Learning sensori-motor mappings using little knowledge : application to manipulation robotics - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2018

Learning sensori-motor mappings using little knowledge : application to manipulation robotics

Apprentissage de couplages sensori-moteur en utilisant très peu d'informations : application à la robotique de manipulation

Résumé

The thesis is focused on learning a complex manipulation robotics task using little knowledge. More precisely, the concerned task consists in reaching an object with a serial arm and the objective is to learn it without camera calibration parameters, forward kinematics, handcrafted features, or expert demonstrations. Deep reinforcement learning algorithms suit well to this objective. Indeed, reinforcement learning allows to learn sensori-motor mappings while dispensing with dynamics. Besides, deep learning allows to dispense with handcrafted features for the state spacerepresentation. However, it is difficult to specify the objectives of the learned task without requiring human supervision. Some solutions imply expert demonstrations or shaping rewards to guiderobots towards its objective. The latter is generally computed using forward kinematics and handcrafted visual modules. Another class of solutions consists in decomposing the complex task. Learning from easy missions can be used, but this requires the knowledge of a goal state. Decomposing the whole complex into simpler sub tasks can also be utilized (hierarchical learning) but does notnecessarily imply a lack of human supervision. Alternate approaches which use several agents in parallel to increase the probability of success can be used but are costly. In our approach,we decompose the whole reaching task into three simpler sub tasks while taking inspiration from the human behavior. Indeed, humans first look at an object before reaching it. The first learned task is an object fixation task which is aimed at localizing the object in the 3D space. This is learned using deep reinforcement learning and a weakly supervised reward function. The second task consists in learning jointly end-effector binocular fixations and a hand-eye coordination function. This is also learned using a similar set-up and is aimed at localizing the end-effector in the 3D space. The third task uses the two prior learned skills to learn to reach an object and uses the same requirements as the two prior tasks: it hardly requires supervision. In addition, without using additional priors, an object reachability predictor is learned in parallel. The main contribution of this thesis is the learning of a complex robotic task with weak supervision.
La thèse consiste en l'apprentissage d'une tâche complexe de robotique de manipulation en utilisant très peu d'aprioris. Plus précisément, la tâche apprise consiste à atteindre un objet avec un robot série. L'objectif est de réaliser cet apprentissage sans paramètres de calibrage des caméras, modèles géométriques directs, descripteurs faits à la main ou des démonstrations d'expert. L'apprentissage par renforcement profond est une classe d'algorithmes particulièrement intéressante dans cette optique. En effet, l'apprentissage par renforcement permet d’apprendre une compétence sensori-motrice en se passant de modèles dynamiques. Par ailleurs, l'apprentissage profond permet de se passer de descripteurs faits à la main pour la représentation d'état. Cependant, spécifier les objectifs sans supervision humaine est un défi important. Certaines solutions consistent à utiliser des signaux de récompense informatifs ou des démonstrations d'experts pour guider le robot vers les solutions. D'autres consistent à décomposer l'apprentissage. Par exemple, l'apprentissage "petit à petit" ou "du simple au compliqué" peut être utilisé. Cependant, cette stratégie nécessite la connaissance de l'objectif en termes d'état. Une autre solution est de décomposer une tâche complexe en plusieurs tâches plus simples. Néanmoins, cela n'implique pas l'absence de supervision pour les sous tâches mentionnées. D'autres approches utilisant plusieurs robots en parallèle peuvent également être utilisés mais nécessite du matériel coûteux. Pour notre approche, nous nous inspirons du comportement des êtres humains. Ces derniers généralement regardent l'objet avant de le manipuler. Ainsi, nous décomposons la tâche d'atteinte en 3 sous tâches. La première tâche consiste à apprendre à fixer un objet avec un système de deux caméras pour le localiser dans l'espace. Cette tâche est apprise avec de l'apprentissage par renforcement profond et un signal de récompense faiblement supervisé. Pour la tâche suivante, deux compétences sont apprises en parallèle : la fixation d'effecteur et une fonction de coordination main-oeil. Comme la précédente tâche, un algorithme d'apprentissage par renforcement profond est utilisé avec un signal de récompense faiblement supervisé. Le but de cette tâche est d'être capable de localiser l'effecteur du robot à partir des coordonnées articulaires. La dernière tâche utilise les compétences apprises lors des deux précédentes étapes pour apprendre au robot à atteindre un objet. Cet apprentissage utilise les mêmes aprioris que pour les tâches précédentes. En plus de la tâche d'atteinte, un predicteur d'atteignabilité d'objet est appris. La principale contribution de ces travaux est l'apprentissage d'une tâche de robotique complexe en n'utilisant que très peu de supervision.
Fichier principal
Vignette du fichier
2018CLFAC037_DE_LA_BOURDONNAYE.pdf (62.34 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-02049795 , version 1 (26-02-2019)

Identifiants

  • HAL Id : tel-02049795 , version 1

Citer

François de La Bourdonnaye. Learning sensori-motor mappings using little knowledge : application to manipulation robotics. Robotics [cs.RO]. Université Clermont Auvergne [2017-2020], 2018. English. ⟨NNT : 2018CLFAC037⟩. ⟨tel-02049795⟩
255 Consultations
78 Téléchargements

Partager

Gmail Facebook X LinkedIn More