
HAL Id: tel-02049795
https://theses.hal.science/tel-02049795

Submitted on 26 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning sensori-motor mappings using little knowledge :
application to manipulation robotics

François de La Bourdonnaye

To cite this version:
François de La Bourdonnaye. Learning sensori-motor mappings using little knowledge : application to
manipulation robotics. Robotics [cs.RO]. Université Clermont Auvergne [2017-2020], 2018. English.
�NNT : 2018CLFAC037�. �tel-02049795�

https://theses.hal.science/tel-02049795
https://hal.archives-ouvertes.fr

UNIVERSITÉ CLERMONT AUVERGNE

ÉCOLE DOCTORALE SCIENCES POUR L’INGÉNIEUR DE

CLERMONT-FERRAND

DOCTORAL THESIS

Learning sensori-motor mappings using little
knowledge: application to manipulation robotics

Thesis defended on December 18th, 2018

by

François de La Bourdonnaye

Jury

Reviewers:

Examiners:

Thesis director:

Thesis supervisors:

David Filliat
Ghilès Mostafaoui

Atilla Baskurt
Alain Dutech

Thierry Chateau

Céline Teulière
Jochen Triesch

Pr, ENSTA ParisTech
PhD HDR, Université de Cergy-Pontoise, ETIS

Pr, INSA Lyon, LIRIS
PhD HDR, INRIA Grand Est, LORIA

Pr, Université Clermont Auvergne, Institut Pascal

PhD, Université Clermont Auvergne, Institut Pascal
Pr, FIAS

http://www.uca.fr
http://www.uca.fr
http://www.uca.fr

iii

Acknowledgements
This work is sponsored by the French government research program “Investisse-
ments d’avenir” through the IMobS3 Laboratory of Excellence (ANR-10-LABX-16-
01), by the European Union through the program Regional competitiveness and em-
ployment (ERDF Auvergne region), and by the Auvergne region.

For all the thesis, I would like to thank my supervisors Céline Teulière, Jochen
Triesch and Thierry Chateau to trust me to conduct research.

I acknowledge the jury members as well to have accepted analysing all the work
done during the PhD.

Furthermore, I acknowledge Laurent Lequièvre to make my work easier in adapt-
ing some of my algorithms in a real setting and also Juan Antonio Corrales Ramon
and Youcef Mezouar to make available a real robotic platform to me.

Many thanks go to my colleagues and other friends Yosra Dorai, Thanh-Tin
Nguyen, Rustem Abdrakhmanov, Gautier Claisse, Charles-Antoine Noury, Ange
Nizard, Damien Joubert, Ruddy Theodose, Thomas Wentz, Charles Philippe and
Aline Delsart (and all the persons I am forgetting) for all the convivial moments we
shared together in Clermont-ferrand.

Of course, I do not forget my family, which gave me a lot of mental support.
Finally, I deeply thank my computer for its power, and meanwhile I apologize to

the planet for all the carbon emissions.

v

Contents

Acknowledgements iii

Summary (in french) xvii

1 Introduction 1
1.1 Motivations . 1
1.2 Objective . 2
1.3 Presentation of the robotic tasks . 2
1.4 Our approach . 3
1.5 Contributions . 4
1.6 Report plan . 4

2 Theoretical background 5
2.1 Machine learning with neural networks 5

2.1.1 Machine learning . 5
2.1.1.1 Supervised learning . 5
2.1.1.2 Unsupervised learning 5
2.1.1.3 Reinforcement learning 5
2.1.1.4 Generalization . 6

2.1.2 Artificial Neural networks . 6
2.1.2.1 Neurons . 6
2.1.2.2 Artificial neural networks 7
2.1.2.3 Feed-forward neural networks 8
2.1.2.4 Autoencoder . 10
2.1.2.5 Learning FNN parameters 11
2.1.2.6 Activation functions . 13

2.1.3 Deep learning . 14
2.1.3.1 Definition . 14
2.1.3.2 Why use deep structures? 15
2.1.3.3 Deep convolutional neural networks (DCNN) 15

2.1.4 Choice . 16
2.2 Sequential decision making problems 16

2.2.1 Definitions and sequential decision making problems 17
2.2.1.1 Definitions . 17
2.2.1.2 Sequential decision making problems 18

2.2.2 Solve sequential decision making problems 19
2.2.2.1 Programming . 19
2.2.2.2 Search or planning . 20
2.2.2.3 Learning . 20

2.2.3 Markov decision processes and optimality criteria 20
2.2.3.1 Markov Decision processes 20
2.2.3.2 Optimality criteria . 20

vi

2.2.4 Usual functions for learning sequential decision making prob-
lems . 21
2.2.4.1 The value (V) function 21
2.2.4.2 The quality (Q) function 22
2.2.4.3 The advantage (A) function 22
2.2.4.4 Optimal value functions 22

2.2.5 Dynamic programming vs reinforcement learning 22
2.2.5.1 Dynamic programming 22
2.2.5.2 Reinforcement learning (RL) 23

2.2.6 Reinforcement learning issues 23
2.2.6.1 The exploration-exploitation trade-off 23
2.2.6.2 Credit assignment . 24
2.2.6.3 Low probability of the first success 24
2.2.6.4 Data efficiency . 25
2.2.6.5 Representations and Curse of dimensionality 25
2.2.6.6 On-policy vs Off-policy 26

2.2.7 Model-free reinforcement learning 26
2.2.7.1 The critic-only methods 26
2.2.7.2 The actor methods . 28

2.3 Deep Reinforcement Learning . 29
2.3.1 Idea . 29
2.3.2 Deep Deterministic policy gradient 30

2.3.2.1 Deep Q network . 30
2.3.2.2 Deterministic policy gradient algorithms 31
2.3.2.3 Deep deterministic policy gradient (DDPG) 31

2.3.3 Alternate algorithms . 32
2.3.3.1 Trust Region Policy Optimization (TRPO) 33
2.3.3.2 Generalized Advantage Estimation (GAE) 33
2.3.3.3 Proximal Policy Optimization (PPO) 34
2.3.3.4 Q-Prop . 34
2.3.3.5 Asynchronous Advantage Actor-Critic (A3C) 34
2.3.3.6 Guided Policy Search (GPS) 35

2.3.4 Choice . 35
2.4 Conclusion . 36

3 State of the art 37
3.1 Manipulation robotics with reinforcement learning before the emer-

gence of deep learning . 37
3.1.1 Partial conclusion . 40

3.2 Learning manipulation tasks using deep reinforcement learning 40
3.2.1 Learning manipulation tasks using demonstrations 40
3.2.2 Learning manipulation tasks using deep reinforcement learn-

ing with shaping rewards . 41
3.2.3 Learning manipulation tasks with deep reinforcement using

only sparse rewards . 43
3.2.4 Partial conclusion . 45

3.3 Conclusion . 46

vii

4 Approach overview 47
4.1 Learning reaching skills using binocular fixation and hand-eye coor-

dination . 47
4.1.1 Objective . 47
4.1.2 Idea . 47

4.1.2.1 Development . 47
4.1.2.2 Links to the human behaviour 49

4.1.3 Related work . 51
4.2 Technical overview for the learning of reaching skills 52
4.3 Conclusion . 53

5 Learning binocular object fixations using an anomaly localization principle 55
5.1 Introduction . 55
5.2 Methods . 56

5.2.1 Task definition . 56
5.2.2 Reward computation . 56
5.2.3 Mitigating noise . 60

5.3 Experiments . 61
5.3.1 Experimental environments . 62

5.3.1.1 Simulated environment 62
5.3.1.2 Real environment . 63

5.3.2 Implementation details . 64
5.3.3 Experiments in simulation . 65

5.3.3.1 Policy training . 65
5.3.3.2 Policy Test . 68
5.3.3.3 3D localization of objects 71

5.3.4 Experiments in a real environment 73
5.3.4.1 Training . 73
5.3.4.2 Test . 75

5.4 Conclusion . 76

6 Learning hand-eye coordination function 79
6.1 Introduction . 79

6.1.1 Hand-eye coordination function 79
6.1.2 End-effector detection . 80

6.2 Methods . 80
6.2.1 Task definition . 80
6.2.2 End-effector detection . 81
6.2.3 Mitigating noise . 82

6.3 Experiments . 82
6.3.1 Experimental environment . 82
6.3.2 Experimental protocol . 82

6.3.2.1 Training . 82
6.3.2.2 Test . 85

6.3.3 Implementation details . 85
6.3.4 Results . 85

6.3.4.1 Policy and hand-eye coordination training 85
6.3.4.2 Evaluation of the hand-eye coordination mapping . . 86
6.3.4.3 3D localization of the end-effector 87

6.4 Conclusion . 88

viii

7 Learning arm motor skills based on binocular object fixation and hand-eye
coordination 91
7.1 Learning to reach with the palm . 91

7.1.1 Task definition . 91
7.1.2 Reward computation . 93
7.1.3 Experiments . 94

7.1.3.1 Different reward functions 94
7.1.3.2 Material . 95
7.1.3.3 Experimental protocol 96

7.1.4 Results . 97
7.1.4.1 Problem A . 97
7.1.4.2 Problem B . 100
7.1.4.3 Problem C . 101
7.1.4.4 Problem D . 103

7.1.5 Conclusion . 105
7.2 Learning object reachability . 105

7.2.1 Task definition . 106
7.2.2 Ground-truth object reachability estimation 106
7.2.3 Experiments . 107

7.2.3.1 Reachability . 107
7.2.3.2 Reaching performances 110

7.3 Conclusion . 112

8 Conclusion 113
8.1 Contributions . 113

8.1.1 Object fixation . 113
8.1.2 End-effector fixation and hand-eye coordination 114
8.1.3 Reaching skills . 114

8.2 Limitations . 115
8.2.1 Object fixation . 115
8.2.2 End-effector fixation and hand-eye coordination 115
8.2.3 Reaching skills . 116

8.3 Perspectives . 116
8.3.1 Alleviating limitations . 116
8.3.2 Extending current work . 117

8.3.2.1 Improving the reaching task 117
8.3.2.2 Learning other manipulation tasks using the same

principle . 118
8.3.2.3 Real-world implementation 118

A Neural networks structures 121
A.1 Neural networks for the fixation experiments 121

A.1.1 Autoencoder . 121
A.1.2 Policy . 122
A.1.3 Q function . 122
A.1.4 Hand-eye mapping . 122

A.2 Neural networks for the reaching experiments 123
A.2.1 Policy . 123
A.2.2 Q function . 124
A.2.3 Reachability prediction network 124

ix

B Hyperparameters for the reinforcement learning applications 125
B.1 Object fixation learning . 125
B.2 End-effector fixation and hand-eye coordination learning 125
B.3 Reaching and reachability learning . 126

C Reference frame of the simulated environment 127

D Triangulation 129

E Ground-truth object reachability estimation 131

F Detailed results for uncertainties estimation of the x, y and z coordinates 133

G Material 137
G.1 Middleware . 137
G.2 Software . 137
G.3 Hardware . 137

H Planar views of 3D clouds and convex hulls for the possible initial end-
effector positions in the reaching and hand-eye coordination learnings 139

Bibliography 141

xi

List of Figures

1.1 Scheme representing the issue regarding the use of restrictive assump-
tions. The robot only learned to sort some specific objects and when
new objects appear, the robot may fail to achieve its task. 2

1.2 Scheme of the three steps of the stage-wise framework 4

2.1 Scheme of neurons . 7
2.2 A random artificial neural network. To ensure a good visibility, the

biases are not represented. 7
2.3 A 2-hidden layers FNN . 8
2.4 Fully (A) and partially (B) connected layers 8
2.5 Convolutional layer (top) vs fully-connected layer (bottom). In the

fully connected layers, all the weights can be different. In the con-
volutional layer, the weights represented by the same arrow style are
equal. 10

2.6 A feed-forward autoencoder . 11
2.7 Back-propagation scheme . 12
2.8 A convolutional neural network . 16
2.9 Example of sequential decision making problems 19
2.10 Solve sequential decision making problems. The blue boxes are the

classes of methods used in our work. 19
2.11 Model-free (left) vs model-based (right) Reinforcement learning 24
2.12 Maze example to illustrate the credit assignment problem: from sev-

eral sub-optimal trajectories such as the one on the left figure, the
agent has to learn what were the adequate (in green) and inadequate
(in red) actions and find the optimal trajectory (figure on the right). . . 25

2.13 Scheme of the policy update using DDPG. The first step is the forward
pass: from a state s, we compute Qφ(s,πθ(s)). The second step is
the backward pass: we set the derivation of the loss with respect to
the Q value to 1, we apply the back-propagation algorithm on Q to
get ∂Qφ(s,πθ(s))

∂a . From the latter, we apply again the back-propagation
algorithm on the policy network and it gives us the policy gradient. . . 32

4.1 Scheme of the three steps of the stage-wise framework 48
4.2 Overall scheme of the reaching skill learning procedure. Greek sub-

scripts represent neural network parameters. 52
4.3 Representation of the areas of the robot fingers. The 8 areas associated

with circles correspond to the binary values of the vector cb. 53

5.1 Binocular fixation achieved on a purple cylinder, the red cross stands
for the image center, the green cross is the estimated object pixellic
position according to the method described in 5.2.2 55

5.2 Object detection computation scheme 57

xii

5.3 Examples of autoencoder reconstruction error for different objects of
the training set. 58

5.4 Plot of the reward signal in function of the distance between the object
localization and the image center . 59

5.5 Example of impulse noise in the object localization process in the
real environment. At the bottom right of the original image, a high-
frequency area is not well reconstructed and is detected. 60

5.6 Evolution of the error in object motion estimation. 61
5.7 Simulated robotic platform . 62
5.8 Training and test sets . 63
5.9 Real robotic platform and setting . 63
5.10 Two images captured at the same time by the Pan-tilt system. The red

cross is at the image center and we observe a vertical offset between
the two images. 64

5.11 Training (top) and test (bottom) sets . 64
5.12 Visualisation of the rpan computation . 67
5.13 Binocular fixation position error over time for the supervised reward

(es
p(t)), our reward without filtering (ew

p (t)), our reward with filtering
(ewf

p (t)) . 68
5.14 Cumulative distribution function of the fixation error (in %) 70
5.15 Scheme representing the standard localization uncertainty with re-

spect to the object center of gravity (dg) 73
5.16 Scheme representing the standard localization uncertainty with re-

spect to the average fixated point (dv) 74
5.17 Average ellipsoid errors for the absolute (top) and relative (bottom) lo-

calization uncertainties. The green ellipsoid error (top) stands for the
volume where the camera joint angles fixate around the object center
of gravity. The red ellipsoid (bottom) represents the volume where
the camera joint angles fixate around the average fixated point. The
blue ball is the object used in our experiments 75

5.18 Figure showing the evolution through time of the reward signal for
the real object fixation experiment . 76

5.19 Images showing successful (on the right) and failed (on the left) test
episodes for both the training set (at the top) and the test set (at the
bottom) . 77

6.1 End-effector detection computation scheme. 81
6.2 End-effector detection failure . 82
6.3 Experimental environment for the end-effector fixation and hand-eye

coordination learning . 83
6.4 Representation of the volume of end-effector initial positions in 3D

Cartesian coordinates. The positions are in blue and the convex hull
in red. To have an idea of the Gazebo scales, the table is visualized in
green. 83

6.5 Evolution of the reward signal and the eye hand coordination loss
through time during training . 86

6.6 Six examples of the fixated point localization (yellow ball) using the
hand-eye coordination function. The bottom right image presents one
of the worst cases. 88

xiii

7.1 Representation of the volume of possible end-effector initial positions
in 3D coordinates. The 3D points are in blue and the convex hull is in
red. The table is visualized in green. 92

7.2 Random examples of initial configurations for the D problem 93
7.3 Scheme of the setting . 95
7.4 Example of an unsuccessful collision between the end-effector and the

object . 96
7.5 Two views of the initial configuration for the case A 97
7.6 Evolution of the average reaching frequency during training for the

different reward functions for the problem A 99
7.7 Evolution of the average reaching frequency during training for the

different reward functions for the problem B 101
7.8 Evolution of the average reaching frequency during training for the

different reward functions for the problem C 102
7.9 Evolution of the average reaching frequency during training for the

different reward functions for the problem D 104
7.10 Scheme of the reachable workspace . 107
7.11 Evolution of the accuracy of the reachability predictor with respect to

the theoretical estimation . 108
7.12 Evaluation of the reachability predictor accuracy on the table. In all

the figures, the white curve stands for the border of the estimated ob-
ject reachability area. The figure at the top plots the output of the
reachability predictor (real value between 0 and 1), the one at the bot-
tom represents the binarized reachability predictor (0 or 1). 109

7.13 Evolution of the reaching performances for the learned policies 110

8.1 Comparison of our framework (left) with a potentially more autonomous
framework (right) . 117

A.1 Autoencoder structure . 121
A.2 Policy structure for the fixation experiments 122
A.3 Q function structure for the fixation experiments 123
A.4 Hand eye mapping structure . 123
A.5 policy structure for the reaching experiments 123
A.6 Q function structure for the reaching experiments 124
A.7 Reachability structure . 124

C.1 Reference frame of the simulated environment 127

D.1 Scheme showing geometrical links between camera joint angles and
the fixated 3D point . 129

E.1 Top views of the left arm showing the ways for the robot to reach the
furthest points. The left figure represents the way to obtain the second
circular arc: by making the elbow joint of the robot vary. The right
figure represents the way to obtain the first circular arc: by making
the shoulder joint of the robot vary. 131

F.1 Absolute uncertainties on the x axis in function of x and y coordinates
of the object on the table . 133

F.2 Absolute uncertainties on the y axis in function of x and y coordinates
of the object on the table . 134

xiv

F.3 Absolute uncertainties on the z axis in function of x and y coordinates
of the object on the table . 134

F.4 Relative uncertainties on the x axis in function of x and y coordinates
of the object on the table . 135

F.5 Relative uncertainties on the y axis in function of x and y coordinates
of the object on the table . 135

F.6 Relative uncertainties on the z axis in function of x and y coordinates
of the object on the table . 136

H.1 Possible end-effector initial positions for the reaching task 139
H.2 Possible end-effector initial positions for the hand-eye coordination

learning. 139

xv

List of Tables

2.1 Reasons for the algorithm choice. We try our best to be as objective as
possible to evaluate the criterion “simplicity”. 35

3.1 Notations for the state and action specifications 38
3.2 Notations for the reward function and requirements 38
3.3 Summary of manipulation robotics applications using reinforcement

learning before the deep learning emergence. See Tables 3.1 and 3.2
for the notations. 39

3.4 Summary of manipulation robotics applications using deep reinforce-
ment learning and shaping rewards. See Tables 3.1 and 3.2 for the
notations. 42

5.1 Performances of the learned policies. The number after the plus or
minus sign is the standard error. 70

5.2 Statistics on d values for the object . 73
5.3 Performances of the learned fixation policies 76

6.1 Performances of the hand-eye coordination mappings in terms of fix-
ation error . 86

6.2 Statistics on d values for the end-effector in meters 88

7.1 Names for the different initial episode conditions 92
7.2 Names for the different initial episode conditions 95
7.3 Values featuring learning velocity (N1 and N90), final reaching fre-

quency (νreward
test) and associated standard deviations in the problem

A . 99
7.4 Values featuring learning velocity (N1 and N90), final reaching fre-

quency (νreward
test) and associated standard deviations in the problem

B . 100
7.5 Values featuring learning velocity (N1 and N90), final reaching fre-

quency (νreward
test) and associated standard deviations in the problem

C . 102
7.6 Values featuring learning velocity (N1 and N90), final reaching fre-

quency (νreward
test) and associated standard deviations in the problem

D . 103

A.1 ADAM parameters for the autoencoder updates 121
A.2 ADAM parameters for the policy updates 122
A.3 ADAM parameters for the policy updates 122
A.4 ADAM parameters for the policy updates 123
A.5 ADAM parameters for the policy updates 123
A.6 ADAM parameters for the Q updates 124
A.7 ADAM parameters for the reachability prediction updates 124

xvi List of Tables

B.1 Parameters for the object fixation algorithm 125
B.2 Parameters for the algorithm used to learn the hand-eye coordination

mapping and end-effector fixations . 126
B.3 Parameter values . 126
B.4 Parameter values for the used reward functions 126
B.5 Ornstein-Uhlenbeck process parameters 126

xvii

Summary (in french)

Introduction
Dans de nombreux domaines, les robots ont révolutionné notre mode de vie.

Dans les mondes industriel et agricole, ils ont contribué à l’automatisation de tâches
pénibles et répétitives ainsi qu’à la réduction des coûts de production. Par ailleurs,
certains robots sont de nos jours utilisés pour de l’assistance à la personne, pour de
la maintenance de centrales nucléaires ou pour de l’exploration de milieux inacces-
sibles tels que les planètes ou les fonds marins.

Dans certains de ces domaines, il reste certains défis à relever. D’une part, dans
des environnements ouverts et/ou complexes et/ou inaccessibles, calculer un mod-
èle dynamique du robot dans son environnement est très compliqué. C’est pourquoi,
l’utilisation de lois de commande classiques n’assure pas nécessairement une exé-
cution parfaite des tâches robotiques si des variations non prévues se produisent.
D’autre part, les tâches robotiques usuelles dépendent très souvent d’un modèle
géométrique parfait. Si ce dernier varie, le robot doit en tenir compte. Enfin, cer-
taines tâches complexes peuvent traiter un grand nombre de données, ce qui com-
plique le processus de décision. Pour relever ces défis, il est intéressant de s’inspirer
du fonctionnement animal. En effet, (1) les animaux s’adaptent à la plupart des vari-
ations d’environnement, (2) ils prennent beaucoup de données en compte pour ac-
complir leurs tâches (vision, proprioception, odorat, goût...), et (3) personne ne leur
fournit des modèles géométriques et dynamiques clé en main, ils les apprennent.
Nous nous intéressons particulièrement au dernier aspect dans le sens où fournir
des modèles au robot peut être dangereux si ces derniers deviennent erronés. Par
exemple, si la détection de piétons pour des “voitures autonomes” repose sur des à
prioris et que ces derniers deviennent faux, les voitures risquent de ne plus détecter
les piétons.

Ainsi, notre objectif est qu’un robot apprenne une tâche robotique complexe en
étant indépendant de modèles pré-calculés par l’être humain. Plus précisément,
nous voulons investiguer s’il est possible de se priver de paramètres de calibrage,
des modèles géométriques et dynamiques, de descripteurs d’image pré-calculés ou
de démonstrations d’expert. Nous appliquons cet objectif sur des tâches liées à la
robotique de manipulation. Deux comportements robotiques sont appris. Le pre-
mier est une compétence d’atteinte d’objets avec la paume de l’effecteur d’un robot
série, ce qui peut être considéré comme une étape de pré-saisie. Selon deux aspects,
cette tâche est complexe. D’une part, l’espace d’entrée de la tâche comporte beau-
coup de dimensions (images, coordonnées articulaires, et données tactiles). D’autre
part, l’apprentissage est effectué pour un nombre important de conditions initiales.
La deuxième compétence apprise est la capacité de prédiction d’atteignabilité d’un
objet en fonction de la direction du regard du robot (on utilise pour cela un système
de deux caméras). Il s’agit d’une compétence utile pour un robot mobile manipu-
lateur. En effet, la prédiction pourrait être utilisée pour se déplacer pour rendre un
objet atteignable par le robot.

xviii Summary (in french)

Matériel
Nous utilisons une plateforme robotique munie de deux bras et d’un système de

deux caméras. La figure A présente les versions simulée et réelle de la plateforme
d’étude.

A - Images représentant les plateformes robotiques simulée et réelle

État de l’art
Les deux comportements précédemment mentionnés doivent être appris sans

modèles pré-calculés par l’être humain. L’apprentissage par renforcement profond
est une classe d’algorithmes utile à cet objectif. En effet, utiliser de l’apprentissage
par renforcement permet de nous dispenser d’utiliser un modèle dynamique pré-
calculé pour apprendre un comportement donné. De plus, l’apprentissage profond
permet de se passer de descripteurs pré-calculés pour la représentation d’état. Ainsi,
l’apprentissage peut s’effectuer directement sur des espaces d’états à haute dimen-
sionalité.

Cependant, le défi principal de ce genre d’approches est la façon de spécifier
l’objectif du robot. En effet, les robots ont souvent comme seuls signaux de renforce-
ment un signal positif quand la tâche est effectuée et un signal constant quand elle
ne l’est pas, ce qui peut rendre l’apprentissage long et complexe.

Que ce soit avant ou après l’émergence de l’apprentissage profond, deux méth-
odes principales sont utilisées. Elles ont pour objectif de guider l’apprentissage vers
l’objectif du robot. D’une part, des démonstrations d’experts peuvent être utilisées,
ce que nous ne voulons pas pour notre approche. D’autre part, des signaux de
récompenses informatifs additionnels (“reward shaping”) peuvent être employés.
Cette approche n’est pas à proscrire en soi. Seulement, ces signaux additionnels
dépendent souvent de modèles géométriques et de modules visuels supervisés pour
détecter une pose cible, ce que nous voulons éviter.

Des stratégies annexes peuvent également être utilisées comme l’apprentissage
“du plus simple au plus compliqué” (“curriculum learning” or “learning from easy
missions” en anglais), l’utilisation parallèle de nombreux robots et la décomposition

Summary (in french) xix

de la tâche complexe en sous-tâches plus simples. La première solution suppose
que l’on connaisse ce qui est “simple” et donc que l’on ait a minima une idée sur
un des états terminaux de la tâche. La deuxième solution nécessite des ressources
coûteuses. Enfin, la dernière solution n’implique pas nécessairement l’absence de
supervision pour les sous tâches considérées mais permet efficacement de réduire la
complexité de la tâche.

Approche choisie

B - Images représentant les 3 étapes de la tâche d’atteinte

En s’inspirant du comportement humain (les humains généralement regardent
d’abord les objets qu’ils saisissent), nous choisissons de décomposer la tâche d’atteinte
en trois sous tâches.

D’une part, le robot doit apprendre à fixer un objet posé sur la table avec un
système de deux caméras. L’idée derrière cette tâche est que les coordonées articu-
laires du système de caméras encodent dans l’espace la position de l’objet. Ensuite,
le robot apprend simultanément une tâche de fixation d’effecteur et une fonction
de coordination main-oeil. Cette dernière encode d’une certaine façon la position
de l’effecteur dans l’espace en fonction des coordonnées articulaires du bras robo-
tique. Enfin, le robot s’aide des deux précédentes tâches pour apprendre à toucher
l’objet. Toutes ces tâches sont apprises l’une après l’autre sans paramètres de cal-
ibrage, modèles cinématiques ou dynamiques pré-calculés, et traitements d’image
fait à la main. Elles seront détaillées dans les parties qui leur sont dédiées. De plus,
les fonctions apprises au cours de ces étapes sont représentées par des réseaux de
neurones.

Apprentissage de fixation binoculaire d’objets
La fixation d’objet consiste à bouger les caméras de telle sorte que l’objet soit

au centre de l’image. L’apprentissage de la fixation d’objets se fait à l’aide d’un al-
gorithme d’apprentissage par renforcement profond. Les états sont les images des
caméras et les coordonnées articulaires du système de caméras. Les actions possi-
bles sont les variations de coordonnées articulaires du système de caméras. Notre
contribution pour cette tâche se situe dans le calcul du signal de récompense qui ne
repose que sur très peu d’aprioris.

xx Summary (in french)

C - Schéma résumant toutes les procédures d’apprentissage

Ce signal se calcule comme suit :

• On ne place pas d’objets dans l’environnement et un auto-encodeur est utilisé pour
encoder les images de l’environnement.

• Lorsque l’on ajoute un objet dans l’environnement, la portion de l’image corre-
spondante à l’objet est mal reconstruite. Cette propriété est exploitée pour localiser
l’objet dans l’image. Ainsi, nous pouvons obtenir la distance Euclidienne entre le
centre de l’image et la position de l’objet.

• Une fois cette distance obtenue, le signal de récompense se calcule comme une
fonction affine décroissante de cette dernière.

La localisation de l’objet est entachée d’un bruit impulsionnel du fait de l’imperfection
des auto-encodeurs appris : ceux-ci ne reconstruisent pas optimalement les zones de
haute fréquence comme les pieds de table. Ainsi, de temps en temps, ce genre de
zone est détectée à la place de l’objet ce qui produit un bruit impulsionnel sur le
signal de récompense.

Nous établissons une approche sans aprioris pour limiter l’influence de ce bruit
dans l’apprentissage. Cette méthode consiste à apprendre la variation observée
des positions d’objets dans l’image comme une fonction de la norme du vecteur
d’actions (variations des coordonnées articulaires du système de caméras) appliqué
antérieurement. Ainsi, à chaque action appliquée, nous prédisons une variation
de position d’objets dans l’image. Si la variation observée est très différente de la
variation prédite, cette transition <état, action, état, récompense> n’est pas prise en
compte dans l’apprentissage.

Pour le côté expérimental, nous montrons dans un domaine synthétique que
l’apprentissage de la fixation avec notre signal de récompense filtré (en bleu sur la
figure D) produit un apprentissage de meilleur qualité que celui non filtré (en rouge

Summary (in french) xxi

sur la figure D). De plus, le signal filtré approche les performances d’un signal de ré-
compense supervisé (calcul en tout point similaire mis à part la localisation de l’objet
qui est réalisée par projection de la position 3D dans l’image, en noir sur la figure
D).

0 50000 100000 150000 200000
Iterations

0

10

20

30

40

50

60

e p
(t

)(
p
ix

el
)

e s
p (t)

ewf
p (t)

ew
p (t)

D - Courbes d’apprentissage de la fixation d’objet pour le domaine
simulé. ep(t) représente au cours du temps la distance dans l’image
entre la projection du centre de gravité de l’objet et le centre de

l’image.

Dans le domaine réel, nous montrons que notre méthode de calcul de récom-
pense filtré produit de bons résultats, comme le montre la figure E :

Apprentissage simultané de la fixation d’effecteur
et de la fonction de coordination main-oeil

L’objectif réel de cet apprentissage simultané est l’apprentissage de la fonction
de coordination main-oeil f telle que : qcamera

virt = fη(qrobot). qcamera
virt représente les

coordonnées articulaires du système de caméras qui font que celui-ci fixe l’effecteur,
qrobot est le vecteur des coordonnées articulaires du bras robotique, η est le vecteur
de paramètres du réseau de neurones représentant f .

Pour apprendre cette fonction sans supervision, nous utilisons une technique
d’apprentissage supervisé avec des couples entrée-sortie obtenues de façon faible-
ment supervisée. Pour obtenir ces données (qrobot, qcamera

virt), une politique de fixation
d’effecteur est apprise.

Cet apprentissage est effectué de la même façon que pour la fixation d’objet. Les
mêmes espaces d’état et d’action sont utilisés. En revanche, le signal de récompense
est différent et est calculé de la façon suivante :

• A chaque itération, le robot bouge un doigt, et la différence d’images avant et après
le mouvement est obenue.

xxii Summary (in french)

0 20000 40000 60000 80000 100000 120000 140000 160000
Iterations

0.5

0.0

0.5

1.0

1.5

2.0

Re
w

ar
d

si
gn

al

E - Courbe d’apprentissage de la fixation d’objet pour le domaine réel.
Le signal de récompense est représenté en ordonnée.

• De cette différence d’images, l’effecteur est localisé. Ainsi, on calcule une distance
entre l’effecteur et le centre de l’image.

• De la même façon que pour la fixation d’objets, la récompense est calculée comme
étant une fonction affine décroissante de la distance entre l’effecteur et le centre de
l’image.

Les données (qrobot, qcamera
virt) sont ajoutées à la base de données d’entraînement

de f lorsque la récompense dépasse une valeur de seuil.
Ces apprentissages sont effectués dans le domaine simulé. La figure F représente

l’entraînement parallèle de la politique de fixation d’effecteur et de la fonction de la
coordination main-oeil. Nous observons la convergence du signal de récompense et
du coût de la fonction de coordination main-oeil.

Apprentissage de comportements liés à l’atteinte
d’objets

La tâche d’atteinte d’objets consiste à atteindre l’objet avec la paume de l’effecteur.
Pour notre étude, nous considérons un seul objet. Lors de l’apprentissage de l’atteinte
d’objets, le robot fixe l’objet au préalable avec la politique apprise lors de la première
étape. Le vecteur d’état est composé des coordonnées articulaires du système de
caméras et du bras robotique. Nous nous passons d’images parce que notre étude
considère un seul objet et que les coordonnées articulaires du système de caméras
localisent suffisamment bien la position de l’objet dans l’espace. Les actions sont les
variations de coordonnées articulaires du bras robotique.

La fonction de récompense utilisée est une somme de trois termes :

Summary (in french) xxiii

0 50000 100000 150000 200000
Iterations

0.0

0.5

1.0

1.5

2.0

Re
w

ar
d

si
gn

al

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ey
e

ha
nd

 c
oo

rd
in

at
io

n
lo

ss

F - Courbes représentation l’apprentissage de la fonction de coordi-
nation main-oeil

• un signal épars pour définir l’objectif de la tâche (1 lorsque l’objet est atteint et une
constante négative lorsqu’il ne l’est pas.

• un signal informatif, fonction affine décroissante de la distance entre les coordon-
nées articulaires du système de caméras et des coordonnées articulaires “virtuelles”
du système de caméras (qui feraient en sorte que les caméras fixent l’effecteur). Ce
signal fait en sorte que le bras apprenne à diriger l’effecteur vers l’objet.

• un signal de pénalité négatif quand le robot touche la table.

Nous comparons cette fonction de récompense (rproposedPen) avec 4 autres récom-
penses :

• Un signal épars seul (rsparse)

• Un signal épar muni du signal de pénalité négatif (rsparsePen)

• Un signal épars muni du signal de récompense informatif précédemment men-
tionné (rproposed)

• Un signal épars muni d’un signal de récompense informatif dépendant d’un mod-
èle géométrique direct et d’une connaissance parfaite de la position 3D de l’objet
et du signal de pénalité négatif (rsupervisedPen)

Tous ces signaux ont été testés dans des configurations initiales particulières :

1. Une position initiale d’objet et une position initiale de bras (figure G)

2. Plusieurs positions initiales d’objet et une position initiale de bras (figure H)

3. Une position initiale d’objet et plusieurs positions initiales de bras (figure I)

4. Plusieurs positions initiales de bras et d’objet (figure J)

xxiv Summary (in french)

0 500 1000 1500 2000 2500 3000 3500 4000
Episodes

0

10

20

30

40

50

60

70

80

90

100

ν(
%

)

νproposedPen

νproposed

νsparse

νsupervisedPen

νsparsePen

G - Courbes représentant la fréquence d’atteinte en fonction des
épisodes pour diverses fonctions de récompense pour la configura-

tion initiale 1

0 5000 10000 15000 20000 25000 30000
Episodes

0

10

20

30

40

50

60

70

80

90

100

ν(
%

)

νproposedPen

νproposed

νsparse

νsupervisedPen

νsparsePen

H - Courbes représentant la fréquence d’atteinte en fonction des
épisodes pour diverses fonctions de récompense pour la configura-

tion initiale 2

De ces résultats, nous tirons les conclusions suivantes. Si nous utilisons des ré-
compenses éparses sans récompenses informatives, l’apprentissage ne fonctionne
pas quand seulement une position initiale de bras est générée à chaque début d’épisode.
En effet, la probabilité que la paume de l’effecteur touche l’objet est faible. En

Summary (in french) xxv

0 5000 10000 15000 20000 25000 30000
Episodes

0

10

20

30

40

50

60

70

80

90

100

ν(
%

)

νproposedPen

νproposed

νsparse

νsupervisedPen

νsparsePen

I - Courbes représentant la fréquence d’atteinte en fonction des
épisodes pour diverses fonctions de récompense pour la configura-

tion initiale 3

0 5000 10000 15000 20000 25000 30000 35000 40000
Episodes

0

10

20

30

40

50

60

70

80

90

100

ν(
%

)

νproposedPen

νproposed

νsparse

νsupervisedPen

νsparsePen

J - Courbes représentant la fréquence d’atteinte en fonction des
épisodes pour diverses fonctions de récompense pour la configura-

tion initiale 4

revanche, lorsque nous utilisons plusieurs positions initiales de bras, nous aug-
mentons la probabilité de toucher l’objet. Quand la position de l’objet est fixe,
nous obtenons des performances très bonnes. Cependant, lorsqu’elle ne l’est pas,
l’apprentissage n’est pas fiable du tout.

xxvi Summary (in french)

Nous observons par ailleurs que pour toutes les configurations d’intialisation
d’épisode, utiliser des termes informatifs accélère l’apprentissage.

De plus, nous observons que pour les configurations où plusieurs positions in-
tiales de bras peuvent être générées, le terme pénalisant les contacts entre l’effecteur
et la table accélère l’apprentissage. En effet, il permet de guider plus efficacement
le robot vers des positions d’atteinte. Nous observons cet effet particulièrement
lorsque l’on utilise la récompense informative faiblement supervisée. Si nous n’utilisons
pas ce terme, le terme de pénalité peut faire en sorte que l’apprentissage considère
la table comme un répulsif, ce qui ralentit l’apprentissage.

Enfin, la récompense informative proposée permet d’atteindre des performances
proches de celles obtenues avec la récompense informative supervisée.

La prédicteur d’atteignabilité R = Reα(qcamera) est appris en utilisant de l’apprentissage
supervisé avec des données générées par l’apprentissage de l’atteinte d’objets. En
effet, à chaque fin épisode (lorsque la politique d’atteinte produit déjà des bonnes
performances), le couple (qcamera, R), R ∈ {0, 1} est ajouté à la base de données
d’apprentissage de Re. R indique si le robot a réussi à atteindre l’objet.

Pour apprendre l’atteignabilité, nous utilisons la configuration initiale 2, i.e. une
seule position initiale de bras, plusieurs positions initiales d’objet. Deux mesures
sont relevées au fil des épisodes. La première (figure K) évalue les performances de
la politique d’atteinte. Pour cela, nous relevons si oui ou non, la politique d’atteinte
est en accord avec la prédiction théorique d’atteignabilité (si l’objet est atteignable, le
robot doit l’atteindre pour obtenir un succès). Nous observons que le robot converge
vers des performances plutôt bonnes.

0 5000 10000 15000 20000 25000 30000 35000 40000
Episodes

0

20

40

60

80

100

Re
ac

hi
ng

 p
er

fo
rm

an
ce

s
(%

)

K - Courbe représentant l’évolution de la performance de la politique
d’atteinte au fil des épisodes

La deuxième (figure L) évalue à quel point le prédicteur d’atteignabilité se rap-
proche de l’estimation théorique de l’atteignabilité. Nous observons également que
le prédicteur atteint des performances plutôt bonnes.

De plus, nous affichons en figure M une évaluation de l’atteignabilité en fonction
de la position de l’objet sur la table.

Summary (in french) xxvii

0 5000 10000 15000 20000 25000 30000 35000 40000
Episodes

0

20

40

60

80

100

Re
ac

ha
bi

lit
y

pr
ed

ic
tio

n
ac

cu
ra

cy
 (%

)

L - Courbe représentant l’évolution de la précision du prédicteur
d’atteignabilité

Pour chaque position sur la table, le robot fixe l’objet, et le prédicteur d’atteignabilité
sort une valeur entre 0 et 1. Nous observons que la prédiction est très bien apprise
pour des positions loin de la frontière d’atteignabilité. En revanche, nous observons
des imprécisions près de la frontière. Pour la plupart de ces erreurs, elles peuvent
être imputées à une fixation d’objets qui ne permet pas de localiser avec une très
grande précision l’objet. En revanche, une des zones (près du bout de droite de la
courbe blanche) présente des erreurs plus importantes. Cela s’explique par le fait
que le robot ne parvient pas à atteindre de manière régulière l’objet situé dans cette
zone. Entraîner la fonction de coordination main-oeil dans cette zone devrait aider
à réduire ces erreurs.

Conclusion
Les contributions majeures des travaux présentés sont liées à la faible super-

vision requise pour l’apprentissage des comportements robotiques. Pour les ap-
prentissages de la fixation d’objet, de la fixation d’effecteur et de la fonction de
coordination main-oeil, aucun paramètre de calibration des caméras, ni de traite-
ment d’image supervisé n’est requis. Pour l’apprentissage de la politique d’atteinte
d’objet, et du prédicteur d’atteignabilité aucun modèle géométrique, ni traitement
d’image supervisé n’est utilisé. Ainsi, l’entière procédure d’apprentissage ne rec-
quiert que très peu de supervision par l’être humain.

Ces travaux comportent quelques limites qui proviennent du peu d’aprioris util-
isés dans notre méthode. En effet, pour la fixation d’objet, la limite vient du fait
que nous supposons qu’il n’y a pas d’objet lors de l’encodage de l’environnement.
Ainsi, si l’environnement change, la fonction de récompense risque de ne plus être
valide. Par conséquent, les auto-encodeurs doivent être entraînés de nouveau sur le
nouvel environnement, ce qui peut être fastidieux si l’environnement varie souvent.

xxviii Summary (in french)

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
x (m)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

y
(m

)

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
x (m)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

y
(m

)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

M - Évaluation du prédicteur d’atteignabilité. Pour les deux figures,
la courbe blanche représente la fontière d’atteignabilité. La figure du
haut représente la sortie du prédicteur (entre 0 et 1) et celle du bas

représente la prédiction binarisée (0 or 1).

De plus, pour l’apprentissage de la fixation d’effecteur, il est supposé que rien ne
bouge mis à part l’effecteur. La fonction de récompense peut ne pas être valide si
l’environnement varie énormément.

Les perspectives qu’offrent ces travaux concernent d’une part le traitement des
limites de notre approche. D’autre part, ces travaux peuvent également être plus
largement expérimentés sur une plateforme robotique réelle. Enfin, la tâche d’atteinte
d’objets peut être étendue à divers types d’objets.

1

Chapter 1

Introduction

1.1 Motivations
In industrialized countries, robotics has deeply revolutionized our daily life in

several aspects. It has led to increased industrial production while reducing the
drudgery of some automatic tasks. It has also brightly helped many sectors such as
the field of agriculture, people assistance (domestic robots), complex low-invasive
surgical operations (medical robots), exploration of the seabed (underwater robots),
and maintenance in nuclear plants.

Some of these tasks still present interesting challenges according to several as-
pects. First, in open or/and inaccessible or/and complex environments (e.g. robots
exploring the seabed), designing models that perfectly describe dynamics of robots
and environments through time is very challenging. Thus, with the use of classi-
cal control laws, it is difficult for the robot to reliably achieve a task if unexpected
changes occur. Second, robotic tasks generally rely on a perfect model of robot ge-
ometry. If the latter changes, the robot has to take it into account. Third, many tasks
require to take into account high-dimensional input spaces, e.g. learning to grasp
from visual inputs, which is challenging. To solve these tasks, it is interesting to
take inspiration from humans or animals since (1) they are able to adapt to most
environment variations, (2) they take into account high-dimensional inputs (vision,
proprioception) and (3) nobody provides the animals with models (about geometry
or dynamics) since they are learning them. We particularly focus on the latter aspect
in the sense providing robots with models can be particularly damaging when they
become wrong.

We illustrate these thoughts by two examples which show how designing models
can affect the behaviour of robots. The first is the one of a so-called autonomous car,
which has to learn to drive on a lane while avoiding obstacles such as pedestrians
or other cars. Let us assume that programmers made the car detect these obstacles
in good weather conditions, i.e. without rain or snow. If it rains, the robot may not
detect well the obstacles and avoid them, because the assumption of good weather
conditions was wrong. For a more technical example, assume that a humanoid robot
provided with a pair of cameras has to sort blue objects (there are two forms of
objects) in a white room using inverse kinematics, calibration parameters, a blue-
color-segmentation algorithm, and an algorithm outputting the shape of the object.
Several changes to the robot model or the environment can affect the performance
of the robot. First, inverse kinematics can simply change if the geometry of the robot
varies because of damages, or if joint encoders are deficient. Thus, the robot would
not be able to reach the objects. Second, if objects with different shapes and colors
appear in the scene, the robot will not be able to localize the object and to manipulate
it (see Figure 1.1 for an illustration). These two examples show first that it is not easy

2 Chapter 1. Introduction

to build models which are valid for any robot and environment variations. Second,
if humans provide robots with models of kinematics, dynamics or use restricted
assumptions, the robots cannot reliably achieve a task when these models become
wrong. Therefore, we want to work on this specific issue by making the robot as
much as possible independent on models designed by humans.

FIGURE 1.1: Scheme representing the issue regarding the use of re-
strictive assumptions. The robot only learned to sort some specific
objects and when new objects appear, the robot may fail to achieve its

task.

1.2 Objective
The objective of the thesis is to show how a complex robotic task can be learned

with minimal supervision (as explained above, a complex task generally involves
high-dimensional input spaces or/and complex environments). More precisely, we
want to investigate the following question.

Can a robot learn a complex manipulation task without:

• priors on calibration parameters,

• priors on kinematics,

• priors on dynamics,

• knowledge about environment images (hand-crafted visual features),

• expert demonstrations?

1.3 Presentation of the robotic tasks
To address this question, we consider learning manipulation robotics tasks. This

field is interesting since manipulation skills are necessary for repairing machines in
dangerous environments (nuclear plants) and for assistance or exploration robots.
Specifically, we focus on two reaching skills:

• A “palm-touching task”: a robotic manipulator has to touch an object with its end-
effector palm. This task can be considered and used as a pre-grasping task. Indeed,
once the object is touched with the palm, the resulting arm posture is close to be a

1.4. Our approach 3

grasping posture (we do not learn to grasp for the sake of simulation simplicity).
As grasping skills are important in numerous manipulation tasks (clearing table
or materials handling), our task is thus interesting from this point of view. Besides,
this task is complex because on the one hand we only use raw sensory inputs such
as image pixels, camera joint angles, arm joint angles and tactile sensors as states.
This makes the problem high-dimensional. On the other hand, the initial config-
urations of the reaching task are both numerous and diverse and some of them
imply not obvious solutions (the robot has to substantially modify its orientation
to touch the object).

• A reachability prediction skill: when fixating an object, from the direction of its
gaze, the robot has to predict whether the object is reachable. This skill is inter-
esting in that it can be directly used in the situation where the manipulator has a
mobile base and cannot directly reach the object without moving. In such a case,
the robot would just have to move its mobile base such that it can reach the object.

We want to achieve these tasks with very few priors about the robot model and
the environment geometry and without expert demonstrations. Deep reinforcement
learning methods have taken important steps towards this objective. Indeed, in or-
der to learn a required behaviour (or a policy) for a given task, reinforcement learn-
ing methods dispense with the use of modelling dynamics. The knowledge about
the interaction between the agent and the environment comes from the exploration
of the latter by the agent. Besides, the emergence of deep learning has offered good
solutions to dispense with the use of hand-crafted features for the state representa-
tion. Consequently, many deep reinforcement learning algorithms have been pro-
posed and applied to high-dimensional robotics tasks [1], [2].

However, in order to learn a complex manipulation robotics task with deep re-
inforcement learning, robots are often provided with a positive reward given only
upon full completion of the task. E.g. to learn that a grasping move is good, the
robot has to execute this correct grasping move and then it is rewarded. This correct
move is found through exploration of the environment. In a high-dimensional state
space, this can take a very long time.

To alleviate this issue, many methods use strong assumptions to make this kind
of learning tractable, e.g. hand-crafted features, expert demonstrations, forward
kinematics (generally used to compute shaping rewards), knowledge of some goal
states. In contrast, we try to make the robot learn the chosen manipulation tasks
without these kinds of prior knowledge.

1.4 Our approach
To limit the amount of requirements in robotic learning, one promising approach

is to take inspiration from human or animal behaviours because they are not pro-
vided with kinematics or hand-crafted features, they are learning them. Conse-
quently, to learn the palm-reaching task, we take inspiration from the human be-
haviour. Generally, to grasp an object, the humans first look at it and then grasp it.
Based on this principle, we choose to decompose the whole palm-reaching task into
three tasks (see Figure 1.2). First, the robot learns how to fixate objects. Second, the
robot jointly learns how to fixate its end-effector and a hand-eye coordination func-
tion. Third, based on the knowledge acquired in the two previous tasks, the robot
learns to touch objects. The three tasks are learned one after the other. The rationale
is that the first task makes the robot implicitly locate the object in the 3D scene from

4 Chapter 1. Introduction

raw pixels. The second one allows the robot to implicitly locate the end-effector from
robot joint angles. And in the third one, the robot uses a shaping reward function
based on the knowledge acquired during the two prior tasks which helps it to reach
successful areas. The key point of our approach is that each task hardly requires
human supervision.

FIGURE 1.2: Scheme of the three steps of the stage-wise framework

1.5 Contributions
In the object fixation task [3], [4], two contributions are involved. First, we have

designed a weakly-supervised shaping reward and second we have implemented
an unsupervised denoising procedure. In the joint learning of the end-effector fixa-
tion and the hand-eye coordination, the framework built for the object fixation task
is applied and produces good results, which is interesting in itself. For the reaching
skills [5], [6], we present a new stage-wise deep reinforcement learning framework.
In addition, the latter does not use forward/inverse kinematics, supervised visual
modules, expert knowledge, dimension reduction or too costly materials and re-
sources, which represents a step towards autonomy.

1.6 Report plan
The remainder of the thesis is as follows. Chapter 2 presents theoretical tools

used in this thesis. It presents first a broad scope of machine learning and deep
learning. Second, it presents ways to solve sequential decision making problems,
and focuses on reinforcement learning. Finally, we present what is deep reinforce-
ment learning and some of the algorithms suitable to learn complex robotics tasks.
Chapter 3 mainly describes modern applications of deep reinforcement learning on
manipulation robotics tasks. The stress is put on the way the goal is specified for
each application, i.e whether it needs forward/inverse kinematics or supervised vi-
sual modules or state and action space simplifications or expensive materials. In
chapter 4, we develop the idea to make the robot learn with little supervision. Then,
three chapters (5, 6 and 7) follow, describing the contributions of our work. Chapter
8 summarizes the contributions and the limits of our work and provides guidelines
for future work.

5

Chapter 2

Theoretical background

This chapter provides the theoretical background that will be required in the
remainder. We present first a non exhaustive overview of machine learning with
neural networks. Second, we focus on sequential decision making problems. Third,
we present what is deep reinforcement learning and what algorithms can suit our
requirements for learning manipulation robotic tasks.

2.1 Machine learning with neural networks
This section successively describes the general outline of machine learning, basic

understanding on neural networks and recent deep learning progresses.

2.1.1 Machine learning
From a broad perspective, machine learning is a subfield of artificial intelligence

in which the goal is to learn relations among data. It generally consists in learning
data statistics or predicting data and can be applied to a wide range of tasks in which
efficient algorithmic solutions are difficult or impossible to find such as classifying
objects in images or predicting the best move in the game of Go.

2.1.1.1 Supervised learning

A supervised learning algorithm is provided with a dataset of S input-output
pairs (Xi, Yi)i∈{1,...,S}, where (Xi)i∈{1,...,S} are the data and (Yi)i∈{1,...,S} the associ-
ated labels. Then, the algorithm tries to approximate a function M such that ∀i ∈
{1, ..., S}, M(Xi) = Yi. The underlying objective of such an algorithm is to general-
ize to untrained data. The most known examples of supervised learning frameworks
are classification [7] (countable outputs) and regression [8] (uncountable outputs).

2.1.1.2 Unsupervised learning

An unsupervised learning framework is provided with only data Xi and no la-
bels. Then, the algorithm tries to learn the hidden structure behind data. It can
be used for different purposes such as estimating a density function, grouping data
into clusters (clustering), compressing data, and eventually detecting or localizing
anomalies (as we will see in section 5.2.2).

2.1.1.3 Reinforcement learning

In a reinforcement learning framework, an agent learns from its interaction with
the environment. The learning is driven by a reward signal and an exploration

6 Chapter 2. Theoretical background

method. The former is a real-valued number Ri ∈ R which rates a pair (Xi, Yi) with
Xi ∈ X and Yi ∈ Y generally being states and actions. The algorithm picks up tu-
ples < Xi, Yi, Ri, Xi+1 > called transitions through exploration. From them, it learns
a sensori-motor mapping π : X → Y which makes the agent pick up high rewards
in the future. Reinforcement learning objective is to deal with sequential decision
making problems. Section 2.2 gives more details about this particular framework.

2.1.1.4 Generalization

In all the previously mentioned frameworks, the key problem is to learn some-
thing which generalizes from training data to all data. This problem is called "gen-
eralization" and can be addressed by different kinds of method. The first idea is to
train with a large and diverse dataset. Indeed, the latter can more efficiently cap-
ture the variability of data. The second idea consists in decreasing the capacity of
the model. For example, the algorithm can use less learnable parameters. Besides,
regularization can be used to limit overfitting to training data. Most popular regu-
larization methods are dropout [9] and L1 & L2 regularization [10]. Generalization is
generally checked by comparing during training the performances of the framework
on training, validation and test sets.

2.1.2 Artificial Neural networks
Several ways to approximate a function M : X → Y exist in the machine learning

literature: Gaussian processes [11], Support vector machines [12], etc. We choose to
use artificial neural networks since they have been proven efficient to approximate
functions with high-dimensional inputs. The field of artificial neural networks dates
back to the 40s when [13] tries to model the nervous activity by a neural network. Su-
pervised learning [14], [15] and unsupervised learning [16], [17] problems as well as
associative memories [18], [19] using simple neural networks were explored several
years later (from 1969 to 1982). The reader can refer to [20] for additional references.

2.1.2.1 Neurons

Definition 2.1. In the field of artificial neural networks, a neuron n is a computational unit
which takes as input a vector x ∈ RN (N ∈ N) and computes an output value z given a
bias b ∈ R, a vector of weights w ∈ RN , and an activation function a.

We note g the pre-activation value such that:

g = wTx+ b =
N

∑
i=1

wixi + b (2.1)

Definition 2.2. In the field of artificial neural networks, a deterministic neuron is a neuron
whose output z is a function a : R→ E ⊂ R of g : z = a(g).

Definition 2.3. In the field of artificial neural networks, a stochastic neuron is a neuron
whose output z is sampled from the density function a depending on the pre-activation func-
tion g: z ∼ a(g).

One widely used stochastic neuron has binary outputs z ∈ {0, 1} and computes
them using the sigmoid σ (see 2.1.2.6 for its definition) of the activation:

z =

{
1, if r ∼ U(0, 1) > σ(g),
0, otherwise,

where∼ U(0, 1) means sampled from a uniform

distribution of real numbers between 0 and 1.

2.1. Machine learning with neural networks 7

(A) deterministic neuron (B) stochastic neuron

FIGURE 2.1: Scheme of neurons

2.1.2.2 Artificial neural networks

We define a general artificial neural network (ANN) as an undirected graphical
model composed of neurons which are randomly connected through synapses. This
allows self and bi-directional connections.

We can distinguish several neuron types according to their role in the network:

• Input neurons nI which have the identity as the activation function and copy the
information that the user provides.

• Output neurons nO which provide the results of the prediction given inputs and
hidden unit states.

• Hidden neurons nH which process information based on hidden units states and/or
inputs.

The output and hidden units can have arbitrary activation functions.

FIGURE 2.2: A random artificial neural network. To ensure a good
visibility, the biases are not represented.

The pre-activation of hidden or output units is computed using equation (2.1).
For example, in Figure 2.2, the pre-activation gx of the neuron x fed by neurons a, b
and c is gx = waza + wbzb + wczc + bx. The bias is not represented in Figure 2.2 for

8 Chapter 2. Theoretical background

better visualization. Note that such a random artificial neural network is also called
a recurrent network due to the presence of cycles in the neural network architecture.
The presence of cycles notably allows to take into account past inputs for the output
computation.

In the following paragraphs, we describe neural network structures which are
used in the thesis. We willingly omit undirected graphical models such as Restricted
Boltzmann machines [21], [22]. Furthermore, we do not describe recurrent neural
networks since they are mainly used to address time-dependent problems that we
do not consider in this thesis.

2.1.2.3 Feed-forward neural networks

Structure

A feed-forward neural network (FNN) is a directed graphical model in which
neurons are organized in a layered structure. In such a structure, there is no cycle
and no self-connection.

FIGURE 2.3: A 2-hidden layers FNN

(A) (B)

FIGURE 2.4: Fully (A) and partially (B) connected layers

Layers

There are several ways to compute unit pre-activations of a layer l given the
outputs of the previous layer l − 1. We present here some usual ways of doing it:

2.1. Machine learning with neural networks 9

• Fully-connected layers

Definition 2.4. A layer l is called "fully-connected" if and only if each unit of the layer l
is connected to each unit of the layer l − 1.

The activations and outputs of fully-connected layer units are given by equations
(2.2) and (2.3):

∀i ∈ {1, ..., Nl}, gl
i =

Nl−1

∑
j=1

wl
ijz

l−1
j + bl

i , (2.2)

∀i ∈ {1, ..., Nl}, zl
i = al(gl

i), (2.3)

with Nl being the number of units in the layer l, wl
ij being the weight between the

jth neuron of the layer l − 1 and the ith neuron of the layer l, and bl
i the bias of the

ith neuron of the layer l.

• Partially-connected layers

Definition 2.5. A layer l is called "partially-connected" if and only if it contains at least
one unit which is not connected to at least one unit of the layer l − 1.

The computations of activations and outputs of partially-connected layer units can
be made using equations (2.2) and (2.3). In (2.2), wl

ij is replaced by 0 when there
is no connection between the ith neuron of layer l and the jth neuron of the layer
l − 1.

• Convolutional layers
Let us describe first what is a feature map. This is a structure composed of neu-
rons belonging to one specific layer l. Each neuron of a feature map is computed
using the same weights (shared weights) on a specific area of feature maps be-
longing to the previous layer l − 1. This area which corresponds to one neuron
is called the receptive field of the neuron and the shared weights are represented
by a kernel. A convolutional layer l is composed of F feature maps whose pre-
activations are computed using F convolutional kernels (one per feature map)
W l, f (f ∈ {1, ..., F}) based on the feature map outputs of the layer l − 1.

Definition 2.6. A layer l is called "convolutional" if and only if, for each feature map f of
the layer l, the pre-activations are computed using a convolution product between a kernel
W l, f and the output units of the layer l − 1: gl, f =W l, f ∗ zl−1 + bl .

Practically, cross correlation is used instead of convolution in neural networks.
However, these operators are equivalent in this context. Using convolutional lay-
ers is particularly interesting in fields in which there is a grid-like structure and
the same processing is relevant in all the input space, e.g computer vision, sound
analysis, natural language processing. Besides, it allows to significantly reduce
the number of parameters to be optimized compared with a fully connected layer.

Figure 2.5 is a 1D example in which the same convolutional kernel can be relevant
in all the input space.

Indeed, 2× (zl−1
1 , zl−1

2 , zl−1
3) = (zl−1

4 , zl−1
5 , zl−1

6), and W l,1 can easily describe the
input space with 3 parameters (if the learning objective is to reconstruct the input

10 Chapter 2. Theoretical background

FIGURE 2.5: Convolutional layer (top) vs fully-connected layer (bot-
tom). In the fully connected layers, all the weights can be different. In
the convolutional layer, the weights represented by the same arrow

style are equal.

for instance). Furthermore, for the same input-output pair, a convolution layer
needs 8 times less parameters (in this example) compared with a fully-connected
layer.

Forward pass

For a N-hidden-layer FNN, the output computation starts from the input layer
l = 0 until the output layer l = N + 1 through all the hidden layers l = {1, ..., N}.
The computation of the output given inputs is called a forward pass. The vectors
x = z0 and y = zN+1 are the inputs and the outputs of the neural network. If we
note θ a vector regrouping all the learnable parametersW l

l∈{1,...,N+1} and bl
l∈{1,...,N+1},

we note the forward pass of the neural network Nθ: y = Nθ(x).

2.1.2.4 Autoencoder

An autoencoder [23] is an artificial neural network trained to reconstruct its input
(see Figure 2.6 for the representation of an example feed-forward autoencoder). The
output of the autoencoder is written x̂, and thus the learning objective is that x̂ =
Nθ(x). Since it does not require labels, it is an unsupervised learning framework.
It is aimed at capturing the features of inputs. It can be notably used to compute

2.1. Machine learning with neural networks 11

a compact feature vector and reduce the dimensionality of the input data [24] or
for anomaly detection [25]. It is particularly relevant for data which have spatial
coherence, e.g. images.

FIGURE 2.6: A feed-forward autoencoder

2.1.2.5 Learning FNN parameters

Learning the FNN parameters is a non-linear optimization problem and we de-
scribe here the most common way to learn these parameters in the literature. We give
the equations only for the case of a FNN using only fully-connected layers (these
equations can be easily expanded to the other layers).

Loss function

In a supervised setting, learning uses a database D = {(x1,y1
T), ..., (xS,yS

T)} of
S input-output pairs, x and yT being the inputs and desired outputs provided to
the algorithm. The learning goals are to adapt θ such that Nθ(x) = yT and also
that the network generalizes to new test data, i.e. Nθ(xtest) = ytest. This goal
is mathematically written as a loss function L(y,yT) = L(Nθ(x),yT). The latter
should be differentiable with respect to y so that ∂L(y,yT)

∂y can be computed. In our
work, we consider the Euclidean loss:

L =
1

2S

S

∑
i=1

(yi
T −Nθ(x

i))2. (2.4)

Computing gradients

To optimize the parameters θ, we compute the gradient of the loss with respect
to each parameter using the back-propagation algorithm [26], [27], [28], [29]. The
latter uses equations (2.5), (2.6), (2.7), (2.8) from the layer N + 1 to the layer 0 (see
Figure 2.7).

∀l ∈ {1, ..., N + 1}, ∀j ∈ {1, ..., Nl−1},
∂L

∂zl−1
j

=
Nl

∑
i=1

(
∂L
∂gl

i

∂gl
i

∂zl−1
j

) =
Nl

∑
i=1

(
∂L
∂gl

i
× wl

ij) (2.5)

∀l ∈ {1, ..., N + 1}, ∀i ∈ {1, ..., Nl},
∂L
∂gl

i
=

∂L
∂zl

i

∂zl
i

∂gl
i
=

∂L
∂zl

i

∂al(gl
i)

∂gl
i

(2.6)

12 Chapter 2. Theoretical background

∀l ∈ {1, ..., N + 1}, ∀i ∈ {1, ..., Nl}, ∀j ∈ {1, ..., Nl−1},
∂L

∂wl
ij
=

∂L
∂gl

i

∂gl
i

∂wl
ij
=

∂L
∂gl

i
zl−1

j

(2.7)

∀l ∈ {1, ..., N + 1}, ∀i ∈ {1, ..., Nl},
∂L
∂bl

i
=

∂L
∂gl

i

∂gl
i

∂bl
i
=

∂L
∂gl

i
(2.8)

FIGURE 2.7: Back-propagation scheme

Updating parameters

Once the gradients of the loss with respect to the learnable parameters are com-
puted, the learnable parameters can be updated using gradient descent [30] to min-
imize the loss function (and gradient ascent if the goal is to maximize the loss func-
tion):

θ
j
t = θ

j
t−1 − α

∂L
∂θ j , (2.9)

with α the learning rate, θ j the jth component of θ and t denoting a time step. If
the loss function was convex with respect to the parameters applying equation (2.9)
would lead to the optimal solution. However, it is never the case in many problems.
While equation (2.9) can offer decent results even in some non-convex problems, it
is usually not the best way to update weights. To get a good sub-optimal solution,
there are several update rules using gradients. We consider a given way to be a
particular solver. (2.9) is the equation for gradient descent without momentum.

We review now several important features for updating neural networks and
briefly describe the solver that we use in our work.

• Batch gradient descent and Stochastic gradient descent:
Let us consider that the problem is to learn M : X → Y using the S-sized database
D = {(x1,y1

T), ..., (xS,yS
T)}. We assume first that D represents all the data of the

problem. Let Li be the loss for the ith input-output pair.

2.1. Machine learning with neural networks 13

Applying a batch gradient descent means updating the weight using 1
S ∑S

i=1(
∂Li

∂θ j),
i.e. using the gradient averaged over all the dataset. In problems with a continu-
ous input space, it is impossible to average the gradient on all the dataset.

This is why, stochastic gradient descent (SGD) is generally used. Applying a
stochastic gradient descent solver means updating the weights based on an ap-
proximation of the gradient. In other terms, gradient updates happen on A sam-
ples with A < S: 1

A ∑A
i=1(

∂Li

∂θ j). The choice of the A value is based on a trade-off
between computational cost and gradient variance. Indeed, the smaller is A, the
larger is the variance of the gradient estimate and the smaller is the computational
cost. In contrast, a higher A value decreases the variance of the gradient estimate
and the computational cost.

• Using a momentum [29]:
Using a momentum with SGD consists in keeping an exponentially weighted av-
erage mt of the gradient and using it to update the gradient:

mj
t = βmj

t−1 + (1− β)
∂L
∂θ j , (2.10)

θ
j
t = θ

j
t−1 − αmj

t. (2.11)

Its role is to deal with the fact the loss functions are almost never strictly monotonous.
Indeed, the loss function can reach a plateau and an update using only the gradi-
ents cannot make it escape from this flat area. To deal with this, the momentum
uses the delay property of the exponential average filter and allows to still update
parameters in the prior gradient direction even though the gradient is zero.

• ADAM [31]: ADAM keeps track over time of the gradient first moment estimate
mj

t and the gradient uncentered second moment estimate vj
t:

mj
t = β1mj

t−1 + (1− β1)
∂L
∂θ j , (2.12)

vj
t = β2vj

t−1 + (1− β2)(
∂L
∂θ j)

2, (2.13)

with β1 and β2 being tunable hyper-parameters. After that, the parameters are
updated using equation (2.14):

θ
j
t = θ

j
t−1 − α

√
1− (β2)t

1− (β1)t
mj

t√
vj

t + ε
, (2.14)

with
√

1−(β2)t

1−(β1)t being a factor correcting the biased estimates mt and vt, ε being a
small-valued hyper-parameter, and α being an upper bound of the weight update
for non-sparse gradients. The case of sparse gradients corresponds to the case
where all the gradients are zero for several time steps t− 1...t− N, and for a given
iteration t it becomes non null.

2.1.2.6 Activation functions

The activation functions of neural units are of prime importance since they give
the neural networks the ability to learn non linear functions. One property which

14 Chapter 2. Theoretical background

is required for the back-propagation algorithm equations (see equation (2.6)) is that
they must be differentiable. Furthermore, when choosing an activation function, the
values of the gradients ∂a(g)

∂g have to be taken into account, because they allow to stop
or transfer updating information to inferior layers. E.g. a zero gradient stops the
information processed by the neuron and no update information from this neuron
is passed to the inferior layers. For example, we cannot use the heavyside function
used in the Rosenblatt’s perceptron [14]:

a(g) =

{
1, if g > 0
0, otherwise.

.

Indeed, the gradient does not exist in zero and otherwise is zero everywhere (the
back-propagation algorithm was not formalized at that time).

In the following, we review the most usual activation functions among the de-
terministic ones and explain their use.

• Identity: a(g) = g. In this case, the output of the neuron is a linear combination
of the outputs of the connected neurons. It is generally applied on output units in
regression problems and on input units.

• Sigmoid: a(g) = 1
1+e−g . This is a non-linear function outputting values in the

range [0, 1]. Using it allows to learn non linear functions. The drawback of such
a function is that the gradient quickly tends to zero when the input tends to the
infinite or minus the infinite. Thus, if the pre-activation of a sigmoid neuron is
very high or very low, no gradient is back-propagated towards the first layers.
This is called the “vanishing gradient problem”.

• Tanh: a(g) = 2
1+e−2g − 1. This is a scaled and shifted version of the sigmoid activa-

tion with values in [−1, 1].

• ReLU: a(g) = max(0, g). This is the rectified linear unit [32]. As the sigmoid or
tanh function, it is a non-linear function. An interesting fact about ReLU is that
only few neurons are activated. Indeed, if the pre-activation value of a neuron is
negative, its output is null. This makes the representation sparser and potentially
leads to better generalization. The drawback is that for negative inputs, the gradi-
ent is zero. It means that no gradient is back-propagated and it potentially leads
to dead neurons which are never activated in the learning process.

• Leaky ReLU [33]: a(g) =

{
g, if g ≥ 0
bg, otherwise.

This is an improved version of ReLU

which addresses the problem of dead neurons. When the input is negative, the
gradient is non-zero. b has a positive value and can be a learnable parameter in
the parametrized version of the leaky ReLU activation.

2.1.3 Deep learning
This section describes some ideas behind deep learning and the deep structures

that will be used in the thesis.

2.1.3.1 Definition

To our knowledge, there exists no consensual definition of deep learning in the
literature. In practice, a neural network is generally considered as deep according
to its depth i.e. the number of hidden layers. However, it is not clear from which

2.1. Machine learning with neural networks 15

depth we can consider a network as deep. Moreover, this criterion does not neces-
sarily imply a good function approximator. Indeed, we can take as an example a
11-hidden-layer FNN with one hidden unit per layer. This network is not a good
function approximator. Several criteria could also be used to specify what is a deep
network such as the potential to solve problems with high-dimensional input data
or the average number of hidden units per layer. However, the threshold values are
not easy to compute.

In this thesis, we consider that a neural network is deep if it has more than two
hidden layers. We can add the adjective “complex” if the deep network was proven
able to solve problems with high-dimensional input data. One interesting aspect of
such a deep complex network is that a hierarchy of features is learned. Low-level
features are learned in first layers and subsequent layers combine them to compute
more abstract or higher-level features which are useful to optimize the loss function.

2.1.3.2 Why use deep structures?

An interesting question about deep structures is why they are chosen instead
of shallow ones in various scientific fields since the latter are already universal ap-
proximators. Indeed, according to the universal approximation theorem, any con-
tinuous function on Rn can be approximated with any given precision by a single-
hidden-layer FNN, provided enough hidden units are used [34], [35]. These results
are easily expandable to deep networks since they contain universal approximators.
The choice of choosing deep structures over shallow ones has theoretical reasons
since many studies tend to show that shallow networks such as a single-hidden-
layer FNN require exponentially more neurons than deep networks do [36], [37].

2.1.3.3 Deep convolutional neural networks (DCNN)

In this section, we describe the deep convolutional neural networks since it is
relevant for our work. We make the choice of omitting other existing deep structures
such as deep Boltzmann machines [38] and deep belief networks [24]. We did not
use them because of implementation and computational reasons. Besides, we do not
describe other popular recurrent neural networks such as long short term memory
networks [39] and gated recurrent unit neural networks [40] since they are mainly
used to address time-dependent problems that we do not consider in the thesis. For
a more complete review of deep learning, the reader can refer to [41].

DCNNs are deep deterministic FNNs which contain at least one convolutional
layer (see Figure 2.8). During training, a DCNN builds a hierarchy of features which
are useful to optimize the objective. Note that, DCNNs have been generally com-
posed of three kinds of layer. The first layers are convolutional (see 2.1.2.3) and are
used to build a hierarchy of features, the last layers are fully-connected. The third
kind of layer is a pooling layer and is generally placed after a convolutional layer.
It reduces the dimensions of a feature map by estimating statistics on feature map
areas. The average as well as the maximum of such an area can be used to build a
reduced feature map and are called “mean-pooling” and “max-pooling”. The main
reason to use pooling is to limit over-fitting. Nowadays, it seems that more and more
neural networks involve only convolutional and pooling layers.

Historically speaking, the first convolutional architecture is the neocognitron [42]
which was used for unsupervised learning and already exhibited translational in-
variance properties. Then, in the 90s convolutional networks were trained with
backpropagation from a teacher signal for handwritten zip code recognition [43],

16 Chapter 2. Theoretical background

FIGURE 2.8: A convolutional neural network

[44], handwritten digit recognition [45] and fingerprint recognition [46]. Neverthe-
less, deep convolutional neural networks were not widely used. The main issues
were pointed out by [47] and concerned the vanishing or exploding gradient prob-
lems in the back-propagation pass. One of the starting point of the successes of
DCNNs is the success in the imageNet classification contest [48] with a GPU im-
plementation. According to [20], the GPU implementation of deep convolutional
learning structures is a key of their success. After that, DCNNs kept on winning
contests and establishing benchmarks [49], [50] and started to be applied in many
different fields such as robotics [1], sound classification [51] and natural language
processing [52] (see [53] for more examples of DCNN applications).

2.1.4 Choice
We summarize here what we have chosen to use among the presented tools for

this thesis.
First, we choose to use deterministic feed-forward neural networks (and con-

volutional when we deal with images) because they have been proved efficient to
approximate high-dimensional functions with a simple and relatively fast learning
procedure. Second, we mostly use leaky ReLUs for the activation functions of our
neurons. Finally, in order to update the parameters using computed gradients, we
use the ADAM solver. The values of the associated parameters can be found in Ap-
pendix A.

2.2 Sequential decision making problems
In this section, we focus on sequential decision making problems. The latter

concern tasks that an agent has to achieved by making decisions at each time-step
(sequentially). A simple example illustrating it is the game of chess.

In the following, we first discuss sequential decision making problems and tra-
ditional methods to solve them. Then, reinforcement learning basic knowledge is
described as well as relevant deep reinforcement learning algorithms. We will ex-
plain our algorithm choice with the main criteria being the ability to solve high-
dimensional problems and the implementation simplicity.

2.2. Sequential decision making problems 17

2.2.1 Definitions and sequential decision making prob-
lems

2.2.1.1 Definitions

We define in this paragraph some common notions related to sequential decision
making problems.

Definition 2.7. An agent is an entity which learns to make decisions for given objectives
while interacting with the environment and is equipped with sensors and actuators.

For example, humans are agents which learn to walk at the beginning of their
life and possess many sensors such as eyes, force sensors and neurally-based control
actuators such as arm or leg muscles. A robotic manipulator is also an agent which
can learn to reach objects and can possess cameras and angle coders as sensors and
motors as actuators.

Definition 2.8. An environment is an entity which can contain agents. It can be partially
modified by the agent actuators.

Practically, the environment can be any place such as rooms, fields or streets or
anything with which the agent can interact except itself.

Definition 2.9. An observation ot ∈ O ⊂ Rd (d ∈ N∗) is a vector which contains a
description of the environment and the agent in the environment at time-step t.

The observation generally contains sensor data e.g for a robotic manipulator raw
images, joint robot angle values or tactile sensor values.

Definition 2.10. A state st = (ot−no+1, ...,ot) ∈ S = Ono is a sequence of no observa-
tions.

Definition 2.11. An action at ∈ A is a vector containing command values for the agent
actuators at time-step t. Applying these command values implies potential modifications of
the state after time-step t.

In a manipulation robotic context, actions are often torques, variations of joint
angles or Cartesian coordinates or velocities.

Definition 2.12. A policy π is a representation allowing agents to choose an action at at
state st. It can be deterministic i.e. in form of a function π : S → A or stochastic i.e in a
form of a density function π : S ×A → [0, 1].

Definition 2.13. A transition function or model or dynamics is a way to predict new obser-
vations given an action and the most recent past state. It can be deterministic i.e. in form of
function T : S ×A → S or stochastic i.e in form of a density function T : S ×A× S →
[0, 1].

For example, the linear equation for dynamics st+1 = Ast + Bat is often used in
robotics or in other automatic systems as a transition function (the state only consists
of one observation in this case).

Definition 2.14. The reward function R is a real-valued function which rates the quality of
an action at in a given state st (R : S ×A → R or R : S ×A× S → [0, 1]).

In a manipulation reaching task, it can be a decreasing function of the distance
between the current pose and a target pose. In zero-sum games such as chess or go,
it can be the outcome of the game (1 for a win and 0 for a loss).

18 Chapter 2. Theoretical background

Definition 2.15. A “sparse” or “impulse” reward function has a reward signal value rg in
a small state area Sg, called the goal area and a constant value rc in the remaining state area
such that rg � rc.

R : s→ R(s) =

{
rg, if s ∈ Sg ⊂ S ,
rc, otherwise.

(2.15)

Typical examples of goal state areas are the last board position of a game in chess
or successful reaching positions in robotic reaching tasks.

Definition 2.16. Let δ be a vector of features describing the state s. δs describes the current
state s and δs∗ a target state s∗. A “shaping” reward function is a monotonously decreasing
function g of a distance between target features δs∗ and current features δs.

R : s→ R(s) = g(d(δs∗ , δs)) (2.16)

Note that the two previous definitions are given for reward functions defined on
S but can be extended to other input spaces.

Definition 2.17. A transition Tt is a tuple < st,at, rt+1, st+1 > giving local spatial and
temporal information on the interaction between the agent and the environment. At time t,
the action at is taken from state st and produces a reward rt+1 = R(st, at) and a new state
st+1 at time t + 1.

Note that in the literature, the transition is also written as follows: < s,a, r, s
′
>

Definition 2.18. An episode E is a bounded succession of transitions in time: E = {T0, ..., T|E|−1}

The conditions of termination of an episode can be diverse. In this thesis, ei-
ther the episode length reaches its maximum or the agent reaches an “absorbing” or
“terminal” state. The latter is generally a goal state in the literature.

Definition 2.19. A return G of an episode is the sum of all the rewards in an episode:
G = ∑|E|t=1 rt.

Definition 2.20. A return-to-go Gst ,at of an episode at transition Tt is the sum of all the
rewards of an episode from the transition < st,at >: Gst ,at = ∑|E|i=t ri

In the two latter definitions, if we want the agent to take greater account of
short-term future rewards, a discount factor γ ∈ [0, 1] can be used as follows: G =

∑|E|t=1 γtrt and Gst ,at = ∑|E|i=t γiri. This parameter, when different of 1, allows to take
greater account of short-term future rewards. Otherwise, all the future reward val-
ues are considered with the same weight in the optimization.

2.2.1.2 Sequential decision making problems

The problem of sequential decision making consists in choosing the action at at
time step t given any state st in an optimal way w.r.t to an objective.

An example of sequential decision making problem is the game of chess in which
the agent has to make the move which ensures better winning chances from a given
chessboard position (and the last 8 positions because of drawing-by-repetition rules).
In a robotic reaching manipulation task, the problem can be to make the right arm
joint angle move which makes the robot closer to a touching position without colli-
sion with the environment (see Figure 2.9 for the pictures). For this thesis, we focus
on complex problems where the action and the state spaces are continuous and the
state space is high-dimensional.

2.2. Sequential decision making problems 19

FIGURE 2.9: Example of sequential decision making problems

2.2.2 Solve sequential decision making problems
There are several ways [54] to solve sequential decision making problems (see

Figure 2.10).

FIGURE 2.10: Solve sequential decision making problems. The blue
boxes are the classes of methods used in our work.

2.2.2.1 Programming

This class of methods consists in hand-specifying the policy π. As a consequence,
for each state st, the optimal action a∗t is known. This setting is impossible to ap-
ply in noisy environments such as most robotic environments and in many high-
dimensional problems such as go or chess games.

20 Chapter 2. Theoretical background

2.2.2.2 Search or planning

If the dynamics of the problem are perfectly known i.e. from a given state-action
pair, the next state can be computed without uncertainty, a brute force search al-
gorithm can be efficient to decide which action to take to reach the objective. This
principle has been programmed in a chess software called deep Blue which wins a
serie of games against the world champion at that time Garry Kasparov [55]. The
obvious drawback is that the dynamics need to be known without uncertainty to
ensure a high search depth which is not the case in robotics. Furthermore, this class
of methods does not scale well to too high-dimensional problems.

2.2.2.3 Learning

A third category of approach consists in learning the policy with the help of the
interaction between the agent and the environment. The goal of the problem is speci-
fied by a reward function and the agent optimizes its policy so that it receives higher
rewards in the future. There are two classes of algorithms which make the agent
learn a policy through interaction with the environment: dynamic programming
and reinforcement learning. The latter are described in 2.2.5.

2.2.3 Markov decision processes and optimality criteria

2.2.3.1 Markov Decision processes

A Markov decision process (MDP) is a tuple < S ,A, R, T > where T is defined
on S ×A and outputs a value in S (in the deterministic case), i.e. the next state st+1
can be predicted from the action at and the state st at time t, the previous states
st−n(n ∈N∗) not being required. As defined in 2.2.1.1, S is the set of states,A is the
set of actions and R is the reward function.

This condition on T is the basis of many reinforcement learning and dynamic
programming algorithms and will be assumed in any task of the presented work.

2.2.3.2 Optimality criteria

In dynamic programming and in reinforcement learning, a policy is optimized
with respect to a criterion taking into account future rewards. In other terms, the
goal is to obtain an optimal policy π∗ while optimizing a criterion Jπ. Let rt be the
reward picked at time step t and Eπ[x] be the expectation of a random variable x
under the policy, i.e. the expectation of the considered random variable if the policy
π is applied. We present three different criteria used in the literature [54]:

• the finite horizon criterion:

Jπ = Eπ

[
h−1

∑
t=0

rt

]
. (2.17)

This criterion makes the agent consider with the same weight rewards for only h
steps. It can be used in an episode setting. Two ways of using it can be considered.
First, in a h-length episode, we can consider the criterion using h steps at the be-
ginning transition, h− 1 steps at the second transition and so on. One drawback
of such a method is that for a same state, the criterion can be different according
to its place in the episode. Second, for a given transition, we can always consider
using the optimal h value. Indeed, for a MDP, this value can vary. For example, a

2.2. Sequential decision making problems 21

robot which has to reach using (bounded) actions an object has only few moves to
make if it close to the object. Thus, h can be small. In contrast, if the robot is far
from the object, the optimal h value should be higher. However, this value is not
always known

• the infinite discounted criterion:

Jπ = Eπ

[
∞

∑
t=0

γtrt

]
. (2.18)

γ ∈ [0, 1] is the discount factor. A discount factor inferior to 1 ensures that short-
term rewards are taken into greater account whereas a discount factor of 1 con-
siders all the rewards with the same weight. Furthermore, it does not have the
drawbacks of the previous criterion, e.g. finding the optimal “evaluation depth”.

• the average criterion:

Jπ = lim
h→∞

Eπ

[
1
h

h

∑
t=0

rt

]
. (2.19)

It considers all the rewards with the same weight. One problem with this criterion
is that we cannot distinguish policies that favour short-term reward from ones that
favour long-term rewards.

In our tasks, we choose to use the infinite discounted criterion because it is the
most flexible one. Indeed, among our applications, some tasks require to favour
short-term rewards and other ones favour more long-term rewards. We only need
to modify the discount factor in our algorithm to switch from a task to another one.

For each task, the values of γ are given in Appendix B.

2.2.4 Usual functions for learning sequential decision mak-
ing problems

We present here the functions that are used in dynamic programming and rein-
forcement learning algorithms. We define them for the infinite discounted criterion
(equation (2.18)).

2.2.4.1 The value (V) function

∀π, ∀t ∈N, ∀s ∈ S , Vπ(s) = Eπ

[
∞

∑
i=t

γi−tri−t|st = s

]
(2.20)

The Vπ function gives the value of the state s under the policy π, i.e the expectation
of future rewards (the optimization criterion) from state s if the agent follows the
policy π.

Note that the Vπ function can be computed recursively via the equation (2.21)
(in this equation, we consider deterministic dynamics) called the Bellman equation.

∀π, ∀s ∈ S , Vπ(s) = R(s,π(s)) + γVπ(T (s,π(s))) (2.21)

22 Chapter 2. Theoretical background

2.2.4.2 The quality (Q) function

∀π, ∀t ∈N, ∀s ∈ S , ∀a ∈ A, Qπ(s,a) = Eπ

[
∞

∑
i=t

γi−tri−t|st = s,at = a

]
(2.22)

The Qπ function assesses the quality of a state-action pair under the policy π, i.e. the
expectation of future rewards (the optimization criterion) from state s if the agent
applies the action a and follows the policy afterwards.

The Qπ function can also be computed recursively via the Bellman equations by
assuming deterministic dynamics:

∀π, ∀s ∈ S , ∀a ∈ A, Qπ(s,a) = R(s,a) + γ max
b∈A

Qπ(T(s,a), b), (2.23)

∀π, ∀s ∈ S , ∀a ∈ A, Qπ(s,a) = R(s,a) + γV(T(s,a)). (2.24)

2.2.4.3 The advantage (A) function

∀π, ∀s ∈ S , ∀a ∈ A, Aπ(s,a) = Qπ(s,a)−Vπ(s). (2.25)

The advantage function is nothing but the subtraction of the Q and the V function.
Learning such a function compared with the Q function can be interesting when V
values are much bigger than advantage values. Consequently, the algorithm would
focus more on what is useful to discriminate actions.

2.2.4.4 Optimal value functions

In the literature, we note optimal value, quality and advantage functions respec-
tively V∗, Q∗ and A∗. These notations mean that the functions take into account the
optimal policy π∗.

2.2.5 Dynamic programming vs reinforcement learning

2.2.5.1 Dynamic programming

Dynamic programming is a class of algorithms which seeks for an optimal policy
with the perfect knowledge of the transition function and the reward function.

The two most famous dynamic programming algorithms are:

• Policy iteration [56]:
This algorithm alternates between two steps. In the first one called policy evalu-
ation, the goal is to evaluate the value function of a fixed policy π with the value
function. For that, the equation (2.21) can be used, forming |S| equations with
|S| unknowns (if we assume that S is finite). An iterative procedure is used to
solve the system. The rationale is to apply for each iteration and for each state, the
following update:

∀s ∈ S , Vπ
k+1(s) = R(s,π(s)) + γVπ

k (T(s,π(s))), (2.26)

where k denotes an algorithm iteration. This step ends when V converges.

2.2. Sequential decision making problems 23

The second step called policy improvement consists first of computing the Q value
for each state action pair using equation (2.24). Then, for each state s, the policy is
improved by linking this state with the action a having the higher Q value Q(s,a):

πk+1(s) = arg max
a

Qπk(s)(s,a), (2.27)

where k denotes an algorithm iteration.

The algorithm stops when the improvement step does not improve the policy any-
more.

• Value iteration [57]:
This algorithm does not consider two separate steps and is more dedicated to the
V function estimation.

For each state s, and for each action a, the Q value Q(s,a) is estimated using
equation (2.24). Then, V is deduced from each state using V(s) = maxa Q(s,a).
The loops over states and actions stops when V converges. The policy is not ex-
plicitly represented in this algorithm but it can be deduced from the intermediate
Q estimations π(s) = arg maxa Q(s,a).

Many variations of these algorithms exist in the literature. However, they will not
be described since we cannot apply them to our problems. As a matter of fact, in
complex manipulation robotics problems, it is hard if not impossible to compute a
perfect model for the reward and dynamics.

2.2.5.2 Reinforcement learning (RL)

Reinforcement learning is a class of algorithms which seeks for an optimal policy
without precomputed model of dynamics. This is a particularly well-suited frame-
work for manipulation robotics because a model of dynamics is often hard to com-
pute.

Since models are not available, reinforcement learning requires to learn statis-
tics about rewards or/and dynamics. To this end, the agent needs to explore its
environment by taking actions and collecting transitions < st,at, rt+1, st+1 >. One
approach of RL is to learn models using these transitions and to use a dynamic pro-
gramming method afterwards. This features the model-based RL methods. To the
contrary, model-free RL methods directly learn policies without model estimation.
We specifically focus on this class of methods in the report since it is very resource-
demanding to learn a model with high-dimensional state spaces (though some ap-
proaches managed to learn dynamics for MDPs with a reduced state space [58]).
Both approaches are illustrated in Figure 2.11.

2.2.6 Reinforcement learning issues
The paragraphs which follow aim at explaining usual reinforcement learning

issues.

2.2.6.1 The exploration-exploitation trade-off

In a reinforcement learning setting, we do not have access to a model of the agent
interacting with the environment. Thus, to learn a task, the agent needs to explore
its environment through a trial-and-error process. However, exploring too much
without using the learned knowledge about the actions leads to bad performances.

24 Chapter 2. Theoretical background

FIGURE 2.11: Model-free (left) vs model-based (right) Reinforcement
learning

Indeed, in already explored state-action pairs, applying exploratory actions can lead
to worse actions than the one given by the policy. Then, the agent has to explore
to learn new actions and it has to exploit to perform. This problem is called the
exploration-exploitation trade-off.

2.2.6.2 Credit assignment

In some reinforcement learning problems, goals are defined by “sparse-only” (or
“impulse”) rewards as defined in 2.2.1.1.

Note that here the reward function is defined on S as we assume deterministic
dynamics.

When the agent reaches the goal area, the difficulty is to clearly distinguish the
actions which allowed the agent to reach the area and the other ones. Indeed, the
effect of actions on the way to reach the goal is delayed a lot. Deciding which actions
to reinforce is the temporal credit assignment problem. Obvious examples are games
of go or chess. The sparse reward is the outcome of the game and there are many
key moves in some opening phases which have to be played to maintain winning
chances 1. Another example which fits in the subject thesis is the reaching problem
for a 7-DOF manipulator. The latter has to reach a target and receives a reward only
in case of success. From this success, the agent has to discriminate precisely what
were the good actions.

2.2.6.3 Low probability of the first success

Another issue that can occur when the task is defined by a sparse reward is the
low probability of the first success. The problem generally appears when the algo-
rithm is initialized far from the solution and thus reaching the goal is very unlikely.
For instance, reaching a target with a 7-DOF manipulator from a fixed end-effector
position, reaching the goal state with uniform random action selection is simply very
unlikely and lots of trials have to be made before entering it. It is also the case in the
maze problem of Figure 2.12 where the agent from the red area is very unlikely to
reach the blue area with a uniform exploration. To deal with it, a learning-from-
easy-mission (or curriculum learning) set-up [59] can be used but requires to know
where the goal is in the state space. In a nutshell, the strategy consists in learning
easier tasks at the beginning (e.g. initial and goal states are made close) and con-
tinuously learning tasks of increasing difficulty. This problem does not occur in the

1In chess, c5 for black pieces in the accepted queen’s gambit

2.2. Sequential decision making problems 25

FIGURE 2.12: Maze example to illustrate the credit assignment prob-
lem: from several sub-optimal trajectories such as the one on the left
figure, the agent has to learn what were the adequate (in green) and
inadequate (in red) actions and find the optimal trajectory (figure on

the right).

games of go or chess since there is always an outcome at the end of the game, and
thus a sparse reward.

2.2.6.4 Data efficiency

Solving or getting an optimal/suboptimal policy from complex problems such
as go, or some manipulation robotics tasks can require a large amount of transi-
tions. For real-world robotics, this can be prohibitively costly. Improving the data-
efficiency or sample-efficiency of an RL algorithm means making the algorithm pro-
duce an optimal/suboptimal policy with fewer transitions. Model-based RL algo-
rithms can offer good opportunities for the data efficiency when learning dynamics
is less hard than learning the policy, which is typically the case with low-dimensional
problems [60], i.e problems with low-dimensional state and action spaces. In our
work, we did not focus on this specific issue.

2.2.6.5 Representations and Curse of dimensionality

Until now, we did not mention how the policy and the value functions can be
represented. Intuitively, for small and discrete state and action spaces, representing
these functions with tables can be tractable. However, for continuous state and ac-
tion spaces (and even for large discrete state and action spaces, e.g in Figure 2.12),
it is intractable to use a tabular representation (curse of dimensionality, [57], [61]).
As a consequence, there is a necessity to approximate these functions. Before the
popularization of deep learning, using non-linear approximators in reinforcement
learning algoritms was not so popular because it was very long to train and prone
to instability. The most common representations for RL functions in robotics were
the linear approximators or dynamic movement primitives. However, interesting
innovations made learning stabler with deep non linear neural networks and yield
impressive performances in complex high-dimensional games [62] and robotics [63].
This is why, we choose to use neural networks as they have been proven efficient for
this purpose. Consequently, from now on, the subscripts in greek letters attached

26 Chapter 2. Theoretical background

to the RL functions represent vectors grouping all the learnable parameters of the
neural network approximating the considered function. For instance, πθ is a neural
network approximating the policy π with a parameter vector θ.

2.2.6.6 On-policy vs Off-policy

An on-policy RL method assumes that the policy is optimized based on the eval-
uation of the policy followed by the agent (through value function estimation). To
the contrary, off-policy RL methods can solve problems based on the evaluation of a
policy not followed by the agent.

For example, the policy followed by the agent might be an exploratory policy. In
this case, the on-policy method will take into account the exploratory policy whereas
the off-policy method will take into account another policy, e.g. the estimated opti-
mal (or greedy) policy. The main advantage of using an on-policy method is that it
generally offers less variance for the value function evaluation [64]. However, off-
policy methods are more flexible. Indeed, since they can be used with other policies,
they can be provided with data coming from various sources such as human expert
or other demonstration data.

2.2.7 Model-free reinforcement learning
The class of model-free RL methods can be divided into two categories, the critic-

only and the actor methods:

2.2.7.1 The critic-only methods

These methods directly estimate one of the value functions presented in 2.2.4.
When the model is not present or not learned in the method, the learning of Q is
generally privileged over V or A. This is why we focus on presenting some classical
ways to learn the Q function (they can also be used to learn the V function).

Monte-Carlo methods

The Monte-Carlo estimation of the Q function at each state-action pair < s,a >
is the average of returns-to-go from this pair:

QMC(s,a) =
1

Ns,a

Ns,a

∑
i=1

Gs,a, (2.28)

with Ns,a being the number of occurrence of the state-action pair < s,a >. The
Monte-Carlo method assumes that the return-to-go Gs,a is a random variable and
computes an unbiased estimate of its expectation under the policy. An important
feature of the method is that the variance of QMC(s,a) can be high (decreasing it
requires to do many experiments).

Temporal difference (TD) learning

TD learning consists in learning Q based on the Q estimates at subsequent time
steps. To that end, the two most famous methods are Q-learning [65], [66] (the latter
refers to a specific algorithm even if the name simply suggests learning of the Q
function) and SARSA [67], [68], [69]. Q-learning is an off-policy algorithm which

2.2. Sequential decision making problems 27

consists in using the Bellman equation (2.23) for an estimation:

Qk+1(st,at) = Qk(st,at) + αδt, (2.29)

δt = rt + γ max
a

Qk(st+1,a)−Qk(st,at), (2.30)

with α being a decay parameter. Note that the difference δt is called the TD-error.
Theoretically, this algorithm converges if each state-action is visited an infinite num-
ber of times and α is properly decreased [66]. SARSA which is an on-policy algo-
rithm uses a similar update:

Qk+1(st,at) = Qk(st,at) + α(rt + γQ(st+1,at+1)−Qk(st,at)). (2.31)

However, instead of maximizing the Q function at state st+1, the agent computes
the action at+1 according to the policy followed by the agent (including exploration)
and replaces the maximum by the Q value of the state-action pair at time t + 1.

TD(λ)

This method is an intermediate approach between Monte-Carlo methods (λ = 1)
and one-step methods such as Q learning (λ = 0) or SARSA. It uses N-step truncated
returns GN

t :

GN
t =

N−1

∑
i=1

γirt+i + γN max
a

Q(st+n,a). (2.32)

The rationale is to combine these returns with a weight λN−1 to trade-off the variance
and the bias of the Q estimation. Computing these returns according to the definition
is impractical but there is an efficient way to calculate it: using eligibility traces. An
eligibility trace is the output of a function e : S × A → R+ allowing to keep in
memory first that a transition has been explored and second at which time-steps of
the episode it has been explored. The algorithm consists in updating at each time-
step t every eligibility trace of state-action pair < st,at > (they are all set to zero at
the beginning of an episode):

et(s,a) =

{
λγet−1(s,a), if < s,a > 6=< st,at >,
λγet−1(s,a) + 1, otherwise.

Then, with the already defined TD-error δt, Q can be updated this way for each
state-action pair:

Qt+1(s,a) = Qt(s,a) + αet(s,a)δt (2.33)

Efficient versions of Q(λ) have been proposed in [65], [70], [71].

Policy computation

Using estimates of Q allows to deduce the policy with the formula π(s) =
arg maxa Q(s,a). This is applied without difficulty in MDPs with discrete action
spaces such as Atari games [72]. When the action space is continuous, estimating
the policy is less simple. In this case, finding the optimal action requires a poten-
tially costly optimization procedure. Thus, even though finding actions for complex
robotic problems has been done efficiently in [73], we have chosen to learn the policy
such that an action can be computed in one policy forward pass.

28 Chapter 2. Theoretical background

2.2.7.2 The actor methods

The actor methods learn the policy π. Among them, we distinguish the ones
which use a value function (actor-critic) and the other ones (actor-only). Generally,
an actor-critic algorithm learns a value function (Q, A or V) which is called the critic
and from this critic computes policy (actor) updates. An actor-only algorithm di-
rectly learns the policy without learning any value function, e.g. it can learn the
policy from return or return-to-go values.

In all the examples, we consider a policy πθ parametrized by a neural network of
learnable parameters θ. We can distinguish several classes of policy search methods.
As we cannot be exhaustive for this class of algorithms, we focus on methods that (1)
can be applied in robotics (based on [74]) and (2) have been expanded to deal with
high-dimensional problems. And, in section 2.3, we will describe some algorithms
able to deal with high-dimensional and continuous state and action spaces.

Policy gradient methods

This class of methods consists in applying gradient ascent to maximize the ex-
pected return E [Gθ]: θk+1 = θk + α

∂E[Gθ]
∂θ , where α is a learning rate.

The policy gradient definition is the following:

∂E [Gθ]
∂θ

=
∫

τ

∂pθ(τ)
∂θ

G(τ)dτ (2.34)

τ represents a trajectory, i.e a succession of state-action pairs in a L-length episode
τ = s1,a1...aL, sL+1, G(τ) is the associated return and pθ(τ) is the probability of
having the trajectory τ given the parameters (the initial state has also an influence).
The algorithms differ in the gradient Oθ =

∂E[Gθ]
∂θ computation.

We review the following methods:

• Finite difference method [75], [76]:
This method applies small perturbations ∆θ in the parameter vector θ and updates
the parameters according to the changes in the return ∆G.

• Use of the likelihood-ratio policy gradient trick:
This trick uses the property of the derivative of the log inside equation (2.34):

∂pθ(τ)
∂θ

= pθ(τ)
∂ log pθ(τ)

∂θ
(2.35)

Several algorithms are based on this principle among which REINFORCE (equa-
tion (2.36)) [77] and G(PO)MDP [78].

Oθ = Es∼pπ ,a∼πθ

[
∂ log(πθ(a|s))

∂θ
(G(τ)− b)

]
, (2.36)

where b is a baseline reducing the variance of the gradient estimation. Note that in
the expectation, we do not consider pθ(τ) the trajectory probability distribution.
Instead, we consider state and action distribution probabilities (pπ and πθ).

REINFORCE and G(PO)MDP assume a stochastic policy and estimate returns us-
ing Monte-Carlo samples. G(PO)MDP is based on the observation that past re-
wards do no depend on future actions. Thus, for a given reward value, only the
past actions are taken into account in the optimization. This reduces the variance
of the REINFORCE policy gradient estimate.

2.3. Deep Reinforcement Learning 29

• Actor-critic algorithms:
Another way to estimate the policy gradient is to learn one of the RL functions to
estimate the expectation of the return (V, Q, or A) instead of computing Monte-
Carlo returns. A policy gradient is derived from the RL functions afterwards.
Among famous methods, there is the policy gradient theorem [79] which is based
on the same rationale as G(PO)MDP:

Oθ = Es∼pπ ,a∼πθ

[
∂log(πθ(a|s))

∂θ
Qπ(s,a)

]
, (2.37)

where Qπ can be learned using a function approximator. Another popular method
is the natural actor critic algorithm [80], [81]. Based on value function approxima-
tion, the policy is updated using natural policy gradients such that the distribution
of trajectories pθ(τ) does not change too much after an update. The rationale is to
improve the stability of the algorithms. Other more recent actor-critic algorithms
are reviewed in section 2.3.

Information-theoretic approaches

This class of algorithms shares the idea with natural policy gradient algorithms
that when a policy update occurs, the trajectory distribution should not change bru-
tally. In practice, these approaches bound the distance between the old and the new
trajectory distributions (respectively pold(τ) and pnew(τ)) while updating the pol-
icy. The most famous algorithm is the relative entropy policy search (REPS) [82].
The policy search problem has the form of a constrained optimization problem in
which we maximize the return given the policy parameters. This problem is subject
to an inequality constraint on the Kullback-Leibler divergence between the new pol-
icy and the old one which cannot overpass a given value. Recent algorithms [83],
[84] also use similar updates and are described in the next section.

Miscellaneous approaches

We do not precisely review some classes of policy search methods such as expectation-
maximization policy search [85], stochastic optimization [86] or path integral meth-
ods [87], [88] because to our knowledge they were not applied in complex high-
dimensional problems.

2.3 Deep Reinforcement Learning
In section 2.1, we have described neural network structures used in this thesis. In

section 2.2, we have focused on the common knowledge of reinforcement learning.
In addition, we have also described some policy search algorithms which are the
basis of some deep reinforcement learning algorithms. In this section, we focus on
deep reinforcement learning and more precisely on the algorithms which have been
proven able to scale to high-dimensional and continuous state and action spaces.

2.3.1 Idea
A deep reinforcement learning (DRL) algorithm is an RL algorithm which uses

deep networks to approximate one or several RL functions: V, Q, A, π or dynamics.
Its goal is to learn how to solve complex problems with potentially high-dimensional

30 Chapter 2. Theoretical background

state spaces. Neural networks in RL have been used for a long time in backgam-
mon [89], in robotics [90], [91], [92] and in elevator dispatching [93]. However, to
our knowledge, the use of multi-layered neural networks to approximate functions
using high-dimensional state spaces dates from 2010s where [94] used a deep au-
toencoder to reduce the dimensionality of images (30× 30 = 900 pixels) in a simple
continuous grid-world problem. After that, a Q function is learned on these features.
Since then, the field of deep reinforcement learning has quickly developed: lots of
methods dedicated to complex problems have been established, e.g. for Atari games
[62], for complex problems with continuous action spaces [95], [96], very complex
games such as the game of go [97], and robotics [84].

2.3.2 Deep Deterministic policy gradient
We focus now on the method we have chosen for our robotic applications, namely

the deep deterministic policy gradient (DDPG) algorithm [95]. This algorithm is
from the actor-critic category and mixes the deep Q network algorithm [62] and the
off-policy version of deterministic policy gradient algorithms [98]. In the following,
we omit the subscript t for a better readability unless it is necessary. By convention,
the subscript i refers to a transition and t refers to an iteration.

2.3.2.1 Deep Q network

The deep-Q-Network algorithm [62] consists in learning a Q function with a Q
learning update (see equation (2.29)) using a deep network as a function approxi-
mator. For a given transition < s,a, r, s

′
>, the corresponding input-output pair

< x, y > is given according to the equations:

x = (s,a), (2.38)

y = r + γ max
b

Qφ(s
′
, b), (2.39)

where φ represents the vector of learnable parameters of the Q network.
To make the learning of Q stable (Q learning with non-linear neural networks

suffered a lot from instability [99], [100]), two key strategies are implemented:

• The experience replay mechanism [101]:
DQN like Deep Fitted Q-iteration [94], uses batch updates to learn the neural net-
work representing Q. It means that Q is not updated transition by transition but
rather uses a set of Nb transitions. If we choose the last Nb transitions experi-
mented by the agent, the i.i.d assumption common to machine learning algorithms
is broken. Indeed, these transitions are correlated. This is why, these transitions
are chosen such that the batch contains independent and identically distributed
input-output pairs. To that end, Nb transitions are uniformly chosen in a Ntrans-
size memory buffer D: ∀i ∈ {1, ..., Nb},< si,ai, ri, s

′
i >∼ D. Ntrans is chosen high

enough to limit the correlation between the chosen transitions. The buffer D is
updated according to a first-in first-out process.

• The use of a target network:
This strategy consists in modifying equation (2.39):

y = r + γ max
b

Q
φ
′ (s
′
, b), (2.40)

2.3. Deep Reinforcement Learning 31

where φ
′

groups the learnable parameters of a the target network. The target
network is updated at each iteration t by following the Qφ network:

φ
′
t+1 = αφt + (1− α)φ

′
t, (2.41)

where α is a decay parameter. The rationale of the use of a target network is the
same as for the use of natural gradients and the use of constraints in trajectory
distribution change: for stability purposes, the neural network should not vary
too much.

2.3.2.2 Deterministic policy gradient algorithms

Deterministic policy gradient methods (DPG) [98] are actor-critic algorithms able
to deal with continuous action spaces.

This algorithm considers a deterministic version of the policy gradient theorem
[79] which assumes a stochastic policy: Oθ = Es∼pπ ,a∼πθ

[
∂log(πθ(a|s))

∂θ Qπ
φ(s,a)

]
(see

equation (2.37)), where θ is the set of learnable parameters of the policy and φ is the
set of learnable parameters of Q.

Note that the original version of this theorem uses Qπ instead of Qπ
φ because Qπ

can be estimated using Monte-Carlo sample returns instead of being parametrized.
This gradient is known to have a large variance because the expectation is under the
action and state probability distributions. The deterministic policy gradient theorem
considers the expectation of the gradient only under the state probability distribu-
tion because the policy is deterministic:

Oθ = Es∼pπ

[
∂πθ(s)

∂θ

∂Qπ
φ(s,a)
∂a

|a = πθ(s)

]
. (2.42)

From this theorem, two algorithms have been developed: an off-policy and an
on-policy versions which differ only by the way the critic is updated. In the on-
policy version, SARSA is used to update the critic, i.e for a given transition, the
target of the Q network is r + γQφ(s

′
,a
′
). In the off-policy case, the target is:

y = r + γQφ(s
′
,πθ(s

′
)). (2.43)

For these two algorithms, the policy is updated using a stochastic gradient ascent to
maximize the Q function, i.e. to maximize the expected return:

∆θ = αθ
∂πθ(s)

∂θ

∂Qπ
φ(s,a)
∂a

|a = πθ(s), (2.44)

where αθ is the learning rate parameter.

2.3.2.3 Deep deterministic policy gradient (DDPG)

The DDPG [95] algorithm is an off-policy actor-critic DPG algorithm which uses
the DQN algorithm for the critic, i.e. with the two key innovations described in
2.3.2.1. To summarize, the critic is updated based on a mini-batch of transitions
which are uniformly chosen in a memory buffer. Equation (2.43) is used:

yi = ri + γQ
φ
′ (s
′
i,πθ

′ (s
′
i)), (2.45)

32 Chapter 2. Theoretical background

with i being an integer denoting a transition, θ
′

and φ
′

being the sets of learnable pa-
rameters of the policy and Q target networks. The latter are updated using equation
(2.41). The critic is updated by considering all the transitions of the mini-batch:

∆φ = αφ
1

Nb

Nb

∑
i=1

(yi −Qφ(si,ai))
∂Qφ(si,ai)

∂φ
(2.46)

Note that we consider a least square error as a loss function:

L =
1

2Nb

Nb

∑
i=1

(yi −Qφ(si,ai))
2. (2.47)

Once the critic is updated, the actor is updated using 2.44 and considering the
batch of the Nb chosen transitions:

∆θ = αθ
1

Nb

Nb

∑
i=1

∂πθ(si)

∂θ

∂Qφ(si,πθ(si))

∂a
. (2.48)

Figure 2.13 shows how this update is computed from an algorithmic point of view.
First, Qφ(si, πθ(si)) is computed (forward step). Second, a backward step is achieved
using the backpropagation algorithm and the policy gradient is derived.

FIGURE 2.13: Scheme of the policy update using DDPG. The first step
is the forward pass: from a state s, we compute Qφ(s,πθ(s)). The
second step is the backward pass: we set the derivation of the loss
with respect to the Q value to 1, we apply the back-propagation al-

gorithm on Q to get ∂Qφ(s,πθ(s))
∂a . From the latter, we apply again the

back-propagation algorithm on the policy network and it gives us the
policy gradient.

2.3.3 Alternate algorithms
In the following, we briefly describe some alternate algorithms which are also

suitable to high-dimensional and continuous state-action spaces. We particularly
describe the model-free settings.

2.3. Deep Reinforcement Learning 33

2.3.3.1 Trust Region Policy Optimization (TRPO)

TRPO [83] is a model-free RL algorithm which gives a way to update a stochastic
policy given an estimation of the advantage function. This problem is formalized as
a constrained optimization problem:

maximize
θ

Es∼pθold ,a∼πθold

[
πθ(a|s)

πθold(a|s)
Aθold(s,a)

]
subject to Es∼pθold

[
D̂KL(θold,θ)

]
≤ ε

.

θold stands for the vector of parameters before the policy update, pθold denotes the
distribution of states given the policy parameters before the update and ε is a param-
eter bounding the parameter update amplitude. D̂KL(θold,θ) is an estimation of the
KL divergence between the parameter distributions before and after the update. The
method consists in updating the policy parameters so that it optimizes the probabil-
ity of having low-cost values in the future. The constraint has stability purposes and
makes the policy parameters not vary too much. This is an idea we can find in REPS
and in algorithms using natural gradients. The difference with REPS [82] (see section
2.2.7.2) is that TRPO constraints conditional probabilities π(a|s) whereas REPS con-
straints joint distribution p(a, s). The key feature of the TRPO method is that policy
improvements are theoretically guaranteed. In practice, A has been replaced by Q
Monte-Carlo estimation in the original paper. Results are comparable to the ones of
DQN on Atari games and this algorithm has been used in problems with continuous
actions spaces such as robotic locomotion (these applications are described in [83]).

2.3.3.2 Generalized Advantage Estimation (GAE)

GAE [102] is a way to estimate an advantage function which takes inspiration
from TD(λ). The advantage estimator takes two parameters γ and λ:

At(γ, λ) =
∞

∑
l=t

(λγ)t+lδV
t+l , (2.49)

where δV
t+l is the temporal difference using the V function at time l:

δV
t+l = −V(st+l) + rt+l + γV(st+l+1). (2.50)

λ is the parameter trading-off variance and bias. For example, At(γ, 0) = δV
0

is an advantage estimation with very low variance but with bias. To the contrary,
At(γ, 1) = −V(st) + ∑∞

l=t γt+lrt+l has low bias but high variance.
In practice, the V function is approximated and advantage estimators are com-

puted using 2.49. From this, a policy gradient can be estimated (inspired by the
policy gradient theorem):

Oθ = Es∼pπ ,a∼πθ

[
∂log(πθ(a|s))

∂θ
A(γ, λ)

]
(2.51)

Note that [102] proposes to update V based on a trust region update and π using
TRPO [83]. This algorithm has been proved efficient on a set of robotic tasks such as
3d-biped and quadruped locomotion tasks (described in [102]).

34 Chapter 2. Theoretical background

2.3.3.3 Proximal Policy Optimization (PPO)

PPO [103] qualifies a family of policy gradient methods for reinforcement learn-
ing. This algorithm is inspired by ideas of TRPO regarding stabilility of updates.
The latter should not change too much the policy parameter distribution. Two new
policy gradients are proposed. The first one proposes to clip rθ = πθ(a|s)

πθold (a|s)
between

1− ε and 1 + ε such that rθ is close to 1 (and the policy does not change too much):

Oθ = Es∼pπ ,a∼πθ [min(rθA(s,a), clip(rθ, 1− ε, 1 + ε)A(s,a))] , (2.52)

where A(s, a) can be a Monte-Carlo return or an advantage estimation (e.g. using
GAE).

The second one proposes to include a Kulback-Leibler penalty directly in the
objective.

Oθ = Es∼pπ ,a∼πθ

[
rθA(s,a)− βD̂KL(θold,θ)

]
, (2.53)

with β being a parameter trading-off the variation amplitude of policy parameters
against the objective optimization. The first idea (clipping) has been found more effi-
cient on benchmark continuous control tasks (including reaching and walking tasks)
than the second one and has been successfully tested on Atari games (described in
[103]).

2.3.3.4 Q-Prop

Q-Prop [104] is an algorithm which combines advantages of sample efficient off-
policy algorithms such as DDPG and stability of on-policy algorithms such as TRPO.
It also reduces the variance of Monte-Carlo gradient estimators without adding bias.
Formally, the Q-prop gradient takes the form of a mix between a DDPG update and
a residual Policy Gradient Theorem update:

Oθ = Es∼pπ ,a∼πθ

[
∂ log(πθ(a|s))

∂θ (QMC(s,a)−Q(s,a))
]

+Es∼pπ

[
∂Q(s,µθ(s))

∂a
∂µθ(s)

∂θ

]
,

(2.54)

with QMC(s, a) being a Monte-Carlo estimation of Q. As stochastic policies are con-
sidered, µθ(s) = Eπθ [a]. This algorithm has been proven more sample-efficient
than TRPO with GAE in various robotic tasks and outperforms DDPG in very chal-
lenging robotic tasks such as humanoid and walking tasks.

2.3.3.5 Asynchronous Advantage Actor-Critic (A3C)

Asynchronous advantage actor-critic (A3C) [96] is a model-free algorithm suit-
able to learn complex visuo-motor problems such as games in the Atari platform or
robotics tasks such as walking or reaching (experiments summarized in [96]) . It is
asynchronous because it mixes gradients from several agents which act in separate
threads. It is an actor-critic algorithm because it learns both the value function V
and the policy π. More precisely, the V function is learned using N-step returns (see
section 2.2.7.1) as targets. Then, a policy gradient can be built based on a Policy Gra-
dient Theorem update and an advantage estimation (see equation 2.51). The latter is
based on the computed N-step returns which act as Q estimates and the learned V
function. The value and policy updates are based on the values and policy gradients
of all the parallel agents.

2.3. Deep Reinforcement Learning 35

Algorithm Simplicity

Existent at
the

beginning
of 2016

Ability to
deal with

high-
dimensional

problems
DDPG yes yes yes
TRPO no yes yes
GPS no yes yes
A3C yes no yes
PPO yes no yes

Q-Prop yes no yes

TABLE 2.1: Reasons for the algorithm choice. We try our best to be as
objective as possible to evaluate the criterion “simplicity”.

2.3.3.6 Guided Policy Search (GPS)

GPS is a class of policy search methods which guides policy learning by giving
“adequate samples” for learning. The assumption made by the authors is that the
distribution of explored trajectories has the following shape:

p(τ) ∝ exp(r(τ)). (2.55)

Initially [105], [106], guided policy search is a method which trains policies in two
phases. First, it uses known dynamics and trajectory examples to build local con-
trollers. Then, the local controllers can provide samples of the distribution indicated
by 2.55 to a policy search learning framework (importance policy search [107] for
[105] and variational inference [108] for [106]).

Under the same assumption, a constrained guided policy search [109] algorithm
has been developed and outperforms the previous ones. It takes the form of a con-
strained optimization problem where the objective is to make the trajectory distribu-
tion q(τ) induced by local controllers match the distribution of equation 2.55. The
constraints ensure that q(τ) is consistent with known dynamics and that the policy
matches the local controllers. Dynamics are no longer required in [84] where they
are learned via a crude prior model and linear local ones. Furthermore, a constraint
about the change between trajectory distributions during the local controller opti-
mization appears, ensuring that the further local controller optimization does not
occur in areas where dynamics is not accurate enough.

Finally, the GPS algorithm has been extended to visuo-motor policies [1], [110]
making it practical to learn complex visuo-motor manipulation robotic tasks such as
screwing on a bottle cap or placing a coat hanger on a clothes rack.

2.3.4 Choice
We have chosen the DDPG algorithm because (1) it is an algorithm made for

high-dimensional and continuous state and action spaces, (2) its implementation
is relatively straightforward and (3) the algorithm existed at the beginning of our
programming work. Alternate algorithms (including those which are not mentioned
in the section) could have been implemented. They were not either because they lack
simplicity or because they did not exist at the beginning of our work. Details of the
choice are presented in Table 2.1.

36 Chapter 2. Theoretical background

2.4 Conclusion
This chapter has reviewed important tools used in this thesis. At first, we have

described the neural network structures which are utilized in our work. Second, we
have focused on important knowledge about reinforcement learning and in paral-
lel we have described important policy search methods. Third, we have presented
several deep reinforcement learning algorithms which are suitable to problems us-
ing a high-dimensional state space and a continuous action space. In addition, we
have given reasons for the choice of the DRL algorithm used in our work: the DDPG
algorithm.

37

Chapter 3

State of the art

The previous chapter has presented theoretical tools that we use in our work,
notably deep reinforcement learning and the DDPG algorithm. The latter allows
to learn high-dimensional manipulation robotics tasks without requiring to model
dynamics and hand-crafted features. In this chapter, we focus on any kind of ma-
nipulation robotics task which involves an end-effector and interaction of the latter
with its environment, e.g reaching, touching, grasping, pushing and placing objects.
In such manipulation tasks using deep reinforcement learning, the success of the
task is often defined by a sparse reward (see section 2.2.1.1 for the definition) in a
high-dimensional state space. With such a setting, learning is difficult because the
probability of getting the first success is often low (see section 2.2.6.3 for a discussion
on the issue). In this chapter, we discuss several solutions found in the state of the
art to make learning of such a task tractable. Particularly, we focus on what kind
of information is required to learn manipulation robotics tasks in the state of the art
whatever the deep reinforcement learning algorithm used.

First, we describe some research studies on manipulation robotics using rein-
forcement learning which were published before the emergence of deep learning
and we analyse their main requirements for the goal specification and the state and
action space representation. Second, we present methods which use deep reinforce-
ment learning to learn manipulation robotics tasks. Since the reward function design
is the core of our contributions, we describe both what the reward function requires
to be computed, e.g. human supervision, model computation, calibration parame-
ters and if required the way learning is made practical, e.g. massive uses of compu-
tational resources or materials, simplification of state and/or action spaces or use of
expert demonstration.

3.1 Manipulation robotics with reinforcement learn-
ing before the emergence of deep learning

In this section, we present a non exhaustive list of manipulation robotics appli-
cations which use reinforcement learning. We want to identify what are the priors
used to learn the robotics skills. Consequently for these studies, we specifically note
how the state and action spaces are represented, what are their dimensions and what
are the kinds of requirements for the reward computation. In addition, we want to
identify whether learning needs expert demonstrations. Table 3.3 summarizes the
previously stated details for the studies. This table uses the following conventions:

• In the column “State”, the results are written Nstate|continuity where Nstate is the
dimension of the state space and continuity indicates if the state space is contin-
uous, discrete or mixed (if the state space contains both discrete and continuous

38 Chapter 3. State of the art

State Dim(S) | (continuous (c) or mixed (m) or discrete (d))
Action Dim(A) | (continuous (c) or mixed (m) or discrete (d))

TABLE 3.1: Notations for the state and action specifications

Reward
function

sh: shaping sp: sparse pe: penalties on robot efforts

Require-
ments

F(I)K:
forward
(inverse)

kinematics

TT: target
tracking

TM: target
measure

UD: use of
demonstra-

tions

IRR:
Random

initial robot
positions

TR:
Random

target
position

HVP:
Hand-
crafted
visual

processing

TABLE 3.2: Notations for the reward function and requirements

states).

• In the column “Action”, the results are written in a similar way Naction|continuity.

• The column “Reward function” describes the types of reward terms used in the
reward function. Specifically, "sh" means shaping term, "sp" means sparse term,
"pe" means penalties on robot efforts. For instance, a reward function which uses
a shaping term and penalties on robot efforts is encoded as sh|pe.

• The column “Requirements” tells about the constraints which allow to make learn-
ing tractable or/and to compute the reward function. Specifically, “IK” and “FK”
mean inverse kinematics and forward kinematics, “TM” represents target mea-
sure, “TT” stands for target tracking. The latter criteria are generally used to com-
pute reward shaping terms or to simplify the action space (inverse kinematics).
“IRR” denotes initial robot position randomly generated, “TR” signifies target po-
sition randomly generated. These criteria give an indication of the complexity of
the task. “UD” means use of demonstrations which is generally used to guide
exploration. Finally, “HVP” means hand-crafted visual pre-processing and is gen-
erally used to simplify the state space or to detect targets in images for shaping
reward term computations. For example, the set of requirements of an application
which uses forward kinematics and target tracking is encoded as FK, TT.

These notations are summarized in Table 3.1 and 3.2. From Table 3.3, we can
notice several important facts:

• The state spaces are low-dimensional (the dimensions are all inferior to 21) with
respect to work using raw pixels as inputs (the state space generally being com-
posed of measured forces [111], Cartesian coordinates [111], [112], [114], [116],
[117], [119], [60], joint angles [113], [115], [118] and associated velocities [112],
[115]). These studies could not use high-dimensional state spaces such as images
because at this time it was intractable due to the curse of dimensionality (see sec-
tion 2.2.6.5). Progress in terms of hardware (appearance of GPUs) and in terms
of algorithm allowed to switch to more high-dimensional tasks afterwards. They
will be presented in section 3.2.

3.1. Manipulation robotics with reinforcement learning before the emergence of
deep learning

39

Year Paper State Action
Reward
function

Task Requirements

1994 [111] 11|c 5|c sh|pe
peg-in-hole

insertion
FK, IK, IRR,

TM

1994 [112] 5|c 5|c sh
devil

sticking
FK

2004 [113] 7|c 7|c sh|pe
reaching a
joint con-
figuration

TM, UD

2006 [114] 3|d 3|d sp
reaching an

object
FK, TT, UD,

HVP

2009 [115] 20|c 7|c sh
ball-in-a-

cup
FK, TT, UD,

HVP

2010 [116] 2|c 2|c sh

reaching
with

obstacle
avoidance

FK, TM, UD

2011 [117] 3|c 3|c sp|sh
pouring a

liquid
FK

2011 [118] 3|c 3|c sp|sh|pe
flipping a

light switch
FK, UD, TM

2011 [119] 1|c 1|c sp|pe
picking up

a pen

2011 [60] 3|c 4|c sh
block

stacking
FK, TT, HVP

2013 [120] 6|c 3|d sp
grasping

object
IK, TT, HVP,

IRR, TR

TABLE 3.3: Summary of manipulation robotics applications using re-
inforcement learning before the deep learning emergence. See Tables

3.1 and 3.2 for the notations.

• Lots of action spaces are continuous (all the presented papers except [114] and
[120]) and can already be high-dimensional [113], [115]. For this criterion, we just
notice that the researchers rarely use inverse kinematics to reduce the dimension
of the action space [111], [120]. We do not want to use the knowledge of inverse
kinematics in our work because we assume it can vary during some applications
(due to encoder offset or damages to the arm structure).

• Some tasks do not use neither demonstrations nor shaping terms [119], [120]. In
[119], learning a picking-up pen task is tractable because the state space is very
low-dimensional. If the state space is high-dimensional, learning with sparse re-
wards is difficult because of two problems mentioned in chapter 2. First, the prob-
ability to reach a first success can be very low. Second, the algorithm has to solve
the complex credit assignment problem. [120] learns a grasping task but uses ob-
ject position information in the state space (requiring a supervised segmentation
module) and inverse kinematics to generate actions. Furthermore, a sparse reward
function is built based on a grasp success predictor (map between object position
in camera images and success) learned with supervised learning. Note that no
precise information is given on the way the targets are generated in the paper.

40 Chapter 3. State of the art

• Numerous studies use demonstrations to initialize reinforcement learning policies
to make learning tractable. We do not want to use demonstrations in our work
since this depends on an expert knowledge or a supervised controller.

• Lots of studies use a shaping reward term. This term is aimed at driving the agent
exploration towards success areas and can considerably accelerate learning. We
observe in the studied papers that the shaping reward computation often requires
forward kinematics and target tracking or measure to compute it. On the one
hand, we do not want to assume the knowledge of kinematics in our work be-
cause it could vary during learning (in the real-world, some damages to the robotic
structure or endcoder offsets can make kinematics vary) and suddendly make the
reward function incorrect. On the other hand, target tracking is not something
we want to avoid at any cost. It depends on the way the target is tracked on the
images. We simply do not want to track a target with hand-crafted features. In-
deed, the latter can efficiently operate on a fixed scene (even a complex one), but
we have no idea if they are efficient for a scene with unexpected variations. If
those features become wrong, the target tracking step as well as the reward func-
tion computation produce wrong results. Finally, if the shaping reward function
depends on the manual measurement of a target, the policy is restricted to learn
to reach or manipulate only at positions which have been measured, which makes
the policy not valid for other target positions.

3.1.1 Partial conclusion
We have described manipulation robotics learning studies which were conducted

before the emergence of deep reinforcement learning. We have noticed first that the
state space dimensions are rather low. Second, we have raised the fact that some
robotic tasks were learned using expert demonstrations or shaping reward terms de-
pending on kinematics, target measure or hand-crafted features. We want to avoid
these hypotheses in our work.

3.2 Learning manipulation tasks using deep re-
inforcement learning

In the following paragraphs, we describe manipulation robotics studies using
deep reinforcement learning. We also focus on the requirements for the state and
action space representation and the reward computation. We show both that many
of these methods share common requirements with the previous ones and that mod-
ern methods which are interested in learning with sparse rewards require additional
strategies (that we describe in the following). We divide this section into three parts.
First, we briefly describe modern methods which learn manipulation robotics tasks
using demonstrations. However, we do not aim at being exhaustive on this subject.
Second, we describe DRL manipulation robotics tasks which use shaping rewards to
guide robots towards goal state areas. Third, we relate some approaches which have
used sparse rewards only to learn a manipulation robotics task.

3.2.1 Learning manipulation tasks using demonstrations
As previously mentioned, in the sole presence of sparse rewards, learning can be

particularly slow in high-dimensional state spaces. By assuming the knowledge of

3.2. Learning manipulation tasks using deep reinforcement learning 41

expert behaviours, demonstrations can be used to overcome this issue as an initial-
ization to a reinforcement learning run or by conducting an apprenticeship learn-
ing routine. This paragraph describes state-of-the-art results of high-dimensional
manipulation tasks using demonstrations. The goal of this paragraph is not to ex-
haustively list the manipulation robotics applications using demonstrations because
this kind of methods assumes the presence of an expert, which is in contradiction
with our unsupervised-related objectives. Instead, we want to show the potential of
this class of methods. Thus, we give a brief overview of the most recent approaches
using demonstrations on high-dimensional manipulation robotics tasks.

We can divide the use of demonstrations into two categories. First, demonstra-
tions can simply be used as supervised targets. The agent tries to mimic the expert
behaviour. This category is named “behaviour cloning” and has been used recently
for complex manipulation tasks such as a block-stacking task [121], [122], a pick-
and-place task [123] or a peg insertion task [124]. Note that this can be used to
speed-up reinforcement learning if a reward function is designed, like in section 3.1
or in [123] and [124]. Indeed, in the case the robot has only access to sparse rewards,
demonstrations can guide the robot towards high-success probability areas, which
can alleviate the RL issue of the first success (described in 2.2.6.3).

The other category is inverse reinforcement learning (IRL) and assumes that
no reward function is designed. Indeed, in opposition to reinforcement learning
which outputs a policy from a reward function, IRL outputs a reward function from
demonstrations. Then, the task can be learned based on the reward function. Nu-
merous high-dimensional robotics applications have been implemented using this
principle. For instance, [125] learns a pouring task, [126] and [127] learn a door-
opening task, [128] learns to slide a box on a table to a given target area and [129]
learns a gripper-pusher task.

3.2.2 Learning manipulation tasks using deep reinforce-
ment learning with shaping rewards

This paragraph describes DRL manipulation tasks which are learned with re-
ward functions using shaping reward terms. We present a table (Table 3.4) with the
notations summarized in Tables 3.1 and 3.2. We notice several important facts:

• We observe first that the state space dimensions are considerably higher than be-
fore the emergence of deep learning. This makes policy learning significantly more
complex.

• We notice that the action space dimensions become higher as well and the tasks
are more complex for this reason.

• All the tasks using a shaping reward require forward kinematics to track the end-
effector or some parts of it and the 3D information about a corresponding target
pose (obtained by measure or tracking). Indeed, shaping reward functions are of-
ten defined as a decreasing function of a distance between a current pose and a
target pose. For instance, [132], [131], [2], [134] and [135], [136], [137] compute a
distance measure between a current and a target pose which gives an informative
shaping reward provided that robot kinematics and target position are known.
In a similar way, in [63] , [110] and [1], informative shaping rewards have been
computed using a distance measure between current end-effector parts or manip-
ulated object positions and their corresponding target positions which requires

42 Chapter 3. State of the art

Year Paper State Action
Reward
function

Task Requirements

2015 [130] ∼ 50000|d 3|d sp|sh
2D

reaching
FK,TT

2015 [63] 33|c 7|c sh
inserting a
shoe tree

into a shoe

FK, TM, IRR,
TR

2016 [131] 4096|m 20|d sh|sp
grasping a

cube
FK, TT, IRR,

TR

2016 [132] 100|c 24|c sh|pe

hand
positioning
and object
manipula-

tion

FK, TT, HVP

2016 [1] ∼ 200000|m 7|c sh

inserting a
block into a

shape
sorting

cube

FK, TM, IRR,
TR

2016 [133] ∼ 200000|m 7|c sh

picking up
a bag of

rice using a
spatula

FK, TM

2016 [110] ∼ 250000|m 7|c sh|pe
pick and

place
FK, TM, UD,

TR
2017 [2] ∼ 120000|d 7|c sh|sp grasping FK, TT

2017 [134] 180|c 7|c sh|pe
pick and

place
FK,TT

2017 [135] ∼ 21200|d 15|d sh reaching FK, TM

2017 [136] ∼ 30|c 9|c sh|sp grasping
FK, TM, TR,

IRR

2017 [137] ∼ 30|c 9|c sh|sp
block

stacking
FK, TM

TABLE 3.4: Summary of manipulation robotics applications using
deep reinforcement learning and shaping rewards. See Tables 3.1 and

3.2 for the notations.

3.2. Learning manipulation tasks using deep reinforcement learning 43

knowledge of kinematics or non-trivial visual modules. Furthermore, a more so-
phisticated set-up has been proposed in [133]: the shaping reward is based on the
distance between current visual features and target features, both of them being
computed by an autoencoder. This requires to place the robot at the target position
and extract target visual features each time the target location changes. Finally, to
learn a reaching task, [130] uses an unusual kind of reward function which re-
wards 1 when the end-effector is closer to the target, -1 if it gets further and 0 if it
does not make progress changes. However, to compute the distance between the
end-effector and the target, forward kinematics and target tracking are required.

To conclude, these approaches present massive changes in terms of task com-
plexity. However, they do not focus on making the reward functions independent of
kinematics, target measures or hand-crafted visual modules. They mainly contribute
towards deep reinforcement learning algorithms adapted to high-dimensional state
space and continuous action spaces.

3.2.3 Learning manipulation tasks with deep reinforce-
ment using only sparse rewards

This paragraph describes manipulation tasks which are learned with reward
functions which only consist of a sparse reward function. We particularly enhance
the strategies which make learning with sparse rewards tractable.

In [138], a real WAM robotic arm equipped with a Barrett hand learns to grasp
objects in clutter using sparse rewards. The state space is composed of RGBD data
and potential actions are generated for each state. There are two kinds of actions,
pushing to make objects graspable and grasping. A grasping action consists of an
approaching direction of the hand, the rotation angle of the wrist and the initial
distance between the tips of the two fingers and the thumb. These parameters are
generated based on centres of objects obtained by a hand-crafted segmentation. A
pushing action has the same parameters as a grasping action with the exception of
the three fingers which have to be aligned. Note that these kinds of actions require
also to compute torque outputs using inverse kinematics and calibration parameters.
To our understanding, simplifying the action space was the key of the success.

In [73], 14 robots learn in parallel how to grasp objects in clutter. The robots
have seven degrees of freedom and a compliant two-finger gripper. For each robot,
a camera is mounted behind the arm and can look at a box containing objects. The
state space is composed only by images of the box (current and at the beginning of a
learning episode) and the action space by the 3D end-effector translation and a sine-
cosine encoding of the change of end-effector wrist angle (the gripper is made verti-
cal). Sparse rewards are used to train a deep grasp predictor (7 convolutional layers),
which outputs a probability value given a pair of images (as previously mentioned)
and an action. Actions are generated using a cross-entropy method consisting in
sampling and re-sampling actions with high probability of success. Several strate-
gies make learning the full task with sparse rewards tractable. First, the action space
is simplified by the used of inverse kinematics. Second, several robots learn in par-
allel, which make the probability of success higher. Third, for a given episode, each
transition has the same reward which is the outcome of the episode (0 or 1), and
the actions are re-computed using pose difference. This significantly increases the
number of successful transitions but makes an assumption on dynamics (the scene
is fixed and there are no obstacles).

44 Chapter 3. State of the art

In [59], very precise manipulation tasks such as inserting a key into a lock or
putting a ring onto a peg are learned using sparse rewards. The task is learned from
a large variety of initial states using “learning from easy missions” [139]. This class
of methods, also called “curriculum learning” makes an agent or a robot learn easy
tasks at the beginning of learning. During the latter, it focuses on tasks of increasing
difficulty and ends-up mastering all the tasks including the most difficult ones. In
this context, it it assumed that one element sg ∈ Sg of the goal state space is used.
From this goal state, they first start to learn to reach sg from close states. And, as
learning progresses, initial states are generated further and further with respect to
sg. To our understanding, one of the limitations of the method comes from its key
assumption: “one element of the goal state space is known”. This assumes to mea-
sure or compute a target pose, which is difficult to ensure in all the robotic scenarii,
e.g manipulation task in the sea bed.

In [136], among their diverse experiments, a brick grasping task is learned with
a sparse reward with random brick and arm initialisations. The state space contains
9 (6 for the arm and 3 for the finger) joint angles and its associated velocities and
the 6D pose of the brick (which is often unavailable for real-world tasks). The arm
is always initialized with the end-effector close to the brick and well-oriented for
grasping, i.e. the required move is just a translation of the end-effector followed by
a grasp. This alleviates the issue of the probability of first success and makes the task
much simpler. The focus is put on the issue of credit assignment with the following
strategy: several RL updates per interaction between the agent and its environment
are applied, which improves a lot the data-efficiency of the RL algorithm.

In [140], a planar pushing task is learned using a model-based RL method. The
state space is composed of an RGB image, 5D pose of a gripper (3D Cartesian coordi-
nates + yaw and pitch angles) and an action corresponds to a controlled 5D gripper
pose. A high-dimensional dynamics model (convolutional and LSTM modules are
involved) is used, predicting a next image from a previous and current image, a pre-
vious and current gripper pose, and a sequence of future actions. Formally, the way
the goal is specified requires a human user to specify some pixels and to associate
target positions to them. The actions are generated using an optimization planning
procedure which involves the dynamic model: choose the sequence of actions which
maximizes the probability of the designated pixels moving to their goals. Note that
the method is interesting in it is allowed to do prediction only for the pixels of inter-
est and not for the whole image (because each pixel coordinate is made independent
of other pixel values). The way the goal is specified in this method makes the reward
rather sparse. The main assumption of the method is that the goal of a manipulation
task would have to be specified in terms of target pixel, which may not be suitable to
all the manipulation tasks. For example, for a grasping task it is difficult to specify
the goal with pixels and target locations.

In [141], a pick-and-place is learned using sparse rewards. The state and ac-
tion spaces are simplified by the use of placing and grasping motion planning algo-
rithms. The state space is composed of potential grasps obtained from a supervised
RGBD grasp sensor, a set of allowed hand configuration placements, a grasp selected
in a previous step, and a believed object position in the previous time-step. The ac-
tion space is composed of chosen place and grasp actions and is discrete. The motion
planning algorithms requiring dynamics as well as the black-box models (requiring
RGBD hand-crafted processing blocks) to compute potential grasps make learning
of the pick-and-place task tractable.

In [142], three manipulation tasks are learned (pushing a randomly located box
to a random location, hitting a puck such that it slides and stops to a target location,

3.2. Learning manipulation tasks using deep reinforcement learning 45

picking a randomly located object and place it at random location). For all these
tasks, the initial position of the gripper is fixed. The state space is composed of robot
joint angles and associated velocities as well as positions, rotations and velocities of
all objects. The actions consist of 3D desired gripper Cartesian position and desired
distance between two grippers, which requires inverse kinematics. The state space
of this application is rather low-dimensional. However, the method used to learn
the policy, “Hindsight Experience Replay” (HER), produces impressive results using
only sparse rewards. This consists in extending off-policy DRL algorithms (DDPG
included) by making them take goals as inputs (in the application, this is the object
3D Cartesian position). The idea of HER is to store transitions with the true goal
and also with a subset of other goals. Several strategies were tested to select the sub-
set of goals, the best one was to select k random positions which occur in the same
episode as the considered transition. This strategy applied with DDPG resulted in
very good performances while DDPG without it totally fails. Overall, the goal sam-
pling is interesting and was a decisive factor to make the task learned. However,
some modelling parts are present such as inverse kinematics and the knowledge of
the object 3D position.

In [143], a complex block stacking task is learned in simulation using a hierar-
chical RL architecture which involves auxiliary and external sparse rewards. The
state space is composed of a pair of images, proprioceptive information including
arm and finger joint angles and velocities and end-effector position. The idea of
this hierarchical architecture is to jointly learn external tasks (the targeted tasks) and
auxiliary tasks. The latter are only used to provide good exploration samples for the
external tasks and do not bias their policies. The auxiliary reward functions are all
sparse in simulation (in real-world tasks, some shaping reward auxiliary functions
are used) and give positive rewards if touch sensors are maximized or minimized,
if objects are close to each other, if one object is higher or lower than the other one,
if one object is on the left (resp on the right) of the other one. Some other auxiliary
rewards output positive values if the end-effector touches something, if it does not
touch anything, if it makes the object moving. These rewards are sparse, however,
object-centric rewards (10 among 13) require object tracking in the two used camera
images and are mainly valid for simple fully-coloured objects given the segmenta-
tion algorithms used in the experiments. To conclude with, this method is tractable
because each of the auxiliary sparse reward positive values can be experimented
with a relatively high probability, which makes reaching the external sparse reward
positive values more likely afterwards.

3.2.4 Partial conclusion
In this section, we have reviewed manipulation robotics tasks using deep rein-

forcement learning. We have briefly described work on learning from demonstra-
tions. We have summarized deep RL applications using shaping rewards and have
noticed that many of these applications require forward kinematics as well as a way
to know where the target is (by measure or tracking). We have also described deep
RL manipulation applications which use only sparse rewards. We can enhance that
the issue of data-efficiency arising with the sole use of sparse rewards was correctly
addressed because presented papers have not major problems learning with them
when they occur. The major difficulty is to make the first successes likely. To this
end, the state and/or the action spaces can be simplified using inverse kinematics
[140], [142], [73] or supervised pre-processing blocks [141], [138]. Furthermore, us-
ing several agents in parallel makes the probability of success more likely [73] but

46 Chapter 3. State of the art

requires expensive materials. And finally, decomposing a complex task defined by a
sparse reward can be made tractable by learning meanwhile other simpler auxiliary
tasks defined as well by sparse rewards [143].

3.3 Conclusion
In this chapter, we have presented manipulation robotics tasks using reinforce-

ment learning. First, we have reviewed some approaches developed before the
emergence of deep learning. We have concluded that the state spaces were rather
low-dimensional and that many approaches used expert demonstrations or/and
forward kinematics or/and hand-crafted visual modules. The emergence of deep
learning has mainly changed the dimensionality of the problems since state and ac-
tion spaces have become more high-dimensional. However, they still have major
requirements regarding the way the goal is specified. Some approaches use expert
knowledge or shaping rewards using kinematics to guide the exploration. Other
studies use state and/or action space reduction techniques as well as costly com-
putational and material resources to learn with sparse-only rewards. Furthermore,
another solution is to divide the whole complex task into simpler tasks. This helps
a lot to reduce the complexity of the whole task but does not imply to reduce the
requirement of external knowledge for the sub-tasks.

In the next chapter, we will present our approach and we will describe how we
can dispense with kinematics, hand-crafted visual modules and expert knowledge.

47

Chapter 4

Approach overview

In the previous chapter, we have reviewed deep RL work on manipulation robotics
and we describe now an overview of our approach and how it relates to the state-of-
the-art.

4.1 Learning reaching skills using binocular fix-
ation and hand-eye coordination

In this section, we develop the idea which helps us partially overcome the need
for supervision and we describe at the same time previous work from which we get
inspiration.

4.1.1 Objective
For manipulation robotics tasks using deep reinforcement learning, the use of

hand-crafted features for the state representation is limited. However, we have
shown that the usual ways to specify a goal often require forward kinematics and/or
supervised visual modules for shaping rewards, expert knowledge for imitation
learning, a lot of material resources and/or state and action space reduction and/or
knowledge of goal states for sparse-only rewards. Our objective is to learn a complex
manipulation robotics task without forward kinematics, supervised visual modules,
calibration parameters and expert knowledge. Specifically, we are interested in a
palm-reaching task. A seven-degree-of-freedom robot has to touch with its palm
an object, which is put on a table. This task can be viewed as a natural predeces-
sor of grasping or other manipulation tasks and is interesting from this perspective.
Furthermore, we are interested in learning to predict reachability while learning to
reach using the gaze as the only input.

4.1.2 Idea

4.1.2.1 Development

The idea of our approach comes from the observation of human behaviour: to
grasp an object, humans first look at it and then grasp it. Inspired by that fact, we
design a stage-wise learning framework which is composed of three steps (as shown
in Figure 4.1):

1. Fixating objects: the robot learns to fixate an object put on a table with a two-
camera pan-tilt system. This step makes the robot localize the object in a 3D
space.

48 Chapter 4. Approach overview

FIGURE 4.1: Scheme of the three steps of the stage-wise framework

2. Fixating the end-effector and learning hand-eye coordination: the robot learns
to fixate (using the same stereo system) its own end-effector and meanwhile it
learns a hand-eye coordination function. The latter allows at any time the robot
to localize from its arm joint angles the end-effector position in terms of cam-
era joint angles. The hand-eye coordination is considered as a proprioceptive
ability.

3. Touching: from the knowledge acquired in the previous steps, i.e. the ability to
localize objects by fixating them and the end-effector from the hand-eye coor-
dination, the robot learns both to touch an object and to predict its reachability
from its gaze.

Decomposing the whole problem into small sub-problems helps to learn the
whole task in a most efficient way. However, as shown by [137] and [143], using
a hierarchy of simpler tasks does not imply the absence of visual modules and for-
ward kinematics for the considered sub-tasks. Our work focuses on reducing the
required prior knowledge for the three considered tasks.

For the object fixation task, we use an autoencoder to learn to reconstruct the en-
vironment (with an unsupervised procedure) without object, i.e. through the images
captured by the stereo system. Besides, we assume that if an object is added to the
environment, it will be badly reconstructed. From this assumption, the object can be
localized in the images because it corresponds to the area which has the largest pixel
reconstruction errors. Using this anomaly localization principle, the robot learns
(through deep reinforcement learning) to move its cameras such that the object is at
the image center.

To learn the end-effector fixation task, we define periodic finger moves of the
end-effector and localize the latter by using an image difference technique. Using
this localization principle, the robot learns (through deep reinforcement learning) to
move its cameras to bring the end-effector to the image center. Meanwhile, each time
the end-effector is at the image center, a link is made between the arm joint angles
and the camera joint angles. From these links, a hand-eye coordination mapping is
learned (through supervised learning), and this allows to localize the end-effector
from the arm joint angles. For this learning process, the labels are not given by
humans but are found through experimentation.

The touching task is learned through reinforcement learning and uses a shaping
reward directly depending on the knowledge of the two previous tasks: the camera

4.1. Learning reaching skills using binocular fixation and hand-eye coordination 49

joint angles which make the stereo system fixate the object and the hand-eye coordi-
nation function are used. This task also assumes that the robot knows whether it is
touching the object with its palm (knowledge of the sparse reward) and also whether
it is touching the table.

To summarize, we list the assumptions used in our experiments per task:

1. No object is present when the autoencoder is encoding the environment and
an object is added when the robot learns object fixation. Furthermore, there is
no environment variation after the autoencoder training step.

2. Nothing is moving in the background.

3. We assume the robot has the tactile sensing ability to know whether it is touch-
ing the object with its palm and whether it is touching the table.

However, unlike prior work, we do not use forward kinematics, hand-crafted visual
modules, expert demonstrations or other forms of external supervision. A more
technical description is given at the end of the chapter.

4.1.2.2 Links to the human behaviour

We have developed our idea based on a basic observation of the human be-
haviour: humans generally fixate an object before manipulating it. We describe here
how it is related to studies on reaching behaviour. We are interested first in knowing
how a target location for reaching is encoded in the brain. Second, we briefly de-
scribe how infants learn saccades, hand-eye coordination, and some manipulation
skills and we conclude on how much our method is related to the way infants learn.

How is a location encoded in the brain?

For an agent (human, primate or robot), reaching or manipulating an object re-
quires encoding the 3D location of the object with respect to its body. Primates or
humans can generally encode a 3D location with the binocular gaze direction. In-
deed, as shown in a study on macaques [144], some neurons of the Brodmann area
9 (dorsolateral prefrontal cortex) are responsible for encoding variations of the head
direction. Thus, the gaze direction together with the vergence angle of the eyes can
encode a 3D location relative to the body. However, the gaze direction only en-
codes the location of those stimuli which are in the fovea. And, as humans can also
reach for objects that are not in the fovea (e.g. expert jugglers use information in
the periphery of vision to track juggling balls [145]), other ways of localization are
involved. In a study on monkeys, [146] observed that 81 % of the neurons of the
parietal reach region (in the posterior parietal cortex) encode extra-foveal locations
in eye-centered coordinates. In other terms, these neurons are used to encode extra-
foveal positions relative to the fovea.

In our work, we do not consider encoding locations of stimuli in extra-foveal
areas. We only encode the location of the target in the foveal area. This position is
only represented by the gaze of the robot, i.e. the camera joint angles, as the robot is
fixating the object.

Infant learning

We discuss here how newborns may learn to reach targets and draw comparisons
with our approach.

50 Chapter 4. Approach overview

To start with, babies (and generally humans) learn their skills in form of sensori-
motor mappings. This is the case in our work since the output of reinforcement
learning is a sensori-motor mapping.

Besides, newborns may not learn any skills from scratch. They are provided with
movements (called primitive reflexes) which help them to interact with the environ-
ment and acquire skills [147]. They progressively disappear as their sensori-motor
skills improve and the brain becomes more mature. For example, the asymmetric
tonic neck reflex [148] is a known movement that considerably helps babies to learn
hand-eye coordination and reaching [149]. When the baby’s head is turned to a side
(left or right), his arm and leg from this side extend while his arm and leg from the
opposite side flex. This set of moves may allow the babies to see their hands and to
establish links between proprioception and vision.

Babies learn to saccade to visual stimuli directly after birth and it takes generally
about four months [150] to reach a good control of the head and the eyes. However,
as shown by [151], children are continuously improving this skill since their primary
saccades are less precise than those of adults.

In the first few months, newborns try to reach stimulating targets (from vision
and sounds) and can already make contact with objects at around 12 weeks. Accord-
ing to [152], the interesting point is that vision of the hand may not have an influence
on these early reaching contacts. Indeed, in this study, infants make contacts with
objects in two experimental conditions. In the first one, objects are presented in the
light and in the second one, glowing or sounding objects are presented in complete
darkness. The results show that infants reach and grasp objects at comparable ages
for both environmental conditions (∼ 12 weeks for reaching and ∼ 15 weeks for
grasping). This indicates that infants do not seem to do visual correction for reach-
ing at this age. From five months, infants may correct their reaching movements
using vision and start to develop hand-eye coordination [153], [149].

With respect to these studies, we do not take into account that the learning of
the tasks are intertwined e.g. reaching happens before a good development of pro-
prioception. In a nutshell, infants autonomously learn what is the right sequence
of tasks. In our case, by observing the human behaviour, we know that the target
fixation and the hand-eye coordination function both help a lot to reach a target and
we implement this sequence of tasks.

In our work, the first task consists in fixating environment anomalies that we
consider as objects. Infants (and also adults) are interested in novel visual stimuli
[154], [155] and we can argue that from this point of view, we respect this princi-
ple in that the novelties are the objects. However, we did not implement a curiosity
mechanism [156] to make the robot continuously encode novel stimuli. Instead, we
considered the environment as fixed and the objects the only novel stimuli. Further-
more, there is no evidence of prior encoding of the outside environment in the brain
of infants.

The second task which consists in learning hand-eye coordination is biologically
plausible in the sense it uses sensori-motor learning. However, the question about
the nature of inputs and feedbacks is still open.

To conclude, to learn the object reaching task, we do not take into account the
intertwining of the task learnings. Our approach takes inspiration from the emergent
behaviour of humans (fixate the object, then manipulate it) and from its sensori-
motor learning aspect.

4.1. Learning reaching skills using binocular fixation and hand-eye coordination 51

4.1.3 Related work
The general idea of learning to reach with binocular fixations and/or hand-eye

coordination has been implemented several times in the developmental robotics lit-
erature. In this section, we only describe applications which learn to reach with the
help of binocular fixations and/or hand-eye coordination. The applications which
learn reachability prediction skills are described in Chapter 7.

In [157], a six degree-of-freedom robot arm equipped with a stereo system learns
to fixate and to grasp an object. To do so, a fixation controller is approximated using
a neural network which is trained from random saccade moves using supervised
learning. Afterwards, a recurrent neural network is trained to learn the grasping
controller using supervised learning and requires inverse kinematics to compute the
targeted arm postures. Moreover, the targets are detected via a hand-designed visual
module. In [158], the same experimental environment is used. The object localiza-
tion in the images is still computed with a simple color-segmentation algorithm and
no hand-eye coordination is computed since the robot learns to grasp using some
solutions of the robot inverse kinematics.

In [159], a seven degree-of-freedom robot is used jointly with a four degree-of-
freedom stereo system. The latter is used to fixate a target in the image using a pro-
portional command (requiring to tune gains). In this study, a hand-eye coordination
function is learned, mapping arm joint angles to camera yaw, pitch and vergence
angles, which is close to our hand-eye coordination function. Reaching is learned by
approximating the inverse Jacobian (this allows to compute the arm joint angle ve-
locities given the hand position in the image) with a neural network. This Jacobian
is used to bring the hand to the image center. However, most samples required to
learn the hand-eye mapping and the inverse Jacobian were collected offline. This is-
sue is addressed in [160] where the hand-eye coordination mapping and the inverse
Jacobian are jointly learned in an online process. The main requirement implied by
the method is the visual knowledge of the target and the hand model. Indeed, a
color attention mechanism is used for the hand and target detections.

In [161], target fixation and reaching are learned using radial basis functions and
supervised learning. The main contribution of the paper is the fact that the presented
algorithm is biologically plausible. However, the target and the end-effector are still
segmented with a color segmentation algorithm and the use of markers.

In [150], target fixation, reaching and torso controllers are learned. The method
focuses on making the learning architecture human-like. The targets are detected
as salient areas using a novelty principle. In principle, such a method suits our
requirements provided no hand-crafted feature is used. However, to our under-
standing, it seems that a model of proprioception is given to the robot: “firstly a
series of arm movements are generated with proprioceptive information to model
movements learnt prenatally”.

To summarize, the idea of learning a reaching task using stereoscopic fixation
and hand-eye coordination has been explored by the developmental robotics com-
munity. The majority of these papers focus on making the learning architecture
human-like. In our case, we take inspiration from this kind of work because object
fixation and hand-eye coordination efficiently help to learn object reaching. How-
ever, as stated in Chapter 3, we want to get rid of external information such as
forward/inverse kinematics or hand-designed visual modules. This is not fully
achieved in the mentioned developmental robotics papers because the objects or/and
effectors are often detected using a basic color segmentation algorithm. Our ap-
proach is to design a stage-wise reinforcement learning framework where all the

52 Chapter 4. Approach overview

tasks are learned one by one using weakly-supervised reward shaping terms. The
next section describes in more technical details the chosen methods to overcome the
use of kinematics or visual modules.

4.2 Technical overview for the learning of reach-
ing skills

In this section, we present a more technical overview of the tasks with the math-
ematical notations that we use for the following chapters (see Figure 4.1 and 4.2 for
a schematic view of the stage-wise learning process).

For our work, we use a 7 DOF arm with a pair of cameras as shown in Figure 4.1.
The task consists in touching an object on a table with the end-effector palm of the
robot. In the following, we use the notations:

• I = (I left, Iright) represents the images from the left and right cameras.

• q = (qcamera, qrobot) represents the 3 camera joint angles (one common tilt angle
and two independent pan angles) and the 7 robot arm joint angles.

• cb is a vector composed of 8 binary values associated with 8 areas of robot fingers.
The 8 areas correspond to the proximal, medial and distal areas of the three fingers,
with the exception of the proximal area of one finger which is linked to the palm.
One binary value becomes 1 when its associated area is in contact with the object
and 0 otherwise (see Figure 4.3 for an illustration).

FIGURE 4.2: Overall scheme of the reaching skill learning procedure.
Greek subscripts represent neural network parameters.

As mentioned above, the proposed method involves three successive tasks. First,
the robot learns from raw pixels to fixate the object with a two-camera system. The

4.3. Conclusion 53

FIGURE 4.3: Representation of the areas of the robot fingers. The 8
areas associated with circles correspond to the binary values of the

vector cb.

resulting policy outputs from raw images I and camera joint angles qcamera varia-
tions of camera joint angles ∆qcamera. At the end of the fixation, the camera system
coordinates qcamera

fix implicitly encode the object position in 3D space.
Second, the robot learns a hand-eye coordination function fη which maps robot

joint coordinates to virtual camera coordinates:

qcamera
virt = fη(qrobot). (4.1)

These virtual camera coordinates correspond to the camera coordinates which would
make the camera system look at the end-effector. The hand-eye coordination func-
tion is learned while learning the end-effector fixation policy, which has the same
types of input-output pairs as the object fixation policy.

Finally, for the third task, a reward signal using qcamera
fix and qcamera

virt to make the
end-effector close to the object is computed. It is combined with a sparse reward,
indicating if the end-effector palm touches the object or not and a term penalizing
contacts between the end-effector and the table (which assumes that the robot has
the touching ability to distinguish the object from the table). While learning to touch
the object, a reachability prediction network Reα is learned using (qcamera

fix , Success) as
input-output pairs. Indeed, as qcamera

fix encodes the 3D location of a point, it should
be a sufficient criterion to decide whether a point is reachable. In the following
chapters, we describe each of the three steps in details with experiments.

4.3 Conclusion
In this chapter, we introduced our proposed approach to learn a touching (or

pre-grasping) task using weak requirements about kinematics and the visual scene
and without expert knowledge. To that end, we divide our whole complex reaching
task into several sub-tasks. The way we divide the reaching task is inspired from the
human behaviour and existing developmental robotics approaches. Humans gener-
ally fixate first an object before grasping it. Thus, the robot first learns to fixate ob-
jects. Second, it learns a hand-eye coordination function by learning to fixate its end-
effector. And then, it learns to reach the objects. In addition to the specific division
of tasks which is common to existing developmental robotics methods for reaching,
our sub-tasks have the advantage of requiring only minimal prior knowledge. Us-
ing only little supervision for the goal specification of a complex manipulation skill

54 Chapter 4. Approach overview

is a contribution itself with respect to the state of the art. The other important contri-
bution is that we have designed a coherent deep reinforcement learning framework
for the learning of the reaching task from raw sensor values, i.e. robot and camera
joint angles, tactile finger sensors, and image pixels.

The following chapters describe each of the learned tasks: Chapter 5 describes
the way the binocular fixation of objects is learned as well as the results in simulation
and in the real world. Chapter 6 relates how the hand-eye coordination function is
learned and the results in simulation. Chapter 7 presents how the knowledge of the
two prior tasks are combined to learn the whole reaching task and the reachability
prediction skill.

55

Chapter 5

Learning binocular object fixations
using an anomaly localization
principle

This chapter presents our proposed approach to solve the object fixation task. We
first present our method from a broad perspective. Then, the method is technically
explained. After that, we present experiments on simulated and real environments
and discuss the results.

5.1 Introduction
As mentioned in chapter 4, the object fixation task consists in bringing the object

to the center of each image (left and right) captured by the camera system as shown
in Figure 5.1. Our goal is to make the robot learn this task with as little supervision

FIGURE 5.1: Binocular fixation achieved on a purple cylinder, the red
cross stands for the image center, the green cross is the estimated ob-

ject pixellic position according to the method described in 5.2.2

as possible. For this purpose, we use a deep reinforcement algorithm (DDPG) to dis-
pense with the use of hand-crafted features for the state representation. In addition,
we also design a shaping reward function which requires minimal supervision, i.e.
without supervised visual object detection modules or calibration parameters. To

56
Chapter 5. Learning binocular object fixations using an anomaly localization

principle

design this reward function, we propose to use a weakly-supervised anomaly locali-
sation mechanism. In our approach, the object is viewed as an anomaly with respect
to the agent’s knowledge about the environment. The goal is to locate it in the image
and then bring it to the image center.

Our object localisation principle is close to the one used in [25] where learning
to detect network intrusions and breast cancers is proposed. In this paper, a multi-
layer perceptron is used as an autoencoder to reconstruct inputs labelled as “with
anomalies” or “anomaly free”. A positive aspect similar to ours is that it allows to
locate the anomaly. However, these applications are rather low-dimensional since no
more than 50 neural network inputs have been used in the experiments. [162] uses
support vector machine methods to learn how to detect outliers in digit images. For
each kind of digit, a support vector machine is trained to model a density. Abnormal
images are detected when they are incompatible with the trained density. Similar to
[25], the problem is rather low-dimensional since it involves 256 binary dimensions.
In our case, the anomaly localisation concerns 2500 raw pixels (50× 50 images).

5.2 Methods

5.2.1 Task definition
The problem is modelled as a Markov decision process where:

• S = (I left, Iright, qcamera). The set of states involves the two RGB left and right
images (I left and Iright) and the camera joint angles qcamera ∈ R3. The camera
joint angles qcamera = (qpanLeft, qpanRight, qtilt) are represented by two pan angles
for each camera and one joint tilt angle. Note that the state space contains only
observations at a given time-step t (prior observations are not included).

With a perfect object detector, the object pixellic position could be used directly as
a state instead of images. However, impulse noise (explained in 5.2.3) affecting the
object detection makes this impractical. Learning a direct mapping from images
to actions solves this issue and avoids the need for any object detector during the
exploitation.

• A, the set of actions comprises the three variations of camera coordinates (three
continuous scalars)

A = ∆qcamera = (∆qpanLeft, ∆qpanRight, ∆qtilt) ∈ R3

The decision process we use is modelled as Markovian because we use a deep
reinforcement learning framework theoretically relevant for MDPs. However, it is
Markovian under some conditions. Indeed, the Markov property specifies that from
a state-action pair, the next state can be predicted. In our case, from current images,
camera joint angles and variations of camera joint angles, next images and camera
joint angles have to be predictable. It is true for camera joint angles, but not neces-
sarily for images. When cameras move, some environment areas appear and other
ones vanish. The latter can be predicted but the former is predictable only if the
environment is immobile. We ensure that this condition is valid in our experiments.

5.2.2 Reward computation
The rationale of the reward computation is to estimate first the object localisation

in the images (using weak supervision) and then encourage it to be at the image

5.2. Methods 57

center. To localize the object, we learn first the environment images without object.
Then, the object is localised in the image by considering it as an anomaly with respect
to the environment encoding.

Thus, the reward computation involves three steps:

• A pre-training step in which the agent learns to reconstruct the environment with-
out object

• An object detection step

• The reward computation step itself

In the following paragraphs, the superscript cam represents the camera left or right.

Pre-training step

For each camera cam = left or right, 10 000 camera configurations are gener-
ated leading to two 10 000-sized image databases Dleft and Dright. The set of camera
configurations covers a regular grid of configurations between the joint limits (arbi-
trarily fixed to keep the table inside the field of view).
The images are converted from RGB 200× 200 format to grayscale 50× 50 images.
Then, the autoencoder Acam

µ is trained on Dcam with the help of the Adam solver
[31].

Object detection

The object detection step takes into account the reconstruction error map (see Fig-
ure 5.3 for examples of reconstruction error maps). Objects are badly reconstructed
since autoencoders are not trained on them. As previously mentioned, it makes the
reconstruction error localized at the object position. This feature allows to estimate
the object pixellic position. We choose to estimate it with a Gaussian kernel density
estimator.

Icam
origin Icam

gr Îcam
gr |Icam

gr − Îcam
gr | xcam

obj , xcam
Ic

FIGURE 5.2: Object detection computation scheme

Figure 5.2 shows the different steps of the reward computation:

• The image is downsampled and converted into a grayscale one Icam
origin → Icam

gr .

• The image is reconstructed using the learned autoencoder Icam
gr → Îcam

gr = Acam
µ (Icam

gr).

• The error map is computed |Icam
gr − Îcam

gr |.

• From the error map, the N points {xi}i∈{1,...,N} with the highest intensity are ex-
tracted. {Li}i∈{1,...,N} is the set of corresponding luminances.

58
Chapter 5. Learning binocular object fixations using an anomaly localization

principle

From these points, a probability distribution {pi}i∈{1,...,N} is computed using a ker-
nel density estimator with a Gaussian kernel of zero mean and unit variance:

∀i ∈ {1, ..., N}, pi =
1
N

N

∑
j=1

LjK(xi − xj), (5.1)

with K(xi − xj) =
1

2π exp−0.5||xi−xj||22 .

The estimated object pixellic position xcam
obj is at the maximal density function

value:
xcam

obj = xk, (5.2)

where k = arg max
i

(pi). N is set to 150 in the experiments.

FIGURE 5.3: Examples of autoencoder reconstruction error for differ-
ent objects of the training set.

5.2. Methods 59

Reward computation

The reward is a decreasing function of the Euclidean distance ||xcam
obj − xcam

Ic ||2.
We propose to use an affine function which has a maximal value of 1:

rc = 2×
(

L− ||xcam
obj − xcam

Ic ||2
L

− 1
2

)
, (5.3)

where L is a constant value (equal to 100.5 in our experiments). Figure 5.4 plots the
reward signal in function of ||xcam

obj − xcam
Ic ||2.

FIGURE 5.4: Plot of the reward signal in function of the distance be-
tween the object localization and the image center

The total reward signal is the sum of the left and right reward values:

r = rleft + rright. (5.4)

60
Chapter 5. Learning binocular object fixations using an anomaly localization

principle

As previously mentioned, this method allows to extract a reward signal in a
weakly supervised way. Indeed, the only supervision is the assumption that there is
no object in the environment encoding step, and an object in the object fixation step.
Moreover, this reward is informative in the sense it can discriminate the values of
nearby states.

5.2.3 Mitigating noise
Considered on isolation, the results of our anomaly localisation is affected by

impulse noise. The latter is present in the object position estimation because the
learned autoencoders do not reconstruct perfectly the images even without object
in the scene. Indeed, some high-frequency areas such as table legs are difficult to
reconstruct. Consequently, high-frequency areas are sometimes detected, producing
impulse noise in the reward function (see Figure 5.5 for an example in a real setting).
An impulse noise present in a reward function can damage learning as it will be
verified in the experimental part.

Dealing with impulse noise in the reward function is not often considered in
deep reinforcement learning papers. To deal with noisy rewards, [163] used a mov-
ing average filter on the temporal reward signal with good results at removing im-
pulse and Gaussian noise in a low-dimensional gridworld problem. This method
can be applied to high-dimensional RL problems but it would modify noiseless re-
wards as well. More recently, [164] studied the influence of noise on the state-action
value function overestimation. They developed a method to cancel this effect, pe-
nalizing unlikely actions in the update given prior knowledge. This method cannot
be integrated in our work since we want as little prior information as possible. In
our method, we choose to apply a learning approach to remove the reward impulse
noise.

We choose to model the function m to detect an abnormal object detection varia-
tion in function of the movement amplitude:

∆d = m(||∆qcamera||2), (5.5)

where ∆d is the Euclidean distance in the pixel space between two successive object
detections (note that ∆d is averaged over the left and right images: ∆d = 0.5(∆dleft +
∆dright)). For example, we want to model that if the cameras move a little, the object

FIGURE 5.5: Example of impulse noise in the object localization pro-
cess in the real environment. At the bottom right of the original im-
age, a high-frequency area is not well reconstructed and is detected.

detection should move a little as well. Therefore, if in this case the object detection
moves a lot in one of the images, this would be considered as abnormal and the RL
transition is not added to the memory buffer.

5.3. Experiments 61

The function m can be approximated by any regression method including neural
networks, Gaussian processes or support-vector machines. Here, a Gaussian pro-
cess with a squared exponential interaction function is used and trained with 1 000
transitions. Using it allows to remove transitions whose difference (in pixels) be-
tween the real detection variation and the estimated detection variation is above a
threshold.

Note that this method does not theoretically allow to remove all the noise. In-
deed, two successive bad detections imply a false positive and a bad detection fol-
lowed by a good detection produces a false negative. From the observation of suc-
cessive object localisations, we have noticed that the false positives almost never
happen while false negatives are more frequent (though still seldom).

0 200 400 600 800 1000 1200 1400
Iterations

0

20

40

60

80

100

120

140

D
if

(p
ix

el
s)

Estimation-reality difference
Average
Threshold

FIGURE 5.6: Evolution of the error in object motion estimation.

Figure 5.6 illustrates the partial noise removal results and reveals the impulse
nature of the noise. We display (in blue) the difference Di f between the estimated
and the experimented (∆dexp) object detection variations:

Di f = |∆dexp −m(||∆qcamera||2)|. (5.6)

All the transitions whose Di f is superior to the threshold (ν = 10) are not added to
the memory buffer (3 % of the transitions are removed).

5.3 Experiments
This section presents the experiments made to evaluate our method. They con-

tain three main objectives:

62
Chapter 5. Learning binocular object fixations using an anomaly localization

principle

1. We want to evaluate the learning of binocular fixations with our weakly super-
vised reward and compare it to the learning made with a reward depending
on external information like calibration parameters.

2. We want to verify that the impulse noise affects learning and that our method
helps to deal with this issue.

3. We want to make a learning run with our weakly-supervised reward on a real
setting and evaluate its performances.

5.3.1 Experimental environments
We describe here the environments we use for our experiments.

5.3.1.1 Simulated environment

FIGURE 5.7: Simulated robotic platform

We use the Gazebo simulator jointly with the ROS middleware [165]. A two-
cameras system is mounted on a robotic platform (cf Figure 5.7). A table from the
Gazebo database is placed below the cameras and an object is put on it. The exper-
iments involve two object sets. The training and the test sets can be seen in Figure
5.8. The databases consist of objects from the Gazebo models and hand-designed ob-
jects. In order to potentially generalize the fixating skill to new objects, the training
set objects were designed with diverse colors and shapes (cylinder, parallelepiped,
and sphere). Every test object has a new shape compared with training objects and a
new color (turquoise) appears in the test set. The goal is to check if the learned policy
can achieve fixations on objects whose color or shape is not present in the training
set.

5.3. Experiments 63

FIGURE 5.8: Training and test sets

5.3.1.2 Real environment

The experiments are conducted on a robotic platform (see Figure 5.9). Even
though there are similarities between the environments, the real scene is significantly
different. The pan-tilt system has the same robotic architecture as the simulated one.
However, the system used in the experiments has a defect. Indeed, there is a an
offset on the tilt angle of the right camera, which implies a vertical offset on the left
and right images. It is illustrated in Figure 5.10. This offset could be cancelled if

FIGURE 5.9: Real robotic platform and setting

the left image is cropped from the bottom and the right image is resized. However,
we decided not to pre-process the images and to feed the neural networks with the
raw pixels. Indeed, we made the hypothesis that the camera system would find an
intermediate solution itself through learning. In other terms, the reward function
can still make the camera system learn to put the object between the red crosses on
the vertical axis.

64
Chapter 5. Learning binocular object fixations using an anomaly localization

principle

FIGURE 5.10: Two images captured at the same time by the Pan-tilt
system. The red cross is at the image center and we observe a vertical

offset between the two images.

The training and test sets (see Figure 5.11) are built based on the same principle
as for the synthetic platform. The training set is composed of objects of the every-
day life (with various colors and shapes) such as a key ring, juggling balls, diverse
cards, or battery charger. The test set is composed of objects which are visually very
different compared with objects of the training set. There are umbrellas, sun glasses,
a plastic bag, a book etc. The goal is not to learn to fixate any object but rather to
evaluate how much the policy can generalize with few objects.

FIGURE 5.11: Training (top) and test (bottom) sets

5.3.2 Implementation details
For all the neural network algorithms, we use the caffe library [166]. The neural

network structures can be consulted in Appendix A. Batch normalization [167] is
used to normalize layer inputs and avoid burdensome pre-processing steps.

5.3. Experiments 65

Hyperparameter values mentioned in Algorithms 1 and 2 (presented in the next
section) are listed in Table B.1 of Appendix B. They are valid for the simulated and
the real environments.

5.3.3 Experiments in simulation
We describe the experiments made in simulation. First, we compare training per-

formances of our setting with a supervised one. Second, we evaluate the resulting
policies. Finally, we evaluate the object localisation accuracy.

5.3.3.1 Policy training

Algorithm 1 presents the binocular fixation learning procedure which uses an
episodic set-up. In order to avoid the problem of correlated data, the object and its
position regularly change according to a uniform probability distribution. Note that
instead of using the Ornstein-Uhlenbeck process for the exploration as proposed
in [95], a constant zero-mean Gaussian noise is used. With an informative reward
function, this simple exploration setting is sufficient for learning the fixation task.
The number of iterations of the algorithm is set to 200 000 which corresponds to
5 715 episodes.

In order to ensure a fast learning, two mechanisms are implemented in the train-
ing procedure:

• We add a term to the reward penalizing both divergence and a too strong con-
vergence. More precisely, if dpan = qpanLeft − qpanRight is the angular difference
between the pan left and right angles, then the additional reward term rpan (see
Figure 5.12) is computed as an affine function of dpan when dpan > 0 (eye diver-
gence) or dpan < −0.4 (strong eye convergence):

rpan =

−dpan

3 , if dpan > 0
dpan+0.4

3 , if dpan < −0.4
0.1, otherwise.

(5.7)

• At each episode end (after Neps reinforcement learning iterations), the camera sys-
tem is set to the same initial position.

The objective of the experiments on training is twofold. First, we want to show
how the impulse noise affects learning. Second, we want to demonstrate that learn-
ing with the filtered weakly supervised reward gives similar training performance
as with a supervised reward. The supervised reward is obtained by computing the
Euclidean distance between the projection of the object center of gravity and the im-
age center ||xcam

p − xcam
Ic ||2. This function is also affine with the same parameters as

for the weakly supervised one:

rcam
sup = 2×

(
dmax − ||xcam

p − xcam
Ic ||2

dmax
− 1

2

)
, (5.8)

rsup = rleft
sup + rright

sup . (5.9)

It is supervised in the sense it requires to compute the camera extrinsic param-
eters at each iteration and to do a calibration before learning (to estimate camera
intrinsic parameters).

66
Chapter 5. Learning binocular object fixations using an anomaly localization

principle

Algorithm 1 Object fixation training procedure

Parameters:
1: Ntrans: the size of the circular buffer
2: γ: the discount factor
3: qcamera

0 : the initial position
4: ε: the Gaussian noise variance
5: Ntot: the total number of iterations
6: Neps: the number of iterations per episode
7: Nb: the number of transitions per batch
8: ν the removal threshold
9: Ngp: the number of samples required to the train Gaussian process

Inputs:
10: Dtrain: the object training set
Outputs: Qfix

λ , πfix
ψ

Steps:
1: Set t← 0
2: Initialize Qfix

λ , πfix
ψ and Tbuf = ∅

3: while t < Ntot do
4: Choose a random object in Dtrain and place it randomly
5: Go to the initial position qcamera

0
6: Set teps ← 0
7: while teps < Neps do
8: Apply at = πfix

ψ (st) +N (0, ε)

9: Observe st+1 and compute |∆dexp
t |

10: Compute rt using equations (5.4) and (5.7)
11: cond← (t < Ngp) or ((| |∆dexp

t | −m(||∆qcamera||2)| < ν) and (t > Ngp))
12: if cond then
13: Add < st,at, rt, st+1 > to Tbuf

14: Pick randomly Nb transitions from Tbuf
15: Update Qfix

λ and πfix
ψ using DDPG (equations (2.46) and (2.48))

16: if t = Ngp then Train ∆d = m(||∆qcamera||2)
17: t← t + 1
18: teps ← teps + 1

19: Withdraw the object

5.3. Experiments 67

FIGURE 5.12: Visualisation of the rpan computation

To achieve the objectives, learning improvements with the supervised, noisy
weakly supervised and filtered weakly supervised rewards are compared. The fixa-
tion error is tracked over time:

ep(t) =
||xleft

p (t)− xleft
Ic ||2 + ||x

right
p (t)− xright

Ic ||2
2

. (5.10)

ep(t) represents the average (over the left and right images) Euclidean distance
between the image center and the projection of the object center of gravity. We aver-
age three experiments for each case.

The results are shown in Figure 5.13. The curves are smoothed using an expo-
nential filter for better readability:

efiltered
p (t) = (1−ω)efiltered

p (t) + ωep(t), (5.11)

with ω being the smoothing factor (equal to 0.0005 in object fixation experiments).
The vertical axis of the plot represents the ep(t) variable whereas the horizontal

one stands for the time steps. The curve es
p(t) represents ep(t) with the use of the

supervised reward, ew
p (t) with the noisy weakly supervised reward and ewf

p (t) with
the filtered weakly supervised reward.

Given ew
p (t) presents worse learning performances than ewf

p (t), we can conclude
that the noise affects learning and that our denoising procedure is efficient to atten-
uate this effect.

The curve es
p(t) presents better performances than ewf

p (t) because the criterion
used to evaluate these performances is precisely the one minimised when learning
with the supervised reward. It is not the case of our reward which aims at bringing
the maximal reconstruction error to the image center.

Figure 5.13 also displays confidence intervals of 95 % probability for the average

68
Chapter 5. Learning binocular object fixations using an anomaly localization

principle

0 50000 100000 150000 200000
Iterations

0

10

20

30

40

50

60

e p
(t

)(
p
ix

el
)

e s
p (t)

ewf
p (t)

ew
p (t)

FIGURE 5.13: Binocular fixation position error over time for the su-
pervised reward (es

p(t)), our reward without filtering (ew
p (t)), our re-

ward with filtering (ewf
p (t))

fixation error estimation1. We observe that the confidence intervals rarely intertwine,
which means that the average fixation errors are statistically significant.

5.3.3.2 Policy Test

The objective of the policy test can be divided into three sub-goals:
Firstly, we want to compare the performance of the learned policy on the test set

with that of the training set. This aims at evaluating how much our learning frame-
work generalizes from few training data. Secondly, we want to compare the policies
learned with the noisy reward and with the filtered one. The aim is to show that
not only does the noise alter learning, but the performance of the resulting policy is
also worse. Thirdly, we want to compare it with the policy learned with an informa-
tive and noiseless reward signal. The purpose is to check if the weakly supervised
reward allows to learn the same kind of behaviour as the supervised reward.

Besides, other tests will be conducted in section 5.3.4.2 for some comparisons
with the policies learned in a real environment. They will be detailed on this occa-
sion.

Algorithm 2 describes the test procedure. We choose to evaluate the fixation
error ep(teps) at the end of each episode. Statistics (mean, median and standard de-
viations) of these random variables are computed for 6 000 test episodes for each

1For each iteration t, the confidence interval is [ep(t)− 1.96σ(t)√
n , ep(t) +

1.96σ(t)√
n] with σ(t) being the

standard deviation of the fixation error at time t and n representing the number of trials per reward
function (3 for our experiments)

5.3. Experiments 69

Algorithm 2 Simulated object fixation test procedure

Parameters:
1: Ntot: the total number of episodes
2: Neps: the number of iterations per episode
3: qcamera

0 : the initial position
Inputs:

4: πfix
ψ : the policy

5: D = Dtest or Dtrain: the object set
Output: Dp: the set of final fixation errors
Steps:

1: Set t← 0
2: while t < Ntot do
3: Choose a random object in D and place it randomly
4: Go to the initial position qcamera

0
5: Set teps ← 0
6: while teps < Neps do
7: Apply ateps = πfix

ψ (steps)
8: Observe steps+1
9: teps ← teps + 1

10: t← t + 1
11: Compute the fixation error ep(teps) and append it to Dp
12: Withdraw the object

reward case. Among these test episodes, 2 000 come from each trained policy. Fi-
nally, a cumulative percent curve is presented to more precisely characterize the
distribution of ep(teps).

The results are summarized in Table 5.1. The columns rw, rwf and rs respectively
stand for the case of the noisy weakly supervised, filtered weakly supervised and
supervised rewards. Figure 5.14 provides more insight into the distribution of the
fixation error. The vertical axis P(eD

p < ep) represents the percentage of tested sam-
ples whose fixation error is smaller than the values on the horizontal axis.

Several remarks can be made:

• The fixation error distributions are rather asymmetrical since the median is differ-
ent from the average in each case. This is due to the presence of outliers (when the
robot looks at an area far from the object).

• The fixation accuracy of the policy learned with the noisy weakly supervised re-
ward rw is the worst for both the training and the test sets. In average, the fixation
error for rw is 3 and 4 pixels lower than the fixation error for rwf on the objects of
the training and the test sets.

• The results of the policies learned with our proposed reward function are worse
than with a supervised reward (3 and 4 pixels of difference for the training and the
test sets). This is not surprising since with the supervised reward, the optimization
criterion is precisely based on the fixation error. Nevertheless, the results are good
for our method with filtering.

• The errors are higher for the test set compared with those on the training set (3,
2 and 1 pixels of difference for rw, rwf and rs). However, the difference is not
high. This is not surprising since distributions of the training and the test set are

70
Chapter 5. Learning binocular object fixations using an anomaly localization

principle

significantly different. Furthermore, the objects are much bigger in the test set.
This can explain that even if the camera system correctly stares at the object, the
fixation point can be further from the center-of-gravity projection for an object of
the test set compared with one of the training set. Nevertheless, the experiments
indicate that there is no strong overfitting and that we could adapt to the new
distribution through learning.

• Figure 5.14 confirms all these results and enhances the presence of outliers when
learning with our method. For instance, we notice some failures for our weakly
supervised reward without filtering (ep > 150 pixels).

Training set Test set
Statistics (pixels) rw rwf rs rw rwf rs

mean(ep) 8.5 ± 0.2 5.0± 0.1 2.0 ± 0.05 11.6 ± 0.4 7.0 ± 0.3 3.0 ±0.1
median(ep) 7.3 4.6 1.6 8.6 5.1 2.4

std (ep) 7.2 2.7 1.8 15.6 9.9 4.9

TABLE 5.1: Performances of the learned policies. The number after
the plus or minus sign is the standard error.

0 50 100 150 200 250
ep(pixel)

0

20

40

60

80

100

P
(e

D p
<
e p

)(
%

)

with weakly supervised reward on training set
with weakly supervised reward on test set
with filtered weakly supervised reward on training set
with filtered weakly supervised reward on test set
with supervised reward on training set
with supervised reward on test set

FIGURE 5.14: Cumulative distribution function of the fixation error
(in %)

5.3. Experiments 71

5.3.3.3 3D localization of objects

In this section, since the fixation task is meant to help reaching, we also evaluate
the quality of our 3D object localization principle (through the object fixation policy
πfix

ψ). This analysis for the object localization errors has two objectives:

• First, we want to assess the average accuracy of our localisation system, i.e. how
far are the 3D points fixated by the camera system compared with the object center
of gravity?

• Second, we want to evaluate the repeatability of the object localisation. To that
end, we evaluate the variations of the fixated points around the average fixated
point. Indeed, to allow a consistent localization if there is an offset between the
object center and the fixated points, these latter should not vary too much around
the average fixated point.

Note that the triangulation computations are described in Appendix D.
Let o = g, v, with g representing the objective of establishing errors of localization

with respect to the ground truth reference frame, and v the objective of establishing
variations of computed camera joint angles around the average computed angles.

Technically, for both of the previously mentioned objectives, we want to evalu-
ate at each object position on the table what are absolute uncertainties on 3D fixation
∆ox, ∆oy and ∆oz (see Appendix C to visualize the reference frame). They corre-
spond to the standard deviation of the fixated point with respect to the ground-
truth object position (equation (5.12)) and the standard deviation of the fixated point
(equation (5.13)):

∆gx =

√√√√∑
Npt−1
i=0 (gx − xi)2

Npt
, (5.12)

∆vx =

√√√√∑
Npt−1
i=0 (µx − xi)2

Npt
, (5.13)

with Npt being the number of fixated points for a given object position, µx the x
coordinate of the average fixated point, gx the x coordinate of the object center of
gravity and xi the x coordinate of the ith fixated point. The computation for the
z and the y coordinates are exactly the same as for x. Furthermore, we compute
the average distances (still for each object position on the table) between the fixated
points and the ground-truth object position g (equation 5.14) and between the fixated
points and the average fixated point µ (equation 5.15):

dg =
1

Npt

Npt−1

∑
i=0
||g− Xi||2, (5.14)

dv =
1

Npt

Npt−1

∑
i=0
||µ− Xi||2. (5.15)

At the end of the procedure, we have gathered samples (x, y, ∆gx, ∆gy, ∆gz, dg,
∆vx, ∆vy, ∆vz, dv). Note that we only use the object which is used in the experiments
subsequently: the blue ball. The results with other objects of roughly the same size
may be similar whereas increasing the size of the object may increase the localization
errors. The experimental procedure is summarized in Algorithm 3 and is repeated
for the three learned fixation policies.

72
Chapter 5. Learning binocular object fixations using an anomaly localization

principle

Algorithm 3 Evaluation of object localization uncertainties

Parameters:
1: px and py the length of the steps in x and y direction
2: [mx, Mx] and [my, My] the intervals of variation of the x and y object coordinates

Inputs:
3: πfix

ψ : the fixation policy
4: The object (blue ball)

Outputs: D: a set of samples (x, y, ∆gx, ∆gy, ∆gz, dg, ∆vx, ∆vy, ∆vz, dv)

Steps:
1: set x ← mx
2: set y← my
3: while x < Mx do
4: while y < My do
5: Move the object to the (x, y) position above the table
6: i← 0
7: while i < Npt do
8: Apply πfix

ψ and compute the 3D fixated point using Appendix D
9: i← i + 1

10: For o = g, v: compute ∆ox, ∆oy, ∆oz, and do using equations (5.12), (5.13),
(5.15) and (5.14)

11: Store (x, y, ∆gx, ∆gy, ∆gz, dg, ∆vx, ∆vy, ∆vz, dv) in D
12: y = y + py

13: x = x + py

For each case, we plot surfaces (x, y, do). The plots such as (x, y, ∆ox) are avail-
able in Appendix F.

Figure 5.15 represents dg values for a grid of object positions above the table. We
observe that the larger errors are located in the corners of the table. It is explained
by the fact the initial position of the camera system for object fixation learning make
it fixate the center of the table. Thus, less exploration is conducted in the corner ar-
eas. In the latter, the errors can be meaningful since they reach more than 50 cm of
uncertainties for some points. It means that our object localization principle is trust-
worthy for most positions of the objects above the table but can be ineffective for
some particular object position areas. Figure 5.16 represents dv values for a grid of
object positions above the table. We notice that larger errors still occur at the corners
of the table. Furthermore, we observe that the “relative” object localization uncer-
tainty is overall very low. This indicates a good repeatability of the object position
estimation implied by the policy.

If we consider that the d values are random variables, their statistics are pre-
sented in Table 5.2. We confirm that our object localization principle is not precise
with respect to the ground truth object position (around 10 cm of average). How-
ever, as the object experimented is a ball with a radius of 8 cm, the localisation error
is acceptable. Furthermore, the localization error with respect to the point fixated by
the average camera joint angles is very low (around 2 cm). This means that the cam-
era system generally fixates the same point given a precise object position, which is
an interesting property even though it is not sufficient for a good localization prin-
ciple (e.g. a camera system with all the joint angles to zero is also fixating the same
point).

5.3. Experiments 73

0.6 0.4 0.2 0.0 0.2 0.4 0.6
x (m)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

y
(m

)

0.00

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.54

FIGURE 5.15: Scheme representing the standard localization uncer-
tainty with respect to the object center of gravity (dg)

We also display a visualization of the error using ellipsoids representing the av-
erage errors on each axis around the fixated point and the object center of gravity (in
Figure 5.17). We notice that for both of the error types, there are larger errors on the
z axis and smaller ones on the x axis.

Statistics (m) dg dv
mean(do) 0.095± 0.005 0.022± 0.003

median(do) 0.083 0.012
std (do) 0.055 0.034

TABLE 5.2: Statistics on d values for the object

5.3.4 Experiments in a real environment
In the following paragraphs, we present the experiments made on the real plat-

form.

5.3.4.1 Training

The training protocol is similar to the one used in simulation with few exceptions:

• We do not measure the fixation error because the camera system is not calibrated
and we do not have access to the 3D Cartesian object coordinates. Instead, we
display the reward function evolution during training.

74
Chapter 5. Learning binocular object fixations using an anomaly localization

principle

0.6 0.4 0.2 0.0 0.2 0.4 0.6
x (m)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

y
(m

)

0.00

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.54

FIGURE 5.16: Scheme representing the standard localization uncer-
tainty with respect to the average fixated point (dv)

• A human has to change the object and its position at each episode end, which is
considerably burdensome and long for the aforementioned human (around 4 600
episodes).

• A single run with the weakly supervised reward with filtering has been launched.

• We do not compute the additional reward term rpan penalizing divergence and a
too strong convergence.

Otherwise, Algorithm 1 and the pre-training step without object are integrally ap-
plied and Table B.1 of Appendix B gives the hyperparameter values used in our ex-
periments. Note that the direct transfer of policy and Q networks (initialization of Q
and π networks with the ones learned in simulation) from the synthetic environment
to the real environment does not work at all. The main reason is that the networks
learn environment-specific features in simulation which cannot be transferred to the
real world. Indeed, the two environments are too different. Recent studies [168],
[169] on simulated-to-real transfer could have been used for our experiments.

Figure 5.18 shows the evolution of the reward signal through time. Ideally, the
reward function would reach 2 because it corresponds to the object being exactly
at the image center in both images. However, as previously stated, there is a tilt
offset which implies that the object fixation point cannot be exactly at the image
center. Furthermore, we plot the reward values of all the RL iterations, including
those executed at the beginning of an episode, when the object is not at the image
center. From this graph, we can conclude that the reward signal converges through
time and this shows that our learning framework is efficient on a real setting.

5.3. Experiments 75

FIGURE 5.17: Average ellipsoid errors for the absolute (top) and
relative (bottom) localization uncertainties. The green ellipsoid er-
ror (top) stands for the volume where the camera joint angles fixate
around the object center of gravity. The red ellipsoid (bottom) rep-
resents the volume where the camera joint angles fixate around the
average fixated point. The blue ball is the object used in our experi-

ments

5.3.4.2 Test

The tests conducted in the real environment are different from those performed
on the synthetic environment. Instead of using the final fixation error at the end of
the test episodes, we conduct binary tests: i.e. at the end of an episode, we check
if the image centers from left and right images belong to the object. For the tests in
the real environment, because of the vertical offset in the images, we check that the
average vertical coordinate (over the left and right images) belongs to the object. If
the image centers belong to the object, the test episode is successful and otherwise it
is a failure. The test procedure is summarized in Algorithm 4. We also compare the
results of the policy obtained from this run in the real environment with ones of the
policies learned in the simulated environment with the filtered weakly supervised
reward.

These results are summarized in Table 5.3. We cannot extract meaningful conclu-
sions in terms of comparison. We can just observe that performances are really good
in the training set in both the real and simulated environments. Furthermore, we
notice also that there is a loss of performance when policies are applied on the test
set. This is not surprising given the gap between training and test object distribu-
tions. Indeed, the test objects were mainly designed to trap the learned policies. In
addition to these results, we provide in Figure 5.19 examples of succesful and failed
test episodes for both the training and the test set. We observe in this figure and
in the experiments that for the test set, the robot fails to fixate objects with a colour
similar to the background (e.g the white plastic spoon which is difficultly visible for
humans).

76
Chapter 5. Learning binocular object fixations using an anomaly localization

principle

0 20000 40000 60000 80000 100000 120000 140000 160000
Iterations

0.5

0.0

0.5

1.0

1.5

2.0

Re
w

ar
d

si
gn

al

FIGURE 5.18: Figure showing the evolution through time of the re-
ward signal for the real object fixation experiment

Training set Test set
Reward-environment rwf-real rwf-simulated rwf-real rwf-simulated
Success frequency (%) 93 97.3 79.5 77.1

TABLE 5.3: Performances of the learned fixation policies

5.4 Conclusion
We have designed a shaping reward function for an object binocular fixation task

which is informative in that it correctly discriminate values of nearby states. Further-
more, its computation can dispense with calibration parameters and hand-crafted
visual modules. The main requirement is that the scene cannot vary during learn-
ing. If so, the autoencoder has to be trained again without object. Experiments in
the simulated environment show that our reward function can yield policies whose
performances approach ones trained with a reward requiring calibration parame-
ters. Experiments in the real environment show first that our learning framework
is applicable in a real setting and second that our reward function can learn com-
plex real-world fixation policies. The simulated part of the work on binocular object
fixation has been published in IJCNN 2017 [3] (the part on real experiments is un-
published). The next chapter describes how our presented framework was adapted
to the learning of end-effector binocular fixations.

5.4. Conclusion 77

Algorithm 4 Real object fixation test procedure

Parameters:
1: Ntot: the total number of episodes
2: Neps: the number of iterations per episode
3: qcamera

0 : the initial camera joint angles
Inputs:

4: πfix
ψ : the object fixation policy

5: D = Dtest or Dtrain: the object set
Outputs: Dp ∈ {0, 1}Ntot : the set of results of the test episodes
Steps:

1: Set t← 0
2: while t < Ntot do
3: Choose a random object in D and place it randomly
4: Go to the initial position qcamera

0
5: Set teps ← 0
6: while teps < Neps do
7: Apply ateps = πfix

ψ (steps)
8: Observe steps+1
9: teps ← teps + 1

10: t← t + 1
11: Observe the result (0 for failure or 1 for success) and append it to Dp
12: Withdraw the object

FIGURE 5.19: Images showing successful (on the right) and failed (on
the left) test episodes for both the training set (at the top) and the test

set (at the bottom)

79

Chapter 6

Learning hand-eye coordination
function

In the previous chapter, we described how the robot learns to fixate objects using
a deep reinforcement learning algorithm and a reward function designed with very
little supervision. In this chapter, we describe how we adapt the methods of Chapter
5 to learn jointly and still with little supervision how to fixate the end-effector and a
hand-eye coordination function.

6.1 Introduction
In Chapter 5, fixating the object is meant to locate it in the 3D world using cam-

era joint angles. In this chapter, the robot learns a skill which make it locate its
end-effector in the 3D world given proprioceptive values. Whether this skill is ana-
logue to the proprioceptive skill of humans is still an open question. In our case, the
proprioceptive values are represented by robot joint angles. In standard robotics,
the end-effector localisation is achieved by using kinematics, i.e. mapping robot
joint angles and a Cartesian pose. However, we want to locate the end-effector in
the same reference frame as the object, i.e. the space of camera joint angles (instead
of Cartesian coordinates). Therefore, from robot joint angles, we learn to locate the
end-effector in the camera joint angle space. The resulting mapping is called the
hand-eye coordination. The latter is learned in parallel with an end-effector fixation
task inspired by the work of Chapter 5. For this, we design a similar reward function
based on an end-effector detection in the images.

6.1.1 Hand-eye coordination function
In our approach, the hand-eye coordination function is considered as a way to

link arm proprioceptive values with the hand (or end-effector) localization in the 3D
world. As previously mentioned, the end-effector is in our case localized using the
camera joint angles but can be localized by Cartesian coordinates using traditional
methods. In the robotic literature, the hand-eye coordination can refer to two main
categories of mapping:

• The first category is the forward mapping [160], [170]. It generally maps robot arm
joint angles qrobot to x the localisation of the end-effector f : Sqrobot → X. In our
case, x is composed of camera joint angles x = qcamera. This function is a forward
kinematic model if x is composed of Cartesian coordinates.

80 Chapter 6. Learning hand-eye coordination function

• The second category is the inverse mapping [171], [172]. It links end-effector posi-
tion to arm joint angles: f−1 : X → Sqrobot . This is also similar to inverse kinematics
if we consider Cartesian coordinates for x.

We have chosen to use a forward mapping because the inverse mapping is not a
function. Indeed, one input can correspond to several outputs. Then, approximat-
ing it using usual function approximators such as feed-forward neural networks
is impossible unless only one output is considered. We could have used a special
mapping approximator allowing several possible outputs for an input. However,
an optimal implementation would have been long to incorporate in our work. In
contrast, a forward model is a function and can be simply approximated by any uni-
versal function approximator. In addition, straightforward implementations of such
approximators are easily incorporated in our work.

6.1.2 End-effector detection
As previously stated, it is important in our study not to use supervision or hand-

crafted features in this step. Thus, we do not want to use methods using markers
and segmentation algorithms [173].

One of the most common methods for the end-effector localization in the image is
the use of the end-effector motion and we use this principle for our study. For exam-
ple, in [174], the end-effector is detected using a pre-defined end-effector movement
assuming that the end-effector is the only part moving in the environment. [175]
improves the method by correlating the end-effector motion to the resulting optic
flow. Then, [176] has used the former to detect the end-effector with a kinect sensor.
These methods do not use much supervision with the exception of the end-effector
motion specification.

We could have also used as a complement the method of [177] which makes a
robotic head directly learn to verge on the end-effector without explicit localization
of the end-effector. The method applies the principle of active efficient coding. The
image centers of the two cameras are concatenated and an encoding of the resulting
vector is learned using a sparse autoencoder. Learning to verge on the end-effector
is achieved by moving cameras and arms such that the reconstruction error of the
resulting vector is minimized. Indeed, when there is vergence, the two image center
areas look alike to each other and present redundancies, which make the reconstruc-
tion error minimal.

We do not claim a clear contribution for the end-effector detection mechanism
in our method as well as for the hand-eye coordination design. Indeed, state-of-
the-art methods have already developed these ideas. However, in this chapter, we
show that our framework for the learning of binocular object fixation can extend to
end-effector fixation, giving us a unified framework for image area fixation learning.

6.2 Methods

6.2.1 Task definition
In this section, we detail how we adapt the framework of the previous chapter to

learn end-effector fixations and a robot hand-eye coordination function.
We model the hand-eye coordination function fη : Sqrobot → Sqcamera with a neural

network (see Appendix A.1.4 for its structure). This function outputs camera joint

6.2. Methods 81

angles which make the camera system fixate the end-effector from arm joint angles:

qcamera
virt = fη(qrobot). (6.1)

To learn it, we need to have a database D of input-output pairs (qrobot, qcamera)
where qcamera makes the camera look at the end-effector. To produce such samples,
we learn to fixate the end-effector. For this, we use a similar framework as the object
fixation task. We use the DDPG algorithm and a reward requiring weak supervision.
The Markov Decision Process is the same as for the object fixation with the excep-
tion of the reward function (see Section 5.2.1). The latter involves the end-effector
detection xcam

eff instead of xcam
obj :

rcam
eff = 2

1
2 L− ||xc − xcam

eff ||2
L

< 1, (6.2)

where L takes the same constant value as in section 5.2.1 (100.5). The set-up is also
episodic. For each episode, 6 random arm joint coordinates are generated using
uniform distributions with fixed limits (the robotic arm has 7 degrees of freedom
and we choose not to use the rotation angle of the wrist angle). They are empirically
set to provide a large variety of reachable arm configurations. With the latter, we
also ensure that the end-effector moving finger is visible.

During learning, training pairs (qrobot, qcamera) are added to D when the reward
rcam

eff is above a fixed threshold Rth. When the number of samples in D is higher than
a threshold value Nupd, we train fη on random batches of D each time a new sample
is added to D.

6.2.2 End-effector detection
We describe here how we detect the end-effector in the image. Unlike section

5.2.2 which uses an autoencoder to localize the object, the end-effector image po-
sition is computed using the simple difference in the image before and after pre-
defined end-effector finger moves. The idea is that the hand is segmented from the
rest of the scene because its appearance varies according to finger moves. Then, this
end-effector detection method only requires to specify finger moves. In our case, to
make the end-effector localization stable, we decided to make only one finger move.
Indeed, from one iteration to the other, if all the fingers move, the localization of the
end-effector in the images can jump from a pixel to a another relatively distant one.
This can cause noise in the reward function and affect learning.

Icam
before Icam

after |Icam
b − Icam

a | xcam
eff

FIGURE 6.1: End-effector detection computation scheme.

Figure 6.1 presents the different steps of the end-effector detection:

82 Chapter 6. Learning hand-eye coordination function

• The images before (Icam
before) and after (Icam

after) the end-effector moves are recorded.

• The difference of images is calculated and the end-effector position xcam
eff is com-

puted using a kernel density estimator (on N = 150 pixels) the same way xcam
obj is

computed from the autoencoder reconstruction error image (see section 5.2.2).

6.2.3 Mitigating noise
Note that the end-effector detection is also filtered because of impulse noise. In-

deed, as shown by Figure 6.2, the shadow areas of the fingers also move when the
finger moves, which can result in end-effector localization error. This produces im-
pulse noise in the reward function and we saw in Chapter 5 that it has a bad effect
on learning. We apply exactly the same filtering procedure as in Chapter 5 and with
the same threshold value.

FIGURE 6.2: End-effector detection failure

6.3 Experiments
The experiments for the learning of the hand-eye coordination function are con-

ducted in a synthetic environment. These experiments have two main objectives:

• We want to evaluate when the hand-eye coordination function is properly learned.

• We want to evaluate the quality of the hand-eye coordination function in the es-
timation of the end-effector position (through camera joint angles) from arm joint
angles.

6.3.1 Experimental environment
As for experiments of Chapter 5, we use the Gazebo simulator along with the

Ros middleware. The table is withdrawn from the experiments such that the robot
arm can move more freely. An end-effector, the Barrett Hand [178] is added to the
left arm. Figure 6.3 illustrates the experimental set-up.

6.3.2 Experimental protocol

6.3.2.1 Training

Algorithm 5 summarizes how the robot learns both the hand-eye coordination
function and end-effector binocular fixations. As previously mentioned, the frame-
work for the end-effector binocular fixation is very similar to the one used to learn
object fixation. The reward function and the initialisation of episodes change, and a

6.3. Experiments 83

FIGURE 6.3: Experimental environment for the end-effector fixation
and hand-eye coordination learning

hand-eye coordination function training process is added. The variety of joint arm
angles can be visualized in Figure 6.4, which displays an envelop of 3D end-effector
positions in the 3D space. The volume (the one of the convex hull) has been esti-
mated to 0.23m3.

x (m)

1.0
0.5

0.0
0.5

y (
m)

0.0
0.2

0.4
0.6

0.8
1.0

z
(m

)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

FIGURE 6.4: Representation of the volume of end-effector initial po-
sitions in 3D Cartesian coordinates. The positions are in blue and the
convex hull in red. To have an idea of the Gazebo scales, the table is

visualized in green.

84 Chapter 6. Learning hand-eye coordination function

To evaluate the learning of the end-effector policy, we monitor the reward func-
tion through time. We choose not to plot the fixation error during training because
there is no comparison made between several reward signals here. Indeed, the
comparisons with a supervised and noisy rewards have already been conducted in
Chapter 5. We assume that doing them again does not introduce something new.

To evaluate the learning of the hand-eye coordination, we plot the loss of the
hand-eye coordination function through time and check when it converges.

Algorithm 5 Learning to fixate end-effector and to coordinate eye and hand

Parameters:
1: Ntrans: the size of the circular buffer
2: γ: the discount factor
3: ε: the Gaussian noise variance
4: Ntot: the total number of iterations
5: Neps: the number of iterations per episode
6: Nb: the number of transitions per batch
7: th: the removal threshold
8: Ngp: the number of samples required to train Gaussian process
9: Nupd: the required number of samples to start to update fη

10: Rth: the threshold reward value
11: qcamera

0 : the initial position
Inputs:
12: Sqarm : the set of arm initial positions
Outputs: Qeff

σ , πeff
γ , fη

Steps:
1: Set t← 0
2: Initialize the transition circular buffer Tbuf
3: while t < Ntot do
4: Choose random arm joint angles qrobot among Sqarm and go to the position
5: Go to the initial position qcamera

0
6: Set teps ← 0
7: while teps < Neps do
8: Apply at = πeff

γ (st) +N (0, ε)
9: Observe st+1

10: Compute rt and |∆dexp
t |

11: cond← (t < Ngp) or ((| |∆dexp
t | −m(||∆qcamera||2)| < th) and (t > Ngp))

12: if cond then
13: Add < st,at, rt, st+1 > to Tbuf

14: Pick randomly Nb transitions from Tbuf
15: Update Qeff

σ and πeff
γ using DDPG (equations (2.46) and (2.48))

16: if rt > Rth then
17: add the pair (qrobot(t), qcamera(t + 1)) to the database D
18: if Size(D) > Nupd then train fη for one step

19: if t = Ngp then train ∆d = m(||∆qcamera||2)
20: t← t + 1
21: teps ← teps + 1

6.3. Experiments 85

6.3.2.2 Test

We evaluate the hand-eye coordination function in terms of final fixation error,
i.e. the distance in the image space between the end-effector moving finger and the
image center. Note that we do not evaluate the quality of end-effector binocular
fixation policies since they are not used to learn reaching skills. We draw the same
statistics as in 5.3.3.2. We evaluate the hand-eye coordination functions saved at
100 000 and 200 000 iterations.

Algorithm 6 Hand-eye coordination function test procedure

Parameters:
1: Ntot: the total number of episodes

Inputs:
2: Sqarm : the set of arm initial positions
3: fη : the hand-eye coordination function

Output: Dp: the set of final fixation errors
Steps:

1: Set t← 0
2: while t < Ntot do
3: Choose random arm joint angles among Sqarm and go to the position
4: Compute qcamera

hand−eye = fη(qarm)
5: Go to qcamera

hand−eye
6: Compute the fixation error ep(t) and append it to Dp
7: t← t + 1

6.3.3 Implementation details
Appendix A displays the neural network structures used for the policy, the Q

function and the hand-eye coordination mapping and Table B.2 of Appendix B de-
scribes the hyperparameters related to Algorithm 5. For the episode initialization of
the end-effector fixation task, the seven arm joint angle distribution amplitudes are
11, 46, 69, 92, 92, 86 and 0◦ if we consider the ascending order in the kinematic chain
i.e. from the base link to the end-effector.

6.3.4 Results
The following paragraphs analyse the results of the experiments. Besides dis-

cussing the training runs and the evaluation of the hand-eye coordination mapping,
we analyse the 3D localization of the end-effector using the hand-eye coordination.

6.3.4.1 Policy and hand-eye coordination training

The results of the three runs are presented in Figure 6.5 (for better readability, we
use the same exponential smoothing defined by equation (5.11) in Chapter 5 with
ω = 0.001). We notice that the policy converges. The fact that it does not reach 2
is due to the exploration noise and that the plot takes into account all the reward
values of an episode. The error of the eye-hand coordination function reaches min-
imal values at around 100 000 iterations, which indicates that learning could have
been stopped before the end of the experiments. Furthermore, the standard errors
and standard deviations of the two plotted signals are small, which is an interesting
property for our learning framework.

86 Chapter 6. Learning hand-eye coordination function

0 50000 100000 150000 200000
Iterations

0.0

0.5

1.0

1.5

2.0

Re
w

ar
d

si
gn

al

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ey
e

ha
nd

 c
oo

rd
in

at
io

n
lo

ss

FIGURE 6.5: Evolution of the reward signal and the eye hand coordi-
nation loss through time during training

6.3.4.2 Evaluation of the hand-eye coordination mapping

The results of the evaluation of the hand-eye mappings are presented in Table
6.1. We notice several facts:

• The fixation error is rather important with respect to the fixation error for the object
fixation task (8 pixels against 5). This can be explained by the fact that the camera
system learns to fixate what has changed in the image but not necessarily the initial
position of the end-effector finger.

• The standard deviation is rather low. This means that the learning of the hand-
eye coordination function does not present outliers for specific arm joint angle
configurations.

• The results are roughly the same for the mappings at 100 000 and 200 000 iterations
though results are better after 200 000 iterations. Therefore, we confirm that there
is no need to learn the mapping for more than 100 000 iterations.

Statistics (pixels) at 100 000 iterations at 200 000 iterations
mean(ep) 7.98 ± 0.06 7.84 ± 0.05

median(ep) 7.71 7.63
std (ep) 2.52 2.10

TABLE 6.1: Performances of the hand-eye coordination mappings in
terms of fixation error

6.3. Experiments 87

6.3.4.3 3D localization of the end-effector

As we studied the quality of the 3D localization for the object, we also want to
do the same for the end-effector. Our reaching process presented in the next chapter
uses the hand-eye coordination fη to locate the end-effector finger. From 7 arm joint
angles, fη outputs 3 camera joint angles which make the camera system look at the
end-effector. The camera joint angles encode the end-effector localisation. As the lat-
ter is parametrized by the 7 arm joint angles, we cannot use the same visualization
process (moving object in the x and y axes above the table) as for the object localiza-
tion evaluation. At each iteration of the evaluation procedure, we generate random
arm joint angles using uniform distributions. We apply the hand-eye coordination
function and calculate the 3D fixated point X of coordinates (x, y, z) with triangula-
tion (using Appendix D). Then, we compute the Euclidean distance d between the
fixated point and the moving finger centre g:

d = ||X− g||2. (6.3)

After repeating the process for N = 2000 steps (for each of the three hand-eye co-
ordination mappings), we compute statistics about localization uncertainties. Note
that we only evaluate end-effector localization uncertainties with respect to the mov-
ing finger localization, i.e. the accuracy of the hand-eye coordination mapping. In
other terms, the standard uncertainties are computed based on the difference be-
tween the fixated point using the hand-eye coordination function and the moving
finger center. As the hand-eye coordination function always outputs the same re-
sults, there is no reason to compute uncertainties with respect to the average fixated
point, i.e. perfect repeatability is ensured. The experimental procedure is summa-
rized in Algorithm 7.

Algorithm 7 Evaluation of End-effector localization uncertainties
Parameters:

1: U: a set of uniform distribution for each axis
2: N: the number of evaluations

Inputs:
3: fη: the hand-eye coordination function

Outputs: D, a set of 3D fixation errors d
Steps:

1: set t← 0
2: while t < N do
3: Generate random arm joint angles qrobot using U
4: Move the arm to qrobot

5: Estimate d using Appendix D
6: Store d in D
7: t = t + 1
8: Draw statistics on D

The results are presented in Table 6.2. We observe a mean difference close to 10
cm, which can seem high. However, the fixated point is generally just in front of
the palm as illustrated by two examples of Figure 6.6. These results show that the
hand-eye coordination mapping encodes a location close to the end-effector, but it
does not encode the location of a precise part of the end-effector. Indeed, the camera
system has just learned to fixate the area with the highest luminance in the difference

88 Chapter 6. Learning hand-eye coordination function

of images (before and after the end-effector finger move) rather than a specific end-
effector part projection.

Statistics (meters) Value
mean 0.097

median 0.09
std 0.033

TABLE 6.2: Statistics on d values for the end-effector in meters

FIGURE 6.6: Six examples of the fixated point localization (yellow
ball) using the hand-eye coordination function. The bottom right im-

age presents one of the worst cases.

To conclude with, we observe that the hand-eye coordination network allows to
extract the 3D approximative position of the end-effector. The interesting property
of the localization is that the variance of the fixation error is rather low.

6.4 Conclusion
We have presented how the learning framework for object fixation was adapted

to end-effector fixation by modifying the reward function. The computation of the
latter assumes that the background is immobile. This issue is addressed in several
state-of-the-art methods which can be incorporated in our work. Furthermore, we
have also shown how the hand-eye coordination function was learned with super-
vised learning (but with self-supervised labels). Our results show first a reliable
learning of both the end-effector policies and the hand-eye coordination function in
100 000 iterations. Second, the analyses of test results and 3D localization indicate

6.4. Conclusion 89

that the hand-eye coordination does not yield a perfect fixation of the end-effector
moving finger because it learns instead to fixate the optical flow generated by the fin-
ger motion. However, the variance of the fixation error is low, which indicates that
the hand-eye coordination mapping is reliable for an approximative localization of
the end-effector.

91

Chapter 7

Learning arm motor skills based on
binocular object fixation and
hand-eye coordination

In this chapter, we describe how the previously learned skills can be used to learn
both to reach objects and to learn the object reachability.

7.1 Learning to reach with the palm
This section concerns the reaching task itself. We describe in details how we use

the object fixation policy and the hand-eye coordination function to learn touching
policies and provide experiments with different initial settings.

7.1.1 Task definition
The task consists in touching with the end-effector palm the object on the table

at different reachable positions from a large set of initial arm positions. Figure 7.2
display 8 randomly generated initial configurations and Figure 7.1 represents a plot
of possible initial end-effector positions in the 3D space. This volume differs from
the one of Chapter 6. The latter volume resulted in too many collisions between the
robot and the table in the initialization step (see Appendix H). Thus, we choose a
different set of initial arm positions which makes most initial end-effector positions
above the table. This set still produces a large volume of possible initial end-effector
positions (the volume of its convex hull is 0.27m3).

The goal of learning to reach both at different target positions and from a large
set of initial robot joint angles is mainly motivated by the fact it allows to learn poli-
cies that are more robust to perturbations in the joint space according to [179]. In
addition, reaching from different initial joint angles allows to reach from positions
with a badly oriented end-effector which is a challenging task. Indeed, as it will be
explained in section 7.1.2, the only term rewarding a good orientation of the end-
effector is the sparse reward, which means that the robot needs to solve the credit
assignment problem (see section 2.2.6.2) for the orientation. To enhance the com-
plexity of learning for both different initial arm and object positions, we provide in
this chapter experiments for the initial episode configurations summarized in Table
7.1.

92
Chapter 7. Learning arm motor skills based on binocular object fixation and

hand-eye coordination

x (m)

1.0
0.5

0.0
0.5

y (
m)

0.0
0.2

0.4
0.6

0.8
1.0

z
(m

)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

FIGURE 7.1: Representation of the volume of possible end-effector
initial positions in 3D coordinates. The 3D points are in blue and the

convex hull is in red. The table is visualized in green.

Name A B C D
Initial object positions single random single random
Initial arm joint angles single single random random

TABLE 7.1: Names for the different initial episode conditions

The objective of the task is defined by a sparse reward term rsparse which indicates
if there is palm-touching or not:

rsparse =

{
1, if success,
ptime ∈ R−, otherwise.

(7.1)

Note that the negative term ptime ensures that the robot looks for the quickest
path to the goal. The state space S is composed of the arm and camera joint an-
gles q as well as eight binary tactile sensors cb attached to the fingers of the Barrett
Hand. Images are not required here because we use a single object and consider
that the camera joint angles give sufficient information about the 3D object position.
However, they would be necessary if objects with different shapes were used in the
experiments. The actions are variations of the robot joint angles: a = ∆qrobot which
are seven real-valued scalars.

Specifically to the reaching learning process, the actions are made bounded to
avoid too violent collisions between the arm and its environment. To this end, we
apply a correction [180] to the gradient ∂Q

∂a (gradient used for the policy update in
the DDPG) allowing to invert the sign of the gradient components if the action over-
passes its limit. Furthermore, this procedure has usually the effect of downscaling

7.1. Learning to reach with the palm 93

FIGURE 7.2: Random examples of initial configurations for the D
problem

the gradient amplitude though this effect is completely minimized in our case by the
use of the ADAM solver (ADAM update is invariant to gradient scale).

7.1.2 Reward computation
To compute the touching reward function, we use the object binocular fixation

policy and the hand-eye coordination function. After the execution of an object fix-
ation step (using the object fixation policy πψ), we get the fixation camera angles
qcamera

fix which implicitly encode the object 3D position. After that, using equation
(6.1) at each time-step, the hand-eye coordination function fη gives us qcamera

virt which
implicitly encodes the end-effector 3D position. Then, a reward shaping term rshCam
can be computed:

rshCam =

{
0, if success,
ccam||qcamera

fix − qcamera
virt ||2 − ptime, otherwise.

(7.2)

with ccam ∈ R−. rshCam represents an informative term which depends on the dis-
tance between the virtual camera coordinates and the camera coordinates which
make the camera system fixate the object. Thus, it encourages the end-effector to be
close to the object. Note that the slope ccam is chosen to ensure shaping rewards are
small compared with the higher sparse reward value. Furthermore, ccam||qcamera

fix −
qcamera

virt || is negative and already penalizes the time-steps. Thus, we subtract ptime
because this term is not useful anymore if we apply a sum of rshCam and rsparse.

Using these sole terms yields decent performances. However, as will be shown
in section 7.1.4, the robot is badly guided in many arm positions when it is close to
the table. Indeed, fewer moves are physically plausible and the algorithm can take
time to learn them. To accelerate this selection, we propose a new tactile reward
term rpenContact to the reward function penalizing states where the end-effector is in

94
Chapter 7. Learning arm motor skills based on binocular object fixation and

hand-eye coordination

contact with the table:

rpenContact =

{
pcontact ∈ R−, if contact between the end-effector and the table,
0, otherwise.

(7.3)
Indeed, by applying penalties, we hope that the robot explores areas where it is

not in contact with the table, i.e. where it can move without too many constraints to
the goal. To compute this term, we make the assumption that the robot knows from
its tactile sensors whether it is touching the table.

Finally, our proposed reward function is built from the three previous terms:

rproposedPen = rsparse + rpenContact + rshCam (7.4)

The relative effect of each of these terms is evaluated in the experiments.

7.1.3 Experiments
In this section, we describe the experimental protocol. The objective of experi-

ments is to evaluate learning performances using the proposed reward function and
other ones because they allow to evaluate the relative impacts of each reward term.
Besides, we wish to evaluate whether our weakly supervised reward can reach same
performances as with a supervised counterpart.

7.1.3.1 Different reward functions

The reward functions which will be used in our experiments are listed below:

• rsparse =

{
1, if success,
ptime, otherwise.

This reward is described by equation (7.1) and rewards the robot only when the
palm touches the object. Besides, it penalizes each unsuccessful movement to en-
courage the robot to quickly touch the object. Note that using such a sparse reward
means that we only dispense with the hand-eye coordination information. Indeed,
information brought by the object fixation (the camera joint angles) is still present
in the state space.

• rproposedPen = rsparse + rpenContact + rshCam
This is the proposed reward function (described in equation (7.4)).

• rproposed = rsparse + rshCam
This is the proposed reward function without the penalties for the contact between
the end-effector and the table. This is used to show the influence of the penalty in
the learning procedure.

• rsparsePen = rsparse + rpenContact
We add to rsparse a term penalizing contacts of the end-effector with the table.

• rsupervisedPen = rsparse + rpenContact +

{
0, if success,
ccart||p− ptarget||2 − ptime, otherwise,

7.1. Learning to reach with the palm 95

with ccart < 0. To build this reward, we give a 3-dimensional end-effector target
Cartesian pose ptarget for the shaping part and we add a sparse reward as well as a
term penalizing end-effector contacts with the table. This reward is the closest to
the proposed rproposedPen but its shaping term requires forward kinematics and 3D
object pose information. Finally, the slope ccart is chosen to make the shaping term
take about the same values as rshCam.

We summarize all the reward functions and their attributes in Table 7.2. Note that
we choose not to compare our reward function with a Cartesian shaping reward
without a sparse term. Indeed, for such a reward function, a success would be to
touch with the palm from a specific orientation and position. In our case, a success
can be to touch with the palm in any position. The tasks are then too different to be
compared in terms of touching improvement.

Reward rproposedPen rproposed rsupervisedPen rsparsePen rsparse
Sparse term yes yes yes yes yes

Contact penalties yes no yes yes no
Shaping term ours ours supervised none none

TABLE 7.2: Names for the different initial episode conditions

7.1.3.2 Material

We describe here the material we use for our experiments.

FIGURE 7.3: Scheme of the setting

Figure 7.3 presents the setting we use for our experiments. The simulations still
use the Gazebo simulator with the ROS [165] middleware and we use the same
robotic setting as in Chapter 6. We add to this setting a table (the same as in Chapter
5) and a blue ball put on it.

The neural network structures used for the policy and the Q functions are de-
scribed in Appendix A. Tables B.3 and B.5 of Appendix B provide values for the
parameters used in the experiments.

96
Chapter 7. Learning arm motor skills based on binocular object fixation and

hand-eye coordination

7.1.3.3 Experimental protocol

We describe how we compare the policies learned with different reward signals
for the touching task. The protocol contains a training and a test phase.

Training phase

For training, we use the DDPG algorithm [95] and the previously defined reward
functions. Learning happens on Ntot bounded-length episodes of maximal size Nmax
(the episode ends after Nmax reinforcement learning iterations or when the robot
touches the object with its palm). Each episode has an initial arm position and an
object position. For the episode initialization of problems C and D, the initial robot
joint angles are sampled from a set of uniform distributions (each one corresponding
to a robot joint angle) and the uniform distribution limits are 23, 57, 80, 91, 103, 80
and 11◦ (see Figure 7.1 and 7.2 for the illustrations). For the problems B and D,
the object position is uniformly chosen from a rectangular area of reachable object
positions on the table (this area is displayed in black in Figure 7.10). When an initial
configuration leads to a collision between the arm and its environment, the initial
position is re-set until a collision-free position is sampled.

For the exploration, we use the Ornstein-Uhlenbeck process. The latter correlates
the noise εj(t) for a joint at time t with the noise εj(t− 1) of the same joint at time
t− 1 with the equation:

εj(t) = θjµj + (1− θj)εj(t− 1) +
(
ξ j(t) ∼ N

(
0, σj

))
. (7.5)

θj is a factor trading-off the correlation with the previous noise and the correlation
with the equilibrium value µj and σj is the standard deviation of the Gaussian distri-
bution. This exploration procedure is particularly interesting in problems in which
the same action applied during several time-steps can be the optimal behaviour. For
example, let us say that the optimal sequence of moves for a manipulation robotic
task is to move the arm downwards with the same vector of actions during 5 time-
steps. This sequence of moves is more likely to be experimented with an Ornstein-
Uhlenbeck process (because of correlation) rather than with a Gaussian exploration.

As the task requires a precise orientation of the end-effector, the robot frequently
blocks itself close (see Figure 7.4) to a reaching position.

FIGURE 7.4: Example of an unsuccessful collision between the end-
effector and the object

For instance, the robot can touch the object with its fingers without touching it
with the palm. And, if the actions computed by the policy make the end-effector
move downwards, the robot can be blocked by the table despite exploration. Thus,
to avoid these situations, we handle the times when the robot is blocked without
succeeding in reaching. More precisely, when the robot is blocked a backward ac-
tion is taken, i.e the robot goes back to a previous contact-less position. This allows

7.1. Learning to reach with the palm 97

to more correctly discriminate actions in the contact areas in the sense the robot is
provided with other chances of success. Furthermore, when the robot is blocked, we
recompute the actions that the robot really experiments by reading how much the
arm angle encoder values have varied. The rationale is to keep the successful ex-
perimented actions as small as possible for a better simulation quality. However, we
have not experimented if this was determinant for the success of our experiments.

Through the training experiments, we wish to compare our reward requiring
little supervision with other ones. Consequently, for all the reward signals, in or-
der to monitor the learning progress, we specifically plot the reaching frequency
νreward over the episodes,“reward” referring to a specific reward function. The num-
ber of experiments per reward functions varies according to the difficulty of the
problem and is specified later for each problem (for better readability of the curves,
we use the same exponential smoothing defined by equation (5.11) in Chapter 5 with
ω = 0.003). Furthermore, we record N1 the number of episodes it took to get a first
reaching success, N90 the number of RL iterations it took to reach and remain above
reaching performance of 90 %.

Algorithm 8 summarizes the experimental protocol for the learning of the reach-
ing skills.

Test phase

To evaluate the learned policies, we apply them without any exploration noise
on Ntot random episodes and we compute the touching frequency νreward

test . Note that
we do not apply the systematic backward motion used in the training phase to deal
with blocked situations. Instead, when the robot is blocked, it just keeps following
the learned policy.

7.1.4 Results
This section presents the experimental results for the 4 initial configurations pre-

sented in Table 7.1.

7.1.4.1 Problem A

FIGURE 7.5: Two views of the initial configuration for the case A

The results of the A case (single initial arm joint angles, single object position,
see Figure 7.5) are presented in Figure 7.6 and Table 7.3. Figure 7.6 displays the
average (four runs for each reward function) reaching frequencies of the previously
described reward functions.

For these results, we make the following observations:

• For the experiments not using shaping reward terms, the robot never touches the
object. This means that given the exploration strategy, the initial policy and the ini-
tial configuration of Figure 7.5, the probability to touch the object is very low using

98
Chapter 7. Learning arm motor skills based on binocular object fixation and

hand-eye coordination

Algorithm 8 Algorithm describing the reaching learning procedure

Parameters:
1: Ntrans: the size of the circular buffer
2: γ: the discount factor
3: Γ: the set of parameters related to the Ornstein-Uhlenbeck process
4: Ntot: the total number of episodes
5: Nmax: the maximal number of iterations per episode
6: Nb: the number of transitions per batch

Inputs:
7: πfix

ψ : the fixation policy
8: fη : the hand-eye coordination mapping

Outputs: Qφ, πθ

Steps:
1: Initialize the transition circular buffer Tbuf, Qφ and πθ
2: Set neps ← 0
3: while neps < Ntot do
4: Set t← 0
5: Reset arm joint angles and place the object according to the type of problem

(A, B, C or D)
6: Fixate the object using πfix

ψ

7: Go to arm joint angles according to the type of problem (A, B, C or D)
8: while !cond do
9: if blocked then

10: Apply a backward action at to go to the 7th former arm joint angles.
11: else
12: Update εΓ(t) using equation (7.5)
13: Apply at = πθ(st) + εΓ(t)
14: Detect if the robot is blocked (at not completed)
15: if blocked then adjust at

16: Compute the reward signal rt and sense st+1
17: Add < st,at, rt, st+1 > to Tbuf
18: Pick randomly Nb transitions from Tbuf
19: Update Qφ and πθ using DDPG (equations (2.46) and (2.48))
20: t = t + 1
21: cond = (Success) or (t == Nmax)

22: neps = neps + 1

7.1. Learning to reach with the palm 99

0 500 1000 1500 2000 2500 3000 3500 4000
Episodes

0

10

20

30

40

50

60

70

80

90

100
ν(

%
)

νproposedPen

νproposed

νsparse

νsupervisedPen

νsparsePen

FIGURE 7.6: Evolution of the average reaching frequency during
training for the different reward functions for the problem A

Reward rproposedPen rproposed rsupervisedPen rsparsePen rsparse
N1 100 ± 38 96 ±10 83 ± 21 N/A N/A
N90 (1.0 ± 0.1)×105 (0.9 ± 0.2)×105 (0.9 ± 0.1)×105 N/A N/A

νreward
test (%) 100 100 100 0 0

σN1 38 11 21 N/A N/A
σN90 0.1 ×105 0.2×105 0.1×105 N/A N/A

σνreward
test (%) 0 0 0 0 0

TABLE 7.3: Values featuring learning velocity (N1 and N90), final
reaching frequency (νreward

test) and associated standard deviations in
the problem A

only sparse rewards. Yet, the initial configuration of the problem should not make
the problem too complex since the robot has just (almost) to move downwards the
arm to touch the object.

• For the experiments using shaping reward terms, we exhibit the same perfect fi-
nal reaching performances (see the νreward

test values in Table 7.3) and the confidence
intervals of Figure 7.6 are not separate enough to draw conclusions about a hier-
archy of settings. The variance is zero for the final reaching performances (in test
conditions i.e. without exploration noise) because the episodes have exactly the
same initial configurations in terms of camera and arm joint angles. Furthermore,
we observe that the N1 and N90 values are a bit lower for rsupervisedPen. Therefore,
the learning velocity and the initial touching probability are slightly higher than
with our proposed reward functions. Nevertheless, our proposed reward func-
tions yield similar results and the confidence intervals of N1 and N90 do not allow
to draw definitive conclusions.

100
Chapter 7. Learning arm motor skills based on binocular object fixation and

hand-eye coordination

• Besides, for the experiments using shaping reward terms, we observe a drop of
performances starting before 1 000 episodes. This is explained by the fact the
end-effector initial position is not perfectly aligned with the initial object position.
When learning, at the first iterations, the gradients of actions

(
∂Q
∂a1

, ..., ∂Q
∂ai

, ..., ∂Q
∂a7

)
of the memory buffer are of the same direction. These gradients are applied to
optimize the policy and at some point, the robot starts to overshoot the object po-
sition. This requires some time for the Q function to take into account these bad
performances and to update itself accordingly. In order to reduce this delay, a pri-
oritized experience replay strategy [181], [182] could be used. This would consist
in updating transitions with the highest temporal-difference values in the memory
buffer (for the DDPG update) instead of updating random transitions. With such a
strategy, the transitions which occur when the robot overshoot the object position
would be temporarily updated more frequently.

• Finally, for this setting, the use of penalties to discourage the robot to touch the
table does not affect learning. Indeed, we do not observe a meaningful difference
between respectively rsparsePen and rsparse, and rproposedPen and rproposed. This is
explained by the fact in the first cases the robot never touches the object and in the
second cases, the problem is too easy and the robot almost never touches the table.

7.1.4.2 Problem B

The results of the B case (single initial arm joint angles, random object positions)
are presented in Figure 7.7 and Table 7.4. Figure 7.7 displays the average (two runs
for each reward function) reaching frequencies of the experimented reward func-
tions.

Reward rproposedPen rproposed rsupervisedPen rsparsePen rsparse
N1 136±20 126±32 121±4 N/A N/A
N90 (8±2)×105 (4.4±0.1)×105 (7±1)×105 N/A N/A

νreward
test (%) 99±2 99±1 99.9±0.1 0 0

σN1 14 23 3 N/A N/A
σN90 1×105 0.8×105 0.8×105 N/A N/A

σνreward
test (%) 1 0.7 0.01 0 0

TABLE 7.4: Values featuring learning velocity (N1 and N90), final
reaching frequency (νreward

test) and associated standard deviations in
the problem B

We notice several important facts:

• Learning the reaching task for several object positions can work very well because
the robot always reaches very good touching performances with the reward func-
tions using shaping terms. This shows that the camera joint angles integrated in
the state space encode sufficiently well the object position. Therefore, we confirm
that the object localization is well encoded through the camera joint angles.

• Learning with sparse rewards using several initial object positions and still a unique
initial arm position does not improve learning. Indeed, we do not observe a single
success, which indicates that using several initial object positions does not increase
the probability of touching enough.

• Using shaping rewards efficiently increases the probability of success and in all
the settings, we get very good policies.

7.1. Learning to reach with the palm 101

0 5000 10000 15000 20000 25000 30000
Episodes

0

10

20

30

40

50

60

70

80

90

100
ν(

%
)

νproposedPen

νproposed

νsparse

νsupervisedPen

νsparsePen

FIGURE 7.7: Evolution of the average reaching frequency during
training for the different reward functions for the problem B

• It seems that learning with contact penalties is slower than without in this context.
This means that in this context, it is useful to explore around areas where there is
contact between the table and the end-effector.

• We do not observe statistically significant differences between the supervised set-
ting and our proposed one, which confirms the results of the setting A.

• We do not observe the sudden drop of performances that is present in the problem
A. It is explained by the fact the robot tries to reach several object positions, so
that the gradients of actions (∂Q

∂a1
, ..., ∂Q

∂ai
, ..., ∂Q

∂a7
) are more diverse, and the reaching

policy is not trained to do a single kind of move.

7.1.4.3 Problem C

The results of the C case (random initial arm joint angles, single object position)
are presented in Figure 7.8 and Table 7.5. Figure 7.8 displays the average (four runs
for each reward function) reaching frequencies of the experimented reward func-
tions.

From the results displayed in Table 7.5 and in Figure 7.8, we draw the following
observations:

• With several initial arm positions, learning with sparse rewards is much more
tractable than with a single initial position (problem A). It can be surprising at
first because we can assume that by increasing the number of initial positions, the
problem becomes more and more complex. However, by increasing the number
of initial arm positions, the robot is also more likely to touch the object. Indeed,

102
Chapter 7. Learning arm motor skills based on binocular object fixation and

hand-eye coordination

0 5000 10000 15000 20000 25000 30000
Episodes

0

10

20

30

40

50

60

70

80

90

100

ν(
%

)

νproposedPen

νproposed

νsparse

νsupervisedPen

νsparsePen

FIGURE 7.8: Evolution of the average reaching frequency during
training for the different reward functions for the problem C

Reward rproposedPen rproposed rsupervisedPen
rsparsePen rsparse

N1 85±50 102±47 81±37 726±1237 50±27

N90 (6±2) ×105 (6.2±0.7)
×105 (6±2) ×105 (8 ±2) ×105 (7±1) ×105

νreward
test (%) 97.9±0.8 96±1 97.9±0.9 97.7±0.7 96.8±0.8

σN1 51 48 38 1262 27
σN90 2 ×105 0.7 ×105 2 ×105 2×105 1×105

σνreward
test (%) 0.8 1 1 0.8 0.8

TABLE 7.5: Values featuring learning velocity (N1 and N90), final
reaching frequency (νreward

test) and associated standard deviations in
the problem C

some initial arm positions bring the robot end-effector very close to the object and
the arm has to move only a little to touch the object (for some positions, the robot
touches the object in three time-steps). Therefore, with this initial setting and us-
ing only sparse rewards, the robot can be initialized close to the object. Then, it can
touch with a high probability the object and somehow learns from easy missions
to reach from all the initial positions.

• Learning is still faster with the use of shaping reward terms, because the robot
takes less time to touch the object.

• The penalty term seems to influence the learning velocity. Indeed, learning with
rproposedPen is faster than learning with rproposed. This is explained by the fact some
initial arm positions result (through exploration) in blocked situations in which
the end-effector is in contact with the table. Penalizing such situations helps in

7.1. Learning to reach with the palm 103

this case to accelerate learning. However, we observe a reverse inequality when
we do not use shaping reward terms: learning with rsparse is faster than learning
with rsparsePen. Indeed, when using shaping rewards, the end-effector is attracted
by the object such that the penalty term cannot make the policy choose upward
arm moves. When we do not use shaping rewards, the penalty term becomes
more important and sometimes this makes the policy choose upward moves to
avoid to touch the table.

• At the end of experiments, we get very good and comparable results for rproposedPen,
rsupervisedPen and rsparsePen. The results for rproposed and rsparse are slightly worse
than with the other reward signals. This indicates that the penalty term plays a
significant role for the learning performances if the episode starts with “complex
initial arm positions”, i.e. arm positions which require substantial end-effector
orientation movements to touch the object.

• Here again, we do not observe the sudden drop of performances as in the problem
A. It is explained by the fact the robot explores from many initial arm configura-
tions, so that the gradients of actions (∂Q

∂a1
, ..., ∂Q

∂ai
, ..., ∂Q

∂a7
) are more diverse, and the

reaching policy is not trained to do the same kind of move.

7.1.4.4 Problem D

Finally, we present results for the setting with multiple initial arm positions and
object positions (6 runs per reward function were conducted).

Table 7.6 presents the final performances of the different policies as well as the
number of episodes it takes to get a first reaching success and the number of RL
iterations it takes to reach (and remain above) an average reaching performance of
90 %.

Reward rproposedPen rproposed rsupervisedPen rsparsePen rsparse
N1 95±16 110±19 105±29 7505±6918 8214±4145
N90 (1.7±0.2) ×106 (2.3±0.1) ×106 (1.5±0.1) ×106 N/A N/A

νreward
test (%) 95±1 91±3 97.2±0.7 60±40 82±17

σN1 20 23 36 8646 5180
σN90 0.3×106 0.2×106 0.2 ×106 N/A N/A

σνreward
test (%) 2 4 0.8 47 22

TABLE 7.6: Values featuring learning velocity (N1 and N90), final
reaching frequency (νreward

test) and associated standard deviations in
the problem D

Figure 7.9 shows the experimental training curves as well as associated confi-
dence intervals. We can notice several important facts:

• With the use of sparse-only rewards, the probability of getting the first success is
low. It takes a lot of episodes to reach a first success (from 7 505 episodes for the
N1 values). Furthermore, we cannot have a precise idea about the time when the
first success occurs because the standard deviations are very high. Moreover, N90
values are not available for these two reward settings because some of the runs
were not successful at all. Finally, as shown in Figure 7.9, the confidence intervals
for the average reaching frequency are very large, which means that the average
estimation is not precise at all for the sparse reward settings. The only fact we can
notice for these settings is that it can work for a run and totally fails for another
one. Then, these reward functions do not ensure a reliable learning for the most
complex initial configuration setting.

104
Chapter 7. Learning arm motor skills based on binocular object fixation and

hand-eye coordination

0 5000 10000 15000 20000 25000 30000 35000 40000
Episodes

0

10

20

30

40

50

60

70

80

90

100

ν(
%

)

νproposedPen

νproposed

νsparse

νsupervisedPen

νsparsePen

FIGURE 7.9: Evolution of the average reaching frequency during
training for the different reward functions for the problem D

• With a shaping term, the probability of having first successes is much higher.
The different N1 values for rproposedPen, rproposed, rsupervisedPen are of the same or-
der of magnitude, are small, and exhibit low standard deviations. Importantly,
our weakly-supervised setting allows to approach similar reaching performances
compared with its supervised counterpart even if the final reaching frequency is
slightly lower (95 % with little supervision vs 97 % with supervision). In addition,
Figure 7.9 shows that the confidence intervals of νsupervisedPen and νproposedPen in-
tertwine even if the bounds of νsupervisedPen are generally higher. This shows that
even if νsupervisedPen is higher than νproposedPen most of the time, results are close.
Furthermore, we notice that three phases can be distinguished. From 0 to about
5 000 episodes, the reward curves increase with the same velocity. It corresponds
to a phase in which some initial positions are mastered without substantial end-
effector orientation changes. Indeed, for some initial positions, the robot has to
change only a little its end-effector orientation to reach a grasping posture. After
5 000 episodes, there is a period of slow increase for the three settings and from
about 7 000 episodes, “harder” initial positions are more and more mastered. We
observe that the three settings start to distinguish from each other and the term
penalizing contacts seems to be a decisive factor.

• Indeed, as in the problem C, jointly using a shaping signal and a term penal-
izing contacts between the end-effector and the table makes learning faster. To
show this, we can compare rproposedPen and rproposed: N90 is lower for rproposedPen,

ν
proposedPen
test is higher than ν

proposed
test , and Figure 7.9 shows that νproposedPen is al-

ways superior to νproposed after 10 000 episodes. Furthermore, in Figure 7.9 we
notice that the upper bound Mproposed is generally inferior to the lower bound

7.2. Learning object reachability 105

mproposedPen. All of these observations show the supremacy of rproposedPen over
rproposed. It shows that penalizing contacts between the end-effector and the table
has an important influence on learning performances. The reason is that it is easier
to experiment “good” moves in contact-less areas given that the robot can easily
be blocked when it touches the table. It can seem in contradiction with conclusions
of the problem B (one initial arm position, several object positions) in which using
rproposed yields better results than with rproposedPen. The reason is that for the spe-
cific initial arm position, it is easier to touch while also being in contact with the
table. This is not the case in most arm positions of the problem D. Indeed, in many
cases, the end-effector is stuck to the table and cannot reach the object. Thus, the
penalties play an important role to deal with this issue. Finally, we observe as in
the problem C that if we do not use shaping terms, the penalty term becomes too
important and makes the policy choose upward arm moves (as the table acts as
a repellent), which considerably slows down the learning (compare the learnings
for rsparse and rsparsePen in Figure 7.9).

• From Figure 7.9, we can notice that some runs could have been extended because
the convergence is not totally achieved. However as they can take a very long
time, they were not continued. We choose to stop when our reward function with
penalty terms yields good performances.

7.1.5 Conclusion
We have shown that a hand-eye coordination mapping and an object fixation

error were sufficient ingredients to learn reaching skills and that the resulting per-
formances approach those with policies learn with supervised reward signals. More-
over, we have demonstrated that penalizing contacts between the end-effector and
the object improves the learning speed for the most complex initial setting and can
have a negative impact if the robot can easily reach successful positions from posi-
tions in which it is in contact with the table. The experiments in the settings A and C
have been published in [5] with some modifications of hyperparameters (the sizes of
the memory buffer and the mini-batch are lower in the paper), less types of reward
functions (we did not present experiments with contact penalties in the paper) and
without the tactile states. The work presented in the setting D has been published
in [6]. In the next section, we show how the robot can learn both reaching skills and
the ability to assess about the object reachability.

7.2 Learning object reachability
In this section, we describe how the robot learns about its reachability while

learning to reach using exactly the same priors as before. It is interesting to make the
robot learn about its reachability area itself because without it, humans have either to
place the object in reachable areas so that the robot is always sure to be able to reach
(like in section 7.1), or they have to compute the reachability area themselves. Fur-
thermore, it is interesting that the robot knows about its reachability area because it
can be a powerful tool for a mobile manipulator. Indeed, the latter might learn using
its reachability prediction to move such that an object becomes reachable.

106
Chapter 7. Learning arm motor skills based on binocular object fixation and

hand-eye coordination

7.2.1 Task definition
We briefly describe here some state-of-the-art work on the workspace reachabil-

ity estimation in manipulation robotics. These methods use different representations
for the reachable workspace.

[183] represents the reachable workspace of a humanoid robot as a set of 3D
Cartesian points. It samples random 3D positions and check (1) if inverse kinemat-
ics provide a solutions and (2) if the center of mass of the robot at the computed joint
configuration is within an area. If so, the point is added to the database of reach-
able points. Goal babbling [184] can also be considered as a way to learn reachable
areas in terms of 3D points while learning inverse kinematics (provided forward
kinematics is known). This method presents a way to learn inverse kinematics with
a random exploration of 3D goals. [185], by assuming the knowledge of both in-
verse and forward kinematics, develops an interesting visualization algorithm for
the reachability of the workspace and the number of joint configurations which can
be used for a given 3D position.

All of these methods assume the knowledge of inverse or/and forward kinemat-
ics. In contrast, [186] and [187] can dispense with it, because a reachable point is de-
fined by camera joint angles qcamera. Indeed, they can feature a 3D position and the
previously mentioned papers use it to build a reachability mapping: R = Re(qcamera)
through exploration of different qcamera positions. In this work, Re is approximated
by a LWPR neural network and the generated targets are RT = 1−er

2 (er is a scaled
distance in the camera joint angle space between the end-effector and the fixated
point) if the target is not reached and RT = 1+optarm

2 if the target is reached, optarm
being an indicator value of the optimality of the arm joint configuration.

We inspire from the latter method in the sense (1) a reachable point is defined by
camera joint angles, (2) a mapping R = Re(qcamera) is learned. However, we exhibit
some differences. First, the way to check whether the robot reaches the point is
achieved by a tactile sensor instead of measuring distances between the end-effector
and the fixated point (in terms of camera joint angles). Second, we do not need
markers and hand-crafted segmentation algorithms in our framework.

As regards the learning process, reaching is learned exactly the same way as in
section 7.1, using the same Markov decision process (same state space, same action
space, and same reward function). For the reachability, we approximate it by a feed-
forward neural network: R = Reα(qcamera) of parameter vector α. The targets for the
supervised learning of the camera are generated based on the tactile sensor, when
the robot exhibits good reaching performances. For a given episode, we record the
pair (qcamera, RT), with RT computed as follows:

RT =

{
1, if success,
0, otherwise.

(7.6)

Another important aspect of our reachability application is that we only learn object
reachability when the object is put on the table. We do not make the robot learn if it
can reach a random point in the 3D space.

7.2.2 Ground-truth object reachability estimation
To evaluate the quality of our reachability network, we need a way to estimate

the ground-truth workspace reachability (see Appendix E for its computation). Fig-
ure 7.10 displays a representation of the latter. The reachable map is delimited by

7.2. Learning object reachability 107

two circular arcs and the left and bottom borders of the table. The black area corre-
sponds to the initial object position distribution for prior experiments (problems B
and D).

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
x (m)

0.4

0.6

0.8

1.0

1.2

y
(m

)

Little circular arc
Big circular arc
Limits of the table
Limits of the prior experimental area

FIGURE 7.10: Scheme of the reachable workspace

7.2.3 Experiments
The experiments have two main objectives, evaluating our learned reachability

predictor, and checking whether reaching is still correctly learned.

7.2.3.1 Reachability

We want to evaluate how accurate is the learned reachability mapping compared
to the estimated ground-truth reachability. In that end, we first plot through the
episodes the prediction error, which is the difference between the prediction of the
learned mapping and the ground truth prediction. Second, we evaluate the reacha-
bility map on a grid covering all the object positions on the table by comparing and
evaluate the results with respect to ground-truth predictions.

Figure 7.11 represents the evolution of the reachability prediction accuracy over
the episodes with confidence intervals. We observe that the reachability prediction
seems to reach around 95 % of performances, which is interesting. However, this
curve does not provide any spatial clues, i.e. we do no know where the reachability
predictor is wrong.

Figure 7.12 gives us a spatial view on object reachability prediction. For this
figure, we cover a regular grid of object positions on all the table. At each object po-
sition, the cameras fixate the object using πfix

ψ and we get camera joint angles qcamera
fix

which make the camera system fixates the object. Then, we output the prediction R

108
Chapter 7. Learning arm motor skills based on binocular object fixation and

hand-eye coordination

0 5000 10000 15000 20000 25000 30000 35000 40000
Episodes

0

20

40

60

80

100

Re
ac

ha
bi

lit
y

pr
ed

ic
tio

n
ac

cu
ra

cy
 (%

)

FIGURE 7.11: Evolution of the accuracy of the reachability predictor
with respect to the theoretical estimation

based on the reachability predictor and these camera joint angles: R = Reα(qcamera
fix).

The first sub-figure presents the unmodified predictions of the reachability predic-
tion network, which is a real value between 0 and 1. The other sub-figure presents a
way to do prediction with the learned reachability predictor. A binary prediction is
applied, i.e. if R is superior to 0.5, the prediction is set to 1 and 0 otherwise.

We do the following observations:

• We observe that for positions far from the “reachability border”, the prediction is
always good.

• For the positions close to the border, the prediction is sometimes wrong, particu-
larly for the border built with the second circular arc.

These mistakes close to the workspace border can be due to several factors. First,
it can be due to the localization inaccuracies. Indeed, we saw in Chapter 5 that
the object localization principle was not very precise. While this can explain some
errors for the border delimited by the first circular arc, it cannot explain ones for
the border delimited by the second circular arc. Indeed, as shown by Figure 5.16
of Chapter 5, the difference of localization precision between the two borders is not
large. Furthermore, in all the sub-figures, there is a reachable area close to the second
border that the predictor classifies as not reachable. The reason is that the robot
has not completely learned to reach all its reachable positions. More precisely, we
have observed that the hand-eye coordination function does not produce accurate
localization when the end-effector approaches this border. Therefore, expanding this
hand-eye coordination mapping to additional arm joint angles might help to solve
the issue.

7.2. Learning object reachability 109

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
x (m)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

y
(m

)

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
x (m)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

y
(m

)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FIGURE 7.12: Evaluation of the reachability predictor accuracy on the
table. In all the figures, the white curve stands for the border of the
estimated object reachability area. The figure at the top plots the out-
put of the reachability predictor (real value between 0 and 1), the one
at the bottom represents the binarized reachability predictor (0 or 1).

These experiments show that even though our object localization principle is not
very precise, a decent reachability predictor can be learned. The latter can accurately
classifies object positions which are far from the borders. To improve the predictor
quality for areas close to the borders, the first hint is to improve the object local-
ization precision. Second, the hand-eye coordination can be expanded to a more
diverse set of arm joint angles. And, third, the experiments can run longer. As the

110
Chapter 7. Learning arm motor skills based on binocular object fixation and

hand-eye coordination

latter solution can take a large amount of time, dedicated exploration strategies can
be applied. For instance, the robot can explore only object positions close to the bor-
der, or areas which have prediction values between 0.4 and 0.6. This solution is left
for future work.

7.2.3.2 Reaching performances

We want to confirm that we can learn to reach an object with minimal supervision
but within the whole reachable area. To that end, we evaluate through episodes the
success of the robot with respect to its ground-truth object reachability S(eps).

S(eps) =

{
1, if ((success) and (reachable)) or((failure) and(unreachable)),
0, otherwise.

(7.7)

We plot through the episodes the frequency of 1 values in Seps values, which resem-
bles the reaching frequency of section 7.1. We average the results of three trials and
Algorithm 9 summarizes the procedure.

In Figure 7.13, we evaluate whether the reaching policy can match results of the
theoretical reachability prediction results. In other terms, if the theoretically esti-
mated reachability prediction tells that an object position is reachable, we evaluate
if the robot reaches it. In contrast, if the robot is not able to reach it, we always con-
sider this situation as a success. We notice that the reaching performances converge
to decent performances (around 95%). This shows that our principle allows to learn
to reach in most object reachable areas.

0 5000 10000 15000 20000 25000 30000 35000 40000
Episodes

0

20

40

60

80

100

Re
ac

hi
ng

 p
er

fo
rm

an
ce

s
(%

)

FIGURE 7.13: Evolution of the reaching performances for the learned
policies

7.2. Learning object reachability 111

Algorithm 9 Algorithm describing the joint learning of reaching and predicting
reachability

Parameters:
1: Ntrans: the size of the circular buffer
2: γ: the discount factor
3: Γ: the set of parameters related to the Ornstein-Uhlenbeck process
4: Ntot: the total number of episodes
5: Nmax: the maximal number of iterations per episode
6: Nb: the number of transitions per batch
7: Nupd: the number of samples in the reachability database required to start the

learning of reachability
8: Nstart: the number of episodes required to start the learning of the reachability

Inputs:
9: qrobot

0 : initial arm joint angles
10: πfix

ψ : the fixation policy
11: fη: the hand-eye coordination mapping
Outputs: Qφ, πθ, Reα
Steps:

1: Initialize Tbuf, Qφ, πθ and Reα
2: Set neps ← 0
3: while neps < Ntot do
4: t← 0
5: Reset arm joint angles and place the object randomly on the table
6: Fixate the object using πfix

ψ

7: Go to the position qrobot
0

8: while !cond1 do
9: if blocked then

10: Apply a backward action at to go to the 7th former arm joint angles.
11: else
12: Update εΓ(t) using equation (7.5)
13: Apply at = πθ(st) + εΓ(t)
14: Detect if the robot is blocked (at not completed)
15: if blocked then adjust at

16: Compute the reward signal rt and sense st+1
17: Add < st,at, rt, st+1 > to Tbuf
18: Pick Nb random transitions from Tbuf
19: Update Qφ and πθ using the DDPG
20: if neps ≥ Nstart then
21: Append (qcamera, Success) to D
22: cond2 = (t ≥ Nstart) and (size(D) ≥ Nupd)
23: if cond2 then
24: Update Reα

25: t = t + 1
26: cond1 = (Success) or (t == Nmax)

27: neps = neps + 1

112
Chapter 7. Learning arm motor skills based on binocular object fixation and

hand-eye coordination

7.3 Conclusion
In this chapter, we have shown several important results:

• First, using learned object fixation policies and hand-eye coordination functions,
the robot reliably learns to reach an object with a variety of initial conditions. This
is achieved without kinematics, calibration parameters, pre-processing modules
or expert demonstrations and we claim these specific features as the main contri-
butions of our work.

• Second, we have enhanced the combined influence of reward terms and initial
settings. We summarize the most striking facts. When there is a single initial arm
position (which is yet favourable: the end-effector is well-oriented), learning with-
out shaping rewards does not work. However, using different initial arm positions
significantly increases the probability of success and makes learning reliable when
the object position is fixed. This is because some initial arm positions are made
very close to successful positions. Shaping rewards make learning practical in all
the settings. Penalty terms are interesting when contacts between the table and the
end-effector prevent the robot from being blocked against the table. When it is not
the case, penalty terms can have a negative impact. Importantly, in all the cases,
our proposed reward function produces results similar to ones obtained with a
supervised reward.

• Finally, we have shown that by still using the same level of supervision, our system
can get a decent level of reachability prediction accuracy (95 %) while still learning
to reach objects in all the reachable area. As mentioned above, this is a promising
result for a mobile manipulator.

113

Chapter 8

Conclusion

This chapter ends the manuscript. First, our contributions are summarized. Sec-
ond, we enhance what are the limitations of our work. Then, we describe some
guidelines potentially solving the limitations of our work. Finally, we give prelimi-
nary ideas on how our work can be expanded to a multi-object setting, other manip-
ulation tasks or to a real world environment.

8.1 Contributions
The goal of this thesis was to learn a complex robotics task with very few priors

about the models of the robot and the environment. We managed to make the robot
learn how to reach an object with its palm, and to predict if an object can be reached
using camera joint angles as input. These tasks have been learned with very little
information, i.e. we did not use camera calibration parameters, kinematics, hand-
designed vision modules and expert knowledge. To do that, we took inspiration
from the human behaviour. First, before reaching an object, humans generally fixate
it before reaching it. Second, humans are provided with a kind of kinematic model,
where the objects are encoded in a eye-centred frame. Third, humans can generally
tell if an object is reachable using visual inputs. From these observations, we divided
the whole task into three sub-tasks, and we detail the contributions separately for
each task.

8.1.1 Object fixation
The object fixation task consists for the robot in making its stereo system fixate

the object put on the table by considering raw visual and proprioceptive values.
To dispense as much as possible with external human information, we decided to
make autoencoders reconstruct the images (taken by the camera system) of the en-
vironment without object. The only assumption of this learning framework is that
no object is in the scene, apart from that, the framework is unsupervised. After this
step, when learning binocular object fixations, the object is detected and localized as
being an artefact in the image reconstructions (from the autoencoders) and is used
to compute an informative reward signal. The way of computing the reward sig-
nal without neither calibration parameters nor hand-designed visual modules is our
first contribution.

The second contribution related to the object fixation task is linked to the denois-
ing procedure in the learning runs. Indeed, the computed reward signal suffers from
impulse noise due to some high-frequency areas which are not reconstructed very
well. We have shown that this leads to poor performance, and have implemented a
method which solves the issue still without using supervision. In that aim, we have

114 Chapter 8. Conclusion

learned a model of variation of object localization in the images given camera joint
angle moves. When the difference between the reality and the model is too large, it
means that the object localization has abnormally moved and that the reward signal
may be wrong. Thus, we remove transitions with such anomalies.

These two contributions were successfully applied in a simulated environment
and a real one. To summarize, we have computed a reward signal for the object fix-
ation task which does not require calibration parameters, camera system kinematics
and visual modules. Moreover, we add an unsupervised noise removal procedure
to remove transitions whose reward is affected by impulse noise.

8.1.2 End-effector fixation and hand-eye coordination
This task consists in learning a kind of forward kinematics model that we call

“hand-eye coordination”. The latter outputs a 3D position (through camera joint
angles) from robot joint angles. The robot learns this function using supervised
learning techniques with self-supervised labels. It builds its database thanks to an
end-effector fixation task which is run in parallel.

We do not claim a strong contribution for this task since the reward signal com-
putation itself is not new. Indeed, the reward signal is computed from finger moves,
which, though requiring only minimal supervision (finger moves have to be spec-
ified) does not differ a lot from state-of-the-art work. What is interesting is that
the full setting of object fixation task is applied to the one of end-effector fixation
task and produces good results. In other terms, the structure of the reward function
is similar, the state and action spaces are the same and the denoising procedure is
exactly the same. This task was implemented and validated in a synthetic environ-
ment.

8.1.3 Reaching skills
The reaching skills consists first of the reaching task itself and second of the

reachability prediction as a function of the robot gaze.
The first joint contribution to both tasks is the fact that they are jointly learned

using the object fixation policy and the hand-eye coordination function in an orig-
inal and functioning reinforcement learning framework. More precisely, the object
fixation policy acts as an object locator, and the hand-eye coordination function as
an end-effector locator. They are used to compute an informative shaping reward
which encourages the end-effector to be close to the object. Consequently, they make
the contact between the end-effector palm and the object more likely. As the require-
ments of these skills are mainly the requirements of the fixation tasks, these skills do
not require a lot of supervision, which constitutes the second shared contribution.

Specifically to the reaching task, we conducted experiments to evaluate the com-
bined influence of initial conditions and some reward terms. The possible initial
conditions are related to the uniqueness (or not) of the initial object positions and
initial arm joint angles. Besides, the reward terms that we have studied are a term
penalizing contacts between the table and the end-effector, a sparse reward term and
two shaping reward terms (one is our main contribution, the other is a shaping term
depending on forward kinematics and a perfect knowledge on the Cartesian object
position). We made the following observations:

• If we only use sparse reward terms, learning does not work at all when there
is only one initial arm position at the beginning of learning episodes. Indeed,

8.2. Limitations 115

the probability that the end-effector palm makes contact with the object is really
small, which confirms one of the issues mentioned in Chapter 2. We noticed that
by using several initial arm positions, we increased the probability of touching the
object (even when the initial object position can vary). While it yields decent per-
formances when the object position is fixed, it does not lead to a reliable learning
otherwise.

• For all the initial episode configurations, using shaping terms speeds up learning.

• In most arm positions in which the end-effector is in contact with the table, us-
ing terms penalizing contacts can allow to guide more the exploration towards
contact-less areas, which accelerates learning. This is the case if we also use shap-
ing terms. However, if we use only sparse reward and contact penalty terms, the
latter can act as a repellent. Indeed, when we do not use a shaping reward term,
the probability of success is lower, and as the robot has to move the end-effector
downwards to touch the object, the robot generally receives more penalties than
“success” terms. Thus, the robot can be discouraged to make downward moves
which are necessary to reach the object.

• Learning with our shaping reward function approaches learning with the fully-
supervised reward function even if it is a bit slower.

The two reaching skills were implemented and validated in a synthetic environ-
ment.

8.2 Limitations
The limitations of our approach are all related to the assumptions we made dur-

ing the learning process. In the following, we detail them task by task.

8.2.1 Object fixation
For this task, we do not need calibration parameters, kinematics, hand-designed

visual modules, or expert knowledge. We only assume that the object is not present
when the autoencoder learns to encode the environment, and is present when learn-
ing occurs. These assumptions can seem rather light at first sight. However, they
make our application not robust to environment variations. Indeed, if the environ-
ment is changing, the autoencoder is not valid anymore and has to be trained again.
To do that, the object has to be withdrawn first. This procedure is not convenient at
all inasmuch as it has to be repeated each time the environment changes.

8.2.2 End-effector fixation and hand-eye coordination
This task dispenses as well with calibration parameters, kinematics, or hand-

designed visual modules. The assumption we made to learn both the end-effector
fixation task and the hand-eye coordination is that nothing besides the robot fingers
moves in the environment. It means that our end-effector detection does not work if
other motions occur in the environment.

116 Chapter 8. Conclusion

8.2.3 Reaching skills
The limitations of these tasks are mainly the limitations of the previous tasks

because they depend on them. The additional limitation that we add concerns the
penalty term that we use for a better exploration and the sparse reward term. They
assume that the robot can tell from its tactile sensors whether it is touching the table
or the object.

8.3 Perspectives
We give here some hints that might help to overcome our limitations and we

describe how we can adapt our work to a multi-object setting, to other manipulation
tasks and a real environment.

8.3.1 Alleviating limitations
The main perspectives for our work consist in addressing the limitations men-

tioned above. The latter will be addressed globally because we believe the main
issue is not related to each limitation in the individual tasks. It is rather related to
the fact the tasks are learned sequentially one by one. Indeed, in this thesis, we took
inspiration from the human behaviour. However, we did not inspire from the way
these tasks are learned. For newborns and even for children, the learnings of these
tasks overlap and some of them drive each other. For example, the object fixation
task is driven by the object reaching task. Therefore, we propose an untested learn-
ing framework when the learnings of several skills overlap:

• An area fixation task:
This task consists in fixating an area of an image with the camera system.

• A curious mechanism to select curious areas to be fixated:
For this, we would use a function (represented by a neural network) which out-
puts from an image (left or right) a heat-map representing the image areas to be
explored. This function should be adapted through time to output unexplored
areas.

• An object detector network:
It is a function, which outputs from an image a heat map in which high-value areas
represent objects. This detector is learned through time using reaching successes,
i.e. when the fixated area has been touched (we assume that the robot knows
whether it is touching an object), it is considered as an object. In this approach, we
consider the object as something which can be manipulated whereas in the thesis,
we consider it as an anomaly in the environment.

• A hand-eye coordination function:
This is the same function as in the presented work and would be learned using
the area fixation task and finger moves. The issue about the confusion between
the latter and other moves in the environment can be addressed by methods in the
literature using correlation [175]. Note that we can also think about adding tac-
tile feedback to the hand-eye coordination function task. Indeed, when the robot
reaches an object, we can add the pair (qrobot, qcamera) to the hand-eye coordination
database.

8.3. Perspectives 117

• A reachability prediction function:
This is the same function as in the presented work and would be learned in a
similar way.

• A reaching skill:
This is the same function as in the presented work and would be learned in a
similar way.

Figure 8.1 displays the framework developed in the thesis and the potentially more
autonomous one. Note that in the latter, we do not provide the robot with the knowl-
edge of the correct order of the task. The goal would be that the robot finds it itself
using hierarchical reinforcement learning algorithms ([143] and [137] could be used).
Note that this framework is nothing but a guideline to go further towards autonomy
and is still untested.

FIGURE 8.1: Comparison of our framework (left) with a potentially
more autonomous framework (right)

8.3.2 Extending current work

8.3.2.1 Improving the reaching task

Multi-object setting

Our reaching skill state space is composed of “only” camera joint angles to in-
dicate the object localization and arm joint angles. If the objects involved in the
experiments have different shapes, the camera joint angles cannot give the correct
indication where the robot has to reach, i.e what are the correct arm joint angles.
Indeed, information about the shape of the object is required. To that end, in the
same vein as in our approach, i.e. without using pre-computed features as states,
raw pixels from the left and right cameras can be added to the state space, because
they can encode together the shape of the object. The problem which arises from
the use of this state space is that we get a non Markovian decision process. Indeed,
the object might be occluded by the arm, and then, the images are not predictable
from previous images and actions. Two solutions can be used. On the one hand,

118 Chapter 8. Conclusion

we might include in the state space observations taken at different time-steps (re-
current neural networks are generally used to ensure that the correlation between
some time-steps is correctly done) so that the object is visible in at least one obser-
vation. This kind of method suffers from several drawbacks. First, taking several
pairs of images in the state space makes the application very resource-demanding
and memory-consuming. Second, we cannot ensure that in the K considered steps,
the object is visible and that the decision process is Markovian. On the other hand,
we can simply include the left and right images of the environment after the ob-
ject fixation step, when the object is visible (it is ensured). The latter solution would
make the decision process Markovian and solve the issue without too many resource
requirements.

Improve the exploration using curiosity

In all our tasks, exploration is rather basic (Gaussian noise or Ornstein-Uhlenbeck
process) and might not be optimal. It could be interesting to add to our setting
a curiosity-based exploration such as in [188]. Since the latter associates intrinsic
rewards signals with model learning improvements, it can be very helpful for the
reaching task. Indeed, there are non-linearities in robot dynamics when the end-
effector touches the table or the object. Thus, the robot might be even more attracted
by successful positions.

8.3.2.2 Learning other manipulation tasks using the same principle

We have made a robot learn a reaching task. It would be interesting to check
if our approach can make the robot learn other object manipulation tasks such as
grasping objects or clear the table. Theoretically, switching to another task just re-
quires to switch to another sparse reward. If the success of the new task is more
likely to occur than our task, it should not be a problem to complete learning with
our framework. However, if the success of the new task is very unlikely to hap-
pen (even with our framework), e.g. peg-in-hole task with a random initial setting,
there is no guarantee that our framework can achieve its learning though we hope it
would work.

8.3.2.3 Real-world implementation

Among the learned skills in this thesis, we have only implemented the object fix-
ation in the real world. We draw here some indications about the difficulties which
might arise and potential progresses. There are two main issues.

The first one is that it is very time-consuming to learn our tasks in the real world.
Indeed, the object fixation task took one week and a half in tedious conditions (a
human operator has to change the object types and positions at every episode).
The end-effector fixation task should take longer because it implies end-effector fin-
ger moves at each reinforcement learning iteration and the reaching task would be
much longer. Thus, as it stands, our whole task is hardly implementable in the real-
world. To solve this issue, the first solution consists in using every ways to make
reinforcement learning faster, i.e. a more careful choice of hyperparameter values,
lighter neural network structures, more data-efficient reinforcement learning algo-
rithms (model-based algorithms), synthetic-to-real transfers and initialization using
expert demonstrations. A second solution would consist in accepting this waste of
time and using reliable robots which can act in a repeatable way during extended
periods of time.

8.3. Perspectives 119

The second main issue is the safety. Our current framework for the reaching task
involves variations of arm joint angles as actions. In practice, from these variations
of angles, some target joint angles are computed and fed to PID controllers. If the
arm touches the table and has a target which makes it move downwards, the robot
risks to be damaged. To deal with it and using variations of joint angles as actions,
we can prevent the robot from exploring some areas of the state space (where the
end-effector touches the table or itself), but that requires forward kinematics, which
is not in line with our objectives. Another solution is to use soft controllable robots
which are not damaged when they touch solid environment parts.

121

Appendix A

Neural networks structures

We present here the neural network structures used for the experiments as well
as associated hyper parameters for the solver algorithms. We do not claim that these
structures are optimal, because in some cases (autoencoder and structures for the fix-
ation experiments), lighter structures would be preferable. Furthermore, the related
hyperparameters were not found using a rigorous method but by trial and error, i.e.
we stopped looking for better structures or better hyperparameters when learning
started to give interesting results. Thus, the following elements are described only
for the purpose of reproducibility and are by no means optimal.

A.1 Neural networks for the fixation experiments

A.1.1 Autoencoder
The autoencoder structure has an encoder consisting of convolutional layers and

fully connected layers and a fully connected decoder. The weights linked to the cen-
tral feature vector h are transposed to reduce the number of parameters. We decided
not to compress too much the inputs, because the autoencoder is used to represent
as faithfully as possible the environment images without object. This structure may
not be optimal because of its too large number of parameters.

FIGURE A.1: Autoencoder structure

The autoencoders are learned using the ADAM solver using the parameters pre-
sented in table A.1.

Parameters α β1 β2

Values 0.0001 0.9 0.999

TABLE A.1: ADAM parameters for the autoencoder updates

122 Appendix A. Neural networks structures

A.1.2 Policy
The policy structure involves convolution layers which are used to deal with

spatially coherent inputs such as images. This structure may not be optimal because
of its large number of parameters.

FIGURE A.2: Policy structure for the fixation experiments

The policy is updated using the ADAM algorithm and the hyperparameters of
Table A.2. At first sight, the value of α can be considered as aberrant because it is
very low. However, we found useful to update it with this value to ensure that the
learning process is stable enough (same reasoning as many algorithms: the policy
should not be updated with too large updates). Indeed, it is considered in the liter-
ature [189] that the DDPG is very sensitive to the learning rate of the actor and the
critic (in the Half-cheetah problem for example). Furthermore, these rates depend
on the nature of the tasks and the environment considered. We choose a very low
value because the resulting learning was reliable. However, we do not guarantee
that this value is optimal.

Parameters α β1 β2

Values 0.0000001 0.9 0.999

TABLE A.2: ADAM parameters for the policy updates

A.1.3 Q function
We do the same observations as for the policy structure. The Q function is up-

dated using the ADAM algorithm using the parameters of table A.3.

Parameters α β1 β2

Values 0.0005 0.9 0.999

TABLE A.3: ADAM parameters for the policy updates

A.1.4 Hand-eye mapping
The hand-eye mapping us updated using the ADAM algorithm and the follow-

ing hyperparameters of Table A.4.

A.2. Neural networks for the reaching experiments 123

FIGURE A.3: Q function structure for the fixation experiments

FIGURE A.4: Hand eye mapping structure

Parameters α β1 β2

Values 0.0001 0.9 0.999

TABLE A.4: ADAM parameters for the policy updates

A.2 Neural networks for the reaching experiments

A.2.1 Policy
As the state space does not involve any images, we did not use convolution lay-

ers. The policy is updated using the ADAM algorithm and the parameters of Table
A.5. Concerning the low learning rate value of the policy, the observations of Section
A.1.2 are valid here.

FIGURE A.5: policy structure for the reaching experiments

Parameters α β1 β2

Values 0.0000001 0.9 0.999

TABLE A.5: ADAM parameters for the policy updates

124 Appendix A. Neural networks structures

A.2.2 Q function
The same observations are applied for the Q function and the parameters for the

ADAM algorithm are in A.6.

FIGURE A.6: Q function structure for the reaching experiments

Parameters α β1 β2

Values 0.0001 0.9 0.999

TABLE A.6: ADAM parameters for the Q updates

A.2.3 Reachability prediction network

FIGURE A.7: Reachability structure

The reachability prediction is updated using the ADAM algorithm and with the
hyperparameters of Table A.7.

Parameters α β1 β2

Values 0.0001 0.9 0.999

TABLE A.7: ADAM parameters for the reachability prediction up-
dates

125

Appendix B

Hyperparameters for the
reinforcement learning
applications

B.1 Object fixation learning
The parameter values of the reinforcement learning procedure of the object fixa-

tion algorithm are presented in Table B.1.

Parameters Ntrans γ ε Ntot Neps Nb ν Ngp

Training (simulation) 20 000 0.2 0.02 200 000 35 16 10 1 000
Test (simulation) 2 000 35

Training (real 20 000 0.2 0.02 160 000 35 16 10 1 000
Test (real) 200 35

TABLE B.1: Parameters for the object fixation algorithm

We remind here of the hyperparameters meanings:

• Ntrans the maximum number of transitions in the memory buffer

• γ is the discount factor

• ε is the variance of the noise applied on actions computed by the policy

• Ntot is the total number of RL iterations used in the experiments

• Neps is the number of RL iterations by episode

• Nb is the batch size

• ν is the threshold value used to decide whether to remove or add a transition in
the memory buffer

• Ngp is the required number of samples to build the denoising model with a Gaus-
sian process.

B.2 End-effector fixation and hand-eye coordi-
nation learning

The parameters of the reinforcement learning procedure of the end-effector fixa-
tion and hand-eye coordination learning algorithm are presented in Table B.2.

126 Appendix B. Hyperparameters for the reinforcement learning applications

Parameters Ntrans γ ε Ntot Neps Nb ν Ngp Nupd Rth
Training 20 000 0.2 0.02 200 000 35 16 10 1000 200 1.85

TABLE B.2: Parameters for the algorithm used to learn the hand-eye
coordination mapping and end-effector fixations

The meaning of hyperparameters remain the same as before, the new ones are
the following:

• Nupd is the number of required samples in the hand-eye mapping database to start
the learning of the hand-eye coordination.

• Rth is a threshold value. If the reward signal is above, a sample is added to the
database and the hand-eye mapping is updated.

B.3 Reaching and reachability learning
The parameters of the reinforcement learning procedure of the reaching and

reachability fixation algorithm are presented in Table B.3, B.4 and B.5.

Parameters γ Nmax Nb Ntrans Ntot (training) Ntot (test)
Values 0.99 100 256 60 000 40 000 1 000

TABLE B.3: Parameter values

Parameters ccam ccart pcontact ptime

Values − 1
30 − 1

40 -0.01 -0.0125

TABLE B.4: Parameter values for the used reward functions

Parameters θj, j ∈ {1, ..., 7} µj, j ∈ {1, ..., 7} σj, j ∈ {1, ..., 4} σj, j ∈ {5, ..., 7}
Values 0.8 0 0.01 0.04

TABLE B.5: Ornstein-Uhlenbeck process parameters

The meanings of the new hyperparameters are:

• Nmax is the maximal number of RL iterations per episode. However, the number
of episodes can be inferior to Nmax if the robot reaches the object before completing
Nmax iterations in an episode.

• The parameters θj, µj, σj are the parameters for the Ornstein-Uhlenbeck process
used to apply noise in the reaching experiments.

127

Appendix C

Reference frame of the simulated
environment

FIGURE C.1: Reference frame of the simulated environment

In Figure C.1, we show the reference frame used in our experiments.

129

Appendix D

Triangulation

This appendix proposes to establish the Cartesian coordinates x, y and z of a 3D
point X with respect to the camera joint angles qtilt, qpanLeft and qpanRight which make
the camera system fixate X (see Figure D.1 for a visualization of links between afore-
mentioned variables). Let Cleft = (Cleft

x , Cleft
y , Cleft

z) and Cright = (Cright
x , Cright

y , Cright
z)

be the Cartesian coordinates of the left and right cameras. For a simplification pur-

FIGURE D.1: Scheme showing geometrical links between camera
joint angles and the fixated 3D point

pose, we note Cy = Cleft
y = Cright

y and Cz = Cleft
z = Cright

z (these relationships are true
only for the perfect simulated model). The following relationships can be found
geometrically:

x = Cleft
x − pleft sin(qpanLeft) (D.1)

y = Cy + pleft cos(qtilt) cos(qpanleft) (D.2)

130 Appendix D. Triangulation

z = Cz + pleft sin(qtilt) cos(qpanleft) (D.3)

x = Cright
x − pright sin(qpanRight) (D.4)

y = Cy + pright cos(qtilt) cos(qpanRight) (D.5)

z = Cz + pright sin(qtilt) cos(qpanRight) (D.6)

Cc
x = Cc

x0 (D.7)

Cy = −l sin(qtilt) (D.8)

Cz = Cz0 + l cos(qtilt) (D.9)

l, Cc
x0 and Cc

z0 are constant numbers. By equalizing equations D.1 and D.4 on the one
hand, and D.2 and D.5 on the other hand, we derive the following equations:

Cright
x − Cleft

x = pright sin(qpanRight)− pleft sin(qpanLeft) (D.10)

pleft cos(qpanLeft) = pright cos(qpanRight) (D.11)

Considering the unknown variables pleft and pright, we solve the system of equations
D.10 and D.11, provided that qpanLeft 6≡ qpanRight[π], qpanRight 6≡ π

2 [π] and qpanLeft 6≡
π
2 [π]:

pright =
Cright

x − Cleft
x

(tan(qpanRight)− tan(qpanLeft)) cos(qpanRight)
(D.12)

pleft =
Cright

x − Cleft
x

(tan(qpanRight)− tan(qpanLeft)) cos(qpanLeft)
(D.13)

Consequently, we can derive x, y and z expressions by replacing pright in equa-
tions D.4, D.5 and D.6 using equation D.12.

x = Cright
x0 −

(Cright
x0 − Cleft

x0) tan(qpanRight)

(tan(qpanRight)− tan(qpanLeft))
(D.14)

y = −l sin(qtilt) +
(Cright

x0 − Cleft
x0) cos(qtilt)

(tan(qpanRight)− tan(qpanLeft))
(D.15)

z = Cz0 + l cos(qtilt) +
(Cright

x0 − Cleft
x0) sin(qtilt)

(tan(qpanRight)− tan(qpanLeft))
(D.16)

In our work, the constant values are (in meters):

• Cz0 = 2.095

• Cleft
x0 = −0.22

• Cright
x0 = 0.24

• l = 0.045

131

Appendix E

Ground-truth object reachability
estimation

To compute the ground-truth object reachability estimation, we build on the
knowledge of the robot structure and experiments:

• We know from experiments that the left arm can reach an object if it is put at the
bottom left of the table. Indeed, in Section 7.1.4.2, the robot learns to reach an
object at different positions at the bottom left area of the table.

• We know from the geometry that the furthest points that the robot can reach fol-
low two circular arcs of different radii. Indeed, in Figure E.1, we can see the ways
to reach the furthest points. In the first configuration, the arm is outstretched
and the second revolute joint can make the arm move while keeping the arm out-
stretched. The second configuration corresponds to the position where the robot
cannot move around its second revolute joint because it would be hitting its struc-
ture. In this configuration, the arm can reach the furthest points only by moving
around its fourth revolute joint and forcing the end-effector to conserve a given
orientation.

FIGURE E.1: Top views of the left arm showing the ways for the robot
to reach the furthest points. The left figure represents the way to ob-
tain the second circular arc: by making the elbow joint of the robot
vary. The right figure represents the way to obtain the first circular

arc: by making the shoulder joint of the robot vary.

Using these facts, the workspace limits are some borders of the table and the men-
tioned circular arcs. Then, to know the object reachability, we need to estimate the

132 Appendix E. Ground-truth object reachability estimation

parameters of the two circular arcs (xl
0, yl

0, rl) (xb
0 , yb

0 , rb), l and b denoting little and
big.

To do so, we measure object positions which belong to these circular arcs. We
get two sets of points: Sl = {(xl

1, yl
1), ..., (xl

Nl
, yl

Nl
)} and Sr = {(xr

1, yr
1), ..., (xr

Nr
, yr

Nr
)}.

We find the parameters using a least mean square optimization by considering the
following linear problem for each circular arc:

Ax = b =⇒ x ' (AT A)−1ATb, (E.1)

A =

2x1 2y1 1

. . .

. . .
2xN 2yN 1

 , (E.2)

b =

x2

1 + y2
1

.

.
x2

N + y2
N

 , (E.3)

x =

 x0
y0
r2

 . (E.4)

We obtain reasonable solutions for the two circular arcs. We estimated (using
Monte-Carlo sampling) the surface of the reachable area as 0.506 m2, which repre-
sents 51.6% of the table area (we use the Gazebo scales). In the experiments, this
estimation of reachability produces only 0.04 % of false positives (the ground-truth
estimation says it is not reachable, but the robot manages to reach it). This confirms
that this estimation can act as a ground-truth for a comparison with our reachability
prediction.

133

Appendix F

Detailed results for uncertainties
estimation of the x, y and z
coordinates

0.6 0.4 0.2 0.0 0.2 0.4 0.6
x (m)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

y
(m

)

0.00

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.54

FIGURE F.1: Absolute uncertainties on the x axis in function of x and
y coordinates of the object on the table

134
Appendix F. Detailed results for uncertainties estimation of the x, y and z

coordinates

0.6 0.4 0.2 0.0 0.2 0.4 0.6
x (m)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

y
(m

)

0.00

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.54

FIGURE F.2: Absolute uncertainties on the y axis in function of x and
y coordinates of the object on the table

0.6 0.4 0.2 0.0 0.2 0.4 0.6
x (m)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

y
(m

)

0.00

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.54

FIGURE F.3: Absolute uncertainties on the z axis in function of x and
y coordinates of the object on the table

Appendix F. Detailed results for uncertainties estimation of the x, y and z
coordinates

135

0.6 0.4 0.2 0.0 0.2 0.4 0.6
x (m)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

y
(m

)

0.00

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.54

FIGURE F.4: Relative uncertainties on the x axis in function of x and
y coordinates of the object on the table

0.6 0.4 0.2 0.0 0.2 0.4 0.6
x (m)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

y
(m

)

0.00

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.54

FIGURE F.5: Relative uncertainties on the y axis in function of x and
y coordinates of the object on the table

136
Appendix F. Detailed results for uncertainties estimation of the x, y and z

coordinates

0.6 0.4 0.2 0.0 0.2 0.4 0.6
x (m)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

y
(m

)

0.00

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.54

FIGURE F.6: Relative uncertainties on the z axis in function of x and
y coordinates of the object on the table

137

Appendix G

Material

G.1 Middleware
We have used ros [165] as the middleware.

G.2 Software
In our work, we used the following informatic tools:

• Gazebo with the ODE engine as a simulator

• Caffe [166] the library for neural network learning algorithms

• C++(11) as the programming language

• C++ stl, boost, cuda, opencv, ros, gazebo as main dependencies

• Python as the language for plotting curves and drawing graphs

• FreeCad, one of the only free CAD softwares with which we can draw fully parametrized
ellipsoids

G.3 Hardware
The learning runs were launched using different computers:

• One with a Nvidia GTX TitanX as GPU

• Several ones with Nvidia GTX 1080 as GPUS

139

Appendix H

Planar views of 3D clouds and
convex hulls for the possible initial
end-effector positions in the
reaching and hand-eye
coordination learnings

This appendix groups planar views of 3D point clouds and associated convex
hulls for initial end-effector 3D Cartesian coordinates for both the reaching task and
the hand-eye coordination learning.

1.00.50.00.5
y (m)

0.0 0.2 0.4 0.6 0.8 1.0

z
(m

)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

x (m)
1.0 0.5 0.0 0.5 0.00.20.40.60.81.0

z
(m

)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

x (m)
1.0 0.5 0.0 0.5

y
(m

)

0.0

0.2

0.4

0.6

0.8

1.0

0.81.01.21.41.61.82.0

FIGURE H.1: Possible end-effector initial positions for the reaching
task

1.00.50.00.5
y (m)

0.0 0.2 0.4 0.6 0.8 1.0

z
(m

)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

x (m)
1.0 0.5 0.0 0.5 0.00.20.40.60.81.0

z
(m

)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

x (m)
1.0 0.5 0.0 0.5

y
(m

)

0.0

0.2

0.4

0.6

0.8

1.0

0.81.01.21.41.61.82.0

FIGURE H.2: Possible end-effector initial positions for the hand-eye
coordination learning.

Figures H.1 and H.2 represent some views of the volume of possible end-effector
initial positions for respectively the reaching task and the hand-eye coordination

140
Appendix H. Planar views of 3D clouds and convex hulls for the possible initial

end-effector positions in the reaching and hand-eye coordination learnings

learning. More precisely, the figures represent YZ (left), XZ (middle) and XY (right)
planar views on the 3D point cloud (blue), and convex hull (red) of possible end-
effector initial positions. The table is visualized in green.

141

Bibliography

[1] S. Levine et al. “End-to-end Training of Deep Visuomotor Policies”. In: J.
Mach. Learn. Res. (2016).

[2] A. Ghadirzadeh et al. “Deep predictive policy training using reinforcement
learning”. In: IROS. 2017.

[3] F. de La Bourdonnaye et al. “Learning of binocular fixations using anomaly
detection with deep reinforcement learning.” In: IJCNN. 2017.

[4] F. de La Bourdonnaye et al. “Apprentissage par renforcement profond de
la fixation binoculaire en utilisant de la détection d’anomalies”. In: ORASIS
2017. Colleville-sur-Mer, France, 2017.

[5] F. de La Bourdonnaye et al. “Learning to touch objects through stage-wise
deep reinforcement learning”. In: IROS (2018).

[6] F. de La Bourdonnaye et al. “Stage-wise learning of reaching using little prior
knowledge”. In: Frontiers in Robotics and AI (2018).

[7] R. A. Fisher. “The Use of Multiple Measurements in Taxonomic Problems”.
In: Annals of Eugenics (1936).

[8] A. M. Legendre. “Nouvelles méthodes pour la détermination des orbites des
comètes”. In: Courcier (1805).

[9] N. Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks
from Overfitting”. In: Journal of Machine Learning Research (2014).

[10] A. Krogh and J. A. Hertz. “A Simple Weight Decay Can Improve Generaliza-
tion”. In: NIPS. 1992.

[11] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press, 2005.

[12] C. Cortes and V. Vapnik. “Support-Vector Networks”. In: Mach. Learn. (1995).

[13] W. S. Mcculloch and W. H. Pitts. “A Logical Calculus of the Ideas Immanent
in Nervous Activity”. In: Bulletin of Mathematical Biophysics (1943).

[14] F. Rosenblatt. “The Perceptron: A Probabilistic Model for Information Storage
and Organization in The Brain”. In: Psychological Review (1958).

[15] M. E.Hoff and B. Widrow. “Associative Storage and Retrieval of Digital In-
formation in Networks of Adaptive “Neurons””. In: Second Annual Bionics
Symposium sponsored by Cornell University and the General Electric Company,
Advanced Electronics Center. 1961.

[16] S. Grossberg. “Some Networks That Can Learn, Remember, and Reproduce
any Number of Complicated Space-Time Patterns, I”. In: Indiana University
Mathematics Journal (1969).

[17] T. Kohonen. “Correlation Matrix Memories”. In: IEEE Transactions on Comput-
ers (1972).

[18] G. Palm. “On associative memory”. In: Biological Cybernetics (1980).

142 BIBLIOGRAPHY

[19] J. J. Hopfield. “Neural Networks and Physical Systems with Emergent Col-
lective Computational Abilities”. In: Proceedings of the National Academy of Sci-
ences of the United States of America (1982).

[20] J. Schmidhuber. “Deep learning in neural networks: An overview”. In: Neural
networks (2015).

[21] P. Smolensky. “Parallel Distributed Processing: Explorations in the Microstruc-
ture of Cognition, Vol. 1”. In: MIT Press, 1986. Chap. Information Processing
in Dynamical Systems: Foundations of Harmony Theory.

[22] G. E. Hinton and T. J. Sejnowski. “Parallel Distributed Processing: Explo-
rations in the Microstructure of Cognition, Vol. 1”. In: MIT Press, 1986. Chap. Learn-
ing and Relearning in Boltzmann Machines.

[23] D. H. Ballard. “Modular Learning in Neural Networks.” In: AAAI. 1987.

[24] G. E. Hinton and R. R. Salakhutdinov. “Reducing the dimensionality of data
with neural networks”. In: Science (2006).

[25] S. Hawkins et al. “Outlier Detection Using Replicator Neural Networks.” In:
DaWaK. Lecture Notes in Computer Science. 2002.

[26] P. J. Werbos. “Applications of Advances in Nonlinear Sensitivity Analysis”.
In: IFIP. 1981.

[27] D.B. Parker. Learning-logic: Casting the Cortex of the Human Brain in Silicon.
1985.

[28] Y. LeCun. A Theoretical Framework for Back-Propagation. 1988.

[29] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Parallel Distributed Pro-
cessing: Explorations in the Microstructure of Cognition, Vol. 1”. In: MIT
Press, 1986. Chap. Learning Internal Representations by Error Propagation.

[30] A-L. Cauchy. “Méthode générale pour la résolution des systèmes d’équations
simultanées”. In: Compte Rendu des S’eances de L’Acad’emie des Sciences XXV
(1847).

[31] D. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. In:
ICLR. 2015.

[32] V. Nair and G. E. Hinton. “Rectified Linear Units Improve Restricted Boltz-
mann Machines”. In: ICML. 2010.

[33] K.He et al. “Delving Deep into Rectifiers: Surpassing Human-Level Perfor-
mance on ImageNet Classification”. In: ICCV. 2015.

[34] G. Cybenko. “Approximation by superpositions of a sigmoidal function”. In:
Mathematics of Control, Signals and Systems (1989).

[35] K. Hornik. “Approximation capabilities of multilayer feedforward networks”.
In: Neural Networks (1991).

[36] O. Delalleau and Y. Bengio. “Shallow vs. Deep Sum-Product Networks”. In:
NIPS. 2011.

[37] T. Poggio et al. “Why and when can deep-but not shallow-networks avoid
the curse of dimensionality: A review”. In: International Journal of Automation
and Computing (2017).

[38] R. Salakhutdinov and G. E. Hinton. “Deep Boltzmann Machines.” In: Journal
of Machine Learning Research - Proceedings Track (2009).

BIBLIOGRAPHY 143

[39] S. Hochreither and J. Schmidhuber. “Long Short-Term Memory”. In: Neural
Computation (1997).

[40] K. Cho et al. “Learning Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation”. In: EMNLP (2014).

[41] Athanasios Voulodimos et al. “Deep Learning for Computer Vision: A Brief
Review”. In: Computational Intelligence and Neuroscience (2018).

[42] K. Fukushima. “Neocognitron: A Self-Organizing Neural Network Model for
a Mechanism of Pattern Recognition Unaffected by Shift in Position”. In: Bio-
logical Cybernetics (1980).

[43] Y. Lecun et al. “Back-Propagation Applied to Handwritten Zip Code Recog-
nition”. In: Neural Computation (1989).

[44] Y. LeCun et al. “Gradient-based learning applied to document recognition”.
In: Proceedings of the IEEE (1998).

[45] Y. Lecun et al. “Handwritten Digit Recognition with a Back-Propagation Net-
work”. In: NIPS. 1990.

[46] P. Baldi and Y. Chauvin. “Neural Networks for Fingerprint Recognition”. In:
Neural Computation (1993).

[47] S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Diploma the-
sis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität München.
1991.

[48] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet Classification with
Deep Convolutional Neural Networks.” In: NIPS. 2012.

[49] M. D. Zeiler and R. Fergus. “Visualizing and Understanding Convolutional
Networks.” In: ECCV (1). 2014.

[50] C. Szegedy et al. “Going deeper with convolutions.” In: CVPR. 2015.

[51] K. J. Piczak. “Environmental sound classification with convolutional neural
networks”. In: MLSP. 2015.

[52] P. Swietojanski, A. Ghoshal, and S. Renals. “Convolutional neural networks
for distant speech recognition”. In: IEEE Signal Processing Letters (2014).

[53] A. Bhandare et al. “Applications of Convolutional Neural Networks”. In: IJC-
SIT (2016).

[54] M. van Otterlo and M. Wiering. “Reinforcement Learning and Markov De-
cision Processes”. In: Reinforcement Learning: State-of-the-Art. Springer Berlin
Heidelberg, 2012.

[55] J. Schaeffer and A. Plaat. “Kasparov versus Deep Blue: The Rematch”. In:
ICGA Journal (1997).

[56] R. A. Howard. Dynamic Programming and Markov Processes. MIT Press, 1960.

[57] R.E. Bellman. Dynamic programming. 1957.

[58] Manuel Watter et al. “Embed to Control: A Locally Linear Latent Dynamics
Model for Control from Raw Images”. In: NIPS. 2015.

[59] C. Florensa et al. “Reverse Curriculum Generation for Reinforcement Learn-
ing”. In: CoRL. 2017.

[60] M. P. Deisenroth, C. E. Rasmussen, and D. Fox. “Learning to Control a Low-
Cost Manipulator using Data-Efficient Reinforcement Learning.” In: Robotics:
Science and Systems. 2011.

144 BIBLIOGRAPHY

[61] R. E. Bellman. Adaptive Control Processes: A Guided Tour. MIT Press, 1961.

[62] V. Mnih et al. “Human-level control through deep reinforcement learning”.
In: Nature (2015).

[63] S. Levine, N. Wagener, and P. Abbeel. “Learning contact-rich manipulation
skills with guided policy search”. In: ICRA. 2015.

[64] R.S. Sutton and A.G. Barto. Reinforcement learning: an introduction. MIT Press,
1998.

[65] C. J. C. H. Watkins. “Learning from Delayed Rewards”. PhD thesis. 1989.

[66] C. J. C. H. Watkins and P. Dayan. “Q-Learning”. In: Machine Learning (1992).

[67] G. A. Rummery and M. Niranjan. On-line Q-learning using connectionist sytems.
Tech. rep. 1994.

[68] G. A. Rummery. “Problem Solving with Reinforcement Learning”. PhD the-
sis. 1995.

[69] R. S. Sutton. “Generalization in Reinforcement Learning: Successful Exam-
ples Using Sparse Coarse Coding.” In: NIPS. MIT Press, 1995.

[70] J. Peng and R. J. Williams. “Incremental Multi-Step Q-Learning.” In: Machine
Learning (1996).

[71] M. A. Wiering and J. Schmidhuber. Fast online Q(λ). Tech. rep. 1997.

[72] V. Mnih et al. “Human-level control through deep reinforcement learning”.
In: Nature (2015).

[73] S. Levine et al. “Learning hand-eye coordination for robotic grasping with
deep learning and large-scale data collection”. In: Int. J. of Rob. Res. (2017).

[74] M. P. Deisenroth, G. Neumann, and J. Peters. “A Survey on Policy Search for
Robotics.” In: Foundations and Trends in Robotics (2013).

[75] N. Kohl and P. Stone. “Policy Gradient Reinforcement Learning for Fast Quadrupedal
Locomotion.” In: ICRA. 2004.

[76] J. Peters and S. Schaal. “Policy gradient methods for robotics”. In: IROS. 2006.

[77] R. J. Williams. “Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning”. In: Machine Learning (1992).

[78] J. Baxter, P. Bartlett, and L. Weaver. “Experiments with Infinite-Horizon, Policy-
Gradient Estimation”. In: Journal of Artificial Intelligence Research (2001).

[79] R. S. Sutton et al. “Policy gradient methods for reinforcement learning with
function approximation”. In: NIPS. 2000.

[80] J. Peters and S. Schaal. “Natural Actor-Critic.” In: Neurocomputing (2008).

[81] J. Peters and S. Schaal. “Reinforcement learning of motor skills with policy
gradients.” In: Neural Networks (2008).

[82] J. Peters, K. Mülling, and Y. Altun. “Relative Entropy Policy Search.” In:
AAAI. 2010.

[83] J. Schulman et al. “Trust Region Policy Optimization.” In: ICML. 2015.

[84] S. Levine and P. Abbeel. “Learning Neural Network Policies with Guided
Policy Search under Unknown Dynamics”. In: NIPS. 2014.

[85] J. Kober and J. Peters. “Policy Search for Motor Primitives in Robotics.” In:
NIPS. 2008.

BIBLIOGRAPHY 145

[86] V. Heidrich-Meisner and C. Igel. “Neuroevolution strategies for episodic re-
inforcement learning.” In: J. Algorithms (2009).

[87] E. Theodorou, J. Buchli, and S. Schaal. “A Generalized Path Integral Con-
trol Approach to Reinforcement Learning.” In: Journal of Machine Learning
Research (2010).

[88] A. J. Ijspeert, J. Nakanishi, and S. Schaal. “Learning Attractor Landscapes for
Learning Motor Primitives.” In: NIPS. 2002.

[89] G. Tesauro. “TD-Gammon, a Self-Teaching Backgammon Program, Achieves
Master-Level Play”. In: Neural Computation (1994).

[90] C. W. Anderson. “Learning to Control an Inverted Pendulum Using Neural
Networks”. In: IEEE Control Systems Magazine (1989).

[91] C. F. Touzet. “Neural reinforcement learning for behaviour synthesis.” In:
Robotics and Autononous Systems (1997).

[92] R. Coulom. “Reinforcement Learning Using Neural Networks, with Applica-
tions to Motor Control. (Apprentissage par renforcement utilisant des réseaux
de neurones, avec des applications au contrôle moteur).” PhD thesis. 2002.

[93] R. H. Crites and A. G. Barto. “Improving Elevator Performance Using Rein-
forcement Learning”. In: NIPS. 1996.

[94] S. Lange and M. Riedmiller. “Deep auto-encoder neural networks in rein-
forcement learning”. In: IJCNN. 2010.

[95] T. P. Lillicrap et al. “Continuous control with deep reinforcement learning.”
In: ICLR. 2016.

[96] V. Mnih et al. “Asynchronous Methods for Deep Reinforcement Learning.”
In: ICML. 2016.

[97] D.Silver et al. “Mastering the game of Go without human knowledge”. In:
Nature (2017).

[98] David Silver et al. “Deterministic Policy Gradient Algorithms”. In: ICML. Bei-
jing, China, 2014.

[99] L. Baird. “Residual Algorithms: Reinforcement Learning with Function Ap-
proximation”. In: Machine Learning Proceedings 1995. 1995.

[100] J. N. Tsitsiklis and B. Van Roy. “An Analysis of Temporal-Difference Learn-
ing with Function Approximation”. In: IEEE Transactions of Automatic Control
(1997).

[101] L. J. Lin. “Reinforcement Learning for Robots Using Neural Networks”. PhD
thesis. 1993.

[102] J. Schulman et al. “High-Dimensional Continuous Control Using Generalized
Advantage Estimation.” In: CoRR (2015).

[103] J. Schulman et al. “Proximal Policy Optimization Algorithms”. In: CoRR (2017).

[104] S. Gu et al. “Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy
Critic.” In: CoRR (2016).

[105] S. Levine and V. Koltun. “Guided Policy Search.” In: ICML (3). 2013.

[106] S. Levine and V. Koltun. “Variational Policy Search via Trajectory Optimiza-
tion.” In: NIPS. 2013.

[107] L. Peshkin and C. R. Shelton. “Learning from Scarce Experience.” In: ICML.
2002.

146 BIBLIOGRAPHY

[108] G. Neumann. “Variational Inference for Policy Search in changing situations.”
In: ICML. 2011.

[109] S. Levine and V. Koltun. “Learning Complex Neural Network Policies with
Trajectory Optimization”. In: ICML. 2014.

[110] Y. Chebotar et al. Path Integral Guided Policy Search. 2016.

[111] V. Gullapalli, J. A. Franklin, and H. Benbrahim. “Acquiring robot skills via
reinforcement learning”. In: IEEE Control Systems (1994).

[112] S. Schaal and C. G. Atkeson. “Robot juggling: implementation of memory-
based learning”. In: IEEE Control Systems (1994).

[113] M. T. Rosenstein and A. G. Barto. “Reinforcement learning with supervision
by a stable controller”. In: American Control Conference. 2004.

[114] B. Wang, J. w. Li, and H. Liu. “A Heuristic Reinforcement Learning for Robot
Approaching Objects”. In: 2006 IEEE Conference on Robotics, Automation and
Mechatronics. 2006.

[115] J. Kober and J. Peters. “Learning motor primitives for robotics”. In: ICRA.
2009.

[116] P. Kormushev, S. Calinon, and D. G. Caldwell. “Robot motor skill coordina-
tion with EM-based Reinforcement Learning”. In: IROS. 2010.

[117] M. Tamosiunaite et al. “Learning to pour with a robot arm combining goal
and shape learning for dynamic movement primitives.” In: Robotics and Au-
tonomous Systems (2011).

[118] J. Buchli et al. “Learning variable impedance control.” In: I. J. Robotic Res.
(2011).

[119] M. Kalakrishnan et al. “Learning force control policies for compliant manip-
ulation”. In: IROS. 2011.

[120] T. Lampe and M. Riedmiller. “Acquiring visual servoing reaching and grasp-
ing skills using neural reinforcement learning”. In: IJCNN. 2013.

[121] Y. Zhu et al. “Reinforcement and Imitation Learning for Diverse Visuomotor
Skills”. In: CoRR (2018).

[122] Y. Duan et al. “One-Shot Imitation Learning”. In: NIPS. 2017.

[123] A. Nair et al. “Overcoming Exploration in Reinforcement Learning with Demon-
strations.” In: CoRR (2017).

[124] M. Večerík et al. “Leveraging Demonstrations for Deep Reinforcement Learn-
ing on Robotics Problems with Sparse Rewards”. In: CoRR (2017).

[125] C. Finn, S. Levine, and P. Abbeel. “Guided Cost Learning: Deep Inverse Op-
timal Control via Policy Optimization”. In: ICML. 2016.

[126] P. Sermanet, K. Xu, and S. Levine. “Unsupervised Perceptual Rewards for
Imitation Learning.” In: Robotics: Science and Systems. 2017.

[127] P. Englert and M. Toussaint. “Learning manipulation skills from a single
demonstration”. In: The International Journal of Robotics Research (2018).

[128] P. Englert, N. A. Vien, and M. Toussaint. “Inverse KKT: Learning cost func-
tions of manipulation tasks from demonstrations”. In: The International Jour-
nal of Robotics Research (2017).

[129] K. Hausman et al. “Multi-Modal Imitation Learning from Unstructured Demon-
strations using Generative Adversarial Nets”. In: NIPS. 2017.

BIBLIOGRAPHY 147

[130] F. Zhang et al. “Towards Vision-Based Deep Reinforcement Learning for Robotic
Motion Control.” In: CoRR (2015).

[131] S. James and E. Johns. “3D Simulation for Robot Arm Control with Deep Q-
Learning”. In: CoRR (2016).

[132] V. Kumar, E. Todorov, and S. Levine. “Optimal control with learned local
models: Application to dexterous manipulation.” In: ICRA. 2016.

[133] C. Finn et al. “Deep spatial autoencoders for visuomotor learning”. In: ICRA.
2016.

[134] S. Gu et al. “Deep reinforcement learning for robotic manipulation with asyn-
chronous off-policy updates.” In: ICRA. 2017.

[135] Y. Tsurumine et al. “Deep dynamic policy programming for robot control
with raw images”. In: IROS. 2017.

[136] I. Popov et al. “Data-efficient Deep Reinforcement Learning for Dexterous
Manipulation.” In: CoRR (2017).

[137] A. Gudimella et al. “Deep Reinforcement Learning for Dexterous Manipula-
tion with Concept Networks”. In: CoRR (2017).

[138] A. Boularias, J. A. Bagnell, and A. Stentz. “Learning to Manipulate Unknown
Objects in Clutter by Reinforcement”. In: AAAI. 2015.

[139] M. Asada et al. “Purposive Behavior Acquisition for a Real Robot by Vision-
Based Reinforcement Learning.” In: Machine Learning (1996).

[140] C. Finn and S. Levine. “Deep visual foresight for planning robot motion”. In:
ICRA. 2017.

[141] M. Gualtieri, A. Pas, and R. Platt. “Category Level Pick and Place Using Deep
Reinforcement Learning”. In: CoRR (2017).

[142] M. Andrychowicz et al. “Hindsight Experience Replay”. In: NIPS. 2017.

[143] M. A. Riedmiller et al. “Learning by Playing - Solving Sparse Reward Tasks
from Scratch”. In: CoRR (2018).

[144] Lanzilotto M. et al. “Neuronal Encoding of Self and Others’ Head Rotation in
the Macaque Dorsal Prefrontal Cortex”. In: Scientific Reports (2017).

[145] R. Huys and P. J. Beek. “The coupling between point-of-gaze and ballmove-
ments in three-ball cascade juggling: the effects of expertise, pattern and tempo”.
In: Journal of Sports Sciences (2002).

[146] A.P Basptista, C.A Snyder, and R.A Andersen. “Reach plans in eye-centered
coordinates”. In: Science (1999).

[147] J. Konczak. “On the notion of motor primitives in humans and robots”. In:
Workshop on Epigenetic Robotics (2005).

[148] F. Vassella and B. Karlsson. “Asymmetric Tonic Neck Reflex”. In: Developmen-
tal Medicine & Child Neurology 4 (1962).

[149] B. L. White, P. Castle, and R. Held. “Observations on the Development of
Visually-Directed Reaching”. In: Child Development (1964).

[150] J. Law et al. “From Saccades to Grasping: A Model of Coordinated Reaching
Through Simulated Development on a Humanoid Robot”. In: IEEE Trans. on
Autonomous Mental Development (2014).

[151] N. Alahyane et al. “Development and learning of saccadic eye movements in
7- to 42-month-old children”. In: Journal of Vision (2016).

148 BIBLIOGRAPHY

[152] R.K Clifton et al. “Is visually guided reaching in early infancy a myth?” In:
Child Development (1993).

[153] A. Mathew and M. Cook. “The Control of Reaching Movements by Young
Infants”. In: Child Development (1990).

[154] R. W. White. “Motivation Reconsidered: The Concept Of Competence”. In:
Psychological review (1959).

[155] D.E. Berlyne. Conflict, Arousal and Curiosity. McGraw-Hill, 1960.

[156] J. Schmidhuber. “Formal Theory of Creativity, Fun, and Intrinsic Motivation
(1990-2010)”. In: IEEE Trans. on Auton. Ment. Dev. (2010).

[157] W. Schenck, H. Hoffmann, and R. Möller. “Learning Internal Models for Eye-
Hand Coordination in Reaching and Grasping”. In: European Cognitive Science
Conference. 2003.

[158] H. Hoffmann, W. Schenck, and R. Möller. “Learning visuomotor transforma-
tions for gaze-control and grasping.” In: Biological Cybernetics (2005).

[159] F. Nori et al. “Autonomous learning of 3D reaching in a humanoid robot.” In:
IROS. 2007.

[160] L. Jamone et al. “Autonomous Online Learning of Reaching Behavior in a
humanoid Robot.” In: I. J. Humanoid Robotics (2012).

[161] E. Chinellato et al. “Implicit Sensorimotor Mapping of the Peripersonal Space
by Gazing and Reaching”. In: IEEE Trans. on Autonomous Mental Development
(2011).

[162] B. Schölkopf et al. “Support Vector Method for Novelty Detection.” In: NIPS.
1999.

[163] A. Moreno et al. “Noisy Reinforcements in reinforcement learning: some case
studies based on gridworlds”. In: WSEAS. 2006, pp. 296–300.

[164] R. Fox, A. Pakman, and N. Tishby. “Taming the Noise in Reinforcement Learn-
ing via Soft Updates”. In: UAI. 2016.

[165] M.Quigley et al. “ROS: an open-source Robot Operating System”. In: ICRA
Workshop on Open Source Software. 2009.

[166] Y. Jia et al. “Caffe: Convolutional Architecture for Fast Feature Embedding”.
In: ACM. 2014.

[167] S. Ioffe and C. Szegedy. “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift”. In: ICML. 2015.

[168] J. Tobin et al. “Domain randomization for transferring deep neural networks
from simulation to the real world”. In: IROS. 2017.

[169] A. A. Rusu et al. “Sim-to-Real Robot Learning from Pixels with Progressive
Nets”. In: CoRL (2017).

[170] C. Salaün, V. Padois, and O. Sigaud. “Learning Forward Models for the Op-
erational Space Control of Redundant Robots”. In: From Motor Learning to
Interaction Learning in Robots. 2010.

[171] S. Vijayakumar et al. “Statistical Learning for Humanoid Robots”. In: Au-
tonomous Robots (2002).

[172] J. T. Lapreste et al. “An efficient method to compute the inverse Jacobian
matrix in visual servoing”. In: ICRA. 2004.

BIBLIOGRAPHY 149

[173] J. Sturm, C. Plagemann, and W. Burgard. “Body schema learning for robotic
manipulators from visual self-perception”. In: Journal of Physiology-Paris (2009).

[174] M. Marjanovic, B. Scassellati, and M. Williamson. “Self-Taught Visually-Guided
Pointing for a Humanoid Robot”. In: From Animals to Animats: Proceedings of
1996 Society of Adaptive Behavior. MIT Press, 1996.

[175] G. Metta and P. Fitzpatrick. “Early Integration of Vision and Manipulation”.
In: IJCNN (2003).

[176] A.Broun et al. “Bootstrapping a robot’s kinematic model”. In: Robotics and
Autonomous Systems (2014).

[177] L. P. Wijesinghe et al. “Learning multisensory neural controllers for robot arm
tracking”. In: IJCNN. 2017.

[178] Barrett Tech. URL: https://www.barrett.com/about-barrethand/.

[179] A.Rajeswaran et al. “Towards Generalization and Simplicity in Continuous
Control”. In: NIPS. 2017.

[180] M.J.Hausknecht and P.Stone. “Deep Reinforcement Learning in Parameter-
ized Action Space.” In: ICLR. 2016.

[181] A. W. Moore and C. G. Atkeson. “Prioritized sweeping: Reinforcement learn-
ing with less data and less time”. In: Machine Learning (1993).

[182] T. Schaul et al. “Prioritized Experience Replay”. In: ICLR. 2016.

[183] Y. Guan and K. Yokoi. “Reachable Space Generation of A Humanoid Robot
Using The Monte Carlo Method”. In: IROS. 2006.

[184] M. Rolf. “Goal babbling with unknown ranges: A direction-sampling ap-
proach”. In: ICDL. 2013.

[185] F. Zacharias, C. Borst, and G. Hirzinger. “Capturing robot workspace struc-
ture: representing robot capabilities”. In: IROS. 2007.

[186] L. Jamone et al. “Interactive online learning of the kinematic workspace of a
humanoid robot”. In: IROS. 2012.

[187] L. Jamone et al. “Autonomous online generation of a motor representation
of the workspace for intelligent whole-body reaching”. In: Robotics and Au-
tonomous Systems (2014).

[188] V. R. Kompella et al. “Continual curiosity-driven skill acquisition from high-
dimensional video inputs for humanoid robots”. In: Artificial Intelligence (2017).

[189] R. Islam et al. “Reproducibility of Benchmarked Deep Reinforcement Learn-
ing Tasks for Continuous Control”. In: CoRR (2017).

https://www.barrett.com/about-barrethand/

	Acknowledgements
	Summary (in french)
	Introduction
	Motivations
	Objective
	Presentation of the robotic tasks
	Our approach
	Contributions
	Report plan

	Theoretical background
	Machine learning with neural networks
	Machine learning
	Supervised learning
	Unsupervised learning
	Reinforcement learning
	Generalization

	Artificial Neural networks
	Neurons
	Artificial neural networks
	Feed-forward neural networks
	Autoencoder
	Learning FNN parameters
	Activation functions

	Deep learning
	Definition
	Why use deep structures?
	Deep convolutional neural networks (DCNN)

	Choice

	Sequential decision making problems
	Definitions and sequential decision making problems
	Definitions
	Sequential decision making problems

	Solve sequential decision making problems
	Programming
	Search or planning
	Learning

	Markov decision processes and optimality criteria
	Markov Decision processes
	Optimality criteria

	Usual functions for learning sequential decision making problems
	The value (V) function
	The quality (Q) function
	The advantage (A) function
	Optimal value functions

	Dynamic programming vs reinforcement learning
	Dynamic programming
	Reinforcement learning (RL)

	Reinforcement learning issues
	The exploration-exploitation trade-off
	Credit assignment
	Low probability of the first success
	Data efficiency
	Representations and Curse of dimensionality
	On-policy vs Off-policy

	Model-free reinforcement learning
	The critic-only methods
	The actor methods

	Deep Reinforcement Learning
	Idea
	Deep Deterministic policy gradient
	Deep Q network
	Deterministic policy gradient algorithms
	Deep deterministic policy gradient (DDPG)

	Alternate algorithms
	Trust Region Policy Optimization (TRPO)
	Generalized Advantage Estimation (GAE)
	Proximal Policy Optimization (PPO)
	Q-Prop
	Asynchronous Advantage Actor-Critic (A3C)
	Guided Policy Search (GPS)

	Choice

	Conclusion

	State of the art
	Manipulation robotics with reinforcement learning before the emergence of deep learning
	Partial conclusion

	Learning manipulation tasks using deep reinforcement learning
	Learning manipulation tasks using demonstrations
	Learning manipulation tasks using deep reinforcement learning with shaping rewards
	Learning manipulation tasks with deep reinforcement using only sparse rewards
	Partial conclusion

	Conclusion

	Approach overview
	Learning reaching skills using binocular fixation and hand-eye coordination
	Objective
	Idea
	Development
	Links to the human behaviour

	Related work

	Technical overview for the learning of reaching skills
	Conclusion

	Learning binocular object fixations using an anomaly localization principle
	Introduction
	Methods
	Task definition
	Reward computation
	Mitigating noise

	Experiments
	Experimental environments
	Simulated environment
	Real environment

	Implementation details
	Experiments in simulation
	Policy training
	Policy Test
	3D localization of objects

	Experiments in a real environment
	Training
	Test

	Conclusion

	Learning hand-eye coordination function
	Introduction
	Hand-eye coordination function
	End-effector detection

	Methods
	Task definition
	End-effector detection
	Mitigating noise

	Experiments
	Experimental environment
	Experimental protocol
	Training
	Test

	Implementation details
	Results
	Policy and hand-eye coordination training
	Evaluation of the hand-eye coordination mapping
	3D localization of the end-effector

	Conclusion

	Learning arm motor skills based on binocular object fixation and hand-eye coordination
	Learning to reach with the palm
	Task definition
	Reward computation
	Experiments
	Different reward functions
	Material
	Experimental protocol

	Results
	Problem A
	Problem B
	Problem C
	Problem D

	Conclusion

	Learning object reachability
	Task definition
	Ground-truth object reachability estimation
	Experiments
	Reachability
	Reaching performances

	Conclusion

	Conclusion
	Contributions
	Object fixation
	End-effector fixation and hand-eye coordination
	Reaching skills

	Limitations
	Object fixation
	End-effector fixation and hand-eye coordination
	Reaching skills

	Perspectives
	Alleviating limitations
	Extending current work
	Improving the reaching task
	Learning other manipulation tasks using the same principle
	Real-world implementation

	Neural networks structures
	Neural networks for the fixation experiments
	Autoencoder
	Policy
	Q function
	Hand-eye mapping

	Neural networks for the reaching experiments
	Policy
	Q function
	Reachability prediction network

	Hyperparameters for the reinforcement learning applications
	Object fixation learning
	End-effector fixation and hand-eye coordination learning
	Reaching and reachability learning

	Reference frame of the simulated environment
	Triangulation
	Ground-truth object reachability estimation
	Detailed results for uncertainties estimation of the x, y and z coordinates
	Material
	Middleware
	Software
	Hardware

	Planar views of 3D clouds and convex hulls for the possible initial end-effector positions in the reaching and hand-eye coordination learnings
	Bibliography

