
HAL Id: tel-02049501
https://theses.hal.science/tel-02049501

Submitted on 26 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Signal Integrity - Aware Pattern Generation for Delay
Testing

Anu Asokan

To cite this version:
Anu Asokan. Signal Integrity - Aware Pattern Generation for Delay Testing. Micro and nanotechnolo-
gies/Microelectronics. Université Montpellier, 2015. English. �NNT : 2015MONTS206�. �tel-02049501�

https://theses.hal.science/tel-02049501
https://hal.archives-ouvertes.fr

Délivré par l'Université Montpellier

Préparée au sein de l’école doctorale I2S

Et de l’unité de recherche LIRMM UMR 5506

Spécialité : Microélectronique

Présentée par Anu ASOKAN

Soutenue le 9 Décembre 2015 devant le jury composé de

M. Emmanuel SIMEU MCF, INP Grenoble Rapporteur

M. Matteo Sonza REORDA Professeur, Politecnico di Torino Rapporteur

M. Philippe DEBAUD Manager DFT, ST-Microelectronics Examinateur

M. Olivier SENTIEYS Professeur, Université Rennes 1 Examinateur

M. Alberto BOSIO MCF, Université Montpellier Co-encadrant

M. Arnaud VIRAZEL MCF, Université Montpellier Co-encadrant

M. Patrick GIRARD Directeur de Recherche CNRS – LIRMM Co-Directeur

M. Serge PRAVOSSOUDOVITCH Professeur, Université Montpellier Directeur

Signal Integrity – Aware Pattern Generation

for Delay Testing

I dedicate this thesis to

my parents, my sister,

my husband,

my little cutie

&

to all the loving people in my life

Abstract

Signal Integrity-Aware Pattern Generation for Delay Testing

Advancing nanometer technology scaling enables higher integration on a single chip

with minimal feature size. As a consequence, the effects of signal and power integrity is-

sues such as crosstalk noise between interconnects, power supply noise and ground bounce

in the supply networks significantly increases. Also, reliability issues are eventually in-

troduced by variations in the manufacturing process. These issues will negatively impact

the timing characteristics in an integrated circuit (IC), as they give rise to delay defects.

Delay-related parametric failures increase the defect escape rate, yield loss and diminish

reliability rate. Hence, design-for-test techniques are employed to have a better control-

lability and observability on the internal nodes to easily detect and locate the faults.

However, they are not always detected by the traditional fault models.

In our work, we target these challenges and propose novel physical design-aware path

delay test methods to deal with delay faults coming from manufacturing defects or physical

design issues. They include the investigation of path delay variations in the presence of

crosstalk noise, power supply noise, ground bounce and process variations. Based on this,

we develop technology independent test methods for identifying the test patterns that

may cause a worst-case delay on a target path. Then, we develop a dedicated test pattern

generation method for path delay testing in the presence of crosstalk noise, power supply

noise and ground noise. The proposed methods can be used to characterize the path

speed and it helps to address the speed binning problem. Also, they can be employed in

improving the classical ATPG approach of pattern generation. The application of these

contributions can bring tremendous improvements to the IC test quality by ensuring

better defect coverage and for an increased manufacturing yield during speed binning of

IC chips.

ii

Acknowledgements

This PhD thesis is a part of the three-year research work that has been carried out

in SYSMIC (TRAFIC) research group of the Laboratory of Informatics, Robotics and

Microelectronics of Montpellier (LIRMM). During this time, I have been supported by

many people who actively contributed to this present work. With immense pleasure, I

take this opportunity to convey my gratitude to each one of them.

I am very grateful to Pr. Patrick Girard and Pr. Serge Pravossoudovitch for believing

and giving me this opportunity to become part of this PhD work. My deep gratitude and

appreciation also goes to Dr. Aida Todri-Sanial for her consistent guidance in the initial

part of this thesis. I would also like to thank my thesis advisors, Dr. Arnaud Virazel and

Dr. Alberto Bosio for supervising, continuously supporting and guiding me in the rest

part of my research. My sincere thanks to their vibrant efforts and skillful leaderships

for attaining this thesis in its present form. Without them, I wouldn’t have made so far.

Thank you very much for the trust and confidence that you have given to me.

I would like to acknowledge the University of Montpellier and French National Centre

for Scientific Research (CNRS) for providing the financial support of this PhD research.

I would like to acknowledge my thesis jury members Dr. Emmanuel Simeu, Pr. Matteo

Sonza Reorda, Dr. Philippe Debaud and Pr. Olivier Sentieys for their valuable advice and

suggestions to this work. I appreciate them for giving their time to review and comment

on this thesis.

Moving towards more personal acknowledgments, I would like to execute a big thanks

towards all my family members, my husband and to all my friends1. I am proud of the

warm friendships from my colleagues and friends Alejandro, Syhem, Mohammad, Mariam,

Saif, Khalid, Amit, Ioana, Virginie, Martine, Seza, Imran, Sophiane, Rida and Aymen.

Also, from the Indian friends in Montpellier Sreedhar, Sourav, Jija, Rechan, Vishnu and

1You know who you are.

iii

Vidhya throughout this period has been invaluable.

I am, of course, particularly indebted to my mother, my father and my sister for their

monumental, unwavering support and encouragement on all fronts. They were always

been there for me and without them none of this would have been even remotely possible.

Finally, I would like to express my gratitude to my loving husband Suri for his patience,

understanding and encouraging me throughout this thesis. The past 20 months being far

from each other after our marriage has been a long adventurous happy journey. Thank

you for your love, sacrifice and for our little cutie you have given me.

Montpellier Anu ASOKAN

December 2015

iv

Contents

Abstract ii

Acknowledgements iii

List of Figures viii

List of Tables x

List of Abbreviations xi

Introduction xii

1 State-of-the-art 1
1.1 Background . 2
1.2 Challenges in Nanoscale Technologies . 3

1.2.1 Crosstalk . 3
1.2.2 Power Supply Noise . 5
1.2.3 Process Variations . 7

1.3 Testing . 8
1.3.1 Different Types of Manufacturing tests 9
1.3.2 Structural Fault models . 10
1.3.3 Fault Categories . 12

1.3.3.1 Detected Faults . 12
1.3.3.2 Possibly Detected Faults 12
1.3.3.3 Undetectable Faults . 13
1.3.3.4 ATPG Untestable Faults 14
1.3.3.5 Not Detected Faults . 15

1.3.4 Automatic Test Pattern Generation 15
1.4 DFT Techniques . 18

1.4.1 Scan Design . 19
1.4.2 Different ATPG Modes . 21
1.4.3 At-speed Test . 21
1.4.4 At-Speed Delay Test Challenges . 23

2 Path Delay Test in the Presence of Multi-Aggressor Crosstalk, Power
Supply Noise and Ground Bounce 25
2.1 Introduction . 25
2.2 Prior Work . 27
2.3 Contributions and Chapter Organization 27

v

2.4 Motivational Experiments . 28
2.4.1 Path Delay Analysis . 28
2.4.2 Path Delay Fault Testing . 35
2.4.3 Comparison of input patterns . 36

2.5 Physical Design Aware Pattern Generation Method 36
2.5.1 PDAPG Flow for Pattern Generation 36

2.5.1.1 Stage I : Circuit Netlist Creation 37
2.5.1.2 Stage II : Selection of a Victim Path 38
2.5.1.3 Stage III : Placement and Routing of Circuit Netlist . . . 39
2.5.1.4 Stage IV : Pattern Generation 39
2.5.1.5 Stage V : Identification of Multi-aggressors 40
2.5.1.6 Stage VI : X-bit Filling by Backtrace Approach 44
2.5.1.7 Stage VII : Path Delay Measurement 48

2.5.2 Experimental Results . 49
2.6 Summary . 51

3 An ATPG Flow to Generate Crosstalk-Aware Path Delay Pattern 54
3.1 Introduction . 54
3.2 Prior Work . 55
3.3 Contributions and Chapter Organization 56
3.4 Motivational Experiments . 57

3.4.1 Path Delay Analysis . 57
3.4.2 Path Delay Fault Testing . 61
3.4.3 Comparison of Vector Pairs . 61

3.5 Crosstalk-Aware Test Pattern Generation Method 62
3.5.1 Xtalk-ATPG Flow for Pattern Generation 62
3.5.2 Experimental Results . 63

3.6 Constrained ATPG (Catpg) Method . 67
3.6.1 Catpg Flow for Pattern Generation 69

3.6.1.1 Stage I : Identification of Aggressor Nets 70
3.6.1.2 Stage II : Sorting and Ranking 70
3.6.1.3 Stage III : Constraining Aggressor Nets and Pattern Gen-

eration . 71
3.6.2 Experimental Results . 79

3.7 Summary . 81

4 Delay Probability Metric Under the Impact of Process Variation and
Supply Noise 83
4.1 Introduction . 83
4.2 Prior Work . 85
4.3 Contributions and Chapter Organization 86
4.4 Motivational experiment . 87

4.4.1 Path Delay Analysis . 87
4.4.2 Path Delay Fault Testing . 89
4.4.3 Comparison of Vector Pairs . 90

4.5 Problem formulation . 91
4.5.1 Path Delay Estimation . 91
4.5.2 Delay Probability Distribution . 94
4.5.3 Probabilistic Pattern Ranking Method 94

vi

4.6 Input Pattern Ranking Method . 96
4.6.1 Impact of Process Variations . 99
4.6.2 Impact of Supply Noise . 99
4.6.3 Impact of Process Variations and Supply Noise 101

4.7 Experimental Results . 102
4.8 Summary . 105

5 Thesis Summary and Future Works 106
5.1 Thesis Summary . 106
5.2 Future works . 108

Appendix A 110

Scientific Contributions 116

Bibliography 117

vii

List of Figures

1 Thesis outline . xiv

1.1 Principle behind testing chips . 8
1.2 General ATPG Flow . 17
1.3 A scan flip-flop . 20
1.4 An example of scan-chains inserted design 20
1.5 At-speed pattern generation using launch-off capture 22
1.6 At-speed pattern generation using launch-off shift 22
1.7 At nanometer process nodes, parasitic effects increase 23

2.1 Buffer gate circuit for path delay analysis 29
2.2 Path delay variations due to Xtalk noise 30
2.3 Path delay variations due to the combined impact of Xtalk noise and PSN 31
2.4 Path delay variations due to the combined impact of Xtalk noise, PSN and

GB . 33
2.5 Path delay variation of buffer gate circuit 34
2.6 Verilog circuit for Path delay test in TetraMAX 35
2.7 Physical design aware pattern generation method 37
2.8 Identification of Multi-aggressors . 40
2.9 Victim-Aggressor net sketch from the layout 41
2.10 Aggressor net (An) and victim net (Vn) is horizontally located (a) both

with equal length (H1) (b) Vn > An (H2) (c) Vn < An (H3) (d) Vn, An
in parallel, but with fringe capacitance (H4) (e) distant apart between the
nets, but with fringe capacitance (H5) (f) in the same X plane (H6) 44

2.11 Aggressor net (An) and victim net (Vn) is vertically located (a) both with
equal length (V1) (b) Vn > An (V2) (c) Vn < An (V3) (d) Vn, An in
parallel, but with fringe capacitance (V4) (e) distant apart between the
nets, but with fringe capacitance (V5) (f) in the same Y plane (V6) 45

2.12 X-filling by backtrace approach . 45
2.13 Path delay fault testing with LOC . 47

3.1 (a) s27 benchmark circuit-under-test (b) 3-pi network model for interconnects 58
3.2 Layout sketch of s27 circuit . 59
3.3 Layout of s27 circuit . 60
3.4 Path delay fault testing in TetraMAX . 61
3.5 Crosstalk-aware pattern generation method 63
3.6 Constrained ATPG flow . 69
3.7 Aggressor nets . 72
3.8 Aggressor net ranking . 72

viii

3.9 Constrained ATPG method . 74
3.10 State diagram of constrained ATPG . 76
3.11 (a) Waveform of Xtalk-ATPG pattern (b) Waveform of constrained ATPG

pattern . 77
3.12 Path delay variation plot of a victim path 78
3.13 Comparison of 2 methods in terms of path delay variation 80
3.14 Comparison of 2 methods in terms of computational time 81

4.1 Different corner cases for process variations 85
4.2 (a) s27 benchmark circuit-under-test (b) 3-pi network model for intercon-

nects (c) CMOS model for NOT gate . 88
4.3 Path delay estimation . 92
4.4 Delay Probability distribution of an input pattern 95
4.5 SPICE circuit under the impact of process variations and supply noise . . . 96
4.6 Tolerance range of circuit parameters . 97
4.7 Flow of input pattern ranking method . 98
4.8 Identification of worst-case path delay pattern under PV 99
4.9 Identification of worst-case path delay pattern under SN 100
4.10 Identification of worst-case delay pattern under PV and SN 101

ix

List of Tables

2.1 Path delay variations for different input patterns (Xtalk) 31
2.2 Path delay variations for different input patterns (Xtalk+PSN) 32
2.3 Path delay variations for different input patterns (Xtalk+PSN+GB) 33
2.4 Worst-case path delays for the combined impact of Xtalk, PSN and GB . . 34
2.5 Input Pattern Comparison and Path Delay Variation 36
2.6 Victim nets and aggressor nets . 41
2.7 Victim nets and aggressor nets . 46
2.8 Functionality of ITC’99 Benchmark circuits [1] 49
2.9 Circuit description and Path delay variation results for ITC’99 Benchmark

circuits . 50
2.10 Input pattern comparison results of ITC’99 Benchmark circuits 52

3.1 Path delay variation due to the impact of crosstalk 60
3.2 Pattern comparison and delay variation . 62
3.3 Functionality of ITC’99 Benchmark circuits [1] 64
3.4 Circuit description and experimental results for ITC’99 Benchmark circuits 65
3.5 b06 input patterns . 66
3.6 Input pattern comparison results of ITC’99 Benchmark circuits 68
3.7 Aggressor net ranking . 71
3.8 Aggressor net transition and delay measurement 73
3.9 Pattern comparison and Path delay variation 75
3.10 Circuit description and experimental results on ITC’99 Benchmark circuits 79

4.1 Path delay variation due to the impact of process variations 89
4.2 Pattern comparison and delay variation . 90
4.3 Ranking method patterns under the impact of PV 100
4.4 Ranking method patterns under the impact of SN 101
4.5 Ranking method patterns under the impact of PV and SN 102
4.6 Input pattern comparison results of ITC’99 Benchmark circuits 103
4.7 Results of ITC’99 Benchmark circuits . 104

x

List of Abbreviations

ATPG Automatic Test Pattern Generation

CMOS Complementary Metal Oxide Semiconductor

DFM Design For Manufacturing

DFT Design-For-Test

DFM Design For Yield

FF Flip-Flop

GB Ground Bounce

IC Integrated Circuit

ITRS International Technology Roadmap for Semiconductors

PDAPG Physical Design Aware Pattern Generation

PDF Path Delay Fault

PI Power Integrity

PI’s Primary Inputs

PO’s Primary Outputs

PSN Power Supply Noise

PV Process Variation

RTL Register Transfer Logic

SE Scan Enable

SI Signal Integrity

SI’s Scan-in Inputs

SO’s Scan-out Outputs

SPICE Simulation Program with Integrated Circuit Emphasis

Xtalk Crosstalk

xi

Introduction

As predicted by “Moore’s law” [2], the integrated circuit (IC) products became denser

with increased functionality and aggressive CMOS device scaling. Subsequently, with

the arrival of “More Moore” scaling, geometrical shrinking of physical feature size were

attained. Currently, “beyond CMOS” technologies are under development to satisfy the

competitive consumer market demands. The entire device scaling evolutionary process

has driven huge changes in our everyday life. Obvious applications are in medical field,

aerospace, consumer products etc., and researches are still ongoing to make it more and

more compact. International Technology Roadmap for Semiconductors (ITRS) has pre-

dicted that the growth of CMOS device scaling would slowdown and the progress would

reach saturation. In the coming years, a functional diversification approach “More-than-

Moore” is expected to flourish [3] with higher efficiency, additional functionality and in-

creased complexity. Well, whatever the technology advancements, the plethora of physical

design issues in IC’s and manufacturing process imperfectness associated with the current

and upcoming technologies is still not resolved. Accordingly, it is important to develop

test techniques that can increase the manufacturing yield, along with any progressing

technology scaling.

The denser, complex and fast switching circuits impose significant challenges to IC’s,

even though the remarkable scaling has assisted technology demands very well. They

pose challenges to the signal, power and thermal integrity of circuits, as well as, reliability

issues. Examples are crosstalk–induced delay, logic errors and substrate coupling. Ex-

cessive and varying voltage drop in the power supply and ground networks considerably

affect the power integrity of a design. Also, variations in the IC manufacturing process,

commonly called as process variations affect the reliability of the circuits. All of their

impacts can give rise to distributed delay variations that may affect the functioning and

performance of IC’s. A new class of “delay” faults caused by the above mentioned delay

variations needs to be properly addressed, modelled and used during fault simulation, test

xii

generation, DFT, DFM and DFY.

“What is not testable is not fixable” [4].

An IC must be testable, not only manufacturable. Also, must reach a good yield

figure, which makes it cost-effective. Along with the IC designs, DFT techniques were

implemented to apply manufacturing tests. Different tests has been widely adopted in

industry to detect delay-related defects. Performing at-speed delay test using path delay

fault (PDF) model validates that all the delay defects are captured during IC testing

phase. But some of the path delay faults escape the test due to the ineffectiveness in

the applied test vectors. Path delay estimations must involve the gate models and the

interconnect models for an accurate estimation. The PDF models used are based on the

basic simplistic models at the gate level and they do not consider circuit physical design

data (package, power/ground network parasitics, pad/pin location and cell placements).

Therefore, PDF models generate ineffective vector pairs. They can only be fixed by testing

the IC with the PDF models generated at physical design level rather than at gate level.

The problem of testing IC in the presence of various issues at physical design level is also of

major concern, as their occurence is not consistent. Path delay fault testing in the presence

of crosstalk noise, power supply noise, ground bounce and process variations is examined

in this work in accordance with their impact to a circuit path. Other research works in

this field were dedicated towards their individual impacts and the ways to mitigate these

effects; their combined physical design impacts were not considered. This work focusses

on modifying the selection of patterns generated by the testing tools to accommodate the

exact patterns that are identified for causing path delay variations in the circuit.

The overall outline of the thesis “Signal Integrity-Aware Pattern Generation for Delay

Testing” is shown in Figure 1. This research work includes an introduction, four chapters

and finally conclusion and perspective are discussed. The brief description of the thesis

chapters are as follows.

Chapter 1 ellaborates the state-of-the-art related to this thesis work. The first part

in this chapter discusses, the problems assoiciated with device scaling, i.e., signal integrity

issues such as crosstalk noise, power integrity issues such as supply noise and reliability

issues such as process variations. In the second part, delay testing principle, types of

delay testing, ATPG and DFT are detailed. And, the final part provides an overview of

the prior work to the existing solutions for physical design issues and pattern generation.

xiii

Chapter 1

Chapter 2

Chapter 3

Chapter 4

State-of-the-art

SI issue Xtalk noise PI issue PSN, GB

PDAPG method

Constrained ATPG method

Reliability issue PV

PI issue PSN, GB

Pattern

comparison

Input pattern ranking method
Physical design-

aware path delay

test solution

Basic findings

PDAPG method

Thesis

outcome

SI issue Xtalk noise

Figure 1: Thesis outline

Thereby, we show the context and motivation of our research work.

Chapter 2 presents our study on path delay variations in the presence of physical

design issues such as crosstalk noise, power supply noise and ground bounce. The aim is

to identify a worst-case path delay pattern that can predetermine delay defects. Then,

we show that a path delay fault pattern generated by an ATPG tool does not match

the pattern identified, hence indicating a discrepancy in the existing PDF model to de-

tect delay defects. A physical design aware pattern generation method based on selective

SPICE simulations is proposed to automate the different steps in pattern generation. Our

major contributions in this method are the identification of aggressor nets and X-filling

by backtrace approach. Our method is verified and results on ITC’99 benchmark circuits

are provided.

Chapter 3 focuses on generating a worst-case path delay pattern in the presence of

xiv

crosstalk noise. Our objective in this chapter is to eliminate the selective SPICE simula-

tion, which is exhaustive for bigger circuits. The basic findings from chapter 2 is utilized

in the constrained ATPG method. This method is capable of modifying the selection of

patterns generated by testing tools to accommodate the exact patterns that are identified

as causing path delay variations in the physical design of a circuit layout. The proposed

method is able to generate a worst-case path delay pattern in lesser computational time.

The results are verified on ITC’99 benchmark circuits.

Chapter 4 deals with path delay variations in the combined presence of process varia-

tions and supply noise in circuits. By using our proposed metric for probabilistic pattern

ranking method, we are able to identify the patterns that can capture the worst-case

path delay in their combined presence. This metric aims at detecting the most-effective

pattern for path delay testing from the subset of all input patterns. An input pattern

ranking method is described based on the mean delay difference and the area of the delay

probability distribution for all input patterns.

Chapter 5 includes concluding remarks of this thesis work and future research direc-

tions.

xv

Chapter 1

State-of-the-art

Contents
1.1 Background . 2

1.2 Challenges in Nanoscale Technologies 3

1.2.1 Crosstalk . 3

1.2.2 Power Supply Noise . 5

1.2.3 Process Variations . 7

1.3 Testing . 8

1.3.1 Different Types of Manufacturing tests 9

1.3.2 Structural Fault models . 10

1.3.3 Fault Categories . 12

1.3.4 Automatic Test Pattern Generation 15

1.4 DFT Techniques . 18

1.4.1 Scan Design . 19

1.4.2 Different ATPG Modes . 21

1.4.3 At-speed Test . 21

1.4.4 At-Speed Delay Test Challenges 23

With continually shrinking nanoscale technologies, the increase in manufacturing de-

fects causes difficulties in developing a reliable semiconductor device. Usually, these de-

vices are expected to meet the target specification for a wide range of operating conditions

for different on-chip activity levels, voltage distributions in the power supply and ground

networks, parametric variations etc. But with critical transistor sizes approaching only

tens of atoms and the process engineers can no longer control the manufacturing pro-

cesses as accurate as needed, the conventional large design margin allocation method to

mitigate the impact of faults and variations hit the diminishing rate of returns. Further-

more, the rapid shrinking of the area-performance-power budget along with the increase

1

in process induced variations and time-dependent transistor parameters shift makes this

design approach not anymore applicable [5].

In sub-45nm technology nodes, there is always a change in the nature of different

physical design effects and reliability effects causing abrupt functional problems to a pro-

gressive degradation of the performance characteristics of devices and system components.

There is also an increase in the occurrence of both permanent and transient faults, as well

as, timing errors due to spatial, temporal and dynamic variations. New failure mecha-

nisms that are not covered by current fault models are observed in designs fabricated in

new technologies and new materials. At the same time, the power and signal integrity

issues that come with scaled supply voltages and higher operating frequencies increase

the number of faults that violate the pre-defined timing margin. Therefore, testing has

become more and more important and challenging to verify the correctness of design and

manufacturing processes [6]. The effective way to deal with these problems is by devising

better Design-for-test (DFT) methods and capturing defects in the integrated circuits

during the testing phase. This approach helps to minimize the defective parts per million

(DPPM) of integrated circuit’s being manufactured.

1.1 Background

Scaling of CMOS structures into the nanometer regime has posed new challenges to the

physical design and reliability of circuits. The reasons for this are manifold [7], [8], [9]: (1)

Manufacturing structures much smaller than the wavelength of the light used in modern

lithography is difficult and can be practically done only in certain coarse limits. (2) As

going closer to the dimensions of atoms, the actual location of doping atoms has an effect

on the properties of transistors. (3) the structures are closer to each other, resulting in

even smaller impurities or metal silvers to create shorts or other defects. Furthermore, the

smaller proximity of a circuit structure to another makes the noise environment worse.

(4) As the number of transistors, wires, contacts and vias on a single chip increase, the

probability of one or more of being faulty increases.

It is evident that many of these new problems are not visible at the design phase, and

thus, cannot be handled by discarding faulty chips after manufacturing and testing them.

Since the faults can become visible only at runtime, so they have to be tested with patterns

2

that can detect the faults at runtime. Signal integrity issues such as crosstalk noise, power

supply noise and ground bounce, as well as manufacturing process defects due to process

variations cause variations in the path delay estimation. These variations are pattern

dependent. Early stage prognosis of input patterns can give a better estimate of path

delay in a circuit that may affect the performance. Different delay fault models that are

currently employed by Automatic Test Pattern Generation (ATPG) tools for capturing

the delay defects are path delay faults and transition delay fault models. Among these,

the path delay fault model can be utilized for testing failures due to crosstalk noise. The

impact of the physical design issue, such as crosstalk noise can cause a worst-case delay on

any victim path. They give rise to delay faults. Therefore, it is essential to predetermine

patterns that can capture crosstalk-related delay fault.

ATPG tools are not well versed to capture the faults or defects as they are based on

simple logic models and also supply noise or manufacturing variations may take more time

to capture a fault. Therefore, testing with patterns generated by the existing and com-

mercially available ATPG tools [10] may create low-quality products. This motivates us to

examine the issues such as crosstalk noise, supply noise and process variations and include

their impact during pattern generation in the existing ATPG methods. These methods

can be also used for increasing the manufacturing yield and reduce the rate of returns.

Chips that have faults can still be used; at least in some low-reliability applications.

1.2 Challenges in Nanoscale Technologies

1.2.1 Crosstalk

Crosstalk is a disturbance in a signal interconnect (i.e., victim net, a signal propagation net

of interest) induced by a sudden change in voltage by an aggressor interconnect (i.e., the

neighboring nets). It has a direct impact on the signal traveling through the interconnects

in the chip. Crosstalk continues to be a major design issue due to interconnects becoming

taller, narrower, and more closely spaced with each new technology node. As a result,

the interconnect sidewalls become prime locations for coupling while the parasitic load

capacitance of the interconnect itself becomes smaller, allowing the coupling capacitance

to become more dominant. This has also been a major concern in design verification and

timing analysis for many years [11] [12] [13].

3

During a test, the ATPG tool does not consider which nets are causing it to switch

simultaneously. As a result, it is possible to fortuitously exercise some aggressors to

increase the amount of crosstalk and push the victim path closer to the timing closure

limits calculated during verification. At the same time, it is also possible that the tool

will not generate any aggressor switching and the victim path will not be anywhere close

to those timing limits. As a result, if a timing related fault were to fall on that path,

it is possible the latter case could occur and the fault would go undetected, potentially

resulting in higher DPPM.

Several techniques have been proposed to deal with crosstalk issues during verification

and test. Crosstalk verification with interconnect process variation is discussed in [14].

The authors in [15] present fault modeling called maximum aggressor (MA) and simulation

for crosstalk on SOC interconnects. Other techniques have focused on similar approaches

to maximize crosstalk [16] [17] [18]. Further investigations have shown that the MA model

may not always ensure highest crosstalk effects [19] especially when mutual inductance

effects are considered in addition to the timing of transitions. Additionally, many of

these approaches require new ATPG algorithms, hindering easy adoption in the industry.

Some researchers have proposed using on-chip sensors or glitch/delay detectors [20] to

detect noise and delay violations. The drawback of such techniques is that the sensors

must be tuned and very accurate and adding one sensor per interconnect is prohibitively

expensive. Due to their high sensitivity to voltage and timing, process variation can also

negatively impact their operation. The authors in [21] utilize the boundary scan cells to

generate test patterns to detect noise and delay violations on a system chip and observe

the responses which are then scanned out using boundary scan shift procedure. Most of

the proposed techniques, mentioned above, target only buses or interconnects between

cores in a SOC rather than internal paths. Authors in [22] propose validation and test

generation for crosstalk-induced delay and noise for SOC interconnects. An analytical

model for crosstalk was developed in [23] and used as a basis for pattern generation to

induce delay due to crosstalk in [24]. However, this approach only generates patterns for a

single aggressor affecting a target path. The procedure proposed in [25] considers a genetic

algorithm based approach when inducing crosstalk into delay test patterns. There have

also been proposed academic ATPGs that considers crosstalk and transition arrival times

during pattern generation [24] [22] but it lacks the immediate use in practice since they

4

are computationally intensive and would require a significant change to modern ATPG

algorithms and models.

We have also summarized below the existing techniques and approaches that were

proposed to deal with the different aspects of crosstalk noise in the recent years.

• Accurate crosstalk noise models [26] [11] [15] [27] [12] [13] [28];

• Timing analysis in presence of crosstalk noise [29] [15] ;

• Test generation to maximize crosstalk noise [30] [24] [31] [32] [25] [22] [33] [34] [17];

• Timing defect diagnosis in presence of crosstalk [35].

1.2.2 Power Supply Noise

While Crosstalk directly impacts the signal paths, Power supply noise (PSN) indirectly

impacts the data traveling through the signal paths by affecting the transistor drive

currents. PSN is a disturbance in the power distribution network that can momentarily

change the voltage difference between the power and ground rails of the functional logic.

Power distribution network design has become a significant obstacle as process nodes

become smaller and smaller [36]. Noise on the power supply can come from four potential

sources: IR-drop, L di/dt noise, LC resonance, and electromigration [37]. Just from a

first-order perspective (IR), as each new process node pushes wire widths smaller, the

resistance of these wires becomes greater and as functional density increases, current

demand increases. Incorrect design of the network can cause supply starvation to a

portion of the chip and it will never work on actual silicon.

The power distribution network is usually very customized for the design based on

functional power needs [38] [39] and the type of chip packaging [40]. The functional

power is typically estimated early in the design process based on both static and dynamic

IR-drop needs. The static power is now dominated by transistor leakage due to the low

voltage thresholds used by modern process nodes. The dynamic power is based on the

expected average transient current over a period of time (usually the clock period). While

this can range from 10%-20% for many designs, the switching activity can be much higher

when the design is dominated by buses, but this can often be the exception rather than

the rule.

5

Test power, in the meantime, can cause much greater switching activity than the 10%-

20% range [41]. As a result, the IR-drop experienced during the test can be much greater

since the power distribution network was not designed to handle such current demands.

This is due to the ability to scan in any state into the design using the scan chains.

There is an extensive list of literature on the topic power supply noise related to test

[42]. In [43], the authors propose a low-capture-power (LCP) X-filling method for as-

signing 0’s and l’s to the X-bits in a test cube so that the number of transitions at the

outputs of scan flip-flops in capture mode for the resulting fully-specified test vector is

reduced. The authors in [44] propose another method, called capture-aware (CA) test

cube generation, for deterministically generating test cubes not only for fault detection

but also for capture power reduction. The preferred fill technique proposed in [45] at-

tempts to reduce the Hamming distance between the initialized, launched, and captured

patterns during TDF testing. In [46], a pattern generation technique was proposed to

create maximum supply noise to increase the delay along targeted paths. Neural network

and genetic algorithm based solutions were proposed in [47]. Also, a method of mea-

suring average power called switching cycle average power (SCAP) was used to produce

supply noise tolerant patterns [48]. SCAP considers both simultaneous switching and

which of the long paths in the design are affected. The method requires pattern delay

information which may make it computationally intensive. There have also been more

precise techniques that perform RLC analysis for pattern generation [49]. However, the

extensive analysis required can become time-consuming as these networks become more

complicated in modern designs. Vector-based compaction solutions to reduce overkill and

power supply noise induced delay have been proposed in [50]. The authors developed

a vector-dependent power supply noise analysis solution that models the voltage drop

based on the layout of the chip. However, simulation of each compacted pattern to es-

timate IR-drop can result in significant run times. Also, their proposed approach does

not consider areas of the chip that may be underutilized. There has also been a pattern

post-processing technique to verify whether patterns generated will cause an excessive

IR-drop [51]. Again, these approaches attempt to mitigate overkill rather than focus on

underkill. Methods to modify conventional ATPG algorithms have also been proposed

[52].

While most approaches to reduce power during test involve manipulation the test pat-

6

terns, there have also been proposed some approaches that involve integrating additional

circuitry or logic to control which scan chains can be enabled or portions of functional

logic can capture [53]. While effective since it disables whole sections of the design, the

amount of additional logic is not considered trivial.

Power supply noise during the test is still an open research area, and many researchers

are currently working on various aspects of the power supply noise problem [54] [55]. The

EDA and semiconductor industry has a major interest in dealing with different PSN issues.

Below is the summary of different methods and approaches that were proposed to deal

with varying aspects of PSN-related issues:

• Accurate model for power and power supply noise [49] [56] [57] [58] [59] [60] ;

• Power distribution network analysis [61] [62] [63] [36] [37] ;

• Timing analysis in the presence of supply noise [64] [65] [66] [58] [67] [46] ;

• Low-power scan-based test generation and application [68] [69] [70] ;

• Supply-noise aware delay test pattern generation [71] [58] [57] ;

• Test compaction considering IR drop [71] [60] ;

• Worst-case PSN analysis at core and system levels [72] [73] .

1.2.3 Process Variations

Besides crosstalk and supply noise, this thesis is also concerned regarding the impact

of process variations on path delay of a circuit. Practically, it is difficult to achieve

the fabricated transistor parameters similar to the design specification. In reality, the

parameters are different from die-to-die, wafer-to-wafer, and lot-to-lot, and also between

transistors on the same die. Parameter variations are caused by differences in impurity

concentration densities, oxide thicknesses, diffusion depths, and similar factors. These

nonuniform conditions result in deviations in transistor parameters, such as threshold

voltage, W/L ratio, as well as variation in the widths of interconnect wires [74]. The

process variations are expected to impact design performance (increase or decrease gate

and interconnect delays) to a large extent in newer technologies. Thus, it is necessary to

take these effects into consideration along with the crosstalk noise and PSN issues during

7

pattern generation procedures. Summary of the previous works in this area are discussed

in Chapter 4.

In the next section, we will show the importance of testing a circuit design and the

various existing test methods that can ensure better quality of IC’s being manufactured.

1.3 Testing

The goal of manufacturing test is to detect any defect that occurs in the fabricated

circuits. Ideally, we can differentiate the faulty circuits and fault-free circuits after the

manufacturing test. Figure 1.1 illustrates the basic principle of chip testing. Test vectors

are applied to the inputs of the circuit-under-test (CUT), and the responses are collected

and compared with the expected values. If the responses match, the circuit is considered

good. Otherwise, it is considered bad. The automatic test equipment (ATE) is used to

test chips. It is obvious that the test quality depends upon the thoroughness of the test

vectors. However, the test quality and test cost are interdependent. A large number of

test vectors/patterns may result in a good test quality, but it will increase the test time

and test cost at the same time.

Circuit-

Under-Test

(CUT)

Comparator

Input

Vectors

Output

Responses

Test Result

Expected

Responses

0110

1010

1110

1010

1000

0110

1111

1011

0010

Figure 1.1: Principle behind testing chips

8

1.3.1 Different Types of Manufacturing tests

Chip vendors have a variety of different test methods at their disposal, which are often

used in some combination to balance costs. It is usually left to the vendor’s discretion

which tests to apply and the amount of coverage they need to achieve to satisfy the

customers’ needs while also containing their own test costs. While there are not a set

of standardized tests each vendor must follow there are still common practices amongst

most vendors; allowing customers to switch to a different vendor without risking a need

to make a dramatic change in the way quality of the shipped parts is measured.

• Parametric Testing

Parametric testing is typically used to check the electrical properties of the device and can

be used to characterize any potential systematic issues with the process node. These tests

may not check any functionality of the device but can find gross shorts, opens, leakage

issues, or current drive problems.

Often specialized circuitry is added for the purpose of parametric testing. Adding

ring oscillators to both the wafer scribe lines and to the die itself is a common practice

to perform propagation delay tests, setup and hold tests, and speed testing. The most

common technique is to employ an on-die chip measurement circuitry to monitor supply

droop and adaptively scale it depending on its usage. It is possible to leverage the use

of these measurement circuits during parametric testing to get a more granular reading

than what can be achieved with the ATE alone.

• Functional Testing

While most often used for design verification, functional testing can also be used for

manufacturing test. It is considered very time-consuming and very expensive due to the

exhaustive nature of applying test patterns to cover each known reachable functional state.

Expert design knowledge is usually required and little in the way of design automation

tools can be used to assist in the effort. Usually, an ad-hoc approach is required for each

design, so unless the next design architecture is based very heavily on the previous design,

it will not be possible to reuse the assets from the previous design.

9

• Structural Testing

Structural testing, which will be the backbone of this presented thesis work, allows state

observation of circuit behavior from relatively few observation points [7]. Unlike functional

testing, it does not require enumeration of all functional states to test the design, so test

volumes are not as large. Additionally, structural tests do not require the same expert

design-specific knowledge as functional testing and algorithms can be utilized to create

automatic test pattern generation (ATPG) tools that can be leveraged to create the

patterns. So, even if there is a little design re-use from one design to the next, there

can still be a re-use of the same automation tools, which significantly reduces the cost of

test. Due to the lower test volumes and tool reuse, structural testing has seen widespread

adoption across the semiconductor industry. A closer look at how structural testing is

used to find defective chips is detailed in the next section.

1.3.2 Structural Fault models

There are three terms that are usually used to describe the incorrectness of an electronic

system.

• Defect

A defect in an electronic system is the unintended difference between the implemented

hardware and its intended design. Typical defects in VLSI chips are: process defects,

material defects, aging defects and package defects.

• Error

A wrong output signal produced by a defective system is called an error. An error is an

effect whose cause is some “defect”.

• Fault

A representation of a “defect” at the abstract functional level is called a fault.

A fault model is a mathematical description of how a defect alters the design behavior.

A fault is said to be detected by a test pattern if, when applying the pattern to the design,

any logic value observed in one or more of the circuit’s primary output’s differs between

10

the original design and the design with the fault. There are a lot of fault models developed

to describe different kinds of physical defects. The most common fault modes for modern

VLSI test includes: stuck-at fault, bridging fault, delay faults (transition delay fault and

path delay fault), stuck-open and stuck-short faults, etc.

• Stuck-at faults

A signal, which is an input or an output of a logic gate or flip-flop is stuck at a 0 or 1

value, independent of the inputs to the circuit. The single stuck-at fault is widely used,

i.e. two faults per line, stuck-at-1 (sa1) and stuck-at-0 (sa0).

• Bridging faults

Two signals are connected together when they should not be. Depending on the logic

circuitry employed, this may result in a wired-OR or wired-AND logic function. Since

there are O(n2) potential bridging faults, they are normally restricted to signals that are

physically adjacent in the design.

• Delay faults

These faults make the signals to propagate slower than normal, and cause the combina-

tional delay of a circuit to exceed clock period. Specific delay faults are: transition delay

faults(TDF), path delay faults (PDF), gate delay faults, line delay faults, segment delay

faults. Among them, slow-to-rise and slow-to-fall PDF and TDF are the most commonly

used ones. Path delay fault model targets the cumulative delay through the entire list of

gates in a path while the transition fault model targets each gate output in the design.

• Stuck-open and Stuck-short faults

A CMOS transistor is considered as an ideal switch. Stuck-open and stuck-short faults

model the switch being permanently in either the open or the shorted state. And they

assume just one transistor to be stuck-open or stuck short.The effect of a stuck-open fault

is a floating state at the output of the faulty logic gate. It can be detected in a similar

way as detecting a stuck-at fault at the output fault on the gate’s output pin. The effect

of stuck-short fault is that the short connects power line and the ground line. So quiescent

current (IDDQ) measurement can be used to detect such fault.

11

1.3.3 Fault Categories

An ATPG tool maintains a list of potential faults in the design and assigns each such

fault to a fault class according to its detectability status. Faults classes are organized into

categories.

There are 5 higher-level fault categories containing a total of 17 lower-level fault classes:

1.3.3.1 Detected Faults

The DT (detected) category of faults includes four classes:

• DR (detected robustly)

The faults that are determined during Path Delay ATPG or fault simulation. During

ATPG, at least one pattern that caused the fault to be placed in this class is retained.

• DS (detected by simulation)

The faults that are determined by generating patterns and simulating to verify that the

patterns result in the faults being detected.

• DI (detected by implication)

The faults that do not have to be detected by specific patterns, because these faults result

from shifting scan chains. The faults in the DI class usually occur along the scan chain

paths and include clock pins and scan-data inputs and outputs of the scan cells.

• D2

The faults that are clock faults detected when the loadable non-scan cell faulty value is

set to both 0 and 1. Note that the loadable non-scan cells feature must be active.

1.3.3.2 Possibly Detected Faults

The PT (possibly detected) category of faults contains the following four classes:

• AP (ATPG possibly detected)

12

This class contains faults for which the difference between the good machine and the

faulty machine results in a simulated output of X rather than 1 or 0. Analysis proved

that the fault cannot be definitely detected under current ATPG conditions, only possibly

detected.

• NP (not analyzed-possibly detected)

This class also contains faults for which the difference between the good machine and the

faulty machine results in a simulated output of X rather than 1 or 0. However, the analysis

to prove that the fault cannot be definitely detected using current ATPG conditions was

not conclusive. Like the AP class, the simulation cannot tell the expected output of the

faulty machine.

• P0

This class contains clock faults when the loadable non-scan cell faulty value is set to 0.

Note that the loadable non-scan cells feature must be active.

• P1

This class contains clock faults when the loadable non-scan cell faulty value is set to 1.

Note that the loadable non-scan cells feature must be active.

1.3.3.3 Undetectable Faults

The UD (undetectable)] category of faults contains faults that cannot be tested by any

means: ATPG, functional, parametric, or otherwise. Usually, when an ATPG tool calcu-

lates test coverage, these faults are subtracted from the total faults of the design.

The UD category includes four classes:

• UU (undetectable unused)

This class contains faults located on unused outputs or, in general, outputs that have no

electrical connection to any other logic. A fault located on one of these fault sites has no

logic simulation effect on any other logic in the design.

• UO (undetectable unobservable)

13

This class is similar to the UU (Undetectable Unused) class, except that the UO fault

class specifically includes faults on unused gates with fanout (i.e., gates connected to other

unused gates). Faults on unused gates without fanout are identified as UU faults.

• UT (undetectable tied)

This class contains faults located on pins that are tied to a logic 0 or 1, which are usually

unused inputs that have been tied off. A stuck-at-1 fault on a pin tied to a logic 1 cannot

be detected and has no fault effect on the circuit. Similarly, a stuck-at-0 fault on a pin

tied to a logic 0 has no effect.

• UB (undetectable blocked)

This class contains faults at locations for which controllability and observability are hin-

dered by redundant faults. UB faults are companion faults to UR faults.

• UR (undetectable redundant)

This class contains faults for which there are redundant logic paths. A fault in one path

cannot be detected because the other redundant logic path masks the fault effect. Because

of the self-protecting nature of redundant logic design, a single fault cannot be detected

and is indistinguishable from the good machine behavior as seen from the design outputs

and scan cells.

1.3.3.4 ATPG Untestable Faults

The AU (ATPG untestable) category of faults contains faults that are not necessarily

intrinsically untestable, but are untestable using ATPG methods. These faults cannot

be proven to be undetectable and might be testable using other methods (for example,

functional tests).

The AU category includes two classes:

• AN (ATPG untestable-not detected)

A fault cannot be controlled or observed because setting up the required patterns would

violate a PI or ATPG constraint. Faults associated with non-scan sequential devices

(latches and flip-flops) are not testable with simple ATPG methods.

14

• AX (ATPG untestable-timing exceptions)

This classification occurs under the following circumstances: For each fault affected by

timing exceptions, if all the gates in both the backward and forward logic cones are part

of the same timing exception simulation path, then the fault is marked AX. This analysis

finds the effects of setup exceptions, so it does not impact exceptions that are applied

only to hold time.

1.3.3.5 Not Detected Faults

An ATPG classifies a fault as ND (not detected) when the analysis for that fault was not

completed or was aborted. Incomplete or aborted analysis could be caused by the default

ATPG iteration limits or by designs that are too complex for the ATPG algorithm to

solve.

The ND category has two classes:

• NC (not controlled)

This class contains faults that the ATPG algorithm could not control to achieve both

a logic 0 and a logic 1 state. Nodes that are always at an X state are classified as NC

because ATPG cannot achieve either a logic 0 or a logic 1.

• NO (not observed)

This class contains faults that could be controlled, but could not be propagated into a

scan chain cell or to a design output for observation.

1.3.4 Automatic Test Pattern Generation

ATPG tools have been a great benefit to test engineers. Since they take advantage of

structural fault models to generate patterns, the same tool can be used in many different

designs with very different architectures. These tools are widely available to industry

whether it is commercially [10] or from academia.

The goal of these tools is to deterministically generate patterns that will stimulate

a fault site and propagate the potential fault effect to an observation point to identify

as many faults as possible with as few patterns as possible. While not all faults will be

15

testable due to the topology of the circuit, the ATPG will be able to generate patterns for

those faults that are testable. The ability to test these fault sites is measured by the fault

coverage, which is a fraction of the number of faults detected after pattern generation

over the total number of faults in the design, as shown in Equation 1.1, where FC is the

fault coverage percentage, DT is the total number of detected faults, and TF is the total

number of faults in the design. There is additionally another metric often used by these

tools called test coverage. The test coverage, as calculated in Equation 1.2 considers those

faults that are not testable either due to circuit redundancies or tied off signals that would

make coverage of particular fault types impossible. TC is the test coverage percentage

and UT are those faults that have been classified by the ATPG as untestable.

FC =
DT

TF
× 100 (1.1)

TC =
DT

TF − UT
× 100 (1.2)

While the fault coverage provides a metric of how much of the design has been covered

with the generated pattern set, the test coverage essentially measures the effectiveness of

the ATPG tool. These two values can also be used to help guide design issues since a

large discrepancy between the two values could imply a potential problem in the design.

While each commercial vendor has their own proprietary algorithm for pattern and

coverage optimizations, they all basically follow a similar flow as shown in Figure.1.2.

First, a fault dictionary for the design has to be built. Next, the tools begin to deter-

ministically target these faults one at a time. While the patterns are being generated,

compaction of the patterns also occurs dynamically. This is possible since very few bits

of the pattern are usually needed to stimulate and observe a specific fault site. After the

pattern generation and compaction have filled in some of the pattern’s with care-bits, the

remaining don’t care bits can be filled randomly or with some other fill scheme. The final

fully specified pattern is then fault simulated for any fortuitous detection of additional

faults.

The automatic test pattern generation (ATPG) is the process of automatically gen-

erating a set of test patterns for detecting a specific group of faults. The inputs of the

ATPG procedure are design data (e.g., netlist), fault group (specifying what faults are

16

Design

Fill Don't-Care

Bits

Fault Simulate

More Fault

in List?

Yes

No

Build fault

list

Pattern Generation

and Compaction

Select Fault

Generated

Pattern set

Figure 1.2: General ATPG Flow

targeted), test protocol and test constraints, and the output is a set of test patterns. The

test patterns are then applied to the design for fault detection. If a fault can be detected

by the input test patterns, it is called as a detected fault. Otherwise, it is an undetected

fault. Note that there may be some faults in the design that cannot be detected by

structural patterns, which are called undetectable faults.

ATPG algorithms inject a fault into the CUT, and then use a variety of mechanisms

to activate the fault and propagate its effect to the circuit output. The output signal

changes from the value expected for the fault-free circuit, and this causes the fault to be

detected. There are various ATPG algorithms that can be found in the literature. Some

of them are listed below:

• Roth’s D-Algorithm (D-ALG) [75];

• Goel’s PODEM algorithm [76];

• Fujiwara and Shimono’s FAN algorithm [77];

• Kirkland and Mercer’s dominator ATPG programs TOPS [78];

17

• Schulz’s learning ATPG programs SOCRATES [79] [80][81];

• Giraldi and Bushnell´s EST methodology [82] [83][84];

• Kunz and Pradhan’s Recursive Learning methodology [85] [86][87];

• Chakradhar’s NNATPG algorithm family [88];

• BDD-Based ATPG Algorithms [89][90].

The following terms are important test generation definitions and are commonly used

in ATPG literature:

• Controllability: A testability metric that measures how difficult it is to drive a node to

a specific value.

• Observability: A testability metric that measures how difficult it is to propagate the

value on a node to the primary output or scan flip-flop.

• Sensitization: The process of sensitizing the circuit and enable the fault to cause an

actual erroneous value at the point of the fault.

• Propagation: The process of propagating error effects to the primary output or scan

flip-flop.

• Justification: The process of finding the input combination required to drive an internal

circuit node to a specified value.

All the above terms in this section are utilized in the coming chapters during the

explanation of our methods to generate patterns.

1.4 DFT Techniques

Design-for-Testability (DFT) techniques are widely used in nowadays integrated circuits.

“DFT” is a general term applied to design methods that lead to more thorough and less

costly testing. In general, DFT is achieved by employing extra hardware circuits for test

purpose. The extra test circuits provide improved access to internal circuit elements.

Through these test circuits, the local internal state can be controlled and/or observed

18

more easily. It adds more controllability and observability to the internal circuits. DFT

plays an important role in the development of test programs and as an interface for a test

application and diagnostics. With appropriate DFT rules implemented, many benefits

ensue from designing a system so that faults are easy to detect and locate. DFT can

bring the many benefits. Generally, integrating DFT in the development cycle can help:

• Improve fault coverage

• Reduce test generation time

• Potentially shorten the test length and reduce test memory

• Reduce test application time

• Support hierarchical test

• Reduce life-cycle costs

These benefits come at the price of extra cost from pin overhead, more area and thus

low yield, performance degradation and longer design time. However, since it reduces

the overall costs of the chip, DFT is a cost-effective methodology and widely used in the

semiconductor industry.

Nowadays DFT techniques have become even more critical in modern designs. With-

out it, it is only possible to apply test patterns to the primary inputs and observe the

results at the primary outputs of the design. When sequential logic is included, covering

all of the faults efficiently becomes much more difficult since it will likely take multiple

clock pulses to activate the fault site from the primary input and propagate the result

from the fault site to the primary output.

1.4.1 Scan Design

Scan design has been widely adopted across the industry due to the ability to achieve

high fault coverage with relatively low overhead. A scan flip-flop is used in place of a

conventional D flip-flops and is stitched together to form a shift register. As shown in

Figure 1.3, a basic scan flip-flop is a combination of a D flip-flop with a multiplexer placed

at the D input; the multiplexer is controlled by a new signal called scan-enable (SE).

19

0

1

Q

D

SD

SE

CK

D Flip-Flop

Scan Flip-Flop

Figure 1.3: A scan flip-flop

The scan flip-flops are then stitched together, as shown in Figure 1.4, to form a shift

register. The multiplexer selects between the functional input of the original D flip-

flop and the output of the previous scan flip-flop in the newly formed scan chain. The

functional input is selected when scan-enable is 0 and the scan path is selected when

scan-enable is 1. While a new port will have to be added for the SE signal, the input and

output ports can be shared as shown in Figure 1.4.

0

1

PIs

SI

SE

CLK

0

1

0

1

0

1

0

1FF2FF1 FF3 FF4 FF5

Combinational

Logic
POs

SO

Figure 1.4: An example of scan-chains inserted design

The scan chain essentially grants full control and observability of all internal state

logic through a single input and output port. This grants the ability to easily place the

chip into any state perform a single clock, and scan out the result, turning a potentially

complex design into a simple combinatorial circuit.

20

1.4.2 Different ATPG Modes

These are some of the different operational modes offered by an ATPG tool

• Basic-Scan ATPG

In Basic-Scan mode, ATPG can be operated in a full-scan, combinational only ATPG

tool. To get high test coverage, the sequential elements need to be scan elements. Com-

binational ROM’s can be used to gain coverage of circuitry in their shadows in this mode.

• Fast-Sequential ATPG

Fast-Sequential ATPG provides limited support for partial-scan designs. In this mode,

multiple capture procedures are allowed between scan load and scan unload, allowing data

to be propagated through non-scan sequential elements in the design such as functional

latches, non-scan flops, and RAM’s and ROM’s. However, all clock and reset signals to

these non-scan elements must still be directly controllable at the primary inputs of the

device.

• Full-Sequential ATPG

Full-Sequential ATPG, like Fast-Sequential ATPG, supports multiple capture cycles be-

tween scan load and unload, thus increasing test coverage in partial-scan designs. Clock

and reset signals to the non-scan elements do not need to be controllable at the primary

inputs; and there is no specific limit on the number of capture cycles used between scan

load and unload.

1.4.3 At-speed Test

In scan-based (as shown in Figure 1.4) at-speed test, input test patterns can be applied

in two different manners: launch-off-capture (LOC), also called broadside testing [91]

and launch-off-shift (LOS) [92]. While both techniques rely on the scan-based testing

to initialize the circuit, the two techniques differ in the manner the data is launched

during the first at-speed test cycle. While LOC relies on the functional path to stimulate

transitions, LOS stimulates transitions through the shift path. This difference essentially

means the scan-enable signal is 0 during the launch cycle for LOC, as shown in Figure

21

1.5, while it is 1 during the launch cycle for LOS, as shown in Figure 1.6. There have also

been other DFT techniques that attempt to combine the two techniques that attempt to

use the advantages of each technique while mitigating from the disadvantages [93].

Clk

SE

Launch CaptureShift input

A B C D E F

V0 V1 V1'

Figure 1.5: At-speed pattern generation using launch-off capture

In each figure, line A notes the last slow scan shift to set the pattern V0 into the scan

chain. Line B marks the transition of the SE signal from 1 to 0. At line C, the first

at-speed pulse launches the transition and changes the values of the flops to pattern V1.

Line D denotes the capture of the functional response of pattern V1. The SE signal is

restored to 1 at the same time for both LOC and LOS at line E. Finally, at F, shifting of

the pattern begins again to observe V1’ and start the application of a new pattern.

Clk

SE

Launch CaptureShift input

A C B D E F

V0 V1 V1'

Figure 1.6: At-speed pattern generation using launch-off shift

Both LOC and LOS have advantages and disadvantages. While LOS provides higher

fault coverage since there is a higher degree of control when stimulating the transition

through the shift path, the scan-enable signal must be timing closed since it must be

asserted during the launch cycle and deserted during the capture cycle. LOC does not

have the same design constraints on scan-enable and is the easier of the two methods to

22

implement in physical design, but does not achieve the same fault coverage since tran-

sitions must generate through functional logic and become dependent on the functional

behavior of the device.

1.4.4 At-Speed Delay Test Challenges

As circuit complexity and functional frequency increase, power integrity and timing in-

tegrity are becoming more and more important to circuit design and test. The test power

consumption, supply voltage noise, crosstalk noise caused by signal coupling effect, and

hot spots caused by nonuniform on-chip temperature will significantly impact yield and

reliability. As shown in Figure 1.7 from [94], with shrinking technology node, the percent-

age of delay caused by coupling effect between signal lines (crosstalk noise) and IR-drop

on power and ground lines (power supply noise) is taking a larger portion. Power supply

noise and crosstalk noise are becoming two important noises that impact circuits’ timing

integrity. The lower supply rails in today’s IC’s mean much less immunity from signal in-

tegrity problems that tie directly into power integrity. Supply voltages on many high-end

IC’s are now down to 1V and below, leading to decreasing margins for voltage fluctua-

tion. Simultaneously, switching noise can cause fluctuations in the ground voltage level,

leading to difficult-to-isolate signal-integrity problems and timing issues. Power, timing,

and signal integrity effects are all interdependent at 90-nanometers (nm) and below.

0%

20%

40%

60%

80%

100% IR drop

Coupling
capacitance

RC delay

Gate delay

Figure 1.7: At nanometer process nodes, parasitic effects increase

Timing failures are often the result of a combination of weak points in a design and

23

silicon abnormalities, which reduce the noise immunity of the design and expose it to

signal integrity issues. For example, a poor power planning or missing power via’s can

incur on-chip power droop for some test vectors. The power droop can impact a gate(s)

on a critical path and it may cause timing failure. This failure may only be excited with

certain test vectors as inputs. If the corresponding test vector is not included in the test

pattern set, the failure becomes an escape and cannot be reproduced during diagnosis

with the current test pattern set. Current automatic test pattern generation (ATPG)

tools are not aware of the switching distribution on the layout and the pattern induced

noises. There are escapes and “No Problem Found” (NPF) parts returned by customers,

which have passed the tests using the layout-unaware test patterns generated by ATPG

tools. Thus, high-quality test patterns are imperative which can be used to capture noise-

induced delay problems during production test and identify noise-related failures during

diagnosis. Test vector (pattern) generation considering the noise effect, mainly supply

noise, crosstalk noise and process variations will be the focus of this thesis work.

24

Chapter 2

Path Delay Test in the Presence of
Multi-Aggressor Crosstalk, Power
Supply Noise and Ground Bounce

Contents
2.1 Introduction . 25

2.2 Prior Work . 27

2.3 Contributions and Chapter Organization 27

2.4 Motivational Experiments . 28

2.4.1 Path Delay Analysis . 28

2.4.2 Path Delay Fault Testing . 35

2.4.3 Comparison of input patterns 36

2.5 Physical Design Aware Pattern Generation Method 36

2.5.1 PDAPG Flow for Pattern Generation 36

2.5.2 Experimental Results . 49

2.6 Summary . 51

2.1 Introduction

With technology scaling, the varying impacts of physical design (PD) issues have be-

come a major challenge in IC’s. These PD may issues create undesired effects such as

multi-aggressor crosstalk noise, power supply noise and ground bounce. PD issues are the

processes that induce additional delays in any circuit path. Their effects cause consid-

erable path delay variations, thereby degrading the circuit performance. Path delay test

patterns generated by timing-aware Automatic Test Pattern Generation (ATPG) tools

are commercially utilized to determine faults or errors caused by path delay variations.

As these tools are not built to account for PD issues, identifying proper test patterns

25

to capture the worst-case path delay becomes difficult. Thus, by applying the existing

path delay test techniques, might not necessarily identify the right set of test patterns.

This may allow some faults to go undetected. Therefore, PD issues need to be considered

during the path delay fault test to reduce delay fault escape and to ensure better path

delay defect coverage.

Path delay variation usually occurs due to PD issues such as crosstalk (Xtalk) noise,

Power Supply Noise (PSN), Ground Bounce (GB). Crosstalk is due to capacitive or in-

ductive coupling between a victim interconnect (i.e., signal propagation net of interest)

and an aggressor interconnect (i.e., the neighboring nets). Depending on the circuit’s

layout, one victim interconnect can have single or multiple aggressor interconnects. Their

impact on a victim interconnects (or nets) delay varies depending on the behavior of

multi-aggressors, such as their signal switching frequency, signal transitions and their ar-

rival time. Also, their path delay estimation defers as it may expand to the entire victim

path (consists of many victim nets) with distributed delay variations. Xtalk impacts may

speedup or slowdown the worst-case path delay in a victim net [95]. Also, an opposite

signal transition in the aggressor net maximizes the delay slowdown [96] of the respective

victim net, when compared to the same signal transitions and stable inputs (i.e., stable 0

and stable 1). In our work, we determine all the aggressor nets from the physical design

of the given circuit layout rather than from their gate level circuit netlist, as it would

represent a real circuit structure that will be manufactured and tested.

Xtalk directly impacts the signal through the victim interconnect, while PSN and

GB indirectly impact the signal by affecting the drive strength of gates on the signal

path. Mainly, PSN and GB are due to the fast switching circuits that introduce voltage

fluctuations at their supply nets. We consider the combined behavior of the PD issues, as

they would occur similarly in a real circuit design. In this work, our focus is to identify

a test pattern that can capture the path delay variations in the combined presence of

PD issues such as multi-aggressor crosstalk, PSN and GB on a victim path. ATPG

tools utilize static timing analysis (STA) inputs [97] that are dependent on the lengths

of a path. However, they do not consider the physical design data of a circuit (package,

power/ground network parasitics, pad/pin location, cell placements, etc.) during pattern

generation. So they might not identify actual test patterns that can lead to worst-case

path delay in a circuit. Due to these reasons, path delay test using commercial ATPG

26

tools needs to be reexamined for taking into account PD issues.

2.2 Prior Work

Several pattern generation techniques were proposed in the literature to consider PD issues

during path delay testing. Authors in [98] present a genetic algorithm based approach to

find patterns that create maximum supply noise. Layout-aware pattern generation tech-

niques were proposed in [99], [100] for PSN on critical (victim) paths. These approaches

are better in terms of adding the PSN effects during pattern generation, but they take

longer simulation time. In [101], a pattern generation framework by inducing maximum

crosstalk effects across targeted delay-sensitive paths are proposed. A test generation

technique in the presence of worst-case coupling effects for critical delay paths is pre-

sented in [95]. In [102], a pattern generation method with PSN and GB impact is shown

and [96] proposes pattern evaluation and selection procedure for the impact of crosstalk

and process variations. The method proposed in [103] focuses on an ATPG solution for

the multi-aggressor crosstalk noise and [104] on finding the patterns activating worst-case

crosstalk effects. All these works were based on pattern generation in the presence of the

individual or partial combinations of PD issues (crosstalk, PSN or GB). The motivation

behind this research work is quite different from all the previous work. Our efforts are to

investigate on the combined impact of multi-aggressor crosstalk, PSN and GB on path

delay variations and identify the test patterns that lead to worst-case path delay on a

victim path. To do this, we develop a method for test pattern generation with physical

design awareness.

2.3 Contributions and Chapter Organization

In this chapter, we propose a physical design aware pattern generation (PDAPG) method

for identifying a test pattern that can capture worst-case path delay in the combined

presence of PD issues.

Main contributions of this chapter are:

- To the best of our knowledge, this is the first work to investigate on the combined

impact of multi-aggressor crosstalk, PSN and GB on pattern generation.

27

- We demonstrate, that a pattern generated by timing-aware ATPG tool does not

capture the worst-case path delay.

- We present our PDAPG method to identify patterns that can capture worst-case

path delay in the combined presence of PD issues.

- To identify a high-quality test pattern during path delay testing.

The chapter is organized as follows. In Section 2.4, we describe our motivational

experiments which indicate the significance of path delay testing in the combined presence

of Xtalk, PSN and GB. Section 2.5 presents the detailed flow of PDAPG method and the

simulation results obtained on ITC’99 benchmark circuits. In Section 2.6, we summarize

this chapter.

2.4 Motivational Experiments

The main motivation behind this chapter is presented in this section. The combined

impact of PD issues such as multi-aggressor Xtalk, PSN and GB may cause worst-case

delay on a circuit path. We highlight their impact based on the SPICE level simulations

performed on a buffer gate circuit, shown in Figure 2.1. Simultaneously, we utilize an

ATPG tool that is industrially used for testing path delay faults. ATPG tools function

on the klogical level description of the circuit (i.e., VHDL or Verilog description), so they

lack the physical design information while generating patterns. The worst-case delay

test patterns identified from SPICE simulations are then compared with the patterns

generated by the ATPG tool and their discrepancies were reported.

2.4.1 Path Delay Analysis

Figure 2.1 shows the buffer gate circuit developed in SPICE for analyzing the individual

and combined impact of crosstalk, PSN and GB on path delay variations. This circuit con-

sists of four buffer gates with two inputs {Ip1 Ip2} and two outputs {Op1 Op2}. π-network

interconnects are modeled between the two gates for demonstrating crosstalk effects. The

interconnect parasitic values and CMOS models for the buffer gates are estimated from

the Predictive Technology Model (PTM) [105] for 90nm technology node. Using SPICE

simulations, the path delay from {Ip1} to {Op1} is measured for all possible input pat-

tern transitions at {Ip1 Ip2}. We introduce Xtalk noise by adding coupling capacitances

28

Gate 1 Gate 2

Vdd2

Gnd2Gnd1

Ip1

Gate 3 Gate 4

Vdd3 Vdd4

Gnd4Gnd3

Ip2

Vdd1

Op1

Op2

R11 R12 R13

CX2 CX3CX1 CX4

R21 R22 R23

Figure 2.1: Buffer gate circuit for path delay analysis

{Cx1 Cx2 Cx3 Cx4} between the two interconnects. Also, parasitic resistances {R11 R12

R13 R21 R22 R23} are derived from the PTM intermediate interconnects models. For

PSN and GB, the gate supply voltage and ground reference voltage at each gate {Gate1

Gate2 Gate3 Gate4} are modeled as {Vdd1 Vdd2 Vdd3 Vdd4} and {Gnd1 Gnd2 Gnd3

Gnd4}, respectively. The nominal power supply voltage, the ground reference voltage and

switching frequency of 1V, 0V and 1GHz, respectively are used in this experiment.

Path delay variations are observed at the target output {Op1} with trigger input

at {Ip1} for all the possible input signal transition patterns such as {10 10}, {10 01},

{01 10} and {01 01}} at {Ip1 Ip2}. The stable input patterns {00 00}, {00 01}, etc.

were not considered here as there is no voltage level transition between the input and

the output signals of this circuit. Please note that vector pair (01) represents a rising

signal transition, (10) represents a falling signal transition, (00) represents a stable 0

condition and (11) represents a stable 1 condition. We not only varied the input patterns,

our tests were also performed for varying input signal arrival time at their inputs. The

different arrival times given at the primary input {Ip2} were {-200ps 0ps +200ps}. The

+/- indicates the advance and the lag in arrival times at {Ip2} with respect to {Ip1}.

We have assumed ±10% tolerance [106] in all these experiments as this can practically

represent the supply voltage constraints in the distributed power and ground network

grids. For analyzing PSN, gate supply voltages are varied by ±10% with respect to the

nominal supply voltage of 1V i.e, {0.9V 1V 1.1V}. Similarly for GB, {0V 0.1V} are taken

29

for ground voltage levels. A total crosstalk capacitance of {2fF} is assumed for {Cx1 Cx2

Cx3 Cx4} with a load capacitance of {10fF} at the output of Gate2 and Gate4 (derived

from PTM interconnect model).

Figure 2.2: Path delay variations due to Xtalk noise

We consider three different cases to demonstrate the impact of each phenomena in-

dividually and collectively. In the first case, Xtalk effects are analyzed standalone by

varying input patterns and their arrival time. PSN and GB were not considered here.

Figure 2.2 refers to the variation in path delay due to the capacitive coupling between

the aggressor and victim interconnects for an early and lag in arrival times at {Ip2}. The

delay is plotted as a function of measured maximum Xtalk noise for the all the input

patterns and varying arrival times.

Path delay variations were represented with respect to the nominal path delay with

Xtalk noise on the circuit path. Positive and negative values on the z axis denote the

speedup and slowdown impact on the victim path. We also note that for some of the

input patterns, path delay is larger than others. This clearly indicates the input pattern

to be used for obtaining a worst-case path delay. This delay plot becomes much more

complex with many corners for bigger circuits.

In Table 2.1, we list the path delay variations for different input patterns with respect

to their arrival times. Their impact on the victim path is also mentioned, i.e. slowdown

or speedup impact. In this experiment, input pattern {01,10} leads to the worst-case

path delay of up to -7.6%. We can make two major observations from this experiment. 1)

Depending on the crosstalk noise conditions and arrival time, path delay on a victim path

30

Table 2.1: Path delay variations for different input patterns (Xtalk)

{Ip1 Ip2} Arrival time Delay variation Delay impact

{10 10}

-200ps -2.84% slowdown

0ps +2.07% speedup

+200ps -2.17% slowdown

{10 01}

-200ps -1.72% slowdown

0ps -5.07% slowdown

+200ps -1.69% slowdown

{01 10}

-200ps -3.64% slowdown

0ps -7.60% slowdown

+200ps -3.28% slowdown

{01 01}

-200ps -3.64% slowdown

0ps +3.59% speedup

+200ps -3.72% slowdown

may increase or decrease. 2) Opposite direction input signal transition leads to worst-case

path delay in a circuit. 3) Also, same direction signal transition may or may not lead

to either slowdown or speedup depending on the value of the crosscoupling capacitances

between the two interconnecting nets.

Figure 2.3: Path delay variations due to the combined impact of Xtalk noise and PSN

In the second case, the same circuit is utilized to analyze the combined impact of Xtalk

and PSN. Figure 2.3 shows the variation in path delay due to the capacitive coupling

between the aggressor and victim interconnects along with the voltage drop at each of the

gates (maximum PSN). Path delay variations are plotted as a function of different input

31

pattern transitions and for varying input arrival time. GB is not considered here. The

smooth curve in the earlier case gets replaced with many corners due to the addition of

PSN. This is caused by the voltage overshoot and undershoot at the supply voltage Vdd

of each gate.

Table 2.2: Path delay variations for different input patterns (Xtalk+PSN)

{Ip1 Ip2} Arrival time {Xtalk}{PSN} Delay variation

{10 10}

{-200ps 0ps 200ps} {0-2fF}{0.9V 1V 1.1V}

upto -17%

{10 01} upto -20%

{01 10} upto -26%

{01 01} upto -15%

Path delay variations are listed in Table 2.2. Xtalk and PSN values were varied as

shown in column 3 along with the varying input patterns in column 1 and input arrival

times in column 2. As the combinations of all possible permutations of Xtalk noise, PSN

distribution, input patterns, arrival times results in a quite large data set, so only the

maximum values are shown in the table. From the simulation results, the worst-case delay

is observed with the input pattern {01 10} for the same input arrival time {0ps} and for

PSN of {0.9V 0.9V 1.1V 0.9V} at {Vdd1 Vdd2 Vdd3 Vdd4}. This is due to the voltage

level difference at each gates affecting the drive strength of the gates in the succeeding

stages [107]. We can conclude two more new observations from this experiment. 1) Path

delay variation has increased to -26% compared to nominal delay (i.e., with no PSN and

Xtalk) with the addition of a PD issue to the first case. 2) The combined minimal margin

between the voltage drop in each gate does not lead to their worst-case path delay. They

are due to the varying drive strength of the gates in the preceding stages before the path

delay is measured.

In the third case, we perform path delay analysis in the combined presence of Xtalk,

PSN and GB. The same circuit is utilized for this experiment also. Figure 2.4 refers

to path delay variations with respect to 1) input pattern transitions, 2) arrival time,

3) capacitive coupling between the interconnects 4) supply voltage variation (maximum

PSN) at the gate supply inputs and 5) variation in the ground network voltage (maximum

GB) at each of the gates. The plot in the figure has become much more random with

many corners due to the addition of GB.

Table 2.3 lists the path delay variations for different input patterns. Similarly, as in

32

Figure 2.4: Path delay variations due to the combined impact of Xtalk noise, PSN and
GB

Table 2.3: Path delay variations for different input patterns (Xtalk+PSN+GB)

{Ip1 Ip2} Arrival time {Xtalk}{PSN}{GB} Delay variation

{10 10}

{-200ps 0ps 200ps}

upto -32%

{10 01} {0-2fF}{0.9V 1V 1.1V} upto -34%

{01 10} {0V 0.1V} upto -47%

{01 01} upto -38%

33

the previous case, the combinations of Xtalk, PSN, GB, input patterns and arrival time

values results in a large data set and we have chosen only to show worst-case delays in

the table.

Table 2.4: Worst-case path delays for the combined impact of Xtalk, PSN and GB

{Input pattern}{Xtalk} {PSN} {GB}

{01 10}{2fF}

{0.9V 0.9V 1.1V 0.9V} {0.1V 0.1V 0V 0V}

{0.9V 0.9V 1.1V 0.9V} {0.1V 0.1V 0V 0.1V}

{0.9V 0.9V 1.1V 1V} {0.1V 0.1V 0V 0V}

{0.9V 0.9V 1.1V 1V} {0.1V 0.1V 0V 0.1V}

{0.9V 0.9V 1.1V 1.1V} {0.1V 0.1V 0V 0V}

{0.9V 0.9V 1.1V 1.1V} {0.1V 0.1V 0V 0.1V}

From the simulation results, the same amount of worst-case delay is observed for 6

different cases. In Table 2.4, worst-case delays for input pattern {01 10}, all arriving at

the same time {0ps} and for different conditions of PSN and GB are shown. This is due

to non-uniform voltage distribution among gates that impacts their drive strengths in the

succeeding stages [102]. Additionally, we obtain up to -47% of path delay increase with

respect to the nominal delay (i.e., with no Xtalk, PSN and GB) in the combined presence

of Xtalk, PSN and GB.

{10 10} {10 01} {01 10} {01 01}
−20

−10

0

10

20

30

40

50

Input test pattern

D
el

ay
 V

ar
ia

ti
on

 (
%

)

Crosstalk + Input arrival time

Crosstalk + Input arrival time + PSN

Crosstalk + Input arrival time +PSN + GB

Slow−down

impact

Nominal

path delay

Speed−up

impact

Figure 2.5: Path delay variation of buffer gate circuit

The individual and the collective impact of PD issues demonstrated earlier are collec-

34

tively shown in Figure 2.5. In the first case, the stand-alone impact of crosstalk effects is

analyzed. In the second case, PSN is injected to the previous case. And in the final case,

the GB is added along with the previous two cases. For each input pattern, the minimum

to maximum path delay variations when compared with the nominal delay for the three

different cases are indicated. The slowdown or speedup impact is also shown here. From

the graph, we obtain a worst-case path delay of -47.62% for the input pattern {01 10}, at

same input arrival time {0ps}, a Xtalk capacitance of {2fF}, for different values of PSN

and GB. This is due to the Xtalk capacitance and the voltage level difference at each gate

(i.e., PSN and GB) affecting the drive strength of the gates in their succeeding stages

[107].

2.4.2 Path Delay Fault Testing

For path delay fault testing, we developed a combinational circuit module in Verilog

similar to the buffer gate circuit in Figure 2.1 with two inputs {Ip1 Ip2} and two outputs

{Op1 Op2}, refer to Figure 2.6. This circuit module does not have any interconnect

parasitics, cross-coupling capacitances or supply voltages at their gate inputs to include

the impacts of Xtalk noise, PSN and GB during pattern generation. We use the 90nm

standard cell library for the path delay test flow utilizing an ATPG tool. Input patterns

were generated for path delay fault test for the path from {Ip1} to {Op1}. The input

pattern generated by the ATPG tool that can detect the path delay fault in a circuit is

{01 01}.

Ip1

Ip2

Op1

BFSVTX1

A Z

BFSVTX1

A Z

BFSVTX1

A Z

BFSVTX1

A Z Op2

U1

U3 U4

U2

Figure 2.6: Verilog circuit for Path delay test in TetraMAX

35

Table 2.5: Input Pattern Comparison and Path Delay Variation

ATPG pattern SPICE pattern Delay variation Result

{01 01} {01 10} -47.62% Pattern mismatch

2.4.3 Comparison of input patterns

In Table 2.5, we show the ATPG tool generated input pattern (ATPG pattern) and the

input pattern identified from our SPICE simulations (SPICE pattern). The ATPG pattern

clearly does not match with the SPICE pattern selected from our detailed timing analysis

with SPICE simulation. This is due to the addition of the PD issues such as crosstalk,

PSN and GB. The worst-case path delay obtained using SPICE pattern is +47.62% larger

than the one obtained using an ATPG pattern (with no Xtalk, PSN and GB). This shows

that the path delay testing may miss the worst-case delay due to the low quality of the

applied test set. The path delay variation in the presence of PD issues is quite high, thus

indicating the need for refinement and the requirement of novel techniques to capture the

worst-case path delay pattern.

In the next section, we propose a method to generate input test patterns to capture

worst-case path delay under the combined impact of multi-aggressor crosstalk, PSN and

GB.

2.5 Physical Design Aware Pattern Generation Method

2.5.1 PDAPG Flow for Pattern Generation

We propose a Physical Design Aware Pattern Generation (PDAPG) method to generate

test patterns (vector pairs) that can capture worst-case path delay under the combined

impact of multi-aggressor crosstalk noise, power supply noise and ground bounce. This

method describes our complete flow from circuit netlist creation to a physical design

aware pattern generation. Accordingly, this pattern can be utilized to test the presence of

crosstalk noise, PSN and GB on a victim path. The PDAPG method is applied on ITC’99

benchmark circuits [1], to obtain a physical design aware pattern sequence. This method

can be exhaustive for larger circuits in terms of computational time. Improvement and

refinement of this method are explained in section 2.6. However, the validity and relevance

36

Circuit netlist

Stage I

Selection of a

victim path

Stage II

Placement and

routing (Layout)

Pattern

generation

Random

pattern

X-bit pattern

Identification of

multi-aggressors

Stage III

Stage IV

X-bit filling

Stage VI

Stage V

SPICE netlist

Add

crosstalk

Path delay

measurement

Worst-case path

delay captured?

Physical design

aware pattern

Vary

X-bits

Stage VII

Yes

No

Backtrace

approach

Parasitic

parameters

Vary PSN

& GB

Add PSN &GB (global)

No

Figure 2.7: Physical design aware pattern generation method

of the proposed method show a great promise to close the gap between current path delay

fault ATPG and the patterns identified under the impact of physical design issues.

PDAPG method is executed in seven different stages as shown in Figure 2.7. The

detailed description of each stage is given in the following subsections. The seven stages

are: (i) circuit netlist creation, (ii) selection of a victim path, (iii) placement and routing

of circuit netlist (layout), (iv) pattern generation, (v) identification of multi-aggressors,

(vi) X-bit filling by backtrace approach, and (vii) path delay measurement. Stage V and

VI are our major contributions to the standard flow of physical design aware pattern

generation method.

2.5.1.1 Stage I : Circuit Netlist Creation

We utilize the industrial RTL compiler tool, Cadence Encounter RC Compiler [53] for

circuit netlist creation. The 90nm standard cell technology library is used during circuit

netlist creation. The RTL codes are mentioned in Appendix A.

37

2.5.1.2 Stage II : Selection of a Victim Path

Victim paths are the most sensitive paths in path delay fault test, as they facilitate to

predetermine path delay defects. Synopsys PrimeTime® Static Timing Analysis (STA)

tool [97] is used for generating victim paths from the circuit netlist. This tool extracts a

subset of all possible victim paths based on their signal propagation in the longest paths,

as the faults are expected to be located in these paths. These paths are the combinatorial

signal propagation path located between two scan flip-flops. Depending on the logic

in the gates, some victim paths do not propagate a signal transition to the output of

combinatorial path. Therefore, we select a single victim path from the subset of paths

that can propagate a signal transition. This path is the robust path in the path delay fault

test. Synopsys design constraints file (SDC) and CMOS 90nm technology database (db)

files were given during STA. SDC file consists of design constraint information, timing

assignments, power and area constraints of the circuit design. We use Synopsys ATPG

tool, TetraMAX® [10] to test all the paths. Different steps in the selection of a victim

path are shown in the algorithm below. The codes for generating the set of all possible

victim paths are mentioned in Appendix A.

Algorithm 1: Victim path selection algorithm

01: Run ATPG (for all the victim paths)

02: Analyse for fault detectability status for a Path delay fault

if Detected faults (DT) then

if Detected Robustly (DR) then

if Strong robust then

Select this victim path (strongly robust path) for pattern generation

else
This is a weak-robust path. Ignore this path

end

else
Check another path

end

else
No paths can propagate signal transition

Exit

end

Faults are assigned to classes indicating their current fault detection or detectability

38

status. Our objective from this algorithm is to select a strong robust, detected fault class,

to ensure a signal transition in an at-speed test (as explained in section 1.3.3.1).

2.5.1.3 Stage III : Placement and Routing of Circuit Netlist

Developing layout of a circuit aids to infer the crosstalk induced noise issues from the per-

spective of a manufactured IC. We use the industrial CAD tool (Cadence SOC Encounter)

for placement and routing of the circuit netlist [108] to integrate a layout-aware path de-

lay test solution. The step by step procedure in this stage is as follows. Initially, design

import of our initial verilog circuit netlist is performed, then included design rules, tech-

nology details and standard cell abstract information (Library exchange format); followed

by floor planning, power planning (power supply network and ground network), standard

cell placement (comprising of functional gates and scan flip-flops), power routing and

finally signal routing. Parasitic parameters, i.e., resistances in the interconnecting nets

and ground coupling capacitances between two standard cells were extracted in this stage.

The codes for the placement and routing of circuit netlist are mentioned in Appendix A.

2.5.1.4 Stage IV : Pattern Generation

Synopsys ATPG tool, TetraMAX® [10] is employed to perform path delay fault test on the

selected victim path from Stage II. This test ensures that a fault is detected in the path

irrespective of other faults that may affect the circuit. As the outcome of this test, the tool

generates a random pattern (without any X-bit) and an X-bit pattern that are capable of

propagating a signal transition in the victim path. Random patterns are generated by the

ATPG tool by randomly filling the X-bits in a pattern based on the built-in algorithms

(extended D-Algorithm). X-bits are the don’t care bits in the patterns. The care bits

generated by the tool are not modified. X-bit patterns are also generated by the tool,

left to be filled in any manner based on any heuristic or augmented algorithms. We take

forward this X-bit pattern to stage VI, for our selective X-bit filling to identify a physical

design aware pattern. The codes for pattern generation of the selected victim path can

be referred to Appendix A.

We employ Full-sequential mode ATPG algorithm for executing the PDF tests (as

explained in section 1.4.2.3). ATPG tool TetraMAX® uses only deterministic pattern

generation. During deterministic pattern generation, the tool uses a pattern generation

39

process based on path-sensitivity concepts to generate a test vector that detects a specific

fault in the design. After generating a vector, the tool fault-simulates the vector to

determine the complete set of faults detected by the vector. Test pattern generation

continues until all faults either have been detected or have been identified as undetectable

by the process [10].

2.5.1.5 Stage V : Identification of Multi-aggressors

FF1 FF2

Vn1

Vn2
Vn3

Vn4

Vn5An1
An2

An4

An3

An5

Combinational logic

Trigger

input

Target

output

Gate1

Gate2

Figure 2.8: Identification of Multi-aggressors

At this stage, we identify all the multi-aggressor nets (i.e., the neighboring signal nets)

causing crosstalk noise in the victim nets. The same identification process is repeated

for the entire victim path. Their details are derived from the DEF file of the circuit

layout. DEF (Design Exchange Format) file is produced after the placement and routing

of the circuit netlist. It gives us, the information of the standard cell location and the

placement of the interconnecting nets (X-Y plane) in the two-dimensional space. From this

information, we estimated all the individual crosstalk capacitance’s between the victim

nets and the aggressor nets. Also, we have considered parts of an interconnecting net

(of a victim net and an aggressor net) that were located in multiple metallic layers and

connected by vias. For illustration, consider a victim path between the two scan flip-flops

FF1 and FF2 as shown in Figure 2.8 with the victim nets (i.e, Vn1, Vn2, Vn3, Vn4 and

Vn5) and the identified multi-aggressor nets (i.e, An1, An2, An3, An4 and An5). This

sketch is derived from the actual physical design representation of a circuit layout, shown

in Figure 2.9. Path delay is measured between the two points, i.e., the trigger input and

40

the target output of the victim path. Trigger input and the target output are respectively

the start and the end of a victim path, where the propagated signal transition is launched

and then captured.

 Metal 1

 Metal 2

 Metal3

 Metal4

 Crosstalk

An1

An2

An3

An5

Vn2

Vn2

Gate 1

Gate 2

Gate 4

An4

Vn2

Vn2

Gate 3

Vn - Victim net

An - Aggressor net

Figure 2.9: Victim-Aggressor net sketch from the layout

Table 2.6: Victim nets and aggressor nets

Victim nets Aggressor nets

Vn1, Vn2, Vn3, Vn4, Vn5 An1, An2, An3, An4, An5

The different steps in the identification procedure for selecting a victim net is briefly

shown in Algorithm2, below. Initially, a single victim net is selected. Then, checked

whether the net is horizontally or vertically located in the X-Y plane of the circuit’s

layout. After knowing its location, it is checked for the placement in the metal layer, i.e.,

metal1 (M1), metal1 (M2), metal1 (M3), metal1 (M4), metal1 (M5), metal1 (M6). Once

metallic placement is verified, different conditions are analysed for the orientation of the

aggressor net with respect to the victim net. The horizontal orientation conditions are

represented in Figure 2.10. And, the vertical orientation conditions are represented in

Figure 2.11. Subsequently, cross-coupling capacitance is measured, the steps are repeated

41

for all the orientation conditions and for all the metallic layer placements. Then the same

is repeated for the vertically located nets. Finally, for rest of the victim nets in the victim

path. In this way, we were able to find the aggressor nets for the entire victim path.

42

Algorithm 2: Algorithm for identifying multi-aggressors

01: DEF file as input

02: Select a single victim net from the victim path

03: Check whether this victim net is horizontally/vertically located in the X-Y

plane of the circuit layout

if (Horizontally located) then

if (M1,M2,M3,M4,M5,M6) then

if (H1,H2,H3,H4,H5,H6) then

C = (ǫA)/d; measure the Xtalk capacitance/fringe capacitance

repeat the same for all H1,H2,H3,H4,H5,H6

else
no cross-coupling capacitance, Ignore this horizontally placed net

end

else
check for vertical nets

end

else

if (Vertically located) then

if (M1,M2,M3,M4,M5,M6) then

if (V1,V2,V3,V4,V5,V6) then

C = (ǫA)/d; measure the Xtalk capacitance/fringe capacitance

repeat the same for all V1,V2,V3,V4,V5,V6

else
no cross-coupling capacitance

Ignore this vertically placed net

end

else
no aggressor net in this metal layer, exit

end

else
no aggressor net, exit

end

end

04: Repeat the same for all the victim nets in the victim path

We have considered all multi-aggressor interconnects from a minimum to maximum

43

Victim net

Aggressor net

(a)

Victim net

Aggressor net

(b)

Victim net

Aggressor net

(c)

Fringe

capacitance

Victim net

Aggressor net

(d)

Fringe

capacitance

Victim net

Aggressor net

(e)

Parallel

capacitance

Victim net Aggressor net

(f)

Figure 2.10: Aggressor net (An) and victim net (Vn) is horizontally located (a) both
with equal length (H1) (b) Vn > An (H2) (c) Vn < An (H3) (d) Vn, An in parallel,
but with fringe capacitance (H4) (e) distant apart between the nets, but with fringe
capacitance (H5) (f) in the same X plane (H6)

spacing based on the Design Rule Check (DRC) of the 90nm technology. The individual

crosstalk capacitance’s were calculated using the equation C = (ǫA)/d; where A is the

area of the aggressor net, d is spacing between the aggressor and victim net and ǫ is

the permittivity of dielectric material between two nets. These multi-aggressor crosstalk

capacitances were added to the SPICE netlist in the last stage of path delay measurement.

2.5.1.6 Stage VI : X-bit Filling by Backtrace Approach

We utilize the X-bit pattern generated in stage IV for our selective X-bit filling based

on backtrace approach. After identifying all the multi-aggressors from the circuit layout,

we then employ to trace back to the origin of their X-bit inputs that control each of

the aggressor nets, as depicted in Figure 2.12. Some of the backtraced aggressor net

gate input can be an aggressor net itself (for example An2 and An3), the subset of all

these inputs are considered. There might be a huge number of unfilled X-bits and filled

bits in the primary input (PI) and the scan flip-flop input (SI) of the patterns generated

by the ATPG. Our approach is to identify and fill the relevant X-bits that is getting

44

V
ic

ti
m

 n
e

t

A
g

g
re

s
s
o

r
n

e
t

(a)

V
ic

ti
m

 n
e

t

A
g

g
re

s
s
o

r
n

e
t

(b)

V
ic

ti
m

 n
e

t

A
g

g
re

s
s
o

r
n

e
t

(c)

Fringe

capacitance

V
ic

ti
m

 n
e

t

A
g

g
re

s
s
o

r
n

e
t

(d)

Fringe

capacitance

V
ic

ti
m

 n
e

t

A
g

g
re

s
s
o

r
n
e

t

(e)

P
a

ra
lle

l

c
a

p
a

c
it
a

n
c
e

V
ic

ti
m

 n
e

t
A

g
g

re
s
s
o

r
n

e
t

(f)

Figure 2.11: Aggressor net (An) and victim net (Vn) is vertically located (a) both with
equal length (V1) (b) Vn > An (V2) (c) Vn < An (V3) (d) Vn, An in parallel, but with
fringe capacitance (V4) (e) distant apart between the nets, but with fringe capacitance
(V5) (f) in the same Y plane (V6)

P
ri

m
a
ry

 a
n
d
 S

c
a
n

 F
F

 i
n
p
u
ts

An1
An2 An4

An3

An5

Combinational logic

P
rim

a
ry

 a
n
d

 S
c
a
n

 F
F

 o
u

tp
u
ts

FF1

FF2

PI1

FF6

FF9

FF4

FF3

PI3

FF7

PI2

FF5

FF8

X

0

X

1

X

1

X

X

0
0

X

1

X

0

X

1

X

1

X

X

0

0

X

1

Figure 2.12: X-filling by backtrace approach

affected by crosstalk noise. This approach minimizes the number of X-bit filling from

the total X-bits produced, which successively reduces the total number of input pattern

45

combinations (each X-bit can be filled and tested with ‘0’and ‘1’) applied during the test

for physical design defects. The relevant X-bits in the input patterns were filled in the

STIL output file, generated by ATPG. STIL (Standard Test Interface Language) file gives

the information about the insertion structure of the scan flip-flops and the location of the

relevant X-bits that needs to be filled in the input patterns. Further efforts to elucidate

the backtrace approach is mentioned below.

Table 2.7: Victim nets and aggressor nets

Approach Scan inputs Primary inputs #patterns

Classical ATPG X0X1X1XX0 0X1 26=64

Backtrace filling X0x1X1Xx0 0x1 23=8

In this approach, all the identified multi-aggressors were backtraced to the individual

scan flip-flop inputs and primary inputs. These input bits are the only relevant X-bits

that impact the victim net and needs to be filled. Consider the combinational logic part

of the circuit in Figure 2.12, it has 3 primary inputs (PI) with primary input insertion

structure ‘PI1 PI2 PI3’ and 9 scan flip-flop inputs (SI) with scan input insertion structure

‘FF1 FF2 FF3 FF4 FF5 FF6 FF7 FF8 FF9’. This is further explained by giving test

inputs PI = 0X1 and SI = X0X1X1XX0 to the circuit. From this data, we can see that

6 X-bits needs to be filled in the input pattern. Therefore, 26 = 64 X-filled input pattern

combinations have to be applied to test the circuit for finding a worst-case path delay

pattern. By applying our backtrace approach, we find that inputs to PI2, FF3, FF4,

FF8 and FF9 are the most relevant bits in our analysis, refer Figure 2.12. Among them,

FF4 and FF9 were already filled by the ATPG; since these bits are controllable but not

observable from the primary inputs. Hence, only 3 X-bits are needed to be filled, so

23 = 8 X-filled pattern combinations to test for worst-case path delay under the impact

of crosstalk noise since they control the inputs through multi-aggressor nets. By our

approach, we show a reduction of 87.50% in pattern count which consequently lowers the

testing time of a path delay fault.

We adopted the launch-off-capture (LOC) scheme for the scan-based path delay fault

test in the presence of multi-aggressor crosstalk noise. The structural representation of a

design under test is shown in Figure 2.13. The scan chain with the scan input and scan

output ports are shown in dotted lines with scan flip-flops between the combinational

46

X0X1X1XX0

CL*

X

0

X

X 0

X

X1

1

CL

CL CL

CL

CL

CL

CL

CL

CL

CL

CL

P
ri

m
a
ry

 i
n

p
u

ts
S

ca
n

in
p

u
ts

P
rim

a
ry

 o
u

tp
u

ts
S

ca
n

o
u

tp
u

ts

Design-under-test

FF1

FF3 FF4

FF5FF2

FF7

FF8

FF9

FF6

PI3

PI1

PI2

0

X

1

CL* is the combinational logic blocks between the sequential elements

Figure 2.13: Path delay fault testing with LOC

logic blocks.

The step-by-step details of a typical scan operations for LOC delay test are described

as follows:

• The first step is to put the scan flip-flops into scan mode. This is done by using the

Scan Enable signal. In this case, forcing Scan Enable to 1 enables the scan mode.

Note that initially all the scan flip-flops at unknown state (X).

• The scan-in process starts. Then the first 3 bits are scanned in. A single test bit is

shifted-in at each clock cycle. Usually, the scan shift frequency is much slower than

the functional operating frequency of the CUT.

• At this stage, the complete test vector is shifted-in. Scan mode can be disabled by

forcing Scan Enable to 0. Note that the shifted-in test vector is currently applied

to the combinational logic pieces that are driven by scan flip-flops. It means that

2nd, 3rd, and 4th combinational logic blocks are already forced test inputs.

• The next step is to force primary input (PI) values and measure the primary output

(PO) values: force PI and measure PO.

• Now, it is required to create a second test vector to create signal transitions. The

second vector will be the output responses of the combinational blocks. Each block

will generate the second test vector for the next stage. Since there is no stage before

the 1st combinational block, force PI needs to be applied one more time.

47

• In order to push the output responses of combinational blocks into scan flip-flops, the

system clock is toggled. Once this is done and second PI force is applied, the

second test vector for the delay test is generated. The second input vector will

generate output responses similar to the first one. These output responses needs

to be captured, similar to the first one, by toggling the system clock. However,

now there is a difference: The system clock has to be toggled at the real operating

frequency. This means that the period between the first clock toggle and second

clock toggle should be equal to functional clock period. In this way, the delay-test

responses are captured at the functional operating frequency. As a result, correct

functionality of the circuit is tested at-speed.

• Finally, the captured responses are shifted-out using the slow clock frequency.

Here, we mention our add-on’s to the existing LOC scheme for the example we were

describing. During the scan mode, the scan inputs ‘X0X1X1XX0’were shifted in serially

at each clock cycle and applied to the logic blocks. Then forced primary inputs ’0X1’. We

selectively fill these X-bits obtained from our backtrace approach (as shown in Table 2.7,

row 3) for effectively testing patterns under the impact of multi-aggressor crosstalk noise.

2.5.1.7 Stage VII : Path Delay Measurement

In this stage, we measure the delay variation due to the combined impact of multi-

aggressor Xtalk, PSN and GB on a victim path. The SPICE circuit netlist is updated with

all the calculated multi-aggressor cross-coupling capacitance’s from stage V. We also in-

cluded parasitic parameters extracted from the physical design layout of the circuit netlist

along with the global power supply and the ground voltage as inputs. SPICE simulations

were performed for capturing the worst-case path delay, with global variation of power

and ground voltage level distribution (10% tolerance from the global values) as explained

in section 2.4. The combined impacts were evaluated for all the relevantly filled X-bit

patterns combinations of the primary and scan inputs. Then, SPICE simulations were

performed for capturing the worst-case path delay. Path delay measurement can also be

performed using STA tools. However, for establishing the realistic nature (by adding the

physical design data such as parasitics in the interconnecting nets) of the multi-aggressor

crosstalk noise, we utilize SPICE simulations to obtain a worst-case path delay pattern.

48

By our presented PDAPG method, we identify partially filled X-bit pattern that can

capture worst-case path delay in a victim path. This pattern is compared with the random

pattern generated in stage IV and their mismatches are highlighted to show effectiveness

in the pattern we identify.

2.5.2 Experimental Results

Table 2.8: Functionality of ITC’99 Benchmark circuits [1]

Name Functionality # of Gates # of FFsa

b01 FSM that compares serial flows 49 5

b02 FSM that recognizes BCD numbers 28 4

b05 Elaborate the contents of a memory 998 33

b06 Interrupt handler 56 8

b09 Serial to serial converter 170 27

b11 Scramble string with variable cipher 770 30

b14 Viper processor (subset) 10098 215

b22 A copy of b14 and two modified versions of b14 21772 611

anumber of scan flip-flops.

In this section, experimental results for eight full-scanned versions of ITC’99 Bench-

mark [1] circuits are given. Our main goal is to identify a test pattern that can capture

the worst-case path delay in the combined presence of multi-aggressor crosstalk, PSN and

GB. Although, this method is implemented on a selected victim path, the same can be

applied on any victim path. SPICE simulations are finally run to identify the worst-case

path delay pattern. The delay is captured for the combined impact of multi-aggressor

crosstalk, PSN and GB for different test patterns. The description of the benchmark cir-

cuits, the number of gates and the number of scan flip-flops for the circuits are shown in

columns 1, 2 and 3 respectively in Table 2.8. Experimental results of ITC’99 benchmark

circuits are summarized in Table 2.9. The total number of victim paths generated are

given in column 2. In column 3, the %reduction of X-bit input pattern count for a selected

victim path in shown. Runtime for testing all the patterns and the path delay variation

(%) in comparison with the ATPG pattern are shown in column 4 and 5 respectively.

49

Table 2.9: Circuit description and Path delay variation results for ITC’99 Benchmark
circuits

Ckt #VP’s #Xa Timeb Delay variationc

b01 5 50% 194s 35.45%

b02 4 50% 155s 52.92%

b05 34 99.21% 42214s 60.81%

b06 8 75% 620s 47.46%

b09 28 93.7% 8691s 43.20%

b11 30 99.97% 74496s 67.66%

b14 215 99.9% 1229874s 71.03%

b22 613 99.99% 9936728s 79.34%

Average 83.47% 57.23%

a% Reduction of X-bit input pattern count bRuntime for testing all patterns based on
PDAPG method (in sec) cPath delay variation (%)

We demonstrate our PDAPG method based on b06 benchmark circuit. Eight victim

paths were generated for b06 circuit netlist. These paths are classified as ATPG untestable

(3 paths), ATPG undetected (1 path) and ATPG detected (4 paths) based on their path

delay fault class. Refer chapter 1, fault category subsection for more details. The ATPG

detected paths were further analyzed for robust (3 paths) and non-robust (1 path) paths.

From this list, we selected a strongly robust victim path (as described in section 2.5.1.2) for

our path delay fault analysis. ATPG (SI pattern - 10011000 and PI pattern - 100110) and

the X-bit pattern (SI pattern - XX0110XX and PI pattern - 100X1X) were generated.

We identified all the multi-aggressors from the PD layout of the circuit netlist. Their

individual coupling capacitance’s (measured 0.0005pF in total) were calculated between

each aggressor and victim interconnects. By our backtrace approach, the relevant X-bits

(inducing crosstalk) that control the input of the X-bit pattern were detected. They are

the first two X-bits of SI pattern (xx0110XX) and both X-bits of PI pattern (100x1x),

denoted by small letter ’x’. This method reduces the complexity in testing of test pattern

by 75% (i.e, from 25(5 X-bits) = 32 to 23(3 X-bits) = 8). Nominal path delay of 216ps

is measured for these X-filled test patterns without considering any PD issues. After

50

considering the combined impact of PD issues, we measured a worst-case path delay of

319ps for multi-aggressor crosstalk capacitance, PSN and GB values of 0.0005pF, 0.9V and

0.1V respectively. The path delay obtained for the test pattern (PI pattern - 100111 and

SI pattern -110110XX) is 47.46% larger than the nominal path delay (without considering

crosstalk, PSN and GB impacts on an ATPG pattern); hence this is a high quality test

pattern that should be identified during path delay testing. The high quality test pattern

signifies that this pattern gives the worst-case path delay, when applied to the selected

victim path. By implementing our PDAPG method on the selected ITC’99 benchmark

circuits, we were able to obtain the following: 1) an average reduction of test pattern

count by 83.47%, and 2) capture an average path delay variation of 57.23%.

Table 2.10 shows the pattern comparison for the scan inputs (SI) and the primary

inputs (PI) obtained from ATPG tool and our PDAPG method. Test pattern generated

by the ATPG tool (ATPG pattern) is shown in column 4 with the pattern identified by

physical design aware pattern generation method (PDAPG pattern) shown in column

5, along with the X-bit pattern in column 3. The mismatch between the test patterns

can be clearly distinguished. The worst-case path delay variation between the ATPG

pattern and the PDAPG pattern for the selected victim path is quite high. Ignoring this

pattern may cause path delay defect escape during path delay testing. Thus, we show

that the PDAPG method is an accurate and efficient delay testing strategy for ensuring

better path delay defect coverage in the combined presence of multi-aggressor crosstalk,

PSN and GB. We acknowledge that the proposed approach is accurate after performing

a detailed timing analysis but is also limited in considering all the multi-aggressors from

layout due to the larger circuit size and high volume of X-bit filling, which is also the

focus of our ongoing work.

2.6 Summary

In this chapter, we presented a novel physical design aware pattern generation (PDAPG)

method for path delay testing. PDAPG method focuses on identifying the test patterns

that can capture worst-case path delay on victim paths in a circuit. The path delay

is captured in the combined presence of physical design issues such as multi-aggressor

crosstalk, power supply noise and ground bounce. Our PDAPG method was implemented

51

Table 2.10: Input pattern comparison results of ITC’99 Benchmark circuits

Ckt Input SI PI

b01

X-bit pattern x100 X 1100 1x

Random pattern 1100 0 1100 10

PDAPG pattern 1100 X 1100 11

b02

X-bit pattern xX00 0000 x

Random pattern 1000 0000 0

PDAPG pattern 1X00 0000 1

b05

X-bit pattern 1111 0111 0100 Xxxx 00x0 x

11xx xxXX XXX0 1111 1X

Random pattern 1111 0111 0100 1000 0010 0

1110 0101 1010 1111 10

PDAPG pattern 1111 0111 0101 X101 0010 01

1111 00XX XXX0 1111 1X

b06

X-bit pattern xx01 10XX 100x 1x

Random pattern 1001 1000 1001 10

PDAPG pattern 1101 10XX 1001 11

b09

X-bit pattern x100 1100 111X XxxX 0000 x

xX01 1001 1111

Random pattern 1100 1100 1110 0010 0000 0

0101 1001 1111

PDAPG pattern 1100 1100 111X X01X 0000 1

1X01 1001 1111

b11

X-bit pattern xxXX XX10 11Xx xxX0 xxXX XXX0 00x

1100 1000 X111 xx

Random pattern 1000 1010 1101 0110 1100 0110 001

1100 1000 0111 10

PDAPG pattern 10XX XX10 11X1 11X0 10XX XXX0 001

1100 1000 X111 11

b14

X-bit pattern Xx11 X01x xX10 X001 1100 010x xxxx

x010 XX1x 1001 0X10 xxx0 0001 1xxx

XX00 1101 xxxx X01x x001 10x

Random pattern 1011 1011 0010 0001 1100 0100 1010

1010 1011 1001 0110 1000 0001 1100

1000 1101 1010 0010 0001 100

PDAPG pattern X111 X010 1X10 X001 1100 0101 1110

0010 XX11 1001 0X10 0010 0001 1110

XX00 1101 1110 X010 0001 100

52

on ITC’99 benchmark circuits and results were shown by pattern comparison and path

delay measurement. By our backtrace approach, we also demonstrated its effectiveness

in reducing pattern count during path delay testing. Although, we used a single robust

victim path as our initial victim path repository, our method can be applied to any number

of victim paths for efficiently identifying the high-quality test patterns. Results suggest

the refinement of the existing test methods in timing-aware ATPG tools for incorporating

the combined impact of different PD issues. We acknowledge that the proposed approach

is accurate after performing a detailed timing analysis, but is exhaustive while performing

SPICE simulations for all test patterns due to the larger circuit size and high volume of

X-bit filling. This is also the focus of our next work to generate crosstalk-aware patterns.

53

Chapter 3

An ATPG Flow to Generate
Crosstalk-Aware Path Delay Pattern

Contents
3.1 Introduction . 54

3.2 Prior Work . 55

3.3 Contributions and Chapter Organization 56

3.4 Motivational Experiments . 57

3.4.1 Path Delay Analysis . 57

3.4.2 Path Delay Fault Testing . 61

3.4.3 Comparison of Vector Pairs . 61

3.5 Crosstalk-Aware Test Pattern Generation Method 62

3.5.1 Xtalk-ATPG Flow for Pattern Generation 62

3.5.2 Experimental Results . 63

3.6 Constrained ATPG (Catpg) Method 67

3.6.1 Catpg Flow for Pattern Generation 69

3.6.2 Experimental Results . 79

3.7 Summary . 81

3.1 Introduction

As shown in chapter 2, crosstalk noise causes considerable path delay variations. The

physical design aware pattern generation method previously discussed is an exhaustive

SPICE-based simulation for bigger circuits. In this work, we aim at generating a dedicated

crosstalk-aware pattern that can be utilized for path delay fault testing without using

SPICE-based simulations. Due to the complexity in developing and modeling power

supply noise and ground bounce effects to ATPG tool, we have only considered crosstalk

noise issues in this chapter. The other effects will be dealt as future perspectives.

54

Several prior works were focused on crosstalk noise and delay-aware ATPG. Still,

there is a growing concern in the semiconductor industry for devising better test pattern

generation methods to identify an effective pattern at a lesser computational time. ATPG

tools utilize the existing path delay fault models to generate test patterns that may or may

not capture a crosstalk induced delay defect. These tools utilize static timing analysis

(STA) inputs [97] that are dependent on the lengths of a path (consists of many gates

in a path). With the objective of reducing computational time in pattern generation

procedure, these delay fault models are based on zero interconnect delay in ATPGs. They

target to capture as many faults as possible for an entire circuit with a lesser number of

patterns in reduced time. Also, they do not consider the physical design data of a circuit

during pattern generation. In other words, interconnect delays which are due to crosstalk

noise are neglected during the ATPG path delay test. Therefore, a worst-case path delay

pattern may not be identified during the delay test. Due to these reasons, path delay test

using timing-aware ATPG tools need to be re-examined for taking into account crosstalk

noise delay.

3.2 Prior Work

In recent years, path delay based pattern generation has received greater attention for

capturing delay defects. Several techniques were proposed in the literature for considering

crosstalk noise during path delay fault testing. A circuit redesign can reduce crosstalk

noise, but cannot fully wipe out its impact on circuits in advanced technology models

with higher density. Therefore, there is always a need for accurate crosstalk analysis and

better pattern generation techniques.

Some of the earlier works based on delay testing, consider the gates and interconnect

delays. Authors in [109] present a genetic algorithm based approach to find patterns

that produce longer path delays. In [101], a pattern generation framework by inducing

maximum crosstalk effects across targeted delay-sensitive paths are proposed. A test gen-

eration technique in the presence of worst-case coupling effects for critical delay paths is

presented in [95]. Furthermore, [96] proposes pattern evaluation and selection procedure

for the impact of crosstalk and process variations. The method proposed in [103] focuses

on an ATPG solution for the multi-aggressor crosstalk noise and on finding the patterns

55

activating worst-case crosstalk effects. All these works were based on finding an accu-

rate set of patterns, but may take higher execution time with bigger circuits. Also, path

delay estimation on some of these works were based on gate level circuit netlist. The ap-

proach proposed in [110] uses the physical design layout information for multiple aggressor

crosstalk faults. However, their estimations were deployed on heuristic techniques.

For reducing the complexity in ATPG, the works in [111] and [18] propose crosstalk-

aware pattern generation in comparatively lesser computational time. Our efforts are

to investigate the impact of multi-aggressor crosstalk noise on path delay variations and

identify the test patterns that lead to worst-case path delay. To do this, we develop a

method to generate crosstalk-aware test patterns.

3.3 Contributions and Chapter Organization

Our major contributions presented in this chapter are:

- We first show that the path delay in a circuit is significantly high due to crosstalk

noise. Thereafter, demonstrated that an ATPG tool is incapable of generating patterns

causing worst-case path delay.

- Then, we present our Crosstalk-Aware Test Pattern Generation (Xtalk-ATPG) method

to identify high quality test patterns in the presence of multi-aggressor crosstalk noise.

Xtalk-ATPG method can be computationally exhaustive.

- Therefore, we further aim at customizing the existing path delay fault ATPG to

include crosstalk noise impact. This can be an effective alternative to SPICE-based sim-

ulation in delay testing [112] in terms of computational time.

- All these efforts lead to generate a high quality test pattern during path delay testing.

The rest of the chapter is organized as follows. In Section 3.4, we describe a motiva-

tional experiment to indicate the importance of adding crosstalk noise during the path

delay test. Section 3.5 presents the detailed flow of Xtalk-ATPG method and their ex-

perimental results. In Section 3.6, we elaborate our proposed constrained ATPG method

of pattern generation by using the path delay fault test. In Section 3.7, we provide the

summary of our contributions in this chapter.

56

3.4 Motivational Experiments

The main motivation behind our work of crosstalk-aware pattern generation is presented

in this section. We highlight the impact of crosstalk noise by identifying a worst-case path

delay pattern from SPICE simulations. Simultaneously, we execute path delay fault test

to generate a pattern that can capture path delay defect. This test utilizes the existing

path delay fault model in the ATPG tool, TetraMAX® [10]. Basically, our goal is to

show that a standard ATPG tool may not be able to generate good patterns that can

capture worst-case path delay in the presence of crosstalk. And our experimental results

will show, such situation occurs simply because any commercial ATPG tool does not take

into account any physical design properties (i.e., parasitics for crosstalk, noise on power

and ground lines, etc.) as they work on the logical level description (gate level netlist) of

the circuit (i.e., VHDL or Verilog description) during pattern generation. The worst-case

delay test patterns identified from SPICE simulations are compared with the patterns

generated by the ATPG tool and their discrepancies are reported.

3.4.1 Path Delay Analysis

An ISCAS89 benchmark circuit s27 is developed in SPICE to analyse the impact of

crosstalk noise on path delay variations. Here, we have considered a sequential circuit

in comparison to the motivational experiment in chapter 2 in order to understand the

path delay variation in a sequential circuit. This SPICE level circuit includes parasitics in

interconnects which are usually ignored at gate level simulation. Measured path delays for

all test patterns obtained from SPICE simulations helps us to understand which patterns

and under what conditions will provide the worst-case delay in a circuit path.

Figure 3.1(a) depicts s27 circuit with 10 gates, 3 D-type flip-flops, 4 inputs and a single

output. The circuit is synthesized, DFT scan-chains [53] inserted and circuit netlist with

7 functional standard cells and 3 scan-out D Flip-Flops are generated. This facilitates

one-to-one comparison of the simulation results from path delay analysis and path delay

fault testing (explained in section 2.4.2). Placement and routing of the circuit netlist are

then performed to extract the parasitic parameters (in gates and interconnects) from the

layout [108]. Interconnect parasitic parameters consists of resistances (R1, R2, R3) and

ground coupling capacitances (Cg1, Cg2, Cg3, Cg4) as shown in Figure 3.1(b). Parasitic

57

C

D Q

Clk

D Q

Clk

D Q

Clk

B

A

Clk

D

Z

Cx4

Cx1
Cx3

Cx2

Cx6

FF2

FF1

FF3 Victim

path

Cx5

(a)

Cg3 Cg4Cg2Cg1

R1 R2 R3

(b)

Figure 3.1: (a) s27 benchmark circuit-under-test (b) 3-pi network model for intercon-
nects

inductances in interconnects are not considered in this work, as it may be too complex to

analyse crosstalk effect on a simple circuit. Interconnecting nets between all the standard

cells are modeled as a 3π network by the layout tool. This network model for interconnects

gives the accurate delay analysis results compared to other simpler interconnect models.

The CMOS models for the gates in the circuit are taken from 90nm [105] Predictive

Technology Model (PTM).

Victim path we examine is highlighted in Figure 3.1(a). Cross-coupling capacitances

(CX1, CX2, CX3, CX4, CX5, CX6) that causes crosstalk noise in this victim path are not

generally extracted by the tools [108]. This capacitance can only be estimated based

on the aggressor net proximity from the victim net. We identify all the aggressor nets

affecting the entire victim path from the layout. As there are many aggressors [103]

with varying signal transitions and with different arrival times, the path delay alters to a

greater extent.

Sketch of s27 circuit layout is shown in Figure 3.2 to further detail the crosstalk

58

A

B

C

D

Z
Cx4 Cx5

Cx1

Cx3
Cx6 Cx2

 metal1

 metal2

 metal3

 metal4

 Power network

 Ground network

 Standard cells

Clk

Figure 3.2: Layout sketch of s27 circuit

effect on a victim path. It can be seen from the sketch that the victim nets, as well

as, the aggressor nets are routed in multiple metallic layers (metal1, metal2, metal3 and

metal4). Also, CX4 and CX5 are the cross-coupling capacitances between a victim net

(but resided in different metal layers) and different aggressor nets. This capacitance

varies depending on the area of the aggressor net and their distance apart, so as, their

degree of impact on the victim net. From all these, we can interpret that (1) a victim

path can have many interconnecting victim nets, (2) a single victim net can get affected

by many aggressor nets (3) parts of the aggressor nets or victim nets have resided in

different metallic layers connected by vias, and (4) each aggressor net may have varying

signal transition with respect to the corresponding victim net. We estimated crosstalk

capacitances and included them during path delay analysis. Then computed victim path

delay for all possible signal transitions and in varying arrival time at their circuit inputs.

Figure 3.3 is derived from the actual circuit layout of s27 circuit.

The nominal power supply voltage, the ground reference voltage and switching fre-

quency of 1V, 0V and 1GHz, respectively are used in this experiment. Path delay vari-

ations are observed at the target output FF3/D with the trigger input at the start of

combinatorial victim path FF2/Q, refer Figure 3.1(a). All the possible vector pair signal

transitions (test patterns) are applied at the circuit’s primary input (A, B, C, D) and

59

Figure 3.3: Layout of s27 circuit

scan-input (SI). SI’s can be applied after implementing the DFT scan chains. Signal

transitions such as rising signal (Rise), falling signal (Fall) and stable 0 (S0) and stable

1 (S1) condition are given at their inputs. Along with them, different input arrival times

of {-200ps 0ps +200ps} based on the setup and hold timing constraints (10% tolerance

with the fixed arrival time) were given. The +/- indicates the advance and the lag in the

arrival time.

Table 3.1: Path delay variation due to the impact of crosstalk

Inputs Signal transitions Arrival time Delay variation Delay impact

A

B Rise, {-200ps, -3.59% speedup(-ve)

C Fall, 0ps, to /

D S0, S1 200ps} +5.07% slowdown(+ve)

SI

The combinations of all possible permutations of crosstalk noise, vector pair signal

transitions and different arrival times result in a large data set. Therefore, the minimum to

maximum path delay variations obtained in comparison with nominal delay (i.e., without

crosstalk noise) is only shown in column 4 of Table 3.1. For a simple circuit like s27, the

60

maximum path delay variation of +5.07% is obtained. This indicates the importance of

considering the impact of multi-aggressor crosstalk noise during the path delay analysis.

The vector pairs (V1, V2) to the flip-flops (FF1, FF2, FF3) identified after the SPICE

simulations, their worst-case path delay (δ1) are listed in column 2-5 of Table 3.2.

3.4.2 Path Delay Fault Testing

C

D Q

Clk

D Q

Clk

D Q

Clk

B

A

Clk

D

Z

FF2

FF1

FF3 Victim

path

Figure 3.4: Path delay fault testing in TetraMAX

For path delay fault testing, we developed a sequential circuit module in Verilog (with

scan-chains inserted) similar to the one shown in Figure 3.1(a), refer Figure 3.4. This

module is delay tested with the existing model in the ATPG tool, TetraMAX® at 1GHz

clock frequency. Gate and flip-flop models were derived from the 90nm standard cell li-

brary. As the tool doesn’t allow to include interconnect models during pattern generation,

so it is not possible to analyze crosstalk-induced delay faults. Vector pairs were generated

for path delay fault test for the victim path from FF2/Q to FF3/D. Column 6-9 of Table

3.2 lists, the ATPG tool generated vector pairs (V1, V2) for the flip-flop (FF1, FF2, FF3)

inputs and the worst-case path delay (δ2) measured in SPICE by the respective vector

pair.

3.4.3 Comparison of Vector Pairs

In this subsection, we compare the vector pairs identified from SPICE simulation with

the one generated by the ATPG tool and their mismatches are highlighted.

61

Table 3.2: Pattern comparison and delay variation

SPICE ATPG

∆vFF FF FF δ1 FF FF FF δ2

1 2 3 (ns) 1 2 3 (ns) (%)

V1 1 0 1
0.289

1 0 1
0.286 1.05

V2 1 1 0 0 1 0

∆v =
(δ1 − δ2)

δ1

× 100 (3.1)

In Table 3.2, we can see a mismatch in the vector pair at FF1 between the SPICE and

ATPG patterns. The path delay variation (∆v) in equation 3.1, is the mean delay differ-

ence between the worst-case delays obtained from SPICE (δ1) and ATPG (δ2) patterns.

The ∆v of 1.05% (slowdown impact on the victim path) listed in column 10, implies that

a path delay fault test is not performed with a good pattern by ATPG. This path delay

is quite high for a small circuit like s27 and it may be even higher and at an unacceptable

percentage in bigger circuits. Thus, we provide an evidence that a circuit may escape the

test to detect crosstalk delay defect due to lower quality in the applied vector pair. This

indicates a serious notice in customizing the existing path delay fault testing method in

ATPG. Therefore, our work emphasizes the need for refining ATPG tools and proposing

novel methods to include good patterns that can be utilized for capturing crosstalk noise

delay defects. For bigger circuits, there may exist many large sets of test patterns. So,

it is desirable to implement a method to include crosstalk noise effects during pattern

generation.

3.5 Crosstalk-Aware Test Pattern Generation Method

3.5.1 Xtalk-ATPG Flow for Pattern Generation

Crosstalk-Aware Test Pattern Generation (Xtalk-ATPG) is similar to the physical design

aware pattern generation (PDAPG) method shown in seven stages. Here, we consider

only the impact of crosstalk noise. Please refer chapter section 2.5 for its description of

pattern generation.

62

Circuit netlist

Stage I

Selection of a

victim path

Stage II

Placement and

routing (Layout)

Pattern

generation

Random

pattern

X-bit pattern

Identification of

multi-aggressors

Stage III

Stage IV

X-bit filling

Stage VI

Stage V

SPICE netlist

Add

crosstalk

Path delay

measurement

Worst-case path

delay captured?

Physical design

aware pattern

Vary

X-bits

Stage VII

Yes

No

Backtrace

approach

Parasitic

parameters

Vary PSN

& GB

Add PSN &GB (global)

No

Figure 3.5: Crosstalk-aware pattern generation method

3.5.2 Experimental Results

Xtalk-ATPG method is conducted on ten full-scanned versions of ITC’99 Benchmark [1]

circuits with their functionality briefly represented in Table 3.3. The number of gates, scan

flip-flops after circuit netlist synthesis and scan chain insertion [53] are respectively shown

in column 3 and 4. The total number of victim paths generated [97] are given in column

4. Our major objectives of this experimental analysis are to show the difference in the

patterns and the variations in their path delay measured in the presence of crosstalk noise.

They are the random pattern generated by the ATPG tool and the pattern identified by

our Xtalk-ATPG method. We also, demonstrate that the pattern identified gives better

results during the path delay fault test. It is capable of capturing worst-case path delay in

the presence of multi-aggressor crosstalk noise on a victim path. Although, this method

is implemented on a selected victim path, the same can be applied to any victim path.

Selective SPICE simulations are run on a circuit to find a path delay pattern. The details

and the experimental results of ITC’99 benchmark circuits are summarized in Table 3.4. In

column 2, the number of aggressor nets identified from the layout (mentioned in section

2.5.1.5) is indicated. The total number of X-bits to be filled are given in column 3.

63

Table 3.3: Functionality of ITC’99 Benchmark circuits [1]

Name Functionality # of Gates # of FFsa # of VPsb

b01
FSM that compares

49 5 5
serial flows

b02
FSM that recognizes

28 4 4
BCD numbers

b03 Resource arbiter 160 31 30

b04 Compute min and max 737 66 66

b05
Elaborate the

998 33 34
contents of a memory

b06 Interrupt handler 56 8 8

b07
Count points on

441 41 41
a straight line

b08
Find inclusions in

183 21 21
sequences of numbers

b09 Serial to serial converter 170 27 28

b10 Voting system 206 17 17

b11
Scramble string

770 30 30
with variable cipher

b12
1-player game

1076 119 119
(guess a sequence)

b13 Interface to meteo sensors 362 45 45

b14 Viper processor (subset) 10098 215 215

b15 80386 processor (subset) 8922 415 415

b17 Three copies of b15 32326 1311 1311

b18
Two copies of b14

114621 2754 2754
and two of b17

b19
Two copies of b14

231320 5510 5510
and two of b17

b20
A copy of b14 and a

20226 429 429
modified version of b14

b21 Two copies of b14 20571 429 429

b22
A copy of b14 and two

21772 611 611
modified versions of b14

anumber of scan flip-flops, bnumber of victim paths.

Aggressor nets are backtraced to fill the relevant X-bits in the test pattern with their

count mentioned in column 4.

We demonstrate Xtalk-ATPG method based on b06 benchmark circuit. Eight victim

paths were generated for b06 circuit netlist. There exists many path delay fault class [113]

based on the sensitization of a victim path. From the summary of the path delay fault

class, they are classified as ATPG untestable (3 paths), ATPG undetected (1 path) and

64

Table 3.4: Circuit description and experimental results for ITC’99 Benchmark circuits

Ckt #Aneta #X-bitsb #X-bits filledc ∆d
X−bit te

r ∆f
Xtalk

b01 8 2 1 50.00% 40s 18.23%

b02 10 2 1 50.00% 25s 12.77%

b03 11 31 10 99.99% 170342s 27.64%

b06 6 6 4 75.00% 353s 24.07%

b07 47 35 16 99.99% 61846978s 40.57%

b08 22 26 14 99.97% 2910945s 33.45%

b09 13 10 3 99.21% 1298s 36.06%

b10 27 22 10 99.97% 185661s 34.81%

b12 16 106 8 99.99% 2353725s 48.34%

b13 10 47 7 99.99% 54508s 41.33%

Average 87.41% 31.73%

anumber of aggressor nets, bnumber of X-bits, cnumber of X-bits filled, d% reduction in
input pattern combinations (with X-bits), eruntime for testing all patterns based on
Xtalk-ATPG method (in sec), fpath delay variation (crosstalk noise)

ATPG detected (4 paths). The ATPG detected paths were further analyzed for robust

(3 paths) and non-robust (1 path) paths. Among them, we select a robust path for our

path delay fault analysis. This ensures that at least a single delay fault is detected during

the launch-off-capture scheme of pattern generation. Then the robust path (victim path

under consideration) is path delay fault tested in ATPG tool. A random pattern and

an X-bit pattern were generated as shown in Table 3.5. These patterns are given to the

primary inputs (PI) and the scan flip-flops inputs (SI) of the circuit. This random pattern

is kept as a reference to compare with the X-bits filled (in Xtalk-ATPG method) pattern

in terms of worst-case path delay and the computational time.

All the cross-coupling capacitance’s (measured 0.5fF in total) were individually cal-

culated between the identified multi-aggressors and the victim nets. By our backtrace

approach, the relevant X-bits (indicated by small letter ‘x’) in the X-bit patterns that

control aggressor nets (by inducing crosstalk noise), thereby affecting the victim nets were

65

Table 3.5: b06 input patterns

Pattern Scan FF input Primary input

type FF1 FF2 FF3 FF4 FF5 FF6 FF7 FF8 PI1 PI2 PI3 PI4 PI5 PI6

random 1 0 0 1 1 0 0 0 1 0 0 1 1 0

X-bit x x 0 1 1 0 X X 1 0 0 x 1 x

Xtalk-ATPG 1 1 0 1 1 0 X X 1 0 0 1 1 1

also detected. They are the first two X-bits in the scan flip-flop input and both the X-bits

in the primary input (those colored in Table 3.5). In other circuits, some of the relevant

X-bits may be already filled by the tool, so they are not modified. Xtalk-ATPG method

minimizes the complexity by 75% in delay fault testing by applying reduced X-bit input

pattern combinations (i.e., 24(4 X-bits filled) = 16 instead of 26(6 X-bits) = 64). By this

way, we selectively provide the pattern combinations for path delay testing. Computation

for the percentage reduction in the X-bit filled pattern (∆X−bit) combinations given at

the circuit input is based on the equation:

∆X−bit =
2#X−bits − 2#X−bitsfilled

2#X−bits
× 100 (3.2)

Equation 3.3 gives the computational time for testing all combinations of input pat-

terns (tr) for crosstalk noise. This time includes the time taken for the generation of

the X-bits filled pattern (tatpg) and for performing their corresponding SPICE simulation

(tSP ICE). The computational time taken by the different benchmark circuits are shown

in column 6 of Table 3.4.

tr = (tatpg + tSP ICE) × 2#X−bitsfilled (3.3)

Nominal path delay (δn) of 216ps is measured for the random pattern without con-

sidering crosstalk noise. After considering the impact of multi-aggressors, 268ps crosstalk

delay (δxtalk) is measured for the X-bit filled (Xtalk-ATPG) pattern. The path delay vari-

ation for the Xtalk-ATPG pattern, shown in the last row of Table 3.5 is 24.07% greater

than the nominal path delay; hence this is a high quality input pattern that should be

identified during path delay fault testing. The high quality test pattern signifies that this

pattern gives the worst-case path delay, when applied to the selected victim path. Path

delay variation is computed by:

66

∆Xtalk =
(δn − δxtalk)

δn

× 100 (3.4)

These details of the other circuits are respectively shown in column 5, 6 and 7 of Table

3.4. By implementing our Xtalk-ATPG method on the ITC’99 benchmark circuits, we

were able to obtain the following: 1) an average reduction of test pattern count by 87.41%

for the 10 ITC’99 benchmark circuits mentioned, and 2) could capture an average path

delay variation of 31.73%.

The objective of Table 3.6 is to show the variation between the random pattern ob-

tained from ATPG tool and the pattern identified by our Xtalk-ATPG method. They are

separately mentioned for scan inputs (SI) and the primary inputs (PI). X-bit patterns,

random patterns and Xtalk-ATPG patterns are respectively shown in the 1st, 2nd and 3rd

rows of each circuit. The mismatch between the patterns can be clearly distinguished.

The worst-case path delay variation between the random pattern and the Xtalk-ATPG

pattern for the selected victim path is also quite high. Ignoring Xtalk-ATPG pattern

may cause path delay defect escape during path delay fault testing. Thus, we show that

the Xtalk-ATPG method is an accurate and efficient delay testing strategy for ensuring

better delay defect coverage in the presence of multi-aggressor crosstalk. The scripts for

aggressor net identification, cross-coupling capacitance calculation, backtrace approach

and testing with different combinations of patterns were implemented in PERL. These

experiments are performed on Linux ×86 64bit servers with 48 sockets and 1 core per

socket and 176GB of available memory.

We acknowledge that the proposed approach is accurate after performing a detailed

timing analysis but is also limited in their computational time needed to test all the pat-

tern combinations of the generated X-bit pattern and further their selective SPICE sim-

ulation. This is due to the high volume of X-bit filled pattern combinations given during

SPICE-level simulation. Minimizing the computational time for generating a crosstalk-

aware path delay pattern is the focus of our following work.

3.6 Constrained ATPG (Catpg) Method

In this section, we present a novel flow of pattern generation that can be effective in

capturing crosstalk-induced delay defects. The assurance with this flow is the reduced

67

Table 3.6: Input pattern comparison results of ITC’99 Benchmark circuits

Ckt Input SI PI ∆Xtalk

b01

X-bit pattern 001x0 11000X

18.23%Random pattern 01110 110001

Xtalk-ATPG pattern 00100 11000X

b02

X-bit pattern x000 0000X

12.77%Random pattern 1000 00001

Xtalk-ATPG pattern 0000 0000X

b03

X-bit pattern X0XX X1XX XXXx XxXx x0XX xXXX xxxx XX 001X XxX0

27.64%Random pattern 0010 1110 0010 0101 1001 0100 0111 10 0011 1100

Xtalk-ATPG pattern X0XX X1XX XXX1 X1X0 10XX 1XXX 0100 XX 001X X1X0

b06

X-bit pattern xx01 10XX 100x 1x

24.07%Random pattern 1001 1000 1001 10

Xtalk-ATPG pattern 1101 10XX 1001 11

b07

X-bit pattern 0XXX xXxx XxxX xXXx xx01 1xxX X000x

40.57%

XxXX X100 1xxX xXXX X

Random pattern 0100 1011 0001 0010 1101 1010 1000 1100 1111 0101 0 10001

Xtalk-ATPG pattern 0XXX 1X01 X10X 0XX0 1001 101X X0000

X1XX X100 110X 0XXX X

b08

X-bit pattern xXx1 XxxX xxxx XxxX XxX1 1 001X xxX0 XXx0 X

33.45%Random pattern 0010 0010 0101 1010 1100 0 0011 1100 0100 1

Xtalk-ATPG pattern 1X11 X11X 1111 X01X X1X1 1 001X 10X0 XX00 X

b09

X-bit pattern 1X00 110X 111X XxxX X101 1001 1111 0X0x X

36.06%Random pattern 1100 1100 1111 0010 1101 1001 1111 0000 1

Xtalk-ATPG pattern 1X00 110X 111X X11X X101 1001 1111 0X01 X

b10

X-bit pattern XXX0 xxx1 0011 Xxxx x XXXx 0XX1 0xxX X0X

34.81%Random pattern 0100 0101 0011 1101 0 1110 0011 0011 000

Xtalk-ATPG pattern XXX0 1101 0011 X110 1 XXX0 0XX1 001X X0X

b12

X-bit pattern 011X 1XXX XXX0 0XX0 XxxX XXXX XXXX 000X xXx0 X

48.34%

xXXX XXXX 1XXX XXXX xXXx XXXX X1XX

XXXX 1XXx XXXX XXXX XXXX XX0X XXXX

XXX1 XXXX XXXX X00X 0XXX 1XXX XXXX

XX0X XX1

Random pattern 1101 1000 1000 0101 1011 0101 0001 0001 1100 0

1110 1010 1100 1001 0111 0101 0001

0011 0111 1010 1100 1110 0001 1001

1100 1110 0110 0100 0101 1111 0010

0100 001

Xtalk-ATPG pattern 011X 1XXX XXX0 0XX0 X11X XXXX XXXX 000X 1X10 X

1XXX XXXX 1XXX XXXX 1XX0 XXXX X1XX

XXXX 1XX0 XXXX XXXX XXXX XX0X XXXX

XXX1 XXXX XXXX X00X 0XXX 1XXX XXXX

XX0X XX1

b13

X-bit pattern 0110 0111 xXXX 1XXX XX1X X01X X0XX 0X0X xXXx XXxX 0X

41.33%

XXXX XxXX XxxX XXXX XXXX X

Random pattern 0110 0111 0100 1101 1010 1000 1111 0101 1001 0110 00

0101 0110 0100 1011 1100 1

Xtalk-ATPG pattern 0110 0111 0XXX 1XXX XX1X X01X X0XX 0X0X 1XX0 XX0X 0X

XXXX X0XX X10X XXXX XXXX X

computational time in identifying a path delay pattern for testing.

68

Circuit netlist

Identification of aggressor nets

Sorting and ranking aggressor nets

Constraining aggressor nets

Pattern generation

Is pattern testable?

Yes

No

Yes

No

Vary

transitions

Constrained all

aggressors?

Crosstalk-aware pattern

Step 3

Step 1

Step 2

Selection of a

victim path

Placement

and routing

Figure 3.6: Constrained ATPG flow

3.6.1 Catpg Flow for Pattern Generation

The Catpg flow shown in Figure 3.6 is described in three stages: (1) identification of

aggressor nets (to a victim path), (2) sorting and ranking aggressor nets (based on their

impact), and (3) constraining aggressor nets and pattern generation (for a victim path).

Catpg method is a generic method and this method is presented on a sample circuit b08,

an ITC’99 benchmark circuit. The relevance of the proposed flow shows a great promise

to generate an effective worst-case path delay pattern similar to the patterns identified by

the Xtalk-ATPG method mentioned in section 2.5. Even though, the latter method was

69

based on selective SPICE simulations (i.e., by selective X-filling), it takes higher runtime

for bigger circuits.

3.6.1.1 Stage I : Identification of Aggressor Nets

We utilize industrial tools such as Cadence Encounter RC Compiler [53], Synopsys Prime-

Time Static Timing Analysis (STA) tool [97] and Cadence SOC Encounter tool [108] to

generate a circuit netlist, select a victim path and to perform placement and routing of

the circuit netlist, in their respective order. From the circuit layout, the aggressor nets

were determined for all the victim nets in the victim path. This is based on the separation

between two nets (140µm), the degree of the aggressor net impact on a victim net and the

width of the aggressor nets (for metal 1, 120µm and for metal2, 140µm were considered).

Each aggressor net may reside in different metal layers with varying length, this informa-

tion is fetched from the DEF (Design Exchange Format) file. Therefore, determining all

the aggressor nets from the layout of the circuit gives a better estimate of the impact of

crosstalk noise on path delay. We select a strongly robust victim path (as described in

section 2.5.1.2) from b08 circuit to test our method. 22 aggressor nets were identified for

the 5 victim nets, their notations are given in Table 3.7. Some of the aggressor nets were

neglected, if it is (1) a clock net, or (2) a victim net acting itself as an aggressor net to

another victim net, or (3) the same aggressor net affecting two different victim nets in

the victim path. If it is the last case, then the choice is made based on their degree of

impact on the victim net.

3.6.1.2 Stage II : Sorting and Ranking

Firstly, the identified aggressor nets (as shown in Figure 3.7) are sorted based on their

impact on the victim net, i.e., the higher cross-coupling capacitance between them will

have a higher impact. Capacitance values were measured between 0.02fF - 2fF for a b08

circuit path.

Secondly, we rank the aggressor nets (as shown in Figure 3.8), i.e., nets with lower

capacitances are given a lower rank (Rank 22) as they have only a minimal influence on

the victim path delay [114]. Aggressor nets with higher capacitance were given higher

rank (Rank 1). Their ranking order is shown in column 3 of Table 3.7.

70

Table 3.7: Aggressor net ranking

Victim net Aggressor net Rank

Vn1

An1 12

An2 20

An3 6

An4 13

Vn2 NA*

Vn3

An5 2

An6 1

An7 10

An8 16

An9 18

An10 15

An11 21

An12 9

An13 7

An14 17

An15 5

Vn4

An16 19

An17 11

An18 4

An19 3

An20 14

An21 8

Vn5 An22 22

NA* - No aggressor net for this victim net.

3.6.1.3 Stage III : Constraining Aggressor Nets and Pattern Generation

Stage III is our major contribution in the constrained ATPG method. We customize

the existing ATPG tool, TetraMAX® [10] to generate a crosstalk-aware pattern that can

71

Figure 3.7: Aggressor nets

Figure 3.8: Aggressor net ranking

detect a path delay fault. This ATPG tool is unaware of the impact of crosstalk noise on

victim path delay. Therefore, we aim at generating a crosstalk-aware pattern by giving

constraints to the aggressor nets that in turn impact the victim path delay. In general,

crosstalk delay defect can be determined beforehand by adding their impact during ex-

haustive or selective SPICE simulations, but it is computationally very expensive. We

72

compare the proposed constrained ATPG method with the earlier mentioned Xtalk-ATPG

method [115] (section 2.5) in terms of (1) computational time in identifying a crosstalk-

aware path delay pattern, and (2) validating the effectiveness of this pattern by evaluating

their worst-case path delay. Xtalk-ATPG method is based on ATPG and selective SPICE

simulation in contrast to the constrained ATPG method (based exclusively on ATPG).

In the latter method, SPICE simulation is merely used to compare the worst-case path

delays.

Table 3.8: Aggressor net transition and delay measurement

Rank Vneta Cb
v Anetc Cd

1
FCe

∆
f
v C

g

2
FC ∆v Ch

3
FC ∆v

1 Vn3 Ri An6 Fj UD/AUk
0 DT

l
0%

2 Vn3 R An5 F UD/AU 0 DT 0%

3 Vn4 F An19 R UD/AU 0 UD/AU 1 DT 0%

4 Vn4 F An18 R UD/AU 0 UD/AU 1 DT -0.04%

5 Vn3 R An15 F UD/AU 0 DT -0.04%

6 Vn1 R An3 F UD/AU 0 DT -0.04%

7 Vn3 R An13 F UD/AU 0 UD/AU 1 DT -0.04%

8 Vn4 F An21 R DT -0.68%

9 Vn3 R An12 F UD/AU 0 DT -0.70%

10 Vn3 R An7 F UD/AU 0 DT -0.72%

11 Vn4 F An17 R UD/AU 0 UD/AU 1 DT -0.76%

12 Vn1 R An1 F UD/AU 0 DT -0.79%

13 Vn1 R An4 F UD/AU 0 DT -0.79%

14 Vn4 F An20 R UD/AU 0 UD/AU 1 DT -0.80%

15 Vn3 R An10 F UD/AU 0 UD/AU 1 DT -0.80%

16 Vn3 R An8 F UD/AU 0 UD/AU 1 DT -0.94%

17 Vn3 R An14 F UD/AU 0 DT -0.97%

18 Vn3 R An9 F DT -1.59% 0 DT

19 Vn4 F An16 R UD/AU 0 DT -1.71%

20 Vn1 R An2 F UD/AU 0 UD/AU 1 DT -1.73%

21 Vn3 R An11 F UD/AU 0 UD/AU 1 DT -1.73%

22 Vn5 F An22 R UD/AU 0 UD/AU 1 DT -1.73%

avictim nets, b transition in the victim net, caggressor nets, dcontraining aggressor net with opposite tra-
sition, efault class, f path delay variation for a constrained ATPG pattern, gcontraining aggressor net with
stable 0, hcontraining aggressor net with stable 1, iindicates a rising transition, j indicates a falling transition,
kATPG fault that is either undetectable or untestable, lATPG detected fault class that is testable.

In this stage 3, we constrain all the aggressor nets one after the other depending on

the signal transition in their corresponding victim net, shown in Figure 3.9.

The aggressor net with the higher rank is constrained first based on their impact.

For a victim net with a Rising (R) signal transition, an opposite signal transition in the

aggressor net is given initially, i.e., a Falling (F) transition can maximize the crosstalk-

induced delay slowdown [111]. Then we check whether it generates a testable pattern

or not; this ensures that a given signal transition is propagated during the launch clock

cycle in an at-speed test [116]. Sometimes, this gives an unsuccessful pattern generation.

Therefore, we constrain the victim net again with a stable 0 and then again with stable

73

Figure 3.9: Constrained ATPG method

1 condition at the aggressor net, if the former generates an untestable pattern. The same

direction signal transition in the aggressor net is ignored, as it may only induce a minimal

delay slowdown or a speedup in the victim net. All aggressor nets are constrained one

after the other until a final pattern is generated. This can be utilized for path delay

fault testing in the presence of multi-aggressor crosstalk noise. Instead of constraining or

modifying the victim net, we constrain all the aggressor nets simultaneously for pattern

generation. This is the major thrust in this novel method.

Table 3.8 shows the results after applying the Catpg ATPG flow on b08 benchmark

circuit. The details are as follows. Aggressor net ranking in column 1, victim net, their

signal transition pattern (i.e., R for rising signal and F for falling signal) in column 2-

3, their corresponding aggressor net in column 4, their signal transition (i.e., opposite

transition F or R, stable 0, or stable 1), their fault class and path delay variation are

mentioned in subsequent columns.

There exist several fault class for testing a path delay fault [113], such as detected (DT),

possibly detected (PT), undetectable (UD), not detected (ND) and ATPG untestable

(AU); categorized based on the signal transition propagation, fault detection and pattern

generation. Among them, we select the detected faults so that a signal transition in

the victim net is propagated during the launch clock cycle. Then, we measure path

delay in the victim net (∆v) in SPICE. This is to show the effectiveness of a pattern in

determining the worst-case delay in a path. By simulating this pattern, we obtain the

maximum possible worst-case delay of -1.73% on the victim path. Negative value shows

the slowdown impact and a positive value notate a speedup in the victim path delay.

74

Table 3.9: Pattern comparison and Path delay variation

Scan Cb
atpg Xtalk-ATPGc Aggressor Catpg Xtalk-ATPG

FF#a V1 V2 V1 V2 netsd V1 V2 V1 V2

FF1 1 X X X An6 0 0 X X

FF2 X 1 1 0 An5 0 0 0 0

FF3 X X 0 X An19 1 1 1 1

FF4 1 0 1 0 An18 1 1 X X

FF5 0 1 X 0 An15 0 0 X X

FF6 X X X X An3 0 0 0 0

FF7 X X X X An13 1 1 1 1

FF8 1 X X X An21 0 1 X X

FF9 0 0 X 0 An12 0 0 X X

FF10 X 0 0 0 An7 0 0 X X

FF11 0 0 0 0 An17 1 1 X X

FF12 X 0 0 0 An1 0 0 X X

FF13 X 0 0 0 An4 0 0 X X

FF14 X 0 1 0 An20 1 1 X X

FF15 X 0 1 0 An10 1 1 X X

FF16 0 0 1 1 An8 1 1 1 1

FF17 1 0 0 0 An14 0 0 0 0

FF18 X X 0 0 An9 1 0 X 0

FF19 X X 1 1 An16 0 0 1 1

FF20 1 0 1 0 An2 0 1 0 1

FF21 0 1 0 1 An11 1 1 1 1

∆e
v -1.73% -2.12% An22 1 1 1 1

ascan flip-flops from 1 to 21 from the synthesized DFT scan chain structure, bby constrained ATPG method,
cby Xtalk-ATPG method, dall the 22 aggressor nets to the victim path, epath delay variation.

The path delay variation (∆v) for the constrained ATPG and Xtalk-ATPG methods were

computed using the equations below:

75

∆v(Catpg) =
(δr − δCatpg)

δr

× 100 (3.5)

∆v(Xtalk − ATPG) =
(δr − δXtalk−AT P G)

δr

× 100 (3.6)

Here δr is the crosstalk delay due to a random pattern generated by ATPG; δCatpg and

δXtalk−AT P G are the worst-case path delays measured by the patterns obtained from the

two methods Catpg and Xtalk-ATPG respectively. ATPG generates a random pattern to

test path delay fault. This pattern is kept as the reference for path delay fault detection

and worst-case path delay comparison.

XXX1 XXXX XXXX XXXX XXX1 0

XXX0 XXXX 0000 000X XXX0 1

Initial pattern An6

An6(S0)

Final pattern

XXX1 XXXX XX0X XXXX XXX1 0

XXX0 XXXX 0000 000X XXX0 1

*

XXX1 XXX1 XX0X XXXX XXX1 0

XXX0 XXXX 0000 000X XXX0 1

* *

XXX1 XXX1 XX0X XXX0 XXX1 0

XXX0 XXXX 0000 0000 XXX0 1

* * *

XXX1 0XX1 XX0X XXX0 XXX1 0

XXX0 1XXX 0000 0000 XXX0 1

* * * *

XXX1 0XX1 XX0X XXX0 XXX1 0

X1X0 1XXX 0000 0000 XXX0 1

* * * * *

XXX1 0XX1 0X0X XXX0 XXX1 0

X1X0 1XXX 0000 0000 XXX0 1

* * * * * *

1XX1 0XX1 0X0X XXX0 XXX1 0

X1X0 1XXX 0000 0000 XXX0 1

* * * * * * *

1XX1 0XX1 0X0X XXX0 1XX1 0

X1X0 1XXX 0000 0000 0XX0 1

* * * * * * *

*

An5, A19, A18

An18(S1)

An15

An15(S0)

An3, A13, A21
An21(Sop)

An3(S0), A13(S1)

An12(S0), An7(S0)
An12,A7,A17

An17(S1)
An1

An1(S0)

An4(S0)

An10, A8, A14, A9

An5(S0),A19(S1)

An4,A20

An20(S1)

An10(S1), A8(S1), A14(S0)

An9(Sop)

An16, A2, A2, A11, A22

An16(S0), A2(S1), A2(S1), A11(S1), A22(S1)

Figure 3.10: State diagram of constrained ATPG

The b08 circuit has 13 primary inputs and 21 scan flip-flop inputs (FF1 - FF21),

varying these inputs can sensitize the victim path to generate a crosstalk-aware pattern.

We describe explicitly one of the longest combinatorial victim path by giving trigger input

at FF21 and observing its trigger output at FF4. According to the scan based launch-off-

capture scheme, the scan inputs are shifted in. Then, the vector pair (i.e., test patterns)

76

< V 1, V 2 > i.e., < 01011, 10100 > are given as the circuit’s primary input for initiating

a signal propagation in the victim path. In Table 3.9, the patterns generated by Catpg

flow and the patterns identified from the Xtalk-ATPG method are compared. Also, path

delays from both methods are verified. The path delay variation (∆v) obtained from each

method is shown in the last row of this Table. By this, we show that Catpg method is

able to achieve a delay value (-1.73%) closer to the Xtalk-ATPG method (-2.12%) (refer

to equation 3.6), without utilizing SPICE simulations. We, thus show that Catpg method

is an effective pattern generation method to detect crosstalk related delay faults.

Clk

SE

Launch CaptureShift input

SI

Vn3

An6

Vn4

An18

An15

An21

An12

An7

An17

Vn1

An1

An4

An20

An10

An9

An16

(a)

Clk

SE

Launch CaptureShift input

SI

Vn3

An6

Vn4

An18

An15

An21

An12

An7

An17

Vn1

An1

An4

An20

An10

An9

An16

(b)

Figure 3.11: (a) Waveform of Xtalk-ATPG pattern (b) Waveform of constrained ATPG
pattern

In Figure 3.10, the step by step changes to the DFT scan structure consisting of

sequential scan flip-flops from FF1 to FF21 is shown in the form of a state diagram.

Aggressor nets are constrained based on their rank and the patterns are generated. De-

pending on the signal transition in the aggressor net, some of the X-bits are getting filled

(by ’1’ or ’0’) and the already filled X-bits are either getting modified or remain the same.

Compared to the initial pattern, 8 scan flip-flop inputs are modified. SPICE simulation

with this new pattern from Catpg can sometimes provide a better capture of worst-case

delay than the Xtalk-ATPG method. The latter method is based only on the filing of the

X-bits in the test pattern and no changes to the already filled X-bits are made. These

77

changes in the Catpg method help to define a new worst-case path delay.

In Table 3.9, we also show the modified patterns in the aggressor nets after constraining

them. As aggressor nets are either primary input nets, scan input nets or other inter-

connecting nets between the standard cells, a constrained signal transition in them can

force to change the generated pattern. Therefore, constraining these nets with opposite

or stable 0, stable 1 signal transition, modifies the pattern generated by the tool. From

the vector pair colored in Table 3.9, we can see that 13 aggressor nets are undergoing

changes in their signal transition after applying Catpg method. Comparison between the

sketched waveforms is shown in Figure 3.11. After the clock, scan enable (SE), scan in-

put (SI) signal, victim net transition is shown, followed by their respective aggressor net

transitions. These nets are constrained and the pattern generated based on the victim

net transition. Some of the nets that have an X-bit (don’t care bit) input are getting

filled either by ‘1’or ‘0’. The forced filling of these bits aggravates the victim nets to gen-

erate good patterns that can be utilized for testing crosstalk noise. Not only the X-bits

are getting filled, the already filled bits in the input pattern are also undergoing changes

(or getting modified) in order to activate the signal propagation. The newly generated

test pattern shows the effectiveness in capturing the worst-case path delay. Launch and

capture cycles are highlighted in this figure 3.11. X-bits are indicated in red color.

A
n
6
A
n
5

A
n
1
9

A
n
1
8

A
n
1
5
A
n
3

A
n
1
3

A
n
2
1

A
n
1
2
A
n
7

A
n
1
7
A
n
1
A
n
4

A
n
2
0

A
n
1
0
A
n
8

A
n
1
4
A
n
9

A
n
1
6
A
n
2

A
n
1
1

A
n
2
2

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

Opposite transition at An9

D
e
la
y
v
a
ri
a
ti
o
n
(%
)

Aggressor net

Opposite transition at An21

Figure 3.12: Path delay variation plot of a victim path

We show the delay variation in the victim path due to the impact of the aggressor

net in Figure 3.12. Aggressors are constrained one after the other based on their rank, as

78

mentioned in Catpg flow. From the plot, we can see that there are two successful opposite

pattern transitions (first at An21 and then at An9) that are highly maximizing the slow-

down of victim path delay. Path delay variation is comparatively low after constraining

other aggressor nets, as they are stable conditions.

3.6.2 Experimental Results

In this section, we describe the experimental results after applying Catpg flow on 21 full-

scan versions of ITC’99 benchmark circuits [1]. Our aim is to generate a pattern that can

be effective in path delay fault testing. This pattern is capable of capturing worst-case

delay in the victim path in the presence of multiple aggressors with their varying degree

of impact. Our method of pattern generation is fully based on ATPG tool. We could

save a lot of computational time as this method has not used SPICE or selective SPICE

simulations for pattern identification. This flow is scalable and can be applied to any

sized circuits.

Table 3.10: Circuit description and experimental results on ITC’99 Benchmark circuits

Ckt #X #X-bits filled #Anetc
Xtalk-ATPGd Ce

atpg δ
f

d
δ

g
t

bitsa bitsb
∆

h
v ti

r ∆
j
v tk

r

b01 2 1 8 -0.01% 40sl -0.01% 58s 0% 18s(-)

b02 2 1 10 -0.11% 25s -0.24% 46s 0.13%(+) 21s(-)

b03 31 10 11 -2.06% 170342s -2.87% 53s 0.81%(+) 170289s(+)

b04 73 22 21 -28.75% 4218924564s -21.50% 124s 7.25%(-) 4218924440s(+)

b05 29 16 36 -3.34% 9133840s -1.88% 278s 1.46%(-) 9133562s(+)

b06 6 1 6 -0.17% 353s -0.17% 30s 0% 323s(+)

b07 35 20 41 -4.92% 818469s -3.81% 201s 1.11%(-) 818268s(+)

b08 26 14 22 -2.12% 2910945s -1.73% 104s 0.39%(-) 2910841s(+)

b09 10 3 13 -1.63% 1298s -1.86% 68s 0.23%(+) 1230s(+)

b10 22 10 27 -2.59% 185661s -2.23% 188s 0.36%(-) 185473s(+)

b11 21 13 22 -19.68% 5152358s -14.14% 184s 5.54%(-) 5152174s(+)

b12 106 8 16 -22.30% 2353725s -20.07% 102s 2.23%(-) 2353623s(+)

b13 47 7 9 -14.62% 54508s -17.54% 52s 2.92%(+) 54456s(+)

b14 183 71 65 - 1E+26s -27.93% 493s - (+)

b15 443 22 29 - 3E+11s -17.66% 153s - (+)

b17 1334 101 199 - 3E+35s -35.27% 1880s - (+)

b18 2776 133 224 - 4E+45s -37.02% 4328s - (+)

b19 5535 67 72 - 8E+25s -42.15% 1512s - (+)

b20 380 54 108 - 9E+21s -38.32% 1272s - (+)

b21 439 21 42 - 1E+12s -36.97% 494s - (+)

b22 572 126 200 - 4E+43s -34.84% 1834s - (+)

anumber of X-bits, bnumber of X-bits filled by backtrace approach, cnumber of aggressor nets, dby Xtalk-
ATPG method, eby constrained ATPG method, f path delay variation difference between Xtalk-ATPG
and Catpg method, gcomputational time difference between Xtalk-ATPG and Catpg method, hpath delay
variation (crosstalk noise) by Xtalk-ATPG method, icomputational time for Xtalk-ATPG method, jpath
delay variation (crosstalk noise) by Catpg method, kcomputational time for Catpg method, lcomputational
time in seconds.

79

Details of experimental results are summarized in Table 3.10. Number of X-bits in the

scan input and primary input pattern are given in column 2. These inputs are generated

by the ATPG tool by performing path delay fault test on a victim path. In column 3, the

minimum number of relevant X-bits that need to filled in Xtalk-ATPG method is shown.

The number of all possible aggressor nets to the selected victim path are given in column

4. Column 5-6 depict the path delay variation and computational time for producing

the patterns by Xtalk-ATPG method (selective SPICE simulation). We haven’t shown

some results on the Xtalk-ATPG method in column 5, as the simulation of a large sized

circuit takes days to complete. Similarly, in column 7-8, we show the results obtained

after applying Catpg ATPG flow on pattern generation. The path delay difference (δd)

and the computational time difference (δt) obtained after comparing the two methods are

shown in subsequent columns and also represented graphically in Figure 3.13 and Figure

3.14. The positive and negative notations in column 9 and 10, express the benefit and

the relaxation margins, respectively between both methods. The smaller circuit consumes

more time for pattern generation as it is proportional to the total number of aggressors

constrained and patterns generated each time. Catpg method indicates that, with a small

relaxation in the path delay, we gain a very high margin in computational time.

Figure 3.13: Comparison of 2 methods in terms of path delay variation

Our results show that the proposed ATPG flow is able to generate an effective pattern

that can provide a delay value nearest to the expected worst-case delay (achieved by

80

Figure 3.14: Comparison of 2 methods in terms of computational time

using a selective SPICE simulation pattern). Also, we have shown that our flow can be

executed with extremely low computational time. For instance, pattern identification on a

comparatively bigger circuit like b05 circuit requires 9133840 seconds to estimate a single

worst-case delay pattern, whereas this Catpg flow takes only 278 seconds to generate a

pattern that can be path delay fault tested in the presence of multi-aggressor crosstalk

noise. We acknowledge that the proposed flow is simple to implement, and it is better in

terms of computational time and worst-case path delay patterns.

3.7 Summary

In this chapter, we presented a crosstalk-aware pattern generation method for emphasizing

the impact of crosstalk noise on path delay of a circuit. This method focuses on identifying

a test pattern that can capture worst-case path delay on a victim path. Although, we

used a single victim path as our initial path repository, this method can be applied to any

paths for identifying a high quality test pattern. Results from this method suggest the

refinement of the existing ATPG path delay test methods for incorporating the impacts of

crosstalk noise. Further, we proposed a novel flow of constrained ATPG method targeting

path delay fault. This method could eliminate the selective SPICE simulation and it

produces patterns to test the worst-case path delay in lesser computational time. All the

81

step by step procedures related to Catpg method are completely automated. Our flow is

implemented on ITC’99 benchmark circuits and the results were shown by comparison

with SPICE simulation. By this flow, we also show the effectiveness in computational

time and the generation of a high quality pattern. The explanation of this method is

based on a specific ATPG tool, TetraMAX®, but the same can be adopted in any ATPG

tool or method to identify the right set of PDF patterns.

82

Chapter 4

Delay Probability Metric Under the
Impact of Process Variation and
Supply Noise

Contents
4.1 Introduction . 83

4.2 Prior Work . 85

4.3 Contributions and Chapter Organization 86

4.4 Motivational experiment . 87

4.4.1 Path Delay Analysis . 87

4.4.2 Path Delay Fault Testing . 89

4.4.3 Comparison of Vector Pairs . 90

4.5 Problem formulation . 91

4.5.1 Path Delay Estimation . 91

4.5.2 Delay Probability Distribution 94

4.5.3 Probabilistic Pattern Ranking Method 94

4.6 Input Pattern Ranking Method 96

4.6.1 Impact of Process Variations 99

4.6.2 Impact of Supply Noise . 99

4.6.3 Impact of Process Variations and Supply Noise 101

4.7 Experimental Results . 102

4.8 Summary . 105

4.1 Introduction

Ongoing technology scaling significantly increases the delay defects in IC’s. In previous

chapters, we have examined the impacts of crosstalk noise, power supply noise and ground

bounce that causes delay defects. In this chapter, we discuss about the impacts of the

83

manufacturing process variations combinedly with the noise disturbances in the power

supply and ground networks on delay. ATPG tools are commercially utilized to detect

delay-related defects. As these tools ignore the physical design parameters affecting the

gates, interconnects, power supply and ground networks, they are incapable of accurately

generating the right pattern that can capture worst-case path delay in a circuit. Statistical

static timing analysis (SSTA) [117] based techniques models gate or path delays, considers

the variations in all interconnecting nets between the gates in a path. Also, SSTA and

process corner based STA techniques [118] work with delay probability distributions.

However, they are too complex and time consuming to work with realistic path delay

distributions and identify an accurate delay pattern. This has motivated us to propose a

simple and novel delay probability metric to identify a worst-case path delay pattern for

capturing delay defects in the presence of process variations and supply noise.

Unpredictable process parameter fluctuations and changing operating voltage condi-

tions cause random variations in the circuit parameters, thereby affecting the expected

nominal path delay values. Fluctuations in the manufacturing process affect the gate

parameters such as threshold voltage (Vth), oxide thickness (tox), transistor length (Lg)

and width (Wg), as well as the width of interconnects by varying the interconnect resis-

tances (R), inductances (L) and capacitances (C). Operating voltage of a circuit varies

depending on the noise disturbances in their power supply (i.e., power supply noise) or

ground networks (i.e., ground bounce), thereby varying the drive strength of the gates in

a path. Also, path delay of a circuit varies randomly depending on the test vectors (input

patterns) applied at their inputs and their arrival time difference between the applied

vectors. The combined impact of all these effects makes path delay estimation very diffi-

cult. Therefore, a simple yet effective method for identifying the worst-case or the most

effective path delay patterns that can capture a delay defect during testing is essential.

In this work, we propose a delay probability metric to identify a worst-case path delay

pattern in the presence of reliability issues (PV) and power integrity issues (SN). This

metric utilize 90nm Cadence Generic Standard Cell Library to run the process corner

[119] based SPICE simulations to obtain the delay distributions for all the gates and

interconnects in a path. Other approaches such as monte carlo simulations [120] will

be too expensive, because of the increased number of corners and more conditions to

evaluate for identifying a pattern in the presence of different combinations of PV and SN

84

parameters. Also, it will complicate more with bigger circuits.

SF SN SS

NS

FSFNFF

NF
NN

pMOS

nMOS

Notations

N- Nominal

S- Slow

F- Fast

SS

nMOS

pMOS

Figure 4.1: Different corner cases for process variations

Fig. 4.1 shows the different process corners employed in this work for analysing the

variations in the manufacturing process. The process corners describe the behavioral

differences of a chip from its normal conditions. The different corner conditions are SS,

FF, NN, FS, SF, etc., where these abbreviations stand for slow nMOS slow pMOS, fast

nMOS fast pMOS, nominal-nominal nMOS pMOS, fast nMOS slow pMOS, slow nMOS

fast pMOS etc. These corner conditions are checked during SPICE simulation, which

describes the behavior of the gates.

4.2 Prior Work

There are a number of contributions that investigate on the impact of PV’s and SN. Based

on the source of physical defects, they can be classified as delay defect: (1) due to a single

source (i.e., either due to PV, SN or crosstalk noise), (2) from multiple sources, and

(3) irrespective of the source. The first classification focuses only on process variations

[121–124]. Francisco et al. [121] proposed a statistical timing analysis framework based

on delay correlation information between two paths. Critical path delay measurement

using a ring oscillator is presented in [122]. Authors in [123] have proposed an algorithm

to detect a resistive interconnect defect for a path with minimum delay variance. An

85

optimization framework is suggested by Yu [124] based on SSTA for worst-case circuit

analysis. In the second classification, different approaches for pattern generation from

multiple sources were proposed [102, 125, 126]. Todri et al. [102] has analyzed power

supply noise and ground bounce for capturing worst-case path delay patterns based on

simulated annealing. Xu [125] described a statistical model for skitter with PV and power

supply noise effects. Peng [126] explains their work of pattern evaluation and selection

considering crosstalk and PV. In the third classification, worst-case delay of a circuit path

is analyzed, with no detailed reference to the source of defects. A theoretical framework

for statistical timing analysis is proposed by Orshansky and Keutzer [127] for detecting

the worst-case path delay in a circuit.

In contrast to all these works, our goal is to re-examine the problem of path delay

pattern generation by introducing a delay probability metric for ranking patterns under

the impact of PV and SN. Using the probabilistic metrics, we can estimate and identify an

efficient worst-case path delay pattern or set of patterns that can capture the worst path

delay. Our method is practical and easily adaptable to be implemented on any existing

pattern generation flow. Complementary to the previous works, we have additionally

incorporated the impact of ground bounce in supply noise.

4.3 Contributions and Chapter Organization

Our major contributions in this chapter are summarized as follows:

- A probability metric is presented to identify worst-case path delay pattern while

considering the combined impact of PV and SN. This metric aims at detecting the most-

effective pattern for path delay testing from the subset of all input patterns.

- Ranking method is described based on the mean delay difference and the area of the

delay probability distribution of all input patterns.

- Case study and simulation results are shown to validate our method.

The rest of the chapter is organized as follows. Section 4.4 demonstrates the motiva-

tional experiment for showing the difference in pattern generated by an ATPG tool and

the worst-case path delay pattern identified from SPICE simulations. In Section 4.5, we

formulate the problem of path delay distribution for detecting a worst-case pattern in the

presence of PV and SN. An input pattern based ranking method is explained in section

86

4.6 to identify the right pattern in the presence of PV’s and SN. Section 4.7 presents the

simulation results on ITC’99 benchmark circuits. Finally, in Section 4.8, we summarize

the findings in this chapter.

4.4 Motivational experiment

In this section, we show the main motivation behind our work of process variation-aware

pattern generation. Essentially, our goal is to show that a standard ATPG tool may

not be able to generate good patterns that can capture worst-case path delay in the

presence of PV’s. We utilize SPICE simulations to highlight the impact of PV on path

delay of a circuit. The path delays for all the input patterns are measured and a single

pattern is identified among them, which helps us to understand which patterns and under

which conditions would provide the worst-case path delay. Such an input pattern is then

compared with the ATPG tool pattern and their discrepancies are reported, hence showing

that the circuit may escape the test due to the low quality of the applied test set.

4.4.1 Path Delay Analysis

An ISCAS89 benchmark circuit s27, is developed in SPICE to analyse the individual

impact of PV on a circuit path. The schematic is shown in Figure. 4.2(a) with its

magnified view in Figure. 4.2(b) and 4.2(c). This circuit is similar to the one shown in

section 3.4, the only difference is that crosstalk noise is ignored and PV parameters are

only considered. The SPICE level circuit includes the gate variation parameters such as

Vthn (threshold voltage in nMOS), Vthp (threshold voltage in pMOS), oxide thickness

(tox) and variations in the CMOS gate length (Lg) and gate width (Wg), as well as,

interconnect variation parameters such as resistances (R1, R2, R3) and ground coupling

capacitances (Cg1, Cg2, Cg3, Cg4). Victim path we examine is highlighted in Fig.4.2(a).

As there are many variation parameters, along with varying signal transitions and with

difference in signal arrival times, the path delay alters to a greater extend.

The nominal power supply voltage, ground reference voltage and switching frequency

of 1V, 0V and 1GHz, respectively are used in this experiment. Path delay variations are

observed at the target output FF3/D with the trigger input at the start of combinatorial

victim path FF2/Q, refer Fig.4.2(a). All the possible vector pair signal transitions are

87

C

D Q

Clk

D Q

Clk

D Q

Clk

B

A

Clk

D

Z

FF2

FF1

FF3 Victim

path

(a)

Cg3 Cg4Cg2Cg1

R1 R2 R3

(b)

Vthn, tox

Vthp, tox

Lg, Wg

Lg, Wg

(c)

Figure 4.2: (a) s27 benchmark circuit-under-test (b) 3-pi network model for intercon-
nects (c) CMOS model for NOT gate

applied at the circuit’s primary input (A,B,C,D) and scan-input (SI). SI’s can be applied

after implementing the DFT scan chains. Signal transitions such as rising signal (Rise),

falling signal (Fall) and stable 0 (S0) and stable 1 (S1) condition are given at their inputs.

Along with them, different input arrival times of {-200ps 0ps +200ps} based on the setup

and hold timing constraints (10% tolerance with the fixed arrival time) were given. The

+/- indicates the advance and the lag in the arrival time.

The combinations of all possible permutations of process variation parameters, vector

88

Table 4.1: Path delay variation due to the impact of process variations

Inputs Signal transitions Arrival time Delay variation Delay impact

A

B Rise, {-200ps, -12.30% speedup(-ve)

C Fall, 0ps, to /

D S0, S1 200ps} +16.84% slowdown(+ve)

SI

pair signal transitions and different arrival times result in a large data set. Therefore, the

minimum to maximum path delay variations obtained in comparison with nominal delay

(i.e., without process variation) are only shown in column 4 of Table 4.1. For a simple

circuit like s27, the maximum path delay variation of +16.84% is obtained. This indicates

the importance of considering the impact of process variations during the path delay fault

testing. The vector pairs (V1,V2) to the flip-flops (FF1, FF2, FF3) identified after the

SPICE simulations, their worst-case path delay (δ1) are listed in column 2-5 of Table 4.2.

4.4.2 Path Delay Fault Testing

For path delay fault testing, we reconstructed a sequential circuit module similar to the

one in Figure. 3.4. Then, we tested with the existing path delay fault model in the

ATPG tool, TetraMAX® at 1GHz clock frequency. This model is widely used in industry

for avoiding IC’s with delay defects, caused by manufacturing process variations.

The ATPG tool doesn’t allow to include interconnect models and gate models during

pattern generation, so it is not possible to analyze PV-induced delay faults. And our ex-

periments will show that such situation occurs simply because any commercial ATPG tool

does not take into account any physical design properties (such as parameter variations

in the gates and in the interconnecting nets between them), as they work on logical level

description of the circuit (i.e. VHDL or verilog description). Vector pairs were generated

for path delay fault test for the victim path from FF2/Q to FF3/D. Column 6-9 of Table

4.2 lists, the ATPG tool generated vector pairs (V1, V2) for the flip-flop (FF1, FF2, FF3)

inputs and the worst-case path delay (δ2) measured in SPICE by their respective vector

pairs.

89

4.4.3 Comparison of Vector Pairs

In this subsection, we compare the vector pairs identified from SPICE simulation with the

one generated by the ATPG tool and their mismatches are highlighted. This comparison

is to show that input patterns generated by the testing tools have to be effective enough

to accommodate the path delay variations due to PV’s.

Table 4.2: Pattern comparison and delay variation

SPICE ATPG

∆vFF FF FF δ1 FF FF FF δ2

1 2 3 (ns) 1 2 3 (ns) (%)

V1 0 0 0
0.267

1 0 1
0.286 6.64

V2 1 1 0 0 1 0

∆v =
(δ1 − δ2)

δ1

× 100 (4.1)

In Table 4.2, we can see a mismatch in the vector pairs at FF1 and FF2 between the

SPICE and ATPG patterns. The path delay variation (∆v) in equation 4.1, is the mean

delay difference between the worst-case delays obtained from SPICE (δ1) and ATPG (δ2)

patterns. The ∆v of 6.64% (slowdown impact on the victim path) listed in column 10,

implies that a path delay fault test is not performed with a good pattern. This path delay

is quite high for a small circuit like s27 and it may be even higher and at an unacceptable

percentage in bigger circuits. Thus, we provide an evidence that a circuit may escape the

test to detect PV-induced delay defect due to lower quality in the applied vector pair.

This indicates a serious notice in customizing the existing path delay fault testing method

in ATPG. Therefore, our work emphasizes the need for refining ATPG tools and proposing

novel methods to include good patterns that can be utilized for capturing PV-induced

delay defects. For bigger circuits, there may exist many large set of test patterns. So, it

is desirable to implement a method to include PV effects during pattern generation.

In the next section we formulate the problem of path delay estimation in the presence

of PV’s.

90

4.5 Problem formulation

In this section, we describe the problem that we address and propose our mathematical

approach in identifying an input pattern that can capture the worst-case path delay under

the impact of PV and SN. Initially, we estimate the dependent circuit parameters that

affect the delay of a circuit path. Then, describe the proposed probabilistic metrics for

ranking patterns based on their effectiveness. Finally, we describe our method of ranking

patterns based on a delay probability metric.

4.5.1 Path Delay Estimation

In this subsection, we elaborate the proposed analytical method for computing the rank-

ing order of input patterns. The problem of path delay test is a well-understood and

widely investigated problem by the scientific community, in effectively identifying the test

patterns for performance evaluation that would eventually lead to high-quality test pat-

terns and that can lower delay defect escape rate. With technology scaling, increased

circuit densities and faster switching circuits, identifying the highest quality patterns are

getting even more challenging. Even more so when the impact of physical design issues

and PV are taken into account. Due to the nature of the problem with many parameters

that can cause a wide delay distribution, we exploit a probability based-approach to rank

patterns based on their effectiveness in capturing the worst case delay under the impact

of PV and SN.

Each input pattern triggers a given switching activity on the circuit and the victim (or

paths that are critical) path under observation. As already shown in [102], critical paths

can undergo drastic delay variation that can lead to slowdown and/or speedup impacts

in a path. We expect that such delay variations will be even more pronounced when PV

of transistors and interconnects are also included with SN.

Problem definition: We aim to identify the set of patterns that are the most effective

in capturing the worst case path delay under the impact of PV and SN; based on the

delay probability density function of each pattern.

Path delay on a circuit is computed by considering the delays of both interconnects

and gates. Supply noise which exhibits itself as power (PSN) and ground (GB) voltage

fluctuations can impact the operating regions of transistors, hence the delay behavior

91

of the gates. Additionally, different gates on a path can suffer from different amounts

of supply noise. Random process variations induce deviation on the transistor’s and

interconnect’s dimensions and carrier mobility. In this work, we consider process variation

on threshold voltage, Vth, oxide thickness, tox, transistor gate length, Lg and width, Wg

and interconnect length and width that impact interconnect parasitics, R, L, C. From

supply noise perspective, we consider noise on power, Vdd and ground, Gnd.

The entire process flow of path delay estimation is shown in Fig.4.3. For an input

pattern, the process variation and supply noise variation parameters are varied based on

their tolerance shown in flow. From here, we obtain different path delays of the input

patterns based on their varied parameters. These are further elaborated in the form of

equations following.

Vdd = ±10% (3)

Gnd = ±10% (3)

C = ±10% (3)

R = ±10% (3)

Process
variations

(PV)

Supply
noise

(SN=PSN+
GB)

C

R

Interconnect

Gnd

Vdd

Gate

Wg

tox

Lg

Vthn, Vthp

Gate

FF1 FF2

Combinational

logic

Vthn,thp = ±20% (32)

tox = ±3% (3)

Wg = ±10% (3)

Lg = ±10% (3)

Input
pattern

No. of path delay variations = 39

pMOS

nMOS

Figure 4.3: Path delay estimation

The delay of a pMOS transistor due to a rising input can be expressed as [128]:

δr =
2CL

βp[(Vdd − Gnd) − |Vthp|] [
|Vthp| − 0.1(Vdd − Gnd)

[(Vdd − Gnd) − |Vthp|]

+
1

2
log |19(Vdd − Gnd) − 20|Vthp|

(Vdd − Gnd)
|]

(4.2)

92

where CL is the load capacitance including the next stage load and interconnect ca-

pacitance and Vthp is the threshold voltage of pMOS transistor. Similarly, the transistor

delay for a falling input can be expressed as [128]:

δf =
2CL

βn[(Vdd − Gnd) − Vthn]
[
Vthn − 0.1(Vdd − Gnd)

[(Vdd − Gnd) − Vthn]

+
1

2
log |19(Vdd − Gnd) − 20Vthn

(Vdd − Gnd)
|]

(4.3)

where Vthn is the threshold voltage of nMOS transistor and β is the transistor gain

factor (in pMOS and nMOS), can be expressed as:

β =
µǫ

tox

(

Wg

Lg

)

(4.4)

where µ is the effective surface mobility of the carriers in the channel, and ǫ is the

permittivity of the gate insulator. Based on the transistor delay, the gate delay can be

computed, such as for an inverter the average gate delay can be computed as:

δg = (δf + δr)/2 (4.5)

Interconnects are usually modeled as π-networks with RLC parasitics, their delay, δint

can be computed by applying Elmore delay formulation as a function of ζi at node i, as

in [129]:

δint = 1.047e
−ζi
0.85 + 1.39ζi (4.6)

where ζi is expressed as:

ζi =
1

2

(

∑

k CkRik√
∑

k CkLik

)

(4.7)

where Rk is the interconnect resistance, Ck is the interconnect capacitance, Lk is

the interconnect inductance and k represents the number of elements on the π-network

interconnect model. Hence, the delay on a path can be computed as the sum of gate

delays and interconnects delays (i.e. for n gates and n − 1 interconnects on a given path)

that are triggered by a given input pattern as:

93

δpath =
n

∑

i=1

δgi
+

n−1
∑

i=1

δinti
(4.8)

4.5.2 Delay Probability Distribution

For a given path, the delay would be a function of many variables due to PV and SN.

Path delay variations due to these variables can be expressed as a function of parameters

as:

δpath = f(Vdd, Gnd, Vth, tox, Lg, Wg, R, L, C, CL)

= f(SN, PV)
(4.9)

Definition: In general terms, the path delay variation, δpath for a given input pattern,

PI can be represented as a normal distribution function. As path delay (due to δgi
or δinti

)

can be real-valued random values whose distribution are unknown, the highest probability

of worst-case path delay can be observed better using a normal delay distribution function.

The path delay due to the input patterns for all parameters (PV and SN) can be expressed

as normal distribution N(µP I , σP I).

The mean and standard deviation of a path delay for a given input pattern, PI and

all parameters can be expressed as:

µP I =
1

N

N
∑

i=1

δpathi
(4.10)

σP I =

√

√

√

√

1

N

N
∑

i=1

(δpathi
− µP I)2 (4.11)

where N represents the total number of path delay measurements for a given path under

PV and SN parameters.

4.5.3 Probabilistic Pattern Ranking Method

Here, we describe the concept of deriving pattern ranking method utilizing the path delay

distribution function. Fig. 4.4 illustrates the probability density distribution of an input

pattern under process variation and supply noise. Assuming that for a known design,

94

there is a predefined delay threshold with µnom that represents the tolerable delay of the

circuit.

Definition: We define the probability of identification, Pidentification that can analyti-

cally estimate the likeliness of a pattern j under PV and SN conditions to cause a path

delay at each node i, δpathi
larger than the allowed delay threshold, µnom, and can be

expressed as:

Pidentificationj
[µP Ij

≥ µnom] =

µmaxj
∫

µnom

δpathi
(t)∂t (4.12)

where µmaxj
of a pattern j is defined as:

µmaxj
= µP Ij

+
3σP Ij

2
(4.13)

Hence, for each pattern, the Pidentificationj
allows us to compute the exposed area of

the probability density function beyond a delay threshold also as shown in Fig.4.4.

Delay

P
D

F

Input patternNominal delay

µ µ
maxPI

dPI
µ

nom
µ

j j

Figure 4.4: Delay Probability distribution of an input pattern

Utilizing this metric, we further define the pattern ranking method that considers

both the mean, µP Ij
and probability of identification, Pidentificationj

of each pattern for

classifying the patterns for inducing the worst path delay under PV and SN conditions.

The ranking metric, RankP Ij
is defined as:

RankP Ij
= α1µP Id

+ α2Pidentificationj
(4.14)

95

where α1 and α2 are weight coefficients between 0 to 1 that can be given for taking

into account both the changes in mean, µP Id
and the identification metric Pidentificationj

,

where µP Id
is expressed as:

µP Id
= µnom − µP Ij

(4.15)

The values for α1 and α2 can be chosen based on their priority during path delay

testing i.e., either µP Id
or Pidentificationj

. We further utilize these probability metrics for

ranking the patterns on a sample circuit to illustrate the effectiveness of the proposed

ranking method.

4.6 Input Pattern Ranking Method

Vdd2

Gnd2

Gnd1

Ip3

Vdd3

Gnd3

Vdd1

Ip1

Ip2

Op1

CL

Rw

Cw/2

Cw/2Cw/2

Cw/2

RwLw

Lw

Rw

Rw

Rw
Cw/2 Cw/2

Cw/2 Cw/2

Cw/2 Cw/2

Lw

Lw

Lw

Figure 4.5: SPICE circuit under the impact of process variations and supply noise

In this section, we illustrate our proposed delay probability metric by applying it on

a sample circuit as shown in Fig. 4.5. For simplicity, we have considered a small circuit

as a case study, but our metric can be applied to any large circuit. The sample circuit

comprises interconnect models and gates connected to a global power supply voltage and

ground networks. To study the impacts of PV and SN on path delay, we incorporate

parameter variations in gates (at transistor level) and interconnects (on their widths)

and then control the power supply and ground voltage locally (at the gate level). The

transistor and interconnect models are derived from the 90nm Predictive Technology

Model (PTM) [105]. SPICE simulations are performed on the circuit for three different

cases to analyze: (1) the impact of PV only, (2) the impact of SN only, and (3) the

combined impact of PV and SN. For each case the following three steps are performed:

96

(i) estimate path delay (δpathi
), (ii) compute mean (µP Ij

) and standard deviation (σP Ij
)

from the delay probability distribution of each input pattern (PIj), and (iii) identify the

worst-case path delay pattern (Pidentificationj
) based on the ranking method. We utilize

MATLAB to execute the mathematical computations of equations described in Section

II.

−30

−20

−10

0

10

20

30

Circuit parameters (SN and PV)

P
a

ra
m

et
er

 t
o

le
ra

n
ce

(%
)

LVdd Gnd

Vth

tox

Lg Wg R L C C

Supply

noise
Transistor’s Interconnect’s

Figure 4.6: Tolerance range of circuit parameters

Input vectors (V1V2) are applied at each of the inputs {Ip1 Ip2 Ip3} and their respective

path delays are measured at {Op1}. Local supply voltage and input operating frequency

utilized in this experiment are 1V and 1GHz, respectively. We vary all the local supply

voltages and the circuit parameters with their tolerance as shown in Fig. 4.6 [106].

Interconnects are modeled using RLC π-networks. Interconnect parameters (R, L, C),

transistor parameters (Vth, tox, Lg, Wg) and load capacitance (CL) are varied to model

process variations. Local power supply voltages {Vdd1 Vdd2 Vdd3} and ground voltages

{Gnd1 Gnd2 Gnd3} are adapted to model supply noise at their gate level. Path delay

of the circuit can be measured between any two points; for our case study we observe

between {Op1} and {Ip1}.

We perform SPICE (or HSPICE) simulations and measure the path delay for all

the process corners in the circuit. Input pattern numbers, corresponding input vectors

and their input transitions (i.e., rising and falling input signals) are shown in column I,

column II and column III respectively of Table. 4.3, Table. 4.4 and Table. 4.5. Our delay

probability metric can give all the possible path delays, but we are focused only on finding

97

a worst-case path delay. Their corresponding metrics will indicate the input pattern to be

the most effective for capturing path delay defects under PV and SN conditions. Three

different cases are explained below to show the individual and combined impact of PV

and SN.

Figure 4.7: Flow of input pattern ranking method

The standard flow of input pattern ranking method explained in this section is shown in

Figure 4.7. The entire flow are described in four different steps: (1) Pattern generation, (2)

Path delay estimation, (3) Delay probability distribution, and (4) Input pattern ranking.

Steps 2-4 are our major contributions. Step 1 is similar to the ones shown in Chapters

2 and 3. In step 2, we add process variation and supply noise variation parameters to

estimate the path delay of a selected path. Then, we distribute all the delay values for

obtaining a normalized curve. Finally, we apply our input pattern ranking method based

on their maximum mean delay difference and the probability of likeness of pattern that

causes worst-case path delay on a circuit path.

98

4.6.1 Impact of Process Variations

Case I: In the first case, we study only the impact of PV, by varying the interconnect and

transistor parameters while applying a nominal global supply voltage at their gates. Fig.

4.8 depicts the probability density distribution function of all the input patterns under

PV.

Figure 4.8: Identification of worst-case path delay pattern under PV

For each input pattern, their respective µP Id, Pidentification and rank are listed in column

IV, V and VI of Table. 4.3. Using our probabilistic pattern ranking method, we obtain

PI8 as the worst-case path delay pattern under the impact of PV. This is also shown in

Fig. 4.8 as the pattern with the largest area exposed beyond the nominal delay threshold

line.

4.6.2 Impact of Supply Noise

Case II: In this case, we study only the impact of SN, by locally varying power supply and

ground voltage, while considering no process variation on transistors and interconnects.

Fig. 4.9 depicts the probability density distribution function of all the input patterns

under SN.

For each input pattern, their respective µP Id, Pidentification and rank are listed in column

IV, V and VI of Table. 4.4. Using our probabilistic pattern ranking method, we obtain

PI8 as the worst-case path delay pattern under the impact of SN. After comparing Fig.

99

Table 4.3: Ranking method patterns under the impact of PV

Pattern Input vectors (V1V2) Input Under PV

(PIj) at {Ip1 Ip2 Ip3} transition µa
P Id P b

idn Rank

PI1 {10 10 10} {Fall Fall Fall} 0.27ps 0.51 5

PI2 {10 10 01} {Fall Fall Rise} 4.67ps 0.60 4

PI3 {10 01 10} {Fall Rise Fall} 0.07ps 0.50 6

PI4 {10 01 01} {Fall Rise Rise} 9.47ps 0.70 3

PI5 {01 10 10} {Rise Fall Fall} 0.13ps 0.49 7

PI6 {01 10 01} {Rise Fall Rise} 9.47ps 0.70 2

PI7 {01 01 10} {Rise Rise Fall} NAc NA NA

PI8 {01 01 01} {Rise Rise Rise} 35.9ps 0.94 1

aDifference between nominal delay (µnom) and delay mean of an input
pattern µ(Pi), bPidentification i.e., exposed area of the probability density
function, cNo output transition at launch cycle, no no delay measured.

Figure 4.9: Identification of worst-case path delay pattern under SN

4.8 and Fig. 4.9, the changes in the delay distribution for the same input pattern can be

noticed; indicating the higher impact of SN than PV.

100

Table 4.4: Ranking method patterns under the impact of SN

Pattern Input vectors (V1V2) Input Under SN

(PIj) at {Ip1 Ip2 Ip3} transition µa
P Id P b

idn Rank

PI1 {10 10 10} {Fall Fall Fall} 7.73ps 0.67 5

PI2 {10 10 01} {Fall Fall Rise} 7.97ps 0.58 7

PI3 {10 01 10} {Fall Rise Fall} 7.33ps 0.66 4

PI4 {10 01 01} {Fall Rise Rise} 17.6ps 0.81 2

PI5 {01 10 10} {Rise Fall Fall} 7.36ps 0.67 6

PI6 {01 10 01} {Rise Fall Rise} 17.3ps 0.80 3

PI7 {01 01 10} {Rise Rise Fall} NAc NA NA

PI8 {01 01 01} {Rise Rise Rise} 48.2ps 0.98 1

aDifference between nominal delay (µnom) and delay mean of an input
pattern µ(Pi), bPidentification i.e., exposed area of the probability density
function, cNo output transition at launch cycle, no no delay measured.

4.6.3 Impact of Process Variations and Supply Noise

Case III: In the third case, we investigate the combined impact of PV and SN. Fig. 4.10

depicts the probability density distribution function of all the input patterns under PV

and SN.

Figure 4.10: Identification of worst-case delay pattern under PV and SN

101

For each input pattern, their respective µP Id, Pidentification and rank are listed in column

IV, V and VI of Table. 4.5. Based on our probabilistic pattern ranking method, we obtain

PI8 as the worst-case path delay pattern under the combined impact of PV and SN. Please

note that, while PI8 pattern was also identified in case I and II, the value of the probability

density function for path delay varies.

Table 4.5: Ranking method patterns under the impact of PV and SN

Pattern Input vectors (V1V2) Input Under PV and SN

(PIj) at {Ip1 Ip2 Ip3} transition µa
P Id P b

idn Rank

PI1 {10 10 10} {Fall Fall Fall} 1.12ps 0.68 4

PI2 {10 10 01} {Fall Fall Rise} 1.56ps 0.63 7

PI3 {10 01 10} {Fall Rise Fall} 1.22ps 0.67 5

PI4 {10 01 01} {Fall Rise Rise} 11.8ps 0.89 2

PI5 {01 10 10} {Rise Fall Fall} 1.5ps 0.69 6

PI6 {01 10 01} {Rise Fall Rise} 11.7ps 0.89 3

PI7 {01 01 10} {Rise Rise Fall} NAc NA NA

PI8 {01 01 01} {Rise Rise Rise} 25.9ps 0.99 1

aDifference between nominal delay (µnom) and delay mean of an input
pattern µ(Pi), bPidentification i.e., exposed area of the probability density
function, cNo output transition at launch cycle, no no delay measured.

The results of three different case studies indicate that by applying the proposed

ranking method, we can identify the pattern(s) that lead to the worst-case path delay

when PV and SN conditions are present.

4.7 Experimental Results

In this section, we present the results based on eight full-scanned versions of ITC’99

benchmark circuits [1], their functionalities are briefly described in Table 3.3. We apply

our probabilistic based ranking method on a single victim path to identify the pattern

that cause worst-case path delay, even though this method can be applied to any path.

Table. 4.6 and Table. 4.7 shows the summary of our experimental results. We utilized

an ATPG tool for generating X-bit input patterns, as mentioned in the 1st row of each

102

benchmark circuit of Table 4.6. Then, we filled only the relevant X-bits (indicated by

small letter ‘x’) based on X-filling method [115].

Table 4.6: Input pattern comparison results of ITC’99 Benchmark circuits

Ckt Input SI PI

b01

X-bit pattern 001x0 11000X

Random pattern 01110 110001

PV pattern 00110 11000X

b02

X-bit pattern x000 0000X

Random pattern 1000 00001

PV pattern 0000 0000X

b03

X-bit pattern X0XX X1XX XXXx XxXx x0XX xXXX xxxx XX 001X XxX0

Random pattern 0010 1110 0010 0101 1001 0100 0111 10 0011 1100

PV pattern X0XX X1XX XXX0 X0X1 00XX 1XXX 1101 XX 001X X0X0

b06

X-bit pattern xx01 10XX 100x 1x

Random pattern 1001 1000 1001 10

PV pattern 0101 10XX 1000 10

b08

X-bit pattern xXx1 XxxX xxxx XxxX XxX1 1 001X xxX0 XXx0 X

Random pattern 0010 0010 0101 1010 1100 0 0011 1100 0100 1

PV pattern 0X11 X10X 1000 X11X X0X1 1 001X 01X0 XX10 X

b09

X-bit pattern 1X00 110X 111X XxxX X101 1001 1111 0X0x X

Random pattern 1100 1100 1111 0010 1101 1001 1111 0000 1

PV pattern 1X00 110X 111X X10X X101 1001 1111 0X01 X

b10

X-bit pattern XXX0 xxx1 0011 Xxxx x XXXx 0XX1 0xxX X0X

Random pattern 0100 0101 0011 1101 0 1110 0011 0011 000

PV pattern XXX0 0011 0011 X101 1 XXX1 0XX1 010X X0X

b13

X-bit pattern 0110 0111 xXXX 1XXX XX1X X01X X0XX 0X0X xXXx XXxX 0X

XXXX XxXX XxxX XXXX XXXX X

Random pattern 0110 0111 0100 1101 1010 1000 1111 0101 1001 0110 00

0101 0110 0100 1011 1100 1

PV pattern 0110 0111 1XXX 1XXX XX1X X01X X0XX 0X0X 0XX1 XX0X 0X

XXXX X1XX X00X XXXX XXXX X

We explain in detail the results of our delay probability metric for b06 benchmark

circuit. For all the 16 set of X-filled input patterns (SI, PI) such as (000110XX, 100010),

(000110XX, 100011), (000110XX, 100110), (000110XX, 100111), (010110XX, 100010),

(010110XX, 100011), (010110XX, 100110), (010110XX, 100111), (100110XX, 100010),

(100110XX, 100011), (100110XX, 100110), (100110XX, 100111), (110110XX, 100010),

(110110XX, 100011), (110110XX, 100110), (110110XX, 100111) we computed the mean

103

delay difference µP Id (i.e., 121.4ps, 123ps, 136.2ps, 188.2ps, 147.5ps, 171.9ps, 182.67ps,

127.4ps, 152.3ps, 139.2ps, 166.2ps, 122.5ps, 111.4ps, 157.8ps, 143.6ps, 132.5ps) and also

the Pidentification (i.e., 0.82, 0.94, 0.81, 0.90, 0.88, 0.85, 0.80, 0.89, 0.88, 0.91, 0.84, 0.96,

0.84, 0.81, 0.94, 0.93), and then ranked (i.e., 15, 13, 10, 1, 7, 3, 2, 12, 6, 9, 4, 14, 16, 5,

8 and 11) for each input pattern, respectively. Then, we selected the input pattern with

rank 1 i.e.,(000110XX, 100111), as by our method this pattern has the highest probability

to give the worst-case path delay under the impact of PV and SN. Also, we selected the

input pattern generated by the ATPG tool i.e., (10011000, 100110), whose rank is 13

as per our method. In column 8, the mean delay difference (i.e., 34.6%) between the

two patterns (our method pattern and ATPG pattern) is mentioned. Such discrepancies

further indicate the need to investigate the worst-case path delay problem and reveal the

effectiveness of our method in ranking and selecting input patterns that take into account

process variation and supply noise issues.

Table 4.7: Results of ITC’99 Benchmark circuits

Ckt
ATPG Our method

µa
P Id P b

idn Rank µa
P Id P b

idn Rank % µc
P Id tr(s)d

b01 136.00ps 0.91 2 140.77ps 0.95 1 3.3% 2K

b02 159.34ps 0.96 2 167.00ps 0.93 1 4.5% 3K

b03 148.60ps 0.83 187 179.34ps 0.86 1 17.1% 31K

b06 123.00ps 0.94 13 188.20ps 0.90 1 34.6% 7K

b08 310.90ps 0.86 289 342.60ps 0.94 1 9.2% 41K

b09 269.55ps 0.92 5 285.51ps 0.90 1 5.5% 33K

b10 373.21ps 0.94 462 499.86ps 0.98 1 25.3% 19K

b13 398.74ps 0.85 39 487.33ps 0.93 1 18.1% 72K

aMean delay difference (between nominal delay and identified input pat-
tern delay), bExposed area under the curve, cDelay difference between two
methods, dRuntime for testing all the patterns and finding a worst-case path
delay pattern (PV + SN).

The pattern generated by random X-filling using the ATPG tool differs from the

pattern generated by our probabilistic method. This indicates that, while a test pattern

104

sensitizes a path for path delay testing, it doesn’t necessarily capture its worst-case path

delay. Whereas, proposed method, investigates a set of patterns and aims to rank them

based on the likeliness to obtain the worst path delay when process variation and supply

noise variations are taken into account. The proposed method is practical to be embedded

on the standard ATPG generation flow i.e., post-ATPG X-filling, which is also the focus

of our future work.

4.8 Summary

In this chapter, we proposed a delay probability metric for identifying a worst-case path

delay pattern under the impact of process variation and supply noise. The presented

probabilistic pattern ranking method aims at capturing delay defects during path delay

test. Our experimental results on ITC’99 benchmark circuits suggests to improve the

existing pattern generation methods by incorporating the impacts of PV and SN. As future

research, we aim to implement the probabilistic method in X-filling pattern generation

flow.

105

Chapter 5

Thesis Summary and Future Works

Contents
5.1 Thesis Summary . 106

5.2 Future works . 108

5.1 Thesis Summary

With semiconductor technology scaling, the defect spectrum now includes more problems

such as crosstalk noise, resistive shorts, resistive opens in interconnects, power supply

noise and ground bounce in the supply networks, as well as, process variations in inter-

connects or at gate level. These are not always detected by the traditional fault models.

Delay-related parametric failures in semiconductor devices increase the defect escape rate,

yield loss and diminish the reliability rate. Therefore, different test techniques have been

widely adopted in the industry to detect defects using patterns generated by ATPG tools

(Automatic Test Pattern Generation). For instance, at-speed delay test uses the path de-

lay fault model that targets delay defects during IC testing phase. They are commercially

employed due to their minimal implementation cost and higher test coverage.

Signal and power integrity issues are mostly impacted by crosstalk noise, power supply

noise and ground bounce, respectively. Also, due to the variations in the manufacturing

process may cause reliability issues. All these issues negatively impact the timing char-

acteristics in a circuit as they give rise to delay defects. In addition, the impact of these

issues depends on the input test vectors provided during the scan-based test. In this thesis

work, we propose methods to deal with the delay-related failures using at-speed scan test

techniques for path delay test.

106

In Chapter 2, we present a novel physical design aware pattern generation (PDAPG)

method for path delay fault testing. PDAPG method focuses on identifying the input pat-

terns that can capture worst-case path delay on critical paths. The path delay is measured

in the combined presence of physical design issues such as multi-aggressor crosstalk, power

supply noise and ground bounce. As technology shrinks, the spacing between adjacent

interconnect keeps decreasing, which increases the overall contribution of the coupling

capacitances to the total interconnect capacitance. Also, gate noise sensitivity increases

due to supply voltage scaling and limited scaling of the voltage threshold. As a result,

crosstalk noise and supply noise play a greater role in sub-100nm technologies and cre-

ates signal integrity issues. Therefore, it is vital to consider both effects during design

validation and the path delay test to ensure the performance and reliability of the chip.

PDAPG method is implemented on ITC’99 benchmark circuits and the results were

shown by pattern comparison and path delay measurement. The basic principle behind

this method is: all the aggressor nets closer to the critical path are backtraced till the

relevant control input bits are found and then they are filled accordingly with different

transition (rise, fall, stable 0, stable 1) signals. Experimental results demonstrate that

our method is better in choosing the effective patterns, that can increase the impact

of crosstalk noise, from the subset of all possible patterns to identify a worst-case path

delay pattern. Although, we used a single robust critical path as our initial critical path

repository, our method can be applied to any number of critical paths for efficiently

identifying the high-quality input test patterns. The results suggest that the existing

ATPG test methods have to be refined to incorporate the impact of physical design

issues.

In Chapter 3, we propose an ATPG method that targets path delay fault by consid-

ering the impact of crosstalk noise. This work is the continuation of chapter 2, which is

limited due to higher computational time, as the pattern identification method is based

on SPICE simulations. Sometimes, SPICE-based simulation can be exhaustive for bigger

circuits. Hence, the new method eliminates the exhaustive SPICE simulation and it is

equally good for any sized circuits. The basic principle behind this method is: all the

aggressor nets closer to the critical path are constrained depending on the victim net sig-

nal transition. Our method is implemented on ITC’99 benchmark circuits and the results

were compared with SPICE simulation. With this method, we also show the effectiveness

107

in computational time and pattern quality.

Experimental results demonstrate that the proposed method is fast even after con-

sidering all the aggressor nets neighboring the functionally testable critical paths. This

method reduces the very time-consuming validation phase. The generated patterns can

potentially be used for speed binning to replace the functional patterns if applied to a

proper set of critical paths. As future work, we plan to extend this flow to add the impacts

of other signal integrity issues such as supply noise during pattern generation.

In Chapter 4, we propose a delay probability metric for identifying a worst-case path

delay pattern in the combined presence of process variation and supply noise. This metric

can detect the most effective pattern from the set of all input patterns and can be employed

with the existing ATPG path delay fault test.

The basic principle behind this method is: All the input patterns are ranked based

on their mean delay difference and the area of the delay probability distribution. Among

them, the pattern giving worst-case path delay is identified. This pattern can be utilized

to capture the delay defects during IC test phase. Our experimental results on ITC’99

benchmark circuits suggests that the existing pattern generation methods need to be

improved by incorporating the impacts of process variations and supply noise.

5.2 Future works

This thesis work gives a number of exciting research directions. The application of our

work can bring tremendous improvements to the IC test quality by ensuring better defect

coverage and for an increased manufacturing yield during speed binning of IC chips. Here,

we summarize some extensions to this work that are relevant for DFT and defect diagnosis.

Our work has covered the analysis of path delay variations induced by crosstalk noise,

power supply noise, ground bounce and process variations, which are the major indus-

trial concerns. We have developed constrained ATPG method by improving the existing

classical ATPG method. Crosstalk noise issues are only considered in this method, due

to the complexity in developing and modeling power supply noise, ground bounce and

process variations effects to ATPG tool. Our method can be further developed to add the

impacts of power supply noise, ground bounce and process variations.

108

Experimental results on the benchmark circuits have demonstrated the efficiency of the

proposed techniques. Furthermore, after integrating to the ATPG tool, our constrained

ATPG method could save significant CPU runtime. It is capable of identifying worst-

case path delay pattern for the biggest ITC’99 benchmark circuit, b22 with 21772 gates.

Anyways, we think this method should be further improved to be able to deal with

circuits composed of billions of gates. This method still needs to be refined in terms of

computational time (for generating patterns) and efficiency to deal with the real industrial

circuits. In other words, the methods in this thesis still opens up a door to new and refined

ATPG techniques.

Our procedures are still open to add more effects if necessary such as on-chip temper-

ature variations, substrate coupling, etc. It is easy to add more effects to our proposed

flow of ATPG:

(1) Model the new effect and map it to the parameter variant (i.e., gate or intercon-

nect), where it impacts. For example, for crosstalk noise, we have mapped their variation

to the interconnects.

(2) Combine all the new effects and sensitize the critical path for generating a worst-

case path delay pattern.

109

Appendix A

Circuit netlist creation using Cadence Encounter RC compiler

This RTL code converts a circuit behaviour description (in vhdl) to a circuit design

implementation (to verilog). The code mentioned is for b01 circuit of ITC’99 benchmark

circuit.

set_attribute library {CORE90GPSVT_nom_1.00V_25C.lib}

read_hdl -vhdl b01.vhd

elaborate b01

synthesize -to_mapped

write -mapped > b01_scan.v

ungroup -flatten -all

write -mapped > b01_scan.v

define_dft shift_enable -active high -create_port TEST_SE

define_dft test_clock clock

check_dft_rules

define_dft scan_chain -sdi TEST_SI -sdo TEST_SO -create_ports

synthesize -to_mapped

connect_scan_chains -preview

connect_scan_chains

write_atpg -stil > b01_90nm.spf

write -mapped > b01flatscan.v

write_sdc > b01.sdc

report_timing >timing_report.txt

write_sdf -version 2.1 -setuphold split > b01.sdf

exit

Generation of victim paths using Synopsys Primetime STA

All the possible set of victim paths (critical paths) are generated using Synopsys

Primetime STA tool. The code mentioned is for b01 circuit of ITC’99 benchmark circuit.

set link_path .CORE90GPSVT_nom_1.00V_25C.db

110

read_verilog b01flatscan.v

current_design b01

link_design

create_clock clock -period 1 -waveform {0.0 0.5}

set_case_analysis 0 [get_port TEST_SE]

source ./pt2tmax.tcl

set_input_delay -clock clock 0.5 [remove_from_collection [all_inputs] {clock}]

set_output_delay -clock clock 0.5 [all_outputs]

set_false_path -from [all_inputs] -to [all_outputs]

write_sdc b01.sdc

write_delay_paths -max_paths 1000 -slack 20 -clock clock b01_delaypaths.txt

exit

Placement and Routing using Cadence Encounter P&R tool

win

getenv ENCOUNTER_CONFIG_RELATIVE_CWD

setDoAssign

getIoFlowFlag

setUIVar rda_Input ui_gndnet gnd

setUIVar rda_Input ui_leffile cmos090gp_soc.lef mod_CORE90GPSVT.lef

setUIVar rda_Input ui_settop 0

setUIVar rda_Input ui_netlist mod_b01flatscan.v

setUIVar rda_Input ui_pwrnet vdd

commitConfig

fit

setDrawView fplan

getIoFlowFlag

setIoFlowFlag 0

floorPlan -site CORE -r 0.719266055046 0.7 6 6 6 6

uiSetTool select

getIoFlowFlag

fit

111

addRing -spacing_bottom 0.9 -width_left 1.8 -width_bottom 1.8 -width_top 1.8 -

spacing_top 0.9 -layer_bottom M1 -stacked_via_top_layer M7 -width_right 1.8 -around

core -jog_distance 0.42 -offset_bottom 0.6 -layer_top M1 -threshold 0.42 -offset_left 0.6

-spacing_right 0.9 -spacing_left 0.9 -offset_right 0.6 -offset_top 0.6 -layer_right M2 -nets

gnd vdd -stacked_via_bottom_layer M1 -layer_left M2

addStripe -block_ring_top_layer_limit M3 -max_same_layer_jog_length 0.84 -padcore

_ring_bottom_layer_limit M1 -set_to_set_distance 100 -stacked_via_top_layer M7

-padcore_ring_top_layer_limit M3 -spacing 0.42 -merge_stripes_value 0.42 -layer M2 -

block_ring_bottom_layer_limit M1 -width 0.42 -nets gnd vdd -stacked_via_bottom_layer

M1

setPlaceMode -fp false

placeDesign -prePlaceOpt

setDrawView place

setDrawView fplan

getNanoRouteMode -quiet

getNanoRouteMode -user -drouteEndIteration

getNanoRouteMode -user -drouteStartIteration

getNanoRouteMode -user -routeBottomRoutingLayer

getNanoRouteMode -user -routeTopRoutingLayer

getNanoRouteMode -quiet -envSuperthreading

getNanoRouteMode -quiet -drouteFixAntenna

getNanoRouteMode -quiet -routeInsertAntennaDiode

getNanoRouteMode -quiet -routeAntennaCellName

getNanoRouteMode -quiet -timingEngine

getNanoRouteMode -quiet -routeWithTimingDriven

getNanoRouteMode -quiet -routeWithEco

getNanoRouteMode -quiet -routeWithLithoDriven

getNanoRouteMode -quiet -droutePostRouteLithoRepair

getNanoRouteMode -quiet -routeWithSiDriven

getNanoRouteMode -quiet -routeTdrEffort

getNanoRouteMode -quiet -routeWithSiPostRouteFix

getNanoRouteMode -quiet -drouteAutoStop

112

getNanoRouteMode -quiet -routeSelectedNetOnly

getNanoRouteMode -quiet -drouteStartIteration

setNanoRouteMode -quiet -drouteStartIteration default

getNanoRouteMode -quiet -envNumberProcessor

getNanoRouteMode -quiet -envSuperthreading

getNanoRouteMode -quiet -routeTopRoutingLayer

setNanoRouteMode -quiet -routeTopRoutingLayer default

getNanoRouteMode -quiet -routeBottomRoutingLayer

setNanoRouteMode -quiet -routeBottomRoutingLayer default

getNanoRouteMode -quiet -drouteEndIteration

setNanoRouteMode -quiet -drouteEndIteration default

getNanoRouteMode -quiet -routeEcoOnlyInLayers

getNanoRouteMode -quiet -routeWithTimingDriven

setNanoRouteMode -quiet -routeWithTimingDriven false

getNanoRouteMode -quiet -routeWithSiDriven

setNanoRouteMode -quiet -routeWithSiDriven false

routeDesign -globalDetail

setDrawView place

verifyGeometry

verifyConnectivity -type all -error 1000 -warning 50

saveDesign b01.enc

saveDesign b01.enc

saveNetlist b01.v

streamOut b01.gds -mapFile streamOut.map -libName DesignLib -units 1000 -mode

ALL

summaryReport -outdir summaryReport

extractRC

rcOut -setload b01.setload

rcOut -setres b01.setres

rcOut -spf b01.spf

rcOut -spef b01.spef

saveFPlan ./b01.fp

113

savePlace ./b01.place.gz

saveNetlist b01.v

global dbgLefDefOutVersion

set dbgLefDefOutVersion 5.5

defOut -floorplan -netlist -routing b01.def

set dbgLefDefOutVersion 5.5

streamOut b01.gds -mapFile streamOut.map -libName DesignLib -stripes 1 -units

1000 -mode ALL

summaryReport -outdir Snapshot

saveDesign ./b01.enc

createSnapshot -dir Snapshot -name b01 -overwrite

exit

Pattern generation using Synopsys TetraMAX ATPG tool

set_messages -log tmax.log -rep

read_netlist CORE90GPSVT.v -library

read_netlist b01flatscan.v

run_build_model b01

set_delay -common_launch_capture_clock

set_delay -launch_cycle system_clock

set_delay -nopi_changes -nopo_measures

add_po_masks -all

set_drc b01_90nm.spf

run_drc

set_fault -model path_delay -atpg_effectiveness -fault_coverage

add_delay_path b01_delay_pt.txt

add_faults -all

set_atpg -full_seq_atpg

run_atpg full_sequential_only

report_faults -all

report_po_masks

report_faults -class DT

114

write_patterns b01_pat_new.stil -internal -format STIL -unified_stil_flow -replace

write_testbench -input b01_pat_new.stil -output path_pat_serial_tb -parameter -

serial -replace -log path_pat_serial_tb.log

exit

115

Scientific Contributions

International Conferences

[ISVLSI15] A. Asokan, A. Bosio, L. Dilillo, P. Girard, S. Pravossoudovitch, A.Virazel,

“An ATPG Flow to Generate Crosstalk-Aware Path Delay Pattern,” accepted at

IEEE Computer Society Annual Symposium on VLSI (ISVLSI) 2015.

[ISVLSI14] A. Asokan, A. Todri-Sanial, A. Bosio, L. Dilillo, P. Girard, S. Pravos-

soudovitch, A.Virazel, “A Delay Probability Metric for Input Pattern Ranking Un-

der Process Variation and Supply Noise”, IEEE Computer Society Annual Sympo-

sium on VLSI (ISVLSI), pp.226-231, 2014.

[DDECS14] A. Asokan, A. Todri-Sanial, A. Bosio, L. Dilillo, P. Girard, S. Pravos-

soudovitch, A. Virazel, “Path Delay Test in the Presence of Multi-Aggressor Crosstalk,

Power Supply Noise and Ground Bounce”, IEEE Symposium on Design and Diag-

nostics of Electronic Circuits and Systems (DDECS), pp.207-212, 2014.

National Conferences

[JNRDM15] A. Asokan, A. Bosio, L. Dilillo, P. Girard, S. Pravossoudovitch, A.Virazel,

"Layout-Aware ATPG for Path Delay Fault”, JNRDM 2015 : Bordeaux, France.

[GDR14] A. Asokan, A. Bosio, L. Dilillo, P. Girard, S. Pravossoudovitch, A.Virazel,

"Crosstalk and Supply Noise-Aware Pattern Generation for Delay Testing”, GDR

SOC / SIP 2014 : gdrsocsip, Paris.

International seminars

[SETS11] A. Asokan, A. Todri-Sanial, A. Bosio, L. Dilillo, P. Girard, S. Pravos-

soudovitch, A. Virazel, Signal Integrity - Aware Pattern Generation for Delay Test-

ing, South European Test Seminar 2013 (SETS13), Obergurgl, Austria.

116

Bibliography

[1] [Online]. Available: http://www.cad.polito.it/downloads/tools/itc99.html

[2] G. E. Moore, “Cramming More Components onto Integrated Circuits”, Electronics
Magazine,” in Electronics Magazine, 1965, pp. Vol. 38, No. 8.

[3] More-than-Moore, white paper, International Technology Roadmap for Semiconduc-
tors (ITRS), 2010. [Online]. Available: http://www.itrs.net/ITRS%201999-2014%
20Mtgs,%20Presentations%20&%20Links/2010ITRS/IRC-ITRS-MtM-v2%203.pdf

[4] G. Moretti. "What Is Not Testable Is Not Fixable", Systems design
engineering community, September 17th, 2014. [Online]. Available: http:
//chipdesignmag.com/sld/blog/2014/09/17/what-is-not-testable-is-not-fixable/

[5] M. Alam, K. Roy, and C. Augustine, “Reliability- and Process-variation aware de-
sign of integrated circuits - A broader perspective,” in Reliability Physics Symposium
(IRPS), 2011 IEEE International, 2011, pp. 4A.1.1–4A.1.11.

[6] C. W. Mohammad Tehranipoor, “Introduction to hardware security and trust,” in
1st Edition. Springer, 2011.

[7] D. Frank, R. Dennard, E. Nowak, P. Solomon, Y. Taur, and H.-S. P. Wong, “Device
scaling limits of Si MOSFETs and their application dependencies,” in Proceedings
of the IEEE, 2001, pp. 259–288.

[8] C. Hawkins, A. Keshavarzi, and J. Segura, “View from the bottom: nanometer
technology AC parametric failures - why, where, and how to detect,” in Defect
and Fault Tolerance in VLSI Systems, 2003. Proceedings. 18th IEEE International
Symposium on, 2003, pp. 267–276.

[9] H. S. P. Wong, D. J. Frank, P. M. Solomon, C. H. J. Wann, and J. J. Welser,
“Emerging Nanoelectronics: Life with and after CMOS,” in A. M. Ionescu and K.
Banerjee, Eds. Norwell, MA: Kluwer Academic Publishers, 2004, pp. 259–288.

[10] TetraMAX ATPG, Automatic Test Pattern Generation, Synopsys Inc., Mountain
View, CA.

[11] P. Chen and K. Keutzer, “Towards true crosstalk noise analysis,” in Computer-
Aided Design, 1999. Digest of Technical Papers. 1999 IEEE/ACM International
Conference on, 1999, pp. 132–137.

[12] L. Ding, D. Blaauw, and P. Mazumder, “Accurate crosstalk noise modeling for
early signal integrity analysis,” in Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 2003, pp. 627–634.

117

[13] K. Agarwal, D. Sylvester, and D. Blaauw, “Modeling and analysis of crosstalk noise
in coupled RLC interconnects,” in Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 2006, pp. 892–901.

[14] N. Nagaraj, P. Balsara, and C. Cantrell, “Crosstalk noise verification in digital
designs with interconnect process variations,” in VLSI Design, 2001. Fourteenth
International Conference on, 2001, pp. 365–370.

[15] M. Cuviello, S. Dey, X. Bai, and Y. Zhao, “Fault Modeling and Simulation for
Crosstalk in System-on-Chip Interconnects,” in Computer-Aided Design, 1999. Di-
gest of Technical Papers. 1999 IEEE/ACM International Conference on, 1999, pp.
297–303.

[16] Aniket and R. Arunachalam, “A novel algorithm for testing crosstalk induced delay
faults in vlsi circuits,” in VLSI Design, 2005. 18th International Conference on,
2005, pp. 479–484.

[17] K. Ganeshpure and S. Kundu, “On atpg for multiple aggressor crosstalk faults,” in
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
2010, pp. 774–787.

[18] S. Chun, T. Kim, and S. Kang, “ATPG-XP: Test Generation for Maximal Crosstalk-
Induced Faults,” in Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 2009, pp. 1401–1413.

[19] M. Tehranipour, N. Ahmed, and M. Nourani, “Multiple transition model and en-
hanced boundary scan architecture to test interconnects for signal integrity,” in
Computer Design, 2003. Proceedings. 21st International Conference on, 2003, pp.
554–559.

[20] S.-Y. Yang, C. A. Papachristou, and M. Taib-Azar, “Improving bus test via iddt
and boundary scan,” in Design Automation Conference, 2001. Proceedings, 2001,
pp. 307–312.

[21] M. Tehranipour, N. Ahmed, and M. Nourani, “Testing soc interconnects for signal
integrity using boundary scan,” in VLSI Test Symposium, 2003. Proceedings. 21st,
2003, pp. 158–163.

[22] A. Sinha, S. Gupta, and M. Breuer, “Validation and test issues related to noise
induced by parasitic inductances of vlsi interconnects,” in Advanced Packaging,
IEEE Transactions on, 2002, pp. 329–339.

[23] W. Chen, S. Gupta, and M. Breuer, “Test generation in vlsi circuits for crosstalk
noise,” in Test Conference, 1998. Proceedings., International, 1998, pp. 641–650.

[24] W.-Y. Chen, S. Gupta, and M. Breuer, “Test generation for crosstalk-induced delay
in integrated circuits,” in Test Conference, 1999. Proceedings. International, 1999,
pp. 191–200.

[25] A. Krstic, J.-J. Liou, Y.-M. Jiang, and K.-T. Cheng, “Delay testing considering
crosstalk-induced effects,” in Test Conference, 2001. Proceedings. International,
2001, pp. 558–567.

118

[26] W. Chen, S. Gupta, and M. Breuer, “Test generation in VLSI circuits for crosstalk
noise,” in Test Conference, 1998. Proceedings., International, 1998, pp. 641–650.

[27] W.-Y. Chen, S. Gupta, and M. Breuer, “Test generation in VLSI circuits for
crosstalk noise,” in Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 2002, pp. 1117–1131.

[28] B. Kaushik, S. Sarkar, R. Agarwal, and R. Josh, “An Analytical Approach to Dy-
namic Crosstalk in Coupled Interconnects,” in Microelectronics Journal, 2006, pp.
85–92.

[29] S. Bhardwaj, S. Vrudhula, and D. Blaauw, “Estimation of signal arrival times
in the presence of delay noise,” in Computer Aided Design, 2002. ICCAD 2002.
IEEE/ACM International Conference on, 2002, pp. 418–422.

[30] W. Chen, S. Gupta, and M. Breuer, “Analytic models for crosstalk delay and pulse
analysis under non-ideal inputs,” in Test Conference, 1997. Proceedings., Interna-
tional, 1997, pp. 809–818.

[31] P. Chen and K. Keutzer, “Towards true crosstalk noise analysis,” in Computer-
Aided Design, 1999. Digest of Technical Papers. 1999 IEEE/ACM International
Conference on, 1999, pp. 132–137.

[32] W.-Y. Chen, S. Gupta, and M. Breuer, “Test generation for crosstalk-induced faults:
framework and computational results,” in Test Symposium, 2000. (ATS 2000). Pro-
ceedings of the Ninth Asian, 2000, pp. 305–310.

[33] J. Lee and M. Tehranipoor, “A novel pattern generation framework for inducing
maximum crosstalk effects on delay-sensitive paths,” in Test Conference, 2008. ITC
2008. IEEE International, 2008, pp. 1–10.

[34] S. Chun, T. Kim, and S. Kang, “Atpg-xp: Test generation for maximal crosstalk-
induced faults,” in Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 2009, pp. 1401–1413.

[35] V. Mehta, M. Marek-Sadowska, K.-H. Tsai, and J. Rajski, “Timing defect diagnosis
in presence of crosstalk for nanometer technology,” in Test Conference, 2006. ITC
’06. IEEE International, 2006, pp. 1–10.

[36] Q. Zhu, “Power distribution network design for vlsi,” in John Wiley and Sons, Feb,
2004.

[37] S. Lin and N. Chang, “Challenges in power-ground integrity,” in Computer Aided
Design, 2001. ICCAD 2001. IEEE/ACM International Conference on, 2001, pp.
651–654.

[38] H. Chen and D. Ling, “Power supply noise analysis methodology for deep-submicron
vlsi chip design,” in Design Automation Conference, 1997. Proceedings of the 34th,
1997, pp. 638–643.

[39] S. Sapatnekar and H. Su, “Analysis and optimization of power grids,” in Design
Test of Computers, IEEE, 2003, pp. 7–15.

119

[40] H. Zheng, L. Pileggi, and B. Kratiter, “Electrical modeling of integrated-package
power and ground distributions,” in Design Test of Computers, IEEE, 2003, pp.
24–31.

[41] J. Saxena, K. Butler, V. Jayaram, S. Kundu, N. Arvind, P. Sreeprakash, and
M. Hachinger, “A case study of ir-drop in structured at-speed testing,” in Test
Conference, 2003. Proceedings. ITC 2003. International, 2003, pp. 1098–1104.

[42] P. Girard, “Survey of low-power testing of vlsi circuits,” in Design Test of Comput-
ers, IEEE, 2002, pp. 80–90.

[43] X. Wen, Y. Yamashita, S. Kajihara, L.-T. Wang, K. Saluja, and K. Kinoshita, “On
low-capture-power test generation for scan testing,” in VLSI Test Symposium, 2005.
Proceedings. 23rd IEEE, 2005, pp. 265–270.

[44] X. Wen, S. Kajihara, K. Miyase, T. Suzuki, K. Saluja, L.-T. Wang, K. Abdel-Hafez,
and K. Kinoshita, “A new atpg method for efficient capture power reduction during
scan testing,” in VLSI Test Symposium, 2006. Proceedings. 24th IEEE, 2006, pp. 6
pp.–65.

[45] S. Remersaro, X. Lin, Z. Zhang, S. Reddy, I. Pomeranz, and J. Rajski, “Preferred
fill: A scalable method to reduce capture power for scan based designs,” in Test
Conference, 2006. ITC ’06. IEEE International, 2006, pp. 1–10.

[46] A. Krstic, Y.-M. Jiang, and K.-T. Cheng, “Pattern generation for delay testing
and dynamic timing analysis considering power-supply noise effects,” in Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 2001, pp.
416–425.

[47] E. Liau and D. Schmitt-Landsiedel, “Automatic worst case pattern generation using
neural networks genetic algorithm for estimation of switching noise on power supply
lines in cmos circuits,” in Test Workshop, 2003. Proceedings. The Eighth IEEE
European, 2003, pp. 105–110.

[48] N. Ahmed, M. Tehranipoor, and V. Jayaram, “Supply voltage noise aware atpg
for transition delay faults,” in VLSI Test Symposium, 2007. 25th IEEE, 2007, pp.
179–186.

[49] C. Tirumurti, S. Kundu, S. Sur-Kolay, and Y.-S. Chang, “A modeling approach for
addressing power supply switching noise related failures of integrated circuits,” in
Design, Automation and Test in Europe Conference and Exhibition, 2004. Proceed-
ings, 2004, pp. 1078–1083 Vol.2.

[50] L.-C. Wang, Z. Yue, X. Lu, W. Qiu, W. Shi, and D. Walker, “A vector-based
approach for power supply noise analysis in test compaction,” in Test Conference,
2005. Proceedings. ITC 2005. IEEE International, 2005, pp. 10 pp.–526.

[51] A. Kokrady and C. Ravikumar, “Static verification of test vectors for ir drop failure,”
in Computer Aided Design, 2003. ICCAD-2003. International Conference on, 2003,
pp. 760–764.

[52] I. Polian, A. Czutro, S. Kundu, and B. Becker, “Power droop testing,” in Computer
Design, 2006. ICCD 2006. International Conference on, 2006, pp. 243–250.

120

[53] [Online]. Available: http://www.cadence.com/products/ld/rtl_compiler/Pages/
default.aspx

[54] M. Nourani and A. Radhakrishnan, “Power-supply noise in socs: Atpg, estimation
and control,” in Test Conference, 2005. Proceedings. ITC 2005. IEEE International,
2005, pp. 10 pp.–516.

[55] M. Tehranipoor and K. Butler, “Power supply noise: A survey on effects and re-
search,” in Design Test of Computers, IEEE, 2010, pp. 51–67.

[56] L.-R. Zheng, B.-X. Li, and H. Tenlunen, “Efficient and accurate modeling of power
supply noise on distributed on-chip power networks,” in Circuits and Systems, 2000.
Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on,
2000, pp. 513–516 vol.2.

[57] D. Mitra, S. Bhattacharjee, S. Sur-Kolay, B. Bhattacharya, S. Zachariah, and
S. Kundu, “Test pattern generation for power supply droop faults,” in VLSI De-
sign, 2006. Held jointly with 5th International Conference on Embedded Systems
and Design., 19th International Conference on, 2006, pp. 6 pp.–.

[58] K. Arabi, R. Saleh, and M. Xiongfei, “Power supply noise in socs: Metrics, manage-
ment, and measurement,” in Design Test of Computers, IEEE, 2007, pp. 236–244.

[59] J.-J. Liou, A. Krstic, Y.-M. Jiang, and K.-T. Cheng, “Modeling, testing, and analy-
sis for delay defects and noise effects in deep submicron devices,” in Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, 2003, pp. 756–
769.

[60] J. Wang, D. Walker, X. Lu, A. Majhi, B. Kruseman, G. Gronthoud, L. Villagra,
P. van de Wiel, and S. Eichenberger, “Modeling power supply noise in delay testing,”
in Design Test of Computers, IEEE, 2007, pp. 226–234.

[61] J. Ma, M. Tehranipoor, O. Sinanoglu, and S. Almukhaizim, “Identification of ir-
drop hot-spots in defective power distribution network using tdf atpg,” in Design
and Test Workshop (IDT), 2010 5th International, 2010, pp. 122–127.

[62] T. Tang and E. Friedman, “Estimation of transient voltage fluctuations in the cmos-
based power distribution networks,” in Circuits and Systems, 2001. ISCAS 2001.
The 2001 IEEE International Symposium on, 2001, pp. 463–466 vol. 5.

[63] ——, “On-chip delta;i noise in the power distribution networks of high speed cmos
integrated circuits,” in ASIC/SOC Conference, 2000. Proceedings. 13th Annual
IEEE International, 2000, pp. 53–57.

[64] G. Bai, S. Bobba, and I. Hjj, “Static timing analysis including power supply noise
effect on propagation delay in vlsi circuits,” in Design Automation Conference, 2001.
Proceedings, 2001, pp. 295–300.

[65] R. Ahmadi and F. Najm, “Timing analysis in presence of power supply and ground
voltage variations,” in Computer Aided Design, 2003. ICCAD-2003. International
Conference on, 2003, pp. 176–183.

121

[66] R. Saleh, S. Hussain, S. Rochel, and D. Overhauser, “Clock skew verification in the
presence of ir-drop in the power distribution network,” in Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, 2000, pp. 635–644.

[67] Y.-M. Jiang and K.-T. Cheng, “Analysis of performance impact caused by power
supply noise in deep submicron devices,” in Design Automation Conference, 1999.
Proceedings. 36th, 1999, pp. 760–765.

[68] W. Zhao, J. Ma, M. Tehranipoor, and S. Chakravarty, “Power-safe application of
transition delay fault patterns considering current limit during wafer test,” in Test
Symposium (ATS), 2010 19th IEEE Asian, 2010, pp. 301–306.

[69] K. Butler, J. Saxena, A. Jain, T. Fryars, J. Lewis, and G. Hetherington, “Minimizing
power consumption in scan testing: pattern generation and dft techniques,” in Test
Conference, 2004. Proceedings. ITC 2004. International, 2004, pp. 355–364.

[70] V. Devanathan, C. Ravikumar, and V. Kamakoti, “On power-profiling and pat-
tern generation for power-safe scan tests,” in Design, Automation Test in Europe
Conference Exhibition, 2007. DATE ’07, 2007, pp. 1–6.

[71] J. Lee, S. Narayan, M. Kapralos, and M. Tehranipoor, “Layout-aware, ir-drop toler-
ant transition fault pattern generation,” in Design, Automation and Test in Europe,
2008. DATE ’08, 2008, pp. 1172–1177.

[72] J.-J. Liou, A. Krstic, Y.-M. Jiang, and K.-T. Cheng, “Path selection and pattern
generation for dynamic timing analysis considering power supply noise effects,” in
Computer Aided Design, 2000. ICCAD-2000. IEEE/ACM International Conference
on, 2000, pp. 493–496.

[73] S. Zhao and K. Roy, “Estimation of switching noise on power supply lines in deep
sub-micron cmos circuits,” in VLSI Design, 2000. Thirteenth International Confer-
ence on, 2000, pp. 168–173.

[74] J. Rabaey, A. Chandrakasan, and N. B., “Digital Integrated Circuits, A Design
Perspective (Second Edition),” in Prentice Hall Publishers, 2003.

[75] J. Roth, “Diagnosis of Automata Failures: A Calculus and a Method,” in IBM
Journal of Research and Development, 1966, pp. 278–291.

[76] P. Goel, “An Implicit Enumeration Algorithm to Generate Tests for Combinational
Logic Circuits,” in Computers, IEEE Transactions on, 1981, pp. 215–222.

[77] H. Fujiwara, “FAN: A Fanout-Oriented Test Pattern Generation Algorithm,” in
Proc. of the International Symp. on Circuits and Systems, 1985, pp. 671–674.

[78] T. Kirkland and M. Mercer, “A Topological Search Algorithm for ATPG,” in Design
Automation, 1987. 24th Conference on, 1987, pp. 502–508.

[79] M. Schulz and E. Auth, “Advanced automatic test pattern generation and redun-
dancy identification techniques,” in Fault-Tolerant Computing, 1988. FTCS-18, Di-
gest of Papers., Eighteenth International Symposium on, 1988, pp. 30–35.

122

[80] M. Schulz, E. Trischler, and T. Sarfert, “SOCRATES: a highly efficient automatic
test pattern generation system,” in Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 1988, pp. 126–137.

[81] M. Schulz and E. Auth, “Improved deterministic test pattern generation with ap-
plications to redundancy identification,” in Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 1989, pp. 811–816.

[82] J. Giraldi and M. Bushnell, “EST: the new frontier in automatic test-pattern gen-
eration,” in Design Automation Conference, 1990. Proceedings., 27th ACM/IEEE,
1990, pp. 667–672.

[83] ——, “Search State Equivalence for Redundancy Identification and Test Genera-
tion,” in Test Conference, 1991, Proceedings., International, 1991, pp. 184–.

[84] M. Bushnell and J. Giraldi, “A Functional Decomposition Method for Redundancy
Identification and Test Generation,” in Journal of Electronic Testing: Theory and
Applications, 1997, pp. 175–195.

[85] W. Kunz and D. Pradhan, “Recursive learning: a new implication technique for effi-
cient solutions to CAD problems-test, verification, and optimization,” in Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 1994, pp.
1143–1158.

[86] ——, “Recursive Learning: An attractive alternative to the decision tree for test
generation in digital circuits,” in Test Conference, 1992. Proceedings., International,
1992, pp. 816–.

[87] W. Kunz and D. Stoffel, “Reasoning in Boolean Networks: Logic Synthesis and
Verification Using Testing Techniques,” in Boston: Kluwer Academic Publishers,
1997.

[88] S. T. Chakradhar, V. D. Agrawal, and M. L. Bushnell, “Neural Models and Algo-
rithms for Digital Testing,” in Boston: Kluwer Academic Publishers, 1991.

[89] R. Gaede, M. Mercer, K. Butler, and D. Ross, “CATAPULT: concurrent automatic
testing allowing parallelization and using limited topology,” in Design Automation
Conference, 1988. Proceedings., 25th ACM/IEEE, 1988, pp. 597–600.

[90] T. Stanion and D. Bhattacharya, “TSUNAMI: A Path Oriented Scheme for Al-
gebraic Test Generation,” in Fault-Tolerant Computing, 1991. FTCS-21. Digest of
Papers., Twenty-First International Symposium, 1991, pp. 36–43.

[91] J. Savir and S. Patil, “On broad-side delay test,” in Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 1994, pp. 368–372.

[92] J. Savir, “Skewed-load transition test: Part i, calculus,” in Test Conference, 1992.
Proceedings., International, 1992, pp. 705–.

[93] S. Wang, X. Liu, and S. Chakradhar, “Hybrid delay scan: a low hardware overhead
scan-based delay test technique for high fault coverage and compact test sets,” in
Design, Automation and Test in Europe Conference and Exhibition, 2004. Proceed-
ings, 2004, pp. 1296–1301 Vol.2.

123

[94] G. Bell, “Growing Challenges in Nanometer Timing Analysis,” in EE Times, Oct.
18, 2004.

[95] M. Zhang, H. Li, and X. Li, “Path delay test generation toward activation of worst
case coupling effects,” in IEEE Transactions on VLSI Systems, 2011, pp. 1969–1982.

[96] K. Peng, M. Yilmaz, K. Chakrabarty, and M. Tehranipoor, “Crosstalk- and Process
Variations-Aware High-Quality Tests for Small-Delay Defects,” in IEEE Transac-
tions on VLSI Systems, 2013, pp. 1129–1142.

[97] PrimeTime User Guide, Synopsys, Inc., Mountain View, CA,May 1999.

[98] A. Krstic, Y.-M. Jiang, and K.-T. Cheng, “Pattern generation for delay testing and
dynamic timing analysis considering power-supply noise effects,” in IEEE Trans on
Computer-Aided Design of Integrated Circuits and Systems, 2001, pp. 416–425.

[99] J. Ma, J. Lee, and M. Tehranipoor, “Layout-Aware Pattern Generation for Maxi-
mizing Supply Noise Effects on Critical Paths,” in 27th IEEE conf on VLSI Test
Symposium, 2009, pp. 221–226.

[100] J. Ma and M. Tehranipoor, “Layout-Aware Critical Path Delay Test Under Maxi-
mum Power Supply Noise Effects,” in IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 2011, pp. 1923–1934.

[101] J. Lee and M. Tehranipoor, “A Novel Pattern Generation Framework for Inducing
Maximum Crosstalk Effects on Delay-Sensitive Paths,” in IEEE International Test
Conference, 2008, pp. 1–10.

[102] A. Todri, A. Bosio, L. Dilillo, P. Girard, and A. Virazel, “Uncorrelated Power
Supply Noise and Ground Bounce Consideration for Test Pattern Generation,” in
IEEE Transactions on VLSI Systems, 2013, pp. 958–970.

[103] A. Sanyal, K. Ganeshpure, and S. Kundu, “Test Pattern Generation for Multiple
Aggressor Crosstalk Effects Considering Gate Leakage Loading in Presence of Gate
Delays,” in Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
2012, pp. 424–436.

[104] M. Zhang, H. Li, and X. Li, “Path Delay Test Generation Toward Activation of
Worst Case Coupling Effects,” in Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, 2011, pp. 1969–1982.

[105] Predictive Technology Model (PTM). [Online]. Available: http://ptm.asu.edu/

[106] X. Qi, S. Lo, Y. Luo, A. Gyure, M. Shahram, and K. Singhal, “Simulation and
analysis of inductive impact on VLSI interconnects in the presence of process vari-
ations,” in Custom Integrated Circuits Conference, 2005. Proceedings of the IEEE
2005, 2005, pp. 309–312.

[107] A. Todri, A. Bosio, L. Dilillo, P. Girard, S. Pravossoudovitch, and A. Virazel, “A
study of path delay variations in the presence of uncorrelated power and ground
supply noise,” in IEEE 14th International Symposium on DDECS, 2011, pp. 189–
194.

124

[108] [Online]. Available: http://www.cadence.com/products/di/soc_encounter/pages/
default.aspx

[109] A. Krstic, J.-J. Liou, Y.-M. Jiang, and K.-T. Cheng, “Test Conference, 2001. Pro-
ceedings. International,” in Test Conference, 2001. Proceedings. International, 2001,
pp. 558–567.

[110] K. Ganeshpure and S. Kundu, “Automatic Test Pattern Generation for Maximal
Circuit Noise in Multiple Aggressor Crosstalk Faults,” in Design, Automation Test
in Europe Conference Exhibition, 2007. DATE ’07, 2007, pp. 1–6.

[111] D. Gope and D. Walker, “Maximizing crosstalk-induced slowdown during path delay
test,” in Computer Design (ICCD), 2012 IEEE 30th International Conference on,
2012, pp. 159–166.

[112] M. Chen and A. Orailoglu, “Examining Timing Path Robustness Under Wide-
Bandwidth Power Supply Noise Through Multi-Functional-Cycle Delay Test,” in
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 2014, pp.
734–746.

[113] K.-T. C. Angela Krstić, “Delay fault testing for vlsi circuits,” in 1st Edition.
Springer US, 1998.

[114] A. Asokan, A. Todri-Sanial, A. Bosio, L. Dilillo, P. Girard, S. Pravossoudovitch, and
A. Virazel, “A Delay Probability Metric for Input Pattern Ranking Under Process
Variation and Supply Noise,” in VLSI (ISVLSI), 2014 IEEE Computer Society
Annual Symposium on, 2014, pp. 226–231.

[115] ——, “Path Delay Test in the Presence of Multi-Aggressor Crosstalk, Power Sup-
ply Noise and Ground Bounce,” in Design and Diagnostics of Electronic Circuits
Systems, 17th International Symposium on, 2014, pp. 207–212.

[116] H. Li, P. Shen, and X. Li, “Robust test generation for precise crosstalk-induced path
delay faults,” in VLSI Test Symposium, 2006. Proceedings. 24th IEEE, 2006, pp. 6
pp. – 305.

[117] B. Li, N. Chen, M. Schmidt, W. Schneider, and U. Schlichtmann, “On hierarchical
statistical static timing analysis,” in Design, Automation Test in Europe Conference
Exhibition, 2009. DATE ’09., 2009, pp. 1320–1325.

[118] H. Chang and S. Sapatnekar, “Statistical timing analysis considering spatial cor-
relations using a single PERT-like traversal,” in Computer Aided Design, 2003.
ICCAD-2003. International Conference on, 2003, pp. 621–625.

[119] S. Onaissi and F. Najm, “A Linear-Time Approach for Static Timing Analysis
Covering All Process Corners,” in Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 2008, pp. 1291–1304.

[120] V. Agaram and J. Venegas, “Insights into process reliability through simulation,” in
Reliability and Maintainability Symposium (RAMS), 2015 Annual, 2015, pp. 1–6.

125

[121] F. Galarza-Medina, J. Garcia-Gervacio, V. Champac, and A. Orailoglu, “Small-
delay defects detection under process variation using Inter-Path Correlation,” in
VLSI Test Symposium (VTS), 2012 IEEE 30th, 2012, pp. 127–132.

[122] X. Wang, M. Tehranipoor, and R. Datta, “Path-RO: A novel on-chip critical path
delay measurement under process variations,” in Computer-Aided Design, 2008.
ICCAD 2008. IEEE/ACM International Conference on, 2008, pp. 640–646.

[123] R. Tayade, S. Sundereswaran, and J. Abraham, “Small-Delay Defect Detection in
the Presence of Process Variations,” in Quality Electronic Design, 2007. ISQED
’07. 8th International Symposium on, 2007, pp. 711–716.

[124] G. Yu, W. Dong, Z. Feng, and P. Li, “A Framework for Accounting for Process
Model Uncertainty in Statistical Static Timing Analysis,” in Design Automation
Conference, 2007. DAC ’07. 44th ACM/IEEE, 2007, pp. 829–834.

[125] H. Xu, V. Pavlidis, W. Burleson, and G. De Micheli, “The combined effect of process
variations and power supply noise on clock skew and jitter,” in Quality Electronic
Design (ISQED), 2012 13th International Symposium on, 2012, pp. 320–327.

[126] K. Peng, M. Yilmaz, M. Tehranipoor, and K. Chakrabarty, “High-quality pat-
tern selection for screening small-delay defects considering process variations and
crosstalk,” in Design, Automation Test in Europe Conference Exhibition (DATE),
2010, 2010, pp. 1426–1431.

[127] M. Orshansky and K. Keutzer, “A general probabilistic framework for worst case
timing analysis,” in Design Automation Conference, 2002. Proceedings. 39th, 2002,
pp. 556–561.

[128] N. Weste and K. Eshraghian, “Principles of cmos vlsi design: A systems perspec-
tive,” in 2nd Edition. Addison - Wesley, New York, 1993.

[129] Y. Ismail, E. Friedman, and J. Neves, “Equivalent Elmore delay for RLC trees,” in
Design Automation Conference, 1999. Proceedings. 36th, 1999, pp. 715–720.

126

