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Exploring and understanding volumetric or surface data is one of the challenges of Computer Graphics. The appearance of these data can be modeled and visualized using light transport theory. For the sake of understanding such a data visualization, transparent materials are widely used. If solutions exist to correctly simulate light propagation and display semi-transparent objects, oering an understandable visualization remains an open research topic. The goal of this thesis is twofold. First, an in-depth analysis of the optical model for light transport and its implication on computer generated images is performed. Second, this knowledge can be used to tackle the problematic of providing ecient and reliable solution to visualize transparent and semitransparent media.

In this manuscript, we rst introduce the general optical model for light transport in participating media, its simplication to surfaces, and how it is used in computer graphics to generate images.

Second, we present a solution to improve shape depiction in the special case of surfaces. The proposed technique uses light transport as a basis to change the lighting process and modify material appearance and opacity.

Third, we focus on the problem of using full volumetric data instead of the simplied case of surfaces. In this case, changing only material properties has a limited impact, thus we study how light transport can be used to provide useful information for participating media.

Last, we present our light transport model for participating media that aims at exploring part of interest of a volume.

Titre Visualisation d'objets semi-transparents basée sur le transport lumineux Résumé Explorer et comprendre des données volumétriques ou surfaciques est un des nombreux enjeux du domaine de l'informatique graphique. L'apparence de telles données peut être modélisée et visualisée en utilisant la théorie du transport lumineux. An de rendre une telle visualisation compréhensible, le recours à des matériaux transparents est très répandu. Si des solutions existent pour simuler correctement la propagation de la lumière et ainsi acher des objets semi-transparents, orir une visualisation compréhensible reste un sujet de recherche ouvert. Le but de cette thèse est double. Tout d'abord, une analyse approfondie du modèle optique pour le transport de la lumière et ses implications sur la génération d'images par ordinateur doit être eectuée. Ensuite, cette connaissance pourra être utilisée pour proposer des solutions ecaces et ables pour visualiser des milieux transparents et semi-transparents.

Dans ce manuscrit, premièrement, nous présentons le modèle optique communément utilisé pour modéliser le transport de la lumière dans des milieux participatifs, sa simplication si l'on réduit la situation à des surfaces et la manière dont ces modèles sont utilisés en informatique graphique pour générer des images.

Deuxièmement, nous présentons une solution pour améliorer la représentation des formes dans le cas particulier des surfaces. La technique proposée utilise le transport lumineux comme base pour modier le processus d'éclairage et modier l'apparence et l'opacité des matériaux.

Troisièmement, nous nous concentrons sur la problématique de l'utilisation de données volumétriques au lieu du cas simplié des surfaces. Dans ce cas, le fait de ne modier que les propriétés du matériau a un impact limité. Nous étudions donc comment le transport lumineux peut être utilisé pour fournir des informations utiles à la compréhension de milieux participatifs.

Enn, nous présentons notre modèle de transport lumineux pour les milieux participatifs, qui vise à explorer une région d'intérêt d'un volume.
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Résumé long

Contexte et motivations L'informatique graphique est la science qui inclut toutes les méthodes pour transmettre des informations visuelles à l'aide d'un ordinateur. En particulier, la synthèse (ou le rendu) d'images permet la production d'images à l'aide d'une scène numérique. Il s'agit d'un processus répandu, utilisé dans de nombreux domaines: lms d'animation par ordinateur , eets spéciaux, jeux vidéo, visualisation scientique ... Cette thèse est menée au sein de Thermo Fisher Scientic TM pour le développement de démonstrateurs pour sa plateforme de logiciel Open Inventor R . Son objectif principal est de fournir des solutions pour la visualisation de données scientiques. Parmi les domaines d'utilisation de ces données, on peut citer notamment : le domaine médical, l'analyse sismique et l'analyse des sols, les sciences naturelles, la conception et l'inspection industrielles, etc. La plupart de ces domaines recourt régulièrement à l'utilisation d'objets semi-transparents (dénis comme des couches de surfaces transparentes ou des volumes continus) pour l'exploration et la visualisation d'objets complexes. Acher correctement des objets transparents nécessite de comprendre comment la lumière est censée interagir avec ces objets, mais aussi de transmettre ces informations de manière interactive et lisible. Le premier problème peut se résoudre avec la théorie du transport de la lumière, le second en choisissant la méthode de rendu appropriée.

La méthode de rendu dépend fortement du besoin de l'application et, par conséquent, le style souhaité n'est pas nécessairement le même. Plusieurs méthodes de rendu ont été conçues pour répondre à cette diversité. Par exemple, le rendu physiquement plausible [START_REF] Lewis | Making shaders more physically plausible[END_REF]) consiste à décrire aussi dèlement que possible les eets produits par l'interaction lumière-matière (également appelée transport de lumière, [START_REF] Veach | Metropolis light transport[END_REF]). A l'opposé, le rendu expressif (Lansdown and Schoeld [1995]), également appelé rendu non photoréaliste, détourne et modie le transport de lumière à des ns de stylisation, e.g., le style illustratif [START_REF] Gooch | Modeling the interaction of light between diuse surfaces[END_REF]).

Dans cette thèse, nous nous intéressons donc à ces objets semi-transparents (les surfaces transparentes et, principalement, les volumes) pour en améliorer vii la perception. Nous proposons d'abord une solution pour améliorer la lisibilité des surfaces transparentes. Nous introduisons ensuite une nouvelle approche utilisant le transport lumineux pour explorer des volumes.

Organisation du document

Ce manuscrit est divisé en quatre chapitres.

Le chapitre 1 présente les diérentes bases scientiques et techniques nécessaires pour comprendre les concepts développés dans le manuscrit, ainsi que les problèmes que nous souhaitons résoudre. À cette n, nous discutons du modèle d'interaction lumière-matière appliqué aux volumes et aux surfaces, ainsi que de son utilisation en informatique graphique. Nous présentons ensuite quelques techniques de rendu expressif. Enn, nous présentons également Open Inventor, la boîte à outils de Thermo Fisher Scientic TM , dans laquelle nous devons développer les solutions présentées dans ce manuscrit. Le chapitre 2 cible les problèmes spéciques des surfaces transparentes et les solutions pour le rendu de celles-ci. Le principal problème consiste à orir une visualisation lisible de diérentes couches de surfaces transparentes. Nous proposons une solution visant à améliorer la représentation du relief de ces surfaces. En particulier, nous présentons dans ce chapitre plusieurs structures de données (y compris la nôtre) adaptées au rendu en temps réel de surfaces transparentes.

Le chapitre 3 se concentre sur les volumes continus. Les techniques présentées dans le chapitre 2 étant limitées lorsqu'elles sont appliquées à des volumes, nous introduisons une nouvelle approche inspirée de la uoroscopie en médecine. Cette nouvelle métaphore est basée sur le transport lumineux pour améliorer la représentation des volumes. Nous étudions également diérentes approches numériques an de déterminer les caractéristiques les mieux adaptées à notre application.

Basé sur ces caractéristiques, le Chapitre 4 présente la technique de rendu que nous avons choisie pour résoudre le transport de la lumière dans des volumes à des ns d'exploration expressive. En eet, nous expliquons comment utiliser ce modèle pour identier une région d'intérêt. Nous présentons également quelques outils et pistes de réexion pour utiliser ce modèle.

Conclusion

Dans ce document, nous nous sommes tout d'abord intéressés au transport de la lumière et à son implication dans le rendu de surfaces et de volumes transparents. Nous avons également étudié comment le modier pour fournir des informations supplémentaires à l'aide de techniques de rendu non photoréalistes. En particulier, nous avons comparé les techniques utilisées dans la viii David Murray littérature avec les fonctionnalités d'Open Inventor.

Les conclusions de cette étude ont conduit au développement d'une solution pour améliorer la représentation de forme pour les surfaces transparentes. Notre proposition concernait deux aspects du processus de rendu. Premièrement, pour calculer ecacement des gradients d'informations dans un espace 3D, nous concevons une structure de données permettant un calcul rapide de ces informations. Deuxièmement, nous avons proposé de moduler l'opacité des surfaces à l'aide d'informations géométriques telles que la courbure de surface. Cette partie du travail a été publiée lors de la conférence EuroGraphics Symposium Rendering en 2016 [START_REF] Murray | Shape Depiction for Transparent Objects with Bucketed k-Buer[END_REF]).

Après avoir abordé le cas des surfaces transparentes, nous avons abordé le cas des volumes. Nous avons d'abord étudié la manière dont notre solution précédente pouvait s'étendre aux volumes, qui s'est avéré n'être adapté qu'aux isosurfaces. En retournant aux bases du transport lumineux (l'équation de transfert radiatif, ETR), nous avons essayé de le modier dans le but de pouvoir contraindre la diusion de la lumière. Nous avons d'abord testé l'idée, avec succès, avec une version basée sur l'algorithme de Diusion Anisotropique (Perona and [START_REF] Murray Perona | Scale-space and edge detection using anisotropic diusion[END_REF]). Nous avons ensuite étudié diérentes techniques numériques an de déterminer celle qui convient le mieux pour obtenir le même type de résultats avec l'ETR. Nous avons tiré deux conclusions importantes de cette étude. Premièrement, la résolution itérative de l'ETR, dans sa forme stationnaire, à l'aide d'une méthode de Jacobi n'est pas stable. Deuxièmement, résoudre l'ETR instationnaire de manière itérative avec une base directionnelle conduit à des artefacts sous forme de grille.

Enn, en utilisant l'approximation de diusion [START_REF] Stam | Multiple scattering as a diusion process[END_REF]), associée à l'hypothèse d'un ux constant, nous avons réduit le problème à un modèle ayant la forme d'une équation de diusion. Ce modèle ne présente pas les mêmes artefacts que celui observé lors de notre précédente étude, tout en étant stable pour une gamme de paramètres satisfaisante. Nous l'avons ensuite utilisé pour eectuer une diusion sélective en modiant les paramètres de l'ETR pour atteindre notre objectif. Certains outils ont également été proposés pour interagir avec le processus de diusion. Cependant, au moment de la rédaction de ce document, ce travail est toujours en développement, particulièrement en ce qui concerne la visualisation et l'interaction.

Concernant les travaux spéciques à Open Inventor, la thèse a conduit au développement de deux démonstrateurs: un pour le rendu expressif sur les surfaces (opaques et transparentes) et l'autre pour le calcul de la visibilité dans les volumes (basé sur la technique de [START_REF] Jönsson | Historygrams: Enabling interactive global illumination in direct volume rendering using photon mapping[END_REF]). Un dernier est en cours de développement pour démontrer les possibilités de la diusion sélective. ix Travaux futurs Surfaces Vers l'illumination globale Nous avons présenté une structure de données permettant d'accéder ecacement aux voisins dans une représentation à plusieurs couches. Nous pensons que l'intérêt de cette structure ne se limite pas à la représentation des formes. En eet, nous pourrions augmenter la quantité de phénomènes optiques que nous simulons actuellement. Cette structure pourrait être utilisée pour eectuer une intersection approximative de rayons et ainsi simuler une réexion ou une réfraction. De plus, un accès ecace au voisinage réel, ainsi que des informations sur la profondeur, pourraient être utilisés pour estimer la diusion opérant sous la surface, ou la translucidité, tout en ayant un impact limité sur les performances.

Dérivées du troisième ordre Dans notre solution, comme nous nous concentrions sur la modulation d'opacité, les seules fonctionnalités de rendu de ligne actuellement prises en charge sont les contours occlusifs. Ainsi, nous prévoyons d'étudier l'impact de l'utilisation du rendu par lignes, basé sur les points d'inexion (DeCarlo et al. [2003]; [START_REF] Ohtake | Ridge-valley lines on meshes via implicit surface tting[END_REF]; Judd et al. [2007]; [START_REF] Kolomenkin | Demarcating curves for shape illustration[END_REF]), an de mettre en valeur ce type d'information sur des surfaces transparentes.

Il est à noter que l'utilisation de fonctionnalités de troisième ordre nécessite également d'eectuer une autre passe de dérivation, ce qui peut s'avérer coûteux pour être réalisé en temps réel. L'extension à des fonctionnalités de troisième ordre peut alors nécessiter d'adapter notre structure de données an de stocker plus d'informations et d'éviter un surcout en calcul important. Support pour une étude utilisateur Les résultats présentés dans le chapitre En outre, une autre solution consisterait à réduire la précision de l'information que nous traitons, mais cela présente le même problème que celui de la diminution de la résolution. Nous devons donc mener une étude pour déterminer un bon équilibre entre précision et ecacité. Cette étape est cruciale si nous voulons fournir une solution ecace et par la suite intégrer cette application à Open Inventor.

En outre, en fonction de la conclusion de cette étude, il pourrait être intéressant d'exploiter niveaux de détail des textures. En utilisant correctement les diérents niveaux, nous pourrions adapter le noyau de calcul pour fournir des résultats plus rapides, mais moins précis. Cependant, cela induira probablement une surcharge de mémoire par rapport à l'utilisation du niveau supérieur uniquement.

L'augmentation de la vitesse de convergence améliorera l'interactivité de nos techniques. Cet aspect, associé à une mémoire réduite, devrait encourager l'utilisation d'une telle approche.

Visualisation Comme indiqué au chapitre 4, l'algorithme eectue une diffusion sélective, mais la visualisation de ses résultats reste limitée. La visualisation étant un élément important de l'application, elle doit être traitée à l'avenir. Cela nécessitera probablement une interaction plus étroite avec nos ingénieurs d'application et nos spécialistes en interfaces graphiques.

En outre, nous devrions étudier quelles grandeurs (e.g., taux de uence, luminance, gradients, etc) sont importantes à acher pour la compréhension du processus. Nous pouvons également étudier la manière dont des fonctions de transfert bien dénies pourraient être utiles [START_REF] Ljung | State of the art in transfer functions for direct volume rendering[END_REF]) pour cette question, car cet aspect n'était pas au centre de cette thèse.

Interactions Nous avons introduit de nombreux outils pour manipuler l'algorithme. Cependant, certains d'entre eux peuvent être améliorés pour être plus intuitifs. En particulier, nous envisageons d'ajouter la possibilité d'interagir avec la conguration d'éclairage en sélectionnant directement sur l'écran (sur les tranches du volumes) les positions des sources lumineuses. Cela rendrait également l'outil de peinture plus facile à manipuler et pourrait permettre d'explorer des congurations plus élaborées.

Nous devrions également proposer un moyen intuitif de choisir les différentes fonctions de transfert utilisées, autant pour le calcul que l'achage. Dans le même but, nous devons veiller à ce que la manière dont les paramètres seront exposés reste intuitive pour l'utilisateur. Nous devons trouver une solution pour que l'interaction avec les paramètres soit intuitive, tout en s'assurant de rester dans le domaine de convergence de la méthode.

Vers l'illumination globale En raison des diverses approximations que nous avons eectuées, notre méthode est limitée quant au type de milieux et xi de matériaux qu'elle peut traiter. Ainsi, notre solution ne peut pas évaluer l'illumination globale aussi précisément que les techniques stochastiques.

Cependant, son principal avantage est sa capacité à se corriger automatiquement. Grâce à cela, l'algorithme peut supporter de nombreuses modications en terme de paramètres et de conguration de lumière (position, intensité...). Ainsi, il pourrait être utilisé pour permettre de trouver une bonne conguration d'éclairage lors du rendu des volumes.

En outre, il pourrait être utilisé pour le rendu de surface pure an de réaliser une diusion sous-surface. En eet, la diusion sous-surface est utilisée pour approximer le transport de la lumière dans les milieux participants lors du rendu de surfaces pures. En utilisant des petits volumes répartis sur les surfaces, notre algorithme pourrait être utilisé pour évaluer cette diusion. 

Introduction and Motivation

Context and Motivations

Computer Graphics is the science that includes all the methods to convey visual information using a computer. In particular, image synthesis (or rendering) enables the production of images using a digital scene. This is a widespread process, used in many areas: computer-animated movies (Figure 1 In most of these elds, we often have to rely on the usage of semi-transparent objects (dened either as layers of transparent surfaces or continuous volumes) for exploration and visualization. Addressing transparent objects correctly requires to understand how light is supposed to interact with these objects. It also requires to convey the information in an interactive and legible way. The rst issue is addressed by studying light transport theory, the second one by choosing the appropriate rendering method.

The rendering method is also highly dependent on the need of the application and, accordingly, the targeted style of the image is not necessarily the same. Several rendering methods have been designed to address this diversity. For example, physically plausible rendering [START_REF] Lewis | Making shaders more physically plausible[END_REF]) consists in depicting as faithfully as possible the eects produced by the light-matter interaction (also called light transport, [START_REF] Veach | Metropolis light transport[END_REF]), as illustrated in Figure 1(c). On the other hand, expressive rendering (Lansdown and Schoeld [1995]), also called non-photorealistic rendering (NPR), trades light transport for stylisation, e.g., illustrative style [START_REF] Gooch | Modeling the interaction of light between diuse surfaces[END_REF]), as illustrated in Figure 1(d).

In this thesis, we address both representations, transparent surfaces and, mostly, volumes. We rst propose a solution to enhance the legibility of transparent surfaces. We then introduce a new approach using light transport to explore volumes.
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Manuscript Organization

This manuscript is divided into four chapters.

Chapter 1 presents the dierent scientic and technical background that are needed to understand the concepts developed in the manuscript, as well as the problems that we want to address. For this purpose, we discuss the model of light transport applied to volumes and surfaces, and how it is used in Computer Graphics. We then present some techniques of expressive rendering. Finally, we also present Open Inventor, the toolkit from Thermo Fisher Scientic TM , in which we have developed the solutions presented in this manuscript.

Chapter 2 targets the specic problems and solutions for rendering transparent surfaces. The main problem is to oer a legible visualization of dierent layers of transparent surfaces. We introduce our proposition to enhance surface depiction. In particular, we present in this chapter several data structures (including our own) adapted to real-time rendering of transparent surfaces.

Chapter 3 focuses on continuous volumes. As the techniques presented in Chapter 2 are limited when applied to volumes, we introduce a new approach inspired by uoroscopy imaging in medecine. This new metaphor is based on light transport to enhance depiction in volumes. We also study dierent numerical approaches in order to determine the characteristics that best suit our application.

Based on these characteristics, Chapter 4 presents the rendering technique we have chosen to solve light transport in volumes for the purpose of expressive exploration. Indeed we introduce how we can use this model to help to identify a region of interest.

All the software contributions and publications are summarized after the conclusion, in a dedicated chapter. David Murray Chapter 1

Rendering Volumes and Surfaces

This chapter is dedicated to the presentation of the prerequisites that are necessary to understand the work presented in this manuscript. This background implies several physical models to describe light transport in dierent congurations. It also includes the technical details that are needed to implement these models in Computer Graphics.

First, the physical models rely on several radiometric quantities. We then focus on the model that describes the light transport in the case of participating medium, as well as the link between media and surfaces, including the model used for light transport with surfaces. Next, we briey present how these dierent models are used in Computer Graphics for image synthesis, with the approximated methods for real-time applications and more physically accurate methods for simulation applications. Finally, we give some details about the Open Inventor SDK, in which the solutions presented in this manuscript have to be developed.

Prerequisite: Radiometric Quantities

Before presenting any theories and models, we introduce the International System of Units used to measure radiometric quantities. As these radiometric quantities are widely used in this document, knowing them is strongly recommended. Note that in all the quantities presented in this manuscript, all vectors are considered normalized: || ω|| = 1, thus we sometimes use the equivalence between the cosinus of an angle cos(θ) and the scalar product of the two corresponding vectors ( u, v):

cos(θ) = u T • v
Flux F Also called the radiant power, it represents the total light power, regardless of any spatial or angular distribution. It is expressed in watt W, with 1W = 1J.s -1 .

Irradiance E It corresponds to the radiant ux received by a surface, measured per unit area. It is expressed in watt per square meter (W.m -2 ). It relates to the radiant ux with the following equation (where ∂A is a surface unit):

E = ∂F incoming ∂A
Radiosity B It corresponds to the radiant ux that leaves a surface, measured per unit area. It is expressed in watt per square meter (W.m -2 ). It relates to the radiant ux with the following equation (where ∂A is a surface unit):

B = ∂F outgoing ∂A
Radiance L It corresponds to the radiant ux that crosses a surface for a specic direction, measured per unit solid angle, per unit projected area. It is expressed in watt per steradian (sr) per square meter (W.sr -1 .m -2 ). It relates to the radiant ux with the following equation (where ∂A is a surface unit and ∂ω a solid angle unit):

L = ∂ 2 F ∂A • ∂ω

The Radiative Transfer Equation

In this section, we present a theory for light transport in participating media. This theory is based on a statistical approach and leads to a transport equation commonly referred to as the Radiative Transfer Equation (RTE) and was rst introduced in the early XX th century for solving radiative problem [START_REF] Khvolson | Grundzüge einer mathematischen theorie der inneren diusion des lichtes[END_REF] and [START_REF] Schuster | Radiation through a foggy atmosphere. 21[END_REF]). It was later extended to astrophysics in the 50's [START_REF] Chandrasekhar | Radiative Transfer. Dover books on physics and engineering[END_REF]) and neutron transport [START_REF] Case | [END_REF]). Finally, it was introduced in Computer Graphics by [START_REF] Kajiya | Ray tracing volume densities[END_REF].

To present this transport theory and the dierent models that are derived from it, we rst introduce the phenomena that occur in a participating medium at a mesoscopic scale and then present their physical origin at the scale of a photon. Then, from these phenomena, we establish the Radiative Transfer Equation and nally, we present how it can be reduced to a more practical equation for cases with mostly air and opaque media.

Phenomena in a Participating Medium

We rst consider a light beam and focus on its energy. When crossing a participating medium, this beam may be subjected to energy losses or gains. 

Collision Events and Mean Free Path

Before going into details, please note that the following demonstration is made using a corpuscular approach as it is easier to understand the dierent phenomena with particles. Note that it can also be established with an ondulatory approach, we refer the reader to [START_REF] Hecht | Optics[END_REF] for an introduction to wave optics.

In the chosen approach, light is composed of energy particles known as photons. The energy that corresponds to a photon is directly linked to its wavelength with the relation:

E photon = h • c λ
where h is the Planck constant, c is the speed of light in the vacuum and λ is the wavelength. Therefore, whenever we talk about photons, it equivalently refers to: the particle, its energy and its wavelength. When crossing a medium, a photon may collide with particles. Several phenomena can occur:

1. The photon is absorbed by the particle and converted in another form (heat, electric current...). 2. The photon is absorbed by the particle and re-emitted with the same energy. It may be emitted in any direction, depending on the orientation of the particle in medium. This event can then be interpreted as the photon being deected. 3. The photon is absorbed by the particle and another one is emitted, with a reduced energy. If the medium is uorescent, the photon is emitted instantly, whereas if it is phosphorescent, the emission will occur later in time. This event can be separated in absorption (rst case) and selfemission. When dealing with macroscopic information, these events can be modeled as probability densities over a unit distance, related to: the probability of a collision while crossing a certain distance, the probability of this collision resulting in an absorption or the probability of it resulting in a deection. All events mixed, the probability of a collision is expressed by the Mean Free Path which corresponds to the average distance between two events, in meters.

In the following paragraphs, we present a denition of the two aforementioned cases, i.e., absorption and scattering. The third one can be virtually separated into an absorption event followed by an emission event and thus, it does not need further explanation.
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David Murray Absorption This phenomenon is introduced in Figure 1.3(a). Many media, in particular dielectric ones, can absorb photon energy without re-emitting it as light. The absorption coecient (in m -1 ), noted K a , provides a practical way to relate to the probability that a photon is absorbed by a particle when crossing a unit distance. The probability density of a photon being absorbed over a distance l is e -Kal , as stated in the Beer-Lambert law. From this, we can dene the absorption length l abs , also known as the absorption Mean Free Path. It corresponds to the characteristic length of an exponential model, thus

l abs = 1
Ka . Note that this length eectively corresponds to the average distance between two absorption events:

l abs = ∞ 0 K a • s • e -Kas ds
Absorption, if not followed by a re-emission, results in an energy loss for a light beam crossing an absorbing medium.

Scattering The scattering is introduced in Figures 1.3(b) and 1.3(c). Scattering events, when photons are deected away from their incoming direction, result in an energy loss for a light beam, as illustrated in Figure 1.3(b). But, unlike absorption, scattering events can also cause a light beam to increase in energy. This occurs when neighboring particles deect photons from other light beams into the one we are considering, as shown in Figure 1.3(c). The rst case is often referred to as out-scattering and the second one as in-scattering.

The scattering coecient is noted K s (in m -1 ). As for absorption, we can dene the scattering Mean Free Path l scat :

l scat = 1 K s
When this process occurs for a photon beam, the photons scatter in different directions, resulting in an angular distribution of the scattered energy. This dispersion is quantied by a Phase Function.

The Radiative Transfer Equation

Phase Function As stated above, the Phase Function quanties the portion of the incoming energy that is deected in a specic direction [START_REF] Van De Hulst | Light scattering by small particles[END_REF]). As it corresponds to an angular distribution, it has a unit of inverse solid angle: sr -1 . It depends on the incoming direction (noted ω i ), and the outgoing direction (noted ω o ). To handle heterogeneity, the phase function also depends on the position (p). In this manuscript, the Phase Function is noted:

P(p, ω i , ω o )
The phase function must respect several properties to have a physicallycompliant behavior:

• Reciprocity. It must obey Helmholtz's law of reciprocity, implying that:

P(p, ω i , ω o ) = P(p, ω o , ω i )
• Energy conservation. Or normalization, meaning that no energy can be created in the scattering process, thus the phase function must integrate to one:

Ω 2 P(x, ω i , ω o )d ω o = 1
Note that depending on the papers and the convention chosen, the phase function sometime integrates to 4π. The second rule gives the expression of the uniform phase function:

P(p, ω i , ω o ) = 1 4π
For non-uniform scattering, the Henyey-Greenstein phase function (Equation 1.2) is used as it can approximate most scattering behaviors (forward and backward scattering). This is done by using the Anisotropy Factor g (Equation 1.1) varying from -1 to 1: g < 0 corresponds to backward scattering, g = 0 is the uniform phase function and g > 0 corresponds to forward scattering.

g(p) = 1 4π Ω 2 P(p, ω, ω ) ω T • ω dω (1.1) P(p, ω i , ω o ) = 1 -g 2 1 + g 2 -2g ω i T • ω o 3 (1.2)
However, for really accurate physical simulation, one should use the phase function that is suited to the physical conguration (e.g., the Rayleigh phase function for scatterers smaller than the wavelength, see van [START_REF] Van De Hulst | Light scattering by small particles[END_REF] or [START_REF] Hecht | Optics[END_REF] for more details). Also, note that in this manuscript, the eects of correlation in the medium particle distribution is hidden in the phase function, and we do not detail its impact on the scattering process. For further details, we refer the reader to Jarabo et al. [2018], who present the impact of dierent levels of correlation for a medium composed of the same type of particles.

Emission

The emission inside a medium can be viewed as the inverse of absorption: instead of light energy being absorbed and converted into heat, a heated medium decreases its energy by converting it into photons.

This process is often approximated using the black-body radiative model, rst introduced by Kirchho and [START_REF] Kirchhoff | Chemische analyse durch spectralbeobachtungen[END_REF]. This model introduces a relation between the temperature of a medium (in Kelvin K) and the wavelength of the photons that are emitted in order to decrease its energy. The relation between the temperature T and the peak wavelength λ max is given by the Wien's Law [START_REF] Wien | Temperatur und entropie der strahlung[END_REF]):

λ max = b T
with b being the Wien's displacement constant, equal to approximately 2.897× 10 -3 m.K.

If Wien's Law gives the peak wavelength, [START_REF] Planck | The Theory of Heat Radiation[END_REF] introduce a relation that gives the radiance emitted by a medium at temperature T for a specic wavelength λ:

L(λ, T ) = 2h λ 3 c 2 1 e h λkT -1
where c ≈ 3.10 8 m.s -1 is the speed of light in vacuum, h ≈ 6.626 × 10 -34 J.s is the Planck constant and k ≈ 1.381 × 10 -23 J.K -1 is the Boltzmann constant.

For the remainder of this document, we use a notation more suited to Computer Graphics applications. The contribution of emissive media is described by a volumetric term Q e , expressed in watt per cube meter per steradian (W.m -3 .sr -1 ).

Establishing the Radiative Transfer Equation

Now that the phenomena occurring in participating medium have been introduced, we can focus on the formulation of the Radiative Transfer Equation, as introduced in [START_REF] Chandrasekhar | Radiative Transfer. Dover books on physics and engineering[END_REF] and its formulation as used in Computer Graphics.

The Dierential Form

To estimate the inuence of these phenomena, we rst focus on an elementary part of a volume, of length δs = c • dt, where dt is a time step, aligned with the direction ω, as illustrated in Figure 1.4.

Before entering the subvolume, at a point p, we have a radiance L(p, t, ω) and an exiting radiance of L(p + ωδs, t + dt, ω). Inside the sub-volume, a portion of L(p, t, ω) is absorbed, another scattered. At the same time, the

δ L(p, t, ω) L(p + δs, t + dt, ω) K a (p) K s (p) K s (p) Q e (p)
Energy gains Energy losses Figure 1.4 Propagation through a sub-volume δs = c•dt. The incoming light beam of radiance L(p, t, ω) looses energy due to out-scattering (K s ) and absorption (K a ), and in the meantime, it gains energy by in-scattering (K s ) and potential emission (Q e ).

sub-volume may emit energy, and the surrounding particles also scatter energy that contributes to the sub-volume exiting radiance. The contributions along δs are then:

• -c • dt • K a (p) • L(p, t, ω), the absorption along δs.

• -c • dt • K s (p) • L(p, t, ω), the out-scattering along δs.

• +c • dt • Q e (p, t, ω), the volumetric emission along δs (in W.m -3 .sr -1 ).

• +c

• dt • K s (p) 4π •P(p, ω, ω ) • L i (p, t, ω )d ω
, the incoming energy from neighborhood along δs (aka in-scattering). As absorption and out-scattering both imply a loss of energy, they are regrouped under an extinction term. The associated extinction coecient noted K t is dened as:

K t = K a + K s
We can obtain the exiting radiance with an energy balance between p and p + δs:

L(p + ωδs, t + dt, ω) = L(p, t, ω) -c • dt • K t (p) • L(p, t, ω) +c • dt • Q e (p, t, ω) + c • dt • K s (p) • 4π P(p, ω, ω ) • L i (p, t, ω )d ω (1.3)
By using the Euler-Lagrange relation (in our case [START_REF] Pierrat | Propagation et émission du rayonnement en milieu diusant. Application à l'imagerie des milieux complexes[END_REF]), this equation can be written as a dierential equation, also known as the Radiative Transfer Equation (RTE).

d dt = ∂ ∂t + c ω T • ∇ p , as stated in
1 c ∂L(p, t, ω) ∂t + ω T • ∇ p L(p, t, ω) = -K t (p) • L(p, t, ω) + Q e (p, t, ω) + 4π K s (p) • P(p, ω, ω ) • L i (p, t, ω )d ω (1.4)
For a more physically accurate and more detailed demonstration about this equation, the reader is encouraged to read [START_REF] Pierrat | Propagation et émission du rayonnement en milieu diusant. Application à l'imagerie des milieux complexes[END_REF], who establishes this equation and its implications, as well as a demonstration from Maxwell laws on electromagnetic wave propagation.

Equation 1.4 is the general denition of the RTE. However, in Computer Graphics, we are often in a situation where we can consider to be in a local thermodynamic equilibrium, meaning that the time-related dependence becomes irrelevant. Thus, if not otherwise specied, the steady version (Equation 1.5) is the one we refer to for the rest of this chapter.

ω T • ∇ p L(p, ω) = -K t (p) • L(p, ω) + Q e (p, ω) + 4π K s (p) • P(p, ω, ω ) • L i (p, ω )d ω (1.5)
The Integral Form

We established the dierential form of the RTE. In some cases, a formulation that accounts for a whole light ray is more practical. Equation 1.5, on a sub-volume, has the form:

y (p) + A(p) • y(p) = q(p)
where:

A(p) = K t (p) q(p) = Q e (p, ω) + ω K s (p) • P(p, ω, ω ) • L i (p, ω )dω
The solution of this dierential equation is of the form:

y(p) = C • e -p A(s)•ds + p q(v) • e -p v A(u)•du • dv
In our case, the solution for a ray going from a point p 0 to p is then:

L(p, ω) = L 0 ( ω) • e -p 0 Kt(u)•du + p 0 Q e (t, ω) + 4π K s (v) • p(v, ω, ω ) • L i (v, ω )d ω • e -p v Kt(u)•du dv p p 0 L 0 L(p)
Figure 1.5 A cloud with its bounding box in front a light panel. Light emitted from the panel, with radiance L 0 , enters the volume at position p 0 with radiance L(p 0 ) = L 0 and propagates through it, emerging at position p. The radiance at position p is given by Equation 1.8.

Emission and in-scattering can be regrouped under an "energy gain" function Q(p, ω) such as:

Q(p, ω) = Q e (p, ω) + K s (p) 4π P(p, ω, ω ) • L i (p, ω )d ω (1.6)
For convenience, we use τ (t 1 , t 2 ), the cumulative absorption from t 1 to t 2 , also known as the transmission rate of the slab (t 1 , t 2 ).

τ (t 1 , t 2 ) = e -t 2 t 1 Kt(s)•ds (1.7)
Finally, for a full volume, placed in front of a uniformly lit background (position p 0 ), as illustrated in Figure 1.5, the radiance received at each point on the plane at position p obeys the following Equation (1.8).

L(p, ω) = L 0 • τ (p 0 , p) + p p 0 Q(u) • τ (u, p) • du (1.8)
This integral form (Equation 1.8) is sometimes referred to as the Volume Rendering Equation in the Computer Graphics community. 

Interfaces between Media: toward Surfaces

We have explained and detailed the model for light transport in a participating medium. We now focus on what happens when we consider a conguration with dierent media. Such a conguration could for example originate from having a variation of density, a variation of the medium composition (like air and water vapor), etc. We can separate this problem in two categories: smooth transition between the media or discontinuous transition. To distinguish between the two, we can look at the variation of the RTE parameters in regard to their scale, that is to say, compare the order of ∇K a/s/t with the order of K a/s/t .

Smooth Transitions This case corresponds to situations where the variations of the parameters are very small in regards to the order the parameters:

∇K a/s/t K a/s/t 1
Thus, the parameters can be considered locally uniform and then, the problem can be reduced to solving the RTE with a heterogeneous medium. This case is illustrated in Figure 1.6(a).

Discontinuous Transitions: Interfaces In any other cases with sharp transition, we need to introduce interfaces to model the transition points. If the transition is nearly perfectly sharp (like air and glass), we only need one interface to describe the changes. This case is illustrated in Figure 1. 6(b). This notion will prove to be useful when dealing with conguration combining air with extremely dense medium (like a metal). Indeed, for congurations like a room or a street, most of the space is composed of air (very low-absorption and very low-dispersion at the considered scale), while the rest is most likely composed of dense media like painted concrete, plastic, glass,

n 2 n 1 i 1 r i 2 L in ; ω in L out ; ω out L out ; ω out n p |r| = |i 1 | n 1 sin(|i 1 |) = n 2 sin(|i 2 |)
Figure 1.7 An interface between a medium of index n 1 and one of index n 2 with reection and refraction. A portion of the incoming light (L in ; ω in ) is reected L out ; ω out according to the Fresnel Coecient R such as L out = RL in , while the other portion is refracted (L out ; ω out ) according to the Fresnel Coecient T such as

L out = T L in . Note that R + T = 1.
The reection and refraction angles are obtained with the Snell-Descartes law, on the right of the gure. metals, etc. The air can then be approximate as vacuum, with nearly no impact on light transport. Another approximation that can be made here is to consider that, due to the nature of the other media involved, light is either completely reected or absorbed by the media (metal, plastics), or crosses it without loss or dispersion (glass).

By using these approximations, this type of scene can be reduced to the dierent medium interfaces, and thus by surfaces corresponding to these interfaces. In this case, the RTE is no longer used as its complexity is not suited to the resolution of a problem that becomes mostly addressed by Geometric Optics (treating light as rays, obeying the Fresnel laws for reection and transmission coecient and Snell-Descartes for reection and refraction angles, see Figure 1.7).

The Rendering Equation

When dealing with a situation modeled by surfaces, with ray optics, [START_REF] Kajiya | Ray tracing volume densities[END_REF] introduced the Rendering Equation:

L(p, ω out ) = L 0 (p) + pi f r (p, ω out , ω in ) • L i (p, ω in ) ω T in • nd ω in (1.9)
In Equation 1.9, the function f r quanties the portion of energy that is reected (or refracted) from direction ω in toward direction ω out at position p, and n is the normal vector of the surface at position p. Even if this equation still has a recursive formulation, it is much lighter to evaluate since it only requires to be evaluated for light sources and their reections.

Note the scalar product term ω T in • n in the integral. As an incoming light beam may not be perpendicular to the interface, its energy is evenly distributed on an area larger than the cross-section of the beam.

Bidirectional Reectance Distribution Function

As stated above, in Equation 1.9, function f r quanties the ratio of energy that a surface reects in a given direction depending on the energy it receives from another direction. It is a 4D function called the Bidirectional Reectance Distribution Function (BRDF) and was introduced by [START_REF] Nicodemus | Reectance nomenclature and directional reectance and emissivity[END_REF] and is dened as:

f r ( ω out , ω in ) = dL r ( ω out ) dE in ( ω in ) = dL r ( ω out ) L i ( ω in )( ω T in • n)d ω in (1.10)
Like the phase function, the BRDF, to be physically-compliant, must respect several conditions:

• Positivity. Radiance is positive, thus:

f r ( ω in , ω out ) ≥ 0
• Reciprocity. It must obey Helmholtz's law of reciprocity:

f r ( ω in , ω out ) = f r ( ω out , ω in )
• Energy conservation. Or normalization, meaning that no energy can be created by the reection process:

π f r ( ω in , ω out )d ω out ≤ 1
It is important to note that, by denition, any phenomenon mentioned in Section 1.2.1 that occurs behind the surface (like scattering or absorption) is embedded directly in the BRDF. Thus, three categories of reections (as illustrated in Figure 1.8) can be modeled with a BRDF: the pure specular one (mirror-like, case of the Figure 1.7), the pure Lambertian one (uniform reection) and the glossy reection with a lobe distribution. The BRDF is often simplied as a diuse Lambertian term and a specular one (e.g., [START_REF] Cook | A reectance model for computer graphics[END_REF], [START_REF] Ashikhmin | An anisotropic phong brdf model[END_REF], [START_REF] Burley | Physically-based shading at disney[END_REF]). The rst one accounts for reected energy coming from internal scattering behind the surface, while the second one accounts for the energy reected directly by the surface. As for the phase function, there would be much to say about BRDF, which falls out of the scope of this thesis. The interested reader can see the overview from [START_REF] Montes | An overview of brdf models[END_REF].

Rendering Techniques

The simulation of a lighting model for visualizing three-dimensional scenes is an essential tool for understanding the content of this scene. In particular, reections are crucial in understanding a shape [START_REF] Fleming | Specular reections and the perception of shape[END_REF]. Image synthesis in Computer Graphics consists in simulating this light transport to convey these features.

The easiest and most aordable way to do this is to mimic Geometric Optics: shooting and tracing a ray from a virtual camera across the scene and computing the bounces on the dierent interfaces as well as the eect of scattering in case of participating media. This approach, called ray-tracing [START_REF] Whitted | An improved illumination model for shaded display[END_REF]), is one of the oldest in Computer Graphics, however, it implies a huge computation cost. Thus, other paradigms have been developed, in particular with the development of dedicated Graphical Processing Units (GPU). Their aim is to provide faster but less physically-accurate rendering for applications that require interactivity more than accuracy. Even if many techniques have been proposed to enhance the quality of these rendering methods, ray-tracing remains the best paradigm for high quality images with global illumination.

In this section, we present these aspects: rst an overview of the graphic 18 David Murray pipeline (used for surfaces) and the pipeline used for volumes, then several simple lighting solutions, to complement the previous techniques, and nally techniques that embed the lighting computation into the rendering paradigm.

Rendering for Surfaces Surface Representation

In Computer Graphics, surfaces are generally discretized as polygons, represented by their vertices, as illustrated in Figure 1.9. In practice, even though one could use any polygonal representation, the preferred one is triangles as a dedicated pipeline (presented in Section 1.3.1) was developed on GPU for triangular meshes. This representation oers a good trade-o between memory usage (the number of required elements) and the level of details that can be represented. Indeed, a sphere can be represented with 8 triangles if its purpose is purely illustrative and does not require an accurately rounded shape. It can also be much more rened with hundred of triangles if its purpose is to oer a more accurate shape, as illustrated in Figure 1.9(c).

Graphics Pipeline

Rasterization is a process that produces a 2D matrix image from a 3D representation (or a vector-dened image) by projecting the latter on a 2D plane. This projection can be done with a CPU. However, as this process scales well with highly parallel architectures, like a GPU, it has quickly become a standard for real-time rendering algorithms on GPU, while also contributing to the promotion of the GPU as a key hardware in Computer Graphics.

Indeed, a special pipeline was developed, optimized and even integrated in the development of GPUs, which is often referred to as the graphics pipeline, presented in Figure 1.10. This process also has evolved along with the renement of GPUs, that oer more computing power each year, and now consists in sending the input data on the GPU, applying transformation on the 3D data, projecting it onto the 2D plane, computing each pixel's color, returning the nal image.

Note that in Figure 1.10, some steps are pictured in blue boxes. These steps are programmable using Shaders, small programs executed directly on the GPU. There is one type of shader for each element. Vertex shaders handle the transformation that must applied to each vertex to correctly place them in the scene. These points are then rasterized into fragments (non programmable step) which are handled by fragment shaders to determine the color of the nal pixel. The development of shaders is another reason for the success and the spreading of the graphics pipeline. Note that other shader stages exist for geometry processing (geometry shaders and tesselation shaders) and an external one for computing purpose (compute shaders). For a more complete overview of this whole process and the dierent shader stages, we refer the reader to Akenine-Möller et al. [2018].

Finally, to implement post-processing algorithms, it is possible to store the result of the graphics pipeline (called a Frame Buer Object). The desired post-processing eect can then be applied on top of the rendering obtained previously. Using this two-pass approach is called deferred rendering, as opposed to forward rendering (one pass using the graphics pipeline).

Volume Rendering

Volume rendering is typically done by solving the Volume Rendering Integral, presented in Equation 1.8. This requires to discretize the integral and evaluate it for a set of sampled positions. But before presenting how it is solved in Computer Graphics, we rst present the representation that is used to handle the data. Then we present the pipeline used to compute the volume rendering integral, as well as the mostly used method for volume visualization. Then, we present how the Volume Rendering Integral is discretized to comply with this method. Finally, we briey present the concept of isosurface, a special case in handling volumes.

Volume Data

To understand how volumes are represented in Computer Graphics, we must rst focus on the origin of these data. There are several elds in which volume data are used: biomedical, seismic analysis, life science, industrial inspection. Some of them use the process of Computed Tomography (CT) scanning with X-rays. This process consists in doing multiple X-ray measurements from dierent angles, thus producing cross-sectional images (also referred to as "slices") of specic areas. Slices allow the user to inspect parts inside the object (organs, electronic circuits...) in a non-invasive way. Slices can also be obtained from Magnetic Resonance Imaging (MRI) when inspecting for brain injuries. Note that the content of the slices corresponds to a physical quantity depending on the acquisition device: transmittance, reectance, etc. In most cases, the information is limited to a scalar value per position.

To explore the acquired data, in particular for medical imaging, one can either use directly the slices and observe them one by one, or generate an image from a 3D reconstruction of the slices. Indeed the set of slices can be reassembled to form a 3D matrix (a volume), as illustrated in Figure 1.11. The volume elements of the resulting matrix are called "voxels" (3D pixels). Acquisition and reconstruction are entire elds of study that are out of the scope of this manuscript. For an introduction on these processes, we refer the reader to Hadwiger et al. [2006].

Volume Rendering Pipeline

If observing any slice directly from the acquired data goes back to visualizing an image, the problem is dierent when we need to explore the whole data.

If we are dealing with a set of slices, we need to compose them with each other, and if we are dealing with a reconstructed volume, we need to compose its voxels. As both interpretations rely on a compositing scheme, the same pipeline can be used for both a set of slices and a volume. This pipeline (presented in Hadwiger et al. [2005]) is composed of the following steps:

Data traversal Sampling positions are chosen to serve as a discretization pattern to compute the volume rendering integral. Data information is then queried at these positions, and interpolated if necessary.

Gradient computation Some shading algorithms and lighting simulations may require the gradient of the scalar eld. It is usually computed using central nite dierences.

Classication The data queried from the volume are scalar values that originated from a physical measure, thus it must be mapped to a color and opacity value. This step is crucial as it allow us to distinguish between the dierent areas of the volume. The mapping is usually done using a Transfer Function [START_REF] Ljung | State of the art in transfer functions for direct volume rendering[END_REF]).

Shading and illumination Shading and lighting can be incorporated in the computation of the volume rendering.

Compositing This step controls the iterative computation of the volumerendering integral. Once the samples have been assigned a color and opacity, they are composed with each other. The compositing pattern is described in Section 1.3.2. Regarding this pipeline, the main dierence between the two data representations lies in the Data Traversal step. Thus, several volume rendering techniques were proposed, using either slices or volumes. However, one has been predominant for the last decade: the direct volume rendering, which is the subject of the next paragraph.

Direct Volume Rendering: Ray-casting Several techniques have been used to render volumes. In this thesis, we focus on the one called Direct Volume Rendering. For an overview of the other existing techniques, we once again refer the reader to [START_REF] Hadwiger | Advanced illumination techniques for gpu-based volume raycasting[END_REF].

Direct volume rendering relies on a method called ray-casting. Ray-casting is a technique that consists in evaluating the volume rendering equation (Equation 1.8) with a front-to-back ray-marching process: for each pixel in the image plane, a ray is cast toward the volume and samples are accumulated and blended with a discrete marching step, as presented in Figure 1.12. The blending operator can be obtained by discretizing the volume rendering equation, as shown in the next paragraph. Ray-casting was rst used for CPU volume rendering, but the introduction of shaders on GPU allowed ecient implementation of ray-casting on GPU and real-time volume rendering.

The Discrete Volume Rendering Equation

Several models of Q(p, ω) (Equation 1.6) can be used in volume rendering but the vast majority relies on a emission-absorption model: K t = K a , and p, ω). This simplication comes from the heavy computational cost of the scattering part, which implies a recursive spherical integration of all surrounding contributions. Thus, with this model, Equation 1.8 can be rewritten:

Q(p, ω) = Q e (
L(p, ω) = L 0 • τ (p 0 , p) + p p 0 Q e (u) • τ (u, p) • du
Until now, we have considered light traveling from the light source toward the sensor (camera, eye...), as illustrated in Figure 1.5. However, doing the composition from the sensor is more ecient as only elements actually contributing to the nal image are taken into account. Thus, we need to compute the inverse path: a light is cast from the sensor toward the volume, as illustrated in Figure 1.12. That is to say, we compute L(p, ω) by going from p to p 0 , in the direction -ω instead of ω. As, for a dened nite interval,

| x y | = | y x |, Figure 1.
12 Ray-marching process to sample a volume. At each sample, the data is queried to evaluate the volume rendering equation (using gradients, classication and shading). The result is then blended with previous samples with front-to-back compositing.

the resulting equation is then:

L(p, ω) = L 0 • τ (p, p 0 ) + p 0 p Q e (u) • τ (p, u) • du (1.11)
This equation can be discretized to obtain a blending pattern for compositing, presented in Equation 1.13 for computing colors and Equation 1.14 for transparency. This is obtained using L(p) ⇐⇒ L i , with i = 0 corresponding to the entry point into the volume (at position p), and i = n corresponding to the exit point (p 0 ). Thus:

p 0 p dx ⇐⇒ n i=0 ∆x
Furthermore, for simplication, we omit here the term coming from a potential backlight, which leads to:

L(p, ω) ⇐⇒ L n = n i=0 Q e,i ∆x • τ i with: τ i = e -i j=0 K a,j ∆x = i j=0 e -K a,j ∆x
This formula can be simplied if we note that e -K a,i ∆x corresponds to the transmittance of a voxel of size ∆x. Note that e -K a,i ∆x = 0 means that the voxel does not transmit any light, it is opaque, whereas e -K a,i ∆x = 1 means that it transmits all the light it receives, it is then transparent. The transmittance can be interpreted as the "transparency" of the voxel. The relation to "opacity", a notion more frequently used in Computer Graphics (noted α) is: α = 1 -e -K a,i ∆x . We now use this notation and we have:

τ i = i j=0 (1 -α i )
The nal composition is described by Equation 1.12.

L n = L 0 • τ n + n i=1 Q e,i ∆xτ i (1.12)
To obtain the elementary version, which can be used for the ray-casting process, we need to decompose this equation:

L n = n-1 i=0 Q e,i ∆x • i j=0 (1 -α j ) + Q e,n ∆x • τ i L n = L n-1 + Q e,n ∆x • τ n
If we note:

C out = L n ; C in = L n-1 ; C = Q e,n ∆x α = α n ; α in = 1 -τ n-1 ; α out = 1 -τ n
We then have:

C out = C in + (1 -α in )C (1.13)
Using the same decomposition scheme as for L n , we can write the complementary version for α out :

α out = α in + (1 -α in )α
(1.14) Equations 1.13 and 1.14 correspond to the UNDER blending operator. This operation is the front-to-back equivalent of the OVER operator, the back-tofront blending operator described by Porter and Du [1984]. Note that this result could also be extracted directly from Equation 1.4 with the Emission-Absorption model.

A Special Case: Isosurfaces When dealing with volume data, one may want to see only its signicant interfaces. These interfaces result in isosurfaces as they correspond to voxels with the same scalar value. As just identifying these surfaces using scalar values is uncertain due mostly to the need of a tolerance threshold, and the fact that the data is reconstructed (possibly noisy data), some techniques have been proposed to enhance this process (e.g., [START_REF] Tatarchuk | Real-time isosurface extraction using the gpu programmable geometry pipeline[END_REF]). In some cases, the isosurfaces can be extracted and converted in a surface mesh, and later used with the graphics pipeline in another application.

Illumination techniques

This section focuses on the techniques used to evaluate illumination in a scene, using either the graphics pipeline or the volume rendering pipeline. Due to hardware limitations, in particular for interactive applications, illumination simulation was rst limited to direct lighting (only one interaction between the light and the scene). The result of multiple reections or scattering events, called indirect lighting, was either embedded into the model or precomputed. However, light transport implies potential occluders on the light path. If this case is straightforward with ray-tracing techniques, it requires additional considerations for the other techniques.

Direct Lighting

We now focus once again on our two rendering equations: Equation 1.8 for volumes and Equation 1.9 for surfaces. We detail how these two equations are solved when we consider only the direct contribution of discrete light sources.

To account for direct lighting only (no bounces), the integral in Equation 1.9 can be discretized according to the number of light sources. Note that at this point we only considered direct lighting from a discrete set of light sources. In this case, indirect lighting must be approximated. The easiest way of doing so is to add an ambient contribution, L a (p), in the direct lighting computation such as:

L(p, ω out ) = L e (p) + L a (p) + #lights i=0 f r (p, ω out , ω i ) • L i (p, ω i ) ω T in • n
The same can be done for Equation 1.8 by adding some simplications. As stated in Section 1.3.2, we use the Emission-Absorption model. However, light contributions are added to the emission term. In order to keep a low computation cost, no loss or scattering are taken into account between the light and the point. Thus, to compute these contributions, we must determine if the light should be reected or scattered, as stated in [START_REF] Hadwiger | Advanced illumination techniques for gpu-based volume raycasting[END_REF]. To do so, we can consider the scalar gradient (noted |∇S|). A high gradient means that light has probably encountered an interface, implying that light may be reected, which requires to use a BRDF. On the contrary, a low gradient means that the element is inside a medium and thus light will most likely be scattered, according to the appropriate phase function. In practice, the local medium property should also be taken into account. Thus, the integral in the gain term (Equation 1.6) can also be discretized according to the number of light sources:

L(p, ω out ) = Q e (p) + L a (p) + #lights i=0 I(p, ω out , ω i ) • L i (p, ω i )
with I being:

I = f r (p, ω out , ω i ) • ( ω i • n) if |∇S| > P(p, ω out , ω i ) if |∇S| ≤ (1.15)
The aspects presented above are limited to discrete light sources (either directional, point or area). If the ambient term in the direct lighting oers a solution to approximate complex lighting environments at nearly no cost, this solution is obviously limited as it is uniform on the object and viewindependent.

A popular alternative to this term is to use a precomputed lighting environment as images. By using textures, one can reproduce a mirror-like reection of an environment, as illustrated in Figure 1.13, with only one texture access. However, a glossy or a Lambertian reection pattern would require many texture accesses to compute an integral on the BRDF lobe to provide the correct contribution of the environment. This is equivalent to considering that each pixel of the environment map is a light source. However, this process can be precomputed to produce a set of textures corresponding to the The precomputation of the visibility factor used with absorbing media (in volume).

dierent material properties, as illustrated in Figure 1.13, thus producing Preltered Environment Maps (introduced by Kautz et al. [2000]). This can be eciently implemented on modern GPU by using texture mipmap, the result is interpolated between two levels if necessary. Thus, using this Preltered Environment Maps, a complex lighting environment can be simulated for a low computation cost, with only one texture access instead. Furthermore, for low frequency representations, [START_REF] Ramamoorthi | An ecient representation for irradiance environment maps[END_REF] propose to encode the irradiance obtained from the image into a spherical harmonics basis.

An irradiance map can be converted in only 9 coecients per color.

Shadowing and Visibility

As stated in the introduction, some objects or some parts of a volume may act as occluders for the light. This can be modeled by adding a visibility factor v(p, ω) in the lighting computation:

L s (p, ω out ) = L e (p) + L a (p) + #lights i=0 v(p, ω in )f r (p, ω out , ω i )L i (p, ω i )( ω T i • n) L v (p, ω out ) = L e (p) + L a (p) + #lights i=0 v(p, ω in )I(p, ω out , ω i )L i (p, ω i )
This factor can be precomputed or computed on the y and has a binary behavior: the element is either visible or occluded. A two-pass approach can be used for surfaces: a rst pass rendering only depth information from the light source point of view, a second one from the camera point of view, using the previous information to determine the visibility factor. For a complete David Murray 1. Rendering Volumes and Surfaces overview of shadowing techniques, we refer the reader to Eisemann et al. [2011] and [START_REF] Woo | Shadow Algorithms Data Miner[END_REF].

However, shadowing techniques are limited when a complex lighting environment is used, such as precomputed environment maps. In these cases, we can not evaluate the visibility for each pixel of the environment map as this would imply too many computation. This problem can be partly addressed by Ambient Occlusion (AO). The idea of ambient occlusion is to compute a local occlusion factor, depending on the surrounding elements. This factor is computed by integrating an occlusion function over a hemisphere centered on the normal at the current point, as illustrated in Equation 1.16. Several occlusion functions have been proposed over the years (e.g., Bavoil et al. [2008], [START_REF] Loos | Volumetric obscurance[END_REF], McGuire et al. [2011]) to benet for the increasing power of GPU. An advantage of this approach is that it can be view-dependent and oers a good trade-o between image quality and computation cost compared to ray-traced approaches.

AO(p, ω out ) = Ω radius 0 AOF unction(p + u T • ω, ω out , ω)du dω (1.16)
Ambient occlusion can be easily extended to volumes by integrating over a complete sphere otherwise. Indeed, [START_REF] Ritschel | Fast GPU-based Visibility Computation for Natural Illumination of Volume Data Sets[END_REF], and later Kronander et al. [2012], proposed to precompute a visibility factor v(p, ω) that accounts for the whole volume. This technique consists in precomputing for each voxel the total absorption for a discrete set of directions. For each voxel, a nite set of rays are cast and the absorption is accumulated using the blending operator described in Equation 1.14, which is equivalent to evaluate Equation 1.17

v(p, ω out ) = τ (p, ∞) = e -∞ p Kt(u)du (1.17)
The resulting information is projected on a Spherical Harmonics basis (directional basis) and is later used during the ray-casting to determine the visibility factor of the lights. Thus, by using precomputation, this approach provides a trade-o between accurate, but slow, ray-traced shadows, and fast, but less accurate, shadows obtained using shadow map techniques.

Global Illumination Techniques

In this section, we give an brief overview of global illumination algorithms for both surfaces and volumes. For a more elaborate review on these algorithms, we refer the reader to several other documents: Cerezo et al. [2005] and Jönsson et al. [2013] for participating media, [START_REF] Dutre | Advanced Global Illumination[END_REF], Ritschel et al. [2012] and Akenine-Möller et al. [2018] for surfaces, with possible combination with participating media.

Ray-Tracing and Monte-Carlo Integration

The technique often referred to as ray-tracing was introduced in the graphics community by [START_REF] Whitted | An improved illumination model for shaded display[END_REF].

To generate an image, a ray is launched for each pixel of the camera toward the scene in order to nd the closest intersection. At any intersection point, there are two possibilities:

• the surface is diuse: shadow rays are cast toward light sources to evaluate • the surface is reective: another ray is shot in the reection direction to continue the computation. This process is repeated for as many bounces as desired, and was later extended to handle all aspects of surfaces, e.g., diuse inter-reections or glossy surfaces. Theoretically, to correctly evaluate the Rendering Equation 1.9, an innite set of rays must be launched for each bounce. In practice, this process is reduced to a nite set of rays by using Monte-Carlo integration, and the set of rays is usually generated by using importance sampling with the BRDF. This process, with a recursive propagation, means that we build the path that the light follows inside the scene, and is often referred to as Path Tracing.

Photon Mapping Introduced by [START_REF] Jensen | Global illumination using photon maps[END_REF] for surfaces, [START_REF] Jensen | Ecient simulation of light transport in scenes with participating media using photon maps[END_REF] for volumes, it consists in shooting a set of photons from the light sources. If a photon reaches an element (vertex or voxel depending on the data representation), it is stored in this element. In a second (gathering) pass, rays are cast from the camera. As these rays interact with a surface or a volume, the photons in a neighboring area are gathered to estimate the radiance. The rst version presented by Jensen was biased (the converged results may not be the correct solution) and was improved by [START_REF] Hachisuka | Progressive photon mapping[END_REF] to greatly reduce the bias. Like ray-tracing, the visual quality of this technique (Photon Mapping) is greatly dependent on the number of emitted photons. If the number is too small, many artifacts may appear (an example is presented in [START_REF] Dufay | High quality adaptive rendering of complex photometry virtual environments[END_REF]).

Discrete Representation Some techniques have been proposed to solve Equations 1.9 or 1.8 using discrete representations. The general idea of these methods is to decompose the scene into small elements and the equations using these elements as primitives. Usually, the resolution uses either a Finite Element Method (FEM) or a Finite Dierence Method (FDM) to solve the rendering equation used. Among these, an example is Radiosity, introduced by Goral et al. [1984],

and presented in details in [START_REF] Sillion | Radiosity and Global Illumination[END_REF]. This technique uses geometrical patches to decompose a surface-based scene. For each patch, the radiosity value (the physical quantity) is precomputed and stored in the patches. The nal result is then computed using a nite element representation. This David Murray
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technique was later extended to using voxels to decompose the surfaces instead of patches Thiedemann et al. [2011]. Note that even if it was designed for surfaces, the physical model that inspired Radiosity lies in heat transfer theory, and thus, is close to the Radiative Transfer Equation (Equation 1.4). Note that this method may be faster than ray-tracing approaches, but the precomputation requires a signicant memory overhead. Another example is proposed by [START_REF] Zhang | Fast global illumination for interactive volume visualization[END_REF]. They solve a diffusion equation based on the RTE (Equation 1.4), instead of Equation 1.8, by using a nite dierence approach. To achieve competitive computing time, the model is simplied in regard to the RTE and a trade-o is required as single scattering and multiple scattering are computed separately. Indeed, as stated by [START_REF] Koerner | PN-Method for Multiple Scattering in Participating Media[END_REF], using an implicit representation to solve the RTE is risky as many solutions are either unstable or do not converge toward the correct solution.

Illustrative Stylisation

While current real-time and oine rendering techniques are convincing for most objects, some models suer from lack of real landmarks and thus, from grasp of the shape. To address this issue, another type of rendering emerged in Computer Graphics: Expressive Rendering [START_REF] Gooch | Modeling the interaction of light between diuse surfaces[END_REF] and [START_REF] Strothotte | Non-photorealistic Computer Graphics: Modeling, Rendering, and Animation[END_REF]). Its purpose is to convey information about the object that we visualize, regardless of physical accuracy. This information corresponds to the message that one wishes to transmit and can be, for example, a geometrical information for an object, a temperature information for a ow, a specic material among others, etc. This message is then visualized using an adapted style, ranging from a color palette to rendering in the form of lines. Thus, expressive rendering is sometimes called Non-Photorealistic Rendering (NPR), as some styles may require to shift away from physically plausible rendering techniques.

Expressive rendering techniques originate from artistic techniques, such as painting or drawing, but also techniques based on human perception. Cole et al. [2008] illustrate this for line rendering with a study of the dierent lines that artists draw to represent the same object. Thus, when these artists must convey a similar information, the features they choose to highlight are not necessarily the same. Figure 1.15 illustrates a multitude of possible representations of the same object, where each artist has his own style to represent this object.

Thus, expressive rendering is a vast eld where we can nd stylization techniques, as well as illustration or geometric description. In this thesis, we focus on the geometric description of an object to highlight important geometric information. To do so, we study two types of algorithms: the algorithms mod- ifying the lighting calculations and the algorithms producing line renderings (initiated by [START_REF] Saito | Comprehensible rendering of 3-d shapes[END_REF]). Thus, we rst present examples of shading-based algorithms (interacting with lighting simulation), then we present some examples of line rendering algorithms.

Note that, even if most of the presented techniques were proposed for surfaces, they can be easily extended to volumes using isosurface rendering or, in some cases, with a combination of volumes and isosurfaces.

Examples of Shading-based Approaches Gooch Shading

Gooch Shading was introduced by Gooch et al. [1998], inspired by the Phong BRDF [START_REF] Phong | Illumination for computer generated pictures[END_REF]), to propose a technique relying on color palettes, thus using our ability to interpret color temperatures (see Figure 1.16(a)) to transmit geometric information. The proposed model should replace the computation of illumination dened by the equation of the rendering (Equation 1.9) such as:

L r ( l) = 1 + ( n T • l) 2 k cool + 1 - 1 + ( n T • l) 2 k warm (1.18)
where k cool corresponds to a cold color and k warm a warm one. Similar techniques have been used in the form of textures, in particular with the X-Toon shading by [START_REF] Barla | X-toon: An extended toon shader[END_REF], which is a generalization of Gooch Shading with a texture, or the Lit Sphere by Sloan et al. [2001], which consists of using directional textures corresponding to a pre-computed illumination. David Murray

Rendering Volumes and Surfaces

Curvature-based Shading

We can now focus on the curvature of a surface, obtained by derivation of normals. The curvature information used is based on the principal curvatures, κ 1 and κ 2 , and the mean curvature κ mean = κ 1 +κ 2 2 . One of the techniques based on curvature is the Mean Curvature Shading, introduced by Kindlmann et al. [2003]. It consists in using curvature information to modify the rendering in order to highlight concavities, convexities or planar areas (see Figure 1.16(b)). [START_REF] Kindlmann | Curvature-based transfer functions for direct volume rendering: Methods and applications[END_REF] use textures whose content is associated with dierent curvature values. In this method, the curvatures are calculated directly in object space, which makes it possible to have temporal coherence in the highlighted information. Note that this technique was proposed initially for volume rendering, using isosurfaces. [START_REF] Bruckner | Style transfer functions for illustrative volume rendering[END_REF] introduce Style Transfer Function, a similar approach for volume expressive rendering. They use a curvature-based transfer function for opacity combined with Lit Sphere (Sloan et al. [2001]) for color stylization, as shown in Figure 1.16(c). [START_REF] Rautek | Semantic layers for illustrative volume rendering[END_REF] propose to combine this kind of approach with semantic to control the stylization (see Figure 1.16(d)). This method is used by Vergne et al. [2008] for the Apparent Relief technique by combining object space and screen space information, which allows them to take into account the point of view and the observation distance to adapt the information transmitted. The software ZBrush c proposes to use the technique of Lit Spheres (Sloan et al. [2001]) by indexing them on the values of curvature of the object, one for concavities and one for convexities.

Another approach using the curvature is Light Warping by Vergne et al.

[2009], which consists in shifting the normals of a surface according to its curvature, and thus deforming the reections. This deformation modies the perception that one has of the surface by accentuating convexities and by attenuating concavities. This perceptual phenomenon is described by [START_REF] Fleming | Specular reections and the perception of shape[END_REF]. This approach was later generalized by Vergne et al. [2010] to work with all types of light sources (point, area, environment map...). The Radiance Scaling (see Figure 1.16(e)) consists in adding a scaling factor (σ) to the BRDF term f r (p, ω out , ω in ) in the rendering equation (Equation 1.9) such as it becomes:

f r ( l, v)σ( v, l, κ) (1.19)
The function σ( v, l, κ) is a weighting function, which allows one to modulate the illumination in order to intensify it at convexities and to attenuate it at concavities. fore oers a minimalist rendering by limiting the conveyed message to border information.

Occluding contours complement silhouettes since they allow one to convey, in addition to silhouettes, simple geometric information about the object. They correspond to points where the normal of a surface is perpendicular to the point of view. An example of these two techniques is shown in Figure 1.17.

Ridges and Valleys

One of the techniques used to complete the information conveyed by occluding contours is the Ridges and Valleys, introduced by Interrante et al. [1995] and improved by [START_REF] Ohtake | Ridge-valley lines on meshes via implicit surface tting[END_REF]. This technique consists in identifying the points of a surface where the absolute curvature is maximum. These points are thus determined by using information of curvature and curvature variations. Using the sign of curvature, it is possible to discriminate between ridges (convexities) and valleys (concavities). This technique thus makes it possible to communicate relief information, as computations are done directly on the object, independently of the point of view (see Figure 1.18(a)).

This technique can produce renderings that are dicult to understand because of the quantity, sometimes too important, of highlighted features. Judd et al. [2007] therefore propose to use only a subset of ridges and valleys. This subset denes Apparent Ridges, where points of interest are identied thanks to the use of an apparent curvature, which depends on the point of view. An example of Apparent Ridges is shown in Figure 1.18(b). another approach to convey geometric information: rather than focusing on the maximum curvature of a surface, they chose to highlight inection points of the surface (where the sign of the curvature changes). They propose to highlight the points that would be considered as occluding contours if the point of view was slightly shifted, thus identifying the so-called "suggestive" contours. This denition corresponds to the points where the mean curvature is equal to 0, and its directional derivative (in the direction of the point of view) is positive. An extension can be found in DeCarlo and Rusinkiewicz [2007] by using a combination of suggestive contours and suggestive highlights, obtained from inection points with a directional derivative being negative. Finally, [START_REF] Kolomenkin | Demarcating curves for shape illustration[END_REF] propose to use Demarcating Curves (Figure 1.19(b)) that are lines dened by all inection points, regardless of the point of view.

Visualization with Open Inventor

As the work presented in this manuscript is conducted within the toolkit Open Inventor, it is important to describe it. Open Inventor is an SDK created in 1988 by Silicon Graphics (SGI) under the name IRIS Inventor. It is now developed and maintained by Thermo Fisher Scientic. This SDK aims at providing visualizing solutions for CAD applications, medical analysis and oil & gas exploration. As these elds interact with both surface and volume data, (1) the camera node sets its properties on the state, then (2) the light node adds its properties, then (3) the material also sets the color properties and nally (4) the shape node triggers the execution of the Graphics Pipeline with the corresponding mesh and the properties accumulated on the state.

Open Inventor handles both cases. A brief overview of the current capabilites and limitations of Open Inventor is presented here. For a detailed presentation of the features, we refer the reader to Wernecke [1994a], Wernecke [1994b] and the Open Inventor website (Inventor). Note that all the functionalities presented here are directly available in Open Inventor. As Open Inventor is an SDK, it oers possibilities for the user to implement custom features and sylization techniques.

Scene Graph

Open Inventor introduced the notion of scene graph [START_REF] Strauss | Iris inventor, a 3d graphics toolkit[END_REF]) to dene a scene using nodes: shape nodes, property nodes, light nodes, etc. A scene graph oers a logical view of the scene, as illustrated in Figure 1.20. This logical view allows the user to easily build and interact with the appropriate scene.

To convert this scene graph into an image, a traversal is performed at run 1.5. Visualization with Open Inventor time, in a depth-rst order, to accumulate and execute the appropriate actions and rendering commands. Actions are the core of how Open Inventor works. Indeed, actions handle the interaction with a scene graph so that Open Inventor can interpret it and display the corresponding scene. The main actions are:

• Render Action: this action triggers the rendering of the scene.

• Bounding Box Action: this action triggers the computation of the bounding box of the scene. • Pick Action: this action allows one to select on the screen, thanks to the mouse, a point of the scene. An action toggles the traversal of the graph starting by the node onto which the action is performed. During the traversal of the graph, the property nodes are stored in the traversal state, which qualies the current properties of the scene at any time of the traversal. These modications are done thanks to elements: each node likely to modify the state possesses an element in order to transmit the properties of the nodes toward the state. Thus, for a Render Action for example, all the nodes modifying properties of rendering are updated on the state: transformations (e.g., translation, rotation), material properties, etc....

As an example, Figure 1.20 displays a red cone. First, a bounding box action is performed to set the viewing volume according to the scene. Then, a Render Action is executed on the node at the root of the graph in order to toggle the traversal. During traversal, the following nodes are encountered:

• A camera node, which puts on the state the properties of the camera.

• A light node, which puts on the state the properties of the light source.

• A material node, which places on the state the material properties (here the red color). • A shape node, which toggles the drawing of a cone with the properties previously placed on the state.

Surfaces

In this section, we present the key features implemented in Open Inventor to visualize surfaces. First, we present the surface representations handled by Open Inventor, then we present its capabilities regarding transparent surfaces and nally we present the lighting and stylization techniques available in Open Inventor.

Representation and Rendering Paradigm

As it is a common representation, Open Inventor handles polygonal meshes. It also handles some implicit surfaces, represented only by a set of parameters, e.g., for sphere: its center and it radius. These surfaces are rendered using ray-marching to solve a ray intersection equation. The available shapes (also David Murray Open Inventor also supports parametric surfaces, such as Non-Uniform Rational Basis Splines (NURBS), which are often used for CAD applications, in particular for the design of mechanical parts.

Transparent Surfaces

Applications like CAD often require an in-depth inspection of an object. When this object is dened by surfaces, it is important to see through them in order to visualize all the parts of the object. In Open Inventor, it is done by making these surfaces as semi-transparent using a material node and blending them using Alpha Blending.

However, handling correctly transparent surfaces is not straightforward, in particular because we must take care of the rendering order of the objects. As presented in Chapter 2, several state-of-the-art algorithms are implemented in Open Inventor.

Lighting and Stylization

Direct Lighting Illumination in Open Inventor is limited to direct lighting, with two approaches:

• Base color: the lighting just takes into account the diuse component of the material, regardless of any direction. • Using a BRDF: the lighting is computed according to the Blinn-Phong BRDF model [START_REF] Blinn | Models of light reection for computer synthesized pictures[END_REF]). If these two features are sucient for some applications in which visualization is mostly illustrative, it is limited for the applications that require a more physically accurate representation. Also, there is currently no built-in solution to handle more than point lights, directional lights and spot lights.

Shadowing Open Inventor implements two techniques for rendering shadows: Shadow Maps (introduced by [START_REF] Williams | Casting curved shadows on curved surfaces[END_REF]) and Variance Shadow Maps [START_REF] Donnelly | Variance shadow maps[END_REF]). However, for surface data, it is limited to per-light shadowing, thus there is currently no built-in solution to perform Ambient Occlusion. It can however be implemented using custom nodes and custom shaders.

Expressive Rendering Currently, Open Inventor implements only few techniques to provide illustrative visualization. Most of the expressive rendering that can be done using Open Inventor are the result of custom nodes and/or custom shaders.

Volumes

The visualization of volume data in Open Inventor is done by the module VolumeViz, which handles data loading, formatting and rendering. First, we present the dierent volume rendering paradigms implemented in VolumeViz, then we present an overview of the lighting and stylization techniques.

Rendering Techniques

Most of the rendering techniques presented in [START_REF] Hadwiger | Advanced illumination techniques for gpu-based volume raycasting[END_REF] are implemented and available in VolumeViz. Thus, it is possible to visualize data using:

• Orthoslice: only one slice is displayed.

• Texture slicing: all slices are blended using the process presented in Section 1.3.2. • Ray-casting: the volume is traversed using ray-marching, as presented in Section 1.3.2.

• Isosurface: extraction is done per-sample using a ray-casting pipeline. However, there is, to this day, no built-in rendering techniques providing global illumination features in VolumeViz.

Lighting and Stylization

VolumeViz currently uses the Emission-Absorption (Figure 1.22(a)) approximation to solve the Volume Rendering Integral (Equation 1.8). The mapping from the scalar value to the associated absorption coecient and emissive color is done with a transfer function (classication step, as evoked in Section 1.3.2): Direct Lighting In term of lighting simulation, the VolumeViz pipeline handles direct lighting with a BRDF only, using the scalar gradient to determine whether the sample should be lighted or not (Figure 1.22(b)). In the latter case, the lighting simulation just outputs the emission value. Note that direct lighting in VolumeViz can be done as a deferred process (Figure 1.22(d)) a rst pass does classical non-lighted volume rendering and the closest nontransparent sample per pixel is stored in a texture. Direct lighting is then applied to these samples only. Note that the specular component of the direct lighting is handled with a material node. Since the 9.8 version, VolumeViz also implements image-based lighting (presented in Section 1.3.3) and handles Tone-Mapping for High Dynamic Range (HDR) output images (see [START_REF] Reinhard | High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting (The Morgan Kaufmann Series in Computer Graphics[END_REF] for an introduction to HDR).

Shadowing In terms of shadowing capabilities, VolmueViz embeds more options than Open Inventor for surfaces. Indeed, it implements the same shadow map algorithms [START_REF] Williams | Casting curved shadows on curved surfaces[END_REF] and [START_REF] Donnelly | Variance shadow maps[END_REF]), but also Ambient Occlusion as a deferred post process (Figure 1.22(c)), performed on the rst hit-point.

Since 9.8 version, VolumeViz also implements ray-traced shadows: for each sample, a ray is cast toward each light source to evaluate the visibility of this source.

Conclusion

In this chapter we have presented several aspects of light transport: how it is used in Computer Graphics to render both surfaces and volumes and how it can be modied to provide non-photorealistic renderings. We have also presented briey Open Inventor, the SDK that we use for the work presented in the following chapters.

We illustrated that, despite its current features and the possibility to implement custom ones, Open Inventor lacks ready-to use solutions to enhance the depiction of transparent objects (surfaces or volumes). Furthermore, we also concluded that there was no satisfying solution in the literature to address the specic problem of transparent surfaces. In Chapter 2, we propose a real-time solution to this problem.

For the case of volumes, approaches to highlight specic features often rely on segmentation, more than using light transport. However, segmentationbased visualization is a tedious process and many of the known algorithms are task-specic. Furthermore, these algorithms often operate at a global scale. Thus, in Chapters 3 and 4, we explore a new metaphor using light transport, based on medical imaging use cases, to identify region of interest.

Chapter 2

Feature-extraction for Visualization of Transparent Surfaces

Transparency is a common tool for analysing complex object subtleties,e.g., Computer-Assisted Design. However, with raster-based applications, ambiguities from using classical alpha-blending are twofold: (i) a correct composition implies to render the scene back-to-front; (ii) composition of multiple non-related information introduces a bias in shape perception. The back-tofront composition issue (i) is solved by Order-Independent Transparency (OIT) methods, as presented in Section 2.1.1. However, the second one (ii) has no obvious solution.

In this chapter, we introduce customizable tools that help to work around shape perception ambiguities during alpha-blending. Our main contribution is twofold. First, we introduce a data structure to perform OIT that is suited to compute derivatives in multilayered data eciently. Second, we also introduce a customizable stylization that modulates shading and transparency per fragment, according to its curvature and its depth, which can be adapted for various kinds of application.

This work was published and presented at the EuroGraphics Symposium on Rendering (EGSR) in 2016 at Dublin [START_REF] Murray | Shape Depiction for Transparent Objects with Bucketed k-Buer[END_REF]). It is currently going through the integration process into Open Inventor.

Shape Depiction and Transparent Surface

As presented in Section 1.4, shape perception can be emphasized with expressive rendering methods. Among the large set of techniques available in this domain, we are particularly interested in shape depiction algorithms that aim at stylizing the rendering of a shape according to its features. Basically, these features can be classied into three categories: surface orientation, surface curvature and inection points. While the rst one can be considered as supplied during rendering process, other ones should be computed during rendering in order to benet from screen-space formulation.

Screen-space approaches for feature extraction are useful for exploring dense meshes obtained by photogrammetry using Radiance Scaling (Granier et al.

[2012]), with applications in Cultural Heritage. We consider this as we focus on the exploration of complex models (e.g., CAD), which requires eciently computing curvature at a scale adapted to the current viewpoint. The computation of surface properties is linked to derivative considerations: curvature is a derivative of the normals and we need a derivative of the curvature to nd inection points. Using discrete dierential geometry operators, the derivative computation in screen-space involves to have access to the neighborhood of a point, i.e., a fragment located at a pixel position. For opaque objects, depthtest operation is enough to eliminate unnecessary fragments. Thus, with one fragment per pixel, nding neighbor information is straightforward.

For transparent objects, a pixel may contain multiple fragments. Since a dierential operator must be applied per fragment to perform shape depiction locally, the complexity of using such an operator is overweighted by the complexity of nding neighbor information. In order to understand the problem of combining the two approaches (shape depiction and transparent surfaces), we rst present how transparent surfaces are handled in a raster-based application. We then discuss about the diculties of using shape depiction with the structure required to render transparent surfaces.

Rendering Transparent Surfaces

When rendering of a surface, the geometry will rst be sent to GPU by vertex before being assembled into primitives (see the Graphics Pipeline in Section 1.3.1). During rasterization, these primitives will be converted into fragments, as they are projected on camera pixels. Shading and lighting is computed for each generated fragment, whose composition constitutes the pixels of the nal image. To display a scene, this process is applied to each object in the scene.

This process is straightforward for opaque surfaces as only closest surfaces are kept to generate the image. However, transparent surfaces require to deal with all surfaces, thus they require either to blend them directly or to rasterize all of them to keep their fragments. The former is directly done using Alpha Blending, however it requires depth-ordered surfaces. The latter requires a dedicated data structure to handle the fragments. order, the number on each plane corresponding to this order. On the left, objects have not been displayed in the order corresponding to their depth, leading to an inconsistent transparency. On the right, the objects have been displayed in the order corresponding to their depth.

Alpha-Blending and Rendering Order

In the case where one wishes to use transparency, each fragment receives an opacity value, commonly called α, ranging from 0 for a totally transparent surface to 1 for an opaque surface. This opacity value is then used for the composition by using Alpha Blending, as introduced in Section 1.3.2. The composition is performed from the farthest fragment to the nearest fragment to the camera, which corresponds to the OVER operator by Porter and Du [1984], such as:

RGB d = α s RGB s + (1 -α s )RGB d (2.1)
In this function, RGB s is the RGB triplet of the current fragment, the source fragment, and RGB d is the RGB triplet of the destination fragment.

Since this equation is not commutative, the order in which objects are displayed has a direct inuence on the composition. As shown in Figure 2.1, if an object is displayed before the one that should be located behind it, or if two objects intersect, the nal rendering will be distorted because the object already displayed will be considered as being the furthest during composition.

This limitation can be addressed by determining, beforehand, in which order objects must be displayed. This way, we ensure that depth order will be respected. However, the upstream processing of intersections requires heavy calculations, which can considerably reduce the performance of an application. An alternative is to move this problem from the geometric calculation step to the fragment composition step. It is then possible to get rid of the order in which the objects of the scene are displayed. The techniques that address this issue are called the Order-Independent Transparency (OIT) techniques, since [START_REF] Everitt | Interactive order-independent transparency[END_REF]. [2016] propose, as an alternative, to weigh the value of α according to the depth of a fragment during composition, however this method is more suitable for uids than surfaces. We will therefore focus on methods that have been developed to deal with surfaces when we want to use non-commutative operators.

Depth-Peeling Introduced by [START_REF] Everitt | Interactive order-independent transparency[END_REF], it consists in splitting the scene to be displayed into a predened number n of layers. To do this, we will display the scene n times, where each iteration generates a layer, according to the previously generated layers. The rst layer corresponds to the fragments (one per pixel) closest to the camera, then rendering is performed again by eliminating the fragments previously stored to generate the second layer. This process is then repeated to have the desired n layers. Figure 2.2 illustrates how Depth Peeling operates with 4 layers. At each step, it is necessary to store the depth of the fragments to be able to eliminate the fragments having a lower depth. The layers are then blended with Alpha Blending (Equation 2.1) to obtain the nal image.

This method was subsequently improved by [START_REF] Bavoil | Order independent transparency with dual depth peeling[END_REF] with the Dual Depth Peeling, which consists in decomposing the Depth Peeling into two parts: one done from the camera and one from a virtual camera located on the opposite side of the scene. However, the necessary number of iterations remains expensive and therefore remains a penalizing point of this method.

A-Buer The A-Buer technique was introduced by [START_REF] Carpenter | The a-buer, an antialiased hidden surface method[END_REF]. It consists in storing the fragments, generated per pixel during rasterization, in a linked-list, whatever the order in which they were generated. This list is then sorted by fragment depth to perform the composition of the fragments, carried out from the farthest to the nearest. This process is represented in Figure 2.3.

As all the fragments generated for each pixel are stored, the A-Buer can lead to a saturation of the memory in the case of complex scenes, and therefore to empty areas in the image where the fragments could no longer be inserted.

If the technique was introduced in 1984, the rst functional implementations on GPU are recent, starting with the method of Yang et al. [2010]. Indeed the method of [START_REF] Carpenter | The a-buer, an antialiased hidden surface method[END_REF] is limited by the parallel architecture of GPUs. Because fragments are handled simultaneously, they may be competing to be inserted in the same place, at the same time, in the fragment list. In this case, one of the fragments overwrites the other, which will then be inserted at the wrong place (or discarded), causing rendering artifacts. Thus using atomic operations on GPUs (thread-safe read/write operations), [START_REF] Yang | Real-time concurrent linked list construction on the gpu[END_REF] propose an implementation that performs the insertion atomically, ensuring that only one fragment can be inserted at a time.

k-Buer The k-Buer is a technique in-between Depth Peeling and A-Buer. Introduced by [START_REF] Callahan | The k-buer and its applications to volume rendering[END_REF], this technique consists in building a sorted list of fragments (like A-Buer) with a xed size (like Depth Peeling). Indeed, building a k-Buer consists in keeping the k rst layers of the scene, thus the k nearest fragments. To do so, fragments are inserted in the list with a depthsorted insertion. After insertion, we have virtually the same output as with Depth Peeling (k nearest "images"), but this method requires only theoretically only one rendering pass. Due to current hardware limitations, the most used version is the dual pass k-Buer [START_REF] Kubisch | Order independent transparency in opengl 4[END_REF]) with two rendering passes: one to create the list using fragment depth, and one to store the color of these fragments.

Thus, the k-Buer does not have the disadvantage of A-Buer in terms of potential memory saturation. However it has a limitation since memory is pre-allocated for the k layers, which means that even if a pixel contains only one fragment, the memory provided for the other layers will still be allocated.

Finally, this technique is subject to the same technical limitations as the A-Buer in terms of read/write hazards and therefore requires the use of atomic operations.

Limitations for Shape Depiction

Shape depiction techniques aim at conveying a message based on shape properties. Some previous methods propose to modify the reection pattern according to constraints such as geometric features, material properties or stylization. An overview of these techniques is presented in Section 1.4. If some techniques, like Radiance Scaling (Vergne et al. [2010]), can be used for semi-transparent surfaces with a ray-tracing paradigm, most of these techniques are initially designed for opaque surfaces when used with raster-based applications.

Combining OIT with expressive rendering methods is addressed by Hummel et al. [2010], with Normal-Variation Transparency. However, as they use built-in GLSL functions, neighborhood is inaccurate. Carnecky et al. propose an altered A-Buer, in which fragments are connected to their neighboring fragments. According to the connexity and the logical depth of a fragment, transparency is modulated such that creases are emphasized to nearly opaque, smoothly decreasing to nearly transparent otherwise. Günther et al.

[2014] propose an enhancement with surface patches to make parts of a surface transparent if an object is behind. However, to our knowledge, there is no method that computes screen-space geometric features per fragment to modulate shading and transparency in real time. Based on a tailored data structure that allows such computation, we propose a method that provides a way to extend existing shape depiction techniques to transparent shapes.

Solution Overview

The goal of the presented method is to enhance shape depiction for transparent objects. Our process is composed of three main steps as shown in Figure 2.4: 1. Scene discretization into a screen-space representation.

2. Per fragment feature-based stylization.

3. Blending of the generated fragments. The rst step consists in capturing the scene into the Bucketed k-Buer (Bk-Buer). The Bk-Buer is a discretization of the scene in such a way that fragments are organized pixelwise into three 3D data structures: Z, B and D. The roles of Z and D are nearly the same as data structures used in dual pass k-Buer [START_REF] Kubisch | Order independent transparency in opengl 4[END_REF]) to capture, respectively, depth and data. B is used to group fragments belonging to the same shape per bucket. Details of 48 David Murray The discretization pass lls the buer Z, the bucket buer B and the data buer D with their respective information (see Section 2.3). The stylization extracts features and applies modulation on fragment's data (see Section 2.4). Finally, the blending pass consists in traditional OIT back-to-front composition.

the Bk-Buer's data structures are presented in Section 2.3. Note that the Bk-Buer contains geometric and color data per fragment. The second step is a stylization process which extracts geometric features from the Bk-Buer (i.e., based on the normals) to enhance shape depiction (i.e., by modulating shaded color). The stylization is customizable by providing user-dened transfer functions indexed by the fragment's depth and curvature (see Section 2.4). The last step consists in reordering fragments back-to-front in order to realize a correct alpha-blending. Every stage of our system is performed in real-time on modern graphics hardware. Results are presented in Section 2.5.

Bucketed k-Buer for ecient neighbor query

Leaving aside commutative OIT which excludes per-fragment operations, we focus on per-pixel fragment list. We seek a way to eciently access a fragment's neighborhood. First, we introduce the concept behind our solution, that is, the elaboration of the Bucketed k-Buer. Then, we provide several practical details about the method.

Denition of the structure

Our structure relies on a k-Buer basis. Indeed, with current GPU, Depth Peeling is becoming obsolete due to the important number of rendering passes it implies compared to other techniques. A-Buer relies on a linked list which implies unbound memory. Moreover, all the fragment informations are stored in the same buer. For a better exibility on data structure, the dual-pass k-Buer [START_REF] Kubisch | Order independent transparency in opengl 4[END_REF]) technique is well-suited. Indeed, by decorrelating depth and color, we can manipulate depth or color information separately. Furthermore, storing only the k nearest fragments in k layers ensures a total Figure 2.5 Description of the discretization process. In the rst pass (1), Z is lled with a depth-ordered fragment list, containing depth (z) and shape ID (b) for each fragment. In the second one (2) Z is reordered by shape ID. Then (3), B is lled with bucket's information : shape ID (b), rst and last fragment index (i, j).
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control over memory occupancy. Those two points are key elements for the choice of our structure.

In such a structure, a naive approach to nd the best neighbor candidate is to iterate through each neighboring pixel's fragment list. However, this implies costly memory access. [START_REF] Vardis | A multiview and multilayer approach for interactive ray tracing[END_REF] use buckets to decompose a fragment list such that fragments are grouped by depth ranges. In the same way, we propose to reorganize the fragment lists so that fragments belonging to a same object are regrouped in a bucket. That way, only fragments in the corresponding bucket needs to be traversed, thus avoiding many memory accesses. Using such partition, nding a one-ring neighborhood would go down, in theory, from a complexity of O(k 2 ) per pixel to O(kn), where k is the number of fragments per pixel and n is the number of fragments in a bucket, so we should have a gain as soon as n < k.

The proposed algorithm shares the same concepts as the dual-pass k-Buer in the sense that we use two geometry passes to store depth and data in separate buers. However, in order to facilitate access to neighbors, our data structures dier in the data we store and we use additionnal computing passes to arrange the data according to our needs. The remainder of this section describes the pipeline to build the Bk-Buer data structure in a sequential order. In the following, W and H denote respectively the width and the height of the rendering window.
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Z insertion Similar to the dual-pass k-Buer [START_REF] Kubisch | Order independent transparency in opengl 4[END_REF]), we store a fragment's depth per pixel in the rst geometry pass. Relying on the benet of such approach, the n nearest fragments to the camera, n ≤ k, are stored and ordered by depth in the buer Z. For each fragment, we keep not only its depth (z) but also its shape ID (b) (see Figure 2.5 (1)), where b is a integer representing the identier of the shape where the fragment is from. Thus, the Z data structure is of size W × H × k, containing pairs (z, b).

Z reordering During this pass, we reorder per-pixel fragment pairs of the Z data structure along b instead of z (see Figure 2.5 (2)). Sorting fragment pairs in this manner allows grouping fragments that belong to the same shape consecutively in order to gather them into buckets.

Bucket creation Per-pixel groups of fragments, which share the same shape ID, are implicitly dened by the reordering of Z in the previous pass. However, in order to have a direct access to the range of these groups, the B data structure is built in a computing pass. Such groups are dened as buckets: a bucket contains the shape ID (b, i.e., a bucket ID) and the indices (i, j) of the rst and last fragments of a group. The bucket buer B contains W × H × k triplets (b, i, j) (see Figure 2.5 (3)).

Since n fragments are stored in Z during the rst pass, n ≤ k, no more than k buckets are stored per-pixel. However, storing bucket information in a table indexed by b can lead to indices that are out of range if b > k. Thus, B is considered as a per-pixel hash table in which each bucket is indexed by H(b), where H is a hash function dened as:

H(b) = b mod k
Using such hash function may lead to collision in the hash table. Thus, during insertion of a bucket b in buer B, we check that the slot at index H(b) in the hash table is free. If the slot is unoccupied, the bucket information is stored at this index. If the slot is occupied, b is incremented until the index H(b) points to a free slot. Note that a free slot is always available since the number of buckets per pixel cannot be greater than k, the size of the hash table. The same incremental process is used to nd a bucket, except that we check if the slot contains the right bucket. Organized in that way, B, in combination with Z, is used as an index lookup to perform ecient fragment query as shown in Figure 2.6. Data storage To store fragment's data, a second geometry pass is performed to ll the buer D. The fragment's data are its color (c) and normal ( n). Only fragments pre-selected during the rst geometric pass must be stored. Thus, for each generated fragment, we perform a fragment query as shown in

z 4 b 3 c 4 n 4 b 1 b 2 b 3 b 4 4 6 7 8 1 2 3 3 z 1 z 7 z 6 z 2 z 4 z 5 z 3 z 8

Data position

Current fragment (x, y, z 4 ) B(x, y) Z(x, y) D(x, y)

3: write 1: look-up 2: bucket range Figure 2.6 Fragment query for data storage pass. For a generated fragment, the shape ID is used to locate, with a linear search, the associated bucket (1) and extract its range (2). The current fragment is located within these ranges. To nd its index, a depth comparison is used. Fragment's data, color and normal, are stored at this index (3). For neighbor query, the fragment (x, y, z) is used for a look-up in B(x + dx, y + dy) and Z(x + dx, y + dy). 

Implementation details

As presented in the previous section, we manipulate three 3D structures. Each of them will be able to contain W ×H ×k elements, where W and H correspond to the viewport size and k is the number of layers in the buer.

During the rst pass, the sorted-insertion by depth is done using atomic comparison. As atomic comparisons rely on a bitwise AND operator, depth must be used as Most Signicant Bit (MSB), even if we store both depth and shape number. These two values are packed on 32 bits with 16 bits each, in the buer Z. Using depth as MSB ensures that we keep the k nearest fragments.

For the construction of the buckets, depth and shape number are swapped inside Z. This way, shape number is now used as MSB instead of depth and we can easily reorder our list. After reordering, buckets are constructed as described in the previous section. Using this structure requires 32 bits per bucket : 8 bits for the rst fragment position, 8 bits for the last one, and 16 bits for the shape number.

Finally, to insert the data in the buer D, we rely on a binary search done directly inside the correct bucket. This bucket is located using the process in Figure 2.6 with a condition on shape number. Once we know the correct fragment's layer, we can store the fragment color after shading to use only 32 bits 52

David Murray for color. The shading relies on the Bidirectionnal Reectance Distribution Function (BRDF) proposed by [START_REF] Burley | Physically-based shading at disney[END_REF] for direct illumination and Image-Based Lighting to approximate indirect illumination. We store as well the fragment's normal, packed on 32 bits (15 bits for each x and y components and 2 for the sign of z). This results in using 64 bits per fragment for the data structure.

Feature-driven stylisation

In this section, we demonstrate how to use the Bk-Buer for an ecient featuredriven stylization. First, we present how to nd fragment's neighborhood to compute curvature per fragment. Then, an application of stylization is shown adapted from existing shape depiction techniques.

Feature extraction

Carnecky et al. [2013] propose a method to nd the neighbor of a fragment. A comparison is performed between a fragment and all the fragments contained in an adjacent pixel. The comparison function ( ) is based on normal and depth dierences and the best neighbor candidate is the fragment that obtains the minimum value. We use a similar approach with the following criteria:

n (i, j) = 1 -n i T • n j z (i, j) = |z i -z j | 2 (i, j) = n (i, j) + z (i, j)
To ensure that we correctly identify the neighborhood, each fragment labeled as the best candidate does a reverse check to determine if this candidate also views the current fragment as its neighbor. If one of the neighbors is not found, we use a special value indicating a missing neighbor. Figure 2.7 illustrates the interest of this reverse check. Comparing to the work of Carnecky et al. [2013], a crucial point in our method is the lower complexity of this algorithm. Actually, thanks to the Bk-Buer, fragments belonging to the same object are grouped together. Thus, as explained in the previous section, the number of pairs to test is restricted to a subset of candidates, i.e., the ones with the same shape number (ID). We access to this subset using the same process as data storage, presented in Figure 2.6, except that the query is done on the neighboring pixel's lists (buckets and fragments).

The neighbor information is used to compute screen-space curvature per fragment, such as Vergne et al. [2009]. In this approach, principal curvatures, κ 1 and κ 2 , are extracted from surface normals. Instead of directly using the mean curvature (κ 1 + κ 2 )/2, we prefer, for practical reason, the following mapping varying between -1 and 1:

κ = tanh(κ 1 + κ 2 )
For the rest of this paper, κ is considered as a curvature value. In our convention, -1 corresponds to a convexity and 1 to a concavity. Contrary to Vergne et al. [2009], our method does not suer from an undened behavior at the object's boundaries. By taking advantage of potential missing neighbors, we can handle those aera: the curvature of a fragment with a missing neighbor is set to κ = -1.

Stylization

For the stylization, our method modulates both shaded color and transparency. These modulations are controlled by transfer functions: a 1D texture for color and a 2D one for transparency.

The shaded color is modulated with a curvature-indexed transfer function, presented in Figure 2.8(a). This function is inspired by Mean Curvature Shading [START_REF] Kindlmann | Curvature-based transfer functions for direct volume rendering: Methods and applications[END_REF]) and Radiance Scaling (Vergne et al. Figure 2.9 Example of dierent transfer functions. White corresponds to opaque (opacity of 1) and black to transparent (opacity of 0). Both follow the same idea: more transparency on at and close surfaces, more opacity on curved surfaces as well as distant ones.

application, as we wanted to modulate a physically-based shading. However, for other applications, a dierent transfer function could be used in our pipeline for other stylizations as shown in Figure 2.8(b).

The modulation of transparency extends the work presented by Hummel et al. [2010] as we use curvature instead of normal-variation considerations. Based on the idea of X-Toon [START_REF] Barla | X-toon: An extended toon shader[END_REF]), we propose to modulate opacity with a transfer function indexed by absolute mean curvature and depth. A value of 1 corresponds to fully opaque and 0 to fully transparent. An example of transfer function can be seen in Figure 2.9. We choose to use the absolute mean curvature so that either convexities or concavities would have the same opacity. Indeed, based on our observations, both are crucial to fully grasp shape characteristics.

Our system allows the use of any transfer function to modulate opacity. Figure 2.10 illustrates how dierent functions allow one to emphasize specic parts of the scene. For instance, the function used in Figures 2.10(a) and 2.10(c) results in nearly transparent fragments on at surfaces close the viewport, while curved surfaces are nearly opaque. The opacity quickly grows as the distance to the camera increases. This behavior allows one to place more focus on the front part of the scene. On the contrary, the function in 

Results and Performance

To illustrate the benets of extending shape depiction to transparent surfaces, Figure 2.11 shows a comparison: in OIT only allows the user to guess the internal structure of the car while Mean Curvature Shading enhances surface features only on the outer parts. On the contrary, our method enhances both internal and external parts, with a focus on the front of the scene.

To measure the impact on performance of our method, we use a synthetic test conguration, in which rendering time is only dependent of the number of objects. The scene is composed of 32 stacked full-screen quads so that all 32 layers are always lled. Each quad is located at a random depth, and is associated with a random object. We then vary the maximum number of objects, as described in Figure 2.12.

We compare the result of our solution with the brute force approach. Note that the brute-force approach has a constant rendering time, as complexity is only dependent on the number of fragments. The latter roughly corresponds to the method of Carnecky et al. [2013]. Implementation and renderings were done using the Open Inventor R 9.6 SDK by Thermo Fisher Scientic TM with an NVIDIA GTX 980. Results are shown on Figure 2.12 for 32 layers and a resolution of 512 × 512 (around 8,4 million of fragments). If our solution is obviously much slower that simple transparency (10 ms in this conguration), we can see that it improves performance for transparent shape depiction as soon as there is more than one bucket. With more than ve buckets, we halve the time required, going down to a fth of the performance of the brute force approach when there are many objects. for dierent bucket congurations (colored quads) and 512 by 512 pixels. Full lines depict cumulative times of our method, the dotted line represents the total time of the brute force approach. As a reference, a dual-pass k-Buer alone with constant transparency requires around 10 ms per frame.

These observations t rather well with theoretical gain of Section 2.3, going from O(k 2 ) to O(nk), but only when n is at least 2. Indeed, when n ≤ 2, the cost of accessing all the fragments in a bucket becomes nearly equal to the cost of accessing the bucket, whereas for n > 2, the bucket cost becomes quickly insignicant with regards to the cost of accessing all fragments. However, this gain is valid only for neighbor query, as our structure still requires two sorting passes. In our algorithm, we use insertion sorting which has a complexity of O(k 2 ) in the worst case, O(k) when fragments are nearly-sorted, which is often the situation with our structure.

The last aspect concerns memory consumption. The proposed solution requires up to 128 bits per fragment (32 bits for depth and bucket ID, 64 bits for color and normal, and 32 for bucket informations) whereas a classic dualpass k-Buer requires 64 bits per fragment. For a full HD resolution, this over is around 32 MB per layer versus 16 MB for a simple k-Buer. 

Conclusions and limitations

We have presented a new approach as one solution to the bias in shape perception introduced by compositing multiple non-related fragments. We convey geometric properties of transparent surfaces with Mean Curvature Transparency based on the Bucketed k-Buer. The Bk-Buer allows an easy access to the fragments of a shape. Moreover, we provide a customizable tool to enhance scene perception for transparent surfaces. Based on a user-dened transfer function, it is possible to choose which features should be highlighted. The choice is highly dependent of which features need to be enhanced, as well as the complexity of the scene.

Our approach is dedicated to scenes with multiple objects: on a unique object, such an approach introduces too much complexity. Our structure performs better than existing ones, even if it implies an overhead in memory. However, our data structure may be optimized for more applications than neighbor query. In particular, we could use it to extend the amount of optical phenomena that we currently simulate, such as refraction, sub-surface scattering or translucency with a limited impact on performance.

On the other side, in a scene with many small objects, results can become less legible. The current stylization is based on the feedback provided by our team. A further user-study, with a representative panel, would be necessary to accurately validate the perceptual gain of our method. In future work, we also plan to investigate the impact of using line-based rendering (DeCarlo et al. [2003]; [START_REF] Ohtake | Ridge-valley lines on meshes via implicit surface tting[END_REF]; Judd et al. [2007]; [START_REF] Kolomenkin | Demarcating curves for shape illustration[END_REF], introduced in Section 1.4.2) to enhance third order features on transparent surfaces.

Note that such an approach is hardly generalized to pure volumes. In Chapter 3, we propose a new interactive metaphor for volume visualization and the characteristics of the required numerical scheme. David Murray Chapter 3

Light Transport for Volume Exploration

As we detail in the rst section of this chapter, the solution presented in Chapter 2 for transparent surfaces is hardly extendable to volumes. To explore such data, we introduce a new metaphor, based on medical imaging techniques (see Section 3.1.3). First done using a classical diusion algorithm (Section 3.1.3), the solution has limited accuracy and is hardly controllable. Thus, it is not suited to be integrated directly in the Open Inventor SDK. In order to comply with this industrial constraint, we rst study in Section 3.2 how we can use the RTE, as it is well suited to perform diusion in media. We then study, in Sections 3.3 and 3.4, dierent numerical schemes to do so in an interactive, yet robust, way.

Note that for the sake of making this chapter as clear as possible, important steps and conclusions of the dierent sections are highlighted.

Extending to a Full Volume Data

In this section, we present how our solution for enhancing transparent surface legibility can be used when dealing with full volume data. In particular, we distinguish between isosurface rendering and ray-casting visualization. For the latter case, we also introduce another approach, inspired by uoroscopy imaging, to improve volume visualization and exploration.

Volume Opacity Mapping

An obvious idea is to use the same opacity mapping than the one presented for surfaces in Chapter 2. As a reminder, we modulate the opacity of a fragment (a sample) using its local curvature and depth information. This extension to volumes can be done with two approaches: per sample (per-voxel) opacity mapping or per isosurface mapping. We now give some details about these two cases.

Per-sample Mapping When using ray-casting to generate images from a volume, the volume is evaluated per-sample. Thus, using our opacity mapping requires to compute a curvature information for each sample. This idea implies to tackle two problems:

• Is geometric curvature, as presented in Chapter 2, pertinent in a medium with a volumetric representation ? • Our mapping handles well objects with a limited number of surfaces.

Does it scale well with a large number of layers ? Concerning the rst point, a satisfying solution to compute curvature in a volume is proposed by [START_REF] Bruckner | Style transfer functions for illustrative volume rendering[END_REF]: computing the curvature by comparing the normal vector from two samples along the viewing ray.

Concerning the second point, we tested our opacity mapping with a raycasting pipeline. The result is presented in Figure 3.1(a). We can see that the mapping has a very limited impact on the legibility of the model, and, in some cases, it even has the opposite eect. Thus, for a situation like a volume in which more than a hundred samples are blended, the result of using opacity mapping does not produce a more legible visualization, despite a great overhead in computation time. Isosurface Mapping The problematic of opacity mapping for isosurfaces is quite dierent from samples. In fact, it consists mostly in identifying the isosurfaces. Indeed, once that we have clearly identied surfaces inside the volume, we can directly use the method we proposed.

However, obtaining the isosurfaces is not a trivial task. The naive approach is to extract all samples with the same value, but the result will not produce legible surfaces. In this naive case, as surfaces are not well-dened, our opacity mapping can amplify noise and uncertainties more than shape cues, as presented in Figure 3.1(b). Thus, it requires to use dedicated techniques. The evaluation of these techniques is out of the scope of this thesis as we focus on light transport. For an brief overview of isosurface identitifcation algorithm, we refer the reader to [START_REF] Hadwiger | Advanced illumination techniques for gpu-based volume raycasting[END_REF].

Thus, assuming that we can correctly identify these surfaces, using our technique for isosurface rendering is straightforward.

The opacity mapping that we proposed in Chapter ?? does not scale well with a large number of volume samples. It is not suited for classic Direct Volume Rendering.

Light Propagation

Most approaches to highlight features in volumes require both data knowledge and eld knowledge. In particular, segmentation-based visualization is highly task-specic and often requires to use one specic method per segmented part (e.g., [START_REF] Shi | A survey of gpu-based medical image computing techniques[END_REF]). Furthermore, segmentation algorithms often operate at a global scale (e.g., [START_REF] Schenke | Gpubased volume segmentation[END_REF]). Thus, when one wants to apply a segmentation on a restricted area, it requires many other data manipulations (e.g., cropping, transfer function adjustment, etc). Focusing on light transport, our hypothesis is that we could use light propagation knowledge (presented in Section 1.2) to assist the visualization.

This idea is strongly inspired by uoroscopy imaging [START_REF] Mahesh | Fundamentals of medical imaging[END_REF]). In uoroscopy imaging, a liquid or a gaz, uorescent when observed using X-Ray imaging, is injected in the body and tracked using a uoroscopy microscope. This medical imaging process is used to visualize the propagation inside organs like the esophagus, the intestine or inside veins. Our hypothesis is that we can mimic this type of imaging process by adapting the volume properties to modify the output of the RTE resolution. This way, we can imagine a situation where, by adapting light transport, we can constrain, and thus guide, the light propagation in specic structures of the volume. A conceptual representation of this idea is presented in Figure 3.2.

In practice, to completely identify a part, the idea is to place a light source at a position that is known to be inside this part. Then, by adjusting the absorption and scattering parameters, the diusion process should remain constrained into the area with similar properties.

We propose to use the RTE to reproduce the results of uoroscopy imaging.

Toward a Proof of Concept: Anisotropic Diusion

To test our hypothesis, we rst focus on a pure diusion phenomenom. We thus designed a proof of concept based on the Anisotropic Diusion algorithm, proposed by Perona and [START_REF] Murray Perona | Scale-space and edge detection using anisotropic diusion[END_REF]. Indeed, testing it directly using the RTE requires to evaluate the dierent approaches that can be used to solve the equation: path-tracing, photon-mapping, nite element resolution, iterative or not, etc. On the other hand, the Anisotropic Diusion algorithm oers capabilities close to the one we are looking for, while being quick and easy to implement.

Anisotropic Diusion for Image Processing

Anisotropic diusion was initially used to perform smoothing with edge preservation. The general formulation is derived by Perona and [START_REF] Murray Perona | Scale-space and edge detection using anisotropic diusion[END_REF] (Equation 3.1) as a general case of the heat equation that describes density changes in a material undergoing diusion over time. They introduced a ux function C as a mean to control the diusion process of the pixel intensity I (associated to a ux) such as:

∂I ∂t = C(x, y, t)∆I + ∇C T • ∇I (3.1)
Note that if C(x, y, t) = constant, Equation 3.1 is the heat equation. Perona and [START_REF] Murray Perona | Scale-space and edge detection using anisotropic diusion[END_REF] propose two ux functions, based on image gradients, (see following Equations 3.2 and 3.3) that oer a trade-o between conserving the edges and smoothing homogeneous regions within these edges:

C(||∇I||) = e -( ||∇I|| σ ) 2 (3.2) C(||∇I||) = 1 1 + ( ||∇I|| σ ) 2 (3.3)
In these functions, the factor σ controls the sensitivity to the edges:

• If σ is high (typically σ 1), the function will be close to 1, with few variations, and the diusion will be close to the heat equation.

• If σ is low (typically σ 0.01), the function will be close to 0, also with few variations and the diusion will be nearly impossible. • If σ is in the range [0.01, 1], the function will have decent variations and the diusion will correctly preserve edges while smoothing the homogeneous parts of the image. Equation 3.1 can be discretized using a Forward-Time Central-Space (FTCS) method, a nite dierence method often used to solve the heat equation. This method uses central dierences for space derivation and forward Euler method for time derivation. Thus, Equation 3.1 becomes:

I t+1 i,j = I t i,j + λ[C N • δ N I + C S • δ S I + C E • δ E I + C W • δ W I] t i,j (3.4) 
where

δ P I i,j = I P -I i,j C P = C(|δ P I i,j |) N = (i -1, j) S = (i + 1, j) E = (i, j + 1) W = (i, j -1) 0 ≤ λ ≤ 1 4

Anisotropic Diusion for Volumes

The method can be extended to volume processing by simply taking into account the variations along the third dimension in the Equation 3.4, leading to:

I t+1 i,j,k =I t i,j,k + λ[C N • δ N V + C S • δ S V + C E • δ E V + C W • δ W V + C U • δ U V + C D • δ D V ] t i,j,k (3.5)
where 

δ P I i,j,k = I P -I i,j,k C P = C(|δ P I i,j,k |) N = (i -1, j, k) S = (i + 1, j, k) E = (i, j + 1, k) W = (i, j -1, k) U = (i, j, k + 1) D = (i, j, k -1) 0 ≤ λ ≤ 1 (a) (b) (c) (d)

Adapting the Algorithm for Selective Diusion

The idea to extend the anisotropic diusion to mimic uoroscopy, and thus perfom selective diusion, is depicted with a 2D example in Figure 3.3 made using Shadertoy. The idea is simple: the data that we want to "smooth" (Figure 3.3(c)) is a volume containing only void except for the energy source whereas the "edges" that we want to preserve are the one from the original data (Figure 3.3(b)). The result is a diusion occurring mostly in smooth areas (Figure 3.3(d)). Figure 3.4 presents the results we obtain with this algorithm. A light source has been placed at the top of the trachea (Figure 3.4(a)), and, using the gradients of the data, the diusion (Figure 3.4(b)) is conned inside the trachea until reaching the lungs. To the best of our knowledge, the use of Anisotropic Diusion in volumes is limited to global segmentation (e.g., [START_REF] Krissian | Flux-based anisotropic diusion applied to enhancement of 3-d angiogram[END_REF], [START_REF] Ahmed | Segmentation of brain mr images for tumor extraction by combining kmeans clustering and perona-malik anisotropic diusion model[END_REF], [START_REF] Morar | Image segmentation based on active contours without edges[END_REF]). Thus it has yet to be used for localized and selective diusion as we propose to use it.

Using Anisotropic Diusion, we have presented a solution that eectively identify specic parts of a volume. However, it presents two important limitations. The rst one is that there is no absorption. It means that convergence is achieved only when each reachable voxel converges toward the same level of energy than light sources: in case of a very small overow during the pro-66 David Murray cess, all the volume may be ooded. The second one is that the algorithm presents limited control over the parameters, as many aspects are embedded in the model, thus it is limited in terms of rendering possibilities. The latter limitation becomes really problematic in regard to the former one, the worst case being that the whole volume will be lled.

• Anisotropic Diusion, adapted to volumes, can be used to identify region of interest. • Due to the lack of absorption and problems of convergence, we need to limit the number of iterations to avoid overowing.

Solving the RTE

We have established a proof of concept to illustrate the feasibility and legibility of our idea. We now need to adopt a more practical and realistic approach by introducing absorption and a converging algorithm. Our objective is thus to reproduce this result using the RTE (Equation 1.4) that naturally integrate these two aspects. Furthermore, it must be solved in such a way that it allows one to manipulate the absorption and scattering parameters. As there are many techniques to solve this equation (some of which are briey presented in Section 1.3.3), we need to identify the best one for our application. To do so, we rst introduce the context in which the solution is developed, and then we give details about the dierent resolution techniques.

Constraints for the Resolution

In addition to the inherent diculties of the RTE, presented in Chapter 1, in particular its strong dependency on direction, we have to comply with userbased constraints. Indeed, the solution should be integrated into Open Inventor, and thus, must provide a user-friendly interface. The most limiting part to do so is to provide an interactive solution, so that the user can modify any parameter at run-time. Indeed, interacting with a volume often requires to move frequently the camera or adjust the parameters (like the Transfer Function) to observe dierent parts. Finally, the solution must have a limited memory footprint. Indeed, as a feature of Open Inventor, it may be used by a wide range of users, some of whom not having high-end GPUs.

Resolution Methods

As introduced in Section 1.3.3, there are several kinds of algorithms to solve the RTE. We now need to confront them to our constraints to determine which one is most suited to our application. Ray-tracing and Path-tracing techniques are widely used for the rendering quality they oer, with a small impact on memory. However, the resulting image is generally computed according to a given point of view, thus, it must be recomputed whenever the camera is moved or when parameters are modied. Even if it is possible with recent implementations to generate an image in a matter of seconds, like Cinematic Rendering [START_REF] Comaniciu | Shaping the future through innovations: From medical imaging to precision medicine[END_REF] and Engel [2016]), the frequent modications performed while observing the volume greatly hinder the interactivity of the methods. The same goes for Photon-Mapping, but with a non-negligible additional memory cost as a photon map must be stored for the full volume.

The other kind of approaches is to use implicit representations: expressing the problem as a linear system to obtain the radiance value at each point. This system is then solved either directly (e.g., LU factorization, Cholesky factorization, etc.) or solved iteratively. The former requires to store the whole matrix of the system and operate on it, which quickly becomes really heavy in terms of both memory consumption and computation time. Thus, it suers from the same limitation as the previous methods when the parameters are changed. The latter is less subject to this problem as the iterative pattern allows one to compute each iteration with a local kernel, on a per-voxel basis. This iterative pattern allows the user to modify the parameters between the iteration and the system should stabilize itself if it is well dened.

From all the above considerations, we can assume that using an implicit representation with an iterative resolution should be a good candidate for our application. Furthermore, our prototype with Anisotropic Diusion gave us the hint that seeing the diusion process until convergence, instead of directly 68 David Murray seeing the converged result, could help in understanding the process and correct it if necessary.

• Visualizing the diusion process, step by step, helps in understanding the volume structure. • An iterative resolution with implicit representation is best suited to reach this goal.

Iterative Resolution using Finite-Elements

After identifying iterative resolution as the most suited method for our application, we present our rst try at using it. As a reminder, the RTE (Equation 1.4) is presented below:

ω T • ∇ p L(p, ω) = -K t (p) • L(p, ω) + Q e (p, ω) + 4π K s (p) • P(p, ω, ω ) • L i (p, ω )d ω
The rst step is to nd an iteration-based approach of Equation 1.4. We also need to handle the directional terms (depending on ω) of this equation which are the most troublesome terms if we pre-calculate any term.

Ignoring In-Scattering

As a rst step, we focus only on absorption and out-scattering:

ω T • ∇ p L(p, ω) = Q e (p) -K t (p)L(p, ω) (3.6)
Furthermore, we consider that the energy source (Q e ), placed inside the volume at position p 0 , is isotropic and constant:

Q e (p, ω) = Q e (p) = Q 0 if p = p 0 0 otherwise (3.7)
Equation 3.6, applied to the whole volume data, can be expressed as a linear system:

M L = Q e -RL
Thus, solving Equation 3.6 for the whole volume is equivalent to solving this linear system. To do so, we use an iterative process by decomposing R into two separate matrices:

M + R = A + B
where A would be at best diagonal, at worst triangular. This allows us to reformulate:

AL t = Q e -BL t-1 (3.8)
We must now obtain the matrices M and R (A and B). We compute them by using a nite element method for which Equation 3.6 is a strong form of a partial derivatives equation so the rst step is to obtain its weak form.

Representation of the Quantities

We now need to establish the weak form of the equation. To do so, we must rst introduce the test-functions ψ and ϕ that we use to solve the system and approximate our solution according to:

L(p, ω) = j l L j,l ψ j ( ω)ϕ l (p)
(3.9)

For the spatial function, let (ϕ l (p)) be a basis of piece-wise linear function, with l ∈ [0, N ], N being the total number of voxels:

ϕ l (p) =      1 + p if p l-1 ≤ p ≤ p l 1 -p if p l ≤ p ≤ p l+1 0 otherwise (3.10)
Concerning the directional function, we simply use a function (ψ j ( ω)) that projects onto the dierent principal axes, with j ∈ [0, 3]:

ψ 0 ( ω) = 1 ψ 1 ( ω) = ω.x ψ 2 ( ω) = ω.y ψ 3 ( ω) = ω.z
Compared to other possibilities like Spherical Harmonics or Radial Functions for example, this representation has the advantage of being straightforward and should not require too many operations for further implementation. Furthermore, this choice was strongly dictated by its similarity to an approximation commonly used in light diusion problems: the Diusion Approximation.

Introduced in Computer Graphics by [START_REF] Stam | Multiple scattering as a diusion process[END_REF] (and later used by Jensen et al. [2001]), the Diusion Approximation is widely used to address scattering problems. As stated by [START_REF] Stam | Multiple scattering as a diusion process[END_REF][START_REF] Pierrat | Propagation et émission du rayonnement en milieu diusant. Application à l'imagerie des milieux complexes[END_REF] with a physicist point of view), in highly dispersive media (low absorption and high scattering) there are many occurrences of scattering events (multiple scattering). Thus, even if the phase function is highly anisotropic, if the media is wide and dense enough, the radiance tends to become isotropic due to these repeated deections. The same idea is widely used with microfacet-based BRDFs which are often represented with a Lambertian behavior in case of a rough surface. We can then reformulate the radiance in the RTE as a combination of an isotropic contribution, φ(p), and a direction-dependent correction term, ω T • E(p), such as:

L(p, ω) = 1 4π φ(p) + 3 4π ω T • E(p) (3.11)
This approximation can also be obtained with a rst order expansion in the Legendre polynomial basis (the P 1 approximation, P n refering to the Legendre polynomial for n order). More details can be found in [START_REF] Pierrat | Propagation et émission du rayonnement en milieu diusant. Application à l'imagerie des milieux complexes[END_REF].

The isotropic term is linked to the spherical integral of the outgoing radiance, called the uence rate:

φ(p) = Ω 2 L(p, ω)dω (3.12)
The direction-dependent term corresponds to the total ux crossing a surface, called the irradiance vector, and is dened by:

E(p) = Ω 2 L(p, ω) ωdω (3.13)
The factors 1 4π and 3 4π are normalization constants.

Finite Element Approximation

The weak form of Equation 3.6 with bases ψ i ( ω) and ϕ k (p) is

Ω 2 ,[-1,1] ψ i ( ω)ϕ k (p) ω T • ∇ p L(p, ω) = Ω 2 ,[-1,1] ψ i ( ω)ϕ k (p)Q e (p)
-

Ω 2 ,[-1,1] ψ i ( ω)ϕ k (p)L(p, ω)K t (p) (3.14)
By using the projection of the radiance function in the same bases (see Equation 3.9), we get:

j l L j,l Ω 2 ,[-1,1] ψ i ( ω)ϕ k (p) ω T • ∇ p (ψ j ( ω)ϕ l (p)) = Ω 2 ,[-1,1] ψ j ( ω)ϕ l (p)Q e (p) - j l L j,l Ω 2 ,[-1,1] ψ i ( ω)ϕ k (p)ψ j ( ω)ϕ l (p)K t (p) (3.15)
To go further, we assume that our data is locally homogeneous, meaning that for a given position and its neighborhood, K t (p) = K t . Furthermore, we assume that the light source is isotropic (Q e (p, ω) = Q e (p)) and punctual, and thus expressing Q e in our system is straightforward: we just have to modulate the original function by 3π (details are presented in Appendix A.1).

To obtain the nal formulation of our system (Equation 3.8), we must rst obtain the matrices M and R from Equation 3.15. To do so, we can decompose our matrices coecient M i,j,k,l and R i,j,k,l to evaluate separately spatial and directional terms.

Thus, we have:

M i,j,k,l = α T i,j • β k,l = 4π ψ i ( ω)ψ j ( ω) ω T • [-1,1] ϕ k (p)∇ p ϕ l (p) (3.16)
The mathematical details to obtain the coecients M i,j,k,l are presented in Appendix A.1 and gives us for α (i,j) :

α (i,j)∈[0,3] 2 =     (0, 0, 0) ( 4π 3 , 0, 0) (0, 4π 3 , 0) (0, 0, 4π 3 ) ( 4π 3 , 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 4π 3 , 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 4π 3 ) (0, 0, 0) (0, 0, 0) (0, 0, 0)    
(3.17)

For β k,l , we use a formulation more adapted to a 3D volume (of size

W × H × D): (k, l) ∈ [0, N ] 2 ⇐⇒ ((k x , k y , k z ), (l x , l y , l z )) ∈ ([0, W ], [0, H], [0, D]) 2 .
That way, we can express the system as a reduced kernel that is computed for a voxel at position k. With the details from Appendix A.1, we can also reduce (k, l) to k + d, d ∈ {-1, 0, 1} 3 . All other combination of (k, l) results in zeros in the matrices, thus our spatial kernel is a 3 × 3 × 3. Furthermore, we established in Appendix A.1 that:

β k,l = (β k,l , β k,l , β k,l )
Thus, we only need to express the formulation for β k,l , that corresponds to a tensor β d , centered on the position k, such that:

β d∈{-1,0,1} 3 = 1 9     -1 8 0 1 8 -1 2 0 1 2 -1 8 0 1 8     -1 2 0 1 2 -2 0 2 -1 2 0 1 2     -1 8 0 1 8 -1 2 0 1 2 -1 8 0 1 8     (3.18)
Then, by using the same logic for R i,j,k,l , we have:

R i,j,k,l = K t γ i,j δ k,l = ρ 4π ψ i ( ω)ψ j ( ω) [-1,1] ϕ k (p)ϕ l (p) (3.19)
The mathematical details to obtain the coecients R i,j,k,l are presented in Appendix A.2 and gives us rst for γ (i,j) :

γ (i,j)∈[0,3] 2 =     4π 0 0 0 0 4π 3 0 0 0 0 4π 3 0 0 0 0 4π 3     (3.20)
For δ k,l , we also use a 3D notation ((k, l) ⇐⇒ k + d), and we also obtain a tensor δ d , centered on the position k, such that: We can note that with this formulation, we have a factor 64 between the current element (d = (0, 0, 0)) and its furthest neighbors (d = (±1, ±1, ±1)). Thus, our assumption that our data is locally homogeneous should not introduce an important bias.

δ d∈{-1,0,1} 3 =     1 216 1 54
From the above information, we can construct the diagonal matrix A from the coecient γ i=j and δ d=(0,0,0) , while the matrix B is composed of the remaining terms. Thus, the nal formulation to evaluate the radiance per voxel is presented in Equation 3.22, in which only the non-zero elements from γ and α are kept. This formulation is given using the notations and normalization from the Diusion Approximation (Equation 3.11).

    φ j E j .x E j .y E j .z     = 81 32π 1 K t     φ e 0 0 0     - 27 24K t d β d     3(E j+d .x + E j+d .y + E j+d .z) φ j+d φ j+d φ j+d     - 27 8 d δ d     φ j+d E j+d .x E j+d .y E j+d .z     (3.22)

Limitations

We have formulated the nite element system. We must now check if it is compatible with a Jacobi iterative resolution. Our system can be reformulated with the form Ax = b where x is the radiance. Such a system is ensured to converge with the Jacobi method only if A is a diagonally dominant matrix, otherwise, the convergence is not guaranteed. As a reminder, a matrix A with coecients a ij is diagonally dominant if: In our case, whatever the value that is used for K t , this condition is not veried and thus we have no guarantee of the convergence of the method. This problem was veried with a 2D version (using Shadertoy). The result was eectively unstable as the values rapidly grew far beyond the value of Q e while oscillating between positive and negative values (see Figure 3.5). Furthermore, for this version, we did not consider multiple scattering, which would amplify this instability by increasing even further the rightmost member of the inequality condition.

|a ii | ≥ j =i |a ij |
If our matrix is not diagonally dominant, it is a symmetric positive-denite matrix. A Gauss-Seidel pattern, which converges in this case, may solve the system. However, providing ecient implementations on GPUs of such a solver is still an open problem in Computer Science. Moreover, in our case, this solver would require to frequently reorganize our data, between computation and rendering steps, which could result in a signicant impact in term of computation time.

Furthermore, the system presented has a intrinsic aw: the extinction parameter is only present as an inverse form, which limits the type of media that we can address (e.g., K t ≈ 0 is not possible).

• Whatever the value that is used for K t , the stability condition of the nite element system is not veried and thus we have no guarantee of the convergence of the method. • The steady RTE in the Diuse Approximation is not compatible with a Jacobi iterative resolution.

The Unsteady RTE

Due to the limitations that we presented above, we chose to focus on the unsteady version of the RTE (Equation 1.4). Indeed, this version, compared to the steady one, has the advantage of complying well with an iterative resolution. In this section, we rst discuss the case of applying directly a nite dierence scheme to the unsteady RTE. Then, due the limitations of this approach, we present how it can be expressed using the directional moments of 74 David Murray
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the radiance, with a nite dierence scheme also.

Using Time Finite Dierences

As a reminder, the equation we now use is:

1 c ∂L(p, t, ω) ∂t + ω T • ∇ p L(p, t, ω) = -K t (p) • L(p, t, ω) + Q e (p, t, ω) + Ω 2 K s (p) • P(p, ω, ω ) • L i (p, t, ω )d ω
We keep the assumption that the source is isotropic, and we also consider that it does vary in time:

Q e (p, t, ω) = Q e (p).
By using a forward nite dierence scheme to discretize the time derivation, we naturally obtain an iterative-compliant formulation:

L t+1 (p, ω) =L t (p, ω) + c • dt • ω T • ∇ p L t (p, ω) -K t (p) • L t (p, ω) + Q e (p) + Ω 2 K s (p) • P(p, ω, ω ) • L t i (p, ω )d ω
This method is very close to the Discrete Ordinate Method (DOM) introduced by [START_REF] Chandrasekhar | Radiative Transfer. Dover books on physics and engineering[END_REF]. We use a nite set of directions to solve the equation. The slight dierence is that DOM uses an angular discretization only to evaluate the scattering term, the directional derivative being solved along the x, y and z axes.

Limitations

This formulation does not present the same problem as the nite element solution we presented. However, it is highly sensible to the chosen angular distribution for both the directional derivative and the scattering integral. Indeed, if there is not enough directions, these directions become clearly visible in the nal image. This is the same limitation as for DOM, as stated by [START_REF] Jönsson | A survey of volumetric illumination techniques for interactive volume rendering[END_REF]. Thus, to obtain a legible result, we need to use a large number of directions, but this hinders greatly the computation cost and thus, the interactivity of the method.

Using a nite dierences scheme directly on the unsteady RTE produces artifacts along the principal directions.

Using a Moment-based Formulation

We have briey introduced and explained the Diusion Approximation (Equation 3.11) for the nite element method. What is interesting with this approximation is the link with the moments of radiance. Thus, by using these same moments, applied directly to the whole RTE, we can obtain a system that does not depend on radiance but on its moments.

Before presenting how we express the RTE in this context, we introduce a notation for the moment operator, thus from now on, we note µ n the moment of order n:

µ n (f ( ω)) = Ω 2 f ( ω) ω n dω
Order 0 (µ 0 ) L(p, t, ω): For the order 0, two terms are straightforward: L(p, t, ω) and ∂L(p, t, ω)/∂t. By denition, the order 0 of these two terms is the uence rate:

µ 0 (L(p, t, ω)) = φ(p, t) µ 0 ( ∂L(p, t, ω) ∂t ) = ∂φ(p, t) ∂t ω T • ∇ p L(p, t, ω):
For this term, we have (details in Appendix B):

µ 0 ( ω T • ∇ p L(p, t, ω)) = ∇ p T E(p, t) P( ω, ω i )L i (p, t, ω i ):
The simplication of this term depends on how we consider L i . The details of the simplication are presented in Appendix B, and leads to:

µ 0 4π P( ω, ω i )L i (p, t, ω i )dω i = φ(p, t)
Order 1 (µ 1 )

L(p, t, ω): For the order 1, L(p, ω, t) and ∂L(p,t, ω) ∂t are also straightforward. By denition, the order 1 of these two terms is the irradiance vector :

µ 1 (L(p, t, ω)) = E(p, t) µ 1 ( ∂L(p, t, ω) ∂t ) = ∂ E(p, t) ∂t ω T • ∇ p L(p, t, ω):
Once again, the mathematical details are provided in Appendix B and we have:

µ 1 ( ω T • ∇ p L(p, t, ω)) = 1 3 ∇ p φ(p, t) 76 David Murray P( ω, ω i )L i (p, t, ω i ):
Finally, for this term (Appendix B) we have the following formulation:

µ 1 4π P( ω, ω i )L i (p, t, ω i )dω i = g E(p, t)
where g is the anisotropic factor.

Unsteady RTE with Diuse Approximation

By combining all the results presented above, we can nally obtain our linear system, described by Equations 3.23 and 3.24, with

K t = K a + (1 -g)K s . 1 c ∂φ(p, t) ∂t = -div( E(p, t)) -K a (p)φ(p, t) + φ e (p, t) 1 c ∂ E(p, t) ∂t = - 1 3 ∇ p φ(p, t) -K t (p) E(p, t) + E e (p, t) (3.23) (3.24)
This system was implemented using a nite dierences pattern (FTCS):

∂f (p, t) ∂t ⇐⇒ f t+1 i,j,k -f t i,j,k ∆t ∂f (p, t) ∂x ⇐⇒ f t i+1,j,k -f t i-1,j,k 2∆x = δ x f t 2∆x ∂f (p, t) ∂y ⇐⇒ f t i,j+1,k -f t i,j+1,k 2∆y = δ y f t 2∆y ∂f (p, t) ∂z ⇐⇒ f t i,j,k+1 -f t i,j,k+1 2∆z = δ z f t 2∆z
With this discretization, Equations 3.23 and 3.24 lead to Equation 3.26. For this formulation, we consider that ∆x = ∆y = ∆z = ∆ such that:

φ t i,j,k =c∆tφ e,(i,j,k) + (1 -K t,(i,j,k) c∆t)φ t-1 i,j,k -c ∆t 2∆ (δ x E.x t-1 + δ y E.y t-1 + δ z E.z t-1 ) E t i,j,k =c∆t E e,(i,j,k) + (1 -K t,(i,j,k) c∆t) E t-1 i,j,k -c ∆t 6∆   δ x φ t-1 δ y φ t-1 δ z φ t-1   (3.25) 
(3.26)

The system described by Equation 3.26 should converge toward a solution if (K t,(i,j,k) c∆t, c ∆t 2∆ )) < (1, 1). This means that we must take a time step ∆t very small compared to ∆ and have K t ≤ 1 2∆ . As an example, if we take the values for a human liver, we have K t ≈ 25cm -1 = 2500m -1 (L [START_REF] Sandell | A review of in-vivo optical properties of human tissues and its impact on pdt[END_REF]), we should have ∆ ≤ 5.10 -4 . Thus to ensure convergence, we must have ∆t ≤ 10 -11 s. However, this implementation has a aw that we did not anticipate. The pattern of Equation 3.26 leads to an alternation between the propagation of φ and E, as one can not signicantly change as long as the other has not changed as well. The derivation pattern combined with this eect produces signicant artifacts, presented in Figure 3.6 with a 2D implementation (using Shadertoy). If using directly the six neighbors (+/-for x/y/z) for the derivation, the result will be a grid with an alternation of positive, negative and null values (Figure 3.6(a), in 2D). By considering a weighted neighborhood, this problem is reduced but artifacts remain in the principal directions (Figure 3.6(b), in 2D).

Using a moment-based formulation up to order 1 leads to grid artifacts with an alternation between positive and negative values.

Extending to Order 2 (µ 2 )

To solve the aforementioned issue, we consider using an extended radiance representation. It consists in adding the second order moment in the approximation. Thus, we go from:

L(p, ω) ≈ C 0 µ 0 (L(p, ω) + C 1 ω T • µ 1 (L(p, ω)) = 1 4π φ(p) + 3 4π ω T • E(p)
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To the new one:

L(p, ω) ≈ C 0 µ 0 (L(p, ω) + C 1 ω T • µ 1 (L(p, ω)) + C 2 ω T µ 2 (L(p, ω)) ω = C 0 φ(p) + C 1 ω T • E(p) + C 2 ω T S ω
in which S is a symmetric tensor that can be interpreted as the radiative pressure. Furthermore, the moment of order 0 can be integrated into the diagonal of the tensor for clarity. In practice, this must be done to keep a consistent directional basis. Thus, after regrouping and evaluating the normalization factor, we consider:

L(p, ω) ≈ 3 4π ω T • E(p) + 5 4π ω T S ω
With this representation, we need a set of 9 equations to obtain all necessary values: 3 for E and 6 for S (as S is symmetric). After development, reorganization and simplication (available in Appendix B, Equations B.11 and B.12), we obtain a rst set of 12 equations (before applying the symmetry) presented in Equation 3.27 (simplied by 4π 3 and 4π 5 respectively). 

+   2δ x E x + div( E) (δ x E y + δ y E x ) (δ x E z + δ z E x ) (δ x E y + δ y E x ) 2δ y E y + div( E) (δ y E z + δ z E y ) (δ x E z + δ z E x ) (δ y E z + δ z E y ) 2δ z E z + div( E)   =
(2S e (p) + tr(S e (p))I) -K t (p)(2S(p) + tr(S(p))I)

(3.27) However, once we obtain this, we can see that the process that produced artifacts is still present as we still have this alternation eect between the pure directional component and the more isotropic one.

Extending up to order 2 moments does not solve the grid problems presented in the solution with up to order 1 moments.

Conclusion

We have presented a study about several numerical techniques to solve the RTE. From this study, we reach the same statement that the one Koerner et al. [2018] have recently presented on the diculties of solving the RTE with implicit representations. This equation is hardly solved by using standard approaches like nite element or nite dierences methods without leading to signicant artifacts.

Concerning our specic application, we can say that the steady RTE is not compatible with a Jacobi iterative resolution. It can however be solved iteratively with a Gauss-Seidel pattern combined with an adapted data organization. However, the latter is hardly compatible with our initial goal of interactivity. Furthermore, the method only ensures convergence but not necessarily a plausible result at each step. Indeed, we could have temporary negative radiance values at a random step while still obtaining the correct values after convergence.

For a more natural iterative resolution, the unsteady RTE is more suited as, in theory, each step give radiance results that are consistent with this quantity, even before convergence. For this reason, and despite the issues presented in Section 3.4, this version remains the best suited to our needs. Thus, we explore in Chapter 4 a new formulation based on an additional hypothesis to the Diuse Approximation.
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Chapter 4

Radiance Diusion Equation

In the previous chapter, we introduced a new metaphor to explore volumes and we presented some considerations about numerical schemes. It emerged rst that the steady RTE was hardly compatible with iterative Jacobi resolution, and second, that the unsteady version needs further considerations to be used. Thus, in this chapter, we rst focus on the diusion model that we use to solve the unsteady RTE. Then we present the dierent tools that we currently use to interact with this algorithm, to manipulate the parameters and the lighting conguration. Next, we discuss about the rst results obtained on medical data and the performance and limitations of the method. Finally, we propose some ideas to enhance the interaction with the light sources, that have yet to be fully tested.

Toward a Diusion Model

We have presented in Chapter 3 the main issues that we faced in solving iteratively the RTE. We now introduce the solution that we use to solve the RTE in such a way that it allows us to manipulate the parameters as much as possible. Our solution relies on an approximation, used in many light diusion problems, that we rst present, along with the resulting system. Then we discuss about the intrinsic limitations and the validity of the chosen approach.

The results and implementation details are presented later in Section 4.2.

Establishing the Diusion Equation

To obtain an equation that has the form of a diusion equation, we have to make asumption, in addition to the Diusion Approximation. As it is done in some diusion problems (e.g., [START_REF] Haskell | Boundary conditions for the diusion equation in radiative transfer[END_REF]), we consider that the irradiance vector is approximately steady, meaning that:

∂ E ∂t ≈ 0
Note that this hypothesis can also be inferred directly from the Diuse Approximation. As the latter is valid only for long time scales, it implies that the ux (the irradiance vector E) can not present signicant variations, to ensure that we are in a diusive state. This is also inherent from the formulation of Equation 3.11, as, to ensure that the radiance is positive, we must have φ || E|| [START_REF] Ishimaru | Wave Propagation and Scattering in Random Media[END_REF]). We now use this consideration to further simplify the moment-based formulation of the unsteady RTE we have presented in Chapter 3. As a reminder, we had for the unsteady version (Equations 3.23 and 3.24):

1 c ∂φ(p, t) ∂t = -div( E(p, t)) -K a (p)φ(p, t) + φ e (p, t) 1 c ∂ E(p, t) ∂t = - 1 3 ∇ p φ(p, t) -K t (p) E(p, t) + E e (p, t)
By assuming that the source is purely isotropic, we may omit its directional component ( E e (p, t)). Equation 3.24 is then reduced to:

E(p, t) = - ∇ p φ(p, t) 3K t (p) (4.1)
Note that Equation 4.1 is analogous to Fick's law [START_REF] Fick | V. on liquid diusion[END_REF]) which is widely used in diusion problems. As stated by [START_REF] Haskell | Boundary conditions for the diusion equation in radiative transfer[END_REF], this approximation is valid with the unsteady RTE when we focus on biological tissues. As this type of media is the main target of our application, we can reasonably consider that we are in scope of this approximation.

With this hypothesis, we can greatly simplify the system presented in Section 3.4.2. Also, we use the more adapted diusion coecient D (in meters m), dened as:

D(p) = 1 3K t (p) (4.2)
The expression of Equation 4.1 is then simplied to:

E(p, t) = -D(p) ∇ p φ(p, t)
Note that this expression can be found in Computer Graphics in Jensen et al.

[2001] but in their case, it was derived using the Diuse Approximation with the steady RTE (Equation 1.5), as mentioned earlier.

We can now replace the irradiance vector in Equation 3.23 to obtain an equation depending only on φ:

1 c ∂φ(p, t) ∂t = div(D(p) ∇ p φ(p, t)) -K a (p)φ(p, t) + φ e (p, t)
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Finally, after developing the divergence operator, and if we do not consider K t to be homogeneous, which is the case for medical data, we obtain:

1 c ∂φ(p, t) ∂t = D(p)∆ p φ(p, t) -∇ p D(p) T • ∇ p φ(p, t) -K a (p)φ(p, t) + φ e (p, t) (4.
3) If we have a homogeneous medium, ∇ p D(p) = 0, we obtain the diusion equation often used in Physics to simulate innite homogeneous media, as presented by [START_REF] Pierrat | Propagation et émission du rayonnement en milieu diusant. Application à l'imagerie des milieux complexes[END_REF].

The Finite Dierence System

We use a FTCS scheme to discretize Equation 4.3 which gives us Equation 4.4. Note that we once again use {N,S,W,E,U,D} to identify the position: North (N) is (i+1, j, k), South (S) is (i-1, j, k), etc. The absence of index corresponds to the central position. Also, for the sake of clarity, we incorporate the factor c∆t directly into φ e .

φ t = φ e + (1 -c∆tK a )φ t-1 +D c∆t ∆ 2 (φ N + φ S + φ W + φ E + φ U + φ D -6φ) t-1 - c∆t 4∆ 2 D N -D S D W -D E D U -D D • φ N -φ S φ W -φ E φ U -φ D t-1 (4.4)
However, this formulation is not practical as it involves four distinct variable parameters that can inuence the stability condition. These are ∆t, ∆, K a and D. Theoretically, they all can vary between 0 and +∞. Before studying the range that these parameters can vary within to ensure convergence (which is presented in the next section), we reformulate Equation 4.4 using terms that are easier to manipulate. Thus, we use the notion of scattering albedo α (van de Hulst [1981]), which quanties the ratio between scattering and absorption in a medium, such as:

α = K s K t (4.5)
The advantage of this parameter is that it varies between 0 and 1:

• α ≈ 0: K a K s , we have an dominantly absorbing medium.

• α ≈ 1: K s K a , we have a dominantly scattering medium. We can use this parameter to nd a direct relation between K a and the coefcient D presented in Equation 4.2. To do so, we rst reformulate to express K s :

K s = α 1 -α K a
We then replace K s in the expression of D with a term depending on α to nally obtain a direct relation with D:

K a = 1 -α 3(1 -αg)D (4.6)
Note that this relation implies that D can not be exactly 0 which is consistent with the denition of D (Equation 4.2). It can however be close to 0, thus, whenever we talk about D varying from 0 to something, it is a simplication meaning a value close to zero. Using this relation, we have replaced a parameter varying between 0 and +∞ with one varying between 0 and 1.

Finally, we also introduce a new notation for the diusion coecient using a unitless parameter β such as:

D = β∆ (4.7)
Thus, we can reduce to a formulation where we no longer have explicitly the terms c∆t ∆ 2 and c∆ but only the ratio c∆t ∆ . The nal formulation is the following:

φ t = φ e + 1 - c∆t ∆ 1 -α 3(1 -αg)β -6β c∆t ∆ φ t-1 +β c∆t ∆ (φ N + φ S + φ W + φ E + φ U + φ D ) t-1 - c∆t 4∆ β N -β S β W -β E β U -β D • φ N -φ S φ W -φ E φ U -φ D t-1 (4.8)
In Equation 4.8, the controllable parameters are: D the diusion coecient, indirectly through β, K a , indirectly through β and α, ∆t the time step and ∆ the spatial step. Concerning g, we will see in Section 4.1.3 that it will be xed to g = 0.

Considerations about the Model Link to Anisotropic Diusion

The rst notable aspect of this model (Equation 4.3) is that it has a significant similarity with the Anisotropic Diusion formulation. As a reminder, Anisotropic Diusion (in 2D) is:

∂I ∂t = C(x, y, t)∆I + ∇C T • ∇I
We know, from Section 3.1.3, that this equation is stable using a Finite Difference scheme with an iterative pattern. Thus we can reasonably assume that, due to the similarity, our system should be stable as well. This means there should be a set of parameters for which this model satises the Jacobi convergence condition. Adding User-Based Conditions Before studying the stability conditions for our system, we introduce some constraints in order to ensure that the application is user-friendly. In particular, this tool may be employed by users not well-versed in light transport. Thus, we decided to expose only a limited control over the parameters such that:

• Values not ranging from 0 to 1 should not be directly exposed.

• Diusion should be either controlled directly with a value ranging from 0 to 1 or indirectly using predened mapping depending on the desired eect. This imply that β ∈ [0; 1] . • Absorption should be controlled either automatically or by using the albedo α. Furthermore, in order to simplify the conditions and reduce the number of degrees of freedom that could lead to divergence, we rst x g = 0 . This means that we consider the scattering to be isotropic (uniform phase function). Doing so makes it impossible to address many media in a realistic way but greatly reduces the complexity of the model. Note that this consideration is also comforted by our experiments, in which the impact of this factor was very limited compared to the other parameters.

Stability Conditions

We now need to determine the range of the parameters for which the system is stable. As a reminder, we have a system with the form Ax = b where x is the radiance. A is diagonally dominant if:

|a ii | ≥ j =i |a ij |
In our case:

|a ii | = 1 - c∆t ∆ 1 -α 3β -6β c∆t ∆
This term can not be negative, as it would mean that an element can loose more energy than it possesses, which is impossible. Thus we can eliminate the absolute value operator. As for the right member, we have:

j =i |a ij | = 6β c∆t ∆ + c∆t 2∆ |β N -β S | + |β W -β E | + |β U -β D |
In the worst case, we have maximum gradient on the diusion coecient: β goes from 1 to 0, meaning that max(|β

N -β S |) = max(|β W -β E |) = max(|β U - β D |) = 1.
This allows us to obtain an inequality that links ∆t/∆ to β and α:

1 - 1 -α 3β c∆t ∆ -6β c∆t ∆ ≥ 6β c∆t ∆ + 3 2 c∆t ∆
This nally gives us the following condition that has to be respected when determining ∆t and ∆, depending on β and α:

c∆t ∆ ≤ 6β 72β 2 + 9β + 2(1 -α) (4.9)
The rightmost part of Equation 4.9 is plotted in 3D, in Figure 4.1, to explicit the range within which the ratio can vary, depending on the parameters. Thus, any value below the curve ensures that we are in the stability domain. In particular, we can see that for a ratio of c∆t ∆ ≤ 0.1, we are under the curve for nearly all values of β and α can be used. This is encouraging as it means that by xing, c∆t ∆ = 0.1, we can address most of the possible congurations. As an example using this value, for a data with ∆ = 1mm, we have ∆t ≈ 3.33 × 10 -13 s. In practice, it may be interesting to locally adjust ∆t, as long as the condition is veried, to allow a faster diusion. This latter process should, however, not be used when one is targeting accuracy more than depiction, as it is clearly not realistic.

Application for Enhanced Visualization

We have introduced the model we adopt as well as its domain of validity and we now explain how we use it. For rendering, the output buer is then used during ray-cast, thus, if the frame n uses Buer B for rendering, the frame n+1 will use Buer A.

it, how we control the parameters and the interaction tools that we use, then we present how this solution eectively addresses our problem.

Note that the work presented in this section is the current state and is still in development. Thus, some hypotheses and considerations we use, to design the tools for user interaction, have not been formally validated. They are mostly based on our experience and the knowledge of developers and application engineers from the Open Inventor team as well as their feedback.

Implementation details

Our implementation is done using Open Inventor (version 9.8) and OpenGL (up to version 4.3) to handle features not directly supported by Open Inventor. We rst present how we implement the diusion algorithm and then, how we store the results.

Our implementation relies on two 3D buers to store the result of the diusion, using a Ping Pong scheme [START_REF] Gray | Transaction Processing: Concepts and Techniques[END_REF]). This is necessary as we use an iterative resolution, meaning that during the computation we access data that comes from a previous step. Thus, we must ensure that the value we get has not been overwritten by the result of another computation. As illustrated in Figure 4.2, the rst buer (A) is used as source for one iteration (n) and the result is stored in the second one (B). Then B is used as input for both the current rendering (n) and the computation for the next iteration (n+1). The result is then stored into buer A, which is then used for rendering (n + 1), and so on.

As for the computation step, it is done with compute shaders. As evoked in Section 1.3.1, a compute shader is a shader stage that can be used without invoking the graphics pipeline (see [START_REF] Brown | Compute shader[END_REF] for the OpenGL specication). This stage allows us to exploit the parallelism of a GPU for other purposes than rendering, while using a buer format that can be directly interfaced with the programmable stages of the graphics pipeline.

As compute shaders are not present in Open Inventor, it was added to the SDK to implement this part of the work. However, the current implementation is synchronized with the graph traversal. This means that the computing is synchronized with the frame rate.

Controlling the Parameters

Based on the formulation we have chosen, the controllable parameters in our algorithm are: β, using either predened functions or using a custom transfer function, and K a , indirectly using either an automatic value based on β or by using the albedo α. The results obtained by using some of these options are presented later in Section 4.2.4. In the next paragraphs, we briey explicit the dierent options that we propose.

Setting β We propose three mapping options. For each option, it is also possible to use the complementary (1 -β), depending on the use case.

• Custom transfer function: this option maps a scalar value (from the data) to a value for β. It oers a total control to the user, as long as the values are in the range [0; 1]. As such, the containment capabilities of this option are limited. • Scalar gradient: this option uses the gradient of the data as input for a function close to the ux function introduced in Section 3.1.3 (Equation 3.2):

β(||∇S||) = e -( ||∇I|| σ ) 2
σ controls the importance given to the gradient (see Section 3.1.3). This option performs well for constrained diusion as it relies on local data variations.

• Gradient of the transfer function: this option allows one to combine both a user-dened mapping with a transfer function and containment capabilities oered by using gradients. Setting K a We oer two possibilities to set this parameter:

• Taking the inverse of β: Despite being non-physical, this mapping is useful for selective diusion. Indeed, it ensures that absorption is low in area with maximum diusion, and high when diusion is minimum. Also, with this mapping, the possibilities of being outside the stability domain are very limited. • Using the albedo α: This mapping provides a more physically accurate solution for most values. However, to ensure that the computation does not diverge, the albedo may be clamped to stay within the convergence range (presented in Figure 4.1).

Controlling the Sources

The manipulation of the light sources is an important aspect of the application. Indeed, if they are not placed correctly, the result would be, at best, completely inconsistent with the expected result. In this case, at least the user knows the source is ill-placed. But at worst, it could be suciently close to the expected result, and implies that it is the correct one, while still introducing a signicant bias. In the following paragraphs, we describe how we place light sources in a 3D space.

In our implementation, we can place up to eight light sources. The main diculties we encountered while manipulating these sources are their placement in a 3D space. Indeed, to correctly place a source, we can either set the position by specifying its (x, y, z) directly, use draggers to move the source in the scene, pick a position with the mouse... Our experiments and feedbacks from Application Engineers on this matter led us to several conclusions:

• Placing the source directly is very tedious, in particular when sources are not immediately placed at the correct spot. If they need to be moved, this solution is not practical. • Using draggers is also tedious as it requires to constantly rotate the object to eectively interact in 3D. • Picking a position directly in 3D is ambiguous, as we try to select a point in 3D by using a screen without liable feedback on the depth. Thus, following these conclusions, we chose to use a combination of orthoslices to place the sources, as illustrated in Figure 4.3. We use one orthoslice per reference axis (X/Y/Z), combined with a slider to navigate along each axis. Using slices allows the user to see exactly where is the source in the volume and what is around it without being disturbed by occluding information.

Note that this solution is still limited as it is done using only sliders, which are not optimal for this purpose. This aspect is partially addressed in Section 4.2.5.

Results

In this section, we present the results we achieved with our model and the dierent features and tools we have introduced. First, we present performance of the solution. We then discuss the possible achievements of our methods based on some examples of renderings using dierent sets of parameters.

Performance

The measures presented in this section are made on a laptop workstation with an i7-6820HQ CPU, 32 GB of RAM and an NVIDIA Quadro M5000M GPU (8 GB of V-RAM). We rst present some time references, then we discuss about the memory usage of the method, and nally, we discuss its current limitations. Time To evaluate the computation time, we measure the time per frame on a synthetic test case (Figure 4.2). We do this for four resolutions: 128 3 , 256 3 , 512 3 , 1024 3 . The averaged results are presented in Table 4.1, along with the total time required per frame without diusion as a reference. All results are in milliseconds (ms).

We can see that for small volumes, the algorithm has a very limited cost. In this case, it should be very benecial to decorrelate the computation and the frame display. As a reference, for a computing volume of 128 × 128 × 128, the method of [START_REF] Zhang | Fast global illumination for interactive volume visualization[END_REF] requires around 52ms for one light source, and up to 91ms for ve light sources, to solve directly the RTE. 759.3 49.9 709.4 Table 4.1 Time required per frame with and without computing as well the dierence between the two. Results are presented on a synthetic volume with four dierent resolutions. All results are in milliseconds (ms). large volumes, the computing time is signicant and may be a burden when manipulating the data.

Also, the time per voxel decreases as the number of voxels increases. The probable cause lies in the way the dispatch command, for the compute shaders, is executed. In our implementation, it separates the volume in a xed number of groups, regardless of its size. Groups too small (or too large) are not well adapted to compute shaders [START_REF] Brown | Compute shader[END_REF]). Indeed, the cost of dispatching the computation over a group of only a few elements is signicant compared to the speed gain of processing this group in dedicated threads.

Finally, it is important to note that the total rendering time (computing and ray-casting) is highly dependent on the chosen visualization, as ray-casting can be costly if the data is mostly transparent.

Also, due to the graph traversal of Open Inventor and the interactions with the state, it is dicult to correctly measure the eective computation time.

Memory Footprint In term of memory cost, our solution is probably not optimal. Indeed, in the current implementation, we theoretically either need two additional volumes with one oating point per original voxel or one with two oating point channels. This implies a huge memory overhead that we need to address in the future. In practice, as memory was not an issue on the test station for most of the test volumes, the current solution uses two textures with four oating point channels each. This allows a speed up in the computation as we can store data-dependent gradients during the rst iteration to avoid recomputing them. This is already accounted for in the computing cost presented above, thus, eliminating this additional memory can not be done until further optimization.

Finally, in the current state, we also have to make a copy of the original data. This copy is due to the way Open Inventor handles volume data. Indeed, the data is loaded as a texture on the GPU only when the ray-casting starts, thus we can not access the original volume from outside of the VolumeViz rendering pipeline. This implies a memory overhead as well as a delay when the application starts to do the copy, or whenever the original data is modied.

To sum up the memory overhead, assume we have a volume of dimensions For examples, for a volume of 128 × 128 × 128 voxels with 8 bits per voxel, the applications needs:

• 2 MB for the volume.

• 2 MB for its copy.

• 64 MB for the diusion buers. We can see that for large volumes, the memory overhead will quickly exceed the memory limits even of modern hardwares.

Results

We present, in Figures 4.4(a) and 4.4(b), a comparison of our method with our original prototype using Anisotropic Diusion. We can see that, using the same visualization, our method achieves results a bit more constrained than with our rst prototype. This is consistent with the fact that the RTE includes an absorption term. The parameters used here are: scalar gradient for β and 1 -β for K a .

Our experiments proved that using a gradient-based mapping oers the best containment capabilities. This is illustrated in Figures 4.5(a) and 4.5(b). In Figure 4.5(a), β is mapped to the opacity given by the transfer function whereas in Figure 4.5(b), β is mapped to its gradient. The latter performs better that the former in oering a constrained diusion into the vein where the source is located.

The work presented here concerns mostly the underlying algorithm, thus, it is the starting point for more investigations to overcome its limitations. In particular, we have yet to nd the visualization solution that is best suited to 92 David Murray The diusion is done with too much absorption, leading to an over-constrained diffusion, as the vein is not fully identied.

our application. Also, a limitation that we have already talked about is overowing, illustrated in Figure 4.6(a). Even if it is possible to adjust the parameter to attenuate the problem of overowing, it often results in over-constrained diffusion (Figure 4.6(b)). Furthermore, it is not possible to completely get rid of the risk of overowing, as there are often artifacts and uncertainties in the original data.

Finally, even with the tools we have presented, the interaction is limited, in particular for the design of the lighting conguration. Indeed, placing the sources using only sliders allows the user to place correctly a source but it remains a tedious process.

In the next sections, we propose ideas using biased light sources directly in the diusion as a starting point to address some limitations. We also introduce new tools and considerations to help the user in the task of choosing the correct lighting conguration.

Using the Sources as a Tool

In this section, we present ideas that have been tested on a synthetic case: a pipe placed inside a homogeneous medium, and lled with another homogeneous medium similar to the rst one. These proof of concepts are tools to: rst, reduce overowing using negative light sources, and second, manipulate more eciently the light sources, their type, shape, and position.

Negative Sources One of the limitations of the algorithm is overowing. If the data contains uncertainties and acquisition artifacts, the diusion will not remain constrained in a structure.

Our idea to address this limitation is to introduce negative light sources in the process. We then use the diusion to propagate negative energy, as presented in Figure 4.7. When the negative energy meets with the positive one, its creates a virtual barrier where the positive and negative energies nullify each other (Figure 4.7(a)). These sources can then be used to prevent some overows by "patching" points where leaks occur, as illustrated in Figures 4.7(b) and 4.7(c).

Even though the idea is completely not physical, as energy can not be negative, it still behaves as predicted, as the mathematical model we use does not embed any consideration about the sign of the quantities. In addition to limiting the problem of overowing, using negative light sources also gives the 94 David Murray possibility to dene areas in which we do not want the diusion to occur, which can also be used to prevent any leak (Figure 4.7(c)).

Painting with Light Another option to manipulate the sources is the possibility to make it persistent. This way, the user can use the light source like a paint brush to dene a custom light source. This tool can be useful in several cases:

• When the user has already a high degree of condence in an area of the data.

• When the user has gained a high degree of condence from a previous diusion.

• When the user wants to use complex light sources. The main advantage of this tool is to oer the possibility to design a complex lighting environment. This feature is however tedious with the current implementation as the source is moved using sliders. To oer a more natural interaction, picking actions should be added.

Forcing the Diusion We have just introduced the tool we implemented to limit the diusion and oer customizable light sources, we now present the one we use to force the diusion. Indeed, in some cases the user may want to speed up the process, in particular when there is a high degree of condence in the area already reached.

We introduced above a solution to specify extended sources. However, it requires user interaction which may not be desired. Thus, we also propose a solution to oer the possibility to directly convert an area in which energy has been diused into an extended light source. This allows the user to re-inject energy and thus speed up the diusion process. The main drawback of this solution is that the converged result will not be the same as with the original light sources. However, as the purpose of this solution is not to provide a physically accurate result but to provide the user a simple speedup, this issue should not be addressed until proven otherwise.

Finally, in case of a aw not detected until the re-injection, it could quickly lead to overowing.

Conclusion and Future Work

Achievements Our goal was to provide a solution to visualize structures and regions of interest in volumes without using global segmentation. To address this problem, we have proposed a model to solve the RTE iteratively, with its stability condition. This method fullls the initial goal as it eectively provides a uid-like diusion while being based on light transport.

We have shown in Section 4.2.4 that the solution can be used to identify regions of interest using diusion. We also introduced a variety of tools to interact with the diusion process, to oer as much control as possible while avoiding a divergence in the solution.

However, the method remains limited as most of the presented features and their limitations have yet to be addressed and validated. In particular, the visualization aspect has not been properly studied in terms of rendering styles and transfer functions. Also, the method could probably be optimized to reduce the memory footprint as well as the computation cost.

Future Work

The most important remaining work is to study which quantities should be displayed (e.g., the uence rate, the irradiance vector, the radiance...) and how it should be displayed (e.g., directly the intensity, using a dedicated transfer function...). As we rst focused on the diusion model, these aspects are not treated here and should be addressed in future work.

Another aspect of the current state is the limitations in terms of user interactions. We believe that they are keys to a potential success of the method. In addition to this work, it is also necessary to add the possibility to control the light source by picking on the screen, in particular for the painting tool.

Second, we should reduce the memory footprint. This could be done by using textures with lower resolution but this must be thoroughly studied to ensure that it does not introduce an important bias in the method. Packing values to optimize the bit occupancy could also be a solution to be considered and studied. Concerning the texture duplication due to the Open Inventor
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David Murray pipeline, it should be removed by fully integrating the method into Open Inventor. Also, it is important to optimize the computation process to increase interactivity. This implies using a more adapted pattern for the compute groups, which is currently xed. Indeed, as stated in [START_REF] Brown | Compute shader[END_REF], the eciency of compute shaders is highly dependent on how the group size is chosen. We did not tackle this problem yet, so this matter should be looked into in the future. Furthermore, some parts of the code, as it is still undergoing development, have not been optimized. Even if these two aspects may not introduce drastic changes in rendering times, they would be interesting.

Finally, we focused on the application for selective diusion in medical data, thus we have yet to study how this method may be useful for global illumination techniques presented in Section 1.3.3. Due to the various approximations we made, our method can not perform global illumination as well as stochastic techniques. However, it could be used as a tool to design the lighting conguration when rendering volumes. Indeed, due to its capacity to automatically correct itself, the method can withstand many modications to determine a good conguration. David Murray

Conclusion

Summary of the Contributions

In this manuscript, we rst focused on light transport and its implication for rendering transparent surfaces and volumes. We also studied how it can be modied to provide additional information using non-photorealistic rendering techniques. In particular, we compared the techniques used in the literature with the features of the Open Inventor SDK.

The conclusions of this study led to the development of a solution to enhance shape depiction for transparent surfaces. Our proposition concerned two aspects of the rendering process. First, to eciently evaluate derivative information in a 3D space, we design a data structure that allows fast computation of these information. Second, we proposed to modulate the opacity of surfaces using geometric informations like surface curvature. This part of the work was published at the EGSR conference in 2016.

After having addressed the case of transparent surfaces, we tackled the case of volumes. We rst studied how our previous solution could extend to volumes, which proved to be adapted to isosurfaces only. By going back to light transport (with the RTE), we tried to modify it to achieve constrained diusion. We rst successfully tested the idea with an extended version of Anisotropic Diusion. Then we studied dierent numerical techniques to determine the one best suited to achieve the same kind of results with the RTE. We drew two important conclusions from this study. First, iterative resolution of the steady RTE using a Jacobi method is not stable. Second, solving the unsteady RTE iteratively with a directional basis leads to grid-like artifacts.

Finally, by using the Diuse Approximation, coupled with the hypothesis of a steady ux, we reduced the problem to a model that has the form of a diusion equation. This model does not present the same artifacts as the ones we observed during our study, while being stable for a satisfying range of parameters. We then used it to perform selective diusion by modifying the parameters of the RTE to achieve our goal. Some tools have also been proposed to interact with the diusion process. However, this work is, at the time of this manuscript, still in development, in particular the visualization and interaction aspects.

Concerning the interaction with Open Inventor, the thesis led to the development of two demonstrators: one for expressive rendering on surfaces (opaque and transparent) and one for computing visibility in volumes (based on [START_REF] Jönsson | Historygrams: Enabling interactive global illumination in direct volume rendering using photon mapping[END_REF]). A last one is still in development to demonstrate the possibilities of selective diusion.

Future Work Surfaces

Toward Global Illumination We have presented a data structure to eciently access neighbors in a multilayered representation. We think that the interest of this structure is not limited to shape depiction. Indeed, we could extend the amount of optical phenomena that we currently simulate. In particular, it could be used to perform approximated ray intersection and thus, simulate multiple reections or refractions. Also, ecient access to the real neighborhood, as well as depth information, could be used to approximate sub-surface scattering or translucency with a limited impact on performance.

Third Order Geometric Features In our solution, as we focused on opacity mapping, the only currently supported line rendering features are occluding contours. Thus, we plan to investigate the impact of using line-based rendering, based on inection points (DeCarlo et al. [2003]; [START_REF] Ohtake | Ridge-valley lines on meshes via implicit surface tting[END_REF]; Judd et al. [2007]; [START_REF] Kolomenkin | Demarcating curves for shape illustration[END_REF]) to enhance third order features on transparent surfaces.

Note that using third order features also requires to do another derivation pass, which may be too costly to be achieved in real time. Extending to third order features may then require to adapt the Bk-Buer to store more information and avoid a signicant computation overhead.

Support for a User Study The results presented in Chapter 2 are mostly based on internal feedback, thus our conclusion on the impact is probably biased.

However, it can be the support for a user-study to determine the impact on the perception of the shape of the object. In particular, if advanced line rendering is added, it would be interesting to study the impact on legibility.

Volumes

Optimization As stated in Chapter 4, the selective diusion application needs to be optimized. An aspect that we have yet to consider is to use smaller resolution to compute the diusion. This would both reduce the memory 100 David Murray impact and the computation cost. However, this implies that the results will probably be less accurate. Also, another solution would be to study the impact of reducing the bit precision of the information, but this presents the same issue as decreasing resolution. Thus, we must conduct a study to determine a good balance between accuracy and eciency. This step is crucial if we want to provide an ecient solution, and to integrate this application into Open Inventor. Also, depending on the conclusion of such a study, it could be interesting to use Level of Details (LoD). By using adequately the dierent levels, we could adapt the computation kernel to provide faster but less accurate results. However, LoD will probably induce a memory overhead compared to using only the top level.

Increasing convergence speed will improve the interactivity of our techniques. This aspect, combined with a reduced memory, should encourage the usage of such an approach. Visualization As stated in Chapter 4, the algorithm does perform selective diusion, but the visualization of its results is still limited. As the visualization is an important component of the application, it must be addressed in the future. This will probably require a closer interaction with both our application engineers and specialists in Graphical User Interfaces (GUI).

Also, we should study which quantities (e.g., uence rate, radiance, gradients, etc) are important in the understanding of the process. Also, we can study how well-dened transfer functions could be useful [START_REF] Ljung | State of the art in transfer functions for direct volume rendering[END_REF]) for this matter, as this aspect was not in the focus of this thesis.

Interaction We introduced many tools to manipulate the algorithm. However, some of them can be enhanced to be more user friendly. In particular, we should add the possibility of interacting with the lighting conguration by picking on the screen (on the slices) directly the positions for the light sources. This would also make the painting tool easier to manipulate and could allow the user to explore more elaborate congurations.

Also, we should propose an intuitive way to choose the dierent transfer functions involved. For the same purpose, we must ensure aordance in the way the parameters are exposed. This means that we must nd a solution so that interacting with the parameters is intuitive, while ensuring that we are within the stability domain of the method.

Toward Global Illumination Due to various approximations we made, our method is limited in the medium and material it can address. Thus, it can not perform global illumination as accurately as stochastic techniques.

However, its main advantage is its capacity to automatically correct itself. Thanks to this, the method can withstand many modications in terms of pa-rameters and light congurations (position, intensity...). Thus it could be used for lighting design, to help nd a good lighting conguration when rendering volumes.

Also, it could be used for pure surface rendering to perform sub-surface scattering. Indeed, sub-surface scattering is used to approximate light transport in participating media when rendering pure surfaces. By using small patches of voxels on the surfaces, it could be possible to use our algorithm to evaluate this scattering. be integrated for surfaces as well in a future version (10.x) of Open Inventor.

Transparent surfaces visualization

A second contribution was centered around transparent surfaces to propose an opacity modulation based on geometric features. Here is a list of the features that were proposed:

• Transparency group to handle the Bk-Buer. This group is responsible of managing the shaders and buers to operate the Bk-Buer • Adaptation of existing techniques designed for opaque surface to transparent one [START_REF] Kindlmann | Curvature-based transfer functions for direct volume rendering: Methods and applications[END_REF], [START_REF] Vergne | Radiance scaling for versatile surface enhancement[END_REF]).

• Opacity modulation using geometric information [START_REF] Murray | Shape Depiction for Transparent Objects with Bucketed k-Buer[END_REF]).

This work was presented at the EuroGraphics Symposium on Rendering (EGSR) in June 2016 in Dublin, in the Experimental Ideas & Implementations track [START_REF] Murray | Shape Depiction for Transparent Objects with Bucketed k-Buer[END_REF]). It has yet to be integrated into Open Inventor.

Visibility for Volumes

This third contribution is extracted from our research while studying the literature. The goal is to propose an enhanced shadowing option compared to the ones currently available in Open Inventor. Here is a list of the features that were proposed:

• Compute Shader pipeline in addition to the graphics pipeline in Open Inventor. This feature is necessary to compute the visibility factor and can obviously be used for any other computing purpose. • Implementation of a method derived from the visibility techniques from [START_REF] Ritschel | Fast GPU-based Visibility Computation for Natural Illumination of Volume Data Sets[END_REF] and [START_REF] Jönsson | A survey of volumetric illumination techniques for interactive volume rendering[END_REF].

The demonstration was presented at the RSNA exposition in 2017. It has yet to be integrated into Open Inventor.

Selective Diusion

This last contribution is still in development. Compared to other contributions, this one relies mostly on Open Inventor features. Indeed, except for the compute shader pipeline presented above which we use to compute diusion, everything else is implemented using Open Inventor (and VolumeViz) existing nodes.

However, due to its development state, it has not been presented yet. We can also note that all three component of β k,l are equal:

β k,l = (β k,l , β k,l , β k,l )
For a practical reason, the formulation we use must be adapted to a 3D volume(of size W × H × D): (k, l) ∈ [0, N ] 2 ⇐⇒ ((k x , k y , k z ), (l x , l y , l z )) ∈ ([0, W ], [0, H], [0, D]) 2 . That way, we can express the system as a reduced kernel that is computed for a voxel at position k. As for all cases were |l -k| > 1, the matrix will contains zeros, we can also reduce (k, l) to k + d, d ∈ {-1, 0, 1} 3 . Thus, the result for β k,l are the following coecients, that must be applied to the neighborhood, for each axis (x, y and z):

β d∈{-1,0,1} 3 = 1 9     -1 8 0 1 8 -1 2 0 1 2 -1 8 0 1 8     -1 2 0 1 2 -2 0 2 -1 2 0 1 2     -1 8 0 1 8 -1 2 0 1 2 -1 8 0 1 8     (A.5)
A.2 Mathematical details for R By using the same reasoning, the coecients of the matrix R will be the one in Equation A.6. R i,j,k,l = ρ 4π ψ i ( ω)ψ j ( ω) [-1,1] ϕ k (p)ϕ l (p) (A.6) We will use the notations K i,j,k,l = K t γ i,j δ k,l for clarity.

A.2.1 Computing γ i,j

Computing γ i,j consists in computing the coecients of the following matrix: As we have already calculated all the above terms when we evaluated α i,j , the result here can immediately be assumed: 

A.2.2 Computing δ k,l

Computing δ k,l is also straightforward. Indeed, as x, y and z are independent, we still have: ϕ k (p) = ϕ kx (x)ϕ ky (y)ϕ kz (z) Thus:

δ k,l = [-1,1] ϕ kx (x)ϕ lx (x) [-1,1]
ϕ ky (y)ϕ ly (y) [-1,1] ϕ kz (z)ϕ lz (z)

The dierent possible values have already been calculated for β k,l . So nally, to compute δ k,l , and using the same adaptation to 3D volumes as for β k,l , the following coecients must be applied to the neighborhood: We now have two possibilities in the interpretation of L i :

• L i is the radiance emitted by a neighboring element at p + ω i toward the current one at p. In this case: L i (p, ω i , t) ≡ L(p + ω i , -ω i , t). • L i is the radiance received at p from the direction ω i . In this case:

L i (p, ω i , t) ≡ L(p, ω i , t).
In the rst case, we cannot simplify any further 4π L i (p, ω i , t)dω i . However, in the second case, the integral corresponds to the denition of the uence rate and thus: For order 1, L(p, ω, t) and ∂L(p, ω,t) ∂t are also straightforward. By denition, order 1 of these two terms is the irradiance vector: For this term, we have: We can now separate the two terms (φ and E). For φ, we have: For E, we have:

1 4π φ(p, t)
3 4π 4π ω 4π P( ω, ω i )( ω i • E(p, t))dω i dω
which is similar to: [START_REF] Pierrat | Propagation et émission du rayonnement en milieu diusant. Application à l'imagerie des milieux complexes[END_REF] and [START_REF] Carminati | Ondes en milieux complexes[END_REF] proved that:

3 4π 4π ω 4π ω i P( ω, ω i )dω i • E(p, t) dω
4π ω i P( ω, ω i )dω i = g ω

As ω( ω T E(p, t)) = E T (p, t)( ω ω T ) where E is the rst moment of the radiance, and S its second order moment.

S is a symmetric tensor linked to its second moment, but is not exactly the second moment as the moment of order 0 is embedded in its trace. As a reminder, the RTE is: The rst order moment is obtained by projecting the RTE on ω and then integrating over the sphere ( 4π (RT E) ωdω).

1 c ∂L(p,
In the RTE, we have two kinds of terms, those based on L(p, t, ω) (including the time derivative) and the directional derivative ω • ∇ p L(p, t, ω).

For the rst ones, the rst moment is straightforward, it is by denition E. The gradient, however, needs to be developed. To do so, we will decompose it according to our radiance decomposition and dene ω = (x, y, z).

L(p, t, ω):

By denition, we directly have: For this term, we have: As we have embedded the moment of order 0 into the term of order 2, we can not use directly the radiative pressure here. Thus, we use the radiance decomposition to solve this term.

First we focus on the term depending on E. Thus we need to evaluate: Thus ( ω ω T )( ω T E(p, t)) is a matrix containing terms depending on x i y j z k with i + j + k = 3. As stated before in Appendix A, all the combinations of x i y j z k with i + j + k = 3 integrate to 0 on the sphere. As E(p, t) does not depend on ω, the result is: ( ω ω T )( ω T S(p, t) ω)dω) T

Once again, we have:

( ω ω T ) =  
x 2 xy xz xy y 2 yz xz yz z 2   and as S is symmetric, S 0,1 = S 1,0 , S 0,2 = S 2,0 , S 1,2 = S 2,1 , we have:

ω T S(p, t) ω = x 2 S 0,0 + y 2 S 1,1 + z 2 S 2,2 + 2xyS 0,1 + 2xzS 0,2 + 2yzS 1,2

Thus, the result will be a vector with a combination of terms depending on x i y j z k with i + j + k = 4. Using the same notation as for the E part, we obtain that the terms where i|j|k = 3 integrate to 0 over the sphere. The terms where i|j|k = 4 integrate to 4π 5 and the rest integrate to 4π 15 . The details for this integration is to long to appear here. The evaluation of the integral term can be computed with an analytic solver such as Maxima.

Thus, we have: The expression can be slightly simplied as S 0,0 + S 1,1 + S 2,2 is the trace of the matrix S (tr(S)), allowing us to regroup some terms: The second-order moment is obtained by multiplying the RTE by the matrix ω ω T and then integrating over the sphere ( 4π (RT E)( ω ω T )dω).

As S is not exactly the second moment of the radiance, we do not have an immediate simplication of the 0 order space derivative terms. However, the terms coming from the rst order moment ( E) disappear when computing the second order moment (i + j + k = 3). Thus, all that is left is: 4π ( ω ω T )( ω T S(p, t) ω)dω which by chance, has already been calculated in the previous section: Thus, these terms will be the following. As for the rst moment, we will evaluate this term by using the radiance decomposition.

First we focus on the term depending on E. Thus we need to evaluate:

4π ( ω ω T ) ω T ∇ p ( ω T E(p, t))dω
For this term, we need a little development:

ω T ∇ p ( ω T E(p, t)) =   x 2 δ x E 0 + xyδ x E 1 + xzδ x E 2 xyδ y E 0 + y 2 δ y E 1 + yzδ y E 2 xzδ z E 0 + yzδ z E 1 + z 2 δ z E 2  

B.2.3 Final System

Once assembled, the dierent terms lead us to the following system: 
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 1 Figure 1 Examples of image synthesis in Computer Graphics. (a) A footage of of the computer-animated movie Moana (courtesy of Disney TM ). (b) A footage of the movie Avatar (courtesy of XX th Century Fox TM ). (c) Physically-plausible rendering in The Witcher 3 (courtesy of BANDAI NAMCO Entertainment Europe TM ). (d) Non-photorealistic rendering in Valkyria Chronicles (courtesy of SEGA TM ).

Figure 2

 2 Figure 2 Dierent examples of visualization of scientic data. (a) For medical data: the neurons and synapses in the brain. (b) For seismic analysis: a reservoir. (c) For archaeology: segmenting the tooth of a skull. (d) For industrial inspection: visualizing defaults in a mechanic part. All images are courtesy of Thermo Fisher Scientic TM ).

  Figure 1.1 (a) Left: The notations that are used in this document: n is the normal of a surface, ω i is the incident direction, ω o is the outgoing direction. Right: the solid angle dω in steradian (sr) in an hemisphere Ω. (b) The four radiometric quantities used in this document.

  Figure 1.3 (a) Losses due to energy absorption. (b) Losses due to outward deection (Out-Scattering). (c) Gains due to inward deection (In-Scattering).

  Figure 1.6 (a) Smooth transition between two media resulting mostly in a forward diusive pattern. (b) Discontinuous transition between two media with signicant disparities, resulting in a reective pattern. Note that depending on the type of medium and its structure (e.g., solid state), it could result in a refractive pattern (like glass).

  Figure 1.8 The three BRDF behaviors: pure Lambertian, glossy and pure specular (mirror).

  Figure 1.9 An object (a) and its representation as a triangular mesh (b). (c) Several possible mesh representations of sphere, depending on the necessary renement: symbolic sphere (left), trade-o between representation and memory occupancy (center), accurately represented sphere (right).

  Figure 1.10 Graphics pipeline used in classical surface-based GPU rendering.

  Figure 1.11 The same volume represented as: (a) a set of slices. (b) voxels.

  Figure 1.13 (a) An environment map (left) and its computed mipmaps, one for each roughness value, resulting in slow decrease in the represented frequency. (b) An irradiance map, only low frequency information are kept. All images are from Lagarde [2012].

Figure 1

 1 Figure 1.14 (a) Shadowing in scene with completely absorbing objects and nonabsorbing atmosphere. A and B are then visible by the light while C is occluded. (b) The precomputation of the visibility factor used with absorbing media (in volume).

Figure 1 .

 1 Figure 1.15 Examples of drawings from the same point of view (Cole et al. [2008]). (a)(b)(c) Three drawings by three artists. (d) Superposition of 14 drawings.

  Figure 1.16 (a) Phong Shading on the left, Gooch Shading on the right (Gooch et al. [1998]). (b) Mean curvature shading: on the left with a texture (Kindlmann et al. [2003]), on the right with a color palette (Vergne et al. [2009]). (c) Style Transfer Function[START_REF] Bruckner | Style transfer functions for illustrative volume rendering[END_REF]). (d) Using semantic to control style[START_REF] Rautek | Semantic layers for illustrative volume rendering[END_REF]). (e) Radiance Scaling[START_REF] Vergne | Radiance scaling for versatile surface enhancement[END_REF]).

Figure 1 .

 1 Figure 1.17 Silhouettes and Occluding Contours. Images from DeCarlo et al. [2003].

  Figure 1.19 Line stylization of the Stanford Armadillo model with: (a) Suggestive Contours, (b) Demarcating Curves. Images are from Kolomenkin et al. [2008].

  Figure1.20 A scene graph displaying a red cone. A render action is performed on the root node, starting a traversal: (1) the camera node sets its properties on the state, then (2) the light node adds its properties, then (3) the material also sets the color properties and nally (4) the shape node triggers the execution of the Graphics Pipeline with the corresponding mesh and the properties accumulated on the state.

  Figure 1.21 Comparison between two sphere representations: (a) dened by a non-accurate mesh, (b) dened as a algebraic shape. The former is less accurate but has a rendering cost much lower than the latter, oering a perfectly accurate shape.

  Figure 1.22 Dierent lighting possibilities of VolumeViz: (a) using the Emission-Absorption model, (b) with per-sample direct lighting, (c) Emission-Absorption with Ambient Occlusion, (d) deferred direct lighting with Ambient Occlusion.

  Figure2.1 Importance of the rendering order with two examples of rendering order, the number on each plane corresponding to this order. On the left, objects have not been displayed in the order corresponding to their depth, leading to an inconsistent transparency. On the right, the objects have been displayed in the order corresponding to their depth.

Figure 2 . 2

 22 Figure 2.2 Depth Peeling with 4 layers (Everitt [2001]): rst layer on the left, fourth on the right.

  Figure 2.3 Principle of A-Buer (left) and k-Buer with 4 layers (right). Triangles on the top left corner illustrate the real depth order of the object.

Figure 2 . 4

 24 Figure 2.4 Pipeline used for feature-based stylization with Bucketed k-Buer.The discretization pass lls the buer Z, the bucket buer B and the data buer D with their respective information (see Section 2.3). The stylization extracts features and applies modulation on fragment's data (see Section 2.4). Finally, the blending pass consists in traditional OIT back-to-front composition.

Figure 2 . 6 .

 26 Figure 2.6. If the query is successful, data are stored to the given index, or rejected otherwise. Buer D thus contains W × H × k pairs (c, n).

Figure 2 . 7

 27 Figure 2.7 Importance of doing a reverse check. (a) A simple check, which results in biased results at creases. (b) A reverse check, with creases identied as such.

  [2010]), with bright convexities and dark concavities. It provided convincing results for our

Figure 2

 2 Figure 2.8 (a) The transfer function we use to modulate shading brightens convexities and darkens concavities. (b) Another example: bright curved surfaces, dark at ones. abs(κ mean ) 0 1 0

  Figure 2.10 Examples of Mean Curvature Transparency. (a,b) The transfer functions used are respectively the one presented in Figure 2.9 (45 FPS versus 120 FPS without modulation). (c,d) The transfer functions are shown in the top left corner (10 FPS, versus 20 FPS without modulation). Times are obtained with a resolution of 1200 by 800 for the bike, and 1000 by 1000 pixels for the UNC Powerplant, with 16 layers for both cases.

  Figure 2.11 (a) OIT using a k-Buer with a constant opacity value of 0.6 (50 FPS). (b) Mean Curvature Shading only. (c) Mean curvature transparency (20 FPS). The transfer function used is on the top-right corner. Model courtesy of dessindus.blogspot.fr. Times are obtained with a resolution of 1000 by 1000 pixels and 16 layers.

  Figure 2.11(a), simple OIT, in Figure 2.11(b), enhancing convexities and concavities on opaque surfaces, and nally in Figure 2.11(c) with transparency, enhanced as well with our method.

Figure 2 .

 2 Figure2.12 Cumulative rendering times of a xed number of fragments (32) for dierent bucket congurations (colored quads) and 512 by 512 pixels. Full lines depict cumulative times of our method, the dotted line represents the total time of the brute force approach. As a reference, a dual-pass k-Buer alone with constant transparency requires around 10 ms per frame.

  -extraction for Visualization of Transparent Surfaces

  Figure 3.1 Extending our previous solution for surfaces to volumes: Direct Volume Rendering (DVR) and isosurface rendering. (a) Sample-based mapping, on the left is classic DVR, on the right is DVR with our opacity mapping. Note that the mapping oers a better grasp of the conguration around rocks but can no longer see the branches, compared to classic DVR. (b) Applying our mapping to opaque approximated isosurfaces (bones in yellow, tissues in red). Note that the result amplies noise and reconstruction limitations of the volume.

Figure 3 . 2

 32 Figure 3.2 An illustration of a biased light transport algorithm. By using biased parameters to create or amplify discontinuities, we could enforce a conned light propagation, as illustrated on the schematic view.

Figure 3

 3 Figure 3.3 (a) Original image from which we want to preserve edges. (b) Gradient map of the original image, corresponding to the edges we want to preserve. (c) Energy "image", with the source and void otherwise, corresponding to image we want to smooth. (d) Energy diusion constrained by the image gradient (visible for comprehension).

  Figure 3.4 Using the Anisotropic Diusion to highlight the trachea in a human torso. (a) The process at time t = 0, the source is visible in green at the top of the trachea. (b) The result after a signicant number of iterations. The area in which the diusion occurred is depicted in green. It eectively corresponds to the trachea until it reaches the lungs.

Figure 3 . 5

 35 Figure 3.5 Alternation between positive (in green) and negative (in red) values over three iterations. The images are from a 2D implementation on Shadertoy.

  Figure 3.6 Using the moment-based methods leads to a grid pattern of positive (in green) and negative (in red) values. The images are from a 2D implementation on Shadertoy. (a) Based on a restricted neighborhood (4 direct neighbors). (b) Based on a extended neighborhood (4 direct and 4 diagonal neighbors). In (b), the problem is attenuated but still present.

Figure 4

 4 Figure 4.1 A plot of the ratio c∆t ∆ depending on β and α. All values below the curves satisfy the stability condition for its corresponding β and α.

Figure 4 . 2

 42 Figure 4.2 To solve the diusion process, we use a Ping Pong scheme. The input of the compute shaders alternates between Buer A and Buer B at each iteration.For rendering, the output buer is then used during ray-cast, thus, if the frame n uses Buer B for rendering, the frame n+1 will use Buer A.

Figure 4 . 3

 43 Figure 4.3 The set-up used to place the light source: three orthoslices corresponding to the three main axes are used to move the source along each one. The light source is represented, on both slices and the ray-casted view, by a green sphere.

  Figure 4.4 Comparison between our method (b) and our prior prototype with Anisotropic Diusion (a) . Diused energy is depicted in green.

  Figure 4.5 Dierent results obtained with our method (diused energy is depicted in green). (a,b) We compare two mapping for β: (a) using the opacity value from the transfer function, (b) using its gradient.

  Figure 4.7 Examples of using negative sources with a synthetic case, with positive values in green, negative in red. (a) Example of using a negative source to block the diusion. (b,c) In a tube with two holes, the diusion overows (b) which can be limited using negative sources (c) to dene an area that should not block the diusion.

  Figure 4.8 Examples of painting with the light sources, with a synthetic case. The light source is indicated in green on the slice, the rest of the diused energy is depicted in red in the slice, in purple in the volume. (a) The initial light source, consistent with the sphere manipulator. (b) Using the previous diusion in (a), the light source is extended to a tube. (c) An example of curved light source, to initiate the diusion in two of the four tube parts.

  Note that ϕ k (p) = 1 + p becomes ϕ k (p) = p when shifted from p to p + 1 and ϕ k (p) = 1 -p becomes ϕ k (p) = -p when shifted from p to p -1. This corresponds to the cases |l -k| = 1.

  there are many zeros in this matrix.

  , ω i )L i (p, ω i , t)dω i = φ(p, t) (B.3) B.1.2 Order 1 (µ 1 )L(p, ω, t):

  4π ω ω T ∇ p L(p, ω, t)dω = ∇ p µ 2 (L(p, ω, t)) 110David Murray

  ω i )dω i dωBy denition, 4π P( ω, ω i )dω i = 1 and 4π ωdω = ω i )dω i dω = 0

  ω T • ∇ p L(p, ω, t):

  4π ω ω T ∇ p L(p, ω, t)dω = ∇ p µ 2 (L(p, ω, t))

4πωT

  ∇ p ( ω T E(p, t)) ωdω = ( ∇ T p 4π( ω ω T )( ω T E(p, t))dω)

  4π ω T ∇ p ( ω T E(p, t)) ωdω = 0 (B.11)Now we focus on the term depending on S. Thus we need to evaluate:4π ω T ∇ p ( ω T S(p, t) ω) ωdω = ( ∇ T p 4π

4π(

  ω ω T )( ω T S(p, t) ω)dω = 4π 0,0 + δ x tr(S) + 2(δ y S 0,1 + δ z S 0,2 ) 2δ y S 1,1 + δ y tr(S) + 2(δ x S 0,1 + δ z S 1,2 ) 2δ z S 2,2 + δ z tr(S) + 2(δ x S 0,2 + δ y S 1,2 )

4π(

  ω ω T )( ω T S(p, t) ω)dω =

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix 3 Light Transport for Volume Exploration 3.1 Extending to a Full Volume Data . . . . . . . . . . . . . . . . . Solving the RTE . . . . . . . . . . . . . . . . . . . . . . . . . . Considerations about the Model . . . . . . . . . . . . . . 4.2 Application for Enhanced Visualization . . . . . . . . . . . . . . 4.2.1 Implementation details . . . . . . . . . . . . . . . . . . . 4.2.2 Controlling the Parameters . . . . . . . . . . . . . . . . . 4.2.3 Controlling the Sources . . . . . . . . . . . . . . . . . . . Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . Conclusion Summary of the Contributions . . . . . . . . . . . . . . . . . . . . . . Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Software Contributions Demonstrator for Surfaces . . . . . . . . . . . . . . . . . . . . . . . . Visibility for Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . Selective Diusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . A Steady RTE Expressed with Finite Elements A.1 Mathematical Details for M . . . . . . . . . . . . . . . . . . . . Mathematical details for R . . . . . . . . . . . . . . . . . . . . . Example of dierent transfer functions. . . . . . . . . . . . . . . 55 2.10 Examples of Mean Curvature Transparency. . . . . . . . . . . . 56 2.11 Comparing the results. . . . . . . . . . . . . . . . . . . . . . . . 57 2.12 Performances of opacity modulation with a Bk-Buer. . . . . . . 58 3.1 Extending the previous solution to volumes . . . . . . . . . . . . 62 3.2 Biased diusion in volume. . . . . . . . . . . . . . . . . . . . . . 63 3.3 Example of biased Anisotropic Diusion. . . . . . . . . . . . . . 66 3.4 Using the Anisotropic Diusion to highlight the trachea in a human torso. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.5 Alternation between positive and negative values with FEM. . . 74 3.6 Grid artifacts using moment-based method. . . . . . . . . . . . 78 4.1 Stability condition of our model. . . . . . . . . . . . . . . . . . . 85 4.2 Diusion computing process. . . . . . . . . . . . . . . . . . . . . 87 4.3 Placing light sources. . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4 Comparison with Anisotropic Diusion. . . . . . . . . . . . . . . 92 4.5 Using selective diusion with dierent parameters. . . . . . . . . 93 4.6 Overowing in the diusion process. . . . . . . . . . . . . . . . . 93 4.7 Examples of using negative sources. . . . . . . . . . . . . . . . . 94 4.8 Examples of using a persistent source. . . . . . . . . . . . . . . 95

	CONTENTS	CONTENTS
	David Murray xiii xvii xix Examples of image synthesis in Computer Graphics . . . . . . . Contents Contents List of Figures Notation and Acronyms List of Figures 1 2 Dierent examples of visualization of scientic data. . . . . . . . Notation and Acronyms Notations p spatial position. 4.3 Bibliography Acronyms CPU Central Processing Unit GPU Graphics Processing Unit 2D,3D Two, Three dimensions CAD Computer Assisted Design SDK Software Development Kit RTE Radiative Transfer Equation NPR Non-Photorealistic Rendering BRDF Bidirectionnal Reectance Distribution Function DVR Direct Volume Rendering AO Ambient Occlusion OIT Order-Independent Transparency LHS, RHS Left, Right Hand Side FTCS Forward Time Central Space FEM Finite Elements Method FDM Finite Dierences Method DOM Discrete Ordinate Method Notations . xiv David Murray xv xvi David Murray xviii David Murray xix

3.1.1 Volume Opacity Mapping . . . . . . . . . . . . . . . . . 3.1.2 Light Propagation . . . . . . . . . . . . . . . . . . . . . 3.1.3 Toward a Proof of Concept: Anisotropic Diusion . . . . 3.2 3.2.1 Constraints for the Resolution . . . . . . . . . . . . . . . 3.2.2 Resolution Methods . . . . . . . . . . . . . . . . . . . . . 3.3 Iterative Resolution using Finite-Elements . . . . . . . . . . . . 3.3.1 Ignoring In-Scattering . . . . . . . . . . . . . . . . . . . 3.3.2 Representation of the Quantities . . . . . . . . . . . . . . 3.3.3 Finite Element Approximation . . . . . . . . . . . . . . . 3.3.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 The Unsteady RTE . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.1 Using Time Finite Dierences . . . . . . . . . . . . . . . 3.4.2 Using a Moment-based Formulation . . . . . . . . . . . . 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Radiance Diusion Equation 4.1 Toward a Diusion Model . . . . . . . . . . . . . . . . . . . . . 4.1.1 Establishing the Diusion Equation . . . . . . . . . . . . 4.1.2 The Finite Dierence System . . . . . . . . . . . . . . . 4.1.3 4.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.5 Using the Sources as a Tool . . . . . . . . . . . . . . . . A.1.1 Computing α i,j . . . . . . . . . . . . . . . . . . . . . . . A.1.2 Computing β k,l . . . . . . . . . . . . . . . . . . . . . . . A.2 A.2.1 Computing γ i,j . . . . . . . . . . . . . . . . . . . . . . . A.2.2 Computing δ k,l . . . . . . . . . . . . . . . . . . . . . . . B The Order Moment Method in Details B.1 System with First Order Moment . . . . . . . . . . . . . . . . . B.1.1 Order 0 (µ 0 ) . . . . . . . . . . . . . . . . . . . . . . . . . B.1.2 Order 1 (µ 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . B.1.3 Final System . . . . . . . . . . . . . . . . . . . . . . . . B.2 System with Second Order Moment . . . . . . . . . . . . . . . . B.2.1 First Order Moment µ 1 . . . . . . . . . . . . . . . . . . . B.2.2 Second-Order Moment µ 2 . . . . . . . . . . . . . . . . . B.2.3 Final System . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Radiometric quantities . . . . . . . . . . . . . . . . . . . . . . . 1.2 Examples of participating media. . . . . . . . . . . . . . . . . . 1.3 Phenomena in participating media. . . . . . . . . . . . . . . . . 1.4 Propagation of a light ray through a sub-volume. . . . . . . . . 1.5 A cloud with its bounding box in front of a light panel. . . . . . 1.6 Transitions between media. . . . . . . . . . . . . . . . . . . . . . 1.7 Illustration of the Snell-Descartes law. . . . . . . . . . . . . . . 1.8 The three BRDF behaviors. . . . . . . . . . . . . . . . . . . . . 1.9 Surfaces represented by meshes. . . . . . . . . . . . . . . . . . . 1.10 Graphics pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . 1.11 Volume representation. . . . . . . . . . . . . . . . . . . . . . . . 1.12 Ray-marching process. . . . . . . . . . . . . . . . . . . . . . . . 1.13 Image-Based Lighting. . . . . . . . . . . . . . . . . . . . . . . . 1.14 Evaluating visibility. . . . . . . . . . . . . . . . . . . . . . . . . 1.15 Examples of drawings by artists. . . . . . . . . . . . . . . . . . . 1.16 Examples of shading-based expressive rendering. . . . . . . . . . 1.17 Silhouettes and Occluding Contours. . . . . . . . . . . . . . . . 1.18 Drawing Rdges and valleys. . . . . . . . . . . . . . . . . . . . . 1.19 Suggestive Contours and Demarcating Curves . . . . . . . . . . 1.20 An example of scene graph traversal. . . . . . . . . . . . . . . . 1.21 Algebraic sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . 1.22 Volume visualization with Open Inventor . . . . . . . . . . . . . 2.1 Importance of the rendering order with transparent surfaces. . . 2.2 Depth Peeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 A-Buer and k-Buer. . . . . . . . . . . . . . . . . . . . . . . . 2.4 Bucketed k-Buer pipeline. . . . . . . . . . . . . . . . . . . . . . 2.5 Description of the discretization process of the Bucketed k-Buer. 2.6 Fragment query for data storage pass. . . . . . . . . . . . . . . . 2.7 Importance of doing a reverse neighbor check. . . . . . . . . . . 2.8 Examples of shading modulation using curvature. . . . . . . . . xvii 2.9 ω vector. u T • v scalar product between two vectors. ∇ gradient operator. div( ω) divergence of a vector, analogous to ∇ T • ω.

ω i incident direction (toward light), normalized.

ω o outgoing direction (toward eye), normalized. n normal vector of a surface, normalized. Ω unit hemisphere integration domain.

Ω 2 unit sphere integration domain. L radiance. E irradiance.

  + 2(δ x S xx + δ y S xy + δ z S xz ) δ y tr(S) + 2(δ y S yy + δ x S xy + δ z S yz ) δ z tr(S) + 2(δ z S zz + δ x S xz + δ y S yz )

		1 c	∂ E(p, t) ∂t	+	1 5	 	δ x tr(S)   = E e (p, t) -K t (p) E(p, t)
	1 c	∂ ∂t	(2S(p) + tr(S(p))I)

  P( ω, ω i )L i (p, ω i , t): ( ω, ω i )L i (p, ω i , t)dω i dωAs only P depends on ω, we can write:4π 4π P( ω, ω i )dω L i (p, ω i , t)dω iBy denition, we have 4π P( ω, ω i )dω = 1, thus:

	Here we have to evaluate:
		4π	4π
	4π	4π

PP( ω, ω i )L i (p, ω i , t)dω i dω = 4π L i (p, ω i , t)dω i

  )L i (p, ω i , t)dω i = g E(p, t) combining all the results presented above, we can nally obtain our linear system, described by Equations B.7 and B.8, with K t = K a + (1 -g)K s . System with Second Order Moment We will detail here the computation of the rst and second order moments with the following radiance decomposition:L(p, ω, t) = ω T • E(p, t) + ω T S(p, t) ω

	B.2				
						T	, which integrates to 4π 3 E(p, t), we nally
	have:	3 4π 4π	ω
				µ 1	P( ω, ω i (B.6)
						4π
	B.1.3 Final System
		1 c	∂φ(p, t) ∂t	= -div( E(p, t)) -K a (p)φ(p, t) + φ e (p, t)	(B.7)
		1 c	∂ E(p, t) ∂t	= -	1 3	∇ (B.8)
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4π P( ω, ω i )( ω i • E(p, t))dω i dω = g E(p, t)

Finally, we obtain:

By p φ(p, t) -K t (p) E(p, t) + E e (p, t)

  t, ω) ∂t + ω T • ∇ p L(p, t, ω) = -K t (p) • L(p, t, ω) + Q e (p, t, ω)

	+

4π K s (p) • P(p, ω, ω ) • L i (p, t, ω )d ω (B.9) B.2.1 First Order Moment µ 1
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	1 c δ x tr(S) 1 ∂ E(p, t) ∂t + 1 5   c ∂ ∂t (2S(p) + tr(S(p))I) +	 2δ x    =
	(2S e (p) + tr(S e (p))I) -K t (p)(2S(p) + tr(S(p))I)
		(B.17)

sont principalement basés sur des retours de collègues et proches collaborateurs. Notre conclusion sur l'impact de ces travaux est probablement biaisée.Cependant, une étude utilisateur permettrait de déterminer plus ecacement l'impact de notre solution sur la perception de la forme de l'objet. En particulier, si le rendu par lignes est ajouté, il serait intéressant d'en étudier l'impact sur la lisibilité.VolumesOptimisations Comme indiqué au chapitre 4, l'application de diusion sélective doit être optimisée. Un aspect que nous n'avons pas encore pris en compte consiste à utiliser une résolution plus petite pour évaluer la diusion. Cela permettrait à la fois de réduire l'utilisation en mémoire et les coûts de calcul. Cependant, cela implique que les résultats seront probablement moins précis.x David Murray
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Software Contributions

In the additional chapter, we give an overview of the dierent contributions that have been proposed for Open Inventor. First we present the applications that focus on surfaces, then a demonstration for visibility in volumes that originated from state-of-the-art techniques, and nally, the current state of the prototype for selective diusion.

Demonstrator for Surfaces

The demonstration for surfaces is composed of two modules: one for opaque surfaces with state-of-the-art physically plausible as well as expressive rendering technique, and one that extends to transparent surfaces.

Opaque surfaces and lighting

A rst contribution for Open Inventor was developed in the early work of this thesis. It is mainly existing techniques, adapted to the Open Inventor pipeline.

Here is a list of the features that were proposed:

• Deferred renderer with two passes of derivation. This feature, based on an existing Open Inventor node, operates two deferred rendering passes to compute an order of derivative per pass. • Image-based Lighting (IBL) using [START_REF] Ramamoorthi | An ecient representation for irradiance environment maps[END_REF] for Lambertian BRDF and averaged mipmaps to approximate Preltered Environment Maps. • HDR tone mapping (Hable [2010]) to account for HDR environment maps.

• Physically-plausible BRDF model (using [START_REF] Burley | Physically-based shading at disney[END_REF]). • Screen-space STAR expressive rendering technique for opaque surfaces [START_REF] Vergne | Radiance scaling for versatile surface enhancement[END_REF], [START_REF] Kolomenkin | Demarcating curves for shape illustration[END_REF]). • Screen-Space Ambient Occlusion (Bavoil et al. [2008]).

The light model and IBL features have been integrated in the VolumeViz extension (release version 9.8 of Open Inventor) and presented at the Radiological Society of North America (RSNA) during its 2016 exposition. It should Appendix A

Steady RTE Expressed with Finite Elements

This chapter presents the mathematical details for the expression of the steady RTE using the Finite Element Method.

The steady RTE with an Emission-Absorption model can be expressed as the linear system:

The weak form of the steady RTE, Equation 3.15, is recalled below:

A.1 Mathematical Details for M

The left side of Equation A.1 represent the terms of the matrix M :

In Equation A.2, we can separate the position-dependent integral from the direction-dependent one, as the gradient is only a spatial one. Then, we obtain Equation A.3.

Computing α i,j = 4π ψ i ( ω)ψ j ( ω) ω∂ ω consists in computing 3 4 × 4 matrices (one for each component of ω):

For each term of these matrices, we must evaluate the integral for all directions.

We will use the spherical notation:

x = sin(θ) sin(φ)

The result is the following:

3 , 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 4π 3 , 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 4π 3 ) (0, 0, 0) (0, 0, 0) (0, 0, 0)

The important number of zeros is interesting as it implies that computing M will not require too many operations.

A.1.2 Computing β k,l

For this part, we will compute separately the components of β k,l . Furthermore, the position p can be decomposed, as x, y and z are independent, and we can write:

Also, the gradient ∇ p is decomposed into (d x ,d y ,d z ) and thus:

To compute β k,l , we recall the formulation of the basis ϕ.

Thus, the products of ϕ give:

The Order Moment Method in Details

This chapter presents the mathematical details to obtain our dierent momentbased models. We present the system obtained by using up to the rst order, then we present the system when considering up to the second order. For order 0, two terms are straightforward: L(p, ω, t) and ∂L(p, ω,t) ∂t . By denition, order 0 of these two terms is the uence rate:

B.1 System with First Order Moment

For this term, we have to proceed to a little reorganization:

Thus, by denition, we have:

So nally:

Note that µ 2 (L(p, ω, t)) is a symmetric tensor that corresponds to the radiative pressure. In the diuse approximation, this tensor is isotropic and simply becomes 1 3 φ(p, t)I.

This result can also be obtained by using directly the diuse approximation:

For the part on φ, as ω ω T is a symmetric matrix, we can use the equivalence:

As φ does not depend on ω, we can extract it from the integral:

with (see Appendix A.1 for the simplications):

For E(p, t), the formulation is a vector containing terms depending on : ω.x i * ω.y j ω.z k with i + j + k = 3, which integrates to 0. Thus we have:

Either way, we nally obtain:

Here we have to evaluate:

To simplify this term, we need to use the same consideration on L i as the one used previously: L i (p, ω i , t) ≡ L(p, ω i , t). This way, we can write:

Thus the term ( ω ω T ) ω T ∇ p ( ω T E(p, t)) leads to a combination of terms depending on x i y j z k with i + j + k = 4. Same as before, we obtain that the terms where i|j|k = 3 integrate to 0 over the sphere. The terms where i|j|k = 4 integrate to 4π 5 and the rest integrate to 4π 15 . Thus, what we have left after integration is:

we can reformulate into a more compact term:

Now we focus on the term depending on S. We want to evaluate: 4π

( ω ω T ) ω T ∇ p ( ω T S(p, t) ω)dω

Using the same ideas as the one used to establish Equation B.12, we can obtain a combination of terms depending on x i y j z k with i + j + k = 5. Using spherical notations, these terms integrate to 0 for any combination.

Thus, this term reduces to a null matrix.