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PREAMBLE 

Despite the emergence of targeted therapies, “conventional” DNA-damaging (genotoxic) 

anti-cancer drugs are still clinically relevant. Despite their important side-effects, for some 

cancer types it remains the main treatment, sometimes in combination with targeted 

therapies, and in other cases it is the last resort option. Unfortunately, in many cases 

chemoresistance to chemotherapy occurs, leading to disease relapse and cancer progression. 

Understanding various mechanisms of response and resistance to genotoxic anti-cancer 

drugs is therefore crucial to overcome this major issue.  

How does the cancer cell copes with damage to its DNA induced by anticancer drugs? 

What molecular and cellular mechanisms govern effective (cancer cell death) or ineffective 

(cancer cell survival) treatment? How can cancer cells that initially responded to treatment 

become chemoresistant? These are some interrogations researchers in many aspects of 

biology have been continuously investigating for decades. The DNA damage response 

signalling and the transcriptional response to genotoxic stress have been intensely 

investigated. Although our understanding of the cell response to DNA damage is already rich, 

each year there are new mechanisms and concepts, pathways and molecular machines 

interplay that are discovered. Post-transcriptional regulations such as alternative splicing 

and polyadenylation are emerging area of interest in cancer and in the DNA damage 

response. 

During my thesis, I focused on two main aspects: 1) regulation of alternative splicing in 

breast cancer cell resistance to doxorubicin, and 2) regulation of alternative polyadenylation 

in response to cisplatin in non-small-cell lung cancer cells. Doxorubicin and cisplatin are two 

of the oldest DNA-damaging anti-cancer drugs and are still frequently used in clinical settings, 

but the associated alternative splicing and polyadenylation networks are poorly understood. 

In the introduction of this thesis manuscript, I will first expose current knowledge on 

alternative splicing and polyadenylation mechanisms and regulations in health, disease and 

stressed conditions. In second part, I will briefly describe generalities on genotoxic anti-

cancer drugs, and focus on the specificity of doxorubicin and cisplatin. I will also describe 

DNA repair and the DNA damage response of the cell, and mechanisms of resistance to 

chemotherapies, including doxorubicin and cisplatin. Finally, I will synthetize current 

knowledge on the relationships between alternative splicing, polyadenylation and DNA 

damage response as well as chemoresistance. 

The result section is composed of two paper manuscripts ready for submission: 1) 

Identification of splicing programs and pathways involved in breast cancer cell resistance to 

doxorubicin, and 2) Intronic polyadenylation is linked to the antiproliferative effect of 

specific platinum compounds and generates differentially translated isoforms. In the 

discussion, I will briefly recapitulate main findings of my thesis projects and discuss possible 

perspectives, including long-non-coding RNA regulation by intronic polyadenylation, clinically 

relevant post-transcriptional networks investigation, and RNA therapeutics. 
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INTRODUCTION 

I. Alternative splicing (AS) and polyadenylation 
(APA) in cancer 

 

The life of a human messenger RNA (mRNA) starts at transcription, and ends at 

degradation, with multiple complex steps in between: 5’ end capping, splicing, 3’ end 

processing (cleavage and polyadenylation), export, and translation. All these steps are crucial, 

and they can be regulated in a physiological context and altered in diseases. For my thesis, I 

focused on two of these post-transcriptional steps, pre-messenger RNA (pre-mRNA) splicing 

and 3’ end cleavage/polyadenylation, in the context of cancer and chemotherapy. Indeed, 

we have known for decades that gene expression is altered in cancer cells, although the 

complexity of post-transcriptional regulations and their clinical relevance remain partly 

unexplored. 

 

1) AS mechanisms and regulation in cancer 
a. Pre-mRNA splicing 
The splicing reaction and the spliceosome. Most of human protein-coding genes contain 

introns that need to be removed during the maturation of the pre-mRNA, by a process called 

splicing. The splicing reaction is operated by a large ribonucleoprotein (RNP) machinery 

called the spliceosome. After the discovery of the splicing reaction in 1977 (Berget, Moore 

and Sharp, 1977; Chow et al., 1977),  the spliceosome was identified by several groups in 

1985 (Brody and Abelson, 1985; Frendewey and Keller, 1985; Grabowski, Seiler and Sharp, 

1985). The splicing reaction requires a large amount of ATP and occurs in two trans-

esterification steps catalyzed by five small nuclear ribonucleoprotein (snRNP) complexes: U1, 

U2, U4, U5, and U6 (Figure 1). Each snRNP is composed of a small nuclear RNA (snRNA), 

seven core Sm proteins, and several other snRNP-specific core factors. Although spliceosome 

assembly and catalytic reactions are most often described in yeast, key structure and steps 

are well conserved in humans (Galej, 2018). 

Briefly, U1 snRNP first binds to the 5’ splice site (5’SS) junction, while splicing factor 1 

(SF1, also called branch-binding protein, BBP) and U2 auxiliary factors (U2AF) recognize the 

branching point and the 3’ splice site (3’SS), respectively (Figure 1b). Next, U2 snRNP 

displaces SF1 and U2AF to bind itself to the branching point. The first trans-esterification 

step, commonly known as branching, produces a loop-shaped lariat intermediate of the 

intron. This is mediated by the recruitment of pre-assembled U4/U6 and U5 snRNPs (tri-

snRNP), which forms the pre-catalytic complex (B complex, first full spliceosome assembly) 

by associating with U1 and U2 snRNP. The spliceosomal complex then undergoes several 

remodeling to form a catalytically activated (B* complex) complex. During this remodeling, 

U1 and U4 snRNP are removed from the active complex. In addition, numerous other protein 
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complexes such as NineTeen (NTC) and NineTeen-related (NTR) complexes are required for 

spliceosomal activation (Figure 1b). The intron loop formation (the branching reaction, or 

catalytic step I) occurs by the branching-point adenosine attack to the 5’SS (Figure 1a). In the 

second step (ligation, or catalytic step II), the now free 3’ end of the 5’ exon is joined to the 5’ 

end of the following exon by a second trans-esterification (Figure 1a), and the intron lariat is 

released. The two exons are covalently bound, and the lariat is released with U2, U5, and U6 

snRNP attached to it (the intron lariat spliceosome, ILS).  

 

Figure 1: The splicing reaction. a) The two trans-esterification reactions of the splicing 

reaction. b) The splicing catalytic cycle. (adapted from Shi, 2017) 

Co-transcriptional splicing. For mammalian coding genes, splicing is mostly co-

transcriptional : the reaction occurs as the pre-mRNA is still attached to the chromatin, and 

while the RNA polymerase II (Pol II) continues transcription further downstream. In fact, 

transcription and pre-mRNA maturation process including splicing are mechanistically 

coupled, and interdependent (Bentley, 2014). It has been shown in yeast recently that the 

splicing reaction occurs almost instantly as the pre-mRNA emerges from Pol II (Carrillo 

Oesterreich et al., 2016). Although we have known that the splicing reaction occurs 

simultaneously with transcription since 1988, with reknowed image by Beyer and Osheim of 

intron loops and RNP particles on pre-mRNAs still attached to the chromatin (Figure 2), it is 

only recently that we begun to assess the full extent, mechanisms, interactions, and 

dynamics of co-transcriptional pre-mRNA processing in humans. Indeed, global analyses 

demonstrating functional coupling of transcription and mRNA processing in human cells are 

very recent, and it was made possible by the advance of sequencing techniques, including 

long-read and nascent RNA sequencing (Nojima et al., 2015; Anvar et al., 2018). 
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Figure 2: RNP particles at splice junctions on pre-mRNAs (adapted from Beyer and Osheim, 

1988). Election micrograph (left) and its tracing (right) of a Drosophila embryo transcription 

unit. 

The carboxy-terminal domain (CTD) of the largest subunit of Pol II act as a “landing pad” 

to recruit mRNA processing factors to the vicinity of the transcribed pre-mRNA, and its 

deletion inhibited pre-mRNA processing including splicing (Bentley, 2014). The CTD 

dynamically orchestrate the action of processing factors throughout the transcription cycle 

by coordinated phosphorylation events, so-called the “CTD code”(Hsin and Manley, 2012; 

Bentley, 2014; Nojima et al., 2015). Nojima et al. showed that the human CTD code was 

significantly different from yeast (the main model organism to study splicing), and that co-

trancriptional splicing was associated with phosphorylation on the serine 5 position (S5P) of 

the CTD (Nojima et al., 2015). Interestingly, Pol II pausing is strongly correlated to splice sites 

and it was suggested that U2AF65 exit from Pol II to the nascent RNA stimulates 

transcription elongation, but whether pausing is a cause or consequence of splicing is still 

unclear (Saldi et al., 2016; Herzel et al., 2017). Still, trancription and splicing coupling and 

interdependent relationship is undeniable. 

Roles of introns. Half of the human genome is estimated to be composed fo introns 

(Hubé and Francastel, 2015). Why would the sophisticated machine that is the cell first 

produce a longer pre-mRNA that will need to be processed by removing introns, using great 

amount of energy, in order to become a functional and mature mRNA ? Most eukaryotes 

and plants possess “genes in pieces” containing introns and the spliceosome is a highly 

conserved machinery, suggesting key functions of introns in various organisms although 

their origin and evolution is still up to debate (Rogozin et al., 2012). In fact, a given intron of 

a given gene is not necessarily never used to form mRNAs. Due to gene overlap, some 

introns are exonic parts of other unrelated genes. Also, intron can contain coding or non-

coding “nested genes”, meaning that the entirety of a gene is comprised between two exons 

of another “host gene” (Kumar, 2009).  

More interestingly, introns can enhance gene expression by positively affecting 

transcription rate, polyadenylation, mRNA export and stability, as well as translation 

efficiency (Le Hir, Nott and Moore, 2003). Indeed, intron-containing transcripts have higher 

expression profiles compared to intronless versions of the same genes. For example, splicing 
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signals in introns have been shown to enhance Pol II transcription initiation and elongation, 

notably via U1 snRNA binding to 5’SS and transcription factors, which stimulates Pol II CTD 

phosphorylation. Furthermore, it has been shown that some intronic microRNAs (“mirtrons” 

and “simtrons”) biogenesis necessitate the splicing machinery, using the intron lariat as 

microRNA precursor (Ruby, Jan and Bartel, 2007; Havens et al., 2012; Hubé and Francastel, 

2015). Another non coding use of intron is the production of circular RNAs, called circular 

intronic RNAs (ciRNA)(Zhang et al., 2013). It has also recently been shown in yeast that 

introns protect the genome against genetic instablility by preventig transcription-associated 

R-loop (DNA-RNA hybrid formed by sequence complementarity) formation (Bonnet et al., 

2017). In this study, the authors showed that spliceosome assembly (but not splicing itself) 

prevented R-loop formation and that intron-rich genes and genomes were best protected 

against R-loop-induced genetic instability. 

 

b. AS regulation and physiological role 
The extent of AS. AS is the inclusion or exclusion of one, several, or parts of exons from a 

pre-mRNA to form a mature mRNA. A mechanism found from yeast to humans, AS is largely 

responsible for transcriptome diversity (Keren, Lev-Maor and Ast, 2010). AS is a general 

mechanism : more than 95% of human multi-exons genes are alternatively spliced and 

produce several mRNA isoforms potentially contributing to proteomic diversity (Pan et al., 

2008; Wang et al., 2008; Mollet et al., 2010). It has been estimated that in average, each 

gene generates around ten mRNA isoforms (Hu et al., 2015). Given the discrepancy between 

the number of genes (< 20,000) (Ezkurdia et al., 2014) and proteins (> 100,000), when large-

scale studies revealed the global extent of AS in the 2000’s, it was considered the main 

source of proteome diversity (Nilsen and Graveley, 2010).  

However, this assumption was recently challenged. It has been argued that large-scale 

mass-spectrometry experiments found little evidence of protein isoforms resulting from AS, 

that the majority of the genes had one main protein isoform despite the various transcript 

isoforms, and that when the AS isoform was translated, the effect on protein function was 

limited (Tress, Abascal and Valencia, 2017). The authors concluded that most splice variants 

have little to no function. These conclusions were strongly questioned, arguing back that, on 

the contrary, numerous studies have shown the link between AS and proteomic complexity, 

while noting the technical limitation of proteomics studies (Blencowe, 2017). Indeed, 

Weatheritt et al. recently matched RNA-seq and ribosome-profiling datasets of human 

synchronized cells and concluded that at least 75% of cassette exon variants were ribosome-

engaged (Weatheritt, Sterne-Weiler and Blencowe, 2016). Other groups also showed that AS 

alterations were reflected on the proteome, and that it diversifies protein-protein 

interactions (Yang et al., 2016; Liu et al., 2017). 

Types of AS. There are five main types of AS events: alternative 5’SS and 3’SS, cassette 

exons, intron retention, and mutually exclusive exons (Figure 3a). Several cassette exons can 

also be skipped at a time, a phenomenon called multi-skipping, such as it is the case for the 

cell adhesion gene CD44, which has ten alternative exons between the fifth and sixth 
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constitutive exons (Figure 3b). Often, alternative exons differ from constitutive exons by 

their “weaker” splice site sequences, that diverge from the consensus “strong” constitutive 

splice sites. These “weaker” sites are therefore believed to be less easily recognized by the 

spliceosome (Fu and Ares, 2014).  

 

Figure 3: Types of alternative exons. a) Main types of Alternative splicing. Constitutive 

exons are in light blue and alternative exons in dark blue. (adapted from Dvinge et al., 

2016) b) CD44 pre-mRNA multi-skipping exons. (adapted from Ponta, Sherman and 

Herrlich, 2003) 

AS regulation by RBPs. AS regulation is highly contextual and done by the coordination 

of cis-elements (enhancing and silencing sequences on the pre-mRNA) and trans-acting 

factors, which are RNA-biding proteins (RBP) called splicing factors (SF). There are four 

categories of cis-elements, collectively called splicing regulatory elements (SRE): intronic 

splicing silencer (ISS), exonic splicing silencer (ESS), intronic splicing enhancer (ISE), and 

exonic splicing enhancer (ESE). SRE tend to have the strongest effect when in close proximity 

of a splice site (Dvinge et al., 2016). Also, splice sites are quite loosely defined, allowing 

opportunities of alternative use. Two well-characterized, and often ubiquitously expressed, 

categories of SF are heterogeneous nuclear RNP (hnRNP) and serine-arginine rich proteins 

(SR). SR protein usually have one or two RNA recognition motif domains (RRM), which is 

responsible for the ability to bind RNA, and a carboxy-terminal arginine/serine rich domain 

used for protein-protein interactions. HnRNP proteins also contain RRM, as well as other 

functional domains (Singh and Valcárcel, 2005; Dvinge et al., 2016). 

As shown in Figure 4, SR proteins are usually presented as splicing activators binding to 

enhancer sequences (promoting inclusion), and hnRNPs as splicing inhibitors binding to 

silencer sequences (promoting exclusion)(Kornblihtt et al., 2013). Although this is true in 

many cases, there is increasing evidence showing the versatility of hnRNP and SR proteins. In 

fact, depending on the context, it is not rare for SF to have ambivalent, or even antagonistic 

roles (Fu and Ares, 2014). For example, it has been shown that some hnRNP proteins can 

also promote the inclusion of alternative exons (Xue et al., 2009; Huelga et al., 2012). 

Moreover, Pandit et al. found that in vivo, both SRSF1 and SRSF2 (two SR proteins) equally 
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promoted inclusion and exclusion of target exons using mouse knockout models and the 

CLIP-seq technique (UV crosslinking and immunoprecipitation, followed by sequencing) 

(Pandit et al., 2013). In this study, depletion of one of the SR proteins resulted in binding of 

other SR proteins, suggesting a compensatory or synergistic relationship between SFs. There 

are many other RBPs with splicing functions, some of which are tissue-specific and described 

in Table 1. 

 

Figure 4: Alternative splicing regulatory elements. Constitutive exons are in light orange, the 

alternative exon is in dark orange, core spliceosome components are in green. (adapted 

from Kornblihtt et al., 2013) 

Great effort is made to decipher rules of SF binding to RNA in a sequence specific 

manner, and how it affects the usage of exons (a “splicing code”), but it has been proven 

extremely complex. It is in part due to the fact that SFs can be redundant, cooperative or 

competitive, that they can include or exclude an exon depending on where they bind (on 

exons or introns, near or far from splice site) or which other SF are present, and that their 

expression can vary from one cell type to another (Fu and Ares, 2014). Complicating the 

picture, many SFs (for example RBM24 or hnRNP A1) are multi-tasking, participating in gene 

expression regulation at other levels than AS (mRNA stability, export, translation) (Jean-

Philippe, Paz and Caputi, 2013; Lin et al., 2018). 

Other mechanisms of AS regulation. In addition to regulatory SF, it has been suggested 

that the splicing machinery itself can regulate AS too. There are several reports of AS 

alteration on specific genes after depletion of core spliceosomal proteins such as U2AF35, 

SF3B1, and PRP8 (from U5 snRNP) (Chen and Manley, 2009; Dvinge, 2018). In addition, 

several recent large-scale analysis pointed out an extensive role of core spliceosomal 

components in AS regulation in mammalian cells (Papasaikas et al., 2015; Tejedor, 

Papasaikas and Valcárcel, 2015; Han et al., 2017). Surprisingly, in Han et al. high-throughput 

study of the effect of trans-acting factors on AS event, it was revealed that a large 

proportion of AS was mediated by transcription factors (Han et al., 2017). This finding 

reveals unknown before actors of AS regulation, and versatility of typically DNA-binding 

proteins to RNA-binding. 

The rate of Pol II elongation is also an important regulator of AS, a phenomenon termed 

“kinetic coupling” model between transcription and splicing. This model proposes that slow 

elongation promotes the inclusion of alternative exons with weak SRE by allowing a wider 
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“window of opportunity” for their recognition, and vice-versa (Kornblihtt et al., 2013; 

Bentley, 2014). There are although exceptions to this general rule of thumb. For example, it 

have been shown that slow elongation enhanced cystic fibrosis transmembrane conductance 

regulator (CFTR) exon 9 skipping by favouring the association of a negative SF (Dujardin et al., 

2014). Therefore, Pol II elongation speed seems to open wider or narrower the window of 

opportunity to regulators positively or negatively affecting alternative exon usage. Indeed, a 

recent study on the genome-wide impact of elongation rate on AS showed that both slow 

and fast transcription altered inclusion and exclusion of exons (Fong et al., 2014). 

Interestingly, some exons were observed to be more “rate-sensitive” than others. This study 

suggested that most exons need an optimal and specific speed for their incorporation. In 

addition, pre-mRNA secondary structure, as well as epigenetic marks such as chromatin 

state (histone marks and nucleosome positioning) or DNA methylation have also been 

reported to affect AS, but the understanding of the mechanisms of these regulations is still 

emerging (Luco et al., 2011; McManus and Graveley, 2011; Wan et al., 2014; Chen, 2015; Lev 

Maor, Yearim and Ast, 2015; Saldi et al., 2016; Dvinge, 2018). 

Physiological AS. AS has various functions in the healthy cell. For example, AS is believed 

to correlate with organismal complexity. During the genomic era, it has been discovered that 

genome size only poorly correlates with phenotypic complexity. However, the prevalence of 

AS is greater in higher eukaryotes than in lower eukaryote, and in vertebrates than in 

invertebrates (Harrington et al., 2004; Alekseyenko, Kim and Lee, 2007; Kim, Magen and Ast, 

2007; Keren, Lev-Maor and Ast, 2010). It has also been shown in humans that splicing 

patterns can vary among individuals without causing illness, majorly contributing the high 

diversity of our phenotypic features (Hull et al., 2007; Park et al., 2018). Furthermore, 

Braunschweig et al. showed in 2014 that intron retention is more prevalent than previously 

thought in mammals, and that it contributes to transcriptome “fine-tuning” by reducing 

levels of transcripts irrelevant to the cell of tissue type in which they are detected 

(Braunschweig et al., 2014). 

Another key role of AS in healthy cells is tissue specificity and differentiation. Global 

analyses have shown that at least 50% of alternative transcripts are differently expressed 

among tissues, and that specific tissues can be differentiated by their splicing patterns (Yeo 

et al., 2004; Wang et al., 2008). One of the main reasons for this is tissue-specific expression 

of splicing factors, as shown in Table 1. The brain is one of the most diverse tissue of the 

organism and have the highest occurrence of tissue-specific AS (Yeo et al., 2004; Li, Lee and 

Black, 2007). AS has been proven fundamental for neuronal development and differentiation 

(Vuong, Black and Zheng, 2016). Notorious brain-specific SFs are PTB and NOVA proteins. An 

expression switch from PTB to nPTB was revealed fundamental for programming neuronal 

differentiation, and NOVA2 regulates AS isoforms of genes with synaptic functions (Ule et al., 

2005; Boutz et al., 2007). There are also muscle-specific AS patterns, and the SF RBM24 have 

been shown in vivo to be crucial for embryonic cardiac development and skeletal muscle 

differentiation (Grifone et al., 2014; Yang et al., 2014). Cell-type-specificity of ESRP1 and 

ESRP2 for epithelial cell-specific splicing programs, and their role for epithelial-to-

mesenchymal transition (EMT) have been known for almost a decade, and their functional 
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relevance was recently demonstrated in knockout mice epidermis, whose development was 

severely affected (Warzecha et al., 2009; Bebee et al., 2015). Importantly, analysis of the 

ENCODE Project Consortium datasets revealed that cell-type-specific splicing patterns due to 

cell-type-specific SF such as ESRP1/2 were maintained independently of tissue of origin 

(Mallinjoud et al., 2014). 

Table 1: Tissue-specific splicing factors. (adapted from Chen and Manley, 2009) 

 

c. AS regulation in cancer 
 Global alteration of AS. It is well established today that AS is widely altered in numerous 

diseases including cancer (David and Manley, 2010; Cieply and Carstens, 2015; Daguenet, 

Dujardin and Valcarcel, 2015; Dvinge et al., 2016). In cancer cells, AS is now known to be 

altered in a genome-wide manner. In fact, AS in cancer is so important that general AS 

deregulation is now considered as a “novel hallmark of cancer”, and every common hallmark 

of cancer, including metastasis, are affected by mis-splicng (Ladomery, 2013; Oltean and 

Bates, 2014; Pagliarini, Naro and Sette, 2015). Furthermore, a recent large-scale analysis by 

Climente-González et al., shed light on the functional impact of global AS alteration in 

cancers (Climente-González et al., 2017). They showed that AS deregulation in cancer (or 

Cancer-associated splicing changes, CASC) often impacted functional protein domains 
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frequently mutated in tumours, affected protein-protein interaction in cancer pathways, and 

proposed that CASC could be oncogenic drivers on their own. 

 In 2009, Venables et al. demonstrated global AS alteration in breast and ovarian cancer 

compared to normal tissue by high-throughput RT-PCR (Venables et al., 2009). It was one of 

the first demonstration of the large extent of AS in cancer. In this study, the authors showed 

that breast and ovarian cancer shared a common master-regulator of AS: the RBP RBFOX2. 

Numerous other genome-wide studies confirmed cancer-specific global alteration of AS in 

most cancer types, including leukemias, lung, colorectal, and brain cancers (Germann et al., 

2012; Biamonti et al., 2014; Danan-Gotthold et al., 2015; Sveen et al., 2016; Song et al., 

2017). Not only cancer and normal tissues can be distinguished by their AS profile, it has also 

recently been demonstrated using data from The Cancer Genome Atlas (TCGA) project that 

distinct cancer types could also be separated by their AS pattern specificity (Sebestyén, 

Zawisza and Eyras, 2015; Tsai et al., 2015; Y. Li et al., 2017). In one study, breast cancer 

seems to be particularly affected by AS alteration, and AS profiles were able to distinguish 

the common molecular subtypes (triple negative, non-triple negative and HER2-positive 

cancers, or basal and luminal) (Sveen et al., 2016), whereas in another, breast cancer had the 

lowest number of AS events in the 33 cancer types analyzed (Y. Li et al., 2017). Interestingly, 

widespread intron retention (a rather less studied type of AS) have also recently been shown 

to be cancer-type-specific and important in tumor-suppressor inactivation (Dvinge and 

Bradley, 2015; Jung et al., 2015).  

Oncogenic AS isoforms. There is a plethora of oncogenic AS isoforms described in the 

literature. As noted above, every common hallmark of cancer is affected by AS mis-

regulation. One of the most notorious and earliest example of oncogenic AS variant are the 

Bcl-x isoforms (Boise et al., 1993). Interestingly, the two isoform of Bcl-x, Bcl-xL and Bcl-xS, 

generated by an alternative 5’SS at exon 2, have antagonistic functions. Bcl-xL is anti-

apoptotic and Bcl-xS is pro-apoptotic. Bcl-xL/Bcl-xS ratios are higher in many cancer cells 

compared to normal tissue. Since then, it has been shown that this AS of Bcl-x is regulated by 

numerous SFs, including Sam 68 (Paronetto et al., 2007), RBM4 (Wang et al., 2014), 

hnRNPH/F (Garneau et al., 2005), hnRNPK (Revil et al., 2009), SRSF2 (Merdzhanova et al., 

2008) and SRSF10 (Shkreta et al., 2016) to name a few. Below is a table summarizing some of 

the known oncogenic AS isoforms and their function in cancer biology: 
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Table 2: Validated examples of oncogenic AS variants. 

Alternatively 
spliced gene 

Type of 
AS 

exon Function Reference 

Bcl-x 5'SS 2 
apoptosis (Bcl-xL: anti-

apoptotic, Bcl-xS: pro-apoptotic) 
Boise et al., 

1993 

Caspase-2 
cassette 

exon 
9 

apoptosis (casp-2L: pro-
apoptotic, casp-2S: anti-

apoptotic) 

Wang et al., 
1994 

Fas 
cassette 

exon 
6 

apoptosis (Δexon6: soluble 
decoy receptor, anti-apoptotic) 

Cheng et al., 
1994 

K-RAS 
mutually 
exclusive 

exons 
4a or 4b 

apoptosis (K-RAS4A: pro-
apoptotic, K-RAS4B: anti-

apoptotic) 

Plowman et al., 
2006 

SYK 
cassette 

exon 
9 

cell survival (SYK(L): cell growth, 
survival, SYK(S): apoptosis) 

Prinos et al., 
2011 

EGFR 
cassette 

exon 
4 

cell proliferation (Δexon4: 
constitutively active receptor) 

Wang et al., 
2011 

Ron 
cassette 

exon 
11 

cell invasion (Δexon11: 
constitutively active receptor) 

Collesi et al., 
1996 

CD44 
multiple 
skipping 

v1-v10 (between 
exons 5 and 6) 

EMT, metastasis (v4-7 and v6-7) 
Günthert et al., 

1991 

FGFR2 
mutually 
exclusive 

exons 
3b or 3c 

EMT (3b: epithelial, 3c: 
mesenchymal) 

Yan et al., 1993 

Rac1 
cassette 

exon 
3b 

cell migration, EMT (3b 
inclusion: constitutively active 

GTPase signaling) 

Jordan et al., 
1999 

VEGF-A 3'SS 8 
angiogenesis (VEGF-A165: 

angiogenic, VEGF-A165b: anti-
angiogenic) 

Bates et al., 
2002 

Fibronectin 
cassette 

exon 

EDA (between 
exon 11 and 12) 
or EDB (between 

exon 7 and 8) 

angiogenesis (EDA: normal 
vessels, EDB: oncofetal) 

Castellani et 
al., 1994 

MDM2 
multiple 
skipping 

4-11 
negative regulator of p53 
(deletion of p53 binding 

domain: p53 accumulation) 

Sigalas et al., 
1996 

BRCA1 
cassette 
exon and 

5'SS 
11 

DNA repair, damage response 
(ambiguous functions: 

promoting or repressing growth 
depending on context) 

Tammaro et 
al., 2012 

PKM 
mutually 
exclusive 

exons 

9 (PKM1) or 10 
(PKM2) 

glucose metabolism (PKM1: 
normal differentiated tissues, 

PKM2: cancer cells, aerobic 
glycolysis) 

Christofk et al., 
2008 

BRAF (V600E) 
multiple 
skipping 

4-8 
drug resistance (deletion of 

RAS-binding domain) 
Poulikakos et 

al., 2011 
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       SFs as oncogenes. In addition of AS isoforms with oncogenic potential, SF can sometimes 

act as oncogenes or tumour-suppressors when deregulated or mutated (Dvinge et al., 2016). 

An analysis of 261 SF in 21 cancer types showed cancer-specific SF expression, and in general, 

upregulation (Sveen et al., 2016). The role of the SR protein SRSF1 in cancer has been 

particularly well-documented. It has been shown back in 2007 that its expression is 

upregulated by MYC in various tumours, including colon, thyroid, small intestine, kidney and 

lung (Karni et al., 2007). Also, it was reported that DNA copy-number gain and mRNA 

overexpression of SRSF1 was correlated with poor survival in a cohort of Chinese small cell 

lung cancer patients, and its knockdown completely abrogated tumour growth in mice 

xenografts (Jiang et al., 2016).  

      As mentioned above, mutations in SF can also be oncogenic. SRSF2, SF3B1, U2AF1, and 

ZRSR2 are highly mutated in leukemias (Yoshida et al., 2011). Interestingly, all four of these 

SF mainly target 3’SS and are part of the core spliceosome. SRSF2, SF3B1, and U2AF1 are 

part of the U2 snRNP complex of the spliceosome responsible of 3’SS recognition. SF3B1 is 

also reported to be significantly mutated in breast cancer (Ellis et al., 2012) and as much as 

20% of uveal melanomas (Harbour et al., 2013; Martin et al., 2013), and is associated with 

disease progression and poor survival in chronic lymphocytic leukemia patients (Martin et al., 

2013). Downregulation or mutation of SF3B1 have been associated with hundreds of AS 

changes (Dolatshad et al., 2015; L. Wang et al., 2016). The mechanism by which SF3B1 

dysregulate AS has been proposed recently by Alsafadi et al. using the SF3B1R625/K666 mutant. 

SF3B1R625/K666 is a change-of-function mutant and promotes upstream 3’SS by alternative use 

of branch point usage (Alsafadi et al., 2016). In 2018, a group of researchers from TCGA 

Research Network analyzed whole-exome sequencing across 33 tumour types and revealed 

119 mutated splicing factors (Seiler et al., 2018). Here again, they confirmed high occurrence 

of recurrent, non-silent hotspot mutations in SRSF2, SF3B1, and U2AF1. In general, 

mutations in SF are now increasingly considered as cancer drivers (Supek et al., 2014; Hahn 

et al., 2015; Climente-González et al., 2017; Seiler et al., 2018).  

Cis-mutations affecting AS. It has been estimated that mutations in cis that disrupt 

normal splicing could account for a third of all disease causing mutations, therefore they are 

expected to play a substantial role in cancer as well (Daguenet, Dujardin and Valcarcel, 2015). 

For example, splice site mutations in the TP53 gene resulting in aberrant transcripts have 

been known for more than 20 years (Holmila et al., 2003; Leroy, Anderson and Soussi, 2014). 

In 2014, Supek et al. analyzed a subset of cancer-related genes in >3000 cancer exomes and 

>300 cancer genomes, and showed that synonymous mutations in exonic SREs in oncogenes 

were associated with abnormal splicing (Supek et al., 2014). In this study, they estimated 

that half of synonymous drivers alter splicing, shedding light on how silent mutations, 

originally thought not to alter protein functions, can “make some noise” in human diseases, 

and especially cancer by activating oncogenes (Supek et al., 2014; Zheng, Kim and Verhaak, 

2014). In the study from Jung et al. where they showed widespread intron retention as a 

mechanism of tumour-suppressor inactivation, they actually found such events by analyzing 

RNA-seq and exome data of 1812 cancer patients for single nucleotide variants (SNV) and 

identified nearly 900 SNV (including synonymous mutations) causing impaired splicing (Jung 
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et al., 2015). More recently, Jayasinghe et al. analyzed splice-site-creating-mutations (SCM) 

in the 33 cancer types from the TCGA and discovered nearly 2000 mis-annotated SCMs. They 

also found recurrent SCMs in known proto-oncogenes such as TP53, BRCA1, GATA3 and 

PTEN. 

Cancer-associated splicing networks. Similarly to transcriptional or signaling networks 

associated with cancer, AS pathways/networks can contribute to oncogenesis, and their 

impact is increasingly appreciated. Indeed, it has been demonstrated that oncogenic SF 

control oncogenic AS event, thus contributing to oncogenesis. As mentioned above, SRSF1 is 

one of the most well described oncogenic SF. Some of the known oncogenic targets of SRSF1 

are listed in Table 3. In addition, a study in breast organotypic three-dimensional culture 

identified by RNA-seq and validated by RT-PCR hundreds of SRSF1 targets, implicated in 

cancer-relevant processes, such as cell cycle, proliferation, cell death and survival (Anczuków 

et al., 2015). It has also been shown that the transcription factor MYC directly activated 

SRSF1 expression in lung cancer, leading to AS of signaling kinase MKNK2 and transcription 

factor TEAD1 (Das et al., 2012). In fact MYC, which is overexpressed in many cancers, is the 

upstream regulator of several other oncogenic SF, such as hnRNPA1 and PTB1 (Cobbold et al., 

2010; David et al., 2010; Rauch et al., 2011). In a recent study, MYC was shown to contribute 

to lymphomagenesis by upregulating key snRNP factors of the core spliceosome, thus 

maintaining correct splicing and promoting cell survival and proliferation (Koh et al., 2015). 

The function of SRSF2 mutation in leukemia has also been suggested recently. In blood cells, 

mutated SRSF2 did not result in a loss of function but in AS misregulation, which let to 

abnormal splicing of hematopoietic regulators such as EZH2, resulting in impaired 

hematopoeitic differentiation and myelodysplasic syndrome (Kim et al., 2015). Moreover, a 

systematic analysis of mutation, copy number, and gene expression of 1348 RBP in 11 

tumour types recently revealed widespread alteration of RBP expression associated with AS 

variation in cancer driver genes, and shed light on cancer-associated splicing networks 

(Sebestyén, Zawisza and Eyras, 2015).  

Table 3: Oncogenic splicing targets of SRSF1. (adapted from Das and Krainer, 2014) 
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2) APA mechanisms and regulation in cancer 
a. Pre-mRNA 3’ end processing 
Pre-mRNA 3’ end processing. Pre-mRNA 3’-end processing consists of cleavage at the 3’-

end followed by addition of a poly(A) tail composed of approximately 200 adenosine 

residues. Sites of cleavage are encoded in the DNA sequence of the gene, and for the vast 

majority it is between the highly conserved polyadenylation signal (PAS) AAUAAA and a 

downstream sequence element (DSE), usually U or GU rich (Proudfoot, Furger and Dye, 

2002). These cis-elements are recognized by two protein complexes, cleavage and 

polyadenylation specificity factor (CPSF) and cleavage stimulation factor (CstF), respectively. 

The second most common PAS is AUUAAA, and together with AAUAAA accounted for about 

60% of all polyadenylation signals (Beaudoing et al., 2000; Gruber et al., 2016). Two factors, 

cleavage factor I (CFI) and cleavage factor II (CFII), are known to be required for the cleavage 

reaction, but it is the endonuclease CPSF73 of the CPSF complex that catalyzes the reaction. 

Next, the cleaved pre-mRNA is polyadenylated by the poly(A) polymerase (PAP). The newly 

synthetized poly(A) tail is stabilized by the binding of nuclear poly(A) biding proteins (PABPN), 

which will be replaced by its cytosolic counterpart (PABPC) after exportation from the 

nucleus (Figure 5). 

 

Figure 5 : The pre-mRNA 3’-end processing machinery (Hollerer et al., 2014) 

Regulation of 3’end processing. As every other step of gene expression, pre-mRNA 3’ 

end processing can be regulated, and mostly concern PAS recognition and 3’ end processing 

complex assembly (as opposed to regulation after assembly). RBPs, whether they are core 3’ 

end processing factors or other regulatory RBPs, mediate 3’ end processing regulation by 

variation in their RNA binding ability. For example, PTB (a hnRNP) can compete with CstF64 

for binding to the DSE, resulting in decreased 3’ end processing efficiency and mRNA levels 

when upregulated (Castelo-Branco et al., 2004). Other RBPs such as HuR and sex-lethal (SXL) 

also compete with CstF64 (Millevoi and Vagner, 2009). Whether 3’ end processing will be 

efficient depends on the relative amount of the competing RBPs. Unsurprisingly, basal levels 
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of core 3’ end processing factors also affect cleavage and polyadenylation efficiency. When 

CstF64 is upregulated during B-cell differentiation, it is able to recognize suboptimal 

polyadenylation site upstream of the canonical site. This allows notably the expression 

switch of IgM from a membrane-bound to a secreted form (Takagaki et al., 1996). 

Additionally, post-translational modifications of RBP can affect 3’ end processing efficiency. 

For example, hyperphosphorylation of PAP during mitosis represses its activity and leads to a 

general inhibition of polyadenylation, a regulation important in normal cell growth (Colgan 

et al., 1996; Zhao and Manley, 1998). Other post-translational modifications enhance 3’ end 

processing. Sumoylation of CPSF73 and symplekin (another core 3’ end processing factor) 

have been shown to stimulate 3’ end processing complex formation (Vethantham, Rao and 

Manley, 2007). The above mentioned and other mechanisms (some of which are discussed 

below) of 3’ end processing regulation are illustrated in Figure 6.  

Figure 6 : Mechanisms of 3’ end processing regulation. (adapted from Millevoi and Vagner, 

2009) 

Coupling of 3’end processing and transcription termination. Transcription termination 

of protein coding genes, resulting in the release of the pre-mRNA from the Pol II and the 

DNA template, is one of the least understood steps of gene expression. Molecular and 

mechanistic details on where and how to stop transcription elongation is still a matter of 

active investigation (Porrua and Libri, 2015). However, it is known that transcription 

termination and 3’ end processing are intricately linked. Two modes of transcription 

termination are currently described. In the first one, often referred as the “torpedo model”, 

transcription termination is dependent on the PAS and triggered by CPSF, CstF, and CFI/II as 

shown in Figure 7 (Kuehner, Pearson and Moore, 2011). When Pol II transcribes past the PAS, 
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CPSF bound to the body of Pol II recognizes the PAS on the nascent transcript, which induces 

Pol II pausing. Upon exposure of the DSE, CstF dislodges CPSF and this remodeling triggers 

cleavage by CFI/II and release of the pre-mRNA from the Pol II and the DNA. The pre-mRNA 

is polyadenylated, while the 5’-3’ exoribonuclease XRN2 degrades the downstream cleavage 

product, “chasing” the Pol II by tethering to the RNA exit channel (Kuehner, Pearson and 

Moore, 2011). This “chasing” is believed to eventually promote Pol II dissociation from the 

chromatin. In addition, recent in vitro studies of HeLa cells extracts demonstrated that the 

PAS is sufficient and cleavage is not required, whereas conformational changes of the 

transcription elongation complex was necessary to stimulate termination (Zhang, Rigo and 

Martinson, 2015). The second mode of termination is an allosteric mechanism dependent on 

the CFII component PCF11 (Zhang, Fu and Gilmour, 2005). In this model, it is PCF11 that 

triggers the Pol II dissociation by binding to the Pol II CTD and the nascent pre-mRNA. In this 

study by Zhang et al. in yeast, PCF11 was suggested to form a “bridge” that would induce 

conformational changes leading to Pol II dissociation. Which mode of termination is used in a 

given context is not fully understood, and termination is likely to occur via a combination of 

both modes, as reported by Luo et al.’s allosteric/torpedo model where PCF11 recruits the 

5’-3’ exoribonucleases (Luo, Johnson and Bentley, 2006). 

Figure 7: “Torpedo model” of transcription termination and 3’ end processing coupling. 

(adapted from Porrua and Libri, 2015) 

Coupling of 3’ end processing and splicing. All the pre-mRNA maturation steps are now 

believed to be coupled and interdependent (Maniatis and Reed, 2002). In this regard, the 

3’end processing machinery and the splicing machinery have a particularly special 

relationship. Splicing of the last intron and 3’ end processing of the last exon are functionally 

coupled. Indeed, the two machineries have a reciprocal regulation: PAS recognition 

facilitates splicing of the last intron, and recognition of the last intron facilitates cleavage and 

polyadenylation (Niwa, Rose and Berget, 1990; Niwa and Berget, 1991). Several spliceosome 

components that play major roles at 3’SS, such as U2AF65 (from U2 snRNP), promote 

cleavage and polyadenylation by directly binding to 3’ end processing core components. At 

the last exon, U2 snRNP interacts with 3’ end processing machinery components instead of 

U1 snRNP at the 3’end of the exon for exon definition. For example, it has been shown by 

Millevoi et al. that U2AF65 stimulates cleavage and polyadenylation by binding to CFI and 

recruiting it to the PAS (Millevoi et al., 2002, 2006). U2AF65 is also known to bind PAP and 

CSTF to regulate 3’ end processing (Ko and Gunderson, 2002; Kyburz et al., 2006). U1 snRNP 

is also involved in 3’ end processing, as discussed below. Furthermore, PAP can stimulate 
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splicing of the last intron through stabilization of U2AF65, leading to spliceosome 

recruitment (Vagner, Vagner and Mattaj, 2000). 

 

b. APA regulation 
Types of APA. APA is the alternative use of non-canonical polyadenylation sites, 

generating mRNA isoforms that differ at their 3’-end. One of the first evidence of APA was 

the identification on the immunoglobulin heavy chain, generating both the membrane-

bound and the secreted isoform from the same IgM gene in 1980 (Alt et al., 1980). Initially 

thought as a marginal phenomenon, in 2005 Tian et al. showed that at least 32% of human 

genes were alternatively cleaved (Tian et al., 2005). It is now believed that at least 70% of 

mammal genes have APA isoforms (Derti et al., 2012; Shi, 2012; Hoque et al., 2013).There 

are mainly two categories of APA : those which only affect the 3’UTR and those which affect 

the coding region as well as the 3’UTR (Figure 8).  APA that modulate the coding region can 

be separated into two main types: intronic polyadenylation (IPA) and exonic polyadenylation. 

Exonic polyadenylation usually generates mRNAs without a stop-codon and are rapidly 

degraded by the non-stop decay pathway, and will not be discussed in this manuscript 

(Vasudevan, Peltz and Wilusz, 2002). Last exons of IPA transcripts are also referred to as 

alternative last exons (ALE). There is currently no consensus nomenclature on the use of IPA, 

ALE, or other terms to name truncated transcripts generated by APA. IPA and ALE are 

sometimes used differently because of their differences shown in Figure 8, but are 

essentially the same. In both case, the truncated transcript is generated by the use of an 

intronic polyadenylation site, leading to the use of an ALE. In this manuscript, both the terms 

IPA and ALE will be used and are largely interchangeable. ALEs are an interesting type of 

exons, at the intersection of AS and APA, where an alternative exon and a corresponding 

alternative polyadenylation site are used.   

 

Figure 8: Types of APA. Alternative terminal exons are also called alternative last exons (ALE). 

(adapted from Gruber, Martin, Keller, et al., 2014) 
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Regulation of APA by RBPs. Similarly to SF favouring or repressing the use of SS, RBPs 

also control the use of different polyadenylation sites at the 3’UTR or within the coding 

region. In fact, many core 3’ end processing factors were found to regulate APA as well. It 

was first demonstrated for CstF64, whose upregulation during B cell maturation results in 

higher levels of the CSTF complex, and increased usage of the proximal polyadenylation site 

(IPA) in the IgM heavy chain transcript, associated with the secreted isoform (Takagaki et al., 

1996). This role of CstF64 in proximal polyadenylation site usage was also confirmed in 

cancer cells, where it was described as a “master regulator” of 3’UTR shortening (Xia et al., 

2014). PCF11 (from the CF complex) and Fip1 (from the CPSF complex) were also shown to 

globally promote proximal PAS in 3’UTRs (Lackford et al., 2014; Li et al., 2015). Conversely, 

two studies using genome-wide approaches described CFI, specifically CFIm25 and CFIm68, 

as 3’UTR-APA regulators promoting distal polyadenylation site usage (Martin et al., 2012; Li 

et al., 2015). Other studies confirmed this global trend in CFIm25 knockdown followed by 

RNA-seq experiments, which increased proximal polyadenylation site selection in coding and 

3’UTR regions, in human fibroblasts (Mitra et al., 2018) and glioblastoma tumours (Masamha 

et al., 2014). The transcription factor E2F involved in cell cycle regulation was shown to 

regulate expression of 3’ end processing genes (Elkon et al., 2012). Furthermore, 3’ end 

processing factors involved in the poly(A) tail formation and maintenance were also 

unexpectedly found to regulate APA. In 2012, two independent studies showed that 

knockdown of PAPBPN1, induced global 3’UTR shortening in mouse muscle (De Klerk et al., 

2012) and U2OS cells (Jenal et al., 2012). Recently, different PAP isoforms have also been 

shown to differentially regulate 3’UTR-APA as well as IPA (W. Li et al., 2017). Additionally, 

other RBPs that are not nuclear 3’ end processing factors, such as CPEB1 (Bava et al., 2013), 

hnRNPC (Gruber et al., 2016), hnRNPK (Yoon et al., 2013), NOVA (Licatalosi et al., 2008) or 

HuR (Dai, Zhang and Makeyev, 2012; Mansfield and Keene, 2012) were also shown to be 

involved in APA regulation in various contexts. 

IPA repression by U1 snRNP. U1 snRNP role in 3’ end processing was already speculated 

in the early 1990s (Wassarman and Steitz, 1993). One of the first evidence of U1 snRNP role 

in 3’end processing regulation was its autoregulation by binding of two U1A proteins to U1A 

pre-mRNA 3’UTR and PAP C-terminal domain, inhibiting its polyadenylation in a negative 

feedback loop (Boelens et al., 1993; van Gelder et al., 1993; Gunderson et al., 1997; Vagner 

et al., 2000). More recently, the role of U1 snRNP in 3’ end processing regulation was further 

detailed thanks to high-throughput sequencing technologies. When U1 snRNP interaction 

with 5’SS was knocked down using an antisense morpholino oligo (AMO), in addition to the 

expected accumulation of unspliced pre-mRNA, numerous pre-mRNA failed to complete full-

length transcription and were prematurely cleaved and polyadenylated, within 5 kilobases 

from the transcription start site (Kaida et al., 2010). This was not due to an inhibition of 

splicing, as U2 snRNP did not recapitulate this phenomenon, and importantly, these short 

pre-mRNAs were correctly processed at their 3’ end. It was demonstrated in this study that 

U1 snRNP protected the transcriptome from premature cleavage and polyadenylation by 

binding to cryptic 5’SS upstream of PAS along the pre-mRNA (Kaida et al., 2010). In addition, 

the same group showed that moderate depletion of functional U1 snRNP (no enough to 

inhibit splicing) resulted in a dose-dependent proximal last exon shifting, as shown in Figure 
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9 (Berg et al., 2012). Interestingly, Vorlová et al. showed that depletion of U1 snRNP induced 

IPA, resulting in the expression of truncated mRNAs coding for dominant-negative soluble 

decoy versions of numerous receptor tyrosine-kinases such as EGFR and VEGFR (Vorlová et 

al., 2011). Thus, U1 snRNP has important extra-splicing functions: it is crucial in IPA 

repression and gene isoform expression regulation.  

 

Figure 9: U1 snRNP expression level-dependent protection of intronic PAS. (adapted from 

Kaida, 2016) 

 

c. Impact of APA 
Impact of 3’UTR-APA. APA only affecting the 3’UTR, also called tandem APA, shorten or 

lengthen the 3’UTR and therefore its “targetability” by RBPs, microRNAs, or other trans-

factors (Figure 10a). The most studied 3’UTR-APA regulation is 3’UTR shortening. As 3’UTR 

contain regulatory sequences involved in various RNA metabolism mechanisms, the stability, 

export, translation, and cellular localization of the mRNA, can be greatly affected by 3’UTR-

APA. For example, as shown in Figure 10b, cancer cells expressing shorter 3’UTR on cyclin D2 

and IMP-1 lacked let-7 and/or miR-15/16 binding sites and were more proliferative and 

oncogenic, respectively, than those which expressed the longer and canonical 3’UTR (Mayr 

and Bartel, 2009). In this study by Mayr and Bartel, it was also shown that the mRNAs with 

shorter 3’UTR were also generally more efficiently translated by escaping microRNA 

translation repression.  

This 3’UTR shortening effect on translation efficiency was also confirmed by several 

groups (Sterne-Weiler et al., 2013; Masamha et al., 2014; Chang et al., 2015; Floor and 

Doudna, 2016; Hoffman et al., 2016). One groundbreaking report was of Sandberg et al. in 

2008 when they discovered that general 3’UTR shortening during T-cell activation led to 

increased protein expression (Sandberg et al., 2008). However, in some cases the shorter 

3’UTR isoform is less translated (Pinto et al., 2011), and the impact of 3’UTR shortening on 
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translation efficiency is still debated. Indeed, some studies showed at most limited effect, or 

even the opposite: increased translation efficiency or protein abundance with longer 3’UTR 

(Spies, Burge and Bartel, 2013; Gruber, Martin, Müller, et al., 2014). Indeed, the relationship 

between 3’UTR length, microRNA binding sites, and translation efficiency seem to be more 

complex than initially appreciated. Fu et al. recently demonstrated that 3’UTR shortening is 

associated with better translational efficiency by escaping microRNA repression in six cell 

lines. They did confirm that in the NIH3T3 cell line used in Spies et al. study, transcripts with 

longer 3’UTR tended to be associated with polysomes meaning increased translation 

efficiency, but demonstrated that this was due to contact inhibition and senescence. 

Additionally, Hoffman et al. showed that not only the presence or absence of microRNA 

biding sites, but also their relative distance to APA sites is important for gene expression 

regulation (Hoffman et al., 2016). They found that “stronger”, conserved microRNA binding 

sites were enriched immediately upstream of APA sites. In this case, 3’UTR shortening is 

associated with stronger microRNA repression. In proliferating cells, 3’UTR shortening 

therefore not only increase expression of pro-proliferating genes, but also represses it for 

anti-proliferation genes by this mechanism (Hoffman et al., 2016). Finally, 3’UTR also 

modulates mRNA stability, their localization, cell type specific expression, and was even 

recently shown to be able to act as a scaffold for protein-protein interactions (Mayr, 2016). 

 

Figure 10: 3’UTR-APA. a) Impact of 3’UTR-APA regulation. (adapted from Tian and Manley, 

2016) b) PAS and microRNA targeting sites of Cyclin D2 and IMP-1 genes. (adapted from 

Mayr and Bartel, 2009) 

Impact of IPA. Since ALE and IPA also affect the coding region, we can expect ALE or IPA 

isoforms to have distinct functions, or no function at all, from the canonical isoform (Figure 

11). The example of IgM cited above are actually ALE isoforms with distinct functions. As 

mentioned above, Vorlová et al. identified dominant negative receptor tyrosine kinases 

acting as soluble decoy receptor as a result of IPA (Vorlová et al., 2011). In mouse muscle, 
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IPA of platelet-derived growth factor receptor α (PDGFRα) produced a truncated isoform 

also acting as a soluble decoy receptor and preventing fibrosis (Mueller et al., 2016). 

Recently, Singh et al. analyzed 46 3’-seq and RNA-seq datasets from human normal tissues 

and various cell types and identified widespread IPA isoforms expressed in specific tissues or 

cell types, especially  in immune cells (Singh et al., 2018). Furthermore, it has also been 

shown with the example of the ASCC3 gene, that an IPA isoform can in fact be a long-non-

coding RNA (lncRNA) with antagonistic functions to the full length mRNA (Williamson et al., 

2017). 

 

Figure 11: Impact of IPA/ALE. (adapted from Tian and Manley, 2016) 

 

d. APA regulation in cancer 
Regulation of 3’UTR length in cancer. One of the major characteristics of cancer cells is 

their unlimited, high proliferative state (Hanahan and Weinberg, 2011). Global 3’UTR 
shortening was associated with profilerating cells (Sandberg et al., 2008; Elkon et al., 2012; 
Beisang, Reilly and Bohjanen, 2014; Hoffman et al., 2016; Mitra et al., 2018). Therefore, it 
would be expected that 3’UTR shortening, or APA modulation in general would be 
associated with cancer as well. In 2009, Mayr and Bartel showed widespread shortening of 
3’UTR in cancer cell lines compared to non-transformed cell lines, resulting in oncogene 
activation. This was the first evidence of global APA modulation in cancer cells. Following 
this study, others have shown consisting results (Bava et al., 2013; Masamha et al., 2014; Xia 
et al., 2014). In 2014, Masamha et al. showed that CFIm25 from the 3’end processing 
machinery repressed proximal poly(A) sites, and when its expression was low, cells had 
shorter 3’UTR and more tumorigenic properties (Masamha et al., 2014). The same year, Xia 
et al. developed a bioinformatic algorithm to identify APA from RNA-seq datasets. They 
could identify global APA in cancer versus normal cells pairs from the TCGA, mostly 
consisting of 3’UTR shortening (Xia et al., 2014). Here again, a protein from the 3’-end 
processing machinery (CstF64) was shown to be a master regulator of 3’UTR shortening. 

Another interesting role of 3’UTR shortening is on stem cell differentiation and renewal, 

embryonic cellular processes frequently hijacked by cancer cells. In 2009, Ji and Tian 

observed 3’UTR shortening during somatic cell reprogramming into induced pluripotent cells 

(Ji and Tian, 2009). Another study showed that Fip1, a 3’end processing factor interacting 

with CPSF, promotes somatic cell reprogramming and embryonic stem cell self-renewal by 

favouring 3’UTR shortening in the majority of its target genes, which are enriched in stem 

cell related functions (Lackford et al., 2014). In line with this, Brumbaugh et al. also recently 
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showed CFIm25 role in 3’UTR modulation in stem cell reprogramming and further linked it to 

chromatin regulation (Brumbaugh et al., 2018). 

3’UTR-APA regulation in cancer is not always about 3’UTR shortening. For example, it has 

been shown that compared to non-transformed breast cell line MCF10A, estrogen receptor 

positive MCF-7 and triple-negative MDA-MB231 breast cancer cell lines displayed shortened 

and lengthened 3’UTRs, respectively (Fu et al., 2011). In a colorectal cancer development 

study using patient samples, Morris et al. showed that depending on the functions of the 

genes, 3’UTR shortening or lengthening was observed (Morris et al., 2012). A recent study 

pointed out that previous studies assumed that 3’UTR-APA concerned two polyadenylation 

sites, a proximal and a distal one. In fact, it is clear today that most human genes with 

several poly(A) sites have at least three, rendering the “proximal” and “distal” terms 

inappropriate. By developing a better RNA-seq algorithm, they showed that a vast amount of 

tandem APA events could not simply be defined by 3’UTR shortening or lengthening, adding 

to the complexity of these regulations (Xue et al., 2018). 

IPAs/ALEs in cancer. Over the past ten years, most global studies of APA regulation 

relationship to cancer studies were focused on 3’UTR-APA, and few studies looked at the 

other type of APA altering the coding region. However, some ALE isoforms of oncogenes 

have been known for decades, but were initially described as AS variants. It is the case for 

cyclin D1 (Betticher et al., 1995), caspase 8 (Himeji et al., 2002), and p53 (Arai et al., 1986) 

for example. More recently, Ni and Kupperwasser described a truncated MAGI3 isoform 

generated by IPA, which acts as a dominant-negative of the full-length isoform and 

promotes tumorigenesis of breast cancer (Ni and Kuperwasser, 2016). Two studies have also 

noted widespread IPA regulation in proliferation, with a trend for transcript shortening in 

one case (Elkon et al., 2012), but not in the other case (Sandberg et al., 2008). In 2014, my 

supervisor showed that ALEs were the main type of exons induced by doxorubicin treatment 

in the breast cancer cell line MCF-7 (Dutertre, Chakrama, et al., 2014). Finally, two very 

recent studies from the same group showed widespread IPA induction in blood diseases. Lee 

et al. showed widespread upregulation of truncated mRNAs by IPA, predominantly tumour-

suppressor genes, in chronic lymphocytic leukemia (Lee et al., 2018), and Singh et al. showed 

widespread repression of physiologic immune cell-specific IPA isoforms in multiple 

myelomas (Singh et al., 2018). 

 

 

 

  



Regulation of alternative splicing and polyadenylation by genotoxic anticancer agents | Iris Tanaka 
 

 
27 

II. Response and resistance to genotoxic anticancer 
agents: focus on doxorubicin and cisplatin 

 

Despite the promising emergence of targeted therapies during the las decade, 

“conventional” genotoxic anticancer agents such as doxorubicin and cisplatin are still widely 

used in the clinic. Often, cancer patients are treated with both targeted therapies and 

genotoxic chemotherapy, in an effort to combine therapeutic strategies. One of the main 

limitations of cancer therapy, genotoxic or not, is the development of resistance resulting in 

tumour recurrence, metastasis or even death. It is therefore important to understand 

mechanisms of response and resistance to various compounds, in order to be able in the 

future to offer personalized, better treatment options to cancer patients. In this part, I will 

especially focus on two widely used types of genotoxic anticancer agents: the anthracycline 

and DNA topoisomerase II poison doxorubicin, and the platinum compound cisplatin. 

 

1) Genotoxic anticancer agents 
a. Genotoxic anticancer agents 
History of DNA-damaging agents in cancer therapy. First “successful” treatment of 

cancer begun in the 1940’s, with the discovery of nitrogen mustards for non-Hodgkin’s 

lymphoma patients (Cheung-Ong, Giaever and Nislow, 2013). Louis Goodman and Alfred 

Gilman from Yale School of Medicine observed that soldiers who died from sulphur mustard 

gas exposure during World War I had severe lymphoid hypoplasia and myelosuppression. 

After promising mice experiments (Gilman, Philips and Hedgpeth, 1946), they convinced 

their collaborator and thoracic surgeon Gustav Lindskog to inject a related molecule, 

nitrogen mustard (or β-chloroethyl amine), in patients with advanced non-Hodgkin’s 

lymphoma (Chabner and Roberts, 2005). Supporting their predictions, tumours regressed. 

Even though remission lasted only a few weeks, this was the first evidence of cancer 

management with chemotherapy. Around the same time, Sidney Farber at Harvard Medical 

School was investigating the effects of folic acid on leukemia patients. When he found that 

folic acid increased acute lymphoblastic leukemia (ALL) cells proliferation, he developed 

folate analogues (folic acid antagonists) and treated children with ALL (Chabner and Roberts, 

2005). This lead to success in decreasing cancerous cells, but yet again, remissions were brief 

(Farber et al., 1948). A decade later, in the 1950’s, it was identified that nitrogen mustard 

and anti-folate were both effective due to their DNA-damaging properties, by alkylation of 

DNA and inhibition of DNA synthesis, respectively. These findings and other successful use of 

genotoxic agents in leukemia prompted researchers to actively investigate on DNA-

damaging agents for cancer therapy (Cheung-Ong, Giaever and Nislow, 2013). In 1955, the 

National Cancer Institute (NCI) in the United-States made a bold move to create the National 

Cancer Chemotherapy Service Center (NCCSC) and a drug screening programme (Chabner 

and Roberts, 2005). Until the 1960’s medical oncologists and standardized chemotherapy 

didn’t exist, and were even frowned upon, until first successful treatments of childhood 
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leukemias and Hodgkin’s disease by combination chemotherapy (DeVita and Chu, 2008). 

Since the 1970’s genotoxic anticancer drugs are widely used and in constant development, 

which participated in the decrease of cancer mortality in the United-States and Europe in the 

1990’s (DeVita and Chu, 2008; Bosetti et al., 2013). 

Exploiting genomic instability in cancer therapy. Genotoxic agents are effective at killing 

cancer cells compared to normal cells because of their rapid cell cylce and their genomic 

instability. Cancer cells usually have a less efficient DNA repair system, so damaged DNA is 

often not properly repaired and ignored, while the cell continues to cycle rapidly. Cancer 

cells then accumulate DNA lesions and mutations at high rate, eventually leading to cell 

death (Cheung-Ong, Giaever and Nislow, 2013). Derivatives of alkylating agents and 

inhibitors of DNA synthesis discovered in the 1940’s are still used today to treat several 

types of cancers (Jones, 2016). For example, cyclophosphamide (an alkylating agent) is one 

of the most commonly used anticancer agent, most of the time in combination with others. 

Cyclophosphamide and doxorubicin are often used together to treat breast or blood cancers. 

Other DNA-damaging anticancer agents are platinum drugs and topoisomerase inhibitors, 

which will be discussed in detail in the following sections. Below is a table recapitulating 

most common type of genotoxic anticancer agents: 

Table 3: Major categories of genotoxic anticancer agents. ALL=Acute Lymphoblastic 

Leukemia, AML=Acute Myeloid Leukemia, CLL=Chronic Lymphoblastic Leukemia, 

CML=Chronic Lymphoblastic Leukemia, HL=Hodgkin’s Lymphoma, NHL=Non-Hodgkin’s 

Lymphoma. (source: https://www.cancer.gov/about-cancer/treatment/drugs, NIH-NCI) 

 

b. DNA topoisomerase II poisons and mechanism of action 
Human DNA topoisomerases. DNA topoisomerases are universal key enzymes that relax 

topological constraints on double-stranded DNA (dsDNA) during transcription and replication. 

During transcription and replication, dsDNA needs to be separated to allow passing of the 

Category Mode of action Exemples Used to treat

Cyclophosphamide
Breast cancer, Ovarian cancer, ALL, AML, CLL, CML, HL, NHL, 

Neuroblastoma

Mitomycin C Gastric and pancreatic adenocarcinoma

Nitrosourea HL, NHL, Brain tumours

Bendamustine NHL, CLL

Temozolomide Glioblastoma

Cisplatin

Testicular cancer, Ovarian cancer, Cervical cancer, Bladder cancer, 

Gastric cancer, Head and neck cancer, Lung cancer, Neuroblatoma, 

Brain tumours

Carboplatin
Ovarian cancer, Neuroblatoma, Brain tumours, Lung cancer, 

Bladder cancer

Oxaliplatin Colorectal cancer

Methotrexate Breast cancer, ALL, NHL, Lung cancer, Osteosarcoma

5-Fluorouracil Breast cancer, Colorectal cancer, Gastric cancer, Pancreatic cancer

Gemcitabine Breast cancer, Lung cancer, Ovarian cancer, Pancreatic cancer

Mercaptopurine ALL

Hydroxyurea CML, Head and neck cancer

Topotecan Ovarian cancer, Cervical cancer, Lung cancer

Irinotecan Colorectal cancer

Doxorubicin
Breast cancer, Ovarian cancer, ALL, AML, NHL, Neuroblastoma, 

Lung cancer, Sarcomas, Thyroid cancer

Etoposide Lung cancer, Testicular cancer

Radiomimetic drugs Induce DSB Bleomycin HL, NHL, Cervical cancer, Testicular cancer, Head and neck cancer

Analogues of DNA and RNA 

synthesis metabolites, impair 

DNA synthesis

Antimetabolite

Inhibit DNA topoisomerases 

enzymatic activity

Topoisomerase 

inhibitors/poisons

Covalently bind to DNA basesAlkylating agents

Platinum drugs
Form intrastrand and interstrand 

crosslinks on DNA
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RNA or DNA polymerases. This opening of the strands inevitably results in DNA supercoiling 

in the flanking regions, that needs to be uncoiled to avoid stalling of the polymerases or the 

formation of abnormal structures (Pommier et al., 2010). Humans have six topoisomerases 

classified in three types: type IA, type IB, and type IIA (Figure 12a). Type I topoisomerases 

break one strand of DNA to allow passage of the other strand (IA) (Figure 12b), or to let the 

downstream coiled dsDNA rotate (IB), and reseal the break (Figure 12c). Type II 

topoisomerases create double-strand breaks (DSB) of the DNA and then actively pass 

another dsDNA through the break before re-ligating both strands (Figure 12d). Moreover, 

type IIA topoisomerases are separated into two isoenzymes, Top2α and Top2β. Top2α is 

linked to cell proliferation and increases during G2/M phases, whereas Top2β is expressed 

ubiquitously, including in non-dividing cells (Pommier et al., 2010). 

 

Figure 12: Human DNA topoisomerases. a) Human DNA Topoisomerase categories. (adapted 

from Pommier et al., 2010). b) Type IA topoisomerases activity. c) Type IB topoisomerases 

activity. d) Type IIA topisomerases activity. (b,c,d) adapeted from Vos et al., 2011) 

A common feature of all topoisomerases is their nucleophilic tyrosine residue. This lets 

the topoisomerases break the DNA by transesterification reactions, using the active site 

tyrosine to attack the DNA phosphodiester backbone, and then form an enzyme-DNA 

covalent link to protect the cleaved DNA from degradation (Pommier, 2013). Top3 enzymes 

from the topoisomerase IA family only relax negatively supercoiled (under-twisted) DNA, 

restoring the lacking twists for proper dsDNA conformation. Type IB topoisomerases do not 

pass DNA strands through the breaks they create, but rather let the dsDNA molecule to 

rotate.  Top1 can restore positively or negatively supercoiled DNA, is required for 

transcription activation, and is mechanistically coupled to RNA Pol II in transcription 

elongation (Delgado et al., 2018). Type IIA topoisomerases differ from type IA 

topoisomerases by cleaving both strands of the DNA instead of one, allowing passage of a 
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dsDNA instead of the opposite strand, and doing so using ATP. The specificity of Top2 is also 

their ability to disentangle long intertwined chromosomes and DNA catenanes (Vos et al., 

2011). 

Poisoning Top2. Topoisomerases currently targeted by anticancer agents are Top1 and 

Top2 (Pommier et al., 2010; Delgado et al., 2018). The only clinically approved Top1 

inhibitors are the plant alkaloid, camptothecin derivatives: Topotecan and Irinotecan. (Figure 

13). Camptothecin was isolated from the stem and bark of Camptotheca acuminata 

(“Chinese happy tree”), a tree traditionally used in Chinese medicine (Martino et al., 2017). 

Topotecan and Irinotecan are used to treat various cancers, such as ovarian, lung, colorectal, 

gliobastomas, sarcomas, and cervix cancers (Pommier, 2013). Their detailed chemistry and 

mechanism of action in the context of cancer treatment is reviewed in Pommier, 2009.  

 

Figure 13: Topoisomerase inhibitors chemical structure. (adapted from Delgado et al., 2018) 

Top2 activity can be inhibited in two ways: catalytic inhibition or enzyme poisoning 

(Figure 14). So far, only poisoning Top2 has shown anticancer effects and is used in the clinic. 

Catalytic inhibitors decrease the efficacy of the enzymatic reaction without generating Top2-

DNA covalent complexes (Top2cc), while Top2 poisons such as doxorubicin trap Top2 to the 

DNA after cleavage of the dsDNA and prevent its religation, resulting in high amount of toxic 

Top2cc. By blocking the specific step of DNA religation, not only enzymatic activity of Top2 is 

inhibited, but it also induces cytotoxic damage (DSB) to the cell. One of the reasons why 

Top2 poisons proved greater efficacy as anticancer agents is likely because cancer cells 

frequently overexpress Top2, reducing the efficacy of catalytic inhibitors. An interesting 

example is HER2-positive breast cancer. Doxorubicin is especially effective in HER2-positive 

breast cancer, because Top2 is overexpressed due to amplification of the locus on 

chromosome 17 containing TOP2A and ERBB2 genes (O’Malley et al., 2009). 

Anthracyclines are the family of Top2 poisons derived from daunorubicin. Daunorubicin 

and doxorubicin were initially discovered in the 1950s from Streptomyces soil bacteria 
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(Pommier, 2013). Anthracyclines act by interfacial inhibition. By positioning between -1 and 

+1 of the DSB, and at the interface between the protein (Top2) and the DNA, they disrupt 

the special organization necessary for religation to occur. This mechanism is the main mode 

of action of anthracyclines, although it is not their only cytotoxic effect (Nitiss, 2009; 

Pommier, 2013). They can also intercalate DNA, interfere with DNA helicase activity and DNA 

strand separation, and generate reactive oxygen species (ROS) (Henninger and Fritz, 2017). 

Etoposide (Figure 13) is another Top2 poison used in the clinic that prevents dsDNA 

religation after strand passage, while it differs from anthracyclines in many ways. Etoposide 

generates Top2cc at higher frequency, but in a reversible manner, mainly generates SSB as 

opposed to DSB, and does not intercalate DNA (Pommier, 2013). Interestingly, etoposide has 

lower long-term side-effects, but also a narrower range of anticancer activity (Hande, 1998). 

 

Figure 14: Top2 catalytic cycle and Top2 inhibitors. CI: catalytic inhibitors. (adapted from Vos 

et al., 2011)  

Clinical limitations of doxorubicin. Doxorubicin is one of the most widely used genotoxic 

anticancer agent, but its use is limited by resistance and dose-limiting side-effects: 

cardiotoxicity and development of secondary cancers (Turner, Biganzoli and Di Leo, 2015). 

Doxorubicin-induced congestive heart failure, characterized by reduced left ventricular 

ejection fraction, often arises years or decades after initial chemotherapy, and is largely 

dependent on the cumulative dose received by the patient (Henninger and Fritz, 2017). To 

prevent congestive heart failure, use of cardioprotective agents such as dexrazoxane 

together with chemotherapy used to be common practice until recently. However, the FDA 

limited the use of dexrazoxane in 2011. Alternative cardioprotective care such as liposome 

encapsulation of doxorubicin, or the use of drugs traditionally used in cardiology (β-blockers 

or statins for example), are therefore of great clinical interest (Vejpongsa and Yeh, 2014; 

Henninger and Fritz, 2017). Similarly to congestive heart failure, the risk of doxorubicin-

induced leukemias is dependent on the cumulative dose, but is low enough (less than 1%) 
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that the benefit of an anthracycline-based chemotherapy is considered to outweighs the 

risks (Turner, Biganzoli and Di Leo, 2015). 

 

c. Platinum compounds and mechanism of action 
Cisplatin as an anti-cancer drug. Cis-diamminetetrachloroplatinum(II) (Figure 15a), or 

cisplatin, was initially synthetized for the first time in 1844 by Michele Peyrone, and was 

known as Peyrone’s chloride. It was (re)discovered by accident in 1965 by Rosenberg et al., 

when they realized that a magnetic field generated by platinum electrodes blocked E. coli 

cell division (Figure 15b) (Rosenberg, Van Camp and Krigas, 1965). The team rapidly tested 

the compound on transplanted tumours in mice and discovered its potent anti-tumour effect 

(Rosenberg et al., 1969). Clinical trials were shortly started, and FDA-approval for metastatic 

testicular and ovarian cancer was given in 1978, less than ten years after the initial 

biophysics experiments of Rosenberg (Kelland, 2007). Its use has now been extended to 

several other types of solid tumours, including lung, cervical, breast, colorectal, bladder, and 

head and neck cancers (Johnstone, Suntharalingam and Lippard, 2016). 

 

Figure 15: Cisplatin discovery. a) Cisplatin and its analogues (adapted from Dilruba and 

Kalayda, 2016) b) Unstressed (left) and filament-shaped (right) E. coli subject to magnetic 

field generated from platinum electrode (adapted from Rosenberg, Van Camp and Krigas, 

1965) 

Cisplatin acts by forming intra-strand or inter-strand platinum crosslink, as well as 

monoadducts on the DNA (Figure 16). After entering the cell, cisplatin is hydrolyzed by 

spontaneous aquation reactions. Due to lower chloride concentration (4-20 mM) compared 

to outside of the cell (100 mM), the chloride leaving groups are replaced with water 

molecules, allowing the platinum ion to covalently bind guanine residues, and to a lesser 

extent, adenine residues, at N7 (Kelland, 2007; Dilruba and Kalayda, 2016). When two 

adjacent purines are bound with cisplatin, they form an intra-strand adduct, resulting in 

important distortion of the double-helix. This DNA distortion prevents replication and 
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transcription, which ultimately leads to apoptosis (Kelland 2007). Intra-strand adduct 

account for the vast majority of damages caused by cisplatin on the DNA, but inter-strand 

adducts can also be formed when two purines bases from opposite strands are linked (Jung 

and Lippard, 2007; Kelland, 2007). Cisplatin is also known to bind to RNA and interfere with 

cellular RNA processing, which probably assist in the action of the drug (see II. 2) c.).  

 

Figure 16: Types of cisplatin-adducts on DNA and their cellular effects. (adapted from Roos 

and Kaina, 2013) 

Clinical limitations of cisplatin. Cisplatin was proven very efficient in a wide range of 

solid tumours, even showing a nearly 100% response rate in testicular cancer if detected 

early (Wang and Lippard, 2005). However, its clinical use is limited due to its notorious dose-

limiting nephrotoxicity, neurotoxicity, ototoxicity (hearing loss due to damage to hair cells of 

the cochlea), myelosuppression (decreased blood cell and platelet production), as well as 

nausea and vomiting (Florea and Büsselberg, 2011; Dilruba and Kalayda, 2016). 

Nephrotoxicity can be alleviated to some extent by prehydratation (hyperhydratation with a 

saline solution) of the patient to increases drug evacuation by the kidneys, whereas hearing 

loss is permanent (Kelland, 2007; Karasawa and Steyger, 2015; Breglio et al., 2017). In 

addition to severe dose-limiting toxicity to healthy organs, the principal obstacle to cisplatin 

use in the clinic is the occurrence of intrinsic (colorectal, prostate, lung, or breast cancer) or 

acquired (ovarian cancer) resistance after initial response (Kelland, 2007). 

Cisplatin analogues. To overcome toxic side-effects and chemoresistance, continuous 

efforts have been made to design new platinum drugs over the last 40 years. Although 

thousands of cisplatin analogues have been tested only a handful entered clinical trials, the 

clinical situation of platinum-based anticancer drugs have not changed in almost 20 years : 

there are still only three platinum compounds, namely cisplatin, carboplatin, and oxaliplatin, 

that are globally approved drugs (Johnstone, Suntharalingam and Lippard, 2016).  

Carboplatin was developed in the 1980’s shortly after the FDA approval of cisplatin. 

Carboplatin have a more stable leaving group than chloride (100-fold lower aquation rate), 

rendering it less reactive once inside the cell by its chelating nature while keeping good 
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aqueous solubility (Figure 15a) (Wang and Lippard, 2005; Wheate et al., 2010; Johnstone, 

Suntharalingam and Lippard, 2016), and is practically devoid of nephrotoxicity (Kelland, 

2007). Due to its lower toxicity, it is suitable for a more “aggressive” therapy regimen, and 

widely used in ovarian cancer combination therapy where resistance to cisplatin often 

occurs (Dilruba and Kalayda, 2016). In fact, patients treated with cisplatin or carboplatin 

show similar survival rate (Aabo et al., 1998). The main dose-limiting constraint of 

carboplatin is its myelosuppressive side-effect. Interestingly, carboplatin generates the same 

DNA adducts as cisplatin, but at a slower rates: it has been shown that up to 40 fold higher 

concentration of carboplatin is necessary to obtain similar effects (Knox et al., 1986). 

Oxaliplatin is described as third-generation platinum drug, as it was developed to 

overcome carboplatin resistance (Dilruba and Kalayda, 2016). It is structurally different from 

cisplatin and carboplatin by its R,R-diaminocyclohexane (DACH) chelating groups replacing 

the non-leaving amine groups (Figure 15a). This was thought to confer oxaliplatin the ability 

to be more efficient in DNA replication blocking, and therefore a higher toxicity, by different 

distortion of the DNA strands and DNA repair than cisplatin and carboplatin. Although like 

cisplatin, the main type of adducts generated are intra-strand crosslinks on adjacent 

guanines, oxaliplatin creates less DNA adducts whilst being more cytotoxic (Raymond et al., 

2002). Additionally, oxaliplatin induces increased replicative bypass (Dilruba and Kalayda, 

2016). Another peculiarity of oxaliplatin is its exclusive FDA-approval for treatment of 

advanced colorectal cancers, likely due to their high expression of organic cation 

transporters (OCT) involved in oxaliplatin uptake by the cell (Johnstone, Suntharalingam and 

Lippard, 2016). Importantly, oxaliplatin is able to maintain its cytotoxic effect in cisplatin and 

carboplatin primary resistant colon cancers (Raymond et al., 2002). This could be due to the 

fact that the main cytotoxic effect of oxaliplatin was shown not to be DNA-damage-induced 

apoptosis, but by ribosome biogenesis stress, explaining the high cytotoxicity with less DNA-

damage than cisplatin or carboplatin (Bruno et al., 2017). 

Since carboplatin and oxaliplatin, a plethora of platinum-containing molecules have been 

investigated in the hopes of finding an anticancer drug with even less side-effects and to 

overcome various resistance mechanisms, including trans-platinum (II) and platinum(IV) pro-

drugs, polynuclear complexes, as well as new modes of delivery (nanoparticles, polymers, 

proteins) (Johnstone, Suntharalingam and Lippard, 2016). So far, none have reached the 

clinical success of cisplatin, carboplatin, and oxaliplatin, and sometimes trials have been 

stopped at stage III (Dilruba and Kalayda, 2016). In fact, clinical trial regulations have evolved 

since the discovery of anticancer properties of cisplatin, which in fact, might not pass 

approval with current authorities due to its severe side-effects. 
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2) The cell response to genotoxic stress 
a. The DNA damage response (DDR) 
Specific responses for specific damages. The DNA in our cells is continuously exposed to 

DNA damage, whether it is from environmental origin, chemotherapeutic agents, or 

products from normal cellular metabolism (Jackson and Bartek, 2010). Exogenous DNA 

damage include UV light and cosmic radiation from the atmosphere, genotoxic compounds 

found in cigarette smoke or pollution, and agents used in cancer chemotherapy. Endogenous 

DNA damage are mostly reactive oxygen species (ROS) from oxidative respiration. Different 

agents induce different types of lesions, and the cells have developed a panel of intricate 

mechanisms, collectively called the DNA-damage response (DDR), to address each type of 

issue (Table 4) (Giglia-Mari, Zotter and Vermeulen, 2011; Lord and Ashworth, 2012; Roos and 

Kaina, 2013).  

Table 4: DNA lesions and their repair pathways. (adapted from Giglia-Mari, Zotter and 

Vermeulen, 2011) 

 

The most complex to repair, and potentially the most toxic DNA lesions are double-

strand breaks (DSB). DSBs can be directly induced by topoisomerase inhibitors and ionizing 

radiation (IR) used in cancer radiotherapy, X-rays, or indirectly occuring as a result of 

unrepaired single-strand breaks (SSB) or crosslinks during replication. There are two major 

mechanisms to repair DSB : homologous recombination (HR) and non-homologous end-

joining (NHEJ) (Figure 17a). For HR, part of the DNA surrounding the break is removed by a 

process called resection, then the sister chromatid is used as a template to replace the 

missing DNA sequence. On the other hand, NHEJ is a mostly error-prone repair process 
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which directly ligates the DNA ends together. It is a faster repair, but subject to loss or 

changes in nucleotides, thus possibly mutagenic. NHEJ is also the DSB repair pathway most 

used in mammalian cells (Goldstein and Kastan, 2015). The probability of which DSB repair 

will be preferentially used mostly depends on the cell cycle phase. Since HR requires a 

homologous sister chromatid template, it will act during S and G2 phases, while NHEJ can 

happens throughout the cell cycle (Giglia-Mari, Zotter and Vermeulen, 2011; Goldstein and 

Kastan, 2015). 

When the break affects only one strand, it is repaired by base excision repair (BER) 

(Figure 17a). This type of damage is often of endogenous origin, but are also generated by IR 

in cancer therapy (Hoeijmakers, 2001; Goldstein and Kastan, 2015). In BER, the opposite 

strand can serve as template. A single nucleotide (short-patch BER) or up to 13 nucleotides 

(long-patch BER) are removed and replaced with newly synthetized DNA. BER is also used to 

repair rather subtle modifications on nucleotides, such as oxydative lesions (8-oxoguanines) 

and alkylation products. In this case, the damaged bases are first removed from the double-

helix DNA by specific glycolases, creating a SSB that will be repaired in the same manner as 

the direct SSB. Bulkier single-strand lesions that provoke distortion of the DNA helix, such as 

lesions induced by UV light and intrastrand crosslinks, are repaired by nucleotide excision 

repair (NER). NER is subclassified in two categories: the global genome NER (GG-NER) that 

surveys the genome for distortion injury, and the transcription-coupled NER (TC-NER) that 

occurs when lesions blocks RNA polymerases elongation. In NER, after recognition of the 

lesion, DNA is unwinded, DNA portions containing the lesions are excised, and the gap is 

filled by the replication machinery (Hoeijmakers, 2001). Lastly, another important repair 

mechanism is mismatch repair (MMR), which corrects insertions and deletions, and 

mismatches in base pairing resulting from replication errors. Base mismatching creates 

distortion on the double-helical structure of DNA, and so is recognized as a DNA lesion (Lord 

and Ashworth, 2012). During replication, the newly synthetized and error-containing DNA is 

excised and resynthesized. This versatile machinery is reviewed in Jiricny, 2006.  
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Figure 17: The DNA-damage response. a) DNA repair mechanisms for different types of DNA 

lesions. (adapted from Hoeijmakers, 2001) b) Cellular consequences of DNA damage. 

(adapted from Lord and Ashworth, 2012) 

DDR signaling. After a DNA break, the cell activates intricate signaling cascades leading 

to cell cycle arrest, which allows a window of opportunity to repair damaged DNA before 

replication. In healthy cells, three outcomes are possible: (1) DNA is repaired and cell cycle 

resumes, (2) DNA repair was not successful and the cell goes into senescence, (3) damage to 

the DNA is too important and the cell undergo apoptosis (Figure 17b). In cancer cells, mitosis 

can occur even if DNA is not properly repaired after damage. Depending on the type of 

lesion and the cell cycle phase, cell cycle will be arrested at G1/S, during S phase, or at G2/M 

(Giglia-Mari, Zotter and Vermeulen, 2011). The general DNA damage signaling is done by 

damage-sensing protein complexes which recruit apical kinases of the phosphatidylinositol 

3-kinase-like kinase (PIKK) family (ATM, ATR, and DNA-PK), which transduce signal to 

mediators and effectors. This initial signaling and recruitment of repair factors can be 

referred to as the “early DDR” (Figure 18). This results in activation of necessary cellular 

processes (DNA repair, replication and transcription arrest, cell cycle arrest, apoptosis, 

senescence, etc.) by a transcriptional response due to activation of key transcription factors 

such as p53, and subsequent expression of their target genes, a process that can be referred 

to as the “late DDR” (Figure 18).  

Following a DSB, the lesion is typically recognized by the MRN (MRE11-RAD50-NBS1) 

complex, and the ataxia-telangiectasia mutated (ATM) kinase is recruited and activated by 

phosphorylation. Once ATM is at the site of damage and is activated it phosphorylates a 

number of targets important for the cell response to DNA damage, which will amplify the 

ATM signaling, as well as the downstream kinase Chk2. Chk2 phosphorylation activates p53 

stabilization, which will upregulate p21 and induce cell cycle arrest in G1/S through cyclin E 

and cyclin-dependent kinase 2 (CDK2) inhibition (Giglia-Mari, Zotter and Vermeulen, 2011). 
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Another sensor of DSB not pictured in Figure 18 is DNA-dependent protein kinase (DNA-PK), 

a crucial enzyme in NHEJ. It is activated when it is recruited to the site of DSB by the Ku70/80 

complex, and directly promotes NHEJ by recruiting necessary factors such as XRCC4 and DNA 

ligase IV (Blackford and Jackson, 2017). 

When there is a SSB, from direct damage, as an intermediate of repair pathways 

mentioned above, or from replication fork stalling, it is ataxia-telangiectasia and Rad3-

related (ATR) that senses the lesion. ATR recognizes replication protein A (RPA) coated 

ssDNA, via association with ATR-interacting protein (ATRIP), and phosphorylates Chk1, which 

in turn inhibits the cell cylcle-dependent 25 (CDC25) proteins, resulting in cell cycle arrest in 

S and G2/M. Loading of Rad9-Rad1-Hus1 (or the 9-1-1 complex) to RPA coated ssDNA also 

triggers ATR activation (Giglia-Mari, Zotter and Vermeulen, 2011). Although ATM and ATR 

are activated by different types of DNA lesions, they converge to similar downstream 

signaling and cellular outcomes (Figure 18).  

 

Figure 18: The DDR signaling. (adapted from Sulli, Di Micco and Di Fagagna, 2012) 

 

b. Repair of doxorubicin and cisplatin DNA lesions 
Repair of doxorubicin-induced DNA lesions. The main type of DNA lesion induced by 

doxorubicin is DSB, as detailed in II. 1) a., or more specifically Top2cc resulting in protein-

linked DNA breaks (PDB). The process by which Top2 poison-induced PDB are repaired is 

only beginning to be elucidated. In order to repair such breaks, the cell must recognize PDB 

as genuine damage, rather than a transitional state of an enzymatic activity (Nitiss, 2009). 
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Therefore, PDB must be transformed into “regular” DSB by removal of Top2 covalently 

bound to the DNA. This first requires proteolytic degradation of stalled Top2, as shown by 

Gao et al. (Gao et al., 2014). Once Top2 of the Top2cc is partially degraded, it is precisely 

disjoined from DNA, without cleaving DNA, by tyrosyl-DNA-phosphodiesterase 2 (TDP2), 

leaving a DSB substrate for NHEJ (Ashour, Atteya and El-Khamisy, 2015). Consistently, 

depletion of TDP2 in cell lines and in mice increased their sensitivity to etoposide (Ledesma 

et al., 2009; Gómez-Herreros et al., 2013). Notably, it has been shown that TDP2 generates 

“ligation-ready” DNA termini (5’ phosphate and 3’ hydroxyl) resulting in an error-free NHEJ 

repair, because Top2 is bound to DNA by its 5’-ends (while Top1 binds 3’-ends) (Gómez-

Herreros et al., 2013). This specific Top2cc related PDB repair is most likely coordinated by 

ATM activation, but details about TDP2 recruitment to PDB, its relationship with DNA repair 

and other cellular pathways, and its regulators still need further investigation (Pommier, 

2013; Ashour, Atteya and El-Khamisy, 2015). 

Repair of cisplatin-induced DNA lesions. As mentioned above, cisplatin mainly induces 

intrastrand crosslink, and to a lesser extent, interstrand crosslinks (ICL). Intrastrand 

crosslinks are classically repaired by the NER pathway alone (Figure 17), whereas ICL are 

trickier to repair and the mechanism is not fully elucidated (Goldstein and Kastan, 2015). It 

has been reported that ICL repair calls for a coordination of NER, MMR, HR, and a DNA 

damage tolerance mechanism called translesion synthesis, as well as a specific repair 

pathway called the Fanconi anaemia pathway (Roos and Kaina, 2013; Goldstein and Kastan, 

2015; Ceccaldi, Sarangi and D’Andrea, 2016; Dilruba and Kalayda, 2016). How to repair ICL 

depends on the cycling state of the cell. In cycling cells and senescent cell, replication-

dependent and independent repair mechanisms are activated, respectively. In cycling cells, 

ICL repair is triggered by the replication fork collision with the lesion, since it prevents the 

separation of the DNA strands (Clauson, Schärer and Niedernhofer, 2013; Ceccaldi, Sarangi 

and D’Andrea, 2016). The Fanconi anaemia pathway is named after a rare genetic disorder of 

DNA repair deficiency (predisposing to cancer) due to inactivation of one of the genes in the 

pathway. It is activated in the S phase during replication, and the subsequent steps are: 

lesion recognition, DNA incision, lesion bypass, and lesion repair (Figure 19a) (Ceccaldi, 

Sarangi and D’Andrea, 2016). When two replication forks collide at the ICL site, the 

replicative helicase CMG complex is removed by BRCA1 (another function of BRCA1 besides 

HR) (Long et al., 2014; Ceccaldi, Sarangi and D’Andrea, 2016). The FANCM protein, 

phosphorylated by ATR, senses the lesion and binds to ICL wich recruits the Fanconi anaemia 

core complex composed of 14 proteins. This will activate FANCD2-FANCI heterodimer by a 

reversible monoubiquitylation, that seem to serve as a “landing pad” for NER repair proteins, 

which will do the DNA nucleolytic incision to release the ICL from one of the two strands 

(unhooking). Lesion bypass on the ICL tethered strand is then done by translesion synthesis, 

a DNA damage tolerance process which allows the replication machinery to bypass DNA 

lesion by switching to error-prone DNA translesion polymerases (REV1 and Pol ζ in humans) 

(Ceccaldi, Sarangi and D’Andrea, 2016). Meanwhile, the DSB generated by the nucleolytic 

incision on the other strand is mainly repaired by HR, although HR-independent mechanisms 

have also recently been reported (Wang et al., 2015). Although there has been a 

considerable expansion of ICL repair pathways in the recent years, the exact role, the timing 



Regulation of alternative splicing and polyadenylation by genotoxic anticancer agents | Iris Tanaka 
 

 
40 

of recruitment, post-translational regulations, and mechanistic insights of the majority of 

Fanconi anaemia proteins and other ICL repair-related proteins is far from being fully 

understood (Ceccaldi, Sarangi and D’Andrea, 2016). 

Senescent cells also need to repair DNA damages outside of the S phase (in G0/G1) when 

there are ICLs. First studies of replication-independent cisplatin-induced ICL repair 

mechanisms are quite recent, and mainly based on cell-free extract and reporter plasmid 

experiments. They showed that replication-independent cisplatin-induced ICL were 

dependent on the replication-coupled NER pathway, and involved the translesion DNA 

polymerase Pol κ (Enoiu, Jiricny and Schärer, 2012; Williams, Gottesman and Gautier, 2012). 

However, implication of MMR proteins in ICL repair and cisplatin resistance have been 

investigated for more than 20 years (Aebi et al., 1996; Jung and Lippard, 2007). In a 2017 

study by Kato et al., it has finally been demonstrated in Xenopus cell-free extracts supporting 

neither replication nor transcription, that the MMR proteins (MutSα and MutLα) are 

required for ICL sensing and activation of repair (Figure 19b) (Kato et al., 2017). 

 

Figure 19: Repair of cisplatin-induced ICL. a) Replication-dependent ICL repair in cycling cells.  

(adapted from Long et al., 2014)  b) Replication-independent ICL repair in senescent cells. 

(adapted from Kato et al., 2017)   

 

c. Cellular responses specific to doxorubicin and cisplatin 
Cellular responses to doxorubicin. As mentioned in II. 1) a., anthracylines such as 

doxorubicin have a wide range of cellular actions in addition to their Top2 poisoning function. 

By intercalating DNA, it blocks transcription and replication. In addition, it has been reported 

that doxorubicin induces histone eviction from the chromatin, including the histone variant 
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H2AX crucial for DDR signaling, deregulating the transcriptome and driving apoptosis (Pang 

et al., 2013). Moreover, doxorubicin is reported to induce cell death in many ways: apoptosis, 

necrosis, and mitotic catastrophe (inability of the cell to complete mitosis and ending up in a 

large cell with multiple micronuclei) (Eom et al., 2005; Tacar, Sriamornsak and Dass, 2013). 

Surprisingly, it was also reported that doxorubicin induces a viral infection-like immune 

response, via type I interferon (Sistigu et al., 2014). 

The generation of ROS by doxorubicin is well documented, and it has been thought to be 

the link with cardiotoxicity. The quinone moiety of doxorubicin is known to reduce oxygen 

molecules, but more importantly doxorubicin forms complexes with intracellular iron in a 

redox cycle that convert superoxide anion (O2͘
•-) and hydrogen peroxide (H2O2) into more 

potent hydroxyl radicals (•OH) (Minotti, 2004). It was hypothesized that this accumulation of 

ROS in oxidative stress-sensitive cardiomyocytes was responsible for the onset of congestive 

heart failure in patients (Henninger and Fritz, 2017). It has been shown that instead, it is 

most likely due to cardiomyocyte-specific Top2β poisoning (cardiomyocytes express Top2β 

but not Top2α, as they are quiescent) and ROS resulting from mitochondrial dysfunction 

rather than redox cycling (Zhang et al., 2012). 

Cellular responses to cisplatin. Following DNA damage induced by cisplatin, cells mainly 

die by p53-induced apoptosis, involving various signaling cascades and cell cycle arrest 

(Figure 20). In addition to the NER, Fanconi anaemia, and MMR proteins, high-mobility group 

proteins (HMG) also recognize platinated DNA (Siddik, 2003). HMG1 preferentially binds to 

distorted DNA, and has been shown to inhibit NER of cisplatin crosslinks by shielding the 

damage site from repair, therefore increasing cisplatin cytotoxicity (Jung and Lippard, 2007). 

Also, HMG1 enhance p53 binding to DNA, and induction of apoptosis. 

 

Figure 20: The cisplatin-induced DDR. (adapted from Siddik, 2003) 
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Although main cytotoxic effect of cisplatin is almost always attributed to its DNA binding, 

it turns out that only about 1% of cisplatin molecules are bound to nuclear DNA (Gonzalez et 

al., 2001). This suggests that a large part of administered cisplatin stays outside of the cells 

or in the cytoplasm. As mentioned above, once in the cytoplasm, cisplatin is hydrolyzed and 

is transformed into highly reactive monoaqua and diaqua complexes. In this form, cisplatin 

can easily bind any nucleophilic substrate that it encounters, whether it is DNA, RNA, 

proteins (especially cysteine-rich), and any thiol-containing molecule (Cepeda et al., 2007). 

For example, it is known to bind with high affinity with reduced glutathione (GSH), inducing 

oxidative stress by sequestrating antioxidants such as GSH and shifting the redox status in 

the cell (Cepeda et al., 2007; Karasawa and Steyger, 2015). In addition, cisplatin can also 

directly generate ROS. It has been shown that by binding to mitochondrial DNA, which lacks 

NER, cisplatin blocked mitochondrial DNA transcription, protein synthesis, and eventually 

impaired mitochondrial respiration (Marullo et al., 2013). This oxidative stress could in part 

explain toxicity to non-dividing healthy tissues (nephrotoxicity, ototoxicity), as they are 

unlikely to die from DDR and apoptosis induced by cisplatin crosslinks during replication 

(Karasawa and Steyger, 2015). 

DNA and RNA molecules are chemically extremely similar. It is therefore not surprising 

that cisplatin interacts with RNA too, but these relationships have been less studied even 

though it has been reported that cisplatin interacts with various RNA species, including 

ribosomal and telomeric RNAs. Recently, Melnikov et al. gave further insight into translation 

inhibition by cisplatin by showing in bacterial ribosomes that cisplatin intercalates between 

the ribosome and the mRNA, impairing effective mRNA translocation for translation 

(Melnikov et al., 2016).  

 

 

3) Chemotherapy resistance mechanisms 
a. Resistance to anticancer chemotherapy, general mechanisms 
The chemotherapy resistance problem. Drug resistance, whether intrinsic or acquired 

during treatment, is the main hurdle to clinical success of cancer chemotherapy. The cancer 

cell constantly and impressively adapts to its environment to keep on thriving. There are 

multiple mechanisms described for genotoxic anticancer drug resistance, from drug efflux, 

modification of the drug target and cell signaling pathways, to the cancer stem cell (CSC) 

phenotype and EMT. The reason why chemoresistance is so difficult to predict and to 

overcome is because the cell uses a combination of mechanisms to resist to a single agent 

(while in practice patients are almost always treated with a combination of drugs), and even 

this combination can evolve over time. Moreover, the multi-drug resistance phenomenon 

and intra-tumour heterogeneity makes the situation even more complex. Although we are at 

the beginning of the era of personalized medicine, prognostic markers of chemoresistance 

are not yet to the point of being used to design a specific therapy regimen for a cancer 

patient. It is therefore of crucial importance to understand the molecular basis of each 
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mechanism and their interactions, to attempt to depict a more precise picture of the 

resistance networks involved for a given drug (or a combination of drugs) at a given time (or 

through time). 

Intracellular mechanisms. An easy way for the cancer cell to avoid exposure to a drug is 

to simply increase its evacuation or to restrict its import through transporters, limiting 

intracellular accumulation (Wijdeven et al., 2016). Notably, the ATP-binding cassette (ABC) 

transporter superfamily responsible for multidrug resistance (MDR) is particularly well 

documented (Szakács et al., 2006; Li et al., 2016). There are 49 members in the ABC 

transporter superfamily, but only three have been most studied in the context of cancer 

chemoresistance : ABCB1 (also named P-glycoprotein (P-gp) and multidrug resistance 

protein 1 (MDR1)), ABCC1 (also named MDR-associated protein 1 (MDP1)), and ABCG2 (also 

named breast cancer resistance protein (BCRP)) (Holohan et al., 2013). In normal cells, 

ABCB1 is especially important for excretory functions of epithelial cells of the digestive tract 

(Holohan et al., 2013). It is overexpressed in many cancers, and regulate transport of a wide 

range of drugs used in anticancer therapy, such as anthracyclines, antimetabolites, and 

taxanes (Wijdeven et al., 2016). 

Alterations of the drug target is also common, whether it is up- or down-regulation, or 

mutation, to compensate for the direct effect of the anticancer agent. For example, 5-

Fluorouracil inhibits thymidylate synthase, a key enzyme for synthesis of thymidine and 

therefore DNA, as its name suggests. Expression of thymidylate synthase is increased in 5-

Fluorouracil treated cancer cells through a negative feedback loop mechanism, and higher 

levels of thymidylate synthase were correlated to poor response to chemotherapy in gastric 

and colorectal cancers (Kachalaki et al., 2016). Down-regulation and mutation of drug 

targets cause chemoresistance too, as it results in the inability for the drug to bind its target. 

Classical hallmarks of cancer are the ability of cancer cells to avoid apoptosis, unrestricted 

cell growth, and inefficient DDR (Hanahan and Weinberg, 2011). It is therefore logical to use 

these advantages to resist genotoxic stress induced by chemotherapy agents at multiple 

levels. Cells adapt by deregulating apoptotic response (for example, by over-expressing anti-

apoptotic BCL-2 family proteins) and by activating pro-survival signaling (for example, EGFR 

and NF-κB signaling) (Holohan et al., 2013). Faulty DDR is a “mixed blessing” in the context of 

chemotherapy, as it confers sensitivity to genotoxic drugs and some DDR inhibitors, but also 

causes genomic instability potentially responsible for the acquisition of genetic alterations 

leading to chemoresistance. To resist genotoxic chemotherapy, the cancer cell can modulate 

its DDR by three main mechanisms : 1) genetic reversion, which restores the drug target 

function by mutation or internal deletions; 2) mutation of DDR genes that impairs the 

function of the drug target; and 3) DDR alteration, by which the cells uses an alternative DNA 

repair pathway than the one targeted by chemotherapy (Bouwman and Jonkers, 2012). 
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Intracellular resistance mechanisms discussed above are summarized in Figure 21: 

Figure 21: Intracellular resistance mechanisms (adapted from Wijdeven et al., 2016) 

 

Systemic mechanisms. In addition to intracellular mechanisms, the cancer cell can 

acquire chemoresistance as a population and by interacting with its micro-environment. 

Activation of survival signaling mentioned above can be of cell-extrinsic origin, notably by 

cytokines and growth factors secreted by cancer-associated fibroblasts (CAF) and tumour-

associated macrophages (TAM) (Rebucci and Michiels, 2013). In a cancer cell lines and 

stromal cells co-culture experiment, it was shown by Straussman et al. that dermal 

fibroblasts were able to confer complete innate resistance to gemcitabine in colon and 

pancreatic cancers (Straussman et al., 2012). Moreover, DNA damage induced by genotoxic 

chemotherapy in prostate cancer patients was shown to promote EMT and acquired 

resistance through paracrine signaling of the Wnt pathway from the tumour micro-

environment (Sun et al., 2012). 

During EMT, epithelial cells loose their polarized organization and switch to a more 

invasive mesenchymal phenotype. This transition was initially suggested to be the key 

initiator mechanism of metastasis, but two independent groups showed recently that EMT 

was dispensible for metastasis but an important factor for chemoresistance (to 

cyclophosphamide and gemcitabine) in mouse models (Fischer et al., 2015; Zheng et al., 

2015). In addition, the link between cancer stem cells (CSCs) and chemoresistance have been 

increasingly acknowledged over the past few years. The CSC theory states that a small 

number of quiescent, self-renewing cells within the tumour are responsible and capable of 

tumour initiation. CSC harbor intrinsic chemoresistance features, such as ABC transporters 

expression, activation of anti-apoptotic and pro-survival signaling, as well as enhanced DNA 

damage repair and EMT phenotype (Holohan et al., 2013). More importantly, they are hardly 

sensitive to genotoxic anticancer agents effective to fast-cycling cells, due to their quiescent 

nature. Confirming this, enrichment in CSC population after chemotherapy in patients have 
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been observed in several cancers, such as breast, colorectal, pancreatic, lung, prostate 

cancers as well as AML and CML (Vidal et al., 2014). 

The contribution of the immune system, and specifically immunogenic cell death, to the 

efficacy of chemotherapy is increasingly recognized (Krysko et al., 2012; Kroemer et al., 

2013). DNA damage can induce immunogenic cell death, and an immunosuppressive 

environment can promote resistance to this particular type of cell death. For example, it was 

recently demonstrated that in oxaliplatin-treated prostate cancer, immunogenic cell death 

by cytotoxic CD8+ T-cells was dependent on B cells plasmocytes, highly present in resistant 

tumours (Shalapour et al., 2015).  

Finally, autophagy can also promote chemoresistance by facilitating cancer cell survival 

during metabolic stresses caused by anticancer agents (Holohan et al., 2013). Systemic 

resistance mechanisms discussed here are summarized in Figure 22: 

 

Figure 22: Systemic resistance mechanisms (adapted from Wijdeven et al., 2016) 

 

b. Resistance mechanisms specific to doxorubicin and cisplatin 
Resistance to doxorubicin. Resistance mechanisms to doxorubicin are as various as its 

modes of action. One of the most described doxorubicin resistance mechanism is drug efflux 

via ABCB1. Although ABCB1 and ABC transporters in general have been associated with 

chemoresistance in a large panel of cancers, use of ABC transporters inhibitors in patients 

have failed to ameliorate doxorubicin sensitivity, suggesting that MDR via ABC transporters 

is not the most prominent resistance mechanism, and that ABC transporters might have a 

high degree of redundancy (Holohan et al., 2013; Wijdeven et al., 2016). Indeed, several 
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clinical trials of chemotherapy-ABC transporter inhibitor combination failed to show any 

improvement in patient outcome (Szakács et al., 2006). This being acknowledged, further 

investigations on the precise role of ABCB1 in doxorubicin resistance, could give better 

insights and therapeutical opportunities. For example, it has been shown that ABCB1 

expression was mediated by micro-RNAs, chromosomal amplification, and epigenetic 

modulations (Genovese et al., 2017), as well as the transcription factor oestrogen receptor α 

(ERα) (Chen et al., 2018). Doxorubicin can also be sequestrated in lysosomes to prevent 

nuclear drug exposure, and have been shown to trigger lysosome biogenesis by nuclear 

translocation of the transcription factor TFEB, further enhancing lysosomal drug entrapment 

and MDR (Zhitomirsky and Assaraf, 2015). Interestingly, it was also shown that doxorubicin 

lysosomal sequestration was dependent on lysosomal ABCB1 and the ability of doxorubicin 

to be ionized at lysosomal pH (Yamagishi et al., 2013).  

Other common doxorubicin resistance mechanisms are mutation or downregulation of 

the target Top2, increased anti-oxidant defense of the cell, decreased DNA damage or 

increased DNA repair, and anti-apoptotic signaling due to p53 mutation (Chien and Moasser, 

2008; Wijdeven et al., 2016). A recent genome-wide screen identified novel factors 

contributing to doxorubicin resistance all converging to DSB repair, namely Keap1 and 

SWI/SNF that attenuated Top2 activity and therefore DSB generation, and C9orf82/CAAP1 

which when depleted accelerated DSB repair (Wijdeven et al., 2015). An oncogenic kinase, 

lemur tyrosine kinase 3 (LMTK3), involved in endocrine therapy resistance was also shown 

mediate doxorubicin resistance by delaying formation of DSB and inducing expression of 

DNA repair genes (Stebbing et al., 2018). Because doxorubicin also induces immunogenic cell 

death, overexpression of CD73, an important enzyme in the catalysis of AMP to adenosine (a 

potent immunosuppressor), was shown to be associated with triple-negative breast cancer 

patients doxorubicin resistance. CD73 impaired immunogenic cell death after doxorubicin 

treatment by suppressing CD8+ T-cell activation via A2A adenosine receptor signaling (Loi et 

al., 2013). 

Additionally, actors of chemoresistance can have multiple functions. For example, it has 

been shown recently that the p53 negative regulator MDM2, has p53-independent functions 

in resistance to doxorubicin, but not other genotoxic drugs: p53 mutant cells overexpressing 

MDM2 were specifically resistant to doxorubicin by reducing DSB (Senturk, Bohlman and 

Manfredi, 2017). Another example is the histone deacetylase 10 (HDAC10) was recently 

shown to be important for doxorubicin containing lysosome exocytosis as well as DSB repair 

in chemotherapy-resistant neuroblastoma cell lines, and was not related to lysosomal drug 

efflux via ABCB1 (Ridinger et al., 2018). 

Resistance to cisplatin. Resistance to cisplatin is mostly a result of two broad 

mechanisms: failure to reach DNA, and failure to achieve cell death after DNA damage 

(Kelland, 2007). The ability of cisplatin to reach DNA can be disturbed in several ways, such 

as increased drug efflux, decreased cellular uptake, and cytoplasmic inactivation (Amable, 

2016). Although increased drug efflux is believed not be the main cause of limited 

intracellular accumulation of cisplatin (as opposed to doxorubicin), some transporters such 

as ATP7A/B and MRP2 were shown to be upregulated in cisplatin resistant cancer cell lines 
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(Galluzzi et al., 2012). The copper transporter protein 1 (CTR1) is one of the primary cisplatin 

transporters involved in cisplatin uptake (Ishida et al., 2002). Cisplatin resistant ovarian 

cancer cell lines displayed low levels of CTR1, and high expression of CTR1 in ovarian cancer 

patients correlated with increased survival, suggesting a rationale for the use of copper 

chelating agents to overcome cisplatin resistance in patients (Liang et al., 2012). Similar 

observations were found in stage III non-small-cell lung cancer patients (Chen et al., 2012). 

As mentioned in II. 2) c., cisplatin binds with high affinity to intracellular GSH. On one hand, 

this results in oxidative stress participating in cisplatin cytotoxicity, but on the other hand 

GSH can act as a cisplatin scavenger and limits drug availability (drug inactivation) (Galluzzi et 

al., 2012). Indeed, high expression of GSH was observed in patient-derived ovarian cancer 

cell lines after the onset of chemoresistance (Wolf et al., 1987). However, Chen et al. 

demonstrated that overexpression of GSH sensitized small-cell lung cancer cells to cisplatin 

by upregulating CTR1 expression (Chen et al., 2008). Therefore, the role of GSH in cisplatin 

resistance is still largely unclear and needs further investigation. 

Failure to achieve cell death after DNA damage is mostly due to increased DNA repair 

and DDR. The most notorious example is increased expression of ERCC1 from the NER 

machinery crucial for cisplatin-induced DNA crosslinks (see II. 2) b.). It is widely described in 

the literature for its negative correlation with cisplatin response in patients with various 

cancer types (Galluzzi et al., 2012; Amable, 2016). Indeed, low ERCC1 expression was 

correlated with better survival in cisplatin treated NSCLC patients, and have proved to be a 

useful biomarker to predict response to cisplatin in an adjuvant setting (Bowden, 2014). 

However, it is important to note that expression levels of ERCC1 do not seem to correlate 

with NER proficiency (Galluzzi et al., 2012), and that methods of ERCC1 protein expression by 

immune-histochemistry have been questioned recently (different batches of the same 

antibody yielded contradictory results) (Friboulet et al., 2013). Therefore, the role of ERCC1 

in cisplatin resistance has to be taken carefully, as it has not been shown how ERCC1 

mechanistically contributes to cisplatin resistance, and even associated with better response 

to cisplatin in some contexts (Bowden, 2014). DNA crosslinks induced by cisplatin can also be 

repaired by MMR and HR (see II. 2) b.). Accordingly, downregulation of several actors of 

these pathways have been linked to cisplatin resistance in cell lines and patients, such as 

MSH2 and MLH1 (MMR), and BRCA1/2 (HR) (Galluzzi et al., 2012; Wijdeven et al., 2016). In 

addition, hyperactivation of TLS (important in ICL repair during replication) is also reported 

to participate in cisplatin resistance (Haynes et al., 2015). In conclusion, any, or a 

combination of, the DNA repair pathways involved in the various types of adducts generated 

by cisplatin throughout the cell cycle may be involved in its chemoresistance. 
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III. Effects of genotoxic agents on alternative splicing 
and polyadenylation 

 

In the past two parts, I exposed fundamental and current knowledge on AS and APA 

function and regulation in cancer, and on cell response and resistance to genotoxic 

anticancer agents doxorubicin and cisplatin. Transcriptional responses to DNA damage and 

in chemoresistance are widely described. The relationship between genotoxic stress and 

post-transcriptional regulations is also increasingly appreciated, especially in an acute 

response context. Interestingly, genome-wide screens and proteomic studies on the DDR 

identified factors involved in mRNA processing (Matsuoka et al., 2007; Paulsen et al., 2009; 

Solier et al., 2010). In fact, post-transcriptional regulations seem to be an integrative part of 

the DDR. However, how the cell uses AS and APA to respond to genotoxic stress or to 

become resistant to anticancer agents remains largely unexplored. 

 

1) AS in genotoxic stress response and resistance 
a. AS response to genotoxic stress 
Global AS alteration in response to genotoxic stress. Isolate examples of splice variants 

expressed in response to genotoxic stress have been reported since the 1990’s, but first 

global analyses of the extent of AS after DNA damage are less than 10 years old. These first 

studies were done on splice-sensitive micro-arrays, which depend on the number and types 

of probes included in the array design. In 2009, Muñoz et al. analyzed AS changes in 482 

genes involved in cancer, cell cycle, proliferation and death after UV irradiation and 

observed AS alteration in 22% of these genes (Muñoz et al., 2009). In this study, they 

showed that AS of apoptosis-related genes such as Bcl-X and caspase 9 was mediated by 

inhibition of Pol II elongation by hyperphosphorylation of the CTD induced by UV (Muñoz et 

al., 2009). In 2010 and 2011, several studies from my supervisor and others showed 

genome-wide AS changes in response to camptothecin (Dutertre et al., 2010; Solier et al., 

2010; Ip et al., 2011). My supervisor also found 248 exons regulated in response to 

doxorubicin treatment in MCF-7 cells by pan-genomic exon-array (Dutertre, Chakrama, et al., 

2014), as mentioned in I. 2) d.. Many of the AS isoforms induced by cisplatin were found by 

Gabriel et al. in 2015 (Gabriel et al., 2015). After observing that MDM2 and VEGF were 

alternatively spliced after cisplatin treatment, they carried out an RNA-seq on cisplatin 

treated MCF-7 cells. They found 717 AS events in 619 transcripts, and only five genes were 

regulated in AS as well as transcriptionally. These findings illustrate that the splicing 

response to genotoxic stress is specific and has a distinct role from transcriptional regulation. 

Moreover, it was recently shown that the DDR and AS are mechanistically linked. In 2015, 

Tresini et al. showed that UV induces displacement of spliceosome complex U2/U5/U6 from 

the chromatin via a non-canonical ATM signaling in a positive feedback loop involving Pol II 

arrest and R-loop formation, resulting in increased intron retention and exon skipping. 
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Importantly, they demonstrated reciprocal regulation of the spliceosome and ATM: 

spliceosome organization modulation activated ATM, and ATM was capable of influencing AS 

(Tresini et al., 2015).  

AS variants after DNA damage. Interestingly, many of the genes affected by AS 

following genotoxic stress are SF and genes involved in the DDR as shown in Table 5 (Giono 

et al., 2016), corroborating the strong link between splicing and the DDR.  

Table 5: Validated AS variants of SF and DDR genes. (adapted from Giono et al., 2016) (IR = 

Ionizing radiation, CIS = cisplatin, DOX = doxorubicin, ETO = Etoposide, MMS = Methyl 

methanesulfonate) 

 

For example, EWS, an RNA and DNA binding protein that interacts with Pol II, is involved 

in the AS of DDR genes such as MDM2, Abl1, Chk2 and MAP4K2, and its effects on its target 

genes is impaired following various types of genotoxic stress (camptothecin, doxorubicin, 

cisplatin, UV) inducing exon skipping (Dutertre et al., 2010; Paronetto, Miñana and Valcárcel, 

2011). My supervisor showed that after genotoxic stress induced by camptothecin, the 

interaction between EWS and YB-1, a spliceosome-associated factor, is altered and leads to 

skipping of multiple MDM2 alternative exons. This results in the decrease of the full length 

MDM2 and p53 stabilization, a mechanism that could explain the necessity of EWS for cell 

survival in HeLa after UV irradiation (Paronetto, Miñana and Valcárcel, 2011). SRSF1 has also 
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been shown in minigene experiments to promote MDM2 alternative multi-exon skipping in 

response to cisplatin and UV, by binding to exon 11 of MDM2 (Comiskey et al., 2015). In 

response to cisplatin, Gabriel et al. showed that DNA damage-induced AS changes and cell 

death were partly mediated by the SF SRSF4. Post-translational modifications of SF are also 

involved in the DDR-related AS changes. Indeed, Edmond et al. showed that in response to 

cisplatin, SRSF2 protein is accumulated by hypoacetylation and phosphorylation that prevent 

its degradation by the proteasome, and regulates AS of caspase 8 to decrease the anti-

apoptotic isoform (Edmond et al., 2011). In addition, Shkreta et al. showed that after 

oxaliplatin treatment in HEK-293 cells,  SRSF10 was dephosphorylated, which abrogates its 

interaction with splicing activators hnRNPH/F and removes splicing repressor hnRNPK from 

Bcl-x 5’SS, allowing the expression of the pro-apoptotic isoform (Bcl-xS) (Shkreta et al., 2016). 

AS response to doxorubicin and cisplatin. As discussed above, there has been an 

increasing interest in shedding light on the AS response to genotoxic stress in the past 

decade, but few studies focused on Top2 poisons including doxorubicin. RT-PCR validated AS 

isoforms described in the literature as induced by doxorubicin are summarized below in 

Table 6:  

Table 6: Validated AS variants regulation in response to doxorubicin treatment 

Alternatively 
spliced gene 

Exon Type of AS Up/Down Cells Reference 

APIP 2 cassette exon ↓ 
human iPSC-derived 

cardiomyocites 
Knowles et al., 2018 

Bcl-x 2 alternative 5'SS ↑ 
HEK-293, HeLa, MCF-7, 

PC-3 
Shkreta et al., 2008 

CASP2 9 cassette exon ↑ U-937 Solier et al., 2004 

CDC25C 3+5+6 cassette exon ↓ MCF-7, MDA-MB-231 Albert et al., 2012 

MDM2 
I10 cryptic exon ↑ NIH3T3 Lents et al., 2008 

4-11 
cassette exon, 

multi-exon 
↓ MCF-7 Dutertre et al., 2010 

Survivin 
I2 cryptic exon ↑ 

EU-3 Zhu et al., 2004 
3 cassette exon ↓ 

  

Examples of AS isoforms regulated by cisplatin are listed in Table 7. Most of the AS changes 

induced by doxorubicin or cisplatin are related to the p53 pathway. As discussed above, DDR 

genes are now increasingly recognized in the AS response to DNA damage. However, AS 

variants in Table 6 and 7 were mostly found on a candidate-gene approach, and further 

investigation on the AS response to genotoxic stress is needed. 
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Table 7: Validated AS variants in response to cisplatin treatment. 

 

       SFs involved in DDR beyond splicing. Several examples of SFs contribution to DNA repair 
and the DDR at multiple levels have been described (Dutertre, Lambert, et al., 2014; Naro et 
al., 2015). For example, some SFs are recruited to the site of DNA damage and act directly on 
DNA repair. In a genome-wide siRNA based screen to identify components of the HR 
machinery, it was unexpectedly found that RNA post-transcriptional modification was the 
most enriched function in the positive regulators of HR (Adamson et al., 2012). In this study, 
Adamson et al. showed that the SF RBMX localized to sites of damage and promoted HR in a 
PARP1-dependent manner. Another splicing factor, FUS, which was recently proposed to 
also participate in co-transcriptional splicing by mediating U1 snRNP and Pol II interaction 
(Yu and Reed, 2015), was also shown to be recruited to sites of DNA damage to induce HR 
via PARP1 (Mastrocola et al., 2013). Another example is PRP19, a component of the core 
spliceosome and E3 ubiquitin-ligase, is ubiquitylated following DNA damage, recognizes RPA-
coated SSBs, ubiquitylates RPA and activates ATR -mediated DDR (Maréchal et al., 2014). 
Depletion of other SFs such as SRSF1, SRSF2, and several hnRNPs have been shown to 
promote genomic instability, through formation of R-loops. Furthermore, DNA damage 
induces relocalization of and post-translational modifications on SF, adding additional layers 
of AS and DDR interplay (Dutertre, Lambert, et al., 2014; Naro et al., 2015; Shkreta and 
Chabot, 2015). 

Alternatively 
spliced gene 

Exon Type of AS Up/Down Cells Reference 

Bcl-x 2 alternative 5'SS ↑ 

HEK-293, HeLa, 
MCF-7, PA-1, PC-3, 

SKOV-3 
Shkreta et al., 2008 

Hep3B Muñoz et al., 2009 

CASP8 8 alternative 5'SS ↑ H358 Edmond et al., 2011 

CDC25C 3+5+6 cassette exon ↓ MCF-7 Albert et al., 2012 

EIF4A2 4 cassette exon ↓ MCF-7 Gabriel et al., 2015 

hnRNPDL 
8 cassette exon ↑ MCF-7, AT5BIVA, 

MO59J 
Gabriel et al., 2015 

6 cassette exon ↓ 

H-RAS 5 cassette exon ↑ SH-SY5Y Vivarelli et al., 2013 

MAD2 2-3 multi-exon ↓ HCT116 López-Saavedra et al., 2016 

MAGOH 3 cassette exon ↓ MCF-7 Gabriel et al., 2015 

MDM2 4-11 multi-exon ↓ 

Ishikawa, HT1080, 
RD, MG63, MSU-1, 
HDF-1, HDF-2, BT-
549, MDA-MB-231 

Gabriel et al., 2015 

H1299, U2OS Chandler et al., 2006 

MCF-7 
Chandler et al., 2006; 

Dutertre et al., 2010; Gabriel 
et al., 2015 

MDM4 4-9 multi-exon ↓ 
HCT116, H1299, 
MCF-7, IMR90 

Markey and Berberich, 2008 

TMPO 6-8 multi-exon ↓ MCF-7 Gabriel et al., 2015 

VEGF 6 cassette exon ↓ MCF-7, Ishikawa Gabriel et al., 2015 
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       DDR proteins involved in AS. Surprisingly, some proteins traditionally involved in DNA 

repair and DDR such as BRCA1, 53BP1, and Ku70/80, turned out to be able to interact 

directly or indirectly with RNA (Dutertre and Vagner, 2017). For example, BRCA1 was shown 

to form a splicing complex with Bcl2-associated transcription factor 1 (BCLAF1) that interacts 

with members of the core spliceosome (Prp8, U2AF65, U2AF35, SF3B1). Following DNA 

damage induced by etoposide, BRCA1 is phosphorylated by ATM, and forms a complex with 

BCLAF1 that relocalizes to promoter regions of genes involved in the DDR to ensure their 

proper expression and splicing (Savage et al., 2014). 

 

b. AS and chemoresistance 
In the context of chemoresistance, AS regulations are mainly isolate observations, and 

there is a very limited number of global analyses. In an interesting recent study, it has been 

shown that BRCA1 mutated cancer cells could become resistant to PARP inhibitors and 

cisplatin by partially rescuing their HR functions by using an alternative 5’SS of exon 11, 

producing a shorter isoform (BRCA1-Δq) with residual activity (Y. Wang et al., 2016). The 

exon 11 of BRCA1, with over 3kb in length, is one of the longest of the human genome, and 

this AS results in the use of only the first 117 bp of exon 11 (Raponi et al., 2014).  

Some SF have also been described in the resistance to genotoxic anticancer agents. One 

of the first examples is the role of the SF SPF45 (or RBM17), a component of the spliceosome, 

in the multidrug resistance phenotype. Indeed, SPF45 is overexpressed in many solid 

tumours such as bladder, breast, colon, lung, ovarian, pancreas, and prostate cancer 

(Sampath et al., 2003), and has been observed to confer resistance to carboplatin, 

vinorelbine and vincristine (microtubule poisons), doxorubicin, etoposide, mitoxantrone 

(another Top2 poison), gemcitabine, and pemetrexed (an antimetabolite) in a stably 

transfected ovarian cancer cell line (Perry et al., 2005). Its target exons have not been 

elucidated in these early studies, but we know today that one of its targets is the exon 6 of 

the apoptosis gene Fas receptor. SPF45 promotes Fas exon 6 skipping by directly interacting 

with U2AF65, which produces a soluble protein lacking the transmembrane domain with 

antagonistic functions to the inclusion isoform (Corsini et al., 2007), and it has been recently 

suggested that this regulation by SPF45 involved the Fas-antisens lncRNA and was 

responsible for apoptosis resistance (Villamizar et al., 2016). Another SF involved in 

chemoresistance is the polypyrimidine tract binding protein PTBP1 that is involved in 

incurable disease pancreatic ductal adenocarcinoma (PDAC)  gemcitabine resistance by 

modulating the AS of the pyruvate kinase gene PKM’s mutually exclusive exon 9 (included in 

isoform PKM1) and 10 (included in isoform PKM2) (Calabretta et al., 2016). PKM2 isoform 

was induced by PTBP1 binding to exon 8, was associated with poor prognostic PDAC, and 

promoted gemcitabine resistance in cells. Indeed, when PKM2 isoform was specifically 

depleted by an antisense oligonucleotide (ASO), thus restored sensitivity to gemcitabine as 

well as cisplatin in cells (Calabretta et al., 2016). 

One of the very few global analyses of AS in chemoresistance found thousands of  AS 

events regulated in daunorubicin (a Top2 poison molecularly very close to doxorubicin) 
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resistant acute myeloid leukemia (AML) cells and chemotherapy resistant patient samples, 

and these regulations occurred in mostly different genes from those regulated at the 

transcriptional level (Mohamed et al., 2016). However this study did not go further with 

mechanistical and functional analysis to demonstrate AS isoforms or SF involved in 

chemoresistance.  

 

 

2) APA in genotoxic stress response and resistance 
a. Regulation of 3’end processing and APA by genotoxic stress 
Effect of genotoxic stress on 3’ end processing. Following DNA damage such as UV 

irradiation, global cellular levels of mRNA are transiently decreased. It is suggested that in 
addition to a general decrease in transcription, inhibition of 3’-end processing is participating 
in this decrease (Cevher and Kleiman, 2010). Indeed, it has been shown that 3’ end 
processing is strongly but transiently inhibited following UV irradiation (Kleiman and Manley, 
2001). After UV-induced DNA damage, CstF (that otherwise promote 3’ end cleavage) forms 
a complex with DDR proteins BRCA1-associated RING domain protein 1 (BARD1) and BRCA1 
and this inhibits cleavage and induces deadenylation of transcripts by poly(A)-specific 
ribonuclease (PARN) which leads to their degradation (Cevher et al., 2010). Moreover, the 
same group later showed that p53 directly participated in 3’ end processing inhibition 
following DNA damage (Nazeer et al., 2011). They also recently showed that another layer of 
the CstF-BARD1-BRCA1 complex 3’ end processing inhibition is promoting ubiquitination of 
RNA Pol II and histones (Fonseca et al., 2017). Ubiquitination and degradation of Pol II is a 
“last resort”  DDR mechanism (Wilson, Harreman and Svejstrup, 2013), and is conserved 
between yeast and humans (Kuehner, Kaufman and Moore, 2017). It is particularly efficient 
for the cell to decrease its mRNA production while maintaining it for crucial DDR genes after 
a genotoxic injury. Some insights into this regulation lie in the G-quadruplex structure 
downstream of p53’s PAS. This structure is stabilized by the RNA helicase DHX36 (Newman 
et al., 2017), and its 3’ end processing is maintained following UV damage via an interaction 
with hnRNPH/F (Decorsière et al., 2011). Also, a non-canonical PAP, Star-PAP, has been 
shown to promote 3’ end processing of the mitochondrial apoptosis gene BCL2-interacting 
killer (BIK) expression after etoposide-induced DNA damage (Li et al., 2012). Additional 
mechanisms of 3’ end processing and DDR interplay are reviewed in Cevher and Kleiman, 
2010. 

APA regulation by DNA damage. Investigations on the effect of genotoxic stress on APA 
are quite recent, and some of the first studies were done in yeast. In 2013, Graber et al. 
analyzed genome-wide APA after Saccharomyces cerevisiae exposure to a UV-mimetic drug 
and found 2031 genes (about 35% of all yeast genes) whose polyadenylation site usage was 
altered, giving the first evidence of DNA-damage induced APA regulation (Graber et al., 
2013). In this study, DNA damage repressed proximal and favoured distal polyadenylation 
sites of elongated isoforms. Interestingly, a similar effect was observed in response to 
doxorubicin in mammalian cells. When treated with doxorubicin, 248 exons were 
alternatively spliced, as mentioned above. The majority of these exons were ALEs, and 
doxorubicin favoured the use of the evolutionarily recent distal ALE in DDR and cell cycle 
genes (Dutertre, Chakrama, et al., 2014). Two recent large-scale studies also showed APA 
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regulations in response to UV, but the effects were in the opposite direction. In 2016, 
Devany et al. demonstrated by performing 3’ region extraction and deep-sequencing 
(3’READS) that UV induced widespread APA including IPA as well as 3’UTR shortening and 
lengthening in colon carcinoma cells (Devany et al., 2016). IPA was biased towards the 5’ end 
of genes enriched in DDR functions and was mediated by a U1 snRNP decrease, consistent 
with the role of U1 snRNP in IPA repression discussed in I. 2) a.. In HEK-293 cells, UV also 
induced 5’ proximal IPA/ALEs. This shift from long to short isoform resulted in the expression 
of a non-coding RNA isoform of ASCC3, which opposed the function of the full-length protein 
involved in transcription regulation (Williamson et al., 2017).  

So far, very few studies on APA regulation by genotoxic stress focused on anticancer 
agents. In a study where the role of the three PAP isoforms in APA choice was investigated, 
the authors found that after epirubicin exposure the mRNA and protein levels of the tumour 
suppressor gene PTEN was increased, and this was abrogated by knocking down Star-PAP, 
suggesting their role in APA in response to DNA damage (W. Li et al., 2017). Additionally, the 
3’UTR of the transcription factor ZEB1, which was found to be associated with EMT in 
pancreatic ductal adenocarcinoma, is shortened upon gemcitabine treatment, resulting in its 
increased translation efficiency by escape from microRNA repression (Passacantilli et al., 
2017). 

 

b. APA and chemoresistance 
As investigations on APA response to genotoxic stress are quite recent, it is not surprising 

that there is very limited literature on APA and anticancer drug resistance. To my knowledge, 
there is no study on APA regulation in the context of resistance to cancer chemotherapy, 
except two examples initially described as AS events. In PDAC cells, gemcitabine induces the 
expression of SRSF1, promoting the expression of the MAPK-interacting kinase 2 (MNK2) b 
isoform (Adesso et al., 2013). This isoform is in fact the result of the use of the 13b ALE 
lacking the MAPK binding site instead of the canonical last exon 13a. The expression of 
MNK2b isoform attenuated gemcitabine-induced cell death, and authors suggested that 
PDAC cells activate a MNK2-dependent pro-survival pathway in response to gemcitabine 
treatment. The other example is IPA of Top2α discovered in an etoposide resistance context, 
described as an intron retention event (Kanagasabai et al., 2016). In this recent study, 
authors identified a possibly dominant-negative 90 kDa truncated isoform of Top2α (full 
length is 170 kDa), which was the product of an IPA in intron 19, in etoposide resistant K562 
leukemia cells. When transfected into sensitive cells, this isoform reduced Top2cc and DNA 
damage in response to etoposide. 
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IV. Thesis aims 
 

Many AS events and several SF have been involved in cell response to genotoxic agents 

including anticancer drugs, and various AS variants have been described in chemoresistance. 

However, in the context of chemoresistance, there are very few studies of genome-wide AS 

regulation and of AS pathways linking RBPs, transcript isoforms, and cellular processes. In 

addition, the regulation of IPA by genotoxic anticancer drugs also remains poorly understood. 

Given the undeniable role of AS and APA in cancer, and its increasingly well-described 

regulation in response to some types of DNA damage, I hypothesized the existence of AS and 

APA regulation pathways/networks controlling gene expression which modulate cell 

response and sensitivity to genotoxic chemotherapeutic agents. To address this, my PhD 

project had two main aims detailed below: 

 

1) Regulation of alternative splicing in breast cancer 
cell resistance to doxorubicin 

 

Doxorubicin is one of the most commonly used anti-cancer agent in breast cancer 
treatment. Previous studies from my supervisor demonstrated involvement of AS in 
doxorubicin response in breast cancer cell lines. However, there is no description so far of an 
“AS pathway” (SF → AS variant → cellular process→ resistance) involved in doxorubicin 
sensitivity or resistance. 

To better understand the role of AS in doxorubicin resistance, I used a sensitive and 
resistant MCF-7 breast cancer cell line model to decipher: 

1. The extent of AS regulation in doxorubicin resistance 
2. SF and AS variants modulating doxorubicin sensitivity 
3. Cellular processes affected by AS leading to doxorubicin resistance 

 

2) Regulation of alternative polyadenylation in non-
small cell lung cancer cells response to cisplatin 

 

Cisplatin is one of the oldest anticancer drugs, and is frequently used to treat various 

cancers, including NSCLC. The study of ALEs in cancer and therapy response is an emerging 

area and very little is currently known. To decipher the extent and cellular impact of ALE 

regulations in cisplatin response of NSCLC cells, I investigated the following aspects: 

1. The extent of ALE regulation in NSCLC in response to platinum drugs 

2. Translation efficiency of cisplatin-induced ALEs 
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RESULTS 
 

I. Paper manuscript 1: “Identification of splicing 
programs and pathways involved in breast cancer 
cell resistance to doxorubicin” 
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ABSTRACT 

Alternative splicing (AS) networks involved in oncogenesis are increasingly known. With 

respect to anticancer drug resistance, various AS events and a few splicing factors have been 

involved, but little is known about regulatory pathways and genome-wide programs. 

Doxorubicin is widely used in chemotherapy of ER+ breast cancer. Here, using genome-wide 

analyses, we identified over 1700 AS events and 40 splicing factors regulated in a breast 

cancer cell model of acquired resistance to doxorubicin (comparing DoxoR to parental cells). 

An RNAi screen identified two poorly characterized splicing factors, ZRANB2 and SYF2, 

whose depletion partially reversed doxorubicin resistance. Using RNAi and RNA-seq, we 

found that ZRANB2 and SYF2 mainly regulate cassette exons and alternative 3’ splice sites, 

respectively, that were enriched in cytoskeleton- and proliferation-related genes. Both 

ZRANB2 and SYF2 directly promoted the inclusion of exon 5 in ECT2 gene transcripts, 
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resulting in its higher inclusion in resistant versus sensitive cells. In resistant cells, ZRANB2, 

SYF2 and the ECT2-Ex5+ variant promote cell cycle arrest in S phase in response to 

doxorubicin. Targeting ECT2 exon 5, which encodes a BRCT domain, partially sensitized 

DoxoR cells to doxorubicin in vitro. ECT2 exon 5 inclusion was associated with bad prognosis 

in breast cancer, specifically in ER+ tumors treated with chemotherapy. Altogether, our data 

identify the splicing programs controlled by two splicing factors and converging on the same 

AS event, that participate to breast cancer cell resistance to doxorubicin. 

 

Keywords 

Alternative splicing; genotoxic agents; breast cancer; chemotherapy; resistance. 

 

INTRODUCTION 

A major problem in anticancer therapy, either conventional or targeted, is the frequent 

acquisition of resistance to treatment. One of the main classes of anticancer agents are 

genotoxic agents. Resistance can involve various processes (often in combination), such as 

drug efflux or metabolism, drug target regulation, DNA-damage response, cell survival and 

death pathways, epithelial-mesenchymal transition, and cancer stem cell phenotype1. 

Acquired resistance is associated with mutation or expression regulation of genes that are 

either involved in these processes, or in the expression regulation of such genes. 

Transcriptomic analyses have found many protein-coding genes, microRNAs and long non-

coding RNAs that are differentially expressed in resistant versus sensitive cells. While most of 

these alterations are likely passenger rather than driver events, studies have identified 

resistance-associated gene regulatory pathways connecting altered regulators and target 

genes that play a role in resistance. These regulatory pathways have been mainly limited to 

quantitative gene expression regulation at the levels of transcription, RNA stability, and 

translation1,2. 

In addition to quantitative regulation, human gene expression is also regulated qualitatively, 

in a large part through alternative splicing (AS) that generates alternative transcripts in more 

than 90% of protein-coding genes. AS is controled in a large part by more than 300 splicing 

factors that bind specific RNA motifs in pre-messenger RNAs and/or are part of the core 
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spliceosome machinery3. In various cancers, hundreds of AS regulations are found in tumors 

versus healthy tissues, and several splicing factors are recurrently mutated or overexpressed 

in specific cancers and have been shown to have oncogenic properties4–6. Recent studies on 

oncogenic splicing factors have identified the genome-wide AS programs they control, as 

well as target splice variants that are phenotypically relevant, suggesting AS regulatory 

pathways involved in oncogenesis7–10. 

For various anticancer agents, studies on candidate genes have identified splice variants 

mediating resistance in cellular models or associated with resistance in patients, and a few 

splicing factors have been involved in resistance11–14. However, the AS regulatory pathways 

connecting splicing factors and AS events involved in anticancer drug resistance, are usually 

unknown. In two studies, the splicing factors PTBP1 and TRA2A were up-regulated in 

resistant cells and promoted resistance to gemcitabine in pancreatic cancer through AS 

regulation of the PKM gene, and to paclitaxel in triple-negative breast cancer through AS of 

RSRC2, respectively15,16. In addition, very few studies identified genome-wide AS programs in 

resistant versus sensitive cells17,18, and their role and upstream regulators were not 

identified. Thus, while AS regulation can play a role in anticancer drug resistance11–14, AS 

regulatory pathways and genome-wide programs involved in anticancer drug resistance 

remain poorly understood. 

To address this question, we studied ER+ breast cancer cell resistance to doxorubicin (Doxo), 

which is commonly used in chemotherapy for this cancer type. AS regulation by Doxo 

treatment in ER+ breast cancer cells has been previously analyzed in the context of acute 

response19, but not in the context of resistance. The classical model of acquired Doxo 

resistance in ER+ breast cancer is MCF7-Doxo-R cells20. In this study, using this model, we 

identified two splicing factors that mediate Doxo resistance, as well as their genome-wide AS 

programs that converge on a common AS target involved in the resistance phenotype, thus 

identifying AS programs and pathways involved in breast cancer cell resistance to Doxo. 

 

RESULTS 

Acquired resistance to Doxo is accompanied by widespread AS regulation 
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To identify splicing variants regulated in a breast cancer cell model of acquired resistance to 

Doxo, we used the previously described MCF7-Doxo-R cells that are about 200 times less 

sensitive to Doxo when compared to parental MCF-7 cells20. Stringent genome-wide analyses 

using exon-junction arrays and RNA-seq identified 639 and 1723 exonic events, respectively, 

that are regulated between MCF7-Doxo-R cells and parental MCF-7 cells (Tables S1 and S2). 

The most prominent type of exonic regulations identified were single-exon skipping (ASE), 

but many regulations of multiple-exon skipping, alternative 3’ and 5’ splice sites, retained 

introns, mutually exlusive exons, altenative last exons, and altenative first exons were also 

identified (Fig. 1A,B). Exonic regulations were enriched in several functions, mainly related to 

cytoskeleton, transcription, cell cycle, DNA damage response (DDR), and cell death (Fig. 1C). 

There was little overlap with the previously identified set of exons regulated in acute 

response to Doxo in MCF-7 cells19 (data not shown). We validated many AS regulations by 

RT-PCR (Fig. 1D and see below). 

 

An EMT-related splicing switch accompanies, but does not directly explain Doxo resistance 

Given the large number of splice variants that were regulated in Doxo resistance, we looked 

for upstream regulators. For this, we first looked for known RNA motifs corresponding to 

known RNA-binding proteins (RBPs) and enriched in our dataset of ASEs regulated in 

resistance. The most enriched motif was an RBFOX binding motif (Fig. 2A). Interestingly, a 

switch between RBFOX2 and ESRP1/2 splicing factors has been involved in EMT21, and both 

EMT and the related CSC phenotype were previously found associated with Doxo resistance 

in breast cancer cell models and tumors1,22,23. Consistently, in comparison to MCF-7 cells, 

MCF7-Doxo-R cells displayed a strong decrease of several epithelial markers including CDH1 

and ESRP1/2, and an increase in several mesenchymal markers including CDH2, vimentin and 

RBFOX2 (Fig. 2B). MCF7-Doxo-R cells also displayed CSC markers (CD44high/CD24low; data 

not shown). This was accompanied by a splicing swicth of several known EMT-related splice 

variants (Fig. 2C). Thus, the switch between RBFOX2 and ESRP1/2 lileky explains in part the 

widespread AS regulations in genes related to cytoskeleton and EMT-related functions that 

we noted in MCF7-Doxo-R versus MCF-7 cells (Fig. 1C, Fig. 2C and data not shown). However, 

depletion of either RBFOX2 in MCF7-Doxo-R cells or ESRP1 and 2 (alone or in combination) in 

MCF-7 cells did not affect Doxo sensitivity (Fig. 2D,E). While we cannot exclude that 
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depletion of RBFOX2 or ESRP1/2 for longer time than 5 days might affect Doxo sensitivity, 

these data suggest that these factors do not control AS programs directly involved in Doxo 

sensitivity. 

 

Identification of the splicing factors ZRANB2 and SYF2 as mediators of Doxo resistance 

To further investigate on splicing factors involved in Doxo resistance, we then identified by 

microarray analysis, about 40 splicing-related factors whose expression was either increased 

or decreased in MCF7-Doxo-R versus MCF7 cells (Table 1). We then carried out an siRNA 

screen on these factors. Among 22 factors down-regulated in resistant cells, the depletion of 

only one factor (SNRPA1) increased MCF-7 cell survival to Doxo, but a strong effect was also 

seen in the absence of Doxo, thus lending little credence to this potential hit (Fig. 3A and 

Suppl. Fig. S1A). Meanwhile, among 19 factors up-regulated in resistant cells, the depletion 

of four factors (ZRANB2, SYF2, IGF2BP1 and QKI) decreased MCF7-Doxo-R cell survival to 

Doxo, with little or no impact on cell survival in the absence of Doxo (Fig. 3B and Suppl. Fig. 

S1B). We did not pursue on IGF2BP1, whose primary function is the regulation of 

cytoplasmic mRNA fate and translation24, and we could not confirm a robust effect of QKI in 

further experiments (data not shown). Further analysis with independent siRNAs confirmed 

that depletion of ZRANB2 and SYF2 in MCF7-Doxo-R cells decreased their survival to Doxo 

(Fig. 3C,D). In addition, both RT-qPCR and Western blot analyses confirmed ZRANB2 

overexpression at both RNA and protein levels in MCF7-Doxo-R cells compared to MCF-7 

cells (Fig. 3E). In the case of SYF2, its over-expression in MCF7-Doxo-R cells could be 

confirmed by RT-qPCR, but not by Western blot, which is less quantitative (Fig. 3E). 

 

Identification of exons regulated by ZRANB2 

ZRANB2 is well known to bind RNA and was shown to regulate AS of several genes25, but 

little is known about its biological function and its AS targets genome-wide. To identify the 

AS events it regulates in MCF7-Doxo-R cells, we analyzed the effects of its depletion using 

two independent siRNAs. This analysis identified 78 exons regulated by both siRNAs, 51% of 

which were ASEs (Fig. 4A and Table S3). Remarkably, 55 (71%) of the 78 events regulated by 

ZRANB2 were also regulated in MCF7-Doxo-R versus MCF-7 cells (Fig. 4B), which is consistent 
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with ZRANB2 overexpression in MCF7-Doxo-R cells. The AS regulations by ZRANB2 were 

enriched in genes involved in cell death, microtubule dynamics, cell cycle and DNA repair (Fig. 

4C), and we validated several of them by RT-PCR (Fig. 4D). 

 

The core spliceosome component SYF2 controls AS of specific genes 

SYF2 is a component of the spliceosome26. To identify the AS events regulated by SYF2 in 

MCF7-Doxo-R cells, we analyzed the effects of its depletion using two independent siRNAs. 

This analysis identified 79 exons regulated by both siRNAs (Table S4). Remarkably, the main 

type of AS event regulated by SYF2 was A3SS (49% A3SS, 27% ASE, 12% A5SS; Fig. 5A), which 

is in sharp contrast with ZRANB2 (only 7% A3SS, 51% ASE and 27% A5SS; Fig. 4A) and with 

most splicing factors studied so far. 32 (41%) of the 79 events regulated by SYF2 were also 

found to be regulated in MCF7-Doxo-R versus MCF-7 cells (Fig. 5B). This proportion is lower 

than the 71% overlap that we observed between ZRANB2 and resistance datasets (Fig. 4B), 

and this is consistent with the milder overexpression of SYF2 compared to ZRANB2 in MCF7-

Doxo-R cells as noted above (Fig. 3E). The AS regulations by SYF2 were enriched in genes 

involved in transcription, cell death, cell cycle and DNA repair (Fig. 5C), and we validated 

several A3SS regulations by RT-PCR (Fig. 5D). 

 

ZRANB2 and SYF2 splicing programs converge on the ECT2-Ex5+ splice variant 

We then investigated, whether the shared ability of ZRANB2 and SYF2 to promote Doxo 

resistance may be mediated by common splicing targets. Although they tended to regulate 

different types of AS events as noted above and as evidenced by the little overlap between 

their regulations (Suppl. Fig. S2A), we identified an AS event in the ECT2 gene that was 

robustly regulated in a similar manner by both factors (Fig. 6A-C). ECT2 exon 5 inclusion level 

was higher in MCF7-DoxoR than in MCF7 cells, and was reduced by depletion of either 

ZRANB2 or SYF2 (Fig. 6C). 

To determine whether regulation of ECT2 Ex5 inclusion by ZRANB2 and SYF2 may be direct, 

we analyzed their association with ECT2 pre-mRNA by RIP-qPCR. We found a significant 

association of ZRANB2 with ECT2 pre-mRNA at the level of intron 5 (Fig. 6D), which is 

consistent with a public eCLIP dataset available in ENCODE (Suppl. Fig. S2B). Meanwhile, 
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SYF2 was found associated around the 3’ splice sites of exons 5 and 6 (Fig. 6E), which is 

consistent with a factor that mainly regulates alternative 3’ splice sites as noted above (Fig. 

5A). These data suggest direct regulation of ECT2 Ex5 inclusion by both ZRANB2 and SYF2 

acting through different mechanisms. 

 

ZRANB2, SYF2 and the ECT2-Ex5+ isoform promote Doxo resistance through S phase arrest 

To determine whether ECT2 Ex5 inclusion may play a role in Doxo resistance, we then 

transfected MCF7-Doxo-R cells with an siRNA targeting this exon (Suppl. Fig. S2C). Depletion 

of the ECT2 Ex5+ isoform led to a 25% decrease of MCF7-Doxo-R cell survival to Doxo 150 

µM, which represents between one half and one third of the effects of SYF2 and ZRANB2 

depletion (Fig. 7A). Depletion of the ECT2 Ex5+ isoform had no impact on cell growth in the 

absence of Doxo (data not shown). The depletion of several other splice variants had little or 

no impact on MCF7-Doxo-R cell survival to Doxo 150 µM (Fig. 7A). 

To better understand the resistance phenotype controlled by ZRANB2, SYF2 and the ECT2 

Ex5+ isoform, we analyzed cell cycle and cell death. In MCF-7 and other sensitive cells, Doxo 

typically induces G2-M and/or G1 arrest and cell death19. Treatment of MCF7-Doxo-R cells 

with Doxo at 150 µM for 48 hours induced a striking decrease of the proportion of cells in G1 

phase (from 50 to 14%) that could not be explained by the modest increases in G2-M and 

sub-G1 (cell death), but instead mainly resulted from a massive accumulation of cells in S 

phase (from 20 to 45%; Fig. 7B). These data indicate that the resistance phenotype of MCF7-

Doxo-R cells is linked to their ability to arrest in S phase in response to high doses of Doxo 

(which may favor replication-coupled repair and prevent cell death; see discussion). 

Depletion of either ZRANB2, SYF2 or the ECT2-Ex5+ isoform in MCF7-Doxo-R cells had little 

effect on cell cycle and cell death in the absence of Doxo (Suppl. Fig. S3), but reduced the 

accumulation of cells in S phase in response to Doxo (Fig. 7C). We also noted that in the 

absence of Doxo, cell death and polyploidy were strongly induced by depletion of total ECT2, 

but were not induced by selective depletion of the ECT2-Ex5+ isoform, or by depletion of 

either ZRANB2 or SYF2 (Suppl. Fig. S3). These data indicate that ZRANB2, SYF2 and the ECT2-

Ex5+ isoform promote the Doxo-induced S-phase arrest phenotype of resistant cells. 
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The ECT2-Ex5+ splice variant is associated with resistance to chemotherapy in ER+ breast 

tumors 

To determine whether AS of ECT2 may have relevance to chemotherapy resistance in breast 

cancer patients, we quantitated ECT2 isoforms by RT-qPCR in a large collection of clinically 

annotated breast tumors. Overall, when combining the different subtypes of breast cancer, 

higher levels of ECT2 Ex5 inclusion were associated with shorter survival in breast cancer 

patients that were treated with chemotherapy, but not in patients that were not treated 

with chemotherapy (Suppl. Fig. S4A). This association of higher ECT2 Ex5 inclusion levels with 

shorter survival specifically in cases of chemotherapeutic treatment, was even more 

pronounced in the ER+ subtype of breast cancer (Fig. 6D), but was not found in triple-

negative breast cancer (Suppl. Fig. S4B). We also noted that total mRNA levels of ECT2 were 

associated with bad prognosis in ER+ breast cancer, whether or not patients were treated 

with chemotherapy (Suppl. Fig. S4C). 

 

DISCUSSION 

Recent studies have started to identify AS networks involved in oncogenesis, but little is 

known about AS regulatory pathways and genome-wide programs involved in resistance to 

anticancer treatments. In this study, we identify genome-wide AS programs associated with, 

as well as AS regulatory pathways controling resistance of ER+ breast cancer cells to Doxo. 

These programs and pathways involve two poorly characterized splicing factors (ZRANB2 and 

SYF2), and converge on the ECT2-Ex5 AS event. 

ECT2, also known as ARHGEF31, is a protooncogene with a well established role in the 

cytokinesis phase of the cell cycle27. Interestingly, the exon 5 of ECT2 encodes a BRCT 

domain, which is often found in proteins involved in the DDR28, and ECT2 was recently 

involved in cell death induction by DNA damage29,30. Our data suggest that the ECT2-Ex5 

isoform can promote resistance to Doxo through a role in S phase. 

ZRANB2, also known as ZIS or ZNF265, is a ubiquitous RBP that was shown to interact with 

several splicing factors and a specific RNA motif, and to regulate AS of several minigenes, but 

little was known about its endogenous splicing targets and biological functions25,31,32. 



Regulation of alternative splicing and polyadenylation by genotoxic anticancer agents | Iris Tanaka 
 

 
65 

SYF2, also known as p29 or Ntc31, has a long-known dual function in both spliceosome and 

cell cycle, from yeast to human33. In budding yeast, SYF2 mutation affects splicing of genes 

encoding tubulin, leading to spindle checkpoint activation34. In human, SYF2 has been 

involved in DNA damage-induced cell cycle checkpoint activation, and was proposed to 

control the replication checkpoint through an association with MCM3 and PCNA during S 

phase35–37. However, little was known about the splicing events controled by human SYF2. 

Our findings strongly suggest that SYF2 promotes replication checkpoint through AS 

regulation of ECT2-Ex5. Thus, SYF2 appears to promote replication checkpoint through both 

splicing-dependent (this study) and independent mechanisms35. Interestingly, within the 

spliceosome SYF2 is part of the yeast Prp19 complex and of the human Prp19-associated 

complex, two components of which also have a direct role in replication checkpoint 

activation or replication stress response26,38–40. Thus, our findings may help understand the 

links between splicing regulation and cell-cycle checkpoint activation. 

A more efficient replication checkpoint may favor replication-coupled repair and prevent cell 

death, as recently observed in cancer stem cells41. It remains to be determined, whether the 

AS regulatory pathways (involving ZRANB2, SYF2 and ECT2-Ex5) that we identify to promote 

replication checkpoint and genotoxic stress resistance in MCF7-Doxo-R cells, may be 

involved more generally in cancer stem cells. 

Further identification of genome-wide AS programs associated with, as well as AS regulatory 

pathways controling resistance to anticancer treatments, should help understand the 

complex gene regulatory networks involved in resistance. This approach should also help 

identify novel biomarkers of resistance, and potential therapeutic targets. 

 

METHODS 

Cell culture and treatment 

Sensitive (MCF-7-Parental) and Doxo-resistant (MCF-7-Doxo-R) human breast carcinoma 

cells (Millour, Mol Cancer Ther 2011) were cultured in 4,5 g/L Glucose DMEM (Eurobio) 

supplemented with 10% (v/v) fetal bovine serum (Dutscher), and 2 mM L-Glutamine 

(Eurobio) in 5% CO2 at 37°C. Doxo was obtained from Sigma (D-1515) and the resistant 
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phenotype was maintained by culturing the Doxo-R cells in 17 μM Doxo. For experiments, 

treatments in Doxo-R cells were done at 150 μM after one passage in the absence of Doxo.  

siRNA transfections 

siRNA pools used for the miniscreen were obtained by the cherry-pick library preparation 

service from Dharmacon. Individual siRNAs were from Eurogentec. Reverse transfection was 

performed at a final concentration of 100 nM with lipofectamine RNAimax from 

ThermoFischer Scientific. 

WST-1 cell survival assay  

Cells were simultaneously reverse transfected with siRNA and seeded at an appropriate 

density in 96-well plates (3,000 cells/well for Parental and 5,000 cells/well for Doxo-R cells) 

on day 1, in 6 replicates per siRNA condition. 48 hours later on day 3, triplicates were treated 

with 150 μM Doxo. 72 hours later on day 6, cell survival was assayed using WST-1 (Sigma) 

according to  the manufacturer’s instructions. 

RNA extraction and RT-(q)PCR 

RNA from whole cells was extracted using TRIzol Reagent (ThermoFiscer Scientific), and 1 μl 

of GlycoBlue (ThermoFisher Scientific) was added for RNA precipitation. Total RNA was 

treated with DNase I (TURBO DNAfree, ThermoFisher Scientific). Reverse transcription was 

performed using SuperScript™ Reverse Transcriptase (ThermoFisher Scientific) and random 

primers. PCR was performed using GoTaq Flexi DNA Polymerase (Promega), and PCR 

products were migrated on agarose gels. qPCR was performed using Power SYBR Green PCR 

Master Mix (ThermoFisher Scientific) on a CFX96 Real-Time PCR Detection System (BioRad). 

RIP-qPCR 

For RIP-qPCR, antibody was hybridized to Dynabeads Protein G (ThermoFisher Scientific) 

rotating at 4°C overnight before cell harvesting. RNA-protein complexes were crosslinked 

with a 1% formaldehyde incubation at RT for 10 minutes. The crosslink reaction was 

quenched using 125 mM glycine for 5 minutes at RT. Cells were washed twice with ice-cold 

PBS before harvesting and pelleted by centrifugation (4°C, 5 minutes, 800 g). Cells were 

resuspended in 1 ml RIPA (Sigma) with 1 µl RNAse out and cOmplete™ Protease Inhibitor 

Cocktail (Sigma) at 1X concentration, and cell lysates were sonicated for 5 minutes. 

Supernatant was collected after centrifugation at 4°C for 10 minutes (10 000 g). One tenth of 
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the IP input was used for RNA input and was treated with proteinase K before RNA 

extraction with TRIzol Reagent (ThermoFisher Scientific). 400 µg of protein was used for 

each IP condition, and incubated with antibody-hybridized Dynabeads overnight rotating at 

4°C. Supernatant was removed and the beads were washed twice with RIPA buffer before 

RNA-protein complex elution by incubation with elution buffer (Tris-HCl pH8 100 mM; Na2-

EDTA 10 mM; 1% SDS in H2O) 3 minutes at 90°C. Protein was degraded with proteinase K 

treatment and RNA was extracted with TRIzol Reagent (ThermoFisher Scientific) for RT-qPCR 

analysis. 

Western-blot 

For immunoblotting, cells were lysed in RIPA buffer (Sigma) after two PBS wash and cell 

lysate was sonicated for 5 minutes. Supernatant was collected after centrifugation at 4°C for 

10 minutes (10 000 g). Protein concentration was determined using the Pierce™ BCA protein 

assay kit from ThermoFisher Scientific and BSA standards from BioRad. Proteins were then 

separated in 4-12% NuPAGE® Bis-Tris precast gels (ThermoFisher Scientific) and transferred 

on nitrocellulose membrane using the iBlot2 dry transfer system from ThermoFisher 

Scientific. Membranes were incubated overnight at +4°C with primary antibodies and 

proteins were detected using horse-radish peroxidase-conjugated goat anti-mouse or anti-

rabbit antibodies. After washing, the blots were revealed using Clarity™ Werstern ECL 

substrate (BioRad), and a ChemiDoc™ gel imaging system from BioRad. 

Cell cycle analysis 

For cell cycle analysis by FACS, culture media of each condition was removed and kept aside, 

and cells were washed twice with PBS. After trypsinazation, cells were resuspended in their 

culture media and centrifuged at RT for 5 minutes (700 g). Supernatant was removed and 

cells were washed twice with PBS. For fixation, 1ml of cold 70% ethanol was added and cell 

pellets were incubated for at least 30 minutes at -20°C. Cells were then washed twice with 

ice cold PBS and resuspended in Vindelov solution (Tris-HCl 3,5 mM; NaCl 10 mM; IGEPAL 

o,1%) with RNAse A (20 µg/ml) and propidium iodine (50 µg/ml) and incubated at RT in the 

dark for 30 minutes. Flow-cytometry analysis of 20 000 cells was performed on a 

FACSCanto™ flow cytometer from BD Biosciences. Data analysis was done on the FlowJo 

software. 
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Exon-junction array analyses 

One µg of total RNA was processed and hybridized to Glue Grant Human Transcriptome 

arrays (Affymetrix) according to the manufacturer’s instructions. The experiments, from cell 

treatment to array hybridization, were performed three times. Data were analyzed with 

Expression Console (Affymetrix) to perform quality assessment and normalized using quintile 

normalization. Background correction and probe selection were performed as previously 

described, using exon annotation from the Faster DB database19 

(http://fasterdb.lyon.unicancer.fr/). Exonic regulation between two conditions was analyzed 

using the splicing index method in three independent ways, based either on probes in all 

annotated exons, on probes in annotated alternative exons and their neighbours, or on 

junction probes. Only the regulation events found by two methods (with fold change >1.8 

and p value <0.05) were selected. Exonic regulations were classified into different types (ASE, 

etc.) based on annotation of known events. Data were visusalized in gene context using the 

Elexir tool of Faster DB. 

RNA-seq analyses 

Libraries were made using one µg of total RNA and the TruSeq Stranded mRNA Library 

Preparation Kit (Illumina). Equimolar pool of libraries were sequenced on a Illumina HiSeq 

2500 machine using paired-ends reads (PE, 2x101bp) and High Output run mode allowing to 

get 200 millions of raw reads per sample. Raw reads were mapped on the human reference 

genome hg19 using the STAR aligner (v.2.5.0a). PCR-duplicated reads and low mapping 

quality reads (MQ<20) were removed using Picard tools and SAMtools, respectively. We next 

used rMATS (v3.0.9), an event-based tool, to identify differentially spliced events using RNA-

seq data42. Five distinct alternative splicing events were analyzed using rMATS: skipped 

exons (SE), alternative 3' splice sites (A3SS), alternative 5' splice sites (A5SS), mutually 

exclusive exons (MXE) and retained introns (RI). Briefly, rMATS uses a counts-based model, 

to calculate percent of spliced-in (PSI) value among replicates, using both spliced reads and 

reads that mapped the exon body. We used three different thresholds to identify 

differentially spliced events between two groups: splicing event has to be (i) supported by at 

least 15 unique reads, (ii) |ΔPSI| > 10%; (iii) FDR < 0.05. Motif enrichment analysis was 

performed using the rMAPS software43. 

  

http://fasterdb.lyon.unicancer.fr/
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Table 1: List of splicing factors regulated in MCF7-Doxo-R versus MCF7 cells. 

Symbol Description Regul° Fold change 

IGF2BP2 insulin-like growth factor 2 mRNA binding protein 2  up 17,8 

IGF2BP3 insulin-like growth factor 2 mRNA binding protein 3  up 14,1 

SNRPN small nuclear ribonucleoprotein polypeptide N  up 13,7 

IGF2BP1 insulin-like growth factor 2 mRNA binding protein 1  up 12,3 

RBM7 RNA binding motif protein 7  up 4,9 

CPEB1 cytoplasmic polyadenylation element binding protein 1  up 4,8 

ELL2 elongation factor, RNA polymerase II, 2  up 3,5 

KHDRBS3 KH domain containing, RNA binding, signal transduction associated 3  up 3,5 

DHX35 DEAH (Asp-Glu-Ala-His) box polypeptide 35  up 3,1 

ZRANB2 zinc finger, RAN-binding domain containing 2  up 3,1 

CWC22 CWC22 spliceosome-associated protein homolog (S. cerevisiae)  up 3,0 

QKI quaking homolog, KH domain RNA binding (mouse)  up 2,8 

RBM11 RNA binding motif protein 11  up 2,8 

SYF2 SYF2 homolog, RNA splicing factor (S. cerevisiae)  up 2,7 

ELAVL2 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 2 (Hu antigen B)  up 2,5 

RBM9 RNA binding motif protein 9  up 2,4 

MAGOH mago-nashi homolog, proliferation-associated (Drosophila)  up 2,4 

CELF2 CUGBP, Elav-like family member 2  up 2,3 

DEK DEK oncogene  up 2,1 

RBM47 RNA binding motif protein 47  down 11,0 

ESRP2 epithelial splicing regulatory protein 2  down 10,4 

RBPMS RNA binding protein with multiple splicing  down 8,0 

BCAS1 breast carcinoma amplified sequence 1  down 6,8 

TTF2 transcription termination factor, RNA polymerase II  down 5,4 

JUP junction plakoglobin  down 5,2 

RBM23 RNA binding motif protein 23  down 5,2 

TRIM24 tripartite motif-containing 24  down 4,7 

LEO1 Leo1, Paf1/RNA polymerase II complex component, homolog (S. cerevisiae)  down 4,4 

RBM24 RNA binding motif protein 24  down 4,3 

SRPK2 SRSF protein kinase 2  down 3,5 

PCBP3 poly(rC) binding protein 3  down 3,2 

POLR2J polymerase (RNA) II (DNA directed) polypeptide J, 13.3kDa  down 3,2 

ZFP36 zinc finger protein 36, C3H type, homolog (mouse)  down 3,0 

ZFP36L2 zinc finger protein 36, C3H type-like 2  down 3,0 

BCAS2 breast carcinoma amplified sequence 2  down 3,0 

SRRT serrate RNA effector molecule homolog (Arabidopsis)  down 2,9 

SNRPA1 small nuclear ribonucleoprotein polypeptide A'  down 2,7 

HNRNPAB heterogeneous nuclear ribonucleoprotein A/B  down 2,5 

ESRP1 epithelial splicing regulatory protein 1  down 2,4 

HNRNPUL1 heterogeneous nuclear ribonucleoprotein U-like 1  down 2,2 

PRPF4 PRP4 pre-mRNA processing factor 4 homolog (yeast)  down 2,0 
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FIGURE LEGENDS 

Figure 1: Acquired resistance to Doxo is accompanied by widespread AS regulation. A-B, 

Types of alternative exons regulated in MCF7-Doxo-R versus MCF7 cells in exon-junction 

array (A) and RNA-seq data (B). C, Enriched functions (Ingenuity Pathway Analysis) in genes 

with exonic regulations in RNA-seq data. D, RT-PCR validations of AS events. 

Figure 2: Acquired resistance to Doxo is accompanied by a switch of an EMT-related 

splicing network. A, The RBFOX binding motif is enriched around ASEs (cassette exons) 

regulated in MCF7-Doxo-R versus MCF7 cells. B-C, Expression regulation of EMT-related 

genes and splicing factors (B, qRT-PCR data) and splice variants (C, RT-PCR) between MCF7-

Doxo-R and MCF7 cells. D-E, Depletion of RBFOX2 in MCF7-Doxo-R cells (D) or ESRPs in MCF7 

cells (E) does not affect Doxo sensitivity. 

Figure 3: An RNAi screen on splicing factors identifies ZRANB2 and SYF2 as mediators of 

Doxo resistance. A-B, RNAi screens in MCF7 (A) and MCF7-Doxo-R cells (B). Following 

transfection and two-day recovery, cells were grown for three days with or without Doxo, 

and cell survival was assessed (WST1). C-D, Validation of the effects of siRNAs on ZRANB2 (C) 

and SYF2 (D) on their protein levels (top panels) and Doxo sensitivity (bottom panels) in 

MCF7-Doxo-R cells. E, Analysis of ZRANB2 and SYF2 expression levels in MCF7-Doxo-R and 

MCF7 cells at the protein (top panel)  and RNA levels (bottom panel). 

Figure 4: Identification of exons regulated by ZRANB2. A, Types of AS events regulated by 

ZRANB2 depletion in MCF7-Doxo-R cells. B, Overlap with exons associated with Doxo 

resistance. C, Enriched functions (Ingenuity Pathway Analysis) in genes with exonic 

regulations by ZRANB2. D, RT-PCR validations of exonic regulations by ZRANB2. 

Figure 5: The spliceosome component SYF2 controls AS of specific genes. A, SYF2 depletion 

in MCF7-Doxo-R cells mainly regulates alternative 3’ splice sites. B, Overlap with exons 

associated with Doxo resistance. C, Enriched functions (Ingenuity Pathway Analysis) in genes 

with exonic regulations by SYF2. D, RT-PCR validations of A3SS regulations by SYF2. 

Figure 6: ZRANB2 and SYF2 splicing networks converge on the ECT2-Ex5 splice variant. A, 

Overlap between Doxo-R associated splicing events regulated by ZRANB2 and SYF2. B, 
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Schematics of the ECT2 gene around exon 5. C, RT-PCR validation of ECT2-Ex5 AS regulation 

by ZRANB2 and SYF2 depletions, and in DoxoR vs MCF7 cells. Quantitations and 

representative gels are shown. D-E, RIP-qPCR analysis of ZRANB2 (D) and SYF2 (E) association 

with ECT2 pre-mRNA at the indicated locations. 

Figure 7: The ECT2-Ex5 splice variant regulates Doxo sensitivity. A, Effect of siRNAs 

targeting ECT2-Ex5 and other alternative exons, on Doxo sensitivity in MCF7-Doxo-R cells. B, 

Effects of Doxo treatment at 150 µM for 48 hours on cell cycle in MCF7-Doxo-R cells. C, 

Effects of ZRANB2, SYF2 and ECT2-Ex5 depletions on MCF7-Doxo-R cell cycle in the absence 

and presence of Doxo. D, High inclusion levels of ECT2-Ex5 (high V1/V2 ratio) in ER+ (HR+ 

ERBB2-) breast tumors correlate with bad prognosis in patients treated with chemotherapy. 

Kaplan-Meier curves. MFS, metastasis-free survival. 

 

SUPPLEMENTARY FIGURES 

Figure S1: Effects of splicing factor depletion on cell survival without Doxo. A, MCF7 cells. B, 

MCF7-Doxo-R cells. 

Figure S2: A, Overlap between ZRANB2 and SYF2 splicing programs. B, ZRANB2 eCLIP data 

(from an ENCODE dataset) for the ECT2 and MPRIP genes. The regulated exons are circled. C, 

RT-PCR validation of siRNAs targeting specific exons in ECT2 and MPRIP. 

Figure S3 : In the absence of Doxo, MCF7-Doxo-R cell cycle is affected by depletion of ECT2 

total, but not of ECT2-Ex5, ZRANB2 or SYF2. 

Figure S4 : Prognostic analysis of ECT2 RNA levels measured in breast tumors before 

treatment. A, Breast tumors of all types. V1/V2, ECT2-Ex5 inclusion levels. Patients with (left) 

or without (right) chemotherapy. B, Triple-negative breast tumors with chemotherapy 

treatment. ECT2-Ex5 inclusion levels (left) and total mRNA levels (right). C, ER+ breast 

tumors (HR+ ERBB2-). Total ECT2 mRNA levels. Patients with (left) or without (right) 

chemotherapy. 
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SUPPLEMENTARY TABLES 

Table S1: List of exons regulated in MCF7-Doxo-R versus MCF7 cells (exon-junction arrays). 

Table S2: List of exons regulated in MCF7-Doxo-R versus MCF7 cells (RNA-seq). 

Table S3: List of exons regulated by ZRANB2 depletion in MCF7-Doxo-R (RNA-seq). 

Table S4: List of exons regulated by SYF2 depletion in MCF7-Doxo-R (RNA-seq). 
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ABSTRACT 

Alternative last exons (ALEs) generated by intronic polyadenylation are repressed by 

doxorubicin in specific genes, but little is unknown about ALE regulation by other anticancer 

drugs, its link with drug antiproliferative effects, and its impact on the translatome. Here, 

using 3’-seq, we found that ALEs are a prevalent type of exons regulated by cisplatin in non-

small cell lung cancer (NSCLC) cells. Unlike doxorubicin, cisplatin induced proximal-ALE 

isoforms when compared to full-length isoforms. Mechanistically, this regulation was 

mediated by an inhibition of transcription elongation, which was enriched in long genes. 

Functionally, cisplatin-induced ALE regulations were enriched in genes involved in cell cycle 

and cell death, and preceded these cellular responses. The lower antiproliferative effect of 

oxaliplatin compared to cisplatin in NSCLC cells correlated with dramatically less effects on 

ALEs despite similar numbers of up-regulated genes. Moreover, ALE regulations 

distinguished cisplatin-sensitive versus resistant cells. Finally, 3’-seq analyses on polysomes 
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identified an efficiently translated subset of cisplatin-induced proximal-ALE isoforms, and an 

inefficiently translated subset enriched in particularly short isoforms. Our findings identify 

proximal-ALE induction as a widespread mechanism of transcriptome regulation linked to 

cancer cell response to cisplatin -not oxaliplatin- and impacting the translatome, and reveal a 

class of inefficiently translated ALE isoforms. 

 

Keywords: Genotoxic anticancer drugs; platinum compounds; intronic polyadenylation; 

translatome; transcription elongation. 

 

INTRODUCTION 

A major class of anticancer drugs used in chemotherapy is genotoxic drugs, which can induce 

various types and combinations of DNA lesions. For example, doxorubicin mainly acts by 

inhibiting DNA topoisomerase II, leading to double-strand DNA breaks, whereas cisplatin 

induces monoadducts, intrastrand and interstrand crosslinks. Lesion-specific signaling and 

DNA-damage response (DDR) involves the activation of specific DNA repair pathways, 

checkpoints that transiently arrest the cell cycle, and the transcriptional regulation of genes 

involved in DNA repair, cell cycle, apoptosis and other functions, thereby contributing to 

determine cell fate (e.g., permanent cell-cycle arrest, cell death, etc.) (1,2). Genotoxic drugs 

also regulate gene expression at post-transcriptional levels, including pre-messenger RNA 

splicing, mRNA stability, and translation (2-4). In particular, genome-wide studies showed 

large-scale regulation of alternative splicing by several genotoxic anticancer drugs (5-10). 

Among the various types of alternative splicing events and alternative exons, a less studied 

type is alternative last exons (ALEs), also often refered to as intronic polyadenylation (IPA). In 

contrast with alternative polyadenylation within the last exon of genes (3’UTR-APA), IPA 

corresponds to the use of a polyadenylation (polyA) site located upstream of the last exon 

(or distal ALE) of a gene, thus leading to a transcript ending in a proximal ALE (11-13). 

Proximal ALEs are found in thousands of human coding genes and come in two main flavors, 

skipped ALEs that are whole exons defined by a 3’ splice site and a polyA site, and composite 

ALEs that have a polyA site downstream of a 5’ splice site (11-13). Using exon-arrays, ALEs 

were found to be the main type of alternative exons regulated by doxorubicin, with about 
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100 cases identified (8). Strikingly, in 90% cases, doxorubicin repressed the proximal ALE 

relative to the last exon of genes. In many cases, the doxorubicin-induced distal ALE 

corresponded to a noncanonical isoform (lowly expressed and non-conserved). Thus, 

doxorubicin induces a specific pattern of ALE regulation. In parallel, camptothecin, a 

topoisomerase I inhibitor, induced either up- or down-regulation of proximal ALEs 

(depending on genes) in approximately equal proportions (8). The repression of proximal 

ALEs by doxorubicin and camptothecin was mediated at least in part by decreased binding of 

the RNA-binding protein HuR (8). 

More generally, there have been several genome-wide studies of ALE regulation in cell 

proliferation and cancer, and different studies found different global patterns, with either 

preferential induction of proximal ALEs (14-16), preferential repression (8,17) or no 

preferential trend (18), suggesting that specific sets of ALEs may be differentially regulated in 

different contexts or by different factors. It is therefore important to identify specific ALE 

regulation patterns in different settings, and in particular to investigate the effects of 

additional anticancer drugs, such as platinum compounds. Cisplatin is a key agent used in the 

treatment of aggressive cancers, notably in non-small cell lung cancer (NSCLC) (19,20). 

Oxaliplatin is used in several cancers but not in NSCLC; it shows distinct profiles of 

antiproliferative effects across cancer cell lines when compared to cisplatin, and was 

recently shown to act primarily through a ribosome biogenesis stress rather than a genotoxic 

mechanism (21). Recent studies have reported widespread alternative splicing regulation by 

cisplatin, and oxaliplatin was shown to regulate alternative splicing of several genes, but the 

impact of these compounds on ALEs is poorly characterized (5,6,22). 

Finally, little is known about the biological significance of ALE regulations. In particular, 

doxorubicin-regulated ALE isoforms of the CENPN gene were shown to be differentially 

active (8), but it is unknown, whether the genome-wide pattern of ALE regulation induced by 

the drug may be linked to its antiproliferative effect. Furthermore, while ALEs were shown to 

give rise to functional protein isoforms in several genes (11-14,16,23,24), little is known 

about the translation of ALE isoforms on a genome-wide scale. Indeed, genome-wide studies 

of the impact of APA isoforms on the translatome or proteome have been mainly limited to 

the analysis of the impact of 3'UTR length (3’UTR-APA) on translation efficiency or output 
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(25-28). In fact, an ALE isoform of a coding gene was recently found to have a noncoding 

RNA function (29). 

Thus, while doxorubicin represses a specific set of proximal ALEs, little is known on a 

genome-wide scale about the regulation of ALE isoforms by other anticancer drugs, and 

about their translation and biological significance. In this study, we found that cisplatin 

treatment of NSCLC cells widely induces proximal ALEs, mechanistically through an inhibition 

of transcription elongation, which was enriched in long genes. Cisplatin-induced ALE 

regulations were enriched in genes involved in cell cycle and cell death, and preceded these 

cellular responses. To further investigate the functional relevance of this regulation pattern, 

we tested genome-wide ALE regulation by more or less antiproliferative platinum 

compounds, and in more or less sensitive cells. These analyses revealed that proximal ALEs 

were poorly induced by oxaliplatin that had little antiproliferative effect in NSCLC cells, and 

distinguished cisplatin-sensitive from resistant cells. Finally, cisplatin-induced ALE regulations 

impacted the translatome; interestingly however, a subset of cisplatin-induced ALE isoforms 

were inefficiently translated. Thus, our findings indicate that proximal ALE induction is a 

widespread mechanism of transcriptome regulation that is linked to cancer cell response to 

cisplatin, discriminates different platinum compounds, and generates differentially 

translated isoforms. 

 

MATERIALS AND METHODS 

Cell culture and treatment 

H358 and A549 sensitive and cisplatin-resistant(30) human lung carcinoma cells were 

cultured in RPMI-1640-Glutamax and DMEM medium, respectively (GibcoBRL, Life 

Technologies, Cergy Pontoise, France), supplemented with 10% (v/v) heat-inactivated fetal 

calf serum (GibcoBRL), in 5% CO2 at 37°C. Cisplatin and oxaliplatin were obtained from 

Selleckchem (Euromedex, Souffelweyersheim, France). Unless otherwise stated, treatments 

with cisplatin and oxaliplatin were done at 100 µM. Treatment with vehicle (DMSO) was 

always done in parallel. 

Western blot 
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For immunoblotting, cells washed three times in PBS were lysed in RIPA buffer (150mM 

NaCl, 50mM Tris HCl pH 8, 0.1% SDS, 1% Nonidet P40, 0.5% Na deoxycholate, 0.1mM PMSF, 

2.5g/ml pepstatin, 10g/ml aprotinin, 5g/ml leupeptin, 0.2mM Na3VO4) for 30 min on ice 

and pelleted. Protein concentration was determined using the Biorad Dc protein assay. 

Proteins (40g) were then separated in 10-12% SDS-PAGE gels and electroblotted onto PVDF 

membranes. Membranes were incubated overnight at +4°C with primary antibodies and 

proteins were detected using horse-radish peroxidase-conjugated goat anti-mouse or anti-

rabbit antibodies (Jackson ImmunoResearch Laboratories, West Grove, PA, USA). After 

washing, the blots were revealed using the ECL chemiluminescence method (Amersham, Les 

Ulis, France), according to the manufacturer’s protocol. Primary antibodies were: anti-PRIM2 

(PA5-48859; ThermoFisher Scientific) and anti-actin (Sigma-Aldrich, Lyon, France). 

FACS analysis 

For DNA content analysis, cells were fixed with 70% cold ethanol for 30 min on ice, treated 

with RNase A (20 µg/ml) for 20 min and stained with propidium iodide (10 µg/ml). Flow 

cytometric analysis of 10000 cells was performed on a FACScan flow cytometer (BD 

Biosciences) and data were recovered using the CellQuest software (BD Biosciences). 

Cell fractionation, RNA extraction and RT-(q)PCR 

Cytosol and polysome fractions were prepared as previously described(31). RNA from whole 

cells and cell fractions was extracted using TRIzol Reagent (ThermoFiscer Scientific), and 1 µl 

of GlycoBlue (ThermoFisher Scientific) was added for RNA precipitation. Total and nuclear 

RNA were treated with DNase I (TURBO DNA-free, ThermoFisher Scientific). Reverse 

transcription was performed using SuperScript™ Reverse Transcriptase (ThermoFisher 

Scientific) and random primers. PCR was performed using GoTaq Flexi DNA Polymerase 

(Promega), and PCR products were migrated on agarose gels. qPCR was performed using 

Power SYBR Green PCR Master Mix (ThermoFisher Scientific) on a CFX96 Real-Time PCR 

Detection System (BioRad). 

Exon-array experiments and bioinformatic analysis 

Exon-array analyses were performed as previously described (8). Briefly, one µg of total RNA 

was processed according to the manufacturer’s instructions and hybridized to GeneChip 

Human Exon 1.0 ST arrays (Affymetrix). The experiments, from cell treatment to array 
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hybridization, were performed three times. Exon-array data were analyzed with Expression 

Console (Affymetrix) to perform quality assessment and normalized using quintile 

normalization. Background correction and probe selection were performed as previously 

described, using exon annotation from the Faster DB database (8) 

(http://fasterdb.lyon.unicancer.fr/). The splicing index method corresponds to a comparison 

of gene-normalized exon intensity values between two analyzed experimental conditions. 

Exon-array data of each regulated exon were visusalized in gene context using the exon-

array visualization tool of Faster DB (Elexir), allowing to eliminate false positives and to 

classify exonic regulations into different types (ALE, etc.). For elongation analysis, each gene 

was divided into 3 bins, and genes with at least 3 intronic probes (median: 17 probes) in the 

5’ and 3’ bins of the gene were used to compute a 3’ to 5’ ratio. Genes with at least 20% 

reduction of this ratio in cisplatin versus vehicle conditions (p < 0.05) were considered to be 

elongation inhibited. 

3’-seq experiments and bioinformatic analysis 

5 μg of total RNA were used for poly(A)+ RNA purification with Dynabeads mRNA DIRECT 

Micro kit (ThermoFisher Scientific). Poly(A)+ RNA was fragmented at 70°C for 5 min in RNA 

Fragmentation Reagents (ThermoFisher Scientific). After ethanol precipitation, RNA was 

reverse transcribed using anchored oligo-dT and SMARTScribe RT enzyme (Clontech) 

allowing to add adapter sequences to the 5’ and 3’ ends of RNA fragments. Libraries were 

amplified by 16 cycles of PCR with GoTaq Flexi DNA Polymerase (Promega), purified using 

Agencourt AMPure XP (Beckman Coulter) magnetic beads, and quantified with Quant-iT 

Picogreen dsDNA kit (ThermoFisher Scientific). A size selection step was done using 

SPRIselect (Beckman Coulter) magnetic beads to obtain fragments of 150–300 bp. Purified 

libraries were controlled by capillary electrophoresis (LabChip - Perkin) and quantitated by 

qPCR (KAPA Library Quantification Kits Illumina Platforms - Roche). Pooled libraries (12 pM) 

with 30% of phiX were subjected to single-end, 50 bp sequencing using the HiSeq 2500 

machine (Illumina). Read 1 was read with primer HP6 (Illumina) with 3 dark cycles (first 3 

bases of read 1 were not read). Index i7 (6 pb barcode) was read with primer HP8 (Illumina). 

Raw reads were trimmed in their 5’ and 3’ ends to remove uninformative nucleotides due to 

primer sequences, nucleotides added by SMART Scribe RT enzyme and polyA tail of mRNAs. 

Trimmed reads of 25 bp or more were aligned on the human reference genome (hg19) using 

http://fasterdb.lyon.unicancer.fr/
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Bowtie2 (version 2.2.5) (32). Only reads with a mapping quality score (MAPQ) of 20 or more 

were retained (Samtools version 1.1) for downstream analysis. Reads were then clustered 

along the genome using Bedtools (version 2.17.0) (33), allowing a maximum distance of 170 

bp (max library fragment length (300bp) – min fragment length (60bp) – read length (50bp) – 

oligodT length (25bp)) and a minimum number of 5 reads per peak. Peaks with a stretch of 6 

consecutive As (or 8 As out of 9 nucleotides) within 150 bp downstream were filtered out, as 

they are likely due to internal priming of oligo-dT. Overlapping peaks from all analyzed 

samples were merged to define a common set of genomic windows corresponding to polyA 

sites. To annotate peak location within genes, gene coordinates were obtained on the basis 

of overlapping Refseq transcripts with the same gene symbol. Peaks overlapping any intronic 

region of a gene were classified as intronic polyA (IPA) peaks. Peaks overlapping the last 

exon of a gene were classified as LE peaks. Differential analyses between two conditions 

were done using two independent biological replicates per condition. To compare the 

regulation of each IPA to the regulation of the gene’s last exon (taken as the sum of the 

peaks in this exon), we used DESeq2 (version 1.4.5) (34) and the following statistical model: 

Yij = μ + Li + Cj + (LC)ij + Eij 

where Yij is the normalized counts of peak i in biological condition j, μ is the mean, Li is the 

peak localization (IPA or LE), Cj is the biological condition, (LC)ij is the interaction between 

peak localization and biological condition, and Eij is the residual. Adjusted P-values 

(Benjamini-Hochberg) were calculated. For H358 cells, data using a false discovery rate (FDR) 

of 10% are shown. For A549 cells, data with p < 0.05 are shown, to avoid under-estimations 

of cross-comparisons between lists (Fig. 5F and 6C). The complete bioinformatics pipeline 

(3’-SMART package) described above and in Fig. S1 can be freely downloaded at GitHub 

(https://github.com/InstitutCurie/3-SMART) and can be run through a configuration file and 

a simple command line. Annotated polyadenylation sites were retrieved from PolyA_DB_3 

(35). 

Other bioinformatic and statistical analyses 

Functional gene annotation analyses were done using the DAVID software (36), using the 

human genome as a reference. For each experimental analysis, at least three independent 

experiments were performed. In all bar charts, error bars represent the standard error of the 

mean (SEM) that is the standard deviation divided by the square root of sample number. A 
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Student's paired t-test was used, except in Fig. 3B, 3D, and 4A, where a Mann-Whitney test 

was used. Tests were considered significant if p < 0.05. 

 

RESULTS 

Cisplatin regulates ALEs in many genes, with a strong bias toward proximal ALE induction 

To analyze the impact of cisplatin on alternative exons, total RNA from the cisplatin-sensitive 

H358 lung adenocarcinoma cells treated for 7 or 24 hours with cisplatin at 100 µM or with 

vehicle were initially analyzed using Affymetrix exon-arrays, as previously done for 

doxorubicin and camptothecin (8). About 50 and 150 exon regulations were identified at 7 

and 24 hours, respectively (Supplementary Table 1). The most prominent category of 

regulation events was ALEs, followed by alternative first exons (corresponding to alternative 

promoters) and cassette exons (alternatively spliced exons; Fig. 1A). 

We then extended our analysis of ALE regulation using 3’-seq, an RNA-seq method that relies 

on the sequencing of regions preceding the 3’-terminal polyA tail of transcripts (37) 

(Supplementary Fig. S1A). Because 3’-seq analysis can be flawed by internal priming of the 

oligo(dT) at genomic stretches of A’s, 3’-seq peaks ending near a genomic stretch of A’s were 

discarded (Supplementary Fig. S1B, “peak filtering”). We also verified that most of the 

selected peaks contained a potential polyadenylation signal (AATAAA-like motif; 

Supplementary Fig. S1C). For each peak overlapping an annotated intron, we analyzed the 

effect of cisplatin on its expression relative to the last exon of the cognate gene 

(Supplementary Fig. S1B). With a false discovery rate (FDR) of 10%, 2963 intronic peaks in 

1987 genes were regulated by cisplatin at 24 hours of treatment (Fig. 1B; Supplementary 

Table 2). Because internal priming artefacts can be difficult to filter out bioinformatically, we 

also crossed our list of regulated intronic peaks with a list of reliable polyA sites identified in 

normal tissues (annotated in PolyA_DB_3) (35). Among the 2963 regulated intronic peaks, 

719 (24%) matched an annotated physiologic polyA site (Fig. 1B, Supplementary Fig. S1D). 

We found on average a similar percentage of annotated polyA sites in our subsequent 3’-seq 

analyses on cytosolic fractions (Supplementary Fig. S1D and see below), which are devoid of 

unspliced transcripts and thus are unlikely to be subject to internal priming in introns. These 

data suggest that many of the cisplatin-induced intronic peaks that we identified may 
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correspond to genuine polyA sites, that were not annotated in normal tissues. We therefore 

decided to keep all regulated peaks for subsequent analyses (which were also performed in 

parallel on annotated polyA sites for confirmation, see below). Finally, about half of the ALE 

regulations identified using exon-arrays were also found using 3’-seq, with lowly expressed 

genes yielding more regulations using exon-arrays (data not shown). 

Strikingly, 90 to 95% of ALE regulations by cisplatin, identified by either exon-array or 3’-seq 

(annotated or not) corresponded to an up-regulation of the proximal ALE relative to the last 

exon of the gene (Fig. 1C). This pattern is in sharp contrast with the previously described 

effect of doxorubicin, which repressed proximal ALEs in 90% cases (8). For example, in intron 

7 of the PRIM2 gene, our 3’-seq data identified a proximal polyA site, which is annotated in 

PolyA_DB_3 (chr6:57299993:+) and was increased by cisplatin relative to the last exon of the 

gene (exon 14 ; Fig. 1D). RT-PCR analysis showed the existence of a spliced RNA containing 

exon 7 and an ALE within intron 7 (Fig. 1E-F), which is in agreement with an Ensembl 

transcript (PRIM2-205 ENST00000490313.1). RT-qPCR analysis validated the relative 

induction by cisplatin of this short PRIM2 isoform compared to the full-length PRIM2 mRNA, 

which was strongly decreased (Fig. 1G). Many other ALE regulations were validated by RT-

PCR (Fig. 1H). Thus, ALE regulation is a prominent effect of cisplatin, with a strong bias 

toward up-regulation of proximal ALEs relative to full-length isoforms. 

Cisplatin induction of proximal ALEs is mediated by an inhibition of transcription 

elongation in long genes 

Our data indicate that proximal ALE up-regulation by cisplatin is mediated at least in part by 

an inhibition of transcription elongation. First, genes with proximal ALE up-regulation by 

cisplatin were on average much longer than non-regulated ALE-containing genes in the 

human genome (Fig. 2A, “LE”), and cisplatin-induced proximal ALEs were much closer to the 

gene start than the last exon of cognate genes (Fig. 2A, comparing “Prox. ALE” and “LE” of 

regulated genes). Second, cisplatin was reported to inhibit transcription elongation of 

several genes or gene constructs, but this has not been studied on a large scale (38-40). 

Using our exon-array data, we could compute a ratio of intronic RNA levels at the 3’ versus 5’ 

part of genes for 2545 genes, and we found that cisplatin inhibited transcription elongation 

in 753 (30%) of them by at least 20% at 7 and/or 24 hours of treatment (p < 0.05; 

Supplementary Fig. S2A and Supplementary Table 3). As in the case of ALE regulation, 
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elongation inhibition by cisplatin was enriched in long genes (Fig. 2A, right). Moreover, 48% 

of genes with proximal ALE up-regulation by cisplatin had their elongation inhibited by the 

drug (Fig. 2B, left). Elongation inhibition was twice more frequent for genes with proximal 

ALE up-regulation (Fig. 2B, middle), and vice versa, proximal ALE up-regulation was twice 

more frequent for genes with elongation inhibition (Fig. 2B, right). By RT-qPCR using primers 

in introns at the 3’ versus 5’ part of genes, we verified that cisplatin treatment for 7 hours 

inhibited transcription elongation in 8 out of 11 tested genes with proximal ALE up-

regulation (Fig. 2C). 

Third, for the genes tested, both the proximal ALE up-regulation and the elongation 

inhibition that were observed in response to cisplatin, were also observed in response to 

camptothecin (a topoisomerase I inhibitor), further suggesting a link between these two 

effects (Supplementary Fig. S2B-C). We also noted that the proximal ALE up-regulation could 

be observed in nuclear RNA (Supplementary Fig. S2D), which is in line with a mechanism 

relying on transcription rather than cytosolic stability of isoforms. Finally, a more detailed 

analysis on three genes indicated that in response to cisplatin, pre-mRNA levels were not 

affected in the first intron (suggesting no regulation of transcription initiation), but 

decreased in the intron preceding the up-regulated ALE, and were further decreased in the 

last intron (Fig. 2D). Reduced elongation between the proximal ALE and the last exon of the 

gene can directly explain the relative decrease in full-length mRNA levels. Altogether, our 

data suggest that cisplatin induction of proximal ALEs relative to the last exon of cognate 

genes is mediated at least in part by an inhibition of transcription elongation (see discussion). 

Transcript truncation in response to cisplatin is enriched in cell-cycle and cell-death genes, 

and precedes these cellular responses 

To investigate the biological relevance of ALE regulation by cisplatin, we first analyzed the 

functional annotation of genes with cisplatin up-regulation of proximal ALEs, taking either 

the full list (1875 genes) or only the subset corresponding to annotated polyA sites (577 

genes; see Fig. 1B). In both cases, among the most enriched functions were functions related 

to DDR, cell cycle and cell death (Fig. 3A and Supplementary Fig. S3), which are key cellular 

effects of cisplatin. We then sought to determine, whether transcript truncation in response 

to cisplatin is a mere consequence of cell cycle arrest or cell death, or can precede these 

cellular responses. Our microarray analyses that were done at 7 and 24 hours of treatment 
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with cisplatin at 100 µM in H358 cells, indicated that a significant subset of ALE regulation 

events and the majority of elongation repression events were detected at 7 hours of 

treatment (Fig. 1A and Supplementary Fig. S2A). In contrast, regarding cell death, the 

percentage of cells with a sub-G1 DNA content was not increased at 7 hours of treatment 

with cisplatin at 100 µM, although it was increased at 24 hours of treatment (Fig. 3B). These 

data suggest that many ALE and elongation regulation events induced by cisplatin are not a 

consequence of cell death. 

Regarding cell cycle, treatment with cisplatin at 100 µM mainly induced an arrest in G2/M, 

which was detected at 7 hours (Fig. 3C). To go further, we compared the dose-response of 

cisplatin effects on cell cycle arrest and transcript truncation. For this, we took advantage of 

the cell cycle-related gene, PRIM2, in which we showed induction of an ALE within intron 7 

in response to cisplatin treatment at 100 µM for 24 hours (Fig. 1E-G). Following treatment 

with cisplatin at 25 µM, cell cycle arrest was detected at 24 hours, but not at 7 hours (Fig. 

3C-D). In contrast, at 7 hours of treatment with cisplatin at 25 µM, we detected a decrease in 

PRIM2 transcript elongation, and an increase in the ratio of short to full-length PRIM2 mRNA 

isoforms (Fig. 3F-G). These data indicate that transcript truncation in response to cisplatin 

can precede cell cycle arrest. 

We also showed that cisplatin treatment led to a decrease in full-length PRIM2 protein levels 

within 7 hours of treatment, but we could not detect a short PRIM2 protein isoform (Fig. 3E). 

Finally, a more detailed time-course analysis showed that cisplatin at 100 µM inhibited 

PRIM2 elongation at as early as one hour of treatment (Fig. 3H). Collectively, our data 

indicate that transcript truncation in response to cisplatin is an early event that can precede 

both cell cycle arrest and cell death, and is not a consequence thereof. 

Oxaliplatin is much less efficient than cisplatin to regulate ALEs 

To further investigate the potential link between proximal ALE induction by cisplatin and its 

antiproliferative effect, we performed analyses using different platinum compounds, and in 

more or less sensitive cells. 

Oxaliplatin is another platinum derivative that shows different sensitivity profiles across 

cancer cell lines when compared to cisplatin, and was recently shown to act primarily 

through a non-genotoxic mechanism (21). The underlying differences between cisplatin and 
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oxaliplatin in terms of molecular mechanisms are not fully understood. In contrast with 

cisplatin, oxaliplatin at 100 µM had no effect on H358 cell cycle at 7 hours of treatment, and 

had only little effects on cell cycle and cell death at 24 hours (Fig. 4A). While oxaliplatin up-

regulated nearly as many genes as cisplatin, indicating that both drug treatments were 

efficient (Fig. 4B, left), it had much less effect than cisplatin on ALEs. Indeed, oxaliplatin 

significantly induced only 139 (including 52 annotated) proximal ALEs, as compared to 2817 

(673 annotated) in the case of cisplatin (comparing Fig. 4C and Fig. 1B; 3’-seq experiments 

on both drugs were conducted in parallel). Consistently, oxaliplatin had much less effect 

than cisplatin on PRIM2 transcript elongation, short/long isoforms ratio and full-length 

protein levels (Fig. 4D-F). We also noticed that oxaliplatin down-regulated less genes than 

cisplatin (Fig. 4B, right), which might be due to a lesser ability to inhibit transcription 

elongation. Thus, the much weaker antiproliferative effect of oxaliplatin when compared to 

cisplatin in H358 cells, was associated with a much lower ability to induce proximal ALEs. 

ALE regulation distinguishes cisplatin-resistant from sensitive NSCLC cells 

To further investigate the link between proximal ALE induction by cisplatin and its 

antiproliferative effect, we then examined ALE regulation in an NSCLC cell model of acquired 

resistance to cisplatin in the lung adenocarcinoma A549 background (30). While the growth 

of parental A549 cells was strongly inhibited by a 48-hour treatment with cisplatin at 25 µM, 

the growth of the derived A549R cell line was not affected (Fig. 5A). 3’-seq analysis was 

performed in parallel on the parental and resistant cell lines, both in the presence and 

absence of cisplatin at 25 µM for 16 hours (cytosolic RNA was analyzed as explained in the 

next section). In parental A549 cells, cisplatin mostly up-regulated proximal ALEs (Fig. 5B and 

Supplementary Table 4) as previously observed in H358 cells. In addition, a large subset 

(52%) of the up-regulations in A549 cells were also found in H358 cells (Fig. 5C). 

We also identified sets of ALEs that were regulated in resistant versus parental cells (Fig. 5D-

E and Supplementary Tables 5 and 6). In the absence of cisplatin treatment, there was no 

bias toward up- or down-regulation of proximal ALEs (Fig. 5D). In contrast, in resistant versus 

parental cells analyzed after cisplatin treatment, there was a bias toward down-regulation of 

proximal ALEs (Fig. 5E), which were enriched in proximal ALEs induced by cisplatin in 

parental cells as could be anticipated (Fig. 5F), and were also enriched in cell division-related 

genes (Fig. 5G). These data indicate that many ALEs are regulated in a cellular model of 
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cisplatin resistance, and that cisplatin-induced proximal ALEs can distinguish resistant from 

sensitive NSCLC cells. 

Proximal ALE regulation impacts the translatome, but some isoforms are inefficiently 

translated 

To further investigate the biological significance of ALE regulation by cisplatin, we analyzed 

the translation of the ALE-generated mRNA isoforms in parental A549 cells. Indeed, little is 

known about ALE isoform translation on a genome-wide scale. For this, we carried out 3’-seq 

analyses on polysome fractions (which correspond to translated mRNAs) of treated and 

untreated A549 cells. Again, as in the case of cytosolic RNA analyzed in parallel (Fig. 5B), 

cisplatin mostly up-regulated proximal ALEs (Fig. 6A and Supplementary Table 7). These data 

suggested that at least a subset of cisplatin-induced proximal-ALE isoforms are translated. 

To compare the translation efficiency of proximal-ALE isoforms and the corresponding full-

length mRNA isoforms, we then analyzed the relative abundance of ALE isoforms in 

polysome versus cytosol fractions. Performing this analysis on all genes (not just cisplatin-

regulated ALEs), we observed that a subset of proximal-ALE isoforms exhibited a differential 

translation efficiency (more often lower) relative to the corresponding full-length isoform 

(Fig. 6B, Supplementary Table 8 and Supplementary Fig. S4A). 

Thanks to these analyses, we identified a subset of cisplatin-induced proximal-ALE isoforms 

that were efficiently translated: they were induced by cisplatin in both cytosol and 

polysomes, and did not have a translation efficiency (polysome/cytosol ratio) lower than the 

corresponding full-length isoform (N=91; Fig. 6C and Supplementary Table 9). We also 

identified a subset of cisplatin-induced proximal-ALE isoforms that were inefficiently 

translated: they were induced by cisplatin in the cytosol but not in polysomes, and had a 

lower translation efficiency than the corresponding full-length isoform (N=210; Fig. 6C and 

Supplementary Table 9). Compared to the efficiently translated proximal-ALE isoforms, the 

inefficiently translated ones were on average 3-times shorter, and were enriched in 5’IPA 

isoforms, which correspond to ALEs located in the 5’ part of genes (Fig. 6D-E). 

Interestingly, a recent study identified by RNA-seq, 84 genes with proximal-ALE isoforms 

induced by ultraviolet (UV-C) radiation, including a short isoform with a noncoding RNA 

function produced by the coding gene ASCC3 (29). Interestingly, 34 (40%) of the 84 genes 
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with proximal ALE up-regulation by UV-C, including ASCC3, were also found in our 3’-seq 

dataset of cisplatin-induced proximal ALEs (Fig. 6F). Moreover, the ASCC3-short isoform, 

which was reported to encode a protein but had a noncoding RNA function (29), was part of 

the 210 inefficiently translated short isoforms induced by cisplatin (identified in Fig. 6C). RT-

qPCR analysis showed that the ASCC3 short/long RNA isoform ratio was up-regulated by 

cisplatin in the cytosol (Fig. 6G and Supplementary Fig. S4B), but was much lower in 

polysomes when compared to cytosol (Fig. 6H). These data indicate that the translation of 

the ASCC3-short isoform is inefficient compared to that of the full-length ASCC3 mRNA. 

Altogether, these data suggest that the induction of proximal ALEs in long genes is a 

prominent effect of cisplatin, and that this regulation leads to two subsets of short 

transcripts: efficiently translated ones and inefficiently translated ones (Fig. 6I). The function 

of ALE regulation by cisplatin is further discussed below. 

 

DISCUSSION 

While doxorubicin represses a specific set of proximal ALEs, little is known on a genome-

wide scale about the regulation of ALE isoforms by other anticancer drugs, and about their 

translation and biological significance. In this study, we show a widespread but specific 

pattern of proximal ALE induction in long genes, that is linked to the antiproliferative effect 

of cisplatin -but not oxaliplatin- in lung cancer cell lines, and that leads to two differentially 

translated subsets of proximal-ALE isoforms. 

The global pattern of ALE regulation by cisplatin, that is the up-regulation of proximal ALEs 

relative to the last exon of genes in 95% cases, is very distinct from the effects previously 

described for other genotoxic anticancer drugs, with doxorubicin down-regulating proximal 

ALEs in 90% cases, and camptothecin inducing both patterns in approximately equal 

proportions (8). Our data strongly suggest a role for transcription elongation inhibition in 

proximal ALE induction by cisplatin. Previous analyses on gene constructs showed that 

cisplatin induces RNA polymerase stalling and inhibits transcription elongation; several 

mechanisms have been involved, including RNA polymerase modifications and reduced 

nucleosome mobility (38-40,42,43). Our analysis on about 2500 genes indicates that cisplatin 

specifically inhibits elongation of long genes. Reduced elongation between the proximal ALE 
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and the last exon of the gene can directly explain the relative decrease in full-length mRNA 

levels. In addition, because cleavage/ polyadenylation is extensively coupled to transcription, 

the detectable elongation inhibition upstream of the proximal polyA site (Fig. 2D) could favor 

its cotranscriptional recognition, which in turn should promote transcription termination 

downstream (11,24). A similar mechanism of proximal ALE induction (relative to the last 

exon of genes) due to elongation inhibition in long genes, as we describe here for cisplatin, 

was recently proposed for UV-C (29); consistently, many regulations induced by UV-C were 

found in our cisplatin dataset (Fig. 6F) (the limited dataset available for UV-C precludes the 

converse analysis). This scenario may also apply to camptothecin (in the cases of proximal 

ALE induction), which mimicked cisplatin effects on both elongation and proximal ALE 

induction in several tested genes (Supplementary Fig. S2B-C), and was shown to inhibit 

transcription elongation preferentially in long genes (44,45). Interestingly, depletion of 

CDK12 (an RNA polymerase II kinase) was also shown to inhibit elongation and induce 

proximal ALEs preferentially in long genes, but whether these effects are linked is unknown 

(16). In addition to elongation inhibition, other mechanisms might contribute to proximal 

ALE induction by cisplatin. Indeed, for UV-C, proximal ALE induction in several genes was 

shown to be mediated by repression of the U1 snRNP, which is a widespread repressor of 

intronic polyadenylation (41). Other potential mechanisms may include DNA-damage 

responsive cleavage/ polyadenylation factors and RNA-binding proteins that regulate the use 

of polyA sites (8,46-51). Clearly, the contributions of these various mechanisms to genome-

wide ALE regulation by genotoxic agents remain to be established. 

While ALEs affect both the coding region and the 3’UTR of mRNAs, the latter of which can 

control mRNA stability, export and translation, and while some ALE isoforms are known to 

encode functional protein isoforms, little is known about the fate of ALE isoforms genome-

wide and their impact on the translatome. In particular, while the impact of 3’UTR-APA on 

translation efficiency or output has been studied genome-wide by several groups, much less 

is known about the translation efficiency of ALE isoforms (25-28). Our 3’-seq analyses 

comparing polysomes and cytosol indicate that proximal-ALE isoforms tend to be less 

translated than full-length isoforms (Fig. 6B and Supplementary Fig. S4A), and identify two 

subsets of proximal-ALE isoforms induced by cisplatin: efficiently and inefficiently translated 

ones (Fig. 6C). Interestingly, we found that isoforms ending in the 5’ part of genes (5’IPA 
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isoforms) were enriched in the inefficiently translated subset, when compared to the 

efficiently translated subset (Fig. 6E). While recent studies identified sets of 5’IPA isoforms 

that were degraded in the nucleus, thereby preventing their export and translation (52,53), 

our data identify a subset of 5’IPA isoforms that are significantly detected in the cytosol but 

are lowly associated with polysomes, suggesting that they are inefficiently translated. 

Consistent with this finding, a recent study identified a set of cell type-specific 5’IPA isoforms 

that lack an open-reading frame longer than 100 amino acids (17). The potential function of 

5’IPA isoforms that are lowly associated with polysomes and/or have a low coding potential 

remains to be investigated on a large scale. Some of them may have a non-coding function, 

as recently shown for ASCC3-short (29), which is one of the cisplatin-induced 5’IPA isoforms 

that we found to be inefficiently translated (Fig. 6G-H). In addition, some 5’IPA isoforms may 

encode short polypeptides, as shown for the human LEPR (leptin receptor) gene, where two 

short RNA isoforms called LEPROT and LEPROTL1 arise from ALEs located upstream of the 

start codon of the long mRNA, and encode short proteins that antagonize the function of the 

long protein despite sharing no similarity (54); our data indicate that these two short 

transcripts are induced by cisplatin (Fig. 1H). In fact, we cannot rule out that some 5’IPA 

isoforms may be lowly associated to polysomes despite being translated, if their open 

reading frames are too short to associate with several ribosomes (e.g., micropeptides). 

Finally, our data also identify a set of cisplatin-induced ALE isoforms that are efficiently 

translated. While the function of most of these isoforms remains to be determined, it was 

shown for several genes that protein isoforms generated by ALEs can have distinct functional 

properties (11,14,23,24). Thus, ALE transcript isoforms that are induced by cisplatin may 

have different fates and translational outcomes. 

Besides ALE regulations of the ASCC3 and CENPN genes that were shown to play roles in cell 

responses to UV-C and doxorubicin, respectively (8,29), little is known about the role of ALE 

regulations in cell responses to DNA-damage and anticancer treatments. The enrichment of 

cisplatin-induced proximal ALEs in genes related to DDR, cell cycle and cell death (Fig. 3A), 

and the correlation of these ALE regulations with the antiproliferative effect of cisplatin 

(comparing more or less effective platinum compounds, and more or less sensitive cells), 

suggest their potential implication in cell response to cisplatin. For example, the strong 

decrease in full-length PRIM2 mRNA synthesis and in the levels of the encoded protein (the 
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large subunit of DNA primase) is expected to prevent DNA replication, where this protein 

plays a key role (55). We detected the truncated PRIM2 mRNA in polysomes, suggesting that 

it is translated (Supplementary Fig. S4C), but we did not detect a truncated PRIM2 protein, 

which might be unstable and should otherwise be defective for DNA primase activity, given 

the key role of the carboxy-terminal domain of PRIM2 (55). Another aspect of cell responses 

to DNA-damaging agents is the global regulation of gene expression and RNA metabolism. 

The ASCC3-short isoform that we found to be induced by cisplatin relative to full-length 

ASCC3 (Fig. 6G) was previously shown to antagonize full-length ASCC3 function and to 

promote transcription recovery and cell survival during the late response to UV-C irradiation 

(29). Our finding that cisplatin induces a 5’IPA isoform in the ZFC3H1 gene (Fig. 1H), which 

was recently involved in the nuclear degradation of 5’IPA transcripts (52), raises the 

intriguing possibility of a positive feed-back mechanism, whereby ZFC3H1 transcript 

truncation in response to cisplatin might enhance the cellular accumulation of 5’IPA isoforms. 

Likewise, we found that cisplatin induces a 5’IPA isoform of INTS6 (Fig. 1H), a gene encoding 

a component of the integrator complex that controls UsnRNA 3’ end maturation and 

transcription termination, as well as early elongation of specific coding genes (56,57). INTS6 

was also involved in the DDR (58). Thus, the large-scale regulation of ALE isoforms identified 

in this study in many genes related to DDR, cell cycle, cell death and gene regulation, likely 

constitutes a new component of the complex gene regulatory networks controlling tumor 

cell responses to cisplatin, and warrants further functional investigations in the future. 

Our finding that oxaliplatin had much less ability than cisplatin to up-regulate proximal-ALE 

isoforms, may provide new molecular insights on the long-known but poorly understood 

discrepancies between these two major anticancer agents in terms of antiproliferative 

efficiency across cell lines (21). It was recently realized that oxaliplatin, unlike cisplatin, does 

not kill cells through a genotoxic mechanism, but through a ribosome biogenesis stress (21). 

It will be interesting to determine, whether and how the stronger effects of cisplatin on ALE 

regulation when compared to oxaliplatin, may be linked to its stronger genotoxicity in cancer 

cells. Furthermore, our finding that ALE isoform ratios are regulated in a cellular model of 

acquired resistance to cisplatin warrants further investigation to determine, whether ALE 

isoforms may be helpful to distinguish cisplatin-sensitive versus resistant tumors, given the 

dramatic issue of chemotherapy resistance (20). Further study of the poorly characterized 
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class of ALE isoforms may help understand the specific effects of different platinum 

compounds (and other genotoxic agents such as doxorubicin and camptothecin, as 

mentioned above) and identify drug-specific markers of sensitivity, with the aim of 

rationalizing their appropriate use in patients with different profiles. 

In conclusion, in addition to the classical types of alternative splicing and alternative 

polyadenylation (cassette exons and 3’UTR-APA, respectively), there is increasing evidence 

that ALE (or IPA) isoforms are widely regulated in several biological processes (11-13). 

However, little is known about their translation status and biological significance. Our 

findings indicate that proximal ALE induction, typically in the 5’ part of long genes, is a 

widespread mechanism of transcriptome regulation by cisplatin –not oxaliplatin– in lung 

cancer cell lines. This transcript truncation leads to two subsets of proximal-ALE isoforms, 

that are either efficiently or inefficiently translated (Fig. 6I). Our findings establish a link 

between IPA regulation by a drug and its antiproliferative effect, and may help understand 

the differential properties of different anticancer drugs. Our findings also identify links 

between different layers of gene expression regulation in response to a genotoxic agent 

(transcription elongation impacting IPA isoforms impacting the translatome). Finally, short 

5’IPA isoforms with low translational output (this study) and/or low coding potential (17) 

may represent a new class of transcripts with noncoding functions generated by coding 

genes, as illustrated by the ASCC3 gene (29). 
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FIGURE LEGENDS 

Figure 1: Cisplatin regulates ALEs in many genes, with a strong bias toward proximal ALE 

induction. A, ALEs are the most prevalent type of exons regulated by cisplatin. Exon-array 

analysis on H358 cells treated with cisplatin at 100 µM or vehicle for 7 or 24 hours. IR, intron 

retention; ASE, alternatively spliced exon; APA, 3’UTR-APA; AFE, alternative first exon; 

3’down, down-regulation of exons at the gene 3’-end; Unclass., unclassified. B, Cisplatin 

regulates hundreds of ALEs. 3’-seq analysis on H358 cells treated with cisplatin at 100 µM or 

vehicle for 24 hours (FDR 10%). FC, fold change. C, Cisplatin favors inclusion of proximal ALEs. 

D, Visualization of polyA sites and 3’-seq data for the PRIM2 gene in the UCSC genome 

browser. E, Schematics of the PRIM2 gene and PCR primers. F, RT-PCR detection of the short 

PRIM2 isoform containing the proximal ALE. SM, size markers. G, RT-qPCR analysis of PRIM2 

isoforms in H358 cells treated with cisplatin (Cis-Pt) at 100 µM or vehicle (Veh.) for 24 hours. 

H, RT-PCR validation of ALE regulation by cisplatin in various genes. Long isoforms and the 

position of proximal ALEs are indicated. 

 

Figure 2: Cisplatin induction of proximal ALEs is mediated by transcription elongation 

inhibition in long genes. A, Proximal ALE induction and elongation inhibition by cisplatin are 
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enriched in long genes. Distance from transcription start site (TSS) to polyA site (showing 

median and SD). LE, last exon. B, Comparison of genes with proximal ALE up-regulation and 

elongation inhibition by cisplatin. C-D, RT-qPCR analysis of transcrition elongation following 

cisplatin treatment for 7 hours, using the indicated primers spanning introns. 

 

Figure 3: Transcript truncation precedes cell cycle arrest and cell death induction by 

cisplatin. A, ALE regulations by cisplatin are enriched in genes involved in DDR, cell cycle and 

cell death. Analysis with the DAVID software; the fold enrichment is indicated; only a subset 

of enriched functions are shown. B-D, FACS analysis of cell death (B) and cell cycle (C-D) 

using propidium iodide. E, Western blot analysis of PRIM2 protein levels. F-G, Dose-response 

analysis of cisplatin effects on PRIM2 transcript elongation (F) and isoforms ratio (G) 

measured by RT-qPCR. Elongation was measured as in Fig. 2C. H, Time-course analysis of 

PRIM2 elongation inhibition by cisplatin using RT-qPCR as in Fig. 2C. 

 

Figure 4: Oxaliplatin is much less efficent than cisplatin to regulate ALEs. Comparison 

between the two drugs at 100 µM in H358 cells. A, FACS analysis of cell cycle and cell death 

as in Fig. 3b-d. B, Number of genes either up- or down-regulated by at least 2-fold by 

cisplatin or oxaliplatin, based on 3’-seq reads in the last exon of genes. C, 3’-seq analysis of 

ALE regulation by oxaliplatin (100 µM, 24 hours) in H358 cells (FDR 10%). D-E, RT-qPCR 

analysis of drug effects on PRIM2 elongation and isoforms at 7 (D) and 24 hours of treatment 

(E). F, Western blot analysis of PRIM2 protein levels. 

 

Figure 5: ALE regulation distinguishes cisplatin-sensitive and resistant cells. A, Cell growth 

analysis by WST1 assay. B, 3’-seq analysis of ALE regulation by cisplatin in A549 cells. C, 

Comparison of ALE regulation by cisplatin in H358 and A549 cells. D-E, 3’-seq analysis of ALE 

regulation in resistant versus parental cells, either without (D) or with cisplatin (E). F, 

Comparison of genes with proximal ALE regulation in response to cisplatin, and in resistant 

versus sensitive cells. G, ALE regulations in resistant versus sensitive cells are enriched in 

DDR, cell-cycle and cell-death genes. Analysis with the DAVID software; the fold enrichment 

is indicated; only a subset of enriched functions are shown. 
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Figure 6: Proximal-ALE regulation impacts the translatome, but some isoforms are 

inefficiently translated. A, 3’-seq analysis of ALE regulation by cisplatin in polysomal RNA 

from A549 cells. B, 3’-seq analysis of ALE regulation in polysomes versus cytosol from 

cisplatin-treated A549 cells. C, Subsets of cisplatin-induced ALE isoforms that are efficiently 

or inefficiently translated. Comparison between the indicated lists of proximal ALEs (overlap 

between 3’seq peaks, allowing a gap of 300 bp). D-E, Comparison between the efficiently 

and inefficiently translated subsets of cisplatin-induced proximal-ALE isoforms. D, Distance 

from transcription start site (TSS) to intronic polyA site (showing median and SD). E, Percent 

of cisplatin-induced ALEs that are located in the 5’ part of the gene (5’IPA isoforms). F, 

Comparison of genes with ALE regulations by cisplatin or UV-C radiations. G-H, ASCC3-short 

isoform is induced by cisplatin in A549 cytosol (G) but is inefficiently translated (H, cisplatin-

treated cells). RT-qPCR analysis of ASCC3 isoforms. Cyto, cytosol. Poly, polysomes. I, Model 

(see main text). 
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   Suppl. Fig. S1: 3’-seq analysis. 

A, 3’-seq method. B, Bioinformatic pipeline for ALE regulation analysis. C, Proportion of peaks with a 

potential polyA signal, either focusing on the main two motifs (AATAAA and ATTAAA) or including 

other previously identified variants. D, Percentage of regulated peaks that correspond to a polyA site in 

PolyA_DB_3. “Average cytosol” is an average of the data presented in the right panel. 
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   Suppl. Fig. S2: 

Proximal ALE up-regulation and elongation inhibition by cisplatin and camptothecin. A, 

Comparison of genes repressed by cisplatin at the elongation level at 7 and 24 hours. B, ALE regulation 

by cisplatin and camptothecin (CPT) in total RNA.  C, Elongation inhibition by cisplatin and 

camptothecin. D, ALE regulation by cisplatin in nuclear RNA. 
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   Suppl. Fig. S3 : 

Enriched functions of genes where cisplatin up-regulates a proximal ALE that is annotated  in 

PolyA_DB_3. Analysis with the DAVID software; the fold enrichment is indicated; only a subset of 

enriched functions are shown. 
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Suppl. Fig. S4: 

A, 3’-seq analysis of ALE regulation  in polysomes versus cytosol of untreated A549 cells (FDR 10%). B, 

RT-qPCR analysis of ASCC3 isoforms regulation by cisplatin in the cytosol of A549 cells. C, RT-qPCR 

analysis of PRIM2 isoforms ratio in the cytosol and polysomes of cisplatin-treated A549 cells. 
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DISCUSSION 
 

Little is currently known about the role of AS and APA regulation in anticancer 

therapy sensitivity, despite the fact that post-transcriptional regulations widely modulate 

cancer cells transcriptomes and that therapy resistance is a major clinical issue. My thesis 

project aimed at increasing our understanding of AS and APA regulations in genotoxic 

anticancer drug sensitivity, specifically AS regulations in breast cancer cell resistance to 

doxorubicin and APA regulation in NSCLC cell response to cisplatin. 

 

AS networks of resistance to doxorubicin in breast cancer cells 

In my first project, I identified for the first time an AS pathway involved in breast 

cancer cell resistance to doxorubicin. In doxorubicin resistant vs. sensitive cells, thousands of 

AS events were regulated with enrichment in cell cycle and DNA repair genes. Poorly studied 

splicing factors ZRANB2 and SYF2, which regulate about 80 alternative exons each in our 

MCF-7 doxorubicin resistance model, partially re-sensitized the resistant cells to doxorubicin. 

Interestingly, among the very few target genes they had in common, inclusion of exon 5 of 

the oncogene ECT2 (a gene with double functions in cell cycle and DNA repair) was 

decreased when ZRANB2 and SYF2 were depleted with siRNAs. Further, depletion of ECT2-

ex5 isoform also partially re-sensitized resistant cells to doxorubicin, and reduced 

doxorubicin-induced S phase accumulation. Finally, high expression of the ECT2-ex5 isoform 

detected by qPCR in ER+ breast cancer patients was associated with poor prognosis when 

they were treated with chemotherapy including anthracyclines, but not hormonotherapy.  

Over the course of this project, I wondered if ZRANB2 or SYF2 depletion had the 

same effect on doxorubicin survival in other breast cancer cell lines (ER positive or negative). 

However, in the small panel of cell lines tested, ZRANB2 and/or SYF2 depletion was already 

toxic on its own without doxorubicin treatment (data not shown). I could not conclude on 

doxorubicin survival per se because of this unexpected toxicity effect, but this observation 

was still interesting: do some cells rely on AS pathways involving ZRANB2 and SYF2 for cell 

proliferation? Particularly high expression of ZRANB2 and/or SYF2 expression in DoxoR cells, 

might explain the lack of toxicity of their depletion in these cells. Indeed, for ZRANB2, mRNA 

and protein levels detected by qPCR and western-blot, respectively, were higher in DoxoR 

cells compared to the others (data not shown). Also, even at high siRNA concentration, I only 

managed to have a 60% depletion at the mRNA level for ZRANB2, suggesting that residual 

amounts of ZRANB2 could still be present in siRNA-depleted DoxoR cells. For instance, 

complete suppression (by CRISPR-Cas9 approach for example) could have been toxic in 

DoxoR cells even in unstressed conditions. To complement findings in this project, it would 

be interesting to overexpress ZRANB2, SYF2, and ECT2-ex5 isoform in MCF7-Parental cells to 

assess reverse effects, and to perform rescue experiments (doxorubicin survival, cell cycle 

arrest) by ECT2 ±exon5 transfection in DoxoR cells after ZRANB2 or SYF2 depletion, in the 

presence and absence of doxorubicin. 
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The survival analysis was done on a cohort available at the Institut Curie (I. Bièche). It 

would be interesting to do in silico analysis on publicly available breast cancer patient RNA-

seq data from the TCGA to confirm these findings. Survival curves are important indicators of 

the clinical relevance of the expression of a gene in a given context. However, they do not 

reflect causation. One of my ongoing experiments, with the help of the animal facility at 

Orsay research centre of the Institut Curie, aims to show this causal link of the ZRANB2/SYF2 

→ ECT2-ex5 AS pathway. We are analysing MCF7-DoxoR cells xenograft tumour progression 

in nude mice, in the presence or absence of doxorubicin treatment, after depletion of 

ZRANB2, SYF2, or ECT2-ex5 isoform by antisense vivo-morpholinos (VMOs, Genetools). For 

this experiment, I hypothesized that depletion of either ZRANB2, SYF2, or ECT2-ex5 would 

result in decreased tumour growth in response to doxorubicin treatment. If my hypothesis is 

confirmed, this would be the first demonstration of the role of converging AS pathways that 

involve ZRANB2,SYF2, and ECT2 in tumour progression. Indeed, ZRANB2 and SYF2 functions 

are poorly characterized. Further investigations on the other target exons specific to ZRANB2 

and SYF2 and the cellular process they control would increase our understanding of these 

splicing networks. 

An interesting result not fully pursued in the publication manuscript is the 

enrichment of RBFOX2 binding motif surrounding the AS events regulated in DoxoR vs. 

Parental cells. When we did a motif enrichment analysis, RBFOX2 motif had the strongest 

enrichment. RBFOX2 is overexpressed in the resistant cells, which is consistant with their 

mesenchymal-like state. RBFOX2 depletion did not however, re-sensitize the resistant cells 

to doxorubicin, probably because RBFOX2-mediated AS regulations do not participate 

directly in the doxorubicin resistance mechanisms. Remarkably however, I found that 

RBFOX2 regulates the AS of ZRANB2 (Figure 23). RBFOX2 upregulation could therefore be an 

upstream or early event controlling ZRANB2 expression levels, suggesting the existence of an 

AS network involving RBFOX2, ZRANB2, and SYF2 in breast cancer cell resistance to 

doxorubicin. 

 

Figure 23: ZRANB2 AS regulation by RBFOX2. 

 

A widespread IPA response to cisplatin in NSCLC cells 

In my second project, I identified by 3’-seq widespread IPA upregulation in response 

to cisplatin in two NSCLC cell lines. These regulations were enriched in upregulation (with 

respect to the full length isoform) of particularly short isoforms in long genes, especially cell 

cycle and cell death related genes. Notably, IPA were poorly regulated by oxaliplatin, a 
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cisplatin analogue whose main cytotoxic mechanism was recently revealed not to be by 

genotoxicity. Further, 3’-seq analysis on polysomes showed that a large subset of these short 

IPA were not efficiently translated, suggesting (at least for some of them) non-coding 

functions.  

Several observations suggest that induction of ALE by cisplatin is mediated by a 

defect in Pol II elongation. A more direct way to demonstrate this effect would be to carry a 

Pol II ChIP-seq and a global-run-on RNA sequencing (GRO-seq). The Pol II ChIP-seq and GRO-

seq will reflect global Pol II occupancy on the chromatin and transcriptionally engaged Pol II, 

respectively. Doing so in cisplatin treated and untreated conditions, I should be able to 

confirm higher occupancy and activity of Pol II upstream of the polyadenylation sites of the 

ALE isoforms induced by cisplatin, compared to downstream. Additionally, it would be 

interesting to rigorously demonstrate transcription termination mechanisms at ALE sites. 

This could be done by investigating on which residues of Pol II CTD are phosphorylated (Ser2, 

Ser5, Tyr1 ?), and by which factors (CDK9, CDK12 ?) in cisplatin treated cells. Because 

cisplatin and Top1 inhibitors have been shown to have synergistic effects (Van Waardenburg 

et al., 2004), I am currently looking into the role of Top1 in cisplatin-induced IPA regulation. 

Ongoing experiments include functional characterization of PRIM2 and ASCC3 short 

ALE isoforms. Are these short isoforms necessary for cell survival after cisplatin-induced DNA 

damage? To test this, I am performing cell survival experiments similar to those in the AS 

and doxorubicin resistance project: isoform-specific depletion followed by drug treatment 

and cell survival assay. Hopefully, this will extend Wiliamson et al. findings on ASCC3 short 

isoform in response to UV in another context, and will describe for the first time a biological 

role for a truncated PRIM2 isoform. In addition, IPA regulation will also by analysed by 3’-seq 

in cisplatin responsive and non-responsive NSCLC patient tumours, in collaboration with 

Curie hospital. This will give further insights into the clinical relevance of IPA regulation in 

cisplatin (intrinsic) resistance. 

 

More on the role of APA in cisplatin sensitivity 

For the cisplatin project, we chose to focus on a poorly studied type of APA, IPA. 

Nonetheless, our 3’-seq data concern all 3’ ends, and therefore detect 3’ UTR-APA regulation 

as well.  Genome-wide 3’UTR-APA regulation in response to cisplatin is not currently 

described in the literature, and will be an interesting complementary analysis to the one 

described in this manuscript. Given that UV irradiation for example have been shown to 

regulate 3’UTR-APA (Devany et al., 2016), it would be expected that 3’UTR-APA is also 

modulated in response to cisplatin-induced genotoxic stress. In fact, by doing a quick 

visualisation of our raw data on UCSC Genome Browser (http://genome.ucsc.edu/cgi-

bin/hgGateway), by a candidate-gene approach inspired by 3’ UTR-APA events described in 

the literature, some 3’ UTR peaks seem regulated between the DMSO and Cisplatin 

conditions. This is the case for example for Cyclin D2 gene CCND2, as shown in Figure 24. In 

response to cisplatin, a distal polyadenylation site seem to be upregulated with respect to 

the couple of proximal peaks (3’ UTR elongation) in H358 cells, suggesting a more important 
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microRNA repression after cisplatin-induced DNA damage. Proper 3’ UTR-APA analysis in 

CDDP vs. DMSO cells, combined with microRNA and RBP motif search in the 3’UTR regions 

lost in the cisplatin response would be an interesting starting point to identify 3’ UTR-APA 

regulation networks in the NSCLC cell response to cisplatin. 

 

Figure 24: Raw 3’-seq peaks of the Cyclin D2 gene 3’UTR. 

 

Other unexploited datas are IPA regulations in untreated A549 cisplatin resistant vs. 

sensitive cells, shown in Figure 25. There are similar numbers of upregulated and 

downregulated IPA isoforms in resistant cells vs. sensitive cells. This suggests that IPA 

isoform relative amounts to the full-length isoform are regulated in the acquisition of 

cisplatin resistance in A549 cells. It would be interesting to investigate which switch of 

isoforms are involved in the resistance phenotype. IPA isoform often have a different, or 

antagonist function to the full-length isoform. Therefore, in A549 cisplatin resistant cells, 

upregulated IPA would suggest that the function of the full-length protein is deleterious for 

the resistant phenotype, and on the contrary, that downregulated ones have an 

advantageous function in the full-length isoform. To identify IPA switches responsible for the 

resistant phenotype, it would be interesting to perform a miniscreen similar to the one in 

the doxorubicin resistance project, but with IPA isoforms. After shortlisting a dozen of 

candidates from their functions as well as their IPA/ALE regulation levels (strong events), this 

miniscreen would test cisplatin survival after short and long isoform specific siRNA depletion, 

and hopefully identify isoform switches associated with cisplatin resistance. 
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Figure 25: ALE regulation in A549 cisplatin-resistance vs. sensitive cells. (red: ALE/LE up, blue: 

ALE/LE down) 

 

IPA as a way to express lncRNAs ? 

A novel concept that emerges from ours and Williamson et al.’s studies, is the 

expression of DDR-involved lncRNAs by IPA in response to genotoxic stress. For this 

manuscript, I only tested and validated ASCC3 short isoform upregulation by cisplatin and its 

very low association with polysomes. However, there are potentially many other lncRNA 

induced by cisplatin in a similar manner (Figure 6C of the publication manuscript).  It would 

be interesting to further investigate on these inefficiently translated, cisplatin-induced short 

transcripts. LncRNAs are particularly difficult to analyse because they are a class of ncRNAs 

mainly defined by exclusion, namely a lack of translated ORF, and definitive inclusion criteria 

have not been found yet. In fact, lncRNA and mRNA biogenesis and molecular characteristics 

are very similar. Assays to prove that a transcript is non-coding also relies on excluding 

criteria. Lack of protein signal at the expect molecular weight by western-blot analysis can 

show that this transcript do not encode a protein, provided the antibody is efficient and 

specific. One can also transfect the presumed lncRNA cDNA with mutation in the start or 

stop codon, and show that it is not its protein-coding ability that govern its function. 

LncRNA candidates in the context of NSCLC cells response to cisplatin could be 

selected in silico and further individually investigated according to the flowchart below 

(Figure 26).  
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Figure 26: Workflow of cisplatin-induced, IPA-generated lncRNA investigation in A549 cells. 

Here, I chose to put a log2FC>2 cut-off on the IPA vs. Last Exon ratio to select for the 

strongest effects both in the cisplatin-induced and the inefficiently translated conditions. 

Additionally, I would not consider transcript length although lncRNA are often described as > 

200 nucleotides. Indeed, this is more of an empirical and arbitrary cut-off. A 100 nucleotides 

transcript for example, would be too long to be a short ncRNA (e.g. microRNA) but would be 

excluded from this analysis. It would also be useful to verify if some of these candidates are 

known lncRNAs, by inquiring ncRNA databases such as lncrnadb (http://www.lncrnadb.org), 

lncipedia (https://hg19.lncipedia.org), noncode (http://www.noncode.org), and RNA central 

(https://rnacentral.org). After shortlisting a dozen of candidates this way and including some 

with interesting functions of the host gene, I would perform RT-PCR validations to verify the 

IPA/lncRNA transcript expression. Of those which would be validated by RT-PCR, verification 

of the absence of a peptide will be done before functional characterization starting with the 

IPA/lncRNA effect on cisplatin survival. 

At this stage, one or two top candidate(s) would be selected for mechanistic 

investigations. As a lncRNA can act in various ways (Figure 27a), it would be tricky to identify 

its precise role in cellular processes. Identification of its direct RNA or protein interactors 

would be the key to understanding their functions. To do so, RNA-centric approaches of 

RNA-protein and RNA-RNA interactions analysis are needed. In this regard, RNA affinity 

purification (RAP) developed by the M. Guttman lab in Caltech is particularly interesting. 

Direct and indirect RNA and protein interactors of a lncRNA can be co-purified by pull down 

using biotinylated probes which form stable RNA-DNA hybrids with the lncRNA of interest, 

then the purified interacting RNAs and proteins are submitted to RNA-seq and mass-

spectrometry, respectively (Figure 27b). With this method, depending on the protein 
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digestion and RNA fragmentation conditions, direct or indirect interactions can be separately 

assessed. Combining RAP-RNA-seq and RAP-MS would allow a comprehensive lncRNA 

interactome description, which can be used as a starting point for selected lncRNA in depth 

mechanistic investigations.  

Figure 27: a) Modes of action of lncRNAs. (adapted from W. Hu et al., EMBO reports, 2012) 

b) RAP-seq and RAP-MS methods. (adapted from Engreitz et al., Cell 2014) 

 

Clinical relevance of AS and APA networks: from bedside to the bench 

Molecular characterization of RNA processing networks is fundamental for our 

understanding of the cellular machineries complexity in normal and pathological conditions, 

in stressed and unstressed conditions. To link these mechanisms to the clinical context, 
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a. b. 

hypothesis testing in patient samples is necessary. Alternatively, RNA processing networks 

identifications in clinical samples would give us “real-life” demonstration of their relevance. 

For example, a complementary approach of RBPome and transcriptome analysis from 

RNA extracted from a selected cohort of cancer patients would give novel insights on 

clinically relevant AS and APA regulations. In a hypothetic novel study, I would want to 

identify AS and APA regulations and their mechanisms that are important for triple-negative 

breast cancer (TNBC) patients’ response to chemotherapy. The rationale behind this choice 

of patients is because TNBC patients cannot benefit from hormone or HER2-targeted 

therapies, and their prognostic is generally quite poor. Identifying mechanisms that predict 

therapy response would help manage treatment regimens and eventually lead to the 

development of new targeted therapies. The general workflow for this project is as shown 

below in Figure 28a.  

 

Figure 28: Investigation on clinically relevant AS and APA networks. a) Workflow of RBP, AS 

and APA networks indentification in patient samples. b) Method for mRNA RBPome 

identification. (adapted from Baltz et al., Mol Cell 2012) 

For this project, tumour samples of TNBC patients before neoadjuvant chemotherapy 

and the information on their response to chemotherapy would be needed. RNA and protein 

would be extracted from these tumours, separated in groups of “good responders” and 

“poor responders”. Tumour protein and RNA would be used to perform RBPome and 

transcriptome analysis, respectively. RBPome analysis would be done by mass-spectrometry 

(M-S) on purified proteins from tumours. A more interesting, but technically difficult 

approach would be to identify RBPs and their binding sites in parallel, by an mRNA-bound 

RBPome analysis developed by M. Landthaler lab (Figure 28b). To perform this on tumour 

biopsies, it would be necessary to put them in primary culture first in order to be able to do 
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the UV crosslink of RBP-RNA complexes. AS and APA analysis could be done by RNA-seq and 

3’-seq, but a more innovative approach would be to use long-read RNA-seq (with PacBio 

technology for exemple) to identify transcript isoforms in full, and thus all combinations of 

AS and APA variants. This sequencing technique would reflect better the relative amounts of 

specific isoforms in the samples. RBP and their binding sites, as well as AS and APA transcript 

isoforms being identified, verification of their interactions and regulations could be done in 

cell line models. For validated networks, further mechanistical and functional 

characterization could also be pursued in cell lines. 

The major limitation of this project is the initial input of RNA and proteins. The 

techniques presented here require large amount of high-quality RNA and proteins, which is 

not easily obtained from tumour samples. Better tumour protein and RNA extraction 

methods as well as optimization of CLIP and long-read sequencing techniques to reduce the 

RNA input in the future could allow the realization of this hypothetical project. 

 

Hopes for the future: RNA therapeutics 

Given the now recognized AS involvement in oncogenesis, strategies to target splicing, 

whether it is core spliceosome components, splicing factors, or AS variants, in cancer 

therapy have already started to emerge. There are various strategies to therapeutically 

target AS, as shown in Figure 29. Antisense oligonucleotides (ASOs) for example hybridize 

RNA in a sequence-specific manner and can be designed to modulate splicing by shielding 

splicing regulatory elements (splice-switching oligonucleotides, SSO). While SSOs have 

already shown clinical efficacy for treatment of neuromuscular diseases, oncogenic AS 

manipulation by SSO in cancer seems to be more challenging. This can be due to general AS 

alteration in cancer cells, loose specificity of splicing regulatory elements, and compensatory 

mechanisms of splicing factors. One very recent and encouraging study however 

demonstrated the efficacy of a SSO promoting the expression of the tumour-suppressive 

variant of MKNK2 (Mnk2a) involved in the activation of the p38-MAPK apoptosis pathway, in 

impairing glioblastoma development in vivo (Mogilevsky et al., 2018). 

Further research on AS networks and on the development of molecules that 

modulate AS are needed to increase our understanding of oncogenic AS mechanisms and 

their therapeutical targetability. In the doxorubicin project, I am currently testing the effect 

of ECT2-exon5 targeting SSO on xenograft tumour growth in response to doxorubicin. It 

would also be interesting to target IPA isoforms associated with cisplatin response or 

resistance identified in my second project. ASOs are particularly interesting for their almost 

infinite versatility. As they are custom-made, they can theoretically target any RNA sequence 

and any type of RNA, including splice sites of ALEs, 3’ end processing cis-regulatory 

sequences, 5’ regions of mRNAs important for translation initiation, and ncRNAs such as 

microRNAs and lncRNAs. They could also potentially be administered in a cocktail to target 

multiple levels of an oncogenic, or resistance-associated RNA processing network. 
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Figure 29: Therapeutic strategies targeting AS. (adapted from Lee et al., Nat Med Rev 2016) 
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SYNTHÈSE EN FRANÇAIS 
  

Dans la prise en charge des cancers, malgré l’émergence des thérapies ciblées, les 

chimiothérapies conventionnelles génotoxiques sont encore largement utilisées en clinique. 

Pour beaucoup de cancers elles restent la stratégie thérapeutique principale. 

Malheureusement, émergent souvent chez les patients des résistances aux traitements anti-

cancéreux, qu’ils soient génotoxiques ou non. Il est donc important et nécessaire de mieux 

comprendre les mécanismes moléculaires de chimiorésistance afin de surmonter ce 

problème clinique. 

 Outre d’importantes régulations transcriptionnelles, on sait aujourd’hui que les 

régulations post-transcriptionnelles, et notamment l’épissage alternatif (AS, alternative 

splicing) et la polyadénylation alternative (APA, alternative polyadenylation), jouent un rôle 

clé dans l’oncogenèse. On sait aussi que les agents génotoxiques utilisés en chimiothérapie, 

tels que la doxorubicine et le cisplatine, régulent l’AS et l’APA. En revanche, l’AS et l’APA ont 

été peu étudiés dans la résistance aux traitements anti-cancéreux. On connaît donc très peu 

l’étendue, les mécanismes et les fonctions de ces régulations dans la résistance aux agents 

anticancéreux génotoxiques. L’AS, qui concerne plus de 90% des gènes, permet de générer 

des isoformes d’ARN-messager codant des isoformes protéiques avec des fonctions 

différentes. L’implication de l’AS dans le cancer est maintenant admise. L’APA, moins 

étudiée, peut concerner jusqu’à 60% des gènes, et permet de générer entre autres des 

isoformes tronquées utilisant des exons terminaux alternatifs (ALE, alternative last exons) 

par polyadénylation intronique. L’APA a été démontrée récemment comme étant régulés à 

grande échelle dans les cancers, mais très peu d’études prennent en compte les ALE et la 

polyadénylation intronique.  

Mon hypothèse est que la sensibilité aux chimiothérapies est en partie médiée par 

une modulation de la maturation des ARNs pré-messagers. Cette modulation serait 

orchestrée par des facteurs contrôlant un ensemble d’exons alternatifs dans des gènes 

impliqués dans des processus liés à la chimio-sensibilité. Afin de mieux comprendre le rôle 

de ces modulations dans la sensibilité aux agents anti-cancéreux génotoxiques, mon projet 

de thèse a 2 objectifs : 1) Déterminer l’étendue, les mécanismes, et les fonctions des 

régulations d’AS dans la résistance acquise à la doxorubicine, et 2) Déterminer la régulation 

des ALE dans la réponse et la résistance au cisplatine. La doxorubicine et le cisplatine sont 

deux agents anti-cancéreux génotoxiques parmi les plus anciens et les plus couramment 

utilisés, sur les cancers du sein et du poumon respectivement. Cependant, le rôle des 

réseaux d’AS et d’APA dans la réponse et la résistance à ces agents est très peu connu. 

Dans l’introduction de ce manuscrit de thèse, j’ai d’abord exposé les connaissances 

actuelles sur les mécanismes des régulations de l’AS et l’APA dans des conditions normales, 

pathologiques (cancer), et de stress génotoxique. Dans une seconde partie, j’ai décrit 

quelques généralités sur les agents anti-cancéreux génotoxiques et la sensibilité cellulaire à 
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ces agents, plus particulièrement la doxorubicine et le cisplatine. Enfin, j’ai synthétisé dans 

une troisième partie les dernières avancées sur les relations entre l’AS, l’APA, et la réponse 

aux dommages de l’ADN ainsi que la chimiorésistance. 

La partie résultats de ce manuscrit de thèse consiste en deux manuscrits d’articles, 

prêts à soumission : 1) Identification of splicing programs and pathways involved in breast 

cancer cell resistance to doxorubicin, et 2) Intronic polyadenylation is linked to the 

antiproliferative effect of specific platinum compounds and generates differentially 

translated isoforms.  

Dans le premier projet, j’ai identifié plus de 2000 évènements d’AS régulés dans des 

cellules de cancer du sein MCF7 résistantes à la doxorubicine par rapport aux cellules 

parentales sensibles. Un mini-screen siARN sur 40 facteurs d’épissage régulés dans ce 

modèle de résistance m’a permis d’identifier 2 facteurs d’épissage peu connus, ZRANB2 et 

SYF2, dont la déplétion resensibilise partiellement les cellules résistantes à la doxorubicine. 

Par RNA-seq sur les cellules résistantes après transfection de siARNs ciblant ZRANB2 et SYF2, 

j’ai identifié environ 80 évènements d’AS régulés par chaque facteur, principalement des 

exons cassettes et des sites 3’ d’épissage, respectivement. De façon intéressante, ces 

régulations sont enrichies dans des fonctions liées à la résistance à la doxorubicine 

(prolifération, cycle, réparation de l’ADN). L’exon 5 de l’oncogène ECT2 codant pour un 

domaine BRCT (BRCA1 C-Terminal, important dans la réparation de l’ADN) est le seul à être 

régulé à la fois par ZRANB2 et SYF2.  La déplétion spécifique de l’isoforme incluant l’exon 5 

resensibilise aussi partiellement les cellules à la doxorubicine, et limite l’accumulation en 

phase S du cycle cellulaire induit par la doxorubicine dans ces cellules. De plus, l’inclusion de 

l’exon 5 de ECT2 est associé à un mauvais pronostic de survie sans métastases chez un sous-

groupe de patientes de cancer du sein traitées à la chimiothérapie comprenant de la 

doxorubicine. 

Dans le deuxième projet, j’ai pu identifier par 3’-seq que le principal type d’exon 

induit par le cisplatine dans les cellules de poumon non à petites cellules sont les ALEs. Dans 

95% des cas, le cisplatine induit des ALE promoteur-proximaux, potentiellement codant des 

isoformes protéiques tronquées. Ces régulations sont enrichies dans de longs gènes 

impliqués dans la réponse aux dommages de l’ADN, du cycle et de la mort cellulaire, et sont 

médiées par une inhibition de l’élongation de la transcription. Ces régulations d’ALEs ont 

également permis de distinguer les cellules sensibles et résistantes au cisplatine. Un autre 

platine, l’oxaliplatine, qui a moins d’effets que le cisplatine sur l’inhibition de la prolifération 

cellulaire, n’a pas été capable d’induire de telles régulations, bien qu’il induise une 

régulation importante au niveau de l’expression des ARNs messagers. De plus, des analyses 

3’-seq sur des fractions de polysomes (ARN messagers associés à des ribosomes) ont 

démontré l’impact du cisplatine sur le traductome : un groupe d’isoformes ALE 

particulièrement courtes sont très peu traduites en réponse au traitement, et notamment 

celle d’un transcrit dont la fonction non-codante a été révélée récemment. 
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En conclusion, ces travaux mettent en évidence de nouveaux concepts de réseaux de 

régulation post-transcriptionnelles et leur complexité dans le contexte de la 

chimiorésistance. Sur le modèle de cancer du sein, j’ai pu mettre en évidence pour la 

première fois un programme d'AS impliqué dans la résistance à la doxorubicine. Sur le 

modèle de cancer du poumon, j'ai pu identifier une régulation à grande échelle des ALE par 

le cisplatine et leur impact sur le traductome. Au plus long terme, les facteurs d’épissage, les 

isoformes d’AS ou d’ALE identifiés pourront potentiellement servir de nouveaux marqueurs 

moléculaires de chimiorésistance, voire de cible thérapeutique. 

Dans la partie discussion de ce manuscrit de thèse, j’aborde plusieurs perspectives 

possibles à ces travaux, à court et moyen-long terme, notamment l’étude de l’expression de 

longs ARNs non-codant (lncRNAs) par polyadenylation intronique et l’étude à grande échelle 

de réseaux d’AS et d’APA à partir de tumeurs de patients. En effet, un concept intéressant 

émergeant du projet sur les ALEs en réponse au cisplatine, est un mécanisme favorisant 

l’expression de lncRNAs par polyadénylation intronique en réponse à un stress génotoxique. 

Il serait intéressant d’étudier plus en profondeur ce type de transcrits, en confirmant leur 

fonctionnalité non-codante, et en étudiant leur effet sur la réponse au cisplatine ainsi que 

les protéines liant ces lncRNAs par des approches de précipitation d’ARN couplé à une 

spectrométrie de masse, dans les cellules de cancer non à petite cellules. L’autre principale 

perspective discutée vise à identifier les transcrit issus d’AS et d’APA et leur régulateurs (des 

protéines liant l’ARN) directement dans des tumeurs de patients. Je propose dans cette 

partie d’étudier les cancers du sein triple-négatifs (n’exprimant pas les récepteurs 

hormonaux et ERBB2) pour leur caractère particulièrement agressif et difficile à traiter. Dans 

des groupes de tumeurs issues de patients répondant et non répondant à la chimiothérapie, 

les transcrits d’AS et d’APA seraient identifié par une approche innovante de séquençage 

« long-read » et les protéines par spectrométrie de masse. Ceci permettrait de mettre en 

évidence les réseaux d’AS et d’APA directement avec une relevance clinique, impliqués dans 

la résistance intrinsèque des cancers du sein triple-négatifs à la chimiothérapie. 
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Résumé: La plupart des gènes humains codants génèrent des transcrits alternatifs (isoformes) par épissage alternatif (alternative splicing, AS) 

et polyadénylation alternative (APA) en général dans la région codante et la région 3’ non traduite (3’UTR), respectivement. Le rôle de l’AS et 

la 3’UTR-APA est de plus en plus reconnu dans l’oncogenèse. En particulier, des réseaux d’AS connectant des facteurs d’épissage et des 

variants d’épissage ont récemment été identifiés. L’AS est aussi largement régulé par les agents anticancéreux génotoxiques, tel que la 

doxorubicine et le cisplatine (induisant des différents types de lésions sur l’ADN), qui sont régulièrementt utilisés dans les traitements du 

cancer du sein et du poumon non-à-petites-cellules (non-small-cell lung cancer, NSCLC), respectivement. Étant donné l’apparition fréquente 

de résistances aux chimiothérapies, comprendre les mécanismes sous-jacents est crucial pour surmonter ce problème clinique. Il existe des 

exemples d’évènements d’AS associés à la résistance aux agents anticancéreux, mais l’implication des facteurs d’épissage et des réseaux d’AS 

est très peu connue. De plus, une étude précédente a démontré que la doxorubicine réprime un grand groupe d’exon terminaux alternatifs 

(alternative last exons, ALE), qui correspondent à l’utilisation de sites de polyadénylation introniques (intronic polyadenylation, IPA). Les ALEs 

ont un rôle émergent dans le cancer, mais on ne sait encore que très peu sur leur régulation par d’autres agents anticancéreux, tel que le 

cisplatine. Afin de mieux comprendre le rôle des régulations d’AS et d’APA dans la réponse et la résistance cellulaire à la chimiothérapie, mon 

projet de thèse avait deux objectifs principaux : 1) déterminer l’étendue, les réseaux régulateurs, et les fonctions des régulations d’AS dans la 

résistance à la doxorubicine des cellules de cancer du sein, et 2) déterminer l’étendue, les mécanismes, et l’impact des régulations d’ALE en 

réponse au cisplatine dans des cellules de NSCLC. Dans la première partie, j’ai identifié par RNA-seq des milliers d’évènements d’AS et des 

dizaines de facteurs d’épissage régulés dans un modèle cellulaire de cancer du sein ER+ résistant à la doxorubicine. Par un miniscreen siARN, 

j’ai identifié deux facteurs, ZRANB2 et SYF2, impliqués dans la résistance à la doxorubicine. D’autres analyses RNA-seq ont révélé les 

évènements d’AS régulés par ces deux facteurs peu étudiés, ainsi que leur convergence vers l’exon 5 alternatif de l’oncogène ECT2. La 

déplétion de ZRANB2, SYF2, et du variant ECT2-ex5 réduit l’arrêt en phase S induit par la doxorubicine et la résistance des cellules. De plus, un 

niveau élevé d’inclusion de l’exon 5 d’ECT2 corrèle avec une mauvaise survie spécifiquement de patientes ER+ traitées par chimiothérapie. 

Dans la deuxième partie, j’ai identifié par 3’-seq que le traitement cisplatine (mais pas oxaliplatine) induit des ALEs/IPAs dans des milliers de 

gènes enrichis en gènes de cycle et de mort cellulaire. Cet effet est lié à une inhibition de la processivité de l’élongation dans les longs gènes. 

Une analyse 3’-seq sur polysomes m’a permis de montrer que ces régulations d’ALEs impactent le traductome, et a révélé un groupe 

d’isoformes particulièrement courtes peu efficacement traduites, dont un transcrit connu avec une fonction non-codante. En conclusion, j’ai 

pu identifier durant ma thèse un nouveau réseau d’AS impliqué dans la résistance à la doxorubicine des cancers du sein ER+, et une 

importante régulation d’ALEs impactant le traductome en réponse au cisplatine dans des cellules NSCLC. Ces travaux améliorent notre 

compréhension du rôle de l’AS et des ALE/IPA dans la réponse et la résistance cellulaire à la chimiothérapie anticancéreuse. Au plus long 

terme, les transcrits alternatifs et les régulateurs identifiés constituent des biomarqueurs candidats de chimiorésistance. 

Title : Regulation of alternative splicing and polyadenylation by genotoxic anticancer agents 
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Abstract : Most human coding genes generate alternative transcripts (isoforms) through alternative splicing (AS) and alternative 

polyadenylation (APA), most often within the coding region and the 3’ untranslated region (3’UTR), respectively. Both AS and 3’UTR-APA 

regulations have been increasingly involved in oncogenesis. In particular, AS networks connecting oncogenic splicing factors and oncogenic 

splicing variants have been recently identified. AS is also widely regulated by genotoxic anticancer drugs, like doxorubicin and cisplatin that 

induce different types of DNA lesions and are widely used in breast cancer and non-small-cell lung cancer (NSCLC) therapy, respectively. Given 

the frequent occurrence of resistance to chemotherapy, understanding the underlying mechanisms is crucial to overcome this major issue. 

There are examples of AS events associated with anticancer drug resistance, but very little is known about the splicing factors and therefore 

the AS networks involved. In addition, a previous study showed that doxorubicin represses a large set of alternative last exons (ALE) 

corresponding to the use of intronic polyadenylation (IPA) sites. ALEs have an emerging role in cancer, but little is known about its regulation 

by other anticancer drugs, like cisplatin. In order to better understand the role of AS and APA regulation in cell response and resistance to 

chemotherapy, my PhD project had two main aims: 1) determine the extent, regulatory networks and function of AS regulation in breast 

cancer cell resistance to doxorubicin, and 2) determine the extent, mechanism and impact of ALE regulation in response to cisplatin in NSCLC 

cells. In the first part, I identified by RNA-seq thousands of AS events and dozens of splicing factors regulated in a cell model of acquired 

resistance to doxorubicin in ER+ breast cancer. Through an siRNA miniscreen, I found two splicing factors, ZRANB2 and SYF2, involved in 

doxorubicin resistance. Further RNA-seq analyses revealed the AS events regulated by depletion of these poorly characterized splicing factors, 

and their convergence on the alternative exon 5 of the oncogene ECT2. Depletion of ZRANB2, SYF2 and the ECT2-Ex5 variant reduces 

doxorubicin-induced S phase arrest and doxorubicin resistance. In addition, high inclusion levels of ECT2-Ex5 correlate with poor survival 

specifically in ER+ breast cancer treated with chemotherapy. In the second part, I found by 3’-seq that in NSCLC cell treatment with cisplatin 

(but not oxaliplatin) induces ALE/IPA in thousands of genes enriched in cell cycle and cell death. This effect is linked to an inhibition of 

transcription elongation processivity in long genes. 3’-seq analysis on polysomes showed that this ALE regulation impacts the translatome, and 

revealed a set of particularly short isoforms that were inefficiently translated, including a transcript with a non-coding function. In conclusion, 

during my thesis, I could identify a novel AS network involved in doxorubicin resistance in ER+ breast cancer, and widespread ALE regulation 

impacting the translatome in lung cancer cisplatin response. This work increases our understanding of AS and IPA role in cell response and 

resistance to anti-cancer chemotherapy. In the longer term, the identified alternative transcripts and regulators 

constitute candidate biomarkers of chemoresistance. 


