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Titre Visualisation d'objets semi-transparents basée sur le transport lumineux

Résumé

Explorer et comprendre des données volumétriques ou surfaciques est un
des nombreux enjeux du domaine de l'informatique graphique. L'apparence
de telles données peut être modélisée et visualisée en utilisant la théorie du
transport lumineux. A�n de rendre une telle visualisation compréhensible, le
recours à des matériaux transparents est très répandu. Si des solutions existent
pour simuler correctement la propagation de la lumière et ainsi a�cher des ob-
jets semi-transparents, o�rir une visualisation compréhensible reste un sujet de
recherche ouvert. Le but de cette thèse est double. Tout d'abord, une analyse
approfondie du modèle optique pour le transport de la lumière et ses impli-
cations sur la génération d'images par ordinateur doit être e�ectuée. Ensuite,
cette connaissance pourra être utilisée pour proposer des solutions e�caces et
�ables pour visualiser des milieux transparents et semi-transparents.

Dans ce manuscrit, premièrement, nous présentons le modèle optique com-
munément utilisé pour modéliser le transport de la lumière dans des milieux
participatifs, sa simpli�cation si l'on réduit la situation à des surfaces et la
manière dont ces modèles sont utilisés en informatique graphique pour générer
des images.

Deuxièmement, nous présentons une solution pour améliorer la représen-
tation des formes dans le cas particulier des surfaces. La technique proposée
utilise le transport lumineux comme base pour modi�er le processus d'éclairage
et modi�er l'apparence et l'opacité des matériaux.

Troisièmement, nous nous concentrons sur la problématique de l'utilisation
de données volumétriques au lieu du cas simpli�é des surfaces. Dans ce cas,
le fait de ne modi�er que les propriétés du matériau a un impact limité. Nous
étudions donc comment le transport lumineux peut être utilisé pour fournir
des informations utiles à la compréhension de milieux participatifs.

En�n, nous présentons notre modèle de transport lumineux pour les milieux
participatifs, qui vise à explorer une région d'intérêt d'un volume.

Mots-clés Rendu, Carte Graphique, Rasterisation, Temps-Réel, Eclairage
Global, Rendu Volumique, Di�usion
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Title Legible Visualization of Semi-Transparent Objects using Light Trans-
port

Abstract

Exploring and understanding volumetric or surface data is one of the chal-
lenges of Computer Graphics. The appearance of these data can be modeled
and visualized using light transport theory. For the sake of understanding
such a data visualization, transparent materials are widely used. If solutions
exist to correctly simulate light propagation and display semi-transparent ob-
jects, o�ering an understandable visualization remains an open research topic.
The goal of this thesis is twofold. First, an in-depth analysis of the optical
model for light transport and its implication on computer generated images
is performed. Second, this knowledge can be used to tackle the problematic
of providing e�cient and reliable solution to visualize transparent and semi-
transparent media.

In this manuscript, we �rst introduce the general optical model for light
transport in participating media, its simpli�cation to surfaces, and how it is
used in computer graphics to generate images.

Second, we present a solution to improve shape depiction in the special case
of surfaces. The proposed technique uses light transport as a basis to change
the lighting process and modify material appearance and opacity.

Third, we focus on the problem of using full volumetric data instead of the
simpli�ed case of surfaces. In this case, changing only material properties has
a limited impact, thus we study how light transport can be used to provide
useful information for participating media.

Last, we present our light transport model for participating media that
aims at exploring part of interest of a volume.

Keywords Rendering, GPU, Rasterization, Real-Time, Global Illumination,
Volume Rendering, Scattering

Laboratoire d'accueil Laboratoire Photonique, Numérique, Nanosciences
LP2N (UMR 5298) CNRS - Thermo Fisher Scienti�c R&D
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Résumé long

Contexte et motivations

L'informatique graphique est la science qui inclut toutes les méthodes pour
transmettre des informations visuelles à l'aide d'un ordinateur. En particulier,
la synthèse (ou le rendu) d'images permet la production d'images à l'aide d'une
scène numérique. Il s'agit d'un processus répandu, utilisé dans de nombreux
domaines: �lms d'animation par ordinateur , e�ets spéciaux, jeux vidéo, visu-
alisation scienti�que ...

Cette thèse est menée au sein de Thermo Fisher Scienti�c
TM

pour le dévelop-
pement de démonstrateurs pour sa plateforme de logiciel Open Inventor R©. Son
objectif principal est de fournir des solutions pour la visualisation de données
scienti�ques. Parmi les domaines d'utilisation de ces données, on peut citer
notamment : le domaine médical, l'analyse sismique et l'analyse des sols, les
sciences naturelles, la conception et l'inspection industrielles, etc.

La plupart de ces domaines recourt régulièrement à l'utilisation d'objets
semi-transparents (dé�nis comme des couches de surfaces transparentes ou des
volumes continus) pour l'exploration et la visualisation d'objets complexes.
A�cher correctement des objets transparents nécessite de comprendre com-
ment la lumière est censée interagir avec ces objets, mais aussi de transmettre
ces informations de manière interactive et lisible. Le premier problème peut
se résoudre avec la théorie du transport de la lumière, le second en choisissant
la méthode de rendu appropriée.

La méthode de rendu dépend fortement du besoin de l'application et, par
conséquent, le style souhaité n'est pas nécessairement le même. Plusieurs
méthodes de rendu ont été conçues pour répondre à cette diversité. Par ex-
emple, le rendu physiquement plausible (Lewis [1993]) consiste à décrire aussi
�dèlement que possible les e�ets produits par l'interaction lumière-matière
(également appelée transport de lumière, Veach and Guibas [1997]). A l'opposé,
le rendu expressif (Lansdown and Scho�eld [1995]), également appelé rendu
non photoréaliste, détourne et modi�e le transport de lumière à des �ns de
stylisation, e.g., le style illustratif (Gooch and Gooch [2001]).

Dans cette thèse, nous nous intéressons donc à ces objets semi-transparents
(les surfaces transparentes et, principalement, les volumes) pour en améliorer
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la perception. Nous proposons d'abord une solution pour améliorer la lisibilité
des surfaces transparentes. Nous introduisons ensuite une nouvelle approche
utilisant le transport lumineux pour explorer des volumes.

Organisation du document

Ce manuscrit est divisé en quatre chapitres.
Le chapitre 1 présente les di�érentes bases scienti�ques et techniques néces-

saires pour comprendre les concepts développés dans le manuscrit, ainsi que
les problèmes que nous souhaitons résoudre. À cette �n, nous discutons du
modèle d'interaction lumière-matière appliqué aux volumes et aux surfaces,
ainsi que de son utilisation en informatique graphique. Nous présentons en-
suite quelques techniques de rendu expressif. En�n, nous présentons également
Open Inventor, la boîte à outils de Thermo Fisher Scienti�c

TM

, dans laquelle
nous devons développer les solutions présentées dans ce manuscrit.

Le chapitre 2 cible les problèmes spéci�ques des surfaces transparentes et
les solutions pour le rendu de celles-ci. Le principal problème consiste à o�rir
une visualisation lisible de di�érentes couches de surfaces transparentes. Nous
proposons une solution visant à améliorer la représentation du relief de ces
surfaces. En particulier, nous présentons dans ce chapitre plusieurs structures
de données (y compris la nôtre) adaptées au rendu en temps réel de surfaces
transparentes.

Le chapitre 3 se concentre sur les volumes continus. Les techniques présen-
tées dans le chapitre 2 étant limitées lorsqu'elles sont appliquées à des vol-
umes, nous introduisons une nouvelle approche inspirée de la �uoroscopie en
médecine. Cette nouvelle métaphore est basée sur le transport lumineux pour
améliorer la représentation des volumes. Nous étudions également di�érentes
approches numériques a�n de déterminer les caractéristiques les mieux adap-
tées à notre application.

Basé sur ces caractéristiques, le Chapitre 4 présente la technique de rendu
que nous avons choisie pour résoudre le transport de la lumière dans des vol-
umes à des �ns d'exploration expressive. En e�et, nous expliquons comment
utiliser ce modèle pour identi�er une région d'intérêt. Nous présentons égale-
ment quelques outils et pistes de ré�exion pour utiliser ce modèle.

Conclusion

Dans ce document, nous nous sommes tout d'abord intéressés au transport
de la lumière et à son implication dans le rendu de surfaces et de volumes
transparents. Nous avons également étudié comment le modi�er pour fournir
des informations supplémentaires à l'aide de techniques de rendu non pho-
toréalistes. En particulier, nous avons comparé les techniques utilisées dans la
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littérature avec les fonctionnalités d'Open Inventor.

Les conclusions de cette étude ont conduit au développement d'une solu-
tion pour améliorer la représentation de forme pour les surfaces transparentes.
Notre proposition concernait deux aspects du processus de rendu. Première-
ment, pour calculer e�cacement des gradients d'informations dans un espace
3D, nous concevons une structure de données permettant un calcul rapide de
ces informations. Deuxièmement, nous avons proposé de moduler l'opacité
des surfaces à l'aide d'informations géométriques telles que la courbure de sur-
face. Cette partie du travail a été publiée lors de la conférence EuroGraphics
Symposium Rendering en 2016 (Murray et al. [2016]).

Après avoir abordé le cas des surfaces transparentes, nous avons abordé
le cas des volumes. Nous avons d'abord étudié la manière dont notre solu-
tion précédente pouvait s'étendre aux volumes, qui s'est avéré n'être adapté
qu'aux isosurfaces. En retournant aux bases du transport lumineux (l'équation
de transfert radiatif, ETR), nous avons essayé de le modi�er dans le but de
pouvoir contraindre la di�usion de la lumière. Nous avons d'abord testé l'idée,
avec succès, avec une version basée sur l'algorithme de Di�usion Anisotropique
(Perona and Malik [1990]). Nous avons ensuite étudié di�érentes techniques
numériques a�n de déterminer celle qui convient le mieux pour obtenir le même
type de résultats avec l'ETR. Nous avons tiré deux conclusions importantes de
cette étude. Premièrement, la résolution itérative de l'ETR, dans sa forme sta-
tionnaire, à l'aide d'une méthode de Jacobi n'est pas stable. Deuxièmement,
résoudre l'ETR instationnaire de manière itérative avec une base directionnelle
conduit à des artefacts sous forme de grille.

En�n, en utilisant l'approximation de di�usion (Stam [1995]), associée à
l'hypothèse d'un �ux constant, nous avons réduit le problème à un modèle
ayant la forme d'une équation de di�usion. Ce modèle ne présente pas les
mêmes artefacts que celui observé lors de notre précédente étude, tout en étant
stable pour une gamme de paramètres satisfaisante. Nous l'avons ensuite util-
isé pour e�ectuer une di�usion sélective en modi�ant les paramètres de l'ETR
pour atteindre notre objectif. Certains outils ont également été proposés pour
interagir avec le processus de di�usion. Cependant, au moment de la rédaction
de ce document, ce travail est toujours en développement, particulièrement en
ce qui concerne la visualisation et l'interaction.

Concernant les travaux spéci�ques à Open Inventor, la thèse a conduit au
développement de deux démonstrateurs: un pour le rendu expressif sur les
surfaces (opaques et transparentes) et l'autre pour le calcul de la visibilité
dans les volumes (basé sur la technique de Jönsson et al. [2012]). Un dernier
est en cours de développement pour démontrer les possibilités de la di�usion
sélective.
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Travaux futurs

Surfaces

Vers l'illumination globale Nous avons présenté une structure de don-
nées permettant d'accéder e�cacement aux voisins dans une représentation à
plusieurs couches. Nous pensons que l'intérêt de cette structure ne se limite
pas à la représentation des formes. En e�et, nous pourrions augmenter la quan-
tité de phénomènes optiques que nous simulons actuellement. Cette structure
pourrait être utilisée pour e�ectuer une intersection approximative de rayons
et ainsi simuler une ré�exion ou une réfraction. De plus, un accès e�cace au
voisinage réel, ainsi que des informations sur la profondeur, pourraient être
utilisés pour estimer la di�usion opérant sous la surface, ou la translucidité,
tout en ayant un impact limité sur les performances.

Dérivées du troisième ordre Dans notre solution, comme nous nous con-
centrions sur la modulation d'opacité, les seules fonctionnalités de rendu de
ligne actuellement prises en charge sont les contours occlusifs. Ainsi, nous
prévoyons d'étudier l'impact de l'utilisation du rendu par lignes, basé sur les
points d'in�exion (DeCarlo et al. [2003]; Ohtake et al. [2004]; Judd et al. [2007];
Kolomenkin et al. [2008]), a�n de mettre en valeur ce type d'information sur
des surfaces transparentes.

Il est à noter que l'utilisation de fonctionnalités de troisième ordre néces-
site également d'e�ectuer une autre passe de dérivation, ce qui peut s'avérer
coûteux pour être réalisé en temps réel. L'extension à des fonctionnalités de
troisième ordre peut alors nécessiter d'adapter notre structure de données a�n
de stocker plus d'informations et d'éviter un surcout en calcul important.

Support pour une étude utilisateur Les résultats présentés dans le chapitre
2 sont principalement basés sur des retours de collègues et proches collabora-
teurs. Notre conclusion sur l'impact de ces travaux est probablement biaisée.

Cependant, une étude utilisateur permettrait de déterminer plus e�cace-
ment l'impact de notre solution sur la perception de la forme de l'objet. En
particulier, si le rendu par lignes est ajouté, il serait intéressant d'en étudier
l'impact sur la lisibilité.

Volumes

Optimisations Comme indiqué au chapitre 4, l'application de di�usion sélec-
tive doit être optimisée. Un aspect que nous n'avons pas encore pris en compte
consiste à utiliser une résolution plus petite pour évaluer la di�usion. Cela
permettrait à la fois de réduire l'utilisation en mémoire et les coûts de calcul.
Cependant, cela implique que les résultats seront probablement moins précis.
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En outre, une autre solution consisterait à réduire la précision de l'information
que nous traitons, mais cela présente le même problème que celui de la diminu-
tion de la résolution. Nous devons donc mener une étude pour déterminer un
bon équilibre entre précision et e�cacité. Cette étape est cruciale si nous
voulons fournir une solution e�cace et par la suite intégrer cette application
à Open Inventor.

En outre, en fonction de la conclusion de cette étude, il pourrait être intéres-
sant d'exploiter niveaux de détail des textures. En utilisant correctement les
di�érents niveaux, nous pourrions adapter le noyau de calcul pour fournir des
résultats plus rapides, mais moins précis. Cependant, cela induira probable-
ment une surcharge de mémoire par rapport à l'utilisation du niveau supérieur
uniquement.

L'augmentation de la vitesse de convergence améliorera l'interactivité de
nos techniques. Cet aspect, associé à une mémoire réduite, devrait encourager
l'utilisation d'une telle approche.

Visualisation Comme indiqué au chapitre 4, l'algorithme e�ectue une dif-
fusion sélective, mais la visualisation de ses résultats reste limitée. La visu-
alisation étant un élément important de l'application, elle doit être traitée à
l'avenir. Cela nécessitera probablement une interaction plus étroite avec nos
ingénieurs d'application et nos spécialistes en interfaces graphiques.

En outre, nous devrions étudier quelles grandeurs (e.g., taux de �uence,
luminance, gradients, etc) sont importantes à a�cher pour la compréhension
du processus. Nous pouvons également étudier la manière dont des fonctions
de transfert bien dé�nies pourraient être utiles (Ljung et al. [2016]) pour cette
question, car cet aspect n'était pas au centre de cette thèse.

Interactions Nous avons introduit de nombreux outils pour manipuler l'algo-
rithme. Cependant, certains d'entre eux peuvent être améliorés pour être plus
intuitifs. En particulier, nous envisageons d'ajouter la possibilité d'interagir
avec la con�guration d'éclairage en sélectionnant directement sur l'écran (sur
les tranches du volumes) les positions des sources lumineuses. Cela rendrait
également l'outil de peinture plus facile à manipuler et pourrait permettre
d'explorer des con�gurations plus élaborées.

Nous devrions également proposer un moyen intuitif de choisir les dif-
férentes fonctions de transfert utilisées, autant pour le calcul que l'a�chage.
Dans le même but, nous devons veiller à ce que la manière dont les paramètres
seront exposés reste intuitive pour l'utilisateur. Nous devons trouver une solu-
tion pour que l'interaction avec les paramètres soit intuitive, tout en s'assurant
de rester dans le domaine de convergence de la méthode.

Vers l'illumination globale En raison des diverses approximations que
nous avons e�ectuées, notre méthode est limitée quant au type de milieux et
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de matériaux qu'elle peut traiter. Ainsi, notre solution ne peut pas évaluer
l'illumination globale aussi précisément que les techniques stochastiques.

Cependant, son principal avantage est sa capacité à se corriger automa-
tiquement. Grâce à cela, l'algorithme peut supporter de nombreuses modi�-
cations en terme de paramètres et de con�guration de lumière (position, in-
tensité...). Ainsi, il pourrait être utilisé pour permettre de trouver une bonne
con�guration d'éclairage lors du rendu des volumes.

En outre, il pourrait être utilisé pour le rendu de surface pure a�n de
réaliser une di�usion sous-surface. En e�et, la di�usion sous-surface est utilisée
pour approximer le transport de la lumière dans les milieux participants lors
du rendu de surfaces pures. En utilisant des petits volumes répartis sur les
surfaces, notre algorithme pourrait être utilisé pour évaluer cette di�usion.
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Ω unit hemisphere integration domain.
Ω2 unit sphere integration domain.
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Introduction and Motivation

Context and Motivations

Computer Graphics is the science that includes all the methods to convey visual
information using a computer. In particular, image synthesis (or rendering)
enables the production of images using a digital scene. This is a widespread
process, used in many areas: computer-animated movies (Figure 1(a)), visual
e�ects (Figure 1(b)), video games (Figures 1(c) and 1(d)), scienti�c visualiza-
tion...

(a) (b)

(c) (d)

Figure 1 � Examples of image synthesis in Computer Graphics. (a) A footage of

of the computer-animated movie Moana (courtesy of Disney
TM

). (b) A footage of the

movie Avatar (courtesy of XXth Century Fox
TM

). (c) Physically-plausible rendering

in The Witcher 3 (courtesy of BANDAI NAMCO Entertainment Europe
TM

). (d)

Non-photorealistic rendering in Valkyria Chronicles (courtesy of SEGA
TM

).
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Context and Motivations

(a) (b) (c) (d)

Figure 2 � Di�erent examples of visualization of scienti�c data. (a) For medical
data: the neurons and synapses in the brain. (b) For seismic analysis: a reservoir.
(c) For archaeology: segmenting the tooth of a skull. (d) For industrial inspection:
visualizing defaults in a mechanic part. All images are courtesy of Thermo Fisher
Scienti�c

TM

).

This thesis is conducted within Thermo Fisher Scienti�c
TM

to develop
demonstrators for the Open Inventor R© toolkit. Its main purpose is to pro-
vide solutions for the visualization of scienti�c data. Among the area in which
such data are used, we can cite: the medical �eld (Figure 2(a)), seismic and
soil analysis (Figure 2(b)), natural sciences (Figure 2(c)), industrial conception
and inspection (Figure 2(d)), etc.

In most of these �elds, we often have to rely on the usage of semi-transparent
objects (de�ned either as layers of transparent surfaces or continuous volumes)
for exploration and visualization. Addressing transparent objects correctly re-
quires to understand how light is supposed to interact with these objects. It
also requires to convey the information in an interactive and legible way. The
�rst issue is addressed by studying light transport theory, the second one by
choosing the appropriate rendering method.

The rendering method is also highly dependent on the need of the appli-
cation and, accordingly, the targeted style of the image is not necessarily the
same. Several rendering methods have been designed to address this diversity.
For example, physically plausible rendering (Lewis [1993]) consists in depict-
ing as faithfully as possible the e�ects produced by the light-matter interaction
(also called light transport, Veach and Guibas [1997]), as illustrated in Fig-
ure 1(c). On the other hand, expressive rendering (Lansdown and Scho�eld
[1995]), also called non-photorealistic rendering (NPR), trades light transport
for stylisation, e.g., illustrative style (Gooch and Gooch [2001]), as illustrated
in Figure 1(d).

In this thesis, we address both representations, transparent surfaces and,
mostly, volumes. We �rst propose a solution to enhance the legibility of trans-
parent surfaces. We then introduce a new approach using light transport to
explore volumes.
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Manuscript Organization

This manuscript is divided into four chapters.
Chapter 1 presents the di�erent scienti�c and technical background that are

needed to understand the concepts developed in the manuscript, as well as the
problems that we want to address. For this purpose, we discuss the model of
light transport applied to volumes and surfaces, and how it is used in Computer
Graphics. We then present some techniques of expressive rendering. Finally,
we also present Open Inventor, the toolkit from Thermo Fisher Scienti�c

TM

,
in which we have developed the solutions presented in this manuscript.

Chapter 2 targets the speci�c problems and solutions for rendering trans-
parent surfaces. The main problem is to o�er a legible visualization of di�erent
layers of transparent surfaces. We introduce our proposition to enhance sur-
face depiction. In particular, we present in this chapter several data structures
(including our own) adapted to real-time rendering of transparent surfaces.

Chapter 3 focuses on continuous volumes. As the techniques presented in
Chapter 2 are limited when applied to volumes, we introduce a new approach
inspired by �uoroscopy imaging in medecine. This new metaphor is based
on light transport to enhance depiction in volumes. We also study di�erent
numerical approaches in order to determine the characteristics that best suit
our application.

Based on these characteristics, Chapter 4 presents the rendering technique
we have chosen to solve light transport in volumes for the purpose of expressive
exploration. Indeed we introduce how we can use this model to help to identify
a region of interest.

All the software contributions and publications are summarized after the
conclusion, in a dedicated chapter.
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Chapter 1

Rendering Volumes and Surfaces

This chapter is dedicated to the presentation of the prerequisites that are nec-
essary to understand the work presented in this manuscript. This background
implies several physical models to describe light transport in di�erent con�g-
urations. It also includes the technical details that are needed to implement
these models in Computer Graphics.

First, the physical models rely on several radiometric quantities. We then
focus on the model that describes the light transport in the case of participating
medium, as well as the link between media and surfaces, including the model
used for light transport with surfaces. Next, we brie�y present how these
di�erent models are used in Computer Graphics for image synthesis, with the
approximated methods for real-time applications and more physically accurate
methods for simulation applications. Finally, we give some details about the
Open Inventor SDK, in which the solutions presented in this manuscript have
to be developed.

1.1 Prerequisite: Radiometric Quantities

Before presenting any theories and models, we introduce the International
System of Units used to measure radiometric quantities. As these radiometric
quantities are widely used in this document, knowing them is strongly rec-
ommended. Note that in all the quantities presented in this manuscript, all
vectors are considered normalized: ||~ω|| = 1, thus we sometimes use the equiv-
alence between the cosinus of an angle cos(θ) and the scalar product of the
two corresponding vectors (~u, ~v):

cos(θ) = ~uT · ~v

Flux F Also called the radiant power, it represents the total light power,
regardless of any spatial or angular distribution. It is expressed in watt W,
with 1W = 1J.s−1.

5



1.2. The Radiative Transfer Equation

Irradiance E It corresponds to the radiant �ux received by a surface, mea-
sured per unit area. It is expressed in watt per square meter (W.m−2). It
relates to the radiant �ux with the following equation (where ∂A is a surface
unit):

E =
∂Fincoming

∂A

Radiosity B It corresponds to the radiant �ux that leaves a surface, mea-
sured per unit area. It is expressed in watt per square meter (W.m−2). It
relates to the radiant �ux with the following equation (where ∂A is a surface
unit):

B =
∂Foutgoing

∂A

Radiance L It corresponds to the radiant �ux that crosses a surface for a
speci�c direction, measured per unit solid angle, per unit projected area. It is
expressed in watt per steradian (sr) per square meter (W.sr−1.m−2). It relates
to the radiant �ux with the following equation (where ∂A is a surface unit and
∂ω a solid angle unit):

L =
∂2F

∂A · ∂ω

1.2 The Radiative Transfer Equation

In this section, we present a theory for light transport in participating media.
This theory is based on a statistical approach and leads to a transport equation
commonly referred to as the Radiative Transfer Equation (RTE) and was �rst
introduced in the early XXth century for solving radiative problem (Khvol-
son [1890] and Schuster [1905]). It was later extended to astrophysics in the
50's (Chandrasekhar [1950]) and neutron transport (Case and Zweifel [1967]).
Finally, it was introduced in Computer Graphics by Kajiya and Von Herzen
[1984].

To present this transport theory and the di�erent models that are derived
from it, we �rst introduce the phenomena that occur in a participating medium
at a mesoscopic scale and then present their physical origin at the scale of a
photon. Then, from these phenomena, we establish the Radiative Transfer
Equation and �nally, we present how it can be reduced to a more practical
equation for cases with mostly air and opaque media.

1.2.1 Phenomena in a Participating Medium

We �rst consider a light beam and focus on its energy. When crossing a
participating medium, this beam may be subjected to energy losses or gains.

6 David Murray
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~ωi ~ωo

~n

p

dω

dA

r

Ω

(a)

F E B L

(b)

Figure 1.1 � (a) Left: The notations that are used in this document: ~n is the
normal of a surface, ~ωi is the incident direction, ~ωo is the outgoing direction. Right:
the solid angle dω in steradian (sr) in an hemisphere Ω. (b) The four radiometric
quantities used in this document.

(a) (b)

Figure 1.2 � Examples of participating media: (a) LASER (535 nm) in a
aquarium �lled with water mixed with a �uorescein solution, image from educa-
tion.meteofrance.fr. (b) Sunlight across a cloudy atmosphere.

These gains and losses are often separated in four phenomena:

1. Emission: energy gain if the media creates some light energy.
2. Absorption: energy loss by energy absorption and conversion.
3. Out-scattering: energy loss by de�ection toward another direction.
4. In-scattering: energy gain by de�ection from particles nearby.

Examples of real-life participating media in which all these aspects occur are

7
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1.2. The Radiative Transfer Equation

shown in Figure 1.2. More details on the underlying process of absorption and
scattering are presented in Section 1.2.2.

1.2.2 Collision Events and Mean Free Path

Before going into details, please note that the following demonstration is made
using a corpuscular approach as it is easier to understand the di�erent phe-
nomena with particles. Note that it can also be established with an ondulatory
approach, we refer the reader to Hecht [2002] for an introduction to wave op-
tics.

In the chosen approach, light is composed of energy particles known as
photons. The energy that corresponds to a photon is directly linked to its
wavelength with the relation:

Ephoton =
h · c
λ

where h is the Planck constant, c is the speed of light in the vacuum and λ
is the wavelength. Therefore, whenever we talk about photons, it equivalently
refers to: the particle, its energy and its wavelength.

When crossing a medium, a photon may collide with particles. Several
phenomena can occur:

1. The photon is absorbed by the particle and converted in another form
(heat, electric current...).

2. The photon is absorbed by the particle and re-emitted with the same
energy. It may be emitted in any direction, depending on the orientation
of the particle in medium. This event can then be interpreted as the
photon being de�ected.

3. The photon is absorbed by the particle and another one is emitted, with
a reduced energy. If the medium is �uorescent, the photon is emitted
instantly, whereas if it is phosphorescent, the emission will occur later
in time. This event can be separated in absorption (�rst case) and self-
emission.

When dealing with macroscopic information, these events can be modeled
as probability densities over a unit distance, related to: the probability of
a collision while crossing a certain distance, the probability of this collision
resulting in an absorption or the probability of it resulting in a de�ection. All
events mixed, the probability of a collision is expressed by the Mean Free Path
which corresponds to the average distance between two events, in meters.

In the following paragraphs, we present a de�nition of the two aforemen-
tioned cases, i.e., absorption and scattering. The third one can be virtually
separated into an absorption event followed by an emission event and thus, it
does not need further explanation.

8 David Murray
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(a) (b) (c)

Figure 1.3 � (a) Losses due to energy absorption. (b) Losses due to outward
de�ection (Out-Scattering). (c) Gains due to inward de�ection (In-Scattering).

Absorption This phenomenon is introduced in Figure 1.3(a). Many media,
in particular dielectric ones, can absorb photon energy without re-emitting it
as light. The absorption coe�cient (in m−1), noted Ka, provides a practical
way to relate to the probability that a photon is absorbed by a particle when
crossing a unit distance. The probability density of a photon being absorbed
over a distance l is e−Kal, as stated in the Beer-Lambert law. From this, we
can de�ne the absorption length labs, also known as the absorption Mean Free
Path. It corresponds to the characteristic length of an exponential model, thus
labs = 1

Ka
. Note that this length e�ectively corresponds to the average distance

between two absorption events:

labs =

∫ ∞
0

Ka · s · e−Kasds

Absorption, if not followed by a re-emission, results in an energy loss for a
light beam crossing an absorbing medium.

Scattering The scattering is introduced in Figures 1.3(b) and 1.3(c). Scat-
tering events, when photons are de�ected away from their incoming direction,
result in an energy loss for a light beam, as illustrated in Figure 1.3(b). But,
unlike absorption, scattering events can also cause a light beam to increase in
energy. This occurs when neighboring particles de�ect photons from other light
beams into the one we are considering, as shown in Figure 1.3(c). The �rst
case is often referred to as out-scattering and the second one as in-scattering.

The scattering coe�cient is noted Ks (in m−1). As for absorption, we can
de�ne the scattering Mean Free Path lscat:

lscat =
1

Ks

When this process occurs for a photon beam, the photons scatter in dif-
ferent directions, resulting in an angular distribution of the scattered energy.
This dispersion is quanti�ed by a Phase Function.
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1.2. The Radiative Transfer Equation

Phase Function As stated above, the Phase Function quanti�es the portion
of the incoming energy that is de�ected in a speci�c direction (van de Hulst
[1981]). As it corresponds to an angular distribution, it has a unit of inverse
solid angle: sr−1. It depends on the incoming direction (noted ~ωi), and the
outgoing direction (noted ~ωo). To handle heterogeneity, the phase function
also depends on the position (p). In this manuscript, the Phase Function is
noted:

P(p, ~ωi, ~ωo)

The phase function must respect several properties to have a physically-
compliant behavior:
• Reciprocity. It must obey Helmholtz's law of reciprocity, implying that:

P(p, ~ωi, ~ωo) = P(p, ~ωo, ~ωi)

• Energy conservation. Or normalization, meaning that no energy can
be created in the scattering process, thus the phase function must inte-
grate to one: ∫

Ω2

P(x, ~ωi, ~ωo)d~ωo = 1

Note that depending on the papers and the convention chosen, the phase
function sometime integrates to 4π.

The second rule gives the expression of the uniform phase function:

P(p, ~ωi, ~ωo) =
1

4π

For non-uniform scattering, the Henyey-Greenstein phase function (Equa-
tion 1.2) is used as it can approximate most scattering behaviors (forward and
backward scattering). This is done by using the Anisotropy Factor g (Equa-
tion 1.1) varying from −1 to 1: g < 0 corresponds to backward scattering,
g = 0 is the uniform phase function and g > 0 corresponds to forward scatter-
ing.

g(p) =
1

4π

∫
Ω2

P(p, ~ω, ~ω′)~ωT · ~ω′dω′ (1.1)

P(p, ~ωi, ~ωo) =
1− g2√

1 + g2 − 2g ~ωi
T · ~ωo

3 (1.2)

However, for really accurate physical simulation, one should use the phase
function that is suited to the physical con�guration (e.g., the Rayleigh phase
function for scatterers smaller than the wavelength, see van de Hulst [1981]
or Hecht [2002] for more details). Also, note that in this manuscript, the
e�ects of correlation in the medium particle distribution is hidden in the phase
function, and we do not detail its impact on the scattering process. For further
details, we refer the reader to Jarabo et al. [2018], who present the impact of
di�erent levels of correlation for a medium composed of the same type of
particles.
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Emission

The emission inside a medium can be viewed as the inverse of absorption: in-
stead of light energy being absorbed and converted into heat, a heated medium
decreases its energy by converting it into photons.

This process is often approximated using the black-body radiative model,
�rst introduced by Kirchho� and Bunsen [1860]. This model introduces a rela-
tion between the temperature of a medium (in Kelvin K) and the wavelength
of the photons that are emitted in order to decrease its energy. The relation
between the temperature T and the peak wavelength λmax is given by the
Wien's Law (Wien [1894]):

λmax =
b

T

with b being the Wien's displacement constant, equal to approximately 2.897×
10−3m.K.

If Wien's Law gives the peak wavelength, Planck and Masius [1914] intro-
duce a relation that gives the radiance emitted by a medium at temperature
T for a speci�c wavelength λ:

L(λ, T ) =
2h

λ3c2

1

e
h
λkT − 1

where c ≈ 3.108m.s−1 is the speed of light in vacuum, h ≈ 6.626× 10−34J.s is
the Planck constant and k ≈ 1.381× 10−23J.K−1 is the Boltzmann constant.

For the remainder of this document, we use a notation more suited to Com-
puter Graphics applications. The contribution of emissive media is described
by a volumetric term Qe, expressed in watt per cube meter per steradian
(W.m−3.sr−1).

1.2.3 Establishing the Radiative Transfer Equation

Now that the phenomena occurring in participating medium have been intro-
duced, we can focus on the formulation of the Radiative Transfer Equation, as
introduced in Chandrasekhar [1950] and its formulation as used in Computer
Graphics.

The Di�erential Form

To estimate the in�uence of these phenomena, we �rst focus on an elementary
part of a volume, of length δs = c · dt, where dt is a time step, aligned with
the direction ~ω, as illustrated in Figure 1.4.

Before entering the subvolume, at a point p, we have a radiance L(p, t, ~ω)
and an exiting radiance of L(p + ~ωδs, t + dt, ~ω). Inside the sub-volume, a
portion of L(p, t, ~ω) is absorbed, another scattered. At the same time, the

11



1.2. The Radiative Transfer Equation

δL(p, t, ~ω) L(p+ δs, t+ dt, ~ω)

Ka(p) Ks(p) Ks(p) Qe(p)

Energy gainsEnergy losses

Figure 1.4 � Propagation through a sub-volume δs = c·dt. The incoming light beam
of radiance L(p, t, ~ω) looses energy due to out-scattering (Ks) and absorption (Ka),
and in the meantime, it gains energy by in-scattering (Ks) and potential emission
(Qe).

sub-volume may emit energy, and the surrounding particles also scatter energy
that contributes to the sub-volume exiting radiance. The contributions along
δs are then:
• −c · dt ·Ka(p) · L(p, t, ~ω), the absorption along δs.
• −c · dt ·Ks(p) · L(p, t, ~ω), the out-scattering along δs.
• +c · dt ·Qe(p, t, ~ω), the volumetric emission along δs (in W.m−3.sr−1).
• +c · dt · Ks(p)

∫
4π
·P(p, ~ω, ~ω′) · Li(p, t, ~ω′)d~ω′, the incoming energy from

neighborhood along δs (aka in-scattering).
As absorption and out-scattering both imply a loss of energy, they are re-

grouped under an extinction term. The associated extinction coe�cient noted
Kt is de�ned as:

Kt = Ka +Ks

We can obtain the exiting radiance with an energy balance between p and
p+ δs:

L(p+ ~ωδs, t+ dt, ~ω) = L(p, t, ~ω)− c · dt ·Kt(p) · L(p, t, ~ω)

+c · dt ·Qe(p, t, ~ω) + c · dt ·Ks(p) ·
∫

4π

P(p, ~ω, ~ω′) · Li(p, t, ~ω′)d~ω′
(1.3)

By using the Euler-Lagrange relation (in our case d
dt

= ∂
∂t

+ c~ωT · ~∇p, as
stated in Pierrat [2007]), this equation can be written as a di�erential equation,

12 David Murray



1. Rendering Volumes and Surfaces

also known as the Radiative Transfer Equation (RTE).

1

c

∂L(p, t, ~ω)

∂t
+ ~ωT · ~∇pL(p, t, ~ω) = −Kt(p) · L(p, t, ~ω) +Qe(p, t, ~ω)

+

∫
4π

Ks(p) · P(p, ~ω, ~ω′) · Li(p, t, ~ω′)d~ω′
(1.4)

For a more physically accurate and more detailed demonstration about this
equation, the reader is encouraged to read Pierrat [2007], who establishes this
equation and its implications, as well as a demonstration from Maxwell laws
on electromagnetic wave propagation.

Equation 1.4 is the general de�nition of the RTE. However, in Computer
Graphics, we are often in a situation where we can consider to be in a local ther-
modynamic equilibrium, meaning that the time-related dependence becomes
irrelevant. Thus, if not otherwise speci�ed, the steady version (Equation 1.5)
is the one we refer to for the rest of this chapter.

~ωT · ~∇pL(p, ~ω) = −Kt(p) · L(p, ~ω) +Qe(p, ~ω)

+

∫
4π

Ks(p) · P(p, ~ω, ~ω′) · Li(p, ~ω′)d~ω′
(1.5)

The Integral Form

We established the di�erential form of the RTE. In some cases, a formulation
that accounts for a whole light ray is more practical. Equation 1.5, on a
sub-volume, has the form:

y′(p) + A(p) · y(p) = q(p)

where:
A(p) = Kt(p)

q(p) = Qe(p, ~ω) +

∫
ω

Ks(p) · P(p, ω, ω′) · Li(p, ~ω′)dω′

The solution of this di�erential equation is of the form:

y(p) = C · e−
∫ p A(s)·ds +

∫ p

q(v) · e−
∫ p
v A(u)·du · dv

In our case, the solution for a ray going from a point p0 to p is then:

L(p, ~ω) = L0(~ω) · e−
∫ p
0 Kt(u)·du

+

∫ p

0

(
Qe(t, ~ω) +

∫
4π

Ks(v) · p(v, ~ω, ~ω′) · Li(v, ~ω′)d~ω
)
· e−

∫ p
v Kt(u)·dudv

13



1.2. The Radiative Transfer Equation

p p0

L0

L(p)

Figure 1.5 � A cloud with its bounding box in front a light panel. Light emitted
from the panel, with radiance L0, enters the volume at position p0 with radiance
L(p0) = L0 and propagates through it, emerging at position p. The radiance at
position p is given by Equation 1.8.

Emission and in-scattering can be regrouped under an "energy gain" function
Q(p, ~ω) such as:

Q(p, ~ω) = Qe(p, ~ω) +Ks(p)

∫
4π

P(p, ~ω, ~ω′) · Li(p, ~ω′)d~ω′ (1.6)

For convenience, we use τ(t1, t2), the cumulative absorption from t1 to t2, also
known as the transmission rate of the slab (t1, t2).

τ(t1, t2) = e−
∫ t2
t1
Kt(s)·ds (1.7)

Finally, for a full volume, placed in front of a uniformly lit background
(position p0), as illustrated in Figure 1.5, the radiance received at each point
on the plane at position p obeys the following Equation (1.8).

L(p, ~ω) = L0 · τ(p0, p) +

∫ p

p0

Q(u) · τ(u, p) · du (1.8)

This integral form (Equation 1.8) is sometimes referred to as the Volume
Rendering Equation in the Computer Graphics community.

14 David Murray



1. Rendering Volumes and Surfaces

(a) (b)

Figure 1.6 � (a) Smooth transition between two media resulting mostly in a forward
di�usive pattern. (b) Discontinuous transition between two media with signi�cant dis-
parities, resulting in a re�ective pattern. Note that depending on the type of medium
and its structure (e.g., solid state), it could result in a refractive pattern (like glass).

1.2.4 Interfaces between Media: toward Surfaces

We have explained and detailed the model for light transport in a participating
medium. We now focus on what happens when we consider a con�guration
with di�erent media. Such a con�guration could for example originate from
having a variation of density, a variation of the medium composition (like air
and water vapor), etc. We can separate this problem in two categories: smooth
transition between the media or discontinuous transition. To distinguish be-
tween the two, we can look at the variation of the RTE parameters in regard
to their scale, that is to say, compare the order of ∇Ka/s/t with the order of
Ka/s/t.

Smooth Transitions This case corresponds to situations where the varia-
tions of the parameters are very small in regards to the order the parameters:

∇Ka/s/t

Ka/s/t

� 1

Thus, the parameters can be considered locally uniform and then, the problem
can be reduced to solving the RTE with a heterogeneous medium. This case
is illustrated in Figure 1.6(a).

Discontinuous Transitions: Interfaces In any other cases with sharp
transition, we need to introduce interfaces to model the transition points. If
the transition is nearly perfectly sharp (like air and glass), we only need one
interface to describe the changes. This case is illustrated in Figure 1.6(b).

This notion will prove to be useful when dealing with con�guration com-
bining air with extremely dense medium (like a metal). Indeed, for con�g-
urations like a room or a street, most of the space is composed of air (very
low-absorption and very low-dispersion at the considered scale), while the rest
is most likely composed of dense media like painted concrete, plastic, glass,
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n2

n1

i1 r

i2

Lin; ~ωin Lout; ~ωout

L′out;
~ω′out

~n

p
|r| = |i1|

n1 sin(|i1|) = n2 sin(|i2|)

Figure 1.7 � An interface between a medium of index n1 and one of index n2

with re�ection and refraction. A portion of the incoming light (Lin; ~ωin) is re�ected
Lout; ~ωout according to the Fresnel Coe�cient R such as Lout = RLin, while the
other portion is refracted (L′out;

~ω′out) according to the Fresnel Coe�cient T such as
L′out = TLin. Note that R+T = 1. The re�ection and refraction angles are obtained
with the Snell-Descartes law, on the right of the �gure.

metals, etc. The air can then be approximate as vacuum, with nearly no im-
pact on light transport. Another approximation that can be made here is to
consider that, due to the nature of the other media involved, light is either
completely re�ected or absorbed by the media (metal, plastics), or crosses it
without loss or dispersion (glass).

By using these approximations, this type of scene can be reduced to the
di�erent medium interfaces, and thus by surfaces corresponding to these inter-
faces. In this case, the RTE is no longer used as its complexity is not suited
to the resolution of a problem that becomes mostly addressed by Geometric
Optics (treating light as rays, obeying the Fresnel laws for re�ection and trans-
mission coe�cient and Snell-Descartes for re�ection and refraction angles, see
Figure 1.7).
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1. Rendering Volumes and Surfaces

The Rendering Equation

When dealing with a situation modeled by surfaces, with ray optics, Kajiya
and Von Herzen [1984] introduced the Rendering Equation:

L(p, ~ωout) = L0(p) +

∫
pi

fr(p, ~ωout, ~ωin) · Li(p, ~ωin)~ωTin · ~nd~ωin (1.9)

In Equation 1.9, the function fr quanti�es the portion of energy that is
re�ected (or refracted) from direction ~ωin toward direction ~ωout at position p,
and ~n is the normal vector of the surface at position p. Even if this equation
still has a recursive formulation, it is much lighter to evaluate since it only
requires to be evaluated for light sources and their re�ections.

Note the scalar product term ~ωTin · ~n in the integral. As an incoming light
beam may not be perpendicular to the interface, its energy is evenly distributed
on an area larger than the cross-section of the beam.

Bidirectional Re�ectance Distribution Function

As stated above, in Equation 1.9, function fr quanti�es the ratio of energy
that a surface re�ects in a given direction depending on the energy it receives
from another direction. It is a 4D function called the Bidirectional Re�ectance
Distribution Function (BRDF) and was introduced by Nicodemus [1970] and
is de�ned as:

fr(~ωout, ~ωin) =
dLr(~ωout)

dEin(~ωin)
=

dLr(~ωout)

Li(~ωin)(~ωTin · ~n)d~ωin
(1.10)

Like the phase function, the BRDF, to be physically-compliant, must re-
spect several conditions:
• Positivity. Radiance is positive, thus:

fr(~ωin, ~ωout) ≥ 0

• Reciprocity. It must obey Helmholtz's law of reciprocity:

fr(~ωin, ~ωout) = fr(~ωout, ~ωin)

• Energy conservation. Or normalization, meaning that no energy can
be created by the re�ection process:∫

π

fr(~ωin, ~ωout)d~ωout ≤ 1

It is important to note that, by de�nition, any phenomenon mentioned in
Section 1.2.1 that occurs behind the surface (like scattering or absorption) is
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Lambertian Glossy Mirror

Figure 1.8 � The three BRDF behaviors: pure Lambertian, glossy and pure specular
(mirror).

embedded directly in the BRDF. Thus, three categories of re�ections (as il-
lustrated in Figure 1.8) can be modeled with a BRDF: the pure specular one
(mirror-like, case of the Figure 1.7), the pure Lambertian one (uniform re�ec-
tion) and the glossy re�ection with a lobe distribution. The BRDF is often
simpli�ed as a di�use Lambertian term and a specular one (e.g., Cook and
Torrance [1982], Ashikhmin and Shirley [2000], Burley and Walt Disney Ani-
mation [2012]). The �rst one accounts for re�ected energy coming from internal
scattering behind the surface, while the second one accounts for the energy re-
�ected directly by the surface. As for the phase function, there would be much
to say about BRDF, which falls out of the scope of this thesis. The interested
reader can see the overview from Montes and Ureña [2012].

1.3 Rendering Techniques

The simulation of a lighting model for visualizing three-dimensional scenes is
an essential tool for understanding the content of this scene. In particular,
re�ections are crucial in understanding a shape Fleming et al. [2004]. Image
synthesis in Computer Graphics consists in simulating this light transport to
convey these features.

The easiest and most a�ordable way to do this is to mimic Geometric Op-
tics: shooting and tracing a ray from a virtual camera across the scene and
computing the bounces on the di�erent interfaces as well as the e�ect of scatter-
ing in case of participating media. This approach, called ray-tracing (Whitted
[1980]), is one of the oldest in Computer Graphics, however, it implies a huge
computation cost. Thus, other paradigms have been developed, in particular
with the development of dedicated Graphical Processing Units (GPU). Their
aim is to provide faster but less physically-accurate rendering for applications
that require interactivity more than accuracy. Even if many techniques have
been proposed to enhance the quality of these rendering methods, ray-tracing
remains the best paradigm for high quality images with global illumination.

In this section, we present these aspects: �rst an overview of the graphic
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1. Rendering Volumes and Surfaces

(a) (b)

(c)

Figure 1.9 � An object (a) and its representation as a triangular mesh (b). (c)
Several possible mesh representations of sphere, depending on the necessary re�ne-
ment: symbolic sphere (left), trade-o� between representation and memory occupancy
(center), accurately represented sphere (right).

pipeline (used for surfaces) and the pipeline used for volumes, then several
simple lighting solutions, to complement the previous techniques, and �nally
techniques that embed the lighting computation into the rendering paradigm.

1.3.1 Rendering for Surfaces

Surface Representation

In Computer Graphics, surfaces are generally discretized as polygons, repre-
sented by their vertices, as illustrated in Figure 1.9. In practice, even though
one could use any polygonal representation, the preferred one is triangles as
a dedicated pipeline (presented in Section 1.3.1) was developed on GPU for
triangular meshes.

This representation o�ers a good trade-o� between memory usage (the
number of required elements) and the level of details that can be represented.
Indeed, a sphere can be represented with 8 triangles if its purpose is purely
illustrative and does not require an accurately rounded shape. It can also be
much more re�ned with hundred of triangles if its purpose is to o�er a more
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Input

Vertex
Shader

Primitive
assembly

Primitive
rasterization

Fragment
Shader

Output

Figure 1.10 � Graphics pipeline used in classical surface-based GPU rendering.

accurate shape, as illustrated in Figure 1.9(c).

Graphics Pipeline

Rasterization is a process that produces a 2D matrix image from a 3D repre-
sentation (or a vector-de�ned image) by projecting the latter on a 2D plane.
This projection can be done with a CPU. However, as this process scales well
with highly parallel architectures, like a GPU, it has quickly become a stan-
dard for real-time rendering algorithms on GPU, while also contributing to the
promotion of the GPU as a key hardware in Computer Graphics.

Indeed, a special pipeline was developed, optimized and even integrated in
the development of GPUs, which is often referred to as the graphics pipeline,
presented in Figure 1.10. This process also has evolved along with the re�ne-
ment of GPUs, that o�er more computing power each year, and now consists
in sending the input data on the GPU, applying transformation on the 3D
data, projecting it onto the 2D plane, computing each pixel's color, returning
the �nal image.

Note that in Figure 1.10, some steps are pictured in blue boxes. These
steps are programmable using Shaders, small programs executed directly on
the GPU. There is one type of shader for each element. Vertex shaders handle
the transformation that must applied to each vertex to correctly place them in
the scene. These points are then rasterized into fragments (non programmable
step) which are handled by fragment shaders to determine the color of the
�nal pixel. The development of shaders is another reason for the success and
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the spreading of the graphics pipeline. Note that other shader stages exist
for geometry processing (geometry shaders and tesselation shaders) and an
external one for computing purpose (compute shaders). For a more complete
overview of this whole process and the di�erent shader stages, we refer the
reader to Akenine-Möller et al. [2018].

Finally, to implement post-processing algorithms, it is possible to store the
result of the graphics pipeline (called a Frame Bu�er Object). The desired
post-processing e�ect can then be applied on top of the rendering obtained
previously. Using this two-pass approach is called deferred rendering, as op-
posed to forward rendering (one pass using the graphics pipeline).

1.3.2 Volume Rendering

Volume rendering is typically done by solving the Volume Rendering Integral,
presented in Equation 1.8. This requires to discretize the integral and evaluate
it for a set of sampled positions. But before presenting how it is solved in
Computer Graphics, we �rst present the representation that is used to handle
the data. Then we present the pipeline used to compute the volume rendering
integral, as well as the mostly used method for volume visualization. Then, we
present how the Volume Rendering Integral is discretized to comply with this
method. Finally, we brie�y present the concept of isosurface, a special case in
handling volumes.

Volume Data

To understand how volumes are represented in Computer Graphics, we must
�rst focus on the origin of these data. There are several �elds in which volume
data are used: biomedical, seismic analysis, life science, industrial inspec-
tion. Some of them use the process of Computed Tomography (CT) scanning
with X-rays. This process consists in doing multiple X-ray measurements
from di�erent angles, thus producing cross-sectional images (also referred to
as "slices") of speci�c areas. Slices allow the user to inspect parts inside the
object (organs, electronic circuits...) in a non-invasive way. Slices can also be
obtained from Magnetic Resonance Imaging (MRI) when inspecting for brain
injuries. Note that the content of the slices corresponds to a physical quantity
depending on the acquisition device: transmittance, re�ectance, etc. In most
cases, the information is limited to a scalar value per position.

To explore the acquired data, in particular for medical imaging, one can
either use directly the slices and observe them one by one, or generate an
image from a 3D reconstruction of the slices. Indeed the set of slices can be
reassembled to form a 3D matrix (a volume), as illustrated in Figure 1.11.
The volume elements of the resulting matrix are called "voxels" (3D pixels).
Acquisition and reconstruction are entire �elds of study that are out of the
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(a) (b)

Figure 1.11 � The same volume represented as: (a) a set of slices. (b) voxels.

scope of this manuscript. For an introduction on these processes, we refer the
reader to Hadwiger et al. [2006].

Volume Rendering Pipeline

If observing any slice directly from the acquired data goes back to visualizing
an image, the problem is di�erent when we need to explore the whole data.
If we are dealing with a set of slices, we need to compose them with each
other, and if we are dealing with a reconstructed volume, we need to compose
its voxels. As both interpretations rely on a compositing scheme, the same
pipeline can be used for both a set of slices and a volume. This pipeline
(presented in Hadwiger et al. [2005]) is composed of the following steps:

Data traversal Sampling positions are chosen to serve as a discretization
pattern to compute the volume rendering integral. Data information is then
queried at these positions, and interpolated if necessary.

Gradient computation Some shading algorithms and lighting simulations
may require the gradient of the scalar �eld. It is usually computed using central
�nite di�erences.

Classi�cation The data queried from the volume are scalar values that orig-
inated from a physical measure, thus it must be mapped to a color and opacity
value. This step is crucial as it allow us to distinguish between the di�erent
areas of the volume. The mapping is usually done using a Transfer Function
(Ljung et al. [2016]).

Shading and illumination Shading and lighting can be incorporated in
the computation of the volume rendering.
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Compositing This step controls the iterative computation of the volume-
rendering integral. Once the samples have been assigned a color and opacity,
they are composed with each other. The compositing pattern is described in
Section 1.3.2.

Regarding this pipeline, the main di�erence between the two data repre-
sentations lies in the Data Traversal step. Thus, several volume rendering
techniques were proposed, using either slices or volumes. However, one has
been predominant for the last decade: the direct volume rendering, which is
the subject of the next paragraph.

Direct Volume Rendering: Ray-casting

Several techniques have been used to render volumes. In this thesis, we focus
on the one called Direct Volume Rendering. For an overview of the other
existing techniques, we once again refer the reader to Hadwiger et al. [2006].

Direct volume rendering relies on a method called ray-casting. Ray-casting
is a technique that consists in evaluating the volume rendering equation (Equa-
tion 1.8) with a front-to-back ray-marching process: for each pixel in the im-
age plane, a ray is cast toward the volume and samples are accumulated and
blended with a discrete marching step, as presented in Figure 1.12. The blend-
ing operator can be obtained by discretizing the volume rendering equation,
as shown in the next paragraph. Ray-casting was �rst used for CPU volume
rendering, but the introduction of shaders on GPU allowed e�cient implemen-
tation of ray-casting on GPU and real-time volume rendering.

The Discrete Volume Rendering Equation

Several models of Q(p, ~ω) (Equation 1.6) can be used in volume rendering
but the vast majority relies on a emission-absorption model: Kt = Ka, and
Q(p, ~ω) = Qe(p, ~ω). This simpli�cation comes from the heavy computational
cost of the scattering part, which implies a recursive spherical integration of
all surrounding contributions. Thus, with this model, Equation 1.8 can be
rewritten:

L(p, ~ω) = L0 · τ(p0, p) +

∫ p

p0

Qe(u) · τ(u, p) · du

Until now, we have considered light traveling from the light source toward
the sensor (camera, eye...), as illustrated in Figure 1.5. However, doing the
composition from the sensor is more e�cient as only elements actually con-
tributing to the �nal image are taken into account. Thus, we need to compute
the inverse path: a light is cast from the sensor toward the volume, as illus-
trated in Figure 1.12. That is to say, we compute L(p, ~ω) by going from p to p0,
in the direction −ω instead of ω. As, for a de�ned �nite interval, |

∫ x
y
| = |

∫ y
x
|,

23



1.3. Rendering Techniques

Figure 1.12 � Ray-marching process to sample a volume. At each sample, the data
is queried to evaluate the volume rendering equation (using gradients, classi�cation
and shading). The result is then blended with previous samples with front-to-back
compositing.

the resulting equation is then:

L(p, ~ω) = L0 · τ(p, p0) +

∫ p0

p

Qe(u) · τ(p, u) · du (1.11)

This equation can be discretized to obtain a blending pattern for com-
positing, presented in Equation 1.13 for computing colors and Equation 1.14
for transparency. This is obtained using L(p)⇐⇒ Li, with i = 0 correspond-
ing to the entry point into the volume (at position p), and i = n corresponding
to the exit point (p0). Thus: ∫ p0

p

dx⇐⇒
n∑
i=0

∆x

Furthermore, for simpli�cation, we omit here the term coming from a potential
backlight, which leads to:

L(p, ~ω)⇐⇒ Ln =
n∑
i=0

Qe,i∆x · τi

with:

τi = e−
∑i
j=0Ka,j∆x =

i∏
j=0

e−Ka,j∆x
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This formula can be simpli�ed if we note that e−Ka,i∆x corresponds to
the transmittance of a voxel of size ∆x. Note that e−Ka,i∆x = 0 means that
the voxel does not transmit any light, it is opaque, whereas e−Ka,i∆x = 1
means that it transmits all the light it receives, it is then transparent. The
transmittance can be interpreted as the "transparency" of the voxel. The
relation to "opacity", a notion more frequently used in Computer Graphics
(noted α) is: α = 1− e−Ka,i∆x. We now use this notation and we have:

τi =
i∏

j=0

(1− αi)

The �nal composition is described by Equation 1.12.

Ln = L0 · τn +
n∑
i=1

Qe,i∆xτi (1.12)

To obtain the elementary version, which can be used for the ray-casting
process, we need to decompose this equation:

Ln =
n−1∑
i=0

Qe,i∆x ·
i∏

j=0

(1− αj) +Qe,n∆x · τi

Ln = Ln−1 +Qe,n∆x · τn

If we note:

Cout = Ln;Cin = Ln−1;C = Qe,n∆x

α = αn;αin = 1− τn−1;αout = 1− τn

We then have:

Cout = Cin + (1− αin)C (1.13)

Using the same decomposition scheme as for Ln, we can write the complemen-
tary version for αout:

αout = αin + (1− αin)α (1.14)

Equations 1.13 and 1.14 correspond to the UNDER blending operator. This
operation is the front-to-back equivalent of the OVER operator, the back-to-
front blending operator described by Porter and Du� [1984]. Note that this
result could also be extracted directly from Equation 1.4 with the Emission-
Absorption model.
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A Special Case: Isosurfaces When dealing with volume data, one may
want to see only its signi�cant interfaces. These interfaces result in isosurfaces
as they correspond to voxels with the same scalar value. As just identify-
ing these surfaces using scalar values is uncertain due mostly to the need
of a tolerance threshold, and the fact that the data is reconstructed (possi-
bly noisy data), some techniques have been proposed to enhance this process
(e.g., Tatarchuk et al. [2007]). In some cases, the isosurfaces can be extracted
and converted in a surface mesh, and later used with the graphics pipeline in
another application.

1.3.3 Illumination techniques

This section focuses on the techniques used to evaluate illumination in a scene,
using either the graphics pipeline or the volume rendering pipeline. Due to
hardware limitations, in particular for interactive applications, illumination
simulation was �rst limited to direct lighting (only one interaction between
the light and the scene). The result of multiple re�ections or scattering events,
called indirect lighting, was either embedded into the model or precomputed.
However, light transport implies potential occluders on the light path. If this
case is straightforward with ray-tracing techniques, it requires additional con-
siderations for the other techniques.

Direct Lighting

We now focus once again on our two rendering equations: Equation 1.8 for
volumes and Equation 1.9 for surfaces. We detail how these two equations are
solved when we consider only the direct contribution of discrete light sources.

To account for direct lighting only (no bounces), the integral in Equa-
tion 1.9 can be discretized according to the number of light sources. Note
that at this point we only considered direct lighting from a discrete set of light
sources. In this case, indirect lighting must be approximated. The easiest way
of doing so is to add an ambient contribution, La(p), in the direct lighting
computation such as:

L(p, ~ωout) = Le(p) + La(p) +

#lights∑
i=0

fr(p, ~ωout, ~ωi) · Li(p, ~ωi)~ωTin · ~n

The same can be done for Equation 1.8 by adding some simpli�cations.
As stated in Section 1.3.2, we use the Emission-Absorption model. However,
light contributions are added to the emission term. In order to keep a low
computation cost, no loss or scattering are taken into account between the light
and the point. Thus, to compute these contributions, we must determine if the
light should be re�ected or scattered, as stated in Hadwiger et al. [2009]. To do
so, we can consider the scalar gradient (noted |∇S|). A high gradient means
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(a) (b)

Figure 1.13 � (a) An environment map (left) and its computed mipmaps, one for
each roughness value, resulting in slow decrease in the represented frequency. (b) An
irradiance map, only low frequency information are kept. All images are from Lagarde
[2012].

that light has probably encountered an interface, implying that light may be
re�ected, which requires to use a BRDF. On the contrary, a low gradient
means that the element is inside a medium and thus light will most likely be
scattered, according to the appropriate phase function. In practice, the local
medium property should also be taken into account. Thus, the integral in the
gain term (Equation 1.6) can also be discretized according to the number of
light sources:

L(p, ~ωout) = Qe(p) + La(p) +

#lights∑
i=0

I(p, ~ωout, ~ωi) · Li(p, ~ωi)

with I being:

I =

{
fr(p, ~ωout, ~ωi) · (~ωi · ~n) if |∇S| > ε

P(p, ~ωout, ~ωi) if |∇S| ≤ ε
(1.15)

The aspects presented above are limited to discrete light sources (either
directional, point or area). If the ambient term in the direct lighting o�ers
a solution to approximate complex lighting environments at nearly no cost,
this solution is obviously limited as it is uniform on the object and view-
independent.

A popular alternative to this term is to use a precomputed lighting envi-
ronment as images. By using textures, one can reproduce a mirror-like re�ec-
tion of an environment, as illustrated in Figure 1.13, with only one texture
access. However, a glossy or a Lambertian re�ection pattern would require
many texture accesses to compute an integral on the BRDF lobe to provide
the correct contribution of the environment. This is equivalent to consider-
ing that each pixel of the environment map is a light source. However, this
process can be precomputed to produce a set of textures corresponding to the
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A

B

C

(a) (b)

Figure 1.14 � (a) Shadowing in scene with completely absorbing objects and non-
absorbing atmosphere. A and B are then visible by the light while C is occluded. (b)
The precomputation of the visibility factor used with absorbing media (in volume).

di�erent material properties, as illustrated in Figure 1.13, thus producing Pre-
�ltered Environment Maps (introduced by Kautz et al. [2000]). This can be
e�ciently implemented on modern GPU by using texture mipmap, the result
is interpolated between two levels if necessary. Thus, using this Pre�ltered En-
vironment Maps, a complex lighting environment can be simulated for a low
computation cost, with only one texture access instead. Furthermore, for low
frequency representations, Ramamoorthi and Hanrahan [2001] propose to en-
code the irradiance obtained from the image into a spherical harmonics basis.
An irradiance map can be converted in only 9 coe�cients per color.

Shadowing and Visibility

As stated in the introduction, some objects or some parts of a volume may act
as occluders for the light. This can be modeled by adding a visibility factor
v(p, ~ω) in the lighting computation:

Ls(p, ~ωout) = Le(p) + La(p) +

#lights∑
i=0

v(p, ~ωin)fr(p, ~ωout, ~ωi)Li(p, ~ωi)(~ω
T
i · ~n)

Lv(p, ~ωout) = Le(p) + La(p) +

#lights∑
i=0

v(p, ~ωin)I(p, ~ωout, ~ωi)Li(p, ~ωi)

This factor can be precomputed or computed on the �y and has a binary
behavior: the element is either visible or occluded. A two-pass approach can
be used for surfaces: a �rst pass rendering only depth information from the
light source point of view, a second one from the camera point of view, using
the previous information to determine the visibility factor. For a complete
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overview of shadowing techniques, we refer the reader to Eisemann et al. [2011]
and Woo and Poulin [2012].

However, shadowing techniques are limited when a complex lighting envi-
ronment is used, such as precomputed environment maps. In these cases, we
can not evaluate the visibility for each pixel of the environment map as this
would imply too many computation. This problem can be partly addressed by
Ambient Occlusion (AO). The idea of ambient occlusion is to compute a local
occlusion factor, depending on the surrounding elements. This factor is com-
puted by integrating an occlusion function over a hemisphere centered on the
normal at the current point, as illustrated in Equation 1.16. Several occlusion
functions have been proposed over the years (e.g., Bavoil et al. [2008], Loos
and Sloan [2010], McGuire et al. [2011]) to bene�t for the increasing power
of GPU. An advantage of this approach is that it can be view-dependent and
o�ers a good trade-o� between image quality and computation cost compared
to ray-traced approaches.

AO(p, ~ωout) =

∫
Ω

(∫ radius

0

AOFunction(p+ ~uT · ~ω, ~ωout, ~ω)du

)
dω (1.16)

Ambient occlusion can be easily extended to volumes by integrating over
a complete sphere otherwise. Indeed, Ritschel [2007], and later Kronander
et al. [2012], proposed to precompute a visibility factor v(p, ~ω) that accounts
for the whole volume. This technique consists in precomputing for each voxel
the total absorption for a discrete set of directions. For each voxel, a �nite set
of rays are cast and the absorption is accumulated using the blending operator
described in Equation 1.14, which is equivalent to evaluate Equation 1.17

v(p, ~ωout) = τ(p,∞) = e−
∫∞
p Kt(u)du (1.17)

The resulting information is projected on a Spherical Harmonics basis (direc-
tional basis) and is later used during the ray-casting to determine the visibility
factor of the lights. Thus, by using precomputation, this approach provides
a trade-o� between accurate, but slow, ray-traced shadows, and fast, but less
accurate, shadows obtained using shadow map techniques.

Global Illumination Techniques

In this section, we give an brief overview of global illumination algorithms for
both surfaces and volumes. For a more elaborate review on these algorithms,
we refer the reader to several other documents: Cerezo et al. [2005] and Jönsson
et al. [2013] for participating media, Dutre et al. [2006], Ritschel et al. [2012]
and Akenine-Möller et al. [2018] for surfaces, with possible combination with
participating media.
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Ray-Tracing and Monte-Carlo Integration The technique often referred
to as ray-tracing was introduced in the graphics community by Whitted [1980].
To generate an image, a ray is launched for each pixel of the camera toward
the scene in order to �nd the closest intersection. At any intersection point,
there are two possibilities:
• the surface is di�use: shadow rays are cast toward light sources to eval-
uate
• the surface is re�ective: another ray is shot in the re�ection direction to
continue the computation.

This process is repeated for as many bounces as desired, and was later extended
to handle all aspects of surfaces, e.g., di�use inter-re�ections or glossy surfaces.
Theoretically, to correctly evaluate the Rendering Equation 1.9, an in�nite set
of rays must be launched for each bounce. In practice, this process is reduced
to a �nite set of rays by using Monte-Carlo integration, and the set of rays is
usually generated by using importance sampling with the BRDF. This process,
with a recursive propagation, means that we build the path that the light
follows inside the scene, and is often referred to as Path Tracing.

Photon Mapping Introduced by Jensen [1996] for surfaces, Jensen and
Christensen [1998] for volumes, it consists in shooting a set of photons from
the light sources. If a photon reaches an element (vertex or voxel depending on
the data representation), it is stored in this element. In a second (gathering)
pass, rays are cast from the camera. As these rays interact with a surface or a
volume, the photons in a neighboring area are gathered to estimate the radi-
ance. The �rst version presented by Jensen was biased (the converged results
may not be the correct solution) and was improved by Hachisuka et al. [2008]
to greatly reduce the bias. Like ray-tracing, the visual quality of this technique
(Photon Mapping) is greatly dependent on the number of emitted photons. If
the number is too small, many artifacts may appear (an example is presented
in Dufay [2017]).

Discrete Representation Some techniques have been proposed to solve
Equations 1.9 or 1.8 using discrete representations. The general idea of these
methods is to decompose the scene into small elements and the equations
using these elements as primitives. Usually, the resolution uses either a Finite
Element Method (FEM) or a Finite Di�erence Method (FDM) to solve the
rendering equation used.

Among these, an example is Radiosity, introduced by Goral et al. [1984],
and presented in details in Sillion and Puech [1994]. This technique uses geo-
metrical patches to decompose a surface-based scene. For each patch, the ra-
diosity value (the physical quantity) is precomputed and stored in the patches.
The �nal result is then computed using a �nite element representation. This
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technique was later extended to using voxels to decompose the surfaces in-
stead of patches Thiedemann et al. [2011]. Note that even if it was designed
for surfaces, the physical model that inspired Radiosity lies in heat transfer
theory, and thus, is close to the Radiative Transfer Equation (Equation 1.4).
Note that this method may be faster than ray-tracing approaches, but the
precomputation requires a signi�cant memory overhead.

Another example is proposed by Zhang and Ma [2013]. They solve a dif-
fusion equation based on the RTE (Equation 1.4), instead of Equation 1.8, by
using a �nite di�erence approach. To achieve competitive computing time, the
model is simpli�ed in regard to the RTE and a trade-o� is required as single
scattering and multiple scattering are computed separately. Indeed, as stated
by Koerner et al. [2018], using an implicit representation to solve the RTE
is risky as many solutions are either unstable or do not converge toward the
correct solution.

1.4 Illustrative Stylisation

While current real-time and o�ine rendering techniques are convincing for
most objects, some models su�er from lack of real landmarks and thus, from
grasp of the shape. To address this issue, another type of rendering emerged
in Computer Graphics: Expressive Rendering (Gooch and Gooch [2001] and
Strothotte and Schlechtweg [2002]). Its purpose is to convey information about
the object that we visualize, regardless of physical accuracy. This information
corresponds to the message that one wishes to transmit and can be, for ex-
ample, a geometrical information for an object, a temperature information for
a �ow, a speci�c material among others, etc. This message is then visualized
using an adapted style, ranging from a color palette to rendering in the form
of lines. Thus, expressive rendering is sometimes called Non-Photorealistic
Rendering (NPR), as some styles may require to shift away from physically
plausible rendering techniques.

Expressive rendering techniques originate from artistic techniques, such as
painting or drawing, but also techniques based on human perception. Cole
et al. [2008] illustrate this for line rendering with a study of the di�erent lines
that artists draw to represent the same object. Thus, when these artists must
convey a similar information, the features they choose to highlight are not
necessarily the same. Figure 1.15 illustrates a multitude of possible represen-
tations of the same object, where each artist has his own style to represent
this object.

Thus, expressive rendering is a vast �eld where we can �nd stylization tech-
niques, as well as illustration or geometric description. In this thesis, we focus
on the geometric description of an object to highlight important geometric
information. To do so, we study two types of algorithms: the algorithms mod-
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Figure 1.15 � Examples of drawings from the same point of view (Cole et al.
[2008]). (a)(b)(c) Three drawings by three artists. (d) Superposition of 14 drawings.

ifying the lighting calculations and the algorithms producing line renderings
(initiated by Saito and Takahashi [1990]). Thus, we �rst present examples
of shading-based algorithms (interacting with lighting simulation), then we
present some examples of line rendering algorithms.

Note that, even if most of the presented techniques were proposed for sur-
faces, they can be easily extended to volumes using isosurface rendering or, in
some cases, with a combination of volumes and isosurfaces.

1.4.1 Examples of Shading-based Approaches

Gooch Shading

Gooch Shading was introduced by Gooch et al. [1998], inspired by the Phong
BRDF (Phong [1975]), to propose a technique relying on color palettes, thus us-
ing our ability to interpret color temperatures (see Figure 1.16(a)) to transmit
geometric information. The proposed model should replace the computation
of illumination de�ned by the equation of the rendering (Equation 1.9) such
as:

Lr(~l) =

(
1 + (~nT ·~l)

2

)
kcool +

(
1− 1 + (~nT ·~l)

2

)
kwarm (1.18)

where kcool corresponds to a cold color and kwarm a warm one.
Similar techniques have been used in the form of textures, in particular with

the X-Toon shading by Barla et al. [2006], which is a generalization of Gooch
Shading with a texture, or the Lit Sphere by Sloan et al. [2001], which consists
of using directional textures corresponding to a pre-computed illumination.
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Curvature-based Shading

We can now focus on the curvature of a surface, obtained by derivation of
normals. The curvature information used is based on the principal curvatures,
κ1 and κ2, and the mean curvature κmean = κ1+κ2

2
.

One of the techniques based on curvature is the Mean Curvature Shading,
introduced by Kindlmann et al. [2003]. It consists in using curvature informa-
tion to modify the rendering in order to highlight concavities, convexities or
planar areas (see Figure 1.16(b)). Kindlmann et al. [2003] use textures whose
content is associated with di�erent curvature values. In this method, the cur-
vatures are calculated directly in object space, which makes it possible to have
temporal coherence in the highlighted information. Note that this technique
was proposed initially for volume rendering, using isosurfaces.

Bruckner and Gröller [2007] introduce Style Transfer Function, a similar
approach for volume expressive rendering. They use a curvature-based trans-
fer function for opacity combined with Lit Sphere (Sloan et al. [2001]) for
color stylization, as shown in Figure 1.16(c). Rautek et al. [2007] propose to
combine this kind of approach with semantic to control the stylization (see
Figure 1.16(d)).

This method is used by Vergne et al. [2008] for the Apparent Relief tech-
nique by combining object space and screen space information, which allows
them to take into account the point of view and the observation distance to
adapt the information transmitted. The software ZBrush c©proposes to use the
technique of Lit Spheres (Sloan et al. [2001]) by indexing them on the values
of curvature of the object, one for concavities and one for convexities.

Another approach using the curvature is Light Warping by Vergne et al.

[2009], which consists in shifting the normals of a surface according to its
curvature, and thus deforming the re�ections. This deformation modi�es the
perception that one has of the surface by accentuating convexities and by
attenuating concavities. This perceptual phenomenon is described by Fleming
et al. [2004]. This approach was later generalized by Vergne et al. [2010] to
work with all types of light sources (point, area, environment map...). The
Radiance Scaling (see Figure 1.16(e)) consists in adding a scaling factor (σ) to
the BRDF term fr(p, ~ωout, ~ωin) in the rendering equation (Equation 1.9) such
as it becomes:

fr(~l, ~v)σ(~v,~l, κ) (1.19)

The function σ(~v,~l, κ) is a weighting function, which allows one to modulate
the illumination in order to intensify it at convexities and to attenuate it at
concavities.
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(a) (b)

(c) (d) (e)

Figure 1.16 � (a) Phong Shading on the left, Gooch Shading on the right (Gooch
et al. [1998]). (b) Mean curvature shading: on the left with a texture (Kindlmann
et al. [2003]), on the right with a color palette (Vergne et al. [2009]). (c) Style
Transfer Function (Bruckner and Gröller [2007]). (d) Using semantic to control
style (Rautek et al. [2007]). (e) Radiance Scaling (Vergne et al. [2010]).

Figure 1.17 � Silhouettes and Occluding Contours. Images from DeCarlo et al.
[2003].

1.4.2 Examples of Line Rendering

Silhouettes and Contours

Among the various line-rendering algorithms, the simplest, in term of geom-
etry analysis, are silhouettes and occluding contours, as these two techniques
require only information of depth and normals of a surface, that is, to the
orders zero and one.

Silhouettes correspond to spatial limits of an object. This technique there-
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(a) (b)

Figure 1.18 � (a) An example of ridges (blue) and valleys (red), image from Ohtake
et al. [2004]. (b) A shaded view on the left, Ridges and Valleys on the center, Ap-
parent Ridges on the right, images from Judd et al. [2007].

fore o�ers a minimalist rendering by limiting the conveyed message to border
information.

Occluding contours complement silhouettes since they allow one to convey,
in addition to silhouettes, simple geometric information about the object. They
correspond to points where the normal of a surface is perpendicular to the point
of view. An example of these two techniques is shown in Figure 1.17.

Ridges and Valleys

One of the techniques used to complete the information conveyed by occluding
contours is the Ridges and Valleys, introduced by Interrante et al. [1995] and
improved by Ohtake et al. [2004]. This technique consists in identifying the
points of a surface where the absolute curvature is maximum. These points
are thus determined by using information of curvature and curvature varia-
tions. Using the sign of curvature, it is possible to discriminate between ridges
(convexities) and valleys (concavities). This technique thus makes it possible
to communicate relief information, as computations are done directly on the
object, independently of the point of view (see Figure 1.18(a)).

This technique can produce renderings that are di�cult to understand be-
cause of the quantity, sometimes too important, of highlighted features. Judd
et al. [2007] therefore propose to use only a subset of ridges and valleys. This
subset de�nes Apparent Ridges, where points of interest are identi�ed thanks
to the use of an apparent curvature, which depends on the point of view. An
example of Apparent Ridges is shown in Figure 1.18(b).
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(a) (b)

Figure 1.19 � Line stylization of the Stanford Armadillo model with: (a) Suggestive
Contours, (b) Demarcating Curves. Images are from Kolomenkin et al. [2008].

Suggestive Contours

DeCarlo et al. [2003] have chosen, with the Suggestive Contours (Figure 1.19(a)),
another approach to convey geometric information: rather than focusing on the
maximum curvature of a surface, they chose to highlight in�ection points of the
surface (where the sign of the curvature changes). They propose to highlight
the points that would be considered as occluding contours if the point of view
was slightly shifted, thus identifying the so-called "suggestive" contours. This
de�nition corresponds to the points where the mean curvature is equal to 0,
and its directional derivative (in the direction of the point of view) is positive.
An extension can be found in DeCarlo and Rusinkiewicz [2007] by using a com-
bination of suggestive contours and suggestive highlights, obtained from in�ec-
tion points with a directional derivative being negative. Finally, Kolomenkin
et al. [2008] propose to use Demarcating Curves (Figure 1.19(b)) that are lines
de�ned by all in�ection points, regardless of the point of view.

1.5 Visualization with Open Inventor

As the work presented in this manuscript is conducted within the toolkit Open
Inventor, it is important to describe it. Open Inventor is an SDK created in
1988 by Silicon Graphics (SGI) under the name IRIS Inventor. It is now
developed and maintained by Thermo Fisher Scienti�c. This SDK aims at
providing visualizing solutions for CAD applications, medical analysis and oil
& gas exploration. As these �elds interact with both surface and volume data,
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Figure 1.20 � A scene graph displaying a red cone. A render action is performed
on the root node, starting a traversal: (1) the camera node sets its properties on the
state, then (2) the light node adds its properties, then (3) the material also sets the
color properties and �nally (4) the shape node triggers the execution of the Graphics
Pipeline with the corresponding mesh and the properties accumulated on the state.

Open Inventor handles both cases. A brief overview of the current capabilites
and limitations of Open Inventor is presented here. For a detailed presentation
of the features, we refer the reader to Wernecke [1994a], Wernecke [1994b]
and the Open Inventor website (Inventor). Note that all the functionalities
presented here are directly available in Open Inventor. As Open Inventor is
an SDK, it o�ers possibilities for the user to implement custom features and
sylization techniques.

1.5.1 Scene Graph

Open Inventor introduced the notion of scene graph (Strauss [1993]) to de�ne
a scene using nodes: shape nodes, property nodes, light nodes, etc. A scene
graph o�ers a logical view of the scene, as illustrated in Figure 1.20. This
logical view allows the user to easily build and interact with the appropriate
scene.

To convert this scene graph into an image, a traversal is performed at run

37



1.5. Visualization with Open Inventor

time, in a depth-�rst order, to accumulate and execute the appropriate actions
and rendering commands. Actions are the core of how Open Inventor works.
Indeed, actions handle the interaction with a scene graph so that Open Inventor
can interpret it and display the corresponding scene. The main actions are:
• Render Action: this action triggers the rendering of the scene.
• Bounding Box Action: this action triggers the computation of the bound-
ing box of the scene.
• Pick Action: this action allows one to select on the screen, thanks to the
mouse, a point of the scene.

An action toggles the traversal of the graph starting by the node onto which
the action is performed. During the traversal of the graph, the property nodes
are stored in the traversal state, which quali�es the current properties of the
scene at any time of the traversal. These modi�cations are done thanks to
elements: each node likely to modify the state possesses an element in order
to transmit the properties of the nodes toward the state. Thus, for a Render
Action for example, all the nodes modifying properties of rendering are updated
on the state: transformations (e.g., translation, rotation), material properties,
etc....

As an example, Figure 1.20 displays a red cone. First, a bounding box
action is performed to set the viewing volume according to the scene. Then,
a Render Action is executed on the node at the root of the graph in order to
toggle the traversal. During traversal, the following nodes are encountered:
• A camera node, which puts on the state the properties of the camera.
• A light node, which puts on the state the properties of the light source.
• A material node, which places on the state the material properties (here
the red color).
• A shape node, which toggles the drawing of a cone with the properties
previously placed on the state.

1.5.2 Surfaces

In this section, we present the key features implemented in Open Inventor to
visualize surfaces. First, we present the surface representations handled by
Open Inventor, then we present its capabilities regarding transparent surfaces
and �nally we present the lighting and stylization techniques available in Open
Inventor.

Representation and Rendering Paradigm

As it is a common representation, Open Inventor handles polygonal meshes.
It also handles some implicit surfaces, represented only by a set of parameters,
e.g., for sphere: its center and it radius. These surfaces are rendered using
ray-marching to solve a ray intersection equation. The available shapes (also
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(a) (b)

Figure 1.21 � Comparison between two sphere representations: (a) de�ned by a
non-accurate mesh, (b) de�ned as a algebraic shape. The former is less accurate but
has a rendering cost much lower than the latter, o�ering a perfectly accurate shape.

called Algebraic Shapes) are spheres, cylinders and cones. The main advantage
of these representations is to provide perfectly smooth shapes while avoiding
to use a very �ne mesh model. A comparison is shown in Figure 1.21.

Open Inventor also supports parametric surfaces, such as Non-Uniform
Rational Basis Splines (NURBS), which are often used for CAD applications,
in particular for the design of mechanical parts.

Transparent Surfaces

Applications like CAD often require an in-depth inspection of an object. When
this object is de�ned by surfaces, it is important to see through them in order
to visualize all the parts of the object. In Open Inventor, it is done by making
these surfaces as semi-transparent using a material node and blending them
using Alpha Blending.

However, handling correctly transparent surfaces is not straightforward, in
particular because we must take care of the rendering order of the objects. As
presented in Chapter 2, several state-of-the-art algorithms are implemented in
Open Inventor.

Lighting and Stylization

Direct Lighting Illumination in Open Inventor is limited to direct lighting,
with two approaches:
• Base color: the lighting just takes into account the di�use component of
the material, regardless of any direction.
• Using a BRDF: the lighting is computed according to the Blinn-Phong
BRDF model (Blinn [1977]).

If these two features are su�cient for some applications in which visualiza-
tion is mostly illustrative, it is limited for the applications that require a more
physically accurate representation.
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Also, there is currently no built-in solution to handle more than point lights,
directional lights and spot lights.

Shadowing Open Inventor implements two techniques for rendering shad-
ows: Shadow Maps (introduced by Williams [1978]) and Variance Shadow
Maps (Donnelly and Lauritzen [2006]). However, for surface data, it is limited
to per-light shadowing, thus there is currently no built-in solution to perform
Ambient Occlusion. It can however be implemented using custom nodes and
custom shaders.

Expressive Rendering Currently, Open Inventor implements only few tech-
niques to provide illustrative visualization. Most of the expressive rendering
that can be done using Open Inventor are the result of custom nodes and/or
custom shaders.

1.5.3 Volumes

The visualization of volume data in Open Inventor is done by the module
VolumeViz, which handles data loading, formatting and rendering. First, we
present the di�erent volume rendering paradigms implemented in VolumeViz,
then we present an overview of the lighting and stylization techniques.

Rendering Techniques

Most of the rendering techniques presented in Hadwiger et al. [2006] are im-
plemented and available in VolumeViz. Thus, it is possible to visualize data
using:
• Orthoslice: only one slice is displayed.
• Texture slicing: all slices are blended using the process presented in
Section 1.3.2.
• Ray-casting: the volume is traversed using ray-marching, as presented
in Section 1.3.2.
• Isosurface: extraction is done per-sample using a ray-casting pipeline.
However, there is, to this day, no built-in rendering techniques providing

global illumination features in VolumeViz.

Lighting and Stylization

VolumeViz currently uses the Emission-Absorption (Figure 1.22(a)) approxi-
mation to solve the Volume Rendering Integral (Equation 1.8). The mapping
from the scalar value to the associated absorption coe�cient and emissive color
is done with a transfer function (classi�cation step, as evoked in Section 1.3.2):

TF (s) = (R,G,B, α)
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(a) (b)

(c) (d)

Figure 1.22 � Di�erent lighting possibilities of VolumeViz: (a) using the Emission-
Absorption model, (b) with per-sample direct lighting, (c) Emission-Absorption with
Ambient Occlusion, (d) deferred direct lighting with Ambient Occlusion.

Direct Lighting In term of lighting simulation, the VolumeViz pipeline han-
dles direct lighting with a BRDF only, using the scalar gradient to determine
whether the sample should be lighted or not (Figure 1.22(b)). In the latter
case, the lighting simulation just outputs the emission value. Note that di-
rect lighting in VolumeViz can be done as a deferred process (Figure 1.22(d))
a �rst pass does classical non-lighted volume rendering and the closest non-
transparent sample per pixel is stored in a texture. Direct lighting is then
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applied to these samples only. Note that the specular component of the direct
lighting is handled with a material node.

Since the 9.8 version, VolumeViz also implements image-based lighting (pre-
sented in Section 1.3.3) and handles Tone-Mapping for High Dynamic Range
(HDR) output images (see Reinhard et al. [2005] for an introduction to HDR).

Shadowing In terms of shadowing capabilities, VolmueViz embeds more op-
tions than Open Inventor for surfaces. Indeed, it implements the same shadow
map algorithms (Williams [1978] and Donnelly and Lauritzen [2006]), but also
Ambient Occlusion as a deferred post process (Figure 1.22(c)), performed on
the �rst hit-point.

Since 9.8 version, VolumeViz also implements ray-traced shadows: for each
sample, a ray is cast toward each light source to evaluate the visibility of this
source.

1.6 Conclusion

In this chapter we have presented several aspects of light transport: how it
is used in Computer Graphics to render both surfaces and volumes and how
it can be modi�ed to provide non-photorealistic renderings. We have also
presented brie�y Open Inventor, the SDK that we use for the work presented
in the following chapters.

We illustrated that, despite its current features and the possibility to imple-
ment custom ones, Open Inventor lacks ready-to use solutions to enhance the
depiction of transparent objects (surfaces or volumes). Furthermore, we also
concluded that there was no satisfying solution in the literature to address the
speci�c problem of transparent surfaces. In Chapter 2, we propose a real-time
solution to this problem.

For the case of volumes, approaches to highlight speci�c features often rely
on segmentation, more than using light transport. However, segmentation-
based visualization is a tedious process and many of the known algorithms are
task-speci�c. Furthermore, these algorithms often operate at a global scale.
Thus, in Chapters 3 and 4, we explore a new metaphor using light transport,
based on medical imaging use cases, to identify region of interest.
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Chapter 2

Feature-extraction for
Visualization of Transparent
Surfaces

Transparency is a common tool for analysing complex object subtleties,e.g.,
Computer-Assisted Design. However, with raster-based applications, ambi-
guities from using classical alpha-blending are twofold: (i) a correct compo-
sition implies to render the scene back-to-front; (ii) composition of multiple
non-related information introduces a bias in shape perception. The back-to-
front composition issue (i) is solved by Order-Independent Transparency (OIT)
methods, as presented in Section 2.1.1. However, the second one (ii) has no
obvious solution.

In this chapter, we introduce customizable tools that help to work around
shape perception ambiguities during alpha-blending. Our main contribution
is twofold. First, we introduce a data structure to perform OIT that is suited
to compute derivatives in multilayered data e�ciently. Second, we also intro-
duce a customizable stylization that modulates shading and transparency per
fragment, according to its curvature and its depth, which can be adapted for
various kinds of application.

This work was published and presented at the EuroGraphics Symposium
on Rendering (EGSR) in 2016 at Dublin (Murray et al. [2016]). It is currently
going through the integration process into Open Inventor.

2.1 Shape Depiction and Transparent Surface

As presented in Section 1.4, shape perception can be emphasized with expres-
sive rendering methods. Among the large set of techniques available in this
domain, we are particularly interested in shape depiction algorithms that aim
at stylizing the rendering of a shape according to its features. Basically, these
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2.1. Shape Depiction and Transparent Surface

features can be classi�ed into three categories: surface orientation, surface cur-
vature and in�ection points. While the �rst one can be considered as supplied
during rendering process, other ones should be computed during rendering in
order to bene�t from screen-space formulation.

Screen-space approaches for feature extraction are useful for exploring dense
meshes obtained by photogrammetry using Radiance Scaling (Granier et al.

[2012]), with applications in Cultural Heritage. We consider this as we focus
on the exploration of complex models (e.g., CAD), which requires e�ciently
computing curvature at a scale adapted to the current viewpoint. The com-
putation of surface properties is linked to derivative considerations: curvature
is a derivative of the normals and we need a derivative of the curvature to �nd
in�ection points. Using discrete di�erential geometry operators, the derivative
computation in screen-space involves to have access to the neighborhood of a
point, i.e., a fragment located at a pixel position. For opaque objects, depth-
test operation is enough to eliminate unnecessary fragments. Thus, with one
fragment per pixel, �nding neighbor information is straightforward.

For transparent objects, a pixel may contain multiple fragments. Since a
di�erential operator must be applied per fragment to perform shape depiction
locally, the complexity of using such an operator is overweighted by the com-
plexity of �nding neighbor information. In order to understand the problem
of combining the two approaches (shape depiction and transparent surfaces),
we �rst present how transparent surfaces are handled in a raster-based appli-
cation. We then discuss about the di�culties of using shape depiction with
the structure required to render transparent surfaces.

2.1.1 Rendering Transparent Surfaces

When rendering of a surface, the geometry will �rst be sent to GPU by ver-
tex before being assembled into primitives (see the Graphics Pipeline in Sec-
tion 1.3.1). During rasterization, these primitives will be converted into frag-
ments, as they are projected on camera pixels. Shading and lighting is com-
puted for each generated fragment, whose composition constitutes the pixels
of the �nal image. To display a scene, this process is applied to each object in
the scene.

This process is straightforward for opaque surfaces as only closest surfaces
are kept to generate the image. However, transparent surfaces require to deal
with all surfaces, thus they require either to blend them directly or to rasterize
all of them to keep their fragments. The former is directly done using Alpha
Blending, however it requires depth-ordered surfaces. The latter requires a
dedicated data structure to handle the fragments.
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Figure 2.1 � Importance of the rendering order with two examples of rendering
order, the number on each plane corresponding to this order. On the left, objects have
not been displayed in the order corresponding to their depth, leading to an inconsistent
transparency. On the right, the objects have been displayed in the order corresponding
to their depth.

Alpha-Blending and Rendering Order

In the case where one wishes to use transparency, each fragment receives an
opacity value, commonly called α, ranging from 0 for a totally transparent
surface to 1 for an opaque surface. This opacity value is then used for the
composition by using Alpha Blending, as introduced in Section 1.3.2. The
composition is performed from the farthest fragment to the nearest fragment
to the camera, which corresponds to the OVER operator by Porter and Du�
[1984], such as:

RGBd = αsRGBs + (1− αs)RGBd (2.1)

In this function, RGBs is the RGB triplet of the current fragment, the
source fragment, and RGBd is the RGB triplet of the destination fragment.

Since this equation is not commutative, the order in which objects are
displayed has a direct in�uence on the composition. As shown in Figure 2.1,
if an object is displayed before the one that should be located behind it, or if
two objects intersect, the �nal rendering will be distorted because the object
already displayed will be considered as being the furthest during composition.

This limitation can be addressed by determining, beforehand, in which
order objects must be displayed. This way, we ensure that depth order will be
respected. However, the upstream processing of intersections requires heavy
calculations, which can considerably reduce the performance of an application.
An alternative is to move this problem from the geometric calculation step to
the fragment composition step. It is then possible to get rid of the order in
which the objects of the scene are displayed. The techniques that address
this issue are called the Order-Independent Transparency (OIT) techniques,
since Everitt [2001].
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2.1. Shape Depiction and Transparent Surface

Figure 2.2 � Depth Peeling with 4 layers (Everitt [2001]): �rst layer on the left,
fourth on the right.

Order-Independent Transparency

It is possible to get rid of the rendering order by using commutative operators
(multiplication only RGBd = RGBs∗RGBd or addition only RGBd = RGBs+
RGBd), however these operators do not take into account the values of α
fragments. McGuire and Mara [2016] propose, as an alternative, to weigh the
value of α according to the depth of a fragment during composition, however
this method is more suitable for �uids than surfaces. We will therefore focus
on methods that have been developed to deal with surfaces when we want to
use non-commutative operators.

Depth-Peeling Introduced by Everitt [2001], it consists in splitting the
scene to be displayed into a prede�ned number n of layers. To do this, we will
display the scene n times, where each iteration generates a layer, according to
the previously generated layers. The �rst layer corresponds to the fragments
(one per pixel) closest to the camera, then rendering is performed again by
eliminating the fragments previously stored to generate the second layer. This
process is then repeated to have the desired n layers. Figure 2.2 illustrates how
Depth Peeling operates with 4 layers. At each step, it is necessary to store the
depth of the fragments to be able to eliminate the fragments having a lower
depth. The layers are then blended with Alpha Blending (Equation 2.1) to
obtain the �nal image.

This method was subsequently improved by Bavoil and Myers [2008] with
the Dual Depth Peeling, which consists in decomposing the Depth Peeling into
two parts: one done from the camera and one from a virtual camera located
on the opposite side of the scene. However, the necessary number of iterations
remains expensive and therefore remains a penalizing point of this method.

A-Bu�er The A-Bu�er technique was introduced by Carpenter [1984]. It
consists in storing the fragments, generated per pixel during rasterization, in a
linked-list, whatever the order in which they were generated. This list is then
sorted by fragment depth to perform the composition of the fragments, carried
out from the farthest to the nearest. This process is represented in Figure 2.3.

As all the fragments generated for each pixel are stored, the A-Bu�er can
lead to a saturation of the memory in the case of complex scenes, and therefore
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to empty areas in the image where the fragments could no longer be inserted.
If the technique was introduced in 1984, the �rst functional implementa-

tions on GPU are recent, starting with the method of Yang et al. [2010]. Indeed
the method of Carpenter [1984] is limited by the parallel architecture of GPUs.
Because fragments are handled simultaneously, they may be competing to be
inserted in the same place, at the same time, in the fragment list. In this case,
one of the fragments overwrites the other, which will then be inserted at the
wrong place (or discarded), causing rendering artifacts. Thus using atomic
operations on GPUs (thread-safe read/write operations), Yang et al. [2010]
propose an implementation that performs the insertion atomically, ensuring
that only one fragment can be inserted at a time.

k-Bu�er The k-Bu�er is a technique in-between Depth Peeling and A-Bu�er.
Introduced by Callahan [2005], this technique consists in building a sorted list
of fragments (like A-Bu�er) with a �xed size (like Depth Peeling). Indeed,
building a k-Bu�er consists in keeping the k �rst layers of the scene, thus the
k nearest fragments. To do so, fragments are inserted in the list with a depth-
sorted insertion. After insertion, we have virtually the same output as with
Depth Peeling (k nearest "images"), but this method requires only theoreti-
cally only one rendering pass. Due to current hardware limitations, the most
used version is the dual pass k-Bu�er (Kubisch [2014]) with two rendering
passes: one to create the list using fragment depth, and one to store the color
of these fragments.

Thus, the k-Bu�er does not have the disadvantage of A-Bu�er in terms
of potential memory saturation. However it has a limitation since memory is
pre-allocated for the k layers, which means that even if a pixel contains only
one fragment, the memory provided for the other layers will still be allocated.

Finally, this technique is subject to the same technical limitations as the A-
Bu�er in terms of read/write hazards and therefore requires the use of atomic
operations.

2.1.2 Limitations for Shape Depiction

Shape depiction techniques aim at conveying a message based on shape proper-
ties. Some previous methods propose to modify the re�ection pattern accord-
ing to constraints such as geometric features, material properties or stylization.
An overview of these techniques is presented in Section 1.4. If some techniques,
like Radiance Scaling (Vergne et al. [2010]), can be used for semi-transparent
surfaces with a ray-tracing paradigm, most of these techniques are initially
designed for opaque surfaces when used with raster-based applications.

Combining OIT with expressive rendering methods is addressed by Hum-
mel et al. [2010], with Normal-Variation Transparency. However, as they use
built-in GLSL functions, neighborhood is inaccurate. Carnecky et al. [2013]

47



2.2. Solution Overview
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Figure 2.3 � Principle of A-Bu�er (left) and k-Bu�er with 4 layers (right). Tri-
angles on the top left corner illustrate the real depth order of the object.

propose an altered A-Bu�er, in which fragments are connected to their neigh-
boring fragments. According to the connexity and the logical depth of a frag-
ment, transparency is modulated such that creases are emphasized to nearly
opaque, smoothly decreasing to nearly transparent otherwise. Günther et al.
[2014] propose an enhancement with surface patches to make parts of a sur-
face transparent if an object is behind. However, to our knowledge, there is no
method that computes screen-space geometric features per fragment to modu-
late shading and transparency in real time. Based on a tailored data structure
that allows such computation, we propose a method that provides a way to
extend existing shape depiction techniques to transparent shapes.

2.2 Solution Overview

The goal of the presented method is to enhance shape depiction for transparent
objects. Our process is composed of three main steps as shown in Figure 2.4:

1. Scene discretization into a screen-space representation.
2. Per fragment feature-based stylization.
3. Blending of the generated fragments.
The �rst step consists in capturing the scene into the Bucketed k-Bu�er

(Bk-Bu�er). The Bk-Bu�er is a discretization of the scene in such a way that
fragments are organized pixelwise into three 3D data structures: Z, B and
D. The roles of Z and D are nearly the same as data structures used in dual
pass k-Bu�er (Kubisch [2014]) to capture, respectively, depth and data. B is
used to group fragments belonging to the same shape per bucket. Details of
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Figure 2.4 � Pipeline used for feature-based stylization with Bucketed k-Bu�er.
The discretization pass �lls the bu�er Z, the bucket bu�er B and the data bu�er D
with their respective information (see Section 2.3). The stylization extracts features
and applies modulation on fragment's data (see Section 2.4). Finally, the blending
pass consists in traditional OIT back-to-front composition.

the Bk-Bu�er's data structures are presented in Section 2.3. Note that the
Bk-Bu�er contains geometric and color data per fragment. The second step
is a stylization process which extracts geometric features from the Bk-Bu�er
(i.e., based on the normals) to enhance shape depiction (i.e., by modulating
shaded color). The stylization is customizable by providing user-de�ned trans-
fer functions indexed by the fragment's depth and curvature (see Section 2.4).
The last step consists in reordering fragments back-to-front in order to realize
a correct alpha-blending.

Every stage of our system is performed in real-time on modern graphics
hardware. Results are presented in Section 2.5.

2.3 Bucketed k-Bu�er for e�cient neighbor query

Leaving aside commutative OIT which excludes per-fragment operations, we
focus on per-pixel fragment list. We seek a way to e�ciently access a fragment's
neighborhood. First, we introduce the concept behind our solution, that is,
the elaboration of the Bucketed k-Bu�er. Then, we provide several practical
details about the method.

2.3.1 De�nition of the structure

Our structure relies on a k-Bu�er basis. Indeed, with current GPU, Depth
Peeling is becoming obsolete due to the important number of rendering passes
it implies compared to other techniques. A-Bu�er relies on a linked list which
implies unbound memory. Moreover, all the fragment informations are stored
in the same bu�er. For a better �exibility on data structure, the dual-pass
k-Bu�er (Kubisch [2014]) technique is well-suited. Indeed, by decorrelating
depth and color, we can manipulate depth or color information separately.
Furthermore, storing only the k nearest fragments in k layers ensures a total
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z0, b2 z1, b1 z2, b2 z3, b0
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2: Reorder Z

3: B(x,y)

z

Screen

Pixel(x,y)

Figure 2.5 � Description of the discretization process. In the �rst pass (1), Z is
�lled with a depth-ordered fragment list, containing depth (z) and shape ID (b) for
each fragment. In the second one (2) Z is reordered by shape ID. Then (3), B is
�lled with bucket's information : shape ID (b), �rst and last fragment index (i, j).

control over memory occupancy. Those two points are key elements for the
choice of our structure.

In such a structure, a naive approach to �nd the best neighbor candidate
is to iterate through each neighboring pixel's fragment list. However, this
implies costly memory access. Vardis et al. [2016] use buckets to decompose a
fragment list such that fragments are grouped by depth ranges. In the same
way, we propose to reorganize the fragment lists so that fragments belonging
to a same object are regrouped in a bucket. That way, only fragments in
the corresponding bucket needs to be traversed, thus avoiding many memory
accesses. Using such partition, �nding a one-ring neighborhood would go down,
in theory, from a complexity of O(k2) per pixel to O(kn), where k is the number
of fragments per pixel and n is the number of fragments in a bucket, so we
should have a gain as soon as n < k.

The proposed algorithm shares the same concepts as the dual-pass k-Bu�er
in the sense that we use two geometry passes to store depth and data in
separate bu�ers. However, in order to facilitate access to neighbors, our data
structures di�er in the data we store and we use additionnal computing passes
to arrange the data according to our needs. The remainder of this section
describes the pipeline to build the Bk-Bu�er data structure in a sequential
order. In the following, W and H denote respectively the width and the
height of the rendering window.
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Z insertion Similar to the dual-pass k-Bu�er (Kubisch [2014]), we store a
fragment's depth per pixel in the �rst geometry pass. Relying on the bene�t
of such approach, the n nearest fragments to the camera, n ≤ k, are stored
and ordered by depth in the bu�er Z. For each fragment, we keep not only its
depth (z) but also its shape ID (b) (see Figure 2.5 (1)), where b is a integer
representing the identi�er of the shape where the fragment is from. Thus, the
Z data structure is of size W ×H × k, containing pairs (z, b).

Z reordering During this pass, we reorder per-pixel fragment pairs of the
Z data structure along b instead of z (see Figure 2.5 (2)). Sorting fragment
pairs in this manner allows grouping fragments that belong to the same shape
consecutively in order to gather them into buckets.

Bucket creation Per-pixel groups of fragments, which share the same shape
ID, are implicitly de�ned by the reordering of Z in the previous pass. However,
in order to have a direct access to the range of these groups, the B data
structure is built in a computing pass. Such groups are de�ned as buckets: a
bucket contains the shape ID (b, i.e., a bucket ID) and the indices (i, j) of the
�rst and last fragments of a group. The bucket bu�er B contains W ×H × k
triplets (b, i, j) (see Figure 2.5 (3)).

Since n fragments are stored in Z during the �rst pass, n ≤ k, no more
than k buckets are stored per-pixel. However, storing bucket information in a
table indexed by b can lead to indices that are out of range if b > k. Thus,
B is considered as a per-pixel hash table in which each bucket is indexed by
H(b), where H is a hash function de�ned as:

H(b) = b mod k

Using such hash function may lead to collision in the hash table. Thus,
during insertion of a bucket b in bu�er B, we check that the slot at index H(b)
in the hash table is free. If the slot is unoccupied, the bucket information is
stored at this index. If the slot is occupied, b is incremented until the index
H(b) points to a free slot. Note that a free slot is always available since the
number of buckets per pixel cannot be greater than k, the size of the hash
table. The same incremental process is used to �nd a bucket, except that
we check if the slot contains the right bucket. Organized in that way, B, in
combination with Z, is used as an index lookup to perform e�cient fragment
query as shown in Figure 2.6.

Data storage To store fragment's data, a second geometry pass is performed
to �ll the bu�er D. The fragment's data are its color (c) and normal (~n).
Only fragments pre-selected during the �rst geometric pass must be stored.
Thus, for each generated fragment, we perform a fragment query as shown in
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z4 b3 c4 n4
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B(x, y)
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D(x, y)

3: write

1: look-up

2: bucket range

Figure 2.6 � Fragment query for data storage pass. For a generated fragment,
the shape ID is used to locate, with a linear search, the associated bucket (1) and
extract its range (2). The current fragment is located within these ranges. To �nd
its index, a depth comparison is used. Fragment's data, color and normal, are stored
at this index (3). For neighbor query, the fragment (x, y, z) is used for a look-up in
B(x+ dx, y + dy) and Z(x+ dx, y + dy).

Figure 2.6. If the query is successful, data are stored to the given index, or
rejected otherwise. Bu�er D thus contains W ×H × k pairs (c, n).

2.3.2 Implementation details

As presented in the previous section, we manipulate three 3D structures. Each
of them will be able to containW×H×k elements, whereW andH correspond
to the viewport size and k is the number of layers in the bu�er.

During the �rst pass, the sorted-insertion by depth is done using atomic
comparison. As atomic comparisons rely on a bitwise AND operator, depth
must be used as Most Signi�cant Bit (MSB), even if we store both depth and
shape number. These two values are packed on 32 bits with 16 bits each, in the
bu�er Z. Using depth as MSB ensures that we keep the k nearest fragments.

For the construction of the buckets, depth and shape number are swapped
inside Z. This way, shape number is now used as MSB instead of depth and
we can easily reorder our list. After reordering, buckets are constructed as
described in the previous section. Using this structure requires 32 bits per
bucket : 8 bits for the �rst fragment position, 8 bits for the last one, and 16
bits for the shape number.

Finally, to insert the data in the bu�er D, we rely on a binary search done
directly inside the correct bucket. This bucket is located using the process in
Figure 2.6 with a condition on shape number. Once we know the correct frag-
ment's layer, we can store the fragment color after shading to use only 32 bits
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for color. The shading relies on the Bidirectionnal Re�ectance Distribution
Function (BRDF) proposed by Burley and Walt Disney Animation [2012] for
direct illumination and Image-Based Lighting to approximate indirect illumi-
nation. We store as well the fragment's normal, packed on 32 bits (15 bits for
each x and y components and 2 for the sign of z). This results in using 64 bits
per fragment for the data structure.

2.4 Feature-driven stylisation

In this section, we demonstrate how to use the Bk-Bu�er for an e�cient feature-
driven stylization. First, we present how to �nd fragment's neighborhood to
compute curvature per fragment. Then, an application of stylization is shown
adapted from existing shape depiction techniques.

2.4.1 Feature extraction

Carnecky et al. [2013] propose a method to �nd the neighbor of a fragment. A
comparison is performed between a fragment and all the fragments contained
in an adjacent pixel. The comparison function (ε) is based on normal and
depth di�erences and the best neighbor candidate is the fragment that obtains
the minimum value. We use a similar approach with the following criteria:

εn(i, j) = 1− ~ni
T · ~nj

εz(i, j) = |zi − zj|2

ε(i, j) = εn(i, j) + εz(i, j)

To ensure that we correctly identify the neighborhood, each fragment la-
beled as the best candidate does a reverse check to determine if this candidate
also views the current fragment as its neighbor. If one of the neighbors is not
found, we use a special value indicating a missing neighbor. Figure 2.7 illus-
trates the interest of this reverse check. Comparing to the work of Carnecky
et al. [2013], a crucial point in our method is the lower complexity of this al-
gorithm. Actually, thanks to the Bk-Bu�er, fragments belonging to the same
object are grouped together. Thus, as explained in the previous section, the
number of pairs to test is restricted to a subset of candidates, i.e., the ones
with the same shape number (ID). We access to this subset using the same
process as data storage, presented in Figure 2.6, except that the query is done
on the neighboring pixel's lists (buckets and fragments).

The neighbor information is used to compute screen-space curvature per
fragment, such as Vergne et al. [2009]. In this approach, principal curvatures,
κ1 and κ2, are extracted from surface normals. Instead of directly using the
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(a)

(b)

κ = −1 10

Figure 2.7 � Importance of doing a reverse check. (a) A simple check, which
results in biased results at creases. (b) A reverse check, with creases identi�ed as
such.

mean curvature (κ1 +κ2)/2, we prefer, for practical reason, the following map-
ping varying between −1 and 1:

κ = tanh(κ1 + κ2)

For the rest of this paper, κ is considered as a curvature value. In our
convention, −1 corresponds to a convexity and 1 to a concavity. Contrary
to Vergne et al. [2009], our method does not su�er from an unde�ned behavior
at the object's boundaries. By taking advantage of potential missing neighbors,
we can handle those aera: the curvature of a fragment with a missing neighbor
is set to κ = −1.

2.4.2 Stylization

For the stylization, our method modulates both shaded color and transparency.
These modulations are controlled by transfer functions: a 1D texture for color
and a 2D one for transparency.

The shaded color is modulated with a curvature-indexed transfer function,
presented in Figure 2.8(a). This function is inspired by Mean Curvature Shad-
ing (Kindlmann et al. [2003]) and Radiance Scaling (Vergne et al. [2010]), with
bright convexities and dark concavities. It provided convincing results for our
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κ = −1 0 1
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Figure 2.8 � (a) The transfer function we use to modulate shading brightens con-
vexities and darkens concavities. (b) Another example: bright curved surfaces, dark
�at ones.
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Figure 2.9 � Example of di�erent transfer functions. White corresponds to opaque
(opacity of 1) and black to transparent (opacity of 0). Both follow the same idea:
more transparency on �at and close surfaces, more opacity on curved surfaces as well
as distant ones.

application, as we wanted to modulate a physically-based shading. However,
for other applications, a di�erent transfer function could be used in our pipeline
for other stylizations as shown in Figure 2.8(b).

The modulation of transparency extends the work presented by Hummel
et al. [2010] as we use curvature instead of normal-variation considerations.
Based on the idea of X-Toon (Barla et al. [2006]), we propose to modulate
opacity with a transfer function indexed by absolute mean curvature and depth.
A value of 1 corresponds to fully opaque and 0 to fully transparent. An example
of transfer function can be seen in Figure 2.9. We choose to use the absolute
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(a) (b)

(c) (d)

Figure 2.10 � Examples of Mean Curvature Transparency. (a,b) The transfer func-
tions used are respectively the one presented in Figure 2.9 (45 FPS versus 120 FPS
without modulation). (c,d) The transfer functions are shown in the top left corner
(10 FPS, versus 20 FPS without modulation). Times are obtained with a resolution
of 1200 by 800 for the bike, and 1000 by 1000 pixels for the UNC Powerplant, with
16 layers for both cases.

mean curvature so that either convexities or concavities would have the same
opacity. Indeed, based on our observations, both are crucial to fully grasp
shape characteristics.

Our system allows the use of any transfer function to modulate opacity. Fig-
ure 2.10 illustrates how di�erent functions allow one to emphasize speci�c parts
of the scene. For instance, the function used in Figures 2.10(a) and 2.10(c) re-
sults in nearly transparent fragments on �at surfaces close the viewport, while
curved surfaces are nearly opaque. The opacity quickly grows as the distance
to the camera increases. This behavior allows one to place more focus on the
front part of the scene. On the contrary, the function in Figure 2.10(b) places
less focus in front but depicts shape on a wider range of depth. Finally, Fig-
ure 2.10(d) presents another behavior, where front parts are more opaque than
distant ones. Both use the function presented in Figure 2.8(a) to modulate
shading so that convexities are brightened while concavities are darkened.

56 David Murray



2. Feature-extraction for Visualization of Transparent Surfaces

(a) (b) (c)

Figure 2.11 � (a) OIT using a k-Bu�er with a constant opacity value of 0.6
(50 FPS). (b) Mean Curvature Shading only. (c) Mean curvature transparency (20
FPS). The transfer function used is on the top-right corner. Model courtesy of dessin-
dus.blogspot.fr. Times are obtained with a resolution of 1000 by 1000 pixels and 16
layers.

2.5 Results and Performance

To illustrate the bene�ts of extending shape depiction to transparent sur-
faces, Figure 2.11 shows a comparison: in Figure 2.11(a), simple OIT, in Fig-
ure 2.11(b), enhancing convexities and concavities on opaque surfaces, and
�nally in Figure 2.11(c) with transparency, enhanced as well with our method.
OIT only allows the user to guess the internal structure of the car while Mean
Curvature Shading enhances surface features only on the outer parts. On the
contrary, our method enhances both internal and external parts, with a focus
on the front of the scene.

To measure the impact on performance of our method, we use a synthetic
test con�guration, in which rendering time is only dependent of the number
of objects. The scene is composed of 32 stacked full-screen quads so that all
32 layers are always �lled. Each quad is located at a random depth, and
is associated with a random object. We then vary the maximum number of
objects, as described in Figure 2.12.

We compare the result of our solution with the brute force approach. Note
that the brute-force approach has a constant rendering time, as complexity is
only dependent on the number of fragments. The latter roughly corresponds
to the method of Carnecky et al. [2013]. Implementation and renderings were
done using the Open Inventor R© 9.6 SDK by Thermo Fisher Scienti�c

TM

with
an NVIDIA GTX 980. Results are shown on Figure 2.12 for 32 layers and a
resolution of 512 × 512 (around 8,4 million of fragments). If our solution is
obviously much slower that simple transparency (10 ms in this con�guration),
we can see that it improves performance for transparent shape depiction as
soon as there is more than one bucket. With more than �ve buckets, we halve
the time required, going down to a �fth of the performance of the brute force
approach when there are many objects.
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Figure 2.12 � Cumulative rendering times of a �xed number of fragments (32)
for di�erent bucket con�gurations (colored quads) and 512 by 512 pixels. Full lines
depict cumulative times of our method, the dotted line represents the total time of
the brute force approach. As a reference, a dual-pass k-Bu�er alone with constant
transparency requires around 10 ms per frame.

These observations �t rather well with theoretical gain of Section 2.3, going
from O(k2) to O(nk), but only when n is at least 2. Indeed, when n ≤ 2, the
cost of accessing all the fragments in a bucket becomes nearly equal to the cost
of accessing the bucket, whereas for n > 2, the bucket cost becomes quickly
insigni�cant with regards to the cost of accessing all fragments. However, this
gain is valid only for neighbor query, as our structure still requires two sorting
passes. In our algorithm, we use insertion sorting which has a complexity of
O(k2) in the worst case, O(k) when fragments are nearly-sorted, which is often
the situation with our structure.

The last aspect concerns memory consumption. The proposed solution
requires up to 128 bits per fragment (32 bits for depth and bucket ID, 64 bits
for color and normal, and 32 for bucket informations) whereas a classic dual-
pass k-Bu�er requires 64 bits per fragment. For a full HD resolution, this over
is around 32 MB per layer versus 16 MB for a simple k-Bu�er.
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2. Feature-extraction for Visualization of Transparent Surfaces

2.6 Conclusions and limitations

We have presented a new approach as one solution to the bias in shape percep-
tion introduced by compositing multiple non-related fragments. We convey ge-
ometric properties of transparent surfaces with Mean Curvature Transparency
based on the Bucketed k-Bu�er. The Bk-Bu�er allows an easy access to the
fragments of a shape. Moreover, we provide a customizable tool to enhance
scene perception for transparent surfaces. Based on a user-de�ned transfer
function, it is possible to choose which features should be highlighted. The
choice is highly dependent of which features need to be enhanced, as well as
the complexity of the scene.

Our approach is dedicated to scenes with multiple objects: on a unique
object, such an approach introduces too much complexity. Our structure per-
forms better than existing ones, even if it implies an overhead in memory.
However, our data structure may be optimized for more applications than
neighbor query. In particular, we could use it to extend the amount of op-
tical phenomena that we currently simulate, such as refraction, sub-surface
scattering or translucency with a limited impact on performance.

On the other side, in a scene with many small objects, results can become
less legible. The current stylization is based on the feedback provided by our
team. A further user-study, with a representative panel, would be necessary
to accurately validate the perceptual gain of our method. In future work,
we also plan to investigate the impact of using line-based rendering (DeCarlo
et al. [2003]; Ohtake et al. [2004]; Judd et al. [2007]; Kolomenkin et al. [2008],
introduced in Section 1.4.2) to enhance third order features on transparent
surfaces.

Note that such an approach is hardly generalized to pure volumes. In
Chapter 3, we propose a new interactive metaphor for volume visualization
and the characteristics of the required numerical scheme.
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Chapter 3

Light Transport for Volume
Exploration

As we detail in the �rst section of this chapter, the solution presented in Chap-
ter 2 for transparent surfaces is hardly extendable to volumes. To explore such
data, we introduce a new metaphor, based on medical imaging techniques (see
Section 3.1.3). First done using a classical di�usion algorithm (Section 3.1.3),
the solution has limited accuracy and is hardly controllable. Thus, it is not
suited to be integrated directly in the Open Inventor SDK. In order to comply
with this industrial constraint, we �rst study in Section 3.2 how we can use
the RTE, as it is well suited to perform di�usion in media. We then study,
in Sections 3.3 and 3.4, di�erent numerical schemes to do so in an interactive,
yet robust, way.

Note that for the sake of making this chapter as clear as possible, important
steps and conclusions of the di�erent sections are highlighted.

3.1 Extending to a Full Volume Data

In this section, we present how our solution for enhancing transparent surface
legibility can be used when dealing with full volume data. In particular, we
distinguish between isosurface rendering and ray-casting visualization. For
the latter case, we also introduce another approach, inspired by �uoroscopy
imaging, to improve volume visualization and exploration.

3.1.1 Volume Opacity Mapping

An obvious idea is to use the same opacity mapping than the one presented for
surfaces in Chapter 2. As a reminder, we modulate the opacity of a fragment
(a sample) using its local curvature and depth information. This extension
to volumes can be done with two approaches: per sample (per-voxel) opacity

61



3.1. Extending to a Full Volume Data

(a) (b)

Figure 3.1 � Extending our previous solution for surfaces to volumes: Direct Vol-
ume Rendering (DVR) and isosurface rendering. (a) Sample-based mapping, on the
left is classic DVR, on the right is DVR with our opacity mapping. Note that the
mapping o�ers a better grasp of the con�guration around rocks but can no longer see
the branches, compared to classic DVR. (b) Applying our mapping to opaque approx-
imated isosurfaces (bones in yellow, tissues in red). Note that the result ampli�es
noise and reconstruction limitations of the volume.

mapping or per isosurface mapping. We now give some details about these
two cases.

Per-sample Mapping When using ray-casting to generate images from a
volume, the volume is evaluated per-sample. Thus, using our opacity mapping
requires to compute a curvature information for each sample. This idea implies
to tackle two problems:

• Is geometric curvature, as presented in Chapter 2, pertinent in a medium
with a volumetric representation ?
• Our mapping handles well objects with a limited number of surfaces.
Does it scale well with a large number of layers ?

Concerning the �rst point, a satisfying solution to compute curvature in a
volume is proposed by Bruckner and Gröller [2007]: computing the curvature
by comparing the normal vector from two samples along the viewing ray.

Concerning the second point, we tested our opacity mapping with a ray-
casting pipeline. The result is presented in Figure 3.1(a). We can see that
the mapping has a very limited impact on the legibility of the model, and,
in some cases, it even has the opposite e�ect. Thus, for a situation like a
volume in which more than a hundred samples are blended, the result of using
opacity mapping does not produce a more legible visualization, despite a great
overhead in computation time.
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3. Light Transport for Volume Exploration

Figure 3.2 � An illustration of a biased light transport algorithm. By using biased
parameters to create or amplify discontinuities, we could enforce a con�ned light
propagation, as illustrated on the schematic view.

Isosurface Mapping The problematic of opacity mapping for isosurfaces
is quite di�erent from samples. In fact, it consists mostly in identifying the
isosurfaces. Indeed, once that we have clearly identi�ed surfaces inside the
volume, we can directly use the method we proposed.

However, obtaining the isosurfaces is not a trivial task. The naive approach
is to extract all samples with the same value, but the result will not produce
legible surfaces. In this naive case, as surfaces are not well-de�ned, our opacity
mapping can amplify noise and uncertainties more than shape cues, as pre-
sented in Figure 3.1(b). Thus, it requires to use dedicated techniques. The
evaluation of these techniques is out of the scope of this thesis as we focus on
light transport. For an brief overview of isosurface identitifcation algorithm,
we refer the reader to Hadwiger et al. [2006].

Thus, assuming that we can correctly identify these surfaces, using our
technique for isosurface rendering is straightforward.

The opacity mapping that we proposed in Chapter ?? does not
scale well with a large number of volume samples. It is not
suited for classic Direct Volume Rendering.

3.1.2 Light Propagation

Most approaches to highlight features in volumes require both data knowledge
and �eld knowledge. In particular, segmentation-based visualization is highly
task-speci�c and often requires to use one speci�c method per segmented part
(e.g., Shi et al. [2012]). Furthermore, segmentation algorithms often operate
at a global scale (e.g., Schenke et al. [2005]). Thus, when one wants to apply a
segmentation on a restricted area, it requires many other data manipulations
(e.g., cropping, transfer function adjustment, etc). Focusing on light transport,
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3.1. Extending to a Full Volume Data

our hypothesis is that we could use light propagation knowledge (presented in
Section 1.2) to assist the visualization.

This idea is strongly inspired by �uoroscopy imaging (Mahesh [2011]). In
�uoroscopy imaging, a liquid or a gaz, �uorescent when observed using X-Ray
imaging, is injected in the body and tracked using a �uoroscopy microscope.
This medical imaging process is used to visualize the propagation inside organs
like the esophagus, the intestine or inside veins. Our hypothesis is that we
can mimic this type of imaging process by adapting the volume properties to
modify the output of the RTE resolution. This way, we can imagine a situation
where, by adapting light transport, we can constrain, and thus guide, the light
propagation in speci�c structures of the volume. A conceptual representation
of this idea is presented in Figure 3.2.

In practice, to completely identify a part, the idea is to place a light source
at a position that is known to be inside this part. Then, by adjusting the
absorption and scattering parameters, the di�usion process should remain con-
strained into the area with similar properties.

We propose to use the RTE to reproduce the results of �uo-
roscopy imaging.

3.1.3 Toward a Proof of Concept: Anisotropic Di�usion

To test our hypothesis, we �rst focus on a pure di�usion phenomenom. We
thus designed a proof of concept based on the Anisotropic Di�usion algorithm,
proposed by Perona and Malik [1990]. Indeed, testing it directly using the RTE
requires to evaluate the di�erent approaches that can be used to solve the
equation: path-tracing, photon-mapping, �nite element resolution, iterative
or not, etc. On the other hand, the Anisotropic Di�usion algorithm o�ers
capabilities close to the one we are looking for, while being quick and easy to
implement.

Anisotropic Di�usion for Image Processing

Anisotropic di�usion was initially used to perform smoothing with edge preser-
vation. The general formulation is derived by Perona and Malik [1990] (Equa-
tion 3.1) as a general case of the heat equation that describes density changes
in a material undergoing di�usion over time. They introduced a �ux function
C as a mean to control the di�usion process of the pixel intensity I (associated
to a �ux) such as:

∂I

∂t
= C(x, y, t)∆I + ~∇C

T
· ~∇I (3.1)

Note that if C(x, y, t) = constant, Equation 3.1 is the heat equation. Perona
and Malik [1990] propose two �ux functions, based on image gradients, (see
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following Equations 3.2 and 3.3) that o�er a trade-o� between conserving the
edges and smoothing homogeneous regions within these edges:

C(||∇I||) = e−(
||∇I||
σ

)2 (3.2)

C(||∇I||) =
1

1 + ( ||∇I||
σ

)2
(3.3)

In these functions, the factor σ controls the sensitivity to the edges:
• If σ is high (typically σ � 1), the function will be close to 1, with few
variations, and the di�usion will be close to the heat equation.
• If σ is low (typically σ � 0.01), the function will be close to 0, also with
few variations and the di�usion will be nearly impossible.
• If σ is in the range [0.01, 1], the function will have decent variations and
the di�usion will correctly preserve edges while smoothing the homoge-
neous parts of the image.

Equation 3.1 can be discretized using a Forward-Time Central-Space (FTCS)
method, a �nite di�erence method often used to solve the heat equation. This
method uses central di�erences for space derivation and forward Euler method
for time derivation. Thus, Equation 3.1 becomes:

I t+1
i,j = I ti,j + λ[CN · δNI + CS · δSI + CE · δEI + CW · δW I]ti,j (3.4)

where

δP Ii,j = IP − Ii,j
CP = C(|δP Ii,j|)

N = (i− 1, j) S = (i+ 1, j)
E = (i, j + 1) W = (i, j − 1)

0 ≤ λ ≤ 1
4

Anisotropic Di�usion for Volumes

The method can be extended to volume processing by simply taking into ac-
count the variations along the third dimension in the Equation 3.4, leading
to:

I t+1
i,j,k =I ti,j,k + λ[CN · δNV + CS · δSV + CE · δEV + CW · δWV

+ CU · δUV + CD · δDV ]ti,j,k

(3.5)

where

δP Ii,j,k = IP − Ii,j,k
CP = C(|δP Ii,j,k|)

N = (i− 1, j, k) S = (i+ 1, j, k)
E = (i, j + 1, k) W = (i, j − 1, k)
U = (i, j, k + 1) D = (i, j, k − 1)

0 ≤ λ ≤ 1
6
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3.1. Extending to a Full Volume Data

(a) (b) (c)

(d)

Figure 3.3 � (a) Original image from which we want to preserve edges. (b) Gra-
dient map of the original image, corresponding to the edges we want to preserve.
(c) Energy "image", with the source and void otherwise, corresponding to image we
want to smooth. (d) Energy di�usion constrained by the image gradient (visible for
comprehension).

Adapting the Algorithm for Selective Di�usion

The idea to extend the anisotropic di�usion to mimic �uoroscopy, and thus
perfom selective di�usion, is depicted with a 2D example in Figure 3.3 made
using Shadertoy. The idea is simple: the data that we want to "smooth"
(Figure 3.3(c)) is a volume containing only void except for the energy source
whereas the "edges" that we want to preserve are the one from the original
data (Figure 3.3(b)). The result is a di�usion occurring mostly in smooth
areas (Figure 3.3(d)).

Figure 3.4 presents the results we obtain with this algorithm. A light
source has been placed at the top of the trachea (Figure 3.4(a)), and, using
the gradients of the data, the di�usion (Figure 3.4(b)) is con�ned inside the
trachea until reaching the lungs. To the best of our knowledge, the use of
Anisotropic Di�usion in volumes is limited to global segmentation (e.g., Kris-
sian [2002], Ahmed and Mohamad [2008], Morar et al. [2012]). Thus it has yet
to be used for localized and selective di�usion as we propose to use it.

Using Anisotropic Di�usion, we have presented a solution that e�ectively
identify speci�c parts of a volume. However, it presents two important limita-
tions. The �rst one is that there is no absorption. It means that convergence
is achieved only when each reachable voxel converges toward the same level
of energy than light sources: in case of a very small over�ow during the pro-
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(a) (b)

Figure 3.4 � Using the Anisotropic Di�usion to highlight the trachea in a human
torso. (a) The process at time t = 0, the source is visible in green at the top of the
trachea. (b) The result after a signi�cant number of iterations. The area in which
the di�usion occurred is depicted in green. It e�ectively corresponds to the trachea
until it reaches the lungs.

cess, all the volume may be �ooded. The second one is that the algorithm
presents limited control over the parameters, as many aspects are embedded
in the model, thus it is limited in terms of rendering possibilities. The latter
limitation becomes really problematic in regard to the former one, the worst
case being that the whole volume will be �lled.

• Anisotropic Di�usion, adapted to volumes, can be used to
identify region of interest.

• Due to the lack of absorption and problems of conver-
gence, we need to limit the number of iterations to avoid
over�owing.

3.2 Solving the RTE

We have established a proof of concept to illustrate the feasibility and legibility
of our idea. We now need to adopt a more practical and realistic approach by
introducing absorption and a converging algorithm. Our objective is thus to
reproduce this result using the RTE (Equation 1.4) that naturally integrate
these two aspects. Furthermore, it must be solved in such a way that it allows
one to manipulate the absorption and scattering parameters. As there are
many techniques to solve this equation (some of which are brie�y presented in
Section 1.3.3), we need to identify the best one for our application. To do so,
we �rst introduce the context in which the solution is developed, and then we
give details about the di�erent resolution techniques.
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3.2.1 Constraints for the Resolution

In addition to the inherent di�culties of the RTE, presented in Chapter 1, in
particular its strong dependency on direction, we have to comply with user-
based constraints. Indeed, the solution should be integrated into Open Inven-
tor, and thus, must provide a user-friendly interface. The most limiting part to
do so is to provide an interactive solution, so that the user can modify any pa-
rameter at run-time. Indeed, interacting with a volume often requires to move
frequently the camera or adjust the parameters (like the Transfer Function)
to observe di�erent parts. Finally, the solution must have a limited memory
footprint. Indeed, as a feature of Open Inventor, it may be used by a wide
range of users, some of whom not having high-end GPUs.

3.2.2 Resolution Methods

As introduced in Section 1.3.3, there are several kinds of algorithms to solve
the RTE. We now need to confront them to our constraints to determine which
one is most suited to our application.

Ray-tracing and Path-tracing techniques are widely used for the rendering
quality they o�er, with a small impact on memory. However, the resulting im-
age is generally computed according to a given point of view, thus, it must be
recomputed whenever the camera is moved or when parameters are modi�ed.
Even if it is possible with recent implementations to generate an image in a
matter of seconds, like Cinematic Rendering (Comaniciu et al. [2016] and En-
gel [2016]), the frequent modi�cations performed while observing the volume
greatly hinder the interactivity of the methods. The same goes for Photon-
Mapping, but with a non-negligible additional memory cost as a photon map
must be stored for the full volume.

The other kind of approaches is to use implicit representations: expressing
the problem as a linear system to obtain the radiance value at each point.
This system is then solved either directly (e.g., LU factorization, Cholesky
factorization, etc.) or solved iteratively. The former requires to store the
whole matrix of the system and operate on it, which quickly becomes really
heavy in terms of both memory consumption and computation time. Thus, it
su�ers from the same limitation as the previous methods when the parameters
are changed. The latter is less subject to this problem as the iterative pattern
allows one to compute each iteration with a local kernel, on a per-voxel basis.
This iterative pattern allows the user to modify the parameters between the
iteration and the system should stabilize itself if it is well de�ned.

From all the above considerations, we can assume that using an implicit
representation with an iterative resolution should be a good candidate for our
application. Furthermore, our prototype with Anisotropic Di�usion gave us
the hint that seeing the di�usion process until convergence, instead of directly

68 David Murray



3. Light Transport for Volume Exploration

seeing the converged result, could help in understanding the process and correct
it if necessary.

• Visualizing the di�usion process, step by step, helps in
understanding the volume structure.

• An iterative resolution with implicit representation is best
suited to reach this goal.

3.3 Iterative Resolution using Finite-Elements

After identifying iterative resolution as the most suited method for our applica-
tion, we present our �rst try at using it. As a reminder, the RTE (Equation 1.4)
is presented below:

~ωT · ~∇pL(p, ~ω) =−Kt(p) · L(p, ~ω) +Qe(p, ~ω)

+

∫
4π

Ks(p) · P(p, ~ω, ~ω′) · Li(p, ~ω′)d~ω′

The �rst step is to �nd an iteration-based approach of Equation 1.4. We
also need to handle the directional terms (depending on ~ω) of this equation
which are the most troublesome terms if we pre-calculate any term.

3.3.1 Ignoring In-Scattering

As a �rst step, we focus only on absorption and out-scattering:

~ωT · ~∇pL(p, ~ω) = Qe(p)−Kt(p)L(p, ~ω) (3.6)

Furthermore, we consider that the energy source (Qe), placed inside the volume
at position p0, is isotropic and constant:

Qe(p, ~ω) = Qe(p) =

{
Q0 if p = p0

0 otherwise
(3.7)

Equation 3.6, applied to the whole volume data, can be expressed as a
linear system:

ML = Qe −RL

Thus, solving Equation 3.6 for the whole volume is equivalent to solving this
linear system. To do so, we use an iterative process by decomposing R into
two separate matrices:

M +R = A+B
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3.3. Iterative Resolution using Finite-Elements

where A would be at best diagonal, at worst triangular. This allows us to
reformulate:

ALt = Qe −BLt−1 (3.8)

We must now obtain the matrices M and R (A and B). We compute them
by using a �nite element method for which Equation 3.6 is a strong form of a
partial derivatives equation so the �rst step is to obtain its weak form.

3.3.2 Representation of the Quantities

We now need to establish the weak form of the equation. To do so, we must
�rst introduce the test-functions ψ and ϕ that we use to solve the system and
approximate our solution according to:

L(p, ~ω) =
∑
j

∑
l

Lj,lψj(~ω)ϕl(p) (3.9)

For the spatial function, let (ϕl(p)) be a basis of piece-wise linear function,
with l ∈ [0, N ], N being the total number of voxels:

ϕl(p) =


1 + p if pl−1 ≤ p ≤ pl

1− p if pl ≤ p ≤ pl+1

0 otherwise

(3.10)

Concerning the directional function, we simply use a function (ψj(~ω)) that
projects onto the di�erent principal axes, with j ∈ [0, 3]:

ψ0(~ω) = 1

ψ1(~ω) = ~ω.x

ψ2(~ω) = ~ω.y

ψ3(~ω) = ~ω.z

Compared to other possibilities like Spherical Harmonics or Radial Func-
tions for example, this representation has the advantage of being straightfor-
ward and should not require too many operations for further implementation.
Furthermore, this choice was strongly dictated by its similarity to an approxi-
mation commonly used in light di�usion problems: the Di�usion Approxima-
tion.

Introduced in Computer Graphics by Stam [1995] (and later used by Jensen
et al. [2001]), the Di�usion Approximation is widely used to address scatter-
ing problems. As stated by Stam [1995] (and Pierrat [2007] with a physicist
point of view), in highly dispersive media (low absorption and high scattering)
there are many occurrences of scattering events (multiple scattering). Thus,
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even if the phase function is highly anisotropic, if the media is wide and dense
enough, the radiance tends to become isotropic due to these repeated de�ec-
tions. The same idea is widely used with microfacet-based BRDFs which are
often represented with a Lambertian behavior in case of a rough surface. We
can then reformulate the radiance in the RTE as a combination of an isotropic
contribution, φ(p), and a direction-dependent correction term, ~ωT · ~E(p), such
as:

L(p, ~ω) =
1

4π
φ(p) +

3

4π
~ωT · ~E(p) (3.11)

This approximation can also be obtained with a �rst order expansion in the
Legendre polynomial basis (the P1 approximation, Pn refering to the Legendre
polynomial for n order). More details can be found in Pierrat [2007].

The isotropic term is linked to the spherical integral of the outgoing radi-
ance, called the �uence rate:

φ(p) =

∫
Ω2

L(p, ~ω)dω (3.12)

The direction-dependent term corresponds to the total �ux crossing a sur-
face, called the irradiance vector, and is de�ned by:

~E(p) =

∫
Ω2

L(p, ~ω)~ωdω (3.13)

The factors 1
4π

and 3
4π

are normalization constants.

3.3.3 Finite Element Approximation

The weak form of Equation 3.6 with bases ψi(~ω) and ϕk(p) is∫
Ω2,[−1,1]

ψi(~ω)ϕk(p)~ω
T · ∇pL(p, ~ω) =∫

Ω2,[−1,1]

ψi(~ω)ϕk(p)Qe(p)

−
∫

Ω2,[−1,1]

ψi(~ω)ϕk(p)L(p, ~ω)Kt(p)

(3.14)

By using the projection of the radiance function in the same bases (see
Equation 3.9), we get:∑

j

∑
l

Lj,l

∫
Ω2,[−1,1]

ψi(~ω)ϕk(p)~ω
T · ∇p(ψj(~ω)ϕl(p)) =∫

Ω2,[−1,1]

ψj(~ω)ϕl(p)Qe(p)

−
∑
j

∑
l

Lj,l

∫
Ω2,[−1,1]

ψi(~ω)ϕk(p)ψj(~ω)ϕl(p)Kt(p)

(3.15)
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3.3. Iterative Resolution using Finite-Elements

To go further, we assume that our data is locally homogeneous, meaning
that for a given position and its neighborhood, Kt(p) = Kt. Furthermore, we
assume that the light source is isotropic (Qe(p, ~ω) = Qe(p)) and punctual, and
thus expressing Qe in our system is straightforward: we just have to modulate
the original function by 3π (details are presented in Appendix A.1).

To obtain the �nal formulation of our system (Equation 3.8), we must �rst
obtain the matricesM and R from Equation 3.15. To do so, we can decompose
our matrices coe�cient Mi,j,k,l and Ri,j,k,l to evaluate separately spatial and
directional terms.

Thus, we have:

Mi,j,k,l = ~αTi,j · ~βk,l =

∫
4π

ψi(~ω)ψj(~ω)~ωT ·
∫

[−1,1]

ϕk(p)∇pϕl(p) (3.16)

The mathematical details to obtain the coe�cients Mi,j,k,l are presented in
Appendix A.1 and gives us for ~α(i,j):

~α(i,j)∈[0,3]2 =


(0, 0, 0) (4π

3
, 0, 0) (0, 4π

3
, 0) (0, 0, 4π

3
)

(4π
3
, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

(0, 4π
3
, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

(0, 0, 4π
3

) (0, 0, 0) (0, 0, 0) (0, 0, 0)

 (3.17)

For ~βk,l, we use a formulation more adapted to a 3D volume (of size W ×
H × D): (k, l) ∈ [0, N ]2 ⇐⇒ ((kx, ky, kz), (lx, ly, lz)) ∈ ([0,W ], [0, H], [0, D])2.
That way, we can express the system as a reduced kernel that is computed
for a voxel at position k. With the details from Appendix A.1, we can also
reduce (k, l) to k+ d, d ∈ {−1, 0, 1}3. All other combination of (k, l) results in
zeros in the matrices, thus our spatial kernel is a 3 × 3 × 3. Furthermore, we
established in Appendix A.1 that:

~βk,l = (βk,l, βk,l, βk,l)

Thus, we only need to express the formulation for βk,l, that corresponds to a
tensor βd, centered on the position k, such that:

βd∈{−1,0,1}3 =
1

9

−1
8

0 1
8

−1
2

0 1
2

−1
8

0 1
8

 −1
2

0 1
2

−2 0 2
−1
2

0 1
2

−1
8

0 1
8

−1
2

0 1
2

−1
8

0 1
8

 (3.18)

Then, by using the same logic for Ri,j,k,l, we have:

Ri,j,k,l = Ktγi,jδk,l = ρ

∫
4π

ψi(~ω)ψj(~ω)

∫
[−1,1]

ϕk(p)ϕl(p) (3.19)
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The mathematical details to obtain the coe�cients Ri,j,k,l are presented in
Appendix A.2 and gives us �rst for ~γ(i,j):

γ(i,j)∈[0,3]2 =


4π 0 0 0
0 4π

3
0 0

0 0 4π
3

0
0 0 0 4π

3

 (3.20)

For δk,l, we also use a 3D notation ((k, l) ⇐⇒ k + d), and we also obtain a
tensor δd, centered on the position k, such that:

δd∈{−1,0,1}3 =

 1
216

1
54

1
216

1
54

2
27

1
54

1
216

1
54

1
216

 1
54

2
27

1
54

2
27

8
27

2
27

1
54

2
27

1
54

 1
216

1
54

1
216

1
54

2
27

1
54

1
216

1
54

1
216

 (3.21)

We can note that with this formulation, we have a factor 64 between the current
element (d = (0, 0, 0)) and its furthest neighbors (d = (±1,±1,±1)). Thus,
our assumption that our data is locally homogeneous should not introduce an
important bias.

From the above information, we can construct the diagonal matrix A from
the coe�cient γi=j and δd=(0,0,0), while the matrix B is composed of the re-
maining terms. Thus, the �nal formulation to evaluate the radiance per voxel
is presented in Equation 3.22, in which only the non-zero elements from γ and
α are kept. This formulation is given using the notations and normalization
from the Di�usion Approximation (Equation 3.11).


φj
Ej.x
Ej.y
Ej.z

 =
81

32π

1

Kt


φe
0
0
0



− 27

24Kt

∑
d

βd


3(Ej+d.x+ Ej+d.y + Ej+d.z)

φj+d
φj+d
φj+d

− 27

8

∑
d

δd


φj+d
Ej+d.x
Ej+d.y
Ej+d.z


(3.22)

3.3.4 Limitations

We have formulated the �nite element system. We must now check if it is
compatible with a Jacobi iterative resolution. Our system can be reformulated
with the form Ax = b where x is the radiance. Such a system is ensured to
converge with the Jacobi method only if A is a diagonally dominant matrix,
otherwise, the convergence is not guaranteed. As a reminder, a matrix A with
coe�cients aij is diagonally dominant if:

|aii| ≥
∑
j 6=i

|aij|
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3.4. The Unsteady RTE

Figure 3.5 � Alternation between positive (in green) and negative (in red) values
over three iterations. The images are from a 2D implementation on Shadertoy.

In our case, whatever the value that is used for Kt, this condition is not
veri�ed and thus we have no guarantee of the convergence of the method.
This problem was veri�ed with a 2D version (using Shadertoy). The result
was e�ectively unstable as the values rapidly grew far beyond the value of
Qe while oscillating between positive and negative values (see Figure 3.5).
Furthermore, for this version, we did not consider multiple scattering, which
would amplify this instability by increasing even further the rightmost member
of the inequality condition.

If our matrix is not diagonally dominant, it is a symmetric positive-de�nite
matrix. A Gauss-Seidel pattern, which converges in this case, may solve the
system. However, providing e�cient implementations on GPUs of such a solver
is still an open problem in Computer Science. Moreover, in our case, this
solver would require to frequently reorganize our data, between computation
and rendering steps, which could result in a signi�cant impact in term of
computation time.

Furthermore, the system presented has a intrinsic �aw: the extinction pa-
rameter is only present as an inverse form, which limits the type of media that
we can address (e.g., Kt ≈ 0 is not possible).

• Whatever the value that is used for Kt, the stability con-
dition of the �nite element system is not veri�ed and thus
we have no guarantee of the convergence of the method.

• The steady RTE in the Di�use Approximation is not com-
patible with a Jacobi iterative resolution.

3.4 The Unsteady RTE

Due to the limitations that we presented above, we chose to focus on the un-
steady version of the RTE (Equation 1.4). Indeed, this version, compared to
the steady one, has the advantage of complying well with an iterative reso-
lution. In this section, we �rst discuss the case of applying directly a �nite
di�erence scheme to the unsteady RTE. Then, due the limitations of this ap-
proach, we present how it can be expressed using the directional moments of
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the radiance, with a �nite di�erence scheme also.

3.4.1 Using Time Finite Di�erences

As a reminder, the equation we now use is:

1

c

∂L(p, t, ~ω)

∂t
+ ~ωT · ~∇pL(p, t, ~ω) =−Kt(p) · L(p, t, ~ω) +Qe(p, t, ~ω)

+

∫
Ω2

Ks(p) · P(p, ~ω, ~ω′) · Li(p, t, ~ω′)d~ω′

We keep the assumption that the source is isotropic, and we also consider
that it does vary in time: Qe(p, t, ~ω) = Qe(p).

By using a forward �nite di�erence scheme to discretize the time derivation,
we naturally obtain an iterative-compliant formulation:

Lt+1(p, ~ω) =Lt(p, ~ω) + c · dt ·

(
~ωT · ~∇pL

t(p, ~ω)−Kt(p) · Lt(p, ~ω)

+Qe(p) +

∫
Ω2

Ks(p) · P(p, ~ω, ~ω′) · Lti(p, ~ω′)d~ω′
)

This method is very close to the Discrete Ordinate Method (DOM) intro-
duced by Chandrasekhar [1950]. We use a �nite set of directions to solve the
equation. The slight di�erence is that DOM uses an angular discretization
only to evaluate the scattering term, the directional derivative being solved
along the x, y and z axes.

Limitations

This formulation does not present the same problem as the �nite element
solution we presented. However, it is highly sensible to the chosen angular
distribution for both the directional derivative and the scattering integral.
Indeed, if there is not enough directions, these directions become clearly visible
in the �nal image. This is the same limitation as for DOM, as stated by Jönsson
et al. [2013]. Thus, to obtain a legible result, we need to use a large number
of directions, but this hinders greatly the computation cost and thus, the
interactivity of the method.

Using a �nite di�erences scheme directly on the unsteady RTE
produces artifacts along the principal directions.
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3.4. The Unsteady RTE

3.4.2 Using a Moment-based Formulation

We have brie�y introduced and explained the Di�usion Approximation (Equa-
tion 3.11) for the �nite element method. What is interesting with this approx-
imation is the link with the moments of radiance. Thus, by using these same
moments, applied directly to the whole RTE, we can obtain a system that does
not depend on radiance but on its moments.

Before presenting how we express the RTE in this context, we introduce a
notation for the moment operator, thus from now on, we note µn the moment
of order n:

µn(f(~ω)) =

∫
Ω2

f(~ω)~ωndω

Order 0 (µ0)

L(p, t, ~ω): For the order 0, two terms are straightforward: L(p, t, ~ω) and
∂L(p, t, ~ω)/∂t. By de�nition, the order 0 of these two terms is the �uence
rate:

µ0(L(p, t, ~ω)) = φ(p, t)

µ0(
∂L(p, t, ~ω)

∂t
) =

∂φ(p, t)

∂t

~ωT · ~∇pL(p, t, ~ω): For this term, we have (details in Appendix B):

µ0(~ωT · ~∇pL(p, t, ~ω)) = ~∇p

T ~E(p, t)

P(~ω, ~ωi)Li(p, t, ~ωi): The simpli�cation of this term depends on how we con-
sider Li. The details of the simpli�cation are presented in Appendix B, and
leads to:

µ0

(∫
4π

P(~ω, ~ωi)Li(p, t, ~ωi)dωi

)
= φ(p, t)

Order 1 (µ1)

L(p, t, ~ω): For the order 1, L(p, ~ω, t) and ∂L(p,t,~ω)
∂t

are also straightforward. By
de�nition, the order 1 of these two terms is the irradiance vector :

µ1(L(p, t, ~ω)) = ~E(p, t)

µ1(
∂L(p, t, ~ω)

∂t
) =

∂ ~E(p, t)

∂t

~ωT · ~∇pL(p, t, ~ω): Once again, the mathematical details are provided in Ap-
pendix B and we have:

µ1(~ωT · ~∇pL(p, t, ~ω)) =
1

3
~∇pφ(p, t)
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P(~ω, ~ωi)Li(p, t, ~ωi): Finally, for this term (Appendix B) we have the following
formulation:

µ1

(∫
4π

P(~ω, ~ωi)Li(p, t, ~ωi)dωi

)
= g ~E(p, t)

where g is the anisotropic factor.

Unsteady RTE with Di�use Approximation

By combining all the results presented above, we can �nally obtain our linear
system, described by Equations 3.23 and 3.24, with Kt′ = Ka + (1− g)Ks.

1

c

∂φ(p, t)

∂t
= −div( ~E(p, t))−Ka(p)φ(p, t) + φe(p, t)

1

c

∂ ~E(p, t)

∂t
= −1

3
~∇pφ(p, t)−Kt′(p) ~E(p, t) + ~Ee(p, t)

(3.23)

(3.24)

This system was implemented using a �nite di�erences pattern (FTCS):

∂f(p, t)

∂t
⇐⇒

f t+1
i,j,k − f ti,j,k

∆t
∂f(p, t)

∂x
⇐⇒

f ti+1,j,k − f ti−1,j,k

2∆x
=
δxf

t

2∆x
∂f(p, t)

∂y
⇐⇒

f ti,j+1,k − f ti,j+1,k

2∆y
=
δyf

t

2∆y

∂f(p, t)

∂z
⇐⇒

f ti,j,k+1 − f ti,j,k+1

2∆z
=
δzf

t

2∆z

With this discretization, Equations 3.23 and 3.24 lead to Equation 3.26.
For this formulation, we consider that ∆x = ∆y = ∆z = ∆ such that:

φti,j,k =c∆tφe,(i,j,k) + (1−Kt,(i,j,k)c∆t)φ
t−1
i,j,k

− c∆t

2∆
(δxE.x

t−1 + δyE.y
t−1 + δzE.z

t−1)

~Et
i,j,k =c∆t ~Ee,(i,j,k) + (1−Kt,(i,j,k)c∆t) ~E

t−1
i,j,k − c

∆t

6∆

δxφt−1

δyφ
t−1

δzφ
t−1



(3.25)

(3.26)

The system described by Equation 3.26 should converge toward a solution
if (Kt,(i,j,k)c∆t, c

∆t
2∆

)) < (1, 1). This means that we must take a time step ∆t
very small compared to ∆ and have Kt ≤ 1

2∆
. As an example, if we take the

values for a human liver, we have Kt ≈ 25cm−1 = 2500m−1 (L Sandell and
Zhu [2011]), we should have ∆ ≤ 5.10−4. Thus to ensure convergence, we must
have ∆t ≤ 10−11s.
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3.4. The Unsteady RTE

(a) (b)

Figure 3.6 � Using the moment-based methods leads to a grid pattern of positive
(in green) and negative (in red) values. The images are from a 2D implementation
on Shadertoy. (a) Based on a restricted neighborhood (4 direct neighbors). (b) Based
on a extended neighborhood (4 direct and 4 diagonal neighbors). In (b), the problem
is attenuated but still present.

However, this implementation has a �aw that we did not anticipate. The
pattern of Equation 3.26 leads to an alternation between the propagation of φ
and ~E, as one can not signi�cantly change as long as the other has not changed
as well. The derivation pattern combined with this e�ect produces signi�cant
artifacts, presented in Figure 3.6 with a 2D implementation (using Shadertoy).
If using directly the six neighbors (+/− for x/y/z) for the derivation, the
result will be a grid with an alternation of positive, negative and null values
(Figure 3.6(a), in 2D). By considering a weighted neighborhood, this problem
is reduced but artifacts remain in the principal directions (Figure 3.6(b), in
2D).

Using a moment-based formulation up to order 1 leads to grid
artifacts with an alternation between positive and negative val-
ues.

Extending to Order 2 (µ2)

To solve the aforementioned issue, we consider using an extended radiance
representation. It consists in adding the second order moment in the approxi-
mation. Thus, we go from:

L(p, ~ω) ≈ C0µ0(L(p, ~ω) + C1~ω
T · µ1(L(p, ~ω)) =

1

4π
φ(p) +

3

4π
~ωT · ~E(p)
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To the new one:

L(p, ~ω) ≈ C0µ0(L(p, ~ω) + C1~ω
T · µ1(L(p, ~ω)) + C2~ω

Tµ2(L(p, ~ω))~ω

= C0φ(p) + C1~ω
T · ~E(p) + C2~ω

TS~ω

in which S is a symmetric tensor that can be interpreted as the radiative pres-
sure. Furthermore, the moment of order 0 can be integrated into the diagonal
of the tensor for clarity. In practice, this must be done to keep a consistent
directional basis. Thus, after regrouping and evaluating the normalization
factor, we consider:

L(p, ~ω) ≈ 3

4π
~ωT · ~E(p) +

5

4π
~ωTS~ω

With this representation, we need a set of 9 equations to obtain all nec-
essary values: 3 for ~E and 6 for S (as S is symmetric). After development,
reorganization and simpli�cation (available in Appendix B, Equations B.11
and B.12), we obtain a �rst set of 12 equations (before applying the symme-
try) presented in Equation 3.27 (simpli�ed by 4π

3
and 4π

5
respectively).

1

c

∂ ~E(p, t)

∂t
+

1

5

δxtr(S) + 2(δxSxx + δySxy + δzSxz)
δytr(S) + 2(δySyy + δxSxy + δzSyz)
δztr(S) + 2(δzSzz + δxSxz + δySyz)

 = ~Ee(p, t)−Kt(p) ~E(p, t)

1

c

∂

∂t
(2S(p) + tr(S(p))I) +

2δxEx + div( ~E) (δxEy + δyEx) (δxEz + δzEx)

(δxEy + δyEx) 2δyEy + div( ~E) (δyEz + δzEy)

(δxEz + δzEx) (δyEz + δzEy) 2δzEz + div( ~E)

 =

(2Se(p) + tr(Se(p))I)−Kt(p)(2S(p) + tr(S(p))I)
(3.27)

However, once we obtain this, we can see that the process that produced
artifacts is still present as we still have this alternation e�ect between the pure
directional component and the more isotropic one.

Extending up to order 2 moments does not solve the grid prob-
lems presented in the solution with up to order 1 moments.

3.5 Conclusion

We have presented a study about several numerical techniques to solve the
RTE. From this study, we reach the same statement that the one Koerner
et al. [2018] have recently presented on the di�culties of solving the RTE with
implicit representations. This equation is hardly solved by using standard
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approaches like �nite element or �nite di�erences methods without leading to
signi�cant artifacts.

Concerning our speci�c application, we can say that the steady RTE is
not compatible with a Jacobi iterative resolution. It can however be solved
iteratively with a Gauss-Seidel pattern combined with an adapted data or-
ganization. However, the latter is hardly compatible with our initial goal
of interactivity. Furthermore, the method only ensures convergence but not
necessarily a plausible result at each step. Indeed, we could have temporary
negative radiance values at a random step while still obtaining the correct
values after convergence.

For a more natural iterative resolution, the unsteady RTE is more suited as,
in theory, each step give radiance results that are consistent with this quantity,
even before convergence. For this reason, and despite the issues presented in
Section 3.4, this version remains the best suited to our needs. Thus, we explore
in Chapter 4 a new formulation based on an additional hypothesis to the Di�use
Approximation.
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Chapter 4

Radiance Di�usion Equation

In the previous chapter, we introduced a new metaphor to explore volumes and
we presented some considerations about numerical schemes. It emerged �rst
that the steady RTE was hardly compatible with iterative Jacobi resolution,
and second, that the unsteady version needs further considerations to be used.
Thus, in this chapter, we �rst focus on the di�usion model that we use to solve
the unsteady RTE. Then we present the di�erent tools that we currently use
to interact with this algorithm, to manipulate the parameters and the lighting
con�guration. Next, we discuss about the �rst results obtained on medical
data and the performance and limitations of the method. Finally, we propose
some ideas to enhance the interaction with the light sources, that have yet to
be fully tested.

4.1 Toward a Di�usion Model

We have presented in Chapter 3 the main issues that we faced in solving
iteratively the RTE. We now introduce the solution that we use to solve the
RTE in such a way that it allows us to manipulate the parameters as much as
possible. Our solution relies on an approximation, used in many light di�usion
problems, that we �rst present, along with the resulting system. Then we
discuss about the intrinsic limitations and the validity of the chosen approach.
The results and implementation details are presented later in Section 4.2.

4.1.1 Establishing the Di�usion Equation

To obtain an equation that has the form of a di�usion equation, we have to
make asumption, in addition to the Di�usion Approximation. As it is done
in some di�usion problems (e.g., Haskell et al. [1994]), we consider that the
irradiance vector is approximately steady, meaning that:

∂ ~E

∂t
≈ 0
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4.1. Toward a Di�usion Model

Note that this hypothesis can also be inferred directly from the Di�use Ap-
proximation. As the latter is valid only for long time scales, it implies that the
�ux (the irradiance vector ~E) can not present signi�cant variations, to ensure
that we are in a di�usive state. This is also inherent from the formulation
of Equation 3.11, as, to ensure that the radiance is positive, we must have
φ� || ~E|| (Ishimaru [1997]).

We now use this consideration to further simplify the moment-based for-
mulation of the unsteady RTE we have presented in Chapter 3. As a reminder,
we had for the unsteady version (Equations 3.23 and 3.24):

1

c

∂φ(p, t)

∂t
= −div( ~E(p, t))−Ka(p)φ(p, t) + φe(p, t)

1

c

∂ ~E(p, t)

∂t
= −1

3
~∇pφ(p, t)−K ′t(p) ~E(p, t) + ~Ee(p, t)

By assuming that the source is purely isotropic, we may omit its directional
component ( ~Ee(p, t)). Equation 3.24 is then reduced to:

~E(p, t) = −
~∇pφ(p, t)

3K ′t(p)
(4.1)

Note that Equation 4.1 is analogous to Fick's law (Fick [1855]) which is
widely used in di�usion problems. As stated by Haskell et al. [1994], this
approximation is valid with the unsteady RTE when we focus on biological
tissues. As this type of media is the main target of our application, we can
reasonably consider that we are in scope of this approximation.

With this hypothesis, we can greatly simplify the system presented in Sec-
tion 3.4.2. Also, we use the more adapted di�usion coe�cient D (in meters
m), de�ned as:

D(p) =
1

3K ′t(p)
(4.2)

The expression of Equation 4.1 is then simpli�ed to:

~E(p, t) = −D(p) ~∇pφ(p, t)

Note that this expression can be found in Computer Graphics in Jensen et al.

[2001] but in their case, it was derived using the Di�use Approximation with
the steady RTE (Equation 1.5), as mentioned earlier.

We can now replace the irradiance vector in Equation 3.23 to obtain an
equation depending only on φ:

1

c

∂φ(p, t)

∂t
= div(D(p) ~∇pφ(p, t))−Ka(p)φ(p, t) + φe(p, t)
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Finally, after developing the divergence operator, and if we do not consider
K ′t to be homogeneous, which is the case for medical data, we obtain:

1

c

∂φ(p, t)

∂t
= D(p)∆pφ(p, t)− ~∇pD(p)

T
· ~∇pφ(p, t)−Ka(p)φ(p, t) + φe(p, t)

(4.3)
If we have a homogeneous medium, ~∇pD(p) = ~0, we obtain the di�usion
equation often used in Physics to simulate in�nite homogeneous media, as
presented by Pierrat [2007].

4.1.2 The Finite Di�erence System

We use a FTCS scheme to discretize Equation 4.3 which gives us Equation 4.4.
Note that we once again use {N,S,W,E,U,D} to identify the position: North
(N) is (i+1, j, k), South (S) is (i−1, j, k), etc. The absence of index corresponds
to the central position. Also, for the sake of clarity, we incorporate the factor
c∆t directly into φe.

φt = φe + (1− c∆tKa)φ
t−1

+D
c∆t

∆2
(φN + φS + φW + φE + φU + φD − 6φ)t−1

− c∆t
4∆2

∣∣∣∣∣∣
DN −DS

DW −DE

DU −DD

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
φN − φS
φW − φE
φU − φD

∣∣∣∣∣∣
t−1 (4.4)

However, this formulation is not practical as it involves four distinct vari-
able parameters that can in�uence the stability condition. These are ∆t, ∆,
Ka and D. Theoretically, they all can vary between 0 and +∞. Before study-
ing the range that these parameters can vary within to ensure convergence
(which is presented in the next section), we reformulate Equation 4.4 using
terms that are easier to manipulate. Thus, we use the notion of scattering
albedo α (van de Hulst [1981]), which quanti�es the ratio between scattering
and absorption in a medium, such as:

α =
Ks

Kt

(4.5)

The advantage of this parameter is that it varies between 0 and 1:
• α ≈ 0: Ka � Ks, we have an dominantly absorbing medium.
• α ≈ 1: Ks � Ka, we have a dominantly scattering medium.

We can use this parameter to �nd a direct relation between Ka and the coef-
�cient D presented in Equation 4.2. To do so, we �rst reformulate to express
Ks:

Ks =
α

1− α
Ka
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We then replace Ks in the expression of D with a term depending on α to
�nally obtain a direct relation with D:

Ka =
1− α

3(1− αg)D
(4.6)

Note that this relation implies that D can not be exactly 0 which is consistent
with the de�nition of D (Equation 4.2). It can however be close to 0, thus,
whenever we talk about D varying from 0 to something, it is a simpli�cation
meaning a value close to zero. Using this relation, we have replaced a parameter
varying between 0 and +∞ with one varying between 0 and 1.

Finally, we also introduce a new notation for the di�usion coe�cient using
a unitless parameter β such as:

D = β∆ (4.7)

Thus, we can reduce to a formulation where we no longer have explicitly the
terms c∆t

∆2 and c∆ but only the ratio c∆t
∆
. The �nal formulation is the following:

φt = φe +

(
1− c∆t

∆

1− α
3(1− αg)β

− 6β
c∆t

∆

)
φt−1

+β
c∆t

∆
(φN + φS + φW + φE + φU + φD)t−1

−c∆t
4∆

∣∣∣∣∣∣
βN − βS
βW − βE
βU − βD

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
φN − φS
φW − φE
φU − φD

∣∣∣∣∣∣
t−1

(4.8)

In Equation 4.8, the controllable parameters are: D the di�usion coe�cient,
indirectly through β, Ka, indirectly through β and α, ∆t the time step and ∆
the spatial step. Concerning g, we will see in Section 4.1.3 that it will be �xed
to g = 0.

4.1.3 Considerations about the Model

Link to Anisotropic Di�usion

The �rst notable aspect of this model (Equation 4.3) is that it has a signif-
icant similarity with the Anisotropic Di�usion formulation. As a reminder,
Anisotropic Di�usion (in 2D) is:

∂I

∂t
= C(x, y, t)∆I + ~∇C

T
· ~∇I

We know, from Section 3.1.3, that this equation is stable using a Finite Dif-
ference scheme with an iterative pattern. Thus we can reasonably assume
that, due to the similarity, our system should be stable as well. This means
there should be a set of parameters for which this model satis�es the Jacobi
convergence condition.
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Figure 4.1 � A plot of the ratio c∆t
∆ depending on β and α. All values below the

curves satisfy the stability condition for its corresponding β and α.

Adding User-Based Conditions

Before studying the stability conditions for our system, we introduce some con-
straints in order to ensure that the application is user-friendly. In particular,
this tool may be employed by users not well-versed in light transport. Thus,
we decided to expose only a limited control over the parameters such that:

• Values not ranging from 0 to 1 should not be directly exposed.
• Di�usion should be either controlled directly with a value ranging from

0 to 1 or indirectly using prede�ned mapping depending on the desired
e�ect. This imply that β ∈ [0; 1] .
• Absorption should be controlled either automatically or by using the
albedo α.

Furthermore, in order to simplify the conditions and reduce the number
of degrees of freedom that could lead to divergence, we �rst �x g = 0 . This
means that we consider the scattering to be isotropic (uniform phase function).
Doing so makes it impossible to address many media in a realistic way but
greatly reduces the complexity of the model. Note that this consideration is
also comforted by our experiments, in which the impact of this factor was very
limited compared to the other parameters.

Stability Conditions

We now need to determine the range of the parameters for which the system
is stable. As a reminder, we have a system with the form Ax = b where x is
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the radiance. A is diagonally dominant if:

|aii| ≥
∑
j 6=i

|aij|

In our case:

|aii| =
∣∣∣∣1− c∆t

∆

1− α
3β

− 6β
c∆t

∆

∣∣∣∣
This term can not be negative, as it would mean that an element can loose
more energy than it possesses, which is impossible. Thus we can eliminate the
absolute value operator. As for the right member, we have:∑

j 6=i

|aij| = 6β
c∆t

∆
+
c∆t

2∆

(
|βN − βS|+ |βW − βE|+ |βU − βD|

)
In the worst case, we have maximum gradient on the di�usion coe�cient: β

goes from 1 to 0, meaning that max(|βN−βS|) = max(|βW−βE|) = max(|βU−
βD|) = 1. This allows us to obtain an inequality that links ∆t/∆ to β and α:

1− 1− α
3β

c∆t

∆
− 6β

c∆t

∆
≥ 6β

c∆t

∆
+

3

2

c∆t

∆

This �nally gives us the following condition that has to be respected when
determining ∆t and ∆, depending on β and α:

c∆t

∆
≤ 6β

72β2 + 9β + 2(1− α)
(4.9)

The rightmost part of Equation 4.9 is plotted in 3D, in Figure 4.1, to explicit
the range within which the ratio can vary, depending on the parameters. Thus,
any value below the curve ensures that we are in the stability domain. In
particular, we can see that for a ratio of c∆t

∆
≤ 0.1, we are under the curve

for nearly all values of β and α can be used. This is encouraging as it means
that by �xing, c∆t

∆
= 0.1, we can address most of the possible con�gurations.

As an example using this value, for a data with ∆ = 1mm, we have ∆t ≈
3.33×10−13s. In practice, it may be interesting to locally adjust ∆t, as long as
the condition is veri�ed, to allow a faster di�usion. This latter process should,
however, not be used when one is targeting accuracy more than depiction, as
it is clearly not realistic.

4.2 Application for Enhanced Visualization

We have introduced the model we adopt as well as its domain of validity and
we now explain how we use it. First, we give details about how we implement
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Compute
Di�usion

Compute
Di�usion

Bu�er A Bu�er B

Bu�er A

Iteration n

Iteration n+1

Rendering n

Rendering n+1

Figure 4.2 � To solve the di�usion process, we use a Ping Pong scheme. The input
of the compute shaders alternates between Bu�er A and Bu�er B at each iteration.
For rendering, the output bu�er is then used during ray-cast, thus, if the frame n
uses Bu�er B for rendering, the frame n+1 will use Bu�er A.

it, how we control the parameters and the interaction tools that we use, then
we present how this solution e�ectively addresses our problem.

Note that the work presented in this section is the current state and is
still in development. Thus, some hypotheses and considerations we use, to
design the tools for user interaction, have not been formally validated. They
are mostly based on our experience and the knowledge of developers and ap-
plication engineers from the Open Inventor team as well as their feedback.

4.2.1 Implementation details

Our implementation is done using Open Inventor (version 9.8) and OpenGL
(up to version 4.3) to handle features not directly supported by Open Inventor.
We �rst present how we implement the di�usion algorithm and then, how we
store the results.

Our implementation relies on two 3D bu�ers to store the result of the di�u-
sion, using a Ping Pong scheme (Gray and Reuter [1992]). This is necessary as
we use an iterative resolution, meaning that during the computation we access
data that comes from a previous step. Thus, we must ensure that the value
we get has not been overwritten by the result of another computation. As
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illustrated in Figure 4.2, the �rst bu�er (A) is used as source for one iteration
(n) and the result is stored in the second one (B). Then B is used as input
for both the current rendering (n) and the computation for the next iteration
(n+1). The result is then stored into bu�er A, which is then used for rendering
(n+ 1), and so on.

As for the computation step, it is done with compute shaders. As evoked
in Section 1.3.1, a compute shader is a shader stage that can be used without
invoking the graphics pipeline (see Brown et al. [2012] for the OpenGL spec-
i�cation). This stage allows us to exploit the parallelism of a GPU for other
purposes than rendering, while using a bu�er format that can be directly in-
terfaced with the programmable stages of the graphics pipeline.

As compute shaders are not present in Open Inventor, it was added to the
SDK to implement this part of the work. However, the current implementation
is synchronized with the graph traversal. This means that the computing is
synchronized with the frame rate.

4.2.2 Controlling the Parameters

Based on the formulation we have chosen, the controllable parameters in our
algorithm are: β, using either prede�ned functions or using a custom transfer
function, and Ka, indirectly using either an automatic value based on β or by
using the albedo α. The results obtained by using some of these options are
presented later in Section 4.2.4. In the next paragraphs, we brie�y explicit the
di�erent options that we propose.

Setting β We propose three mapping options. For each option, it is also
possible to use the complementary (1− β), depending on the use case.
• Custom transfer function: this option maps a scalar value (from the
data) to a value for β. It o�ers a total control to the user, as long as
the values are in the range [0; 1]. As such, the containment capabilities
of this option are limited.
• Scalar gradient: this option uses the gradient of the data as input for
a function close to the �ux function introduced in Section 3.1.3 (Equa-
tion 3.2):

β(||∇S||) = e−(
||∇I||
σ

)2

σ controls the importance given to the gradient (see Section 3.1.3). This
option performs well for constrained di�usion as it relies on local data
variations.
• Gradient of the transfer function: this option allows one to combine
both a user-de�ned mapping with a transfer function and containment
capabilities o�ered by using gradients.
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Figure 4.3 � The set-up used to place the light source: three orthoslices correspond-
ing to the three main axes are used to move the source along each one. The light
source is represented, on both slices and the ray-casted view, by a green sphere.

Setting Ka We o�er two possibilities to set this parameter:
• Taking the inverse of β: Despite being non-physical, this mapping is
useful for selective di�usion. Indeed, it ensures that absorption is low
in area with maximum di�usion, and high when di�usion is minimum.
Also, with this mapping, the possibilities of being outside the stability
domain are very limited.
• Using the albedo α: This mapping provides a more physically accurate
solution for most values. However, to ensure that the computation does
not diverge, the albedo may be clamped to stay within the convergence
range (presented in Figure 4.1).

4.2.3 Controlling the Sources

The manipulation of the light sources is an important aspect of the application.
Indeed, if they are not placed correctly, the result would be, at best, completely
inconsistent with the expected result. In this case, at least the user knows the
source is ill-placed. But at worst, it could be su�ciently close to the expected
result, and implies that it is the correct one, while still introducing a signi�cant
bias. In the following paragraphs, we describe how we place light sources in a
3D space.

In our implementation, we can place up to eight light sources. The main
di�culties we encountered while manipulating these sources are their place-
ment in a 3D space. Indeed, to correctly place a source, we can either set the
position by specifying its (x, y, z) directly, use draggers to move the source in
the scene, pick a position with the mouse...
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Our experiments and feedbacks from Application Engineers on this matter
led us to several conclusions:
• Placing the source directly is very tedious, in particular when sources are
not immediately placed at the correct spot. If they need to be moved,
this solution is not practical.
• Using draggers is also tedious as it requires to constantly rotate the object
to e�ectively interact in 3D.
• Picking a position directly in 3D is ambiguous, as we try to select a point
in 3D by using a screen without liable feedback on the depth.

Thus, following these conclusions, we chose to use a combination of or-
thoslices to place the sources, as illustrated in Figure 4.3. We use one orthoslice
per reference axis (X/Y/Z), combined with a slider to navigate along each axis.
Using slices allows the user to see exactly where is the source in the volume
and what is around it without being disturbed by occluding information.

Note that this solution is still limited as it is done using only sliders, which
are not optimal for this purpose. This aspect is partially addressed in Sec-
tion 4.2.5.

4.2.4 Results

In this section, we present the results we achieved with our model and the
di�erent features and tools we have introduced. First, we present performance
of the solution. We then discuss the possible achievements of our methods
based on some examples of renderings using di�erent sets of parameters.

Performance

The measures presented in this section are made on a laptop workstation with
an i7-6820HQ CPU, 32 GB of RAM and an NVIDIA Quadro M5000M GPU (8
GB of V-RAM). We �rst present some time references, then we discuss about
the memory usage of the method, and �nally, we discuss its current limitations.

Time To evaluate the computation time, we measure the time per frame on
a synthetic test case (Figure 4.2). We do this for four resolutions: 1283, 2563,
5123, 10243. The averaged results are presented in Table 4.1, along with the
total time required per frame without di�usion as a reference. All results are
in milliseconds (ms).

We can see that for small volumes, the algorithm has a very limited cost.
In this case, it should be very bene�cial to decorrelate the computation and
the frame display. As a reference, for a computing volume of 128× 128× 128,
the method of Zhang and Ma [2013] requires around 52ms for one light source,
and up to 91ms for �ve light sources, to solve directly the RTE. However, for
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Size Total time per frame Reference time Di�usion overhead
1283 8.9 6.4 2.5
2563 28.9 13.3 15.6
5123 133.9 26.7 107.2
10243 759.3 49.9 709.4

Table 4.1 � Time required per frame with and without computing as well the di�er-
ence between the two. Results are presented on a synthetic volume with four di�erent
resolutions. All results are in milliseconds (ms).

large volumes, the computing time is signi�cant and may be a burden when
manipulating the data.

Also, the time per voxel decreases as the number of voxels increases. The
probable cause lies in the way the dispatch command, for the compute shaders,
is executed. In our implementation, it separates the volume in a �xed num-
ber of groups, regardless of its size. Groups too small (or too large) are not
well adapted to compute shaders (Brown et al. [2012]). Indeed, the cost of
dispatching the computation over a group of only a few elements is signi�cant
compared to the speed gain of processing this group in dedicated threads.

Finally, it is important to note that the total rendering time (computing
and ray-casting) is highly dependent on the chosen visualization, as ray-casting
can be costly if the data is mostly transparent.

Also, due to the graph traversal of Open Inventor and the interactions with
the state, it is di�cult to correctly measure the e�ective computation time.

Memory Footprint In term of memory cost, our solution is probably not
optimal. Indeed, in the current implementation, we theoretically either need
two additional volumes with one �oating point per original voxel or one with
two �oating point channels. This implies a huge memory overhead that we
need to address in the future. In practice, as memory was not an issue on
the test station for most of the test volumes, the current solution uses two
textures with four �oating point channels each. This allows a speed up in
the computation as we can store data-dependent gradients during the �rst
iteration to avoid recomputing them. This is already accounted for in the
computing cost presented above, thus, eliminating this additional memory can
not be done until further optimization.

Finally, in the current state, we also have to make a copy of the original
data. This copy is due to the way Open Inventor handles volume data. Indeed,
the data is loaded as a texture on the GPU only when the ray-casting starts,
thus we can not access the original volume from outside of the VolumeViz
rendering pipeline. This implies a memory overhead as well as a delay when
the application starts to do the copy, or whenever the original data is modi�ed.

To sum up the memory overhead, assume we have a volume of dimensions
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(a) (b)

Figure 4.4 � Comparison between our method (b) and our prior prototype with
Anisotropic Di�usion (a) . Di�used energy is depicted in green.

N = W × H × D, N being the total number of voxels. Our application
currently needs 256 × N bits in addition to the original volume and its copy.
For examples, for a volume of 128× 128× 128 voxels with 8 bits per voxel, the
applications needs:
• 2 MB for the volume.
• 2 MB for its copy.
• 64 MB for the di�usion bu�ers.

We can see that for large volumes, the memory overhead will quickly exceed
the memory limits even of modern hardwares.

Results

We present, in Figures 4.4(a) and 4.4(b), a comparison of our method with
our original prototype using Anisotropic Di�usion. We can see that, using the
same visualization, our method achieves results a bit more constrained than
with our �rst prototype. This is consistent with the fact that the RTE includes
an absorption term. The parameters used here are: scalar gradient for β and
1− β for Ka.

Our experiments proved that using a gradient-based mapping o�ers the
best containment capabilities. This is illustrated in Figures 4.5(a) and 4.5(b).
In Figure 4.5(a), β is mapped to the opacity given by the transfer function
whereas in Figure 4.5(b), β is mapped to its gradient. The latter performs
better that the former in o�ering a constrained di�usion into the vein where
the source is located.

The work presented here concerns mostly the underlying algorithm, thus,
it is the starting point for more investigations to overcome its limitations. In
particular, we have yet to �nd the visualization solution that is best suited to
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(a) (b)

Figure 4.5 � Di�erent results obtained with our method (di�used energy is depicted
in green). (a,b) We compare two mapping for β: (a) using the opacity value from
the transfer function, (b) using its gradient.

(a) (b)

Figure 4.6 � Examples of ill-controlled parameters by visualizing the normalized
irradiance vector ( ~E). The vector is also displayed on the slices for better understand-
ing. (a) The di�usion is done without enough absorption, leading to over�owing. (b)
The di�usion is done with too much absorption, leading to an over-constrained dif-
fusion, as the vein is not fully identi�ed.

our application.
Also, a limitation that we have already talked about is over�owing, il-

lustrated in Figure 4.6(a). Even if it is possible to adjust the parameter to
attenuate the problem of over�owing, it often results in over-constrained dif-
fusion (Figure 4.6(b)). Furthermore, it is not possible to completely get rid
of the risk of over�owing, as there are often artifacts and uncertainties in the
original data.

Finally, even with the tools we have presented, the interaction is limited,
in particular for the design of the lighting con�guration. Indeed, placing the
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(a) (b) (c)

Figure 4.7 � Examples of using negative sources with a synthetic case, with positive
values in green, negative in red. (a) Example of using a negative source to block the
di�usion. (b,c) In a tube with two holes, the di�usion over�ows (b) which can be
limited using negative sources (c) to de�ne an area that should not block the di�usion.

sources using only sliders allows the user to place correctly a source but it
remains a tedious process.

In the next sections, we propose ideas using biased light sources directly in
the di�usion as a starting point to address some limitations. We also introduce
new tools and considerations to help the user in the task of choosing the correct
lighting con�guration.

4.2.5 Using the Sources as a Tool

In this section, we present ideas that have been tested on a synthetic case: a
pipe placed inside a homogeneous medium, and �lled with another homoge-
neous medium similar to the �rst one. These proof of concepts are tools to:
�rst, reduce over�owing using negative light sources, and second, manipulate
more e�ciently the light sources, their type, shape, and position.

Negative Sources One of the limitations of the algorithm is over�owing. If
the data contains uncertainties and acquisition artifacts, the di�usion will not
remain constrained in a structure.

Our idea to address this limitation is to introduce negative light sources in
the process. We then use the di�usion to propagate negative energy, as pre-
sented in Figure 4.7. When the negative energy meets with the positive one, its
creates a virtual barrier where the positive and negative energies nullify each
other (Figure 4.7(a)). These sources can then be used to prevent some over-
�ows by "patching" points where leaks occur, as illustrated in Figures 4.7(b)
and 4.7(c).

Even though the idea is completely not physical, as energy can not be
negative, it still behaves as predicted, as the mathematical model we use does
not embed any consideration about the sign of the quantities. In addition to
limiting the problem of over�owing, using negative light sources also gives the
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(a) (b) (c)

Figure 4.8 � Examples of painting with the light sources, with a synthetic case.
The light source is indicated in green on the slice, the rest of the di�used energy is
depicted in red in the slice, in purple in the volume. (a) The initial light source,
consistent with the sphere manipulator. (b) Using the previous di�usion in (a), the
light source is extended to a tube. (c) An example of curved light source, to initiate
the di�usion in two of the four tube parts.

possibility to de�ne areas in which we do not want the di�usion to occur, which
can also be used to prevent any leak (Figure 4.7(c)).

Painting with Light Another option to manipulate the sources is the pos-
sibility to make it persistent. This way, the user can use the light source like a
paint brush to de�ne a custom light source. This tool can be useful in several
cases:
• When the user has already a high degree of con�dence in an area of the
data.
• When the user has gained a high degree of con�dence from a previous
di�usion.
• When the user wants to use complex light sources.
The main advantage of this tool is to o�er the possibility to design a com-

plex lighting environment. This feature is however tedious with the current
implementation as the source is moved using sliders. To o�er a more natural
interaction, picking actions should be added.

Forcing the Di�usion We have just introduced the tool we implemented
to limit the di�usion and o�er customizable light sources, we now present the
one we use to force the di�usion. Indeed, in some cases the user may want to
speed up the process, in particular when there is a high degree of con�dence
in the area already reached.

We introduced above a solution to specify extended sources. However, it
requires user interaction which may not be desired. Thus, we also propose a
solution to o�er the possibility to directly convert an area in which energy has
been di�used into an extended light source. This allows the user to re-inject
energy and thus speed up the di�usion process. The main drawback of this
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solution is that the converged result will not be the same as with the original
light sources. However, as the purpose of this solution is not to provide a
physically accurate result but to provide the user a simple speedup, this issue
should not be addressed until proven otherwise.

Finally, in case of a �aw not detected until the re-injection, it could quickly
lead to over�owing.

4.3 Conclusion and Future Work

Achievements

Our goal was to provide a solution to visualize structures and regions of interest
in volumes without using global segmentation. To address this problem, we
have proposed a model to solve the RTE iteratively, with its stability condition.
This method ful�lls the initial goal as it e�ectively provides a �uid-like di�usion
while being based on light transport.

We have shown in Section 4.2.4 that the solution can be used to identify
regions of interest using di�usion. We also introduced a variety of tools to
interact with the di�usion process, to o�er as much control as possible while
avoiding a divergence in the solution.

However, the method remains limited as most of the presented features
and their limitations have yet to be addressed and validated. In particular,
the visualization aspect has not been properly studied in terms of rendering
styles and transfer functions. Also, the method could probably be optimized
to reduce the memory footprint as well as the computation cost.

Future Work

The most important remaining work is to study which quantities should be
displayed (e.g., the �uence rate, the irradiance vector, the radiance...) and how
it should be displayed (e.g., directly the intensity, using a dedicated transfer
function...). As we �rst focused on the di�usion model, these aspects are not
treated here and should be addressed in future work.

Another aspect of the current state is the limitations in terms of user in-
teractions. We believe that they are keys to a potential success of the method.
In addition to this work, it is also necessary to add the possibility to control
the light source by picking on the screen, in particular for the painting tool.

Second, we should reduce the memory footprint. This could be done by
using textures with lower resolution but this must be thoroughly studied to
ensure that it does not introduce an important bias in the method. Packing
values to optimize the bit occupancy could also be a solution to be considered
and studied. Concerning the texture duplication due to the Open Inventor
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pipeline, it should be removed by fully integrating the method into Open
Inventor.

Also, it is important to optimize the computation process to increase inter-
activity. This implies using a more adapted pattern for the compute groups,
which is currently �xed. Indeed, as stated in Brown et al. [2012], the e�ciency
of compute shaders is highly dependent on how the group size is chosen. We
did not tackle this problem yet, so this matter should be looked into in the
future. Furthermore, some parts of the code, as it is still undergoing develop-
ment, have not been optimized. Even if these two aspects may not introduce
drastic changes in rendering times, they would be interesting.

Finally, we focused on the application for selective di�usion in medical
data, thus we have yet to study how this method may be useful for global
illumination techniques presented in Section 1.3.3. Due to the various approx-
imations we made, our method can not perform global illumination as well
as stochastic techniques. However, it could be used as a tool to design the
lighting con�guration when rendering volumes. Indeed, due to its capacity to
automatically correct itself, the method can withstand many modi�cations to
determine a good con�guration.
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Conclusion

Summary of the Contributions

In this manuscript, we �rst focused on light transport and its implication for
rendering transparent surfaces and volumes. We also studied how it can be
modi�ed to provide additional information using non-photorealistic rendering
techniques. In particular, we compared the techniques used in the literature
with the features of the Open Inventor SDK.

The conclusions of this study led to the development of a solution to en-
hance shape depiction for transparent surfaces. Our proposition concerned two
aspects of the rendering process. First, to e�ciently evaluate derivative infor-
mation in a 3D space, we design a data structure that allows fast computation
of these information. Second, we proposed to modulate the opacity of surfaces
using geometric informations like surface curvature. This part of the work was
published at the EGSR conference in 2016.

After having addressed the case of transparent surfaces, we tackled the
case of volumes. We �rst studied how our previous solution could extend to
volumes, which proved to be adapted to isosurfaces only. By going back to
light transport (with the RTE), we tried to modify it to achieve constrained
di�usion. We �rst successfully tested the idea with an extended version of
Anisotropic Di�usion. Then we studied di�erent numerical techniques to de-
termine the one best suited to achieve the same kind of results with the RTE.
We drew two important conclusions from this study. First, iterative resolution
of the steady RTE using a Jacobi method is not stable. Second, solving the
unsteady RTE iteratively with a directional basis leads to grid-like artifacts.

Finally, by using the Di�use Approximation, coupled with the hypothesis
of a steady �ux, we reduced the problem to a model that has the form of
a di�usion equation. This model does not present the same artifacts as the
ones we observed during our study, while being stable for a satisfying range
of parameters. We then used it to perform selective di�usion by modifying
the parameters of the RTE to achieve our goal. Some tools have also been
proposed to interact with the di�usion process. However, this work is, at the
time of this manuscript, still in development, in particular the visualization
and interaction aspects.
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Future Work

Concerning the interaction with Open Inventor, the thesis led to the devel-
opment of two demonstrators: one for expressive rendering on surfaces (opaque
and transparent) and one for computing visibility in volumes (based on Jönsson
et al. [2012]). A last one is still in development to demonstrate the possibilities
of selective di�usion.

Future Work

Surfaces

Toward Global Illumination We have presented a data structure to e�-
ciently access neighbors in a multilayered representation. We think that the
interest of this structure is not limited to shape depiction. Indeed, we could
extend the amount of optical phenomena that we currently simulate. In par-
ticular, it could be used to perform approximated ray intersection and thus,
simulate multiple re�ections or refractions. Also, e�cient access to the real
neighborhood, as well as depth information, could be used to approximate
sub-surface scattering or translucency with a limited impact on performance.

Third Order Geometric Features In our solution, as we focused on opac-
ity mapping, the only currently supported line rendering features are occluding
contours. Thus, we plan to investigate the impact of using line-based render-
ing, based on in�ection points (DeCarlo et al. [2003]; Ohtake et al. [2004];
Judd et al. [2007]; Kolomenkin et al. [2008]) to enhance third order features
on transparent surfaces.

Note that using third order features also requires to do another derivation
pass, which may be too costly to be achieved in real time. Extending to
third order features may then require to adapt the Bk-Bu�er to store more
information and avoid a signi�cant computation overhead.

Support for a User Study The results presented in Chapter 2 are mostly
based on internal feedback, thus our conclusion on the impact is probably
biased.

However, it can be the support for a user-study to determine the impact
on the perception of the shape of the object. In particular, if advanced line
rendering is added, it would be interesting to study the impact on legibility.

Volumes

Optimization As stated in Chapter 4, the selective di�usion application
needs to be optimized. An aspect that we have yet to consider is to use smaller
resolution to compute the di�usion. This would both reduce the memory

100 David Murray



Conclusion

impact and the computation cost. However, this implies that the results will
probably be less accurate. Also, another solution would be to study the impact
of reducing the bit precision of the information, but this presents the same
issue as decreasing resolution. Thus, we must conduct a study to determine a
good balance between accuracy and e�ciency. This step is crucial if we want
to provide an e�cient solution, and to integrate this application into Open
Inventor.

Also, depending on the conclusion of such a study, it could be interesting
to use Level of Details (LoD). By using adequately the di�erent levels, we
could adapt the computation kernel to provide faster but less accurate results.
However, LoD will probably induce a memory overhead compared to using
only the top level.

Increasing convergence speed will improve the interactivity of our tech-
niques. This aspect, combined with a reduced memory, should encourage the
usage of such an approach.

Visualization As stated in Chapter 4, the algorithm does perform selective
di�usion, but the visualization of its results is still limited. As the visualization
is an important component of the application, it must be addressed in the
future. This will probably require a closer interaction with both our application
engineers and specialists in Graphical User Interfaces (GUI).

Also, we should study which quantities (e.g., �uence rate, radiance, gra-
dients, etc) are important in the understanding of the process. Also, we can
study how well-de�ned transfer functions could be useful (Ljung et al. [2016])
for this matter, as this aspect was not in the focus of this thesis.

Interaction We introduced many tools to manipulate the algorithm. How-
ever, some of them can be enhanced to be more user friendly. In particular,
we should add the possibility of interacting with the lighting con�guration by
picking on the screen (on the slices) directly the positions for the light sources.
This would also make the painting tool easier to manipulate and could allow
the user to explore more elaborate con�gurations.

Also, we should propose an intuitive way to choose the di�erent transfer
functions involved. For the same purpose, we must ensure a�ordance in the
way the parameters are exposed. This means that we must �nd a solution so
that interacting with the parameters is intuitive, while ensuring that we are
within the stability domain of the method.

Toward Global Illumination Due to various approximations we made, our
method is limited in the medium and material it can address. Thus, it can not
perform global illumination as accurately as stochastic techniques.

However, its main advantage is its capacity to automatically correct itself.
Thanks to this, the method can withstand many modi�cations in terms of pa-
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rameters and light con�gurations (position, intensity...). Thus it could be used
for lighting design, to help �nd a good lighting con�guration when rendering
volumes.

Also, it could be used for pure surface rendering to perform sub-surface
scattering. Indeed, sub-surface scattering is used to approximate light trans-
port in participating media when rendering pure surfaces. By using small
patches of voxels on the surfaces, it could be possible to use our algorithm to
evaluate this scattering.
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Software Contributions

In the additional chapter, we give an overview of the di�erent contributions
that have been proposed for Open Inventor. First we present the applications
that focus on surfaces, then a demonstration for visibility in volumes that
originated from state-of-the-art techniques, and �nally, the current state of
the prototype for selective di�usion.

Demonstrator for Surfaces

The demonstration for surfaces is composed of two modules: one for opaque
surfaces with state-of-the-art physically plausible as well as expressive render-
ing technique, and one that extends to transparent surfaces.

Opaque surfaces and lighting

A �rst contribution for Open Inventor was developed in the early work of this
thesis. It is mainly existing techniques, adapted to the Open Inventor pipeline.
Here is a list of the features that were proposed:
• Deferred renderer with two passes of derivation. This feature, based on
an existing Open Inventor node, operates two deferred rendering passes
to compute an order of derivative per pass.
• Image-based Lighting (IBL) using Ramamoorthi and Hanrahan [2001]
for Lambertian BRDF and averaged mipmaps to approximate Pre�ltered
Environment Maps.
• HDR tone mapping (Hable [2010]) to account for HDR environment
maps.
• Physically-plausible BRDF model (using Burley and Walt Disney Ani-
mation [2012]).
• Screen-space STAR expressive rendering technique for opaque surfaces
(Vergne et al. [2010], Kolomenkin et al. [2008]).
• Screen-Space Ambient Occlusion (Bavoil et al. [2008]).
The light model and IBL features have been integrated in the VolumeViz

extension (release version 9.8 of Open Inventor) and presented at the Radio-
logical Society of North America (RSNA) during its 2016 exposition. It should
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be integrated for surfaces as well in a future version (10.x) of Open Inventor.

Transparent surfaces visualization

A second contribution was centered around transparent surfaces to propose an
opacity modulation based on geometric features. Here is a list of the features
that were proposed:
• Transparency group to handle the Bk-Bu�er. This group is responsible
of managing the shaders and bu�ers to operate the Bk-Bu�er
• Adaptation of existing techniques designed for opaque surface to trans-
parent one (Kindlmann et al. [2003], Vergne et al. [2010]).
• Opacity modulation using geometric information (Murray et al. [2016]).
This work was presented at the EuroGraphics Symposium on Rendering

(EGSR) in June 2016 in Dublin, in the Experimental Ideas & Implementations
track (Murray et al. [2016]). It has yet to be integrated into Open Inventor.

Visibility for Volumes

This third contribution is extracted from our research while studying the liter-
ature. The goal is to propose an enhanced shadowing option compared to the
ones currently available in Open Inventor. Here is a list of the features that
were proposed:
• Compute Shader pipeline in addition to the graphics pipeline in Open
Inventor. This feature is necessary to compute the visibility factor and
can obviously be used for any other computing purpose.
• Implementation of a method derived from the visibility techniques from Ritschel
[2007] and Jönsson et al. [2013].

The demonstration was presented at the RSNA exposition in 2017. It has
yet to be integrated into Open Inventor.

Selective Di�usion

This last contribution is still in development. Compared to other contribu-
tions, this one relies mostly on Open Inventor features. Indeed, except for the
compute shader pipeline presented above which we use to compute di�usion,
everything else is implemented using Open Inventor (and VolumeViz) existing
nodes.

However, due to its development state, it has not been presented yet.
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Appendix A

Steady RTE Expressed with Finite
Elements

This chapter presents the mathematical details for the expression of the steady
RTE using the Finite Element Method.

The steady RTE with an Emission-Absorption model can be expressed as
the linear system:

ML = Qe −RL
The weak form of the steady RTE, Equation 3.15, is recalled below:∑

j

∑
l

Lj,l

∫
4π,[−1,1]

ψi(~ω)ϕk(p)~ω
T · ~∇p(ψj(~ω)ϕl(p)) =∫

4π,[−1,1]

ψj(~ω)ϕl(p)Qe(p)

−
∑
j

∑
l

Lj,l

∫
4π,[−1,1]

ψi(~ω)ϕk(p)ψj(~ω)ϕl(p)Kt(p)

(A.1)

A.1 Mathematical Details for M

The left side of Equation A.1 represent the terms of the matrix M :

Mi,j,k,l =

∫
4π,[−1,1]

ψi(~ω)ϕk(p)~ω
T · ~∇p(ψj(~ω)ϕl(p)) (A.2)

In Equation A.2, we can separate the position-dependent integral from the
direction-dependent one, as the gradient is only a spatial one. Then, we obtain
Equation A.3.

Mi,j,k,l =

∫
4π

ψi(~ω)ψj(~ω)~ωT ·
∫

[−1,1]

ϕk(p) ~∇pϕl(p) (A.3)

We will use the notations Mi,j,k,l = ~αTi,j · ~βk,l for clarity.
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A.1. Mathematical Details for M

A.1.1 Computing ~αi,j

Computing ~αi,j =
∫

4π
ψi(~ω)ψj(~ω)~ω∂~ω consists in computing 3 4 × 4 matrices

(one for each component of ~ω):
x x2 xy xz
x2 x3 x2y x2z
xy x2y xy2 xyz
xz x2z xyz xz2

 ;


y xy y2 yz
xy x2y xy2 xyz
y2 xy2 y3 y2z
yz xyz y2z yz2

 ;


z xz yz z2

xz x2z xyz xz2

yz xyz y2z yz2

z2 xz2 yz2 z3


For each term of these matrices, we must evaluate the integral for all directions.
We will use the spherical notation:

x = sin(θ) sin(φ)

y = sin(θ) cos(φ)

z = cos(θ)∫
4π

∂~ω =

∫
π

∫
2π

sin(θ)∂θ∂φ

The result is the following:

~α(i,j)∈[0,3]2 =


(0, 0, 0) (4π

3
, 0, 0) (0, 4π

3
, 0) (0, 0, 4π

3
)

(4π
3
, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

(0, 4π
3
, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

(0, 0, 4π
3

) (0, 0, 0) (0, 0, 0) (0, 0, 0)

 (A.4)

The important number of zeros is interesting as it implies that computing M
will not require too many operations.

A.1.2 Computing ~βk,l

For this part, we will compute separately the components of ~βk,l. Furthermore,
the position p can be decomposed, as x, y and z are independent, and we can
write:

ϕk(p) = ϕkx(x)ϕky(y)ϕkz(z)

Also, the gradient ∇p is decomposed into (dx,dy,dz) and thus:

~βk,l =


∫

[−1,1]
ϕkx(x)dxϕlx(x)

∫
[−1,1]

ϕky(y)ϕly(y)
∫

[−1,1]
ϕkz(z)ϕlz(z)∫

[−1,1]
ϕkx(x)ϕlx(x)

∫
[−1,1]

ϕky(y)dyϕly(y)
∫

[−1,1]
ϕkz(z)ϕlz(z)∫

[−1,1]
ϕkx(x)ϕlx(x)

∫
[−1,1]

ϕky(y)ϕly(y)
∫

[−1,1]
ϕkz(z)dzϕlz(z)


To compute ~βk,l, we recall the formulation of the basis ϕ.

ϕk(p) =


1 + p if pk−1 ≤ p ≤ pk

1− p if pk ≤ p ≤ pk+1

0 otherwise
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ϕ′k(p) =


1 if pk−1 ≤ p ≤ pk

−1 if pk ≤ p ≤ pk+1

0 otherwise

Thus, the products of ϕ give:

∫
[−1,1]

ϕk(p)ϕ
′
l(p) =



∫
[−1,0]

(1 + p) · (−1) +
∫

[0,1]
(1− p) · 0 if l = k − 1∫

[−1,0]
(1 + p) · 0 +

∫
[0,1]

(1− p) · 1 if l = k + 1∫
[−1,0]

(1 + p) · 1 +
∫

[0,1]
(1− p) · (−1) if l = k

0 if |l − k| > 1

∫
[−1,1]

ϕk(p)ϕ
′
l(p) =


1
2

+ 0 if l = k − 1

0 + −1
2

if l = k + 1
1
2

+ −1
2

if l = k

0 if |l − k| > 1

∫
[−1,1]

ϕk(p)ϕl(p) =



∫
[−1,0]

(1 + p) · (−p) +
∫

[0,1]
(1− p) · 0 if l = k − 1∫

[−1,0]
(1 + p) · 0 +

∫
[0,1]

(1− p) · p if l = k + 1∫
[−1,0]

(1 + p)2 +
∫

[0,1]
(1− p)2 if l = k

0 if |l − k| > 1

∫
[−1,1]

ϕk(p)ϕl(p) =


1
6

+ 0 if l = k − 1

0 + 1
6

if l = k + 1
1
3

+ 1
3

if l = k

0 if |l − k| > 1

Note that ϕk(p) = 1 + p becomes ϕk(p) = p when shifted from p to p + 1
and ϕk(p) = 1 − p becomes ϕk(p) = −p when shifted from p to p − 1. This
corresponds to the cases |l − k| = 1.

We can also note that all three component of ~βk,l are equal:

~βk,l = (βk,l, βk,l, βk,l)

For a practical reason, the formulation we use must be adapted to a 3D
volume(of size W × H × D): (k, l) ∈ [0, N ]2 ⇐⇒ ((kx, ky, kz), (lx, ly, lz)) ∈
([0,W ], [0, H], [0, D])2. That way, we can express the system as a reduced
kernel that is computed for a voxel at position k. As for all cases were |l −
k| > 1, the matrix will contains zeros, we can also reduce (k, l) to k + d, d ∈
{−1, 0, 1}3. Thus, the result for ~βk,l are the following coe�cients, that must
be applied to the neighborhood, for each axis (x, y and z):

βd∈{−1,0,1}3 =
1

9

−1
8

0 1
8

−1
2

0 1
2

−1
8

0 1
8

 −1
2

0 1
2

−2 0 2
−1
2

0 1
2

−1
8

0 1
8

−1
2

0 1
2

−1
8

0 1
8

 (A.5)
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A.2 Mathematical details for R

By using the same reasoning, the coe�cients of the matrix R will be the one
in Equation A.6.

Ri,j,k,l = ρ

∫
4π

ψi(~ω)ψj(~ω)

∫
[−1,1]

ϕk(p)ϕl(p) (A.6)

We will use the notations Ki,j,k,l = Ktγi,jδk,l for clarity.

A.2.1 Computing γi,j

Computing γi,j consists in computing the coe�cients of the following matrix:
1 x y z
x x2 xy xz
y xy y2 yz
z xz yz z2


As we have already calculated all the above terms when we evaluated ~αi,j, the
result here can immediately be assumed:

γi,j =


4π 0 0 0
0 4π

3
0 0

0 0 4π
3

0
0 0 0 4π

3

 (A.7)

Once again, there are many zeros in this matrix.

A.2.2 Computing δk,l

Computing δk,l is also straightforward. Indeed, as x, y and z are independent,
we still have:

ϕk(p) = ϕkx(x)ϕky(y)ϕkz(z)

Thus:

δk,l =

∫
[−1,1]

ϕkx(x)ϕlx(x)

∫
[−1,1]

ϕky(y)ϕly(y)

∫
[−1,1]

ϕkz(z)ϕlz(z)

The di�erent possible values have already been calculated for ~βk,l. So �nally,
to compute δk,l, and using the same adaptation to 3D volumes as for βk,l, the
following coe�cients must be applied to the neighborhood:

δd∈{−1,0,1}3 =

 1
216

1
54

1
216

1
54

2
27

1
54

1
216

1
54

1
216

 1
54

2
27

1
54

2
27

8
27

2
27

1
54

2
27

1
54

 1
216

1
54

1
216

1
54

2
27

1
54

1
216

1
54

1
216

 (A.8)
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Appendix B

The Order Moment Method in
Details

This chapter presents the mathematical details to obtain our di�erent moment-
based models. We present the system obtained by using up to the �rst order,
then we present the system when considering up to the second order.

B.1 System with First Order Moment

B.1.1 Order 0 (µ0)

L(p, ~ω, t):

For order 0, two terms are straightforward: L(p, ~ω, t) and ∂L(p,~ω,t)
∂t

. By de�ni-
tion, order 0 of these two terms is the �uence rate:

µ0(L(p, ~ω, t)) = φ(p, t)

µ0(
∂L(p, ~ω, t)

∂t
) =

∂φ(p, t)

∂t

(B.1)

~ωT · ~∇pL(p, ~ω, t):

For this term, we have to proceed to a little reorganization:∫
4π

~ωT · ~∇pL(p, ~ω, t)dω = ~∇p

T
∫

4π

~ωL(p, ~ω, t)dω

Thus, by de�nition, we have:

µ0(~ω · ~∇pL(p, ~ω, t)) = ~∇p

T
µ1(L(p, ~ω, t))

So �nally:

µ0(~ω · ~∇pL(p, ~ω, t)) = ~∇p

T ~E(p, t) (B.2)
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B.1. System with First Order Moment

P(~ω, ~ωi)Li(p, ~ωi, t):

Here we have to evaluate:∫
4π

(∫
4π

P(~ω, ~ωi)Li(p, ~ωi, t)dωi

)
dω

As only P depends on ~ω, we can write:∫
4π

(∫
4π

P(~ω, ~ωi)dω

)
Li(p, ~ωi, t)dωi

By de�nition, we have
∫

4π
P(~ω, ~ωi)dω = 1, thus:∫

4π

(∫
4π

P(~ω, ~ωi)Li(p, ~ωi, t)dωi

)
dω =

∫
4π

Li(p, ~ωi, t)dωi

We now have two possibilities in the interpretation of Li:
• Li is the radiance emitted by a neighboring element at p + ε~ωi toward
the current one at p. In this case: Li(p, ~ωi, t) ≡ L(p+ ε~ωi,−~ωi, t).
• Li is the radiance received at p from the direction ~ωi. In this case:
Li(p, ~ωi, t) ≡ L(p, ~ωi, t).

In the �rst case, we cannot simplify any further
∫

4π
Li(p, ~ωi, t)dωi. However, in

the second case, the integral corresponds to the de�nition of the �uence rate
and thus:

µ0

(∫
4π

P(~ω, ~ωi)Li(p, ~ωi, t)dωi

)
= φ(p, t) (B.3)

B.1.2 Order 1 (µ1)

L(p, ~ω, t):

For order 1, L(p, ~ω, t) and ∂L(p,~ω,t)
∂t

are also straightforward. By de�nition,
order 1 of these two terms is the irradiance vector:

µ1(L(p, ~ω, t)) = ~E(p, t)

µ1(
∂L(p, ~ω, t)

∂t
) =

∂ ~E(p, t)

∂t

(B.4)

~ωT · ~∇pL(p, ~ω, t):

For this term, we have:∫
4π

~ω~ωT ~∇pL(p, ~ω, t)dω = ~∇pµ2(L(p, ~ω, t))

110 David Murray



B. The Order Moment Method in Details

Note that µ2(L(p, ~ω, t)) is a symmetric tensor that corresponds to the radiative
pressure. In the di�use approximation, this tensor is isotropic and simply
becomes 1

3
φ(p, t)I.

This result can also be obtained by using directly the di�use approximation:∫
4π

~ω~ωT ~∇pL(p, ~ω, t)dω =

∫
4π

~ω~ωT ~∇p(
1

4π
φ(p, t) +

3

4π
~ωT ~E(p, t))dω

For the part on φ, as ~ω~ωT is a symmetric matrix, we can use the equivalence:

~ω~ωT · ~∇pφ(p, t) = [( ~∇pφ(p, t))T · ~ω~ωT ]T

As φ does not depend on ~ω, we can extract it from the integral:∫
4π

~ω~ωT ~∇pφ(p, t)dω = [ ~∇p

T
φ(p, t)

∫
4π

~ω~ωTdω]T

with (see Appendix A.1 for the simpli�cations):∫
4π

~ω~ωTdω =
4π

3
I

which gives us: ∫
4π

~ω~ωT ~∇pφ(p, t)dω =
4π

3
~∇pφ(p, t)

For ~E(p, t), the formulation is a vector containing terms depending on : ω.xi ∗
ω.yjω.zk with i+ j + k = 3, which integrates to 0. Thus we have:∫

4π

~ω~ωT ~∇p(~ω
T ~E(p, t))dω = (0)

Either way, we �nally obtain:

µ1(~ω · ~∇pL(p, ~ω, t)) =
1

3
~∇pφ(p, t) (B.5)

P(~ω, ~ωi)Li(p, ~ωi, t):

Here we have to evaluate:∫
4π

~ω

(∫
4π

P(~ω, ~ωi)Li(p, ~ωi, t)dωi

)
dω

To simplify this term, we need to use the same consideration on Li as the one
used previously: Li(p, ~ωi, t) ≡ L(p, ~ωi, t). This way, we can write:∫

4π

~ω

(∫
4π

P(~ω, ~ωi)Li(p, ~ωi, t)dωi

)
dω =∫

4π

~ω

(∫
4π

P(~ω, ~ωi)(
1

4π
φ(p, t) +

3

4π
~ωi · ~E(p, t))dωi

)
dω
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We can now separate the two terms (φ and ~E). For φ, we have:

1

4π
φ(p, t)

∫
4π

~ω

(∫
4π

P(~ω, ~ωi)dωi

)
dω

By de�nition,
∫

4π
P(~ω, ~ωi)dωi = 1 and

∫
4π
~ωdω = ~0:

1

4π
φ(p, t)

∫
4π

~ω

(∫
4π

P(~ω, ~ωi)dωi

)
dω = ~0

For ~E, we have:

3

4π

∫
4π

~ω

(∫
4π

P(~ω, ~ωi)(~ωi · ~E(p, t))dωi

)
dω

which is similar to:

3

4π

∫
4π

~ω

((∫
4π

~ωiP(~ω, ~ωi)dωi

)
· ~E(p, t)

)
dω

Pierrat [2007] and Carminati [2016] proved that:∫
4π

~ωiP(~ω, ~ωi)dωi = g~ω

As ~ω(~ωT ~E(p, t)) =
(
~ET (p, t)(~ω~ωT )

)T
, which integrates to 4π

3
~E(p, t), we �nally

have:
3

4π

∫
4π

~ω

(∫
4π

P(~ω, ~ωi)(~ωi · ~E(p, t))dωi

)
dω = g ~E(p, t)

Finally, we obtain:

µ1

(∫
4π

P(~ω, ~ωi)Li(p, ~ωi, t)dωi

)
= g ~E(p, t) (B.6)

B.1.3 Final System

By combining all the results presented above, we can �nally obtain our linear
system, described by Equations B.7 and B.8, with Kt′ = Ka + (1− g)Ks.

1

c

∂φ(p, t)

∂t
= −div( ~E(p, t))−Ka(p)φ(p, t) + φe(p, t) (B.7)

1

c

∂ ~E(p, t)

∂t
= −1

3
~∇pφ(p, t)−Kt′(p) ~E(p, t) + ~Ee(p, t) (B.8)
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B.2 System with Second Order Moment

We will detail here the computation of the �rst and second order moments
with the following radiance decomposition:

L(p, ~ω, t) = ~ωT · ~E(p, t) + ~ωTS(p, t)~ω

where ~E is the �rst moment of the radiance, and S its second order moment.
S is a symmetric tensor linked to its second moment, but is not exactly the
second moment as the moment of order 0 is embedded in its trace.

As a reminder, the RTE is:

1

c

∂L(p, t, ~ω)

∂t
+ ~ωT · ~∇pL(p, t, ~ω) = −Kt(p) · L(p, t, ~ω) +Qe(p, t, ~ω)

+

∫
4π

Ks(p) · P(p, ~ω, ~ω′) · Li(p, t, ~ω′)d~ω′
(B.9)

B.2.1 First Order Moment µ1

The �rst order moment is obtained by projecting the RTE on ~ω and then
integrating over the sphere (

∫
4π

(RTE)~ωdω).
In the RTE, we have two kinds of terms, those based on L(p, t, ~ω) (including

the time derivative) and the directional derivative ~ω · ~∇pL(p, t, ~ω).
For the �rst ones, the �rst moment is straightforward, it is by de�nition ~E.

The gradient, however, needs to be developed. To do so, we will decompose it
according to our radiance decomposition and de�ne ~ω = (x, y, z).

L(p, t, ~ω):

By de�nition, we directly have:

µ1(L(p, t, ~ω)~ω) =
4π

3
~E(p, t)

µ1

(
∂L(p, t, ~ω)

∂t
~ω

)
=

4π

3c

∂ ~E(p, t)

∂t

(B.10)

~ωT · ~∇pL(p, ~ω, t):

For this term, we have:∫
4π

~ω~ωT ~∇pL(p, ~ω, t)dω = ~∇pµ2(L(p, ~ω, t))

As we have embedded the moment of order 0 into the term of order 2, we
can not use directly the radiative pressure here. Thus, we use the radiance
decomposition to solve this term.
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First we focus on the term depending on ~E. Thus we need to evaluate:∫
4π

~ωT ~∇p(~ω
T ~E(p, t))~ωdω = (~∇T

p

∫
4π

(~ω~ωT )(~ωT ~E(p, t))dω)T

where:

(~ω~ωT ) =

x2 xy xz
xy y2 yz
xz yz z2


Thus (~ω~ωT )(~ωT ~E(p, t)) is a matrix containing terms depending on xiyjzk with
i+ j + k = 3. As stated before in Appendix A, all the combinations of xiyjzk

with i+ j + k = 3 integrate to 0 on the sphere. As ~E(p, t) does not depend on
~ω, the result is: ∫

4π

~ωT ~∇p(~ω
T ~E(p, t))~ωdω = ~0 (B.11)

Now we focus on the term depending on S. Thus we need to evaluate:∫
4π

~ωT ~∇p(~ω
TS(p, t)~ω)~ωdω = (~∇T

p

∫
4π

(~ω~ωT )(~ωTS(p, t)~ω)dω)T

Once again, we have:

(~ω~ωT ) =

x2 xy xz
xy y2 yz
xz yz z2


and as S is symmetric, S0,1 = S1,0, S0,2 = S2,0, S1,2 = S2,1, we have:

~ωTS(p, t)~ω = x2S0,0 + y2S1,1 + z2S2,2 + 2xyS0,1 + 2xzS0,2 + 2yzS1,2

Thus, the result will be a vector with a combination of terms depending on
xiyjzk with i + j + k = 4. Using the same notation as for the ~E part, we
obtain that the terms where i|j|k = 3 integrate to 0 over the sphere. The
terms where i|j|k = 4 integrate to 4π

5
and the rest integrate to 4π

15
. The details

for this integration is to long to appear here. The evaluation of the integral
term can be computed with an analytic solver such as Maxima.

Thus, we have: ∫
4π

(~ω~ωT )(~ωTS(p, t)~ω)dω

=
4π

5

S0,0 + 1
3
(S1,1 + S2,2) 2

3
S0,1

2
3
S0,2

2
3
S0,1 S1,1 + 1

3
(S0,0 + S2,2) 2

3
S1,2

2
3
S0,2

2
3
S1,2 S2,2 + 1

3
(S0,0 + S1,1)


The expression can be slightly simpli�ed as S0,0 +S1,1 +S2,2 is the trace of the
matrix S (tr(S)), allowing us to regroup some terms:∫

4π

(~ω~ωT )(~ωTS(p, t)~ω)dω =
4π

5

1

3
(2S + tr(S)I)
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∫
4π

~ωT ~∇p(~ω
TS(p, t)~ω)~ωdω =

4π

5

1

3

2δxS0,0 + δxtr(S) + 2(δyS0,1 + δzS0,2)
2δyS1,1 + δytr(S) + 2(δxS0,1 + δzS1,2)
2δzS2,2 + δztr(S) + 2(δxS0,2 + δyS1,2)


(B.12)

B.2.2 Second-Order Moment µ2

The second-order moment is obtained by multiplying the RTE by the matrix
~ω~ωT and then integrating over the sphere (

∫
4π

(RTE)(~ω~ωT )dω).
As S is not exactly the second moment of the radiance, we do not have an

immediate simpli�cation of the 0 order space derivative terms. However, the
terms coming from the �rst order moment ( ~E) disappear when computing the
second order moment (i+ j + k = 3). Thus, all that is left is:∫

4π

(~ω~ωT )(~ωTS(p, t)~ω)dω

which by chance, has already been calculated in the previous section:∫
4π

(~ω~ωT )(~ωTS(p, t)~ω)dω =
4π

5

1

3
(2S + tr(S)I)

Thus, these terms will be the following.

L(p, t, ~ω):

µ2(L(p, t, ~ω)) =
4π

15
(2S(p, t) + tr(S(p, t))I)

µ2

(
∂L(p, t, ~ω)

∂t

)
=

4π

15
(2
∂S(p, t)

∂t
+
∂tr(S(p, t))

∂t
I)

(B.13)

~ωT · ~∇pL(p, ~ω, t):

As for the �rst moment, we will evaluate this term by using the radiance
decomposition.

First we focus on the term depending on ~E. Thus we need to evaluate:∫
4π

(~ω~ωT )~ωT ~∇p(~ω
T ~E(p, t))dω

For this term, we need a little development:

~ωT ~∇p(~ω
T ~E(p, t)) =

x2δxE0 + xyδxE1 + xzδxE2

xyδyE0 + y2δyE1 + yzδyE2

xzδzE0 + yzδzE1 + z2δzE2


115



B.2. System with Second Order Moment

Thus the term (~ω~ωT )~ωT ~∇p(~ω
T ~E(p, t)) leads to a combination of terms depend-

ing on xiyjzk with i + j + k = 4. Same as before, we obtain that the terms
where i|j|k = 3 integrate to 0 over the sphere. The terms where i|j|k = 4
integrate to 4π

5
and the rest integrate to 4π

15
. Thus, what we have left after

integration is:

4π

5

δxE0 + 1
3
(δyE1 + δzE2) 1

3
(δxE1 + δyE0) 1

3
(δxE2 + δzE0)

1
3
(δxE1 + δyE0) δyE1 + 1

3
(δxE0 + δzE2) 1

3
(δyE2 + δzE1)

1
3
(δxE2 + δzE0) 1

3
(δyE2 + δzE1) δzE2 + 1

3
(δxE0 + δyE1)


As δxE0 +δyE1 +δzE2 = div( ~E) we can reformulate into a more compact term:

µ2(~ωT · ~∇p(~ω
T ~E(p, t)) =

4π

15
(div( ~E)I

+

 2δxE0 (δxE1 + δyE0) (δxE2 + δzE0)
(δxE1 + δyE0) 2δyE1 (δyE2 + δzE1)
(δxE2 + δzE0) (δyE2 + δzE1) 2δzE2

)
(B.14)

Now we focus on the term depending on S. We want to evaluate:

∫
4π

(~ω~ωT )~ωT ~∇p(~ω
TS(p, t)~ω)dω

Using the same ideas as the one used to establish Equation B.12, we can
obtain a combination of terms depending on xiyjzk with i+ j + k = 5. Using
spherical notations, these terms integrate to 0 for any combination.

Thus, this term reduces to a null matrix.

∫
4π

(~ω~ωT )~ωT ~∇p(~ω
TS(p, t)~ω)dω =

0 0 0
0 0 0
0 0 0

 (B.15)

Finally, this gives us:

µ2(~ωT ~∇pL(p, t, ~ω)) =
4π

15
(div( ~E)I

+

 2δxE0 (δxE1 + δyE0) (δxE2 + δzE0)
(δxE1 + δyE0) 2δyE1 (δyE2 + δzE1)
(δxE2 + δzE0) (δyE2 + δzE1) 2δzE2

)
(B.16)
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B.2.3 Final System

Once assembled, the di�erent terms lead us to the following system:

1

c

∂ ~E(p, t)

∂t
+

1

5

δxtr(S) + 2δxSxx + 2(δySxy + δzSxz)
δytr(S) + 2δySyy + 2(δxSxy + δzSyz)
δztr(S) + 2δzSzz + 2(δxSxz + δySyz)

 = ~Ee(p, t)−Kt(p) ~E(p, t)

1

c

∂

∂t
(2S(p) + tr(S(p))I) +

2δxEx + div( ~E) (δxEy + δyEx) (δxEz + δzEx)

(δxEy + δyEx) 2δyEy + div( ~E) (δyEz + δzEy)

(δxEz + δzEx) (δyEz + δzEy) 2δzEz + div( ~E)

 =

(2Se(p) + tr(Se(p))I)−Kt(p)(2S(p) + tr(S(p))I)
(B.17)
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