQUES AND THEIR SET-UPS 52

All the optical alignments, electrical connections, data acquisition flow and syn-

chronization are summarized in figure 3.6 & 3.7. Figure 3.6 emphasizes on the ray

optics part of the set-up that couples various light sources into the microscope and

redirects the signal from the DUT to the associated sensors and/or amplifiers. Fig-

ure 3.7(b) shows a block diagram of electrical controls associated with LBIC, IV,

TRF and CELIV characteristics. Figure 3.7(a) are the photocurrent amplification

and rectification circuits for the PD1 and PD2 photodiodes indicated in figure 3.6.
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(a)

Figure 3.6: Optical alignment showing different optical sources/emitted signal cou-
pled in and out of the optical microscope. Flip mounts FM4,FM5,FM6 help coupling
various lasers; FM2 is used to switch between Halogen lamp and Mercury arc lamp;
The Bsp1 is a 50:50 beamsplitter that couples the lasers into the microscope. Bsp2
forms a combination of filters containing selective excitation band, dichroic and emis-
sion band wavelengths of light for fluorescence studies or simple a 50:50 beamsplitter
for bright-field imaging. FM3 redirects the signal of interest to one (or two) of the
three exit ports of the OMS. PD1/2 are the photodiodes, APD is the avalanche pho-
todiode and ND is the neutral density filter turret.
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(a) (b)

Figure 3.7: a) Photocurrent amplification and rectification circuits, b) Block diagram
of electrical signal flow chart and data acquisition of all the techniques employed.
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Chapter 4

Charge Transport in P3HT-based Diodes

4.1 Introduction

This chapter focusses on characterizing the semiconducting polymer P3HT, in order

to better understand the blend of the same polymer with other n-type acceptors like

PCBM or compare it with other polymers to be discussed in the chapters to follow.

The primary interest is to build an understanding of the charge dissociation(in case

of photoexcitation) and transport of the charges in these conjugated polymers at a

microscopic scale and relating them to the overall device behaviour at a macroscopic

scale and in the case of blends. It is well known that over the period of study of

any particular sample, the optical and electrical characteristics of the samples would

change drastically owing to the ambient conditions [67, 106]. Especially, the presence

of Oxygen/moisture in the ambience under UV exposure or thermal variations do act

as dopants(shallow traps) or traps, affecting the conductivity of these organic materi-

als [51]. The fact that these effects can be expedited in the presence of light leads to

enhanced photodoping and photodegradation of the active medium [107]. Although

there are many reports mentioning the effect of O2 diffusion into these polymer based
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devices, the nature of these traps especially their energy levels, dispersion in energy,

physical location of traps i.e. whether at the interface or the bulk and process of

encroachment into the cell etc., yet needs experimental attention.

In order to disentangle the effect of these scavenging entities from those of intrisic

behaviour of the material, it was decided that the devices under encapsulation be

used as control for reference. The intention was not just to keep the samples away

from unexpected entities, but also to compare them with those that are eventually

affected by them. On a glass substrate with four device cells, we chose to encapsulate

two of them while leaving the other two unencapsulated. This is to ensure that the

devices under comparison underwent almost similar treatment at different steps of

fabrication.

The sections 4.2 & 4.3 contains the characterization on the P3HT-based devices

that shows the effect of buffer/interface layers and the effect of depositing the active

medium inside and outside the glovebox. During these studies it was noticed that

the charge extraction and current-voltage characteristics changed noticably upon ex-

posure to light over time. The section 4.4 is alloted to study the light-soaking effects

on the charge storage and transport abilities of the devices by monitoring the change

in current-voltage studies, CELIV, EL and PL (steady and transient).

The layers constituting P3HT based two terminal devices are shown in Figure 4.1

along with their energy levels LUMO and HOMO apriori contact. As all the tests

done in this work were on two terminal devices, from this point onwards, any of the

two terminal devices with various layers would be referred by the name of active

medium used in the device. For example, the device shown in Figure 4.1, would be

refered as P3HT-based device and likewise for brevity, unless otherwise mentioned.
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Figure 4.1: Schematic of layers constituiting a P3HT-based device with their energy
levels corresponding to LUMO and HOMO before contact.

The work function of Ag in our samples is taken to be between (4.6-4.7)eV [92].

There were no tests conducted to measure the work function of Ag vapour-deposited

on an organic polymer surface. Also the work function of ITO is taken to be 4.7eV [92],

although it should be noted that the ITO on the glass substrates were oxygen-plasma

treated prior to spin-coating ZnO layer. It is very well known that oxygen plasma or

UV treatment affects the work function of ITO significantly [108, 109], or may even be

manipulated by using other interface layers [92]. Similar is the case of MoO3 whose

pristine work function, ∼ 6.4eV , can be modified using microwave exposure [110],

oxygen/moisture [111] or annealing [112].

4.2 Effect of interface layers

4.2.1 Current-Voltage characteristics

Figure 4.2(a) shows the effect of ZnO and MoO3 buffer layers on the current-voltage

characteristics. This helped to identify the contribution of each layer towards the
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built-in field. The presence of ZnO and MoO3 leads to high open-circuit voltage,

while removing ZnO greatly reduces the Voc, and removing ZnO and MoO3 signifi-

cantly reduces the open-circuit voltage, as shown in the Table 4.1 tested over multiple

devices. Clearly the ZnO layer introduces some interface barrier for hole extraction,

and possible series resistance obvious from the reduced slope (dI/dV) at higher volt-

ages. Other characteristics to note is the diode rectification ratio. The devices with

ZnO and MoO3 showed highest rectification ratio of the order of 104 − 105 measured

at +1V(Forward Bias (FB)) to -1V(Reverse Bias (RB)), indicating the very efficient

hole-blocking characteristics of ZnO preventing the hole injection at the cathode in

the reverse bias. Figure 4.2(b) shows the effect of presence(circled) and absence(lined)

of ZnO layer, while no MoO3 is included, highlighting the fact again that the ZnO

layer provides higher rectification property.
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Figure 4.2: a) |J|-V characteristics of P3HT-based devices in the dark with and
without ZnO and/or MoO3 layers, b) and log(|J|)-V characteristics of P3HT-based
device with and without ZnO layer.
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ZnO P3HT MoO3 Voc Number of devices tested

X X X (250-530)mV 9

X X × (280-325) mV 5

× X X ≤ 3.5mV 12

× X × ≤ 3.5mV 8

Table 4.1: Effect of interface layers on the photovoltage from the P3HT-based devices.

It was noticed that in the absence of MoO3 i.e. with the direct contact of the silver

electrodes with the P3HT and unencapsulated, the silver lost its lustre very quickly,

even when stored in the nitrogen glovebox(humidity ∼ 20 ppm, O2 ∼ 70 ppm).

4.3 Effect of Encapsulation of devices

4.3.1 Effect of encapsulation on current-voltage characteristics

Figure 4.3(a) shows the the log(J)-log(V) characteristics of pristine and aged (accel-

erated by not encapsulating) devices, in order to highlight different regimes that are

affected. The annotations in the plot denoted by PE, AE and AU represent pris-

tine/encapsulated, aged/encapsulated and aged/unencapsulated devices respectively,

and the numerics are to identify different regimes in each case. The aged devices were

tested after 2 months of preparation.

The Ohmic regime: The ohmic regime is not so pronounced in the pristine devices

as in the aged device, indicated by AU-1 and AE-1 linear regimes that have slope

equal to one. The device that has aged showed a significant ohmic behaviour for as

high as 200mV of forward bias, indicating the increased charge density in the device
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at thermal equilibrium.

The SCLC regime: The SCLC regimes are indicated by PE-2,AE-2 and AU-2

where the slopes begin to approach values around 2. Clearly the SCLC conditions are

attained for relatively lower forward bias in the case of aged and/or unencapsulated

cases, again pointing towards the increased conductivity due to extrinsic doping.
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Figure 4.3: a) I-V characteristics of an encapsulated/unencapsulated and pris-
tine/aged device tested in the dark.

The hole mobility measured in the SCLC regime PE-1 in Figure 4.3(a) is, following

Mott-Gurney’s square law, calculated to be (20 ±6)x10−4cm2/V − s. The protocol

followed to extract the charge mobilities from the SCLC is shown in Appendix B.

The bias range chosen for SCLC fit in the above case is (0.8-2)V.

4.3.2 Effect of spin-coating P3HT inside and outside glovebox

Figure 4.4 shows the J-V characteristics of the devices where P3HT is spin-coated

inside and outside the glovebox, without MoO3 layer in either case. So the device
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configuration was, ITO/ZnO/P3HT(Glovebox or Open air)/Ag. For the bias voltage

less than 500 mV, the devices that were made inside the glovebox showed higher dark

conductivity, as compared to the devices in which P3HT was spin-coated outside the

glovebox. This is counterintuitive to the argument that the exposure of P3HT to

oxygen leads to increased p-type doping that leads to increased conductivity. The

difference in the characteristics is stark for low voltages i.e . ±0.5V, implying that

the exposure to air is most likely affecting the interface barriers. The trap-filled

Space-Charge Limited Current (SCLC) coincided for both the cases at about +1.5V

rules out the possibility of degradation, atleast not within the testing time.
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Figure 4.4: Dark J-V characteristics of P3HT-based devices in which P3HT layer is
spin-coated inside and outside glovebox and without the MoO3 layer.

4.3.3 Charge Extraction studies by Linearly Increasing Voltage

The experimental set up has already been described in Section 3.3 in detail. It can be

witnessed from the previous experiments on how the ambience can affect the current-

voltages characteristics of the devices drastically. In organic diodes, the overall charge
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mobility of a given device depends upon the charge already present in the device and

the internal field. CELIV technique is used to extract the charges stored in the

device at various biases applied to the device. The ramp amplitude chosen to be

3V over 300µs, while sweeping the initial constant DC bias from negative(RB) to

forward(FB) direction. CELIV is used to assess the effects of aging and light-soaking

on the devices, while simultaneously monitoring the current-voltage characteristics.

Charge extracted at various injection levels

Figure 4.5(a) and 4.5(b) shows the CELIV on freshly prepared P3HT-based device

encapsulated and unencapsulated, respectively, by varying the offset voltage from -1V

to +1V. The charges extracted is plotted against the offset voltage in Figure 4.5(d).

Clearly, there is a fraction of an order of increase in the charge stored(extracted)

in(out of) the device that was unencapsulated. Another important feature to be

noticed in the case of encapsulated device is the error function characteristic of charges

extractable from the device that reaches a saturation level indicating the absence(to

a good degree) of any midgap defect states, while the device unencapsulated showed

a monotonous increase in charges extracted seemingly superimposed on the error

function. The built-in voltage is from the work-function of ITO/ZnO and HOMO

band edge of P3HT, which is approximately (0.35-0.4)eV. The bias voltage where the

extracted charges approach the plateau regime can be associated with the flat-band

condition with in the device.
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Figure 4.5: CELIV on a) a pristine and encapsulated , b) a pristine but unencapsu-
lated P3HT-based devices, c) a close comparison of CELIV at +550mV initial offset,
d) charge extracted for each kind of device. The arrow in a) andn b) indicate the
direction of increasing initial offset from reverse-bias towards the forward-bias sweep.

The effective dielectric constant of the P3HT-based device is estimated to be

3.7± 0.3 from the displacement current, J0, using Equation 2.15e.

Dark-injection Transient Currents(DiTC)

The dark-injection current transients (DiTC) is studied using CELIV. The rear edge

of the ramp, the point in time where peak of the ramp drops back to the offset voltage
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and stays until next ramp signal arrives, was analysed for both cases of encapsulated

and unencapsulated devices. Figure (4.6) shows the current relaxation transients

less than 30µs for the cases where the offset voltage of the ramp drops to +600mV.

The unencapsulated device’s transient is fit to biexponential function with time con-

stants(weightage) τshort ∼ 0.1µs(56%) and τlong ∼ 2.8µs(44%). The encapsulated de-

vice also had the two decay components with τshort ∼ 0.1µs(94%) and τlong ∼ 1µs(6%)

appears to be significant. The fast component(τshort) is the relaxation of charges re-

siding on the electrodes that contribute to the geometric capacitance (2-5)nF through

the external sensing resistor 50Ω. The mechanism behind τlong could be attributed

either to 1) the hole transit time (ttr,h) or to 2) the ohmic relaxation time (tΩ,h) in

which the holes injected attain steady-state by the thermal carriers assisted by fast

charge trapping and detrapping events with shallow traps close to HOMO band edge

of the polymer. The fastest of the two phenomena is responsible for the observed dy-

namics. The hole transit time, ttr,sclc ∼ tDiTC,sclc/0.786 ∼ 80µs/0.786 ∼ 100µs. The

tDiTC,sclc is taken from the results shown in the Figure 4.7. The transient hole mobility

(µDiTC,sclc) is estimated to be of the order of 10−5cm2/V s. Considering the transient

mobility that was calculated above, and considering dielectric constant for P3HT to

be ∼ 3.7, thermal charge density taken from CELIV with initial offset ranging from

(1-500) mV shown in Figure 4.5(a), to be around ∼ 1016/cm3, tΩ,his ∼ (2 − 20)µs

(see Section 2.2.1 for the time constant definitions). Therefore, for the device tested

τlong is dominated by the ohmic relaxation of the injected holes by the thermal car-

riers. Considering the weightage of the τlong of both the cases, it infers that the

unencapsulated devices which were more prone to the oxygen/moisture insurgency

shows significant portion of τlong of the total decay.
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There is also a longer decay component, shown in Figure 4.6(c), of time constant

(30 ± 10)µs only significant in the unencapsulated device. This decay is associated

with the longer time of detrapping from the deeper traps. Once the bias is in the

SCLC regime, it is hard to notice the decay due to the overwhelming dark space-charge

limited current. The charateristic SCLC transients at higher biases are quite distinct

as shown in Figure 4.7. The equation for mobility from the DiTC in SCLC regime,

mentioned in Section 2.2.3, gives a hole mobility of about (16±4)×10−6cm2/V −s at

bias voltage of 0.9V. Ideally, plotting the tpeak against the bias voltages and extracting

the mobility from its slope would give much reliable results. There was a limitation

to the initial offset voltage of upto 1V in order to prevent the high currents that could

damage the device. As a result, over a narrow range of bias voltage, there was no

discernible change in tpeak. Nevertheless, a single point mobility measurement would

still give the order of precision.

Hole mobility comparison

Hole mobility in the device has been measured from the SCLC regime of the current-

voltage characteristics in the steady state, as well as using the CELIV and DiTC

transients. Phenomenologically, the measurement regimes are different. The mobility

from SCLC regime of steady-state I-V is the regime where all the deeper trap states

are filled. In the case of CELIV and DiTC at SCLC, the charge extraction is in direct

competition between the trapping and detrapping from the deep traps. CELIV is

used to estimate the lower limit of the mobility in the trap-filling limit, while IV gives

an upper limit of the mobility.

The built-in voltage is estimated from photovoltage, by saturating the device at
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Figure 4.6: DiTC of a) encapsulated, b) unencapsulated, c) unencapsulated(over
wider time range) P3HT-based device plotted for various initial offset voltages in-
creasing from -0.5 V to +0.75 V in the direction of arrows annotated, and d) a
comparison between the encapsulated and unencapsulated devices for a bias voltage
of +600mV.
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Figure 4.7: DiTC in the SCLC regime from 650mV(violet) to 900mV(red) zoomed in
and arbitrarily adjusted current offsets for the ease of comparison. The actual dataset
is shown in the inset.

approximately 3 suns intensity under open-circuit conditions, to be (650 ± 10)mV .

From the Equation 2.4 for SCLC, the hole mobility is calculated to be in the range of

(2− 8) ∗ 10−4cm2/V − s for the electric field in the range of (4− 10) ∗ 104V/cm. The

hole mobility calculated from DiTC at SCLC, is (16±4)∗10−6cm2/V −s. This value

appears to be underestimated. The peak should be some where close to (1−2)µs and

not as the obvious one at 80µs. Then the question is if this is the result of ringing

effects. Hole mobility measured from CELIV over a range of (0.5−5)∗104V/cm initial

offset field and a ramp rate of 10kV/s is (5 ∗ 10−6 − 5 ∗ 10−4)cm2/V s. The mobility

measured from CELIV equation highlights the relationship that the mobility decreases

with increasing CELIV peak time. Although the mobility is inversely proportional to

the tpeak, the equation does not relate the peak width of the CELIV current above the

dispacement current level to mobility. In other words, the equation does not relate
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the mobility directly to the charge density in the device. From the experiments, the

trend shows that with the increase in the offset voltage of CELIV, the tpeak shows a

plateau regime(and hence constant mobility) at lower biases up until Voffset = Vbi,

followed by a steeper increase in tpeak(and hence decreasing mobility), and finally

reaching almost constant tpeak or mobility. These trends are shown in Appendix C

for P3HT. The mobilities measured above were all performed on the same device.

4.4 Effect of light-soak

A series of experiments have been done to assess the impact of soaking the devices

in light. In order to compare the device characteristics before and after light-soak, it

was made sure that the test sequences were in the order of complete dark, very weak

optical pulsed and microscopic excitation, moderate light conditions to intense light-

soaking tests, followed by repeating the testing in backward sequence. For example,

dark-I-V, dark-CELIV and electroluminescence tests were done in complete dark con-

ditions, and then the time-resolved photoluminescence test using very low energy( fJ)

pulse over a microscopic spot, followed by light-IV with weak optical excitation, full

exposure of white light/UV light to light-soak the device while recording steady-state

photoluminescence and followed by reverse sequence of tests. This is to ensure that

there is no unintended modification of the device characteristics from light exposure.

The light-soaking tests were performed with either a halogen lamp with relatively

lower intensity over long exposure times or with intense Mercury arc lamp over short

exposure times.
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4.4.1 Effect of light-soak on Current-Voltage characteristics

Figure 4.8(a) and 4.8(b) shows the current-voltage characteristics in logarithmic and

linear scale before and after 30 minutes of white light Illumination from a Halogen

lamp. The device under encapsulation showed decreased conductivity upon light-

soak, whereas the unencapsulated device showed an increased conductivity in the

SCLC regime. The photovoltage output from the device during light-soak is shown in

Figure 4.8(c), recorded using oscilloscope with 100M Ω input impedance. While the

decreasing photovoltage of the unencapsulated device is attributed to the fast pho-

todegradation of the device whose edges and pinholes in silver electrode are exposed

to the UV content of lamp in the presence of oxygen and moisture in the ambience;

the increasing photovoltage of the encapsulated devices is an unexpected effect that

will be discussed shortly.
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Figure 4.8: Dark J-V characteristics comparison of the encapsulated and unen-
capsulated devices before and after 30 minutes of halogen lamp’s illumination a)
log-log scale, b) linear scale. In c), the photovoltage off the device was simulata-
neously recorded while soaking the devices under light. The halogen lamp intensity
of (60− 70)mW/cm2 was used for the light-soak.

4.4.2 Effect of light-soak on charge extracted from the device

Figure 4.9(a) shows the effect of soaking the encapsulated and unencapsulated de-

vice under Halogen lamp for 30 minutes on CELIV. The devices before and after
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light-soaking are shown in the Figure 4.9(b). There is a clear decrease in the charges

extracted for both encapsulated and unencapsulated device, although it is quite pro-

nounced for the unencapsulated device. Likewise, the contact-limited DiTC transients

for both kind of devices and pre- and post light-soak effects are shown in Figure 4.9(c).

The effect of light-soak has consistent effects of reduction in the number of charges ex-

tracted and increase in the weightage of slow decay component of the DiTC transient

for both encapsulated and unencapsulated device.
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Figure 4.9: Effect of light-soak on an encapsulated/unencapsulated P3HT-based de-
vices on a) CELIV current density, b) total charge extracted per unit volume, c)
DiTC dynamics.

Very slow CELIV dynamics

This is the test that was performed on the devices that were used for the exper-

iments above, after repeated illumination tests. There is an obvious ’fatigue’ in the

devices, especially that were not encapsulated, after multiple cycles of illumination.
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This experiment was performed by initially setting a high offset voltage of about

700mV of the CELIV pulse. At time t=0 in the Figure 4.10(a), only the offset volt-

age is switched to zero volts, while keeping the ramp signal unchanged. The CELIV

signal is then acquired from the oscilloscope every 600 ms. The charge extracted from

the CELIV plotted against the time is shown in Figure 4.10(b). The repeated illu-

mination has lead to irreversible photodegradation and introducing some deep traps

which leads to very slow release of trapped charges. Although photodegradation pro-

cesses were not explored in details in this work, this method of extraction dynamics

could be useful for very slow dynamics.
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Figure 4.10: Comparison of long time component of charge extraction from encapsu-
lated and unencapsulated P3HT-based device.
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4.4.3 Steady state Photo- & Electro-luminescence Studies

Photoluminescence

In order to make sure that the light-soak is not leading to any irreversible photodegra-

dation, the PL and EL was studied on the devices; during the illumination at 405nm

for the former whereas before and after the illumination for the latter studies. In-

terestingly, the PL from the device area under the top electrode(silver) showed an

increase in the emission intensity with time as shown in Figure 4.11(a)1. Similar

increase in PL was observed even for the unencapsulated. Clearly, the silver has been

serving as an effective protective layer from the atmosphere. The simulataneous pho-

todegradation was indeed noticed from the PL image of the unencapsulated device

shown in Figure[] in section[]. Under the influence of photodegradation and enhanced

PL, it however seems that the rate of degradation is the slower phenomenon. In

contrary, the photodegradation was obvious in the case of excitation of the area not

covered by silver and/or epoxy encapsulation, indicating the severe impact of the

external agents, as shown in Figure 4.11(b).

1The enhancement in PL needs to be retested,as the excitation intensity from the arc lamp was
not monitored
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Figure 4.11: Effect of constant illumination of 405nm excitation wavelength on the
photoluminescence from a) the area directly under the silver electrode of an encap-
sulated device and b) the area uncovered by the silver electrode.

Electroluminescence

The electroluminescence from the encapsulated P3HT-based devices was measured

before and after 30-minute white light illumination, to check for changes to the in-

jection barrier potential and/or to change in the luminescence efficiency. Figure 4.12

shows the EL counts from the device before and after Illumination, at various biases.

The threshold voltage (VT ) is around (1.40±0.05) V in either case. The luminescence

efficiency, however, seems to have increased post illumination.



4.5. P3HT:PCBM BHJ DEVICES-IV AND CELIV TESTS 76

0 0.5 1 1.5 2 2.5 3
10

1

10
2

10
3

Voltage (V)

C
o

u
n

t 
R

a
te

 (
s

−
1
)

Before Illumination

After 5min− Green Illumination

After 5min− UV Illumination

V
T

Figure 4.12: Effect of light-soaking on electro-luminescence intensity with respect to
the applied forward bias.

4.5 P3HT:PCBM BHJ devices-IV and CELIV tests

P3HT has been mixed with acceptor-like molecules of PCBM with 1:1 wt.%, in or-

der to monitor their effect on the charge transport properties. The current-voltage

characteristics of P3HT:PCBM based device shows a clear kink and plateau between

the ohmic and SCLC regime, which can be attributed to the possible distortion of

the inter- and intra-plane stacking of the P3HT chains due to PCBM. In the work of

Mihailetchi et al [113] similar plateau was seen to disappear post thermal annealing

the device made of same compounds. Looking at the energy level, the tails states

of the HOMO states of PCBM molecules may only contribute to small fraction to

energetic disorder but may lead to spatial disorder towards the hole transport in

the blend. The PCBM LUMO edge that lies in the mid-gap of P3HT may serve

as empty states for electron trap/transport. The Figure (4.13(a)) for P3HT:PCBM
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shows a much broader charge extracting CELIV peak as compared to P3HT device.

This is most possibly due to the charge extraction that is sum of hole extaction from

the HOMO or P3HT/PCBM and electron extraction from the LUMO of the PCBM.

Comparing the charges extracted out of the P3HT-based device encapsulated and un-

encapsulated to that unencapsulated P3HT:PCBM based device, P3HT-based device

is more susceptible to the doping due to external agents. Like P3HT-based devices,

light-soaking P3HT:PCBM-based BHJ devices reduced the charges extracted using

CELIV, although the reduction rate seemed slower.

4.6 Discussion

To summarize the effect of encapsulation and aging on IV, CELIV, photovoltage:

• IV characteristics -

– Increase in SCL current and ohmic-regime current through the unencap-

sulated device compared to encapsulated device.

• CELIV characteristics -

– Total number of charges stored in/extracted out of the device is higher in

unencapsulated than in encapsulated devices.

• Contact-limited DiTC -

– Significant fraction of slow relaxation component and additionally very

slow relaxation component observed in the case of unencapsulated device.

• photovoltage -
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Figure 4.13: a) Dark J-V, and b) CELIV characteristics of P3HT:PCBM-based de-
vice. c) CELIV dynamics at forward-bias offset of +250mV and d) number charge
density extracted out of P3HT-based and P3HT:PCBM-based device shown for close
comparison.

– photovoltage, at about 60mW/cm2 from Halogen-based light source, in-

creased for encapsulated device, whereas decreased for the unencapsulated

device.

• Photoluminescence-

– Higher PL efficiency for encapsulated devices as compared to unencapsu-

lated devices.
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The increased ohmic current in unencapsulated device is indicative of increased hole

dopants concentration with time and exposure. The same is confirmed from the higher

density of charges extracted off the device in CELIV. The decreasing photovoltage

and PL efficiency with time indicates the photodegradation that is imminent in the

presence of light and oxygen/moisture. The longer relaxation time in the DiTC is

associated with the participation of the shallow traps in trapping/detrapping phenom-

ena. The energy band alignments for the encapsulated and unencapsulated devices

can be depicted as shown in Figure 4.14.

(a) Encapsulated device (b) Unencapsulated device

Figure 4.14: Energy band alignments compared for encapsulated and unencapsulated
devices of the same layer configuration.

To summarize the effect of light-soaking on IV, CELIV, photovoltage, photo and

electroluminescence on the encapsulated P3HT-based devices:

• IV characteristics-

– Decrease in SCL current and increase in ohmic-regime current after light

soak.

• CELIV characteristics-
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– Decrease in charges stored in/extracted out of the device after light-soak.

• Contact-limited DiTC-

– Increased weightage of the slow relaxation component after light-soak.

• Photoluminescence

– PL intensity seemed to be increased with continous excitation with wave-

length λexct. = 405nm over a period of 90 minutes.

• Electroluminescence

– EL efficiency clearly increased post light-soak.

The observations from the effects of light-soak are discussed under possible bulk-

or interfacial- related effects. One of the critical issue to be addressed before further

discussion is if the effects seen were excitation-wavelength sensitive. In one of the

tests, shown in Figure( 4.15), where the change in electroluminescence intensity was

recorded by soaking the device under different wavelength bands. The bands chosen

out of HBO Mercury arc lamp were [365± 10]nm, [445± 25]nm, [525± 25]nm, [610±

35]nm. Although the excitation intensities were not uniform over the different bands,

the net effective flux of photons incident on the devices was kept almost constant or

within an comparable range by varying the exposure time. The test was performed

under optical microscope. The excitation area is about 50µm and excitation bands

were picked by varying the interference filters. The same spot on the device was

excited starting from long wavelength band and towards shorter wavelength. Fig-

ure( 4.15) shows that there is a sharp enhancement in the EL when excited with

wavelength shorter than 410 nm. In the present case excitation at 365 nm triggers
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the drastic enhancement in EL.
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Figure 4.15: Electroluminescence dependence on excitation soak-light wavelength

Likewise, time evolution of charge extracted before and after lights of different

wavelengths used to light-soak the device are shown in Figure 4.16. The arrows in

the figure show the points of the time where the device was soaked to lights of differ-

ent wavelengths(colors in the plot) for about 1 minute, followed by charge extraction

measurement. The exposures were in the sequence of [525/50]nm, [365/20]nm and

[610/70]nm, annotated by the numbers 1,2 & 3 respectively in the figure. One of

key features common to all the exposures is the revival of charge extraction to the

pre-soak condition. However, for the UV exposure, the reduced charge extraction is

instantaneous and drastic compared to the green and orange light soaks. This shows

that, all the earlier tests done with white light exposure from the halogen and arc

lamp can be assumed to have affected the device characteristics mainly due to the

UV component of the white light exposure.
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Figure 4.16: Time-evolution of charges extracted using CELIV, with injection at 300
mV, tested for three different wavelengths used for soaking the devices. The arrows
indicate the time of light exposure of wavelengths [1] (525/50)nm, [2] (365/20)nm,
[3] (610/70)nm .

One or more of the following possibilities could have led to the observations afore-

mentioned:

• Band-bending modification at the ITO/ZnO interface,

• Migration of Oxygen vacancies, Zn interstitials etc within ZnO,

• Photo-desorption of Oxygen,

• Hybrid Charge Transfer Exciton (HCTE) states,

• Polymer doping/dedoping,

• MoO3 is doping the polymer over time,

• Orientation of Polymer molecules themselves at the interface/bulk,

Bulk of ZnO: Migration of Oxygen vacancies/Zn interstitials -

Zinc Oxide exhibits unintentional n-type doping, which some scholars argue it is due
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to the interstitial zinc sites or oxygen vacancies while others contend the possibility

of traces of hydrogen could as well be responsible for the effects[114, 115]. For the

present case, let us assume that the oxygen vacancies are responsible for the extrinsic

semiconducting behaviour of ZnO, as irrespective of the origin of the cause, the final

interpretation of the results would still not be affected. Oxygen vacancies ,V +
O , that

are positively charged, are known to drift within the crystal under external field[].

Under the forward bias applied to the devices, i.e. when a positive potential is applied

to the anode (silver electrode) with respect to the cathode(ITO), the V +
O drift away

from the anode. The drifting V +
O accumulate within ZnO at the ZnO/ITO inter-

face, thereby locally doping the ZnO layer at the interface. This further reduces the

depletion width at the interface, making relatively easy conduction channel/ohmic

contact between ITO and ZnO by tunnelling across thin depletion region. The drift

of these defects is considered one of the causes for hysterisis effect seen in sweeping

(sweep-rate 0.02V/s and a hold time of ∼ 5sec at the maximum forward-bias volt-

age before sweeping in the reverse direction) the devices in forward(reverse bias to

forward bias) and backward(forward bias to reverse bias) as pointed out by Cheng

Li et al [116]. Memristors based on metal/insulator/metal(MIM) configuration are

known to exhibit this kind of behaviour [117, 118]. A question yet to be addressed

is how UV is affecting these dynamics. Figure 4.17(a) clearly shows that UV and

other wavelengths exposure affecting the hysterisis in dark-IV characteristics. While

a prolonged green light exposure for 5 minutes suppresses the hysterisis, short UV ex-

posure of 40 seconds results in a drastic suppression of hysterisis. The sharp decrease

and current minima in the backward sweeps of voltage at about 300 mV in the case

of device not treated by light(black asterix) and as well as treated by (570± 25)nm
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(red asterix)light exposure in Figure 4.17(a) indicates that there is a new source of

electric field formed acting against the applied field. The temporary source of field is

nullified in the reverse bias at about -(700 - 800)mV for the same data set. This is

where the oxygen photodesorption seems to play a critical role.
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Figure 4.17: Effect of light of different wavelengths exposure on the a) direction of
current-voltage sweep characteristics. Forward direction refers to voltage bias swept
from reverse bias to forward bias to the device and backward refers to the other way.

Interface-effect:Possible oxygen-photodesorption from the metal oxide. Like T iO2,

the nanostructured ZnO acts as an oxygen getter from the surrounding, which in our

case is from the residual oxygen in the polymer,possibly trapped during synthesis or

packaging and/or from the atmosphere as the ZnO layer is spin-coated in open-air

conditions. The electronegative oxygen that adsorbs at the interface of ZnO/P3HT,

thereby oxidizing ZnO i.e. eventually increasing its fermi level towards intrinsic semi-

conductor. When photons of energy higher than bandgap of ZnO (typically, 3.2eV)

excite ZnO creating e-h pair, the holes aide in reducing the oxygen, eventually aiding
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in oxygen desorption [119, 120] from the ZnO surface, thereby raising the fermi-level

of ZnO back to pristine case. A similar reduction process can also be assisted by pho-

toexcitation of P3HT as well. This phenomenon could also in turn lead to increasing

open-circuit voltage with light-soaking time as witnessed in Figure 4.8(c).

In a similar work by Anton Sundquist et at.[72], it was shown that the reduc-

tion in charges extracted using CELIV is possibly due to reduced work function

of the cathode(ITO/T iO2, in their case). The enhanced built-in voltage, there-

fore, reduces the charge reservoir of holes injected from the anode. This has two

implications: 1) Reduction of S-shape in the photo-IV curve observed in organic

photovoltaics[69, 68] 2) Onset of electroluminescence at higher forward bias voltage.

However, in the present case, both the scenarios are not evident. Unlike a device

based on P3HT:PCBM, there was no S-shape witnessed in the photo-IV of P3HT-

based device. However it must be pointed out that the short-circuit current,Jsc was

an order smaller in P3HT-based device as compared to P3HT:PCBM-based device,

and hence relatively lower possibility of recombination at the contacts. The s-shape

in photo-IV was witnessed for P3HT:PCBM without ZnO transport layer and it was

subdued after light soak. The onset of electroluminescence should have been shifted

Electroluminescence efficiency, on the other hand, has increased after light-soak evi-

dent from Figure 4.12.

Strong evidence of bulk ZnO or ZnO/Polymer interface effect: Figure 4.18 shows

the fractional decrease in the charge extracted post UV-light soak for three different

cases:
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• A: ITO/P3HT/MoO3/Ag,

• B: ITO/ZnO/P3HT/MoO3/Ag,

• C: ITO/ZnO/P3HT : PCBM/MoO3/Ag,

• D: ITO/P3HT : PCBM/MoO3/Ag

In the above mentioned sample, the key differences are the presence/absence of

ZnO layer and PCBM molecules. Ideally, the test to show the strong evidence of the

role of interface layer would have been more conclusive if the comparison was done

on P3HT-based device with and without ZnO. However, due to the limitation of

CELIV technique which needs atleast one blocking contact(ZnO layer), the reference

sample A: ITO/P3HT/MoO3/Ag could not be used for CELIV test. The possible

discontinous contact of PCBM with ITO layer in P3HT:PCBM-based device offers

the sufficient blocking feature to perform CELIV on it. From the Figure 4.18, clearly

the P3HT:PCBM based device without ZnO showed almost no effect of UV-light soak

compared to the other two devices.
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Figure 4.18: Charge extracted before and after UV-illumination studied for samples
based on ZnO/P3HT, ZnO/P3HT:PCBM and P3HT:PCBM.

There was no noticeable enhancement in EL efficiency in the P3HT-based devices

without ZnO layer before and after UV light-soak. The EL enhancement in the case of

P3HT-based devices with ZnO layer after UV light-soak could then be attributed to

the reduced work-function of the ZnO following oxygen photodesorption, and leading

to efficient double injection and recombination. An interesting phenomenon called

HCTE recombination seems to be involved in the observed electroluminescence.

The possibility of HCTE between the inorganic and organic materials which have

been emphasized by other groups [121, 122] and [123]. The HCTE recombination at

the interface of ZnO and P3HT seems to play a key role in our device afterthe light-

soak. The threshold voltage (VT ) where there is a detectable electroluminescence

starts is about 1.40 ± 0.05(equivalent to wavelength range (855 - 918)nm) noticed

in the Figure 4.12 for the P3HT-based device. While an excitation spectrum would

give a much better understanding into the origin of long-wavelength emission should

it be from the tail state conduction bands to valence band radiative recombination.
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However the possibility of HCTE recombination was further consolidated with an-

other polymer-based device to be discussed in the chapter to follow. It was noticed

in a PCDTBT-based device that the threshold voltage(VT ) for electroluminesnce was

about (1.05± 0.05)V ( equivalent to wavelength range (1078-1180)nm, which is close

to the upper limit of detection for the Si-APD we have used). The oxygen photodes-

orption is aiding is the efficient HCTE recombination at the ZnO/Polymer interface,

followed by monomolecular radiative recombination with in the polymer at higher

bias voltage. The EL at the higher bias voltage +3V and PL of PCDTBT device is

shown in the Appendix D.

Bulk-effect: The photo-treatment could be leading to further photodoping the poly-

mer [46] medium in the presence of residual O2, increasing the hole-carrier density

and leading to improved ohmic conductivity, as obvious from the Figure 4.8(b) for the

encapsulated device. It must be remembered that the encapsulated device does not

necessarily mean that the device is completely devoid of oxygen. In the energetics pic-

ture, the fermi level of the polymer moves closer to the HOMO band of the polymer,

thereby potentially reducing the depletion region between the cathode(ITO/ZnO)

and the polymer, similar to the band-bending condition shown in Figure 4.14(b) for

an unencapsulated device. This should have increased the number of charge extracted

out of the device in CELIV, in contrast to what is observed. Clearly, photodoping is

not one of the possibile phenomenon happening during the light-soak tests.

Bulk-effect: De-doping reminiscing the thermal annealing- There have been reports

mentioning the decrease in charge extracted after thermal annealing could be a re-

sult of de-doping[124]. Thermally annealing the polymer above their glass transition

temperature(Tg) enables to the escape of dopants like oxygen, thereby also leading to
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decrease in hole conductivity[125]. Similar reduction in charges extracted, in the case

where the device was tested under nitrogen environment, was observed by Seemann

A. et al[124]. During the polymer de-doping, the charges trapped by the shallow

traps like oxygen are detrapped under light exposure, thereby reducing the current

in the ohmic regime as well as the charges extracted through CELIV, in accordance

with the observed phenomena.

From the above discussion, the possible energy level alignment scenario at the

interface of ITO and ZnO layers before and after UV light soak can be summarized

as shown in the Figure 4.19. Figure 4.19.1 shows energy levels of ITO and ZnO

layers before they were brought in contact. The levels designated [A] and [B] are

the probable fermi energy levels for a pristine n-type ZnO(or UV soaked device) and

surface-defects induced oxidized-ZnO, respectively. Figure 4.19.2 and 4.19.3 show the

charge-depleted band-bending trends with respect to the two fermi levels of ZnO.

Notice the thin depletion width in Figure 4.19.3 corresponds to both pristine-ZnO

or UV-treated device. The thin depletion layer facilitates efficient tunneling-assisted

injection of charges into the device from the cathode side leading to enhanced radiative

recombination at lower biases applied. Similar light- soak tests have been performed

on inverted polymer-diode devices by other groups [126, 127, 128] align with the

results obtained here.
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Figure 4.19: A cartoon of energy-levels alignment of metallic ITO and semiconductor
ZnO 1) before contact with two possible fermi energy levels designated [A] and [B](see
the text), 2) at the interface with higher work-function of ZnO at level [B], 3) at the
interface with lower work-function of ZnO at level [A]. VL- Vacuum Level, CB -
Conduction band edge, VB - Valence band edge

4.7 Conclusion

P3HT-based devices with the layer configuration ITO/ZnO/P3HT/MoO3/Ag were

tested with and without the charge-selective buffer layers(ZnO & MoO3). ZnO layer

plays a decisive role in building the potential across the device under short-circuit con-

ditions. Experiments including I-V, CELIV, photovoltage and Electroluminescence

were performed to see the effects of encapsulation and light-soak on P3HT-based

diodes. The exposure of the diode to the atmosphere clearly increased dopant(hole-

type) concentration in the device leading to increased dark conductivity. A crucial

observation is the tunability and revivability of the work function of ZnO under the

UV light-soak. Exposure to UV is most likely leading to photodesorption of O2 from

the bulk interface of ZnO/P3HT in a device that is encapsulated. While reduced

ohmic-regime current and charge extracted indicate towards dedoping of the polymer
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itself, the enhanced photovoltage and electroluminescence do not support this argu-

ment.

What is not clear as of this point is whether the shift is just in the work-function

of ZnO or the complete vacuum-level shift at the interface i.e. if the UV is curing

the interfacial dipole if there exists one. In this regard, the same device configuration

has been tested on two polymers, namely MDMO:PPV and PCDTBT in the chapter

to follow immediately. Also, at this point we are not sure if MoO3, which serves the

purpose of providing ohmic contact for silver with polymer, is also a source of oxygen

contaminants and/or if the silver atoms, which if sneak through the MoO3 layer,

could affect the band-bending properties at the anode interface. In Chapter 6, LBIC

technique has been used to probe the device spatially with sub-micron resolution.
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Chapter 5

Comparative study of Polymers

5.1 Introduction

The current chapter does a comparative study of the opto-electronic properties of

three polymer-based devices namely P3HT, MDMO:PPV and PCDTBT under en-

capsulation. The chemical structure of the three polymers are shown in Figure 3.2

and their corresponding LUMO and HOMO levels in Table 5.1 for brevity. There are

three-fold reasons in doing the comparative studies on these polymers. First of all,

it serves the purpose of cross-checking if the results observed in the previous chapter

were polymer-specific. Secondly, it is expected to give a better understanding about

the energy level alignments at the polymer-contact interfaces, as the other interlayers

and contacts are the same for all. Thirdly, each polymer has a different tendency

of packing itself during a thin film formation which eventually decides the device’s

charge transport characteristics and its stability as well [23]. with a common device

configuration, it is possible to compare the mobilities, trap densities and possibly as-

sess their energetic location and different structural susceptibilities to the traps. As

most of the concept related ground work has been laid in Chapter 4, the discussions
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on the results & analysis are carried out hand-in-hand in here.

Unlike the previous chapter, no attempts were made to do the comparative study

on the effect of encapsulating the device. All the devices made and tested in here

were encapsulated. Though this reduced the complexity in data acquisition and

analysis, comparing different polymers in congruence with the un/encapsulation will

definitely throw some light on the polymers susceptibility to degradation/stability.

In the following sections, current-voltage characteristics and CELIV/DiTC in dark

analyzed, followed by the effect on the same before and after light-soaking on all the

three polymer-based devices.

Polymer LUMO (eV) HOMO (eV) Bandgap (eV)/(Ref) Emission Peak (nm)
P3HT -3.0 -5.0 2.0 /[129] 641

MDMO: PPV -3.2 -5.3 2.1 /[129] 590
PCDTBT -3.6 -5.5 1.9 /[130] 661

Table 5.1: Energy levels and emission peaks comparison for P3HT, MDMO:PPV &
PCDTBTa.

aThe photo-and electroluminescence of the devices can be found in the supporting info Ap-
pendix D.

5.2 Current-Voltage Characteristics

5.2.1 Dark J-V

Figure 5.1(a) shows the current-voltage characteristics of the three polymers built

with same configuration i.e. with ITO as transparent cathode, Silver as the top

metal contact, ZnO as hole-blocking layer while MoO3 forming an ohmic contact

between Silver electrode and each of the polymers. All the devices were encapsulated

before taking them out of glovebox and testing them. Table 5.2 shows the drift
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mobility for each kind of devices measured from the SCLC regime along with the

exponent of voltage (which is also the slope in logJ-logV plot) which was not fixed

for the fits. Clearly P3HT has relatively higher mobility, followed by PCDTBT and

MDMO:PPV. Appendix A, shows the procedure employed to extract the effective

mobilities of these polymers. From the energy levels taken from the literature, the

expected built-in voltages are also shown in the table 5.2. The Vbi is the difference

in fermi-level of ITO/ZnO taken to be 4.35eV [131] and HOMO of the polymers, as

the MoO3 at the anode renders an ohmic contact between the polymer and silver

electrode.The Voc were measured to be (0.65± 0.02)V, (1.10± 0.02)V, (0.95± 0.02)V

for P3HT, MDMO:PPV, PCDTBT respectively. While the Voc and Vbi are within the

range for P3HT, it is not the case with PCDTBT and MDMO:PPV devices. As no

surface analysis were done before or after coating the layers of the device, the real

reason for the loss or gain of open-circuit voltage in these devices is unclear. The

current-voltage slopes did not seem to be limited within the voltage range studied

and hence the voltage drop across small series resistances ( usually < 35Ω) were not

considered. The dielectric constant required for the mobility calculation were derived

from the displacement current component of the CELIV, as shown in the section[].

Polymer P3HT MDMO:PPV PCDTBT
SCLC mobility,
(cm2/V − s)

(1.0 - 2.5) ×10−4 (4.0 - 5.5) ×10−7 (1.0 - 1.8) ×10−5

Slope of the SCLC fit (1.95-2.1) (2.4-2.9) (1.9-2.2)
Expected Vbi(V ) ∼ 0.65 ∼ 0.95 ∼ 1.15
Measure Voc(V ) 0.65± 0.02 1.10± 0.02 0.95± 0.02

Table 5.2: SCLC fit parameters compared for P3HT, MDMO:PPV & PCDTBT -
based devices

Some of the key observations here to note- MDMO:PPV shows higher slope of (2.4
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- 2.9) and not 2, the expected exponent for a SCLC fit, as followed here by the P3HT

and PCDTBT. Considering its very low mobility and the higher slope coefficient, the

MDMO:PPV is be treated as an insulator for the fixed device configuration. . The

negative current until about 300 mV in the case of MDMO:PPV is due to SMU’s

current detection limit.
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Figure 5.1: (a) Dark J-V and (b) Photo-J-V characteristics of P3HT, MDMO:PPV
and PCDTBT based devices.

5.3 CELIV

5.3.1 Dielectric Constant of active medium

The inset in Figure 5.2 shows the dark-CELIV performed on an encapsulated P3HT,

MDMO:PPV & PCDTBT-based devices for various ramp rates. One can deduce

the dielectric constant of the material sandwiched between the electrodes from the

displacement current after depleting the device from charges. In other words, there

is no additional charge injection and the capacitance (hence,dielectric) measured is
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exclusively from the charges residing on the electrodes. The plot in Figure 5.2 shows

that I0 (current values shown inside the box in the inset) is plotted against various

ramp rates of the voltage. The geometric capacitance, which is the slope of the fit,

is (1.21 ± 0.01)nF . For the device of active area (0.070 ± 0.005)cm2 and thickness

(180 ± 5)nm, the relative permittivity of the P3HT is calculated to be 3.7 ± 0.3.

Likewise, for MDMO:PPV based device the relative permittivity is measured to be

3.3 ± 0.2, in accordance with the fitting parameter used in [132] using impedance

spectroscopy tests and that of PCDTBT device is 4.36± 0.3. The dielectric constant

measured semiemperically using either of the procedures has a high sensitivity to the

area and especially the thickness of the device.
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Figure 5.2: The displacement current J0 for different ramp rates of input signal at 0V
of offset voltage. The slope from the fit is the geometric capacitance of the device.
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J0 =
ǫrǫ0
d

dV

dt
, (5.1a)

Cd =
ǫrAǫ0
d

, (5.1b)

Polymer Mw Concentration film thickness Dielectric Constant
P3HT (50-70) kDa 20 mg/ml 175± 5 3.7± 0.3
MDMO: PPV ∼ 50 kDa 7 mg/ml 185± 5 3.3± 0.2
PCDTBT (20-40) kDa 7 mg/ml 60± 5 4.36± 0.3

Table 5.3: Dielectric constants of polymers measured using CELIV from P3HT,
MDMO:PPV & PCDTBT -based devices

5.3.2 Charge Extraction

Charges extracted with constant ramp rate of (10kV/s) but by sweeping the initial

offset bias is compared for all the three polymer-based devices. While the ramp rate

is fixed for all the devices, the ramp period was increased in the case of MDMO:PPV

device, considering its quite low mobility and slow extraction of charges. The very low

reverse bias dark current lets one to sweep the device to higher reverse bias voltage.

In the case of PCDTBT devices, the ramp period and amplitude were reduced due

to high reverse leakage current in these devices. Figures 5.3(a),5.3(b),5.3(c) show the

CELIV traces for P3HT, MDMO:PPV & PCDTBT based devices, and Figure 5.3(d)

projects the charges extracted out of the devices at various offset biases.

Clearly, the density of charges extracted out of P3HT-based devices outnumbers

those from MDMO:PPV or PCDTBT-based devices. This points to the possibilities

that 1) the P3HT has higher affinity for Oxygen than the other polymers, and hence

higher density of shallow and deep traps, or 2) although Polymer-MoO3/Ag interface
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Figure 5.3: CELIV on a) P3HT, b) MDMO:PPV, c) PCDTBT at various offset
voltages and d) total charge extracted out of each kind of device at various offset
voltages. Ramp rates were fixed at 10kV/s for all the devices, although the ramp
periods were different.

is supposed to form good ohmic contact it seems to be not the case in MDMO:PPV-

based device, and hence there could be contact-limited poor hole injection at the

anode. The charge mobility calculated from CELIV and I-V charateristics is sum-

marized in the Figure 5.4. Of the three possibilities, the first one seems to be more

likely reason for high density of charge extracted. For the 2nd possibility, it was ob-

served from the EL studies that for all the polymers the turn on voltage was within

(1.2-1.5)V, and hence the limited hole injection at the anode seems less likely.
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5.3.3 Mobility calculations from CELIV
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Figure 5.4: Charge mobilities measured from CELIV (dots) and SCLC (ellipses)
regimes of steady state IV characteristics. The ellipses are not real data, but a closest
approximation annotated to the actual CELIV data.

5.4 Light-soaking effects

Just like the preceding chapter, the devices were tested for IV, CELIV and EL be-

fore and after soaking the devices under light. Charge extraction using CELIV de-

creased post light-soak for all the three devices (not shown here). The increase in

photovoltage with time was observed in the three kinds of devices. All the facts

pointing to a common possibility of change to the work function of ZnO with the

light (UV) exposure. However, consistent change in IV characteristics with the

enhanced EL signal after light-soak, opened up some room to analyze the devices

closely. Figure5.5 below shows the current-voltage characteristics of device configu-

ration ITO/ZnO/PCDTBT/MoO3/Ag encapsulated, taken before and after light-

soaking (Intensity ∼ 70mW/cm2), Halogenlampat2500K for 10 minutes.
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Figure 5.5: Dark current-voltage characteristics taken before and after light-soak on
PCDTBT-based device.

Similar IV curves were observed on 9 out of 12 encapsulated devices tested. The

plausible increase in built-in voltage, Vbi, as the onset of SCLC seems to be shifted.

There is also an apparent increase in the ohmic current, possibly from the increase in

the thermal equilibrium charge carriers due to photodoping. Although it appears like

the SCLC is reduced after light-soak, it can be argued that it is merely an increase

in the Vbi that delayed the onset of SCLC and hence seemingly reduced SCLC. If and

when corrected for the internal Vbi, the SCLC might in fact be the same. In order

to conclude that a precise information on the Vbi is absolutely necessary. In case

where the SCLC is really depressed due to light-soaking, the current observation can

be closely associated with the predictions of Lampert and Rose’s work[60] when the

SCLC is from the two-carrier injection and not just one-carrier. In their work, it was

shown analytically that the Mott-Gurney’s law of J ∝ V 2 relationship in the case of

single-carrier device holds true even in the case double-injection devices. One more

very interesting observation was that the space-charge limited current will be reduced
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in the double-injection case compared to the single-carrier case, along with increase

in the number of thermal carrier. This effect according to the authors surfaces due to

the recombination kinetics. To test their prediction, one way is to make two similar

devices such that one supports only single-carrier injection and extraction, while the

second device would have to inject two-carrier plasma by appropriately choosing the

contacts. Another way is to test the device not with an intimate contact but with

replaceable contacts. The first way doesn’t guarantee the same active medium con-

figurations (especially for the spin-coated amorphous medium), while the second way

without intimate contact would introduce unpredictable series contact resistances.

In this work, we were able to switch from single carrier (with an inefficient double

injection) to two-carrier injection by modifying one of the contacts using UV-light

on the same device. The intensity used to modify the contact is low enough that it

is assumed that the active material in use is not modified during the light exposure.

The electroluminescence count rate detected at various bias voltages for the same

spot of the sample before and after light-soak is shown in Figure ( 5.6(a)). Although

the enhancement in EL efficiency was observed in all the three polymer device kinds,

the enhancement in PCDTBT-based devices showed many orders of increase in EL

(What could be the possible reasons. - Is it the active medium was relatively thinner

(70nm) unlike P3HT or MDMO:PPV or Is it that PCDTBT has better quantum

efficiency.). So much so that the EL can be seen with bare eyes. This property of

tunability of the ZnO’s workfunction was implemented to stencil out the letter ’Q’

onto the device, as shown in Figure ( 5.6(b)). In fact, this could be an interesting

way of making diffraction-limited submicro LEDs that can be stencilled out of the

devices, although it is understandable that they can be lossy.
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Figure 5.6: a) Electroluminesnce at various bias voltages tested on the same device,
before and after light-soak on PCDTBT-based device, b) UV-stenciled letter ‘Q’
showing electroluminescence from the PCDTBT-based device.

Similar effects were observed in P3HT-based and MDMO:PPV-based device with

same layer configuration. The ’breathing effect’ that was seen in terms of charge

extraction from P3HT-based devices, has been revisited here again in MDMO:PPV

based device but with EL studies. Figure( 5.7(a)) shows the EL versus forward bias

applied to the MDMO:PPV-based device, that shows the scans done before and after

intermittent light-soaks. The EL count rates measured at 4V bias are plotted with

respect to time after bouts of light exposure in Figure ( 5.7(b)). The device was

soaked for 5 minutes using Halogen lamp set at 10V (∼ 2500K) each time.

5.5 Conclusion

The three polymer-based diodes with the same layered configuration have been tested

for current-voltage and CELIV characteristics, and the effect of light on the same.

The mobilities from the SCLC of dark JV and CELIV conform to the values upto the
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Figure 5.7: a) Electroluminescence bias voltage tested on MDMO:PPV based device,
immediately and after some time delay post light-soak shown for two such cycles, b)
Electroluminescence intensity measured at 4V immediately after and with time delay
post 5 minute light-soak using Halogen lamp at 2500K.

orders mentioned in the literature. The open-circuit voltages however did not follow

the trend of energetic difference between the cathode (ITO/ZnO) and the HOMO of

polymer as expected. The dark charge extracted from the devices, at any forward

bias offset, were manifolds higher for the P3HT as compared to MDMO:PPV and

PCDTBT, emphasizing the susceptibility of P3HT to oxygen and moisture which

dope the polymer p-type. Effect of illumination: In CELIV, like before, the charge

extracted has reduced after light soak. The increased ohmic-regime current, reduced

SCL current along with efficient electroluminescence after light soak were observed

in all the three polymers. This conforms to thoeretical outcome shown by Mark and

Rose [60] for when the single-charge injection is replaced by double-injection. Like in

P3HT-based device, HCTE recombination seems to be playing a key role in PCDTBT

and MDMO:PPV based devices as well. The above results also emphasizes the point

that the all the effects noticed in Chapter 4 are true irrespective of which polymer

was under test and that oxygen photodesorption and modification at the interface of



5.5. CONCLUSION 104

Cathode and polymer is most likely the cause of observed effects. ‘Breathing effect’:

Like the charge extracted using CELIV and J-V characteristics seen in Chapter 4,

the EL signal also has revived back partially after a bout of light exposure. So the

question not addressed yet is that, to what physical phenomenon should the signal

revival time be associated with. Is it the time it takes for oxygen and/or moisture

that are physically desorbed from the light-soak tending to be chemisorbed at the

interface of ZnO and polymer? or is it the physical diffusion of these entities?
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Chapter 6

Imaging: LBIC, Fluorescence, Bright-Field

6.1 Introduction

Laser beam induced current (LBIC) technique has been used for photocurrent pro-

filing of the device prepared discussed in the ealier chapters. The motivation be-

hind these studies is to probe the spatial defects or degradation incurred by the

external entities like Oxygen, moisture etc., or by the UV light induced photooxi-

dation/degradation, identify the contribution of different layers contituting the de-

vice, locate the effect of intentional inclusion of acceptor materials like PCBM, ZnO

nanoparticles etc. in the device. The LBIC scans are further complemented with the

Bright-field (BF) and fluorescence (FL) imaging. The excitation intensity fluctuation

was monitored using a fraction of the excitation optical power using a Si photodiode

and the light reflected off the sample is also monitored using a second Si photodiode.

The second Si photodiode helps locating the edges of the top electrode of the device

more precisely. The excitation laser light of wavelength 532 nm was chosen for LBIC.

From the earlier studies, it was understood that the green light does minimal mod-

ification to the interface or active media properties over interrogation time at each
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pixel and yet overlaps with the polymer peak absorption range. The excitation pulse

powers varied within (5 - 250) nW over the focussed beam spot.

Laser beam spot-size at focus: The objective lenses with 100x magnification that has

a numerical aperature of 0.75 was used for focussing the laser beam. The laser beam

spot size at the focus is estimated to be ∼ 0.7µm at 1σ assuming the gaussian

distribution of intensity of the form. The intensity distribution in the airy-rings

around the central spot is neglibly small. Figure 6.1 shows image of the laser spot

along with its intensity profile.
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Figure 6.1: a) Laser spot image at the focus of the 100X objective of numerical
aperture 0.75, b) Intensity distribution across the laser spot diameter.

6.2 Effect of MoO3 layer

It is crucial to know the role of each layer in the overall device performance. Most of

the work discussed so far emphasized on the possible modifications to the ZnO/polymer

interface upon light-soak. However the effect of MoO3 has not been taken into the

discussion so far. Recent studies show that there is a possible polymer doping due to



6.2. EFFECT OF MOO3 LAYER 107

MoO3 [133, 134, 135] and/or modification between metal and metaloxide [136]. In one

of the sets of samples that were prepared during the top-electrode size optimization

processes, it was noticed that there was a lateral spatial mismatch between the top

electrode combination, i.e. between MoO3 and Ag in this case. This is due to the

spatial separation of the two crucibles that are used to vapour-deposit MoO3 and

Ag, and a non-negligible thickness of the mask that is in the proximity of samples

fixed to substrate holder in the PVD system. The thicknesses of MoO3 and Ag were

about (7± 1)nm and (80− 100)nm, respectively. Figures 6.2(a) and 6.2(c), show the

bright-field and fluorescence images of the left edge of the device respectively, while

Figure 6.2(b) and 6.2(d) show similar images for the right edge of the device. The

device is initially intended to be of the configuration ITO/ZnO/P3HT/MoO3/Ag.

However, due to the shadowing effect of the mask, the left edge of the device is devoid

ofMoO3 under the Ag by about 100µm and the right edge of device hasMoO3 under

Ag and extended about 100µm to the right of the edge. Here the edge is referred

to the sides of topmost Ag electrode. The part of the image named as ‘A’ is the

area of the substrate that are not covered by MoO3 or Ag. The region labelled as

‘B’ is the area of the polymer covered only under Ag, the region labeled ‘C’ is the

area covered under both MoO3 and Ag, while the part labeled ‘D’ is the area of the

polymer covered by only MoO3 and not Ag.

From the fluorescence and bright-field images, some of the key points to notice are:

• Silver as a top electrode is protecting the polymer from degradation. The

photoluminescence is quite prominent from the region that is covered under

silver.
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Figure 6.2: Optical imaging and photocurrent profiling of a P3HT-based device.
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• Relatively high photoluminescence yield at the edges on either side of the elec-

trode for about 100µm towards the center of the device, evident from the Fig-

ures 6.2(c) and 6.2(d). It is not clear at this point for the cause of enhanced

photoluminescence at the electrode edges of the device that is encapsulated.

The photodegradation due to oxygen/moisture ingressed at the edges should

have degraded the photoluminescence.

Figure 6.2(e) shows the LBIC profile scanned on the device along the width of the

top electrode. The width of the electrode estimated from the distance between the

two photocurrent peaks noticed at either of the edges of the Ag electrode is same as

the mask window used for depositing the electrodes which is about (2.00± 0.05)mm.

• A relatively smaller slope (indicated by ‘slope 1’) of the increasing photocurrent

scanning into the device, indicative of device degradation from the edges towards

the center.

• A high slope photocurrent spikes (indicated by ‘slope 2’) on either edges.

• Another interesting observation is the high photocurrent extracted in the ab-

sence of MoO3 i.e. in the region ‘B’, seen on the left edge (edge1) of the device.

There could be more than one reason for the photocurrent enhancement like,

1) a possible plasmonic enhancement by the silver particles, 2) interference of

the incident with the reflected light leading to a constructive intereference in

the active medium, 3) an unexpected hole-barrier by MoO3 at the anode.
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6.3 Effect of encapsulation

The previously mentioned lateral mismatch of theMoO3 and Ag electrode was curbed

by following two procedures.

1) using a thinner mask for the material vapour deposition, and 2) rotating the

substrate holder in the vapour-deposition system during deposition.

Figure 6.3(a) shows the bright-field and fluorescence images along with LBIC scans

of a small selected region on the encapsulated and unencapsulated devices close to

the top electrode edge.
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Figure 6.3: a) LBIC of an encapsulated (blue) and an unencapsulated (red) P3HT
based devices, b) Reflected light off the P3HT-based devices encapsulated and unen-
capsulated.

The degradation patterns were clearly noticed in the devices that were unencap-

sulated, and quite prominent at the edges, indicating the detrimental effects of the

oxygen and/or moisture in the atmosphere. In the case of no encapsulation, pinholes

in the top silver electrode is also another channel of device degradation. Similar de-

fects have already been reported by [137] and [138]. These pinhole defects are quite
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discernible from the photoluminescence images although not obvious from the bright-

field image. There were no noticeable photoluminescence degraded spots in the case

of encapsulated devices (not shown here). Time-resolved photoluminescence of the

selected spots on and off the device shows the photoluminescence intensity quenched

non-radiatively at the pinholes within the device and outside the device exposed to

air.
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Figure 6.4: Steady-state a) bright-field and b) photoluminescence images, and c)
Time-resolved photoluminescence of the selected spots in the unencapsulated device.
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6.4 Effect of UV-exposure

In Chapters 4 and 5, it was noticed that there was a ‘breathing’ effect in terms of

electroluminescence and charge extracted with time after bouts of UV exposure. LBIC

was used to simulate the similar effects in terms of photocurrent. The encapsulated

device was scanned for LBIC in 1D, followed by UV light exposure for 3 minutes over

an area of diameter approximately 600µm under optical microscope. This time the

focal spot size is limited by the spatial arc size of the light source (Hg Arc lamp)

for the same 100x objective. While keeping the UV-exposed areal spot undisturbed

(locked by engaging the stepper motors along X and Y axes (XY being plane of the

sample)), repeated LBIC scans were performed intermittently for upto 45 hours after

UV-exposure.
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Figure 6.5: Time-evolution of LBIC before and after UV exposure.

The scan immediately after UV exposure showed a decreased photocurrent in the

form of a ‘valley’ is shown in figure 6.5. This aligns with the photo-IV characteristics

where the short-circuit current decreases while the open-circuit voltage increases after
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UV-treatment. Although there was no noticeable change in the photocurrent for

atleast upto 160 minutes, the photocurrent recovery was clear after 20 hours in the

dark conditions and a very significant recovery in 45 hours post UV exposure.

The increase in Voc was associated with the increase in the built-in voltage from

the reduced work-function or vacuum shift, which in-turn seems to be due to the

photodesorption of the O2 molecules. The same argument holds true for the dip in

the photocurrent observed after UV exposure. One of possibilities is that with the

decrease in work function of ZnO, there must possibly be a barrier from the depletion

region at the interface of ITO and ZnO, as shown in Figure 4.19. The other possibility

is that with the physically desorbed oxygen available, there are more electron traps

readily available leading to the reduced photocurrent.

6.5 Conclusion

LBIC scanner with a pixel resolution of 3σ ∼ 2µm is achieved to study the micro-

scopic spatial defects of the devices. For the duration of study (few months), the

encapsulation has been effective in protecting the device from being ingressed with

moisture (to a higher degree compared to Oxygen or other gases). Photoluminescence

mode of detecting the spatial defects is more effective than the bright field imaging.

The effect of UV-expsosure on the photocurrent off the diode at short-circuit con-

ditions has be tested. The photocurrent revives back to pre-UV exposure state of

the device within the period of about 45 hours. The revival in photocurrent con-

forms with signal revival in CELIV and electroluminescence tests done in Chapters4

and 5. Although the exact recuperation rate is not determined here, the test points

to the possibility of measuring molecular oxygen (or other forms)’s rate of diffusion
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and/or the rate of transitioning from the physically desorbed Oxygen to the chemical

readsorption, should the arguments towards the conclusions of Chapter4 and 5 stay

valid.



115

Chapter 7

Conclusions

7.1 Summary

The work presentated in this thesis has been motivated by the necessity to understand

a) the charge injection, transport and extraction in and out of an organic semiconduc-

tor based diode, b) the role of different layers that constitute the device, c) the role of

charge trap states (intrinsic/extrinsic) at the interface or bulk of the device. In this

direction, the devices were subjected to exposure to the open air ambient conditions

and light-soaking effects. The devices studied were “sandwich-type and inverted”

polymer-based diodes with layer configuration- ITO/ZnO/Polymer/MoO3/Ag.

Comparing unencapsulated P3HT-based diodes against the encapsulated ones,

aided in identifying the key differences in the IV,CELIV, EL and PL characteris-

tics incurred by the atmospheric entities, predominantly air and moisture. This has

helped in ruling out the possibilities of extrinsic factors when studying the light-soak

effects on the same devices. Hole mobilities in the polymers have been quantified and

compared using steady-state IV characteristics and, CELIV/DiTC transients. The

DiTC transients were useful to extract the relaxation time constants associated with
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RloadCgeometric, charge transit time(ttr), ohmic relaxation time (tΩ).

The devices showed highest sensitivity to the light-soak in the UV. Comparing

all the techniques done before and after the UV light-soak, it is understood that UV

exposure is possibly leading the physical photodesorption of oxygen(hydrated) from

the interface of ZnO and the polymers. This leads to the photoreduction of ZnO layer

and further reducing the work-function of ZnO. In order to rule out the possibility

that the observed light-soak effects were not polymer-specific, similar experiments

were conducted on devices based on MDMO:PPV and PCDTBT. All the devices and

tests pointed towards the probable work-function modification of ZnO. Although not

tested, at this point the role of MoO3 in the observed effects cannot be ruled out,

which according to other scholars’ work seems to be altering the dopant concentration

of the polymers as well. One of the tests we did is to perform a microscopic LBIC

scan at the edge of the device electrode, where a spatial offset of the MoO3 layer

with respect to silver electrode was noticed under microscopic optical imaging. A

‘breathing effect’ was observed in the IV, CELIV, EL, photovoltage, LBIC signals

after repeated bouts of light exposure, where the signal would almost resume to

pre-soak conditions. This phenomenon is attributed to the physical photodesorption

of oxidizing agents during light exposure followed by chemical readsorption of the

entities to the interface.

7.2 Future Work

Material Study:

Now that the setup has the ability to study IV, CELIV and photoexcitation studies,

all in-situ on an optical microscope, further opto-electronics experiments based on
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transient photocurrent and photo-CELIV can be implemented to study photogen-

eration electron/holes relaxation processes at microscopic scale in devices based on

blends of nanoparticles/clusters in polymer-based devices. We believe that these two

experiments could further enhance understanding of the materials.

Technical improvement:

Chapter 4 and 5 indicated the possibility of HCTE radiative recombination at the

interface of inorganic ZnO layer and the organic polymer. The existing set-up can

be improved by coupling a monochromator with luminescence detection port of the

optical microscope and silicon APDs, and/or detector with higher sensitivity to the

infra-red wavelengths (≥ 1100) like InGaAs low-light detectors. Studying the dou-

ble injection DiTC and the onset time of EL is achievable with the existing setup.

This can give a better picture of where exactly is the origin of radiative recombination.

Sample configuration:

In Chapter 6, although there has been an attempt to distinguish the contribution of

MoO3 especially at the edges of the device using LBIC, the future attempt would be

towards making a device with/without different layers in the same device. This can

be achieved by wiping out part of the ZnO film (before annealing) and controlling the

mask alignment in thermal vapour deposition system to deposit silver after depositing

MoO3. This ensures that the contribution of individual layers, spatial defects, edge

effects and light-soak effects are consistent with the device recipe and photoexcitation

intensities for any given device at a time.
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Conceptual inconsistency:

In Section 5.2.1 showed inconsistency with respect to current understanding of the

origin of open-circuit voltage (Voc) and that measured Voc was not equal to the ex-

pected difference in work function of cathode and the HOMO of the polymer, provided

the Ag/MoO3 forms an ohmic contact with all the three polymers tested. There is

necessity to repeat the device fabrication and testing to probe the ‘true’ contact for

of Ag with polymer.



BIBLIOGRAPHY 119

Bibliography

[1] Michael Faraday. Experimental researches in electricity vol. 1, 1839.

[2] E Becquerel. On electron effects under the influence of solar radiation. Comptes

Rendues, 9:561, 1839.

[3] W Smith. Photoconductive effect. J. Soc. Telegraph Engineers, 2:31, 1873.

[4] John Bardeen and Walter Hauser Brattain. The transistor, a semi-conductor

triode. Physical Review, 74(2):230, 1948.

[5] William Shockley. The theory of p-n junctions in semiconductors and p-n junc-

tion transistors. Bell Labs Technical Journal, 28(3):435–489, 1949.

[6] Daryl M Chapin, CS Fuller, and GL Pearson. A new silicon p-n junction

photocell for converting solar radiation into electrical power. Journal of Applied

Physics, 25(5):676–677, 1954.

[7] Yugang Sun and John A Rogers. Inorganic semiconductors for flexible electron-

ics. Advanced materials, 19(15):1897–1916, 2007.

[8] Sandro Lattante. Electron and hole transport layers: their use in inverted bulk

heterojunction polymer solar cells. Electronics, 3(1):132–164, 2014.



BIBLIOGRAPHY 120

[9] Peng Fei Bai, Robert A. Hayes, Ming Liang Jin, Ling Ling Shui, Zi Chuan

Yi, L. Wang, Xiao Zhang, and Guo Fu Zhou. Review of paper-like display

technologies. Progree in Electromagnetics Research- pier, 147:95–116, 2014.

[10] Barrett Comiskey, JD Albert, Hidekazu Yoshizawa, and Joseph Jacobson.

An electrophoretic ink for all-printed reflective electronic displays. Nature,

394(6690):253, 1998.

[11] Claes G Granqvist. Electrochromics for smart windows: Oxide-based thin films

and devices. Thin Solid Films, 564:1–38, 2014.

[12] N Thejo Kalyani and SJ Dhoble. Organic light emitting diodes: Energy sav-

ing lighting technologya review. Renewable and Sustainable Energy Reviews,

16(5):2696–2723, 2012.

[13] Simon Muench, Andreas Wild, Christian Friebe, Bernhard Häupler, Tobias
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Róiśın M Owens, et al. High transconductance organic electrochemical transis-

tors. Nature communications, 4, 2013.

[21] Giuseppe Tarabella, Gaurav Nanda, Marco Villani, Nicola Coppedè, Roberto
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Appendix A

A.1 Absorption Spectra of zinc oxide film

Figure A.1 shows the absorption spectra of ZnO thin film on a glass substrate annealed

at 180℃for 15 minutes in air. The typical band gap of ∼ 3.2eV for ZnO thin film is

obvious from the absorption edge onset at ∼ 388nm.
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Figure A.1: Absorption spectra of ZnO spin-coated on top of glass substrate and
annealed at 180℃for 15 minutes in air.



A.2. AFM SCAN OF ZNO SURFACE 141

A.2 AFM scan of ZnO surface

Figure A.2 shows the topography of a ZnO layer on top of ITO substrate annealed

at 180℃for the same 15 minutes measuring an average roughness, Ra ∼ 9nm. The

film thickness was measured to be about (40-50) nm using Dektek profilometer.

Figure A.2: AFM scan of ZnO layer spin-coated on top of ITO(on glass) substrate
and annealed at 180℃for 15 minutes.

A.3 Incident Photo-to-Current Efficiency

Figure A.3 shows the Incident Photon-to-Current Efficiency (IPCE) of the P3HT-

based devices with and without ZnO layer and the absorption spectra of thin films of

P3HT with ZnO and without ZnO layer on a glass substrate are also shown. ZnO aids

in extracting higher photocurrent by collecting the electrons from the conduction band

while blocking the holes from valence band of the polymer reaching the cathode. The

photocurrent peak seen at about 370 nm is due to the electron-hole pairs generated

in ZnO layer.
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Figure A.3: Incident photon to current conversion efficiency of the P3HT-based de-
vices with and without ZnO layer and their absorption spectra.
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Appendix B

B.1 Mobility from Space-Charge limited current

In order to extract the effective mobility of the charges from the space-charge limited

current regime of the current-voltage characteristics, the characteristics are visually

checked for a constant slope behaviour in linear J-V characteristics and/or for depress-

ing behaviour in a logJ-logV characteristics. The former can be graphically tested by

plotting the resistance measured at each voltage bias, as shown in figure B.1(a) in the

case of P3HT-based device. There was a continous decrease in the resistance with

the forward bias applied infering that the J-V characteristics were not limited by the

series resistance, (Rs), at least in the currents of our interest. Therefore the series

resistance was not included in the data analysis. Figure B.1(b) shows an example of

Rs correction applied on the one of the data sets and the effect of incorrect deduction

of voltage drop due to larger Rs is visible in the form of concaving upwards of the IV

characteristics. Similar tests were done on MDMO:PPV and PCDTBT based devices.



B.1. MOBILITY FROM SPACE-CHARGE LIMITED CURRENT 144

0 1 2 3 4 5
10

2

10
3

10
4

10
5

10
6

Forward Bias Voltage (V)

R
e

s
is

ta
n

c
e

 (
Ω

)

(a)

0 0.5 1
−4.5

−4

−3.5

−3

−2.5

−2

log(V−V
bi

)

lo
g

(J
)

0 Ω

10 Ω

20 Ω

30 Ω

40 Ω

50 Ω

60 Ω

70 Ω

80 Ω

90 Ω

(b)

Figure B.1: a) Resistance vs forward bias voltage for a P3HT-based device, b) Ef-
fect of subtracting the voltage loss due to series resistance in the device on the I-V
characteristics of a P3HT-based device with a fixed Vbi = 450mV .

The data is plotted on a log-log scale in order to identify the SCLC regime. The

Vbi is estimated from the fermi level of the ITO/ZnO and HOMO of the polymer

in use, shown in the table[]. As the Vbi is not known precisely, it was decided to

sweep discrete Vbi to be subtracted from the bias voltage before plotting the log-log

of current and voltage, as shown in Figure B.2. Only those data sets of corrected

biases were considered, for which the Current(I) values did not deviate by 3-4 folds

with respect to those of uncorrected data set i.e. for which Vbi = 0. The chosen data

sets were given regression fit using the linear equation (B.1a) assuming the charge

mobility is field-independent. Matlab functions polyfit and lsqcurvefit were used

for the fits.

log(J) = C +mlog(V − Vbi) (B.1a)

log(J) = log(
9

8

ǫ0ǫrµ

L3
) + 2log(V − Vbi) (B.1b)
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Figure B.2: Current-Voltage characteristics in logarithmic scale with built-in voltage
varied between 200 mV to 700 mV in the steps of 50 mV.

For the specific cases where it seemed that current increased faster than the trend

of V 2, with no correction of voltage drop due to Rs, exponential dependence of mo-

bility on the electric field was considered as a model fit. The parameters m and C

extracted from the regression fit were used as initial guesses to fit the same data

using Murgatroyd’s model of SCLC. For pristine and encapsulated devices that were

studied in this work, it was a simple SCLC trend. A unique case that seemed to

follow the trend of Murgatroyd’s model was aged(tested after 1 year from the date of

device fabrication) and unencapsulated ITO/ZnO/P3HT/MoO3/Ag device, whose

characteristics are shown in Figure B.3.

J ≃ (9/8)ǫµ0(V − Vbi)
2exp(0.89

√

((V − Vbi)/E0L)))/L
3 (B.2)
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Figure B.3: Current-Voltage characteristics of an encapped and unencapsulated
P3HT-based device tested after 1 year, while the devices were stored in ambient but
dark conditions. The black line is visual aid of slope equal to 2, the SCLC regime.
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Appendix C

C.1 Charge mobility from CELIV

Figure C.1(a) shows the CELIV signal off of P3HT-based device, where the discrete

color gradient from red to violet curves are for increasing initial bias offsets. Fig-

ure C.1(b) shows the charges extracted out of the device, by integrating the area

under the curve, but above the displacement current. The charge mobility is cal-

culated semi-empirically, using Equation 2.15d, for various initial bias voltages. For

increasing levels of initial bias voltages, there is an increasing density of charges in-

jected(extracted) out the CELIV ramp signal. Figure C.1(c) shows a trend of decreas-

ing mobility that varied by an order with the increase in charge density injected(&

extracted) in(& out of) the device. The equation for mobility calculation does not

show any dependence on the charge density, and hence it is not clear if there is an ac-

tual phenomenological decrease in the mobility or the shift in CELIV peak is just the

result of convolution of many such peaks. The mobility calculation, which is sensitive

to only the CELIV peak position, is obscured by the flattening of the CELIV peak

with the increasing offset voltage as well. For a polymer like P3HT that has relatively

higher conductivity, it is hard to locate the peak position, especially at lower offset

voltage, which means the calculated mobilities are possibly underestimated.
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Figure C.1: a) Current dynamics of CELIV output from a P3HT-based device for an
increasing initial offset voltage going from red to violet color, b) Charge extracted of
each initial offset voltage, c) Semi-empirical calculation of charge mobility from the
cELIV peak position.
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Appendix D

D.1 Photo- and Electroluminescence Spectra

Figure D.1(a) shows normalized photoluminescence (PL) spectra of the three poly-

mers P3HT, MDMO:PPV and PCDTBT. The excitation spot was chosen right in the

middle of the device using optical microscope. The optical excitation and emission

was performed from the ITO side of the device. The excitation wavelength was 405nm

for all the tests. Figure D.1(b) shows the normalized electroluminescence (EL) spec-

tra measured at 3V bias to the device, along with it PL spectra to indicate that the

observed EL is a direct result of efficient injection of charges into the active medium.

While the P3HT and MDMO:PPV based devices showed increased EL (not shown

here) after UV light soak, they were not as intense as PCDTBT-based devices and

hence were only detectable using avalanche detectors.

D.2 Lamps Spectra

The light sources used for the light-soaking experiments were tested with both halogen

lamp and mercury arc lamp, and their correponding emission spectra as shown in the

Figure D.2. The halogen lamp was chosen for low intensity test, whereas the arc

lamp for higher intensity tests. The lamps were coupled into the microscope past a
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Figure D.1: a) Normalized photoluminescence of the polymers in a device configura-
tion, b) Normalized electro and photoluminescence of PCDTBT-based device.
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Figure D.2: Optical spectra of the Lamps used to soak the devices. The red curve
correponds to Hg Arc lamp and the blue curve is halogen lamp spectra.



 

 
  

 

 

Résumé 
 
Les semiconducteurs organiques (SO) ont attiré une 
grande attention ces dernières années 
en raison de leur facilité de fabrication, de leurs 
modifications des propriétés optiques et électriques et 
de leur rentabilité. Ils forment la classe de matériaux les 
plus adaptés à l'électronique flexible et à la 
bioélectronique, en particulier en association avec des 
matériaux inorganiques / hybrides solubles en solution. 
Cependant, la mobilité des charges dans ces matériaux 
est fortement affectés par leur désordre structurel et 
énergétique introduit par les défauts qui "piègent" 
les transporteurs de charge. Selon l'emplacement 
physique des pièges et leur distribution en énergie, ils 
pourraient affecter de manière significative le transport 
de charge dans un dispositif. Le présent travail s'efforce 
de sonder l'interface et les états défectueux en masse 
dans des diodes à base de polymère. Au lieu de cela, 
une partie de l'étude implique de caractériser le système 
avec et sans encapsulation, en utilisant des techniques 
pour enregistrer le comportement de courant-tension à 
l'état stationnaire (IV), les transitoires d'extraction de 
charge par la tension augmentant linéairement (CELIV) 
et les courants transitoires d'injection en obscurité 
(DiTC), ainsi que la photoluminescence (PL) et 
l'électroluminescence (EL) des systèmes. Les mêmes 
caractéristiques ont été effectuées pour observer l'effet 
de pénétration de la lumière ultraviolet (UV) sur les 
systèmes. Tous les tests ont été effectués sur trois 
polymères différents, à savoir P3HT, MDMO:PPV et 
PCDTBT. La comparaison des dispositifs encapsulés et 
non encapsulés donne un aperçu des différences 
caractéristiques des mesurables lors de l'exposition à 
l'air et humidité. Les tests de pénétration lumineuse 
indiquent la modification de la fonction de travail de la 
cathode après une désorption d'oxygène assistée par 
UV sur l'interface polymère/cathode. Un effort simultané 
s'est traduit par une étude in situ de la dynamique de 
transport des charges dans les semi-conducteurs 
organiques sur une large gamme de temps à une 
échelle microscopique. 
 
Mots clés 
Cellule solaire organique, transport de charges, 
encapsulation 

 

Abstract 
 
Organic semiconductors (OSs) have garnered a great 
attention in the recent years due to their ease of 
processibility, optical and electrical property-tunability, 
and to their cost-effectiveness. They form the class of 
materials most suitable for flexible electronics and 
bioelectronics, especially in association with solution-
processable inorganic/hybrid materials. However, the 
charge mobility in these materials is strongly affected by 
their structural and energetic disorder introduced by the 
defects that ‘trap’ the charge carriers. Depending upon 
the physical location of the traps and their distribution in 
energy, they could significantly affect the charge 
transport in a device. The present work strives to probe 
the interface and bulk defect states in polymer-based 
diodes. In lieu of that, a part of the study involved 
characterizing the device with and without 
encapsulation, using techniques to record steady-state 
current-voltage (IV)behaviour, transients of charge 
extraction by linearly increasing voltage (CELIV) and 
dark-injection transient currents (DiTC), as well as 
photoluminescence (PL) and electroluminescence (EL) 
off the devices. The same characteristics have been 
carried out to observe the effect of ultra-violet (UV) light-
soak on the devices. All the tests were performed on 
three different polymers, namely P3HT, MDMO:PPV 
and PCDTBT. The comparison of the encapsulated 
versus unencapsulated devices gives an insight into 
characteristic differences in the measurables upon 
exposure to air and moisture. The light-soak tests 
indicate the modification of the cathode work function 
after a UV-assisted oxygen desorption off the 
polymer/cathode interface. A simultaneous effort went 
into an in-situ investigation of charge transport dynamics 
in organic semiconductors over wide time range at a 
microscopic scale. 
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