, Licence CC BY

G. Huber, S. Iborra, and A. Corma, Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering, Chemical Reviews, vol.106, pp.4044-4098, 2006.

C. Dobado and J. A. , Lignin as renewable raw material, ChemSusChem, vol.3, pp.1227-1235, 2010.

S. Laurichesse and L. Avérous, Chemical modification of lignins: Towards biobased polymers, Progress in Polymer Science, vol.39, pp.1266-1290, 2014.

F. Garrido-herrera, I. Daza-fernández, E. González-pradas, and M. Fernández-pérez, Ligninbased formulations to prevent pesticides pollution, Journal of Hazardous Materials, vol.168, pp.220-225, 2009.
DOI : 10.1016/j.jhazmat.2009.02.019

J. Rasmussen, P. Wiberg-larsen, A. Baattrup-pedersen, N. Cedergreen, U. Mcknight et al., The legacy of pesticide pollution: an overlooked factor in current risk assessments of freshwater systems, Water Research, vol.84, pp.25-32, 2015.

C. Espro, B. Gumina, E. Paone, and F. Mauriello, Upgrading lignocellulosic biomasses: Hydrogenolysis of platform derived molecules promoted by heterogeneous Pd-Fe catalysts, Catalysts, vol.7, p.78, 2017.
DOI : 10.3390/catal7030078

URL : https://www.mdpi.com/2073-4344/7/3/78/pdf

C. Liu, Deciphering the enigma of lignification: Precursor transport, oxidation, and the topochemistry of lignin assembly, Molecular Plant, vol.5, pp.304-317, 2012.

J. Grabber, How do Lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies, Crop Science, vol.45, pp.820-831, 2005.

C. Simon, C. Spriet, S. Hawkins, and C. Lion, Visualizing lignification dynamics in plants with click chemistry: Dual labeling is BLISS, Journal of Visualized Experiments, p.56947, 2018.
DOI : 10.3791/56947

URL : https://www.jove.com/pdf/56947/visualizing-lignification-dynamics-plants-with-click-chemistry-dual

W. Plaxton, The organization and regulation of plant glycolysis, Annual Review of Plant Biology, vol.47, pp.185-214, 1996.

K. Herrmann and L. Weaver, The shikimate pathway, Annual Review of Plant Biology, vol.50, pp.473-503, 1999.

R. Vanholme, B. Demedts, K. Morreel, J. Ralph, and W. Boerjan, Lignin Biosynthesis and Structure1, Plant Physiology, vol.153, pp.895-905, 2010.

T. Higuchi, Y. Ito, M. Shimada, and I. Kawamura, Chemical properties of milled wood lignin of grasses, Phytochemistry, vol.6, pp.1551-1556, 1967.

J. Hedges and D. Mann, The characterization of plant tissues by their lignin oxidation products, Geochimica et Cosmochimica Acta, vol.43, pp.1803-1807, 1979.

R. Whetten, R. L. Sederoff, and . Biosynthesis, The Plant Cell, vol.7, pp.1001-1013, 1995.

X. Li and C. Chapple, Understanding lignification: Challenges beyond monolignol biosynthesis, Plant Physiology, vol.154, pp.449-452, 2010.

Y. Miao and C. Liu, ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes, Proceedings of the National Academy of Sciences, vol.107, pp.22728-22733, 2010.

M. Silva, B. Valencise, J. D. Carnier, D. , and P. M. , Abiotic and biotic stresses and changes in the lignin content and composition in plants, Journal of Integrative Plant Biology, vol.52, pp.360-376, 2010.

E. Adler, Lignin chemistry-Past, present and future, Wood Science and Technology, vol.11, pp.169-218, 1977.

M. Ek, G. Gellerstedt, G. Henriksson, G. Henriksson, and . Lignin, Pulp and Paper Chemistry and Technology, vol.1, pp.121-124, 2009.

, Licence CC BY

L. Davin, M. Jourdes, A. Patten, K. Kim, D. Vassão et al., Dissection of lignin macromolecular configuration and assembly: comparison to related biochemical processes in allyl/propenyl phenol and lignan biosynthesis, Natural Product Reports, vol.25, pp.1015-1090, 2008.

C. Crestini, F. Melone, M. Sette, and R. Saladino, Milled wood lignin: A linear oligomer, Biomacromolecules, vol.12, pp.3928-3935, 2011.

M. Lawoko, Unveiling the structure and ultrastructure of lignin carbohydrate complexes in softwoods, International Journal of Biological Macromolecules, vol.62, pp.705-713, 2013.

J. Zhenfu, S. K. , T. L. Kenji, and I. , Covalent linkages between cellulose and lignin in cell walls of coniferous and nonconiferous woods, Biopolymers, vol.83, pp.103-110, 2006.

J. Zakzeski, P. Bruijnincx, A. Jongerius, and B. Weckhuysen, The Catalytic Valorization of Lignin for the Production of Renewable Chemicals, Chemical Reviews, vol.110, pp.3552-3599, 2010.

F. Chakar and A. J. Ragauskas, Review of current and future softwood kraft lignin process chemistry, Industrial Crops and Products, vol.20, pp.131-141, 2004.

P. Azadi, O. Inderwildi, R. Farnood, and D. King, Liquid fuels, hydrogen and chemicals from lignin: A critical review, Renewable and Sustainable Energy Reviews, vol.21, pp.506-523, 2013.

T. Bugg, M. Ahmad, E. Hardiman, and R. Rahmanpour, Pathways for degradation of lignin in bacteria and fungi, Natural Product Reports, vol.28, pp.1883-1896, 2011.

S. Patil and D. Argyropoulos, Stable Organic Radicals in Lignin: A Review, ChemSusChem, vol.10, pp.3284-3303, 2017.

M. E. Brown and C. M. , Exploring bacterial lignin degradation, Current Opinion in Chemical Biology, vol.19, pp.1-7, 2014.

G. De-gonzalo, D. Colpa, M. Habib, and M. W. Fraaije, Bacterial enzymes involved in lignin degradation, Journal of Biotechnology, vol.236, pp.110-119, 2016.

M. Tien and T. K. Kirk, Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase, Proceedings of the National Academy of Sciences, vol.81, pp.2280-2284, 1984.

A. Khindaria, I. Yamazaki, and S. D. Aust, Veratryl alcohol oxidation by lignin peroxidase, Biochemistry, vol.34, pp.16860-16869, 1995.

J. Glenn and M. H. Gold, Purification and characterization of an extracellular Mn (II)dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Archives of biochemistry and biophysics, vol.242, pp.329-341, 1985.

S. Camarero, S. Sarkar, F. Ruiz-dueñas, J. Martínez, and Á. , Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites, Journal of Biological Chemistry, vol.274, pp.10324-10330, 1999.

L. Forney, C. Reddy, M. Tien, and S. Aust, The involvement of hydroxyl radical derived from hydrogen peroxide in lignin degradation by the white rot fungus Phanerochaete chrysosporium, Journal of Biological Chemistry, vol.257, pp.11455-11462, 1982.

M. Ahmad, J. Roberts, E. Hardiman, R. Singh, L. Eltis et al., Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase, Biochemistry, vol.50, pp.5096-5107, 2011.

M. Paulsson, J. Parkås, and . Rewiew, Light-induced yellowing of lignocellulosic pulpsMechanisms and preventive methods, BioResources, vol.7, pp.5995-6040, 2012.

, Licence CC BY

J. Scaiano, J. Netto-ferreira, and V. Wintgens, Fragmentation of ketyl radicals derived from ?-phenoxyacetophenone: An important mode of decay for lignin-related radicals?, Journal of Photochemistry and Photobiology A: Chemistry, vol.59, pp.265-268, 1991.

J. Schmidt and C. Heitner, Light-Induced Yellowing of Mechanical and Ultrahigh Yield Pulps. Part 2. Radical-Induced Cleavage of Etherified Guaiacylglycerol-?-Arylether Groups is the Main Degradative Pathway, Journal of Wood Chemistry and Technology, vol.13, pp.309-325, 1993.

C. Fabbri, M. Bietti, and O. Lanzalunga, On the importance of the ketyl pathway in the photoyellowing of lignin containing pulps and papers, The Journal of Organic Chemistry, vol.70, pp.2720-2728, 2005.

C. Li and A. J. Ragauskas, Brightness reversion of mechanical pulps Part XIII: Photoinduced degradation of lignin on cellulose matrix, Journal of Wood Chemistry and Technology, vol.19, pp.43-60, 1999.

A. Ragauskas, G. Beckham, M. Biddy, R. Chandra, F. Chen et al., Lignin valorization: Improving lignin processing in the biorefinery, Science, vol.344, pp.709-719, 2014.

C. Jaeger, A. Nourmamode, and A. Castellan, Photodegradation of lignin: A photochemical study of phenolic coniferyl alcohol lignin model molecules, Holzforschung, vol.47, pp.375-390, 1993.

P. Peill, Permanent bleaching of ligno-cellulosic materials, Nature, vol.158, p.554, 1946.

H. Callow, Action of light upon jute, Nature, vol.159, p.309, 1947.

R. Rex, Electron paramagnetic resonance studies of stable free radicals in lignins and humic acids, Nature, vol.188, p.1185, 1960.

G. Leary, Photochemical production of quinoid structures in wood, Nature, vol.217, pp.672-673, 1968.

S. Grelier, A. Castellan, and D. Kamdem, Photoprotection of copper-amine-treated pine, Wood and Fiber Science, vol.32, pp.196-202, 2000.

D. Hon and W. Feist, Hydroperoxidation in photoirradiated wood surfaces, Wood and Fiber Science, vol.24, pp.448-448, 1992.

M. Paulsson and R. Simonson, Acetylation of lignin and photostabilization of lignin-rich mechanical wood pulp and paper, 2002.

C. Wang, S. Kelley, and R. A. Venditti, Lignin-based thermoplastic materials, ChemSusChem, vol.9, pp.770-783, 2016.

P. J. Kleppe and . Kraft, Tappi Journal, vol.53, pp.35-47, 1970.

J. Gierer, Chemical aspects of kraft pulping, Wood Science and Technology, vol.14, pp.241-266, 1980.
DOI : 10.1007/bf00383453

J. Gratzl and C. Chen, Chemistry of Pulping: Lignin Reactions. Lignin: Historical, biological, and materials perspectives, pp.392-421, 1999.

M. Nagy, M. Kosa, H. Theliander, and A. J. Ragauskas, Characterization of CO2 precipitated Kraft lignin to promote its utilization, Green Chemistry, vol.12, pp.31-34, 2010.

W. Zhu, G. Westman, and H. Theliander, Investigation and characterization of lignin precipitation in the LignoBoost process, Journal of Wood Chemistry and Technology, vol.34, pp.77-97, 2014.

B. Upton and A. Kasko, Strategies for the conversion of lignin to high-value polymeric materials: Review and perspective, Chemical Reviews, vol.116, pp.2275-2306, 2016.

, Licence CC BY

W. Doherty, P. Mousavioun, and C. Fellows, Value-adding to cellulosic ethanol: Lignin polymers, Industrial Crops and Products, vol.33, pp.259-276, 2011.
DOI : 10.1016/j.indcrop.2010.10.022

A. Vishtal and A. Kraslawski, Challenges in industrial applications of technical lignins, BioResources, vol.6, pp.3547-3568, 2011.

B. Ahvazi, É. Cloutier, O. Wojciechowicz, and T. Ngo, Lignin profiling: A guide for selecting appropriate lignins as precursors in biomaterials development, ACS Sustainable Chemistry & Engineering, vol.4, pp.5090-5105, 2016.

E. Mansouri, N. Salvadó, and J. , Structural characterization of technical lignins for the production of adhesives: Application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins, Industrial Crops and Products, vol.24, pp.8-16, 2006.

W. Browning, Lignosulfonate stabilized emulsions in oil well drilling fluids, Journal of Petroleum Technology, vol.7, pp.9-15, 1955.

J. Marie, J. Bourret, P. Geffroy, A. Smith, V. Chaleix et al., Eco-friendly alumina suspensions for tape-casting process, Journal of the European Ceramic Society, vol.37, pp.5239-5248, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01727627

S. Wetzel, L. Duchesne, M. F. Laporte, and . Biochemicals, Bioproducts from canada's forests: New Partnerships in the Bioeconomy, pp.61-69, 2006.

A. Agrawal, N. Kaushik, and S. Biswas, Derivatives and applications of lignin-an insight, The SciTech Journal, vol.1, pp.30-36, 2014.

R. Patt, O. Kordsachia, R. Süttinger, and . Pulp, Ullmann's Encyclopedia of Industrial Chemistry, 2012.

A. Venica, C. Chen, and J. Gratzl, Soda-AQ delignification of poplar wood. Part 1: Reaction mechanism and pulp properties, Holzforschung, vol.62, pp.627-636, 2008.
DOI : 10.1515/hf.2008.118

J. Espinoza-acosta, P. Torres-chávez, B. Ramírez-wong, C. López-saiz, and B. Montañoleyva, Antioxidant, antimicrobial, and antimutagenic properties of technical lignins and their applications, BioResources, vol.11, pp.5452-5481, 2016.

J. Lora and W. Glasser, Recent industrial applications of lignin: A sustainable alternative to nonrenewable materials, Journal of Polymers and the Environment, vol.10, pp.39-48, 2002.

E. Pye and J. H. Lora, The Alcell process: a proven alternative to kraft pulping, Tappi Journal, vol.74, pp.113-118, 1991.

G. Jiang, D. Nowakowski, and A. V. Bridgwater, A systematic study of the kinetics of lignin pyrolysis, Thermochimica Acta, vol.498, pp.61-66, 2010.

D. Mohan, C. Pittman, and P. Steele, Pyrolysis of wood/biomass for bio-oil: A critical review, Energy & fuels, vol.20, pp.848-889, 2006.

A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter et al., Determination of Ash in Biomass, Laboratory Analytical Procedure, 2008.

S. Constant, H. Wienk, A. E. Frissen, . Peinder-p-d, R. Boelens et al., New insights into the structure and composition of technical lignins: A comparative characterisation study, Green Chemistry, vol.18, pp.2651-2665, 2016.

P. Patwardhan, J. Satrio, R. Brown, and B. Shanks, Influence of inorganic salts on the primary pyrolysis products of cellulose, Bioresource Technology, vol.101, pp.4646-4655, 2010.

A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter et al., Determination of Structural Carbohydrates and Lignin in Biomass, Laboratory Analytical Procedure, 2008.

N. Mansouri and J. Salvadó, Structural characterization of technical lignins for the production of adhesives: Application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins, Industrial Crops and Products, vol.24, pp.8-16, 2006.

A. Duval, S. Molina-boisseau, and C. Chirat, Comparison of Kraft lignin and lignosulfonates addition to wheat gluten-based materials: Mechanical and thermal properties, Industrial Crops and Products, vol.49, pp.66-74, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00849900

A. Dwiatmoko, S. Lee, H. Ham, J. Choi, D. Suh et al., Effects of carbohydrates on the hydrodeoxygenation of lignin-derived phenolic compounds, ACS Catalysis, vol.5, pp.433-437, 2014.

J. Sameni, S. Krigstin, and M. Sain, Characterization of lignins isolated from industrial residues and their beneficial uses, BioResources, vol.11, pp.8435-8456, 2016.

J. Lange, Renewable feedstocks: the problem of catalyst deactivation and its mitigation, Angewandte Chemie International Edition, vol.54, pp.13186-13197, 2015.

P. Buono, A. Duval, P. Verge, L. Averous, and Y. Habibi, New insights on the chemical modification of lignin: Acetylation versus silylation, ACS Sustainable Chemistry & Engineering, vol.4, pp.5212-5222, 2016.

J. Lupoi, S. Singh, R. Parthasarathi, B. Simmons, and R. J. Henry, Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin, Renewable and Sustainable Energy Reviews, vol.49, pp.871-906, 2015.

D. Río, J. Rencoret, J. Prinsen, P. Martínez-a-n, T. Ralph et al., Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods, Journal of Agricultural and Food Chemistry, vol.60, pp.5922-5935, 2012.

F. Modugno, E. Ribechini, M. Calderisi, G. Giachi, and M. Colombini, Analysis of lignin from archaeological waterlogged wood by direct exposure mass spectrometry (DE-MS) and PCA evaluation of mass spectral data, Microchemical Journal, vol.88, pp.186-193, 2008.

M. Bule, A. Gao, B. Hiscox, and S. Chen, Structural modification of lignin and characterization of pretreated wheat straw by ozonation, Journal of Agricultural and Food Chemistry, vol.61, pp.3916-3925, 2013.

C. Dobado, J. García, J. Martin-martinez, and F. , Lignin and lignans as renewable raw materials: Chemistry, technology and applications, 2015.

S. Ralph, J. Ralph, L. Landucci, and L. Landucci, NMR database of lignin and cell wall model compounds

H. Heikkinen, T. Elder, H. Maaheimo, S. Rovio, J. Rahikainen et al., Impact of steam explosion on the wheat straw lignin structure studied by solutionstate nuclear magnetic resonance and density functional methods, Journal of Agricultural and Food Chemistry, vol.62, pp.10437-10444, 2014.

M. Sette, R. Wechselberger, and C. Crestini, Elucidation of lignin structure by quantitative 2D NMR, Chemistry-A European Journal, vol.17, pp.9529-9535, 2011.

H. D. Abreu and M. D. Freire, Methoxyl content determination of lignin by H NMR. Anais da Academia Brasileira de Ciências, vol.67, pp.379-382, 1995.

, Licence CC BY

C. Crestini and D. Argyropoulos, Structural Analysis of Wheat Straw Lignin by Quantitative 31P and 2D NMR Spectroscopy. The Occurrence of Ester Bonds and ?O-4 Substructures, Journal of Agricultural and Food Chemistry, vol.45, pp.1212-1219, 1997.

D. Argyropoulos, Quantitative phosphorus-31 NMR analysis of six soluble lignins, Journal of Wood Chemistry and Technology, vol.14, pp.65-82, 1994.

M. Balakshin and E. Capanema, On the quantification of lignin hydroxyl groups with 31P and 13C NMR spectroscopy, Journal of Wood Chemistry and Technology, vol.35, pp.220-237, 2015.

R. Santos, E. Capanema, M. Balakshin, H. Chang, and H. Jameel, Lignin structural variation in hardwood species, Journal of Agricultural and Food Chemistry, vol.60, pp.4923-4930, 2012.

F. Bouxin, A. Mcveigh, F. Tran, N. Westwood, M. Jarvis et al., Catalytic depolymerisation of isolated lignins to fine chemicals using a Pt/alumina catalyst: part 1-impact of the lignin structure, Green Chemistry, vol.17, pp.1235-1242, 2015.

Y. Pu, S. Cao, and A. J. Ragauskas, Application of quantitative 31P NMR in biomass lignin and biofuel precursors characterization, Energy & Environmental Science, vol.4, pp.3154-3166, 2011.

W. Huijgen, G. Telysheva, A. Arshanitsa, R. Gosselink, and P. De-wild, Characteristics of wheat straw lignins from ethanol-based organosolv treatment, Industrial Crops and Products, vol.59, pp.85-95, 2014.

S. Yang, Y. Zhang, W. Yue, W. Wang, Y. Wang et al., Valorization of lignin and cellulose in acid-steam-exploded corn stover by a moderate alkaline ethanol post-treatment based on an integrated biorefinery concept, Biotechnology for Biofuels, vol.9, p.238, 2016.

S. Baumberger, A. Abaecherli, M. Fasching, G. Gellerstedt, R. Gosselink et al., Molar mass determination of lignins by size-exclusion chromatography: Towards standardisation of the method, Holzforschung, vol.61, pp.459-468, 2007.

R. Gosselink, A. Abächerli, H. Semke, R. Malherbe, P. Käuper et al., Analytical protocols for characterisation of sulphur-free lignin, Industrial Crops and Products, vol.19, pp.271-281, 2004.

C. Steelink, T. Reid, and G. Tollin, On the nature of the free-radical moiety in lignin, Journal of the American Chemical Society, vol.85, pp.4048-4049, 1963.

F. Brauns, The isolation and methylation of native lignin, Journal of the American Chemical Society, vol.61, pp.2120-2127, 1939.

F. Brauns and D. Brauns, The chemistry of lignin, 1960.

M. Humar, M. Sentjurc, and M. Petri?, EPR spin trapping-A new technique for observation and characterisation of free radicals during photodegradation of wood, Drvna Industrija, vol.53, pp.197-202, 2002.

L. Zoia, R. Perazzini, C. Crestini, and D. Argyropoulos, Understanding the radical mechanism of lipoxygenases using 31P NMR spin trapping, Bioorganic & Medicinal Chemistry, vol.19, pp.3022-3028, 2011.

D. Argyropoulos, H. Li, A. Gaspar, K. Smith, L. Lucia et al., Quantitative 31P NMR detection of oxygen-centered and carbon-centered radical species, Bioorganic & Medicinal Chemistry, vol.14, pp.4017-4028, 2006.

, Licence CC BY

F. Lu, L. Chu, and R. J. Gau, Free radical-scavenging properties of lignin, Nutrition and Cancer, vol.30, pp.31-38, 1998.

V. Ugartondo, M. Mitjans, and M. P. Vinardell, Comparative antioxidant and cytotoxic effects of lignins from different sources, Bioresource Technology, vol.99, pp.6683-6687, 2008.

T. Dizhbite, G. Telysheva, V. Jurkjane, and U. Viesturs, Characterization of the radical scavenging activity of lignins-natural antioxidants, Bioresource Technology, vol.95, pp.309-317, 2004.

E. Perez-perez and A. Rodríguez-malaver, Antioxidant capacity of Kraft black liquor from the pulp and paper industry, Journal of Environmental Biology, vol.26, pp.603-608, 2005.

R. Kaur, S. Uppal, and P. Sharma, Antioxidant and antibacterial activities of sugarcane bagasse lignin and chemically modified lignins, Sugar Tech, vol.19, pp.675-680, 2017.

E. Acosta, J. , T. Chávez, P. Ramírez-wong, B. Bello-pérez et al., Mechanical, thermal, and antioxidant properties of composite films prepared from durum wheat starch and lignin, Starch-Stärke, vol.67, pp.502-511, 2015.

R. Núñez-flores, B. Giménez, F. Fernández-martín, M. López-caballero, M. Montero et al., Role of lignosulphonate in properties of fish gelatin films, Food Hydrocolloids, vol.27, pp.60-71, 2012.

R. Núñez-flores, B. Giménez, F. Fernández-martín, M. López-caballero, M. Montero et al., Physical and functional characterization of active fish gelatin films incorporated with lignin, Food Hydrocolloids, vol.30, pp.163-172, 2013.

J. Ponomarenko, T. Dizhbite, M. Lauberts, A. Viksna, G. Dobele et al., Characterization of softwood and hardwood LignoBoost kraft lignins with emphasis on their antioxidant activity, BioResources, vol.9, pp.2051-2068, 2014.

A. García, A. Toledano, M. Andrés, and J. Labidi, Study of the antioxidant capacity of Miscanthus sinensis lignins, Process Biochemistry, vol.45, pp.935-940, 2010.

H. Sakagami, K. Hashimoto, F. Suzuki, T. Ogiwara, K. Satoh et al., Molecular requirements of lignin-carbohydrate complexes for expression of unique biological activities, Phytochemistry, vol.66, pp.2108-2120, 2005.

A. Toledano, A. García, I. Mondragon, and J. Labidi, Lignin separation and fractionation by ultrafiltration. Separation and Purification Technology, vol.71, pp.38-43, 2010.

A. Toledano, L. Serrano, A. Garcia, I. Mondragon, and J. Labidi, Comparative study of lignin fractionation by ultrafiltration and selective precipitation, Chemical Engineering Journal, vol.157, pp.93-99, 2010.

P. Santos, X. Erdocia, D. Gatto, and J. Labidi, Characterisation of Kraft lignin separated by gradient acid precipitation, Industrial Crops and Products, vol.55, pp.149-154, 2014.

X. Pan, N. Gilkes, J. Kadla, K. Pye, S. Saka et al., Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: Optimization of process yields, Biotechnology and Bioengineering, vol.94, pp.851-861, 2006.

R. El-hage, D. Perrin, and N. Brosse, Effect of the pre-treatment severity on the antioxidant properties of ethanol organosolv Miscanthus x giganteus lignin, Natural Resources, vol.3, pp.29-34, 2012.

M. Vinardell, V. Ugartondo, and M. Mitjans, Potential applications of antioxidant lignins from different sources, Industrial Crops and Products, vol.27, pp.220-223, 2008.

, Licence CC BY

I. Cybulska, G. Brudecki, K. Rosentrater, J. Julson, and H. Lei, Comparative study of organosolv lignin extracted from prairie cordgrass, switchgrass and corn stover, Bioresource Technology, vol.118, pp.30-36, 2012.

J. Zemek, B. Ko?íková, J. Augustin, and D. Joniak, Antibiotic properties of lignin components, Folia Microbiologica, vol.24, pp.483-486, 1979.

A. Nada, A. El-diwany, and A. Elshafei, Infrared and antimicrobial studies on different lignins, Engineering in Life Sciences, vol.9, pp.295-298, 1989.

X. Dong, M. Dong, Y. Lu, A. Turley, T. Jin et al., Antimicrobial and antioxidant activities of lignin from residue of corn stover to ethanol production, Industrial Crops and Products, vol.34, pp.1629-1634, 2011.

T. Afrin, T. Tsuzuki, R. Kanwar, and X. Wang, The origin of the antibacterial property of bamboo, Journal of the Textile Institute, vol.103, pp.844-849, 2012.

E. Sláviková and B. Ko?íková, Inhibitory effect of lignin by-products of pulping on yeast growth, Folia Microbiologica, vol.39, pp.241-243, 1994.

D. Slamenová, E. Horváthová, B. Ko?íková, . Ru?eková-l-u, and J. Lábaj, Detection of lignin biopolymer-and vitamin e-stimulated reduction of DNA strand breaks in H2O2-and MNNG-treated mammalian cells by the comet assay, Nutrition and Cancer, vol.33, pp.88-94, 1999.

L. Ebringer, L. Krizkova, J. Polónyi, J. Dobias, and N. Lahitová, Antimutagenicity of lignin in vitro, Anticancer Research, vol.19, pp.569-572, 1999.

B. Ko?íková, J. Lábaj, A. Gregorová, and D. Slame?ová, Lignin antioxidants for preventing oxidation damage of DNA and for stabilizing polymeric composites, Holzforschung, vol.60, pp.166-170, 2006.

A. Belicová, J. Kraj?ovi?, L. Kri?ková, L. Ebringer, and B. Ko?íková, Anti-UV activity of lignin biopolymers on Euglena gracilis, World Journal of Microbiology and Biotechnology, vol.16, pp.91-93, 2000.

B. Baurhoo, P. Ferket, and X. Zhao, Effects of diets containing different concentrations of mannanoligosaccharide or antibiotics on growth performance, intestinal development, cecal and litter microbial populations, and carcass parameters of broilers, Poultry Science, vol.88, pp.2262-2272, 2009.

B. Baurhoo, C. Ruiz-feria, and X. Zhao, Purified lignin: Nutritional and health impacts on farm animals-A review, Animal Feed Science and Technology, vol.144, pp.175-184, 2008.

G. Huber and A. Corma, Synergies between bio-and oil refineries for the production of fuels from biomass, Angewandte Chemie International Edition, vol.46, pp.7184-7201, 2007.

J. Luterbacher, D. Alonso, and J. Dumesic, Targeted chemical upgrading of lignocellulosic biomass to platform molecules, Green Chemistry, vol.16, pp.4816-4838, 2014.

D. Alonso, S. Wettstein, and J. Dumesic, Bimetallic catalysts for upgrading of biomass to fuels and chemicals, Chemical Society Reviews, vol.41, pp.8075-8098, 2012.

A. Demirbas, Biorefineries: Current activities and future developments. Energy Conversion and Management, vol.50, pp.2782-2801, 2009.

B. Joffres, D. Laurenti, N. Charon, A. Daudin, A. Quignard et al., Thermochemical conversion of lignin for fuels and chemicals: A review. Oil & Gas Science and Technology-Revue d, IFP Energies nouvelles, vol.68, pp.753-763, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00909054

M. Pandey and C. S. Kim, Lignin depolymerization and conversion: A review of thermochemical methods, Chemical Engineering & Technology, vol.34, pp.29-41, 2011.

, Licence CC BY

Y. Guo and D. A. Rockstraw, Physical and chemical properties of carbons synthesized from xylan, cellulose, and Kraft lignin by H3PO4 activation, Carbon, vol.44, pp.1464-1475, 2006.

R. French and S. Czernik, Catalytic pyrolysis of biomass for biofuels production, Fuel Processing Technology, vol.91, pp.25-32, 2010.

Z. Fang and R. L. Smith, , 2016.

H. Bjørsvik and F. Minisci, Fine chemicals from lignosulfonates. 1. Synthesis of vanillin by oxidation of lignosulfonates, Organic Process Research & Development, vol.3, pp.330-340, 1999.

A. Pacek, P. Ding, M. Garrett, G. Sheldrake, and A. Nienow, Catalytic conversion of sodium lignosulfonate to vanillin: angineering aspects. Part 1. Effects of processing conditions on vanillin yield and selectivity, Industrial & Engineering Chemistry Research, vol.52, pp.8361-8372, 2013.

. Silva-e-a-b-d, M. Zabkova, J. Araújo, C. Cateto, M. Barreiro et al., An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin, Chemical Engineering Research and Design, vol.87, pp.1276-1292, 2009.

B. Danielson and R. Simonson, Kraft lignin in phenol formaldehyde resin. Part 1. Partial replacement of phenol by kraft lignin in phenol formaldehyde adhesives for plywood, Journal of Adhesion Science and Technology, vol.12, pp.923-939, 1998.

B. Danielson and R. Simonson, Kraft lignin in phenol formaldehyde resin. Part 2. Evaluation of an industrial trial, Journal of Adhesion Science and Technology, vol.12, pp.941-946, 1998.

C. Zhang, H. Wu, and M. R. Kessler, High bio-content polyurethane composites with urethane modified lignin as filler, Polymer, vol.69, pp.52-57, 2015.

H. Homma, S. Kubo, T. Yamada, K. Koda, Y. Matsushita et al., Conversion of technical lignins to amphiphilic derivatives with high surface activity, Journal of Wood Chemistry and Technology, vol.30, pp.164-174, 2010.

Z. Guo and A. Gandini, Polyesters from lignin 2. the copolyesterification of kraft lignin and polyethylene glycols with dicarboxylic acid chlorides, European Polymer Journal, vol.27, pp.1177-1180, 1991.

T. Binh, N. Luong, N. Kim, D. Lee, S. Kim et al., Synthesis of lignin-based thermoplastic copolyester using kraft lignin as a macromonomer, Composite Interfaces, vol.16, pp.923-935, 2009.

H. Lewis, F. Brauns, M. Buchanan, and E. Brookbank, Lignin esters of mono-and dibasic aliphatic acids, Industrial & Engineering Chemistry, vol.35, pp.1113-1117, 1943.

J. Meister, Polymer modification: Principles, techniques, and applications, 2000.

E. Hult, K. Koivu, J. Asikkala, J. Ropponen, P. Wrigstedt et al., Esterified lignin coating as water vapor and oxygen barrier for fiber-based packaging, Holzforschung, vol.67, pp.899-905, 2013.

S. Fox and A. Mcdonald, Chemical and thermal characterization of three industrial lignins and their corresponding lignin esters, BioResources, vol.5, pp.990-1009, 2010.

K. Lundquist, S. Lin, and C. W. Dence, Proton (1H) NMR Spectroscopy, Lignin Chemistry, pp.242-249, 1992.
DOI : 10.1007/978-3-642-74065-7_17

W. Glasser, Jain R K. Lignin derivatives. I. Alkanoates. Holzforschung, vol.47, pp.225-233, 2009.

F. Monteil-rivera and L. Paquet, Solvent-free catalyst-free microwave-assisted acylation of lignin, Industrial Crops and Products, vol.65, pp.446-453, 2015.

, Licence CC BY

F. Chen, H. Dai, X. Dong, J. Yang, and M. Zhong, Physical properties of lignin-based polypropylene blends, Polymer Composites, vol.32, pp.1019-1025, 2011.

Y. Li and S. Sarkanen, Alkylated kraft lignin-based thermoplastic blends with aliphatic polyesters, Macromolecules, vol.35, pp.9707-9715, 2002.

H. Sadeghifar, C. Cui, and D. S. Argyropoulos, Toward thermoplastic lignin polymers. Part 1. Selective masking of phenolic hydroxyl groups in kraft lignins via methylation and oxypropylation chemistries, Industrial & Engineering Chemistry Research, vol.51, pp.16713-16720, 2012.

S. Sen, S. Patil, and D. Argyropoulos, Methylation of softwood kraft lignin with dimethyl carbonate, Green Chemistry, vol.17, pp.1077-1087, 2015.

L. Wu and W. Glasser, Engineering plastics from lignin. I. Synthesis of hydroxypropyl lignin, Journal of Applied Polymer Science, vol.29, pp.1111-1123, 1984.

M. Ionescu, Chemistry and technology of polyols for polyurethanes: iSmithers Rapra Publishing, 2005.

M. Mikhailov and K. Budevska, Preparation of epoxy resins from lignin. Izvestiya na Institutite po Obshta i Neorganichna Khimiya i po Organichna Khimiya, Bulgarska Akademiya na Naukite, vol.9, pp.187-196, 1962.

M. Mihailo and C. Budevska, Epoxy resins from lignin, Doklady Bolgarskoi Akademii Nauk, vol.15, pp.155-158, 1962.

E. Mansouri, N. E. Yuan, Q. Huang, and F. , Synthesis and characterization of kraft lignin-based epoxy resins, BioResources, vol.6, pp.2492-2503, 2011.

Y. Okabe and H. Kagawa, Biomass-derived epoxy resin composition. US8420766B2, 2013.

A. Effendi, H. Gerhauser, and A. V. Bridgwater, Production of renewable phenolic resins by thermochemical conversion of biomass: a review, Renewable and Sustainable Energy Reviews, vol.12, pp.2092-2116, 2008.

N. Cetin and N. Özmen, Use of organosolv lignin in phenol-formaldehyde resins for particleboard production: II. Particleboard production and properties, International Journal of Adhesion and Adhesives, vol.22, pp.481-486, 2002.

P. Figueiredo, K. Lintinen, J. Hirvonen, M. Kostiainen, and H. A. Santos, Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications, Progress in Materials Science, vol.93, pp.233-269, 2018.

Q. Zhang, G. Zhang, J. Xu, C. Gao, and Y. Wu, Recent advances on lignin-derived polyurethane polymers, Reviews on Advanced Materials Science, vol.40, 2015.

R. Thring, P. Ni, and S. Aharoni, Molecular weight effects of the soft segment on the ultimate properties of lignin-derived polyurethanes, International Journal of Polymeric Materials, vol.53, pp.507-524, 2004.

A. Gandini, M. Belgacem, Z. Guo, and S. Montanari, Lignins as macromonomers for polyesters and polyurethanes. Chemical Modification, Properties, and Usage of Lignin, pp.57-80, 2002.

X. Hou, N. Li, and M. Zong, Facile and simple pretreatment of sugar cane bagasse without size reduction using renewable ionic liquids-water mixtures, ACS Sustainable Chemistry & Engineering, vol.1, pp.519-526, 2013.

E. Mansouri, N. Yuan, Q. Huang, and F. , Study of chemical modification of alkaline lignin by the glyoxalation reaction, BioResources, vol.6, pp.4523-4536, 2011.

P. Navarrete, A. Pizzi, H. Pasch, and L. Delmotte, Study on lignin-glyoxal reaction by MALDITOF and CP-MAS 13C-NMR, Journal of Adhesion Science and Technology, vol.26, pp.1069-1082, 2012.

, Licence CC BY

M. Arend, B. Westermann, and N. Risch, Modern variants of the Mannich reaction, Angewandte Chemie International Edition, vol.37, pp.1044-1070, 1998.

Y. Matsushita and S. Yasuda, Reactivity of a condensed-type lignin model compound in the Mannich reaction and preparation of cationic surfactant from sulfuric acid lignin, Journal of Wood Science, vol.49, pp.166-171, 2003.

S. Huo, M. Nie, Z. Kong, G. Wu, and J. Chen, Crosslinking kinetics of the formation of lignin-aminated polyol-based polyurethane foam, Journal of Applied Polymer Science, vol.125, pp.152-157, 2012.

J. Huang and L. Zhang, Effects of NCO/OH molar ratio on structure and properties of graftinterpenetrating polymer networks from polyurethane and nitrolignin, Polymer, vol.43, pp.2287-2294, 2002.

L. Zhang and J. Huang, Effects of hard-segment compositions on properties of polyurethane-nitrolignin films, Journal of Applied Polymer Science, vol.81, pp.3251-3259, 2001.

W. He and P. Fatehi, Preparation of sulfomethylated softwood kraft lignin as a dispersant for cement admixture, RSC Advances, vol.5, pp.47031-47039, 2015.

V. Madzhidova, G. Dalimova, and K. A. Abduazimov, Sulfomethylation of lignins, Chemistry of Natural Compounds, vol.34, pp.179-181, 1998.

Y. Pang, X. Qiu, Y. Lou, and H. , Influence of oxidation, hydroxymethylation and sulfomethylation on the physicochemical properties of calcium lignosulfonate, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.312, pp.154-159, 2008.

Y. Liu and K. Li, Preparation and characterization of demethylated lignin-polyethylenimine adhesives, The Journal of Adhesion, vol.82, pp.593-605, 2006.

A. Duval and M. Lawoko, A review on lignin-based polymeric, micro-and nano-structured materials. Reactive and Functional Polymers, vol.85, pp.78-96, 2014.

A. Shvedova, V. Castranova, E. Kisin, D. Schwegler-berry, A. Murray et al., Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxicity using Human Keratinocyte Cells, Journal of Toxicology and Environmental Health, Part A, vol.66, pp.1909-1926, 2003.

A. Simon-deckers, Effets biologiques de nanoparticules manufacturées: Influence de leurs caractéristiques, 2008.

W. Zhao, B. Simmons, S. Singh, A. Ragauskas, and G. Cheng, From lignin association to nano/micro-particle preparation: Extracting higher value of lignin, Green Chemistry, vol.18, pp.5693-5700, 2016.

. Contreras, A. Gaspar, A. Guerra, L. Lucia, and D. Argyropoulos, Propensity of lignin to associate: Light scattering photometry study with native lignins, Biomacromolecules, vol.9, pp.3362-3369, 2008.

A. Guerra, A. Gaspar, S. Contreras, L. Lucia, C. Crestini et al., On the propensity of lignin to associate: A size exclusion chromatography study with lignin derivatives isolated from different plant species, Phytochemistry, vol.68, pp.2570-2583, 2007.

M. Lievonen, J. Valle-delgado, M. Mattinen, E. Hult, K. Lintinen et al., Simple process for lignin nanoparticle preparation, Green Chemistry, vol.18, pp.1416-1422, 2016.

, Licence CC BY

C. Frangville, M. Rutkevi?ius, A. Richter, O. Velev, S. Stoyanov et al., Fabrication of Environmentally Biodegradable Lignin Nanoparticles, ChemPhysChem, vol.13, pp.4235-4243, 2012.

M. Tortora, F. Cavalieri, P. Mosesso, F. Ciaffardini, F. Melone et al., Ultrasound driven assembly of lignin into microcapsules for storage and delivery of hydrophobic molecules, Biomacromolecules, vol.15, pp.1634-1643, 2014.

S. Beisl, A. Miltner, and A. Friedl, Lignin from micro to nanosize : Production methods, International Journal of Molecular Sciences, vol.18, p.1244, 2017.

S. Yearla and K. Padmasree, Preparation and characterisation of lignin nanoparticles : Evaluation of their potential as antioxidants and UV protectants, Journal of Experimental Nanoscience, vol.11, pp.289-302, 2016.

Q. Lu, M. Zhu, Y. Zu, W. Liu, L. Yang et al., Comparative antioxidant activity of nanoscale lignin prepared by a supercritical antisolvent (SAS) process with non-nanoscale lignin, Food Chemistry, vol.135, pp.63-67, 2012.

W. Yang, E. Fortunati, D. Gao, G. Balestra, G. Giovanale et al., Valorization of acid isolated high yield lignin nanoparticles as innovative antioxidant/antimicrobial organic materials, ACS Sustainable Chemistry & Engineering, vol.6, pp.3502-3514, 2018.

A. Gupta, S. Mohanty, and S. K. Nayak, Synthesis, characterization and application of lignin nanoparticles (LNPs), Materials Focus, vol.3, pp.444-454, 2014.

L. Nevárez, L. Casarrubias, A. Celzard, V. Fierro, V. Muñoz et al., Biopolymer-based nanocomposites: effect of lignin acetylation in cellulose triacetate films. Science and technology of advanced materials, vol.12, p.45006, 2011.

Y. Qian, X. Qiu, X. Zhong, D. Zhang, Y. Deng et al., Lignin reverse micelles for UV-absorbing and high mechanical performance thermoplastics, Industrial & Engineering Chemistry Research, vol.54, pp.12025-12030, 2015.

D. Tian, J. Hu, J. Bao, R. Chandra, J. Saddler et al., Lignin valorization : Lignin nanoparticles as high-value bio-additive for multifunctional nanocomposites, Biotechnology for Biofuels, vol.10, pp.192-203, 2017.

Y. Qian, X. Zhong, Y. Li, and X. Qiu, Fabrication of uniform lignin colloidal spheres for developing natural broad-spectrum sunscreens with high sun protection factor, Industrial Crops and Products, vol.101, pp.54-60, 2017.

Y. Qian, X. Qiu, and S. Zhu, Sunscreen performance of lignin from different technical resources and their general synergistic effect with synthetic sunscreens, ACS Sustainable Chemistry & Engineering, vol.4, pp.4029-4035, 2016.

Y. Qian, X. Qiu, and S. Zhu, Lignin : A nature-inspired sun blocker for broad-spectrum sunscreens, Green Chemistry, vol.17, pp.320-324, 2015.

X. Zhong, Y. Qian, J. Huang, D. Yang, Y. Deng et al., Fabrication of lignosulfonate vesicular reverse micelles to immobilize horseradish peroxidase, Industrial & Engineering Chemistry Research, vol.55, pp.2731-2737, 2016.

W. Yang, E. Fortunati, F. Bertoglio, J. Owczarek, G. Bruni et al., Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles, Carbohydrate Polymers, vol.181, pp.275-284, 2018.

, Licence CC BY

O. Rahman, S. Shi, J. Ding, D. Wang, S. Ahmad et al., Lignin nanoparticles : Synthesis, characterization and corrosion protection performance, New Journal of Chemistry, vol.42, pp.3415-3425, 2018.

A. Richter, J. Brown, B. Bharti, A. Wang, S. Gangwal et al., An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core, Nature Nanotechnology, vol.10, pp.817-823, 2015.

E. Ten, C. Ling, Y. Wang, A. Srivastava, L. Dempere et al., Lignin nanotubes as vehicles for gene delivery into human cells, Biomacromolecules, vol.15, pp.327-338, 2013.

Y. Qian, Y. Deng, X. Qiu, H. Li, and D. Yang, Formation of uniform colloidal spheres from lignin, a renewable resource recovered from pulping spent liquor, Green Chemistry, vol.16, pp.2156-2163, 2014.

Y. Qian, Y. Deng, H. Li, and X. Qiu, Reaction-free lignin whitening via a self-assembly of acetylated lignin, Industrial and Engineering Chemistry Research, vol.53, pp.10024-10028, 2014.

S. Salentinig and M. Schubert, Softwood lignin self-assembly for nanomaterial design, Biomacromolecules, vol.18, pp.2649-2653, 2017.

P. Figueiredo, K. Lintinen, A. Kiriazis, V. Hynninen, Z. Liu et al., In vitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells, Biomaterials, vol.121, pp.97-108, 2017.

P. Figueiredo, C. Ferro, M. Kemell, Z. Liu, A. Kiriazis et al., Functionalization of carboxylated lignin nanoparticles for targeted and pH-responsive delivery of anticancer drugs, Nanomedicine, vol.12, pp.2581-2596, 2017.

L. Dai, R. Liu, L. Hu, Z. Zou, and C. Si, Lignin nanoparticle as a novel green carrier for the efficient delivery of resveratrol, ACS Sustainable Chemistry & Engineering, vol.5, pp.8241-8249, 2017.

N. Chen, L. Dempere, and Z. Tong, Synthesis of pH-responsive lignin-based nanocapsules for controlled release of hydrophobic molecules, ACS Sustainable Chemistry & Engineering, vol.4, pp.5204-5211, 2016.

D. Yiamsawas, G. Baier, E. Thines, K. Landfester, and F. R. Wurm, Biodegradable lignin nanocontainers. RSC Advances, vol.4, pp.11661-11663, 2014.

E. Campos, D. Oliveira, J. Fraceto, and L. , Applications of controlled release systems for fungicides, herbicides, acaricides, nutrients, and plant growth hormones: A review, Advanced Science, Engineering and Medicine, vol.6, pp.373-387, 2014.

H. Scher, Controlled-release delivery systems for pesticides, 1999.

E. Campos, D. Oliveira, J. Fraceto, L. Singh, and B. , Polysaccharides as safer release systems for agrochemicals. Agronomy for Sustainable Development, vol.35, pp.47-66, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01284274

Z. Azwa, B. Yousif, A. Manalo, and W. Karunasena, A review on the degradability of polymeric composites based on natural fibres, Materials & Design, vol.47, pp.424-442, 2013.

J. Chen, S. Lü, Z. Zhang, X. Zhao, X. Li et al., Environmentally friendly fertilizers : A review of materials used and their effects on the environment, Science of the Total Environment, vol.613, pp.829-839, 2018.

, Licence CC BY

R. Johnson and A. Pepperman, Release of atrazine and alachlor from clay-oxamide controlled-release formulations, Pesticide Science, vol.53, pp.233-240, 1998.

N. I?iklan, Controlled release of insecticide carbaryl from sodium alginate, sodium alginate/gelatin, and sodium alginate/sodium carboxymethyl cellulose blend beads crosslinked with glutaraldehyde, Journal of Applied Polymer Science, vol.99, pp.1310-1319, 2006.

G. Pfister, M. Bahadir, and F. Korte, Release characteristics of herbicides from Ca alginate gel formulations, Journal of Controlled Release, vol.3, pp.229-233, 1986.

A. Pepperman and J. Kuan, Slow release formulations of metribuzin based on alginate-kaolin-linseed oil, Journal of Controlled Release, vol.26, pp.21-30, 1993.

M. Villafranca-sánchez, E. González-pradas, M. Fernández-pérez, F. Martinez-lópez, F. Flores-céspedes et al., Controlled release of isoproturon from an alginate-bentonite formulation: water release kinetics and soil mobility, Pest Management Science, vol.56, pp.749-756, 2000.

N. I??klan, Controlled release study of carbaryl insecticide from calcium alginate and nickel alginate hydrogel beads, Journal of Applied Polymer Science, vol.105, pp.718-725, 2007.

F. Céspedes, S. García, M. Sánchez, and M. F. Pérez, Bentonite and anthracite in alginate-based controlled release formulations to reduce leaching of chloridazon and metribuzin in a calcareous soil, Chemosphere, vol.92, pp.918-924, 2013.

B. Singh, D. Sharma, and A. Gupta, A study towards release dynamics of thiram fungicide from starch-alginate beads to control environmental and health hazards, Journal of Hazardous Materials, vol.161, pp.208-216, 2009.

B. Singh, D. Sharma, and A. Dhiman, Environment friendly agar and alginate-based thiram delivery system, Toxicological & Environmental Chemistry, vol.95, pp.567-578, 2013.

B. Singh, D. Sharma, and A. Gupta, Controlled release of thiram fungicide from starch-based hydrogels, Journal of Environmental Science and Health Part B, vol.42, pp.677-695, 2007.

M. Kah and T. Hofmann, Nanopesticide research : current trends and future priorities, Environment International, vol.63, pp.224-235, 2014.

H. Guan, C. D. Yu, J. Li, and H. , Encapsulated ecdysone by internal gelation of alginate microspheres for controlling its release and photostability, Chemical Engineering Journal, vol.168, pp.94-101, 2011.

F. Céspedes, M. Sánchez, S. Garcia, and M. F. Pérez, Modifying sorbents in controlled release formulations to prevent herbicides pollution, Chemosphere, vol.69, pp.785-794, 2007.

A. Roy, J. Bajpai, and A. Bajpai, Dynamics of controlled release of chlorpyrifos from swelling and eroding biopolymeric microspheres of calcium alginate and starch, Carbohydrate Polymers, vol.76, pp.222-231, 2009.

A. Kulkarni, K. Soppimath, T. Aminabhavi, A. Dave, and M. H. Mehta, Glutaraldehyde crosslinked sodium alginate beads containing liquid pesticide for soil application, Journal of Controlled Release, vol.63, pp.97-105, 2000.

J. Jerobin, R. Sureshkumar, C. Anjali, A. Mukherjee, and N. Chandrasekaran, Biodegradable polymer based encapsulation of neem oil nanoemulsion for controlled release of AzaA, Carbohydrate Polymers, vol.90, pp.1750-1756, 2012.

H. Guan, C. D. Yu, J. Li, and X. , A novel photodegradable insecticide : Preparation, characterization and properties evaluation of nano-imidacloprid, Pesticide Biochemistry and Physiology, vol.92, pp.83-91, 2008.

, Licence CC BY

L. Wu and M. Liu, Preparation and properties of chitosan-coated NPK compound fertilizer with controlled-release and water-retention, Carbohydrate Polymers, vol.72, pp.240-247, 2008.

J. Quiñones, Y. García, H. Curiel, and C. P. Covas, Microspheres of chitosan for controlled delivery of brassinosteroids with biological activity as agrochemicals, Carbohydrate Polymers, vol.80, pp.915-921, 2010.

K. Zhong, Z. Lin, X. Zheng, G. Jiang, Y. Fang et al., Starch derivativebased superabsorbent with integration of water-retaining and controlled-release fertilizers, Carbohydrate Polymers, vol.92, pp.1367-1376, 2013.

Z. El-bahri and J. Taverdet, Elaboration and characterisation of microparticles loaded by pesticide model, Powder Technology, vol.172, pp.30-40, 2007.

B. Ni, M. Liu, and S. Lü, Multifunctional slow-release urea fertilizer from ethylcellulose and superabsorbent coated formulations, Chemical Engineering Journal, vol.155, pp.892-898, 2009.

S. Silva, M. Cocenza, D. Grillo, R. De-melo, N. Tonello et al., Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies, Journal of Hazardous Materials, vol.190, pp.366-374, 2011.

B. Feng and L. Peng, Synthesis and characterization of carboxymethyl chitosan carrying ricinoleic functions as an emulsifier for azadirachtin, Carbohydrate Polymers, vol.88, pp.576-582, 2012.

J. Zhao and R. Wilkins, Controlled release of the herbicide, fluometuron, from matrix granules based on fractionated organosolv lignins, Journal of Agricultural and Food Chemistry, vol.51, pp.4023-4028, 2003.

M. Fernández-pérez, M. Villafranca-sánchez, F. Flores-céspedes, and I. Daza-fernández, Lignin-polyethylene glycol matrices and ethylcellulose to encapsulate highly soluble herbicides, Journal of Applied Polymer Science, vol.132, pp.41422-41431, 2015.

M. Fernández-pérez, M. Villafranca-sánchez, F. Flores-céspedes, and I. Daza-fernández, Ethylcellulose and lignin as bearer polymers in controlled release formulations of chloridazon, Carbohydrate Polymers, vol.83, pp.1672-1679, 2011.

M. Chowdhury, The controlled release of bioactive compounds from lignin and lignin-based biopolymer matrices, International Journal of Biological Macromolecules, vol.65, pp.136-147, 2014.

Y. Li, M. Zhou, Y. Pang, and X. Qiu, Lignin-based microsphere : preparation and performance on encapsulating the pesticide avermectin, ACS Sustainable Chemistry & Engineering, vol.5, pp.3321-3328, 2017.

X. Wang and J. Zhao, Encapsulation of the herbicide picloram by using polyelectrolyte biopolymers as layer-by-layer materials, Journal of Agricultural and Food Chemistry, vol.61, pp.3789-3796, 2013.

F. Flores-céspedes, G. Martínez-domínguez, M. Villafranca-sánchez, and M. Fernándezpérez, Preparation and characterization of azadirachtin alginate-biosorbent based formulations: water release kinetics and photodegradation study, Journal of Agricultural and Food Chemistry, vol.63, pp.8391-8398, 2015.

Z. Peng and F. Chen, Synthesis and properties of lignin-based polyurethane hydrogels, International Journal of Polymeric Materials, vol.60, pp.674-683, 2011.

S. Constant, C. Basset, C. Dumas, D. Renzo, F. Robitzer et al., Reactive organosolv lignin extraction from wheat straw : Influence of Lewis acid Licence CC BY-NC-ND 3.0 catalysts on structural and chemical properties of lignins, Industrial Crops and Products, vol.65, pp.180-189, 2015.

A. Tejado, C. Peña, J. Labidi, J. Echeverria, and I. Mondragon, Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis, Bioresource Technology, vol.98, pp.1655-1663, 2007.

A. Granata and D. S. Argyropoulos, 2-dioxaphospholane, a reagent for the accurate determination of the uncondensed and condensed phenolic moieties in lignins, Journal of Agricultural and Food Chemistry, vol.4, pp.1538-1544, 1995.

R. El-hage, N. Brosse, L. Chrusciel, C. Sanchez, P. Sannigrahi et al., Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus, Polymer Degradation and Stability, vol.94, pp.1632-1638, 2009.

O. Gordobil, R. Delucis, I. Egüés, and J. Labidi, Kraft lignin as filler in PLA to improve ductility and thermal properties, Industrial Crops and Products, vol.72, pp.46-53, 2015.
DOI : 10.1016/j.indcrop.2015.01.055

C. Vila, V. Santos, B. Saake, and J. Parajó, Manufacture, characterization, and properties of poly-(lactic acid) and its blends with esterified pine lignin, BioResources, vol.11, pp.5322-5332, 2016.

O. Gordobil, I. Egüés, R. Llano-ponte, and J. Labidi, Physicochemical properties of PLA lignin blends, Polymer Degradation and Stability, vol.108, pp.330-338, 2014.
DOI : 10.1016/j.polymdegradstab.2014.01.002

G. Brunow, Methods to reveal the structure of lignin, Biopolymers, vol.Online, 2005.

H. Lewis and F. E. Brauns, Esters of lignin material. US Patent 2,429, p.102, 1947.

J. Sameni, S. Krigstin, and M. Sain, Solubility of lignin and acetylated lignin in organic solvents, BioResources, vol.12, pp.1548-1565, 2017.
DOI : 10.15376/biores.12.1.1548-1565

URL : http://ojs.cnr.ncsu.edu/index.php/BioRes/article/download/BioRes_12_1_1548_Sameni_Solubility_Lignin_Acetylated_Lignin_Organic_Solvents/5048

L. Dehne, V. Babarro, C. Saake, B. Schwarz, and K. , Influence of lignin source and esterification on properties of lignin-polyethylene blends, Industrial Crops and Products, vol.86, pp.320-328, 2016.

C. Riou, C. Calliste, A. Silva, D. Guillaumot, O. Rezazgui et al., Anionic porphyrin as a new powerful cell death inducer of Tobacco Bright Yellow-2 cells, Photochemical & Photobiological Sciences, vol.13, pp.621-625, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00939002

L. Barclay, M. Basque, and M. R. Vinqvist, Singlet-oxygen reactions sensitized on solid surfaces of lignin or titanium dioxide : Product studies from hindered secondary amines and from lipid peroxidation, Canadian Journal of Chemistry, vol.81, pp.457-467, 2003.
DOI : 10.1139/v02-199

K. Fischer and M. Beyer, Comparison of light-induced and heat-induced yellowing of pulp, Lenzinger Berichte, vol.79, pp.25-31, 2000.

D. C. Neckers and . Bengal, Journal of Photochemistry and Photobiology A: Chemistry, vol.47, pp.1-29, 1989.

T. Theodossiou, J. Hothersall, E. Woods, K. Okkenhaug, J. Jacobson et al., Firefly luciferin-activated Rose Bengal, Cancer Research, vol.63, pp.1818-1821, 2003.

L. Barclay, J. Grandy, H. Mackinnon, H. Nichol, and M. R. Vinqvist, Peroxidations initiated by lignin model compounds: investigating the role of singlet oxygen in photo-yellowing, Canadian Journal of Chemistry, vol.76, pp.1805-1816, 1998.

K. Fischer, M. Beyer, and H. Koch, Photo-induced yellowing of high yield pulps, Holzforschung, vol.49, pp.203-210, 2009.
DOI : 10.1515/hfsg.1995.49.3.203

, Licence CC BY

G. Marchand, C. Calliste, R. Williams, C. Mclure, S. Leroy-lhez et al., Acetylated lignins : A potential bio-sourced photosensitizer, ChemistrySelect, vol.3, pp.5512-5516, 2018.
DOI : 10.1002/slct.201801039

URL : https://hal.archives-ouvertes.fr/hal-02083664

S. Mathai, T. Smith, and K. P. Ghiggino, Singlet oxygen quantum yields of potential porphyrin-based photosensitisers for photodynamic therapy, Photochemical & Photobiological Sciences, vol.6, pp.995-1002, 2007.

A. Ormond and H. Freeman, Dye sensitizers for photodynamic therapy, Materials, vol.6, pp.817-840, 2013.
DOI : 10.3390/ma6030817

URL : http://www.mdpi.com/1996-1944/6/3/817/pdf

J. Gonzales, G. Brancini, G. Rodrigues, S. Bachmann, L. Wainwright et al., Photodynamic inactivation of conidia of the fungus Colletotrichum abscissum on Citrus sinensis plants with methylene blue under solar radiation, Journal of Photochemistry and Photobiology B: Biology, vol.176, pp.54-61, 2017.

L. Zhang and A. Eisenberg, Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution, Polymers for Advanced Technologies, vol.9, pp.677-699, 1998.

M. Lievonen, J. Valle-delgado, M. Mattinen, E. Hult, K. Lintinen et al., A simple process for lignin nanoparticle preparation, Green Chemistry, vol.18, pp.1416-1422, 2016.
DOI : 10.1039/c5gc01436k

URL : https://research.aalto.fi/files/6735653/Revised_manuscript_final.pdf

M. Bregnhøj, M. Westberg, F. Jensen, and P. Ogilby, Solvent-dependent singlet oxygen lifetimes : temperature effects implicate tunneling and charge-transfer interactions, Physical Chemistry Chemical Physics, vol.18, pp.22946-22961, 2016.

R. Little, J. Anton, P. Loach, and J. Ibers, The synthesis of some substituted tetraarylporphyrins, Journal of Heterocyclic Chemistry, vol.12, pp.343-349, 1975.

D. Monti, M. Venanzi, G. Mancini, F. Marotti, L. Monica et al., Synthesis and complexation properties of an oligooxaethylene-spacered porphyrin dimer-toward the construction of a new switchable porphyrin array, European Journal of Organic Chemistry, pp.1901-1906, 1999.

M. Taniguchi, H. Du, and J. Lindsey, Virtual libraries of tetrapyrrole macrocycles. Combinatorics, isomers, product distributions, and data mining, Journal of Chemical Information and Modeling, vol.51, pp.2233-2247, 2011.

B. Rioux, C. Pouget, C. Fidanzi-dugas, A. Gamond, A. Laurent et al., Design and multi-step synthesis of chalconepolyamine conjugates as potent antiproliferative agents, Bioorganic and Medicinal Chemistry Letters, vol.27, pp.4354-4357, 2017.

M. Hussain, T. Liebert, and T. Heinze, Acylation of cellulose with N, N?carbonyldiimidazole-activated acids in the novel solvent

. Dimethylsulfoxide/tetrabutylammonium-fluoride, Macromolecular Rapid Communications, vol.25, pp.916-920, 2004.