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Chapter 1
Introduction

Porous media are all around us and our everyday life is imbued with the interaction with them. All
solid or semisolid materials with exception of metals, some very dense rocks and plastics are in fact
porous media and moreover often permeable. Therefore, understanding the hydrodynamic processes
occurring in porous media is in the scientific focus since a long time.

One of the vital processes in the permeable media is the transport of dissolved substances (i.e.
solute transport). It plays an important role in a whole range of natural processes, many of which
are in everyday engineering or scientific scope, such as:

e transport of nutrients, oxygen, medicines and/or poisons through human/animal tissues in
biological and medical sciences

e accessibility of nutrients and spreading of the pesticides in the agriculture

e enhanced oil recovery in petroleum engineering

e CO, underground storages and nuclear waste disposal areas in geology and environmental
engineering

e pollutant transport and remediation in hydrogeology

Transport in porous media is driven by diffusion and advection, causing spreading of solute plume.
First mathematical description of diffusion has been given by German physician and psychologist Adolf
Eugen Fick [1855]. He observed movement of solute due to differences in the concentration.
Development of advection transport theory began in the 1911 with simplest case of capillary flow
[Griffiths, 1911], however it was Taylor [1953] who gave a mathematical description of the phenomenon.

Traditional theory of dispersion in porous media has been developed through the work of several
authors [e.g., Scheidegger, 1961; Saffman, 1959; 1960; Bear and Bachmat, 1967]. This theory describes
dispersion of a conservative (ideal) tracer in the fully saturated porous medium and with flow condition
within the limits where Darcy’s law is applicable by the advection-dispersion equation (ADE):

dc

¢6t

+V-(Uc) —V-(DVc) =0, (1.1)

where ¢ denotes the concentration, t is the time, U is the Darcy velocity and D is the dispersion tensor.
The solution of the ADE is diffusion-like (Fickian) for the scale of the Representative Elementary Volume
(REV) at which full mixing of the solute is assumed.

In order to capture true behavior of the dispersion there have been many field experiments of the
nonreactive transport in the porous media in the aquifers with different properties around the world.
Ranging from relatively homogeneous aquifers (e.g., sand aquifer at Borden [Mackay et al., 1986]; and
sand-gravel at Cape Code [LeBlanc et al.,, 1991]); over more heterogeneous ones such as
Macrodispersion Experimental (MADE) Site at Columbus [Adams and Gelhar, 1992], Ses Sitjoloes at
Mallorca island in Spain [Gouze et al., 2008a], to fractured aquifers such as ones in New Mexico [Meigs
and Beauheim, 2001] and at Grafton County [Becker and Shapiro, 2000]. Observations from all this
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experiments indicate that the transport in real systems differs from Fickian assumption made by ADE.
Moreover laboratory tracer experiments in bead column/packs [Kandhai et al., 2002; Moroni et al., 2006;
Bijeljic et al., 2011a], natural rocks [Scheven et al., 2005; Gouze et al., 2009] and uniformly [Cortis et al.,

2004] and randomly packed sands [Silliman and Simpson, 1987; Levy and Berkowitz, 2002] prove that
anomalous (non-Fickian) transport is rather omnipresent than exceptional.
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Figure 1.1 BTC of fluorescein tracer from laboratory experiment on Berea sandstone core (blue line) compared with the
solution of ADE (red line). Experimental setup: flow-through experiment, flow rate 10 cm3/h; Berea sandstone, core
diameter 18mm, core length 15 cm; pulse injection, concentration 50 ppm, tracer volume 50 pL

Breakthrough curves (BTC) from all this experiments are highly asymmetric, with signatures of
anomalous transport such as early breakthrough, long tailing (concentration usually decreases as a
power-law of time) and anomalous scaling of the mean square displacement. In Figure 1.1 one can see a
comparison between the BTC obtained by the laboratory experiment and the best-fitted solution of the

ADE. This BTC is obtained as the result of a flow-through experiment on a Berea sandstone core within
experimental part of our work; details of the experiments are presented in the Chapter 3.

ADE fails to predict the transport behavior for the most homogeneous natural aquifers [Freyberg,
1986; Garabedian et al., 1991]. The constant dispersion coefficients used in ADE fails to capture the real
dispersivity occurring in the porous medium that is dependent on the time and/or the observed scale.
The spatial difference in the local dispersivity coefficients is usually explained by the flow field
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heterogeneity that exists even in the macroscopically completely homogeneous media [Datta et al.,
2013]. Accordingly, non-Fickian dispersion is a pre-asymptotic regime; dispersion becomes Fickian at
long times if the scale of the heterogeneity is finite, i.e. when the tracer has visited the heterogeneity at
all scales. Yet, in natural media displaying heterogeneity at virtually all scales, the effective dispersion
regime is in general non-Fickian.

The non-Fickian dispersion properties, their origin and their relation to the geological heterogeneity
are still debated. During the last several decades many authors have more or less successfully developed
different models to simulate and predict anomalous transport. Many of these models heavily rely on the
ADE formulation and try to fit experimental results by spatial variations of dispersivity. Major drawbacks
of these models are that parameters that are strictly connected with the properties of the porous
medium (e.g. dispersivity) are often used as fitting parameters and that transport is not necessarily
Fickian even over very small domains [Cortis et al., 2004]. Two major groups of these models are based
on the volume averaging and the stochastic approach.

Volume averaging models are based on solving ADE at smaller scale, usually smallest possible REV
and then use these solutions to obtain results on larger scale. In these approaches one of the biggest
challenges is the choice of the volume average operator to move from one scale to another [Berkowitz
et al., 2006]. For an example Cushman [1984] and Quintard and Whitaker [1994] propose expressing the
volume average operator in terms of convolution products of the spatial distribution functions. Most
prominent representatives of the volume averaging models are the homogenization models and the
models base on the renormalization techniques.

A stochastic approach is in the basis of many similar models that rely on the ADE [Dagan, 1989].
Stochasticity is introduced by spatial and temporal variations of the medium properties, such as
hydraulic conductivity, porosity, etc. The resulting transport is the ensemble average of the transports in
all the different realizations.

There are some alternative methods to model non-Fickian transport, such as multi-rate mass
transfer (MRMT) and continuous time domain random walk (CTRW) models. It is worth noticing here
that Dentz and Berkowitz [2003] have proven that there is equivalence between these models for
special cases, and also included mobile-immobile mass transfer into the CTRW framework. These
models aims at describing the anomalous behavior based on the assumption that non-Fickian dispersion
comes from a broad distribution of the transition times that solute particles encounter in the porous
medium. The transition time distribution is obviously related to the heterogeneity of the medium that
triggers a broad range of possible flow paths for the tracer while diffusion tends to smooth the apparent
differential tracer velocities. It follows that, a priori, the asymptotic Fickian dispersion regime should be
recovered fast in highly diffusive systems [Liu and Kitanidis, 2012].

The MRMT models [Haggerty and Gorelick, 1995; Carrera et al., 1998; Haggerty et al., 2000] assume
existence of two domains with completely different properties, relying on the idea of dual-porosity
models [Barenblatt et al., 1960]. The mobile domain where the transport is governed by advection is
modeled by classical ADE with the constant average velocity and the dispersion coefficient, while the
diffusive transport is dominant in the immobile domain. Anomalous transport arises from the mobile-
immobile mass exchange since tracer “particles” that enter the immobile domain on average experience
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significantly larger transient times than ones passing only through the mobile domain. Heterogeneity in
this models in introduced by size and spatial disposition of the mobile and immobile domains and their
mutual interfaces. Modeling of the MRMT is usually done by adding a source-sink term in the ADE to
account matrix diffusion [e.g., Carrera et al., 1998] or by CTRW as stated earlier. A major weakness of
the MRMT approach is that it does not account for the effect of the velocity field heterogeneity in the
mobile domain that may participate together with the immobile domain to control the observed non-
Fickian dispersion. Moreover, the memory function is often used as a fitting parameter without any
connections to measurable properties of the porous medium, although there were some attempts to
connect the memory function with the tortuosity and properties of the microporous phase from X-ray
microtomography images [e.g., Gouze et al., 2008b].
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Figure 1.2 Concentration of solute in the porous medium consisting of glass beads. Different permeability zones were
created by inserting circular regions filled with glass beads with significantly smaller radius than the surrounding medium.
Three experiments are presented; they differ in permeability of low permeability zones. Concentration is represented as
fraction of initial concentration, scale is at the bottom of image — reprinted from Zinn et al. [2004]
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CTRW is a flexible framework that has proven capabilities to provide a convincing modeling of non-
Fickian transport in the porous medium [Berkowitz et al., 2000; Cortis and Berkowitz, 2004; Le Borgne
and Gouze, 2008; Cortis and Birkholzer, 2008]. In general CTRW is used to provide 1D upscaled model
where the macroscopic behavior is reproduced only (i.e. all the details linked to the pore-scale
mechanisms that act as producing fluctuation around the macroscopic behavior are not included). It is
based on the basic mass transfer equations given by Scher and Lax [1973], who generalized Montroll-
Wiesss continuous time random walk [Montroll and Weiss, 1965] on a lattice. The main input parameter
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in the CTRW is a probabilistic density function (pdf) of transition times, containing all the important
properties of the porous medium influencing the macroscopic behavior of tracer transport. Accordingly,
the macroscopic transport behavior in CTRW framework is determined by the shape of the transition
time pdf, therefore it is essential to find pertinent correlation between the pdf shape and measurable
physical parameters, but to the best of our knowledge this point has poorly been investigated so far.
One of the most interesting CTRW models which appeared in recent years is the correlated CTRW. Le
Borgne et al. [2011] have shown that anomalous transport in the simple 2D structures can be simulated
by CTRW from correlated Lagrangian velocities along the streamlines. This approach was later
successfully applied on Berea sandstone [Kang et al., 2014]. This approach sound interesting for relating
the effective dispersion to the properties of the velocities along the flow paths that can be computed
from solving pore-scale flow. It is also promising for introducing the distinction between mixing and
spreading; or in other words the distinction between reversible and irreversible mechanisms of
dispersion, such as measurable comparing push-pull and flow-through tracer tests [Gouze et al., 2008b].

The synthetic presentation of the actual dispersion models above indicates that they are based on
the assumptions that anomalous transport arises from different transit times that the solute tracer
experiences when travelling through the pore-space. The recent developments in computing resources
gave us the opportunity of investigating mechanisms that control transport on the pore-scale. For
instance, reliable techniques for the three-dimensional imaging of pore-space structures and flow
showed rapid developments. Nuclear magnetic resonance (NMR) [e.g., Scheven, 2013] and X-ray
microtomography (XRMT) [e.g., Fourar and Radilla, 2009; Klise et al., 2008] have been used to directly
visualize transport effects in the natural and artificial porous media. Among other results, many of these
investigations showed wide distributions of velocities [e.g., Seymour and Callaghan, 1997]. However,
these methods have limitations in terms of the resolution, both of the solute and velocity distribution,
because of the necessity of performing fast acquisition in order to tackle the dynamics of the transport
processes. Although it is important to note that the (ubiquitous) diffusion mechanisms cannot be
tackled accurately at small scale. For example, at a resolution of 5 microns, the characteristic time of
diffusion through a pixel is smaller than 0.1 second which is far smaller than the actual imaging
capabilities for X-ray tomography. The contribution of these methods for characterizing multiscale
dispersion mechanisms is more qualitative than quantitative, similar to other imaging techniques
developed for investigation of dispersion in transparent porous media. Nevertheless these methods are
unmatched for characterizing the average macroscopic behavior and test models. An example of
dispersion investigation performed by the visible light transmission technique on a glass bead pack
(transparent porous media) can be seen on Figure 1.2. Zinn et al. [2004] created porous media of
uniformly sized glass beads, and then inserted circular regions filled with uniformly sized glass beads but
with significantly smaller diameter to obtain less permeable regions. Figure 1.2 clearly shows that
heterogeneity in region permeability leads to different rates of the transport in different regimes, as
well as shows different transport mechanisms occurring due to differences in the permeability.

Conversely, a detailed investigation of the transport processes is now possible by solving it
numerically directly on the pore structure. Standard approach starts with the acquisition of high
resolution XRMT images of the pore-structure. For reservoir rocks the optimal resolution (voxel size) is
in the order of few micrometers. These raw images of the X-ray absorption in the sample are then
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processed (segmentation) to distinguish different phases (usually rock and void). Processed images are
then used to mesh the pore space for flow and transport calculations using computed fluid dynamic
codes [Ovaysi and Piri, 2011; Blunt et al., 2013]. Many recent studies have been investigating spreading
of solute in the relation of the velocity distribution in the flow field in different porous media ranging
from simple structures [e.g., Le Borgne et al., 2011] and glass beads packs [e.g., Maier et al., 2008], to
natural rocks with different level of complexity such as, sandstones [e.g., Kang et al., 2014] and
carbonates [e.g., Bijeljic et al., 2013]. This approach gives useful insight into the processes happening at
the pore-scale and its main limitations are related to the quality and resolution of XRMT images and to
the computational limitations for solving flow on large domains. Also, results are very sensitive to the
accurate segmentation of XRMT images [Schliter et al., 2014], accuracy of the computational
simulations and on the representativeness of the observed medium [Arns et al., 2005; Guibert et al.,
2015; Siena et al., 2015].

The work presented in this manuscript focuses on the investigation of passive (i.e. non-reactive)
tracer transport through reservoir rocks. We mainly used Berea sandstone samples. Berea sandstone is a
relatively homogeneous rock that is used as a proxy to poorly altered sandstone reservoirs by the
petroleum industry. Therefore it has been thoroughly investigated and its properties were well
documented by several authors [e.g., Curcher et al., 1991; @ren and Bakke, 2003].

Theoretical background of the processes that control flow and transport in the porous media is
presented in Chapter 2. Chapter 3 is dedicated to the experiments, starting from the experimental setup
and with an explanation of all procedures and assumptions applied during the design of the experiment.
At the end of the chapter results are presented and discussed on the base of the analysis of the
breakthrough curves (BTC). The numerical modeling methodology is presented in Chapter 4 with
detailed analysis of the flow field properties focusing on the mesh resolution importance. Developed
approach is incorporated in the transport simulations Chapter 5 and as well as a base for the
development of the Darcy-Brinkman solver presented in Chapter 6. General conclusion with a
prospective of future work is given at the end.



Chapter 2
Transport in porous media

To understand solute transport on the large scale first one has to understand the transport
mechanisms at the pore-scale. Two basic modes of solute displacement in porous media are miscible
and immiscible displacement. Miscible transport is characterized by only one fluid phase present in the
porous medium, but its properties or composition can vary in space and time. On the other hand, in the
immiscible displacement there are two or more different fluid phases and between these phasess there
is distinct fluid-fluid interface.

In this work we are only interested in the miscible transport. It may be a case of two miscible liquids
(e.g., fresh water and salt water) or a substance completely dissolved in a liquid. Mechanisms of solute
spreading through completely saturated porous medium are described in the following section.

2.1 Diffusion

The molecular diffusion is an ubiquitous transport mechanism occurring in the porous medium as
soon as the solute concentration varies spatially. It occurs regardless of fluid motion and it is driven
exclusively due to differences in the concentration. Substance moves from a region of high
concentration to a region of low concentration. A concentration distribution change caused by diffusive
transport without any influence of flow movement is illustrated in Figure 2.1. One can see that as time
passes, concentration at the place of injection decreases and the plum is spreading in the space, with
diminution of relative differences in the concentration in the space. The solute concentration spatial
distribution is normal (Gaussian).

Relative concentration
C/Co

Figure 2.1 Spreading of a solute pulse with time (t), transport only due to diffusion. Solute pulse was injected into the
aquifer at time t, with an initial concentration C, — reprinted from Fetter [1999]
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Law describing diffusion based on the experimentally obtained results, has been published by Adolf
Fick in his work “Uber Diffusion” [On Diffusion, Fick, 1855]. From experimental data Fick established the
relation that the mass of solute diffusing is proportional to the concentration gradient.

This relation is called Fick’s first law
dc (2.1)
- -a(3)
o \ox

where F denotes mass flux of solute [mol/m? s], d, is the molecular diffusion coefficient or diffusivity
[m?/s], c is the solute concentration [mol/m?] and x is the length [m]. Negative sign on the right side of
equation (2.1) indicates that a solute flux is from areas of higher concentration towards those with
lower concentration.
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Figure 2.2 lllustration of diffusion a) free in space and b) in the pore space
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Fick’s second law predicts changes in the concentration with time (t) caused by diffusion

dc _ (%% (22
at — °\ox2)

Figure 2.2 illustrates the effect of the diffusion in liquids without any advection. In Figure 2.2 a) one
can see spreading of particles in the space due to the concentration difference. However, spreading is
mitigated in the porous media (Figure 2.2 b)), due to the complexity of the pore structure and smaller
contact area between volumes with different concentrations. To account for slower diffusion in the
porous media the molecular diffusion coefficient must be replaced by the effective diffusion coefficient
(d(®) (detailed discussed in section 5.2.3)

d(e) = de' (2:3)
where w is a coefficient related to the structure properties of the porous media (e.g. porosity,
tortuosity..). The values of the diffusion coefficient dy in water for the main cations and tracer
molecules range from 2:10™° to 10° m?/s.

2.2 Advective transport

Advection (or convection) is a process in which dissolved substances are carried along with the
flowing water. It is easiest to imagine advection as a displacement of solute along the flow direction as
illustrated in Figure 2.3. The total amount of transported solute is the function of its concentration and
the total amount of flowing water. The total amount of flowing water is proportional to the average
linear velocity and the effective porosity. The effective porosity ¢, consists of the interconnected pores
in which water can flow. It is always lower than the total porosity since unconnected pores are excluded
from the effective porosity. Because of the heterogeneity and anisotropy of pore network in rocks, the
effective porosity can be different depending on the sampled volume and the geometry of the boundary
conditions. We will see later that algorithms can be used to determine the connected porosity of imaged
rock samples. The average linear velocity U, is representing the velocity at which solute is transported
through the porous medium; it can be calculated from the Darcy’s law

_kap (2.4)
X ‘u l ’
where k denotes permeability, i fluid viscosity, p pressure and lis the distance between pressure
observation points. The one-dimensional mass flux of solute F,, due to advection can be calculated by

equation (2.5):

(2.5)
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Figure 2.3 lllustration of advective transport in the porous medium with time. Solute pulse was injected at x=0 and at
the time t,.

2.3 Asymptotic Fickian hydrodynamic dispersion

The illustration of a theoretical purely advective transport given in Figure 2.3 is made under
assumptions that the flow field in the porous medium is homogeneous and that the diffusion is null.
However, these assumptions are obviously not applicable to porous media. Water is moving through the
porous medium at different rates using different flow path because of the heterogeneity of the pore-
space (Figure 2.4). This causes hydrodynamic spreading of the tracer “particles”, while diffusion triggers
tracer “particle” to jump from a given flow line to an (adjacent) other producing mixing.

Injection
point

Flow direction

Figure 2.4 lllustration of different trajectories taken by solute traveling through the porous medium

The mechanical or kinematic dispersion is a common name for all mixing and spreading that
happens due to advection (i.e parabolic velocity distribution in pores, different velocities in different
flow paths and different lengths of flow paths covering same linear distance (Figure 2.5)). Elongation of
the solute plume in the direction of flow is called longitudinal dispersion. Solute plume also have the
tendency to spread in the directions normal to the flow direction. This happens due to diverging flow
paths as illustrated on Figure 2.4. Spreading of the solute in the directions normal to flow-paths is called
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transverse dispersion. Both longitudinal and transverse dispersion occur even in the most homogeneous
porous medium, however spreading in the transverse direction is often 5 to 100 times less than in the
flow direction [de Marsily, 1986].
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Figure 2.5 lllustration of the mechanical dispersion in the porous medium. On the illustration at the top, blue line
denotes flow-path with lower velocity while red line denotes flow-path with faster flowing fluid. On the bottom image there
is an illustration of two different paths taken by the solute, both paths have same starting and finishing points but the path
length is significantly different. Magnified is example of the parabolic velocity distribution in one pore that causes Taylor
dispersion.

However, dispersion in the porous media with flowing water is influenced by both diffusion and
mechanical dispersion and they cannot be separated. Therefore both of these influences are defined
together as hydrodynamic dispersion. Hydrodynamic dispersion coefficient as a function of mechanical
dispersion and diffusion can be expressed as:

(2.6)

DL aL|Ux| +d(€)’

(2.7)

DT aTlle +d(€)’

where D; is the hydrodynamic dispersion coefficient in the direction of the flow, Dy is the hydrodynamic
dispersion coefficient perpendicular to the flow direction, d(© is the effective diffusion coefficient, ay is
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the dynamic dispersivity along the flow direction, ar is the dynamic dispersivity transverse to the flow

direction and U, is the Darcy velocity.
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Figure 2.6 lllustration of the transport and spreading of the solute pulse in the porous medium with time, according to
advection-dispersion theory. Solute pulse was injected at x=0+a and at the time t,. Transported
and spreading is due to advection and dispersion — reprinted from Fetter [1999]

Classically hydrodynamic dispersion in the homogenous porous medium is described by the
advection-dispersion equation (ADE) (2.8). The assumptions for the derivation of the ADE are that the
porous medium is homogeneous, isotropic and fully saturated with fluid, also flow conditions have to be
in the limits where Darcy’s law is valid [Bear, 1972]. Macroscopically dispersion is assumed to be
diffusion-like (Fickian) process (Figure 2.6). With the solute concentration ¢ [g/m®], the ADE is as follows

dc 2.8
¢V (Uc) =V (DVC) = 0, (2.8)
where t denotes time [s], U is the macroscopic (Darcy) velocity [m/s] and D is the dispersion tensor. The

dispersion tensor expressed in its principal directions of anisotropy, is limited to three components

D, 0 0
D=<0 Dy 0) (2.9)

0 0 Dy

while the average macroscopic velocity can be calculated from the Darcy’s law by equation (2.4).

Two classical examples of interlaced influences of both diffusion and mechanical dispersion in the
porous medium are Taylor and holdup dispersion. Taylor dispersion is a very simple and illustrative
example of an evolution of the hydrodynamic dispersion starting as a pure mechanical dispersion and
evolving due to the diffusion. First evidence of the dispersion due to the heterogeneity of a flow field in
a capillary was published by Griffiths [1911]. However it was Taylor [1953; 1954] who mathematical

described phenomenon later named after him.
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Origin of Taylor dispersion is in the parabolic distribution of velocity in a capillary tube, given by
Hagen-Poisseuille law

w(x) = A_PR_2<1 3 ﬁ) (2.10)
l 4u R?

where u denotes the velocity of the fluid in pores [m/s], x is the distance from the central axis of the
tube [m], Apis the pressure difference between tube ends, [ is the tube length, R is the interior tube
radius and u is the viscosity of the fluid. Solute in the vicinity of the central axis travels significantly
faster than one located near the boundaries. This causes spreading on solute plume in the longitudinal
direction, but in the same time causing the difference in the concentration perpendicular to the flow
direction. Due to this difference in the concentration solute starts to diffuse towards tube boundaries at
the front edge of the solute plume and towards the central axis in back of the solute plume. Aris [1956]
has extended Taylor’s theory and proved that dispersion in a capillary tube will ultimately achieve
Gaussian distribution if all conditions remain stable. Magnified area on Figure 2.5 shows parabolic
velocity distribution that occurs in the pore.

Figure 2.7 lllustration of dead-end pores in the natural porous medium

Hold-up dispersion is typical for the porous media. It is caused by solute diffusing into stagnant
zones (e.g. dead-end pores). Stagnant zones are areas where there is virtually no fluid flow or where its
velocity is negligible compared to the fluid velocity in the flow-paths. These zones exist in all porous
media, even in the most homogeneous ones such as packed beads [e.g., Sederman et al., 1997; Reynolds
et al., 2000], and their influence on the dispersion cannot be disregarded. Zinn et al. [2004] provides
particularly nice visualization of influence of the stagnant regions over different transport regimes.
Figure 2.7 illustrates typical dead-end pore. Solute is transported by convection through the flow-path
and some particles diffuse into the dead-end pore. Particles which are in the stagnant zones can rejoin
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flow path only by diffusion. Since diffusive transport happens from higher concentration to lower
concentration, solute can diffuse back into the flow-path only when solute plume has passed. Also this
release from stagnant zones is very slow due to small concentration difference.

2.4 Characterization of dispersion regime

Relative influence of the kinematic dispersion and diffusion on the hydrodynamic dispersion
depends on the transport regime. Transport regime can be quantified by dimensionless Peclet number
(Pe)

ulL
pe = L& (2.12)
do

where & denotes mean microscopic velocity, L is the characteristic length and d; is the molecular
diffusion coefficient. Relationship between dispersion coefficient and Peclet number has been
established from experiments, exhaustive overview is given by Delgado [2007]. Based on these
experimental results several authors defined five distinct transport regimes [e.g., de Marsily, 1986],
corresponding to different relative influence of kinematic dispersion and diffusion. Some of
experimental results are presented in Figure 2.8. On the same figure limits between different regimes
are indicated with dashed lines. In each of these regimes empirical relation between longitudinal (D;)
and transversal (Dg) dispersion coefficients and Peclet number is found. Sahimi [1993] even gave
approximate limits between regimes; however these limits are just tentative.
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Figure 2.8 Experimental results showing relation between the longitudinal dispersion coefficient (D;) and Peclet
number (Pe). Dashed lines indicate limits between five different transport regimes — reprinted from Sahimi [1993]

i) Pe<0.3 Pure molecular diffusion regime is characterized with very slow convection, and dispersion
is almost completely controlled by diffusion. Since there is no convection the dispersion is
isotropic and the dispersion coefficients are given by
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iii)

b/ _Dbrf_ 1 (212)
do do Fr¢’
where D; and Dy are defined as
D D
D] = “L and Dy = =L (2.13)
¢ ¢

Fr is the formation factor, and ¢ is the total connected porosity of the medium. The formation
factor Fp is a property that is originally defined from electrical conductivity measurements of
fluid-saturated porous media. It is defined as the ratio of the resistivity of porous material,
saturated with an electrolyte, to the bulk resistivity of the same electrolyte [Archie, 1942]. The

ratio 1/FR¢ is defined by the properties of the porous medium and commonly ranges between

0.15and 0.7.

ii) 0.3<Pe<5 Intermediate zone between pure diffusion and predominant kinematic dispersion, in

which both convection and diffusion influences on the dispersion. In this regime the dispersion
coefficient increases with increase of convection influences. To this day we still do not have valid
formula that describes evolution of the dispersion coefficients in terms of the Peclet number in
this transitory regime.

5<Pe<300 This regime is characterized by predominant kinematic dispersion, however effect of
diffusion cannot be neglected. Usually it is referred to as power-law regime since relation between
the dispersion coefficients and the Peclet number are described by the empirical relations

D
—L = q,PePr, (2.14)
do

D

d—T = aTPeBT’ (2.15)

0

where @} and ar [m] are known as intrinsic dispersion coefficients or dispersivity. Sahimi [1993]
points out that the average values obtained from experiments are 1.2 for §, and 0.9 for ;.
Saffman discovered existence of a diffusive layer near the solid surface; therefore, sometimes this
regime is referred to as boundary-layer dispersion regime [Saffman, 1959].

iv) 300<Pe<10°For a porous medium that does not contain any stagnant zones (e.g., Figure 2.7) in

this regime, transport is characterized as pure kinematic dispersion (i.e. completely dominated by
convection). Due to negligible influence of diffusion, transport in this regime is usually referred to
as mechanical dispersion, and the dispersion coefficient scales linearly with the Peclet number:

Dy 2.16
d_o = q;Pe, (2.16)
Dr _ (2.17)
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However stagnant zones exist in almost all porous medium, and actually contribute to the pore
space with large percentage. Therefore application of power-law regime with its governing
equations (2.14) and (2.15) is extended to this Peclet number range.

v) 10°<Pe This regime is characterized by a turbulent flow, in contrast to the previous ones where a
transport took place under laminar flow conditions. Kinematic dispersion is outside the domain
where Darcy’s law is valid. Since the flow turbulence also contributes to the dispersion, the
dispersion coefficients depend on both Peclet and Reynolds numbers (see section 4.3.3 and
equation (4.7)).

Yet, it is worth noticing that regimes iv and v are usually not encountered in natural systems, but
may occurs very locally close to pumping well, for example.

2.5 Alternative Approaches

As mentioned earlier (Chapter 1) standard theory of transport in the porous medium fails to
describe the real nature of dispersion for most of the natural conditions. Certainly the main issue is its
inability to describe the effects of the flow field heterogeneity triggered by the more or less complex
geometry of the porosity that occurs at virtually all scales. For a porous medium that one wishes to
model at a given scale, there is always some scales below which heterogeneities are unresolved, and
several studies stressed that these unresolved heterogeneities can have a key influence on the overall
transport behavior [Berkowitz et al., 2006]. Consequently the use of average local properties (e.g., mean
velocity and dispersion) measured at the modeling scale seems to be unjustified.

This led to the development of alternative models. Most of these models are based on non-local-
in-time representations of hydrodispersive transport to take into account the fact that local mixing and
spreading at a given time depend on previous conditions. The models closest to the “classical” ADE
model are stochastic ADE models [e.g., Morales-Casique et al., 2006]. They are based on the premises
that the transport can be accurately described at a given scale and that non-Fickianity arises from time
and space depended fluctuations of the flow and transport properties. Averaging over an ensemble of
velocity fields results in the representation of the non-Fickian transport behavior. Similarly Lagrangian
framework models [e.g., Cushman and Ginn, 1993] average the solute particle motion over a random
velocity field. Transport is then modeled by the ensemble average of nonlocal space-time
representations. Non-local in space models have been developed for simulating long range correlations
using for instance fractional ADE models [e.g., Benson et al., 2000]. Yet, the most used framework are
the multi-rate mass transfer (MRMT) models (section 2.5.1) and the continuous time random walk
(CTRW; section 2.5.2) that will be also at the center of the works presented in this document. Readers
are directed towards detailed overviews given by Berkowitz et al. [2006] and Neuman and Tartakovsky
[2009] for additional details on the non-Fickian transport model theories; in the following MRMT and
CTRW approaches will be briefly presented.
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2.5.1 Multi-Rate Mass Transfer Model (MRMT)

Molecular diffusion from the water-flowing portion of porous media to the stagnant zones (i.e.
matrix diffusion) has been recognized and widely cited as a critical transport mechanism controlling the
residence time. Prolonged residence time (e.g. tailing observed in the BTCs) is one of the most
recognizable features of the anomalous transport. This premise led to development of simple transport
models to account matrix diffusion, which can be divided into two main groups, first-order mass transfer
models [e.g., Coats and Smith, 1964; van Genuchten and Wierenga, 1976] and rate-limited mass models
[e.g., Rao et al., 1980; van Genuchten et al., 1984]. In both cases mass transfer between mobile and
immobile domain is simulated with a single mass transfer type and rate at the time. Mathematically
mass transfer is coupled with standard advection-dispersion equation by adding sink/source term.
However in porous medium there is a large variety of different immobile domains (e.g. microporosity,
stagnant zones, sorption...) with different properties and geometry (Figure 2.9a). Thus, they cannot be
represented with a single mass transfer rate.

The MRMT models allow numerous types and rates of mass transfer to occur simultaneously
[Haggerty and Gorelick, 1995; Carrera et al., 1998] as illustrated on Figure 2.9b. The mathematical
expression of MRMT model is similar to his simpler predecessors. Moreover it has been demonstrated
that spherical, cylindrical and layered diffusion models are just a special case of the MRMT model. The
main difference is in the formulation of the sink/source term that accounts for the effect of the
immobile domain. Usually mass transfer between mobile and immobile domain is modeled by linear
mass exchange process, which can be expressed as the convolution product of a time dependent
variations in concentration in the mobile domain and the memory function. The memory function
(expressed as the inverse of time and noted hereafter G(7)) is a time-dependent function that denotes
the intrinsic transport property of the immobile domain.

As stated earlier basic equation expressing the average solute concentration in the mobile domain
(cm) is standard ADE equation with added sink/source term (S), representing mass transfer between
mobile and immobile domain [Carrera et al., 1998; Haggerty et al., 2001]

dc
Em ==V (DVey) = UVey, =S, (2:18)

where &, denotes the volume fraction of the mobile domain which is equivalent to the macroscopic
porosity (important to remind that this is only water-flowing portion of the porosity), t is the time, D is
the dispersion tensor and U is the Darcy velocity [m/s]. The sink/source term for linear mass transfer
processes can be expressed as a convolution with the memory function (M):

t
9
S 1) = Eim o f (%, tYM(t — t"dt', (2.19)
0

where &;,,, denotes volume fraction of immobile domain (microporosity, dead-ends, stagnant and
trapped water).
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Figure 2.9 a) lllustration of “natural” heterogeneous porous medium with solute exchange between different phases
indicated by arrows. Left image presents mass transfer between zones with different permeability (slow and fast flowing
zones) and right presents mass exchange on the pore scale between porosity with different flow regimes (i.e. diffusion
between stagnant and flowing zones), microporosity (e.g. clay pockets) and surface sorption. b) lllustration of different mass
exchange processes incorporated in one multi-rate mass transfer model designed to simulate different mass exchange
principles that happen in nature. — reprinted from Haggerty and Gorelick[1995]

The memory function depends on the properties of the immobile domain and specifically its
heterogeneity. Heterogeneously distributed immobile domains with different mass transfer rates (1)
can be replaced with the homogeneous immobile domain with the probability distribution of the mass
transfer rate (P(1)). P(A) expresses the probability that the particle is in the immobile domain in a given
time interval, generally it is controlled only by the volumetric distribution of the immobile region.
Diffusive transfer rate between mobile and heterogeneous immobile domain is given by weighted
average over the local memory function (W (¢, 1))[Haggerty et al., 2000].

oo

M(t) = f P(OW (¢, )dA.
0

(2.20)

Several authors have successfully used MRMT model to fit experimental data, trying to connect
memory function with measurable rock properties [e.g., Haggerty et al., 2001; Haggerty et al., 2004;
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Gouze et al., 2008b; Berkowitz et al., 2008]. However, the link between intrinsic properties of the rock
and memory function is still debated. This is not surprising, knowing that mass transfer rate depends on
many different factors, which contribution cannot be separated and evaluated individually. The MRMT
class of model was developed for systems where it is possible to assume that two distinctly different
transport modes coexist: a mobile domain (advection dominant) and an immobile domain (diffusion). In
general these domains correspond to physical regions of the porous media (e.g., macroporosity and
porous cement). Attempts have been made to use this approach to model the effects of the flow field
heterogeneity, which means that the mobile and immobile volume fractions depend on the Peclet
number [Liu and Kitanidis, 2012].However, the justification of distinguishing a purely advective domain
and a purely diffusive domain from a continuous distribution of velocities seems difficult and we should
restrict the use of MRMT for cases where mobile and immobile domains can be clearly distinguished.

2.5.2 Continuous Time Random Walk (CTRW)

The CTRW framework has demonstrated an ability to successfully characterize non-Fickian
transport behavior at different scales, as well as in both porous and fractured medium [e.g., Berkowitz
et al., 2000; Cortis and Berkowitz, 2004; Le Borgne and Gouze, 2008; Cortis and Birkholzer, 2008; Kang et
al., 2015]. It is a probabilistic approach, which uses the random walk framework to mimic particle
transport in heterogeneous media. It describes a path as a series of successive uncorrelated random
steps with no direct link to any geometrical or physical support. Continuous time was first introduced by
Montroll and Weiss [1965] for modeling diffusion on lattice.

The CTRW framework aims at modeling anomalous transport in heterogeneous media. It is a
random walk approach in which both space and time increments are random variables. Formally, the
particle transitions depends on a joint probability (pdf) ¥ (s, t) of the transition times, where s denotes
the position and ¢ the time, but it is classically assumed that for hydrodynamic transport the decoupled
form (s, t)= {(s) Y(t) , where Y (t) is the probability rate for a transition time ¢ between two sites.
Detailed overview of the CTRW theory and mathematical framework is given in Berkowitz et al. [2006]
and here we will present only the most important features.

Using the decoupled form presented above, the CTRW transport equation can be written in Laplace

space:
A6 Y ~ 2~ (2.21)
¢(s,A) —co(s) =—M(A) [vw -VE(s, A) — Dy, - V2E(s, M),

where the sign ~ denotes the Laplace transform, A is the Laplace variable, v, and Dy,are the apparent
velocity vector and dispersion tensor respectively (both being respectively different from the average
velocity and Fickian dispersion), and M is a memory function which depends on A,1(1) and some
transition time characteristics [Berkowitz et al., 2006 and references therein]. Note that in equation

(2.21), ¢ denotes the total concentration while the equation (2.18) written for the MRMT model gives
the solution for the mobile concentration c,,,. The common form for M is [e.g., Bijeljic et al., 2011a]:

D) (2.22)

M(A) = At =30
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with 1 a single characteristic transition time. Truncated power law for i(t) is often used to model
anomalous dispersion but other expressions for M and Y(t) can be investigated (see section 5.3). Note
that for M(1) = 1, i.e. an exponential form of (1), the Fickian dispersion model (ADE Equation (2.8))
is retrieved. By performing inverse Laplace transform of Equation 22 one can obtain time domain
transport equation:

dc(s,t) B

t
Fraia f M (t — t)[vy - Ve(s, t) + Dy Vc(s, t)]dt’. 2.23)
0

As mentioned earlier, the transport behavior in the CTRW framework is controlled by the functional
shape of the pdf. It depends on the probability rate of the transition times. For instance, a power law
distribution of transition times may be used to model power law tailed breakthrough curves. In this case,
CTRW formulation is mathematically equivalent to the MRMT approach [Dentz and Berkowitz, 2003;
Schumer et al., 2003]. The numerical implementation of the 1D CTRW for modeling flow velocity
heterogeneity and mobile-immobile mass transfers are detailed in section 5.3.



Chapter 3
Tracer experiments

3.1 Introduction and objectives

Experiments enable to observe natural behaviors in more or less controlled environments. Large
scale experiments provide irreplaceable information source on transport as it happens in nature.
However, they are long lasting, expensive, and often difficult to interpret because of the superposition
of natural flow and the poor knowledge of the true reservoir heterogeneity. On the other hand
laboratory experiments provide valuable insight into natural process with an ability to isolate different
effects contributing the dispersion and usage of the well-known and investigated media. Laboratory
experiments can in theory be performed under strictly regulated conditions, eliminating side effects that
may lead to the misinterpretation of the results. Nevertheless, these objectives are often difficult to
reach in practice and require quite sophisticated measurement equipment and protocols to minimize
dispersion due to the experimental setup itself for instance. Also, it is important to perform tracer test
over several order of magnitude in concentration to obtain a pertinent characterization of the non-
Fickian dispersion behavior that is contained in the BTC tailing (i.e. at long time and for low
concentration).

In this chapter we present series of 1D-like experiments performed on glass beads columns and
Berea sandstone cores. The aim is to investigate tracer (pre-asymptotic) dispersion through relatively
simple and well described porous media. Variations in the porous media structure, flow rate and
experiment type (flow-through or push-pull) allows to distinguish contributions of different natural
processes on the hydrodynamic dispersion.

3.2 Experiment setup

The experimental circuit is designed to support both flow-through and push-pull experiments
without any changes in the circuit when changing experiment type. Actually the only part that needs to
be changed between experiments is the sample and the protective cell around it when changing porous
media type.

Experimental circuit layout is presented in Figure 3.1 and all components are detailed described in
following subsections. Water is pumped into the circuit with two piston pumps, passes through tracer
injection point, sample core and out of the system. Arrows indicate the direction of flow for different
experiment stages. Blue arrows indicate flow direction in part of the circuit where flow direction is
always the same, green arrows indicate flow direction during flow-through experiment and pull phase of
push-pull experiment, while red arrows indicate flow direction during push phase of push-pull
experiment. TELog is a high resolution optical sensor presented in details in subsection 3.2.5. It is
installed below the experimental cell directly at the outlet from porous media. Data recording and TELog
management is performed by personal computer which communicates with TELog through USB
controlled signal converter.

In flow-through experiments water arrives at the top of the sample. Here we inject tracer at the
injection point using micro-syringe to precisely dose trace volume and time of injection. It is important
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not to inject too fast in order not to significantly disturb flow field. Solute then passes through porous
media and outlet concentration is measured by TELog. For first (push) phase of push pull experiment
flow direction valve is placed in position to direct flow at the bottom of cell. There is another injection
point just between the TELog and the sample. Tracer is pushed for a period of time depending on flow
rate, permeability and length of sample in order to investigate as much as possible of the porous media
without any tracer leaving from porous media on the other side. At the end of the push period, the
control valve is switched and water starts to flow from the top of the sample like in flow-through
experiment. In order to emphasize dispersion due to diffusion in some experiments, we turned off the
pumps for several minutes between push and pull phase.

[ Injection for flow
through exepriment
Flow direction A l
control valve .

Core

Injection for
push-pull experiment

Flucrometer
(TELOG)

- ‘ ‘I A/D converter

Water Tank Qutlet

Personal computer

Figure 3.1 Schematic diagram of the experimental test-bench circuit layout with arrows indicating flow direction. Blue
arrows — permanent flow direction; green arrows — flow direction for flow-through experiment and pull phase of push-pull
experiment; red arrows — flow direction during push phase of push-pull experiment

3.2.1 Pumps

The main demand imposed for the pumps was to have constant flow rate without any fluctuations
of chosen flow rate over several weeks. Two R2N piston pumps equipped with solenoid valves were
chosen. Normally only one pump is used to inject water in the system while other one is waiting full or
being recharged. When a pump is almost empty it starts to slow down the piston and decrease flow rate,
at the same moment the other pump starts to move its piston maintaining combined flow rate from
both pumps equal to chosen flow rate. The ratio in cumulated flow rate is being gradually increased in
favor of the second pump until the first pump is completely stopped and the second pump takes over
entire flow rate. First pump is being recharged and put in waiting for process to repeat.
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Pumps are operated by acquisition program developed in LabVIEW by Richard Leprovost,
mechanical engineer in the TMP team. Program monitors and controls pump status (on/off), position
and speed of piston (controlling flow rate and recharge of pumps), status of the valves (open/closed). All
relevant data are displayed on computer in real time.

Both pumps are exactly the same with internal diameter of 35,685 mm (cross section area 1000.14
mm?) and operating range from 1 to 500 cm®/h. Pumps calibration was performed at the beginning of
the experiment to ensure that the actual flow rate is exactly the same as the imposed one.

3.2.2 Experimental materials and procedures

In this work we performed tracer experiments on both artificial (glass beads packing) and natural
(Berea sandstone) porous media. Sample cell is designed to perform both flow-through and push-pull
experiment and as well that changes between samples can be done fast and simple. As it can be seen in
Figure 3.3 a) cell is placed vertical with injection points on the top and on the bottom. Measuring unit
(TELog — details in section 3.2.5) is located directly at the bottom inlet/outlet of the sample.

Glass beads used in these experiments are originally intended for industrial application. Therefore,
distribution of their diameter is relatively wide. To narrow glass beads diameter distribution we
performed sorting process. The sorting process is performed on the vibrating sorting machine (Figure
3.2 b)), where sieves are positioned one above the other in order that upper sieve always has larger
openings in the mesh. Glass beads are poured on the top sieve and beads smaller than openings in the
mesh drop to lower sieve until they reach sieve with openings smaller than their diameter. Vibrations of
the machine assist in the sorting process. At the end of the sorting process remaining beads on each
sieve have diameter smaller than openings on the previous (top) sieve and smaller than openings on the
sieve they are found on. Chosen glass beads for these experiments have diameters between 355 and
400 pum. Column filling with glass beads is made underwater with regular vibrations to ensure optimal
homogeneous packing, as low as possible void content and to avoid air pockets (Figure 3.2 c)). First
experiments to validate experimental procedure and bead packing were performed with the
transparent coating (Figure 3.2 d)). Transparent coating in combination with high concentration tracer
allowed monitoring tracer plume movement through the packed beads. During these experiments no
side flow or other anomalous behavior was observed. However, the experiments for which results are
presented in the section 3.3 were performed on the column with non-transparent coating to prevent
light pollution of measurement and tracer decay due to light. Non-transparent cell used in the
experiment is made of plastic material and by design is similar to one used for Berea sandstone cores
(Figure 3.3 a)) except it does not have opening to apply external pressure. Both sides of cell are closed
with thin highly permeable seals made of glass material.

Berea sandstone core was extracted from a block that is apparently homogeneous at centimeter
scale. Core has 18 mm diameter and is 15 cm long (Figure 3.3 d)). Before placing core into the cell it has
been coated with thermo-plastic material to prevent side flow. Procedure consists of placing core into
“raw” thermo-plastic material which is later heated with heat gun. During heating process thermo-
plastic material shrinks and adheres to a core, final result is presented in Figure 3.3 d). Prepared core is
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placed into metal coating and installed vertically on top of the TELog. A confining pressure (about 3 bar)
is applied to the thermo-plastic jacket in order to prevent any leakage at the rock-jacket interface.

a) c)

b)

"

Figure 3.2 Different stages of glass bead column preparation for the experiments. a) microscopic image of glass beads;

b) sorting machine at the Geosciences Montpellier laboratory and one of the sieves; c)underwater column filling with sorted

glass beads; d)experiment on the transparent column with high fluorescein content in the tracer to visual check for side flow
and other anomalies

Measurement of TELOG can be impaired by several factors such as light pollution or changes in
chemical composition of the water. The design of experimental cells and TELog provide good protection
from light pollution and in order to ensure that water properties stayed the same during the whole
experiment we used bottled water. We used “Eau de Source de montagne d’Auvergne” available in



37

French supermarkets. This water (pH is 7,3 and dry residual at 180°C is 52,2 mg/I) has a composition that
prevent any chemical reaction with the studied material and specifically the cement material that are
present in the Berea sandstone.

a) b)

injection point

flow-through
- c)
__—metal coating
thermo-plastic coating
’j, air-pressure application point
~ | T rock core
d)

injection point
push-pull

connection to TELog

Figure 3.3 Cross section through experimental cell for laboratory tracer experiment (a) and different stages of
preparing core samples; b) Berea sandstone block from which core is extracted; c) coring machine
at Geosciences Montpellier laboratory and d) on the left Berea sandstone
core and on the rights same core coated with thermo-plastic coating
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3.2.3 Tracer injection point

Injection of tracer is designed in order to minimize dispersion before tracer reaches the sample and
in the same time to prevent disturbance in the flow. Figure 3.4 presents the cross section through the
injection part installed at the top of the cell. The injection is made with a micro-syringe at injection point
placed between tube 1 and diffuser. Needle (diameter 0.7 mm) penetrates through tube 2 which has an
internal diameter exactly the same as the external diameters of tube 1 and diffuser. It is made of very
dense rubber foam which self-closes the micro-hole after the needle is removed to prevent leakage
from the system. Diffuser spreads just before the top of the sample ensuring that tracer can penetrate
on the whole surface of the sample. At the cell bottom there is a similar device (with same working
principle) for performing the injection during push-pull experiments.

water suppy tube (tube 1)

rubber foam tube (tube 2)

B sealling cap

injection point
hole for syringe

.~ . yring

diffuser

sample

—

Figure 3.4 Schematic cross-section of injection part at the top of the cell with labeled essential parts

3.2.4 Fluorescein

Fluorescein is a synthetic organic compound frequently used in hydrogeological experiments.
Usually we can find in a form of disodium salt which is dark red powder also known as “uranin” or D&C
Yellow no.8. Even small amount of fluorescein dissolved in the water gives a green color to the solution,
while solutions with high fluorescein concentration are colored in orange or red (Figure 3.5). Although
organics, sunlight and some chemicals can impair intensity of the dye it is one of the best non-toxic
conservative tracer used for tracing of water pathways. A reason of its popularity and wide application is
that its presence can be detected up to 0.001 pg/L [Gaspar, 1987]. From chemical point of view
fluorescein has only negative functional groups which mean that there is almost no sorption on
negatively charged surfaces such as silica sand and sandstones [Kasnavia et al., 1999].
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Measurement of fluorescein is based on intensity and wavelength distribution of emission
spectrum after excitation by a certain spectrum of light [So and Dong, 2002]. In water, fluorescein has an
absorption maximum at 494 nm and emission maximum of 521 nm. The molecular diffusion coefficient
of fluorescein in water is 6.4x10™° m?/s [Galambos and Forster, 1998].

Figure 3.5 Fluorescein in various forms, on the right is disodium salt which is also known as “uranin” and on the left is
dissolution in the water with typical bright green color.

For our experiment we can consider fluorescein as an ideal tracer since it has been proven that
sorption can be neglected on positively charged surfaces, both glass beads and sandstones are positively
charged. Density effect will be investigated in detail during the experiments.

3.2.5 The TELog sensor

TELog is a high resolution optical sensor primarily developed for field usage [Gouze et al., 2009]. It
is in fact a special kind of fluorometer designed for continuous measurement of very low fluorescein
concentration. Ability to measure at low concentrations is essential when studying dispersion of a
passive tracer in order to avoid density effect and still be able to measure concentration over several
orders of magnitude.

Measurement is based on the specific wave lengths absorbed and re-emitted by fluorescein. Figure
3.6 displays a schematic representation of the TELog head. Blue led is emitting short light pulses (less
than 3 ms) every 10 ms, this light pulses passes the filter that filters all light with different wave length
than 485 + 10 nm. Light beam then passes through the glass tube where the solute is flowing at the
outlet from the sample. Fluorescein in the solute absorbs light end re-emits it. Re-emitted light passes
through a second filter that eliminates all light with different wave length than 530 + 10 nm. Filtered
light is detected by photomultiplier and the signal is processed by a computer. The TELog is operated by
an acquisition software developed using LabVIEW by Olivier Maudens, electrical engineer it the TMP
team. The sensitivity of the photomultiplier is defined by 8 pre-programmed scaling factors (gains).
Starting from the lower gain value applied to the photomultiplier, the LabVIEW code determines
incrementally the optimal gain to obtain the best sensitivity of the photomultiplier; the principle is
explained in details in the section 3.2.6.
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photomultiplier
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filters (3)
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Figure 3.6 Schematic representation of the TELog measurement head displaying optical path - reprinted form Gouze et
al. [2009].

Experiment stability and reproducibility is a very important issue. The use of bottled water, the
stability of light source and the accuracy of the flow rate eliminates most of external factors that could
cause false readings in final data. Furthermore the black signal (i.e. measure of the photomultiplier
response without being illuminated) is used to monitor and correct if necessary light pollution coming
from external light source and for the value of the dark signal of the photomultiplier.

3.2.6 TELog calibration and data readings

The photomultiplier installed in TELog detects light that passes through the tube containing fluid at
the outlet of the sample. According to the light intensity and wavelength the photomultiplier produces
different output voltage. To establish correlation between output voltage and fluorescein concentration
we performed calibration. During the calibration process we injected solutions with known fluorescein
concentrations and measured the output voltage.

The first step of the calibration process was to produce a set of solutions with known fluorescein
concentrations. Solution concentrations are chosen in order that they cover the whole range of values
that are expected to be measured (from 1ppm to 1ppt) and that they give enough information to enable
interpolation values in between while keeping reasonable number of solutes. First solution is made by
adding fluorescein in powder into the pure water.
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Solute concentration (C,) is calculated by equation:

o, == (3.1)

’

WH,0

where wy denotes the mass of the fluorescein and wy, o the mass of the water. The first solution had
concentration of 1000 ppm and from this we produced first master solution C;. Second master solution
C, is produced from Cy; all other solutions are produced from these two masters (as illustrated on Figure
3.7). Since new solutions are obtained by dilution from existing solutions rather than by adding
fluorescein into the pure water, their concentration is calculated by equation:

- % (3.2)

X )]
Wms + WHZO

where C, denotes the concentration of resulting solute, wy is the mass of fluorescein in the master
solute and w,,; is the total mass of the master solute. In order to facilitate calculations, in equation (3.2)
the fluorescein mass is substituted by solute concentration, this gives equation (3.3)

Wms

(1+1/Cps) (3:3)

]

Cy =

Wms

A+ Cpy) T W20

where C,,,s denotes the concentration of master solution. Advantage of the approach with few master
solutions to the approach where each solution is obtained by dilution from the first stronger solution is
in minimizing cumulative errors and avoiding that the whole series of solutions have wrong
concentration due to one mistake. However it requires more attention and very precise scales since
resulting concentrations are up to 3 orders of magnitude lower than master concentrations. In order to
meet these requirements we used two digital scales with different maximal load and precision. First one
is Precise LX220a with the maximal load up to 220g and the precision of 0.001g. Second one covering all
weights higher than 220g is Kern EG 2200-2NM with the maximal load up to 2200g and the precision of
0.01g. Made solutions are kept closed in bottles impermeable to light to prevent fluorescein decay due
to light.

The calibration procedure consisted in injecting solutions directly into TELog and then flushing it
with pure water and drying a tube with air. Solutions were injected starting from the lowest
concentration towards highest ones. Each solution is injected three times with 7 minutes of the resting
period in between, resulting in a total time of 21 minutes during which measurements were recorded. In
the calibration mode TELog records a value every 3 seconds at different gain (i.e. different sensibility of
photomultiplier). Recorded value is an average of 30 measurements made each 0.1s at the same gain
and then TELog shifts to another gain. Injections every 7 minutes were made to prevent decay of the
fluorescein concentration due to light effect, however no decay was observed even for the lowest
concentrations. After each injection the system was flushed with pure water for 35 minutes, to remove
all fluorescein from the system including some that may be trapped in the dead zones. After flushing,
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the entire system is dried with compressed air. Drying phase is important since the injected volumes
were relatively small and residual drops of water could significantly dilute the injected solution.

Co 1000 ppm
CD G 1 ppm
C, 1 ppb
G 1 ppt
Csy 500 ppb
C4 %/CB Cs 100ppb
C C Ce 50 ppb
5 L Z »C
C / 9 (o) 20 ppb
6 ClO Cs 10 ppb
Co 5 ppb
C C% /C].S Cio 2 ppb
12"&(: ..--‘rclﬁ Cun 750 ppt
C " 2 Ci 500 ppt
13_F N~ 17
C14 C18 Cis 250 ppt
Cus 100 ppt
Cis 50 ppt
Cis 20 ppt
C3 Cyy 10 ppt
Cis 5 ppt

Figure 3.7 Schematic illustration of master concentration and its diluted products with list of all solutes concentrations.

Measured tension for different TELog gains at different fluorescein concentrations obtained during
calibrations process are presented on Figure 3.8. Symbols present measured values, while lines are
fitted functions for each gain used to process experimental results.

While in calibration mode tension is measured for all gains, during the experiment TELog was
working in standalone mode that was always trying to achieve optimal photomultiplier sensitivity
(optimal gain). Optimal photomultiplier sensitivity is achieved between 0.3 and 1.5 V (dashed red lines in
Figure 3.8). In this range there is a power law relation between fluorescein concentration and output
voltage with relatively small oscillations. A measurement begins with the lowest gain 1 (lowest
photomultiplier sensibility) and switches to higher gain if output voltage is lower than 0.3V. Only
exception is the highest gain 8 in which there is no lower limit. If during the experiment at any gain
(except gain 1) output voltage exceeds 1.5V measurement is switched to gain with lower sensibility.
Unlike calibration mode, in the standalone mode output is given as recorded values immediately
registered every 0.1 s at given gain, without any additional treatment.
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Figure 3.8 TELog calibration results. Symbols present measured tension output for given concentration at different
gains (photomultiplier sensitivity), lines present functions used to transform voltage to fluorescein concentration
for different gains (line color matches symbol color for same gain), two dashed red lines present limit of function
application in standalone mode for all gains except gain 8.

Trend lines obtained from measured values during the calibration process can be expressed by
power-law function equation; transformation from measured voltage at specific gain to fluorescein
concentration is made by equation

C=BV+4,;, (3-4)
where C denotes the concentration, i refers to gain value (i.e. photomultiplier sensitivity level), V is
measured voltage output, A and B are coefficients of the calibration curves related to specific gain.
Comparison of experimental results with ADE mode (e.g. Figure 1.1) is based on the CXTFIT model
[Toride et al., 1995] incorporated into STANMOD software package.
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3.3 Results and discussion

In this section we present results of the laboratory experiments performed on glass beads columns
and Berea sandstone cores. All results are presented as breakthrough curves (BTC) showing the tracer
concentration at the outlet of the sample.

After each experiment, retrieval rate is calculated as an area below BTC. Retrieval rate varies
between 90 and 105% of tracer injected in the system. This difference (as well positive) is explained by
the fact that injected volumes were relatively small (2 to 50 uL), so there might be small difference
(uncertainties on the injected volume) between the planned and the actual injected volume.

3.3.1 Glass beads flow-through experiments

We performed series of experiment on the glass beads column. The column (200 mm long and 18
mm in diameter) was filled with glass beads with diameter between 355 and 400 um. Flow rate was
50 cm®/h for all experiments. At this flow rate, in the porous medium, there is a laminar flow regime
with Reynolds number of 0.55 and the Peclet number is 853 according to equations (2.11) and (4.7)
respectively. Porosity of packed beads is estimated at 0.38 [Dullien, 1992], characteristic length is taken
as median bead diameter and is equal to 380um, water density is 1000 kg/m?, fluorescein molecular
diffusivity is 6.4x10" m?/s [Galambos and Forster, 1998] and water dynamic viscosity at 20°C is
1.002x10° Pa's.

Section 3.2.4 shows that in certain experimental conditions, fluorescein can be considered as an
ideal tracer. Since both glass beads and sandstones are positively charged surfaces, sorption of the
tracer can be neglected, so the only thing that could impair experimental precision is density effect.
Several authors studied dispersion behavior in cases when there is significant density difference
between the resident fluid and tracer solution, such as e.g. contact interface between salt and fresh
water [Hassanizadeh and Leijnse, 1995; Konz et al., 2009]. However density effect resulting from the
weak density contrast (e.g. dissolved tracer in the same fluid as resident fluid) is often neglected. To our
knowledge only Tenchine and Gouze [2005] investigated density effect for the weak density contrast.
They observed that the density effect can influence the transport even if there is only 0.35 grams of the
fluorescein sodium per liter.

Figure 3.9 presents the study of the possible density effect during the flow-through experiments
performed on the packed glass beads column. Four different solutions ranging from 10 (1000 ppm) to
10° (1 ppm) grams of the fluorescein sodium per liter of the water are tested. All BTCs for different
injection concentrations have similar shapes displaying non-Fickian behavior with emphasized tailing.
Analysis of the peak arrival time (Table 3.1) reveals the influence of the density effect. Due to density
effect higher concentrations have shorter peak arrival time than lower ones. The observed difference in
the peak arrival time between 1000 ppm and 1 ppm is around 6%, and between 500 ppm and 1ppm is
around 3%. It can be noted that the peak arrival time for the injected concentration of 50 ppm is slightly
larger than the one for the 1ppm; however, the difference is in the range of the experimental error. We
conclude that the differences in the peak arrival times are clear indications of density effect the tracer
transport, for experimental setup where flow and gravity are oriented in the same direction.
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Figure 3.9 Experimental breakthrough curve data of tracer concentration at the outlet of the column packed glass

beads (L=20cm @=18mm), flow-through experiment, flow rate 50cm’/h. Comparison between different solution
concentration of injected tracer ranging from 1 ppm to 1000 ppm.

Differences in the late time behavior are not so pronounced. In case of 1000 ppm, a density effect
in very permeable and relatively short porous medium causes irregular tailing, tails observed for 500
ppm and 50 ppm at late times becomes parallel one to another with a slope of t**°. While slope for 1
ppm (t***) is steeper than ones observed at late time for higher concentrations it is in good agreement
with ones occurring just after the peak. From this one can conclude that in case of 1 ppm, resolution of
the measurements is sufficient only to capture early times after the peak.

Concentration [ppm] Peak arrival time [s]
1000 1925
500 1976
50 2049
1 2043

Table 3.1 Peak arrival time from the BTCs on Figure 3.9 for different concentrations of injected solution
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Figure 3.10 Experimental breakthrough curve data of tracer concentration at the outlet of the column packed glass

beads (L=20cm @=18mm), flow-through experiment, flow rate 50cm3/h. Displaying different tail behavior due to density
effect in experiments with injection concentration 500ppm and tracer volume 2pL.

2000

The irregular late time behavior observed in the experiment with strongest concentration (1000
ppm) of the injected solution (Figure 3.9) requires further investigations of the result reproducibility. In
Figure 3.10 one can observe that for the same flow conditions and the same injected concentrations late
time behavior can significantly differ. These behaviors appear to be unpredictable and are presumably
due to occurrence of variable tracer localization in preferential channels induced by density effects. For
all the four experiments peak arrival time differences are inside the experimental error range.

These effects do not occur at low value of the injected tracer concentration. For instance Figure
3.11 presents BTCs for two experiments with tracer concentration of 50 ppm and with different tracer
volumes of 2 and 10 pL, presented with blue and red curve respectively. Results for the two experiments
are very consistent. The two BTCs are remarkable similar both in terms of early and late time behavior;
the tail of both curves displays a characteristic local slope of t'°¢. The only differences are a) a wider
concentration distribution around the peak and b) a shift in the peak arrival time; the peak arrives later
in the experiment with the larger volume injected. This can be explained by the longer injection period
for the 10uL injection. Indeed, we observed (see section 3.3.2, Figure 3.14) that experimental results are
sensitive to the solute injection rate and therefore slow injection rate (i.e. long injection periods) is used
so that disturbance in the flow around injection point is low and at least similar in both cases (using the
same tracer injection rate).
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Figure 3.11 Experimental breakthrough curve data of tracer concentration at the outlet of the column packed glass
beads (L=20cm @=18mm), flow-through experiment, flow rate 50cm3/h. Displaying behavior for injected tracer with
concentration of 50ppm, with two different tracer volumes 2pL (blue line) and 10pL (red line).

3.3.2 Glass beads push-pull experiments

Push-pull experiments on the glass beads packing are made on the same sample and with the same
flow rate as the flow-through experiments described earlier. The only difference is that tracer is injected
from the bottom of the sample (push phase) and then after a certain time flow direction is inversed and
directed from the bottom (pull phase) of the sample. For some experiments between push and pull
phase pumps are stopped to create no flow conditions. This period without flow hereafter will be
referred to as the resting period. Desired flow rate is achieved in less than 10 s after turning on the
pumps, while turning off is instantaneous. Therefore it can be considered that pump manipulations do
not have effect on the results. Push period duration is estimated from the flow-through experiment with
the aim to make it as long as possible, without causing any tracer leakage at the other side of the sample.
It is crucial that there is no tracer leakage from the porous media since this could cause
misinterpretation of experimental data. Longer push phase allows tracer to explore larger portions of
the porous media. Push-pull experiments are performed in order to distinguish difference between
reversible (spreading) and irreversible (mixing) parts of dispersion.
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Figure 3.12 Experimental breakthrough curve data of tracer concentration at the outlet of the column packed glass
beads (L=20cm @=18mm), push-pull experiment, flow rate 50cm®/h, duration of push phase is 22 minutes, injected tracer
volume 10 pL. Comparison between different concentrations of the injected solutions; 50 ppm (green line) and 1 ppm (red
line).

Investigation of the density effect similar to one made for the flow-through experiment (section
3.3.1) is presented in Figure 3.12. However, for push-pull test only the two lowest concentrations are
tested with push period lasting 22 minutes. The BTC curves for both tracer concentrations have similar
peak arrival time and behavior just before and after the peak. This confirms conclusions from flow-
through experiments that there is no visible density effect if tracer concentration is 50 ppm or less. At
late times for the experiment with higher tracer concentration, one can observe occurrence of the
tailing that is not visible in the experiment with the lower tracer concentration because of the resolution
limit of the TelLoG sensor as already observed for the flow-through experiments. Therefore, further
experiments will be made with a tracer concentration of 50 ppm.

Figure 3.13 presents push-pull experiments with different push phase and resting period duration.
The aim of this comparison is to investigate solute transport behavior in relation with different time
spent in the porous media and different distances that it explores. All experiments are performed at the
same conditions (flow rate 50cm?®/h, injected concentration solution 50 ppm) and on the same sample.
As expected, difference in the peak arrival time is equal to the differences in the sum of the push and
resting period durations. The peak concentration is lower in the experiment when peak arrival time is
longer; this is due to the diffusion that has more time to influence on the plumb center.
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Figure 3.13 Experimental breakthrough curve data of tracer concentration at the outlet of the column packed glass
beads (L=20cm @=18mm), push-pull experiment, flow rate 50cm3/h, injected tracer concentration 50 ppm, injected tracer
volume 10 pL. Differences between BTC’s are in duration of push and resting period. Red curve — push duration 900s, resting
duration 300s; green curve — push duration 1320s, resting period O0s; blue curve— push duration 1320s, resting period 300s.
Times noted in legend are in minutes, SW stands for duration of push and ST for resting period.

It can be noticed that longer push and resting period does not affect BTC’s shape tail since all three
BTCs display similar late time slopes of t®2. Experiments with longer duration of push and stagnant
phases have tendency to faster converge between two slopes. This means that difference in the time

spent in the system does not affect the late time behavior.
Comparing results to similar flow-through experiment (Figure 3.11), one can observe that in push
pull there are two very distinct behaviors. Immediately after the peak, one can observe a faster decrease
in the concentration which is explained by the fact that the reversible part (spreading) of hydrodynamic
dispersion is cancelled. At later times, the second slope appears which is controlled by the irreversible
dispersion (e.g. controlled by diffusion in slow flowing zones), whereas, in flow-through experiments,
the concentration decrease rate is rather constant and its value is somewhere in between the two
slopes that characterize the push-pull experiment. Clearly it is reasonable to expect that the
concentration decrease in the flow-through experiment immediately after the peak is slower than in the
push-pull experiment due to spreading of solute plume. However, it is also expected that BTC slopes at
late time for both experiments have similar values; since late-time behavior is supposed to be controlled
by the diffusion transfer between fast and stagnant (no) flowing zones. One can observe that the slope
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in the flow-through experiment is significantly steeper than the second slope captured in the push-pull

experiment. The reason for this difference is in the fact that in case of the flow-through experiments late

time behavior is not captured and that the slope is still controlled by overlapping effects of flow field
heterogeneity and mobile-immobile transfer.
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Figure 3.14 Experimental breakthrough curve data of tracer concentration at the outlet of the column packed glass
beads (L=20cm @=18mm), push-pull experiment, flow rate 50cm’/h, injected concentration solution 50 ppm, push duration
22min. Magenta curve - fast injection, Green curve — slow injection

As for flow-through experiments, repeatability is very important issue. Since the sample is relatively

small, it is reasonable to assume that manipulations should be very precise to ensure good repeatability
and ability to compare different experiments. Figure 3.14 presents BTC for two experiments performed

with same injection concentration, injection volume, push period and flow rate. Difference is made in

the injection procedure. Since tracer injection is made by human with a syringe it is impossible to expect
that there will be two injections with exactly the same conditions. Therefore we compared two

“extreme” injection cases. Magenta curve presents experiment where whole volume of the tracer is

injected in 1 or 2 seconds (i.e. fast injection), while green curve represents slower injection in which

tracer was injected during approximately 10 seconds. The BTC from the experiment with faster injection

has earlier peak arrival time and narrower peak. Also concentration decreases faster immediately after

dependent on the solute injection uncertainties.

the peak, however one can observe that late time behavior in both cases is the same, i.e. is not
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Despite precautions (e.g. bottled water, elimination of the light pollution...) taken during the
designing and performing experiment we encountered unresolvable problem with measurement
resolution. For unexplained reasons measurement equipment would decrease its resolution. Example
can be seen on Figure 3.15 presenting two exactly identical push pull experiments performed in two
consecutive days. Experiment performed on day before (blue line) had significantly lower resolution
than second experiment. There were no differences in the water, room temperature and light
conditions between two experiments. Only possible explanation can be in the fluctuations of the TELog
sensibility due to possible changes in the voltage or the temperature. However, this investigation has
shown remarkable consistency at higher concentrations and excellent repeatability of the experiment
results.
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Figure 3.15 Experimental breakthrough curve data of tracer concentration at the outlet of the column packed glass
beads (L=20cm @=18mm), push-pull experiment, flow rate 50 cm®/h, injected concentration solution 50 ppm, injected
volume 10 pL, duration of push phase 22 min.

3.3.3 Berea sandstone flow-through experiments

In this section we present results of the flow-through experiment performed on the Berea
sandstone core (length 15 cm, diameter 18 mm). We performed experiments at two different flow rates,
10 and 2 cm®/h. Calculated Peclet numbers (2.11) are =100 and =20, with Reynolds number (4.7)
ranging between 0.06 and 0.01 for given flow rates. To calculate Peclet and Reynolds numbers
characteristic length (=110 um) is taken from calculations made on segmented images presented in
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section 4.2.4. Porosity is 0.19; it was measured during mercury porosimetry test. Other parameters were
taken from the literature; water density is 1000 kg/m?, fluorescein molecular diffusivity is 6.4x10™*° m?/s
[Galambos and Forster, 1998] and water dynamic viscosity at 20°C is 1.002x107.
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Figure 3.16 Experimental breakthrough curve data of tracer concentration at the outlet of the Berea sandstone core
(L=15cm @=18mm), flow-through experiment, injected concentration solution 50 ppm, injected volume 50 pL. Comparison
between two different flow rates 10 cm3/h (red line) and 2 cm3/h (blue line). Black line denotes power-law function that fits
late time behavior of the experiment with higher flow rate.

Experimental results are presented in Figure 3.16. Red curve represents BTC for the experiment
with higher flow rate and blue one BTC obtained at the lower flow rate. Both BTC displays signatures of
anomalous transport with elongated tails. BTC resulted from the experiment with higher flow rate is
characterized at the late time by constant slope that scales in time as a power law with a slope of -2.8.
On the other hand on the BTC obtained at lower flow rate the slope cannot be determined. BTCs tails
scaling as a power law in time are commonly recorded in the conditions with higher Peclet number and
late time behavior is more pronounced. However from the Figure 3.16 it is clear that the concentration
decrease for slower flow rate is significantly slower than one noticed in at higher flow rate. This behavior
is contrary to our expectations. In theory the late-time behavior is controlled by matrix diffusion and
therefore is function of the porous medium properties and independent on the flow rate.

To understand this observed a priori incoherent behavior, first we have to explain a problem that
occurred during the experiment with higher flow rate. Due to relatively high pressure at the injection
points there was a leakage during the injection. Rubber foam tube (tube 2, see section 0 and Figure 3.4)
started to leak at the position where needle had penetrated it. Yet, although the hole was closed in
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couple of seconds with another needle a small volume of tracer leaked and therefore was not injected in
the water flow. Note that the needle used to close the hole was clean and inserted just in the rubber
tube in order to not disturb the flow. We believe that this small leakage did not influence the
experimental results and BTCs shape; however, it is clear that the amount of tracer actually injected in
the core sample was smaller than expected. It is difficult to have a precise appraisal of the amount of
tracer that was lost. Nevertheless, we can make some rough estimation by noting that we approximately
recover 14 % of the tracer in the higher rate experiment compared to the lower rate experiment (Figure
3.16). Although it seems quite large, since leakage was almost immediately stopped (one small drop
leaked), it is worth reminding that the total injected volume is small as well (50 pL) and that excellent
retrieval rate was measured in previous experiments. Figure 3.17 a) presents the scaled BTC according
to the estimated injected volume. To explain the observed behavior it is compared with modeling results
(modified Figure 11 from section 5.3). Figure 3.17 b) presents results of the transport simulations with
different Peclet numbers (Pe=1000 pink symbols, Pe=100 green symbols) performed on the segmented
images of the same Berea sandstone rock as used in the experiment (more details are in section 5.3).
Connected symbols denotes simulations where both influences of the flow field heterogeneity and mass
transfer to the microporous phase are considered, while unconnected symbols denotes simulations

where mass transfer to microporous phase is neglected.

a) b)

1071t //\\

1072 |

AN,
—
o

w

inj |nj)

/(o
S

106} _|
103 10* 10° 108
time [s]

Figure 3.17 Scaled BTC according to the estimated tracer volume that is injected (a); red line 10 cm®/h, blue line
2 cm3/h. Compared with results of transport simulations performed on XRMT images of the same rock (b) at Pe = 1000
(purple symbols) and Pe = 100 (green symbols). Black rectangular limits resolution that can be observed in the
experiments. Unconnected symbols denotes simulations in which mass transfer to microporosity is neglected, while
connected symbols represents simulations that account for mass transfer into the microporosity — original figure is in section
5.3, Figure 11
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Qualitative comparison between Figure 3.17 a) and b) reveals similarities in the observed behavior.
The rectangular window (Figure 3.17 b)) represents the limits of the experiment resolution, so
experimental BTCs are compared only with part of numerically obtained BTCs inside the limits of this
window. BTC for the simulation with higher Pe have more pronounced slope after the peak and that
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behavior influenced by matrix diffusion starts later than in the case of the lower Pe. The experimental
BTC for higher Pe displays the same behavior, except that influence of the matrix diffusion is not visible
due to resolution limitations. For lower Pe slowing of the concentration decrease rate observed in the
experiments is visible also in the numerical simulations, but only ones that include matrix diffusion. This
comparison reveals significant limitations in the experiment resolution, despite its ability to measure
over more than 5 orders of magnitude. Due to these limitations it is not possible to study BTC behavior
influenced only by the matrix diffusion (i.e. late-time behavior) and they can mislead to the conclusion
that the heterogeneities in the flow field are exclusively responsible for non-Fickian behavior. However
experimental results with lower Pe emphasize importance of inclusion matrix diffusion into transport
calculations, which cannot be observed at higher Pe.

3.4 Summary and conclusion

In this section we presented an experimental set-up that allows studying dispersion of the non-
reactive tracer. Test bench design allowed continuous measurement of the tracer concentration over
several orders of magnitude. Improvements in the injection procedure minimized tracer dispersion in
the system before entering the porous media. However it also caused leakage in experiments where a
high pressure difference was imposed.

Series of experiments with different tracer concentrations performed on the glass beads column
emphasize the importance of the density effect. The density effect is usually neglected, especially in the
large scale experiments. However, we proved that density effect can impair experimental results even if
the concentration is 500 ppm. Although, concentration (and consequently density) of the tracer
decreases during the experiment, final results may be misinterpreted due to density effect in vicinity of
the injection point. In this scope we demonstrated influence of different injection times (rates) on the
BTCs shape.

Comparison between push-pull and flow-through experiments showed limitations of the
experimental equipment when trying to capture late-time behavior. These limitations were confirmed
on the flow-through experiments performed on the Berea sandstone. Also, qualitative comparison
between experimentally and numerically obtained BTCs on the Berea sandstone emphasized the
importance of inclusion both matrix diffusion and flow field heterogeneity in the pore-scale transport
modeling.

Finally, one must admit that despite a tremendous effort for obtaining state-of-the-art core tracer
test, the results cannot be used with confidence for parameterizing non-Fickian model. This conclusion
is the results of a large set of experiments for testing 1) the effects of tracer concentration, injection
procedure and optimization of the equipment and 2) the result reproducibility. Albeit there is still space
for improvement of the equipment and protocol, we believe that tracer tests on cores must be analyzed
with care because 1) a small experimental bias can produce large effects on the BTC and 2) technological
barriers limit our possibilities of tackling part of the BTC tails. This is specifically obvious for low Peclet
experiments corresponding to the most general case in natural geological situations. It follows that an
apparently power law behavior defined over less than one order of magnitude in concentration can be
just a transitional behavior between, for instance velocity heterogeneity effects and MRMT effects.



Chapter 4
Pore-scale numerical simulations of the flow field

4.1 Introduction and framework

Recent development of pore-scale imaging techniques, computational fluid dynamics solvers and
more powerful computers has allowed investigating origin of anomalous transport at pore scale. The
common approach is to process X-ray microtomography (XRMT) images in order to distinguish the pore
from the solid, then simulate the steady-state flow for incompressible fluid and finally solve the
diffusion-advection in order to obtain the distribution of the tracer concentration according to specified
boundary conditions [Ovaysi and Piri, 2011; Blunt et al., 2013].

XRMT acquisition and image processing is described in section 4.2. These images are then used to
calculate flow field. Flow field is calculated using Navier-Stokes equation pre-programmed in
computational fluid dynamics software OpenFOAM. Detailed procedure is described in section 4.3.
Results of the flow simulations with emphasis on comparison between different mesh resolutions are
shown in section 4.4. Transport results are presented in the first article in Chapter 5.

4.2 Rock structure imaging

4.2.1 X-ray microtomography (XRMT)

Internal geometry of the rock is the main input parameter needed for flow and transport
simulations at pores scale. XRMT is a non-invasive imagine technique used to obtain realistic
presentation of the pore space geometry. Image resolution can vary from few decimeters to the tenths
of micrometers.

Figure 4.1 illustrates procedure of obtaining real 3D model of pore space from a rock sample using
XRMT approach. X-ray beam is emitted from the source passing through the sample and captured by
CCD camera placed behind sample. The image consists of the projection of the sample in terms of X-ray
intensity. Projections of samples are taken from different angles ranging from 0° to 180° (or 360°) and
the step change between projections does not exceed half degree. Recorded projections are transferred
from the camera to the processor where they are filtered and reconstructed. Result is a set of 2D images
representing sample slices in terms of X-ray attenuation per pixel. X-ray attenuation depends on
chemical compound and density. For mono-crystalline rocks, XRMT images are actually maps of rock
density (porosity), since there is no variation in chemical compound. Sets of 2D images are arranged and
together form a 3D image of pore space. This 3D image is suitable for physical parameter analysis and
pore-space geometry reconstruction.

For this work the high resolution XRMT image of the Berea sandstone core (10mm length and 6mm
diameter) was acquired using the BM5 beamline at the European Synchrotron Radiation Facility
(Grenoble, France). The 3D volume was reconstructed from 3495 projections acquired at an energy of
110 keV using a GGG:Eu 100 microns scintillator and a SCMOS-based 2048 x 2048 pixels detectors
(model PCO edge; http://www.pco.de). The reconstruction was performed using the single distance
phase retrieval algorithm described by Paganin et al. [2002] applying an unsharp filter before
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reconstruction. Details on the reconstruction algorithm and performances can be found in [lassonov et
al., 2009]. The final 3D image is formed by 4667 x 2130 x 2099 voxels of characteristic size 3.16um (3.16
107° m). The 16 bits encoded value associated to each of the voxels denotes the X-ray absorption
integrated over a volume of 31.5 um?>.
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Figure 4.1 Image acquisition from X-ray microtomography to the final 3D model of heterogeneous media — reprinted
from Fernandes et al. 2012

4.2.2 Segmentation

Analysis of the gray level histogram from raw XRMT images pointed out existence of three types of
materials, denoted hereafter phases. The three phases correspond respectively to the macroporosity (i.e.
the void space filled with air or liquid), the microporosity (voxels in which pores are smaller than image
resolution) and the solid rock. Furthermore, existence of pores smaller than image resolution is
confirmed by the Mercury Intrusion Porosimetry (MIP) test. MIP is a widely used technique for
characterizing the pore size distribution in porous media. It is based on the premise that a non-wetting
fluid; in our case mercury, will not intrude capillaries of a given diameter unless a given pressure is
applied [Abell et al., 1999]. Relationship between the capillary pressure (P;) and the pore radius (R) is
given by Washburn equation (4.1) [Washburn, 1921]

Y (4.1)
P, = —cos 0,
s = g cos

where y is the surface tension and 8 is the angle of contact.
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Throat size distribution is determined from volume of mercury intruded at each step. Figure 4.2 shows
results of MIP test for Berea sandstone. Red dashes line denotes image resolution (3.16 um) and all
pores with radius smaller than this (left from the line) are considered as microporosity. Blue line marks
average pore size (11.71 um) for given sample.
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Figure 4.2 Mercury Intrusion Porosimetry test results for Berea sandstone (black line). Dashed red line denotes XRMT
image resolution (3.16 um), delimitating microporosity and macroporosity, blue line marks average pore size (11.71 um)

The identification and then labeling of the different phases is called segmentation. There are
different methods for performing image segmentation, none of them producing strictly equivalent
results. Segmentation is consequently a critical step in accurate simulations of flow and transport at
pore-scale [lassonov et al., 2009; Schliter et al., 2014; Scheibe et al., 2015].

One of the most common approaches to image segmentation is applying global threshold. This
simple approach consists in deciding a grey scale value that marks separation point in X-ray attenuation
between two phases on the basis of image histogram analysis. However, by definition, the microporous
material can display a large range of gray level values denote pixels sampling both solid and voids.
Consequently it is a priori not pertinent to use the global thresholding method for porous materials in
which the existence of microporosity is known. Several alternative methods have been developed in
order to improve the accuracy of the segmentation. A comparative study of different approaches has
been presented by lassonov et al. [2009].

For our study we used the so called “region growing” method based on the assumption that all the
voxels belonging to a given phase cluster are connected and they are similar in term of gray level
[Siprkovska, 1993; Noiriel et al., 2005]. A significant difficulty of growing methods is the need for
carefully defining the grey level thresholds that defines boundaries between regions. This is typically
done manually from analyzing the histogram. However, the image histogram does not contain enough
information to properly identify the different phases and relatively small differences in thresholds may
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lead to noticeable errors on the determination of the phase fraction and structure of pore space. For
this reason in the present work we applied method proposed by Mangane et al. [2013]. It consists in
conditioning the determination of the threshold values by the value of the total porosity measured by
laboratory techniques.

Delimitation of 3 phases is done in two steps. In the first step we perform standard segmentation in
which 2 thresholds are applied. All values that are smaller than lower threshold belong to first phase.
Values larger than higher threshold are assigned to second phase, while the algorithm decides on
assigning pixels with values between threshold limits to one of two phases. For 3 phase segmentation
we have to perform this procedure two times to obtain two images, consequently we need 4 thresholds.
Two images differ in arrangement of segmented phases. Phase one at first image is denoting void, while
microporosity and solid are combined in second phase. On the second image void and microporosity are
combined together in first phase while second phase contains only solid. Second step is overlapping and
addition of two images. Areas that are marked as first phase on both images are considered as void, if
the area is marked by second phase on first image and by first phase on second image it is considered as
microporosity and finally all area that are marked with second phase on both images are considered as
rock.

Described procedure is applied to perform 3 phase segmentation on Berea sandstone. From gray
scale level distribution of raw image presented in Figure 4.3, 4 thresholds were defined. After finished
segmentation the total porosity (¢;) of the segmented image is calculated by equation:

br = &+ (Eudu), @.2)

with &, and &, denoting fraction of the void and of the microporous phase respectively, and ¢,
denoting the intrinsic porosity. The convergence toward a satisfactory agreement between the total
porosity of segmented images and the connected porosity obtained by MIP is obtained by an iterative
procedure. Threshold values were adjusted until the total porosity was in good agreement with the
experimentally obtained porosity. Final threshold values are presented on Figure 4.3. Blue dashed lines
are denoting thresholds used to delimitate between void and microporosity, while red dashed lines
denotes thresholds delimitating microporosity and rock.
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Figure 4.3 Gray scale level distribution for Berea sandstone (black line), dashed lines marks threshold values used for
segmentation. Blue lines are for void-micoporosity interface and red lines are for solid-microporosity interface

Procedure was applied assuming that the mineralogical composition of the microporous cement is
homogeneous and second that the intrinsic porosity of microporous phase range from 0.01 to 60 %.
Assumption of maximal intrinsic porosity is based on the fact that above 60 %, material cannot be
cohesive. Whole procedure is based on comparing the experimental porosity to the total porosity (4.2).
Certainly XRMT images may contain pixels belonging to the unconnected porosity which cannot be
measured by MIP test. However, we performed measurement of this unconnected porosity a posteriori
(details in section 4.2.3) and found that share of unconnected porosity is lower than 0.8% for all
extracted sub-volumes. Accordingly one can consider that this value represents the error in the
segmentation.

On XRMT images there are some voxels located directly on the interface between void and rock
phases. Gray level of these pixels is similar to gray level of microporosity and during segmentation they
are assigned to microporous phase. In order to avoid the appearance of microporous layer with
thickness of one voxel on all void-rock interfaces we performed one layer abrasion during segmentation
process. This abrasion is applied during first step on the image where microporosity and rock are place
together in the same phase.

With the procedure described in this section we obtained realistic pore space geometry
representations of the Berea sandstone (Figure 4.4). The fraction of the different phases are 79.45,
18.15 and 2.4 for solid, void (macroporous) and microporous phase respectively. The intrinsic porosity of
microporous phase is heterogeneously distributed between 0.01 and 60%. Distribution is obtained
directly from XRMT images as explained in section 4.2.1 .
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Figure 4.4 3-dimensional visualization of pore-space network (blue) and connected microporosity (yellow)

4.2.3 Percolation clusters

The first step of segmented-data processing consist in eliminating unconnected pores since they do
not participate in solute transport through porous medium. Network of interconnected pores that spans
through the whole sample volume in the flow direction connecting boundaries is called percolation
cluster. In this work percolation cluster were defined by cluster-labeling method proposed by Hoshen
and Kopelman [1976].

Connected clusters were determined with two different assumptions, first that microporosity is
percolating and second that it is not. Figure 4.5 illustrates differences between two approaches. White
color represents macroporous zone that is percolating in both cases and this zone will be referred as
mobile domain. Immobile domain consists of microporous zone denoted in orange and macroporosity
that is connected only through microporosity that is colored in blue. In the mobile domain flow field can
be calculated with standard approach using Stokes equation and transport is driven by both velocity and
diffusion. Flow calculations in the immobile domain are feasible [e.g., Brinkman, 1949], but not very
common on pore-scale. However, even if flow field is calculated, fluid velocities are significantly lower
than in mobile phase and transport is dominated by diffusion. Inclusion of the immobile domain
increases porosity on average by 5.3 % in the segmented sub-volumes of Berea sandstone; while
macroporosity connected only through microporosity contributes in this increase with around 40 %.
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Figure 4.5 Cross section through segmented Berea sandstone displaying pore-space structure of connected clusters (i.e.
all unconnected porosity is eliminated). Black filled areas denote the solid phase, white colored areas denote connected
macroporosity, orange colored areas indicate the microporous phase and blue areas denote macroporosity that is connected
with percolation cluster only through microporous phase

4.2.4 Characteristic length

The characteristic length (L) is the property of porous media necessary to calculate Reynolds (4.7)
and Peclet (2.11) numbers, which is usually expressed as average grain (experiments with
unconsolidated porous media) or pore diameter. At pore scale it is usually associated with the average
pore diameter in the relation with the definition of the Peclet number in a capillary [Taylor, 1953].

For heterogeneous porous medium the characteristic length can be defined from the variogram of
the mobile domain porosity. The variogram for Berea sandstone is presented in Figure 4.6 where dashed
red line marks distance (=110 pm) at which one can consider that the variogram reached asymptotic
value. This is considered as the characteristic length.
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Figure 4.6 Rock structure variogram for Berea sandstone

Mostaghimi et al. [2012] proposed alternative way to calculate the characteristic length based on
the cubic packing of regular spheres. For this idealized system, the characteristic length (L) can be
associated with the sphere diameter

1%
L= (4.3)
A
where V is the bulk volume of the porous medium (void and solid) and A is the interface area between
the void and solid. Applying this method on Berea sandstone we obtain characteristic length equal to

124 pm.

We note that characteristic lengths calculated with both methods are in good agreement with
characteristic lengths calculated on Berea sandstone in other relevant studies: 100 um [Bijeljic et al.,
2004], 131.13 pum [Mostaghimi et al., 2012] and 150 um [Berkowitz et al., 2006].

4.3 Obtaining flow field

4.3.1 Representative elementary volume

To obtain a realistic velocity field of heterogeneous medium it is necessary to satisfy two opposite
conditions. First one is to have a high resolution in order to capture all geometrical properties and the
second one is to have a domain that is large enough to capture all heterogeneities of porous media.
Increase in resolution is resulting in an increase of computational cell number and therefore reduces the
size of the media that can be simulated, thus it is essential to achieve a good balance between
resolution and domain size.

Properties of a heterogeneous medium vary in space and therefore the volume on which
simulations are performed should be large enough to the capture average properties of medium.
Volume that satisfies this minimal requirement is usually called the representative elementary volume
(REV). One of the most popular methods to define REV is through studying the scale dependence of the
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porosity [Bear, 1972]. Figure 4.7 presents a diagram to determine REV in terms of porosity. Dashed line
at AUy marks when the REV is achieved since porosity values are stabilized.
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Figure 4.7 Definition of the representative elementary volume as a function of porosity — reprinted from Bear [1972]

To evaluate REV of Berea sandstone images, six points were chosen completely randomly in the
whole image. From these starting points, cubes of different volumes were extracted. For each cube,
connected porosity is calculated and divided by the total porosity of the whole image. Similarly volume
of each cube was divided by volume of the cube with side dimensions of 300x300x300 pixels since this
size is chosen for numerical simulations presented in this work. Figure 4.8 presents results of
investigation of the REV in terms of porosity. We observe that the porosity starts to become consistent
with the total porosity at volumes that are twice smaller than the chosen volume and continuous this
trend for larger volumes. Dashed red line presents volume equal to 300x300x300 block (0.85 mm?).

Normalized porosity

0 0.5 1 1.5 2 25
Normalized sample volume

Figure 4.8 Normalized porosity in function of the normalized sample volume
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However porosity-defined REV size can differ in terms of the hydrodynamic properties of the
porous media that is being observed. Therefore we decided to investigate REV in terms of permeability.
We randomly choose one series of blocks originating from same point used in porosity comparison. On
each block flow simulations are performed and permeability [m?] k is calculated from Darcy’s Law by
equation

nQl (4.9)
ApAy

where p is fluid viscosity [Pa s], Q is total flux [m3/s], Lis length [m] of block in the flow direction, pis
pressure [Pa] and A, is area [m?] of cross section perpendicular to flow direction. Figure 4.9 presents
results of permeability calculation for cubes with different volumes. Sample volumes are normalized to
the volume of 300x300x300 pixel (0.85 mm?) cube, which is represented by dashed red line.
Permeability is normalized to the permeability of the referent cube and we observe that it starts to
become uniform from cubes that are 40% smaller than referent. From both of these investigations we
can conclude that cubes with side length of 0.95 mm used for the simulations are large enough to have
good representation of Berea sandstone sample. Estimated value is in a good agreement with the REV
investigations performed by other authors on the same rock, who estimated that cubes with side length
larger than 1.2 mm [Ovaysi and Piri, 2010] or 0.68 mm [Okabe and Oseto, 2006] can be considered as
representative.
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Figure 4.9 Normalized permeability in function of normalized sample volume

4.3.2 Mesh generator

Solving partial differential equations using CFD simulators requires that the domain is divided in
smaller sub-domains. Inside these sub-domains the governing equations are discretized and solved. The
sub-domains are usually called cells and collection of cells is called a mesh or a grid. There are different
types of meshes which are usually classified as structured and unstructured meshes. Structured meshes
are the ones made with always the same elements that have the same size, while in unstructured
meshes cells varies in size and shape.
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Mesh generation is quite complex and time consuming task which has direct influence on the
simulation convergence as well as accuracy of the final result. Therefore it is essential to obtain a mesh
with a good quality for given problem. Good quality mesh captures the system/problem of interest in a
discrete manner with enough resolution to enable capturing enough information while retaining
reasonable number of cells.

In this work we use structured mesh made of cubes (regular hexahedra). Such a decision is based
on a fact that cubic mesh easily captures pore structure from segmented XRMT images and it is suitable
for post processing to obtain necessary input data for the transport simulations. Pore scale simulations
on XRMT image commonly use image resolution as mesh resolution, which means that cells are the
same size as voxels. However a recent study of flow properties by Guibert et al. [2015] has shown that
mesh resolution should be smaller than XRMT image resolution.

Mesh generation utility provided with OpenFOAM is called snappyHexMesh. This utility enables to
generate structured and unstructured 3D meshes automatically from triangulated surface geometries
saved in Stereolithography (.stl) format. To produce *.stl file we used the commercial image processing
software Avizo, however this software treats each voxel in XRMT images as a point with coordinates but
without a real volume. This causes changes in the pore structure between original image and resulting
* stl file. Also this approach is very memory consuming, thus limiting maximal size of domain that can
be meshed.

To resolve this problem we developed our own mesh generator that reads XRMT images and
produces mesh with the same geometry as original image. One of the features of this mesh generator is
that each voxel can be divided by any integer in all three directions creating a structured mesh with
several times higher resolution than the original image.

a) b)

Figure 4.10 Graphical illustration of differences between two mesh generation approaches. Left image (a) presents
mesh generated from *.stl file (green line) with snappyHexMesh and right image (b) is presenting mesh made by developed
mesh generator. Black — solid phase; white — void phase; green — surface from *.stl file;
blue — internal mesh boundaries; red — external mesh boundaries
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Comparison of mesh generators is presented on the Figure 4.10. On the left side (Figure 4.10 a)) is
the mesh made with snappyHexMesh. Black area is representing solid phase, white parts are void
spaces, green line is surface made by Avizo (*.stl file), blue lines are internal mesh boundaries between
neighboring cells and red lines are external boundaries between void and solid phase. It can be
observed that there are some void spaces that are not included in the mesh. On the right there is a
mesh made with our software. We can see that mesh external boundaries (red line) are at the same
position as boundaries between void and solid in the XRMT image. Comparison on the same geometry
and in the case when each voxel is divided into 27 equal cells shows that approximately 7% of void
phase is not included in the approach when using snappyHexMesh.

Figure 4.11 illustrates impact of the mesh resolution to the flow simulation results on an example of
a throat with diameter equal to one voxel in two dimensions. In laminar flow, velocity distribution is not
uniform due to friction with side walls. According to the Poiseuille’s Law velocity has a parabolic
distribution [Adler, 1992] as illustrated on Figure 4.11 a) with fast moving fluid in the middle of the
throat and almost stagnant. Figure 4.11 b) illustrates a case in which cell size is equal to the XRMT
image size. Parabolic velocity distribution is substituted with only one value and in this case velocity
distribution in the throat is neglected. On Figure 4.11 c) there is presented a case in which the mesh
resolution is three times smaller than image resolution. In this case we see that velocity in the middle
cell is larger than in the ones next to the boundary. It is possible to capture part of the throat velocity
distribution. In ideal case mesh resolution would be small enough to capture full parabolic velocity
distribution. However this would mean a very big mesh and consequently would make simulations
extremely long and demanding in terms of computer power usage. Therefore it is necessary to find a
mesh resolution that captures the most important flow field properties while creating a mesh that can
be handled by available computer resources.

a)

Figure 4.11 Velocity distribution in the pore throat with diameter equal to the XRMT image resolution a) parabolic
velocity profile in real conditions; b) velocity distribution when mesh resolution is equal to image resolution; c) velocity
distribution when mesh resolution is three times smaller than image resolution
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Investigation to determine optimal mesh resolution is made on the 150x150x150 voxel image
extracted from the one of the subsamples used in the numerical simulations and with approximate
porosity as the whole image. We made 7 simulations with different cell size, every time voxels were
divided by an integer in all three directions. After each simulation permeability is calculated (4.4) and
results are presented in Table 4.1. Pixel divided column denotes integer used to divide voxel, e.g. by 3
denotes that voxel is divided by 3 in each direction and that each voxel contains 27 cells. We observe
that permeability decreases with increase in the mesh resolution which is consistent with similar studies
[Guibert et al., 2015].

Pixel divided | Permeability [mD] | Relative Difference Maximal sample Characteristic
[%] volume [mm?] length [1]
by 1 736 +22.3 2.84 25.8
by 2 657 +9.1 1.42 12.9
by 3 630 +4.7 0.948 8.6
by 4 617 +2.5 0.711 6.5
by 5 610 +1.3 0.569 5.2
by 6 605 +0.5 0.474 4.3
by 7 602 0.406 3.7

Table 4.1 Comparison of permeability to the mesh resolution, relative difference of calculated permeability compared
to the finest mesh resolution, maximal sample volume that can be processed with available computational resources and
characteristic lengths contained in maximal sample volume

The control of the refinement level on the computed permeability value is larger for coarser mesh
and it decreases as mesh is refined. Permeability difference between coarsest and finest mesh is more
than 22%, while difference between two finest meshes is less than 0.5%. We decided to use mesh that
is refined by 3 from the original image and relative difference of less than 5% from the finest mesh
resolution. Maximal sample volume for each refinement level in Table 4.1 shows that refinement by 3
gives a good compromise between simulation results quality and sufficiently large volumes of observed
medium.

The boundary conditions at the edges of the computational domain are set to mimic an
experimental permeameter: on the inlet and outlet sides of the sample a pressure difference is imposed,
and no-flow conditions are specified on the other faces of the sample. No-slip condition is set at the
solid-void interface. Twenty layers (21 um) of void voxels have been added to the porous volume at the
inlet and outlet boundaries in order to minimize the boundary effects [Guibert et al., 2015]. Figure 4.12
shows the final mesh of pore space structure for Berea sandstone including inflow and outflow
manifolds.
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Figure 4.12 Mesh generated in pore space of Berea sandstone used for flow simulations, including manifolds on inlet
and outlet boundaries

4.3.3 Solving flow

Pore scale flow field is obtained by direct CFD simulations performed on segmented XRMT images
using open source CFD software package OpenFOAM® [OpenFOAM Foundation, 2014] . We solved the
mass conservation equation (4.5) and the Navier-Stokes equation (4.6), for single phase flow with
constant density and viscosity.

Vou=0, (4.5)
(4.6)

ou )
p(§+u-Vu>=—Vp+,uV u,

where u denotes superficial velocity [m/s], p is the fluid density [kg/m’], t is the time [s], pis the
pressure [Pa] and u is dynamic fluid viscosity [Pa s].

OpenFOAM solver is based on a finite volume method which enables solving system of non-linear
equations. The pressure and velocity are solved iteratively by a steady-state solver based on Semi-
Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm [Patankar, 1980]. SIMPLE algorithm
belongs to Pressure-Based Method techniques to deal with pressure-velocity coupling in numerical
simulations of the fluid flow. Detailed procedure has been described in Patankar and Spalding [1972],
Caretto et al. [1972] and Patankar [1975].
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The iterative procedure to couple Navier-Stokes equations can be summed up as follows:

Set the boundary conditions

Solve the discretized momentum equation to compute the intermediate velocity field
Compute the mass fluxes at the cell faces

Solve the pressure equation and apply under-relaxation

Correct the mass fluxes at the cell faces

Correct the velocities on the basis of the new pressure field

Update the boundary conditions

Repeat until convergence

©® N Ve WDNPRE

In our case simulations are pressure driven, which means that pressure is imposed on inlet and
outlet of the system as mentioned above. Since simulations are steady-state, pressure value at the
boundaries is constant and flow is driven only by pressure difference (Ap) between inlet and outlet.
Example of flow field is given in Figure 4.13. Blue color denotes regions with low local velocity while red
color is used for regions with high local velocities.

Figure 4.13 Flow field obtained from OpenFOAM, blue color denotes areas with low velocities while red denotes areas
with high velocities

All the simulations are run for laminar flow condition; precisely with Reynolds number significantly
lower than 1 (Re «< 1). Reynolds number is a dimensionless unity used to distinguish different flow
regime, described by equation [de Marsily, 1986]:

_ pul (4.7)

Re :
u

where p denotes the fluid density [kg/m®), i is the average pore velocity [m/s], L is the
characteristic length [m] and u is the dynamic fluid viscosity [Pa s]. It defines ratio of inertial forces to
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viscous forces. Low Reynolds number indicates dominance of viscous forces, thus occurrence of laminar
flow regime which is associated with low velocities in the flow field.

When Re « 1 Stokes flow occurs and Navier-Stokes equation can be simplified to Stokes equation.
However comparison between built-in solvers in OpenFOAM shows that the solver for full Navier-Stokes
equation based on SIMPLE algorithm is much more efficient than comparable one for Stokes equation.

Convergence criterion

A convergence criterion in steady-state numerical simulations is always an arbitrary issue. Since
every problem that needs to be simulated is different, there is no straight forward answer what is the
optimal setup. For flow simulations in this work we decided to use two criterions to estimate when
simulations are fully converged.

First criterion is based on mass balance and we monitored inlet and outlet flux from the domain.
Standard utilities to calculate flux at the boundaries built-in the OpenFOAM are not appropriate for
running in the same time with simulations, therefore we used a plug-in swak4Foam that prints inlet and
outlet flux in real time.

Second criterion is based on initial residual values. Initial residual value presents relative differences
in flow field parameters (e.g. velocity, pressure...) between the current iteration and the previous one.
To determine initial residual values below which we have fully converged simulations, we run simulation
till initial residuals for pressure and all three velocity components were lower than 10°. Permeability is
calculated by equation (4.4) every time the residual is lower or equal to threshold. Figure 4.14 present
the evolution of permeability with decreasing values of the initial residual. Permeability is stabilized
when initial residual level is lower that 10™. To be sure that we use adequate convergence criteria that is
still reasonable in terms of computational time all simulations in this thesis are stopped when initial
residuals are below 107,
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Figure 4.14 Normalized permeability in function of initial residual, red dashed line denotes initial residual level chosen
as convergence criterion of all OpenFOAM simulations
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Parallelization performance

Optimal usage of available computer resources reduces time needed to perform numerical
simulations. Simulations were performed on a large memory computer using four 24—cores Intel Xeon
(2.3 GHz) processors with 1,5 TB of RAM. To optimize our simulations, we performed scalability test on
the simulation with same geometry, boundary conditions, convergence criteria and solver setup, only
variable that changes is number of nodes used for calculations. All cases used simple method for mesh
decomposition provided in OpenFOAM. Figure 4.15 presents results of parallelization performance
investigations on mesh similar to ones used in the simulations. We observe a significant speed-up when
increasing the number of process up to 16, while speed-up is negligible when increasing process number
up to 24. All the simulations were performed using 18 to 24 process and they converged in less than
three days.
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Figure 4.15 Results of OpenFOAM parallelization performance investigation, times are printed as relative speed-up
compared to the simulation time of non-parallelized simulation

4.4 Results and discussion

In this section we focus mostly on the flow statistics and properties, since transport results are
presented in Chapter 5. Figure 4.16 presents a cross plot between porosity and calculated permeability
made on the Berea sandstones sub-volumes with different mesh resolutions and using different
simulation approaches. Mesh resolution is discussed in details in section 4.3.2 and in this comparison we
use three different mesh resolutions. The coarse mesh has same resolution as image and the fine mesh
is obtained by dividing each voxel by 3 in all directions.

Regarding simulation approaches we used a conservative approach which implies solving Stokes
equation in the mobile zone as presented in the section 4.3.3. These results are then compared with the
Darcy-Brinkman approach that allows flow computations in the microporous zone as well. More details
regarding the Darcy-Brinkman solver implemented in OpenFOAM and comparison with the Stokes solver
are presented in Chapter 6.
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As expected, there is globally a weak positive correlation between porosity and permeability
(Figure 4.16). It can be noted that adding flow calculation in the microporosity does not have a
significant influence on the permeability while it induces a noticeable change of the porosity. This is
reasonable since velocities in the microporous zone have one or several orders of magnitude lower

values than in macroporous zone and there is only very few zones were the connectivity is controlled by
microporous clusters.
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Figure 4.16 Cross-plot of calculated permeability from pore-scale flow simulations in function of the porosity for
different sub-volumes extracted from Berea sandstone segmented image.

4.4.1 Mesh comparison

Mesh resolution has significant effect on the flow simulation results. Table 4.1 presents influence of
seven different mesh resolutions on the permeability of the small sub-volume of Berea sandstone. Here
we present a more detailed investigation focused on coarse and fine mesh resolution. Table 4.2 shows
differences in the permeability between two mesh resolutions for six different sub-volumes of Berea
sandstone. Permeability calculated from the coarse mesh is always higher than the one calculated from

the fine mesh by 14 to 18.3%. These results are in good agreement with previous investigation (Table
4.1) and relevant studies [Guibert et al., 2015].
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Permeability (mD) Relative
Porosity (%) difference

coarse mesh fine mesh (%)
SubV1 194 918 804 14.2
SubV2 19.3 914 802 14.0
SubV3 18.3 867 753 15.1
SubV4 18.2 563 485 16.1
SubV5 17.9 588 509 15.5
SubV6 15.8 362 306 18.3

Table 4.2 Comparison of permeability calculated from flow simulations performed on coarse and fine mesh. Six
different sub-volumes extracted from segmented image of Berea sandstone.

Differences between two mesh resolutions are also visible at high velocities in the probability
density function (section 5.3, Figure 9), where probability of achieving higher velocity is higher in coarser
mesh. That was in conflict with our assumption shown in the Figure 4.11 where one could expect lower
maximal velocities in the coarse mesh due to averaging errors.

Figures from 4.17 to 4.22 show average (a), maximal (b) and minimum (c) velocities per slice
perpendicular to the flow direction for different sub-volumes and different mesh resolution. Blue line is
always denoting fine mesh; orange line is for coarse mesh and dashed black line represents local
porosity. There is clear negative correlation between porosity and average velocity, however there is no
correlation between porosity and minimal and maximal velocities.

When comparing averages velocities per slice there is a clear offset and average velocities are
always higher in the coarser mesh. There is no significant variation in differences between average
velocities. Observed offset of around 10-15% is in accordance with permeability differences and also
cross plot between coarse grained average velocity from fine mesh and corresponding velocity in coarse
mesh (section 5.3, Figure 9).

Comparison between maximal and minimal velocities (Figures 4.17-4.22 b) and c)) shows that in all
situations maximal velocity is higher in the coarse mesh. Similar minimal velocity per slice is lower in the
coarse mesh; however this difference is even less highlighted. Although it is clear that coarser mesh
causes greater differences in velocity distribution, deviation is relatively small.
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Figure 4.17 SubV1. Comparison of a) average, b) maximal and c) minimal velocity per cross-section profiles
perpendicular to the flow direction for coarse (orange line) and fine mesh (blue line)
with corresponding local porosity (black dashed line).
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Slice [1]

Figure 4.18 SubV2. Comparison of a) average, b) maximal and c) minimal velocity per cross-section profiles
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To gain even better understanding of the mesh resolution impact on the velocity field distribution
we created 3D artificial structure simulating a synthetic throat between two pores (Figure 4.23). The
structure is completely symmetric and it gradually decreases in area perpendicular to the flow direction
until it reaches the size of one pixel. The coarsest mesh has same resolution as the original structure,
and all other meshes are gradually finer. Resolution is increased by principle explained in the section
4.3.2.

Figure 4.23 Artificial 3d symmetric structure, designed to investigate flow-through smallest possible throat (1 pixel)

Permeability and maximal velocity for different mesh resolutions are summarized in Table 4.3.
Relative differences are calculated regarding to finest mesh results. Again one can observe a gradual
decrease in the absolute permeability that is in accordance with relevant studies and previous
investigations presented in this thesis (Table 4.1). However, differences in this case are more
pronounced. This is probably due to the structure geometry which is designed to investigate case where
largest differences are expected. From the table it can be noticed that maximal velocities in the meshes
where pixels were divided by even number are lower than comparable meshes where pixels are divided
by odd number. This is due to the fact that meshes where pixels are divided by even integer fail to
capture the maximal velocity in the middle of the throat.
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Pixel Permeability Relative Max velocity Relative
divided (mD) difference (%) (m/s) difference (%)
by 1 77.2 +175 1.825-10° +19.4

by 2 44.9 +60.4 1.19-10° -22.1

by 3 36.1 +28.9 1.644-10” +7.3

by 4 32.2 +15 1.443-10° -5.6

by 5 30.1 +7.5 1.557-10” +1.9

by 6 28.9 +3.2 1.472-10° 3.6

by 7 28 1.528:10°

Table 4.3 Comparison of the permeability and the maximal velocity at different mesh resolution. Simulations are
performed on the 3D symmetric artificial structure simulating smallest possible throat in porous media

Figures 4.24-4.27 shows the pressure (a) and velocity field (b) distribution for different mesh
resolutions. Figure 4.27 presents flow field results for finest mesh (each pixel divided by 7 in all 3
directions), it is considered as the best approximation of the real flow field. One can observe that if
mesh has same resolution as image (Figure 4.24), it completely fails to reproduce realistic pressure and
velocity distribution. Even more worrying is that maximal velocities occur in cross sections before and
after the narrowest one. Therefore, mass conservation is questionable, although fluxes at inlet and
outlet of the system at the end of simulation are the same. We repeated the simulation several times
with different pressure gradients and increasing convergence criterion, however results are always the
same. Detailed investigation of the relative cell divergence revealed that divergence in the cross section
before throat is equal to 7x10™, while divergence in finer meshes never reaches 6x10°. However this
does not fully explain the value of 9 % lower local velocity in the throat compared to neighboring cross
sections. Relative cell (i) divergence ( div) is calculated by equation

(4.8)

where Zj::é cij is the sum of the fluxes at all six faces of the cell and u is magnitude of the velocity in the

cell centre.

Pressure distribution for the second mesh (pixels divided by 2) is significantly better (Figure 4.25 a)).
However the velocity distributions map (Figure 4.25 b)) shows that at this resolution there are still
significant misinterpretations of velocities in the throat. Contrary to the coarser mesh, in case when
mesh has a three times higher resolution than the original image, pressure and velocity distributions
(Figure 4.26) are in good agreement with the finest mesh.
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Figure 4.24 Results of flow simulations on the artificial structure presented as a) pressure and b) velocity fields. Mesh

resolution is the same as image resolution
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Figure 4.25 Results of flow simulations on the artificial structure presented as a) pressure and b) velocity fields. Mesh
resolution two times finer than image resolution (1 image pixels is represented with 4 mesh cells).
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Figure 4.26 Results of flow simulations on the artificial structure presented as a) pressure and b) velocity fields. Mesh
resolution three times finer than image resolution (1 image pixels is represented with 27 mesh cells).
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Figure 4.27 Results of flow simulations on the artificial structure presented as a) pressure and b) velocity fields. Mesh
resolution seven times finer than image resolution (1 image pixels is represented with 343 mesh cells).
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4.5 Summary and conclusion

In this section the methodology used for solving flow from the XRMT images is presented. Starting
from image acquisition, followed by the segmentation and removal of non-connected porosity, to the
Navier-Stokes solver implemented in the OpenFOAM software package, which allowed flow field
calculations. Also different ways for calculating the characteristic length and representative elementary
volume are presented.

Development of mesh generator allowed transferring pore geometry directly from the segmented
images to the numerical solver. Also it allowed investigating the mesh resolution influence on the
accuracy of the flow simulations. This issue was recently accentuated by Guibert et al. [2015] and in this
work we expand their investigation by investigating further refinements of the mesh size and
discretization.

Similar to the other authors it has been observed a decrease in the permeability with the mesh
refinement (Table 4.1). We showed that common practice where one image voxel is modeled by one
mesh cell induces significant deviations from the results using meshes with higher discretization of the
same structure. Also in some cases (e.g. modeling one pixel sized throat) flow field representation is
completely unrealistic. It has been shown that the optimal mesh resolution is if each voxel is
represented by 27 mesh cells in the case of our Berea sandstone image

Similar scaling of the permeability to mesh resolution observed in our investigation is expected in
other porous media displaying dissimilar complexity and pore geometry characteristic. However, the
mesh refinement factor necessary to obtain satisfactory results may differ significantly due to the image
resolution and porous medium properties. As a general rule for porous medium with very narrow
throats it is advisable to use odd mesh refinement factor (e.g. 3,5,7..) in order to achieve more realistic
flow field approximations.
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5.1 Introduction

This section presents transport simulations performed directly on the X-ray microtomography
images focusing on the dispersion of ideal tracer in a porous medium. Image processing and flow
simulations are presented in the previous chapter (Chapter 4). Selected sub-volumes (300° voxels) were
post processed after flow simulations and used as an input data for transport simulations.

The hydrodiffusive transport of a passive tracer is modeled by random walk particle tracking
method in which solute concentration field is represented by the ensemble average of particles. Actually
these particles are random walkers, which are considered to be without mass, infinitesimally small and
that they do not interact between each other or with the porous medium. In the random walk methods
a large number of particle moves through the medium taking random steps that may vary in distance,
direction and time need to make a step. Although path taken by each particle is not representative; the
ensemble average of the motion of a large number of particles represents the solute transport behavior
for given boundary conditions.

There are numerous different random walk methods and in this work we decided to use the time
domain random walk (TDRW). TDRW proved to be very efficient tool since it is based on the particle
movements with constant length, while stochasticity arises from the direction of the step and time
between two consecutive steps. Constant step size makes TDRW very suitable to use in the discretized
media with complex geometry; where other methods with stochastic distribution of step size would
cause numerous missteps and thus have negative influence on the duration of simulations.

Main results, discussion and conclusions are presented in form of an article (see section 5.3)
accepted in Water Resources Research. Expanded theory and assumptions taken into account during
modeling transport in microporous domain are presented hereafter (section 5.2).

5.2 Immobile region properties

5.2.1 Percolation threshold of microporosity

Similar as discussed in section 0 for macroporosity, there is also a fraction of unconnected porosity
in the microporous phase which is inaccessible for solute transport. Contrary to macroporosity,
unconnected microporosity cannot be detected from XRMT images, since pores are smaller than image
resolution. In terms of continuous model, intrinsic porosity of microporous phase has to be higher than
percolation threshold (¢g) in order that microporosity is accessible to flow and transport.

Figure 5.1 presents an illustration of percolation threshold effect. In this illustration it is assumed
that solute is diffused into immobile domain from mobile domain (blue) at the top. Figure 5.1 a) shows
distributed intrinsic porosity of microporous phase without percolation threshold applied. Gray level
denotes value of intrinsic porosity, where darker colors represent areas with lower intrinsic porosity
while lighter colors are used for areas with lower intrinsic porosity. Influence of low percolation
threshold is shown on Figure 5.1 b) where one can see yellow areas that are considered to be
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inaccessible for diffusion since intrinsic porosity is lower than percolation threshold. Here we observe
that inaccessible microporosity is scattered in microporous phase and lacunarity is increased. As a
consequence of lacunarity (i.e. heterogeneity of microporous phase), macroscopic tortuosity in
microporous phase is increased as presented on the Figure 5.1 c). Red arrows denote flow paths taken
by solute in microporosity. This increase of heterogeneity in microporous phase means that transient
time that solute experience when diffuse into microporous phase is increased. Consequently tails in
break through curve is elongated. Finally when percolation threshold is increased so that most of
microporosity is inaccessible to diffusion (Figure 5.1 d)), the influence of the microporosity on transport
is reduced because smaller volume is accessible to diffusion.

a) b)

Figure 5.1 lllustration of evolution of percolation threshold in microporous phase. Blue color denotes mobile domain
from which solute diffuses in microporosity, microporous phase is represented with gray pixels where gray level represents
intrinsic porosity (darker gray lower intrinsic porosity and vice versa) and yellow color denotes areas with intrinsic porosity

lower than percolation threshold; a) no percolation threshold applied, b) low percolation threshold level, c) medium
percolation threshold level and d) high percolation threshold
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5.2.2 Tortuosity

In this work we will not calculate the tortuosity explicitly; however since it is an important
parameter that strongly influences the transport in the 3-phase segmented porous medium, we will
briefly present the theory standing behind. The concept of the tortuosity (t) was introduced by Carman
[1937], who defined it as square of the ratio of the effective average path length (l.) to the shortest
distance (I) as presented on the Figure 5.2 and with equation (5.1).

Figure 5.2 lllustration of tortuosity definition by Carman (1937). Effective average path (l.) in the porous media (green
line) and shortest possible distance measured along transport direction () (blue line)

I\ (5.1)
=(3)-

Many authors developed other definitions of tortuosity (e.g.Bear and Bachmat, 1986); however,
there is still no universal definition [Lorenz, 1961; Dullien, 1992; Clennel, 1997]. Different definitions of
the tortuosity is used by physicists, engineers and geologists to describe the sinuosity and
interconnectedness of the pore space that affects transport processes taking place in a porous medium.
Some of the most common definitions of the tortuosity are geometrical, electrical, hydraulic and
diffusional tortuosity. With the exception of the geometrical tortuosity which can be measured only if
the 3D geometry of the pore space is known, the other definitions of tortuosity refer to different
mechanisms of mass or energy transport. It follows that relations between these definitions of
tortuosity are not simple because they come distinctly different types of measurement or computation
[Clennel, 1997].

In this work tortuosity is considered as one of the parameters contributing to the reduction of the
molecular diffusivity in the immobile domain (see section 0). Therefore, the most suitable definition for
our problem is the diffusional tortuosity It can be defined as a ratio between molecular diffusivity (dg)
and the effective diffusivity d(®)

do (5.2)
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In bulk solution the rate of molecular diffusion is defined by the molecular properties of the fluid
and the tracer as well as the temperature and pressure in the system. However under same conditions,
the spreading of a passive tracer in a porous medium is significantly slower than in free fluid due to the
inhibiting effects of the complex structure that slow down spreading in all directions. The diffusional
tortuosity can be modeled with a random walk method; however in case of the microporosity defined in
our images it is not possible since pores are smaller than the image resolution, and therefore we must
define the effective diffusion coefficient from a model.

5.2.3 Effective diffusion in the microporosity

Diffusive mass transfer rate in microporosity varies spatially due to structure complexity of
microporosity. Complexity arises from different intrinsic porosity and tortuosity structure at different
locations and thus causing spatial variations of effective diffusion coefficient(d(€)). Diffusive mass
transfer into microporosity domain (i) is described by diffusion equation:

dc,(x,1)
at

= V- [d©x)Ve,(x 1), 5.3)

$u(x)
where initial concentration in microporosity is 0 (cu(x,tz 0) = 0) and boundary condition at the
interface between macro and microporous domain ¢, (X,t)|xean = cm(X,t). Diffusion coefficient
depends on the local properties that are the intrinsic porosity ¢, (x) and the tortuosity TM(X). It is
defined by equation:

d@(x) = 1,1 (X) P, (X)dy. (5.4)

The tortuosity of the microporous phase cannot be determined from XRMT images. Many authors
[Avellandea and Torquato, 1991; Clennel, 1997; Dias et al., 2006] suggested that the inverse of
tortuosity scales as a power law of porosity. This approximation is confirmed for porosities ranging from
0.4 to 0.5. To the best of our knowledge, this approach has not been validated for lower porosities.
However, due to lack any other information or means to calculate tortuosity in the microporous phase,
we consider the above-mentioned relation to be valid even for low intrinsic porosity. Therefore, in
equation (5.4) tortuosity term can be expressed as power law of intrinsic porosity 7, (X) = ¢, (x)™™,

and accordingly the effective diffusion can be rewritten:
d®(x) = ¢)#(X)1+md0. (5.5)

In section 5.2.1 we discussed the regions of microporosity inaccessible to mass transfer because
they display low porosity values so low that they do not permit percolation. It follows that the
formulation for the effective diffusion is:

s [ PuXdy  for ¢y > o (5.6)
dC )(x) — {Oﬂ for ¢:< ot

where n = 1 + m. In this work we will perform sensitivity analysis with different values of n fromn =1
to n = 4., since we have no information on the exact value, following the methodology proposed by
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Gouze et al. [2008b]. The effect of the exponent n in terms of intrinsic porosity distribution is illustrated
on Figure 5.3. As one can see, increasing the value of n widens the distribution and decreases effective

intrinsic porosity.

- ns2 _n=1J

distribution

2 aagaal

10°® 107 10™ 10 107 10™ 10°
(e)

/4,

Figure 5.3 lllustration of intrinsic porosity distribution as the function of exponent n

5.3 Article 1 - Dual control of flow field heterogeneity and immobile porosity
on non-Fickian transport in Berea sandstone
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Abstract Both flow field heterogeneity and mass transfer between mobile and immobile domains have
been studied separately for explaining observed anomalous transport. Here we investigate non-Fickian
transport using high-resolution 3-D X-ray microtomographic images of Berea sandstone containing micro-
porous cement with pore size below the setup resolution. Transport is computed for a set of representative
elementary volumes and results from advection and diffusion in the resolved macroporosity (mobile
domain) and diffusion in the microporous phase (immobile domain) where the effective diffusion coeffi-
cient is calculated from the measured local porosity using a phenomenological model that includes a poros-
ity threshold (¢,) below which diffusion is null and the exponent n that characterizes tortuosity-porosity
power-law relationship. We show that both flow field heterogeneity and microporosity trigger anomalous
transport. Breakthrough curve (BTC) tailing is positively correlated to microporosity volume and maobile-
immobile interface area. The sensitivity analysis showed that the BTC tailing increases with the value of ¢,
due to the increase of the diffusion path tortuosity until the volume of the microporosity becomes negligi-
ble. Furthermore, increasing the value of n leads to an increase in the standard deviation of the distribution
of effective diffusion coefficients, which in turn results in an increase of the BTC tailing. Finally, we propose
a continuous time random walk upscaled model where the transition time is the sum of independently
distributed random variables characterized by specific distributions. It allows modeling a 1-D equivalent
macroscopic transport honoring both the control of the flow field heterogeneity and the multirate mass
transfer between mobile and immobile domains.

1. Introduction

Flow and solute transport in water-saturated porous rock and porous material in general have been the focus
of intense research over several decades. The quantification and prediction of observed flow and transport
phenomena plays a central role in many areas of science and engineering including groundwater hydrology
(e.g., pollution risk analysis and remediation), nuclear waste disposal, underground storage of CO, and shale
gas exploration [Gouze et al., 2008a; Yoon et al, 2015; Russian et al,, 2015], but also transport in biological tis-
sues [Sen and Basser, 2005], for example. The main focus of traditional approaches to quantify effective trans-
port, has been the development of macrodispersion models [Dentz et al, 2011, and literature therein]. The
advection-dispersion equation (ADE) is traditionally used to describe transport of nonreactive dissolved chemi-
cals (i.e,, tracers) at the Darcy scale. The ADE approach is based on the assumption that the hydrodynamic dis-
persion, triggered by the combination of the diffusion and the variability of the advective fluxes along the
flow paths within the pore space, behaves macroscopically as a diffusion-like (Fickian) process [Bear, 1972].
With c(x, t) the concentration of the tracer at position x and time t, the ADE reads:

d,f’fg‘t* )_vy. [DV+¢a] c(x, t)=0, v

where D, u and and ¢ denote the effective dispersion coefficient that quantifies spreading and mixing, the
average velocity and the connected porosity respectively. All these parameters are defined at the scale of
the support volume, the representative elementary volume (REV), where full mixing of the tracer is assumed
[Bear, 1972].

However, many experimental tracer tests, both from in situ [Adams and Gelhar, 1992; Meigs and Beauheim,
2001; Becker and Shapiro, 2003; Gouze et al.,, 2008b] and laboratory [Kandhai et al., 2002; Levy and Berkowitz,
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2003; Scheven et al,, 2005; Moroni et al, 2007; Gouze et al., 2009], display strongly asymmetric breakthrough
curves (BTCs) with long tails that usually decrease as a power-law of time, whereas the ADE predicts fast
concentration decrease. Non-Fickian dispersion manifests itself in power-law tailing of BTCs as well as
anomalous scaling of the mean and the variance of the spatial tracer distribution and early arrivals in BTCs
[Berkowitz et al., 2006; Neuman and Tartakovsky, 2008]. These numerous experiments indicate that Fickian
models fails to capture the real nature of the dispersion in systems macroscopically heterogeneous systems
as well as in macroscopically homogeneous such as glass bead columns [e.g., Datta et al, 2013; Holzner
et al., 2015].

The apparently ubiquitous non-Fickianity of dispersion in porous media is generally interpreted as the result
of the large variability of fluid velocity that is evidently linked to the inherent complexity of the geological
formations at all scales. Several authors have explored different approaches (both theoretical and numeri-
cal) for characterizing and modeling the processes that control non-Fickian dispersion in relation with the
geometry of the pore space [e.g., Bijeljic and Blunt, 2006; Le Borgne et al., 2011; de Anna et al., 2013; Holzner
et al, 2015] and at larger scale to the heterogeneous distribution of the hydraulic conductivity field [e.g.,
Edery et al, 2014].

In the present paper we focus on macroscopic non-Fickian behavior arising from (stationary) pore-scale
Navier-Stokes flow of a Newtonian fluid in a relatively simple natural porous rock. It has been possible only
recently to systematically investigate these type of problems due to the possibility of accurately imaging
natural porous structures by X-ray micro-tomography (XRMT) tools [Ovaysi and Piri, 2011; Blunt et al., 2013].
The common approach is to process XRMT images in order to distinguish the pore from the solid, then sim-
ulate the steady-state flow of an incompressible fluid and finally solve the diffusion-advection equation in
order to obtain the distribution of the tracer concentration according to specified boundary conditions
[Blunt et al., 2013]. Then, the tracer spreading is analyzed in relation with the flow field properties for differ-
ent values of the average velocity that determines the contribution of the diffusion in the tracer transport
[Bijeljic et al., 2013a]. The pertinence of the analysis depends strongly on the accuracy of the calculations
and the representativeness of the domain size, which in turn are strongly dependent both on the techno-
logical XRMT and computational limitations [Arns et al., 2005; Guibert et al., 2015a] and on the relevance of
the image data processing [Schliter et al., 2014]. Nevertheless this approach is unmatchable for investigat-
ing spreading and mixing processes arising from the wide range of transit times experienced by the tracer
when transported across the pores of different size and shape.

Few recent studies have focused on the investigation of the relations between the (wide) velocity variability
and consequently the (wide) range of transit times of a transported inert tracer using direct pore flow simu-
lations in simple structures [e.g., Le Borgne et al., 2011; de Anna et al, 2013], glass bead packs [e.g., Maier
et al, 2008; Holzner et al.,, 2015], sandstones [e.g., Kang et al., 2014] and carbonate rock [e.g., Bijeljic et al.,
2013a, 2013b]. For instance, Bijeljic et al. [2011] studied the transport of a passive tracer in small volumes of
Berea sandstone (the same rock type as the one used in the present paper) and a Portland limestone follow-
ing the methodology presented above (i.e, based on the direct calculation of the Stokes flow on digitized
XRMT images). The authors (op. cit.) computed the average travel time distribution as the function of the
Peclet number using a streamline-based random walk approach. Finally, these transition time distributions
were modeled as truncated power-laws [Dentz et al., 2004] and then used to parametrize a continuous time
random walks (CTRW) model. Kang et al. [2014] studied the purely advective transport of a tracer in a small
volume of Berea sandstone as well. However, these authors (op. cit.) interpreted the anomalous dispersion
as the results of correlation features of the Lagrangian velocities that can be accounted for in a CTRW
model. CTRW characterized by a correlated random time increment was initially proposed by Le Borgne
et al. [2011] and [de Anna et al., 2013] to model transport in simple 2-D structures where the anomalous dis-
persion arises from the competition between distribution and correlation effects of the velocity.

Matrix diffusion represents another critical transport process that controls the late-time behavior of BTCs
le.g., Haggerty and Gorelick, 1995; Carrera et al, 1998; Shapiro, 2001; Zhou et al., 2007; Gouze et al,, 2008a].
The tracer transit times by diffusion in the matrix are usually orders of magnitude larger than the average
transit time in the connected porosity controlling the medium permeability. If a fraction of the medium is
formed of the matrix where diffusion is dominant, then dual-porosity models can be conveniently used.
Mass transfer between mobile and immobile zones and the separation of characteristic transport time
scales in the mobile and immobile regions gives rise to non-Fickian transport behaviors. These mechanisms
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are quantified by the multirate mass transfer ADE model (MRMT-ADE) [Haggerty and Gorelick, 1995; Carrera
et al,, 1998; Haggerty et al., 2000], which can be formulated as

g acg;. ) . [DV+eacx, t)+5(x, =0 @)
with the sink-source term
S(x, r)::“%J.dr/M(rfn) c(x,t'), (3)

where ¢, and ¢, denote the volume fraction of the mobile domain (i.e, the macroscopic connected poros-
ity) and the volume fraction of the immobile domain respectively; and M(t) is the memory function that con-
tains all the information on the mass transfer process, the geometry and the volume fraction of the
immobile domain as well as its accessibility to tracer particles issued from the mobile domain. A power-law
designed memory function will trigger the power-law tail of the BTCs. Specifically, a power law tailed BTC
that decays as o t # ' corresponds to M(t) o t . This behavior would persist infinitely if the tracer could
assess longer diffusion paths as time increases, such as in fractal systems. However, a maximum diffusion
length is expected in natural porous media displaying finite size immobile domains and M(t) decays expo-
nentially fast to zero when the maximum residence time in the immobile domain is reached and the system
evolves toward asymptotic Fickian dispersion according to (2). The MRMT-ADE approach accounts also for
the heterogeneity of the matrix, and has been successfully applied to model field and laboratory experi-
ments [Haggerty et al,, 2001, 2004; Gouze et al., 2008a). The MRMT-ADE and the CTRW approaches are equiv-
alent under certain conditions as discussed in Dentz and Berkowitz [2003] and Schumer et al. [2003].

In the studies cited above the origin of the non-Fickian dispersion has been investigated either considering
the void and the solid phases to tackle the effects of the velocity distribution in the mobile domain, or con-
sidering the effect of an immobile domain while the dispersion was assumed Fickian in the mobile domain.
Here we will investigate both mechanisms by considering simultaneously the presence of the matrix where
transport is controlled by diffusion and the velocity variability in the mobile domain. The presence of micro-
porous material in reservoir rocks, for instance detected by XRMT imaging, and its control on the connectiv-
ity and consequently its permeability has been documented in recent studies [Gouze et al., 2008a; Mangane
et al,, 2013; Garing et al., 2014; Hebert et al., 2015]

The paper is organized as follow. Section 2 describes image acquisition and segmentation. In section 3, we
present the methods used to perform flow simulations, and the particle tracking methods. Section 4 is dedi-
cated to the analysis of the results of the particle transport simulations and their discussion. Conclusions are
presented in section 5.

2. Rock Sample Imaging

Berea sandstone has been used extensively as a sandstone reservoir proxy because it is relatively homoge-
neous, cohesive, well characterized and easily available [Churcher et al., 1991; @ren and Bakke, 2003; Tanino
and Blunt, 2012]. Berea sandstone is composed of quartz grains that are cemented together by silica, dolo-
mite, feldspar, and clayey minerals. Grains are well sorted (ranging in size between 70 and 400 um) and well
rounded (only around 20% of grains are not spherical)[Churcher et al., 1991]. Cement fraction in Berea sand-
stone ranges from 1.8 to 9% [@ren and Bakke, 2003; Tanino and Blunt, 2012]. Here we intentionally chose a
sample with the lowest cement fraction in order to determine if a low fraction of immobile domain can pro-
duce a key control on the dispersion together with the velocity heterogeneity in the mobile domain.

2.1. Image Acquisition

The high resolution X-ray microtomography (XRMT) image of the core (10 mm length and 6 mm diameter)
was acquired using the BM5 beamline at the European Synchrotron Radiation Facility (Grenoble, France).
The 3-D volume was reconstructed from 3495 projections acquired at an energy of 110 keV using a GGG:Eu
100 microns scintillator and a SCMOS-based 2048 X 2048 pixels detectors (model PCO edge; http:/www.
pco.de). The reconstruction was performed using the single distance phase retrieval algorithm described by
Paganin et al. [2002] applying an unsharp filter before reconstruction. Details on the reconstruction algo-
rithm and performances can be found in Sanchez et al. [2012]. The final 3-D image is formed by 4667 X
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2130 X 2099 voxels of characteristic size 3.16 um (3.16>X107% m). The 16 bits encoded value associated to
each of the voxels denotes the X-ray absorption integrated over a volume of 31.5 um?.

2.2, Identification of the Different Type of Porosity

Analysis of the raw XRMT images pointed out the existence of three types of material, denoted hereafter
phases. The three phases correspond respectively to the macroporosity (i.e., the void space filled with water
or air), the microporosity (voxels in which pores are smaller than image resolution) and the solid rock. The
identification and then labeling of these three phases is called segmentation. There are different methods
for performing image segmentation, none of them producing strictly equivalent results. Segmentation is
consequently a critical step of the data processing [lassonov et al., 2009; Schluter et al., 2014; Scheibe et al.,
2015].

Global thresholding is often applied; this simple approach consists in deciding a gray scale value separating
two material types on the basis of image histogram analysis. However, by definition the microporous mate-
rial can display a large range of gray level values depending on its porosity, while intermediate gray level
values denote pixels sampling both solid and voids. Consequently, it is a priori not pertinent to use the
global thresholding method for the present study where the presence of heterogeneous microporous
material is known. Several alternative methods have been developed in order to improve the accuracy of
the segmentation; see the comparative study by lassonov et al. [2009].

Here we use the so called “region growing” methods based on the assumption that all the voxels belonging
to a given phase cluster are connected and are similar in terms of gray levels [Spirkovska, 1993]. A significant
difficulty of region growing methods is the need for carefully defining the initial gray level range, limiting
the seed regions for each phase, which is typically done manually from analyzing the histogram. However,
the image histogram does not contain enough information to properly identify the different phases, and
relatively small differences on the threshold values may induce noticeable errors on the determination of
the phase fractions. Here we applied the method proposed by Mangane et al. [2013] that consists in condi-
tioning the determination of the threshold values (delimiting the initial gray level range for each phase)
by the value of the total porosity measured independently using laboratory techniques. For delimiting the
three phases four thresholds values must be determined. The convergence toward a satisfactory agreement
between the measured total porosity and that obtained by the segmentation procedure (¢,) is obtained
from an iterative procedure, where ¢, is:

Pe=C+(&utby) (4)

with £, and £, the volume fraction of the void phase (macroporosity) and of the microporous material, respec-
tively, and ¢, the intrinsic porosity of the microporous phase. Here we used the porosity evaluated from mer-
cury intrusion porosimetry (MIP) as the reference total connected porosity. This procedure was applied to the
gray level image assuming that first the mineralogical composition of the microporous cement is homogene-
ous, and second that the porosity of the microporous phase range from 0.01 to 60%. This later assumption is
based on the fact that above 60% the material cannot be cohesive. The procedure is based on comparing the
experimental porosity to the total porosity (4) where £, may contains pixels belonging to porosity uncon-
nected to the percolating cluster. However, we measured the value of this unconnected porosity a posteriori
(see in section 2.3) and found that it was always lower than 0.8% for each of the studied subvolumes. Accord-
ingly one can consider that this value represents the error on the segmentation. The average porosity of the
microporous phase is 24.93%, and the total porosity calculated by equation (4) is 18.8%. Figure 1 illustrates
the pore network and microporosity obtained by three phase segmentation.

2.3. Microporosity and Connected Clusters

Figure 2 illustrates the throat radius distribution obtained by MIP test. The throat radius distribution for the
Berea sandstone under consideration is quite narrow compared to other rocks, especially carbonates. Most
throat radii are between 8 and 20 um, but there is a significant portion of throats with smaller radii. The
dashed line in Figure 2 marks the XMRT image voxel size. All throats and pores with smaller radii cannot be
distinguished on the XRMT images and are assigned to the microporous phase.

In the following, flow and transport will be studied on 4 nonoverlapping subvolumes (SV1, SV2, SV3, and
SV4) of 300 X 300 X 300 voxels randomly extracted from the full core image. In order to investigate the
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Figure 1. Three-dimensional visualization of the pore network (blue) and the connected

microporosity (yellow) for a subvolume of 120 X 120 X 120 voxels.

influence of microporosity on
solute transport we compare
flow and transport computed on
the three-phase segmented vol-
umes, and two-phase images
where the microporous phase is
assigned to the solid phase.

The first step of the segmented-
data processing consists in the
determination of the percolating
clusters, i.e, the computation of
the network of pores that spans
through the whole volume and
connects the boundaries in flow
direction. Percolated  clusters
were identified using the method
described in Hoshen and Kopel-
man [1976]. The mobile domain,
in which the flow will be com-
puted corresponds to the con-
nected macroporosity, while the
immobile domain corresponds to
the microporosity as well as a
fraction of the macroporosity
that is connected by the micro-
porous phase only. Figure 3
shows the same cross sections

perpendicular to the flow direction in subvolume SV1 for the two-phase segmented image (Figure 3a) and for
the three-phase segmented image (Figure 3b). One can see, for example in the area marked by the green circle,
that the three-phase image contains a fraction of macroporosity connected that is connected by microporous
material (in orange), a feature that does not exist in the two-phase image. The porosities for the four subvo-
lumes are given in Table 1. The total porosity ¢, of the three-phase subvolumes calculated by (4) is on average
increased by 5.3% when compared to the equivalent two-phase volume. This corresponds to an average
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Figure 2. Throat radius PDF obtained from mercury intrusion porosimetry for
Berea sandstone. The vertical dashed line marks the XMRT image voxel size.

increase of a 2% of the macroporosity,
which is made accessible by the micropo-
rous cement clusters. By definition, this frac-
tion of the macroporosity belongs to the
immobile domain because transport is only
due to diffusion.

3. Modelling Tools

3.1. Mesh Generator

Guibert et al. [2015a] showed that the grid
resolution is an important issue for ensur-
ing meaningful permeability calculations.
Here we want to investigate the influence
of the grid resolution on the calculation of
the transport properties as well. Therefore,
we first programmed a new meshing algo-
rithm that is capable to create regular
hexahedron mesh compatible with Open-
FOAM® strictly equivalent to the voxels of
the segmented images. Applying this
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Figure 3. Comparison between a cross section (300 X 300 pixels) extracted from subvolume SV1 perpendicular to the flow direction for
(a) a two-phase image and (b) a three-phase image. Black areas denote the solid phase (no advection and no diffusion), white areas denote
the macroporosity, i.e., the mobile domain and areas colored in orange indicate the microporous phase where transport is assumed to be
controlled by diffusion only.

algorithm we are able to avoid any averaging or smoothing that often occur in the course of the standard
OpenFOAM™ meshing procedure. Then we built two meshes with different resolution for each of the subvo-
lumes (SV1-5V4). The hereafter called “coarse mesh” is made of cubic cells with the same size as the image
voxels, while the “fine mesh” is obtained by dividing each voxel by 3 in all the directions, creating conse-
quently 27 cubes of 1.05 um size per image voxel.

3.2. Solving Flow

Single phase flow in porous media on pore-scale is classically calculated by the Navier-Stokes equation
[Bear, 1972; de Marsily, 1986]. In this work, we computed the pore-scale flow field by solving the conserva-
tion equation (5) and the Navier-Stokes equation (6), for single-phase with a constant density and viscosity.

VvV -u=0 5)

u
P(Tt +u- Vu)va,uﬁquu, (6)
C

where u denotes the velocity vector (m/s), p is the fluid density (kg/mg), t is the time, p is pressure (Pa) and
4 is fluid viscosity (Pa s).

Equations are solved by using the steady-state solver based on the SIMPLE algorithm implemented in
OpenFOAM" [Weller et al., 1998]. OpenFOAM is a free, open source computational fluid dynamics software
package with parallelization capabilities. The equations are discretized using the finite volume method. The
SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm presented by Patankar [1980], is
one of the pressure-based method techniques to solve pressure-velocity coupling. It allows to iteratively
solve Navier-Stokes equation and obtain the steady state pressure and velocity fields. For each step pres-
sure and velocity field are calculated according the boundary conditions and the results from the previous
step, until the difference between the current and previous steps is smaller than a given convergence
criterion.

Table 1. Total Porosity (¢,; see (4)) for Two-Phase and Three-Phase Images, Columns 1 and 2, Respectively”

Total Porosity ¢, Relative Difference (%)
Two-Phase Three-Phase A, Ag,
V1 19.36 20.37 525 1.97
sv2 19.32 2023 468 1.56
sV3 18.26 19.18 5.03 2.04
sv4 18.21 1933 6.14 251

*Column 3: relative difference between total porosity Ad,= W:w. = (ﬁ‘,w }/:/:‘;EP‘ . Column 4 reports the relative difference between the
fraction of the void phase included in the total porosity: A, = :._'Q’F' S il €5 ?), This difference denotes the fraction of macroporosity

v
made accessible to diffusion due to the presence of the microporous phase.
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Figure 4. Normalized permeability as a function of the sample volume for different residual convergence criteria.

Constant pressure is applied to the inlet and outlet boundaries while all other boundaries including the
void-rock interface are considered as no-flow boundaries (no-slip condition at the void-rock interface).
Twenty layers of void voxels have been added to the porous volume at the inlet and outlet boundaries in
order to minimize the boundary effect [Guibert et al,, 2015b]. Fluxes at the inlet and outlet boundaries and
residual convergence were used to evaluate if the simulations have fully converged. To determine the resid-
ual convergence criterion, we made several simulations on the same structure while constantly decreasing
the convergence criterion until the computed permeability converged to a stationary value. For the Navier-
Stokes flow simulations described below, the computation duration, using a 24-cores Intel Xeon (2.3 GHz)
PC, ranged from about 10 h for a 300® voxels mesh to about 75 h for a 900* voxels mesh.

Permeability k was calculated from Darcy’s law

- 1oL,
ApA;

@)

where Q is the total flux (m>/s), L, length of the block in flow direction, and A, (m?) is the area of the cross
section perpendicular to the flow direction.

Figure 4 displays the permeability values obtained for different values of the residual convergence criterion.
We observed that the computed permeability value increases with the decrease of the fixed convergence
residual and eventually stabilizes after the initial residual falls below 10 4. Based on these results we
decided to use 10 ° as the residual convergence criteria which has proved to give completely converged
calculations with reasonable computation times.

All simulations were made with low Reynolds numbers of Re = 10~ %, The Reynolds number is defined as
the ratio of viscous and inertial forces, Re=(pulL)/p, where u is the average superficial velocity [m/s] and L is
characteristic length [m]. For such low values of Re flow is laminar, and formation of eddy-currents, which
could create anomalous dispersion, is minimized.

Figure 5a presents the probability density function (PDF) of velocity in flow direction. We observe that
velocity values are mainly positive. Yet the small portion of negative values emphasizes the complexity of
the pore network. The PDF of velocities perpendicular to the flow direction are displayed in Figure 5b,
where we observe similar distributions of negative and positive velocities, as expected for an macroscopi-
cally homogeneous, isotropic volume of rock.

3.3. Solving Transport
Pore-scale transport in the mobile domain is computed by solving the advection-diffusion equation
de(x,t)

ot

V- [doV+u(x)] c(x, t)=0, t)

where dy is the diffusion coefficient of the tracer in water and u(x) is the flow velocity. Here we solve (8)
using the time domain random walk (TDRW) method [Noetinger and Estebenet, 2000; Delay and Bodin, 2001;
Delay et al., 2005]. Details about the implementation of the TDRW approach, starting from the discretization
of the transport equation up to the random walk algorithm implementation can be found in Dentz et al.
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Figure 5. PDFs of normalized velocity for the four subvolumes (a) along the main flow direction (w) and (b) perpendicular to the main flow
direction (u) for subvolume 1 (red rhombi), subvolume 2 (green triangles), subvolume 3 (magenta circles), subvolume 4 (blue squares).

[2012]. The domain discretization is the same as the one used for computing the flow field and corresponds
to the image voxels (coarse mesh) or the image voxel divided in 27 cubes (fine mesh) as explained in sec-
tion 3.1. The TDRW approach models particle motions in space and time by the following recursive relations

xi(n+1)=x;(n)+ &, t(n+1)=t(n)+1. 9)

The probability w; for a transition of length || from pixel j to pixel i, and the transition time 1; associated
to pixel j are given by

(10)

where the notation Z denotes summation over the nearest neighbors of pixel j. The b; are defined as
follows, UK

b.;:dv”#ﬂ_”?—'(ﬁj—ﬂ), an

c; 285 \Juyl

where &;=|&;; a,] is the harmonic mean of the diffusion coefficients of pixels i and j; u; denotes the velocity
component of u; in the direction of pixel j, u;=u; - &;. If u; >0, pixel i is downstream from pixel j, and corre-
spondingly, if u; < 0 pixel / is upstream from pixel j.

The TDRW method is used to solve transport in both the mobile and the immobile domains, where for the
latter the velocity is zero. Accordingly the transport equation in the immobile domain (i.e., in the micropo-
rous phase) is:

Bc(xt’ D . [ Velx, 1]=0, (12)

¢, (%) 3
where d* is the spatially distributed effective diffusion coefficient in the immobile domain:
@*(x)=1," (X)¢b,,(X)do, (13)

where 7 denotes the tortuosity of the immobile domain, which is usually expressed as a power-law of the poros-
ity, T, = (jnp'm [Pisani, 2011]. Furthermore, for porosity values smaller than the porosity ¢, at the percolation
threshold, no more diffusion can take place. Thus, the effective diffusion coefficient d° takes the following form,

GJETVAJ ET AL.

ANOMALOUS TRANSPORT IN BEREA SANDSTONE 8



100

Chapter 5 Pore-scale modeling of anomalous transport

&JAQGU Water Resources Research N

@
=
I
2]

-
- (3] N

Normalized porosity
o
o

Normalized permeability o

O 1 L 1
0 0.5 1 1.5 2 2.5
Normalized sample volume

Figure 6. (a) Normalized porosity and (b) permeability versus the sample volume normalized by the referenece volume of 300°
voxels.
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0 forep, < ¢y

with n=m+ 1. In the following we will test different values of n from n=1 up to n=4 [Gouze et al,
2008a), because we have no information on the exact value of n. Note that ¢, is a characteristic property of
the porous material under consideration and requires an experimental approach to be determined pre-
cisely. In our case the value of ¢, is not known. In the following, we test the sensitivity of the results to this
parameter for different values ranging from ¢, =0 up to ¢,=0.4.

3.4. Representativeness of the Samples

For simulating flow and transport in heterogeneous porous media it is essential that the support volume
used for the calculations is large enough to be representative of the medium. The minimum volume
required is the representative elementary volume (REV) [Bear, 1972]. To evaluate the representativeness of
the 300° voxel subvolumes SV1-SV4, we made calculations of the porosity and the permeability of the
mobile domain for increasing size of the support volume. For porosity we randomly chose 6 locations in the
core and measured the mobile domain porosity for cubes of increasing size. For permeability we followed
the same procedure, but starting from one location only, in order to keep this study tractable in terms of
computational times. For the same reason we performed the Navier-Stokes computations using the coarse
mesh (i.e., mesh cells of the same size as the image voxels) in order to be able to increase the support vol-
ume sufficiently for a sound evaluation of the size effect.

Figure 6a presents results of the mobile domain porosity as a function of the support volume. The plotted
porosity values are normalized to the porosity of the whole image and the volume values are normalized to
the volume of the 300* voxel subvolumes (i.e., 0.95 mm?). Although there are small differences in the
asymptotic porosities (which denotes large scale variability of the porosity in the core) depending on the
initial location, we concluded that porosity stabilizes for volumes of about 0.5 times that of the 300% voxel
sample. Similar behavior was observed for the permeability calculations; the relative difference in perme-
ability is staying below 5% for all subvolumes larger than 300°. Together with the observations made on
the velocity PDF (section 3.2), one can conclude that 300° voxels subvolumes can be considered as a good
approximation of a REV in terms of porosity and flow in the mobile domain, albeit they may display weak
differences in their macroscopic properties.
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Figure 7. Porosity variogram for the Berea sandstone sample.

3.5. Transport Characterization
At the pore-scale, tracer transport is driven by both advection and diffusion. The relative importance of
these two mechanisms is quantified by the Peclet number Pe [de Marsily, 1986]:

Pe= 3 (15)
where dj is the coefficient of molecular diffusion (set here to 10 ? m?s~') and u the average pore velocity.
The characteristic length L is usually associated with the average pore diameter in relation with the defini-
tion of Pe in a capillary [Taylor, 1953]. For the heterogeneous pore structure under consideration here, we
define the characteristic length L from variogram of the porosity of the mobile domain, which is displayed
in Figure 7. The dashed line indicates the length (=110 um) at which the variogram reaches its asymptotic
value. This is considered here as the characteristic length L. In order to make our results comparable to
those of Mostaghimi et al. [2012], we applied also the simplified method they proposed, which is based on
the assumption that the sandstone is made of regularly packed spheres. For this idealized system, the char-
acteristic length can be associated with the sphere diameter L=nVe ', where V is total volume and ¢ is the
interface area between the mobile domain and the solid phase. Applying this method to our subvolumes
one obtains values ranging from 122.1 to 125.6 um, which are similar to those obtained from the variogram
method. We note that this evaluation of L is in good argument with the characteristic lengths calculated for
Berea sandstone in other studies (L=131.13 um [Mostaghimi et al,, 2012], L=100 um [Bijeljic et al., 2004])
and L=150 um [@ren and Bakke, 2003]).

4. Results and Discussion

Here we present and discuss the results obtained from the calculation of tracer transport in subvolumes
SV1-5V4. Figures 8-16 show the breakthrough curves (BTC) at the outlet of the subvolumes. The BTC meas-
ures the number Np of particle observed at the outlet normalized by the total number Np, of particle
injected at the inlet. The simulations use Npo=10° particles. The computation time for the transport simula-
tions discussed below ranged from about 10 min to 30 h using a 12-cores Intel Xeon (2.6 GHz) computer,
and depends mainly on the value of the Peclet number and the presence and properties of the immobile
domain.

We first study the influence of the mesh resolution on the resulting BTCs and then analyze the respective
controls of advection and diffusion in the mobile domain, and mass transfer between the mobile and the
immobile domains. The results depend on the Peclet number that characterizes the relative strength of dif-
fusion and advection in the mobile domain, and the parameters which characterize the effective diffusion
in the immobile domain, i.e., the exponent n and the percolation threshold ¢, in (14).

4.1. Influence of the Mesh Resolution

For all the simulations presented here, we fixed the value of Pe by multiplying the flow velocity by a coeffi-
cient in order to obtain the required average velocity. Nevertheless, when comparing meshes with different
resolutions one must take into account that the permeability computed by equation (7), and consequently
the average velocity, are slightly different depending on the voxel size. For subvolume SV3 the permeability
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Figure 8. BTC obtained with the coarse mesh (3007 cells, open symbols) and fine mesh (900 cells, full symbols) for subvolume 3 for Pe = 100 (pink circles), Pe = 10 (green triangles), and
Pe = 0.1 (red squares). (a) The BTCs for mobile transport only, and (b) mobile transport and diffusion in the microporous phase.

is 867 mD for coarse mesh and 753 mD for fine mesh. This decrease of permeability with the voxel size was
already mentioned by Guibert et al. [2015a]. To make the comparison meaningful, we first calculate the mul-
tiplication factor for the targeted Peclet number for the fine mesh and used the same coefficient to multiply
the flow velocity for the coarse mesh.

Figure 8 displays the BTCs for the coarse and fine meshes for different transport regime (Pe=0.1, 10 and
100). Figure 8a shows BTCs for transport in the mobile domain only, while Figure 8b shows BTCs for trans-
port in the presence of mass transfer between the mobile and immobile domains.

For both cases (i.e., with and without immobile domain) we observe that for advection dominated transport
(Pe=100) the peak arrival time for the fine mesh is around 20% larger than for the coarse mesh. This is a
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Figure 9. (a) Cross plot of coarse grained velocities for subvolume 3 versus the velocity average over the coarse cell obtained from the
fine mesh data (blue points) together with the best-fit (red line). (b) Inset: PDFs of velocity along the main flow direction w for the (black)
fine mesh and (orange) coarse mesh.
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Figure 10. BTC for subvolumes SV1 (red rhembi), SV2(green triangles), SV3 (pink curves), and SV4 (blue squares) for Pe = 100. Uncon-
nected symbols denote simulations with transport in the mobile domain only and line-connected symbols denote simulations with diffu-

sion in the immobile domain, setting n=1 and ¢, =0 in equation (14).

direct consequence of the higher average velocity and permeability in the coarse mesh. There are also
slight differences in the concentration decay after the peak, which are more marked for the mobile-
immobile case. For diffusion dominated transport characterized by Pe=0.1, the peak arrival time for the fine
mesh is around 50% longer than for the coarse mesh. This 50% difference in the peak concentration arrival
time is larger than the difference in the permeability. The BTC for the coarse mesh and Pe=0.1 (Figure 8b)

-8 -
4o y : i
10°

time [s]

Figure 11. BTC for subvolume 3 (SV3) computed with transport in the mobile
domain only (unconnected symbols), and with the immobile domain (con-
nected symbols) for Pe = 1000 (squares), Pe = 100 (circles), Pe = 10 (triangles),
and Pe = 0.1 (crosses) with n = 1 and ¢, =0 in equation (14).

also displays an extended tailing. Regard-
ing the maximum concentration values
one observes that they are always higher
for the coarse mesh than for the fine
mesh, with differences ranging between
18% and 29% in the simulations without
immobile domain and 15-20% for the
case with mobile-immobile mass transfer.
These results indicate that an insufficient
mesh resolution can lead to an over-
estimation of the anomalous transport
characteristics by increasing peak concen-
trations, decreasing peak arrival times,
and increasing tailing; these effects are
more pronounced at low Peclet numbers.
However, the origin of these differences is
not clear. Figure 9 presents a detailed
investigation of the differences in the flow
field for different mesh resolutions. For
the fine mesh we performed a coarse grai-
ning process in which the mean velocity is
calculated from the 27 mesh cells (divid-
ing by each voxel by 3 in for each direc-
tion) which belong to each of the void
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Figure 12. BTC computed in subvolume 3 (SV3) for Pe = 100 and threshold values ¢,=0.2 (connected pink circles), ¢, =0.3 (green triangles), and ¢, =0.4 (blue rhombus) with (a) n =1
and (b) n = 2. For comparison the unconnected pink circles denote the BTC in the absence of the microporous phase.

voxel of original image. The cross plot between coarse grained mean velocity from the fine mesh and its
corresponding velocity in the resampled coarse mesh is presented in Figure 9a. These data are fitted by a
linear trend of slope 0.89 indicating that, on average, velocities on the fine mesh are around 10% lower
than those for the coarse mesh.

Figure 9b displays the comparison of the PDFs for the two different mesh resolutions. While no noticeable dif-
ference for low velocities is evidenced, the difference is more marked for higher velocity values. Whereas it
can be conjectured that these differences in the higher velocity explain the difference in the BTC maximum
concentration arrival time, the increase of the BTC tailing for the coarse mesh cannot be directly explained by
the difference in the velocity PDF without a more detailed analysis of, for instance, the velocity correlation.
This, however, is not the scope of this paper. Nevertheless, these results indicate clearly that refining the mesh

10° 10
3,04
1072 107
o g .
*Za_ 107 %—_ 197
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107 10° *,
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]
®
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107
10” 10 10° 10° LA 10°
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Figure 13. BTC for subvolume 3 (SV3) with Pe = 100. The parameters n and ¢, defined in equation (14) for the effective diffusion coefficient are set to: n = 1 (connected pink circles),
n = 2 (green squares) and n = 4 (blue triangles); for (a) ¢,=0.2, and (b) ¢/, =0.4. For comparison, the unconnected pink circles denote the BTC in the absence of the microporous phase.
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Figure 14. Comparison of the BTC in subvolume 3 (SV3) for a heterogeneous microporous phase characterized by spatially variable porosity ¢, (x) (connected symbols) and in a homo-
geneous microporous phase characterized by the harmonic mean of ¢, (x) (continuous thick line). (a) BTC with Pe = 100 for ¢;=0.4, n=4 (heterogeneous: blue triangles, homogeneous:
blue thick line) and ¢,=0.2 and n = 1 (heterogeneous: pink circles, homogeneous: violet thick line). (b) BTCs with ¢,=0.2 for Pe = 10 and n = 1 (heterogeneous: red circles, homogene-
ous: black thick line) and Pe = 100, n = 2 (heterogeneous: green squares, homogeneous: green tick line).

is not only important for improving the accuracy of flow field computation, but also for improving transport
computation precision. Accordingly, all the following results were obtained using the fine mesh.

4.2, Control of the Microporous Material on Transport

In this section, we investigate the control of the immobile domain on the overall transport of a passive
tracer. Figure 10 displays the simulation results presented as the comparison of the BTC for the 4 subvo-
lumes with and without the immobile domain for Pe=100.

We observe very similar transport behaviors for all subvolumes in the case of mobile transport only. The BTCs are
characterized by long-time tails with slope of t=2# for all four subvolumes indicated by the unconnected sym-
bols in Figure 10. Conversely, when including the immobile domains (connected symbols) we observe that the
difference from one subvolume to the other is much more marked than for transport in the mobile domain only.

The most significant difference between the mobile-only and mobile-immobile simulations appears in the
tails. We observe a stronger tailing due to a larger proportion of slow transport, and the presence of two
inflections points at the time t; which marks the transient regime characterized by slopes smaller than ¢t~ 24,
and the cut-off time t; which denotes the dif-
fusion time scale at which the mobile and

10° immobile zones equilibrate. However both
102 F the slope and the value of t, differ between
o subvolumes.

r From the data reported in Table 2 we observe
= 10° - that the influence of the immobile domain on
S 10—8 L the intermediate slope of the BTC tail, which

appears to be related mainly to the surface

1010 area a,,—in of the interface between the mobile

10-12 L and immobile domains, albeit the influence of

the immobile domain volume Vj,, is less clear-

10 B '_] :0 '] '2 |3 4 cut Nevertheless, one can observe that SV4 is
10 10 10 10 10 10 10

characterized by the largest values of both
! Gm-im and Vi, while the corresponding BTC

Figure 15. lllustration of the truncated power-law PDF (24) for 7/, =1 (blue squares in Figure 10) displays a lower
and 7.=10°, slope and value of t,.
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time [s]

Figure 16. BTC for subvolume 3 (SV3) for Pe=10" (filled red triangles), and Pe=10? (filled pink circles) compared to the BTC obtained from
the 1-D CTRW model (unfilled triangles and circles). Unconnected symbols denote the BTCs in the absence of the microporous phase. Con-
nected symbols denote the BTCs in the presence microporous phase with n = 1 and ¢, =0. The parameters for the 1-D CTRW model are
b=0.7, and a =03, x=1.4, e=6x10"* for the PDF (24) of mobile times, a trapping frequency of 1=0.05 s~ ', and [{=0.25, 7;=3 s and 7,
=700 s for the PDF (26) of trapping times.

Figure 11 displays the comparison between the simulation (for SV3) of the mobile-only and the mobile-
immobile cases for different values of the Peclet number (Pe= 0.1, 10, 100, and 1000). The elongation of the
BTC tail and the occurrence of a second slope between t; and t, are clearly visible for Pe > 10. As expected,
the difference between the two cases becomes insignificant for diffusion dominated transport (Pe < 0.1);
the only difference when adding the immobile domain is a small increase of about 5% (see Table 1) of the
overall diffusional volume. The additional tailing behavior increases with the value of Pe.

These results clearly demonstrate the importance of the immobile domain, or in other words, the necessity
of taking into account the presence of the microporous material, even if it represents a small fraction of the
porosity. Also, the results indicate that the area of the interface between the mobile and the immobile
domains is a critical parameter. The area of this interface determines the efficiency of mass transfer between
these two domains, while the volume of the clusters which form the immobile domain should control the
maximum (and average) trapping time in the immobile domain [Haggerty and Gorelick, 1995; Carrera et al.,
1998]. However, this last statement cannot be verified by comparing the four subvolumes, because first the
difference in terms of V,,, is probably not significant and second we do not have precise information on the
size of the immobile domain clusters.

4.3. Effect of the Immobile Domain Properties on the BTC
As explained in section 3.3, the effective diffusion coefficient in the microporous material is evaluated from
the distributed porosity (which is the only known property of this material) using the model described by

Table 2. Area ¢ of (Column 1) the Interface Between the Mobile Domain and the Microporous Material (5 im), (Column 2) the Mobile
Domain and the Solid (4,,-) and (Column 3) the Solid and the Immobile Domain (05 ;,) for Subvolumes SV1-5vV4*

Area in mm? Volume in 10°um®
Om—im Om-s Os—im Vi Vim
SVi 0.77 162 1.10 1649 249
sv2 0.76 1.61 1.04 164.6 231
V3 071 1.71 1.04 1555 218
Sv4 0.84 1.58 119 1552 26.4

*Columns 4 and 5 gives the volume of the mobile domain (V,,) and of the immobile domain (V;,,) respectively.
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(14). This model requires fixing both the porosity threshold ¢, and the exponent n of the power law model
(13). Here both these parameters are unknown. Yet their pertinent range can be deduced from the litera-
ture, which allows us to propose a meaningful sensitivity analysis of these parameters, here performed on
subvolume SV3.

Figure 12 displays the BTCs for different percolation thresholds ¢,=0.1, 0.3 and 0.4 for n= 2 and 4. Figure
13 displays the BTCs for different values of the exponent n ranging from 1 to 4 for ¢, = 0.2 and 0.4. Note
that the BTCs for ¢, = 0.2 and ¢, = 0 are identical, compare Figure 11 and Figure 12. This is so because set-
ting the value of ¢, to 0.2 removes only a relatively small fraction of the microporous material, which is
already difficult to be reached by the tracer due to its low diffusivity. Consequently, this does not modify
noticeably the diffusion properties of the immobile domain. We observe a stronger tailing of the BTC as the
value of ¢, increases. Increasing the value of ¢, means increasing the nondiffusive portion of the micropo-
rous region, and thus the its tortuosity. As a consequence, the tortuosity of the particle paths leads to an
increase in the characteristic retention times and and thus the observed stronger tailing of the BTC for ¢,=
0.3 compared to ¢,=0.2. Note that increasing the value of ¢, also means decreasing the microporous
domain volume. Thus, as the value of ¢, is further increased, the immobile domain volume decreases to a
point that its impact on transport becomes negligible. We observe this in Figure 12. For ¢, < 0.4 the BTC
tailing is less pronounced than for ¢,=0.3. Conversely, Figure 13 shows that increasing the value of n
increasing the value of t, (and to a lesser extent of t;), and decreases the slope of the intermediate regime
bounded by t; and t,. This can be explained by the fact that increasing n corresponds to an increase of the
width of the distribution of the effective diffusion coefficient in the immobile domain. Thus a larger fraction
of low diffusion coefficient leads to a stronger particle retention and a larger cut-off time, which is set by
the smallest diffusion coefficients.

4.4, Equivalent Homogeneous Microporosity

Here we evaluate if the distributed porosity ¢, (x) in the microporous phase can be simplified by an equiva-
lent homogeneous porosity (;b;. For this purpose, we compare simulations using a spatially variable porosity
in the microporous phase with simulations that are characterized by the arithmetic, geometric and har-
monic means of ¢, (x). Figure 14 shows that the spatially-distributed porosity in the microporous phase can
be in general replaced by a constant porosity value equal to the harmonic mean. The effect of this simplifi-
cation on the BTC shape is negligible for ¢, = 0.2 and n =1, while in other cases (e.g., for ¢, =04, n=4
and Pe = 10) second-order differences on the late-time BTC shape can be identified.

From Figure 14 we can conclude that in general the spatially variable ¢, (x) can be substituted by an equiv-
alent homogeneous value equal to harmonic mean of the spatial distribution of ¢, (x).

4.5, Effective 1-D CTRW Model

We model the observed breakthrough curves by an effective d =1 dimensional CTRW that accounts for
both the impact of heterogeneous advection in the pore-space and particle retention due to mass transfer
in the immobile domain. Particle transitions are modeled by the recursion relations

Xn+1=Xn+ M, th1 =ty + AL, (16)

The increments Ax, are identical independently distributed random variables which are characterized by
the PDF

Px(AX)=(1=p, )6(Ax =) +p,d(Ax+E), (17)
where the probability p, to move upstream is given by

1

=— 1
2+Pey a8

2
We defined here Pe;=v{/dy, where £ is the transition length and v=bu the effective flow velocity with b a
modeling parameter of the order of 1 and u the average pore velocity. Before specifying the transition length
¢, we recall that the particle velocities at subsequent steps in this modeling framework are assumed to be
independent. We choose £=78.75 um, which corresponds to half of the characteristic length [ computed
from the Berea sandstone pore structure (see section 3.5). Note that ¢ is larger than the maximum pore radius
(20 um), which we deem to be a suitable decorrelation length [de Anna et al., 2013; Kang et al., 2014].
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To account for particle transitions in the mobile and immobile regions, the transition times At are modeled
as [Margolin et al.,, 2003; Benson and Meerschaert, 2009; Dentz et al., 2012]

Ny
Af:Tm*Z Timj- (19)
=1

The mobile times t,, and immobile times 1,,; are each identical independently distributed random varia-
bles characterized by the PDFs i, (tm) and ¥,,(tin), respectively. Note that n,_ is the number of trapping
events that occur in the time 1,. It is a Poisson random variable characterized by the probability
distribution
(7tm)"exp (—y1

pa(infem) = Lol SR ym), (20)
where the trapping frequency 7 is a modeling parameter that in principle may be related to the medium
characteristics [Dentz et al., 2012]. Note that the average number of trapping events is given by y1,,, i.e,, it
depends on the mabile time, and thus on the flow conditions. The mobile time is modeled as

T =Tol], (21)
in which 14 is an exponentially distributed random variable such that

i ()= exp (—1o/1y) P £

Ty T 1+42pPe,’

(22)

The time 1, is the characteristic transition time for a Fickian model that is characterized by 5 = 1. In this
case, the CTRW (16) describes advective-diffusive transport in a d = 1 dimensional homogeneous medium
characterized by the dispersion coefficient dy and velocity u. Note that the time 1, depends on both the
average flow velocity as well as the diffusion coefficient. Thus, a change in the flow regime manifests
directly in the distribution of transition times in the mobile domain.

The dimensionless time n accounts for a broad distribution of transport time scales and is here modeled by
the truncated Pareto distribution

T=u
=it

for a < n < ac”'; where a and ¢ are a modeling parameter that in principle can be related to the smallest
and the largest particle velocities. Thus, the PDF of mobile transition times t,, is given by

=
Ym(tm)= . (T_T) Fe(tm: T'vs T¢c), (24)

Ty (1—=¢) \ 7,
where we defined ', =ar, and the cutoff time z.=1', /¢. The cut-off function F.(tm, t'y, 7.) is defined by
Tm /Ty
Fe(tm, Ty, 1) = [ drt*exp (—1). (25)
ey
This distribution is constant for 7, < 'y, then it decreases as the power-law ~7,)' # until it is cut-off expo-
nentially fast for times 7, > 1, as illustrated in Figure 15. Thus, the fast time scales are delineated by the

time scale 1, which scales with the mean flow velocity u and the Peclet number. The upper cutoff scale is
related to the smallest particle velocity

The immobile times 1;,, are modeled a the truncated power-law PDF of the same shape as (24),
j T 1-f
'/’;m(fr-m):./—,‘('—m) Fe(zim, T, 72), (26)
u(1=dy) \ 7

where 11 < Tjm < T2. The ratio between the lower and upper cut-off scales is denoted by ¢;n=1/72. The
trapping rate and average trapping time may be related to the volume fraction y;, of the immobile domain
as J;m=7{Tim). The cutoff scales ; and t, as well as the exponent f are characteristic for the heterogeneity
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of the immobile regions [Gouze et al., 2008a). Their values are estimated here from the simulated break-
through curves.

This d=1 dimensional CTRW model provides a good description of the breakthrough curves obtained
numerically from the flow and transport simulations in the heterogeneous pore structure as illustrated in
Figure 16. Specifically, it reproduces very well the occurrence of two anomalous time regimes. The first
reflects the velocity heterogeneity in the mobile medium portions in which the BTC scales as t~ 2, while
the second is characteristic of particle retention in the microporous immaobile regions. In this regime, the
BTC scales as t /4,

The velocity heterogeneity in the CTRW model (16)-(26) is characterized by the exponent %, which here is
found to be 2=1.4. The heterogeneity of the immobile zones is reflected by the exponent of f§, which here
is estimated as [=1/4 from the simulation data. This value indicates strong particle retention in the immo-
bile regions. Note that mass transfer between a single type of homogeneous immobile region and the
mobile domain is characterized by an exponent of 4=1/2, which leads to a BTC scaling as t /2. The hetero-
geneity of the microporous immobile regions triggers stronger tailing than expected for homogeneous
immobile regions.

The parameter values are estimated for the data set with Pe=10? and listed in the caption of Figure 16. The
same parameters are used for the data set with Pe=10°, which provides an equally good fit. Thus, the mod-
eling parameters of the effective CTRW model are characteristic of the medium heterogeneity because they
do not change with the flow and transport conditions.

5. Conclusion

We presented a numerical study of pore-scale flow and transport of a passive tracer in porous sandstones
based on high-resolution 3-D XRMT images of Berea sandstone samples. This rock contain a small fraction
of a micro-porous phase which is defined as a porous material with pore smaller than the XRMT resolution.
The simulations were performed on a set of subsamples, whose volumes are sufficiently large to be a perti-
nent approximation of the REV of the media. We obtained a suite of results that allowed us to determine
and discuss, as far as we know for the first time, the respective role of the flow field heterogeneity in the
macro-pore network, and mass transfer between the mobile and immabile domains.

The main results presented in this paper are:

1. As expected, the mesh resolution has an important influence on the transport results, independently of
the presence of the micro-porosity; a coarse mesh tends to increase the non-Fickian behavior and specif-
ically over-estimates the BTC tailing. However, we observed that the differences in non-Fickian behaviors
for different mesh resolutions are more pronounced for low Peclet numbers. This is a priori counter-
intuitive because a major implication of refining the mesh was a change (decrease) in permeability. Yet
the differences in the PDFs of velocity between the coarse mesh and the fine mesh (corresponding to
the subdivision of the cells of the coarse mesh in 27 subcells) appears to be small and consists mainly in
a general shift of the velocity PDF, i.e, a change of the average velocity.

2. In the absence of mass transfer between the mobile and immobile domains, i.e., for transport localized in
connected porosity only, we observed that the heterogeneity of the flow field triggers BTC late-time
slopes scaling as t~ 24,

3. Marked additional tailing of the BTCs is observed when one takes into account the immobile domain
which is formed by the microporous material and some macropores connected by this microporous
phase. Specifically, at high Pe a second time regime develops in which the BTC scales as t>/*. Further-
more, the results show that the increase in the late-time component of the BTC is (1) positively correlated
to the volume of the micro-porous phase and to the surface area of the mobile-immobile interface, and
(2) more pronounced at high Peclet numbers, but cannot be neglected even in the case of diffusion
dominated transport.

4. As the only information on the microporous phase given by the XRMT images is its porosity, we
employed the parametric model (14) to relate porosity to the effective dispersion coefficients in the
immobile region. We probed the impact of the porosity threshold ¢, which denotes the minimum
porosity required for percolation in the microporous phase, and the exponent n which is used to model
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the tortuosity-porosity power-law dependence and determines the width of the distribution of effective
diffusion coefficients. The results showed that: (1) The BTC tailing shows a nonmonotonic behavior with
an increase of ¢,. The tailing behavior first increases with the value of ¢, because of an increase of the
diffusion path tortuosity, which is triggered by an increase in the lacunarity of the microporous phase. As
¢, increases further the volume of the microporous phase becomes more and more negligible com-
pared to that of the mobile domain and its impact on the BTC diminishes dramatically. (2) Increasing n
increases the BTC tailing and affects the cut-off time scale t,. This is due to the fact that increasing the
value of n decreases the average effective diffusion coefficient and increases the width of its distribution.
The larger fraction of low effective diffusion coefficients leads to the increased tailing and the observed
increase in t,.

5. The spatially variable ¢, (x) can be replaced with its constant harmonic mean. ¢, (x). This may be con-
venient for simplifying the sensitivity analysis of the transport results to the parameters of the immobile
domain in case that the distribution of the porosity in the immobile domain is difficult to evaluate due to
low quality XMRT data, for example.

6. We built a macroscopic 1-D CTRW model that captures the dual control of flow field heterogeneity and
mass transfer between the mobile and immobile domains on non-Fickian transport. The transition time
is modeled as the sum of the mobile transition time and the retention time in the immobile domain. The
distribution of mobile transition times depends both on the average flow rate and the diffusion coeffi-
cient in the mobile region. The broad distribution of transport time scales in the mobile domain, which is
a consequence of the velocity heterogeneity, is modeled by a truncated power-law whose characteristic
time scales are related to the characteristic advection and diffusion times in the mobile zones.

The number of trapping events in the microporous phase per transition is modeled as a Poisson pro-
cess whose mean is proportional to the mobile transition time, and thus dependent on the flow rate. The
total retention time in the immobile domain then is given by the sum of random trapping times. The dis-
tribution of trapping time scales, which is related to the heterogeneous diffusion in the immobile zones,
is modeled as a truncated power-law whose cutoff scales can be related to the characteristic diffusion
times in the microporous domains.

The CTRW model represents well the observed breakthrough behavior and predicts the existence of
two time regimes for large Péclet numbers, as observed in the numerical simulations. The modeling
parameters of the presented CTRW approach adjusted from the BTCs for a given Péclet number provide
equally good fits when changing the flow and transport regimes. Thus, we suggest that they are are
characteristic of the medium heterogeneity.

7. All together, the results presented in this paper demonstrate the critical role of both the velocity field
heterogeneity and particle retention due to diffusion-dominated transport in the microporosity on
observed non-Fickian transport behaviors, even in a rock for which the micro-porous cement represents
only a small fraction of the connected porosity. We can anticipate that the non-Fickian behavior due to
the presence of the immobile domain should be even more significant in sandstone reservoirs contain-
ing larger fractions of microporous cements and in carbonate reservoirs where the microporosity usually
represents several percents of the domain accessible to the tracer transport [Garing et al., 2014].

References

Adams, E. E, and L. W. Gelhar (1992), Field study of dispersion in a heterogeneous aquifer, 2. Spatial moment analysis, Water Resour. Res.,
28, 3293-3308.

Arns, C. H,, et al. (2005), Pore scale characterization of carbonates using X-ray microtomography, SPE J, 10, 475-484,

Bear, J. (1972), Dynamics of Fluids in Porous Media, Am. Elsevier, N. Y.

Becker, M. W., and A. M. Shapiro (2003}, Interpreting tracer breakthrough tailing from different forced-gradient tracer experiment configu-
rations in fractured bedrock, Water Resour. Res., 39(1), 1024, doi:10.1029/2001WR001190.

Benson, D. A, and M. M. Meerschaert (2009), A simple and efficient random walk solution of multi-rate mobile/immobile mass transport
equations, Adv. Water Resour., 32(4), 532-539, doi:10.1016/j.advwatres.2009.01.002.

Berkowitz, B., A. Cortis, M. Dentz, and H. Scher (2006), Modeling non-Fickian transport in geological formations as a continuous time ran-
dom walk, Rev. Geophys., 44, RG2003, doi:10.1029/2005RG000178.

Bijeljic, B., and M. J. Blunt (2006), Pore-scale modeling and continuous time random walk analysis of dispersion in porous media, Water
Resour. Res., 42, W01202, doi:10.1029/2005WR004578.

Bijeljic, B., A. H. Muggeridge, and M. J. Blunt (2004), Pare-scale modeling of longitudinal dispersion, Water Resour. Res., 40, W11501, doi:
10.1029/2004WR003567.

Bijeljic, B., P. Mostaghimi, and M. J. Blunt (2011), Signature of non-fickian solute transport in complex heterogeneous porous media, Phys.
Rev. Lett,, 107, 204502, doi:10.1103/PhysRevLett.107.204502.

GJETVAJ ET AL.

ANOMALOUS TRANSPORT IN BEREA SANDSTONE 19



111

@ AG U Water Resources Research 10.1002/2015WR017645

Bijeljic, B., P. Mostaghimi, and M. Blunt (2013a), Insights into non-Fickian solute transport in carbonates, Water Resour. Res., 49, 2714-2728,
doi:10.1002/wrcr.20238.

Bijeljic, B., A. Raeini, P. Mostaghimi, and M. Blunt (2013b), Predictions of non-Fickian solute transport in different classes of porous media
using direct simulation on pare-scale images, Phys. Rev. E, 87, 013011-1-013011-9, doi:10.1103/PhysRevE.87.013011.

Blunt, M., B. Bijeljic, H. Dong, O. Gharbi, S. Iglauer, P. Mostaghimi, A. Paluszny, and C. Pentland (2013), Pore-scale imaging and modelling,
Adv. Water Resour., 51, 197-216, doi:10.1016/j.advwatres.2012.03.003.

Carrera, J., X. Sanchez-Vila, |. Benet, A. Medina, G. Galarza, and J. Guimera (1998), On matrix diffusion: Formulations, solution methods, and
qualitative effects, Hydrogeol. J., 6, 178-190.

Churcher, P., P. French, J. Shaw, and L. Schramm (1991), Rock properties of Berea sandstone, baker dolomite and Indiana limestone, paper
SPE 21044 presented at the SPE International Symposium on Oilfield Chemistry, Soc. of Pet. Eng,, Richardson, Tex.

Datta, S. S., H. Chiang, T. S. Ramakrishnan, and D. A. Weitz (2013), Spatial fluctuations of fluid velocities in flow through a three-dimensional
porous medium, Phys. Rev. Lett,, 111, 064501, doi:10.1103/PhysRevlett.111.064501.

de Anna, P, T. L. Borgne, M. Dentz, A. M. Tartakovsky, D. Bolster, and P. Davy (2013), Flow intermittency, dispersion, and correlated continu-
ous time random walks in porous media, Phys. Rev. Lett., 110(18), 184502, doi:10.1103/PhysRevLett.110.184502.

Delay, F., and J. Bodin (2001), Time domain random walk method to simulate transport by advection-diffusion and matrix diffusion in frac-
ture networks, Geophys. Res. Lett., 28, 4051-4054.

Delay, F., P. Ackerer, and C. Danquigny (2005), Simulating solute transport in porous or fractured formations using random walk particle
tracking, Vadose Zone J,, 4, 360-379.

de Marsily, G. (1986), Quantitative Hydrogeology: Groundwater Hydrology for Engineers, Academic, San Diego, Calif.

Dentz, M., and B. Berkowitz (2003), Transport behavior of a passive solute in continuous time random walks and multirate mass transfer,
Water Resour. Res., 39(5), 1111, doi:10.1029/2001TWR001163.

Dentz, M., A. Cortis, H. Scher, and B. Berkowitz (2004), Time behavior of solute transport in heterogeneous media: Transition from anoma-
lous to normal transport, Adv. Water Resour., 27(2), 155-173.

Dentz, M., T. LeBorgne, A. Englert, and B. Bijeljic (2011), Mixing, spreading and reaction in heterogeneous media: A brief review, J. Contam.
Hydrol., 120-121, 1-17, doi:10.1016/j.jconhyd.2010.05.002.

Dentz, M., P. Gouze, A. Russian, J. Dweik, and F. Delay (2012), Diffusion and trapping in heteregeneous media: An inhomogeneous continu-
ous time random walk approach, Adv. Water Resour., 49, 13-22, doi:10.1016/j.advwatres.2012.07.015.

Edery, Y., A. Guadagnini, H. Scher, and B. Berkowitz (2014), Origins of anomalous transport in heterogeneous media: Structural and
dynamic controls, Water Resour. Res., 50, 1490-1505, doi:10.1002/2013WR015111.

Garing, C,, L. Luquet, P. A. Pezard, and P. Gouze (2014), Electrical and flow properties of highly heterogeneous carbonate rocks, AAPG Bull.,
98(1), 49-66.

Gouze, P, Y. Melean, T. Le Borgne, M. Dentz, and J. Carrera (2008a), Non-Fickian dispersion in porous media explained by heterogeneous
microscale matrix diffusion, Water Resour. Res., 44, W11416, doi:10.1029/2007WR006690.

Gouze, P, T. Le Borgne, R. Leprovost, G. Lods, T. Poidras, and P. Pezard (2008b), Non-fickian dispersion in porous media: 1. Multiscale meas-
urements using single-well injection withdrawal tracer tests, Water Resour. Res., 44, W06426, doi:10.1029/2007WR006278.

Gouze, P., R. Leprovost, T. Poidras, T. L. Borgne, G. Lods, and P. A. Pezard (2009), Cofis and telog: New downhole taols for characterizing dis-
persion processes in aquifers by single-well injection-withdrawal tracer tests, C. R. Geosci., 341(10-11), 965-975, doi:10.1016/
jcrte.2009.07.012.

Guibert, R, M. Nazarova, P. Horgue, G. Hamon, P. Creux, and G. Debenest (2015a), Computational permeability determination from pore-
scale imaging: Sample size, mesh and method sensitivities, Transp. Porous Media, 107, 641-656,

Guibert, R, P. Horgue, G. Debenest, and M. Quintard (2015b), A comparison of various methads for the numerical evaluation of porous
media permeability tensors from pore-scale geometry, Math. Geosci., 1-19, doi:10.1007/511004-015-9587-9.

Haggerty, R., and 5. M. Gorelick (1995), Multiple-rate mass transfer for modeling diffusion and surface reactions in media with pore-scale
heterogeneity, Water Resour. Res., 31, 2383-2400.

Haggerty, R., 5. A. McKenna, and L. C. Meigs (2000), On the late time behavior of tracer test breakthrough curves, Water Resour. Res., 36,
3467-3479.

Haggerty, R, W. S. Flemin, L. C. Meigs, and S. A. McKenna (2001), Tracer tests in a fractured dolomite 2. Analysis of mass transfer in single-
well injection-withdrawal tests, Water Resour. Res., 37, 1129-1142.

Haggerty, R., C. F. Harvey, C. F. von Schwerin, and L. C. Meigs (2004), What controls the apparent timescale of solute mass transfer in aqui-
fers and soils? A comparison of experimental results, Water Resour. Res., 40, W01510, doi:10.1029/2002WR001716.

Hebert, V., C. Garing, L. Luquat, P. A. Pezard, and P. Gouze (2015), Multiscale X-ray tomography analysis of carbonate porosity, Geol. Soc.
Lon. Spec. Pub.,, 406(1), 61-79, doi:10.1144/SP406.12.

Holzner, M., M. Willmann, V. Morales, and M. Dentz (2015), Intermittent Lagrangian velocities and accelerations in three-dimensional
porous medium flow, Phys. Rev. E, 92, 013015.

Hoshen, J.,, and R. Kopelman (1976), Percolation and cluster distribution. I. Custer labeling technique and critical concentration algorithm,
Phys. Rev. B Solid State, 14(8), 3438-3445.

lassonov, P., T. Gebrenegus, and M. Tuller (2009), Segmentation of X-ray computed tomography images of porous materials: A crucial step
for characterization and quantitative analysis of pore structures, Water Resour. Res., 45, W09415, doi:10.1029/2009WR008087.

Kandhai, D,, D. Hlushkou, A. G. Hoekstra, P. M. A. Sloot, H. Van As, and U. Tallarek (2002), Influence of stagnant zones on transient and
asymptotic dispersion in macroscopically homogeneous porous media, Phys. Rev. Lett., 88, 234501-1-234501-4, doi:10.1103/
PhysRevLett.88.234501.

Kang, P., P. de Anna, J. Nunes, B. Bijeljic, M. Blunt, and R. Juanes (2014), Pore-scale intermittent velocity structure underpinning anomalous
transport through 3-D porous media, Geophys. Res. Lett,, 41, 6184-6190, doi:10.1002/2014GL061475.

Le Borgne, T., D. Bolster, M. Dentz, P. de Anna, and A. Tartakosky (2011), Effective pore-scale dispersion upscaling with a correlated continu-
ous time random walk approach, Water Resour. Res., 47, W12538, doi:10.1029/2011WR010457.

Levy, M., and B. Berkowitz (2003), Measurement and analysis of non-Fickian dispersion in heterogeneous porous media, J. Contam. Hydrol.,
64(3-4), 203226, doi:10.1016/S0169-7722(02)00204-8,

Maier, R. S., M. R. Schure, J. P. Gage, and J. D. Seymour (2008), Sensitivity of pore-scale dispersion to the construction of random bead
packs, Water Resour. Res., 44, W06503, doi:10.1029/2006WR005577.

Mangane, P. O, P. Gouze, and L. Luquot (2013), Permeability impairment of a limestone reservoir triggered by heterogeneous dissolution
and particles migration during co2-rich injection, Geophys. Res. Lett., 40, 4614-4619, doi:10.1002/grl.50595.

GJETVAJ ET AL. ANOMALOUS TRANSPORT IN BEREA SANDSTONE 20



112 Chapter 5 Pore-scale modeling of anomalous transport

QAG U Water Resources Research T T

Margolin, G., M. Dentz, and B. Berkowitz (2003), Continuous time random walk and multirate mass transfer modeling of sorption, Chem.
Phys., 295, 71-80.

Meigs, L. C,, and R. L. Beauheim (2001), Tracer tests in a fractured dolomite: 1. Experimental design and abserved tracer recoveries, Water
Resour. Res., 37, 1113-1128, doi:10.1029/2000WR900335.

Moroni, M., N. Kleinfelter, and J. H. Cushman (2007), Analysis of dispersion in porous media via matched-index particle tracking velocimetry
experiments, Adv. Water Resour., 30(1), 1-15, doi:10.1016/j.advwatres.2006.02.005.

Mostaghimi, P,, B. Bijeljic, and M. Blunt (2012), Simulation of flow and dispersion on pore-space images, Math. Geosci,, 17, 1131-1141.

Neuman, S. P., and D. M. Tartakovsky (2008), Perspective on theories of anomalous transport in heterogeneous media, Adv. Water Resour.,
32,670-680, doi:10.1016/j.advwatres.2008.08.005.

Noetinger, B, and T. Estebenet (2000), Up-scaling of double porosity fractured media using continuous-time random walks metheds,
Transp. Porous Media, 39, 315-337.

@ren, P.-E.,, and S. Bakke (2003), Reconstruction of berea sandstone and pore-scale modelling of wettability effects, J. Pet. Sci. Eng., 39(3-4),
177-199, doi:10.1016/50920-4105(03)00062-7.

Ovaysi, S., and M. Piri (2011), Pore-scale modeling of dispersion in disordered porous media, J. Contam. Hydrol., 124, 68-81, doi:10.1016/
jjconhyd.2011.02.004.

Paganin, D,, T. E. Mayo, S. C. and Gureyey, P. R. Miller, and S. W. Wilkins (2002), Simultaneous phase and amplitude extraction from a single
defocused image of a homogeneous object, J. Microsc., 206, 33-40.

Patankar, S. V. (1980), Numerical Heat Transfer and Fluid Flow, Hemisphere Publ. Corp.

Pisani, L. (2011), Simple expression for the tortuosity of porous media, Transp. Porous Media, 88, 193-203.

Russian, A., P. Gouze, M. Dentz, and A. Gringarten (2015), Multi-continuum approach to modelling shale gas extraction, Transp. Porous
Media, 109, 109-130, doi:10.1007/511242-015-0504-y.

Sanchez, S, P. E. Ahlberg, K. M. Trinajstic, A. Mirone, and P. Tafforeau (2012), Three dimensional synchrotron virtual palechistology: A new
insight into the world of fossil bone microstructures, Microsc. Microanal., 18, 1095-1105.

Scheibe, T. D., W. A. Perkins, M. C. Richmond, M. I. McKinley, P. D. J. Romero-Gomez, M. Qostrom, T. W. Wietsma, J. A. Serkowski, and
J. M. Zachara (2015), Pore-scale and multiscale numerical simulation of flow and transport in a laboratory-scale column, Water Resour.
Res., 57, 1023-1035, doi:10.1002/2014WR0Q15959.

Scheven, U. M., D. Verganelakis, R. Harris, M. L. Johns, and L. F. Gladden (2005), Quantitative nuclear magnetic resonance measurements of
preasymptotic dispersion in flow through porous media, Phys. Fluids, 17(11), 214504-1-214504-5, doi:10.1063/1.2131871.

Schldter, 5., A. Sheppard, K. Brown, and D. Wildenschild (2014), Image processing of multiphase images obtained via X-ray microtomogra-
phy: A review, Water Resour. Res., 50, 3615-3639, doi:10.1002/2014WR015256.

Schumer, R. D, M. Benson, M. Meerschaert, and B. Baeumer (2003), Fractal mobile/immobile solute transport, Water Resour. Res., 39(10),
1296, doi:10.1029/2003WR002141.

Sen, P, and P. J. Basser (2005), Modeling diffusion in white matter in the brain: A composite porous medium, Magn. Reson. Imaging, 23,
215-220.

Shapiro, A. M. (2001), Effective matrix diffusion in kilometer-scale transport in fractured crystalline rock, Water Resour. Res., 37, 507-522,
doi:10.1029/2000WR900301.

Spirkovska, L. (1993), A summary of image segmentation techniques, technical report, National Aeronautics and Space Administration
(NASA) Technical Memorandum 104022, Ames Research Center, Moffett Field, Calif.

Tanino, Y., and M. J. Blunt (2012), Capillary trapping in sandstones and carbenates: Dependence on pore structure, Water Resour. Res., 48,
W08525, doi:10.1029/2011WR011712.

Taylor, S. G. (1953), Dispersion of soluble matter in solvent flowing slowly through a tube, Proc. R. Soc. London, Ser. A, 219, 186-203.

Weller, H., G. Tabor, H. Jasak, and C. Fureby (1998), A tensorial approach to computational continuum mechanics using object-oriented
techniques, J. Comput. Phys., 12, 620-631, doi:10.1063/1.168744.

Yoon, H., Q. Kang, and A. J. Valocchi (2015), Lattice Boltzmann-based approaches for pore-scale reactive transport, Rev. Mineral. Geochem.,
80,393-431.

Zhou, Q, H-H. Liu, F. J. Molz, Y. Zhang, and G. S. Bodvarsson (2007), Field-scale effective matrix diffusion coefficient for fractured rock:
Results from literature survey, J. Contam. Hydrol., 93(1-4), 161-187, doi:10.1016/j,jconhyd.2007.02.002.

GJETVAJ ET AL. ANOMALOUS TRANSPORT IN BEREA SANDSTONE 21



113

5.4 Summary and conclusion

In this chapter we presented transport simulations performed directly on the XRMT images. Image
processing and flow field calculations necessary to calculate transport are explained earlier in Chapter 4.
The transport is simulated with a stochastic particle tracking method based on the random walk
approach; more precisely we used time domain random walk (TDRW) [Dentz et al., 2012].In the TDRW
distance that particle makes in each step is constant and stochasticity arises from different time needed
for the step and the direction. The constant step length makes it suitable to use in a discretized system
with complex structure.

Once again, mesh resolution proved to be an important factor. In transport simulations inadequate
mesh resolution lead to overestimating the anomalous transport and the error in the results appears to
increase with decreasing Peclet number values. Comparison between transport simulations including
only flow field heterogeneity and ones including both flow field heterogeneity and mobile-immobile
mass transfer emphasizes their concomitant control in the intermediary domain of the BTC tail while, as
expected, the mobile-immobile mass transfer control the late time behavior which is, as discussed in
section 3.3.3, difficult to tackle experimentally.

From XRMT images we cannot extract a lot of information regarding the microporosity (e.g.
tortuosity, percolation threshold). Actually only thing that can be estimated is its intrinsic porosity: the
quality of this estimation depends on the quality of the 3-phase segmentation procedure. Therefore we
performed a parametric analysis of the percolation threshold and effective diffusion on the BTC shape.
Increase of the percolation threshold at the lower values increases the particle resident time in the
immobile domain, while at higher values it significantly decreases the fraction of immobile domain
accessible to the particles which results in shorter resident time and decreased tailing of the BTC.
Conversely, the decrease of the effective diffusion causes increase in the particle residence time in the
immobile domain increasing the BTC tailing.

An interesting point evidenced by the result analysis is that if one assumes that the properties of
the microporous zone are positively correlated with intrinsic porosity, heterogeneous distribution of the
microporous zone can be substituted with its equivalent homogeneous distribution. In this case the
single diffusion coefficient for the microporosity must be equal to the harmonic mean of the
heterogeneously distributed microporosity.

Finally we proposed an upscaled 1D model based on the continuous time domain random walk
approach able to capture behavior caused by both flow field heterogeneity and mobile-immobile mass
transfer. This is achieved by having two different power law distributions for representing transit times
in mobile and immobile domain.






Chapter 6
Simulations of flow in both the macroporosity and the microporosity:
the Darcy-Brinkman approach

6.1 Introduction

Numerical calculations of a flow field at pore scale are usually based on solving the Navier-Stokes
equation (see 4.3) on two-phase segmented images. However in Chapters 4 and 5, we already showed
that the microporosity cannot be neglected and demonstrated its influence on the anomalous transport
behavior. However, in the first article (section 5.3), advection in the microporous phase was neglected,
assuming that transport in this zone is completely driven by diffusion; this simplification was based on
assumption that the velocities in this region is an order or two lower than in the macroporous zone.

The emphasis of this chapter is on the flow calculation in the microporous zone. There is no
question that flow in the microporous zone has significant effect in the porous medium with high
microporosity content (e.g. carbonates...). However, the idea is to prove importance of inclusion of the
microporous phase into the flow calculations even if the microporous domain is only a fraction of the
total medium volume. Problem of the flow calculations in the microporous domain could be solved by
using high resolution X-ray microtomography images which can capture pore geometry even in such low
pore size regions. Performing flow simulations with such high spatial resolution for volume
corresponding to the macroporosity REV far beyond the actual computational possibilities, but it could
be used for characterizing the “macroscopic” diffusivity for small volumes of the microporous phase. Yet,
we believe that anyway it would be difficult (highly costly in term of computational effort) to evaluate
the variability of the microporous phase at the scale of the macroporosity REV. Accordingly, we use here
the same Berea sandstone images which were segmented by three phase segmentation (see section
4.2.2). The percolation clusters were determined as in section 4.2.3 with the assumption that
microporosity is always percolating (i.e. percolating threshold in the microporous zone is 0). Note that
this assumption can be easily avoided, but in this preliminary work the objective is to evaluate the
maximum difference in terms of permeability and flow distribution between the two models.

In the present chapter, the used approach is based on the Darcy-Brinkman equation that allows
solving Stokes equation in the macroporosity and an equivalent to Darcy flow in the microporous zone.
In this approach, a further assumption has to be made which consists in using an heuristic model
relating the permeability to the porosity in the microporous material. The Darcy-Brinkman solver
compatible with OpenFOAM software package was developed by Cyprien Soulaine from Stanford
University. Results are presented in form of a paper which is currently in preparation for submission.

6.2 Article 2 - Effect of microporosity on pore-scale simulation of flow using
X-ray microtomography images
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Abstract

This work assesses the effect of microporosity on the fluid low properties of a Berea sandstone using direct
pore-scale simulations. The pore structure of a rock sample is obtained using high resolution X-ray microto-
mography (3.16% zm? /voxel). Tmage analysis reveals that about 2% of the connected porosity corresponds
to subvoxel porosity, or microporosity. The classic approach based on Stokes equations to solve the flow
on three-dimensionnal images has been modified to incorporate the identified microporous regions. Instead,
Darcy-Brinkman equations are used to model a Darcean flow in the microporous zone and a Stokes flow
in the macroporosity. Simulation results are in good agreement with experimental core measurements. A

3 can be reasonably considered as a Representative Elementary Volume large enough to contain

cube of 1 mm
all the heterogeneities of the Berea sandstone sample considered in the present study.Pore-scale simulation,

Darcy-Brinkman, microporosity, Berea sandstone, X-ray microtomography

1. Introduction

The rapid advances in three-dimensional (3D) pore-scale imaging and computation have driven a strong
interest in digital rock physics, with application to reservoir engineering, subsurface hydrology, and CO,
sequestration. Specifically, the recent improvements in X-ray microtomography (micro-CT) permits 3D
imaging of the pore structure of a rock samples of a few cubic millimeters with a resolution up to the
micron (images of 2000% voxels with a voxel size of 1 micrometer) [29, 6]. Simultaneously, Computational
Fluid Dynamic (CFD) has invested a great deal of effort in developing flexible and highly efficient software
platforms for numerical simulation of complex flows that can handle very large grids. Combined with
modern High-Performance Computing techniques, flow simulators can now handle up to billion cells on
highly complex geometries [27]. Tt is now quite common to solve the Stokes equations using realistic 3D
pore-scale geometry directly computed from micro-CT images to obtain the local flow distribution, v. The

computation of pore scale flow has become a routine step to investigate flow and transport phenomena in
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porous media and to evaluate effective parameters such as the permeability tensor, K, of a Representative
Elementary Volume (REV) of a porous material [4, 18, 30, 19, 6, 21, 1, 2, 15].

However, some rocks such as carbonates contain a lot of heterogeneities distributed over multiple length
scales of characteristic size (much) smaller than the resolution of the micro-CT devices [4, 11, 16]. For rocks
that exhibit a multi-modal pore-size distribution, the segmentation of the raw images is a crucial step that
can lead to completely different pore space geometries depending on the method used. The use of multi-
thresholding segmentation algorithms allows to differentiate the voxels occupied by solid minerals only, those
identified as void space only and the remaining ones defined as microporous (voxels composed of both solid
and voids). Not taking into account the microporosity can lead to a reduction of the actual pore space or a
loss of connectivities as illustrated in Figure 1. In this figure, red and blue regions correspond to zones that
are unambiguously identified as void and solid mineral phases respectively, while the purple and green areas
denote microporous zones. For instance, the flow resistance in this specific throat will be overestimated if
during the segmentation process the purple region is identified as solid phase and thus the flow rate will
be higher in the adjacent pore throats, resulting in a complete redistribution of the overall preferential flow
pathways. Furthermore, microporous material can act as connecting macropores such as illustrated by the
green region in figure 1. We see clearly that in such configurations, an ill-processed segmentation of the raw
image can artificially remove connectivities and thus yield in an erroneous local velocity distribution, v, and
hence result to a totally wrong estimate of the sample permeability. Actually, this situation is not restricted
to carbonates. For instance, it has been demonstrated that Berea sandstones may contain between 2 and
10% of microporosity [8, 26].

Regarding tracer transport, it is now well-accepted that the diffusion in the microporous matrix can
partly explained the non-Fickian dispersion (see Gouze et al. and reference therein [12]). Actually, all the
works published so far assume that the transport mechanism in the microporosity is driven by diffusion
only. The validity of this assumption however can be put in doubt if the microporous region is located
in a percolating pathway, as illustrated by the green region in figure 1. In such a case, convection in the
microporosity might play an important role and should be included into the modeling fpr tracer transport.

The aim of this study is to modify the classic approaches used to obtain the flow through a pore space
(i.e. by directly solving Stokes equations or using a Lattice Boltzmann Method) in order to incorporate
the microporous fraction of porous media, which is defined here as the fraction of material containing pores
of size smaller than the voxel size. For that we develop an hybrid solver that solves Stokes equations in

the regions identified as void domain and Darcy’s law in the microporous domain. The Darcy-Brinkman
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micro-porous zone
on a percolating pathway

micro-porous zone
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void space solid minerals

Figure 1: Schematic of a micro-CT rock sample image where red and blue regions are identified as solid minerals phase and
void spaces respectively, and green and purple areas denote microporous regions.

approach seems appropriate for the incorporation of microporosity in the flow calculation of a bi-modal
porosity medium [3, 20]. A particular attention must be paid to the estimate of the permeability of the
micro-porous domain noted Knicro. In absence of external knowledge of the geometrical structure of this
sub-voxel porosity coming from higher image resolution for example, kmicro has to be modeled with the only
information provided by the imaging process. At least, it should at least be a function of the image inputs,
namely the microporosity and image resolution.

In this paper, we first describe the investigated rock sample, the imaging method and the data processing
used to determine the different components (i.e. the void, the solid and the microporous phase). Then we
present the Darcy-Brinkman solver and the heuristic law used to estimate kpiero from the porosity of the
micro-porous phase evaluated from the X-ray microtomography images. Finally, the results of simulations
performed on 8 sub-volumes of the scanned rock sample are presented and the impact of the microporosity

on the distribution of local velocity and permeability estimate is discussed.

2. Materials and methods

This section introduces the X-ray microtomography technique used to scan the Berea sandstone sample,
the mathematical model developed to obtain the velocity distribution in the resulting void space and the

simulations setup.
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Figure 2: Pore throat size distribution of the studied Berea standstone determined with mercury injection test (presented as
the differential intrusion). The limit pore size separating macropores and micropores in this study (3.16 microns) is displayed
as a dashed line.

2.1. X-ray microtomography

X-ray microtomography is a non-invasive imaging technique reconstructing a 3D image of the studied
object from a set of two-dimensional (2D) radiographs of the X-ray attenuation properties of the materials
forming the object. Each voxel value in the final volume corresponds to a quantitative measurement of
linear absorption coefficients, which for a porous medium depends on the solid matrix composition and the

porosity.

Sample

The studied rock sample is a Berea sandstone cored into a block presenting porosity and permeability
values around 0.20 and 500 mD respectively. A mercury intrusion porosimetry test was conducted on a sample
cored aside the scanned one with an AutoPore IV 9500 V1.06 from Micromeritics Instrument Corporation.
It provided a porosity value of 19.41% and a mean pore entry (throat) diameter of 11.7 pm. The curve of the
differential intrusion, which can be assimilated to the pore throat size distribution, is displayed in Figure 2.
The limit size separating the pores that we refer to as macropores (diameter above 3.16 um) and micropores
(diameter below 3.16 pm) is also displayed on the graph. The Figure suggests that the studied sample may

comprise a fairly low fraction of microporous material.
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Figure 3: a) Cross section through the 3D volume. b) X-ray attenuation histogram for the entire sample

Data acquisition

The sample of 6 mm diameter and 6 mm length was imaged at the BM5 beamline of the European Syn-
chrotron Radiation Facility (ESRF), Grenoble, France. Synchrotrons provide very high flux of monochro-
matic white beam and collimated x-rays, resulting in high quality low-noise images at micron/sub-micron
resolution. A total of 3495 projections of the sample were taken every 0.051 degree for an angle ranging
from 0 to 180 degrees using an exposure time of 0.1s and an X-ray beam energy of 30 keV. The voxel size
was 3.16 pm?.

The radiographs were corrected for the variation of the X-ray beam intensity and background noise and
then the 3D volume of 4667 x 2130x 2099 voxels was reconstructed from the radiographs using a single distance
phase retrieval algorithm |23, 25]. Figure 3a presents a numerically computed cross-section through the 3D
volume. The black colour denotes the macroporosity phase (void only), lighter grey denotes the solid matrix,
and the intermediate grey levels denotes the microporous phase (voxels composed of both solid and void).
The X-ray attenuation histogram for the entire sample is displayed in Figure 3b. It shows an intermediate

attenuation range between the pore and the solid peaks that can be associated to the microporous phase.

Data processing

In order to quantify the volume fraction and distribution of each phase of interest, the grey-scale images
require to be segmented so that each phase is identified by a single integer. Since the grey level histogram
(Figure 3b) does not show well-separated peaks characterizing the pore phase and the mineral phase, a three-

phase segmentation is required in order to identify the microporous phase in addition to the solid matrix
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Figure 4: Three-dimensionnal representation of the connected macroporosity and microporous phase on a cube of 300 x 300 x 300
voxels (left) and close-up on macropores only connected through microporous material (right)

and the macroporosity. It was done using the iterative growing-region algorithm described in Noiriel et al.
[22] with two sets of thresholds values. A one voxel erosion was performed when distinguishing between
voids (macroporosity) and the rest of the sample in order to remove edges artifacts that would then be
incorporated in the microporous phase. The fraction of the different phases are 79.45, 18.15 and 2.4 %
for the solid, macroporosity and microporous phase respectively. The microporosity has a mean intrinsic
porosity of 49.4 %, leading to a total porosity of 19.36 % for the entire sample.

Six cubic sub-volumes of 300 x 300 x 300 voxels (0.948% mm?) and twoof 350 x 350 x 350 voxels (1.11% mm?)
were extracted from different locations within the 3D image representing the entire sample. For each sub-
volume, the connectivity of the macroporosity and microporous phase was investigated using a modified
version of the Hoshen-Kopelman algorithm [17]. The fractions of the connected macropores and of the
total connected porous network, considering that the micropores comprised in the connected part of the
microporous phase are also well connected, are detailed in Table 2 for all sub-volumes. The connected
porosity (macropores and micropores) ranges from 17.9 to 21.0%, with a mean value around 19.8%. A close
look at the distribution of the connected phases within the sub-volumes indicates that some macropores are

only connected through microporous material, as shown in Figure 4 .
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2.2. Mathematical model

Once the image analysis process is done, the solid structure is mapped by the microporosity field, £myicro-
It corresponds to the void fraction in each voxel and varies from 0 to 1. If eniero = 1 then the voxel
contains void only and the flow is governed by a Stokes problem. On the contrary, if &picro = 0 then the
cell is entirely composed of solid minerals and there is no flow. Intermediate values, i.e. 0 < £picro < 1,
denote microporous regions where the characteristic length is below the voxel size. In these regions, the flow
resistance with regard to the microporous solid structure is modelled by a Darcy’s law. To simulate the flow

in an volume that includes microporosity (or microporous regions), two different approaches exist:

1. The two domains approach, where two domains with different physics (namely Stokes and Darcy
models) are considered and communicate through coupled boundary conditions. For this approach the
type of conditions one should impose at the interface between the free fluid and the porous part is still
an open debate. Most of the time the effective conditions experimentally proposed by Beavers and
Joseph [5] are used to simulate the pressure jump between the two domains.

2. The single domain approach for which it is assumed that a single equation, the Darcy-Brinkman
equation 7], holds in both the free flow and the porous medium domains. The model arises from
the integration of Stokes equations over a control volume (here, a voxel) in presence of solid material.
Unlike the first approach, it does not involve coupling conditions. Indeed, the use of a single equation
makes stresses and velocities continuous within the entire domain and the transition across a transition
zone is denoted by spatial variations of properties, such as permeability and porosity. With such a
formulation, the physics at the interface between the domains is an approximation of the reality. It
has been shown from upscaling considerations, however, that this approximation can be considered as

valid for moderate and low permeability [13].

In this work we adopt the second approach, which we estimate to be more convenient and flexible. As
the microporosity field, £micro, denotes the average amount of void in each voxel, one can define the voxel

averaged pressure and velocity fields, p and v as,

1 1
V= / vdV and p= / pdV. (1)
Vi 1%

Vvoxel voxel

voxel voxel

These two unknown variables satisfy the locally averaged Stokes equations [28],

V. =0, (2)
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and
I

Emicro

0= *Vﬁ = VQ‘—,. - !uk;lilcro‘_r’ (3)

where the latest term of the right-hand side of Eq (3) is a drag force that represents the momentum exchange
term between the fluid and the solid phase, i.e., the Darcy resistance term. It has meaning only if a voxel
contains solid minerals. Conversely, if the control volume is occupied by fluid only, there is no friction
of the fluid against any solid structure, and this term tends towards zero. The drag force coefficient,
kmicro, Tepresents the permeability of the microporous regions, hereby denoted as micropermeability. It

-1

micro¥ vanishes in the free zone and is dominant

is a function of eniero such that the resistance flow term pk
in the microporous medium. With such considerations the locally averaged Stokes momentum equation, Eq

(3), tends towards:
e Stokes when ;.o = 1. In that case, v = v,
e Darcy when 0 < 2500 < 1. In that case, the resistance flow term is dominant and v = ~"‘—“‘1&Vﬁ.

To summarize: below a certain resolution which is imposed by the image acquisition set-up and sample
size, the solid structure is modelled by a microporous medium. Yet, the estimation of the micropermeability
(permeability of the microporous regions) is not trivial and very likely to be rock-dependent. We can imagine
a multi-scale approach where a very high resolution imaging of the microporosity allows an estimate of its
local micropermeability. However, this kind of approach is costly and requires advanced equipment such
as a laboratory nano-CT. Instead, for a given voxel, we can use the information of the image acquisition
process, namely its size and the volume fraction of void in this voxel to estimate the microporosity. The
Kozeny-Carman equation, )

_ 18001~ cuin)? "

micro

-1
kmicro - d? &

-1

seems an appropriate candidate since k ;..

— oo for very low values of microporosity (solid only) and
k;ilcm =0 in the free zone. In Eq (4), d represents a characteristic length which is usually associated to the
grain size. In absence of satisfactory values, d is assimilated to the voxel size. This will clearly over-evaluate
the characteristic length and therefore the estimate of micropermeability values. Except perhaps in the case
where the microporous region are located on a percolating pathway (green region in Figure 1), the main
contribution of the permeability, K, comes from the macropores that are explicitly described in this approach

(blue regions in Figure 1). Therefore, one can believe that a gross approximation of the micropermeability will

not have a strong impact on the overall permeability tensor. It is worth noting that the two asymptotic values
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-1
micro

= 0mD~" (fully permeable) and k]

micro

of the micropermeability, k = comD™! (impermeable) define
bounding configurations regardless the microporosity/micropermeability relationship, kpicro = f(Emicro) and
therefore, define bounding values for the permeability, K.

Porosity and permeability can be deduced from these simulations by an integration of the results over

the sample volume, V. The porosity of the medium reads,

1
€= V .L EmicrodV) (5)

and the components of the absolute permeability tensor in the j-axis read,

APN' 1 L
Kj=un (T)] (V/VvidV) with i = z,y, z, (6)

where (%)j is the pressure loss in the j direction. To obtain the full tensor, three simulations are required:

j =ux,y, 2z In the present study, however, only the main component in z-axis, K., is investigated.

2.3. Numerical implementation and simulation setup

The mathematical model formed by Eq (2) and (3) can be easily solved in the framework of the Semi-
Implicit Method for Pressure Linked Equations (SIMPLE) algorithm [24]. This algorithm is an iterative
procedure for solving steady-state equations for velocity and pressure. To improve the stability of the
computation, it requires user-defined under-relaxation factors, oy, and ay. The first one limits the amount
which the pressure changes from one iteration to the next by modifying the pressure field directly. The second
one limits the amount of velocity variation by under-relaxating the solution matrix prior to solving for the
velocity field. This algorithm is embedded in most CFD softwares, so the effort to implement the model
is relatively minimal. In the present study the finite volume toolbox OpenFOAM®(www.openfoam.org)
is used. The SIMPLE solver of this package, simpleFoam, which has demonstrated a good scalability for
parallel computing of single phase flow in a pore space [15], is customized to incorporate the flow resistance

-1
micro

term, pk v, into the momentum equation. For a better stability, this term is treated as an implicit source
term adding its contribution into the diagonal coefficients of the velocity matrix.

The computational domain is based on the X-ray microtomography segmented image, cropped as a cube
of volume V. In order to save computational time and memory, the voxels that are identified as containing

solid only, i.e. £micro = 0, are not represented and a no-slip condition at the solid/fluid boundary is speci-

fied. The boundary conditions at the edges of the computational domain are set to mimic an experimental
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permeameter: a pressure difference, AP,, is imposed on the inlet and outlet sides of the sample, and no-slip
conditions are specified on the other faces of the samples [15, 14]. To specify these inlet and outlet boundary
conditions, the computational domain is complemented with two manifolds of 21 gm thick. Since there is no

flow resistance in these manifolds, the pressure drop in the boundary regions can be neglected compared with

AP,

the pressure loss through the porous structure. Hence, the overall pressure drop in the rock sample is 5=,

where L, denotes the length of the sample in the z direction without the manifolds. The mean velocity used
to estimate the permeability with Eq (6) is computed excluding the velocity distribution in the manifolds.
The gridding process is a major step considering its strong influence on theresults accuracy. Former
studies have based their computational grids directly on the image voxels, i.e., one cell of the simulation
grid corresponds to one voxel of the micro-CT image [4, 21|. However, because a porous medium skeleton
consists in numerous narrow throats, one has first to ensure that the smallest throat of the domain contains
enough cells in order to get an accurate flow profile in this capillary. Guibert et al. [15] performed mesh
convergence analysis to investigate the influence of the size of the mesh on the simulation results. They
reported that a computational grid made of the image voxels can exhibit up to 50 % relative error on the
computed permeability. Table 1 summarizes the mesh convergence study we performed on a 150% voxels
sub-volume of the scanned Berea sandstone sample. The sub-volume does not contain any microporous
regions. In this study, the image voxels were divided by n® with n varying from 1 to 7. Without refinement,
a computational grid based on the image voxels only leads to up to 22 % error in the absolute permeability
assessment. This preliminary study leads us to choose simulation grids consisting of cells 3% finer than the

image voxels, which offers a good compromise between accuracy (less than 5% error) and simulation cost.

| n |t [2]3]4]5]6][]7]
K. (mD) 736 | 657 | 630 | 617 | 610 | 605 | 602
standard deviation (%) | 22.4 | 9.1 | 4.7 | 25 | 1.3 [ 05| 0O

Table 1: Mesh convergence study performed on a 150% voxels sub-volume of the scanned Berea sandstone sample

Computational domains are decomposed into 256 subdomains and simulations are carried out in parallel
with 256 cores on Stanford Center for Computational Earth & Environnemental Sciences cluster, 148 com-
pute nodes, Dual E5-2660 Intel cpus (8 cores, 2.2GHz 8.0GT/s 20mb 95W DDR3-1600), 64 GB memory.
Convergence is considered reached when the residuals go below 1075 The relaxation factors ap and ay
are set to 0.2 and 0.9 respectively. Indeed, for Stokes problem the simulations require up to twice as less
iterations to converge to the solution with ay = 0.9 as with the usual recommended value oy = 0.8. In

every cases, simulations converge to the solution within 2 hours.

10
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3. Results and discussion

This section presents the simulation results for the different sub-volumes. A first study investigates the
influence of sub-voxel porosity on the pore-scale simulation results and shows that even with only 2% of
microporosity, the prediction can be far from the expected value if the image is not properly segmented and
the sub-voxel porosity is not accounted for in the flow modeling. In a second part, the simulation results
of the single phase flow in the 8 sub-volumes of the Berea sandstone sample with distributed microporosity

throughout the domain are presented and discussed.

3.1. Influence of sub-voxel porosity

To investigate the influence of microporosity on pore-scale simulations, a sub-volume of the image, denoted
SubV0, was extracted and segmented into three different phases: void, solid and microporous. The connected
pore structure of this sub-volume corresponds to 19.7% of macroporosity and 2.6% of microporosity. Regions
identified as microporous are colored in red in Figure 5a. We observe that in some areas, according to the
value of microporosity, £micro, some pathways can switch from percolating to non-percolating. In this part,

it is assumed that the value of ;.0 is the same for all the voxels identified as microporous phase.

Z-Axis (x 1045

500 gog

Figure 5: Map of the microporous regions for subsample SubV0 (blue=void, red=microporosity).

Several simulations are performed for &,cro ranging from 0.001 to 1. For these two extreme values, the

permeability is evaluated to 702 mD and 1366 mD respectively. These two limit values of £p,;¢;o denote specific

11



127

situations where the microporous phase is identified as fully solid (£micro = 0.001) or fully void (micro = 1).

-1 _ —1
iero = 0 or comD™* for these two

Because of the asymptotic values of the associated micropermeability, k
bounding cases (here, co stands for 10" mD~!, which ensures that there is no flow in the microporous zone
when enyicro = 0.001), the resulting velocity distributions, and thus permeability, are independent of the
relation that relates microporosity and micropermeability. Therefore, the discussion regarding the validity
of Eq (4) does not apply for these cases.

Table 2 presents the computed permeability, K. , and porosity, ¢, of SubVO0 for different values of micro-
porosity. As expected, K. increases when pore throats size is larger, i.e. for higher value of microporosity.

The results clearly show that according to the segmentation process, the computed absolute permeability

can be up to twice as highor low as the actual value.

[ o J0001] 025 ] 05 | 075 ] 09 | 1 ]
kmicro(mD) | 0 2 27 | 365 | 3944 | oo

< 0.197 | 0.204 | 0.210 | 0.216 | 0.220 | 0.223
K..(mD) | 702 | 798 | 839 | 950 | 1168 | 1366

Table 2: Summary of simulation results for different microporosity values. Micropermeability, kmicro, is estimated with Eq (4).

The Probability Density Functions (PDFs) of the normalized velocity distribution, are plotted

[¥]
| & [y vdv]’
for the different value of £yicro in Figure 6. In all cases, 99 % of the cells contains velocities up to twice the
superficial mean velocity and the PDFs present a quasi exponential decay remminescent of recent numerical
and experimental works [10, 9]. About 0.9% contains velocity between 2 and 4 times the mean velocity.
The PDFs are shifted towards the right when reducing the microporosity value. Below a certain threshold,
here close to £yicro = 0.75, the PDFs become superimposed. This suggests that for simulations above this
value (Emicro from 0.75 to 1), the presence or absence of microporous regions significantly changes the flow
pathways. The flow resistance in some area becomes so important that it locally redistributes the flow,
favoring other pores. In contrary, for simulations with &,ico below 0.75, the flow pathways are always the

same, regardless the microporosity value. In such cases, the magnitude of the velocity field increases with the

reduction of the pore-space, as expected. The velocity profiles plotted in Figure 7 illustrate this situation.

3.2. Simulation results for distributed microporosity

The situation presented so far where the value of sub-voxel porosity is the same throughout the entire
rock sample is a bit artificial and only aimed to emphasize that if the length scale below the image resolution

are not considered into the modeling, the velocity distribution obtained by pore-scale simulation can be

12
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1.00E+01
e MCTOPOrosity = 1
microporosity = 0.9
1.00E+00 & == microporosity =0.75
microporosity =0.5
s MiCroporosity =0.25
1.00E-01 = microporosity =0.001
5 1.00E-02
o
1.00E-03
1.00E-04
1.00E-05 .

0 1 2 3 4 5 6 7 8 9 10

normalized velocity magnitude

Figure 6: Plot of the Probability Density Functions of the normalized velocity distribution for £y,icre ranging from 0 to 1.

totally wrong. In general, the microporosity has values heterogeneously distributed in the rock. In this
section, the microporosity domain, £cr0, 18 defined as a distribution of porosity values, and subsequently
permeability values using equation 4, obtained from the distribution of grey level in the micro-porous phase
(see an example in Figure 8a). The velocity distributions and permeability of the 8 sub-volumes is computed
according to the procedure described in Section 2. The computational grid for the 6 cubes of 300 x 300 x 300
voxels and for the 2 cubes of 350 x 350 x 350 voxels contains approximately 220 x 10% and 330 x 10 cells
respectively.

Figures 8b and 8c display the magnitude velocity distribution and the pressure field in the void space of
a 300 x 300 x 300 voxels sub-volume. These simulation results are then volume averaged following equation
6 to deduce the permeability of the different sub-volumes. Table 3 summarizes the simulation results for
the different investigated sub-volumes. The calculated porosity is 0.20 + 0.02, as measured in laboratory on
the Berea sandstone rock sample. Computed permeabilities range from 518 mD to 858 mD, and the mean

value of the 8 simulations is 692mD. These results are in good agreement with the 500 mD given by core

measurements.
| Sample SubV1 | SubV2 [ SubV3 | SubV4 [ SubVs | SubV6 | SubV7 | SubVs8 |
resolution 300 x 300 x 300 350 x 350 x 350
IS5 0.210 0.208 0.197 0.199 0.193 0.202 0.197 0.199
K., (mD) 858 848 785 518 534 855 659 835

Table 3: Values of porosity and permeability computed for the different sub-volumes.

13
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Figure 7: Plot of the velocity distribution for different sub-voxel porosity values: a) emicro = 1, b) Emicro = 0.9, b) emicro = 0.5,
d) Emicro =~ 0.
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Figure 8 Plot of the simulation results for a 300 x 300 x 300 voxels sub-volume. @) microporosity distribution, b) velocity
distribution, ¢) pressure field.
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The Probability Density Functions of the normalized velocity distribution for the different sub-volumes
are plotted in Figure 9. The PDFs display similar trend for all simulations and 99 % of the cells contains
velocities up to X times the superficial mean velocity. These results confirm that for this Berea sandstone a
cube of 1 mm? can be reasonably considered as a Representative Elementary Volume large enough to contain

all the heterogeneities of the porous medium.

— SubV2_dist
= SubV3_dist
0.1 Subvs drst
— SubV6_dist
— Subv8_dist
0.01 SubV1l dist
Subv12_dist

0.001

0.0001

0.00001

0.000001

Figure 9: Probability Density Functions of the velocity distribution for the different sub-volumes.

4. Conclusion

With the improvement of imaging techniques and simulation capabilities, a recent trend tends to use
pore-scale simulations as an alternative to lab measurements. The foundation of these simulations is an high
fidelity representation of the solid skeleton. However, because of the multiple length scale nature of porous
media, some structures are much smaller than the image resolution and can not be explicitly represented
in the image. In this paper, we have proposed a general framework based on Darcy-Brinkman equations to
incorporate this sub-voxel porosity into pore-scale simulations.

Simulations of flow in a Berea sandstone have shown that even with only 2% of microporous regions,
the sub-voxel porosity plays in important role in the flow distribution within the pore network with evident
consequences on the evaluation of the permeability tensor. In particular, some microporosity links macro-
pores and if it is not included properly into the modeling, connectivities can be artificially removed. This
has direct implications for tracer transport modeling since it suggests that the transport mechanism in the
sub-voxel porosity can be driven not only by diffusion but also by convection. Future works in this direction

will quantify this contribution.
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The extension of this framework to multiphase system is clearly an open question that needs to be

addressed if one wish to use pore-scale simulation to replace core-flooding experiments.
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6.3 Results - comparison with Navier-Stokes equation

In addition to the results presented in the previous section, Table 6.1 presents the comparison of
the permeability values between simulations performed on the exactly same (300° voxel) blocks with
Navier-Stokes and Darcy-Brinkman equations based approaches. For Navier-Stokes simulations the
microporous phase is added to the solid phase, to obtain 2-phase images. Permeability and porosity are
calculated by equations (4.4) and (4.2) respectively.

Peremability [mD] Porosity [%]
N-S D-B A [%] 2 phase 3 phase A [%]
SubV1 804 858 6.7 19.4 21 14.2
SubV2 802 848 5.7 19.3 20.8 14.0
SubV3 753 785 4.3 18.3 19.7 15.1
SubV4 485 518 6.8 18.2 19.9 16.1
SubV5 509 534 4.9 17.9 19.3 15.5

Table 6.1 Comparison in permeability and porosity between simulations performed on 2-phase (Navier-Stokes) and 3-
phase (Darcy-Brinkman) segmented images. All simulations are performed on exactly the same 300° voxel blocks, fine mesh.

Results reveal that the inclusion of the microporous phase into flow calculations leads to an
increase in permeability ranging from 4 to 7 %, while we expect errors from the flow simulations to be
lower than 1 %.

6.4 Summary and conclusion

Starting from 3-phase segmented XRMT images (see section 4.2.2) we performed 3D pore scale
flow simulations both in the macro and microporosity. The new solver developed in the OpenFOAM
framework has proved to be appropriate for simultaneously solving the flow in the macroporosity and
the microporous domain. The approach is based on the Darcy-Brinkman equation, which uses single
equation to calculate fluid velocity in both Stokes (i.e. macroporosity) and Darcy (i.e. microporosity)
domain. It consists of adding Darcy resistance term in Stokes equation, which represents the friction
between solid and void in the macroporous domain. In the macroporosity domain the Darcy resistance
term is null and we solve standard Stokes equation. The most important part of defining the Darcy
resistance term is in the determination of the permeability in the microporous domain. Since we have
no real data on the microporosity properties (see sections 4.2 and 5.2), the permeability is estimated by
Kozeny-Carman equation.

The aim of this work was to study the importance of the additional flow in the microporosity even
in rocks with low microporosity content such as Berea sandstone (2 %). The increase in permeability
due to the microporosity is around 5 % which is relatively small but still noticeable and we can anticipate
that the contribution of the flow in the microporosity should become a major process in rocks with
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higher fraction of microporosity such as altered sandstone and carbonates. Nevertheless it is worth
recalling that the Darcy-Brinkman simulation results hang on the porosity-permeability model used in
the microporous phase (here Kozeny-Carman relationship). The implications of using different models or
model parameterization (e.g. using power law ¢-k laws such as proposed by [Gouze and Luquot, 2011])
on the permeability and further on the solute transport will have to be tested in futures works. Also, as
mentioned in section 6.1, high resolution microtomography (with pixel size smaller than 500 nm for
instance) can be used to help determining appropriate ¢-k laws for the microporosity.






Chapter 7
General conclusions and prospective

In this thesis we presented new insights into the flow and transport in porous media obtained from
both laboratory experiments and pore-scale numerical modeling. The main focus was on the
simultaneous study of the flow field heterogeneity and multi-rate mass transfer as coexisting
mechanisms contributing to the control of anomalous transport.

Newly designed experimental bench allowed highly accurate measurements over several orders of
the concentration magnitude. Small experimental scale enabled to notice the significant density effect
occurring if the tracer concentration in the solute is 500 ppm or higher. The density effect may lead to
the misinterpretation of the experiment results, and it is important to notice that this concentration is
well below the ones used in standard tracer tests. Comparison between push-pull and flow-through
experiments performed on the glass beads and Berea sandstone indicated that solute concentration
should be measured over more than 5 orders of magnitude to capture late time behavior controlled by
the mobile-immobile mass transfer.

All together we found that 1) meeting all the requirements for obtaining reliable results (including
a good reproducibility) is quite difficult and 2) that the range of Peclet values that can be effectively
investigated with a sufficient definition of the BTC tail is quite restricted. Specifically, for the low Peclet
number situations generally encountered in natural system, tackling the power-law decrease
characteristic of the mobile-immobile mass transfers seems unrealistic at laboratory scale even with
state-of-the-art (optical) sensors such as used in this study, at least for the type of porous media studied
here.

Concerning pore-scale modeling, we presented some improvements on the understanding of the
mesh resolution influence on the local and macroscopic properties. To our knowledge we performed the
first transport simulations on segmented X-ray microtomography (XRMT) images containing a
microporous phase. Transport simulations in the microporous phase are enabled by the implementation
of the particle tracking method based on the random walk principles with constant displacement length
[Dentz et al., 2012]. Results emphasize that taking into account the microporosity in the transport
calculations is crucial even in porous media with low microporosity content such as Berea sandstone.
Further simulations must be made to conclude on the influence on the overall dispersion of assuming
diffusion only in the microporous phase or taking into account advection as well. Nevertheless, we
demonstrated the influence of the advection in the microporous phase on the bulk permeability and
velocity distribution using a solver based on the Darcy-Brinkman equation.

Transport behavior was up-scaled within a 1-D model based on the continuous time random walk
(CTRW) principles, which incorporates both flow field heterogeneity and mobile-immobile mass transfer
effects simultaneously. This new model was used to fit pore-scale simulations and we showed its
predictability in the case of the Berea sandstone.

Finally, we did not managed to make a formal link between the experimental data on Berea
sandstone and the transport simulations performed on the XRMT images of the same rock, but we made
some qualitative comparisons that proved that the implementation in the models of the mass transfer in
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the microporosity is compulsory for explaining the observations. Furthermore, we identified the
methodological requirements and necessary technologic upgrading that seem to be essential for
improving the experimental setup. Specifically, modifications must be made 1) to allow higher Peclet
flow rate in order to better investigate the flow velocity heterogeneity on the anomalous transport and
2) to even increase the concentration measurement accuracy and resolution.

Conversely, we believe that further developments should focus on a better characterization of the
microporosity and velocity distribution in order to relate the CTRW model parameters to measurable
properties. While the directions of research for characterizing the microporosity can be easily drawn
(e.g., measuring microporosity cluster volume, interface area, ...), improving the characterization of the
flow field with the objective of parameterizing CTRW is more challenging and will require probably to
analyze the velocity correlations in a Lagrangian framework.
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Introduction

Les milieux poreux sont tout autour de nous et de notre vie quotidienne. Comprendre les
mécanismes de transferts de masse et d’énergie qui se produisent dans ces milieux poreux est un
objectif scientifique depuis longtemps. L'un des processus tres important est le transport de substance
dissoute, qui intervient dans de nombreux processus naturels, en particulier en géosciences (dispersion
des polluants, exploitation des ressources souterraines, récupération assistée du pétrole, ...).

La théorie traditionnelle du transport de solutés dans les milieux poreux par diffusion et advection
est basée sur les travaux de, par exemples Saffman [1959]; [1960]; Scheidegger, [1961]; Ours et
Bachmat [1967]. La théorie de dispersion macrocosmique décrit le transport d’un traceur idéal dans un
milieu poreux saturé satisfaisant aux conditions d'écoulement de la loi de Darcy et est decrite par
I'équation d'advection-dispersion (EDA) (1,1). L'ADE représente le transport par un modele similaire a la
lois de Fick (Modele Fickian) a une échelle a laquelle on suppose un mélange complet du soluté.
Cependant, de nombreuse expériences de terrain, par exemple, Mackay et al., [1986], LeBlanc et al.,
[1991], Gouze et al, [2008a] et de laboratoire (par exemple, [Levy et Berkowitz, 2002; Gouze et al., 2009;
Bijeljic et al., 2011a]) montrent des courbes de restitution de traceurs tres asymétriques, avec la
signature d’un transport anormal. L'EDA ne parvient pas a prédire les comportements observés
expérimentalement car il ne peut pas reproduire les mécanismes réels qui contrélent la dispersion pour
les durées et / ou les échelles d’observation. La non-Fickianité du transport de solutés en milieux
poreux est généralement expliqué par I'hétérogénéité de champ d'écoulement qui existe méme dans les
milieux macroscopiquement apparemment homogénes [Datta et al., 2013]. La dispersion non-Fickienne
est un régime de pré-asymptotique; la dispersion devient Fickienne aux temps longs si I'échelle de
I'hétérogénéité est finie, a savoir lorsque le traceur a visité I'hétérogénéité a toutes les échelles.
Pourtant, dans les milieux naturels présentant une hétérogénéité a pratiquement toutes les échelles, le
régime effectif de dispersion est en général non-Fickian.

Les propriétés de dispersion non-fickienne, leur origine et leurs relations avec I'hétérogénéité
structurale de la porosité sont encore débattues. Pendant les quelques dernieres décennies, de
nombreux auteurs ont développé avec plus ou moins de succes différents modeéles pour simuler et
prévoir un transport non-Fickéen. Beaucoup de ces modeéles reposent largement sur la formulation de
I'ADE et essayent d'adapter les résultats expérimentaux par les variations spatiales ou temporelles du
coefficient de dispersivité. Cependant, les modeles alternatifs tels que le Continuous Time Random Walk
(CTRW) ou Multi-Rate Mass transfer (MRMT) décrivant le comportement de transport anormal basé sur
I'hypothése que la dispersion non-Fickiéenne ont été développés. | sont basés sur la prose en compte de
la distribution des temps de transition que le soluté rencontre dans les milieux poreux et se sont
avérées tres efficaces pour expliquer les comportements observés.

Les développements récents en ressources informatiques nous ont donné I'occasion d’étudier les
mécanismes qui controlent le transport a I’'échelle du pore. Par exemple, des techniques fiables pour
I'imagerie tridimensionnelle des structures et de flux dans I'espace des poral sont maintenant utilisables.
La résonance magnétique nucléaire (RMN) [par exemple, Scheven, 2013] et la microtomographie a
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rayons X (XRMT) [par exemple, Fourar et Radilla, 2009; Klise et al., 2008] ont été utilisés pour visualiser
directement les effets du transport dans les médias poreux naturel et artificiel. Toutefois, la contribution
de ces méthodes pour caractériser les mécanismes de dispersion multi-échelles est plus qualitatif que
guantitatif, similaire a d'autres techniques d'imagerie développées pour |'étude de la dispersion dans les
milieux poreux transparent. Néanmoins, ces méthodes sont inégalées pour caractériser les modeles
moyens de comportement et d'essais macroscopiques.

A l'inverse, une étude détaillée des processus de transport est maintenant possible par résolution
numérique directe a I'échelle des pores. L'approche standard commence avec |'acquisition d'images a
haute résolution de XRMT de la structure de pores. Les images segmentées sont ensuite utilisés pour
mailler la porosité et calculer I'écoulement et le transport en utilisant des codes de dynamique des
fluides calculée [Ovaysi et Piri, 2011; Blunt et al., 2013]. Cette approche donne des informations utiles
sur les processus qui se déroulent a I'échelle des pores et de ses principales limites sont liées a la qualité
et la résolution des images XRMT et les limitations de calcul pour résoudre les flux sur les grands
domaines. En outre, les résultats sont trés sensibles a la segmentation des images XRMT, la précision
des calculs d’écoulement et a la représentativité de I’échantillon par rapport a lobject macroscopique
initial [Arns et al, 2005 [Schliter et al, 2014.]. Guibert et al 2015. Sienne et al., 2015].

Transport en milieu poreux

Les deux modes de base de déplacement de solutés en milieux poreux sont miscibles et non
miscibles. Dans ce travail, nous étudions le transport miscible d’un traceur idéal. Il est caractérisé par un
seul fluide présent dans le milieu poreux, mais ses propriétés ou la composition peut varier dans
I'espace et le temps. Deux mécanismes de transport principaux sont la diffusion moléculaire et
I'advection. La diffusion moléculaire est un mécanisme ubiquiste de transport se produisant dans le
milieu poreux dés que la concentration du soluté varie dans I'espace. Le traceur se déplace a partir
d'une région de haute concentration pour une région de faible concentration. L'advection (ou
convection) correspond au déplacement du traceur a la vitesse local de I'écoulement. L’advection
provoque la dispersion du traceur en raison des différentes longueurs de trajet et les différences de
vitesse. Ce processus est appelé dispersion mécanique. Cependant, la dispersion dans le milieu poreux
avec de l'eau qui coule est influencée a la fois par la diffusion et la dispersion mécanique et ils ne
peuvent pas étre séparés. Par conséquent ces deux influences sont définies ensemble comme dispersion
hydrodynamique. La contribution relative a dispersion hydrodynamique de dispersion et de diffusion
mécanique est caractérisée par nombre de Peclet (2,11), qui est utilisé pour caractériser régime de
dispersion.

Expériences de tragage

Le chapitre 2 présente montage expérimental et les résultats de |'expérience de laboratoire. Des
expériences de laboratoire fournissent un apercu précieux dans les processus naturels avec une capacité
d'isoler les différents effets qui contribuent dispersion. Dans ce cas, |'expérience a été congue pour
permettre I'étude de la dispersion de traceur non-réactif (fluorescéine) dans des colonnes de billes de
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verre et des carottes de grés de Berea dans des conditions strictement controlées.
Le plan du circuit expérimental est présenté dans la figure 3.1. Il se compose de deux pompes a piston
qui assurent un débit constant de flux, cellule d'échantillon, I'appareil de mesure (fluorimétre), la
soupape de direction de I'écoulement, réservoir d'eau avec de I'eau propre et récipient pour l'eau de
sortie. Le milieu poreux est placé dans la cellule qui est positionnée verticalement sur la partie
supérieure du fluoromeétre. Différentes vannes contrdles la direction de I'écoulement (vers le bas ou
vers le haut) a travers la cellule, ce qui permet d'effectuer des expériences push pull. Selon le type
d'expérimentation le traceur est injecté dans le bas ou le haut de I'échantillon avec une seringue grace a
un systéme d'injection a spécialement concgus (Figure 3.4).

Nous avons effectué série d'expériences sur la colonne de billes de verre (L =200 mm, @ = 18 mm).
Les résultats en termes de courbes de percée (BreakThrough Curves, BTCs) sont présentés sur les figures
3.9 -3.15. Nous avons d'abord étudié le possible effet de la densité pour différentes concentrations de
traceur. Il a été observé qu'il existe un effet significatif de densité se produit si la concentration du
traceur est de 500 ppm ou plus. L'effet de la densité peut conduire a une mauvaise interprétation des
résultats expérimentaux et par conséquent, toutes les autres expériences sont réalisées avec une
concentration de traceur de 50 ppm. Expériences push-pull a révélé I'impact significatif de la durée de
I'injection sur la forme des BTCs, mais il n'y a que peu d’effet sur tle comportement aux temps long
(tailing). En outre, il a été montré que le temps de résidence du traceur dans le systeme n'a aucun effet
sur la pente des BTCs aux temps longs. En outre, nous avons comparé les résultats expériences en mode
push-pull et des expériences standard et les résultats indiquent que le comportement aux temps long
sont indentiques. Ces limitations ont été confirmés par deux expériences avec différents débits
effectués sur la colonne de grés de Berea (I = 150 mm, @ = 18 mm), i.e. la méme roche que pour la
modélisation numérique. Nous avons effectué la comparaison qualitative entre I'expérience et résultats
de la modélisation (Figure 3.17), qui a souligné l'importance de I'inclusion a la fois la matrice de diffusion
et le débit champ hétérogénéité dans la modélisation du transport pores échelle.

Enfin, il faut admettre que, malgré un effort considérable pour améliorer la résolution et le controle
des expériences de laboratoire, les résultats ne peuvent pas étre utilisés avec confiance pour le
paramétrage modéle non-Fickian. Cette conclusion est le résultat d'un grand nombre d'expériences pour
les essais 1) les effets de la concentration du traceur, la procédure d'injection et I'optimisation de
I'équipement et 2) la reproductibilité des résultats.

Modélisation numérique du champ d'écoulement a I’échelle du pore

Dans le chapitre 4, nous présentons les procédures nécessaires qui doivent étre effectuées afin
d'effectuer écoulement et de transport des simulations sur la microtomographie a rayons X (XRMT)
images. XRMT est une technique d'imagerie non invasive permettant d'obtenir la gé¢ométrie interne de
la roche sur la base des faisceaux de rayons X passant a travers I'échantillon sous des angles différents.
Le résultat de XRMT est un ensemble de 2D en niveaux de gris, ou le niveau d'échelle de gris représente
atténuation des rayons X par pixel. Pour les roches mono-cristallins tels que grés de Berea atténuation
de rayons X ne dépend que de la densité de la roche (porosité). Ces images en niveaux de gris sont
ensuite segmentées afin de distinguer les différentes phases (par exemple, rock, void). Processus de
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segmentation dans ce travail a été effectué en utilisant ce qu'on appelle «région de croissance"
algorithme [Siprkovska, 1993; . Noiriel et al, 2005]; dans lequel nous avons ajusté de maniére itérative
seuils pour obtenir la méme porosité que dans l'essai de porosimétrie par intrusion de mercure
effectuée sur la méme roche [Mangane et al., 2013]. La nouveauté dans ce travail est que nous avons
utilisé 3 phases segmentation de distinguer vide, rock et microporosité (c.-a-région avec des pores plus
petits que la résolution de I'image); la place de la segmentation (seulement vide et rock) 2 phases
habituellement utilisé dans la modélisation pores échelle [Ovaysi et Piri, 2010; Blunt et al., 2013]. Depuis
porosité non connecté ne participe pas au transport, ils ont été éliminés par I'algorithme de marquage
de la grappe sur la base de la méthode proposée par Hoshen Kopelman et [1976], qui identifie
également des pores interconnectés qui enjambe a travers la totalité de I'échantillon. Sur les images
segmentées nous avons calculé longueur caractéristique de deux manieres différentes. Propriété définie
comme le diametre de pore moyen utilisé pour définir les régimes d'écoulement et de transport a
travers Reynolds (4,7) et Peclet (2,11) respectivement des numéros. Les deux valeurs obtenues par la
structure de la roche variogramme (=110 um, Figure 4.6) et par la méthode proposée par Mostaghimi et
al. [2012] (4.3) (124 um) sont en bon accord avec la littérature.

Pour obtenir une représentation réaliste de I'écoulement en milieu poreux, domaine de calcul doit
étre suffisamment grande pour capturer tous les hétérogénéités. Dans ce travail, le volume élémentaire
représentatif a été étudié en fonction de la porosité (Figure 4.8) et la perméabilité (figure 4.9). Il a été
extrait montrent que sous-volume de 300x300x300 voxels peut étre considérée comme représentative
de milieu poreux sélectionné. Pour préparer milieu poreux pour les simulations de flux de domaine doit
étre discrétisée. Dans ce travail, nous utilisons maillage structuré en hexahedars réguliers, qui capte
facilement la structure des pores a partir d'images de XRMT segmentés et il est adapté pour le post-
traitement nécessaire pour les simulations de transport. Champ d'écoulement Pore échelle est obtenue
en résolvant conservation de la masse (4.5) et Naiver-Stokes (4.6) équations, pour [|'écoulement
monophasé avec la densité et de la viscosité constante. Ces équations sont construits dans une base de
solveur |'état d'équilibre de la méthode semi-implicite pour les équations de pression-Lié (simple)
[Patankar, 1980] algorithme qui fonctionne a l'intérieur du progiciel OpenFOAM. Algorithme simple
utilise procédure itérative pour coupler de Navier-Stokes équation et obtenir champ d'écoulement pour
des conditions aux limites données.

Figure 4.16 présente un graphique de corrélation de la perméabilité calculée en fonction de la
porosité pour toutes les simulations effectuées dans la portée de ce travail. Reste de la section de
résultat est dédié a I'étude de I'influence de la résolution de maillage. Nous avons confirmé les résultats
publiés par Guibert et al. [2015] en ce qui concerne la diminution de la perméabilité avec I'augmentation
de la résolution de maillage et élargi leur enquéte. Nous avons montré tha pratique courante ol une
image voxel est modélisé par un maille peut induire des écarts importants par les résultats en utilisant
des maillages avec discrétisation plus élevé de la méme structure. |l a été démontré dans le cas de haute
résolution Berea images de grés comme ceux utilisés ici; résolution optimale de maille est si chaque
voxel est représenté par 27 mailles. Pour les autres médias ce facteur peut varier considérablement en
raison de la résolution de I'image et des propriétés milieu poreux, mais en regle générale, il est conseillé
d'utiliser impaire facteur de raffinement de maillage pour les médias poreux de gorges étroites pour
atteindre approximations de champ d'écoulement plus réalistes.
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Modélisation du transport a I’échelle du pore

Le chapitre 5 présente des simulations de transport effectuées sur les images XRMT focalisation sur
la dispersion de traceur idéal. Sous-volumes sélectionnés (3003 voxels) ont été post traité apres des
simulations de flux (chapitre 4) et utilisé comme une entrée pour les simulations de transport.
Le transport hydrodiffusive d'une trace passive est modélisé par marche aléatoire méthode de suivi de
particule dans laquelle la concentration du soluté est représentée par la moyenne d'ensemble de
particules. En réalité, ces particules sont marcheurs aléatoires, qui sont considérés étre sans masse,
infiniment petit et ils ne interagissent entre eux ou avec le milieu poreux. Dans ce travail, nous utilisons
le domaine du temps de marche aléatoire (TDRW). TDRW avérée outil tres efficace car il est basé sur les
mouvements de particules avec une longueur constante, ce qui est tres approprié a utiliser dans les
médias discrétisé avec une géométrie complexe. En cas de TDRW stochasticité provient de la direction
et pas de temps entre deux étapes consécutives.

Principaux résultats, la discussion et les conclusions sont présentées sous forme d'un article (voir
rubrique 5.3) accepté dans Water Resources Research. Théorie et hypothéses élargi pris en compte lors
du transport de modélisation dans le domaine microporeux sont présentés ci-aprés (section 5.2).
Une fois de plus, la résolution de maillage avéré étre un facteur important. Dans les simulations de
transport insuffisante résolution de maillage conduit a surestimer le transport anormal et I'erreur dans
les résultats semble augmenter avec la diminution de Peclet valeurs numériques. Comparaison entre
simulations de transport, y compris I'hétérogénéité de champ seulement de flux et ceux dont
I'hétérogénéité de champ d'écoulement et de transfert de masse mobile-immobile souligne leur
contréle concomitante dans le domaine intermédiaire du BTC queue tandis que, comme prévu, le
contréle de transfert de masse mobile-immobile le comportement de temps tardif qui est, comme on le
verra dans la section 3.3.3, difficile a aborder expérimentalement.

Des images XRMT, nous ne pouvons pas extraire beaucoup d'informations concernant la
microporosité (par exemple, la tortuosité, seuil de percolation). En fait seule chose qui peut étre
estimée est sa porosité intrinséque: la qualité de cette estimation dépend de la qualité de la procédure
de segmentation 3 phases. Par conséquent nous avons effectué une analyse paramétrique du seuil de
percolation et la diffusion efficace de la forme BTC. Augmentation du seuil de percolation, les valeurs
inférieures augmente le temps de séjour des particules dans le domaine immobile, tandis que des
valeurs plus élevées, il diminue de maniére significative la fraction de domaine immobile accessible aux
particules qui se traduit par temps de séjour plus court et une diminution de trainée de la CTB.
Inversement, la diminution de la diffusion efficace entraine une augmentation dans le temps de séjour
des particules dans le domaine de queue immobile augmentant la CTB.

Un point intéressant en évidence par l'analyse du résultat est que, si I'on suppose que les
propriétés de la zone microporeuse sont en corrélation positive avec la porosité intrinseque, la
distribution hétérogéne de la zone microporeuse peut étre substituée par sa répartition homogéne
équivalente. Dans ce cas, le coefficient de diffusion unique pour la microporosité doit étre égal a la
moyenne harmonique de la microporosité distribué de fagon hétérogene.
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Enfin, nous avons proposé un modele 1D rehaussée sur la base du domaine temporel continue
approche de marche aléatoire en mesure de capturer le comportement causés par I'hétérogénéité de
champ d'écoulement et de transfert de masse mobile-immobile. Ceci est réalisé en ayant deux
distributions en loi de puissance différentes pour représenter les temps de transit dans le domaine
mobile et immobile.

Simulations de flux a la fois dans la macroporosité et la microporosité: I'approche de Darcy-
Brinkman

Dans le chapitre 6, nous nous concentrons sur les simulations d'écoulement pores échelle, qui
comprennent a la fois dans le domaine flux micro et macroporosité. Comme indiqué précédemment
approche «normalisé» de résoudre débit a pores échelle consiste a résoudre I'équation de Stokes dans
macroporosité, tandis que les flux dans la microporosité est négligée. A partir de 3 phases segmenté
images XRMT (voir section 4.2.2) nous avons effectué des simulations 3D des pores d'écoulement
d'échelle. Le nouveau solveur développé par Cyprien Soulaine de Stanford Univerity dans le cadre de
OpenFOAM est avérée appropriée pour résoudre simultanément le débit de la macroporosité et le
domaine microporeux. L'approche est basée sur I'équation de Darcy-Brinkman, qui utilise une seule
équation pour calculer la vitesse du fluide dans les deux Stokes (c.-a-macroporosité) et Darcy (c.-a-
microporosité) domaine. Elle consiste a ajouter Darcy terme de résistance dans I'équation de Stokes, qui
représente la friction entre le solide et non avenue dans le domaine macroporeux. Dans le domaine de
la macroporosité le terme de résistance Darcy est nulle et nous résoudre Stokes standard. La partie la
plus importante de définir le terme de résistance Darcy est dans la détermination de la perméabilité
dans le domaine microporeux. Depuis que nous n’avons pas de données réelles sur les propriétés de
microporosité (voir rubriques 4.2 et 5.2), la perméabilité est estimé par I'équation Kozeny-Carman.

Le but de ce travail était d'étudier l'importance de la circulation supplémentaire dans la
microporosité, méme dans les roches a faible teneur en microporosité tels que le grés de Berea (2%).
L'augmentation de la perméabilité en raison de la microporosité est d'environ 5% (voir la comparaison
dans le tableau 6.1) qui est relativement petite, mais toujours perceptible et nous pouvons anticiper que
la contribution de I'écoulement dans la microporosité devrait devenir un processus majeur dans les
roches avec une fraction élevée de microporosité comme le grés et les carbonates modifié.

Bien que, dans ce travail, nous n’avons pas réussi a établir un lien formel entre les données
expérimentales sur le gres de Berea et les simulations de transport effectuées sur les images de XRMT
de la méme roche, mais nous avons fait quelques comparaisons qualitatives qui ont prouvé que la mise
en ceuvre dans les modeles de le transfert de masse dans la microporosité est obligatoire pour expliquer
les observations. En outre, nous avons identifié les exigences méthodologiques et les améliorations
nécessaires technologiques qui semblent étre essentiels pour améliorer le dispositif expérimental. Plus
précisément, les modifications doivent étre faites 1) pour permettre a plus de débit Peclet afin de mieux
enquéter sur I'hétérogénéité de la vitesse d'écoulement sur le transport anormal et 2) a méme
d'accroitre  la précision et la résolution de  mesure de la  concentration.
Inversement, nous croyons que les développements futurs devraient se concentrer sur une meilleure
caractérisation de la microporosité et de la distribution de vitesse afin de relier les parameétres du
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modele CTRW aux propriétés mesurables. Bien que les directions de recherche pour caractériser la
microporosité peuvent étre facilement établis (par exemple, la mesure du volume de la microporosité
de cluster, zone d'interface, ...), I'amélioration de la caractérisation du champ d'écoulement avec
I'objectif de paramétrage CTRW est plus difficile et nécessitera sans doute d'analyser les corrélations de

vitesse dans un cadre de Lagrange.



