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Préambule

This PhD manuscript is written as completion of my work at the Department of Par-
ticle Physics, Institut de Recherche sur les lois Fondamentales de l’Univers (IRFU) at
CEA-Saclay from 2015 to 2018. These three years as a PhD student were more than just
preparing an additional and last diploma. It was above all an amazing human adventure
where I feel very lucky to meet lots of wonderful people who enriched me.

How to read this thesis

I decided to write my manuscript in English as research nowadays is made in English
and I wanted to give the possibility for potential non-French PhD students and post-
doctoral researchers to enjoy and use my work. In particular, I wanted my first chapter
to provide a comprehensive and deep introduction to modern cosmology both presenting
the key theoretical developments and the status of observations with the hope that it will
be useful for master students and future PhD students.

However, I would also like my relatives, my friends and any curious person to be able
to understand the stakes of my research subject at least. Therefore, this preamble first
proposes a short abstract in French that I tried to make more accessible to non-scientific
people. To all people who are curious about the universe in which we live, I wish you to
enjoy the reading!

Résumé vulgarisé de mon travail de thèse

A tous les curieux de l’univers dans lequel nous vivons,

Notre univers a une histoire.
"D’où venons-nous et comment en sommes-nous venus à exister ?" Telles sont les questions
posées par l’astrophysicien Hubert Reeves dans Chronique des atomes et des galaxies, le
premier livre scientifique sur l’univers que j’ai lu alors que j’étais en Première S au lycée.
J’ai découvert que la cosmologie pouvait apporter des réponses scientifiques à ces questions.

Notre univers est immense.
"Terre, planète bleue, où des astronomes exaltés capturent la lumière des étoiles aux confins
de l’espace." Hubert Reeves
Pour illustrer les dimensions vertigineuses de notre univers, imaginons que le système
solaire ait la taille d’un grain de sable. Alors une galaxie aurait la taille du rayon de la
Terre et la distance moyenne entre deux galaxies correspondrait à la distance Terre - Lune !



La cosmologie a pour but de retracer l’histoire de l’univers en s’appuyant à la fois sur
des modèles mathématiques et sur des observations. Dès les années 1920, les observations
du mouvement des galaxies, ces regroupements d’étoiles attirées sous l’effet de leur masse,
ont montré que plus les galaxies sont lointaines, plus elles s’éloignent vite les unes des
autres : l’univers est en expansion. A la fin des années 90, d’autres observations ont révélé
que les distances entre les galaxies augmentent plus rapidement lors des derniers 6 mil-
liards d’années de l’univers, lorsque les chercheurs estiment que notre univers est âgé de
13,8 milliards d’années. Cette découverte capitale de l’accélération de l’expansion de l’uni-
vers est l’une des plus grandes énigmes de la cosmologie. Afin d’expliquer les observations,
le modèle actuel suppose qu’il existe une composante exotique, appelée "énergie noire",
qui domine aujourd’hui le contenu énergétique de l’univers. A ce jour, aucune théorie ne
permet d’expliquer de manière satisfaisante l’origine de cette accélération.

Dans le cadre de mon doctorat, je fais partie de l’un des plus ambitieux programmes
d’observation du ciel porté par la collaboration Sloan Digital Sky Survey (SDSS) qui uti-
lise un télescope aux états-Unis en opération depuis les années 2000 et qui a déjà mesuré
la position dans le ciel de plus d’un million de galaxies. En comptant le nombre de fois
où deux galaxies sont séparées par une distance donnée, on reconstruit la distribution des
corrélations spatiales des structures cosmiques de l’univers. La mesure de cette distribu-
tion au moyen de grands relevés comme le SDSS a ouvert une nouvelle piste pour explorer
la nature de l’énergie noire grâce à l’exploitation d’une nouvelle sonde : les oscillations
acoustiques de baryons (BAO). Il s’agit d’ondes de pression qui se sont propagées pendant
les 380 000 premières années de l’univers et qui présentent une signature caractéristique
dans la carte des structures de l’univers : deux galaxies sont préférentiellement séparées
de 500 millions d’année-lumière. Cette distance caractéristique (ou échelle BAO) est uti-
lisée comme un étalon de distance pour mesurer l’évolution des distances dans l’univers,
autrement dit son taux d’expansion. Pour étendre les mesures faites jusqu’à présent grâce
aux galaxies et être capable de sonder l’univers tel qu’il était il y a plus de 6 milliards
d’années, il faut pouvoir observer des astres très brillants et très lointains. Les quasars
sont justement les candidats idéaux pour établir la carte la plus aboutie des structures de
l’univers. Il s’agit de trous noirs super-massifs situés au centre de certaines galaxies qui
émettent une très forte lumière provenant du disque d’accrétion de matière situé autour
du trou noir central. Ces phares cosmiques sont précisément les objets que j’étudie dans
ma thèse et que le programme SDSS-IV eBOSS a observé pendant deux ans pour collecter
la position de presque 150 000 d’entre eux. Mon sujet de thèse porte sur l’étude de la dis-
tribution des corrélations spatiales des quasars de eBOSS pour contraindre l’énergie noire
à une époque de l’univers pratiquement inexplorée à ce jour. Il s’agit d’une analyse clé de
ma collaboration dans laquelle j’ai joué un rôle de premier plan. Une première partie de
mon travail de recherche a constitué à mesurer l’échelle BAO à partir de l’échantillon de
quasars observés par eBOSS et a donné lieu à une publication dans la revue scientifique
d’astronomie Monthly Notices of the Royal Astronomical Society (MNRAS). « Il y a le
mètre pour des petits échelles de distances, le kilomètre ou le mile pour les distances entre
les villes, et nous avons l’échelle BAO pour des distances entre galaxies et quasars en cos-
mologie. » ai-je expliqué dans le communiqué de presse de ma collaboration au printemps
2017 (repris pour le CEA-Irfu en français ici) où, bien que la collaboration compte presque
150 personnes et que le milieu soit très compétitif, je suis la seule doctorante à avoir été
citée en reconnaissance pour ma contribution significative dans cette analyse.

Plusieurs pistes sont envisagées pour comprendre le phénomène d’accélération de l’ex-
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pansion de l’univers. En plus de mesurer précisément l’évolution des distances pour contraindre
les propriétés de l’énergie noire, il est possible de tester la validité de la théorie de la gra-
vitation aux échelles des structures cosmiques. L’interaction gravitationnelle qui est res-
ponsable de la formation des structures qui s’attirent sous l’effet de leur masse, est décrite
par la théorie de la relativité générale d’Einstein qui est testée de manière très précise
à l’échelle de notre système solaire. Mais nous supposons que la théorie est valable aux
échelles de distances entre les galaxies, autrement dit à des distances beaucoup beaucoup
plus grandes. Pour reprendre l’analogie entre la taille de notre système solaire et le grain
de sable, nous savons actuellement confirmer la validité de la théorie d’Einstein pour des
distances qui correspondent au grain de sable et nous supposons qu’elle est valable pour
des distances qui correspondent à la distance entre la Terre et la Lune. Il est donc pos-
sible qu’à ces échelles cosmologiques, des modifications soient à apporter à la théorie de
la relativité générale. Ainsi, mon travail de recherche comprend un deuxième volet plus
novateur qui consiste à mesurer la quantité de galaxies ou quasars qui se forment à une
période donnée de l’univers. On appelle ce paramètre cosmologique le taux de croissance
des structures cosmiques et sa valeur est prédite par le modèle actuel de la cosmologie.
Nous avons mené une analyse rigoureuse des effets pouvant altérer la mesure qui a permis
de déterminer la croissance des structures pour la première fois à partir de cet échantillon
de quasars. Nous avons ainsi confirmé la validité du modèle actuel de la cosmologie basé
sur la relativité générale pour une époque de l’univers quasiment inexplorée à ce jour.
Cette étude a fait l’objet d’un article 1er auteur dans la revue MNRAS et j’ai accompagné
cette publication d’un communiqué du CEA-Irfu en février.

Par ailleurs, aucune expertise dans la mesure du taux de croissance des structures
n’existait dans mon groupe de recherche au CEA-Saclay, et était peu développée en France.
Mon travail de recherche est d’autant plus précurseur qu’il ouvrira la voie pour les futurs
grands relevés, comme le prometteur programme DESI qui s’inscrit dans la continuité du
relevé SDSS ou encore le satellite européen Euclid. Le défi majeur de ces programmes
dédiés à l’énergie noire sera de cartographier les structures de l’univers pour mesurer les
paramètres cosmologiques avec un gain en précision d’un ordre de grandeur par rapport
aux contraintes actuelles. De plus, les mesures de croissance des structures à grand red-
shift, comme la première mesure que j’ai effectuée avec l’échantillon quasars de eBOSS vont
apporter des nouvelles contraintes sur les modèles de gravité alternative, des contraintes
qui sont complémentaires de celles qui sont en train d’être apportées par les ondes gravi-
tationnelles et qui s’annoncent aussi très prometteuses.
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1.1 The standard cosmological model
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universe, both as a theoretical solution of the equations that govern the dynamics of the
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universe and as observational evidence to explain that galaxies move away from each
other. Nowadays, it is well described within the framework of the standard cosmological
model which follows the expansion of the universe over 13.8 billion years starting with
a ’hot Big Bang’. The large-scale dynamics of the universe is described by the theory of
General Relativity (GR) applied to an homogeneous and isotropic universe whose present
day energy content is illustrated in figure 1.1 and is made-up of :

— Baryonic matter represents a small fraction of the total matter content. It is also
called ordinary matter as it corresponds to galaxies, stars, gas, planets, us, . . .

— Cold dark matter is the dominant matter component and is assumed to be non-
relativistic and pressureless. Its microscopic nature is still unknown with masses
ranging from 10−22eV to 1067eV. Candidates for dark matter can be studied in
particle physics with the Large Hadron Collider (LHC) 1 and with cosmology through
its effects on the formation of structures.

— Radiation is a relativistic component that includes photons and neutrinos while
they were relativistic. Its contribution is negligible today but in the early universe,
when temperatures were higher, it was dominant and coupled with matter.

— Dark energy dominates the energy content today and is responsible for the late-
time acceleration of the expansion of the universe. In the standard model, dark energy
is a fluid with constant properties in time and space that can be characterized by a
cosmological constant which enters the equations of general relativity.

Given the energy content of the universe, this standard model is also called the ΛCDM
model. The universe cooled down due to the expansion and the densities of each com-
ponent evolved with time so that the universe underwent different eras, first dominated
by radiation, then matter and eventually by dark energy. The theoretical predictions of
the ΛCDM model match many different observations from the photon radiation emitted
380,000 years after the Big Bang to today’s large-scale structures of the universe. But the
fact that it relies on a dark sector (dark matter and dark energy) that represents almost
95% of the current energy content of the universe reminds us that a large part of disco-
veries about the universe are still to be made, and as a PhD student it is a very exciting
time to start learning about modern cosmology.

This section is organized as follows. Section 1.1.1 describes the most important notions
and results of GR (section 1.1.1.1) to focus on its application in cosmology (section 1.1.1.3)
in order to obtain a system of equations that governs the evolution of the universe and its
content. The resolution of these equations in the 1920’s led to a time-evolving solution,
meaning that the universe is not static, contrary to the general viewpoint at that time.
We will see in section 1.1.1.2 that the idea according to which the universe is expanding
took about thirty five years to be widely accepted by the scientific community. It led to
the current scenario of a hot Big Bang model that was originally based on three observa-
tions : the expansion of the universe, the light element abundances which are in agreement
with the Big Bang nucleosynthesis (BBN), and the black-body radiation left over from the
first 380,000 years, the cosmic microwave background (CMB). In the last three sections,
we describe the unknowns of this standard model : the origin of primordial fluctuations
(which could emerge from quantum fluctuations during the inflation) in section 1.1.3.1,
the cold dark matter that plays a crucial role in the formation of structures (section 1.1.4)
and the late-time acceleration of the expansion in section 1.1.5 whose mechanism remains

1. https://home.cern/topics/large-hadron-collider
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1.1 The standard cosmological model

Figure 1.1 – Present day energy content of the universe : matter represents ∼30% and
is composed of ordinary baryonic matter (∼5%) and a cold dark matter (∼25%) whose
nature remains unknown, radiation (photons and neutrinos) is negligible and dark energy,
a mysterious fluid which is responsible for the cosmic acceleration, is now dominated the
energy content (∼70%).

one of the most important questions of modern cosmology.

This section is heavily influenced by the lectures on cosmology during my master 2
NPAC program 2, by textbooks [1, 2, 3, 4, 5, 6]. The mathematical framework to describe
the statistical properties of Gaussian random fields and their application for cosmology in
section 1.1.3.2 are also inspired by Benjamin Wandelt’s lectures on Cosmostatistics and
Large Surveys.

1.1.1 The geometry of the universe

General relativity (GR) provides a geometrical explanation of the gravitational interac-
tion which is no longer considered as an instantaneous force between two massive particles
as Newton introduced three centuries before. It is worth noting that most cosmology can
be learned without a deep knowledge of the mathematical tools that are associated with
the description of a curved space-time. One must be familiar with the concept of a me-
tric, understand geodesics and be able to apply Einstein’s equations to the metric that
describes an isotropic and homogeneous universe. Appling the formalism of GR to the
universe will then relate the parameters of the metric to the densities in the universe.

General relativity relies on the same assumptions that special relativity which has been
developed to explain situations where objects can move with a velocity close to the speed
of light. If we assume the universality of the speed of light, the simple addition of velocities
does not work for objects moving at the speed of light in a frame which is itself moving. So
in 1905, Einstein proposed the theory of special relativity where he introduced the concept
of space-time invariance which led to a relativistic description with a modified addition of
velocities that works for frames moving at a constant speed in a straight line (such frames

2. https://npac.lal.in2p3.fr/home/
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are called inertial). Then, he extended his formalism to accelerated frames by assuming
that uniform gravitational fields are equivalent to frames that accelerate uniformly relative
to inertial frames. This assumption is called the Equivalence Principle and it means
that the gravitational massmg (the one in the definition of the gravitational interaction) is
equal to the inertial mass mi (the one associated with the Newton’s second law, F = mia
where F is the total force and a the acceleration vector). This principle is heavily tested
on Earth and in the Solar System as it is a foundation of general relativity and any
deviation in the equivalence mi = mg would imply collapse of the theory. Among the
latest experimental tests of GR, the recently launched MICROSCOPE satellite confirms
the validity of the Equivalence Principle at the 10−15 precision level [7].

1.1.1.1 Space and time in General Relativity

Classical vs Relativistic description In classical physics, if one observer measures
the separation to be δL, then all observers measure the same δL regardless of how they
are moving, and the same consideration is valid for the passage of time : the separation in
time between two events is the same for all observers. In special and general relativity (SR
and GR), neither spatial separations nor time intervals are invariant but instead there is
a combined space-time interval δs which is invariant :

(δs)2 = (cδt)2 − (δx)2 − (δy)2 − (δz)2 (1.1)

where c is the speed of light in a vacuum. The coefficients in the right-hand side (here,
+1,−1,−1,−1) represent the metric coefficients of the SR metric tensor. The metric
tensor and the coordinate system fully describes the geometry of space-time. The latter is
now defined by x = (x0, x1, x2, x3) where x0 represents the time coordinate and x1,2,3 the
spatial coordinates (the Einstein notation for the elements of x is xµ). These coordinates
define an event in SR and GR. The metric tensor gµν(x) expresses the distance between
two events in space-time and another way of formulating the distance ds between the
points x and x + dx is given by :

ds2 = gµν(x) dxµ dxν (1.2)

By construction the metric tensor is symmetric (gµν = gνµ) and special relativity is des-
cribed by a Minkowski space-time with the metric gµν = ηµν , where

ηµν =


+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


Geodesic equation In Minkovski space (3D space with no curvature), particles

travel in straight lines unless they are acted on by a force. In more general space-times,
and in particular in a curved space-time, the paths of particles are more complicated and
in absence of any forces, they are called geodesics. To express this in equations, one need to
generalize Newton’s law with no forces, i.e. d2xi/dt2 = 0, to the expanding universe. This
derivation is not the purpose of this section, we will just apply the Equivalence Principle to
a freely falling object. Locally, one can define a coordinate system xµ such that its equation
of motion corresponds to a frame with no acceleration and gravitation, i.e. d2xµ/dλ2 = 0
where λ is an evolution parameter which monotically increases along the particle’s path
as time is now one of the four coordinates.
According to the Equivalence Principle, this equation also holds in the vicinity of any

8



1.1 The standard cosmological model

object, so there is another coordinate system x′µ where we can rewrite this equation as
follows :

d2xµ

dλ2 + Γµα,β
dxα

dλ

dxβ

dλ
= 0 (1.3)

It corresponds to the geodesic equation, the equation of motion in GR, where Γµα,β are
the Christoffel symbol. It is an affine function between the two coordinate systems that
correctly describes the effects of parallel-transport in a curved space-time :

Γµαβ = ∂x′µ

∂xν
∂2xν

∂x′α∂x′β
(1.4)

It can also be expressed as a function of the metric and its derivatives. In a cartesian
coordinate system, the Christoffel symbol vanishes and the geodesic equation is simply :
d2xµ/dt2 = 0. The geodesics can be interpreted as the straightest possible paths in a cur-
ved geometry.
Although absolute gravitational force has no meaning, the relative gravitational field (so-
metimes called the tidal field) between two nearby events can be measured by observing
the relative acceleration of two freely falling bodies. This relative acceleration is directly
related to the curvature of space-time by the geodesic equation deviation. This deviation
represents the tendancy of the geodesics to accelerate toward or away from each other due
to the curvature of space-time.

Einstein’s equation The great advantage of the metric in GR is that it incorpo-
rates gravity : instead of considering gravity as an external force with particles moving in
a gravitational field, we can include gravity in the metric and describe the motion of free
particles in a curved space-time. The notion of geodesics in GR thus implies considering
gravity as an aspect of space-time curvature. A second aspect of GR is that one can relate
the metric to the matter and energy content of space-time. Such a relation is given by
the Einstein’s equation which relates the components of the Einstein tensor Gµν , descri-
bing the geometry, to the energy-momentum tensor Tµν , describing the energy content,
through :

Gµν = Rµν −
1
2gµνR = 8πG

c4 Tµν (1.5)

where Rµν is the Ricci tensor which depends on the metric and its derivatives and R is the
Ricci scalar which is a contraction of the Ricci tensor (R = gµνRµν). G is the Newton’s
constant and Tµν is the energy-momentum tensor which acts as the source of gravitation.
So in the GR viewpoint, massive objects distort the space-time curvature and other objects
in the vicinity thus follow geodesics in a curved space.

1.1.1.2 Expanding universe

In 1917, just two years after the completion of GR, Einstein introduced the first mo-
dern cosmological model and applied the framework of GR to the universe by (correctly)
assuming, with little observational guidance at that time, that it is homogeneous and iso-
tropic on large scales [8]. He also assumed (incorrectly) that the universe is static. Finding
these two assumptions to be incompatible with the natural solution of his equation, Ein-
stein modified equation 1.5 to include a ’cosmological term’, now usually known as the
cosmological constant and denoted Λ :

Gµν = Rµν −
1
2gµνR = 8πG

c4 Tµν + Λgµν (1.6)

9
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In effect, he added a new component whose repulsive gravity could balance the attractive
gravity of the matter (though he did not describe his modification in these terms). In
section 1.1.5, we will see in more detail why we include this cosmological constant now.
Before presenting the mathematical tools associated with the application of GR to the
whole universe in section 1.1.1.3, let first go back to the concept of expanding universe.

The notion of redshift z is central in cosmology as most of our observations
come from light which is emitted by astrophysical object. Here, we follow the
definitions and notations given in [9]. The redshift z of an object is the fractional
Doppler shift of its emitted light resulting from radial motion

1 + z = νR.F.
νobs

= λobs
λR.F.

(1.7)

where νR.F. and λR.F. are the frequency and wavelength emitted in the rest frame,
and νobs and λobs are the observed ones. The right panel of figure 1.2 illustrates
the shift of spectral lines due to relative motion w.r.t an observer at rest. If a
source is moving closer to an observer, its wavelength is smaller compared to a
source at rest which translates into a blueshift of the spectral lines. Conversely, if a
source is moving away from the observer, its frequency increases and the spectral
lines will be redshifted compared to the spectrum of a source at rest. Such effect
is known as the Doppler effect. In the case of the universe, the spectral lines are
redshifted due to the expansion. In fact, a photon’s wavelength can be shifted
because of three main effects :

— the Doppler redshift due to the relative peculiar velocity between the source
and the observer which will contribute to both blue and red Doppler shift

— the cosmological redshift which is a pure consequence of the expansion
of the universe and thus corresponds to a red shift.

— the gravitational redshift due to the Einstein’s effect when there is a diffe-
rence in magnitude of the gravitational potential between the observer and
the photon’s source. Einstein took into account this effect to calculate the
amount of light deflection by the Sun which was in agreement with observa-
tions and considered as the first success of GR. Except in the close vicinity
of strong gravitational fields, such as for white dwarf stars, neutron stars
and black holes, this effect is negligible and ignored in this thesis.

For low redshifts (z � 1) which correspond to small v/c (or small distance d in
the expanding universe), the following relation holds : z ' v/c. So a measurement
of the amount by which spectral lines of galaxies are redshifted is a direct measure
of how fast they are receding from us.

Redshifts in cosmology

Observational evidence of an expanding universe started emerging in 1912 when Vesto
Slipher, director of the Lowell Observatory in Arizona observed the spectral lines of ’spiral
nebulae’ using a camera and a spectrograph on the 60-cm telescrope at the observatory. He
recorded their spectra and was able to measure the spectral shift and infer the recession
velocity of those nebulae w.r.t. us (see the box below for an explanation of a spectral
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1.1 The standard cosmological model

line shift). Slipher [10] found that some nebulae exhibited a shift towards the red part of
the wavelength domain with recession velocites up to 1100 km.s−1. It therefore suggested
that the universe was far bigger than what the scientific community thought at that time,
making the nature of those ’spiral nebulae’ a subject under discussion (nowadays, they
correspond to objects within our own galaxy or independent galaxies).

Source    observed wavelength       spectrum 

Figure 1.2 – Illustration of the Doppler shift of spectral lines due to the relative motion
of a source w.r.t. a fixed observer. The shift of spectral lines towards the red part of the
spectrum for distant galaxies can be interpreted as a consequence of the expansion of the
universe which make galaxies move away from us.

The doubt on the implication of Slipher’s redshift measurements remained until 1929
when Edwin Hubble published a seminal article [11] where he simultaneously measured a
sample of 25 galaxies. He used the 2.5m-telescope at the mount Wilson in California to
distinguish giant bright stars in spiral galaxies whose light curves exhibit a mean magni-
tude that depends on their pulsation period. Those giant bright stars are called Cepheids
and had been studied a few years before by Henrietta Leavitt at the Harvard College
Observatory. She determined a relation between their pulsation period and their intrinsic
brightness using the variability of Cepheids in the Magellanic Clouds [12]. Edwin Hubble
used her relation to measure the distances of galaxies up to ∼15 Mpc as a function of their
recession velocities inferred from the redshift of their spectral lines. He showed that when
plotting the recession velocity of a galaxy as a function of its distance, he could find a law
of proportionality, now known as the Hubble’s law, meaning that the further galaxies are,
the faster they move away from each other. This law of proportionality can be expressed
as :

v = H0D (1.8)

where v is the recession velocity, D is the physical distance from the galaxy to the
observer and H0 is called the Hubble constant and was measured by Hubble to be
530 km.s−1.Mpc−1. This relation holds for the local universe (z � 1), we will see a more
general expression for the Hubble parameter as a function of time and energy content in
section 1.1.1.3. On the theoretical side, in 1922 Alexander Friedmann published a set of
equations derived from Einstein’s equation showing that the universe might expand [13].
Five years later, Georges Lemaitre interpreted it as the expansion of a homogeneous and
isotropic universe with uniform density and estimated the value of the expansion rate to
be H0 = 570 km.s−1.Mpc−1 [14, 15]. Figure 1.3 shows the calculation of Lemaitre on the
left panel while the right panel shows the measurements by Hubble.
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Figure 1.3 – Hubble diagram, i.e. recession velocities as a function of distance, as cal-
culated by Georges Lemaitre in the left panel and as measured by Edwin Hubble in the
right panel. Both found a consistent coefficient of proportionality which is now known as
the Hubble constant.

Georges Lemaitre also first proposed the idea of a primeval atom to highlight the
fact that if the universe is expanding, it can have a beginning and so a history. In fact,
the expansion of the universe which is illustrated in the Hubble diagrams of figure 1.3
represents the first pillar of what will be called the hot Big Bang model. An usual image to
describe the expansion of the universe is a cooking raisin cake, as illustrated in figure 1.4
where the cake inflates and each raisin can see its neighbours moving away from it, all the
more quickly as they are far, but their own size doesn’t change.

A series of H0 measurements has been performed after Lemaitre and Hubble. In the
three decades that followed, published values of the Hubble constant varied by about a
factor of two between ∼100 and 50 km.s−1Mpc−1 as summarized in [e.g. 16]. In order to
represent the spread in the measurements of the Hubble constant, a useful notation is :

H0 = 100h km.s−1.Mpc−1 (1.9)

It means that in our today universe, two galaxies that are distant by 1 Mpc move away
from each other with a velocity of 100hkm.s−1. Depending on the quantity of interest,
the inverse of the Hubble constant, H−1

0 gives access to the Hubble time tH and times the
speed of light to the Hubble distance DH :

tH = H−1
0 = 9.78h−1 × 109yr (1.10)

DH = c

H0
= 3000h−1Mpc = 9.25× 1025 h−1m (1.11)

Taking H0 = 530 km.s−1 as measured by Edwin Hubble, it gives H−1
0 = 2 × 109yr which

corresponds to the age of the universe assuming a constant recession velocity and a matter-
dominated only universe at present epoch . Already in the 1930’s, this estimation of the
age of the universe was in disagreement with the geophysics estimate of the age of the Solar
System to be at 4−5×109yr. It was an argument in favor of steady state theories [17, 18]
where the universe, although in expansion, remained the same in time with no beginning
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Figure 1.4 – Illustration of the expansion of the universe using the exemple of the cooking
raisin cake. As time goes, the distances between raisins (galaxies) increase but not the size
of the raisin as it is bound by electric (gravitational) interactions between its components.

and no end. This model remained popular until the discovery of the black-body radiation
of photons that were emitted in the early universe, 380000 years after what represents the
t = 0, the beginning of the universe called the Big Bang.

1.1.1.3 Dynamics of the universe

Cosmological principles To describe the dynamics of the universe, we need to
make some assumptions on its geometry which are now confirmed by independent obser-
vations of the universe at different epochs and scales. Such assumptions constitute the
Cosmological Principle which states that no observer occupies a preferred position in the
universe. This principle thus implies that the universe is homogeneous and isotropic
(no preferred direction in the sky or orientation on the sky) on scales of > 100 Mpc, i.e.
scales much larger than the typical distance between galaxies. These characteristics define
the background universe.

Friedmann-Lemaitre-Robertson-Walker metric From a mathematical view-
point, the isotropy and homogeneity of the universe imply that only two parameters fully
determine its geometry : a factor to describe its expansion which can only be a function of
time because of homogeneity and a global curvature k which must be the same everywhere
because of isotropy. To describe an expanding universe, we could modify the metric by
multiplying the spatial terms with a time-dependent factor R(t). In spherical coordinates,
it gives :

ds2 = c2dt2 −R2(t)(dr2 + r2dθ2 + r2 sin θ2dφ2) (1.12)

To describe the size of the universe, it is more convenient to define the scale factor a
as :

a(t) = R(t)
R0

(1.13)

where the subscript 0 refers to the present epoch and by definition, a(t0) = 1. The scale
factor relates the physical distancesDphys to the coordinate comoving distances byDphys =
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Figure 1.5 – We define a comoving distance whose value remains constant as the universe
expands. From [4].

a(t)DC where DC is the comoving distance defined by equation 1.23. Figure 1.5 illustrates
the expansion of the universe as a grid which expands uniformly as time evolves. Points on
the grids maintain their coordinates so the comoving distance between two points remains
constant. The scale factor is also directly related to the cosmological redshift introduced
in the previous section by :

1 + z = a(t0)
a(t) (1.14)

where at t0, a(t0) = 1 and z = 0 corresponds to the present epoch.
In fact, the most general metric that describes an homogeneous, isotropic and expanding
universe is :

ds2 = c2dt2 − a(t)
(

dr2

1− kr2 + r2dθ2 + r2 sin2 θdφ2
)

(1.15)

where the constant k determines the curvature of the universe : k = 0 for a flat universe,
k = +1 if spherical or k = −1 if hyperbolic. Equation 1.15 corresponds to the Friedmann-
Lemaitre-Robertson-Walker (FLRW) metric.

Friedmann equations The Friedmann equations are the key equations that describe
the dynamics of the universe as a whole. Proving these equations would take us a long
way outside the scope of this manuscript into what is usually graduate-level physics, so we
refer the reader to the mentioned textbooks for their derivation from Einstein’s equations
by imposing local energy conservation. The simplest form of Tµν is the one that describes
a perfect-fluid with no viscosity whose velocity vector coordinates are denoted uµ. Under
this assumption, the energy tensor of the universe becomes

Tµ,ν = ρ[(w + 1)uµuν − wgµν ] (1.16)

where w is the equation of state parameter that relates the pressure p to the density ρ by
p = wρc2.
The time component (µ = ν = 0) of the Einstein’s equations ( 1.5) describes how fast the
universe is expanding :

1
a2

(
da

dt

)2
=
(
ȧ

a

)2
= 8πGρ

3 − kc2 (1.17)
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and by combining the time and the space components, we find an equation for the dece-
leration of the expansion of the universe :

ä

a
= −4πG

3c2 (ρ+ 3p) (1.18)

For a given fluid whose equation of state is p = wρc2, combining equations 1.17 and 1.18
gives :

ρ̇

ρ
= −3(w + 1) ȧ

a
=⇒ ρ(t) = ρ(t0)a(t)−3(w+1) (1.19)

It implies :

ρm(a) = ρm(a0)a−3 |p| � ρc2 non-relativistic matter : baryons + cold dark matter
ρr(a) = ρr(a0)a−4 p = ρc2/3 radiation / relativistic matter (photons + massless neutrinos)
ρΛ(a) = ρΛ(a0) p = −ρc2 vacuum / cosmological constant

The fact the vacuum energy density is constant is due to its value being independent of
the number of particles present. The cosmological constant is then interpreted as a fluid
of constant density with negative pressure.

We can also define the total density parameter Ωtot = Ωm + Ωr + ΩΛ = 1−Ωk and the
critical density ρcrit = 3H2/8πG, such that Ωm,r = ρm,r/ρcrit. The density parameters for
each component can be written as :

Ωm,r,Λ =
ρm,r,Λ
ρcrit

(1.20)

Ωk = −kc2

R2H2 (1.21)

where H is the expansion rate (also called the Hubble parameter in the previous sec-
tion) and which is defined by H(t) = ȧ/a. Including the time-evolution of the density
parameters, one can therefore rewrite the 1st Friedmann equation ( 1.17) by :

H2(t) = H2
0 [Ωm,0a(t)−3 + Ωr,0a(t)−4 + ΩΛ,0 + Ωk,0a(t)−2] (1.22)

As we said in the introduction, due to the the change in temperature and pression condi-
tions as the universe expands, the densities of the different components evolved with time
and changed their relative ratios such that the universe successively underwent eras of
radiation, matter and dark energy domination. This is illustrated by figure 1.6 which re-
presents the redshift evolution of each density component and their relative contribution
to the total density for a flat universe (k = 0).
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Ωradia%on	  
Ωma*er	   ΩΛ

zCMB ztoday 

1+z 

Figure 1.6 – Radiation density (red), Matter density (blue) and cosmological constant
density (green) as a function of redshift for a flat universe Ωtot = Ωm + Ωr + ΩΛ = 1. The
redshift at CMB (just after the matter-radiation equality) and the today redshift are also
represented.

LOS comoving distance DC Defined as the distance between a distant emitter
at scale factor a and us,

DC = c

∫ z

0

dz′

H(z′) (1.23)

where H(z) depends on the energy content of the universe and is defined in
equation 1.22. The radius of the observable universe is obtained by integrating
to infinity. For the currently-accepted values of the density parameters [19], it
comes out about 3.5c/H0 and the volume enclosed in this radius is referred to as
the Hubble volume.

Transverse comoving distanceDM Defined as the ratio between the comoving
distance between two events at the same redshift and their angular separation
∆θ. It is related to the angular diameter distance DA through

DA = DM

1 + z
(1.24)

Distances in cosmology

1.1.2 The hot Big Bang model

The hot Big Bang model (HBB) postulates that the Universe started 13.8 billion years
ago when it was much hotter and denser than today. It has been developed in the 1950s
by Georges Gamow whose doctoral advisor was Alexander Friedmann. He applied Fried-
mann’s and Lemaitre’s non-static solutions to describe a universe of uniform density and
constant spatial curvature. He also extended Lemaitre’s idea of a primeval atom by assu-
ming that the early universe was dominated by radiation rather than matter. He and his
students introduced the idea of primordial nucleosynthesis during which the light elements
were formed and they also predicted the existence of a relic thermal (blackbody) spectrum
of photons, the cosmic microwave background (CMB) [20, 21, 22]. So by 1970’s, the HBB
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theory is supported by three major observations :
— the Hubble law which is still the most direct evidence of the expansion of the universe
— the abundances of light elements that were formed during the primordial nucleosyn-

thesis, also called Big Bang nucleosynthesis (BBN)
— the black-body radiation of the CMB as a relic of the thermal photons emitted during

the early universe
In this section, we will just provide the most relevant results related to the BBN and the
CMB.

1.1.2.1 Big Bang Nucleosynthesis

In the early universe, temperatures were much hotter than today and the thermody-
namics was therefore very different than today where photons and neutrinos very rarely
scatter on matter. Knowing the conditions of the early universe and the relevant nuclear
cross-sections, we can calculate the expected primordial abundances of all elements as
a function of the density of protons and neutrons, and hence on the density of baryons
compared to photons, at the time of nucleosynthesis.
The key quantity to understand what happens in terms of nuclear reations is the com-
parison between the numbers of reactions per particle per unit time and the Hubble rate
whose inverse gives the characteristic time tH = H−1 for temperature and density changes
due to the expansion. Given this consideration, the thermal history of the early universe
can be summarized into three steps which are illustrated in figure 1.7 :
(i) Thermal equilibrium occurs until the neutron-proton freeze-out for T < 1 MeV

and t < 1 s : all the relativistic components of the universe are in thermal equilibrium
(all reactions proceed with the same rate in forward and backward directions) and
the universe is dominated by radiation. The universe is too hot and too dense to have
neutral atoms or even bound nuclei. More precisely two equilibriums are reached :
kinetic equilibrium due to elastic scattering with energy exchanges between particles
and chemical equilibrium due to inelastic collisions where the number of particles is
changed :

p+ e− ↔ n+ νe (1.25)
p+ ν̄e ↔ n+ e+ (1.26)

γ + e− ↔ γ + +e− (1.27)
p+ e− ↔ p+ e− + γ (1.28)

γ + γ ↔ e+ + e− ↔ νe + ν̄e (1.29)

At T ∼ 1 MeV, the reaction time scale for p + e− ↔ n + νe became longer than tH
and after this point, the neutron-proton reactions cease and the neutron-to-proton
ratio nn/np is frozen out at the equilibrium value that it had at that time. It is
followed by the neutrino freeze-out shorlty after.

(ii) Neutrons decay for 800 keV > T > 60 keV : Neutrons are not stable and instead
decay into protons n → p + e− + ν̄e with a lifetime of ∼880 s. Then, the nuclear
reactions during the next ∼1000 s determined the relative abundances.

(iii) Primordial nucleosynthesis started when T ∼ 60 keV until the freeze-out of nu-
clear reactions at T ∼ 30 keV (so between ∼200-1000 s) resulting in the production of
substantial amounts of deuterium D (D/H ' few 10−5), helium 3He and 4He, and
lithium Li. Primordial nucleosynthesis could not start earlier because for T ∼ MeV
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because of high temperatures and energetic photons which did not allow to the forma-
tion rate of deuterium to be greater thant the destruction rate by photo-dissociation.
The formation of light nuclei stopped at 7Li because of the absence of stable ele-
ments at A = 5, 8 and then because the temperature and density conditions were no
longer satisfied. The synthesis of heavier elements started up again once stars were
formed initiating the stellar nucleosynthesis.

Figure 1.7 – The neutron-proton ratio as a function of time for temperatures between
10 keV and 10 MeV. The three main steps of BBN are represented : thermal equilibrium,
free decay and synthesis of the first light nuclei until T ∼ 30 keV. From [5].

All theoretical predictions of primordial abundances agree well with the measurements,
except for 7Li where the observations find a significantly lower abundance. However, this
seems to be due to astrophysical effects related to the stellar nucleosynthesis that can
affect the measurements of primordial abundances.

1.1.2.2 Cosmic Microwave Background

Just after the synthesis of the first light nuclei, the universe was still dominated by
radiation and photons are still energetic enough to ionize the recently-formed atoms. In
the early universe, due to high temperatures, baryonic matter existed in form of neutrons
and charged protons and electrons. During the BBN, the neutrons and protons formed
charged atomic nuclei, mostly hydrogen and helium ions. But atoms could not be formed
due to absorbed or scattered thermal photons whose mean energy was above the ionization
level of atoms. Until recombination, the baryonic matter was therefore strongly coupled
with the photons by Thomson scattering with free electrons and in general, all charged
particles were exchanging energy continously in frequent collisions, so that the whole for-
med an ionized plasma. This is called the baryon-photon plasma.
In this plasma, density perturbations were damped compared to CDM perturbations as the
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baryon-photon pressure prevents the growth due to gravitational instability. This counte-
racting effects gave rise to acoustic waves that propagated away from the density peaks
in the plasma and that are called baryon acoustic oscillations, BAO. We will go back
to the imprint of BAO in the present day matter clustering in section 1.2.2.1.
As the universe became cold enough that thermal photons were no longer energetic enough
to ionize particle composites, free particles started forming atoms. It marks an epoch cal-
led recombination associated with the baryon-photon decoupling which allows the mean
free path of photons to become larger than the Hubble horizon so light could cross the
universe without scattering. From the time of decoupling until today, these photons were
redshifted and formed the cosmic microwave background (CMB). Because photons were
in kinetic equilibrium before recombination and given that they are massless, the thermal
character of their spectrum is maintened by the expansion. The CMB is therefore the
redshifted black body photon radiation from when the universe was last opaque. Because
of the finite speed of light, the CMB must appear to any observer as originating from
a spherical receding surface, with the observer at the center, called the surface of last
scattering.

The CMB was discovered in 1964 by Arno Penzias and Robert Wilson [23, 24] at the
Bell Laboratories in New Jersey while they were calibrating a microwave antenna for use
in telecommunications and astronomy. They found a surprising and unexplained constant
noise source distributed isotropically across the sky. At the same time, in Princeton a
group led by Robert Dicke [25] had just predicted an isotropic CMB from the Big Bang
theory 3. After the discovery, the three major space missions that were dedicated to CMB
observations are the NASA’s satellite COsmic Background Explorer [26, COBE,] from
1989 to 2007, then the WMAP satellite [27] from 2001 to 2007 and the ESA’s Planck mis-
sion from 2009 to 2013 whose latest cosmological results have been published in 2015 and
are described in [19]. The energy content of the universe shown in figure 1.1 is based on
the Planck 2015 results and corresponds to the flat ΛCDM model used in this manuscript.

Figure 1.8 shows the intensity of the CMB radiation measured by COBE as a function
of frequency. It is the most perfect black body spectrum ever known with a mean tempera-
ture Tobs = 2, 725K and temperature anisotropies at the level ∆T/T ∼ 10−5. Since photon
energy is related to frequency ν by E = hν where h is the Planck constant, the energy
density has decreased by a factor of (1 + z)4 since the photons were emitted (because
volumes have decreased by a factor of (1 + z)3 and wavelengths by (1 + z)). The Stefan-
Boltzmann law states that the energy density is proportional to T 4 so at zCMB ∼ 1090,
Tem = (1 + z)Tobs ∼ 3000K.

To describe the temperature fluctuations across the sky, the signal must be decomposed
onto a basis which is appropriate for the spherical surface of the sky. Such a basis is called
the spherical harmonics Ylm and the temperature anisotropies can thus be written :

∆T
T

(θ, φ) =
∞∑
l=0

l∑
m=−l

almYlm(θ, φ) (1.30)

where θ,φ the angles for spherical coordinates and the alm are the amplitudes of each l,m
mode which are very close to be Gaussian. In addition, 〈∆T/T 〉 = 0 so that 〈alm〉 = 0, thus
all the information is encoded in the variance, i.e. the correlation between two points in
the sky, for all the points. This statistical tool is called the two-point correlation function

3. Gamow’s prediction was implicit in calculations published in 1948

19



Chapitre 1 : Introduction to modern cosmology

Figure 1.8 – The intensity of the CMB radiation as measured by COBE as a function of
frequency compared with a theoretical black body spectrum. From [28]

of temperatures fluctuations and it is defined by

C(η1, η2) = 〈∆T
T

(η1)∆T
T

(η2)〉 (1.31)

where η = (θ, φ). One can also parametrize the direction (η1, η2) by one value, its dot
product cosα so that :

C(η1, η2) = C(cosα) =
∑
l

2l′ + 1
4π Cl′Pl′(cosα) (1.32)

where Pl′(cosα) can be decomposed into spherical Legendre polynomials. One can then
show that Cl = 〈|alm|2〉m. Only the 2l + 1 independent m modes can be measured at
any fixed l, which limits the precision of the measurements of Cl. This limit is known as
cosmic variance and comes out as

∆Cl =
√

2
2l + 1Cl (1.33)

It corresponds to the best possible measurement in the absence of any instrumental noise
or astrophysical systematics.
Figure 1.9 represents the amplitude of temperature fluctuations DTT

l = l(l + 1)Cl/2π as
a function of angular scales l (or θ[rad] ∼ 180/l) as measured by [19].

An important scale is the angular size of the maximum distance particles can travel
until the time of decoupling. It corresponds to 2◦ in the sky and modes further apart than
2◦ could not have been in causal contact and are called super-horizon modes.
In what follows, we will describe the three main features of the CMB spectrum.
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— (1) Sachs-Wolfe plateau : On scales much larger than the size of the horizon
at decoupling, the only causal contact could have been before the radiation era,
i.e. during a period called inflation and that will be described in the next section.
Inflation must predict scale-invariant fluctuations to be consistent with the constant
level of the temperature fluctuations on large scales (low l) that are seen in the
CMB. This plateau is related to the Sachs Wolfe (SW) effect which is due to the
gravitational redshift of photons at last scattering that have to escape from the
potential wells where baryons are. This ordinary SW effect is following by an early
integrated SW effect and then a late ISW. The ISW is due to the change in energy
of the CMB photons that travel from last scattering to the present by crossing the
evolving metric potentials : the early ISW produces an enhancement of the acoustic
peak at l ∼ 200 when there is still radiation in the universe and a late ISW that is
responsible for the raise at l < 30.

— (2)Acoustic peaks : Before recombination, the motions of baryons and photons are
strongly coupled, whereas cold dark matter decoupled earlier and started collapsing.
Due to gravitational interaction, the baryon-photon plasma falls out of under-dense
regions and into over-dense regions where the gas compressed towards the center
of the over-dense regions. But photon pressure outwards resisted the inward flow,
which sets up oscillations. These oscillations propagate during the first 380,000 years
until decoupling when oscillations were frozen, which sets the sound horizon size at
decoupling rs which gives the approximate position of the first acoustic peak. The
sound horizon at decoupling zdec = 1090 is defined by :

rs(zdec) =
∫ ∞
zdec

cs(z)
H(z)dz = (97.34± 0.33)h−1Mpc (1.34)

where cs ' c/
√

3 is the speed of sound which depends on the ratio of the radiation
pressure to the energy density of the baryon-photon fluid, determined by the baryon-
to-photon ratio which is proportional to Ωbh

2. H(z) is the expansion rate whose
behavior at z > zdec depends on the ratio of the matter density to radiation density,
where for a fixed radiation sector ratio, it is proportional to Ωmh

2. Both ratios are
well measured by the relative heights of the acoustic peaks in the CMB anisotropy
power spectrum.

— (3) Silk damping : The higher acoustic peaks are suppressed because of photons
diffusion on the last scattering surface. In fact, the transition from an opaque to a
transparent universe was not instantaneous and during the transition, photons were
diffusing away which smoothed out the structure on the smallest-scales (reducing
the amplitude of their fluctuations). This effect is known as diffusion damping or
Silk damping [29].

Summary
The hot Big Bang model is a very satisfactory picture of the universe for T ≤ 100 MeV
and t ≥ 10−4 s, which assumes general relativity as the underlying theory of gravitation,
the cosmological principle (homogeneity and isotropy) and the known particle physics. We
have seen that it is consistent with many observations : the Hubble’s law that reveals the
expansion of the universe, the abundance of light elements that are formed during the Big
Bang nucleosynthesis just few minutes after the Big Bang, the existence of cosmic micro-
wave background which is testament to the recombination epoch when the universe was
380,000 years old and offers a wealth of information on the initial conditions for structure
formation. In addition, we will see in section 1.1.4 that the growth of perturbations are
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Figure 1.9 – Adapted from [19].
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well-explained by gravitational instability in an expanding universe with an approximate
scale-invariant initial power spectrum. In the hot Big Band model, the universe emerged
from a hot and dense phase in thermal equilibrium but the origin of these initial conditions
are not explained by the model, i.e. we don’t know the origin of the primordial fluctuations.
There are also two other major unanswered questions :
— Horizon problem : we already said that the angular size of the horizon at recombi-

nation corresponds to 2◦ in the sky, so regions further apart than are not causally-
connected in the sense that we do not expect to find a similar behavior between
these regions. So the uniformity of the CMB across the full sky cannot be explained
since no causal mechanism could have made the temperature uniform on all scales,
including super-horizon ones.

— Flatness problem : CMB observations of the temperature fluctuations alone favor a
flat universe with Ωk = −0.0520.049

0.055 [19]. It implies that in the past Ωm = 1 at the
level of 10−60, meaning that the value of Ωm must be adjusted very precisely in order
to fit with CMB observations and tiny deviations from this value would have led to
very different universes. When some conditions appear to be fine-tuned to specific
values, we call this problem a fine-tuning of the initial conditions.

1.1.3 Primordial universe

In order to avoid an extreme fine-tuning of the curvature at early times and to un-
derstand how scales which seem uncorrelated today are observed to have almost identical
temperatures in the early universe, we need a mechanism that acts as a very rapid ex-
pansion of the universe before the radiation era. It corresponds to a period of inflation
where a(t) ∼ tp with p > 1, which implies ä > 0 (acceleration of the expansion). We will
see that such a mechanism can also explain the origin of fluctuations, but at the time of
writing this thesis it is still not sure whether inflation is the right mechanism.

1.1.3.1 Inflation

The idea behind inflation that was first proposed by [30] is to assume that there was
an epoch when vacuum energy was the dominant component of the energy density of the
universe so that the scale factor grew exponentially. In this approach, the universe is filled
with a scalar field which, contrary to vector fields such as the gravitational force or any of
the four fondamental force, has no direction. Scalar fields are characterized by an intensity
at every point in space and the only scalar field we have detected is the Higgs boson with
the Large Hadron Collider (LHC) in 2012. The scalar field associated with inflation has an
intensity that evolves only slowly in time in order to explain the horizon and flat problems.
The simplest inflationary model introduces a single scalar field, but one can imagine wor-
king with multiple fields. Let φ denote the value of the scalar field whose associated particle
is called the inflaton and φ is thus called the inflaton field. Its associated potential is
denoted V (φ), but we do not know its shape so all the solutions for φ will depend on
the assumptions made on V (φ). Here, we will just review the most important aspects of
inflation in order to understand the origin of primordial fluctuations and the shape of
the initial power spectrum. The theoretical framework of inflation relies on a quantum
description of the inflaton field which is beyond the scope of this manuscript, we refer the
reader to [2, 31] for a detailed discussion.

As for all quantum fields, the inflaton field is subject to quantum fluctuations that
can be decomposed into Fourier modes with amplitude ψk(t). Their expressions are obtai-
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ned from the equation of motion for a quantum field (the Klein-Gordon equation) in an
expanding universe :

φ̈+ 3Hφ̇−∇2φ+ V ′(φ) = 0 (1.35)

where H is the expansion rate and ∇ is w.r.t spatial coordinates but since we assume
that φ is homogeneous, ∇2φ ' 0. The term 3Hφ̇ corresponds to a friction term due to
expansion.
Equation 1.35 has two different regimes :
— Slow-roll regime when φ̈ is negligible : as long as the kinetic energy (∝ φ̇2) is small

compared to its potential energy (V (φ), inflation occurs. This slow evolution of the
scalar field to the minimum of the scalar potential is a key feature of inflation and
was first proposed in [32, 33]

— Coherent oscillations when V ′′ ≥ H2 and φ evolves rapidly on the expansion time
scale, the inflaton will oscillate around a minimum with oscillations that are damped
by the Hφ̇ term. The inflaton is expected to decay into matter and radiation but the
exact mechanism is not known as the underlying physics of the inflaton field is not
known. The end result of inflation is that the universe is left with approximately the
same energy density as when it started, but in the form of radiation and particles.

For a de-Sitter metric (i.e. for a flat universe with a constant expansion rate), the solutions 4

depend on the factor k/aH where k is the wavenumber meaning that there are two regimes
for the evolution of quantum fluctuations. For k/aH � 1, i.e. for comoving k-modes which
exit the Hubble radius ∝ H−1, the quantum nature of the fluctuations has disappeared
and the field φ can be seen as a classic stochastic field. If we write the inflaton field :
φ(t,x) = ¯φ(t)+χ(t,x), one can show that the perturbations χ(t,x) around the background
homogeneous solution ¯φ(t) generate the primordial fluctuations we observe in the CMB.
After the inflationary phase, the modes re-enter the Hubble radius (i.e. k/aH � 1) and
their initial amplitudes at that entry are thus the initial conditions for the HBB model.

1.1.3.2 Statistical properties of cosmic fields

We have seen that for inflationary models, the stochastic properties of the cosmic fields
come from quantum fluctuations of the inflaton field. Therefore, in order to describe the
distribution of large-scale structures, one needs to adopt a statistical approach and to re-
sort to a probabilistic description. In this section, we will just provide the most important
definitions and relevant properties for cosmology.
Let f(x) denote a cosmic scalar random field, meaning its value in each point can be
treated as a stochastic variable and f(x) can represent either the cosmological density
contrast δx, the gravitational potential φx, the velocity divergence field θx or any other
field of interest. Moreover, inflationary models predict that the initial density perturba-
tions arise from a large number of independent quantum fluctuations.. The central limit
theorem implies that a density distribution is asymptotically Gaussian in the limit where
the density results from the average of many independent processes. So the initial density
perturbations are very close to be Gaussian-distributed, which is in agreeement with ob-
servational constraints [19]. It means that cosmic fields are well represented by Gaussian
random fields (GRF) whose probability distribution function (pdf) is :

p(f |µ,C) = 1√
|2πC|

exp(−1
2(f − µ)TC−1(f − µ)) (1.36)

4. Expressions can be found in [3]
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This GRF has mean value
∫
x xp(x|µ,C)dx = µ and variance

∫
x(x−µ)(x−µ)T p(x|µ,C)dx =

C. C is assumed to be positive-definite in order to be invertible.
The n-dimensional vector f = (fn) is a GRF if its joint multivariate pdf can be written
as a multi-variate Gaussian following equation 1.36 :

P (f |µ,C) = 1√
|2πC|

exp(−1
2

n∑
i,j

(fi − µi)TC−1
ij (fj − µj)) (1.37)

The cosmological principle implies that the cosmic random field is statistically homoge-
neous (meaning that all the joint pdf remain the same under translation of the coordinates
in space) and statistically isotropic (invariant under spatial rotations).

In what follows, we will consider the density perturbation field δ (also called the
density contrast) as defined by :

δ(x) = ρ(x)− ρ̄
ρ̄

(1.38)

To confront theory that predicts the initial conditions of the statistical distribution of the
density contrast to data that provide one measurement of this density field, we need to
imagine an ensemble of universes. We assume that the observed density field is just one of
an ensemble of an infinite number of possible realizations that could have resulted from a
random process. Knowing the random process means knowing the probability distribution
of ρ that produced the observed field.
However, we have no evidence that the ensemble exists, and we are only able to observe
one realization. So the second assumption we need to make is called ergodicity which
assumes an equivalence between volume average and ensemble average. The ensemble
average is also called the expectation value. If we measure the variance by averaging over
a sufficiently large volume, the results would be expected to approach the true ensemble
variance and the averaging operator 〈x〉 is often used without being specific about which
kind of average is considered.
Fields that satisfy this property : ’volume average’ ↔ ’ensemble average’ are called ergo-
dic. In cosmology, it is regarded as a common sense axiom.

The density perturbation field can thus be written :

δ(x) = ρ(x)− 〈ρ〉
〈ρ〉

(1.39)

with from statistical homogeneity 〈ρ(x)〉 = 〈ρ〉 which yields 〈δ〉 = 0. Because a GRF
field has no information contained in the phases (i.e. they are all uniformly randomly
distributed and because the mean over-density 〈δ〉 = 0, all the statistical information
about the density perturbation field is contained in the variance of its amplitudes, i.e.
the power spectrum or two-point correlation function completely characterizes the
density fluctuations.
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There are two conventions in the litterature for the Fourier (k) and configuration
(r or s) spaces. In this manuscript I use the following :

A(k, t) =
∫
d3xe−ik·xA(x, t) (1.40)

where A(k, t) is called the Fourier transform of A(x, t), A(k, t) is the amplitude of
the Fourier mode and e−ik·x its phase. For reference, this is the same convention
as the one used in [34] which is different from the one used in [3].

Fourier convention

Using the previous convention, the power spectrum is defined as and

〈δ(k)δ(k′)〉 = (2π)3δD(k− k′)P (k) (1.41)

where δD is the Dirac distribution Its analogue in configuration space is obtained by Fourier
transformation and is called the two-point correlation function. It is defined as the joint
ensemble average of the density at two different locations :

ξ(r) = 1
(2π)3

∫
d3kP (k)eik·r = 〈δ(x)δ(x + r)〉 (1.42)

which depends only on the magnitude of r due to statistical homogeneity and isotropy. The
physical interpretation of ξ(s) is that it measures the excess over random probability that
two objects in volume elements dV1 and dV2 are separated by the distance r = |x1 − x2|,

dPr = ρ̄[1 + ξ(r)]dV1dV2 (1.43)

where ρ̄ is the mean density. For a random distribution (no clustering), ξ = 0 and so, for
clustered regions ξ > 0 whereas for voids ξ < 0.

Wick’s theorem For a Gaussian random field, any joint distribution of local densities
if Gaussian distributed, meaning that any ensemble average of product of Gaussian random
fields (〈δ1δ2 . . . δn〉) can be obtained by the product of ensemble averages of pairs :

〈δ1δ2 . . . δn〉 =
∑

allpairs

∏
ij

〈δiδi〉 (1.44)

In practice, we obtain the ensemble averages of pairs by connecting up all possible pairs
of the field and writing down the covariance matrix of each pair using :

〈δi〉 =
∫
δiP (δ|µ,C)dδi (1.45)

where for the initial density field, we have µi = 0 for all i. By application of the Wick’s
theorem, any odd moments (e.g. the third 〈δ1δ2δ3〉, the fith, . . . ) can be written as the
product of 〈δδ〉 and 〈δ〉. Given that 〈δ〉 by statistical homogeneity, all odd moments are
found to be zero. So for a GRF with mean 0 and covariance matrix C, all even moments
can be written in terms of the two-point, meaning that all the statistical properties are
encoded in ξ(r) or P (k).
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1.1 The standard cosmological model

1.1.3.3 Primordial density power spectrum

One of the key observables that are predicted as a result of inflation is the primordial
density power spectrum. Because the inflation assumes a gravitational potential V (φ) that
is invariant under time translation, the universe is expected to be the same on average
under the transformation t→ t+ ∆t. In terms of what it means for the power spectrum,
we need to express the amount of fluctuations that acts at a given scale and states that
these fluctuations are constant. It corresponds to primordial perturbations with a scale-
invariant power spectrum of Pφ(k) = Ask

−3+(ns−1) where As and ns are respectively the
scalar ampltiude and spectral index of the primordial power spectrum. Indeed, for n = 1,
the variance of φ at a spatial position can be divided into equal amounts of perturbations
per constant logarithmic interval in k-space. The relevant quantity to express this scale-
invariance is called the dimensionless power spectrum 5 ∆2

φ(k) which measures the
variance in the density field per logarithmic k interval :

∆2φ(k) = δσ2

δlnk ' constant (1.46)

The potential φ is related to the density perturbation δ = δρ/ρ by the Poisson equation :

k2

a2φk = 4πGρδk (1.47)

A similar definition exists for the dimensionless density power spectrum ∆2(k) = k3P (k)
2π2

which measures the contribution of the fluctuations per logarithmic interval at a given k
to the variance in the matter density fluctuations. It is therefore clear that for the density
perturbation inflation predicts,

Pδ(k) = Ask
ns (1.48)

∆2(k) = Ask
ns+3 (1.49)

The spectral index ns is well-constrained by the CMB observations, in particular, the la-
test results from [19] gave ns = 0.9655 ± 0.0062 . The most relevant constraints put by
CMB will be summarized at the end of section 1.1.
A last key prediction of the simplest models of inflation is that the perturbations of the
matter and radiation number densities are equal, i.e. they are adiabatic.

1.1.4 Structure formation in the cold dark matter paradigm

As time evolves from the Big Bang, the universe passes through the epoch of inflation
era, the synthesis of primordial elements and the radiation decoupling until the matter
domination that will allow over-dense regions to collapse and form the structures we ob-
serve today.
During the radiation-dominated era, the growth of structure is suppressed by the tight
interaction of photons and matter. As a result, matter cannot collapse and density enhan-
cements at that period grow slowly until recombination. The amplitude of the k-modes
that enter the horizon before the matter-radiation equality (k < keq) is therefore suppres-
sed compared to larger k-modes that enter the horizon after and that can grow faster. This

5. The scale-invariant power spectrum defined by equation 1.46 is also called the Harrison-Zel’dovich
spectrum.
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suppression of amplitudes for the short k-modes are taken into account by the transfer
function T (k) which describes the evolution of the density field perturbations through
decoupling. It thus relates the primordial power spectrum just after inflation to the linear
power spectrum just after recombination :

PL(k, z) = Ask
nsT 2(k, z) = Ask

ns

 1 for k � keq(
keq
k

)2
for k � keq

(1.50)

where PL(k, z) is the linear matter power spectrum after recombination. The transfer
function depends on cosmological parameters and can be calculated using numerical codes
like CMBFAST [35], its successor CAMB [36] or CLASS [37]. In this thesis, we use the
CAMB package.

During the matter-dominated era, the expansion of the universe counterbalances the
gravitational attraction of matter. Only if there is enough matter for the gravitational
interaction to overcome the expansion will allow density enhancements to collapse and
grow. At this stage, it is worth remembering that matter is composed of baryons and cold
dark matter. Although the microscopic nature of dark matter is unknown, we know dark
matter decoupled to the baryon-photon plasma before recombination and start collapsing
earlier. [38] were the first to suggest that the global structure formation process must be in
two stages : structure formation in which dark matter collapse first to form potential wells
and then galaxy formation where baryons condense within these potential wells defined by
the collisionless collapse of dark matter halos. This simplifies the problem in many ways
since the complex fluid mechanical and radiative behaviour of the gas associated with the
formation of baryonic structures can be ignored initially.

1.1.4.1 Bottom-up formation process

The standard picture for the formation of structures lies on a fundamental mechanism
called gravitational instability first proposed by G. Lemaitre. In this scenario, large-
scale structures are the result of a competition between gravity, which tends to amplify
local density fluctuations, and pressure and expansion which suppress them.
The relevant scale in this mechanism is the Jeans length which is the scale of fluctuation
where pressure and gravitational forces are the same :

λJ = cs√
Gρ

(1.51)

Depending on the order in which structures undergo collaspe, there are two scenario for
structure and galaxy formations :
— bottom-up : structures of lower characteristic scales undergo gravitational collapse

first before merging into larger structures
— top-down : structures of larger characteristic scales undergo gravitational collapse

before fragmenting into smaller structures
Dark matter has thus an important impact on structure formation that depends on

its nature : cold (non-relativistic) or hot (relativistic). Using numerical simulations of the
universe, it has been shown that in the CDM scenario, the smallest structures collapse
first and then hierarchically merge into larger structures (i.e. in a bottom-up process). If
instead, we consider a scenario for structure formation based on hot dark matter, small-
scale structures will end up forming considerably later than in the CDM case. The effect
of cold vs hot DM on structure formation is shown in figure 1.10.
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1.1 The standard cosmological model

Figure 1.10 – Structure formation in the CDM (left) and in the HDM scenario (right).
TheHDMr hypothesis is now excluded by the measurements of the matter power spectrum
in agreement with a CDM model. From [39].

Measurements of the matter power spectrum using five tracers revealed that its shape
was well-fitted by assuming a cold (non-relativistic) dark matter [40]. The left panel of
figure 1.11 shows the matter power spectrum measured at z = 0 while the right panel is an
illustration of the shape of the matter power spectrum depending on whether dark matter
is assumed to be non-relativistic (cold), relativistic (hot) or a mix of both contributions.
The cutoff in the matter power spectrum at small scales (large k) for the HDM scenario is
the consequence of the smoothing of structures we mentioned which depends on the dark
matter mass. Without a CDM component, the epoch of galaxy formation would occur
substantially later in the universe than observed.

Figure 1.11 – left : Matter power spectrum measured at z = 0 using five probes. From [40].
Right : Ilustration of the different matter power spectra depending on whether dark matter
is assumed ot be cold, hot or a mixuture of both.
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1.1.4.2 Cold dark matter

Observational evidence for dark matter dates back the 1930’s with the work led by Jan
Oort to account for the orbital velocities of stars in the Milky Way [41] and then by Fritz
Zwicky to explain the dynamics of galaxies in the Coma galaxy cluster. 6 Zwicky was the
first to inferred the total mass of the cluster by measuring the radial velocity dispersion of
its galaxies and then applying Newton’s law of gravity [42]. He found that the total mass
is much higher than the visible mass (gas and stars). In other words, if the total mass of
the cluster was in luminous matter only, most of the galaxies would have escaped given
their high velocity dispersion. Departures from the predictions of Newtonian gravity also
became apparent at galactic scales with the measurement of rotation curves of spiral ga-
laxies [43] which is illustrated in figure 1.12. In order to explain the constant velocities at
high radii of the rotation curve, we need to assume the presence of a non-visible massive
halo around the galaxy, called a dark matter halo. Its mass can be about 10-100 times
the visible mass of the galaxy. Further studies have been proposed using the LOS veloci-
ties and proper motion of satellite galaxies to determine the galactic halo mass [e.g. 44, 45].

Figure 1.12 – Rotation curves of stars in a spiral galaxy. The prediction (dashed orange
curve) from Newton’s law of gravity applied to the visible disk does not explain the
observed constant behavior at large radii except if we assume an additional mass coming
from the dark matter halo around the galaxy.

Since then, additional evidence includes the BBN predictions that Ωb ≈ 0.04 and dy-
namical measurements that imply Ωm ∼ 0.3. This is confirmed and very well-constrained
by CMB measurements with Ωb = 0.04 and Ωm = 0.3 [19]. Observational evidence also
includes the X-ray emission from the very hot gas at the center of clusters but also the
distortions of images due to gravitational lensing in the presence of massive objects. Both
effects are illustrated in figure 1.13.

Candidates for dark matter Observations tell us that dark matter makes up
80% of the matter content in the universe, it interacts very weakly and, at least, gravita-
tionally, with ordinary matter. It must be non-relativistic to avoid smoothing out small
structures, and it is neutral. Current searches for dark matter focus on non-baryonic can-

6. Clusters of galaxies are the largest gravitationally bound system known in the universe, they contain
about 10-1000 galaxies.
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Figure 1.13 – Composite optical image of the Bullet cluster, with X-ray in pink and
weak gravitational lensing in blue (credit : NASA / STScI ; ESO WFI ; Magellan / U.
of Arizona). Right : Gravitational lensing manifest near the 0024+1654 cluster (credit :
HST), distorting the light rays from a background galaxy, shown as the stretched blue
streaks.

didates, which imply new particles beyond the standard model of particle physics. Two
leading particle candidates are the neutralino and the axion. The neutralino is an example
of WIMP which is predicted in supersymmetry, an extension of the standard model of
particle physics. Axions are scalar particles that have been introduced originally [46] to
solve another problem in quantum chromodynamics (QCD). Their mass is very low com-
pared to than the one of WIMP (it can range from 10−3−10−4 eV for QCD axion to 10−22

for ultra-light axion-like DM) and they are supposed to be neutral and stable. Compact
objects such as solar-mass black holes are also studied as candidates for dark matter, so
that the parameter space for the dark matter mass ranges from 10−22 eV to 1067 eV.
Modifications of Newtonian gravity at the galactic scales as in Modified Newtonian Dyna-
mics theories [MOND, 47] are also considered as a possible explanation for dark matter.

1.1.5 Late-time cosmic acceleration

A last, but not least, unknown in our understanding of the history of the universe is
related to the discovery of its late-time acceleration. After the discovey of the expansion
of the universe by Hubble, people removed the cosmological constant that was introduced
by Einstein to obtain a static evolution for the universe from the Einstein equations. At
the end of the 1990s, the HBB model was largely accepted by the community and one
important challenge was to measure the expansion of the universe as precisely as possible.
People believed that the speed of expansion should decrease with time due to the attractive
gravitational interactions between galaxies, so they introduced the deceleration parameter
q0 defined as :

q0 = −
[
äa

ȧ2

]
t=0

(1.52)

with the minus sign to make q positive for a decelerating universe (ä < 0). The decelera-
tion parameter was introduced to describe the relation between the distance infered from
luminosity, dL, and the redshift such that :

dL(t0) = c

H0

(
z + 1

2(1− q0)2z2 + · · ·
)

(1.53)

31



Chapitre 1 : Introduction to modern cosmology

Using the Friedmann equation 1.22, the deceleration parameter can be measured through
Ωm,0/2−ΩΛ,0. In 1990, the analysis of the large-scale structure correlations of the Automa-
ted Plate Measurement (APM) survey using the UK Schmidt Telescope (UKST) favored
a scenario in which Ωm,0 = 0.3 [48], following by the measurement of the actual baryon
fraction in clusters of galaxies compared to the baryon density from BBN in 1998 [49].
However, because inflation predicts a flat universe which is in agreement with CMB obser-
vations associated with low redshifts measurements, so Ωk = 0 and thus Ωtot,0 = Ωm,0 = 1,
which was supported by other measurements of the mass density [50, 51]. So in 1997, there
were two opposite scenarios : a sub-critical universe (Ωtot < 1) with Ωm,0 = 0.3 or a critical
universe dominated by matter (Ωtot,0 = Ωm,0 = 1). But the combination of CMB, LSS, age
of the universe and inflationary models led some cosmologists to prefer models with a cos-
mological constant in order to conciliate a critical universe with Ωm,0 = 0.3. [e.g. 52, 53].
Conflict between high values of the Hubble constant (whose inverse gives an estimate
of the age of the universe) and the ages of globular clusters also favored a cosmological
constant [e.g. 54, 55].

In 1998, two independent teams, the Supernova Cosmology Project [56] led by Saul
Perlmutter and the High-z Supernova Search Team [57] led by Brian Schmidt started a
program of Type Ia supernovae to measure precisely q0 up to higher unexplored redshifts
(z ≈ 0.7).
Type Ia supernovae are explosions of white dwarfs that are accreting matter from a com-
panion star until they reach a critical mass at which a runaway nuclear detonation takes
place. The star explodes and briefly has a luminosity of about 5 × 109 times that of the
Sun. The extreme brilliance of the explosions, combined with the fact that the rate at
which they brighten gives a measure of their true brightness, make Type Ia supernovae
standardizable candles 7 (objects with a known or derivable luminosity) for measuring the
distance to remote galaxies. In addition, the redshifts of the light from the supernovae give
access to the recession velocities of the galaxies in which they occur. However, type Ia SNe
are not perfect standard candles and the recognition that the peak luminosity of SNe was
tighly correlated with the shape of the light curve [e.g. 58] played a critical role, reducing
the intrinsic distance error per SNe to ∼10%. The researchers expected to find that the
rate of cosmic expansion was greater at greater distances, corresponding to earlier times
in the universe. As a consequence, SNe should appear brighter to us as their light has
less distance to travel compared to a constant rate of expansion. This is what figure 1.14
illustrates.

This would have been the case if the only component affecting the expansion rate were
the mutual attraction of gravity between all the matter that the universe contains. Howe-
ver, their observations showed instead that the SNe appeared fainter, meaning that the
rate of cosmic expansion is greater today than what would be expected with deceleration.
In other words, ’normal’ gravity is not the only influence at work at cosmic scales and
another phenomenon, which became known as dark energy, is causing the universe to
expand at an ever-increasing rate.
So, none of the scenarios mentioned above was in agreement with the observations but
[57] and [56] showed that a cosmological model with a cosmological constant Λ could
explain the SNe data. When combined with CMB observations, [56] even showed that data
are consistent with a flat universe where ΩΛ,0 = 0.7 (see figure 1.15).

7. Cepheid variables, that were studied by Henrietta Leawitt and then used by Hubble to show the ex-
pansion of the universe (see section 1.1.1.2), are highly effective standard candles as their period-luminosity
relationship is a robust signature.
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Figure 1.14 – Illustration of the relation between the apparent brightness of type Ia SNe
and the rate of cosmic expansion. If distances were growing faster in the past, type Ia SNe
should have appeared brighter than if the expansion rate was constant.

In the next section, we examine the different models to account for this late-time accele-
ration of the expansion of the universe.

1.1.5.1 Dark energy models

A cosmological constant It is the mathematically simplest solution to the late
cosmic acceleration where we remind the action of GR (with the convention h = c = 1) :

SGR =
∫
d4x
√
−g

(
−M2

P

2 R− Λ
)

+ Smatter(gµν , ψ) (1.54)

where g is the metric, MP the Planck scale, R the Ricci scalar and Λ the cosmological
constant. We interpret Λ as a new energy component whose properties are constant in space
and time. We already said that for an ideal fluid with energy density ρ and pressure p, the
effective gravitational source term in GR is ((ρ + 3p)/c2). Dark energy as a cosmological
constant is characterized by the equation of state

w = pDE
ρDE

= −1 where ρDE(z) = ρDE,0(1 + z)3(1+w) = ρDE,0 (1.55)

which gives (ρ + 3p)/c2 < 0. So a form of energy that is constant in space and time
(wΛ = −1) must have a repulsive gravitational effect [e.g. 59]. On the microscopic scale,
we could interpret Λ as the gravitational signature of the quantum vacuum energy. But
there is a huge problem of magnitude : quantum mechanics is supposed to be valid until
the Planck scale MP which sets for the vacuum energy ρν ∼M4

P /16π2. Estimations of ρν
are about 10120 orders of magnitude larger than the observed value for the cosmological
constant [60]. Refinements in the calculations by allowing new physics before the Planck
scale, like supersymmetry, decrease the difference but it is still about 50 orders of ma-
gnitudes [e.g. 60, 61] We thus need to suppose the existence of a mechanism that cancels
the vacuum energy in order to keep only what is necessary to account for the late-time
cosmic acceleration. As for the flatness problem, it requires to invoke a fine-tuning of the
cosmological parameters.

Evolving dark energy A natural extension to a cosmological constant is a field
with negative pressure to have a repulsive gravitational effect but whose energy density
varies with time [e.g. 62, 63]. By analogy with the inflaton field, one can consider a scalar
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Figure 1.15 – Discovery of the late-time acceleration of the expansion using type Ia SNe
by two independent teams, High-Z SN Search Team and Supernova Cosmology Project.
Low-redshift measurements are also shown, as well as cosmological models with different
energy contents. The one with the cosmological constant density ΩΛ = 0.7 best reproduces
the data.
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field φ potential V (φ) which enters the action :

S =
∫
d4x
√
−g

(
−M2

P

2 R− 1
2(∂φ)2 − V (φ)

)
+ Smatter(gµν , ψ) (1.56)

We will refer to this model as quintessence which corresponds to a sub-class of scalar
field DE for which the energy density is dominated by V (φ) [64]. Quintessence models
assume no coupling between φ and matter and behave as a perfect fluid with equation of
state given by :

w =
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
(1.57)

We will see in section 1.2.2.3 that current observations restrict w to be very close to −1.
It means that the evolution of the field φ is dominated by its potential so that the present
situation of cosmic acceleration in quintessence models is similar to a period of inflation.
Moreover, the quintessence equation of state is generally time-dependent. A useful two-
parameter model to account for the time-evolution of w is [65, 66] :

w(a) = w0 + wa(1− a) (1.58)

which fits many scalar fields expansion histories. This therefore leads to the most commonly
used description of dark energy using three parameters : ΩDE , w0, wa where the energy
density is given by

ρDE = ρDE,0a
−3(1+w0+wa)e−3wa(1−a) (1.59)

However, none of these models adresses the cosmological constant problem of why the va-
cuum energy would be so small and one needs to specify the potential V (φ) and initial
conditions for φ so that it looks like a fine-tuning is also required to a certain extent.

1.1.5.2 Alternative-gravity models

An alternative to introducing a new energy component is to modify GR itself on cos-
mological scales. This approach includes a large variety of modified gravity (MG) models.
Among the existing explorations to go beyond GR, we can distinguish theories that rely on
an additional field (we will focus on scalar-tensor theories), extra-dimensions theories and
massive gravity theories where the gravitational interaction is associated with a massive
particle, called the graviton. The frontier between DE and MG models is subtle, one key
feature of MG models is the introduction of a degree of freedom which is associated with
a fifth force so that a screening mechanism is required at small-scales to recover GR.

Scalar theories Scalar theories represent any consistent theory of a metric inter-
acting with a scalar field. In order to avoid unphysical solutions, we usually restrict the
studies to theories which have equations of motion of second-order in time derivatives at
most. A natural modification of GR is to replace the Ricci scalar R in the action given
by equation 1.54 by some function of R. Such a specific case is referred to as f(R) gra-
vity and we will describe it in more detail as an illustrative example. First, let define
the Einstein frame where the Einstein form of the action in GR given in equation 1.54
is preserved and modifications of gravity correspond to additional terms in the action. In
contrast, the Jordan frame is the physical frame in which we work from the beginning,
where energy is conserved and where matter falls along the geodesics. In this frame, the
action of any alternative gravity model will be different from the action of GR. The two
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frames are related through a conformal coupling (in geometry, a conformal transformation
preserves angles locally) :

g̃µν = e−αi(φ)/MP gµν (1.60)

where αi(φ) are the coupling between the massive field φ and matter fields. The Einstein
frame is used to show the modifications of GR better, but when compared to observations,
all equations must be written in the Jordan frame.
The action of f(R) theories in the Jordan frame is :

Sf(R) =
∫
d4x
√
−g−M

2
P

2 f(R) (1.61)

where f(R) is a function to be choosen, for instance [67] showed that a function f(R) =
R − µ2(n+1)/Rn with n > 0 and µ a constant. Because the modifications of gravity must
be weak in order to agree with the experimental tests of GR, a Taylor expansion could
also work : f(R) = a0 + a1R+ a2R

2 + · · · where a0 = 0 to avoid a cosmological constant,
a1 = M2

P /2 to recover GR and aiR
i would be small compared to a1R. Using the time

arrival of radio waves transmitted from the Cassini space probe, the Cassini mission put
the best constraints on a2 with |a2| < 1.2× 1018m2 [68].
One can also write the action in the Einstein frame,

Sf(R) =
∫
d4x

√
−g̃[−M

2
P

2 R̃− 1
2 g̃

µν(∇̃µφ)∇̃νΦ− V (φ)] + Si(χi, e−καi(φ)g̃µν ) (1.62)

For f(R) theories, the coupling is universal and linear : α =
√

2/3φ.
Varying the action defined in equation 5.45 w.r.t. the metric gµν yields the modified Ein-
stein equation that contains a new degree of freedom fR = df/dR which is sometines called
the scalaron. R can thus be expressed as a function of fR. For the functional form of f(R)
that are viable with experimental tests of GR and current cosmological observations, [69]
showed that the quasi-static approximation (QSA) is valid which means that the time
derivative of the scalar field can be ignored. In this limit, the scalaron equation is [e.g.
70] :

∇2fR = 1
3a

2[R(fR)− R̄] + 8πG(ρm − ρ̄m) (1.63)

where ∇2 is the 3D gradient operator and the overbar represents the background value of a
quantity. The Poisson equation which governs the Newtonian potential Φ is also modified
accordingly, and in the QSA it gives

∇2Φ = 16πG
3 a2(ρm − ρ̄m) + 1

6a
2[R(fR)− R̄] (1.64)

So the scalaron can have three effects on cosmology : (i) the background expansion of
the universe may be modified because of new terms in the Einstein’s equations, (ii) the
modification of Poisson equation can change the matter clustering and growth of den-
sity perturbations and (iii) the matter perturbation potential Φ and the potential Ψ are
different and related by fR (while in GR, Φ = Ψ). The modifications of the Newtonian
gravity can be seen as a fith force which becomes dominant over gravity at large scales.
We can distinguish two regimes depending on fR :

— when |fR| � 1, equation 1.63 gives R ∼ −8πGρm and the second term in equa-
tion 1.64 becomes −8πG(ρm− ρ̄m), so equation 1.64 reduces to the Poisson equation
in GR.
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— when |fR| � 1, we have |R(fR) − R̄| � 8πG|ρm − ρ̄m|, so equation 1.64 reduces to
the Poisson equation in GR with G rescaled by a factor 4/3.

This factor of 4/3 is the maximum enhancement of gravity in f(R) models, it does not
depend on the specific functional form of f(R). By chosing a f(R), we set when and
on which scale the enhancement factor changes from 1 to 4/3. Because of this 4/3 fac-
tor on the strength of Newtonian gravity, the f(R) models would be ruled out by local
tests of gravity. But if the function f(R) is chosen appropriately, the effective potential
Veff(φ) = V (φ)−QρmΦ/MP , due to the coupling between the scalaron φ and matter, has
a minimum that depends on the mass of the object which is coupled with the scalaron.
The more massive the object is, the closer to small values of Φ the minimum of the po-
tential Veff tends to be and so the smaller the coupling between the scalaron and matter
is. This screening effect that suppresses the enhancement of gravity in the vicinity of high
matter density regions is called the chamelon mechanism [71, 72]. It allows a class of
models [e.g. 73, 74], among which f(R), to satisfy observational constraints in the Solar
System and [e.g 75, 76].

Extra-dimensions theories In 2000, Gia Dvali, Gregory Gabadadze and Massimo
Porrati proposed an alternative gravity theory where gravity is allowed to propagate in
5D space-time with an additional spatial dimension [77]. Our universe with D = 3 + 1
dimensions would be embedded in a D = 4 + 1 space, where the extra dimension, called a
brane, is assumed to be flat and infinite. In the Jordan frame, the action of DGP becomes :

SDGP = SGR −
M3

5
2

∫
d5X

√
−GABR5 (1.65)

where M5 is the Planck mass in a 5D space, X = (xµ, y) where y is the position along the
extra dimension, GAB is the metric of the 5D space and R5 the associated Ricci scalar.
In this model, the 4D-term dominates at small distances thanks to a screening effect called
the Vainshtein effect [78, 79] in order to agree with local tests of gravity. The 5D-term
is dominant on cosmological scales and is responsible for the acceleration of the expansion
and the transition scale is given by rc = M2

P /(2M3
5 ). Assuming a FLRW metric for the

background the DGP action has two solutions depending on the sign of y [79]. However,
even if one of these solutions does explain the late-time acceleration, the framework suf-
fers theoretical instabilities and unphysical behaviors [80, 81]. Moreover, [82] showed that
observational constraints rule out the simple 5D-model. A way of agreeing with current
constraints is to consider a ΛCDM background with a cosmological constant in addition to
the extra dimension. It corresponds to the normal branch of DGP and it is referred as the
nDGP model. However, since the original motivation to introduce modifications of GR
that account for the acceleration of the expansion of the universe without the cosmological
constant problem, the nDGP model lost its most attractive feature.

Massive gravity By allowing the graviton to be massive, it decreases the range of
the gravitional interaction, so as its strength between distant objects. If the graviton is
massive with mass m, then its potential is modified as follows :

ΦN = −GNM
r

e−mr (1.66)

where r is the distance to the object. However, theoretical instabilities are associated with
the introduction of a massive graviton [83, 84], even when non-linear terms are added using
the Vainshtein effect [78], instabilities are still present [85]. [86, 87] proposed a viable theory
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that recovers GR locally using a Vainshtein effect, however theoretical problems remain
when applying the theory to the FLRW metric [88, 89].

Galileon models Galileon theories rely on an additional scalar field π that satisfies
the Galilean symmetry : π → π+ c+ bux

µ, where c is a constant and bµ a vector. It means
that the π field, which is called the Galileon, is invariant under translation, and its gradient
is also invariant under translation by a constant. To avoid theoretical instabilities as the
ones observed in DGP and massive gravity models, the equation of motion is a function of
second derivatives of π at most. Imposing such conditions imply only five non-vanishing
Lagrangians where the first one is equal to π itself, the second one is related to the kinetic
term and the three remaining depend on derivatives of π in a non-linear way. The first
Galileon model was proposed by [90]. One can also add a coupling between the Galileon
and matter [91], which can be conformal (proportional to π) or disformal (proportional
to derivatives of π) but [92] showed that the conformal coupling to matter was disfavored
using CMB, SNe and LSS data. The action of the disformally coupled Galileon in the
Einstein frame can be written by :

SGalileon =
∫
d4x

√
−g̃[M

2
P

2 R− 1
2

5∑
i=1

ci
M3(i−2)Li −

MP

M3 cG∂µ∂νT
µν (1.67)

where L1 = π behaves like a cosmological constant, so c1 = 0 is imposed as we look for
alternatives to the cosmological constant. The presence of couplings with matter can be
interpreted again as a fifth force while the presence of non-linear Lagrangians (L3,4,5) are
necessary to screen this fifth force at small scales, in the vicinity of massive objects using
the Vainshtein effect [78]. Whereas the experimental tests of the Equivalence Principle
using analyses of laser ranges to the Moon by the Lunar Laser Ranging [LLR 93] put
constraints on the conformal coupling c0 < 10−2, there is no current constraint on cG in
the context of a Galileon model. However, different prescriptions for the Galileon model,
including coupling to matter or not and considering the five Lagrangians or a smaller set,
have been confronted to data [94, 95, 96, 97, 98, 92].

In section 5.5, we will explore the cosmological implications of our measurements wi-
thin the ΛCDM+GR model but also beyond witht the examples of quintessence, f(R) and
Galileon theories.

Summary : Current status of the ΛCDM model
The model towards which all data are converging is called the ΛCDM model. The name
refers to the energy content (see figure 1.1) with ∼5% of baryonic matter and radiation
with a radiation component which is now negligible, ∼25% of cold dark matter whose
nature is still unknown but particle physics and cosmology are looking for neutral, weakly
interacting particles whose mass ranges from ultra-light particles to primordial stellar
black holes (from 10−22 eV to 1067 eV).
The ΛCDM predictions depend on six independent parameters :

Amplitude of the primordial power spectrum ln(1010)As 3.089± 0.036
Index of the primordial power spectrum ns 0.9655± 0.0062

Age of the universe tH 13.813± 0.038× 109years
Baryon density Ωbh

2 0.022222± 0.00023
Dark matter density Ωch

2 0.1197± 0.0022
Optical depth at reionization τ 0.078± 0.019
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In the the hot Big Bang scenario, the universe formed 13.8 billion years ago and un-
derwent several eras as its expansion rate is driven by the energy density according to the
Friedman equation 1.22. It started with an hypothetical but necessary inflation era that
generates initial density fluctuations due to the quantum fluctuations of the inflaton and
predicts a scale-invariant power spectrum. After inflation, the growth of perturbations de-
pends on the energy content of the universe and only sub-horizon perturbations will grow
(i.e. perturbations whose typical scale is below the Hubble distance λH ∝ H−1). In the
radiation-dominated era, baryons are coupled to photons which prevents them for collap-
sing, but dark matter starts forming structures by gravitational instability. Perturbations
start growing faster after the matter-radiation equality at z ∼ 3400 until z ∼ 0.7 when
dark energy becomes dominant, making distances growing faster and prevent structures
from undergoing gravitational collapse.
In what follows, we summarize the properties of each component of the universe :

component equation of state energy density scale factor
radiation wr = 1/3 ρr ∝ a−4 a ∝ t1/2
matter wm = 0 ρm ∝ a−3 a ∝ t2/3

cosmological constant wΛ = −1 ρΛ ∝ a0 a ∝ eH0Ω1/2
Λ t

1.2 Probing cosmic acceleration with large-scale surveys

Understanding the large-scale structures of the universe is one of the main goals of
modern cosmology. Studies of the clustering of galaxies started with the early ideas of [99]
that galaxies could be treated as biased tracers of matter clustering. So the existence of
structures has been suggested by early observational projects which aimed at mapping the
distribution of galaxies, which resulted in a number of discoveries of individual structures
such as filamentary bridges between superclusters and large empty regions (voids) on scales
of tens of Mpc [100, 101, 102, 103]. Then, technological progress including machine plate
scanning and CCDs enabled the construction of automatic wide-field surveys in the 1980s.

1.2.1 Brief history of LSS surveys

In 1982, the state-of-the-art survey was the one carried out by the Center for Astro-
physics (CfA) redshift survey [104] which measured the radial velocities of the brightest
galaxies in the nearby universe. The map obtained from the first CfA survey [105] is shown
in the left panel of figure 1.16, it revealed a variety of structures with galaxies actually
appearing to be distributed on surfaces, almost bubble-like, surrounded by voids. Then,
between 1985 and 1995, a second CfA survey (CfA2) recorded 18,000 bright galaxies in
the northern sky whose map is shown in the right panel of figure 1.16.

In 1989, the results of the CfA surveys reached a milestone with the discovery of the
Great Wall [106] which is the structure running all the way across between 8 hours and
17 hours RA and 5,000 and 10,000 km.s−1 in the right panel of figure 1.16. It was the
largest single structure yet detected in a redshift survey and definitely highlighted the
existence of a cosmic web due to the clustered nature of the distribution of galaxies, com-
pared to a random process. It also provided evidence that the CDM paradigm alone was
not able to explain the galaxy clustering of CfA galaxies [107] as well as those identified
from the first infrared telescope in space, IRAS [108, 109]. Early measurements of the
distortions of the redshift space power spectrum date back ∼ 1995 using the IRAS sur-
vey [110, 111, 112, 113]. These distortions are caused by the line-of-sight component of
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Figure 1.16 – Left panel : CfA 1, Right panel : CfA 2 with 18,000 bright galaxies revealing
the presence of a Great Wall, the structure which is running all the way across between
8 hours and 17 hours in right ascension (RA) and 10,000 km.s−1. Credit : CfA redshift
surveys.

peculiar velocities which are included when inferring distances from redshifts. The effect
is known as redshift-space-distorsions and will be described further in section 1.2.2.2. [114]
used the quadrupole-to-monopole ratio to measure the distortions of the power spectrum,
then the IRAS Point Source Catalogue Redshift Survey [PSCz, 115] that contains 15,411
redshifts was built and used for RSD measurements [e.g. 116, 117].

In what follows, we propose a brief overview of past, present and future surveys based
on the report of the Dark Energy Task Force [DETF, 118] which categorized experiments
into four stages and on the review on cosmic acceleration probes by [119]. Figure 1.17
summarizes the most important projects for LSS studies and the most importants weak
lensing (WL) programs. Among the LSS experiments, those in red correspond to surveys
using the Sloan Foundation telescope (SDSS), those in blue use the facilities at the Anglo-
Australian Observatories (AAO) and those in green are ESO programs using the Very
Large Telescope (VLT), in Chile. Red contours correspond to spectroscopic surveys and
blue contours to photometric ones.

— Stage I Stage I experiments include all experiments whose final results were
published before 2005.

— Stage II Stage II experiments have completed their observations and analyses at
the time of writing this thesis. The main projects for LSS include BAO measure-
ments from the Sloan Digital Sky Survey [SDSS-I and II 120, 121, 122] and the 2
degree Field Galaxy Redshift Survey (2dFGRS) of the Anglo-Australian Observa-
tory [AAO, 123, 124]. [125] also led a spherical harmonics decomposition of the 2dF
data to measure the distortions of the redshift power spectrum. Other experiments
include the SN and WL programs of the CFHT Legacy Survey [CFHTLS, e.g. 126],
the ESSENCE SN survey [127] and the SDSS-II SN survey [128]. Complementary
analyses include multi-wavelengh studies of local and high-redshift SN (Carnegie Su-
pernova Project [e.g. 129], systematic searches for z > 1 SNe with the Hubble Space
Telesopce [HST, e.g. 130] and CMB data from the WMAP satellite [27]. The main
result of Stage II is the consistency of independent data sets and analyses with a spa-
tially flat universe with ΩΛ ∼ 0.75 and with an uncertainty in the equation-of-state
parameter w of roughly ±0.1 at the 1− 2σ level.

— Stage III Some Stage III experiments have completed their observations but not
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Figure 1.17 – Past, present and future main LSS surveys that were categorized by the
DETF into four stages. This thesis is using spectroscopic data from the SDSS-IV eBOSS
which is one of the Stage III experiments.

necessarily their final analyses, and other projects are still ongoing. Stage III LSS pro-
jects include the Baryon Acoustic Oscillation Spectroscopic Survey of SDSS-III [e.g.
131, 132, 133] and the extended BOSS of SDSS-IV [134, 135], the Dark Energy Sur-
vey [DES, 136, 137] which uses imaging data only but has also an important WL
program, the AAO spectroscopic surveys including GAMA [138], 6dFGRS [139, 140]
and WiggleZ [141, 142], the Subaru imaging surveys including FastSound [143] and
Hyper Suprime-Cam [HSC, 144] and the ESO VLT programs which focus on targe-
ting galaxies in smaller area on the sky but at higher redshifts with zCOSMOS [145],
VVDS [146, 147], VIPERS [148, 149]. The Hobby-Eberly Telescope Dark Energy Ex-
periment [HETDEX, 150] which is using Ly-α emitters at z ∼ 3 as tracers is also
part of Stage III, so as other projects like imaging sly surveys Pan-STARRS [151] and
Gaia [152]. Regarding CMB observations, the CMB mission of Stage III is the Eu-
ropean satellite Planck whose latest results on the most favored cosmological model
have been published in 2015 [19].

— Stage IV Stage IV experiments are mainly designed to combine many probes. They
include deep spectroscopic surveys like the Dark Energy Survey Instrument [DESI,
153, 154], the Subaru Prime Focus Spectrograph [PFS, 155, e.g.] and wide imaging
survey like the ESA space mission Euclid [156], on the ground the Large Synoptic
Survey Telescope [LSST, 157] and the VLT 4MOST [158]. Longer-term projects
include the space mission Wide Feld Infrared Survey Telescope [WFIRST, 159], the
Square-Kilometer Array [SKA, 160, 161] that could enable a BAO survey of ∼ 109

HI-selected galaxies and weak lensing measurements of ∼ 1010 star-forming galaxies
using radio continuum shapes.

This thesis work uses data from SDSS-IV eBOSS. The survey will be described in more
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details in chapter 2.

1.2.2 State-of-the-art galaxy clustering analysis

The report of the DETF [118] and [119] consider the BAO method only, here we
will also consider the redshift space distortions (RSD) technique combined to the Alcock-
Pacskynski effect [AP, 162] that will be explained later in the chapter. Both BAO and
RSD are distinct features of the matter clustering one can recover from the distribution of
galaxies using photometric or spectroscopic surveys. Because of the lack of precise infor-
mation in the redshift direction for photometric surveys, most analyses are based on the
angular clustering, that is to say integrated along the LOS. In this thesis, we use spectro-
scopic data from SDSS-IV eBOSS, so clustering analysis in our case refers to the analysis of
the power spectrum (equation 1.41) or the two-point correlation function (equation 6.2) of
the galaxy density field. When the entire spectrum of frequencies and positions is conside-
red, both estimators contain identical information as one represents the Fourier transform
of the other. However, since our Fourier spectral range is finite, they are not exactly the
same although we expect a high correlation between results from each method. Moreover,
we expect that any potential uncorrected observational or modelling systematics will affect
the correlation function and power spectrum differently, so that performing both should
yied a more robust final result.

It is also worth remembering that galaxies are biased tracers of the matter density,
as originally highlighted by [99], which means that the strength of galaxy clustering is dif-
ferent from the predicted one of dark matter. The current understanding is that virialized
dark matter halos cluster more strongly than the dark matter distribution as a whole, so
the enhanced clustering strength of galaxies could reflect the halos that they inhabit. De-
pending on the type of galaxies we observe, the mass range of halos that they inhabit will
be different. Such a phenomenon can be characterized by the bias parameter b defined
by : (

δρ

ρ

)
galaxy

= b

(
δρ

ρ

)
darkmatter

(1.68)

where in the most general case, the bias can be a complex function of redshift, scale
and local-environment properties. However, on large scales (≥∼ 80h−1Mpc), there are
good reasons to beliveve that the bias behaves as a constant multiplicative factor [e.g.
1, 163]. It implies that ξg = b2ξDM . Section 3.3 will describe further our understanding
and modelling of the bias, although this relationship is rather considered as an empirical
approach to encode complex radiative and cooling processes associated with the physics
of baryons and gas.

1.2.2.1 BAO as a standard ruler

The BAO feature in the matter clustering correspond to the imprint left by sound waves
from the baryon-photon plasma in the early universe (see section 1.1.2.2). In this plasma,
the high photon-baryon pressure resulted in sound waves propagating at the sound speed
cs ' c/

√
3 until the baryons are released from the photons at the drag epoch at redshift

zd (shortly after the decoupling of photons). By then, the BAO have travelled a distance
called the sound horizon at the baryon-drag epoch, zd = 1060, and whose value is :

rs(zd) =
∫ ∞
zd

cs(z)
H(z)dz = (99.17± 0.33)h−1Mpc (1.69)
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where rs(zd) is known to 0.3% from Planck data [19]. We use the following notation
rs(zd) = rs.

Figure 1.18 – Evolution of the radial mass profile for different components of the universe
as a function of comoving radius of an initially point-like overdensity located at the origin.
Credit : [164]

Figure 1.18 illustrates the radial evolution of the dark matter mass profile (black), gas
(blue), photon (red) and neutrino (green) perturbations as redshift decreases, whose steps
can be summarized as follows :

1. Snapshot at z = 6824 : photons and baryons were in thermal equilibrium and the
neutrinos already free stream out. Dark matter is not coupled to the rest of the
particles and it accumulates in the overall density perturbation around its origin.
The snapshot at z = 1440 shows that the width of the dark matter perturbation is
wider as it is collapsing and accreting additional material in its vicinity.

2. During the recombination (snapshot at z = 1081) baryons start decoupling from
photons and the mean free path of photons becomes larger than the Hubble horizon
so light could cross the universe without scattering. This is why in the snapshot at
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z = 848, the photon perturbation is moving away from the baryon perturbation and
photons free-streamed.

3. In the snapshot at z = 78, there are remaining dark matter perturbation around the
origin and gas perturbation in a shell of about ∼150 Mpc. But then, baryons start
falling into the potential wells formed by dark matter and both interact gravitatio-
nally, so that eventually the spherical shell of baryons imprinted itself in the dark
matter, as shown in the snapshot at z = 10.

So the imprint on the matter clustering corresponds to a characteristic scale with
wiggles in the power spectrum at k ∼ 0.07, 0.13, 0.19h.Mpc−1 and a local enhancement in
the two-point correlation function at s∼ 100h−1.Mpc in comoving units. The identification
of the acoustic scale as a standard ruler, first in the CMB and then in the matter clustering
dates back to the end of 1990 [165, 166], then a series of papers gave hints of the acoustic
feature in the power spectrum using the 2dFGRS and in the two-point correlation function
using the dedicated SDSS Luminous Red Galaxy (LRG) sample [167]. However, the first
convincing detections of BAO with more thant 3σ significance came in 2005 from the
SDSS Data Release 3 which contained ∼ 47,000 LRG in the redshift range 0.16 < z <
0.47 [SDSS DR3, 120] and from the final 2dFGRS sample that contained ∼220,000 galaxy
redshifts [124], as shown in figure 1.19.

Although non-linearities are not dominant at the very large scales of the BAO peak,
they move galaxies around by 3-10 Mpc which broadens the peak and degrades our pre-
cision on the measurement of its position [168]. [169] developed a model to account for
non-linearities by modeling the differential motion of pairs initially separated by 150 Mpc.
The large scale correlation function is thus the convolution of the linear correlation func-
tion with the distribution of differential motions. So, the acoustic peak is degraded due
to bulk flows created by gravitational forces which are sourced by the presence of mass.
By mapping the galaxy density field, one can run this backwards and remove most of
the non-linearities that degraded the statistical precision. Such a technique is called re-
construction and was proposed by [164]. Figure 1.20 shows the monopole of the matter
correlation function in redshift space after reconstruction. The black solid line shows the
correlation function at z = 49 when non-linearities are completely negligible, the blue
short-dashed line shows the correlation function at z = 0.3. We can clearly see that the
acoustic peak has been smeared out. The black dotted line shows the real-space correlation
function, and the red and magenta lines show the effects of reconstruction depending on
two prescriptions. These reconstructions significantly sharpen the acoustic peak. Recons-
truction has been first applied to the SDSS-II DR7 LRG sample at zeff = 0.35 [122] and
has been to be particularly efficient in this case, providing a 1.9% distance measurement
at z = 0.35, decreasing the error by a factor of 1.7 compared to the pre-reconstruction
measurement. Now, the technique is always used to infer the best constraints on the BAO
distances, when the density of the sample is high enough to reconstruct the density field
(otherwise, the technique just adds additional noise to the already noisy data).

However, we do not measure clustering direcly in comoving coordinates, but instead
we measure galaxy redshifts and angles from spectroscopic surveys and we infer distances
from these. If we use the wrong cosmological model to do this conversion (by wrong, we
mean different from the true one of the data that we do not know), then the distances will
be wrong and the inferred clustering will contain detectable distortions, independently of
RSD (see section 1.2.2.2). This effect is known as the Alcock-Paczynski effect [162] and
in association with a standard ruler, it provides a geometrical test to disentangle between
RSD and distortions due to the wrong fiducial model.

Figure 1.21 illustrates how we can actually measure distances with the 3D distribution
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Figure 1.19 – First detection of the BAO signal in the two-point correlation function
of SDSS LRG (left panel, [120]) and the power spectrum of the 2dFGRS sample (right
panel, [124].

Figure 1.20 – Monopole of the matter correlation function in redshift space after recons-
truction. The black solid line shows the correlation function at z = 49 when non-linearities
are completely negligible, the blue short-dashed line shows the correlation function at
z = 0.3. We can clearly see that the acoustic peak has been smeared out. The black dot-
ted line shows the real-space correlation function, and the red and magenta lines show the
effects of reconstruction depending on two prescriptions. From [164]
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of galaxies using the AP test and a standard ruler such as the BAO scale. Galaxies which
are physically separated by the BAO scale ∆l are observed with an angular separation
∆s⊥ and a radial separation ∆s‖ such that ∆s‖ = ∆s⊥ = ∆l, where

∆s‖ = c

(1 + z)H(z)∆z (1.70)

∆s⊥ = DA(z)∆θ (1.71)

Using an anisotropic clustering measurement, the combination of a standard ruler (whose
physical size is known or can be predicted) with the Alcock-Paczynski test [162] allows
us to measure separately H(z) and DA(z) [170]. If we consider averaging clustering in 3D
over all directions instead, the isotropic shift is sensitive to volume/angle averaged BAO
distance :

DV(z) =
[
(1 + z)2cz

D2
A(z)
H(z)

] 1
3

(1.72)

Although this projection applies to all scales of the clustering signal, the position of the
BAO provides the most robust constraint as the BAO is a distinct feature (i.e. a peak)
in the correlation function on sufficiently large scales that it is difficult to alter it with
non-linear physics. We often introduce LOS and transverse dilation scales which measure
departures between the expected BAO position according to the assumed cosmological
model and the observed one :

α‖ = Hfid(z)rfid
d

H(z)rs
(1.73)

α⊥ = DA(z)rfid
d

Dfid
A (z)rs

(1.74)

where rs is the comoving BAO scale at the drag epoch measured from CMB anisotropies
and the superscript ’fid’ denotes the fiducial value of a quantity. And the isotropic shift of
the BAO position is related to DV by

αisotropic = DV (z)rfid
d

Dfid
V (z)rs

(1.75)

[171] showed that a joint fit of H(z) and DA(z) led to a degeneracy breaking and to a
factor of five improvement on measuring the DE equation-of-state, using the same data set.

Δθ

Δl

Figure 1.21 –

The challenge of the BAO method is primarily statistical as it corresponds to a weak
signal at large scales that requires big volumes of the universe to measure it precisely. At

46



1.2 Probing cosmic acceleration with large-scale surveys

low redshift (z ≤ 0.5), the BAO method strongly complements Type Ia SN measurements
as it provides an absolute distance scale which is related to the CMB acoustic peaks. The
BAO method can also be used at higher redshift where standard astrophysical objects
cannot be used as standard candles because we can no longer neglect or model precisely
their intrinsic evolution.

1.2.2.2 Linear growth of structure and redshift space distortions

Because of gravitational attraction, the galaxies tend to fall towards high-density re-
gions and flow away from low-density regions, such that the clustering is enhanced in the
LOS direction compared to the perpendicular direction. The effect is sometimes referred
as the Kaiser or squashing effect [172]. At small scales (< 10−20h−1.Mpc), another effect
has to be taken into account : the halo velocity dispersion elongates clusters along the LOS,
leading to the "Finger of God" (FoG) effect [173]. Figure 1.22 illustrates how a spherical
overdensity appears distorted by peculiar velocities along the LOS when observed in red-
shift space. Galaxies are undergoing a coherent infall towards a spherical overdensity and
the arrows represent their peculiar velocties. At turnaround, the peculiar infall velocity
that is just cancelling the global Hubble expansion, appears collapsed to a single velocity in
redshift space. Peculiar velocities make large scale galaxy clustering appear anisotropic in
redshift space. These anisotropies or distortions are caused by the line-of-sight component
of galaxy peculiar velocities affecting the observed galaxy redshifts from which distances
are measured. The redshift-space position of a galaxy differs from its real-space position
due to its peculiar velocity along the LOS (taken to be the z-axis) :

s = r + vz(r)
aH

ẑ (1.76)

where ẑ is the LOS unitary vector and vz is the LOS component of the peculiar velocity.
On linear scales (above 60 − 80h−1.Mpc), the theory behind the observed redshift space
clustering is well developed [172, 174] where the divergence of the peculiar velocity field
is directly related to the growth rate of structure, assuming a linear coupling between the
density and velocity fields :

θ = ∇ · v = fδm (1.77)
Moreover, [172] showed that the Legendre monopole and the quadrupole of the power
spectrum can be related to the bias and the growth rate, and [174] provided the counterpart
expressions in configuration space where at first order ξ0(s) ∝ b2 and ξ2(s) ∝ bf . The
expressions will be provided and explained in section 3.4.1. Thus, if one can determine
simultaneously the monopole and the quadrupole, one will be able to extract both fσ8
and bσ8, where σ8 is the normalization of the linear power spectrum given by

σ2
8,g =

∫
dk

2π2W
2
8 (k)k2Pg(k, µ) (1.78)

where W8(k) is the Fourier transform of a top-hat window function of width 8h−1.Mpc.
Historically R = 8h−1.Mpc has been chosen because at z = 0, σ2

8 ≈ 1. In theory, we could
derive σ8 from the amplitude of the matter power spectrum but in practice, we measure
the power spectrum of biased tracers, Pg. A change in σ8,g would imply a change in the
cosmological parameters, such as the bias (amplitude of the clustering of tracers) or the
growth rate (amplitude of the anisotropies of the clustering). This degeneracy between
parameters cannot be broken using the two-point statistics alone. Therefore, instead of
constraining f and b independently, we measure bσ8 and fσ8.
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Figure 1.22 – Illustration of an overdensity seen in real and redshift space. In redshift
space, the projection of peculiar velocities along the LOS is the cause of the anisotropies
in the observed clustering.
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The strengh of the anisotropy defined by the quadrupole-to-monopole ratio is gover-
ned by the distortion parameter β = f/b [175] where f ∼ Ω0.55

m,0 with Ωm,0 is the present
matter density. The distortion parameter has been measured very early for a variety of
galaxy redshift samples [e.g. 114, 176]. By modeling the full-shape redshift-space galaxy
power spectrum, one can extract the parameter combination f(z)σ8(z), the product of the
matter clustering amplitude defined in equation 1.78 and the linear growth rate defined
in equation 1.77. For a clear review of the physics of RSD, see [177]. In addition to mea-
sure β at z = 0.8, [178] emphasized that large-scale peculiar velocities were relevant to
constrain models of cosmic acceleration. Then, using the data of the VIMOS VLT Deep
Survey (VVDS) [146] measured a growth rate measurement consistent with ΛCDM+GR
prediction. Since then, RSD have been of great interest as they are a powerful probe to
constrain the growth of structure and complementary to BAO distance measurements.

BAO-only vs full-shape clustering analysis Contrary to the BAO technique,
RSD studies require to model the full-shape of the two-point correlation function (or power
spectrum). Measuring the relative clustering in both LOS and perpendicular directions
leads to a measurement of the growth rate of structure, but which is degenerate with the
AP effect. By measuring simultaneously fσ8 and the anisotropic positions of the BAO (to
derive constraints on H(z) and DA(z)), one can disentangle both effects [e.g. 179] and
provide a measurement of f which does not depend on the fiducial cosmology assumed to
convert redshift and angles into distances.

The key challenge in modeling RSD is to account for non-linear effects that arise from
the non-linear evolution of the density and velocity fields, but also from the non-linear
and/or scale-dependent bias between galaxies and matter and the non-linear mapping
between real to redshift space. The linear theory formalism is not enough even on scales
below 50 − 60h−1.Mpc because of a variety of non-linear effects, including the FOG dis-
tortions that occur in collasping and virialized regions at small scales. Details on the
theoretical framework behind RSD will be presented in Chapter 3.

1.2.2.3 Current constraints

The final constrains from BOSS [132] as part of SDSS-III [131] comes from the analysis
of the final data release DR12 with a sample of 1.5 million targets distributed across a
footprint of nearly 10,000 deg2. The analysis was performed using two samples : a sample
of LRG up to z ∼ 0.4 (LOWZ) and a sample of massive galaxies from 0.4 < z < 0.7,
and the redshift range was divided into three bins : 0.2 < z < 0.5 with zeff = 0.38, an
overlapping bin 0.4 < z < 0.6 with zeff = 0.51 and 0.5 < z < 0.75 with zeff = 0.61.
BAO and full-shape analyses have been performed to measure DA, H and fσ8, and all
analyses have been combined to provide a consensus [133]. BOSS also targeted quasars
at z > 2.2 with the main goal of using them as indirect tracers to study cosmology with
the Lyman-α forest. Absorption features from the continuously redshifting Ly-α line in
the spectra of distant quasars due to the neutral hydrogen in the high redshift universe
can be used to infer the clustering of Ly-α forest flux along single LOS. Note that the
BAO measurements using Ly-α forests that are reported in [133] correspond to the ana-
lysis of DR11 [180, 181], the results using the final sample DR12 are presented in [182, 183].

Table 1.1 and table 1.2 summarize the constraints from BAO-only and full-shape clus-
tering analyses respectively using various surveys. When no values for DA and H are re-
ported, it means that fσ8 has not been measured with the AP parameters, except for [185]
where they performed the full fit but did not report the values of the AP parameters.
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Table 1.1 – Precision of the BAO distances from BAO-only analyses using various large-
scale structure surveys.

Survey Reference z DV DA H

6dFGS [139] 0.106 4.5% – –
WiggleZ [142] 0.44 4.8% – –

0.60 4.5% – –
0.73 3.4% – –

SDSS MGS [184] 0.15 3.8% – –
SDSS BOSS galaxies [133] 0.38 – 1.6% 2.5%

0.51 – 1.5% 2.6 %
0.61 – 1.6% 3.0 %

SDSS BOSS Ly-α [182] 2.4 – 5.8% 3.4%
[183] 2.33 – 3.9% 2.8%

combination 2.4 – 3.0% 2.0%

[186] combined the BOSS CMASS sample with the Wiggle Z data in the regions where
both survey overlapped and found the following constraints on DV in the redshift range
0.4 < z < 0.6 : 2.3% for the auto-correlation of CMASS, 3.0% for the cross-correlation and
9.5% for the auto-correlation of WiggleZ galaxies. A direct comparison between the latter
and constraints from [142] is not possible as the overlapping redshift range and regions for
BOSS+WiggleZ is not the same as the ones for WiggleZ alone.

1.3 Outline of this thesis
In the light of the overview of LSS surveys presented below, current constraints have

probed both the redshift range z < 1 using galaxies as direct tracers of the matter density
field and the high-redshift range z > 2.1 using the Lyman-α forests in quasar spectra as
indirect tracers of the neutral hydrogen in the intergalactic medium (IGM). In constrast,
eBOSS opens up the z < 2.2 redshift range to directly use quasars themselves as cosmo-
logical tracers of the matter field.

The clustering of quasars started receiving much attention thanks to the previous pro-
grams such as the 2dF Quasar Redshift Survey [2QZ, 189, 190], SDSS-I/II [191, 192, 193]
and a combination of quasar samples from the 2QZ and the 2dF-SDSS LRG and quasar
Survey [194, 195]. Those studies have revealed that the observed correlation of quasars is
the one expected for tracers of the underlying matter distribution and have highlighted
the possibility of using quasars to constrain cosmology at higher redshifts than would be
possible for galaxy samples to similar magnitude limits. At redshifts z > 1, one can use
star-forming regions such as Emission Line Galaxies (ELG) which are more prevalent at
these high redshifts. Only one recent exploratory measurement has been published using
the near-infrared Fiber Multi-Object Spectrograph (FMOS) at the Subaru telescope to
detect the Hα lines [FastSound, 143]. The SDSS-IV eBOSS has also acquired data on
this tracer in the optical wavelength coverage where the OII] line can be used to measure
redshifts in the range 0.6 < z < 1.1.

The goal of this thesis work is to measure and analyse the clustering of the eBOSS
quasar sample between 0.8 ≤ z ≤ 2.2 in configuration space to constrain the angular dia-
meter distance DA(z), the Hubble parameter H(z) and the linear growth rate of structure
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Table 1.2 – Precision of fσ8, DM and H from full-shape analyses using various large-scale
surveys. Note that when no values for DM and H are quoted, the measurement of fσ8 has
been performed without marginalizing over the AP parameters.

Survey Reference z fσ8 DA H

2dFGRS [125] 0.17 13% – –
6dFGS [140] 0.067 13% – –
GAMA [187] 0.18 25% – –

0.38 13.6% – –
WiggleZ [188] 0.44 19.4% 9.4% 9.4%

0.60 16.2% 6.9% 6.9%
0.73 16.5% 7.0% 7.2%

VVDS [146] 0.77 36.7% – –
VIPERS [148] 0.60 21.8% – –

0.86 27.5% – –
Subaru FastSound [143] 1.4 25% – –

SDSS MGS [185] 0.15 35.8% * *
SDSS BOSS galaxies [133] 0.38 9.5% 1.7% 2.7%

0.51 8.7% 1.6% 2.6 %
0.61 8.8% 1.8% 2.8%

SDSS BOSS galaxies BAO+FS [133] 0.38 9.2% 1.5% 2.4%
[133] 0.51 8.3% 1.4% 2.2%
[133] 0.61 8.0% 1.4% 2.2%

f(z)σ8(z) at zeff = 1.52. This thesis manuscript is structured as follows :
— Chapter 2 presents an overview of the SDSS with a brief description of the technical

characteristics of the instruments and a special attention to the eBOSS survey stra-
tegy. The observational strategy is defined according to the science requirements :
eBOSS aims at measuring the BAO distance at the ∼2% level in redshift z > 1
using quasars and ELGs. In order to achieve these requirements, given the instru-
ment capabilities, it sets the requirements for the number of targets that need to
be spectroscopically observed. Then, it presents the large-scale structure (LSS) ca-
talogues that have been built from the spectroscopic observations during the first
two years of eBOSS. These catalogues represent the fourteenth data release (DR14)
of SDSS and the first of eBOSS and we also present how to measure the two-point
correlation function of this sample.

— Chapter 3 provides the theoretical concepts that are relevant to model the two-point
correlation function in redshift space. Such modeling include three non-linearities :
the non-linear evolution of the density and velocity fields, the non-linear relation
between dark matter halos and quasars and the non-linear mapping between real
and redshift space due to RSD.

— In order to provide unbiased cosmological measurements, we perform a detailed study
of modeling and observational systematics. This study is presented in Chapter 4
and also includes the creation of mock catalogues, which are fictive realizations
from numerical simulations that reproduce the clustering of the data. These mock
catalogues are used as benchmark to test the procedure of analysis.

— The configuration space measurements of this work are presented in Chapter 5 along
with the results from several companions studies using the same DR14 quasar sample
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and with a comparison of our work compared to previous studies. The final section
presents the cosmological implications of the full-shape measurements of this work
in the context of the ΛCDM model. We also attempt at providing a discussion on
the way to constrain alternative gravity models using our measurements with some
constraints for specific models.

The outcome of this thesis is concluded and discussed in Chapter 6, along with several
prospects for future work.
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Chapitre 2 : The SDSS-IV eBOSS quasar sample

This thesis work uses a 2-year data taking sample of quasars from eBOSS, one survey
of the fourth generation of the Sloan Digital Sky Survey (SDSS). Section 2.1 provides a
brief overview of the different generations of the SDSS and their main surveys, then sec-
tion 2.2 presents the main technical characteristics of the Sloan telescope, the camera and
the spectrographs that were designed for BOSS and also used for eBOSS. The astrophysics
of quasars is presented in section 2.3, this section is heavily influenced by the lectures on
Trous noirs super-massifs, noyaux actifs et quasars by Francoise Combes that I attended
during the first year of my PhD at the College de France and by lectures at the first eBOSS
collaboration meeting I attended on March 2016. In section 2.4, we focus on the eBOSS
observation strategy which is in two steps, first a photometric survey and then a spectro-
scopic survey with a dedicated selection for quasar targets and a spectroscopic pipeline
that classifies and assigns a redshift to each object. Section 2.5 provides further details
on the redshift determination for quasars and its impact on clustering. Then, section 2.6
explains the creation of the large-scale structures catalogs used as input for clustering
analysis. Eventually, in section 2.7, we present the methodology to estimate the two-point
correlation function from the catalogs.

In addition to the technical articles mentioned in the text, references for this chapter
include the SDSS website 1 where data releases are made public, the SDSS Project Book 2

and Ann Finkbeiner’s book A grand and bold thing [1].

2.1 The Sloan Digital Sky Survey
The Sloan Digital Sky Survey started being named this way in 1991 when the Sloan

fundation decided to support the project led by Jim Gunn, Rich Kron and Donald York to
build an instrument capable of taking the spectra of hundreds of galaxies at once in order
to obtain the largest map of the structures in the universe. Jim Gunn imagined the design
of the required camera few years before with the conclusion that a 2.5-meter telescope
would be enough for the imaging system he developed. Thanks to the latest development
of coupled-charge devices, CCDs, along with the fast growing data processing capabilities,
large and deep sky surveys like the SDSS have been made possible. Not only did the SDSS
change the way astronomers took data, but it also changed the way astronomers worked.
The SDSS marked the beginning of big collaborations in astronomy with the ultimate goal
to map the universe at all scales, from stars in the Milky Way to the biggest clusters of
galaxies.

2.1.1 SDSS-I and II

SDSS [2] first light was obtained on May 1998 then observations started in 2000.
The first two generations of SDSS were completed from 2000 to 2005 and 2005 to 2008
respectively whose main results were :
— A multi-band photometric survey (u,g,r,i,z) of 11 663 deg2

— A contiguous imaging and spectroscopic sample over 7500deg2 of the Northern Ga-
lactic Cap, called the Legacy Survey with more than 930 000 galaxies and 120 000

1. http://www.sdss.org
2. https://www.astro.princeton.edu/PBOOK/
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quasars. This sample represents the seventh data release of SDSS which is detailed
in [3].

— An imaging and spectroscopic survey over 3500deg2 at lower Galactic latitudes to
explore the structure, composition and kinematics of the Milky Way. This program
is called SEGUE (Sloan Extension for Galactic Understanding and Exploration, [4])
and contains a sample of 460 000 stars.

— A repeat imaging of > 250 deg2 on the Celestial Equator to discover Type 1a SN
with 0.1 < z < 0.4, called the SDSS Supernova Survey which discovered almost 500
spectroscopically confirmed Type 1a SNe to learn more about the cosmic accelera-
tion [e.g. 5]

By mid-2004, there were 400 papers writen by SDSS members and 125 by non-SDSS
members using Sloan data. In the fall of 2009, 2,656 papers were based on Sloan data and
were cited in other papers 100,000 times. SDSS had definitely reached a milestone, with a
significant impact on a broad range of subjects in astrophysics and cosmology. One of the
most famous results from SDSS was the first detection of the BAO signal in the two-point
correlation function of a sample of around 46,000 LRG [6] at an effective redshift of 0.35
which allowed a 5% measurement of the volume-averaged BAO distance, DV as mentioned
in the previous chapter.

2.1.2 SDSS-III

The third generation of SDSS [7] started in Autumn 2008, directly following SDSS-
II. It used the same telescope but a significantly upgraded version of the double-armed
spectrographs. SDSS-III was composed of four different surveys : the Baryon Oscillation
Spetroscopic Survey (BOSS), the Sloan Extension for Galactic Understanding and Ex-
ploration 2 (SEGUE-2), the Apache Point Observatory Galactic Evolution Experiment
1 (APOGEE-1) and the Multi-object APO Radial Velocity Exoplanet Large-area Survey
(MARVELS).

— BOSS was a six-year program of spectroscopic galaxy observations which has been
designed to refine the measurement of the standard ruler using LRG in the redshift
range 0.2 ≤ z ≤ 0.75 and with enough sensitivity to constrain both the expansion
rate and the angular diameter distance to percent level precision. The final data
release DR12 consists of 1.2 million galaxies with redshifts between 0.15 and 0.7
with an effective area of 9329 deg2 [8]. It also includes a second program dedicated
to Ly-α forest to constrain the BAO scale at z ∼ 2.5 using the neutral hydrogen
located in the intergalactic medium as a tracer of large scale structures. The final
sample recorded 160,000 quasars between redshift 2.15 and 3.5 and measurements of
the auto-correlation [9] and cross-correlation [10] provided constraints on the BAO
distances at few percents level.
Thanks to very good weather conditions during the survey, the observations were
ahead of planning and ended in February 2014. The leftover time was used for
additional ancillary programs which were proposed by SDSS-III members (they cover
various subjects such as high energy blazars, very low mass stars and quasar selection
using their variability) and for an eBOSS pilot program known as the Sloan Extended
Quasar, ELG, and LRG Survey (SEQUELS). It represented 128 plates that were used
to demonstrate the data quality of each eBOSS target class and test the pipeline
procedure, 66 plates were completed before the end of SDSS-III and were included
in DR12.
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— SEGUE-2 produced spectra for almost 118,000 stars inside the galactic halo of our
galaxy. In combination with the 230,000 spectra from SEGUE-1, the data revealed
the complexity of the kinematic and chemical sub-structures of the stellar halo of the
Milky Way and provided insights on the metal enrichment of our galaxy. SEGUE-2
used the telescope "dark" time between Autumn 2008 and Spring 2009, ending before
the start of BOSS in Autumn 2009.

— APOGEE-1 aimed at measuring with high precision the peculiar velocity and the
chemical composition of our galaxy by observing around 100,000 red giant stars
located in different regions of the Milky Way (bulb, disk, bar and halo). The ob-
servations started in Spring 2011 and ended in Spring 2014. It used high-resolution
infrared spectroscopy during the "bright" time (when the Moon is more than 60%
illuminated) that BOSS could not use.

— MARVELS was a spectroscopic survey designed to observe 11,000 bright stars of
our galaxy. Each star needed to be observed between 25 and 35 times on an eighteen
months period, looking at their radial velocity to look for giant gaseous exoplanets.
It started in Autumn 2008 and observed during the "bright" time with the goal to
constrain theoretical models of formation and evolution of giant planets systems.
However, the required resolution of the spectra was never reached and the project
was stopped in 2012.

2.1.3 SDSS-IV

The fourth generation of SDSS [11] started in Autumn 2014 and will end in 2020. It
includes an extension of BOSS, the eBOSS program (extended-BOSS), a second generation
of APOGEE, and a new survey, the Mapping Nearby Glaxies at APO (MaNGA).
— eBOSS is the continuity of BOSS whose goal is to obtain percent-level measurements

of Baryon Acoustic Oscillations (BAO) from 0.6 < z < 3.5, in particular in the almost
unexplored redshift range 0.7 < z < 2.2. Observations started in the fall 2014 and
will finish in February 2019. It includes four classes of target : a sample of LRG at
higher redshift than what of the BOSS sample, a new sample of emission line galaxies
(ELG) which are blue star-forming galaxies in the redshift range 0.6 < z < 1.2, a new
sample of low-redshift quasars between 0.8 and 2.2 and additional Lyman-α forest
at redshift z > 2.2. Details about the science forecasts can be found in [12, 13].
eBOSS also includes two sub-programs to follow up on other types of objects :
the Time-Domain Spectroscopic Survey (TDSS) for variable objects (quasars and
several classes of variable stars), and the SPectroscopic IDentification of ERosita
Sources (SPIDERS) whose aim is to provide a complete and homogeneous optical
spectroscopic follow-up of X-ray sources detected by eROSITA. The first data release
of eBOSS (DR14, [14]) was made public in 2018, the analysis of the clustering of the
LRG sample at an effective redshift of 0.72 is presented in [9], the quasar catalog
in [15], the first BAO detection in the low-redshift quasar sample and the analysis of
the full-shape two-point correlation function using quasars as tracers of the matter
field at an effective redshift of 1.52 are the subject of this thesis whose results have
been published in [16, 17].

— APOGEE-2 continues to focus on observations of giant stars and uses the 2.5m
du Pont telescope at Las Campanas Obervatory in Chile to observe the Southern
hemisphere. It extends into previously unreachable parts of the Milky Way disk
(APOGEE-1 was focused on red giant stars distributed across several kiloparsecs of
the disk). APOGEE-2 also acquires spectra of young stars and star-forming regions,
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variable stars, stars in clusters and satellite galaxies, and stars with asteroseismic
measurements.

— MaNGA aims at understanding the history of present day galaxies (birth, assem-
bly and ongoing growth) by providing two-dimensional maps of stellar velocity and
velocity dispersion with measurements of stellar and ionized gas metallicity, element
abundance ratio, star formation rate and dust extinction. Its goal is to measure
spectra across the face of ∼ 10,000 nearby galaxies with no cut on size, morphology
or environment in order to obtain a sample that is fully representative of the local
galaxy population.

2.2 Technical characteristics

The SDSS was imagined as a multi-band photometric survey covering a large fraction
of the observable sky associated with a large spectroscopic survey. As explained in [18],
such requirements imply several technical innovations for each element of the experiment :
— telescope : wide field of view, very low distortion focal plane, very precise pointing,

capacity to switch between photometry and spectroscopy easily
— camera : wide field of view, simultaneous observations in different photometric bands,

good precision for astrometric calibration
— spectrographs : capacity to take hundreds of spectra simultaneously on a wide wa-

velength coverage
— acquisition system : unprecedented data storage capabilities and real time control

quality
— data pipeline : fast, efficient calibration of the data and identification of objects both

in photometry and spectroscopy

2.2.1 The telescope

In order to reach the goals mentioned above, a rough optimization of parameters such
as telescope aperture, available field with acceptable image quality, available optical fibers,
and available CCDs led to the design of a telescope of approximately 2.5 meters aperture
and focal ratio (focal length of the telescope divided by its aperture) of approximately
f/5, and with a field of view of 3 degrees. Such a telescope was built at the Apache Point
Observatory located in New Mexico at 2800 meters above sea level. Details on the choice
for the design and on the performance of the telescope can be found in [18] who designed
a modified Ritchey-Chrétien telescope with a flat field by making the curvatures of the
primary and secondary mirrors the same, which yields zero curvature in the focal plane.
In addition to the classical Ritchey-Chrétien design, it has two optical correctors. The
SDSS telescope was designed to carry out both imaging and multi-object spectroscopic
observations, scheduled and interleaved depending on the quality of the weather. Not only
does the telescope need to support these observing modes, but it also allows rapid change
between imaging and spectroscopy.

The left panel of figure 2.1 shows a picture of the SDSS telescope at Apache Point
Observatory. The right panel represents a schema of the telescope with its components :
— The primary mirror has a diameter of 2.5 meters and a focal to diameter ratio of

f/2.25. It has a hole of 1.17 meters in its center. There is a conical light baffle above
it to prevent parasitic light to reach the focal plane.

71



Chapitre 2 : The SDSS-IV eBOSS quasar sample

Figure 2.1 – Left panel : Picture of the 2.5 meters diameter telescope designed by
the SDSS collaboration. Credit : http://blog.sdss.org/image-gallery/. Right panel :
Schematic view of the SDSS telescope where the primary and secondary mirrors are re-
presented in red, the spectrographs in green and a cartridge in pink. From [19]

— The secondary mirror has a diameter of 1.08 meters. It also has a light baffle, that
in addtion to the primary mirror, blocks 27% of the light reaching the telescope.

— The first corrector is of Gascoigne type and it is the last optical piece common to
the photometric and spectrometric configuration. That is why it is sometimes called
the “common” corrector. Its goal is to drastically reduce the astigmatism which is
one of the major drawbacks of Ritchey-Chrétien telescopes.

— The second corrector or “final” corrector is not the same depending on the confi-
guration of the telescope. These configurations are optimized for each case and are
briefly presented in Section 2.2.2 for the photometric corrector and in Section 2.2.3
for the BOSS spectroscopic corrector.

The two mirrors form an optical system with a focal to diameter ratio of f/5.0 and
a 3 degrees field of view. The two mirrors are separated by only 3.6 meters, so that the
focal plane is located 0.76 meter behind the primary mirror, allowing an easy access to
the instruments.

2.2.2 The camera

The photometric survey of BOSS and eBOSS used the same camera that was used for
SDSS and SDSS-II because it was already optimized for the operating mode and the 3
degrees field of view of the telescope. A full study of the camera can be found in [20], here
we just summarizethe main elements :
— Optical corrector : This lens is the first piece of the camera and one of the most

important as it ensures the preservation of the mechanical properties of the camera
thus having a big impact on the image quality and the astrometry. It aims at cor-
recting the distortion at the focal plane induced by the telescope optical system.

— Matrix of 6 columns of 5 CCDs each : There is one CCD for each photometric
band : u′ (λeff = 3550), g′ (λeff = 3550), r′ (λeff = 3550), i′ (λeff = 3550) and z′
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No. 6, 1998 THE SDSS PHOTOMETRIC CAMERA 3043

set of speciÐcations that basically placed limits on the struc-
ture function of the slope of the element to assure negligible
image degradation and astrometric error. The rear (plane)
face of the corrector is 13 mm above the focal surface at the
center, about 10 mm at the extreme edge. The thickness was
chosen primarily for mechanical strength and sti†ness in
view of the mechanical role it plays, with some small detri-
ment to the image quality owing to the longitudinal color
that such a thick element introduces. This plane face is the
surface to which the dewars that house the CCDs and the
kinematic mounts for the optical benches upon which the
CCDs are mounted are attached and registered.

The CCDs are mounted in such a way that they can be
adjusted to conform to the focal surface. This requires a tilt
slightly smaller than 1¡ at the edge of the Ðeld. There is one
further complication brought about by the fact that the
CCDs as produced are slightly convex, with a reasonably
well controlled radius of about 2.2 m. Thus the best-Ðt plane
results in focus errors of about 100 km rms, which at f/5
corresponds to an image degradation of about 20 km. We
correct this curvature (to the mean chip radiusÈcorrections
for each chip individually results in unacceptable scale
variations from device to device) for each chip with weak
Ðeld deÑatteners cemented to the rear face of the Ðlter,
which in turn is cemented to the back side of the second
corrector surface. The central thickness of the Ðlter/
deÑattener element is 5 mm for the photometric Ðlters and 6
mm for the astrometric ones, so the vertices of the CCDs are
nominally about 8 and 7 mm behind the Ðlters.

The front side of the second corrector is antireÑection
coated in four strips that match each color band (the same
coating was used for i@ and z@) using appropriate masks in
the coating process. The coating was done by QSP Optical
Technologies and results in reÑectivities below 0.2% in each
band. Thus there are only two surfaces near the detectors,
and, with the excellent antireÑection coatings on the correc-
tor, the primary source of ghosts in this system is the reÑec-
tion from the CCD surface to the back surface of the Ðlters
only about 7 mm away and back. Though the interference
coatings of the Ðlters (which are on this back surface) are
quite good antireÑection coatings in-band, there are inevita-
ble very high reÑectivities (accompanied by very low
transmission) in the short-pass cuto† region, and at the
cuto† wavelength the transmission and reÑectance are nec-
essarily of order 50%. It is in these narrow-transition spec-
tral regions that most of the ghost Ñux originates ; the u@ and
z@ do not su†er from this phenomenon because they do not
use interference short-pass Ðlters, but the others do. (The
Ðlters and their makeup are discussed in more detail in

et al.Fukugita 1996.)
The discussion of the optical performance of the camera

conÐguration is a bit complicated because of the complexity
of the focal plane, with di†erent Ðlters in di†erent locations
and the e†ect of residual distortion on the Ðnal TDI image
quality.

To facilitate more detailed discussion of image quality we
show the optical layout of the camera focal plane in Figure

which shows the locations of the 30 2048 ] 2048 photo-1,

FIG. 1.ÈOptical layout of the focal plane of the SDSS camera. Field 22 (top and bottom) are focus CCDs; Ðelds 16È21 are astrometric chips, and 1È15 are
the photometric array. The TDI scan direction is upward, so a star traverses the array from top to bottom.

Figure 2.2 – Left panel : A photograph of the SDSS camera. Right panel : The focal
plane organization for the camera used for SDSS, SDSS-II, BOSS and eBOSS. The matrix
of photometric CCDs is at the centre, whereas the astrometric and focus CCDs are at
the top and bottom. The drift scanning direction is from top (leading edge) to bottom
(trailing edge). From [20]

(λeff = 3550) and its size is 2048×2048 pixels. The remaining space on the focal plane
is used for 24 smaller CCDs (2048 × 400 pixels), 22 being used for the astrometry
and 2 for the focus. Indeed, the CCDs for photometry cannot measure accurately
the position of bright sources because their sensors saturate. The repartition of
these smaller CCDs around the bigger ones is visible in the left panel of figure 2.2.
A technique called time delay integration or drift scanning is performed from top
to bottom on the schema in the right panel of figure 2.2 where the telescope stands
pointing in a given direction while the sky passes under the effect of the rotation
of the Earth. Therefore, a star entering the focal plane successively encounters an
astrometric CCD, the photometric CCDs in the order r′, i′, u′, z′, g′ and eventually
a second astrometry dedicated CCD. All the CCDs dedicated to the photometry
are identical but they have filters to select the wavelength band of observation. The
CCDs can observe from the UV atmospheric cut off around 3000 Angstrom to the
limit of silicon based detectors close to 11000 Angstrom. The wavelength range and
quantum efficiency (defined as the ratio between the numbers of collected electrons
to the number of incident photons) of each filter is shown in figure 2.3. The very
low efficiency of the u′ band is the reason why it is located at the centre of the
focal plane. The magnitude detection limits are defined for a signal-to-noise ratio of
5. They are approximately u′limit = 22.1 mag, g′limit = 23.2 mag, r′limit = 23.1 mag,
i′limit = 22.5 mag and z′limit = 20.8 mag.

2.2.3 Spectrographs

BOSS has two identical spectrographs that have been rebuilt from the original SDSS
spectrographs to take into account upgrades like the increase in the number of fibers. They
are thus called the BOSS spectrographs and they remain the active optical spectrographs
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Figure 2.3 – Quantum efficiency of the optical system in each band. The upper curves take
into account the transmission of the filters, the quantum efficiency of the CCDs and the
losses in the optical system. The lower curves add the atmospheric extinction. From [20].

in SDSS and it was used to collect all MaNGA and eBOSS data released in DR14.

In what follows, we summarize the most important characterictics of the elements of
the spectrographs for which a full study has been conducted in [19] :

— Cartridges : To get the spectra, an aluminium plate is put at the focal plane of
the telescope. This plate is 3.2 mm thick, has a diameter of 81.3 cm and weighs 4.3
kg. The plate is drilled in advance, where optical rays from an object are going to
converge, at the position of targets known from the target selection (see the next
section). Each plate is observed for typically one hour, so for one night of observation
that is at most 9 hours long, up to 9 cartridges are prepared to optimize the data
taking. Out of the 1,000 fibers for one plate, there are 80 fibers to measure the mean
flux from the sky to substract the sky background and 20 fibers are used for calibra-
tion purposes pointing at specific locations. 895 fibers are available for new targets
and 5 are assigned to objects observed with at least another plate to control the re-
productibility of the observations. In addition to the 1,000 holes mentioned, 16 holes
are drilled to follow reference sources for pointing and monitoring the observations.
Holes are also drilled at the position of bright stars to avoid parasitic reflections on
the plate. Optical fibers are then plugged in these holes to redirect the light to the
spectrograph grism, which is a combination of a prism and a grating. The plates and
the optical fibers are held by an aluminium structure, the whole forming a cartridge
that can be seen in figure 2.4. A cartridge can be easily mounted on the telescope by
one person and several cartridges (9 are available) can be fiber-plugged in advance,
making this system easy to operate and flexible.

— Optical fibers : In order to increase the statistics of the survey, the number of fibers
per plate went from 640 to 1000 for SDSS-III/BOSS and eBOSS. Doing so without
changing the telescope optics required to decrease the size of the fibers from 180µm
(3′′ on the sky) to 120µm (2′′ on the sky). Each fiber is glued into a ferrule to protect
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Cartridge body 

Slithead 

Focal plane 

Optical 
fibers 

Figure 2.4 – Top panel : The BOSS/eBOSS fibers mounted on the cartridge in the fore-
front with the 2.5-meter Sloan telescope in the background. Bottom panel : The aluminium
plate being plugged with optical fibers, a set of drilled plates being ready to be installed
when the cartridge (right) is mounted on the telescope. Credit : SDSS

it so that two fibers on a plate are separated by at least 62′′ on the sky. Each fiber
collects the light at the focal plane in a cone of 0.1 numerical aperture 3 and gives
back the light in a slightly wider cone of 0.125 n.a. This deterioration is due to the
propagation of light inside the optical fiber. At the end of the fiber, the collimator
is built to collect light from a cone of 0.125 numerical aperture, any ray outside this
cone is lost. Thus there is a requirement to control the beam width at the output
of the fibre to maximize the yield of the system. To do so, the spectrographs are
mounted directly on the telescope, limiting both the displacement between the two
ends of the fibres and the mechanical constraints. It also allows a minimization of
the fibre length, each of them measuring 1830± 25mm. The 1000 fibres are divided
in two sets of 500, grouped in bundles that are directed to two slits (slitheads), one
at each end of the cartridge. Each slit goes into a spectrograph when the cartridge
is mounted on the telescope.

— Blue and red cameras : Each spectrograph has two cameras : a blue one from
3600 to 6350 Angstroms (the blue limit is set to include the wavelength-calibration
Cd I arc line at 3610.51 Angstroms) with a resolution power between 1560 and 2270,
the red camera covers 5650 < λ < 10 000 Angstroms (the red limit is set by the use
of silicon detectors) with a resolution between 1850 and 2650. The resolution power
R is defined by R = λ/∆λ where ∆λ is the FWHM of the point spread function 4

(PSF) of the CCD image by the spectrograph. It depends on the wavelength and
on the position in the focal plane of the CCD, i.e. to the fiber number. As shown
in figure 2.5, for all CCDs the resolution is lower on the sides, at the edges of the

3. The numerical aperture of a medium is defined as n.a. = n sin θ where n is the index of refraction of
the medium that light travels and θ is the maximum possible angle of a light ray that enters the medium.

4. The PFS is the response of an imaging system to a point source, i.e. a Dirac function.
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Spectrograph 1 Spectrograph 2 

Figure 2.5 – The resolution power for the BOSS spectrographs. The red regions corres-
pond to the regions that contain 68% of the light. The dashed line shows the transition
between the blue CCD and the red one. From [19].

spectrographs, by a factor of 2 compared to the center. We will see that this behavior
has an impact in the redshift efficiency, i.e. the ability to provide a valid redshift
when a spectrum is acquired.

A scheme of the optical system of a spectrograph is presented in figure 2.6. Light
arrives in the spectrograph through a slit located at the end of a cartridge, where the slit
holds 500 fibers. First, the light goes on a collimator which reflects it as a parallel beam
to a beamsplitter oriented at 45 degrees. At the beamsplitter, wavelengths shorter than
6400 Angstroms are reflected in direction of the blue channel whereas longer wavelengths
are transmitted to the red channel. In each channel, the beam is diffracted by the grism
which decomposes the light of each fiber. Each component is observed by cameras located
after the grisms and which are made of a succession of 8 lenses.

2.3 eBOSS quasars

eBOSS is mapping the structures of the universe using four cosmological tracers that
complement the sample of BOSS galaxies and Ly-α forests. Figure 2.7 shows these tracers
and the redshift range they allow us to probe. In this thesis, we use the quasars themselves
as direct tracers of the matter density field to perform a clustering analysis. By definition,
a clustering analysis is a statistical analysis of the distribution of pairs of galaxies so that
it involves scales above the typical scale of galaxies (above few Mpc). In general, it is
not necessary to understand the astrophysical processes that are associated. Nevertheless,
quasars are fascinating objects which are not very-well known, so it is worth dedicating
the next section to present them.

Thanks to the development of radio-astronomy in the 1950-1960’s, dedicated telescopes
have been built to receive radio waves from the sky. A growing number of optical point-
source objects with radio emission have been discovered, and the term quasar has emerged
in May 1964 by the astrophysicist Hong-Yee Chiu in Physics Today, to describe these
puzzling objects : "So far, the clumsily long name quasi-stellar radio sources is used to
describe these objects. Because the nature of these objects is entirely unknown, it is hard
to prepare a short, appropriate nomenclature for them so that their essential properties
are obvious from their name. For convenience, the abbreviated form ’quasar’ will be used
throughout this paper."
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Figure 2.6 – Optical schema of the BOSS spectrograph : light arrives in the spectrograph
through the slithead (A), then it is directed to the collimator (B) which returns it in the
opposite direction as a parallel beam. The beamsplitter (C) splits the beam into a red and
a blue components, each component is diffracted by a grism (D and E) and then focused
by the camera (F and G). From [19].

Figure 2.7 – BOSS and eBOSS cosmological probes as a function of redshift. This work
uses the eBOSS quasar sample between 0.8 ≤ z ≤ 2.2. Credit : SDSS eBOSS
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2.3.1 Surprising radio sources

If it is true that the first quasars were confirmed in 1963, actually radio sources have
started being discovered since 1936 by Grote Rober, an amateur astronomer who built a
radio telescope in his backyard. Over the next several years, he found many radio sources,
among them Cygnus A which is now one of the strongest known radio sources. Fifteen
years later, in 1951, astronomers Walter Baade and Rudolph Minkowski found the object
that created Cygnus A’s radio emissions : they used the 200-inch visible-light telescope
on Mount Palomar in California to find an unusual-looking faint optical galaxy [21]. But
when they looked at the spectrum of the galaxy, they found an even greater surprise.
Cygnus A turned out to be a galaxy with a redshift of 0.057. This redshift measurement
put it over 700 million light years from us, which made it the most distant observed object
and the most intense radio source at that time. Then, hundreds of radio sources with no
corresponding visible objects, very small angular size and some optical counterparts were
recorded in the Third Cambridge Catalogue which was published in 1959 and produced
using the Cambridge Interferometer [22]. In 1963, two objects in this catalog have been
confirmed to be associated with optical objects : the radio source 3C48 by Allan Sandage
and Thomas A. Matthews [23] and confirmed in by Jesse L. Greenstein and Maarten
Schmidt together with the discovery of the radio source 3C273 [24]. Thanks to a series
of measurements taken by Cyril Hazard and John Bolton during occultations using the
Parkes Radio Telescope, Maarten Schmidt could identify the object and obtain its optical
spectrum using the 200-inch Hale Telescope on Mount Palomar. This spectrum, so as the
one of 3C48, revealed strange emission lines which were actually spectral lines of hydrogen
that were redshifted. Schmidt and Greenstein concluded that the radio source 3C273 was
identified with an object at a redshift z = 0.158. The optical luminosity implied by this
redshift is about 120 times the magnitude of an object like the Andromeda galaxy.

Figure 2.8 – Left panel : Optical image of the quasar 3C273, credit : HST. Right panel :
Optical spectrum of the quasar 3C273.

In optical photographic plates, the object looked like a star, as one can see on the left
panel of figure 2.8 which corresponds to the optical image of 3C273 from the Hubble Space
Telescope 5, while its optical spectrum is shown on the right panel. Quasars typically have

5. http://hubblesite.org
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optical-ultraviolet spectra and broad emission lines, sometimes with widths suggesting
Doppler motions of thousands of km.s−1. The optical-ultraviolet continuum varies on
timescales of weeks or less, suggesting physical sizes of light-weeks.
Since the last twenty years, we have discovered about half a million of radio source objects,
not all of them are quasars as we will see in the following section that there is an important
diversity among these objects.

2.3.2 Quasars and active galaxies

When Greenstein and Schmidt published their study of 3C48 and 3C273 in 1996, they
wrote at the beginning of their abstract : "Together with the radio-frequency data and
the light variability, these indicate the presence of very large total energies in a relatively
small volume of space. We deliberately have not attempted to discuss the origin of these
large energies, nor do we discuss the numerous other physical problems concerned with
suggested mechanisms in the quasi-stellar objects."

Blazar 
Quasar 

Radio galaxy 

Seyfert 2 galaxies 

Seyfert 1 galaxies 

Figure 2.9 – Schematic view (not to scale) of the dust-torus-based unified model of AGN
where the orientation according to which we see the active galaxy determines its class.
Credit : Fermi collaboration.

In fact, quasars belong to a more general class called active galactic nuclei (AGN).
The mystery of AGN is that they produce very high luminosities in a very concentrated
volume, which requires a huge amount of gravitational energy. In the 1960-1970’s, a theory
emerged to explain this extraordinary amount of gravitational energy that is associated
with quasars [e.g., 25, 26] : they are powered by super-massive black holes (SMBH) of
billions of solar masses as illustrated in figure 2.9. The radiated energy we receive comes
from matter being accreted onto the black hole. The matter surrounding the central black
hole is likely to form an accretion disk, in which some source of viscosity drains the orbiting
matter from angular momentum, making it spiral inwards toward the central black hole.
AGN can be classified depending on their luminosity and radio-loudness :
— Luminosity : Quasars are the most luminous AGN and Seyfert galaxies are generally

less luminous than quasars with a luminosity a hundred times the one of the Milky

79



Chapitre 2 : The SDSS-IV eBOSS quasar sample

Way, while quasars have generally luminosities between 10 − 1000 times the one of
the Milky Way. The former have been discovered in 1943 by Carl Seyfert who found
that some spectra presented very broad emission lines and others much narrower
lines just like quasars did [27].

— Radio-loudness : Sometimes, ejections of energetic particles, called outflows, occur
along the poles of the disk, escaping and forming collimated radio-emitting jets.
Quasars can be divided into two groups : radio-loud quasars (also called QSO) which
have radio-emitting lobes and which correspond to only ∼ 10% of all the quasars
and radio-quiet quasars. In what follows, quasar refers to both. It is still not clear
why some galaxies have radio lobes while others do not, but the lobes appear to
be caused by particle jets that are evicted from the central engine. These outflows
interact with the interstellar and intergalactic mediums, creating a plasma in which
electrons spiral along magnetic fields lines and emit synchrotron radiation at radio
wavelengths.

All the different types of AGN have been unified in a common picture where the optical
appearance depend strongly on the orientation as shown on the top panel of figure 2.9.
When the central black hole accretion (often called the central engine) is visible along the
LOS, the broad emission lines and blue optical-ultraviolet continuum are visible. When
the host galaxy is visible, the corresponding AGN are dubbed Seyfert 1 galaxies ; if the
galaxy is not visible they are dubbed radio-loud quasars. When the dusty torus obscures
the LOS to the central engine, only narrow emission line are visible and the continuum
is dominated by starlight from the host galaxy, these are Seyfert 2 galaxies or radio-quiet
quasars. AGN with jets that are coincidentally pointed at the Earth are extremely bright
at all wavelengths, from radio to gamma rays, due to Doppler beaming. These types of
AGN are known as blazars and lots of them are observed using the Fermi Gamma Ray
Space Telescope 6 and the High Energy Stereoscopic System (H.E.S.S.) 7. Therefore, in this
’orientation-based unified model’, the differences between the AGN arise simply because
of the different orientations seen by the observer.

2.3.3 Quasar spectrum

Quasars emit radiations from γ-rays and x-rays to the far infrared (λ ∼ 100µm). For
most of them, the amount of energy emitted in each band is remarkably similar, in contrast
to thermal radiation from stars, which is much more peaked and restricted in wavelength.
Most quasars at z ≤ 2.5 are bright at ultraviolet wavelengths, a property that is very
helpful to distinguish them in sky surveys from the more numerous stars which are usually
faint at these wavelengths. The continuum emission in quasars appears to arise from a
combination of thermal and non-thermal processes. In any event, the continuum radiation
from quasars demonstrates that some very energetic processes are involved. Furthermore,
the continuum radiation at the highest energies tends to show the most variability and
the shortest timescales, which is another indication of the extreme conditions that exist
near quasars. The strongest emission lines in quasar spectra come from hydrogen, carbon
and magnesium, with lines of nitrogen, oxygen, iron and other elements also being visible.
The observed levels of ionization range from neutral for hydrogen and oxygen to five
times ionized oxygen and even more highly ionized iron. A quasar spectrum is shown in
figure 2.10 that we can describe in more details in the framework of SMBH :

— Radio : synchrotron emission of electrons that spiral along magnetic fields lines

6. https://fermi.gsfc.nasa.gov
7. https://www.mpi-hd.mpg.de/hfm/HESS/
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— Infrared : thermal emission from the dusty torus
— Optical-UV : thermal emission of the accretion disk surrounding the central SMBH

(continuum) + broad emission lines (between ∼ 3000−10, 000 km.s−1) are associated
with the rotating gas located at ∼ 1 pc away from the black hole in the Broad Line
Region (BLR) + narrow emission lines (between ∼ 200− 900 km.s−1) to a region of
∼ 100 pc radius around the black hole, in the Narrow Line Region (NLR).

— X–ray : low energy photons scattering with relativistic electrons that are located in
a hot corona above the black hole

Figure 2.10 – Representation of a quasar spectrum in all wavelenghts.

At the end of the 1990’s, correlations between the masses of the AGNs and galaxy
properties were highlighted using a sample of galaxies with HST photometry and ground-
based kinematics : the formation of SMBH and their growth through accretion are closely
related to the formation of stars in their host galaxies [e.g., 28, 29, 30]. AGN have become
a key element in the galaxy evolution paradigm, especially because they are present at the
center of all galaxies [31]. Not all AGN in the center of galaxies are active quasars, however
people realized that quasars could be just a phase in the normal cycle of galaxy and could
therefore be used as cosmological tracers, just like galaxies. The clustering of quasars as
a function of redshift can also provide useful constraints on our understanding of galaxy
evolution : the large-scale clustering amplitude increases with the mass of the dark matter
halos hosting the quasars. Moreover, comparison of the abundance of such halos to that
of quasars can provide constraints on the duty cycle (the fraction of active quasars that
reside in dark mater halos) and degree of scatter in the observable halo-mass relation. Such
studies have been led using the quasar sample of SDSS-III BOSS [32, 33] and a preliminary
sample of SDSS-IV eBOSS quasars [34], they confirmed the picture that quasars in the
eBOSS redshift range reside in dark matter halos of mass M ∼ 1012.5M�. Precise bias and
mass measurements for quasars at multiple redshifts are essential to understand whether
their formation could be the result of major merging of gas-rich galaxies [35, 36, 37] and
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more generally to help understanding the relationship between quasars, the host galaxies
and dark matter halos [e.g. 38]

2.4 eBOSS survey strategy

eBOSS has been designed to obtain a ∼3-4% measurement of the BAO distance using
quasars at low redshifts (0.9 < z < 2.2) with an effective redshift zeff = 1.52, ∼2% with
new LRG at an effective redshift zeff = 0.72 in combination with the z > 0.6 sample of
BOSS galaxies, ∼3-5% with ELG at an effective redshift zeff = 0.87 and an improvement
of a factor ∼1.4 relative to BOSS using new Lyman-α forests at z > 2.1. Details regar-
ding the techniques used to forecast requirements can be found in [12, 13]. These science
forecasts set the survey requirements in terms of area to be covered and density of tar-
gets to be observed. The survey strategy can be divided into two main steps : first the
photometric survey where eBOSS used the imaging data that were acquired during the
previous generations, then the spectroscopic survey where a dedicated technique has been
developed to select quasars in the redshift range 0.9 ≤ z ≤ 2.2 (this sample is called the
CORE quasars) in order to reach the desired target density and eventually each target
needs to be assigned to a plate in a process called the tiling. The specificity of each target
thus affects the target selection only, the other steps are common.

2.4.1 Photometric survey

All eBOSS quasar targets come from SDSS-I/II/III images collected in the ugriz sys-
tem [39] using the wide-field imager [20]. Quasar targets are selected for eBOSS over the
same areas as BOSS and targeting for eBOSS is conducted using the SDSS imaging that
is calibrated to be tied to the Pan-STARRS photometry [40] and the Wide-Field Infrared
Survey Explorer [41, WISE,] bands W1 and W2 in the mid-infrared which are centered
on 3.4µm and 4.6µm.

The major factors that need to be addressed in specifying parameters for the photo-
metric survey are angular resolution (pixel size), field size, exposure time, and exposure
strategy. All the photometric data were taken under photometric conditions(no clouds and
an atmospheric extinction depending only on the airmass), with the Moon under the ho-
rizon and a seeing better than 2′′ in the r′ band. Using the drift scanning technique, the
camera integrates the light of an object from the moment it enters the field of view to the
moment it leaves it, the CCDs being read out at the sidereal rate 8 as the sky drifts by.
This enables to use more than 90% of the available observing time for actual observations.
The exposure time for each object is 55s in each band. Because of the very large field of
view of the telescope (3 degrees) it is necessary to operate the drift scanning along great
circles to avoid transit-time differences across the imaging CCD array.
The images are then processed through a series of pipelines that determine an astrometric
calibration [42], detect and measure the brightness, positions and shapes of objects [43, 44].
The photometric calibration were done by tying to photometric standard stars and by
using the overlap between adjacent imaging runs to tie the photometry of all the imaging
observations together (’ubercalibration’, [45]). eBOSS takes advantage of the application
of the ubercalibration technique to Pan-STARRS by [46] and residual systematic errors in
the calibration are at the sub-percent level on all photometric bands [40].

8. 15.04 arcsecs/second
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2.4.2 Spectroscopic survey

Because taking a spectrum requires a substantially longer exposure time, it is not yet
possible to have a spectrum for every object that has been identified in the photometric
survey. Thus the first step of the spectroscopic survey is to select the targets for which one
wants the spectra. The second step is the tiling, which aims at optimizing the observations
of the selected targets in order to minimize the total observation time and thus the overall
duration of the project. Then, it is possible to start the observations.
In order to cover the expected 10,000 deg2, the eBOSS survey produces 1000 spectra per 15
minute exposure and the spectroscopic observations are repeated until reaching a signal-
to-noise ratio (S/N)2 ≥ 22 at i-band magnitude for the red camera and (S/N)2 ≥ 10 at
g-band magnitude for the blue camera. Each 15 minute exposure is processed immediately
on-site using a fast, automated data reduction pipeline to check quality.

2.4.2.1 Quasar target selection

To reach the science forecasts [12, 13], it implies several requirements for quasar target
selection given the instrument capabilities. In particular, to obtain about 500, 000 quasars
over a surface area of ∼7500 deg−2, it requires a quasar density >58 deg−2 where the
total density of assigned fibers is of <90 deg−2. The effective target density is of ∼ 115
deg−2 but taking into account the targets with existing good spectroscopy from earlier
generations of SDSS that are not re-observed saves 25 fibers per deg2. The eBOSS quasar
target selection is fully described in [47].

The photometric survey gives access to the photometric properties of each object, i.e.
their apparent magnitude in each band ugriz. This apparent magnitude m is related to
the flux emitted by the object f compared to the flux emitted by a reference f0 such that :

m = −2.5 log10

(
f

f0

)
(2.1)

where different systems of magnitude exist, the SDSS system is close to the most common,
the AB system when f0 = 3631 Jy 9. We also use the color of an object which corresponds
to the logarithmic of the ratio of fluxes between two bands, which is equivalent ot the
difference between magnitudes of the same object in two bands.

Since the discovery that most of the unresolved extragalactic objects that are bluer
than the stellar main sequence are quasars [48], the UV-excess has been used as a criterion
to select quasars by applying optical color cuts and selecting objects using their positions
in different color-color planes. The color cuts are defined using a training sample of known
objects. Figure 2.11 represents the color-color diagram, here the (u-g) vs (g-r) plane, with
the positions of stars for 18.0 < g < 19 (left panel) and 21.0 < g < 22.0 (right). Stars
tend to align in a more or less straight feature, called the stellar locus, and we observe
the same feature for quasars where the quasar locus is represented by the colored line and
shows the positions of quasars in the (u-g) vs (g-r) plane as a function of redshift. We can
see that the overlap between both loci for quasars at z > 2.7 which makes their selection
harder when just applying color cuts. The color-cuts technique can target quasars mainly
in the redshift range 0.5-2.5 and has been used by several surveys, such as the Large
Bright Quasar Survey [49], the 2dF QSO Redshift Survey [50] and the 2dF-SDSS LRG
and QSO survey [51]. The quasar target selection of SDSS-I and II extended the optical

9. Jansky, 1 Jy = 10−26 W.Hz−1.m−2
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Figure 2.11 – Positions of stars and galaxies in the (u-g- vs (g-r) plane for 18.0 < g < 19
(left panel) and 21.0 < g < 22.0 (right). The positions of quasars along the quasar locus
(colored line) is shown as a function of redshift. For z > 2.7, the stellar and quasar locii
overlap, as a consequence, it is harder to select high-redshit quasars using color cuts.

cuts to quasars in the color space beyond the stellar locus up to i < 19.1, close to the
detection limit of SDSS where the uncertainties in the measurement of fluxes are higher.
Moreover, as we said, targeting quasars at z ∼ 2.7 is challenging with color cuts because
of the overlap between the quasar and stellar loci.

For all these reasons, another selection technique has been used for BOSS based on the
XDQSOz algorithm of [52] in order to detect quasars at 2.1 ≤ z ≤ 4 to a magnitude limit
of g < 22 or r < 21.85. Details on the BOSS quasar target selection can be found in [53].
The XD (Extreme Deconvolution) algorithm is a method of classifying quasars in flux-
space by modeling the density distribution of quasars as compared to non-quasars. Using
a training sample of known objects, the algorithm is able to estimate the probability that
a target belongs to a defined class, for each class : stars, galaxies, quasars at low redshift
(z < 2.2), quasars at high redshift. Uncertainties in flux measurements are directly taken
into account in the algorithm when assigning a probability. The technique also enables
to distinguish the effect of missing data compared to noisy data on quasar probabilities.
Figure 2.12 shows the contours at 1,2 and 3σ of the XDQSOz density probability for stars
and quasars. The algorithm reproduces well the locus of each class.

For BOSS, additional methods have been developed to select quasars from photometric
surveys, including the use of quasars variability [e.g. 54] and the use of multiwavelength
matches (with X-rays and radio, for instance). For eBOSS quasar targeting, first we selec-
ted all point-source objects -which removed most of the galaxies- up to g < 22 or r < 22,
then the XDQSOz method was extended to provide probabilistic classifications for qua-
sars in any specified range of redshift. The eBOSS quasar selection also takes advantage
of a mid-IR-optical color cut using the WISE imaging. The combination of both selec-
tions was tested on the pilot survey, SEQUELS and showed that the criterion that the
probability to select a quasar is above 20%, i.e. PXDQSOz(z > 0.9) > 0.2, fulfilled the re-
quirements for the eBOSS CORE sample of > 58 deg−2 for quasars between 0.9 < z < 2.2.
For the clustering analysis, we extended the lower bound of the redshift range to 0.8 as
we can securely select those redshifts but at lower redshifts morphological cuts affect the
sample selection and the BAO signal is better sampled by galaxies. At redshift z > 2.2,
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Figure 8. Color–color distributions of good objects in the SDSS-XDQSO catalog with P (star) ! 0.95 and dereddened i < 21 mag. The gray scale is linear in the
density and the contours contain 68%, 95%, and 99% of the distribution. A sparse sampling of objects falling outside the outermost contour is shown as individual
black points. A fit to the stellar locus using spectroscopically confirmed stars from Hennawi et al. (2010) is shown in blue. Some representative classes of stars along
the stellar locus from SDSS plates 323 and 324 (Adelman-McCarthy et al. 2006) are shown as colored points.
(A color version of this figure is available in the online journal.)

Table 3
Comparison of the NBC-KDE and SDSS-XDQSO Catalogs

Catalog Confirmed z < 2.2 Confirmed 2.2 " z " 3.5 Confirmed z > 3.5
Quasar Quasar Quasar

NBC-KDE 77,144 11,485 2802
XDQSO 77,517 12,711 2338
Total no. of targets 569,785 151,860 9086

treats the uncertainties; the NN approach cannot work well when
the test set is noisier than the training set.

We use the version of the NN technique that is part of
the official BOSS quasar selection framework to compare the
XDQSO technique and the NN technique at different target
densities using early BOSS data. For the NN, we first make
the cuts listed above and then rank the targets on xnn until we
reach the desired target density. For XDQSO, we rank the good
targets based on pqsomidz (see Table 2). The results from this

comparison for BOSS year-one observations of Stripe-82 are
shown in Figure 13. We see that the NN performs significantly
worse than XDQSO at all target densities.

8.1.3. Kirkpatrick et al.’s Likelihood

The Likelihood technique of J. A. Kirkpatrick et al. (2011, in
preparation) uses an approach similar to the NBC-KDE catalog.
Rather than colors it uses fluxes, such that the apparent mag-
nitude factor also used by XDQSO is automatically taken into

13
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Figure 7. Color–color distributions of good objects in the SDSS-XDQSO catalog with P (quasar) ! 0.8 and dereddened i < 21 mag. The gray scale is linear in the
density and the contours contain 68%, 95%, and 99% of the distribution. A sparse sampling of objects falling outside the outermost contour is shown as individual
black points. A 20% random sampling of objects with z ! 2.5 in the SDSS DR7 quasar catalog (Schneider et al. 2010) is plotted as redshift color-coded points
according to the color bar at the lower right (lower redshift quasars are omitted for clarity). Higher redshift objects are plotted as larger points. A fit to the quasar locus
from Hennawi et al. (2010) is shown by the dashed black line, similarly color-coded to indicate redshift.
(A color version of this figure is available in the online journal.)

in this table come from a compilation of all spectroscopically
confirmed quasars. The bulk of these are SDSS quasars that were
selected to be brighter than i = 20.2 mag.

We stress that this comparison is significantly biased in fa-
vor of the NBC-KDE catalog: the NBC-catalog was allowed
to set the target threshold and its good flag includes cuts on
Galactic latitude that we did not apply to the XDQSO cata-
log. Nevertheless, we see that the two catalogs perform simi-
larly for low-redshift quasars, and that the XDQSO technique
performs better in the mid-redshift range where the quasar
and stellar loci overlap and photometric target selection is
difficult.

The NBC-KDE catalog performs better at high redshift than
the XDQSO catalog. This is not unexpected as we only used
150 deg2 of stellar data to train the XDQSO algorithm. The
red-star stellar-locus outliers that contaminate z > 3.5 quasar
selection are very rare on the sky: if we assume that they are
10 times more abundant than z > 3 quasars we expect our stellar
training set to only contain about 2000 of these. This is not

enough to model their color distribution since they are spread
over all magnitude bins. In the following section, we discuss
improvements to the XDQSO technique that can improve high-
redshift quasar selection.

8.1.2. Yeche et al.’s (2010) Neural Network

The quasar-selection technique of Yeche et al. (2010) uses
an NN to select quasars in the BOSS mid-redshift range. This
technique uses as the input variables the four colors u − g, g − r,
r − i, and i − z, the g-band magnitude, and the five magnitude
uncertainties. These 10 variables are propagated through a
simple NN that is trained on sets of known quasars and point-
like objects from SDSS DR7 to obtain an output parameter xnn
on which potential targets can be ranked. A similar NN is used to
find a photometric redshift znn for the quasar targets. To select
targets in the mid-redshift range, they recommend the cuts znn
> 2, u − g > 0.4, and g − i < 2. While this technique uses the
photometric uncertainties, it does this in a black-box manner
that is quite different from the probabilistic way in which XD

12

Figure 2.12 – Contours at 1,2 and 3 σ of the XDQSOz density probability for stars (left
panel) and quasars (right panel).

the redshift measurement is less secure because some characteristic emission lines such as
CIV and MgII are too redshifted to be in the wavelenght coverage of the BOSS cameras.
Moreover, the high-redshift quasars are used for Ly-α forests’measurements, so we decided
to cleanly separate the two volumes used for BAO measurements. Thus, our study uses
spectroscopically-confirmed quasars with 0.8 ≤ z ≤ 2.2.

2.4.2.2 Tiling

Once all targets (quasars, but also galaxies and targets from ancillary programs) have
been determined, their angular coordinates are put into a catalog, and each target needs
to be assigned to a fiber in a plate. This operation is called tiling and the procedure is
described in [55]. The goal is to minimize the number of required plates while maximizing
the number of objects that will be assigned to a fiber, providing that a plate contains 1,000
fibers, plates are circular so when a target is located in a region that overlaps two plates,
one needs to decide which plate the target belongs to. An additional difficulty comes from
the inhomogeneity of the target density, meaning that the centers of plates need to be
closer to each other where the density is higher.
Do to so, the spectroscopic observations are split into distinct areas of the sky called
chunks. A chunk consists of a set of rectangles in a spherical coordinate system and it
is the basic unit of sky input to the tiling algorithm. Then, the tiling provides a cenrtal
location for each target and a list of targets per plate. Both constitute the spectroscopic
tile which is the ouput of the tiling algorithm.

2.4.3 Data reduction

The data reduction software works plate by plate where the raw data are sent from the
site of the observatory to a Science Archive Server (SAS) system at the University of Utah
each morning. When the transfer is complete, they are fully processed by an automated
data reduction pipeline that takes roughly 10 hours to reduce a full night of data.
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2.4.3.1 Pipeline

The data reduction pipeline is fully described in [56]. It consists of two largely in-
dependent steps : extraction and classification. To do so, the BOSS pipeline relies on
templates that span both the full space of physical object types within the survey and
the full wavelength coverage of the spectrographs. Each template is determined using a
training sample of objects with known redshift and whose spectra are decomposed into a
common basis of principal components (Principal Component Analysis, PCA). The quasar
redshift templates were generated from a training sample of targets selected by the SDSS
DR5 quasar catalog [57] and the first four principal components are used as the linear
basis set for the automated redshift and classification measurements.

(i) Extraction : The extraction step from the raw CCD images results in wavelength-
calibrated and flux-calibrated spectra. It deals with the individual exposure and
transforms the two dimensional images of the CCDs in one dimensional spectra.
Those spectra are then calibrated using the arc lamps data of the plate. The per pixel
variance is estimated from the readout noise and the number of photons recorded in
each pixel. The inverse variance is then multiplied by a factor that takes the different
known flaws of the CCDs into account. The pixels that were hit by a cosmic ray are
identified and masked. Finally, the flux is calibrated using the spectra of standard
stars that were observed on the plate for this purpose.

(ii) Classification In the second step, the one-dimensional spectra are classified into
object types and redshift and recorded in a catalog. It consists in adding the different
individual exposures to obtain a coadded spectrum for each fibre. Each spectrum has
the data of both the blue and red CCDs, covering the full range of wavelength of the
instruments 3650 − 10400Angstrom. The spectra are then rescaled to be linear in
log(λ). The variance is estimated using the variance of each exposure, the covariance
being neglected. For objects that have been observed multiple times, the different
spectra are compared and the spectrum with the best signal to noise ratio is kept as
the primary spectrum. When the quality of a spectrum is too bad, it can be analyzed
by the pipeline because it will yield an unreliable classification and unsecure redshift.
A ’ZWARNING>0’ flag is assigned to those spectra.

The top panel of figure 2.13 shows two eBOSS quasar spectra that have been taken
under good observational conditions (g ∼ 20) while the two quasar spectra on the bottom
have been observed at the limit of the g-band magnitude detection (g ∼ 22) so the spectra
are noisier and the identification of emission lines is more difficult. The red curve corres-
ponds to the pipeline model and the green curve is the sky background whose contribution
is removed by the pipeline.

A last step consists in assigning a redshift to each object. This procedure relies on a
comparison between the measured spectrum and templates for quasars, galaxies and stars.
Each class of templates is fitted in a given range of redshift and all the fits are ordered
by increasing reduced χ2. The overall best fit is the fit with the lowest reduced χ2 and is
called pipeline redshift. The eBOSS identification procedure is shown in figure 2.14 where
five identification flags are used : three flags depending on the classification (star, galaxy
or quasar), the pipeline redshift and the ZWARNING flag (when set to 0 it means the
classification and redshift are reliable). The spectra of objects with a ’ZWARNING>0’
flag and no star identification are visually-inspected.
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Figure 2.13 – eBOSS quasar spectrum for g = 19 (top panel) and g = 22 (bottom panel)
in blue, the red curve is the pipeline model to fit the spectrum and the green component is
the sky background whose contribution is removed by the pipeline. As we go to the limit
of detection, the quality of the spectra decreases with more noise. From [47].
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Figure 2.14 – eBOSS automatic scheme based on BOSS pipeline using 5 identification
flags which include the pipeline response to different templates, the pipeline redshifts and
the quality of their estimation (ZWARNING)

2.4.3.2 Visual inspection

Quasars have a broad variety of spectra characteristics that make their automatic
classification difficult. To overcome this problem, members from the French Participation
Group (FPG) of SDSS have visually inspected every quasar spectrum observed by BOSS.
This visual inspection allows a reliable identification as well as a precise determination
of the redshift. A full description of this inspection is given in [58]. The visual inspection
for BOSS allowed an estimation of the efficiency of the automatic classification of the
spectra. On the one hand, it showed that the star sample was very pure with less than
0.1% of the objects classified as stars being quasars in reality. On the other hand, the
high redshift (z > 2.15) securely-identified quasar sample had more contamination with
0.5% of the objects classified as quasars being either stars or lower-redshift quasars. This
contamination was much higher for the low-redshift (z < 2.15) quasar sample where it
reached 5%. In addition some of the quasars identified by the pipeline were flagged as
unsecure detections (ZWARNING) and required a visual inspection to confirm or correct
these identifications. This was the case for 8% of the z > 2.2 quasars and 25% of the
z < 2.2 quasars. Almost half of the latter were indeed visually identified as stars and not
low redshift quasars. While this was not a concern for BOSS since only high redshift qua-
sars were used in the analyses, this high contamination required a revision of the pipeline
for application to eBOSS where both low and high redshift quasars are targeted. Thanks
to the visual inspection, it was also possible to check the efficiency of the BOSS automatic
redshift determination of quasars [59]. It showed that only 0.3% of the quasars had an
error greater than 0.1 (∆z > 0.1). Such errors mainly occured for quasars with a redshift
z < 2.0 with a non visible Lyman-α emission line.
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The performance of the new pipeline for eBOSS has been tested on SEQUELS observa-
tions, the results will be presented in section 2.5. However, despite the improvements on
the pipeline, we will also see that a precise determination of the redshift as required for
clustering analysis using the eBOSS quasars between 0.8 ≤ z ≤ 2.2 remains challenging.

2.5 Redshift determination for quasars

The measurement of distances is a key problem in cosmology and doing so with accu-
racy is the central path to study the cosmic expansion history and the late-time accelera-
tion of the expansion. Redshift determination proceeds from the analysis of the spectrum
of the candidates and it has been shown to be a challenging problem for quasars. Indeed,
quasar spectra contain broad emission lines due to the rotating gas located around the
central black hole that are subject to matter outflows around the accretion disk. These
astrophysical processes frequently give rise to systematic offsets when measuring redshifts.
Cosmological measurements that are inferred from the analysis of the clustering of quasars
can thus be affected by systematics related to redshift estimate and resolution.

Relative motion in the LOS shifts the lines in the spectrum of any source. One
can relate the fractional displacement dλ λ in wavelength to the radial velocity
by :

v

c
= dλ

λ
(2.2)

And given the definition of the redshift by equation 1.7, any velocity shift will be
associated with a shift in redshift as follows

∆v
c

= ∆z
1 + z

(2.3)

Astrophysists are used to refer to velocity shifts while using redshift seems more
natural with spectroscopic data. In what follows, we will use both. We also define
a redshift resolution in h−1Mpc to be used in the modelling of the two-point
correlation function :

σz = c∆z
H(z) (2.4)

Relation between velocity and redshift shifts

2.5.1 Quasars redshift estimates

The number and complexity of physical processes that can affect the spectrum of a
quasar make it difficult to precisely and accurately disentangle systemic redshift (i.e., as a
meaningful indicator of distance) from measured redshift [e.g., 60]. There are two common
ways of measuring quasar redshifts from spectroscopic surveys, using either templates or
directly the location of individual lines.

Template-based redshift As explained in section 2.4.3.1, the pipeline redshift is
determined from the best match between the spectrum and a quasar template derived
from a PCA. This template-fitting approach is, by construction, an average representation
of the quasar population and does not catch the spectral variations in each individual
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spectrum. Another template-based approach has been developed by [58] who derived new
PCA components based on two steps :

— A first PCA is performed on a reference sample from SDSS-DR7 [3] using the red-
shifts provided by [60]. The first four principal components form a basis which is
used to fit the MgII emission line of each quasar in the same reference sample.

— Only the spectra where both CIV and MgII are well-detected are kept to compute
the new PCA components to be applied to the whole spectrum and optimized to
reproduce the quasar spectrum between 1,410 and 2,900 Angstroms in the quasar
rest frame where most of the prominent emission lines are covered, in particular CIV
and MgII. Table 2.1 summarizes the rest frame wavelengths of the most characteristic
lines. A set of four principal components is used to fit the whole spectrum and are
dubbed ’PCA redshifts’. A set of five components is used to fit the emission line
individually.

Line-based redshift Alternatively, one can measure the observed wavelengths of
individual emission lines in the quasar spectrum and then derive line-based redshift esti-
mates like [15] did for the DR14Q catalog. Quasar emission lines are often shifted from
the systemic velocity due to various dynamical and radiative processes in the line-emitting
region. The level of these velocity shifts depends on the line species and on quasar proper-
ties. [61] studied the velocity shifts for various broad and narrow emissioon lines relative
to systemic redshift using a sample of 849 quasars from the SDSS-RM program [62]. They
were able to measure stellar absorption lines by the host galaxy thanks to the high signal-
to-noise ratio of the coadded spectra (from 32 epochs) of individual quasars. These stellar
features correspond to absorption in the host galaxy which is not affected by the dyna-
mical and radiative processes associated with the accretion disk around the SMBH and
hence provide reliable systemic velocity measurements. At this stage, it is worth defining
different kinds of uncertainties in line-based redshifts, following the vocabulary used in [61]

— systematic shift of emission lines w.r.t systemic redshift
— intrinsic scatter in redshift measurements (w.r.t systemic redshift) that can be esti-

mated using individual emission lines
— statistical uncertainty related to the uncertainty in line centers due to the line de-

tectability (weaker lines are presumably more difficult to measure precisely than
stronger lines)

The total redshift uncertainty σv is defined by :

σ2
v = σ2

v,stat + σ2
v,intr (2.5)

where σv,stat is the statistical uncertainty and σv,intr comes from the intrinsic scatter w.r.t.
systemic redshifts. The line with the smallest overall uncertainty provides the best es-
timate of the systemic redshift. [61] determined empirical guidelines to measure quasar
redshifts based on emission lines taking into account the first two kinds of uncertainty.
After removing the constant systematic shift and assuming that the measurement uncer-
tainties in the line centers are negligible, the following non-exhaustive list is ordered based
on an increasing order of the intrinsic scatter w.r.t systemic redshift :

— Ca II stellar absorption line is assumed to provide the most reliable systemic redshift
and thus it has a negligible intrinsic scatter

— [O II] low-ionization narrow emission line with an intrinsic scatter of ∼ 50 km.s−1

and no discernible luminosity dependence
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Table 2.1 – Wavelengths in rest frame for the most important lines in the eBOSS quasar
spectra.

line type wavelength in rest frame (Angstroms)
Lyman-α absorption 1215.67
Carbon IV emission 1548.2049

emission 1550.77845
Carbon III emission 1908.734

Magnesium II emission 2796.3511
emission 2803.5324

— [O III] high-ionization narrow emission line has an intrinsic uncertainty of about
50 km.s−1 and a marginal luminosity dependence

— MgII low-ionization broad emission line with an intrinsic uncertainty of ∼ 200 km.s−1

and negligible luminosity dependence
— CIV high-ionization broad emission line has an average blueshift of about 400 km.s−1

with a strong dependence with luminosity
DR14 quasar redshifts The DR14 quasar catalog [15] includes all SDSS-IV/eBOSS

objects that were spectroscopically targeted as quasar candidates. The reported redshift
estimates are based on the following methods :

— ’zPL’ : the SDSS quasar pipeline redshifts which are based on a Principal Component
Analysis (PCA) using galaxy, star and quasar templates to fit a linear combination
of four eigenspectra to each spectrum [56]. Template-based redshifts are expected to
be more stable since they use information from the full spectrum, but at z ∼ 1.5,
the CIV emission line enters the observed spectral range and drives the fit, which
has an impact on the redshift acccuracy.

— ’zPCA’ : For objects identified as quasars, the redshift is measured using a dedicated
PCA of the entire quasar spectrum, and the five principal components are calibrated
using the MgII emission as a reference. This approach allows a redshift determination
for faint quasars at z ' 2 when the MgII line approaches the red limit of the SDSS-IV
spectral coverage and is not clearly detected.

— ’zMgII’ : For objects identified as quasars, MgII-based redshifts are deduced from
the location of the maximum of the MgII emission line using the dedicated PCA
presented developed in [58].

— ’zVI’ : Redshift from visual inspection. For SDSS-III/BOSS, all quasar targets have
been visually inspected ; this is not the case for SDSS-IV eBOSS, where only the
objects that the automated procedure considers as badly identified lead to a visual
inspection [for more details, see Section 3.3 of 15].

2.5.2 Requirements for clustering analysis

With these guidelines in mind, the Overview paper [12] determined the requirements
in terms of redshift estimate performances to provide the most precise and least biased
cosmological measurements from the analysis of the anisotropic clustering of the eBOSS
CORE quasar sample between redshifts 0.8 and 2.2. To establish these requirements, they
used observations from SEQUELS, the eBOSS pilot program :
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Requirement 1 : Rate of catastrophic redshifts "To minimize the impact of
catastrophic erros, we require that the spectroscopic pipeline classifies spectra with fewer
than 1% catastrophic errors, where the redshifts are not known to be in error".
A catastrophic failure corresponds to a redshift estimation that differs from a visual
inspection-based redshift by more than 3000 km.s−1. Redshift errors can potentially bias
the clustering signal by assigning wrong redshifts because of line confusion or contamina-
tion by sky lines. In order to validate the pipeline classification and compare the redshift
estimates, all BOSS and SEQUELS quasar spectra have been visually inspected. Several
criteria based on pipeline flags are used to determine whether or not an object has been
well-identified. The results provided in the Overview paper were obtained from visual ins-
pections of all SEQUELS plates observed during BOSS. At this early stage, the spectrosco-
pic pipeline met Requirement 1 according to which < 1% of objects are given catastrophi-
cally incorrect redshifts. In the DR14 quasar sample, the reference redshift is taken to be
the pipeline redshift, exept for visually-inspected quasars when zPL − zVI > 3000 km.s−1,
we take zVI. Such a redshift is referred to as ’z’ and meets the < 1% catastrophic redshift
requirement. It corresponds to the reference redshift for this analysis.

Requirement 2 : Redshift resolution "We require that the data reduction pi-
peline provides a combined precision and accuracy of σv < 300km.s−1 RMS at all red-
shifts, where σv is defined as cz/(1 + z). To acknowledge the difficulty in redshift accuracy
for the high redshift region of the clustering quasar sample, we relax the requirement to
[300 + 400(z − 1.5)]|, km.s−1 for objects at z>1.5.
Using repeated observations of the same spectrum, [56] found that the RMS scatter of
BOSS pipeline redshift estimates is a factor of 2 higher than the reported statistical un-
certainty provided by the pipeline. Taking into account this correction, [12] did again the
analysis using SEQUELS observations and compared the statistical uncertainty of pipeline
and MgII-based redshifts. Their results are shown in Figure 2.15 where they found that
the typical statistical precision is about ∼ 100 km.s−1 for template-based redshifts and
varies between ∼ 100 and ∼ 300 km.s−1 for MgII-based redshifts depending on the lumi-
nosity and on the redshift range. Mg-II based redshifts have been obtained from a sample
of 472 quasars in the eBOSS redshift range from the SDSS-RM program with spectra
that present a homogeneous S/N distribution corresponding to twice the normal BOSS
and eBOSS exposure depth. The redshift and g-band magnitude are comparable with the
eBOSS sample. The behavior of the statistical uncertainty for MgII-based redshift wih
luminosity is expected since the S/N decreases for fainter objects which makes the MgII
line more difficult to be detected. The behavior with redshift for MgII-based redshifts can
also be explained : at z ∼ 1.2, the statistical uncertainty increases as the MgII line moves
from the blue to the red arm of the eBOSS spectrograph, and z ≥ 2, it lies in the red
part of eBOSS spectra where the substraction of sky lines is noisier. This comparison thus
explains why template-based redshift are often considered as more stable.

However, one must take into the intrinsic uncertainty w.r.t systemic redshift that yields
velocity shifts in the measurements of line due to outflows. Given the eBOSS redshift range
and typical median signal-to-noise ratio (∼ 3 per SDSS pixel compared to ∼ 30 for the
study led in [61]), the MgII line is present all across the sample between 0.8 ≤ z ≤ 2.
Moreover, following the guidelines presented in the previous section, the MgII feature
is the quasar broad emission line that has the smallest velocity shift (∼ 200 km s−1)
because it is a lower ionization species that presumably lies at a larger distance from the
central black hole. Therefore, it provides the redshift estimate with the smallest intrinsic
uncertainty that is available for the eBOSS sample, although its statistical precision is a bit
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Figure 2.15 – Statistical uncertainty on template-based (black squares) and MgII-based
(red diamonds) redshift estimates as a function of g-band magnitude (left panel) and of
redshift (right panel). From [12].

degraded compared to template-based redshift, particularly for low signal-to-noise lines.
In order to estimate the total uncertainty of pipeline redshifts, [12] measured the redshift
evolution of the scatter between MgII-based and template-based redshifts. It corresponds
to the black points in the top panel of figure 2.16 while the requirements are represented
by the red curve.

To quantify the intrinsic scatter of template-based redshifts compared to MgII-based
redshift in the DR14 quasar sample, a subsample of quasars is selected where all quasars
have the three redshift estimates : zPL, zMgII zPCA. Figure 2.17 shows the distributions of
∆v = ∆z ·c/(1+z), for the difference of redshift estimates : ∆z = zMgII−z, ∆z = zPCA−z
and ∆z = zPCA − zMgII for the two redshift bins in our range of interest. We compare
the discrepancies to a Gaussian distribution of width given by the survey requirements
(SRD, [12]) where the redshift resolution is showed to be :

σSRD
v (z) = 300 km s−1 z < 1.5 (2.6)
σSRD
v (z) = 400× (z − 1.5) + 300 km s−1 z > 1.5 (2.7)

The most important feature is that the distributions present large non-Gaussian tails that
extend to 3000 km s−1. The distributions involving zMgII − z (green) and zPCA − zMgII
(blue) are centered at zero offset (because of the calibration mentioned above) and are
mostly symmetric. The distribution obtained for zPCA− z (red) is asymmetric, suggesting
that for the special catalogs which mix zPCA and z, there could be systematic shifts
in the separation of quasars. The bottom panel of figure 2.17 presents the evolution of
the standard deviations of the above distributions as a function of redshift compared
to the SRD. When considering only quasars with |∆v| < 1000 km.s−1 (dashed lines) in
the calculation of the standard deviation, our result agrees with the SRD and with the
results obtained in [12]. When allowing larger values of |∆v| < 3000 km.s−1 (solid lines),
the standard deviation increases as expected given the shape of the distributions. These
results lead to a resolution which is slightly larger than the SRD.

In what follows, the ’z’ redshift will be taken as the reference, and in Section 5 the
results obtained using this estimate will be compared to the results performed under the
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Figure 2.16 – Top panel : Redshift evolution of the total scatter of template-based red-
shifts compared to MgII-based redshifts for a sample of 472 quasars from the SDSS-RM
program. This scatter includes the statistical uncertainty and the intrinsic scatter w.r.t.
systemic redshift. From [12]. Bottom panel : RMS of the scatter of ∆v = ∆z · c/(1 + z)
for different redshift estimates as a function of redshift, compared to the survey requi-
rements (black solid line). Solid lines (resp. dashed lines) are obtained requiring that
|∆v| < 3000km.s−1 (resp. |∆v| < 1000km.s−1).
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Figure 2.17 – Physical distributions (solid lines) of ∆v = ∆z · c/(1 + z) between dif-
ferent redshift estimates for two redshift bins in our redshift range. The dotted line shows
a Gaussian distribution of width given by the survey requirements (see text). The most
important feature is that the observed distributions present large non-Gaussian tails that
extend to 3000 km s−1. At low redshifts (upper panel), the distributions are mostly sym-
metric although minor shifts can be observed. At high redshifts (lower panel), the distri-
bution obtained for zPCA− z (red) is asymmetric, and could yield systematic shifts in the
separation of quasars
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same conditions but with special catalogs where the redshift is taken to be zMgII (resp.
zPCA) whenever it is available and z otherwise, such that these catalogs contain the same
objects. In Section 4.2, we will also demonstrate that the redshift resolution has a large
impact on the clustering signal, especially at scales below 40 h−1Mpc, and that the impact
can be measured by fitting the observed clustering. In particular, we will investigate the
impact of the redshift resolution on the RSD modeling and on its ability to recover the
cosmological parameters both in terms of shape and RMS of the redshift uncertainties
distribution.

2.6 eBOSS quasar catalogs for clustering analysis

The creation of the large-scale structure catalogs for clustering analysis involves a
number of steps from the list of targets to be observed for spectroscopic observations in
addition to the spectroscopic pipeline information about classification and redshift de-
termination. The first LSS catalog was outlined in [63] using the SDSS-III BOSS DR9
data [64] when the survey was approximately one third complete. Then, further refine-
ments of the catalog creation algorithm for the analysis of the second public data release
of BOSS, DR10 [65, 66] led to the creation of a new code, called MKSAMPLE. This
section is heavily influenced by the description of the large-scale structure catalogs in [67]
for the third public SDSS data release DR12 and in [15, 16] for the eBOSS DR14 quasar
sample.

In any realistic survey, lots of reasons can lead to variations in the expected num-
ber density, such as the survey geometry, inhomogeneities in the observational conditions
or instrumental limitations so that the definition of the density contrast (also called the
overdensity field or perturbation density field) given in equation 6.1 is affected. It is es-
sential here to understand that a spectroscopic survey does not see all galaxies that lie in
a given direction. This is represented by the survey selection function φ(x), which gives
the probability for an object at distance x to be observed by the survey. Thus, the basic
assumption of the two-point clustering analysis is that the expected number density, nexp,
for a constant underlying number density, n̄ ; is given by the survey selection function :

nexp = φ(x)n̄ (2.8)

It is usually assumed that the survey selection function can be written as the product of
an angular selection function φang and a radial part φrad. It means that we assume the
survey depth and hence redshift distributions of selected objects do not vary significantly
with position on the sky. It is a good approximation for the eBOSS quasar sample as
the redshift distribution of quasars does not depend strongly on luminosity [47] and we
will see that the main variations with the survey depth can be corrected for by applying
weights. In contrast, the redshift distribution of BOSS galaxies has a slight dependence
with stellar density depended on the surface brightness of the galaxies. (the lowest surface
brightness galaxies in this sample are at high redshift) so the weights are defined as a
function of the local stellar density and the surface brightness of the galaxy in order to
remove any redshift dependence [53]. The angular selection function consists in defining a
survey mask that corrects for selection effects due to the observational strategy and which
will therefore reduce the effective footprint used for clustering analysis. The radial selection
function requires to understand the spectroscopic procedure and redshift measurements
to ensure that the observed redshift distribution is truly representative of the sample we
are analyzing.
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2.6.1 The angular selection function

In order to characterize the angular selection function φang of the eBOSS survey, the
eBOSS footprint is split into sectors that correspond to the assembly of spherical polygons
defined by a unique intersection of spectroscopic tiles. Spectroscopic tiles are the output
of the tiling algorithm as explained in Section 2.4.2.2. Spherical polygons are used to re-
present the boundaries of the survey geometry which include the circular fields defined by
spectroscopic tiles and small regions to be removed. These small regions are masked be-
cause galaxies could not have been observed, such as the centerposts of each spectroscopic
tile (where no targets coinciding with the centerpost can be observed) or the surroundings
of bright objects or regions with missing or bad photometric information. Despite the small
angular size of each individual ‘masked’ region, they are not randomly distributed across
the sky and sum to a non-negligible area. Thus, they are excluded from any analysis by
the use of veto masks. For the eBOSS DR14 sample, the bad photometric fields exclude
approximately 5% of the area, the bright stars mask 1.8%, the bright objects mask 0.05%
and the centerposts mask less than 0.01% of the area [16].
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Figure 2.18 – Distribution of the completeness CeBOSS per sector. Sectors with comple-
teness smaller than 0.9 correspond to overlaping plates regions where only one plate has
currently been measured. Objects with CeBOSS < 0.5 are not considered for clustering
analysis.

We use the MANGLE software [68] to construct the survey mask from spherical
polygons which form the base unit for the geometrical decomposition of the sky. For each
sector, an observational completeness CeBOSS is calculated from Ntarget, the number of
imaging quasar targets selected, Nfiber, the number of targets that actually received a
fiber after the tiling algorithm is applied, Ncp, the number of targets that were in collision
within the 62′′ exclusion radius around each target and thus did not receive a fiber, and
Nknown the number of targets that are confirmed quasars measured by previous surveys at
the time of tiling (and called known). The traditional way of accounting for the missing
quasars is to up-weight the nearest quasar (more details are provided in section 2.6.2) so
that the observational completeness is defined as :

CeBOSS = Nfiber + Ncp
Ntarget −Nknown

. (2.9)

Known targets are 100% complete, since they have already been observed and they are
sub-sampled to match the value of CeBOSS in each sector. Low completeness sectors are
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Figure 2.19 – Footprint of the DR14Q catalog used for this analysis. The upper (lower)
panel displays the SGC (NGC) resulting in a total effective area of 2112.9 deg2. Each object
is color-coded according to the completeness of the sector to which it belongs (object in
purple have completeness between 0.5 and 0.8)
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due to overlaping plates for which some plates have not been observed yet. In particular,
the mean completeness for two overlaping plates is CeBOSS ∼ 0.5 so we keep all sectors
with CeBOSS > 0.5 to guarantee good observational conditions across the footprint. The
average completeness of the remaining sectors is high : ∼ 95% and ∼ 96% in the North
Galactic Cap (NGC) and South Galactic Cap (SGC), respectively. The distribution of the
completeness per sector for our survey is shown in Figure 2.18. However it is not 100% in
all sectors because the CORE quasar targets do not get the highest priority and because
of combinatorial requirements in the tiling algorithm. The footprint of spectroscopically-
observed objects is shown in Figure 2.19, color-coded according to the completeness. The
large gap in the SGC at RA ∼ −10 deg and Dec ∼ 22, deg is due to the mask for Galactic
extinction and the horizontal striped patterns are due to the photometric bad fields or
poor seing in the SDSS imaging. The other masks are too small to be distinguishable.

2.6.2 Accounting for observational artefacts

As mentioned above, the number density of quasars observed in eBOSS, as in any
realistic survey, suffers from survey systematics that arise because of inhomogeneities in
the targeting and observing strategies. In order to mimize the impact of observational
artefacts on our estimate of the true galaxy overdensity field, we apply weights to the
targeted quasars. This approach has first been used for the clustering analysis of BOSS
DR9 galaxies in [66], the weights have thus been developed in [67] for BOSS DR12 and
we use a similar approach for the analysis with the eBOSS DR14 quasar sample. The
corrective weights to correct for the survey incompleteness are :

— Photometric weight : [69] demonstrated that the density of stars had a significant
effect on the observed density of BOSS galaxies, which could introduce spurious fluc-
tuations in the target density field. They showed that this effect could be corrected
for using a weight that mimized these fluctuations as a function of stellar density as
long as the target density fluctuations are less than 15%. The determination of this
weight has been developed to take into account other dependencies with photometric
conditions such as the seeing, Galactic extinction, airmass and sky background [53].
The photometric weight is written wphoto.

— Fiber-collisions weight : The angular size of a spectroscopic fiber is 62” (which
corresponds to 0.54h−1Mpc at z = 1.5) and prevents observing two quasars within a
radius of 62” with a single observational plate. When the other target is also a qua-
sar, those collisions are called ‘fiber’ or ’close pair’ collisions. When the target is of
a different type, the collisions are missed. A rough estimation of the number of colli-
sions between two quasars CORE is given by (62′′/3600′′)2 deg2×115targets/deg2 =
0.034, i.e. about 30% of the collisions are between two CORE quasars. The targets
that were not assigned a spectroscopic fiber due to fiber collisions are not a random
subsample of the full target sample, they are more likely to occur in overdense re-
gions. The traditional way of correcting for that is to transfer the weight of the lost
target to the nearest neighbour of the same target class with a valid redshift (for
limitations of this approach, see [70]). This weight is written wcp.

— Redshift failures weight : Not all observations yield a valid redshift and [53, 34]
showed that it does not happen randomly on a tile but depend on the fiber used.
As for fiber-collisions, we can transfer the weight of the lost target to the nearest
neighbour of the same target class and with a good redshift. This weight is written
wnoz.
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— FKP weight : We also apply weights to optimize our clustering measurements w.r.t.
to shot-noise and cosmic variance. In order to compensate for the different signal-to-
noise ratio produced by these variations, [71] showed that an optimal compromise is
to assign weights according to the measured mean density of quasars at that redshift,
n̄(z). We thus use the FKP weights defined as wFKP = 1/[1 + n̄(z)P0] where P0 is
the amplitude of the power spectrum at the k scale at which the BAO signature in
the DR14 quasar sample has the highest signal. It corresponds to k ∼ 0.14h.Mpc−1

which gives P0 = 6×103[h−1.Mpc]3. Including this weight equalises the contribution
of every redshift interval that are considered in the calculation of the correlation
function. However, the statistical gain brought by the FKP-weight is small because
the number density of eBOSS quasars is low and nearly constant, as shown in the
left panel of Figure 2.20, so the value of the weight varies by less than 10%.

Therefore, the total weighting scheme and the effective number of quasars in the sample
are defined by :

Wtot = wFKP · wphoto · (wcp + wnoz − 1) (2.10)

Nquasars,eff =
∑
i

Wtot,i (2.11)

This weighting scheme is the standard scheme that has been applied to the analysis of the
BOSS galaxies and to the BAO analysis of the DR14 quasar sample [16]. Section 4.3 will
present in more details the effect of the weights on the clustering and will describe the
improved weighting scheme that has been used for the RSD analysis of the DR14 quasar
sample in configuration space [17], which is the subject of this thesis.

2.6.3 The radial selection function

The angular target density can be converted into a redshift probability distribution
defined in [67] by :

p(zj , zj + dz)dz ∝
∑
zi∈[zj ,zj+dz]Wtot,i∑

iWtot,i
(2.12)

where the numerator corresponds to the effective number of quasars in a given redshift bin
and the denominator is the total effective number of quasars in the whole redshift range.
The inclusion of the wphoto in the definition ofWtot given by equation 6.5 accounts for any
impact of the angular systematics on the redshift distribution. We then use the fiducial
cosmology mentioned previously to determine the number of targets per [h−1.Mpc]3. The
observed quasar density is shown in the left panel of Figure 2.20 where one can see small
differences between the NGC (blue) and SGC (yellow). Such differences have already been
reported in [72] and are related to regions in the sky with different sensitivities to the target
selection. The redshift distribution of the CORE quasars in the DR14 catalog is presented
in the right panel of Figure 2.20. The orange histogram corresponds to the distribution of
the known quasars at the start of eBOSS data taking. Over 75% of the new redshifts were
obtained during the eBOSS program.

The DR14 quasar catalog [15] contains 158,757 objects between 0.8 ≤ z ≤ 2.2 iden-
tified as quasars by the pipeline. 93.6% of them have a secure idenfication with a valid
pipeline redshift, they represent the 148,659 quasars used in this analysis. About 13%
quasars have been visually inspected (more details on the visual inspection procedure can
be found in [15]). Regarding the remaining 10,090 objects, 5,188 did not receive a spectro-
scopic observation because of fiber-collisions but 1,015 (20%) have been resolved thanks to
plate overlap. 4,910 objects were securely classified by the pipeline but their redshifts were
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Figure 2.20 – Left panel : Number density distribution as a function of redshift for
the NGC and the SGC. From [73]. Right panel : Redshift distribution of the objects in
the DR14 catalog corresponding to the CORE sample. The orange histogram shows the
known quasars at the start of eBOSS data taking. Objects in 0.8 ≤ z ≤ 2.2 are kept for
this analysis.

Table 2.2 – Number of quasars with 0.8 ≤ z ≤ 2.2 of the eBOSS CORE sample and
effective area for the North Galactic Cap (NGC) and South Galactic Cap (SGC).

NGC SGC Total
Nquasar (0.8 ≤ z ≤ 2.2) 89233 59426 148659
Effective area (deg2) 1214.6 898.3 2112.9

not valid and they were not visually-inspected. Eventually, it means that fiber-collisions
and redshift-failures represent ∼3% of the total sample each.
The effective number of objects and area of the sample are given in Table 6.1 and corres-
pond to a maximum density of nobs,max = 2× 10−5h3Mpc−3.

We define the effective redshift zeff as zeff =
∑
i ziWtot,i /

∑
iWtot,i = 1.52 and we

follow the definition of the effective volume covered by the footprint given in [67] :

Veff =
∑
i

(
n̄iP0

1 + n̄iP0

)2
∆V (zi) (2.13)

where ∆V (zi is the volume of the shell at zi and we use P0 = h−3.Mpc3 at k = 0.14hMpc
where the BAO signal is the strongest. The DR14 quasar sample represents an effective
volume of 0.246 Gpc3, but the associated comoving volume is about 32 Gpc3. The difference
is due to the factor n̄iP0/(1 + n̄iP0) in the definition of the effective volume. The DR14
quasar sample is also a sparse sample as the number density of quasars is an order of
magnitude lower compared to SDSS BOSS galaxies (about ∼ 10−4[h.Mpc]−3). Indeed
nobsP � 1 for the eBOSS quasar sample which indicates that the sample is shot noise
dominated, where nobs is the observed quasar density and P is the amplitude of the power
spectrum at the BAO scale (k = 0.14h.Mpc−1). On the contrary, BOSS galaxies have
nobsP � 1 so that the sample is dominated by the cosmic variance.
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2.6.4 Generation of the random catalog

We generate a random catalog of unclustered objects with the detailed angular and
redshift selection functions of the data sample in order to account for the complex survey
geometry. Together, the data and random catalogs constitute the input for clustering
analysis.
The whole survey selection is described by a set of random points which sample the survey
volume with a density which is taken to be roughly 40 times higher than the one of quasars
to ensure that the survey geometry is well-sampled. Angular positions of objects in the
random catalog are generated according to the completeness assigned to each sector and
taking into account the veto masks so that the angular distribution of randoms follows the
angular selection function of the survey. To take into account the selection function, we
must assign redshifts to the random catalog. [53] compared different methods to simulate
the radial selection function and showed that the ’shuffled’ technique where the redshifts
were drawn randomly from the measured redshift distribution provided the smallest bias
on the monopole and quadrupole of the correlation function. We thus use this method and
assign redshifts to the objects in the random catalog by randomly selecting a redshift in the
measured quasar redshift distribution. This procedure ensures that the weighted quasar
and random catalogs have exactly the same redshift distribution. Then, each quasar in
the random catalog is given a FKP weight wFKP only, as fluctuations in the target density
and spectroscopic incompleteness are corrected in the data catalog directly.

2.7 Estimation of the two-point correlation function

2.7.1 Assume a fiducial cosmology

At this stage of the analysis, we have a catalog of spectroscopically-confirmed quasars
with their positions in the sky, namely two angular coordinates (right ascension α, de-
clination δ) and the redshift, from which we want to compute the two-point correlation
function. First, the observational coordinates are translated into spherical coordinates
assuming a cosmological model :

r = DC (2.14)
θ = 90− δ (2.15)
φ = α (2.16)

The first equation implies the Hubble constant H0 and the comoving distance DC defined
by equation 1.23 which implies to know the values for Ωm and ΩΛ. Spherical coordinates
are then translated into cartesian coordinates x, y and z.
In this work, measured redshift and angular coordinates are converted to comoving coor-
dinates using the fiducial cosmology that was used for the BOSS DR12 analysis [8] and
for the eBOSS DR14Q BAO analysis [16], where the universe is assumed to be flat with

h = 0.676, Ωm = 0.31, ΩΛ = 0.69,Ωbh
2 = 0.022, σ8 = 0.80 (2.17)

If the wrong cosmological parameters are used to make this transformation then we
can induce anisotropic distortions in the observed correlation function which are similar to
the RSD signal [74]. By fitting simultaneously the AP parameters given in equations 6.14
with the growth rate, we can separate both effects and provide a measurement of the
growth rate which is independent of the assumption of sphericity.
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2.7.2 Define the most appropriate estimator

Methods to estimate the two-point correlation function from the data are based on its
definition as an excess probability of finding a galaxy pair which is given by equation 1.43.
One counts from the data catalog the number DD(r) of pairs of galaxies with separation
|r2− r1| ∈ r± 1

2∆r where ∆r is the bin width (for what follows, "separation r" means that
the separation falls in this bin). To determine the fraction of excess in this bin, we need
to compare the number of pairs in the data catalog to the number of pairs we would get
for ξ = 0, i.e. for a Poisson process which corresponds to a random distribution. For this,
we generate a random catalog by generating points randomly in the survey volume and
count the corresponding number RR(r) of random pairs. This approach leads to a simple
estimator of the correlation function, ξ̂(r) defined as follows :

1 + ξ̂(r) = DD(r)
RR(r) (2.18)

This definition assumes that both the data and the random catalogs were generated
from an ensemble with the same expectation value of the density field 〈ρ〉. The problem
is that we do not know the true expectation value. We have to estimate it fom the data
as ND/V where ND is the number of data points (observed galaxies) and V the survey
volume. The estimator defined by equation 2.18 assumes an equal number of random points
NR = ND. The inherent randomness in both the data and the random catalogs introduces
a random error in the estimator, the larger the number of points the smaller the expected
random error. The usual strategy is to increase NR to minimize random errors due to finite
number of points. One then needs to scale the estimator with the ratio of total number
of possible random pairs 1

2NR(NR − 1) to that of the data pairs 1
2ND(ND − 1). Thus, the

estimator becomes :

1 + ξ̂(r) = NR(NR − 1)DD(r)
ND(ND − 1)RR(r) (2.19)

Moreover, since a realistic survey samples just a finite volume of a single realization,
the estimation of the correlation function also differs from the true correlation function,
because of the survey geometry and of masks which lead to edge effects for instance. We
can try to minimize these edge effects by using data-random pairs DR(r) where the total
number of data-random pair counts is NDNR. One can thus construct different estimators
using DD(r), RR(r) and DR(r). [75] compared four estimators of ξ in terms of bias and
variance in the limit where the correlations are small (ξ << 1) and showed that the one
with the miminum variance corresponds to :

ξ̂(r) = DD(r)− 2DR(r) +RR(r)
RR(r) (2.20)

This estimator is now called the Landy-Szalay (LS) estimator.
In practice, as there is a remaining invariance w.r.t. rotations around the LOS axis, the

two-point statistics are two-dimensional. The second parameter for the correlation function
besides the distance s in redshift space is the parameter µ = cos θ where θ is the angle
between the LOS and the orientation vector of the pair of tracers under consideration. The
definition is illustrated in Figure 2.21 where µ has values in the range 0 to 1 (θ ∈ [0, π]).

In this work, the two-point correlation function ξ(s, µ) of the data is determined using
the LS estimator.
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Figure 2.21 – The anisotropic clustering is a function of the separation vector between
two quasars and the cosine of θ, the angle between the LOS and the orientation vector of
the pair.

Bibliographie

[1] A. Finkbeiner, A Grand and Bold Thing (2010).

[2] D. G. York, J. Adelman, J. E. Anderson, Jr., S. F. Anderson, et al., The Sloan
Digital Sky Survey : Technical Summary, 120, 1579 (2000), doi:10.1086/301513,
astro-ph/0006396.

[3] K. N. Abazajian, J. K. Adelman-McCarthy, M. A. Agüeros, S. S. Allam, et al.,
The Seventh Data Release of the Sloan Digital Sky Survey, 182, 543 (2009),
doi:10.1088/0067-0049/182/2/543, arXiv:0812.0649.

[4] B. Yanny, C. Rockosi, H. J. Newberg, G. R. Knapp, et al., SEGUE : A
Spectroscopic Survey of 240,000 Stars with g = 14-20, 137, 4377 (2009),
doi:10.1088/0004-6256/137/5/4377, arXiv:0902.1781 [astro-ph.GA].

[5] J. A. Frieman, B. Bassett, A. Becker, C. Choi, et al., The Sloan Digi-
tal Sky Survey-II Supernova Survey : Technical Summary, 135, 338 (2008),
doi:10.1088/0004-6256/135/1/338, arXiv:0708.2749.

[6] D. J. Eisenstein, I. Zehavi, D. W. Hogg, R. Scoccimarro, et al., Detection of the
Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous
Red Galaxies, 633, 560 (2005), doi:10.1086/466512.

[7] D. J. Eisenstein, D. H. Weinberg, E. Agol, H. Aihara, et al., SDSS-III : Massive Spec-
troscopic Surveys of the Distant Universe, the Milky Way, and Extra-Solar Planetary
Systems, 142, 72 (2011), doi:10.1088/0004-6256/142/3/72, arXiv:1101.1529.

[8] S. Alam, M. Ata, S. Bailey, F. Beutler, et al., The clustering of galaxies in the
completed SDSS-III Baryon Oscillation Spectroscopic Survey : cosmological analy-
sis of the DR12 galaxy sample, 470, 2617 (2017), doi:10.1093/mnras/stx721,
arXiv:1607.03155.

[9] J. E. Bautista, N. G. Busca, J. Guy, J. Rich, et al., Measurement of baryon acoustic
oscillation correlations at z = 2.3 with SDSS DR12 Lyα-Forests, 603, A12 (2017),
doi:10.1051/0004-6361/201730533, arXiv:1702.00176.

104

http://dx.doi.org/10.1086/301513
http://arxiv.org/abs/astro-ph/0006396
http://dx.doi.org/10.1088/0067-0049/182/2/543
http://arxiv.org/abs/0812.0649
http://dx.doi.org/10.1088/0004-6256/137/5/4377
http://arxiv.org/abs/0902.1781
http://dx.doi.org/10.1088/0004-6256/135/1/338
http://arxiv.org/abs/0708.2749
http://dx.doi.org/10.1086/466512
http://dx.doi.org/10.1088/0004-6256/142/3/72
http://arxiv.org/abs/1101.1529
http://dx.doi.org/10.1093/mnras/stx721
http://arxiv.org/abs/1607.03155
http://dx.doi.org/10.1051/0004-6361/201730533
http://arxiv.org/abs/1702.00176


BIBLIOGRAPHIE

[10] H. du Mas des Bourboux, J.-M. Le Goff, M. Blomqvist, N. G. Busca, et al., Ba-
ryon acoustic oscillations from the complete SDSS-III Lyα-quasar cross-correlation
function at z = 2.4, ArXiv e-prints (2017), arXiv:1708.02225.

[11] M. R. Blanton, H. Lin, R. H. Lupton, F. M. Maley, et al., An Efficient Targeting
Strategy for Multiobject Spectrograph Surveys : the Sloan Digital Sky Survey “Tiling”
Algorithm, 125, 2276 (2003), doi:10.1086/344761, astro-ph/0105535.

[12] K. S. Dawson, J.-P. Kneib, W. J. Percival, S. Alam, et al., The SDSS-IV Extended
Baryon Oscillation Spectroscopic Survey : Overview and Early Data, 151, 44 (2016),
doi:10.3847/0004-6256/151/2/44, arXiv:1508.04473.

[13] G.-B. Zhao, Y. Wang, A. J. Ross, S. Shandera, et al., The extended Baryon
Oscillation Spectroscopic Survey : a cosmological forecast, 457, 2377 (2016),
doi:10.1093/mnras/stw135.

[14] B. Abolfathi, D. S. Aguado, G. Aguilar, C. Allende Prieto, et al., The Fourteenth Data
Release of the Sloan Digital Sky Survey : First Spectroscopic Data from the extended
Baryon Oscillation Sky Survey and from the second phase of the Apache Point Ob-
servatory Galactic Evolution Experiment, ArXiv e-prints (2018), arXiv:1707.09322.

[15] I. Pâris, P. Petitjean, É. Aubourg, A. D. Myers, et al., The Sloan Digi-
tal Sky Survey Quasar Catalog : Fourteenth data release, 613, A51 (2018),
doi:10.1051/0004-6361/201732445, arXiv:1712.05029.

[16] M. Ata, F. Baumgarten, J. Bautista, F. Beutler, et al., The clustering of the SDSS-
IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample : First
measurement of Baryon Acoustic Oscillations between redshift 0.8 and 2.2, ArXiv
e-prints (2017), arXiv:1705.06373.

[17] P. Zarrouk, E. Burtin, H. Gil-Marín, A. J. Ross, et al., The clustering of the SDSS-IV
extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample : measure-
ment of the growth rate of structure from the anisotropic correlation function between
redshift 0.8 and 2.2, 477, 1639 (2018), doi:10.1093/mnras/sty506.

[18] J. E. Gunn, W. A. Siegmund, E. J. Mannery, R. E. Owen, et al., The 2.5 m Te-
lescope of the Sloan Digital Sky Survey, 131, 2332 (2006), doi:10.1086/500975,
astro-ph/0602326.

[19] S. A. Smee, J. E. Gunn, A. Uomoto, N. Roe, et al., The Multi-object, Fiber-fed Spec-
trographs for the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic
Survey, 146, 32 (2013), doi:10.1088/0004-6256/146/2/32, arXiv:1208.2233.

[20] J. E. Gunn, M. Carr, C. Rockosi, M. Sekiguchi, et al., The Sloan Digital Sky Survey
Photometric Camera, 116, 3040 (1998), doi:10.1086/300645.

[21] W. Baade et R. Minkowski, Identification of the Radio Sources in Cassiopeia, Cygnus
A, and Puppis A., 119, 206 (1954), doi:10.1086/145812.

[22] A. S. Bennett, The preparation of the revised 3C catalogue of radio sources, 125, 75
(1962), doi:10.1093/mnras/125.1.75.

[23] T. A. Matthews et A. R. Sandage, Optical Identification of 3C 48, 3C 196, and 3C
286 with Stellar Objects., 138, 30 (1963), doi:10.1086/147615.

105

http://arxiv.org/abs/1708.02225
http://dx.doi.org/10.1086/344761
http://arxiv.org/abs/astro-ph/0105535
http://dx.doi.org/10.3847/0004-6256/151/2/44
http://arxiv.org/abs/1508.04473
http://dx.doi.org/10.1093/mnras/stw135
http://arxiv.org/abs/1707.09322
http://dx.doi.org/10.1051/0004-6361/201732445
http://arxiv.org/abs/1712.05029
http://arxiv.org/abs/1705.06373
http://dx.doi.org/10.1093/mnras/sty506
http://dx.doi.org/10.1086/500975
http://arxiv.org/abs/astro-ph/0602326
http://dx.doi.org/10.1088/0004-6256/146/2/32
http://arxiv.org/abs/1208.2233
http://dx.doi.org/10.1086/300645
http://dx.doi.org/10.1086/145812
http://dx.doi.org/10.1093/mnras/125.1.75
http://dx.doi.org/10.1086/147615


BIBLIOGRAPHIE

[24] J. L. Greenstein et M. Schmidt, The Quasi-Stellar Radio Sources 3C 48 and 3C 273.,
140, 1 (1964), doi:10.1086/147889.

[25] E. E. Salpeter, Accretion of Interstellar Matter by Massive Objects., 140, 796 (1964),
doi:10.1086/147973.

[26] D. Lynden-Bell, Galactic Nuclei as Collapsed Old Quasars, 223, 690 (1969),
doi:10.1038/223690a0.

[27] C. K. Seyfert, Nuclear Emission in Spiral Nebulae., 97, 28 (1943),
doi:10.1086/144488.

[28] D. Richstone, E. A. Ajhar, R. Bender, G. Bower, et al., Supermassive black holes and
the evolution of galaxies., 395, A14 (1998), astro-ph/9810378.

[29] L. Ferrarese et D. Merritt, A Fundamental Relation between Supermassive Black Holes
and Their Host Galaxies, 539, L9 (2000), doi:10.1086/312838, astro-ph/0006053.

[30] K. Gebhardt, R. Bender, G. Bower, A. Dressler, et al., A Relationship between
Nuclear Black Hole Mass and Galaxy Velocity Dispersion, 539, L13 (2000),
doi:10.1086/312840, astro-ph/0006289.

[31] J. Kormendy et D. Richstone, Inward Bound—The Search For
Supermassive Black Holes In Galactic Nuclei, 33, 581 (1995),
doi:10.1146/annurev.aa.33.090195.003053.

[32] M. White, A. D. Myers, N. P. Ross, D. J. Schlegel, et al., The clustering
of intermediate-redshift quasars as measured by the Baryon Oscillation Spec-
troscopic Survey, 424, 933 (2012), doi:10.1111/j.1365-2966.2012.21251.x,
arXiv:1203.5306.

[33] S. Eftekharzadeh, A. D. Myers, M. White, D. H. Weinberg, et al., Clustering of
intermediate redshift quasars using the final SDSS III-BOSS sample, ArXiv e-prints
(2015), arXiv:1507.08380.

[34] P. Laurent, S. Eftekharzadeh, J.-M. Le Goff, A. Myers, et al., Clustering of quasars
in SDSS-IV eBOSS : study of potential systematics and bias determination, 7, 017
(2017), doi:10.1088/1475-7516/2017/07/017, arXiv:1705.04718.

[35] D. B. Sanders, B. T. Soifer, J. H. Elias, B. F. Madore, et al., Ultraluminous infrared
galaxies and the origin of quasars, 325, 74 (1988), doi:10.1086/165983.

[36] R. G. Carlberg, Quasar evolution via galaxy mergers, 350, 505 (1990),
doi:10.1086/168406.

[37] P. F. Hopkins, R. S. Somerville, L. Hernquist, T. J. Cox, et al., The Relation
between Quasar and Merging Galaxy Luminosity Functions and the Merger-driven
Star Formation History of the Universe, 652, 864 (2006), doi:10.1086/508503,
astro-ph/0602290.

[38] C. Conroy et M. White, A Simple Model for Quasar Demographics, 762, 70 (2013),
doi:10.1088/0004-637X/762/2/70, arXiv:1208.3198.

[39] M. Fukugita, T. Ichikawa, J. E. Gunn, M. Doi, et al., The Sloan Digital Sky Survey
Photometric System, 111, 1748 (1996), doi:10.1086/117915.

106

http://dx.doi.org/10.1086/147889
http://dx.doi.org/10.1086/147973
http://dx.doi.org/10.1038/223690a0
http://dx.doi.org/10.1086/144488
http://arxiv.org/abs/astro-ph/9810378
http://dx.doi.org/10.1086/312838
http://arxiv.org/abs/astro-ph/0006053
http://dx.doi.org/10.1086/312840
http://arxiv.org/abs/astro-ph/0006289
http://dx.doi.org/10.1146/annurev.aa.33.090195.003053
http://dx.doi.org/10.1111/j.1365-2966.2012.21251.x
http://arxiv.org/abs/1203.5306
http://arxiv.org/abs/1507.08380
http://dx.doi.org/10.1088/1475-7516/2017/07/017
http://arxiv.org/abs/1705.04718
http://dx.doi.org/10.1086/165983
http://dx.doi.org/10.1086/168406
http://dx.doi.org/10.1086/508503
http://arxiv.org/abs/astro-ph/0602290
http://dx.doi.org/10.1088/0004-637X/762/2/70
http://arxiv.org/abs/1208.3198
http://dx.doi.org/10.1086/117915


BIBLIOGRAPHIE

[40] D. P. Finkbeiner, E. F. Schlafly, D. J. Schlegel, N. Padmanabhan, et al., Hyper-
calibration : A Pan-STARRS1-based Recalibration of the Sloan Digital Sky Survey
Photometry, 822, 66 (2016), doi:10.3847/0004-637X/822/2/66.

[41] E. L. Wright, P. R. M. Eisenhardt, A. K. Mainzer, M. E. Ressler, et al., The
Wide-field Infrared Survey Explorer (WISE) : Mission Description and Initial On-
orbit Performance, 140, 1868-1881 (2010), doi:10.1088/0004-6256/140/6/1868,
arXiv:1008.0031 [astro-ph.IM].

[42] J. R. Pier, J. A. Munn, R. B. Hindsley, G. S. Hennessy, et al., Astrometric Calibration
of the Sloan Digital Sky Survey, 125, 1559 (2003), doi:10.1086/346138.

[43] R. Lupton, J. E. Gunn, Z. Ivezić, G. R. Knapp, et al., in Astronomical Data Analysis
Software and Systems X (2001), vol. 238, p. 269.

[44] C. Stoughton, J. Adelman, J. T. Annis, J. Hendry, et al., in Survey and Other Teles-
cope Technologies and Discoveries (2002), vol. 4836, pp. 339–349.

[45] N. Padmanabhan, D. J. Schlegel, D. P. Finkbeiner, J. C. Barentine, et al.,An Improved
Photometric Calibration of the Sloan Digital Sky Survey Imaging Data, 674, 1217
(2008), doi:10.1086/524677.

[46] E. F. Schlafly, D. P. Finkbeiner, M. Jurić, E. A. Magnier, et al., Photometric Ca-
libration of the First 1.5 Years of the Pan-STARRS1 Survey, 756, 158 (2012),
doi:10.1088/0004-637X/756/2/158, arXiv:1201.2208 [astro-ph.IM].

[47] A. D. Myers, N. Palanque-Delabrouille, A. Prakash, I. Pâris, et al., The SDSS-IV
Extended Baryon Oscillation Spectroscopic Survey : Quasar Target Selection, 221,
27 (2015), doi:10.1088/0067-0049/221/2/27, arXiv:1508.04472.

[48] A. Sandage, The Existence of a Major New Constituent of the Universe : the Qua-
sistellar Galaxies., 141, 1560 (1965), doi:10.1086/148245.

[49] P. C. Hewett, C. B. Foltz, et F. H. Chaffee, The Large Bright Qua-
sar Survey.VI.Quasar Catalog and Survey Parameters, 109, 1498 (1995),
doi:10.1086/117380.

[50] S. M. Croom, R. J. Smith, B. J. Boyle, T. Shanks, et al., The 2dF QSO Redshift
Survey - XII. The spectroscopic catalogue and luminosity function, 349, 1397 (2004),
doi:10.1111/j.1365-2966.2004.07619.x.

[51] S. M. Croom, G. T. Richards, T. Shanks, B. J. Boyle, et al., The 2dF-SDSS LRG and
QSO survey : the QSO luminosity function at 0.4 &lt ; z &lt ; 2.6, 399, 1755 (2009),
doi:10.1111/j.1365-2966.2009.15398.x, arXiv:0907.2727.

[52] J. Bovy, A. D. Myers, J. F. Hennawi, D. W. Hogg, et al., Photometric Redshifts and
Quasar Probabilities from a Single, Data-driven Generative Model, 749, 41 (2012),
doi:10.1088/0004-637X/749/1/41, arXiv:1105.3975.

[53] A. J. Ross, W. J. Percival, A. G. Sánchez, L. Samushia, et al., The clustering of
galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey : analysis of po-
tential systematics, 424, 564 (2012), doi:10.1111/j.1365-2966.2012.21235.x,
arXiv:1203.6499.

107

http://dx.doi.org/10.3847/0004-637X/822/2/66
http://dx.doi.org/10.1088/0004-6256/140/6/1868
http://arxiv.org/abs/1008.0031
http://dx.doi.org/10.1086/346138
http://dx.doi.org/10.1086/524677
http://dx.doi.org/10.1088/0004-637X/756/2/158
http://arxiv.org/abs/1201.2208
http://dx.doi.org/10.1088/0067-0049/221/2/27
http://arxiv.org/abs/1508.04472
http://dx.doi.org/10.1086/148245
http://dx.doi.org/10.1086/117380
http://dx.doi.org/10.1111/j.1365-2966.2004.07619.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15398.x
http://arxiv.org/abs/0907.2727
http://dx.doi.org/10.1088/0004-637X/749/1/41
http://arxiv.org/abs/1105.3975
http://dx.doi.org/10.1111/j.1365-2966.2012.21235.x
http://arxiv.org/abs/1203.6499


BIBLIOGRAPHIE

[54] N. Palanque-Delabrouille, C. Yeche, A. D. Myers, P. Petitjean, et al., Varia-
bility selected high-redshift quasars on SDSS Stripe 82, 530, A122 (2011),
doi:10.1051/0004-6361/201016254, arXiv:1012.2391.

[55] M. R. Blanton, H. Lin, R. H. Lupton, F. M. Maley, et al., An Efficient Targeting
Strategy for Multiobject Spectrograph Surveys : the Sloan Digital Sky Survey “Tiling”
Algorithm, 125, 2276 (2003), doi:10.1086/344761, astro-ph/0105535.

[56] A. S. Bolton, D. J. Schlegel, É. Aubourg, S. Bailey, et al., Spectral Classification
and Redshift Measurement for the SDSS-III Baryon Oscillation Spectroscopic Survey,
144, 144 (2012), doi:10.1088/0004-6256/144/5/144, arXiv:1207.7326.

[57] D. P. Schneider, P. B. Hall, G. T. Richards, M. A. Strauss, et al., The Sloan
Digital Sky Survey Quasar Catalog. IV. Fifth Data Release, 134, 102 (2007),
doi:10.1086/518474, arXiv:0704.0806.

[58] I. Pâris, P. Petitjean, É. Aubourg, S. Bailey, et al., The Sloan Digi-
tal Sky Survey quasar catalog : ninth data release, 548, A66 (2012),
doi:10.1051/0004-6361/201220142, arXiv:1210.5166.

[59] I. Pâris, P. Petitjean, N. P. Ross, A. D. Myers, et al., The Sloan Digi-
tal Sky Survey Quasar Catalog : Twelfth data release, 597, A79 (2017),
doi:10.1051/0004-6361/201527999, arXiv:1608.06483.

[60] P. C. Hewett et V. Wild, Improved redshifts for SDSS quasar spectra, 405, 2302
(2010), doi:10.1111/j.1365-2966.2010.16648.x, arXiv:1003.3017.

[61] Y. Shen, W. N. Brandt, G. T. Richards, K. D. Denney, et al., The Sloan Digital Sky
Survey Reverberation Mapping Project : Velocity Shifts of Quasar Emission Lines,
831, 7 (2016), doi:10.3847/0004-637X/831/1/7.

[62] Y. Shen, W. N. Brandt, K. S. Dawson, P. B. Hall, et al., The Sloan Digital
Sky Survey Reverberation Mapping Project : Technical Overview, 216, 4 (2015),
doi:10.1088/0067-0049/216/1/4, arXiv:1408.5970 [astro-ph.IM].

[63] L. Anderson, E. Aubourg, S. Bailey, D. Bizyaev, et al., The clustering of ga-
laxies in the SDSS-III Baryon Oscillation Spectroscopic Survey : baryon acoustic
oscillations in the Data Release 9 spectroscopic galaxy sample, 427, 3435 (2012),
doi:10.1111/j.1365-2966.2012.22066.x, arXiv:1203.6594.

[64] C. P. Ahn, R. Alexandroff, C. Allende Prieto, S. F. Anderson, et al., The
Ninth Data Release of the Sloan Digital Sky Survey : First Spectroscopic Data
from the SDSS-III Baryon Oscillation Spectroscopic Survey, 203, 21 (2012),
doi:10.1088/0067-0049/203/2/21, arXiv:1207.7137 [astro-ph.IM].

[65] C. P. Ahn, R. Alexandroff, C. Allende Prieto, F. Anders, et al., The Tenth Data
Release of the Sloan Digital Sky Survey : First Spectroscopic Data from the SDSS-
III Apache Point Observatory Galactic Evolution Experiment, 211, 17 (2014),
doi:10.1088/0067-0049/211/2/17, arXiv:1307.7735 [astro-ph.IM].

[66] L. Anderson, É. Aubourg, S. Bailey, F. Beutler, et al., The clustering of ga-
laxies in the SDSS-III Baryon Oscillation Spectroscopic Survey : baryon acous-
tic oscillations in the Data Releases 10 and 11 Galaxy samples, 441, 24 (2014),
doi:10.1093/mnras/stu523, arXiv:1312.4877.

108

http://dx.doi.org/10.1051/0004-6361/201016254
http://arxiv.org/abs/1012.2391
http://dx.doi.org/10.1086/344761
http://arxiv.org/abs/astro-ph/0105535
http://dx.doi.org/10.1088/0004-6256/144/5/144
http://arxiv.org/abs/1207.7326
http://dx.doi.org/10.1086/518474
http://arxiv.org/abs/0704.0806
http://dx.doi.org/10.1051/0004-6361/201220142
http://arxiv.org/abs/1210.5166
http://dx.doi.org/10.1051/0004-6361/201527999
http://arxiv.org/abs/1608.06483
http://dx.doi.org/10.1111/j.1365-2966.2010.16648.x
http://arxiv.org/abs/1003.3017
http://dx.doi.org/10.3847/0004-637X/831/1/7
http://dx.doi.org/10.1088/0067-0049/216/1/4
http://arxiv.org/abs/1408.5970
http://dx.doi.org/10.1111/j.1365-2966.2012.22066.x
http://arxiv.org/abs/1203.6594
http://dx.doi.org/10.1088/0067-0049/203/2/21
http://arxiv.org/abs/1207.7137
http://dx.doi.org/10.1088/0067-0049/211/2/17
http://arxiv.org/abs/1307.7735
http://dx.doi.org/10.1093/mnras/stu523
http://arxiv.org/abs/1312.4877


BIBLIOGRAPHIE

[67] B. Reid, S. Ho, N. Padmanabhan, W. J. Percival, et al., SDSS-III Baryon Oscillation
Spectroscopic Survey Data Release 12 : galaxy target selection and large-scale structure
catalogues, 455, 1553 (2016), doi:10.1093/mnras/stv2382, arXiv:1509.06529.

[68] M. E. C. Swanson, M. Tegmark, A. J. S. Hamilton, et J. C. Hill, Methods for ra-
pidly processing angular masks of next-generation galaxy surveys, 387, 1391 (2008),
doi:10.1111/j.1365-2966.2008.13296.x, arXiv:0711.4352.

[69] A. J. Ross, S. Ho, A. J. Cuesta, R. Tojeiro, et al., Ameliorating systematic uncer-
tainties in the angular clustering of galaxies : a study using the SDSS-III, 417, 1350
(2011), doi:10.1111/j.1365-2966.2011.19351.x, arXiv:1105.2320.

[70] D. Bianchi et W. J. Percival, Unbiased clustering estimation in the presence of missing
observations, 472, 1106 (2017), doi:10.1093/mnras/stx2053, arXiv:1703.02070.

[71] H. A. Feldman, N. Kaiser, et J. A. Peacock, Power-spectrum analysis
of three-dimensional redshift surveys, 426, 23 (1994), doi:10.1086/174036,
astro-ph/9304022.

[72] E. F. Schlafly et D. P. Finkbeiner, Measuring Reddening with Sloan Di-
gital Sky Survey Stellar Spectra and Recalibrating SFD, 737, 103 (2011),
doi:10.1088/0004-637X/737/2/103, arXiv:1012.4804 [astro-ph.GA].

[73] H. Gil-Marín, J. Guy, P. Zarrouk, E. Burtin, et al., The clustering of the SDSS-
IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample : struc-
ture growth rate measurement from the anisotropic quasar power spectrum in
the redshift range 0.8 z 2.2, 477, 1604 (2018), doi:10.1093/mnras/sty453,
arXiv:1801.02689.

[74] W. E. Ballinger, J. A. Peacock, et A. F. Heavens, Measuring the cosmological
constant with redshift surveys, 282, 877 (1996), doi:10.1093/mnras/282.3.877,
astro-ph/9605017.

[75] S. D. Landy et A. S. Szalay, Bias and variance of angular correlation functions, 412,
64 (1993), doi:10.1086/172900.

109

http://dx.doi.org/10.1093/mnras/stv2382
http://arxiv.org/abs/1509.06529
http://dx.doi.org/10.1111/j.1365-2966.2008.13296.x
http://arxiv.org/abs/0711.4352
http://dx.doi.org/10.1111/j.1365-2966.2011.19351.x
http://arxiv.org/abs/1105.2320
http://dx.doi.org/10.1093/mnras/stx2053
http://arxiv.org/abs/1703.02070
http://dx.doi.org/10.1086/174036
http://arxiv.org/abs/astro-ph/9304022
http://dx.doi.org/10.1088/0004-637X/737/2/103
http://arxiv.org/abs/1012.4804
http://dx.doi.org/10.1093/mnras/sty453
http://arxiv.org/abs/1801.02689
http://dx.doi.org/10.1093/mnras/282.3.877
http://arxiv.org/abs/astro-ph/9605017
http://dx.doi.org/10.1086/172900




Chapitre 3

Theory of large-scale structure
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Redshift surveys provide a three-dimensional view of the large-scale structures of the
universe whose statistical properties can be studied by modeling of the two-point cor-
relation function. However, since redshift obtained from spectroscopic surveys and from
which distances are inferred contain both a contribution from the Hubble expansion and
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the LOS velocity, galaxy redshift surveys actually measure a combination of the density
and velocity fields in redshift space. Therefore, the two-point correlation in redshift space
includes at least three types of non-linearities that are challenging to model theoretically :
the non-linear evolution of density and velocity fields, the non-linear relation between dark
matter and tracers distribution and the non-linear mapping from real to redshift space.

In this chapter, section 3.1 reviews the dynamics of gravitational instabilities that give
rise to the structures seen in galaxy surveys. As long as density fluctuations are small
enough, non-linearities can be treated by adopting a perturbative expansion around linear
solutions, but this breaks down on small scales and perturbation theories are no longer
valid. Section 3.2 thus presents two approaches that have been developed to have insights
on the behavior of cosmological fields in the non-linear regime. Both sections are heavily
influenced by [1], Will Percival’s lectures at the Early Career Scientists eBOSS meeting
at the University of Ohio in December 2016 and Sandrine Codis’s lectures at the Euclid
France summer school in July 2017. Then, section 3.3 deals with the relation between dark
matter and tracers statistical properties in the framework of biased tracers. This section
is inspired from a series of online lectures given by Franck van den Bosch on the theory of
galaxy formation 1 and on talks that have been given at the SnowPAC conference in Utah
that I attended in March 2016. Eventually, section 3.4 reviews the two most common
methods to model the redshift space distortions and connect the results in real space
(theory) and redshift space (observations).

3.1 Development of gravitational instabilities
The standard picture for the formation of large-scale structures that we owe to Le-

maitre [2] is that they result from the gravitational amplifications of small primordial
density fluctuations. In this scenario, the dynamics of structure formation is mostly dri-
ven by the gravitational interaction of collisionless (or at least, weakly-interacting) dark
matter particles in an expanding universe (for a textbook, see e.g. [3]). Altough the micro-
scopic nature of dark matter particles has not been identified yet, at scales much smaller
than the Hubble radius, all candidates must be cold, hence non-relativistic, before the
matter-dominated area so that the damping of small-scale fluctuations due to dark matter
is compatible with observed structures [4, 5]. Under these conditions, the equations of
motions that describe the evolution of the matter distribution reduce to those of Newto-
nian gravity. In the WIMP scenario dark matter particles are extremely light compared to
the mass scale of galaxies with an expected number density of at least 1050 particles per
Mpc3 [e.g. 6]. Therefore, discreteness effects are negligible and collisionless CDM particles
can be treated as a fluid that obeys the Vlasov equation for the distribution function in
phase space. Moreover, as mentioned in section 1.1.4, we can distinguish two regimes in the
formation of structures : a first regime when dark matter particles evolve and collapse into
halos, and then the formation of baryonic structures associated with gaseous processes. In
this section, we consider the formation of dark matter halos only.

3.1.1 The Vlasov equation

First we assume that the universe is full of dust like particles with same masses m for
simplicity and whose only interaction is gravitational. We introduce the phase space den-
sity function f(x,p)d3xd3p which represents the number of particles per volume element

1. https://campuspress.yale.edu/astro610/
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d3xd3p where the position x of the particles is expressed in comoving coordinates and the
particle conjugate momentum p is given by p = uma where a is the expansion factor and
u is the peculiar velocity. The peculiar velocity u is defined by the difference between the
total velocity v and the Hubble flow ȧx such that :

u = a
dx
dt

= v− ȧx (3.1)

The conservation of particles together with the Liouville theorem that asserts that the
volume of the phase-space distribution function is constant with time imply that the total
derivative of f vanishes so that :

df

dt
= ∂

∂t
f(x,p, t) + dx

dt

∂

∂xf(x,p, t) + dp
dt

∂

∂pf(x,p, t) = 0 (3.2)

This is the Vlasov equation.
Using the definition of the peculiar velocity given by equation 3.1, we can relate the

time variation of the position to the momentum p by

dx
dt

= p
ma2 (3.3)

Then, the time variation of the momentum is generally obtained from the geodesic
equation. For distances small compared to the curvature radius of the universe, where the
local gravitational potentials are small enough that general relativity effects are negligible,
one can treat the growth of perturbations in the local universe in the framework of New-
tonian gravity. Therefore, for a particle of velocity v at position r, the action of all other
particles can be treated as a gravitational potential φ induced by the local mass density
ρ(r)

φ(r) = G

∫
ρ(r′ − r)
|r′ − r| d

3r′ (3.4)

and the equation of motion yields :

dv
dt

= −∇rφ (3.5)

As the peculiar velocity u represents a perturbation to the background velocity that
satisfies the Hubble’s law, we can define perturbations to the background values for the
density field and gravitational potential :

ρ(x, t) = ρ̄(t)(1 + δ(x, t) (3.6)

φ(x, t) = φ̄(x, t) + Φ(x, t) (3.7)

where ρ̄(t) is the spatial average of the density field and the background potential φ̄ satisfies
the Poisson equation ∆φ̄ = 4πGa2ρ̄.

So the equation of motion 3.5 becomes :

dv
dt

= du
dt

+ ȧ

a
u + äx (3.8)

= 1
ma

dp
dt

+ äx (3.9)

= −∇rφ = −1
a
∇xφ (3.10)

= −1
a

(∇xφ̄+∇xΦ) (3.11)
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Using the second Friedman equation (equation 1.18) for the homogeneous background
and the Gauss theorem (4πG

∫
ρ̄d3x = 4πGM where M is the mass related to ρ̄), one can

show that
äx = −4πG

3 aρ̄ = −1
a
∇xφ̄ (3.12)

It therefore yields :
dp
dt

= −m∇xΦ(x, t) (3.13)

where Φ is the cosmological gravitational potential which is sourced by the density contrast
in the context of metric perturbation in an expanding universe so that :

∆Φ(x) = 4πGa2ρ̄δ = 3
2Ωm(t)H2(t)δ (3.14)

where the second equality comes from the first Friedmann equation in a flat universe
(equation 1.17 with k = 0).

Combining equations 3.15, 3.5 and 3.13, we get

∂

∂t
f(x,p, t) + p

ma2
∂

∂xf(x,p, t)−m∇xΦ(x, t) ∂
∂pf(x,p, t) = 0 (3.15)

The system of equations 3.14 and 3.15 form the Vlasov-Poisson equation. This is precisely
the set of equations N-body simulations attempt to solve.

The basic conservation equations can now be derived from the first moments of the
Vlasov equation. The zeroth-order moment relates the phase-space density to the local
mass density field :

ρ(x, t) = m

a3

∫
d3pf(x,p, t) (3.16)

The first-order moment defines the mean velocity field (average local velocity of particles
in a region of space) ui and the second-order moment defines the velocity dispersion (also
called the stress-tensor) σi,j by :

ui(x, t) = 1∫
d3pf(x,p, t)

∫
d3p pi

ma
f(x,p, t) (3.17)

ui(x, t)uj(x, t) + σij(x, t) = 1∫
d3pf(x,p, t)

∫
d3p pi

ma

pj
ma

f(x,p, t) (3.18)

The zeroth moment of the Vlasov equation gives the continuity equation (conservation
of mass) by integrating the Vlasov equation w.r.t p

∂δ(x, t)
dt

+ 1
a
∇ · [(1 + δ(x, t))u(x, t)] = 0 (3.19)

The next two moments gives another equation of conservation : integrating the Vlasov
equation w.r.t. p after multipling by p, then subtracting ρ̄u(x, t) times the continuity
equation (equation 3.19) gives the Euler equation which describes the conservation of
momentum :

∂ui(x, t)
∂t

+ ȧ

a
ui(x, t) + 1

a
uj(x, t) · ∇jui(x, t) = −1

a
∇iΦ(x, t)− 1

ρa
∇jρσij(x, t) (3.20)

It is worth noting that this equation is very similar to the one in hydrodynamics for perfect
fluids with in our case two additional terms, one which accounts for the expansion of the
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universe and another one for the anisotropic stress tensor related to the pressure of the
fluid.

At the early stages of the development of gravitational instabilities, the velocity dis-
persion due to peculiar motions is much smaller than the velocity gradients induced by
the density fluctuations at the scales of interest. One can thus assume that the cosmologi-
cal structure formation is driven by matter with negligle velocity dispersion and pressure
(single-flow approximation) such that σij = 0 and that all particles have identical pe-
culiar velocities. This assumption is valid at the beginning of structure formation when
structures had no time to collapse and virialize. This is why N-body simulations start at
z ∼ 100, when the single-flow approximation and the linear regime are still a satisfactory
description of the dark matter dynamics. Later stages involve the superposition of several
streams which will break down this approximation and lead to the generation of velocity
dispersion due to multiple streams, which is called shell-crossing.

3.1.2 Growth of structure in linear theory

Using the single-flow regime of the Vlasov-Poisson equation that describes the deve-
lopment of gravitational instabilities in a pressureless fluid at the beginning of structure
formation, one can linearize the equations of conservation by assuming that the amplitude
of the density fluctuations are small and that the velocity gradients are small compared
to the Hubble constant :

δ((x, t)� 1, (3.21)
1
a
∇jui(x, t)� H(t) (3.22)

This approximation corresponds to the linear regime where the equations of conservation
become

∂δ(x, t)
∂t

+Hθ(x, t) = 0, (3.23)

∂θ(x, t)
∂t

+H(t)θ(x, t) + 3
2Ωm(t)H2(t)δ(x, t) = 0 (3.24)

where ∇Φ has been replaced using the Poisson equation (equation 3.14) and θ = 1
aH∇x ·

u(x, t) is the divergence of the velocity field. It completely describes the velocity field since
the vorticity field is negligible in the single-flow approximation and any initial vorticity
rapidly decays due to the expansion of the universe. In the non-linear regime, where
the single-flow approximation is no longer valid, [7] showed that the presence of velocity
dispersion can generate vorticity.

Then taking the divergence of equation 3.24 and replacing the time derivative of the
density contrast by its expression in equation 3.23, we obtain the evolution of the density
contrast that describes the growth of perturbations in the linear regime :

∂2δ(x, t)
∂t2

+H(t)∂δ(x, t)
∂t

= 4πGa2ρ̄δ(x, t) = 3
2Ωm(t)δ(x, t) (3.25)

This second order dynamical equation is linear and does not present any dependency on
the spatial coordinates. Therefore, in the linear regime for a pressureless fluid, the linear
growth rate of the fluctuations is scale-independent. It allows us to look for solutions
by decoupling the spatial and time contribution and since it is a second-order differential
equation, it has two independent solutions, i.e. δ(x, t) = D(+)(t)δ+(x, 0)+D(−)(t)δ−(x, 0).
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The spatial functions only depend on the initial density field configuration while the time-
dependency is related to the energy content of the universe. There is no unique solution
for all the cosmological models. If we consider the late-time universe with a mix of matter,
cosmological constant and a curvature term, the first Friedman equation gives for the
Hubble parameter :

H = H0
√

Ωm,0a−3 + (1− Ωm,0 − ΩΛ,0)a−2 + ΩΛ,0 (3.26)

It can be checked that this expression is a solution of equation 3.25. It corresponds
to the decaying mode, D(−)(t) ∝ H(t), and the other solution is found to be D(+)(t) ∝
H(t)

∫ dt
(aH)2 [1]. The D(+)(t) solution is the growing mode which leads to structure forma-

tion, it is called the growth function. In what follows, we consider the growing solution
only.
Moreover, the continuity equation allows us to find an explicit relation between the density
contrast and the divergence of the velocity field :

a
∂δ(x, t)
∂a

+ θ(x, t) = 0 (3.27)

Therefore, we can write θ so that

θ(x, t) = ∂ lnD+

∂ ln a δ+(x, t) (3.28)

We call f , the linear growth rate of structure, the factor of proportionality between
θ and δ and it thus corresponds to the logarithmic derivative of the growing mode of the
density contrast :

f = d lnD(+)

d ln a (3.29)

So the linear regime is characterized by a linear coupling the matter velocity and density
fields so that : θm = fδm.

For an Einstein-de Sitter universe (Ωm = 1 and ΩΛ = 0), f = 1.
For a flat universe, Ωm+ΩΛ = 1, with a cosmological constant, a good parametrization [8]
is f(Ωm) = Ωγ

m where the growth index γ is related to the equation of state of dark energy
by [9, 10] :

γ = 3(1− wDE)
5− 6wDE

(3.30)

This is where the index γ = 0.55 comes from for a flat Λ-CDM cosmological model based
on general relativity. Therefore, equation 3.30 shows how growth rate measurements can
constrain the nature of dark energy.
For a universe without cosmological constant, a good parametrization is f(Ωm) = Ω

3
5
m.Both

parametrizations as a function of Ωm are shown in figure 3.1.

3.1.3 Lagrangian point of view

So far, the previous approach dealt with density and velocity fields as function of
spatial coordinates wihch describe individual over-densities that stay at a fixed position
and whose amplitude grow or decay. This is the Eulerian point of view. But it is possible
to work in another framework, the Lagrangian scheme, where we follow the trajectories
of particles or fluid elements. In this framework, the fields are expressed as functions
of the initial particle positions instead of fixed comoving coordinates. In the Lagrangian
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3.1 Development of gravitational instabilities

Figure 3.1 – Growth of structure as defined by equation 3.29 divided by its estimated
value for a flat universe with Λ (dashed line) and for a universe without Λ (solid line) as
a function of Ωm. Figure from [1]

framework, the object of interest is the displacement field Ψ(q, t) which maps the initial
particle position q to the final comoving (Eulerian) particle position x :

x(q, t) = q + Ψ(q, t) . (3.31)

The continuity equation that states the conservation of mass therefore gives :

ρ(x, t)d3x = ρ(q)d3q (3.32)

The equation of motion becomes :

u = aẋ = aΨ̇ (3.33)

u̇ +Hu = −1
a
∇xΦ (3.34)

where u̇ is the time derivative when q is fixed, Φ is the cosmological gravitational po-
tential introduced in equation 3.13 and ∇x is the gradient operator in Eulerian comoving
coodinates x. Using equation 3.33, one can rewrite equation 3.34 for ψ :

Ψ̈ +HΨ̇ = − 1
a2∇xΦ (3.35)

Taking the divergence of equation 3.34 w.r.t x and using the Poisson equation, one finally
gets the equation that describes the evolution of the displacement field Ψ :

∇xΨ̈ +H∇xΨ̇ = 4πG(ρ− ρ̄) (3.36)

The major difficulty in the Lagrangian description is that the non-linearities are encoded
in the mapping from Eulerian to Lagrangian coordinates and in the relation between the
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displacement field and the local density field. It therefore implies to manipulate operators
w.r.t Eulerian coordinates x whose dependence with Lagrangian coordinates q is expressed
in equation 3.31.

However, in the linear regime, [11] showed that one can consider the linear solution
for the displacement field ψ while keeping the continuity equation given by equation 3.32.
In this approximation, called the Zel’dovich approximation, the divergence operator ∇x
can be assimilated to ∇q at zeroth order. Equation 3.36 becomes similar to the linearized
equation 3.25 that describes the growth of perturbations in the linear regime.
The equation for Ψ has also two independent solutions, i.e Ψ(q, t) = D(+)(t)Ψ+(q) +
D(−)(t)Ψ−(q). The Zel’dovich solution thus corresponds to the growing mode : Ψ(q, t) =
D(+)(t)Ψ+(q) and it is given by :

Ψ(q) =
∫

d3k

(2π)3 e
ik·q ik

k2 δl(k) (3.37)

[11] showed that for the Jacobian between Eulerian and Lagrangian coordinates can be
expressed as :

J = |dx
dq | = |δ

K
ij + ∂Ψi

∂qj
| (3.38)

And if the initial density distribution is homogeneous, we have ρ = ρ̄/J , so using the
growing solution for ψ, we obtain for the density :

ρ = ρ̄

[1−D(+)(t)λ1][1−D(+)(t)λ2][1−D(+)(t)λ3]
(3.39)

where λi are the eigenvalues of the deformation tensor ∂ψi/∂qj . If λi > 0, it implies a
collapse in the direction of the ith eigenvector, if λi < 0 it implies expansion. The Zel’dovich
approximation thus allows us to understand the collapse of structures by describing the
anisotropic collapse of structures that give rise to the cosmic web : it starts from walls
(λ1 > 0), then filaments (λ1,2 > 0) and eventually knots λ1,2,3 > 0.
As long as D(+)(t)λi � 1, the growth of perturbations is well described by the linear
theory and when D(+)(t) = 1/λi, shell crosssing becomes dominant along the direction of
the ith eigenvector. the Zel’dovich solution is no longer a good description.

3.1.4 Beyond linear theory

As mentioned above, the linear regime is valid as long as δ((x, t)� 1, or in other words,
the variance of the linear fluctuations is treated as a small parameter close to unity. The
domain of validity of the linear regime thus corresponds to scales above 50−60h−1Mpc. For
scales below, non-linearities arise because of non-linear couplings in equations 3.19, 3.20
and 3.14 when considering all the terms without linearization. The presence of non-linear
couplings is particularly clear in Fourier space after rewriting these equations, using the
convention given by equation 1.40. Indeed, at large scales, in the linear regime when fluc-
tuations are small, one can see that different Fourier modes evolve independently so that it
is more natural to work in Fourier space. Then when non-linear terms in the perturbation
series are taken into account, couplings between different Fourier modes appear.

The continuity equation thus becomes :

∂δ(k, t)
∂t

+Hθ(k, t) =
∫
d3k1d

3k2δD(k− k12)α(k1,k2)θ(k1, t)δ(k2, t) (3.40)
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Then taking the divergence of the Euler equation and using the Poisson equation to replace
∇2Φ, we get in Fourier space :

∂θ(k, t)
∂t

+Hθ(k, t)+ 3
2ΩmH

2(t)δ(k, t) = −
∫
d3k1d

3k2δD(k−k12)β(k1,k2)θ(k1, t)θ(k2, t)
(3.41)

where α and β are defined by :

α(k1,k2) = k12 · k1
k2

1
and β(k1,k2) = k12(k1 · k2)

2k2
1k

2
2

(3.42)

where k12 = k1 + k2. These functions are called the fundamental mode coupling functions
and encode the non-linear couplings between different Fourier modes that lead to a non-
linear evolution of the cosmological fields.

In the "weakly" non-linear regime, also called the quasi-linear regime (between 20 and
60 h−1Mpc), the ability of perturbation theory models to interpret results from large-scale
structure surveys is based on the fact density fluctuations become small enough at these
intermediate scales that a perturbative approach suffices to understand their evolution.

Eulerian perturbation theory In the Eulerian framework, it is therefore possible
to expand the density and velocity fields about the linear solution :

δ(x, t) =
∑

δ(n)(x, t) (3.43)

θ(x, t) =
∑

θ(n)(x, t) (3.44)

where δ(1) and θ(1) are linear in the initial density field, more precisely δ(1) = as explained
above, then δ(2) and θ(2) are quadratic in the initial field, etc. The nth-order contributions
to δ (resp. θ) can thus be expressed as functions of the linear solution and of functions called
"kernels" which are constructed from the fundamental mode coupling function α (resp. β).
Non-linear couplings thus imply higher-order corrections to the linear theory prediction.
Using the diagrammatic representation, those corrections correspond to "loops" that are
added to the configuration given by the linear solution which is called the tree-level.

The formalism beyond the linear perturbation theory involves theoretical objects such
as kernels that encode the modes coupling, but also a diagramatic representation with pro-
pagators and vertices as developed in quantum field theory which are beyond the scope of
this thesis. We just provide a diagrammatic representation of the nth-order contribution
to δ(k) in figure 3.2 where the open circles denote factors of δ0 and the vertex denotes
a momentum-conserving integral of Fn over intermediate wavevectors qi. The Fn (resp.
Gn) for δ (resp. θ) function is constructed from the fundamental mode coupling function
α(k1,k2) (resp. β(k1,k2)) and encodes the non-linear couplings. Moreover, a variety of
methods have been developed to model the galaxy clustering statistics on intermediate
quasi-linear scales (20-80 h−1Mpc) in EPT (for a review, see e.g. [1]) that includes stan-
dard PT, renormalized PT [12, 13, 14, RPT] and regularized PT [15, RegPT] for the most
used ones.
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The first correction to the linear matter power spectrum is obtained by summing
over all possible pairing of open circles up to δ2 where open circles are paired
according to the rule
 
 
 
PL (k) = 
This diagrammatic representation corresponds to the linear matter power spec-
trum, dubbed the tree-level.
The first correction is second-order in the initial power spectrum, fourth order in
the initial density contrast and 1-loop in the diagrammatic representation. It is
given by

P1−loop(k) = PL(k) + P22(k) + P13(k) (3.45)

whose diagrammatic representation includes a diagram with one loop
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

P1-loop (k) = 
 

                    PL(k)     +         P22(k)     +     P13(k)  

k                                    - k 

q            - q  

k - q         q – k  

F2 F2 

The contribution P22(k) is detailed where the vertices correspond to F2 and the
overall factor 2 comes from the two equivalent ways of pairing the open circles.
After invoking momentum conservation at vertices and translational invariance
of the 2-point statistics, only a single wavevector remains to be integrated. In
general, all diagrams contributing to P (n) contain n−1 loops, requiring integration
over n− 1 independent wavevectors.

1-loop correction to the matter power spectrum

Lagrangian perturbation theory Alternatively, In the Lagrangian prescription, as
the object of interest is the displacement field ψ, the perturbative expansion can be written
as :

ψ(q, t) =
∑

ψ(n)(q, t) (3.46)

where ψ(1) corresponds to the Zel’dovich solution given by equation 3.37 which is the
linear order. [17] proposed a new resummation of the non-linear terms that extended the
domain of validity compared to LPT, in what follows we will refer to this technique as
LRT (Lagrangian Resummation Theory).

[16, 18] compared different perturbation theory codes, i.e. linear PT, LRT and 1-loop
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3.2 Non-linear clustering of dark matter

Figure 3.2 – Diagrammatic representation of the nth contribution to δ(k). From [16].

/ 2-loop SPT and RPT, at the level of halos in real space using N-body simulations. They
found similar conclusions :

— Linear PT is no longer valid at k ≥ 0.10hMpc−1 for all redshifts.

— In general, working at 2-loop correction improves the accuracy of the predictions
without a very high price in terms of computational ressources

— For 2-loop SPT and RPT and for LRT, 1% accuracy can be achieved on the mul-
tipoles of the matter power spectrum with kmax ∼ 0.10hMpc−1 at z = 0 and
kmax ∼ 0.20hMpc−1 at z = 1.

In section 3.4, we will see that these PT predictions have to be obtained in redshift
space to be compared with observations. It thus implies additional non-linearities that
come from the non-linear mapping between real and redshift space.

3.2 Non-linear clustering of dark matter

The simplest way to go beyond linear theory is the brute-force simulation of gravi-
tational structure formation using Newtonian dynamics of a system of particles. Such
N-body simulations solve the Vlasov-Poisson equations given in equations 3.14 and 3.15
by partitioning the cold dark matter density field into particles, each corresponding to
a typical mass of mp ' 1010M�. The numerical code is usually heavily parallelized and
uses adaptive time discretization to solve the dynamical equations. Section 3.2.1 provides
a description of numerical simulations and the ones we use for the analysis of the eBOSS
quasar sample. But the simulation of the non-linear evolution with the N-body technique
is computationally very expensive, so parallel analytical approaches have been developed
to model some statistical properties beyond the linear regime. One of the most common
method is the halo model [19, 20, 21] which is an analytical approach to describe the non-
linear clustering by combining the halo mass function with a halo density profile to obtain
predictions for the clustering statistics. The ingredients of the halo model are described in
section 3.2.2.
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3.2.1 Numerical simulations

Cosmological dark matter simulations have been developed to understand the for-
mation of structures (for further details, see [22, 23]), and in particular to explore the
non-linear regime of the gravitational evolution of structures in the universe where pertur-
bation theories break down (typically it happens on scales smaller than a few Mpc). In such
fictive realizations of the universe, the density field is represented by the sum of a set of
discrete particles. Current state-of-the-art numerical simulations can follow the dynamics
of about 1010−12 particles, which although impressive, is still tens orders of magnitude
smaller than the number of dark matter particles expected in a cosmological volume.

3.2.1.1 Production of N-body simulations

Instead of solving the Vlasov equation for collisionless dark matter which would imply
a 6D grid with too many cells, sampling techniques are used to divide the volume into N
elementary volumes, and the density field can be considered as the sum of N particles (or
’bodies’) with positions, velocities and same mass.
The initial conditions for N -body simulations are generated randomly according to the
linear theory power spectrum (as obtained with CAMB for instance and given by equa-
tion 1.50) for a moderately high redshift. Usually this starting point is chosen to be around
z ∼ 100, because if the perturbations are too small, the N -body technique is inefficient,
but for too late times, the perturbation theory model becomes invalid.
The basic steps in an N-body simulation can be summarized as follows [24] :
(i) implementation of initial conditions at high enough time redshift so that Ωm = 1

(matter-dominated era)
(ii) calculation of the force by solving the Poisson equation
(iii) update the positions and velocities of particles over time steps
(iv) cross-checks (e.g. tests of energy conservation)
(v) go back to (ii) until simulation is completed
The equations of motion for collisionless N-body particles can be written :

dvi
dt

=
N∑
i 6=j

Gmj
rj − ri

(|rj − ri|2 + ε2)3/2 (3.47)

where ε is called the softening parameter. For ε = 0, the equations reduce to the standard
Newtonian equations of motion. The main for setting ε 6= 0 is to suppress the 1/r sin-
gularity in the Newtonian potential, which simplifies the numerical integrations of these
equations a lot [e.g 25]. The simplest way of calculating the force consists in summing over
all other particles. Such method is called particle-particle (PP or direct summation) and
provides robust and accurate results. But this direct summation is very CPU consuming
where the cost of computing forces on all particules requires O(N2) operations. Therefore,
there is a compromise to be found between accuracy and speed and the characteristics
of the N-body simulation will depend on the implementation of the force solver and time
stepper. In what follows, I briefly present the most important and commonly used discre-
tization techniques :
— tree algorithm : it consists in decomposing hierarchically the system on a tree struc-

ture that is made-up of several clusters of particles. Therefore, the list of interactions
that the clusters act on each particle is much shorter than when considering PP me-
thod, resulting in a O(N logN) code instead of O(N2).
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— particle-mesh (PM) algorithm : the mass of each particle is interpolated on a fixed
grid of N3

c cells to compute the density. The Poisson equation is solved on a grid
generally using a fast Fourier transform (FFT) taking advantage of the periodic
boundary conditions, then forces are interpolated back on the particles. It requires
less memory than the tree code but its spatial resolution which is fixed by the size
of the grid Nc is lower.

— hybrid methods have been developed to increase the spatial resolution of the PM
technique such as by adding a short-range contribution obtained by direct summation
of individual interactions between nearby particles (PP + PM code) or by using an
adaptive mesh refinement where the mesh can be locally increased when required
thanks to a hierarchy of sub-grids.

A complete description of N-body techniques to solve the Vlasov-Poisson equation is
beyond the scope of this thesis. For a more detailed overview, see e.g. [23, 24] and the
associated articles when referring to a specific N-body simulation.

3.2.1.2 Halo finder

Snapshots of the evolved density field are stored to disk and usually post-processed to
extract information about bound structures, the DM halos. These halos are gravitationally
bound systems of DM particles, where the relation between kinetic and potential energy
was driven to an equilibrium state by gravitational virialization. More information on
halos formation and properties will be provided in section 3.2.2.
Here we just described the most common algorithms used to define halos once the dark
matter particles have been formed within the simulation :

— Bound Density Maxima [BDM, 26, 27] : The algorithm detects local density maxima,
determines a spherical cut-off for the halo and removes unbound particles from the
halo, i.e. those particles with a speed that exceeds the escape velocity. The latest
version even allows to detect if a halo is a subhalo (i.e. its center lies within the
virial radius of a larger halo) or a distinct halo. Please note, that distinct halos may
still overlap and subhalos are not necessarily lying completely within their host, only
their centre.

— Friends-of-friends [FOF, 28, 29] : Particles are “linked” together if their distance lies
below a certain threshold, called “linking length”. This means that the distances of
particles at the boundary of such a linked object (a “FOF group”) are smaller than
or equal to the linking length, corresponding to a density threshold.

— Robust Overdensity Calculation using K-Space Topologically Adaptive Refinement [Rocks-
tar, 30] is based on an adaptative hierarchical refinement of FoF groups to take into
3D-velocity components and time, in addition to 3D-position components. It thus
uses a 6D-linking length to define FoF groups which makes the identification of dark
matter halos and substructures much more robust. It also allows us to reconstruct
the history of a halo and its inheritance thanks to the time-component.

The left panel of figure 3.3 is an illustration of the BDM halo finder where the centers
of distinct halos do not lie within the virial radius of a larger halo, in contrast to subhalos,
which allows the algorithm to differenciate them. The right panel shows FOF groups
with different linking lengths where substructures correspond to FOF groups with smaller
linking lengths that lie inside a larger host halo.
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Figure 3.3 – Illustration of the BDM (left panel) and the FOF (right panel) halo finder
algorithms. Figures from the CosmoSim database.

Previous analyses of the quasar clustering have studied the properties of dark
matter halos that host quasars. Such studies have been led using the quasar
sample of SDSS-III BOSS [31, 32] and a preliminary sample of SDSS-IV eBOSS
quasars [33, 34], they confirmed the picture that quasars in the eBOSS redshift
range reside in dark matter halos of mass M ∼ 1012.5M�.
The typical halo mass and the maximum separation used for clustering analysis
set the requirements in terms of typical for dark matter particles and box size a
N-body simulation needs to fulfull. In the analysis of the DR14 quasar sample,
we use different sets of N-body simulations to test the domain of validity of the
perturbation theory predictions :
— MultiDark simulations The MultiDark simulation MDPL2 and

BigMDPL [35] were used at an earlier stage to get familiar with the ingre-
dients of the RSD model. They can be found in the CosmoSim database a.
These simulations have been run with the code GADGET-2 [36] which
is a solver based on the tree method for short-range gravitational forces
while long-range forces are computed with a FFT-based PM scheme. It was
runned in a flat ΛCDM model with Ωm = 0.307, Ωl = 0.693, Ωb = 0.048,
ns = 0.96, h = 0.677 and σ8 = 0.8228. The initial conditions, based on ini-
tial Gaussian fluctuations, for the simulation are generated with the Zel’do-
vich approximation at zi = 100. More information on the volume, number
of particles and mass resolution are provided in table 3.1. Given the typical
range of masses of halos hosting quasars, the mass of dark matter particles
in the BigMDPL simulation is too big to have well-resolved halos (for ins-
tance, halos of mass below 1012 contain less than 100 particles). The MDPL
simulation has the required mass resolution but the box size is too small
to be precise enough at the BAO scale (∼ 100h−1Mpc). These simulations
are thus at the limit for being used for the eBOSS quasar sample [37].

— Outer Rim simulation The Outer Rim simulation has been carried out
with HACC (Hardware/Hybrid Accelerated Cosmology Code) presented
in [38]. Information on the volume, number of particles and mass resolution
of the Outer Rim simulation are provided in table 3.1. The cosmological
parameters are : Ωcdmh

2 = 0.1109, h = 0.71, σ8 = 0.8, Ωbh
2 = 0.02258, and

ns = 0.963, and are consistent with the WMAP7 cosmology [39]. The initial
conditions are calculated at z = 200 using the Zel’dovich approximation.

a. https://www.cosmosim.org

N-body simulations for the DR14 eBOSS quasar sample
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Table 3.1 – Main characteristics of the N-body simulations used for the analysis of the
eBOSS quasar sample : mass resolution in [M�h−1], box size in [h−1Mpc]
simulation cosmology solver # particles/Mpc3 mass resolution box size halo finder
MDPL Planck Gadget-2 (3840)3 1.51× 109 1000 Rockstar

BigMDPL Planck Gadget-2 (3840)3 2.36× 1010 2500 Rockstar
Outer Rim WMAP7 HAAC (10240)3 1.9× 109 3000 FOF

3.2.2 The halo model

Simulations have shown that an initially smooth matter distribution evolves into a
complex network of sheets, filaments and knots. The dense knots are often called dark
matter halos. They correspond to the first structures of matter that have undergone a
gravitational collapse. In the collisionless dark matter assumption, one can describe the
complex distribution of dark matter with halos whose mass function is derived from si-
mulations and with a profile for dark matter within halos. These ingredients are also the
basics of the halo model whose aims at providing an analytical framework to describe
the formation and evolution of halos, these highly non-linear objects, which are traditio-
nally studied using numerical simulations. The approach assumes that all the mass in the
universe is distributed into distinct dark matter halos, which can be seen as basic units.

3.2.2.1 Spherical top-hat collapse

Although the equations of the dynamics are highly non-linear, the spherical collapse
model provides a simple explanation for the formation of dark matter halos assuming they
have been formed from an initial spherical perturbation. Its application to an initially
top-hat density perturbation was first studied by [40] and then by [3, 41]. We consider
the universe as homogeneous, except for a single top-hat spherical perturbation that is
embedded in the background universe, in its matter-dominated era so that we work within
Einstein-de Sitter cosmology (Ωm = 1, ΩΛ = 0, k = 0).

Let Ri and δi denote the radius and the over-density of the initial perturbation at
ti and let R̄i and ρ̄i denote the radius and density of the background at the same time.
Because of mass conservation, the mass within the spherical perturbation is :

M = 4
3πR

3
i ρ̄i[1 + δi] = 4

3πR
3
t ρ̄t[1 + δt] (3.48)

The Birkhoff’s theorem (also called the Newtonian theorem in the non-relativistic li-
mit) states that a spherically matter distribution outside a sphere exerts no force on that
sphere and vice-versa the background expands without being disturbed by the spherical
perturbation. Under these assumptions, the background and the perturbation are entirely
decoupled and the application of the Birkhoff’s theorem to the isolated spherical pertur-
bation yields the following equation of motion :

d2R

dt2
= −GM

R2 (3.49)

The conservation of energy that one can obtain after integrating the equation of motion
once yields :

1
2

(
dR

dt

)2
− GM

R
= E (3.50)

where E is the total energy of the spherical perturbation. The gravitationally bound
situation which implies a collapse of the spherical perturbation corresponds to E < 0. In
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this case, the solution takes the following form :

R = R?(1− cos τ) (3.51)
t = t?(θ − sin τ) (3.52)

with R? = GM
2|E| at the time t? = GM

(2|E|)3/2 . This solution implies the following evolution of
the spherical perturbation that is illustrated in figure 3.4 :
(i) linear growth in accordance with the expansion of the background universe where

δlin corresponds to the prediction for the linear density δlin ∝ D(a) ∝ a ∝ t2/3.
(ii) turnaround at τ = π : as time passes, the perturbation grows up to its maximal size

Rmax = R(τ = π) = 2R? and then stops expanding. At this stage, the perturbation
grows to an over-density ∆turnaround = δturnaround + 1 ' 5.55 and the linear density
grows to δturnaround = 1.06.

(iii) virialization at τ = 2π : it corresponds to a dissipative effect that converts the kinetic
energy of collapse into random motions and finally gives rise to a virialized object of
a given size that we call halo. If the perturbation were perfectly symmetric, the over-
density would actually collapse to a single point becoming infinitely dense. Instead,
shell crossing occurs leading to exchanges of momentum angular. Thus, the system
relaxes towards a virial equilibrium which is reached when 2Ekinetic + Epotential = 0
(virial theorem). It implies that the perturbation collapses up to a radius of about
half of its maximal size, which corresponds to its virial radius Rvir = Rmax/2. At
this stage, the perturbation grows to an over-density ∆vir = δvir + 1 ' 178 and the
linear density grows to δcollapse = 1.69.

Thus, this simple model provides useful insights in the non-linear evolution of spheri-
cal perturbations. In particular, we have shown that perturbations form gravitationally-
bound dark matter halos when density perturbation become 150-200 times denser than
the background (which corresponds to ∆vir ' 178). The exact value of the critical density
δc = δcollapse required for spherical collapse depends on cosmology, for a universe with a
cosmological constant for instance, it is larger because the late-time mean cosmological
density is lower than expected (due to more expansion). Although the above treatment is
only valid for an EdS cosmology, similar models can be constructed for other cosmologies
including ΛCDM and very similar results for the density at virialization can be found [42].

3.2.2.2 Halo density profile

Simulations show that the end state of virialization is a halo with a centrally-concentrated
mass distribution. But if massive halos correspond to higher peaks in the initial density
field, the density run around a high peak is shallower than the run around a smaller
peak [43], so high peaks are less centrally-concentrated and we can expect that massive
virialized halos have a less centrally-concentrated mass distribution compared to low-mass
halos. This is what simulations tend to show, with a density profile well-fitted by a double
power-law function. Several power-law density profiles have thus been proposed, one of
the most frequently used in cosmology are the Navarro-Frenk-White (NFW, [44] and the
Hernquist [45] profiles. Let ρ(R|M) denote the halo density profile :

ρ(R|M) = ρs
(R/Rs)α(1 +R/Rs)β

(3.53)

where Rs is the core radius and ρs the density at that radius. Setting (α, β) = (1, 3)
and (α, β) = (1, 2) in the expression gives the Hernquist and NFW profiles, respectively.
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3.2 Non-linear clustering of dark matter

Figure 3.4 – Evolution of the spherical top-hat perturbation as a function of time. The
growth of the radius rt and the corresponding density δt of the spherical perturbation are
shown by the solid line in the upper and lower panels respectively.
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The NFW profile provides a better description of the density around virialized halos in
numerical simulations [44]. It is completely characterized by the virial mass Mvir and the
concentration parameter c = Rvir/Rs which is related to the characteristic over-density
according to :

δchar = ∆virΩm

3
c3

f(c) (3.54)

where ∆vir ' 178 according to the spherical collapse model, [44] showed that the characte-
ristic over-density is related to the halo’s formation history, indeed halos that form earlier
are more concentrated. The corresponding mass profile is thus given by :

M(R) = 4πρcritδcharR
3
sf(c) = Mvir

f(cR/Rs)
f(c) (3.55)

A more recent updated version of the NFW profile has been proposed by [46] where
the slope is a power-law function of the halo radius, such profile is called the Einasto :

ρ(R|M) = ρ−2 exp
[−2
α

((
R

R−2

)α
− 1

)]
(3.56)

where R−2 is the radius for which ρ ∝ R−2, for a NFW profile R−2 = Rs. The best-fit
value for α typically spans the range 0.12 < α < 0.25 [47].

3.2.2.3 Number density of halos

At this stage, we know how to form halos from spherical collapse of a matter per-
turbation when the density is above a given threshold, δc = 1.69 and how the matter is
distributed within halos. We now need to know the halo mass function, i.e. the comoving
number density of halos as a function of mass. A simple model for this was provided by
Press and Schechter [48] who postulated that the probability P (δM > δc) that δM > δc(t)
is the same as the mass fraction F (> M, t) that is contained in halos with mass greater
than M at time t, where δM is the filtered density field smoothed over a given mass M.

Assuming δM is a zero mean Gaussian random field with standard deviation σM , the
probability that at a random point δM exceeds the threshold δc is :

P (δM > δc) = 1√
2πσM

∫ ∞
δc

exp
[
− δ2

M

2σ2
M

]
dδM = 1

2erfc
[
δc

2σM

]
(3.57)

where erfc(x) = 1− erf(x) with erf(x) the error function. Thus, according to the above
postulate, we can write

F (> M, t) = 1
2erfc

[
δc

2σM

]
(3.58)

However, the PS postulate predicts that only half of all matter in the universe is enclosed
in collapsed halos because only regions that are initially over-dense end up in collapsed
structures. But under-dense regions can be enclosed within larger over-dense regions so
in [48] they just added a factor two.

Now, if we define the mass function as n(M, t)dM which is the number of halos with
masses in the range [M,M + dM ] per comoving volume, it is related to the fraction of
mass that is enclosed in halos with masses in the same range per comoving unit volume,
so that :

n(M, t)dM = ρ̄

M

∂F (> M, t)
∂M

dM (3.59)
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which yields
n(M, t)dM = 2 ρ̄

M

∂P (δM > δc)
∂M

dM (3.60)

where we can use that :

∂P (δM > δc)
∂M

= ∂P (δM > δc)
∂σM

× |dσM
dM
| (3.61)

It thus yields :

n(M, t)dM =
√

2
π

ρ̄

M2
δc
σM

exp
[
− δ2

M

2σ2
M

]
|d ln σM
d lnM | dM (3.62)

We often introduce the variable ν = δc/σM which represents the peak height. The Press-
Schechter mass function can thus be written :

n(M, t)dM = ρ̄

M2 fPS(ν)| d ln ν
d lnM |dM where fPS(ν) =

√
2
π
νe−ν

2/2 (3.63)

Although it provides very useful insights into the non-linear regime, the PS approach can-
not be considered as a rigorous derivation, because of the multiplication by an additional
factor of 2 and because it relies on the spherical top-hat model that explains the collapse
of the dark matter halos as a spherical symmetric process while in reality halos can have
more complicated shapes. Moreover, it does not take into account whether a halo of a gi-
ven mass is included into a halo of larger mass. Despite these limitations, the comparison
between the PS approach and numerical simulations shows that it gives roughly the right
shape of the mass function and is correct up to an order of magnitude. Improvements
to deal with the mentioned limitations have been proposed to statistically estimate how
many small halos would reside in larger ones (the excursion set formalism, for more details
see [49]). Further developments use simulation-calibrated formulas such as the empirical
fit provided in [50] where they considered elliptical halos instead of spherical and which
is usually referred as the Sheth-Tormen mass function (while the analytical paper came
after by [51], or fitting formulas derived from simulations like in [52].

Figure 3.5 shows a comparison between numerical results (black) and the PS (dotted)
and ST (dashed) mass functions where we can see that the PS prediction does not well
reproduce the results for low-mass halos.

For what follows, we will use the PS and ST mass functions whose generic form is :

νf(ν) ∝
(

1 + 1
(aν2)p

)(
aν2

2

)1/2

exp
(
−aν

2

2

)
(3.64)

where (a, p) = (1, 2) and (a, p) = (0.707, 0.3) correspond to the PS mass function and the
ST mass function, respectively.

3.2.2.4 Halo clustering properties

The halo model approach, and more specifically the PS theory does not only open the
door for an analytic calculation of the mean density of dark matter halos, it also provides
insight into how these dark matter halos are correlated in space. At this stage, we have an
expression of the abundance and spatial distribution of halos, as well as of the typical mass
density profile around a halo. So we can now construct the two-point clustering properties
of halos by assuming that the two-point correlation function has two contributions [19, 20],
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Chapitre 3 : Theory of large-scale structure formation

Figure 3.5 – PS and ST mass functions compared to results from numerical simulations
for three cosmological models. The PS prediction does not well reproduce the results for
low-mass halos.
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a first one from the correlations between pairs within the same halo, denoted as ξ1h, and
a second one from the correlations between pairs of distinct halos, denoted as ξ2h :

ξhh(r) = ξ1h(r) + ξ2h(r) (3.65)

where r = |x − x′|, and each contribution can be expressed using the ingredients of the
halo model that have been described previously. Assuming all mass is bound up into halos
and that the halo density profile presented in the previous section depends on halo mass
only, the density at a position x is obtained by summing up the contribution from each
halo :

ρ(x) =
∑
i

miu(x− xi|mi) =
∑
i

∫
dmd3x′δ(m−mi)δx′−ximu(r|m) (3.66)

where u(ri|mi) is the radial number density profile of each halo (the density profile ρ
divided by the total mass contained in the profile). The mean density ρ̄ is thus defined
by :

ρ̄ = 〈ρ(x)〉 =
∫
dmn(m)m (3.67)

where n(m) is the number density of halos of mass m. The auto-correlation of halos of
mass M can thus be expressed in terms of ingredients of the halo model :

ξhh(r,M) = 〈δh(x,M)δh(x′,M)〉 = 〈nh(x,M)nh(x′,M)〉
n̄2
g(M) − 1 (3.68)

where each contribution, ξ1h(r) and ξ2h(r) can be expressed as functions of the ingredients
of the halo model, the mass function which is related to n(m) and the radial density profile
within a halo u(r|M).

Figure 3.6 shows the contribution from the 1-halo and 2-halo terms to the total power
spectrum compared to the results obtained from N-body simulations. This technique has
been refined by [53] by introducing fitting terms into the 2-halo and 1-halo contributions
to the non-linear power spectrum obtained by comparison with simulations. This method,
called ‘Halofit’, has been recalibrated by [54] using high-resolution N-body simulations.

3.3 The galaxy-halo connection
As one may have noticed, the theoretical framework presented in the previous sections

has been developed for the clustering of dark matter, and also for dark matter halos using
the halo model. Applications of its results to galaxy surveys is not trivial, because there
is no guarantee that galaxies are faithful tracers of the dark matter field. On one hand,
the development of numerical simulations allows us to resolve the dark matter structures
and on the other hand, the emergence of large galaxy surveys allows us to identify large
samples of galaxies. Thanks to both developments, it became possible to measure the
spatial clustering properties and statistically connect these two distributions by inferring
the connection between galaxies and halos.

3.3.1 Biased tracers

Halo formation is not a random process : halos are not a Poisson sampling of the
matter field, instead they only form where the smoothed density field is above a given
threshold given by the critical over-density for collapse. This is the peak-bias picture which
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Chapitre 3 : Theory of large-scale structure formation

Figure 3.6 – 1-halo and 2-halo contributions to the total non-linear dimensionless power
spectrum. From [21].

is illustrated by figure 3.7 where the threshold in the initial density field causes halos to
be biased tracers of the mass distribution and thus

δNg

Ng
= b

δρ

ρ
(3.69)

This ground-breaking idea that actually galaxies do not trace faithfully the matter
density field was first studied by Peebles, 1973 ; Tonry & Davis, 1979 and then Kaiser 1984
to explain the apparent correlation strength of Abell clusters with the idea that bright
galaxies form only at the sites of high peaks in the initial density field. This approach
has been extended to any object of a given mass by Bardeen et al. (1986,1996) and then
by Cole & Kaiser (1989) using the peak-background split model (see also Mo & White
1996). In this framework, the perturbations in the initial dark matter density field is split
into long wavelength contributions and short wavelength ones as illustrated in figure 3.8.
The long wavelength parts should be much larger than the Lagrangian size of the halo,
and it modulates the overall background fluctuations. The short wavelength parts are
comparable or smaller than the halo size and they trigger local halo formation. In the
presence of long wavelength perturbation, δl, which is rather constant at the scale of the
halo, we can model its effect by modifying the halo formation density threshold, from δc(z)
to δc(z)−δl. Therefore, the number density of galaxies Ng(M)dM that reside within halos
of mass M is therefore modulated :

Ng −→ Ng −
dNg

dδc
δl (3.70)

where Mo & White 1996 introduced the Lagrangian linear bias on large scales as bL = dNg
dδc

and the Eulerian linear bias as bE = 1 + bL. The bias parameters can thus be obtained by
differentiating the mass function, assuming a local biasing form.
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Figure 3.7 – Illustration of the peak-bias formalism : peaks above a given threshold in
the initial density field correspond to regions where galaxies will form.

Figure 3.8 – In the peak-background split assumption, the initial perturbation is decom-
posed into a long wavelength and a short wavelength contributions.
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When referring to the bias prescription, one should have in mind some general
properties :

— linear versus non-linear : at very large scales (> 80h−1Mpc) for Gaus-
sian initial conditions, simulations show that one can reasonably assume
that the relation between δg and δm is simply linear and the factor of pro-
portionality defines the linear bias parameter. As we go to smaller scales,
non-linearities start being non-negligible and the bias prescription becomes
scale-dependent, especially for scales below 1h−1Mpc which corresponds to
the transition between the 2-halo and the 1-halo term in the halo model.

— local versus non-local : by local, we mean that the bias relation depends
only on the dark matter density field at the same position. At scales compa-
rable to the size of halos, other degrees of freedom such as the tidal field in
the vicinity become important and the biasing scheme is no longer conside-
red as local. However, by smoothing the density field with a window radius
larger than the size of halos, one can get rid of these small-scale effects and
a locality is thus a good assumption.

— deterministic versus stochastic : if the bias were completely determi-
nistic, the relation between the tracer and the matter density would present
no additional scatter except the one expected from Poisson sampling of the
underlying continuous density field which yields some noise. But, because
of the finite size of halos, the halo exclusion effect contributes to the scatter
at small scales. In addition, other contributions can arise from local en-
vironment properties which make the relation between halos and galaxies
more complicated than just being mass-dependent only, with additional
stochastic noise in the scatter between the galaxy and dark matter density
fields.

General properties of the bias

The next section presents the approaches that have been developed to provide a theoretical
modeling of the bias and the section after will describe the most important empirical
models to connect the halo and galaxy properties.

3.3.2 Modeling the bias

Regardless of the way dark matter halos are populated to host the tracers of interest,
more complicated theoretical frameworks have been developed to model more accurately
the biasing scheme, taking into account non-linearities. The theoretical models are mostly
based on the Lagrangian picture because it is easy to identify halos in the initial density
fields but on the other hand, the Eulerian biasing models are more often used to interpret
data because the ingredients of the Eulerian picture are closer to what we observe : density
and velocity fields.

Eulerian bias model
One of the most popular bias model in Eulerian space consists in expanding the galaxy
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density fluctuations δg(x) as a Taylor series [55] of the local matter density δm(x),

δg(x) =
∞∑
n=1

bn
n! δ

n
m(x) (3.71)

The description given by equation 3.71 assumes that the galaxy bias is a function of the
local matter density only. So this biasing scheme is local and deterministic. A non-local
bias prescription was proposed by [56] which included a functional dependence of δg on
the velocity divergence and gravitational potential, which are both non-local dependent
on δm. It thus implies additional terms in the Taylor expansion to account for this non-
locality dependence. The analysis of the DR14 quasar sample in Fourier space [57] uses
the bias modeling of [56] with four bias parameters, b1 the linear local bias parameter, b2
a non-linear (second-order) bias parameter and bnl1, bnl2 for non-local contributions.

Lagrangian bias model
This work relies on the local Lagrangian biasing scheme developed by [58] where locality of
the bias in Lagrangian space is assumed and is not equivalent to locality in Eulerian space
due to mass conservation. Indeed, let nE (resp. nL) denote the Eulerian (resp. Lagrangian)
mass function, mass conservation implies : nE(M) = (1 + δE)nL where 1 + δE accounts
for the change in density in Eulerian space when the system collapses.

This assumption of locality in Lagrangian space implies that the Lagrangian density
field ρLobj(q) is assumed to be a function of a smoothed linear over-density at the same
Lagrangian position :

ρLobj(q) = ρ̄objF [δR(q)] (3.72)
where Matsubara (2008) introduced the Lagrangian bias function F (δ) and ρ̄obj is the
comoving mean number density of the biased objects. The smoothed linear over-density
can be expressed by :

δR(q) =
∫
d3q′WR(|q − q′|)δl(q′) (3.73)

whereWR is a smoothing kernel of size R and δl(q′) is the unsmoothed linear over-density.
Matsubara (2008) then defined the Lagrangian bias parameters 〈F (n)〉 by :

〈F (n)〉 = 1√
(2πσ2

R)

∫
dδ exp

(
− δ2

2σ2
R

)
dnF

dδn
(3.74)

where σ2
R is the variance of the smoothed over-density field. Although more complicated,

this expression shows that, here also, the bias parameters are obtained by differentiating
the bias function F (δ). For a general biasing scheme, these parameters should be considered
as additional (non-cosmological) parameters to be fitted by observations. Alternatively,
one can also use a model for the bias function, such as the one derived from the halo
model. Using the generic form for the PS and ST mass functions given by equation 3.64,
Matsubara (2008b) derived the first two Lagrangian bias parameters :

〈F ′〉 = 1
δc(z)

[
qν2 − 1 + 2p

1 + (qν2)p
]

(3.75)

〈F ′′〉 = 1
δ2
c (z)

[
q2ν4 − 3qν2 + 2p(2qν2 + 2p− 1)

1 + (qν2)p

]
(3.76)

In addition, by assuming the peak-background split model, we can find a relation bet-
ween 〈F ′〉 and 〈F ′′〉 such that the only free parameter for the biasing model is the first
Lagrangian one, 〈F ′〉.
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3.3.3 From halos to galaxies : empirical models

In section 3.2.2, we have shown how the halo model allows us to connect the matter
clustering derived from theory to the statistical properties of halos. The ultimate connec-
tion that remains is the one between halo and galaxy properties. One can use the halo
model described in the previous section to connect the statistical properties of halos with
the ones of galaxies, by making the following change :

M

ρ̄
−→ 〈N〉g

N̄g
(3.77)

M2

ρ̄2 −→
〈N(N − 1)〉g

N̄2
g

(3.78)

u(r|M) −→ ug(r|M) (3.79)

where 〈Ng〉 describes the average number of galaxies that reside in a halo of mass M,
N̄g is the mean number density of those galaxies, and u(r|M) (resp. ug(r|M)) is the
radial number density profile of halos (resp. galaxies in halos). In what follows, we will
describe the most popular empirical models that are used to connect the halos properties
to the galaxy ones. All these models are based on the assumption that one primary galaxy
property is connected to one halo property and mass is a typical assumption for both.

3.3.3.1 Abundance matching

One of the simplest assumption one could make about the galaxy-halo connection is
that the most massive galaxies reside in the most massive dark matter halos. This approach
is generally called abundance matching and began by assuming that only one galaxy resides
per halo [59, 60]. However, multiple distinct peaks in the density field within the radius of a
dark matter halo correspond to smaller gravitationally-bound structures that orbit within
the gravitational potential of the host halo, they are referred to as subhalos. Therefore,
the abundance matching can be extended to sub-halos [61, 62], provided that the choice
of the proxy to match halo (subhalo) properties with galaxy properties is appropriate.
Such a proxy for galaxy can be the mass or luminosity for instance, and it is matched
by abundance to the mass or velocity of the dark matter halo (subhalo) in which it lives.
The challenge of such a prescription thus lies in the choice of the proxy, both for halos
and galaxies. As highlighted in [62], this choice is even more complicated for subhalos
whose identification is more difficult because of tidal stripping, i.e. when subhalos starts
loosing large fraction of their mass up to even be tidally disrupted. For instance, [61]
proposed to use the maximum circular velocity of halos Vmax to match onto galaxies.
Another possibility could be to use Mh at the time the subhalo was acrreted in order to
provide a more robust primary property to stripping, or to introduce some scatter in the
monotonic correspondence between halo and galaxy number densities (for more details,
see [63].

Applications to quasars [34] modeled the clustering of the first year of eBOSS
quasar data and produced high-fidelity quasar mock catalogues based on the BigMultiDark
Planck simulation [35]. They used a modified (Sub)Halo Abundance Matching (SHAM)
model to account for the specificities of the halo population hosting quasars based on
the same approach developed in [64] for an ELG sample. This improvement consists in
taking into account the incompleteness of the sample by splitting the probability function
of selecting a halo into two terms corresponding to host and satellite halos. [64] used
the virial mass of halos as primary property while [34] performed an HAM by using the
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maximum circular velocity of halo as done in [65]. Their model relies on three parameters :
the mean maximum circular velocity Vmean, the width of the velocity distribution which
is assumed to be Gaussian σmax and the fraction of satellites fsat. These parameters are
tuned to match the clustering of quasars that have been observed during the first year
of eBOSS, however with the preliminary eBOSS data, they could not distinguish between
models with different fractions of satellites. Moreover, as in [64], they found no dependency
between σmax and the clustering measurements. In fact, in the mass regime where quasars
live, σmax has an impact on the clustering at very small scales (below 0.5h−1Mpc) and
thus it cannot be constrained with the current data. As a consequence, their model only
depends on a single parameter, Vmean which is fixed by minimizing the χ2 distribution
when fitting the monopole of the correlation function between 10 and 40h−1Mpc. They
found that quasars are hosted by halos with masses ∼ 1012.7h−1M�, which is an agreement
with previous studies based on another empirical model described below, and their bias
evolves from 1.54 (z = 1.06) to 3.15 (z = 1.98), which is also in agreement with previous
measurements of the bias of quasars (a comparison of bias measurements including the
one from this thesis work will be presented in section 5.4.3.

3.3.3.2 Halo occupancy distribution

Another popular way to describe the relationship between galaxies and dark matter ha-
los is the Halo Occupation Distribution (HOD) framework which describes the probability
distribution function P (N |M) that a halo of massM contains N galaxies of a given class.
This prescription treats separately central and satellite galaxies and is fully characterized
by its mean occupation number 〈N |M〉. Halo occupation statistics were first studied in
relation with the halo model [20, 19, 66] in order to provide analytical expressions for the
1-halo and 2-halo terms as function of the probability for a central halo to host a galaxy
P (Nc |M), the probability for a satellite halo halo to host a galaxy P (Ns |M) and the
radial density profile of satellites within a halo.
Galaxy clustering can be used to constrain the HOD parameters. In fact, galaxy clustering
at small scales r < 1h−1Mpc is highly sensitive to the fraction of galaxies that are satel-
lites because the number of pairs within a halo increases with the square of the number
of satellites. Clustering at larger scales is most sensitive to the overall halo mass scale
and to the scatter between halo and galaxy properties. The halo occupation framework
predicts a transition scale in the clustering of galaxies at r ∼ 1 Mpc that corresponds to
the transition from the 1-halo term on smaller scales to the 2-halo term on larger scales.

Application to quasars Thanks to bigger and bigger quasar surveys, it has become
possible to study quasar clustering in order to infer information on their astrophysical
properties, in particular quasar populations show a high level of clustering from which we
can infer that the occupy dark matter halos of mass ∼ 1012 h−1.M� at most epochs : [67]
analysed the clustering of ∼ 4, 000 SDSS quasars, then [31] used a preliminary version of
the SDSS-III BOSS sample with ∼ 27, 000 who showed that quasars have a duty cycle
of about ∼1%. [67, 68] interpreted the quasar clustering within the HOD framework, but
although their model matched the observed clustering, the parameters they found were
unphysical because they did not take into account the duty cycle. [32] extended the analy-
sis of the first sample of BOSS quasars [31] using more than ∼ 55, 000 BOSS quasars and
showed that the statistics were not sufficient enough to detect a luminosity-dependence of
the quasar properties.

In the analysis of the eBOSS DR14 quasar sample, a 5-parameter HOD model based
on [69] was used in addition to a sixth parameter τ , which is used to model the duty cycle
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of the quasars. In the approach we adopt, the number of satellites is independent of the
presence of a central quasar and the expression of the HOD becomes :

〈Ncen〉M = τ · 1
2

[
1 + erf

( logM − logMcen
log σM

)]
(3.80)

〈Nsat〉M =
(
M

Msat

)αsat

· exp
(
−Mcut

M

)
(3.81)

where 〈Ncen〉M is the probability for a halo of mass M to host a central quasar and
〈Nsat〉M is the number of satellite in a halo of mass M . The HOD parameters are tuned
in order to match the peak of the mean density of quasars n(z). Using the large-scale
bias measurement of [33] where bQ = 2.45, it also allows to determine the duty cycle of
quasars, τ = 1.2%, which is in agreement with previous studies [31, 32]. The values of the
parameters that reproduce the data are thusMcen = 1.35 1012M�, log σM = 0.2, αsat = 1,
Mcut = 108M� and Msat = 1.93× 1015M�, which results in a population that consists of
' 13% satellites. Under these conditions the typical mass for dark matter halos hosting
quasars is Mcen = 1012.5M�.

Figure 3.9 – Left panel : The mean number of central (red solid curve) and satellite (blue
dashed curve) quasars per halo. The horizontal asymptote of 0.01 central quasars per halo
reflects the adopted duty cycle of 1% for quasars in the eBOSS sample. Left panel : The
projected correlation function obtained from the HOD parameters used in this analysis
(black solid curve) compared to measurements of quasars from [70] in blue circles and
of [71] in red squares.

The left panel of figure 3.9 shows the HOD model with the above parameters that
match both the peak of n(z) and the large-scale bias measured by [33] which fixes the
satellite fraction. The right panel compares the projected correlation function predicted
by the HOD model to measurements of quasar clustering from [70] using a sample of SDSS
quasars and from [71] using a sample of 26 binary quasars at 0.6 < z < 2.2 from the Sloan
Quasar Lens Search (SQLS).

Although SHAM and HOD models can provide a good agreement with the observed
quasar clustering, it is still not clear to what extend such standard prescriptions can
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describe rare and heavily biased quasars. Moreover, the halo properties are still studied
to characterize the evolution the duty cycle with luminosity and redshift [for a recent
study using eBOSS quasars see 33]. Other studies showed that the formation of such
quasars could also be the result of a major merging of gas-rich galaxies [72, 73, 74] .
Precise measurements of quasar clustering using the final eBOSS sample would start being
powerful enough to detect whether quasar clustering is luminosity-dependent and would
thus discriminate between different scenarios.

3.3.3.3 Secondary properties

The two frameworks that have been described previously relies on the assumption that
the relation between galaxies and halos is set by one halo property to be matched to one
galaxy property, but there is no a priori reason to limit the prescription to a single primary
property. As already mentioned, other dependencies can lead to a non-monotonic relation
between the galaxy and dark matter halo density fields and halos and galaxies at fixed
mass can have a different history. In fact, halos that assemble earlier are found to be more
strongly clustered than halos of the same mass that assemble later. The effect according
to which the clustering of halos at fixed mass depends on other properties than Mh is
called halo assembly bias. The effect also exists for galaxy clustering and is thus referred
to galaxy assembly bias. We refer the reader to the recent comprehensive review of the
galaxy-halo connection [75] for more details on the prescriptions beyond the mass-only
ansatz. In what follows, I briefly list the possible secondary properties that could be used
to characterize the halo assembly bias :

— peculiar velocity, also referred to as velocity bias : the assumptions according to
which the radial distribution of satellite galaxies inside DM haloes follows that of
mass and that central galaxies are defined as at rest at the centre of their DM halo
make galaxy velocities unbiased with respect to the mass velocity field. However,
there are some observational evidence that galaxies do not exactly follow the same
radial distribution as DM and exhibit some velocity bias. Neglecting them yields to
an underestimate of f by 1-3 per cent depending on redshift [76].

— halo concentration : each halo at fixed mass can be divided into sub-categories de-
pending on its concentration, this additional property has been implemented as an
extension of the HOD model with two halo properties, dubbed decorated HOD [77].

— distance to halo center : the spatial distribution of satellites within halos will be
different depending on how close to the center satellite halos are.

It is worth noting that all these empirical models rely on the ability of numerical
simulations and halo finders to track and resolve halos and their substructures in order
to make proper comparisons between the proxy one choose for galaxy and the one for
halos. In addition, even the definition of halo radius is under debate, as the common one
using the virial radius Rvir may not be the most physically motivated definition of the
boundary of a dark matter halo. [78] have emphasized that it could lead to unphysical
interpretations about halo mass accretion histories, as measuring halo growth using Mvir

for instance would imply to infer higher halo growth than expected just because of the
halo boundary being defined to larger radii with time. Several authors have suggested
another definition, such as the halo mass Mh at the time the subhalo was acrreted which
is more robust to stripping [61] or the splashback radius which specifies the radius at which
matter that is bound to the halo can orbit after first collapse [79, 80]. It provides a more
physically motivated halo boundary separating the infall and multi-stream regions.

139



Chapitre 3 : Theory of large-scale structure formation

3.4 Real-to-redshift space mapping
A third origin for non-linearities arises from our method to infer distances from spec-

troscopic surveys. As explained in the introduction, large-scale structure maps produced
by estimating distances from redshifts reveal an anisotropic distribution in redshift space.
If the Universe were statistically isotropic and homogeneous on large scale, these redshifts
would accurately measure radial distance from the observer, so that the mapping between
real space (r-space) to redshift space (s-space) would be an identity. It instead exhibits
an anisotropy with respect to the line-of-sight (LOS) direction. These differences arise
because galaxy recession velocities include components from both the Hubble flow and
peculiar velocities associated with any inhomogeneous structure.

The redshift-space comoving position s of a galaxy differs from its real-space comoving
position x due to its comoving peculiar velocity u,

s = r + uz(r)ẑ (3.82)

where I have taken the LOS to be the z-axis, ẑ is the unitary vector, uz is the LOS com-
ponent of the peculiar velocity u 2. We adopt the plane-parallel approximation, so the LOS
direction is fixed for all objects.
In what follows, we consider objects which are not part of a larger collapsed system, like
individual galaxies in clusters. Thus the peculiar velocitiers are usually small, of the order
of 10−3 km.s−1 or less.
In this section, we present the most commonly used approaches in Fourier space and confi-
guration space to model this real-to-redshift space mapping due to the LOS component
of peculiar velocities when measuring redshifts.

3.4.1 RSD in the linear regime

The redshift space s is a distorted version of the real space r. We require the mapping
to be one-to-one so that these volume elements contain the same galaxies. The exact
Jacobian for the real-space to redshift-space transformation is thus obtained by imposing
mass conservation between the over-density in redshift space δst and the one in real space
δt where the subscript t accounts for the density field of a biased tracer, either galaxy or
quasar,

(1 + δst )d3s = (1 + δt)d3r (3.83)

The redshift space distortions only affect the LOS direction and in the distant-observer
limit we neglect the curvature of the sky so,

d3s
d3r = s2

z2
ds

dz
(3.84)

with s = z + uz in the LOS direction (z-axis) The Jacobian thus becomes :

d3s
d3r =

(
1 + uz

z

)2 (
1 + ∂uz

∂z

)
(3.85)

so that
1 + δst = (1 + δt)

(
1 + uz

z

)−2 (
1 + ∂uz

∂z

)−1
(3.86)

2. In this notation, the peculiar velocity u is taken in units of h−1Mpc and the conversion to km.s−1 is
given by the Hubble parameter : u[h−1Mpc] = u[km.s−1]/aH
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We make the linear perturbation theory approximation, i.e. perturbations and
their gradients are small : δ,u,∇δ,∇u� 1 so that products of these quantities are second-
order, hence small and we cand drop them. We also make a separate approximation, the
distant-observer limit, assuming that uz � z, i.e. we consider sufficiently large distances
that the peculiar velocities are small compared to the Hubble recession velocity.
According to these assumptions, equation 3.86 simplifies into

1 + δst = (1 + δt)
(

1 + ∂uz
∂z

)−1
(3.87)

which gives at linear order :
δst = δt −

∂uz
∂z

(3.88)

In Fourier space, the second term on the right gives −ikzu(k) where u(k) is the Fourier
transform of the tracer velocity field u. In the linear regime we can assume the velocity field
is irrotational as long as there is one single flow only. It is therefore completely described
by its divergence θ = ∇ · u. In Fourier space, it gives :

uz(k) = i
kz
k θ(k) (3.89)

It thus gives for the tracer over-density in redshift space :

δst (k) = δt(k) +
(
kz
k

)2
θ(k) = δt(k) + µ2

kθ(k) (3.90)

where (kz/k)2 to the cosine of the angle between the LOS and the pair separation vector,
denoted µk here in Fourier space. Then its power spectrum defined by P st (k) = 〈|δst (k)|2〉 :

P st (k) = 〈|δt(k)|2 + 2µ2
k〈δt(k)θt(k)〉+ µ4

k〈|θt(k)|2〉 (3.91)
= Pδδ,t + 2µ2

kPδθ,t + µ4
kPθθ,t (3.92)

where we define the density, density-velocity and velocity-velocity power spectra, Pδδ,t,
Pδθ,t and Pθθ,t.

As explained in section 3.3.1, the galaxy distribution differs from the mass distribution
by what we call the linear bias. On large scales, in the linear regime, one expects the bias
to be a constant multiplicative factor to the mass density field δt = bδm. The linear regime
also implies that there is a linear coupling between the velocity and density fields so
that θm = fδm. In addition, we assume that the radial distribution of satellite galaxies
inside the DM halos follows that of mass and that central galaxies are defined to be at
rest at the centre of their DM halo. According to these assumptions, galaxies velocities
are considered to be unbiased w.r.t the mass velocity field so we neglect any velocity bias
and θm = θt. In the linear regime, Pδδ,m = Pδθ,m = Pθθ,m = Pm. It thus gives the Kaiser
formula [81] for the power spectrum in redshift space :

P st (k) = (b2 + 2fbµ2
k + f2µ4)Pm(k) (3.93)

The Kaiser effect thus refers to the apparent enhancement of the clustering along the LOS
at large scales.

In this thesis, we work in configuration space so we give the expression for the first
even Legendre multipoles in redshift space in linear theory :

ξs0 = (b2 + 2
3fb+ 1

5f
2)ξrm(r) (3.94)
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ξs2 = (4
3bf + 4

7f
2)[ξrm(r)− ξ′m(r)] where ξ′m(r) = 3

r−3

∫ r

0
ξm(r′)r′2dr′ (3.95)

ξs4 = 8
35f

2ξ′′m(r) where ξ′′m(r) = 5
r5

∫ r

0
ξm(r′)r′4dr′ (3.96)

Dispersion model So far, we have neglected the motion of galaxies inside virialized
dark matter halos that give rise to the Fingers-of-God effect which suppress power at high k
(it is sometimes called the damping effect) or small scales s. A phenomenological approach
consists in treating the Kaiser enhancement at large scales and the FOG damping at small
scales as two independent effects so that both can be factorized as follows :

P spheno(k) = DFOG(kµfσν)P sKaiser(k, µ) (3.97)

where P sKaiser(k, µ) is given by equation 3.93. This expressions corresponds to the dispersion
model, for limitations of the factorization see [82]. [83] first modeled the FOG effect as a
Gaussian noise so that :

P st (k) = e−k
2µ2σ2

v(b+ fµ2)Pm(k) (3.98)

where σv corresponds to the dispersion velocity along the line-of-sight. This parameter is
usually treated as a free parameter as the physics involved at these small-scales is highly
non-linear which makes the modeling of the dispersion velocity distribution very challen-
ging. In particular, the amplitude of the effect is strongly dependent on the mean halo mass
and satellite fraction of the population under consideration. A Lorentzian prescription for
the FoG effect is also often used so in general we can have :

DFoG(k, µ, σv) =
{
e−k

2µ2σ2
v for Gaussian

1
1+k2µ2σ2

v/2
for Lorentzian (3.99)

3.4.2 RSD in the non-linear regime

In the non-linear regime, [82] extended the Kaiser formula so that equation 3.93 be-
comes :

P st (k) = b2Pδδ,m(k) + 2fbµ2
kPδθ,m(k) + f2µ4Pθθ,m(k) (3.100)

where Pδδ,m, Pδθ,m and Pθθ,m are computed using Eulerian perturbation theory techniques,
i.e RPT [12, 13, 18], RegPT [15] or gRPT (Crocce, Blas and Scoccimarro in prep).

Equation 3.100 is then injected in the dispersion model given by equation 3.98 to
include the FOG effect. However, comparisons to N-body simulations showed that the
model given in equation 3.98 can differ by several percents, even when including the non-
linear expression of Pm(k). In particular, [84] showed that two additional terms appeared
in the redshift-space power spectrum when using the dispersion model that are due to
the coupling between density and velocity fields associated with Kaiser and FOG effects.
The corrected dispersion model, denoted as the TNS model in what fallows, can thus be
written as :

Pt(k, µ) = e−k
2µ2σ2

v

[
b2Pδδ,m(k) + 2fbµ2

kPδθ,m(k) + f2µ4Pθθ,m(k) + b3A(k, µ, f) + b4B(k, µ, f)
]

(3.101)
where :

A(k, µ, f) = (kµf)
∫

d3q

(2π)3
qz
q2 [Bσ(q,k− q,−k)−Bσ(q,k,−k− q)] (3.102)

B(k, µ, f) = (kµf)2
∫

d3q

(2π)3F (q)F (k− q) (3.103)
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where F (q) is a combination of Pδθ and Pθθ while Bσ corresponds to the cross bis-
pectra that encode the 3-point correlations between the velocity and density fields, i.e.
〈θ(k1)δ(k2)δ(k3)〉, 〈θ(k1)δ(k2)θ(k3)〉, 〈θ(k1)θ(k2)δ(k3)〉, ...

In its original paper, the TNS model was proposed using the 1-loop SPT with a linear
bias. Extensions to the TNS model include other PT codes to compute Pδδ,m, Pδθ,m and
Pθθ,m (2-loop SPT, RegPT, RPT, gRPT) and non-local Eulerian bias (e.g. [56, 85]). Com-
parisons in Fourier and redshift space between the TNS model and the original dispersion
model show that the TNS performances are much better and can reach the percent ac-
curacy at kmax = 0.10 − 0.15hMpc−1 at z = 0 and kmax = 0.20hMpc−1 at z = 1 [18].
Although the TNS model has been developed in Fourier space, it can be easily applied to
configuration space observables.

Streaming model Another approach to model the redshift-space correlation func-
tion has been developed by [3] first to estimate the galaxy pair-wise velocity dispersion
from the suppression of the correlation on small scales. It was thus extended to large
scale [86, 87], then improved [82] and updated to its actual form [88]. In this approach,
the redshift space correlation function can be seen as a convolution of the real-space cor-
relation function with the pair-wise velocity probability distribution function G :

1 + ξs(s⊥, s‖) =
∫
d3r‖[1 + ξr(r)]G(s‖ − r‖, v12, σ12) (3.104)

where G maps the pairs at separation r‖ to separation s‖ due to peculiar velocities with
probability F . The challenge is thus to model this PDF in terms of the linear power spec-
trum, cosmological parameters and tracer bias. Near its peak, G can be approximated
by a Gaussian centered on µv12(r) [82] and in order to recover a streaming model that
agrees on large scales with N-body simulations, one needs to assume a Gaussian distribu-
tion with non zero pair-wise velocity distribution and a scale-dependent pair-wise velocity
dispersion [88] so that G becomes :

G = 1√
2πσ2

12(r, µ)
exp[

(s‖ − r‖ − µv12)2

2σ2
12(r, µ)

] (3.105)

The non-zero pair-wise velocities come from the coupling between the density and velocity
fields on large scales which gives rise to a coherent infall velocity v12 between pairs of
matter tracers along the line of separation r̂. Note that this coherent infall is an average of
the tracer velocity flow, which can be seen as a number-weighted average in the sense that
galaxies are preferentially located in high-density regions, associated with a probability
∝ (1 + δ). So we need to include this probability of finding a galaxy at a given position
when defining v12 :

v12(r) = r̂〈v12(r)〉 (3.106)
= r̂〈[v(x + r)− v(x][1 + δ(x)][1 + δ(x + r)]〉 (3.107)
= r̂[〈[v(x + r)δ(x)〉 − 〈v(x)δ(x + r)〉] + higher order terms (3.108)

where if we assume δ and v are Gaussian fields, the density and velocity at the same point
are uncorrelated.

Using the linear coupling θ = fδ and taking the Fourier transform of δ and v gives :

v12(r) = ifb

∫
d3k

(2π)3 k · re−ik·rPm(k) (3.109)
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In the isotropic case, d3k = k2dk sin θdθdφ and k · r = kr cos θ. When integrating w.r.t θ,
one can make a change of variable X = cos θ so that the following integral appears which
gives the first-order spherical Bessel function j1 :∫ 1

0
dXeikrX2X = −2ij1(kr) (3.110)

v12(r) = −r fb2π2

∫
kP rm(k)j1(kr)dk (3.111)

One can also obtain an expression for σ12 from linear theory predictions [87, 88] :

σ2
12(r, µ2) = 2[σ2

v − µ2Ψ‖(r)− (1− µ2)Ψ⊥] (3.112)

where σ2
v = 1

3〈v(x)v(x)〉 is the one-dimensional velocity dispersion and

Ψ‖(r) = f2

2π2

∫
dkPm(k)

[
j0(kr)− 2j1(kr)

kr

]
(3.113)

Ψ⊥(r) = f2

2π2

∫
dkPm(k)j1(kr)

kr
(3.114)

with j0 and j1 the spherical Bessel functions.
The streaming approach is therefore based on three main ingredients : the real space corre-
lation function ξ(r), the mean infall pair-wise velocity v12(r) and the pair-wise dispersion
velocity σ12. As explained in section 3.1, linear theory breaks down in the quasi-linear
regime due to the non-linear evolution of the density and velocity fields that starts to be
non-negligible and as mentioned above in the section, [82] explored the corrections induced
in the power spectrum due to the non-linear evolution of the density and velocity fields
and calculated using perturbation linear theory. In the streaming model, it means that
more complicated expressions from perturbation theory models will replace the ones from
linear theory for ξ(r), v12 and σ12.

In its original form, the GS model was used in association with SPT to compute ξ(r),
v12 and σ12 at intermediate scales (20 − 60h−1Mpc) [88, 89]. In this thesis, we use the
Convolution Lagrangian Perturbation Theory (CLPT) developed in [90] and extended
in [91], which improves the work done by [17] who introduced a perturbative scheme
which is different from the standard one given by 3.46. The perturbative approach allows
us to reach smaller scales than the ones described by linear theory. Moreover, working in
Lagrangian space makes the inclusion of RSD and the bias easier. The bias model is based
one local Lagrangian biasing scheme developed in [58] and presented in section 3.3.2. The
density field of a biased tracer δt(x, t) is assumed to be a function F of a smoothed linear
over-density at the same Lagrangian position : δR(q)

1 + δt(x, t) =
∫
d3qF [δR(q)]δD[x− q −Ψ(q, t)] (3.115)

where the expression for δR(q) is given by equation 3.73 and x(q, t) = q + Ψ(q, t) (equa-
tion 3.31) is the transformation from Eulerian to Lagrangian coordinates which defines
the displacement field Ψ.

Then, [90] derived the exact configuration space expression which is anologue of the
derivation by [17] in Fourier space but the difference lies in the choice of expansion which
can be seen as a partial resummation of the result of [17, 58]. By statistical homogeneity,
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the two-point correlation function ξt(r) = 〈δt(x1)δt(x2)〉 depends only on the difference in
Lagrangian coordinates q = q2 − q1. It can be written as :

1 + ξt(r) =
∫
d3q

∫
d3k

(2π)3 e
ik·(q−r)

∫
dλ1
2π

dλ2
2π F̃1F̃2K(q,k, λ1, λ2) (3.116)

where K is defined by :

K(q,k, λ1, λ2) = 〈ei(λ1δ1+λ2δ2+k·∆)〉 (3.117)

with ∆ = Ψ2 −Ψ1 and λ1 (resp. λ2) is the Fourier transform of the bias parameter ob-
tained from F (δ) for object 1 (resp. object 2).
[17] showed that applying the cumulant expansion theorem allows us to expand the ex-
pectation value in terms of cumulants :

〈eiX〉 = exp
[ ∞∑
N=1

iN

N !〈X
N 〉c

]
(3.118)

where 〈XN 〉c denotes the N th cumulant of the random variable X. Given that we deal
with Gaussian fields (Ψ is a function of δl which is assumed to be Gaussian), only the
second cumulant survives (N = 2) which gives :

〈ei(λ1δ1+λ2δ2+k·∆)〉 = exp[〈(λ1δ1 + λ2δ2 + k ·∆)2〉c] (3.119)
= exp[(λ2

1 + λ2
2)σ2

R +Aijkikj + 2λ1λ2ξR + 2(λ1 + λ2)Uiki] (3.120)

where σ2
R is the variance of the smoothed linear density field δ1,2, ξR = 〈δ1δ2〉c is the

corresponding smoothed linear correlation function, Aij is related to the velocity-velocity
coupling and Ui is related to the density-velocity coupling. Then, [90] performed a partial
expansion noting that some terms (σ2

R and Aij) in the above expression did not vanish
in the large-scale limiti when |q| → ∞ and should thus be kept exponentiated instead of
taking them into account in the expansion. To get ξ(r), we integrate equation 3.120 over
λ1, λ2, k and q. The integrations w.r.t. λ1, λ2 introduce the Lagrangian bias parameters
through the idendity [58] : ∫

dλ

2π F̃ (λ)(iλ)ne−λ2σ2
R/2 = 〈F (n)〉 (3.121)

where we consider the first two Lagrangian parameters, F ′ and F ′′.
Despite the fact that CLPT dramatically improves the description of correlation func-

tion in real space, it remains inaccurate on quasi-linear scales for the quadrupole in redshift
space. To overcome this deficiency, [91] extended the formalism to include the calculation
of velocity moment statistics such as the pairwise infall velocity v12 and pairwise velocity
dispersion σ12. These two ingredients with the correlation function in real space ξ(r) are
used as inputs in a Gaussian-Streaming (GS) model proposed by [88] and reviewed in
section ??. The relative peculiar velocity between two tracers at Eulerian coordinates x1
and x2 is related to the time derivative of the difference between the displacement fields,
so that v(x2) − v(x1) = ∆̇/H (where v is in unit of h−1.Mpc). The term K defined in
equation 3.117 thus contains an additional term which is proportional to ∆̇/H. After inte-
grating w.r.t λ1, λ2, k and q, [91] showed that the CLPT prediction for velocity statistics
can be written in the same manner as the prediction for the clustering found in [90], i.e.
as function of the first two Lagrangian parameters 〈F ′〉 and 〈F ′′〉 (whose expressions are
given by equations 3.76) :

A = A0 + 〈F ′〉A10 + 〈F ′′〉A01 + 〈F ′〉2A20 + 〈F ′′〉2A02 + 〈F ′〉〈F ′′〉A11 (3.122)
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Table 3.2 – The different RSD models that have been applied to BOSS and eBOSS data.
observable name theory BOSS analysis eBOSS analysis
P (k) eTNS+RPT [12, 13, 18] [94, 95, 96] [57]
P (k) eTNS+RegPT [15] [97, 98] –

P (k) / ξ(s) eTNS+gRPT Blas, Crocce, Scoccimarro in prep [99, 100] [101]
ξ(s) GS+SPT [88] [89, 102, 103] –
ξ(s) GS+CLPT [90, 91] [104, 105] [106]

where A can be replaced by ξ(r), v12, σ12,‖ or σ12,⊥ and each Aij coefficient is calculated
in CLPT. The terms A10 and A01 correspond to corrections at 1st-order ; A20, A02 and A11
at 2nd-order. In what follows, for simplicity we will refer to the Lagrangian parameters
as F ′ and F ′′. [91] showed that the second bias parameter F ′′ has a negligle effect on
the correlation function, only affecting small scales (below ∼ 20h−1Mpc). So here, it
is fixed under the peak-background split assumption [92] using the Sheth-Tormen mass
function [ST, 50]. We will show in section 4.2.3 the effect on the cosmological parameters
when using the Press-Schetcher mass function (PS, [48]) or when setting F ′′ as a free
parameter when fitting on observables in redshift space.

Comparisons in configuration and redshift space of different RSD models for the ana-
lysis of the BOSS final sample can be found in [93]. Table 3.2 summarizes the different
RSD models that have been applied to BOSS and eBOSS data already.

3.4.3 Beyond the Gaussian pair-wise velocity PDF

[82] also showed that the PDF is strongly non-Gaussian at all scales and that actually
there is no one single PDF involved in equation 6.10 but rather an infinite number corres-
ponding to different scales and angles of the velocities with respect to the line joining the
pair. More recently, this non-Gaussian PDF has also been highlighted by [76] who showed
that there is not any simple general functional form for the pairwise velocity PDF that
matches all scales and for all types of tracers.

The full pair-wise velocity PDF of halo pairs is calculated at different pair separations
using the BigMDPL simulation 3 showed in the top panel of figure 3.10. The presence of
skewness and exponential tails at all scales clearly show that the Gaussian assumption
made in the streaming model according to which G only depends on its first two moments
is not satisfactory. In fact, the pair-wise velocity PDF of halo pairs is a complex function
with skewness and kurtosis that vary substantially with scale. Using a series of collisionless
N-body simulations, [107] demonstrated that the shape of the velocity PDF is determined
primarily by the distribution of local densities around a halo pair, and at fixed density
the velocity PDF is close to Gaussian and nearly independent of halo mass. Following this
approach, we used the MDPL2 simulation 4 to calculate the over-density δ inside spheres
of radius equal to the separation of the halo pairs. As δ increases, both the mean infall
velocity and dispersion increase. At a fixed δ, the local velocity PDF does not show strong
skewness and kurtosis, so that we can model it using a Gaussian approximation as shown in
the bottom panel of figure 3.10. Therefore, one way of improving RSD models that resort
to the streaming approach would be to use the N-body simulations to find the relevant
quantities to be injected in the description of the pairwise PDF, such as local environment
parameters. Ultimately, it could give access to the small scales of the correlation function
where the effect of RSD is the largest and therefore put stronger constraints on modified

3. see table 3.1
4. see table 3.1
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gravity models. [108] explored the impact of adding skewness and kurtosis in the expression
of the pair-wise velocity PDF and showed that the Gaussian assumption in the streaming
model breaks down on scales below 10h−1Mpc.
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Study of potential systematics
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Identification and elimination of systematic uncertainties are essential to reach the
best-to-date precision on the cosmological measurements from clustering analysis. The
purpose of this chapter is to present and minimize the impact of sources of systematic
uncertainties on the anisotropic clustering of the eBOSS quasar sample, in order to provide
robust constraints on the cosmological parameters. It is usually reached when the effect
of systematic uncertainties represents less than 20% of the statistical precision.

In order to investigate the different origins of systematic effects, we generated different
sets of mock catalogs that are fictional realizations of the data used as a benchmark
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to test the pipeline. Section 4.1 explains the methodology we adopt by specifying the
RSD model used to model the redshift-space correlation function, the fitting conditions
and the covariance matrix used to infer the uncertainty on the fitting parameters which
is obtained from approximate mock catalogs. Then, we divide the systematics into two
types : modelling systematics in section 4.2 - which include the systematic uncertainty
associated with the RSD model, the bias model and the impact of redshift uncertainties -
and observational systematics in section 4.3 that gather systematics related to the imaging
conditions, the observational strategy and instrumental limitations. This chapter is based
on the analysis performed in [1].

4.1 Methodology

4.1.1 Configuration space multipoles and wedges

The two-point correlation function ξ(s, µ) is calculated using the Landy-Szalay esti-
mator defined in equation 6.6 for the two variables s and µ. The public code cute [2]
is used to calculate paircounts as a function of comoving separation s, and µ from 0 to
200 h−1Mpc subdivided into 25 bins which makes a cell size of 8 h−1Mpc and 30 bins in
µ from 0 to 1.

The two-point correlation function is projected onto the Legendre polynomial basis [3]
through :

ξl(s) = 2l + 1
2

∑
j

ξ(s, µj)Pl(µj)dµ , (4.1)

where only l = 0, 2, 4 are the monopole, quadrupole and hexadecapole respectively.. The
analysis can also be performed by cutting the domain in µ into “wedges" [4] :

ξwi(s) = 1
µi,max − µi,min

∫ µi,max

µi,min
ξ(s, µ)dµ . (4.2)

In the present work, we consider three wedges in µ of constant size ∆µ = 1/3 where the
wedge 2/3 < µ < 1 corresponds to the closest region to the LOS.

The theoretical predictions are computed using the CLPT-GS model presented in
section 3.4.2. To summarize the differents steps :
(i) The linear power spectrum is obtained using CAMB with the fiducial cosmology

given in table 4.1
(ii) We use the CLPT code 1 to calculate ξ(r), v12, σ12 according to equation 6.12. The

CLPT code takes a linear power spectrum as input and provides a file for each
real-space observable.

(iii) These quantities are then used in our python code that performs the integral given
by the Gaussian streaming model in equation 6.10. We then compute the theoretical
predictions for the Legendre multipoles and wedges of the two-point correlation
function in redshif space.

The fits are thus performed with the CLPT-GS model, under the same conditions for the
data and the mock catalogs from 16 h−1Mpc to 136 h−1Mpc using binwidth of 8 h−1Mpc.
The priors on the fit parameters are :

1. https://github.com/wll745881210/CLPTGSRSD.git
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parameter prior
F ′ flat prior, range (0.1, 2.8)
f flat prior, range (0,5)
α‖ flat prior, range (0,2)
α⊥ flat prior, range (0,2)
σtot flat prior, range (0,20)

4.1.2 The covariance matrix

Inference of cosmological information from large-scale structure observations requires
the estimation of the covariance of the measurements as accurately as possible. The co-
variance matrix is estimated from a set of Nm mock measurements, denoted ξ(n), where
n ∈ 1, ..., Nm, so that :

CA,B = 1
Nm − 1

Nm∑
n=1

[ξ(n)
A (si)− ξ̄A(si)] [ξ(n)

B (sj)− ξ̄B(sj)] (4.3)

where Nm is the number of mock realizations with 15 bins per multipole/wedge, so the
dimensions of the covariance matrix for the NGC+SGC is (3×15)×(3×15).
The mean of the correlation function is defined by :

ξ̄A(si) = 1
Nm

Nm∑
n=1

ξnA(si) (4.4)

and the correlation coefficients of the correlation matrix are :

rA,B = CA,B√
CAACBB

(4.5)

In this analysis, two sets of synthetic mock catalogs that mimic the clustering properties
of the eBOSS quasar sample are used to obtain the covariance matrix of the measurements.
To do so, these catalogs incorporate the full survey geometry (i.e., they have the same
angular and radial selection function as the data) and important observational systematics
such as the veto masks and fibre collisions. A precise estimate of the covariance matrix
requires a large number of mock catalogs, so we need to generate about hundreds to
thousands of realizations. Contrary to N-body simulations, those mock catalogs can rely
on fast approximate gravity solvers to generate halo catalogs because their purpose is not to
test and model accurately the non-linear evolution of LSS formation. These halos are then
populated with synthetic galaxies using the empirical models described in section 3.3.3
whose parameters are tuned to match the clustering of data.

Table 4.1 summarizes the cosmological parameters used to generate the initial density
field in each set of mock catalogs. QPM and EZ refer to two techniques used to construct
fast approximate mock catalogs, Outer Rim is the N-body simulations we use to build
accurate mock catalogs.

4.1.2.1 QPM mock catalogs

A first set of approximate catalogs relies on a technique known as quick-particle-
mesh [QPM 5]. This method uses a low-resolution particle mesh gravity solver to generate
the large-scale dark matter density field from initial conditions that have been created
using the cosmological parameters given as ‘QPM’ in table 4.1 and then evolve it using
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Table 4.1 – Cosmological parameters of the fiducial cosmological model compared to the
one of N-body simulations used in the analysis.

Configuration Ωm h Ωbh
2 σ8

Fiducial 0.31 0.676 0.022 0.8
QPM 0.29 0.7 0.02247 0.8
EZ 0.307115 0.6777 0.02214 0.8228

Outer Rim 0.26479 0.71 0.02258 0.8

2LPT. This approach does not have sufficient spatial and mass resolution to form dark
matter halos so particles are sampled from the density field in a way that mimics both
one-point and two-point distribution of halos, in other words the mass function and bias
function. Then, in a second step, these halos are populated with quasars according to the
five-parameter HOD [6] described in section 3.3.3 with a sixth parameter that accounts
for the duty cycle of quasars :

〈Ncen〉M = τ · 1
2

[
1 + erf

( logM − logMcen
log σM

)]
(4.6)

〈Nsat〉M =
(
M

Msat

)αsat

· exp
(
−Mcut

M

)
(4.7)

where 〈Ncen〉M is the probability for a halo of mass M to host a central quasar and
〈Nsat〉M is the number of satellite in a halo of mass M . The values of the parameters that
reproduce the data are thus Mcen = 1.35 1012M�, log σM = 0.2, αsat = 1, Mcut = 108M�
andMsat = 1.93×1015M�, which results in a population that consists of ' 13% satellites.
Under these conditions the typical mass for dark matter halos hosting quasars is Mcen =
1012.5M�.

One hundred realizations have been generated using cubic boxes of size L = 5120h−1.Mpc
which produced catalogs with positions (x,y,z) and velocities (vx,vy,vz). The same 100 cu-
bic boxes are used for the NGC and SGC. Then, these cubic boxes have then be remapped
to be parallelepipoid in order to fit the volume of the full planned survey using the remap-
ping technique implemented in the code make survey [7, 5].

Figure 4.6 is an illustration of the remapping technique that transforms a cubic box
into a parallepipoid by moving sub-regions of the cube to another place. [7] showed that
this remapping techniques preserved the structures without adding correlations between
regions that were not connected. It is based on the observation that a cube with perio-
dic boundary conditions is equivalent to an infinite 3D space with discrete translational
symmetry.

The analysis presented in this work is based on the first two years of data taking of
eBOSS so we use a smaller volume which allows us to use different parts of a single box
to produce more realizations. By changing the orientation of the original box and varying
the different combinations to rotate it, we identified four configurations with less than
1.5% overlap. Using these 4 rotations allows us to produce 400 QPM mocks per Galactic
cap. The overlap between NGC and SGC can be as high as 10% but we identified the
pairs of configurations for which the overlap is less than 2% in order to combine them
and to obtain the full DR14 sample. Once the parallelepipoid boxes have been obtained,
the cartesian comoving coordinates (x,y,z) are transformed to angular coordinates and
radial distance (RA,DEC,z) using a flat ΛCDM cosmology with parameters in table 4.1.
The angular and veto masks are also applied as in the data and the number density of
objects in the remaining area is downsampled to fit the redshift distribution of the data.
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Figure 4.1 – Illustration of the remapping technique : after translation, a cubic box
of size 1 × 1 is transformed into a parallepipoid of size

√
2 × 1/

√
2. Credit : Martin

White http://mwhite.berkeley.edu/BoxRemap/.

As explained in section 2.5, quasars suffer from important redshift uncertainties that are
taken into account in the QPM mocks by smearing the redshifts according to a Gaussian
distribution of width taken from the eBOSS requirements [8], namely σz = 300 km.s−1 for
z < 1.5 and σz = 300 + 400× (z − 1.5) km.s−1 for z > 1.5.

4.1.2.2 EZ mock catalogs

The QPM mocks belong to the class of approximate catalogs that rely on Lagrangian
methods where initial conditions are generated from a linear power spectrum and then ga-
laxies are found deterministically using empirical prescriptions on halos. Another method
consists in generating a density field and populating it with halos using a biasing scheme
that can be non-linear and stochastic. This is the case for the Effective Zel’dovich mock
catalogs [EZ, 9] that are constructed using the Zel’dovich approximation of the density
field and an effective modelling with few parameters, which can be efficiently calibrated
with observations or numerical simulations. The performance of a wide variety of mock
halo and galaxy catalog generators have been compared in [9] and they demonstrated that
the EZ mock technique can reproduce the clustering of a given sample (including two-point
and three-point statistics) with low memory requirements compared to other methods.

For this analysis, the bias parameters are calibrated on the observed eBOSS DR14
quasar clustering directly and figure 4.2 shows the comparison between the linear bias
measured from EZ mocks and other measurements [10, 11]. The linear bias b is related to
the first Lagrangian parameter F ′ of the biasing scheme used in this work by b = 1 + F ′.
A comparison between different bias measurements of quasar samples will be provided in
section 5.4.3.

The relevant parameters were tuned on the data for the NGC and SGC separately to
reproduce the difference in clustering as shown in figure 4.3. The mean of the 1,000 EZ
mocks is shown in dashed line and the error bars on the data points correspond to the
square of the diagonal elements of the inverse of the covariance matrix. Given that the EZ
mocks are adjusted on the data directly, they already contain the redshift resolution of the
data that affects the clustering, especially the quadrupole on scales below ∼ 40h−1Mpc.
We use 1000 independent realizations for each Galactic cap. One thousand light-cone mock
catalogs covering the full survey area of DR14 have been produced using boxes of size
L = 5000h−1.Mpc and an initial power spectrum based on ΛCDM cosmology with Ωm =
0.307115, h = 0.6777, σ8 = 0.8225, Ωb = 0.048206 and ns = 0.9611. It corresponds to the
cosmology used to produce a set of BOSS mock catalogs (see [12] for more details). Each
light-cone is composed of seven redshift shells, each shell shares the same initial Gaussian
density but has different EZ mocks parameters to account for the redshift evolution of the
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Figure 4.2 – Linear bias measurements from observed data using the 2dF QSO Redshift
Survey [10] and the first year of eBOSS data taking [11] compared to the linear bias
measured in the EZ mocks used in this analysis. The bias evolution in the EZ mocks
agrees with these works.

observed quasar clustering. So in total, we generated 1000 × 7(shells)×2(NGC+SGC)=
14, 000 EZ mock boxes and we used the code make survey to construct each redshift
shell from the corresponding box. Further details on the updated algorithm, clustering
performance and implementation of the redshift evolution will be provided in Chuang et
al. (in prep).

We include some synthetic observational features in the EZ and QPM mocks in order
to have a more realistic covariance matrices and to quantify the effects of those features on
the cosmological parameters of interest. The production of the improved set of EZ mocks
is explained in section 4.3.1 and the correlation matrices we infer from these synthetic
mock catalogs are displayed in Figure 4.4 for the 3-multipole and 3-wedge analyses. The
most important correlations are along the diagonal but the inclusion of the off-diagonal
terms matters to obtain a more precise measurement of the cosmological parameters.

4.1.3 Fitting conditions

In order to obtain a better statistical precision in the cosmological parameters and to
be less dominated by statistical fluctuations, we combine the NGC and SGC of the data
set (either the EZ mocks or the DR14 sample) and perform a fitting on the combined
NGC+SGC. As shown in figure 2.19, the two caps do not overlap and we can assume their
statistics are not correlated, so we consider an area-averaged estimator for the NGC+SGC
defined by :

ξNGC+SGC = ξNGC ·ANGC + ξSGC ·ASGC
ANGC +ASGC

(4.8)

where ANGC (resp. ASGC) is the area covered by the NGC (resp. SGC).
The cosmological information is extracted through a fit of the measured correlation

function with the CLPT-GS model which gives a prediction for the correlation function
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Figure 4.3 – Top panel : Monopole of the eBOSS DR14 NGC (blue) and SGC (red)
compared to the mean of the 1000 EZ mocks (dashed). Middle and bottom panels : Same
for the quadrupole and the hexadecapole. The parameters of the EZ mocks are tuned on
the observed clustering of the data for each Galactic cap separately.
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Figure 4.4 – Correlation matrices obtained from the 1,000 EZ mocks and used to fit the
data for the 3-multipole (left) and 3-wedge (right) analyses. Values of the correlation above
0.3 (along the diagonal) are truncated to enhance the contrast in the lower correlation
regions. Each individual square is 25× 25 bins of width 8 h−1Mpc from 0 to 200 h−1Mpc.

for a tracer of bias b with a linear growth rate f , assuming a linear power spectrum Plin
whose normalization is given by σ8 :

ξCLPT(α‖s‖, α⊥s⊥ ; b, f |Plin). (4.9)

where Plin is fixed according to the fiducial cosmological parameters we use for the analysis.
Here, we have introduced two additional parameters, α‖ and α⊥, to account for different
dilation of scales for the directions along and perpendicular to the LOS. This approach
allows the measured cosmology to differ from the fiducial cosmology from which distances
are inferred using redshifts and angular coordinates. The parameters α‖ and α⊥ can be
related to the expansion rate H(z) and the angular diameter distance DA through :

α‖ = Hfid(z)rfid
s

H(z)rs
, α⊥ = DA(z)rfid

s

Dfid
A (z)rs

(4.10)

where rs is the sound horizon at the end of the baryon drag epoch and quantities with
the superscript ’fid’ refer to quantities determined within the fiducial cosmology. From α‖,
α⊥, and the fiducial cosmology, one can construct a volume averaged distance, DV :

DV =
[
(1 + z)2cz

D2
A
H

] 1
3

(4.11)

where c is the speed of light. One can also define the Alcock-Paczynski parameter FAP,
which is proportional to the ratio of scales along and perpendicular to the LOS :

FAP = 1 + z

c
DAH (4.12)
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Alternatively, one can also use a combination of α‖ and α⊥ such that :

α = α
1/3
‖ α

2/3
⊥ , ε = (α‖/α⊥)1/3 − 1 (4.13)

When using the monopole only, one can constrain the α variable that we often refer to this
quantity as αiso. It corresponds to an isotropic shift of the BAO feature and gives access
to the spherically-averaged BAO distance DV through :

αiso = DV(z)rfid
s

Dfid
V (z)rs

. (4.14)

For consistency, we also perform an analysis by assuming in the model that there is no
anisotropic dilation of scales and fitting αiso.

[13] derived an analytical formula for this parameter defined by αm+n
iso = αm‖ α

n
⊥, where

m and n provide the degree of degeneracy in the parallel and perpendicular to the LOS
directions. He computed predictions for different configurations : when using the monopole
only (green dashed line), when removing the effect of RSD on the monopole (black solid
line) and using the quadrupole too (red dotted line). Figure 4.5 shows the EZ mocks
measurements on α‖ and α⊥ in Fourier space [14] compared to the analytical predictions
from [13]. The mock results display a degenerate direction on αm+n

iso = αm‖ α
n
⊥ which is

close to the one predicted when using the monopole only with the RSD removal which
corresponds to m = 1/3 and n = 2/3. So, given the statistical precision of the current
sample, we can consider that αiso ' α1/3

‖ α
2/3
⊥ is a valid approximation.

Figure 4.5 – EZ mock measurements for α‖ and α⊥ (blue symbols) along with the dege-
neracy directions predicted by Ross et al. 2015 when only the monopole is used after (black
solid line) and before (green dashed line) the RSD are removed, and when the quadrupole
is used (red dotted line). From [14].
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4.1.4 Parameter inference

We extract the results of the fitting of either the three first Legendre multipoles or the
three wedges by minimizing the χ2 defined by :

χ2 = (ξData − ξModel)C−1(ξData − ξModel)T (4.15)

where ξData corresponds to the measurement, ξModel to the associated theoretical predic-
tion, and C−1 the inverse of the estimated covariance matrix. The latter includes cor-
rections due to finite number of mocks and number of bins in the analysis that can bias
the measurements. We follow the procedure described in [15] and referred as the Hartlap
correction :

C−1
unbiased = (1−D)C−1

mock with D = Nb + 1
Nm − 1 (4.16)

where Nb is the total number of bins in the measurements (in this analysis, the reference
uses 15 bins) and Nm is the number of realizations. Thus, the smaller the number of
realizations Nm, the larger these corrections are. In addition, the effect of noise propagates
to the parameters constraints, so that the obtained variance of each parameter needs to
be rescaled by [16] :

M =
√

1 +B(Nb −Np)
1 +A+B(Np + 1) (4.17)

where Np is the number of fitting parameters and the two factors A and B are :

A = 2
(Nm −Nb − 1)(Nm −Nb − 4) (4.18)

B = (Nm −Nb − 2)
(Nm −Nb − 1)(Nm −Nb − 4) (4.19)

The following table presents the correction factors for each set of synthetic mock catalogs,
with Nb = 3 × 15 bins for the measurements from the three multipoles or wedges and
Np = 5 fitting parameters :

mock catalogs Nm 1−D M
QPM mocks 400 0.96 1.005
EZ mocks 1000 0.98 1.004

The Hartlap correction represent 2 − 4% factor in the χ2 values and the ones described
in [16] have a minor contribution to the final errors.
In the fitting, the covariance matrices are determined from the EZ mocks with a correction
to equalize small differences in area. Eventually, we find the χ2 minima using the minuit
libraries 2. Error-bars are derived from the ∆χ2 = 1 region of the marginalized χ2 profiles
and are allowed to be asymmetric.

In section 5.2, we will will compare our results with the companion papers, we also
run Markov-chains to compute the likelihood surface of the set of parameters. We use
the emcee package [17] which is a python implementation of the affine-invariant ensemble
sampler for Markov chain Monte Carlo (MCMC) ; we check its convergence using the
Gelman-Rubin convergence test with the condition R− 1 < 10−2.

2. James, F. MINUIT Function Minimization and Error Analysis : Reference Manual Version 94.1.
1994.

166



4.2 Modelling systematics : study on Outer Rim

4.2 Modelling systematics : study on Outer Rim

Given that all perturbative approaches are approximate methods to solve the dynamics
of gravitational clustering, it is necessary to test the domain of validity of the theoretical
predictions using numerical simulations. In practise, this is how the fitting range of each
RSD model is fixed. [18] (resp. [19, 20]) tested the GS (resp. CLPT-GS) model using a set
of N-body simulations presented in [21] for halos of the appropriate mass range to host
BOSS galaxies at redshift z ' 0.5. The CLPT-GS model has also been applied on BOSS
DR11 data by [22] and on BOSS DR12 by [23]. In particular, [20] showed that the diffe-
rence between the CLPT-GS model and N-body results for the matter density field was
less than 5% for the Legendre multipoles in redshift space for scales above ' 20h−1Mpc.

4.2.1 Production of the Outer Rim mock catalogs

In this work, we resort to the N-body Outer Rim simulation presented in section 3.2.1.
We briefly remind the most important properties. The volume of the Outer Rim simulation
is a cube of side L = 3000h−1Mpc with 102403 dark matter particles. The mass resolution
of each dark matter particle is mp = 1.82× 109 h−1M�. The mass resolution is enough to
resolve halos that host quasars in the eBOSS redshift range. However, the volume is not
enough to cover the full footprint of the DR14 quasar sample, even with the remapping
technique. The cosmological parameters are given in table 4.1 and are consistent with
the WMAP7 cosmology [24]. The initial conditions are calculated at z=200 using the
Zel’dovich approximation.

We build the mocks from a single snapshot at z = 1.433 for which halos of more than
20 particles are available. In a first approach (dubbed "mass bin"), we consider that only
halos with mass M = 1012.5±0.3 h−1M� can host a quasar. In a refined approach, we apply
the (5+1)-parameter HOD using the parameters derived for the QPM mocks and defined
by :

For each halo, we determine the concentration from the halo mass using an ad-hoc
parameterization of the data described in [25]. The position of the satellites and their
velocity are drawn from a profile according to the NFW prescription [26]. We can vary
the fraction of satellites by playing with the mass of the biggest halos that contain sub-
structures. For instance, the fraction of satellites can be increased to fsat = 25% by setting
Msat = 1015 h−1M� in the HOD model. In addition, we take advantage of the fact that the
eBOSS quasar measurement is shot-noise dominated, and that the duty cycle for quasars
is low (τ = 1.2%), to draw many realizations (up to 100) from the same parent box.

The production of the Outer Rim mock catalogs for the DR14 quasar analysis required
some modifications compared to the existing make survey implementation. We briefly
describe these modifications step by step :

(i) Volume remapping : we found some issues related to the remapping technique for
the Outer Rim simulation that were not observed with the QPM boxes. Figure 4.6
shows the monopole of the correlation function in real space for Outer Rim (left) and
QPM (right) simulations and for different configurations : when just applying the
sky projection to translate cartesian coordinates (x,y, z) into (RA,DEC,redshift)
using the original code (yellow) and our python version (cyan), when applying the
remapping step before (green and pink). The dashed line shows the theoretical pre-
diction from CLPT. We can see that all the configurations yields the same clustering
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for the QPM, while differences appear at large scales when applying or not the re-
mapping technique for the Outer Rim. The issue could be related to the box size of
the Outer Rim simulation (3 Gpc) compared to the one of QPM (5 Gpc). A smaller
volume implies that some large k-modes will not be probed by the simulation which
can affect the clustering when we move parts of the box to another location. We do
not apply the remapping technique and consider cubic boxes only.

(ii) Translation / rotation : we did not apply any translation or rotation, we worked
with the original cubic box.

(iii) Sky projection : the cartesian coordinates are transformed in right ascension, de-
clination and redshift using Outer Rim cosmology (see table 4.1).

(iv) Apply redshift space distortions : The implementation of RSD is made on the
redshift where zred = zreal + dz with

dz = vz
c

(1 + zreal) (4.20)

where the z-axis is taken to be the LOS axis. However, we have just one snapshot at
zsim = 1.433 to cover the redshift range 0.8 ≤ z ≤ 2.2. Both methods are approximate
and additional snapshots are required to build a light-cone mock that includes the
redshift evolution of the cosmological fields (for instance, the EZ mocks were built
from 7 snapshots).

(v) Apply the survey footprint : the cubic box of 3 Gpc side is not big enough to
include the eBOSS DR14 quasar survey footprint. Angular cuts are applied instead
and an area of 1888 deg2 with uniform redshift coverage can be selected.

(vi) Randomly downsample based on sky completeness : we did not apply this
step for the eBOSS DR14 quasar analysis because it would require applying the
survey footprint first.

(vii) Randomly downsample based on the radial selection to ensure that the mock
catalogs have the same redshift distribution as the data (applied). However, since the
Outer Rim mocks catalogs have been created from a single snapshot at z = 1.433,
and since we are just interested in evaluating the performance of the RSD model,
we apply an additional redshift cut z ≤ 2.0 to produce an effective redshift that
matches the one of the single snapshot. It also allows us to compare, at the same
effective redshift, the real space results using directly the output of the Outer Rim
simulation and the results in redshift space after applying the procedure we have
just described.

4.2.2 Validity of CLPT in real space

The linear power spectrum corresponding to the Outer Rim cosmology given in table 4.1
is given as input to the CLPT code which calculates the real space observables ξ(r), v12,
σ12 as function of the first two Lagrangian parameters. The dependency on the bias pa-
rameters is given by equation 6.12. We then compare the theoretical predictions for these
obserables in real space with results from the Outer Rim simulation.

Figure 4.7 presents the agreement in real space between the Outer Rim results (blue
points) for the catalog without satellites and the CLPT prediction (red) compared to the
linear theory prediction (green) for the real-space correlation function, the mean infall
pairwise velocity, and the velocity dispersion. The magenta curve in the top panel cor-
responds to the quadrupole of the correlation function in real space which is compatible

168



4.2 Modelling systematics : study on Outer Rim

Outer Rim QPM 

Figure 4.6 – Monopole of the correlation function in real space for the Outer Rim (left)
and QPM (right) simulations and for different configurations with or without applying the
remapping technique.
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Figure 4.7 – Real space observables for the case without satellite and redshift smearing.
Blue points correspond to the results from the Outer Rim simulation, the red curve is the
CLPT prediction and the green one is the linear theory prediction. Top panel : correlation
function in real space. Middle panel : pairwise infall velocity. Bottom panel : Ratio between
Outer Rim results and CLPT predictions for ξ (square), v12 (circle) and σ12,‖,⊥ (triangles).
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with zero in the N-body simulation as expected in real space where the redshift coordinate
accurately measures the distance along the LOS. However, the radial distances that are
inferred from redshifts obtained in spectroscopic surveys also include components from
peculiar velocities which give rise to the anisotropic clustering we observe, and thus to
a non-zero quadrupole of the correlation function in redshift space. The bottom panel
displays the ratio between the results from the Outer Rim simulation and the CLPT pre-
dictions. We confirm that at the mean redshift of eBOSS quasar sample, z ' 1.5, CLPT
reproduces well the clustering and velocity statistics in real space for halos of masses of
the order of 1012.5M� on scales of interest (above '20 h−1Mpc) which is in agreement
with the [20] determination for ranges of halo masses that correspond to the BOSS LRG
clustering at z ' 0.5.

Using the assumption of a linear coupling between the matter density field and the
tracer velocity field , we remind that one can derive the linear theory prediction for the
pairwise mean infall velocity :

v12(r) = −r fb
π2

∫
kP rm(k)j1(kr)dk (4.21)

where j1(kr) is the first-order spherical Bessel function. We can see on the middle panel
of figure 4.7 that the pairwise mean infall velocity measured on the N-body simulation
deviates from the linear theory (green curve) on scales below ∼60 h−1Mpc. Given that it
is directly proportional to the growth of cosmic structure, providing reliable cosmological
constraint on this parameter requires precise modeling of the non-linear evolution of the
matter and density fields. A similar prediction can be derived for σ12 and which is given
by equation 3.112 (both derivations can be found in [18]). In this expression, the velocity
field is assumed to be unbiased w.r.t. the matter density field. The effect of velocity bias
was studied in [27] and is expected to be of the order of a few percent for f .

Equation 4.21 shows that the mean infall velocity is expected to be proportional to
the bias and to the linear growth rate of structure on large scales. Since ξtracer = b2ξm,
another interesting test in real space is to check that the same bias value can reproduce
both correlation function and infall velocity. Figure 4.7 presents results for F ′ = 1.33
which corresponds to bσ8 = 0.990 ; this value is consistent with bias measurements in
redshift space for the case without satellite and redshift smearing. The bottom panel of
figure 4.7 also shows that the velocity dispersion terms parallel (dark blue triangles) and
perpendicular (light blue triangles) to the separation of the pair present a 10% offset
compared to CLPT predictions. This issue has previously been discussed in [18] and [20].
We will see in section 4.2.4 that adding a constant shift to the CLPT predictions to match
the velocity dispersion observed in Outer Rim does not affect the cosmological parameters
when fitting on observables in redshift space.

4.2.3 Performance of the CLPT-GS model in redshift space

In this section, we investigate the response of the RSD model by fitting the redshift
space correlation function of the mocks created from the Outer Rim simulation and by com-
paring the cosmological parameters to the expected values (fσ8 = 0.382 and α‖ = α⊥ = 1).
When not specified, the reference uses a covariance matrix from the NGC EZ mocks wi-
thout adding close-pairs or redshift failures treatment and is rescaled to match the statistics
of the Outer Rim catalogs. F ′′ is fixed according to the peak-background split assumption
using the ST mass function, and the fit uses data from 16 h−1Mpc to 138 h−1Mpc with
bin width of 8 h−1Mpc. The results of the fits are presented in Table 4.2.
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Different sets of Outer Rim catalogs have been produced in order to study the effect
of satellite fraction and redshift uncertainties :
— Satellite fraction : the presence of quasars hosted in satellite halos increases the

amount of virialized objects within a halo ; this increase modifies the small-scale
clustering as it corresponds to a strong elongation of structures along the LOS known
as the Fingers-of-God (FoG) [28] effect. It also affects the amplitude of the clustering
at all scales because of the dependence of the number of satellites with the mass of
the halos. We study the case with fsat = 13% satellite fraction as implemented in
the QPM mocks but also the cases fsat = 0% and fsat = 25% for systematics checks.

— We apply two different distributions for redshift uncertainties : a Gaussian red-
shift distribution according to the SRD and a physical redshift distribution according
to the distribution (zMgII − z) as seen in the data in Figure 2.17. For the latter, we
rescale the distribution so that the width matches the one of the SRD in order to
focus the study on the effect of the exponential tails in the observed distributions.

In Table 4.2, we report the results for the 3-multipole and 3-wedge analyses where small
systematic shifts between the two methods can be observed at the level of ∆fσ8 = 0.006
, ∆α‖ = 0.005 and ∆α⊥ = 0.006.

4.2.3.1 Quasar-halo connection

Figure 4.8 compares the multipoles (top panel) and the wedges (bottom panel) of the
correlation function for the “mass bin" (only halos with mass M = 1012.5±0.3M� can host
a quasar) and the HOD biasing scenarios. For the latter, the data points are obtained
from the average of 100 realisations. At the largest scales shown, the results from Outer
Rim tend to deviate from the predictions of the model in a region where these predictions
do not differ from linear theory. It may be due to the simulation box size effects, but
we do not use scales larger than 138 h−1Mpc in our fit range and the deviation is much
smaller than the statistical precision of the data. For the monopole, it is clear that the
“mass bin" scenario is better reproduced by the model at all scales and that, in the re-
gion of the BAO feature, the HOD presents an unexpected behaviour. Therefore, with the
present version of these mocks we may anticipate differences in the extracted geometrical
parameters α‖ and α⊥. Furthermore, Figure 4.8 reveals the impact of a ±10% variation
of the parameter FAP (green band) and a ±10% variation of fσ8 (grey band), showing
that the quadrupole is equally sensitive to variations of FAP(∝ α⊥/α‖) and fσ8. But it
also demonstrates that the hexadecapole is mostly sensitive to the variations of the geo-
metrical parameters and hence will contribute to break this degeneracy. As expected, for
the wedges, since the sum of the three wedges corresponds to the monopole, the effect is
more degenerate among the three wedges and the wedge in the middle is the least affected
as it probes pairs with intermediate angles between parallel and perpendicular to the LOS.

For the HOD case, we varied the satellite fraction and present the measured monopole
(blue), quadrupole (red) and hexadecapole (green) obtained in the top panel of figure 4.9.
Increasing the satellite fraction mildly enhances the amplitude of the clustering, and the
quadrupole and hexadecapole are almost unaffected. While no large difference between
satellite fractions is seen in the mocks, previous analyses of the data tend to favour a
satellite fraction around 0.15. This behaviour is shown in figure 9 of [29] which compares
the projected quasar correlation function measurements to the HOD model we use in
QPM mocks and in the OuterRim for the case fsat = 0.15. The exact satellite fraction
for the halos hosting quasars however, is not known precisely, and is degenerate with the
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Figure 4.8 – Top panel : Monopole of the correlation functions for the two bias models
considered : “mass bin" (red) and HOD (blue). For the HOD the data points are obtained
from the average of 100 realisations. The CLPT model has been adjusted on the “mass bin"
points (solid line). The green band shows the effect of a ±10% variation of the parameter
FAP(∝ α⊥/α‖) and the grey band shows the effect of a ±10% variation of fσ8. Bottom
panel : Same for the three wedges.
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Figure 4.9 – Top panel : Monopole (blue), quadrupole (red) and hexadecapole (green) for
3 satellite fractions without redshift smearing with the model set to the best fitting para-
meters for 0% satellite (dashed line), 13% satellite (solid line) and 25% satellite (dashdot
line). Bottom panel : Monopole (blue), quadrupole (red) and hexadecapole (green) for 3
redshift smearing and 13% satellite with the model set to the best fitting parameters for
no smearing (dashed line), SRD smearing (solid line) and (zMgII − z) smearing (dashdot
line).
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duty cycle of quasars that probably varies with luminosity and redshift. We therefore
report the average value obtained for the three satellite fractions (0%,13% and 25%) in
table 4.2 when estimating the systematic error related to the modeling. Further studies
to constrain the dark matter halo mass and duty cycle using the final eBOSS quasar
clustering measurements would provide a superior statiscal power to investigate these
effects, following the approach developed in [30] and [11].

4.2.3.2 Redshift uncertainties

We first investigate the response of the model when no smearing due to redshift er-
ror is applied. For all the cases considered, we observe a systematic shift of fσ8 towards
lower values and the maximum offset w.r.t the input cosmology is ∆fσ8 = −0.014. For
α‖, the maximum offsets for the HOD (∆α‖ = 0.038) is much larger than for the ’mass
bin’ (∆α‖ = 0.016). This situation probably arises from the difference observed on the
monopole : the HOD brings more high-mass halos whose velocity dispersion in N-body
simulations is actually lower than that of low-mass halos. This is related to the environ-
ment probed by halos, where high-mass halos correspond to more specific environments.
The fact we observe differences between two ways of populating the halos demonstrates
the need for a better understanding of the impact of the astrophysics conditions leading
to the formation of quasars. For α⊥, the results are consistent with an offset smaller than
∆α⊥ = 0.006. All these estimates receive contributions from both the biasing scenarios
and from the modeling of the correlation function, but presently they should be viewed as
global intrinsic systematic errors in our measurement.

The impact of redshift resolution is studied either by drawing the redshift from a
Gaussian distribution according to eBOSS SRD (solid lines) or by drawing the redshift
from the “physical" distribution of (zMgII−z) as shown in figure 2.17. The bottom panel of
figure 4.9 reveals that, for the two types of smearing, the quadrupole and the hexadecapole
are affected at scales below ∼50 h−1Mpc and that the monopole is unaffected. It also
shows that applying a more physical smearing with exponential tails has a larger effect
on the quadrupole. To account for redshift smearing in the RSD modeling, we add a
constant dispersion velocity term to the width of the Gaussian distribution used for G in
equation 6.10 following the approach in [31] :

σ2
12(r, µ) = σ2

12,CLPT(r, µ) + σ2
tot . (4.22)

This additional term can be decomposed as σ2
tot = σ2

FoG + σ2
z where σFoG is produced by

the Finger-of-God effect due to virialized motions of the quasars within their host halo
and σz arises from the smearing due to redshift resolution. However, the two parameters
are degenerate, and in the model a single total nuisance parameter is used to represent
this effect.

A sizeable effect of the redshift smearing is observed for the parameter fσ8 extracted
from the fits as presented in table 4.2. For the cases considered, an average systematic
shift of ∆fσ8 ' −0.010 exists for the SRD smearing and an effect of ∆fσ8 ' −0.021 for
the physical redshift smearing. This systematic shift could, in principle, be reduced by
using the actual shape of the redshift error distribution in a future modified streaming
model. For α‖, there is a small compensation of the large effect seen for the HOD when
applying the SRD smearing which is slightly reduced when using the physical smearing.
For the “mass bin", a similar behaviour is observed but remains smaller that for the HOD.
No effect is seen on α⊥.
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In summary, the overall systematic shifts due to the modeling of the full-shape aniso-
tropic correlation function with our CLPT-GS model are ∆fσ8 = 0.033 , ∆α‖ = 0.038,
and ∆α⊥ = 0.006 where we use the maximum deviation observed for the two biasing
scenarios and the two redshift smearing options.

Table 4.3 presents the results for more restrictive hypotheses on the cosmology where
the cosmology is either fixed to the input cosmology of OuterRim or where we allow for
an isotropic variation of the geometrical parameters, namely α‖ = α⊥ = αiso. This test is
performed using the physical redshift smearing in the case of the multipole analysis ; for
the HOD, we list the results for the set with fsatt = 13% that is favoured by the data.
In these conditions, the systematic shift on fσ8 w.r.t. the input cosmology is reduced to
∆fσ8 = 0.017 ; for the parameter αiso, the maximum variation observed among all mocks
that were produced is ∆αiso = 0.024.

Table 4.2 – Impact on measured cosmological parameters for the different halo populating
approaches and redshift smearing options. For the input cosmology fσ8 = 0.382 and
α‖ = α⊥ = 1.

config smearing bσ8 fσ8(OR = 0.382) α‖(OR = 1.0) α⊥(OR = 1.0) σtot

3-multipole
HOD no 1.024± 0.001 0.377± 0.002 1.031± 0.002 1.001± 0.001 1.026± 0.1
HOD SRD 1.024± 0.001 0.363± 0.002 1.021± 0.002 1.005± 0.001 5.48± 0.03
HOD (zMgII − z) 1.028± 0.002 0.355± 0.003 1.028± 0.003 0.998± 0.001 6.73± 0.03

mass bin no 0.966± 0.005 0.377± 0.006 1.014± 0.006 1.002± 0.005 1.26± 0.130
mass bin SRD 0.971± 0.005 0.368± 0.006 1.011± 0.007 1.002± 0.005 5.60± 0.040
mass bin (zMgII − z) 0.976± 0.005 0.355± 0.007 1.025± 0.008 0.994± 0.005 6.84± 0.036
3-wedge
HOD no 1.025± 0.001 0.368± 0.003 1.038± 0.002 0.995± 0.002 1.58± 0.1
HOD SRD 1.029± 0.001 0.360± 0.003 1.025± 0.003 1.003± 0.002 5.42± 0.03
HOD (zMgII − z) 1.031± 0.001 0.353± 0.003 1.025± 0.003 1.002± 0.002 6.55± 0.03

mass bin no 0.968± 0.005 0.372± 0.007 1.016± 0.007 1.001± 0.005 1.34± 0.130
mass bin SRD 0.974± 0.005 0.362± 0.008 1.012± 0.008 1.002± 0.006 5.58± 0.043
mass bin (zMgII − z) 0.979± 0.005 0.349± 0.008 1.022± 0.008 0.996± 0.006 6.57± 0.042

4.2.4 Additional tests

Finally, we perform a series of tests for the mocks on the “mass bin" case with SRD
redshift smearing to study the impact of the ingredients of the model on the cosmological
parameters. In particular, we examine the following effects whose results are summarized
in table 4.4 :
— F ′′ : in the reference, F ′′ is fixed under the peak-background split assumption using

the ST mass function and the result of the fit using the PS mass function is the same.
When F ′′ is set free in the fit, small changes in the cosmological fit parameters are
observed and are compatible with the variations of the statistical errors. The nuisance
parameter σtot and its error are affected, suggesting a probable degeneracy with F ′′.
There is also an effect on the linear bias parameter with a shift ∆bσ8 = 0.037. We
therefore do not report any bias measurement in the final cosmological results for
this sample ; further investigations on the bias models and prescriptions are needed
for the final sample if we want to constrain the astrophysical properties of quasars
using bias measurement from full-shape analysis.

— σtot : When fixing σtot = 5.7h−1Mpc (i.e., the average value of the SRD resolu-
tion used to create the mocks), the cosmological parameters of the simulation are
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recovered and the precision on α‖ is improved by 30%. This result is achieved be-
cause, when fixing σtot = 5.7h−1Mpc, the small scale statistical power is available
for constraining α‖. Although this result should be viewed as a consistency check
only, it demonstrates that a better knowledge of the redshift precision is important
for the analysis of the full eBOSS quasar sample.

— rmin : Setting the lower bound of the fit range to rmin = 24 h−1Mpc instead of
16 h−1Mpc produces almost no variation of fσ8 and an effect on α‖ which is within
the statistical precision.

— σ2
shift : Adding a small constant shift to the CLPT predictions for the velocity disper-

sion to match the one observed in the OuterRim simulation in real space produces
no significant effect on the measured cosmological parameters. This constant shift
is much smaller than the redshift resolution uncertainties : σ2

shift = 3h−1.Mpc while
σ2
z ∼ 62 h−1.Mpc.

Table 4.3 – Comparison between different hypotheses on the cosmology : cosmology is
fixed to the input of Outer Rim (α‖ = α⊥ = 1.), isotropic case (α‖ = α⊥ = αiso), and
anisotropic case (α‖ and α⊥). Results are given for physical redshift smearing and for the
3-multipole analysis

config cosmology bσ8 fσ8 α‖ α⊥ σtot

mass bin Outer Rim 0.961± 0.005 0.370± 0.005 fixed fixed 6.40+0.26
−0.27

mass bin isotropic 0.966± 0.005 0.371± 0.006 αiso = 1.005± 0.005 – 6.44+0.28
−0.29

mass bin anisotropic 0.976± 0.005 0.355± 0.007 1.025± 0.008 0.994± 0.005 6.84+0.36
−0.36

HOD fsat = 13% Outer Rim 1.015± 0.001 0.368± 0.002 fixed fixed 6.50+0.82
−1.07

HOD fsat = 13% isotropic 1.022± 0.002 0.366± 0.002 αiso = 1.005± 0.001 - 6.37+0.89
−1.07

HOD fsat = 13% anisotropic 1.027± 0.002 0.351± 0.003 1.027± 0.002 0.994± 0.002 6.73+1.38
−1.44

HOD fsat = 0% Outer Rim 0.980± 0.001 0.363± 0.002 fixed fixed 6.05+1.07
−1.40

HOD fsat = 0% isotropic 0.999± 0.002 0.367± 0.002 αiso = 1.017± 0.001 - 6.08+1.10
−1.38

HOD fsat = 0% anisotropic 1.006± 0.002 0.355± 0.003 1.035± 0.003 1.010± 0.002 6.35+1.63
−1.73

HOD fsat = 25% Outer Rim 1.046± 0.001 0.376± 0.002 fixed fixed 6.48+0.72
−0.90

HOD fsat = 25% isotropic 1.050± 0.002 0.374± 0.002 αiso = 1.002± 0.001 - 6.39+0.77
−0.88

HOD fsat = 25% anisotropic 1.052± 0.002 0.360± 0.002 1.020± 0.002 0.990± 0.002 6.72+1.04
−1.14

Table 4.4 – Additional tests performed when varying hypotheses on the second order
bias parameter F ′′, on the total velocity dispersion σtot, and on the lower bound of the
fit range rmin. These tests are performed for the “mass bin" case with Gaussian redshift
smearing and for the multipole analysis.

config hypothesis bσ8 fσ8 α‖ α⊥ σtot

mass bin SRD ref : uses F ′′ = F ′′ST 0.971± 0.005 0.368± 0.006 1.011± 0.007 1.002± 0.005 5.60+0.38
−0.40

mass bin SRD F ′′ = F ′′PS 0.969± 0.005 0.369± 0.007 1.011± 0.007 1.003± 0.005 5.49+0.40
−0.42

mass bin SRD F ′′free = −3.461+1.803
−1.239 0.934± 0.009 0.376± 0.007 1.001± 0.007 1.000± 0.005 4.04+1.05

−1.12
mass bin SRD σtot = 5.7 h−1Mpc 0.969± 0.005 0.369± 0.007 1.019± 0.005 1.000± 0.005 fixed
mass bin SRD σshift 0.967± 0.005 0.370± 0.006 1.010± 0.006 1.003± 0.005 5.71+0.38

−0.40
mass bin SRD rmin = 24 h−1Mpc 0.948± 0.006 0.369± 0.007 0.998± 0.008 0.997± 0.005 5.18+0.93

−1.09

In light of this study, we conclude that the CLPT-GS model can be used for the
clustering analysis of the eBOSS quasar sample at 0.8 ≤ z ≤ 2.2 with overall systematic
errors due to the modeling of the full-shape anisotropic correlation function of :

∆fσ8 = 0.033 ∆α‖ = 0.038 ∆α⊥ = 0.006 (4.23)
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The systematic errors between the 3-multipole and 3-wedge methods are similar and the
errors reported are always the largest of the two possibilities. For the analysis of the final
eBOSS quasar sample, further work on improving the fidelity of the Outer Rim-based
mocks and understanding the difference in the bias models is needed. In particular, [32]
extended the CLPT-GS formalism to take into account contributions from Effective Field
Theory (EFT) and additional bias terms. They showed that the effects of the biasing
scheme are as important as higher-order corrections to the theoretical predictions. The-
refore it would be interesting to see how this model performs for the analysis of the final
eBOSS sample. Improvements in the model to account for the shape of the redshift error
distribution would also be valuable.

4.3 Observational systematics : study on EZ mocks

This section reviews the weighting scheme applied to the data to treat the potential
systematic effects. We denote the total weighting scheme by WX, where the subscript X
specifies the different methods to compute the total weight. With this notation, the total
weighting scheme used for the DR14 quasar BAO analysis [29] is :

Wnoz = wFKP · wphoto · (wcp + wnoz − 1) (4.24)

The first term, wFKP = 1/(1 + n̄(z)P0), is the FKP weight [33] that takes into account
the variations of the observed quasar density n(z) across the redshift range and depends
on the amplitude of the power spectrum at the scale at which the FKP weights optimize
the measurements (here we choose k = 0.14hMpc which is the typical scale at which the
BAO signal is well detected which gives P0 = 6× 103h−3Mpc3). The second term,wphoto,
is a photometry weight that corrects for the variation of the depth across the survey ; wcp,
is a weight that accounts for the quasar targets that could not be measured due to fiber
collision ; and wnoz is a weight that accounts for the confirmed quasars for which a secure
redshift could not be determined. We will show that the use of the redshift efficiency,
ε(x, y), across the focal plane as a weight, wfocal = 1/ε(x, y) is more appropriate than
wnoz. We adopt the following definition of the total weight Wfocal :

Wfocal = wFKP · wphoto · wcp · wfocal (4.25)

Each quasar in the DR14 catalog is thus weighted by Wfocal to correct for any spurious
variation of the quasar densities and to provide a more isotropic selection. For the random
catalog, we apply the FKP weight alone as it corresponds to a Poisson sampling which
should not be affected by inhomogeneities in the selection. In tests defined throughout the
following subsections, using the ability to test against unbiased samples, we will demons-
trate that this new weight reduces systematic effects on the quadrupole by a factor of three.
Furthermore, the region close to µ = 1 is responsible for the remaining systematic shift,
and we propose a method to take this into account. This latest weighting scheme, which
corresponds to the one we will adopt for the fitting of the data, is referred as Wfocal−µ.

4.3.1 Production of EZ mocks with synthetic observational features

In section 2.6.2, we listed some observational artefacts that can bias our measurements,
among them the fiber collisions that happen when objects are closer than 62′′ and the
spectroscopic completeness when redshifts have not been assigned although spectra have
been obtained.
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4.3 Observational systematics : study on EZ mocks

The probability of obtaining a reliable redshift from a spectrum depends on both
observational and instrumentation parameters affecting the S/N. When the redshift from
an identified quasar cannot be secured, the nearest quasar neighbour is marked such that
we can track redshift efficiency and study the weighting scheme to take this into account.
Here we extend the treatment applied in previous analyses and search for dependencies
with the position in the focal plane. The redshift efficiency or spectroscopic completeness
is defined as the ratio between the number of objects with a secured redshift to the number
of quasars that received a fiber :

ε = Ngood
N(wzf = 1) + 2 ·N(wzf = 2) (4.26)

with Ngood the number of quasars with robust redshift, and N(wzf = 1, 2 the number of
quasars without or with a neighbour with a redshift failure. This expression allows for the
calculation of the redshift efficiency from the released catalog. The variation of the redshift
efficiency for groups of fibers of the spectrographs is displayed in figure 4.10. We observe
a decrease in this probability near the side edges of the focal plane. The reason for this
behavior is that the light transmitted through fibers near the side-edges of the focal plane
arrives near the edges of the CCD, where the optical performance inside the spectrographs
is slightly degraded, leading to a larger point spread function and optical aberrations, as
already revealed in [34]. It confirms the findings of [11] that the quasar redshift efficiency
is lower at the edges of the two spectrographs. Furthermore, the efficiency of the first
spectrograph is found to be significantly lower for SGC observations. The variation of
redshift efficiency across the focal plane is shown in the bottom panels of Figure 4.10.
Regions with lower efficiency are at the left and right sides of the focal plane which
correspond to edges of the spectrographs.

To study these systematic effects, we use a more realistic set of EZ and QPM mocks
where the plate geometry of the actual survey is applied to retrieve coordinates in the
focal plane for each object ensuring that we imprint the same tile distribution of the data
in the mocks. From these coordinates, one can determine whether the object belongs to
a sector of overlapping regions, in case it does, the particle is randomly assigned to an
overlapping plate. The collision-pair effect is applied to particles within 62′′ and which both
fall into non-overlapping regions. One particle is removed and the other is up-weighted
(wcp weight). Redshift-failure effect is applied by assigning the plate coordinates (xfoc,yfoc)
to each particle in the mocks and a weight is applied on them by tracking the variation
of redshift efficiency across the focal plane shown in the bottom panel of figure 4.10. The
above procedure provides the possibility to tag objects in collision and to downsample
objects according to the redshift efficiency directly.

4.3.2 Spectroscopic completeness : impact of redshift failures

To study the impact of the spectroscopic completeness we use the special set of EZ
mocks that includes the redshift failures. Figure 4.11 shows the difference between the
measured correlation function to the correlation function without redshift failures and
fiber collisions (both estimated with the EZ mocks). For the quadrupole, using the up-
weighting of the nearest neighbor (Wnoz, red curves) yields a systematic shift of 8% at
large scales. An effect is also observed on the monopole but, at first order, it only affects
the bias determination. The hexadecapole displays a large effect, although the offset is well
within the statistical precision. Results on the fit parameters for the 1,000 EZ mocks are
summarized in table 4.5 and exhibit a large shift (e.g. ∆fσ8 = 0.105) for the 3-multipole
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Figure 4.10 – Top panel : Redshift efficiency as a function of the fiber number. The
vertical dotted line shows the delimitation between the 2 spectrographs. Bottom panels :
Redshift efficiency as a function of the focal plane coordinates for the NGC (middle panel)
and SGC (lower panel). The fiber number goes clockwise from 0 to 1000.
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case which exceeds even the statistical precision of our measurement. For the 3-wedge
analysis the shifts are smaller but still large w.r.t. our precision, especially on fσ8.

In the proposed modified weighting scheme the observed quasars are weighted by the
inverse of the efficiency calculated from the coordinates of the object in the focal plane.
The results are presented (Wfocal, green curves) in figure 4.11, which reveals a reduction of
a factor three of the effect on the quadrupole. As a consequence the average shift estimated
from the mocks is decreased to ∆fσ8 = 0.033 (resp. ∆fσ8 = 0.013) for the 3-multipole
(resp. 3-wedge) analysis. The parameters α‖ and α⊥ are also shifted by 0.02 in the case of
the 3-multipole analysis, probably as a consequence of the sensitivity of the hexadecapole
to these parameters.
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Figure 4.11 – Effect of the different weighting schemes on the correlation function mul-
tipole (left : monopole, middle : quadrupole, right : hexadecapole). Wnoz (red curves) :
upweighting of the nearest neighbour for redshift failures. Wfocal (green curves) : weight
according to the inverse of the spectroscopic efficiency. Wfocal−µ (blue curves) : same as
Wfocal but the µ > 1 − 1/480 region is removed as described in the text. The light-blue
shaded bands on the top plots represent the dispersion of the mocks. Bottom plots : diffe-
rence between each weighting scheme and the input ; the shaded bands represent a ±1%
effect for the monopole and the quadrupole and a ±10% for the hexadecapole.

4.3.3 Finite size of fibers : Impact of close-pairs

In previous analyses, unmeasured targets due to fiber collision are corrected by increa-
sing by one unit the weight of the identified quasar in the collision group. This approach
means that any target within 62" of a measured quasar will be displaced along the LOS
and brought to the position of the measured quasar. This action inevitably creates a lack
of objects at all scales and at µ ' 1 and hence will affect the correlation function evalua-
tion. In their measurement of fσ8 at small scales where the effect of collisions is large,
[35] redefined the correlation function multipoles by excluding the region above a given
threshold µs(s) depending on the separation s and defined by the minimum angular dis-
tance between two objects (62′′). Here we adopt a similar approach, but for simplicity we
recalculate the value of the correlation function for the last µ-bin in the same manner for
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Table 4.5 – Effect on the EZ mocks of the different weighting schemes to mitigate syste-
matic effects arising from spectroscopic completeness and fiber collisions. The values and
the errors are obtained from 1000 realisations. The reference is given by the same set of
mocks but where neither fiber collisions nor spectroscopic completeness are considered.

3-multipole fσ8 (∆fσ8) α‖ (∆α‖) α⊥ (∆α⊥)
reference 0.3733±0.0022 0.9950±0.0023 0.9926±0.0020
Wnoz +0.1050 -0.0522 0.0559
Wfocal +0.0338 -0.0169 +0.0184
Wfocal−µ -0.0003 +0.0009 -0.0007
3-wedge fσ8 (∆fσ8) α‖ (∆α‖) α⊥ (∆α⊥)
reference 0.3784±0.0031 0.9966±0.0028 0.9963± 0.0025
Wnoz 0.0424 -0.0086 0.0158
Wfocal 0.0130 -0.0007 0.0050
Wfocal−µ -0.0004 0.0029 -0.0003

Table 4.6 – eBOSS DR14 quasar sample : Effect on the data of the different weighting
schemes obtained from the 3-multipole and 3-wedge analyses. Differences are calculated
w.r.t. the Wfocal−µ case and a given in parentheses.

3-multipole fσ8 α‖ α⊥
Wnoz 0.436+0.071

−0.072 0.999+0.078
−0.070 1.031+0.050

−0.048
(0.024) (−0.015) (0.006)

Wfocal 0.426+0.070
−0.070 1.014+0.070

−0.063 1.030+0.050
−0.048

(0.014) (0.000) (0.005)
Wfocal−µ 0.412+0.069

−0.070 1.014+0.070
−0.062 1.025+0.049

−0.048
− − −

3-wedge fσ8 α‖ α⊥
Wnoz 0.343+0.084

−0.088 1.089+0.141
−0.097 1.008+0.053

−0.053
(−0.021) (0.035) (−0.006)

Wfocal 0.365+0.082
−0.083 1.064+0.107

−0.081 1.015+0.052
−0.052

(0.001) (0.010) (0.001)
Wfocal−µ 0.364+0.081

−0.081 1.054+0.101
−0.078 1.014+0.052

−0.052
− − −

all bins in separation.
At z ' 1.5, a 62′′ radius exclusion corresponds to 0.54 Mpc ; when considering scales

larger than 20 h−1Mpc, we observed that pairs for which 1− 1
480 < µ < 1 are affected by

the upweighting due to close pairs. Since we use 30 µ bins in our analysis, the affected
orientation correspond to 1/16 of the last µ bin. To mitigate this effect, we discard the
paircounts in this region and rescale the counts of the last µ bin by 16/15.

The results obtained after this correction was applied to the EZ mocks are shown as
the blue curves of figure 4.11. With this method, for scales larger than 15 h−1Mpc, the true
quadrupole is recovered to an accuracy better than 1%, and no systematic behaviour is
found on the monopole. The result on the cosmological parameters extracted from the fit of
the 1000 EZ mocks with our model are in agreement with the reference with ∆fσ8 < 0.001,
∆α‖ < 0.003 and ∆α⊥ < 0.001. This method allows for a mitigation of the effect of fiber
collisions and redshift efficiency variations across the focal plane at the level where it will
not be a limitation even when the full eBOSS quasar sample will be available.
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Thanks to the improved treatment of redshift failures and close pairs, we report no
observational systematics for the analysis in configuration space presented in [1]. The
systematic budget thus comes from the modelling systematics only which represents about
half of the statistical precision.

4.4 Study of systematics on data

4.4.1 Weighting scheme

The different weighting schemes are also applied on the data and the fits results are
given in table 4.6. The differences in the fits between the weighting schemes are found to
be smaller than in the mocks. The largest differences between favored schemes Wfocal−µ
and Wfocal are ∆fσ8 = 0.014 and ∆α‖ = 0.010 ; these differences represent only 20% of
the statistical precision. From the distribution of differences in the mocks what is observed
in the data is not unusual, although an alternative explanation is that the effect of close
pairs and redshift failures is somehow magnified in our improved set of EZ mocks. In the
following we use Wfocal−µ weighting scheme as our reference. For consistency with other
analyses which do not employ this weighting scheme we will also present the results for
the case Wfocal .

4.4.2 Imaging : impact of photometric weights

The impact of the inhomogeneity of the quasar target selection on the observed eBOSS
quasar density was first studied by [11] using the first year of eBOSS observations. Follo-
wing the approach of [36, 37, 38] for BOSS analyses, they introduced a photometric weight
wphoto according to the 5-σ detection in magnitude for a point source, also called depth.
For a point-like SDSS source, its mean value for the g-band (resp. r-band) is g = 23.1 (reso.
r = 22.7). Variations in the quality of the SDSS photometry yields angular variations of
the depth that can reach ±0.8 magnitudes, so some sources can be at the limit of the 5-σ
detection. For each filter, the depth can be defined as follows :

m5σ = −2.5 log(AS
√

Φsky100.4kAirmass)−mext (4.27)

where S is the full width at half maximum of the point-source function (also called seeing),
Φsky is the observed sky flux without point-like sources, Airmass is the air density column
and −mext is the correction that needs to be applied on magnitudes from absorption and
dust due to the Galactic extinction. The quantities A and k depend on the filter u,g,r,i,z.
[11] showed that quasars are more securely identified where the depth is high and Galactic
extinction is the variable that has been found to be the most sensitive to differences in
depth between the NGC and SGC, so the photometric weights for the DR14 sample have
been computed with separate correction for each Galactic cap. By studying the variation
of the observed quasar density as a function of depth which contains the dependence on
airmass, seeing and Galactic extinction, one can compute photometric weights based on
linear fits according to the dependency with the depth. These weights actually mitigate
the systematic errors in the evaluation of the correlation function induced by the variation
of the depth across the footprint. It corresponds to the grey squares in figure 4.12 which
represents the number density of the DR14 quasar sample after correction as a function
of various observational systematics. The dashed red curve is the number density of the
DR14 quasar sample before correction, we can see that weighting for depth and Galactic
extinction removes correlations with other potential systematic quantities.
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Figure 4.12 – Relationship between the number density of the DR14 quasar sample
and various observational systematics before (dashed red curves) and after (grey squares)
correction applied on the depth and the Galactic extinction. The results that are shown
are a combination of the NGC and SGC.
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We first determine the dependency with depth and then with Galactic extinction, after
applying the weights for depth. The total photometric weight is the multiplication of these
two effects :

wphoto = 1
(Ad + dBd)(Ae + eBe)

(4.28)

where d is the g-band depth and e is the Galactic extinction. The best-fit coefficients are :

cap Ad Bd Ae Be
NGC −3.52 0.195 1.045 −2.01
SGC −6.20 0.310 1.052 −1.00

The impact of the photometric weights on the clustering statistics is shown in fi-
gure 4.13. The top panel represents the distribution of photometric systematic weights
computed for both Galactic caps, and for the two regions of the SGC separately ; the
spread of weights is much larger for the SGC. By computing the photometric weights in
each cap separetely, we can correct for the variation in targeting efficiency due to dif-
ferences in imaging properties. As explained in [39] due to better observing conditions,
we expect the target selection to be more efficient in the NGC. The bottom panels of
figure 4.13 show the impact of the photometric weights on the correlation function for the
NGC (left panel) and SGC (right panel). The effect of weights on the correlation function
is almost constant across the range of separation considered for this analysis. The effect
on the correlation function for wedges in µ is similar for all wedges ; as a consequence,
the effects on the quadrupole and on the hexadecapole are small although some spread is
observed in the correction for the SGC. As observed in [11], the effect on the monopole is
much larger for the SGC than for the NGC, but the corrected correlation function shows
no remaining systematics within the current precision (e.g., the top panel of Figure 5.1 in
the next section).

Additional tests were conducted on the WISE photometry which also enters the target
selection algorithm. We used the method developed in [40] to estimate the weights from
the linear regression of the target density w.r.t. the photometric parameters including
WISE, and no significant effect was observed. Moreover, the regions where there is some
contamination from the moon (mostly in the SGC) were removed ; this deletion produced
no impact on our results.

4.4.3 Redshift estimates

As explained in section 2.5, we can use three redshift estimates to measure the clus-
tering of the DR14 quasar sample. We adopt the redshift z as the reference throughout
this analysis and compare its results with catalogs where the redshift is taken to be zMgII
(resp. zPCA) whenever it is available (i.e. 80% of the time) and z otherwise such that these
catalogs have the same objects.

The results in table 4.7 are consistent within 1σ, although the results from zPCA exhibit
a stronger deviation than zMgII. This behaviour could be an argument in favor of the
astrophysical motivations to use MgII-based redshift, since it is supposed to be the more
systematics-free redshift estimate, but further investigation on the reliability of the MgII
line across our entire redshift range is required before stating firm conclusions. In addition,
these measurements that use redshift estimates should not be considered as independent,
and because we lack equivalent different redshift estimates for mocks we cannot simply
combine the redshifts.

Differences in clustering between zMgII (resp. zPCA) w.r.t z can be compared to the
dispersion due to different realizations of the same mock for a given distribution of redshift
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Figure 4.13 – Top panel : Distribution of the photometric weights applied to the data to
correct for inhomogeneity in the depth of the photometric sample used at the targeting
stage. Bottom panels : effect of photometric weights on the monopole, quadrupole and
wedges of the correlation function for the NGC (left) and SGC (right). Note that the
correlation function is not multiplied by s on these plots.
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uncertainties. For a specific OuterRim mock catalog, we can draw several realizations of
a given redshift smearing on the same mock. We investgate the case with 13% satellite
fraction and with a Gaussian SRD distribution for redshift uncertainties since it is the
closest configuration to the data and we draw 30 different realizations of the same smearing.
We then examine the dispersion on the Legendre multipoles ` = 0, 2, 4 and wedges which
corresponds to the grey envelope in figure 4.14 for the three multipoles and in figure 4.15
for the three wedges. The differences in clustering using different redshift estimates lie
within the dispersion expected from statistically independent redshift smearing and they
do not show any systematic trend. We conclude that differences between the results of
the fit with the different redshift estimates are due to statistics and we do not quote an
additional systematic uncertainty.

4.4.4 Additional tests

Table 4.7 summarizes the different tests we perform on data to compare to the reference
and to study the robustness of our measurements. In particular, we review at the following
effects :

— Isotropic analysis : As a consistency check, using αiso ' α1/3
‖ α

2/3
⊥ with the reference

values from the anisotropic fitting of the three multipoles for instance for α‖ and α⊥,
we compute αiso = 1.021 ± 0.057, which matches well the result from the isotropic
fit. The effect on fσ8 is also consistent, and no significant shift is reported.

— Fixing the fiducial cosmology produces consistent results with the anisotropic
and isotropic cases, and as expected given the degeneracy between the AP parameters
and fσ8, this approach provides a better constraint on fσ8. However, if one wishes
to constrain modified gravity models based on different assumptions than the one
of ΛCDM-GR for structure formation, one must use the results obtained by the full
anisotropic clustering using AP parameters.

— Effect of covariance matrix : There is no significant effect on the cosmological
parameters fσ8, α‖ and α⊥ when using the covariance matrix from the 400 QPM
mocks instead of the 1,000 EZ mocks.

— Effect of redshift resolution : When fixing σtot to the best-fitting values, the
precision on α‖ is improved by 30% as seen in tests on the Outer Rim catalogs. This
results provides clear motivation to improve our knowledge of the redshift uncertainty
for future quasar samples.

— Effect of F ′′ prescription : as shown in the model, there is no significant difference
on the fitted cosmological parameters when using PS mass function instead of ST.
We do not report any result when letting F ′′ free because we are not sufficiently
sensitive to this parameter to derive useful constraints. In addition, since F ′′ accounts
for non-linearities in the bias model at small scales, it may be degenerate with σtot.

The fits are also performed on the two Galactic caps separately whose results are given
at the end of table 4.7 for the 3-multipole and 3-wedge fits. The fit parameters are in agree-
ment, although the χ2 of the fit of the SGC using 3-multipole reaches χ2 = 55.0(d.o.f = 40).
We conducted extensive tests in order to isolate a potential source for this effect. This in-
crease in χ2 has been located in the δ > 10 deg area of the SGC which is the region where
the spread of the photometric weights distribution is the greatest. After removing regions
of extreme values of the systematic weights, with moon contamination in WISE photome-
try, or regions of high Galactic extinction, no obvious source could be identified so we kept
those regions in the analysis. Figure 4.16 compares the χ2 on the data in each cap (dashed
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Chapitre 4 : Study of potential systematics

Figure 4.14 – Right panel : Monopole (top), quadrupole (middle) and hexadecapole
(bottom) for z (blue), zMgII (green) and zPCA (red). Left panel : Difference ξzMgII − ξz and
ξzPCA − ξz divided by the error using EZ mocks, compared to the dispersion of 30 reali-
zations for the same mock with a Gaussian redshift uncertainties distribution according
to to the SRD for the Legendre multipoles ` = 0, 2, 4. The differences in clustering are
consistent with the expected dispersion from statistically independent redshift smearing.
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4.4 Study of systematics on data

Figure 4.15 – Right panel : Wedge 0 < µ < 1/3 (top), wedge 1/3 < µ < 2/3 (middle)
and wedge 2/3 < µ < 1 (bottom) for z (blue), zMgII (green) and zPCA (red). Left panel :
Difference ξzMgII − ξz and ξzPCA − ξz divided by the error using EZ mocks, compared to
the dispersion of 30 realizations for the same mock with a Gaussian redshift uncertainties
distribution according to to the SRD for the three wedges. The differences in clustering are
consistent with the expected dispersion from statistically independent redshift smearing.
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Figure 4.16 – Distribrution of the χ2(d.o.f = 40) of the fits of the 1000 EZ mocks per
Galactic cap (solid line) and comparison with the χ2 obtained from the data (dashed line).
Left : for 3-multipole. Right : for 3-wedge. The χ2 on the data are found to be within the
distribution of the EZ mocks, even for the χ2 in the SGC (blue dashed line) which is larger
for the 3-multipole analysis. Results on each cap thus represent a statistical realization of
the EZ mocks.

line) with the χ2 distribution obtained for the results of the 1,000 EZ mocks (solid) by
cap (NGC in red and SGC in blue) for the 3-multipole (top panel) and 3-wedge (bottom
panel) fits. As described in Section 4.1.2, the NGC and SGC EZ mocks are created from
separate simulations whose bias parameters have been adjusted on the observed DR14
eBOSS quasar clustering on each cap directly. It is clearly visible in figure 4.16 that the χ2

in the SGC (blue dashed) for the 3-multipole analysis is large but not unusual compared
to the EZ mocks distribution.

Summary
We demonstrate the applicability of the CLPT-GS model for dark matter halos of masses
of the order of 1012.5M� hosting eBOSS quasar tracers at mean redshift z ' 1.5. In order
to estimate the systematic error budget related to the RSD modeling, we use the N-body
Outer Rim simulation to test the predictions of CLPT in real space and then evaluate
the performance of the model in redshift space using a hundred mock catalogs created
for that purpose. We also propose to move beyond the traditional weighting scheme that
was used for BOSS galaxies and the BAO measurement with the DR14 sample to account
for redshift failures and close-pairs. We validate the procedure on a thousand EZ mock
catalogs. This approach allows the observational systematics to be much smaller than the
current statistical precision. In the light of the study of potential systematics performed on
both synthetic mock catalogs and the data sample, all the tests provide compatible results,
suggesting that none of the options we tested affects our estimate of the uncertainty on
our cosmological parameters or bias our results by more than 1σ, within statistics.
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Clustering measurements of the
eBOSS DR14 quasar sample
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In this chapter, section 5.1 presents the main results of this thesis work, which have been
published in [1], and their consistency in configuration space between different methods
using the same RSD model and fitting conditions. Then, section 5.2 examines the consis-
tency between this work and the other analyses using the eBOSS DR14 quasar sample,
both for anisotropic measurements from the full-shape analysis and the isotropic BAO
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Table 5.1 – Results for the anisotropic full-shape analysis
type config bσ8 fσ8 αpar αperp σtot χ2/dof

3-multipole NGC+SGC 1.038+0.060
−0.057 0.426+0.070

−0.070 1.012+0.071
−0.064 1.031+0.050

−0.048 5.94+1.19
−1.40 42.9/(45− 5)

3-wedge NGC+SGC 1.068+0.066
−0.062 0.363+0.082

−0.081 1.054+0.102
−0.078 1.013+0.052

−0.052 6.10+1.57
−1.73 37.5/(45− 5)

measurement presented in [2]. In section 5.3 we propose to combine our measurements
in configuration space with our companion paper in Fourier space [3] as an illustrative
example of the methodology to combine results from the same data sample and of the
gain we can expect on the achievable precision for cosmological parameters. Eventualy, in
section 5.4, we compare our configuration space measurements of the cosmic expansion,
the growth of structure and the linear bias to previous studies.

5.1 Configuration space measurements

5.1.1 Consistency between 3-multipole and 3-multipole

The correlation function multipoles and wedges of the eBOSS DR14 quasar sample
with the weighting scheme Wfocal−µ and the CLPT-GS model with parameters set to the
best-fitting values are presented in figure 5.1. As mentioned previously, the error bars
shown in the figure correspond to the diagonal elements of the inverse of the covariance
matrix of the EZ mocks NGC+SGC using the same weighting scheme. The top panel
represents the three Legendre multipoles used in this analysis and the botton panel the
three wedges. The reference results for both analyses are displayed in table 5.1.

Legendre multipoles and wedges are just two decompositions of the same information,
we thus expect both to be compatible and to provide similar uncertainty in the cosmolo-
gical parameters. When analyzing the data under the same conditions (same RSD model,
same fitting range, same covariance matrix), we confirm this behavior. The differences
observed between the two methods are within one standard deviation, however the de-
composition into Legendre multipoles provides the cosmological measurements with the
best statistical precision. As a consequence, the constraints on fσ8, H and DA are obtai-
ned from the 3-multipole results. Indeed, their performance can be compared using the EZ
mocks : we can check where the results of the fitting of the data sample stand compared
to the dispersion of the results on the mocks. This is what figure 5.2 shows along with the
measurements obtained from the data for the three redshift estimates (’z’,’zPCA’,’zMgII’),
for the best-fitting values on the cosmological parameters (top panel) and for the 1σ un-
certainty (bottom panel).

For the redshift estimate ’z’, the results obtained from the data are similar w.r.t the
distribution of the 1000 mocks. For the other redshift estimates, the results from the
data deviate further from the spread of the mocks but one should bear in mind that the
statistical uncertainty for these measurements can be much larger in the case of the 3-
wedge analysis (see table 4.7). This behaviour is confirmed using the measurement of the
uncertainties for the EZ mocks displayed in the bottom row of figure 5.2. The uncertainty
in α‖ obtained with the 3-wedge approach when considering the redshift estimate ’z’ is
already shifted from the highest density region obtained from the mocks.

Figure 5.3 displays the likelihood contours with 68% and 95% confidence intervals of
the reference results for a selection of pairs of parameters and for the two analyses using
3-multipole (orange) and 3-wedge (purple). We can see an important correlation between
α‖ and bσ8 which is consistent with the findings on the Outer Rim catalogs and on the

196



5.1 Configuration space measurements

Figure 5.1 – Top panel : Monopole (blue) and quadrupole (red) and hexadecapole (green)
of correlation function of the NGC+SGC eBOSS DR14 quasar sample fitted using the
CLPT-GS model (dashed line) set to the best-fit parameters. Bottom panel : Same for the
three wedges : 0< µ <1/3 (blue), 1/3< µ <2/3 (red) and 2/3< µ <1 (green).The fit is
performed from 16 h−1Mpc to 136 h−1Mpc using binwidth of 8 h−1Mpc. The covariance
matrices are determined from the EZ mocks with a correction to equalize small differences
in area between the footprint of the EZ mocks and the one of the data sample.
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Figure 5.2 – Upper row : comparison between the 3-multipole and 3-wedge results on the
cosmological parameters for the 3 redshift estimates and for the 1,000 EZ mocks. Bottom
row : comparison of the uncertainties obtained for the two methods. Although one can note
some differences between the 2 methods, they are consistently explained by the expected
statistics.
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Figure 5.3 – Two-dimensional likelihood contours, showing the 68% (darker regions) and
95% (lighter regions) confidence intervals for various combinations of the parameters ob-
tained from the anisotropic fit using 3-wedge (blue), 3-multipole (orange) and 2-multipole
(green).
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Table 5.2 – Results of the best fit parameters, and the statistical and systematical un-
certainties for the 3-multipole analysis. The lower table shows the correlation coefficient
between the 5 parameters in the RSD modeling.

parameter best fit statistical systematic
bσ8 1.038 +0.060

−0.057 –
fσ8 0.426 +0.070

−0.070 0.033
αpar 1.012 +0.071

−0.064 0.038
αperp 1.031 +0.050

−0.048 0.006
σtot 5.94 +1.19

−1.40 –

α‖ α⊥ bσ8 fσ8 σtot
α‖ 1 -0.05 0.70 -0.38 0.68
α⊥ 1 0.42 0.58 -0.15
bσ8 1 -0.33 0.18
fσ8 1 0.06
σtot 1

data when performing tests on the bias prescription. We also see a significant correlation
between α‖ and σtot which is consistent with the improvement of the precision on α‖
when fixing the redshift resolution in the fitting. The degeneracy between fσ8 and the
AP parameters demonstrates the importance of fitting them jointly in order to provide a
measurement of the growth rate of structure independent of the fiducial cosmology. The
green contours also show the results using the 2-multipole (without ` = 4) to illustrate
the sensitivity of the hexadecapole to the cosmological parameters. It highlights what we
already found with the Outer Rim simulation : the hexadecapole is mostly sensitive to the
variations of the geometrical parameters α‖ and α⊥. Adding this higher-order multipole
in the fitting thus contributes to break the degeneracy between the growth rate and the
AP parameters.

Finally, we conclude that the differences observed between the two methods are consis-
tently explained by the expected statistics, and we consider the 3-multipole analysis as the
results of this work. In Table 6.2, we summarize the results of this work and the correlation
between the five parameters obtained from the 3-multipole analysis.

The measured dilation of scales using the eBOSS DR14 quasar sample, α‖ and α⊥,
can be converted into cosmological parameters according to equations 4.10. We measured
the expansion rate H(z) and the angular diameter distance DA(z) :

H(zeff) · rs(zd) = 23.5+1.7
−1.9 103 km.s−1 (5.1)

DA(zeff)/rs(zd) = 12.58+0.61
−0.78 (5.2)

where rs(zd) is the comoving sound horizon at the end of the baryon drag epoch. In the case
of the isotropic analysis, we measure : αiso = 1.021+0.046

−0.044. This isotropic shift of the BAO
feature can be converted into the spherically averaged distance DV using equation 4.11 :

DV (zeff = 1.52)/rs(zd) = 26.8± 1.1 (5.3)

where all the quoted uncertainties include systematic and statistical contributions which
are added in quadrature.
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5.1.2 Consistency between single and multiple redshift bins

The results presented above have been obtained at the effective redshift of the quasar
sample zeff = 1.52. However, this sample covers a wide redshift range probing different
epochs of the universe. We thus expect a significant evolution with redshift of the fitting
parameters, such as the bias and the redshift uncertainty, but also the growth rate. It
means that the analyses that are performed at an effective redshift inevitably lead to loss
of information while constraining the evolution of cosmological parameters with redshift
will better constrain potential deviations from the standard cosmological model.

Therefore, the approach we adopt here is to split the sample into two distinct redshift
bins with similar effective volume and redo the same analysis in each redshift bin :

name redshift range zeff Veff [Gpc3]
lowz 0.8 ≤ z ≤ 1.5 1.19 0.126
highz 1.5 ≤ z ≤ 2.2 1.82 0.119

Figure 5.4 shows the three Legendre multipoles of the correlation function, monopole
(left panel), quadrupole (middle panel) and hexadecapole (right panel), for the two red-
shift bins, lowz in blue and highz in red. The solid lines show the CLPT-GS model with
parameters set to the best-fitting values.

For the monopole, the effect is mostly visible at small scales where the amplitude of the
correlation function increases with redshift. Although the linear theory is no longer valid at
these small scales, we remind the Kaiser formula for the monopole which is proportional
to (bσ8)2 + 2/3bσ8 fσ8 + 1/5(fσ8)2. It gives some intuition on the dependency of the
monopole to bσ8, which is a slightly increasing function with redshift, and fσ8 which is
a decreasing function with redshift (b and f may have a strong increasing dependence
with redshift but σ8 decreases with redshift which counterbalances their effect). The bias
contribution is the dominant effect on the monopole so the global effect is an increase of
the amplitude of the monopole.

The Kaiser formula for the quadrupole is proportional to 4/3bσ8 fσ8+4/7(fσ8)2 where
the dominant dependency is with fσ8 which decreases with redshift. We thus expect the
overall absolute amplitude of the quadrupole to decrease with redshift as seen in the data
and the best-fitting model. However, another significant effect which has already been
highlighted is the impact of redshift uncertainty which is encoded by the fitting parame-
ter σtot 1. We expect the redshift uncertainties to increase with redshift as higher redshift
quasars have spectra with lower signal-to-noise ration, making the determination of red-
shift noisier. We also showed in that it depends on the redshift estimate and comparison
between different redshift estimates lead to the Gaussian modeling for the redshift uncer-
tainty distribution given by equation 2.7. Therefore, the highz bin has a significant higher
mean redshift uncertainty that causes the increase of the amplitude of the quadrupole at
small scales.

For the hexadecapole, the Kaiser formula is proportional to (fσ8)2 with no bias contri-
bution at large scales. Figure 4.8 also shows that the hexadecapole is mostly sensitive to
the AP parameters. Both can have an impact on the redshift evolution, however given the
statistical uncertainties that are large, we see no particular trend with redshift.

Table 5.3 presents the results of the fitting of the Legendre multipoles in the three
redshift bins. We adopt the same prior on α‖,⊥ as in [3] in order to avoid secondary
minima which could happen when fitting subsamples with smaller volumes. However, we

1. It also includes the intra-halo velocity dispersion related to the FoG effect but we showed in sec-
tion 4.2.3 that it is sub-dominant in our fitting range
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Figure 5.4 – Correlation function monopole (left panel), quadrupole (middle panel) and
hexadecapole (right panel) for the two redshift bins of the eBOSS DR14 quasar sample :
lowz in blue and highz in red. The solid lines represent the CLPT-GS model with para-
meters set to the best fitting values and the error bars are the diagonal elements of the
inverse of the covariance matrix obtained from the 1,000 EZ mocks NGC+SGC.
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Table 5.3 – Results for the anisotropic full-shape analysis
type config bσ8 fσ8 αpar αperp σtotorP χ2/dof

CF lowz 0.893+0.073
−0.067 0.398+0.093

−0.088 1.041+0.082
−0.070 1.048+0.091

−0.078 4.24+1.82
−3.44 40/(45− 5)

0.894+0.072
−0.068 0.398+0.092

−0.087 1.042+0.062
−0.056 1.048+0.084

−0.074 4.24 (fixed) 40/(45− 5)
highz 1.238+0.118

−0.109 0.490+0.121
−0.124 1.091+0.139

−0.120 1.045+0.069
−0.060 9.50+1.79

−1.63 47/(45− 5)
1.237+0.100

−0.091 0.489+0.120
−0.120 1.091+0.077

−0.066 1.044+0.070
−0.059 9.50 (fixed) 47/(45− 5)

PS lowz 0.900± 0.056 0.440± 0.087 0.994± 0.075 1.027± 0.075 4.11± 0.58 71/(84− 7)
highz 0.947± 0.077 0.468± 0.091 0.980± 0.130 1.039± 0.067 6.38± 0.77 99/(84− 7)

Table 5.4 – Cosmological measurements obtained from the analysis of the two redshift
bins and from the full redshift range.

config zeff fσ8 H(zeff) · rs(zd)× 103 DA(zeff)/rs(zd)
lowz 1.19 0.398+0.093

−0.088 19.1+1.4
−1.4 12.46+1.12

−1.10
highz 1.82 0.490+0.121

−0.124 25.3+3.1
−2.9 12.64+1.19

−0.80
full 1.52 0.426± 0.077 23.5+1.7

−1.9 12.58+0.61
−0.78

also checked that when fitting with the same priors as the one given in table 4.1.1, we get
the same results. Our results are compatible with those from the power spectrum analysis
of the same sample [3] within one standard deviation.

config parameter prior
lowz α‖ flat prior, range (0.5,1.5)

α⊥ flat prior, range (0.5,1.5)
highz α‖ flat prior, range (0.7,1.7)

α⊥ flat prior, range (0.8,1.2)

As expected, σtot shows indicates a redshift evolution across the redshift range but in
general for all parameters, the statistical uncertainty is too large to claim a significant
redshift dependence. Moreover, as mentioned before, for fσ8 and bσ8 there is a counterba-
lance between the behavior of f (or b) with redshift and the one of σ8. [3] also investigated
the redshift evolution of the parameters across three redshift bins and also reported no
significant redshift-dependence on the cosmological parameters given the current statisti-
cal precision. When fixing the redshift resolution to the best-fit value, we found that it
improves the statistical precision on α‖ by almost a factor 2 for the highz bin. It sup-
ports the conclusion we found when fitting the full redshift range that understanding the
spectroscopic redshift resolution of the quasar sample is necessary to reach the expected
precision on the cosmological parameters.

We derive the cosmological constraints on H(zeff) · rs(zd) and DA(zeff)/rs(zd) from the
clustering measurements presented in table 5.3. The cosmological parameters obtained
from the analysis of the two redshift bins and from the full redshift range are summarized
in table 5.4. Although splitting the data sample into redshift bins allows us to measure the
redshift evolution of the fitting parameters, the procedure is computationnally expensive
and most of all, we loose some statistical precision compared to the full redshift bin.

An alternative method that avoids binning has been developped in [4] for BAO parame-
ters and more recently adapted for RSD in [5]. Both validated their methods using mocks
[6, 7]. They use a parametrization for the redshift evolution of the cosmological parameters
using redshift weights, more details on the technique are provided in section 5.2.1.2.
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Table 5.5 – Clustering analyses of the eBOSS DR14 quasar sample

reference observables redshift range fitting range
Full-shape analysis

[1] ξl=0,2,4 zeff = 1.52 16-138 h−1Mpc
[8] ξl=0,2,4 zeff = 1.52 16-160 h−1Mpc
[3] Pl=0,2,4 zeff = 1.52 0.02-0.3 hMpc−1

[9] Pl=0,2 redshift-weight 0.001-0.3 hMpc−1

[10] Pl=0,2 redshift-weight 0.02-0.3 hMpc−1

BAO-only analysis
eBOSS BAO ξ0+P0 zeff = 1.52 –

[11] P0 redshift-weight –
[12] P0 redshift-weight –

5.2 Consistency with other measurements with the DR14
sample

Our study complements the measurement of the BAO feature presented in Ata et al.
[2] and is accompanied by five companion papers for full-shape analysis and two papers on
BAO-only analysis. All studies are using the same DR14 quasar sample that is analysed
under the same fiducial cosmology. Table 5.5 summarizes each reference, the observables
in redshift space, the redshift range (effective redshift or a redshift-weighting technique to
probe the redshift evolution of the cosmological parameters across the redshift range) and
the fitting range.

First, we will present the consistency between the standard RSD analyses at the effec-
tive redshift of the sample zeff = 1.52 [1, 8, 3], then we will explain the redshift-weighting
technique and how it compares with the approach using multiple redshift bins. Finally
we will show the consensus among all the full-shape analyses of the eBOSS DR14 quasar
sample.
Regarding the two additional BAO analyses, presented in [12, 11] and which complement
the measurement of the spherically-averaged distance presented in [2], we will not present
the consistency between the two methods but their comparison to [2] can be found in each
paper.

5.2.1 Consistency between full-shape analyses

5.2.1.1 Comparison between standard analyses

The clustering analysis presented in this paper is based on the eBOSS DR14 quasar
sample in the redshift range 0.8 ≤ z ≤ 2.2, using Legendre multipoles with ` = 0, 2, 4 and
three wedges of the correlation function on the s-range from 16 h−1Mpc to 138 h−1Mpc.
We use the CLPT predictions to take into account the non-linear evolution of the density
and velocity fields with a Gaussian streaming model to perform the real-to-redshift space
mapping. We find consistent results between the two methods although in our case the
Legendre multipoles basis decomposition provides the cosmological measurements with
the best statistical precision. So we use the constraints on the cosmological parameters
obtained using the 3-multipole fit as our reference results which yield constraints on the
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cosmological parameters fσ8(zeff),H(zeff), andDA(zeff) at the effective redshift zeff = 1.52.
Our companion paper in Fourier space [3] uses the power spectrum monopole, quadru-

pole and hexadecapole measurements on the k-range, 0.02 ≤ k [hMpc−1] ≤ 0.30, shifting
the centres of k-bins by fractions of 1/4 of the bin size and averaging the four derived
likelihoods. Their RSD modeling is based on the TNS model described in section 3.4.2
and the non-linear power spectra Pδδ, Pδθ and Pθθ are computed using the 2-loop resumed
perturbation theory [13]. Their bias modeling includes 2 Eulerian bias parameters (linear
and non-linear) and 2 non-local bias parameters that can be fixed when assuming a local
bias in Lagrangian space.

[8] perform an analysis using Legendre polynomials with order ` = 0, 2, 4 and clustering
wedges in configuration space as the work presented in this thesis. However, the fitting
range extends to 160 h−1Mpc and the RSD modeling is based on the power spectrum
which they Fourier transform to obtain predictions for the two-point correlation function.
They use a dispersion model extended to one-loop contribution developed by [14] and [15]
along with a non-Gaussian FoG term such that :

P (k, µ) = Pnonlin(k, µ)FFoG(k, µ) e−(kµσzerr)2 (5.4)

where Pnonlin(k, µ) is a non-linear extension of the Kaiser formula where Pδδ, Pδθ and
Pθθ are computed using the 2-loop renormalized perturbation theory including Galilean
invariances of the equations of motion (gRPT, Crocce, Blas and Scoccimarro in prep) and
Pnonlin(k, µ) also includes contribution from the tree-level bispectrum (3-point statistics)
and a quadratic linear theory power spectrum term. Their bias is modelled as described
in [16], which includes both local and non-local contribution as the model used in [3]. As
in [14], they model the effect of random motions on small-scales that give rise to the FoG
effect by considering an exponential distribution :

FFoG(k, µ) = 1√
1 + f2µ2k2a2

vir

exp
(
−f2µ2k2σ2

v

1 + f2µ2k2a2
vir

)
(5.5)

where avir is treated as a free parameter and represents the kurtosis of the velocity dis-
tribution at small scales while the dispersion velocity σv is obtained from linear theory
prediciton and treated as a constant with scale. Finally, the exponential term accounts for
the redshift uncertainty in the quasar sample with a free parameter, σzerr.

All the companion analyses use the weighting scheme based on Wfocal with a weight
according to the inverse of the spectroscopic efficiency. In our work, we also discard the
paircounts in the region µ > (1 − 1/480) to account for the effect of upweighting due
to close pairs (Wfocal−µ). [3] report an observational systematic estimated from the EZ
mocks using different weighting schemes that they add in quadrature to the statistical
and modeling uncertainties. Figure 5.5 presents a comparison of the two-dimensional and
one-dimensional posterior distribution of b1σ8, fσ8, DA/rs and Hrs at zeff = 1.52 for
the two RSD analyses described above : in green for [8], in orange for [3] and this work
in purple. The precision which is shown in the figure does not include the systematic
error budget, each analysis reports a systematic uncertainty of up to ∼40% the statistical
precision. Despite the differences in the modeling and fitting range, the three studies yield
consistent results for the cosmological parameters. However the b1σ8 panels show a ∼1σ
discrepancy between the analyses in Fourier space and configuration space. In our work,
we investigated the effect of changing the prescription of the second-order bias F ′′ when
evaluating the performance of the RSD model and we showed in section 4.2.3 that letting
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this parameter vary could shift the first-order bias to lower values up to ∆bσ8 = 0.038.
It would therefore reduce the difference we see with the Fourier space measurement but
further investigations would be needed to test the effect of different bias models before
providing a measurement of the bias for quasar clustering that could be used to constrain
the astrophysical properties of quasar formation. We also checked that the difference in
bias prescriptions did not affect the cosmological parameters of interest.

        Hou et al. 2018 
         Zarrouk et al. 2018 
         Gil-Marin et al. 2018 

Figure 5.5 – Marginalized posterior distributions of the parameters b1σ8, fσ8, DA/rs and
Hrs obtained at the effective redshift of the quasar sample zeff = 1.52 from measurements
from this work [1] in purple, from [8] in green and from [3] in orange. The contours represent
the 68% (darker regions) and 95% (lighter regions) confidence levels. From [3].

The two-dimensional posterior distributions can also be shown for the parameters fσ8,
Dv/rs (equation 4.11) and FAP (equation 4.12) along with the constraints inferred from
the Planck CMB measurements [17] under the assumption of a flat ΛCDM cosmology. The
CMB constraints on these parameters are in agreement with the results obtained from the
clustering analyses of the eBOSS quasar sample, which shows the consistency of the DR14
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measurements within the context of the ΛCDM model.

Figure 5.6 – Marginalized two-dimensional posterior distributions of the parameters fσ8,
Dv/rs and FAP obtained at the effective redshift of the quasar sample zeff = 1.52 from
measurements from this work [1] in orange, from [8] in blue and from [3] in pink. The
contours represent the 68% (darker regions) and 95% (lighter regions) confidence levels.
The red contour shows the Planck prediction for a flat ΛCDM cosmology. From [8].

5.2.1.2 Redshift-weighting technique

Standard analyses split the redshift range into different redshift bins and repeat the
traditional analysis inside each bin in order to take into account the redshift evolution of
the cosmological parameters across the redshift range. However, this method is compu-
tationally expensive and causes loss of information from galaxy pairs into different bins.
Moreover, it decreases the signal-to-noise ratio and low signal-to-noise detections can lead
to non-Gaussian likehood profiles for the cosmological parameters. Instead of splitting the
sample into multiple redshift slices, [4] proposed to compress the information contained
in the redshift direction onto a small number of ’modes’ from which they derived a set of
redshift weights for BAO measurements and applied the procedure on mock catalogs [6].
Then, [5] extended the technique for RSD measurements and also tested it on mock cata-
logs [7] while [18] proposed optimal redshift weights for non-local bias at large scales that
can probe primordial non-Gaussianities.

All these methods are based on a linear data compression as derived originally in [19]
where the uncompressed data vector in n z-bins can be written as :

X(r) =


x(r, z1)
x(r, z2)

...
x(r, zn)


assuming that the n-dimensional data set X is Gaussian distributed with mean µ and
covariance C. In the papers mentioned above, x refers to the two-point statistics ξ or P (k).
By weighting the redshift slices using the n-dimensional vector w = (w1, w2, . . . , wn), the
data vector is linearly compressed into one single z-bin according to these weights so that :

xw(x) = wTX(r) (5.6)
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where xw is the weighted data set with mean wµ and variance wTCw. Then by definition,
the optimal weights are the ones that minimize the uncertainty in the parameters of
interest θi. These uncertainties can be obtained using the elements of the Fisher matrix.
We remind that the Fisher information matrix F is defined as the second derivative of the
logarithmic likelihood function L w.r.t. the set of parameters to be measured :

Fi,j = 〈 ∂
2L

∂θi∂θi
〉 (5.7)

In Fourier space the covariance matrix C of the power spectrum in the absence of a survey
window is diagonal (for the analysis of the eBOSS DR14 sample, [3] shows that it remains
mostly diagonal and the off-diagonal terms account for few %). Then, for each redshift
slice of volume dV and expected target density n̄(r), the covariance matrix is :

C ∼ (P + 1
n̄

)2 1
dV

(5.8)

Under these assumptions, one can derive a set of optimal weights that maximize Fii w.r.t
to w.

The procedure to include redshift-weights can be summarized as follows :
(i) Perform a Taylor series around the cosmological parameter of interest measured at

the effective redshift of the sample as a function of optimal weights
(ii) Linear compression of the data set y = wTx
(iii) Search for optimal weights by minimising the uncertainty in this parameter using

the Fisher matrix
(iv) Reconstruct the redshift-evolution of each set of parameters
(v) Apply weights to the data and include them in the model
To study the evolution of the distance-redshift relation with redshift, [4] expanded the

comoving distance χ(z) using a Taylor series around the fiducial value at the effective
redshift (also called pivot redshift) of the sample :

χ(z) = χfid(z)α0[1 + α1x+ 1
2α2x

2] (5.9)

where 1+x = χfid(z)/χfid(zeff) and the parameters α0,1,2 correspond to the set of optimal
weights to be found by maximising F w.r.t χ.
In [5], they proposed to expand Ωm(z) around the fiducial model and this parametrization
has been used for the analysis of the eBOSS DR14 sample as the interest is to explore
deviations from ΛCDM-model both in terms of geometrical and gravitational effects. In [9],
they also include a parametrization of the growth rate alone as it represents a more direct
way to measure deviations from the underlying framework for gravity, and the geometrical
evolution is thus kept separate. Both parametrizations as Taylor expansions yield :

Ωm(z) = Ωm,fid(z) q0[1 + q1y(z)] (5.10)

(fσ8)(z) = (fσ8)fid(z) p0[1 + p1g(z)] (5.11)

where y(z) = Ωm,fid(z)/Ωm,fid(zeff) and g(z) = (fσ8)fid/(fσ8)fid(zeff).
[10] propose an alternative approach to extract the information in redshift which is also

based on a power spectrum analysis using the monopole and the quadrupole only (in the k-
range of 0.02 ≤ k [hMpc−1] ≤ 0.30). They construct an optimally redshift-weighted sample
and compare to a power spectrum template based on the regularised perturbation theory
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5.2 Consistency with other measurements with the DR14 sample

up to second order. Using four redshift-weighted power spectra, they constrain α⊥, α‖
and fσ8 at four effective redshifts (0.98, 1.23, 1.53 and 1.94). Contrary to the analysis
presented in [9] where the whole redshift range is considered using weighted multipoles,
[10] derive redshift weights that divide the sample into optimal z-bins and perform the
same analysis in each z-bin. It is thus a hybrid between the redshift-weighting technique
that tracks the redshift evolution across the whole redshift range and standard analyses.

Figure 5.7 – Evolution of fσ8 as a function of redshift obtained by [9] using redshift-
weights derived for Ωm in blue and for fσ8 in green, by [10] in dark red and by [3] in
magenta after splitting the sample into three redshift bins. For comparison, the measure-
ment at the effective redshift of the full sample zeff = 1.52 is shown in orange. From [9].

Figure 5.7 shows the comparison of the fσ8 evolution obtained by different analyses :
the optimal redshift-weights derived for Ωm in blue and the optimal redshift-weights deri-
ved for fσ8 in green where both come from [9], the four measurements in dark red from the
redshift-weighting technique in [10] and the Fourier space measurements [3] in magenta by
splitting the data in three redshift bins while the orange point is the measurement at the
effective redshift zeff = 1.52. All methods agree and provide comparable uncertainties at
this stage of the analysis. However, the redshift range of the quasar sample is particularly
wide so we expect the redshift-evolution of the parameters to be more important. The
quasar density is also low compared to the BOSS LRG sample, so splitting the data into
redshift bins can have a significant impact of the signal-to-noise ratio, which is avoided
when using the redshift-weights. For all these reasons, we expect this optimal redshift
weighting technique to provide tighter constraints on the final eBOSS sample compared
to the standard approach and the technique will be even more useful for the upcoming
generation of surveys that will extend further the dynamical redshift range and reduce the
statistical error by an order of magnitude at least.
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Chapitre 5 : Clustering measurements of the eBOSS DR14 quasar sample

5.2.1.3 Consensus between the RSD analyses

In order to do a consistent comparison between analyses at effective redshift and with
redshift weights, the comparison presented in this section uses the results from the tra-
ditional analysis performed at an effective redshift for all studies. For redshift-weigthing
techniques, it thus means that only FKP weights are taken into account as they corres-
pond to the limit when there is no redshift dependence of the cosmological parameters.
Moreover, for these 2 analyses the results come from the fitting of the first two even mul-
tipoles of the power spectrum. Finally, the comparison presented in this section uses the
traditional weighting scheme, Wfocal for the four companion paper, except our work that
also takes into account the effect of up-weighting the nearest neighbor quasar when there
is a collision Wfocal−µ.

The likelihood contour constraints for the cosmological parameters fσ8, H(z)rs, and
DA(z)/rs at zeff = 1.52 for the five analyses described above are shown in figure 5.8. Each
analysis uses a different model for the 2-point statistics, three are in Fourier space and
two in configuration space. Despite those differences, there is good agreement between
all analyses. These contours only show the statistical precision which is also similar. The
one-dimensional likelihood for each parameter better displays the consistency between the
measurements. For the three traditional analyses [1, 3, 8] the agreement is excellent. The
systematic errors, which are not included in these contours, are estimated by the different
groups and found to be up to 40% of the statistical precision.

The likelihood distribution for the two different redshift-weighting techniques [9, 10]
when using no redshift-dependent weights are slightly wider but remain consistent with
the others. In fact, the results from the analyses using redshift weights are obtained by
fitting the monopole and quadrupole only. Adding the hexadecapole provides additional
information that increases the sensitivity of the clustering observables to the cosmological
parameters. We report no results using the first two even multipoles but we found that
adding the hexadecapole could improve the statistical precision by few percents which is
consistent to what is reported on table 9 of [3] in Fourier space. We refer the reader to
Section 5 of each paper for additional information on the different approaches and on the
comparison between the redshift-dependent weights and the traditional analysis at a singe
effective redshift on the data.

5.2.2 Consistency with BAO-only analysis

All the analyses described in the previous section aim at measuring simultaneously
the AP parameters (α‖, α⊥) and the rate of structure growth by modeling the anisotropic
2-point statistics. However, the position of the BAO peak can also be measured using
the monopole only without considering either the full-shape of the monopole nor the
higher multipoles that contain more non-linearities that are challenging to model. The
BAO signature has now been detected in many different galaxy surveys probing the epoch
z < 1, but also in Ly-α samples (at z ∼ 2.5) using a variety of methods to analyze the
density field. The analysis of the eBOSS DR14 quasar sample provides the first detection
of the BAO peak in the intermediate redshift range 1 < z < 2.2. The BAO-only analysis
is presented in [2] using the same procedure as in [20] for BOSS DR10 and DR11 LRG
sample and in [21] for BOSS DR9 LRG sample. The procedure is the same for both the
correlation function and the power spectrum, except for the clustering estimator which is
more complicated in Fourier space. In what follows, we summarize the main steps using
the same notation as in [2] :
(i) computation of the two-point statistics (using the LS estimator for the correlation
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Figure 5.8 – Parameter contours for fσ8, DA and H for the predictions by the 5 compa-
nion papers using the same DR14Q dataset for traditional RSD analyses. Blue contours
show the results presented in this work in configuration space, and red contours show the
predictions by [8] in configuration space too using a second RSD modeling. The Fourier
Space based analyses are shown in green contours for the results by [3] using a third RSD
modeling, in magenta contours for the results by [9] and in orange contours for [10], both
using redshift weighting techniques but with a different model.
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function as described in section 2.7.2)
(ii) generate a template BAO feature ξtemp using the linear power spectrum Plin(k)

obtained from CAMB assuming a fiducial cosmology
(iii) generate a template without the BAO feature Pnw(k) (where no BAO signal corres-

ponds to "no wiggle" in k-space) obtained from the fitting formulae in [22] using the
same fiducial cosmology

We can then model the correlation function following [23] :

ξmod(s) = B0ξtemp(α, s) +A1 +A2/s+A3/s
2 (5.12)

where B0 is a multiplicative constant allowing for an unknown large-scale bias and A1,2,3
are the coefficients of the additive polynomial function to make the results insensitive to
shifts in the broad-band shape of the measured monopole. The BAO template for the
correlation function is obtained by Fourier transformation of the power spectrum :

ξtemp(s) =
∫
k2dk

2π2 Ptemp(k)j0(ks)e−k2a2 (5.13)

where the Gaussian term has been introduced to damp oscillatory patterns associated with
the Bessel function j0 at high-k and induce better numerical convergence [20]. The exact
damping scale is not important, in this analysis it is set to a = 1h−1Mpc. The template
for the power spectrum is given by :

Ptemp(k) = Pnw(k)
[
1 +

(
Plin(k)
Pnw(k) − 1

)
e

1
2k

2Σ2
nl

]
(5.14)

where the BAO signature in linear theory is described by the oscillatory pattern in the
Olin(k) = Plin(k)/Pnw(k) and the Σ2

nl term is used to damp the acoustic oscillations in
the linear theory power spectrum to account for the effects of non-linear evolution of the
density field. In [2], we use Σ2

nl = 6 [h−1Mpc]2 and they show that the results are insensitive
of this choice, as also confirmed in galaxy samples.

Figure 5.9 – Measurement of the spherically-averaged BAO signal in the monopole of the
two-point correlation function (left) and power spectrum (right) using the eBOSS DR14
quasar sample. The smooth component of the best-fit model has been substracted from
the best-fit model and data in order to isolate the BAO feature.

Figure 5.9 shows the measurement of the spherically-averaged BAO signal in the mo-
nopole of the two-point correlation function (left) and power spectrum (right) using the
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eBOSS DR14 quasar sample. Each clustering static prefers the model with the BAO fea-
ture to the smooth model at better than 2.8σ according to the likelihood and detection
significance shown in the right panel of figure 5.10. The dashed curve represents the model
without BAO and the black curve represents the eBOSS quasar BAO distance measure-
ment from the combination of correlation function and power spectrum, which is the final
measurement of [2]. It yields a BAO measurement with a precision of 4.1%, which is shown
in the right panel of figure 5.10, along with galaxy measurements at lower redshifts using
the BOSS DR12 galaxy sample [24], the SDSS MGS, WiggleZ and 6dFGRS. At higher red-
shift, the constraint comes from the combination of the Ly-α forests auto-correlation [25]
and the cross-correlation of Ly-α forests and quasars [26].

Figure 5.10 – Left panel : Likelihood of the isotropic BAO parameter αiso in terms of
∆χ2 recovered from the fit of the data with a model that contains the BAO feature.
The dashed line displays the same likelihood for the model without BAO where ∆χ2 is
determined by substracting the minimum χ2 from the model with BAO. Right panel :
Spherically-averaged BAO distance measurements compared to Planck ΛCDM prediction
and extrapolated 68% confidence level. The eBOSS DR14 quasar sample measurement is
represented by a gold star.

Table 5.6 summarizes the measurements of the isotropic shift of the BAO position
from the monopole only (top of the table) and from the analysis of the three multipoles
(bottom panel). The value and uncertainty of αiso from the ’3-multipole full-AP’ case is
given by

αiso = α
1/3
‖ α

2/3
⊥ (5.15)

σαiso =

√√√√∆α‖

(
∂αiso
∂α‖

)2

+ ∆α⊥
(
∂αiso
∂α⊥

)2
(5.16)

where ∆α‖ and ∆α⊥ are the uncertainty in α‖ and α⊥ respectively. All the quoted uncer-
tainties include systematic and statistical contributions.

5.3 Combining measurements
In this section, we combine our measurements in configuration space with the measure-

ments in Fourier space in [3]. Both are mathematical representation of the same underlying
physics so we expect them to be highly correlated. The degree of correlation depends on
how far these approaches are sensitive to different systematics.
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Table 5.6 – Measurement of the spherically-averaged BAO distance DV from BAO-
only [2] and full-shape analysis [1] of the eBOSS DR14 quasar sample.

analysis α‖ α⊥ αiso DV (zeff)/rs
BAO-only ξ0 + P0 – – 0.993± 0.038 26.0± 1.0
3-multipole full-AP 1.012± 0.068 1.031± 0.049 1.021± 0.042 26.8± 1.4
3-multipole isotropic – – 1.021± 0.045 26.8± 1.1

We follow the methodology given in [27] where for simplicity we assume a linear com-
bination of the measurements of the individual probes such that the value of the combined
measurement is given by

xcombined =
Nprobes∑
i=1

wixi (5.17)

where the variable x stands for fσ8, H or DA and the weight wi that is assigned to each
measurement depends only on the covariance matrix among the xi elements of the different
probes. Here Nprobes = 2. The variance of the combined measurement is given by

σ2
xcombined =

∑
ij

wiwjCij (5.18)

where Cij is the ij-element of the covariance matrix.

In order to get a combined measurement with the best uncertainty, the weights must
satisfy a condition of minimum variance estimator. Provided that the weights are norma-
lized (i.e.

∑
iwi = 1), it means that by minimizing σ2

xcombined w.r.t. wi, we obtain

wi =
∑
k(C−1)ik∑
jk(C−1)jk

(5.19)

The box below proposes an analytical derivation of the weights for two correlated parame-
ters between two different probes that measure this parameter only. In practice, full-shape
analyses measure simultaneously fσ8, H and DA and there are correlations between the
three parameters within one method.
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We consider two measurements with their total uncertainty, χ1±σ1 and χ2±σ2,
obtained from different methods applied to the same data sample. Both measu-
rements are correlated with a factor of correlation ρ. We want to find the best
way of combining both measurements in order to maximize the gain on the total
uncertainty. Let x denote the combined value and σx its combined uncertainty :

x = λχ1 + (1− λ)χ2 (5.20)

σ2
x = λ2(σ2

1 + σ2
2 − 2ρσ1σ2)− 2λ(σ2

2 − ρσ1σ2) + σ2
2 (5.21)

where λ is the coefficient to be found in order to optimize the combination, i.e.
when σ2

x is minimal w.r.t. λ :

dσ2
x

dλ
=0 (5.22)

⇔ 2λ(σ2
1 + σ2

2 − 2ρσ1σ2)− 2(σ2
2 − ρσ1σ2) =0 (5.23)

⇔ λ = σ2
2 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2
(5.24)

We note that when σ1 = σ2, λ = 1/2 as expected. Equation describes the way
to optimize the combination of both measurements to obtain the best gain on
the combined uncertainty. Then, by replacing equation 5.3 into equation 5.21, it
gives for σ2

x :

σ2
x = σ2

1σ
2
1 − (ρσ1σ2)2

σ2
1 + σ2

2 − 2ρσ1σ2
(5.25)

where the only unknown in this equation is ρ which is usually estimated from the
covariance of the measurements in mock catalogs.

Combine two single measurements of the same dataset

We apply this method to the eBOSS DR14 quasar sample. Figure 5.11 shows the
correlation coefficients between the cosmological parameters fσ8, α‖ and α⊥ from the
two-point correlation function (CF) [1] and the power spectrum (PS) [3] for the EZ mocks
with 0.8 < α‖,⊥ < 1.2. To compute the weights given by equation 5.19, we take the inverse
of the covariance matrix for the ij-elements and we take the individual uncertainties σii
from the data such that (C−1)ii = σ2

ii.

The results on the cosmological parameters are summarized in table 5.7. At this stage
of the analysis, combining Fourier space and configuration space measurement provides
the following gain on the constraints put on the cosmological parameters : 6% on σfσ8 ,
11% on σH and 7% on σDA .

5.4 Comparison to previous works

5.4.1 Cosmological distances measurements

Table 6.3 summarizes the measurements of cosmological distances from BAO-only and
full-shape analyses using different large-scale structure surveys. The results from BOSS
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Figure 5.11 – Correlation coefficients between power spectrum (PS) and correlation func-
tion (CF) measurements of fσ8, α‖ and α⊥ for the EZ mocks with 0.8 < α‖,⊥ < 1.2.

Table 5.7 – Measurement of the growth rate fσ8, expansion rate H and angular distance
DA in configuration and Fourier space separately, along with the combination of both.

analysis fσ8(zeff) H(zeff) · rs(zd)× 103 DA(zeff)/rs(zd)
ξ(s) [1] 0.426± 0.077 23.5± 1.8 12.58± 0.70
P (k) [3] 0.420± 0.076 24.0± 1.8 12.48± 0.71

ξ(s) + P (k) 0.423± 0.071 23.8± 1.6 12.57± 0.65
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Table 5.8 – Constraints on the BAO distances from BAO-only analyses using various
large-scale structure surveys.

survey reference z DV DM H

6dFGS BAO [29] 0.106 4.5% – –
WiggleZ BAO [30] 0.44 4.8% – –

0.60 4.5% – –
0.73 3.4% – –

WiggleZ FS [31] 0.44 – 9.4% 9.4%
0.60 – 6.9% 6.9%
0.73 – 7.0% 7.2%

SDSS MGS BAO [32] 0.15 3.8% – –
SDSS BOSS galaxies BAO+FS [24] 0.38 1.09% 1.5% 2.4%

[24] 0.51 1.01% 1.4% 2.2%
[24] 0.61 1.03% 2.8% 2.2%

SDSS BOSS Ly-α BAO [25] 2.40 – 5.8% 3.4%
[33] 2.33 – 3.9% 2.8%

combination 2.40 – 3.0% 2.0%
SDSS eBOSS LRG BAO [28] 0.72 2.6% – –

SDSS eBOSS quasars BAO [2] 1.52 3.8% – –
SDSS eBOSS quasars FS [1] 1.52 4.1% 5.5% 7.9%

DR12 provided the best constraints from far with 1-3% precision on the three BAO dis-
tances at redshifts 0.38, 0.51, 0.61 using galaxies and at z = 2.4 using Ly-α forests. Our
measurements from the monopole only and the full correlation function of the eBOSS
quasar sample are shown at the end of the table. The statistics of our sample is an order
of magnitude lower compared to BOSS DR12 galaxies but we stress that our measurement
of the expansion rate DA at z = 1.52 is competive with the one from the auto-correlation
of Ly-α forests for instance. Compared to other surveys, our measurements are compe-
titive with current constraints provided that in addition our measurements extend the
constraints at the intermediate redshift range 1 < z < 2. Another constraint on DV from
eBOSS arises using the eBOSS LRG sample which includes 80,118 LRGs. By combining
them with the high-redshift tail of the BOSS galaxy sample at z > 0.6, [28] found a 2.6%
measurement of the DV at an effective redshift z = 0.72.

Figure 6.8 presents our measurements of the cosmological distances compared with
the prediction of Λ-CDM using Planck results [17]. Also shown are the results of previous
measurements : 6dFGS from [29], SDSS MGS from [32], BOSS DR12 from [24] and BOSS
Lyα from the combination of the DR12 Lyα auto-correlation [25] and the cross-correlation
of the Lyα forests [33]. The WiggleZ survey volume also overlaps BOSS and its measu-
rements are less constraining than the ones of BOSS so we decide not to show them for
clarity in the figure.

Our measurements are consistent with previous analyses and all measurements agree
with the expansion history predicted by the Λ-CDM+GR concordance model using Planck
measurements of the cosmological parameters.
We also compare the measurement of the spherically-averaged BAO distance between full-
shape analysis (this work) and BAO-only [2]. The two measurements are in agreement and
they provide similar constraints on this parameter (3.8% precision using BAO-only and
4.1% using full-shape correlation function).
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Figure 5.12 – Evolution of the BAO distances with redshift compared to the prediction
from the flat Λ-CDM model with Planck parameters. The Hubble distance DH is related
to the Hubble parameter H by DH = c/H and DM = (1+z)DA where DM is the comoving
angular diameter distance. The BAO results from this work using the eBOSS DR14 quasars
are represented by the * marker and are compared to previous analyses using galaxies and
Ly-α forests to probe different epochs.
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Table 5.9 – Constraints on fσ8, DA and H from full-shape analyses using various large-
scale surveys. Note that when no values for DA and H are quoted, the measurement of
fσ8 has been performed without marginalizing over the AP parameters.

survey reference z fσ8 AP
2dFGRS [35] 0.17 13% no
6dFGS [36] 0.067 13% no
WiggleZ [31] 0.44 19.4% yes

0.60 16.2% yes
0.73 16.5% yes

VVDS [34] 0.77 36.7% no
VIPERS [37] 0.60 21.8% no

0.86 27.5% no
Subaru FastSound [38] 1.4 25% no

SDSS MGS [39] 0.15 30.6% yes
SDSS BOSS galaxies FS [24] 0.38 9.5% yes

0.51 8.7% yes
0.61 8.8% yes

SDSS BOSS galaxies BAO+FS [24] 0.38 9.2% yes
[24] 0.51 8.3% yes
[24] 0.61 8.0% yes

SDSS eBOSS quasars [1] 1.52 18.1% yes

5.4.2 Growth rate measurements

The measurement of the anisotropic clustering of the DR14 eBOSS quasar sample
produces the constraint on fσ8(zeff = 1.52) = 0.426±0.079 that is presented in Figure 6.9.
The result is obtained from a fit of the l = 0, 2, 4 Legendre multipoles of the correlation
function, and the uncertainty includes systematic errors due to the modeling of the RSD
and statistical contributions added in quadrature. As originally highlighted in [34], the
measurement of the growth rate of structure can be a direct test of GR. Our results
confirm the validity of GR in the intermediate redshift range (1 < z < 2) probed by
eBOSS quasars and there is consistency between our result and the measurement done by
previous surveys.

The results obtained from the present work are compared with previous measurements
from the 2dfGRS [35] and 6dFGS [36], WiggleZ [31], VVDS [34], VIPERS [37] and Fast-
Sound [38] surveys, as well as the BOSS DR12 completed sample [24].
Not all these measurements perform the anisotropic clustering fit using the AP parameters
to extract fσ8 and are represented with dashed lines. Table 6.4 summarizes the measure-
ments of fσ8 and highlights which one have been marginalized over the AP parameters.
Previous works have started to explore the z > 0.8 redshift range using a sample of blue
and red galaxies for VIPERS at z = 0.86 [37] and a sample of ELGs for FastSound at
z = 1.4 [38] and measured fσ8 using the monopole and the quadrupole and they reached
a ∼ 25% measurement at a fixed DA and H. In this paper, we do marginalize over DA and
H and we find a ∼ 18% measurement whereas when setting H and DA to their fiducial
values, we find a ∼ 11% measurement.

It is worth highlighting that if a simultaneous fit of fσ8, H and DA is not perfor-
med, the uncertainties in fσ8 do not reflect the marginalization and as a consequence
the measurement cannot be used to constrain models which explore alternative gravity
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Figure 5.13 – Measurements of fσ8(z) with redshift compared to the prediction from the
flat Λ-CDM+GR model with Planck parameters. The fσ8(z) result presented in this work
for the quasar sample is represented by the * marker and is obtained using 3-multipole fit.
The error bar represents the total systematic error that includes the statistical precision
and the systematic error related to the RSD modeling used in this analysis.

scenario.

5.4.3 Bias measurements

In this kind of clustering analysis, we do not consider the linear bias b = 1 + F ′ as
a cosmological parameter, in particular in this analysis where we showed the two-point
correlation function when fitting from 16h−1Mpc is not sensitive enough to the second bias
parameter F ′′ to constrain it efficiently and varying the prescription on F ′′ can change the
linear bias, although the change represents less than 1σ.
However, several papers have reported a measurement of the quasar linear bias for different
samples probing different redshift ranges. It is therefore worth comparing our measurement
with theirs. Figure 5.14 shows the measurements of the linear bias as a function of redshift
from this analysis for the full redshift range (zeff = 1.52), the lowz and highz bins using
eBOSS quasars (in blue), using the first year of eBOSS data [40, 41] (in red and green),
using a sample of BOSS quasars [42] (in magenta) and using the 2dF QSO Redshift
Survey [43] (in light blue).
The dashed line corresponds to an ad-hoc parametrization

bQ(z) =
(1 + z

1 + a

)b
(5.26)

where a and b are obtained by fitting the mentioned measurements which yields a = 0.46
and b = 1.59.
The dotted line corresponds to the parametrization proposed in [40]

bQ(z) = α[(1 + z)2 − 6.565] + β (5.27)

220



5.4 Comparison to previous works

with α = 0.278 ± 0.018 and β = 2.393 ± 0.042. This parametrization is equivalent to the
one proposed in [43]. The bias of quasars is a growing function with redshift, ranging from
1.6 to 3.4 across the eBOSS sample.

We found larger uncertainties in our measurements compared to the one by [40] whereas
the size of the sample has more than doubled. In [40], data are fitted from 10 to 85 h−1Mpc
using a non linear matter power spectrum Pm obtained from CAMB adding non-linearities
and they accounted for linear redshift-space distortions using the Kaiser formula [44] :

PQ(k, µ) = b2Q(1 + βµ2
k)2Pm(k) (5.28)

where we remind β = f/bQ and they used the GR prediction f ≈ Ω0.55
m (z). The difference

could be due to the fact we marginalize over a larger set of parameters, in particular
regarding redshift uncertainties where there is a degeneracy between σtot and F ′ as shown
in figure 5.3. In addition, we already stressed the impact of the second bias parameter
prescription on the linear bias.

Figure 5.14 – Linear bias measurements as a function of redshift for different samples
of quasars : the eBOSS DR14 sample (this work, in blue), the first year of eBOSS data
taking [40, 41], the BOSS DR12 sample [42] and the 2dFQZ [43]. The dashed curve cor-
responds to a parametrization from the fit of the mentioned results and the dotted line
corresponds to the parametrization in [40].
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5.5 Cosmological implications of the eBOSS DR14 quasar
measurements

This section aims at discussing the cosmological implications of the eBOSS DR14
quasar sample. As highlighted in the previous sections, our measurements using BAO-only
and full-shape analyses are competitive with previous measurements from other surveys
but not yet with previous BOSS measurements using galaxies and Ly-α forests. For these
reasons, in [2, 1] we did not fully explore the cosmological implications of the eBOSS
measurements with the DR14 sample and decided to leave it for the analysis of the final
sample whose statistics is expected to double.

Measurements which are independent can be combined by taking the product of their
likelihoods. In the case of measurements that are correlated, one needs to take into account
the covariance between the measurements as when we combined power spectrum and
correlation function results in section 5.3. For each parameter space, we will specify the
data sets used to provide constraints.

5.5.1 Constraints on ΛCDM and extensions

In this section, we opt not to include the BAO measurements from other surveys than
from BOSS/eBOSS, essentially because the uncertainties are sufficiently large that they
would not affect the results but also to avoid volume overlap between different surveys
(between WiggleZ and BOSS for instance). BAO measurements can be used to constrain
the geometry of the universe through Ωm and ΩΛ.
Allowing Ωm + ΩΛ 6= 1 can constrain an extension of the ΛCDM model dubbed ’oΛCDM’
where the curvature is not fixed. In the ΛCDM model, dark energy is parametrized by a
constant Λ whose equation of state w = p/ρ = −1. Allowing w 6= −1 can constrain an
extension of the ΛCDM model dubbed ’wCDM’. Another extension which was mentioned
in the introduction consists in allowing the equation of state to vary with time where a
standard parametrization is w(a) = w0 + wa(1− a) (see section 1.1.5.1 for more details).
We do not explore the cosmological implications of the eBOSS DR14 quasar sample in the
plane w0-wa and leave it for future work with the final eBOSS sample.

5.5.1.1 BAO-only analysis

In [2], we follow the approach adopted in [45] to constrain the geometry of the universe
by using the BAO measurements only. To do so, we assume only that the BAO feature has
a constant comoving size with no knowledge of the physics that produced this feature. We
use an open ΛCDM cosmology which is parametrized using three parameters, Ωm, ΩΛ and
H0rd. We can constrain Ωm and ΩΛ, whose sum is related to the cosmic geometry at the
present epoch, by performing a MCMC fitting using a modified version of CosmoMC [46]
and then by marginalizing over H0rd.

Figure 5.15 presents the 68% and 95% confidence level joint constraint in the plane
Ωm-ΩΛ (left panel) and the one-dimensional probability distribution of ΩΛ using three data
sets which are summarized in table 5.10. Note that the latest cross-correlation results of
quasars with Ly-α forests using the DR12 sample [33] was not yet published at the time
of writing the eBOSS DR14 quasar BAO paper.

The quasar BAO measurement improves the current constraints on Ωm and ΩΛ compa-
red to BOSS DR12 galaxies alone. The existence of dark energy is raised from 2.9σ to 3.4σ
confidence-level when the eBOSS quasar BAO is added to BOSS galaxies. This is because
it provides a high-redshift constraint, however the tightest constraints mainly arises from
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Table 5.10 – Data sets used to constrain the Ωm-ΩΛ plane using BAO-only measurements
in [2].

data sets description reference
BOSS galaxies anisotropic BAO measurement from BOSS DR12 galaxies [24]

BOSS galaxies+eBOSS anisotropic BAO measurement from BOSS DR12 galaxies [24]
isotropic BAO measurement using eBOSS DR14 quasars [2]

full BAO anisotropic BAO measurement from BOSS DR12 galaxies [24]
isotropic BAO measurement using eBOSS DR14 quasars [2]

anisotropic BAO measurement from the DR12 Ly-α auto-correlation [25]
anisotropic BAO measurement from the DR11 Ly-α cross-correlation [26]

isotropic BAO measurement from SDSS MGS [32]
isotropic 6dFGRS galaxy samples [36]

Figure 5.15 – Left : The 68% and 95% confidence level contour plots for Ωm and ΩΛ
using three data sets presented in table 5.10. Here, we assume only that the BAO scale
is constant with redshift (see the text for more details). The dashed line illustrates a flat
universe with Ωm + ΩΛ = 1. Right : The one-dimensional probability distribution of ΩΛ
using the same three data sets. From [2].
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Figure 5.16 – Left : Cosmological constraints in the ΩΛ vs Ωm plane. All contours are
shown assuming a flat ΛCDM-model. Right : Cosmological constraints in the w vs Ωm

plane. The inner and outer contours show the 68 and 95% confidence-level two-dimensional
marginalized constraints. The blue contour represents the cosmological constraints using
BOSS DR12 galaxies, the red contour shows the gain when adding the eBOSS quasar
sample and the green contour also includes the results from Ly-α measurements although
they are not obtained from full-shape analysis.

the Ly-α measurements at redshift 2.4. A 3.4σ detection of dark energy is reached using
the BOSS DR12 galaxies and eBOSS DR14 quasars and goes to a 6.6σ detection when
considering the ’full BAO’ data set, demonstrating the level arm of Ly-α forests studies
at high redshift. It also highlights the robustness and constraining power of the BAO-only
technique.

5.5.1.2 Full-shape analysis

Similarly to the BAO-only analysis of the eBOSS DR14 quasar sample [2], we evaluate
the impact of our distance measurements from the analysis of the full-shape correlation
function on extensions of ΛCDM. The left panel (resp. right panel) of figure 5.16 shows the
contour in the ΩΛ vs Ωm plane (resp. w vs Ωm) to test predictions of oCDM (resp. wCDM).
We see that, when using H0 from Planck, adding the current eBOSS quasar RSD measu-
rement (red contour) to the BOSS DR12 sample [blue contour, 24] substantially improves
the constraints on the extensions of ΛCDM. For comparison with figure 5.15, we also add
the Ly-α BAO measurements (green contour) even if they do not come from full-shape
analysis. As highlighted in the next section, Ly-α measurements provide an additional
strong constraint in full agreement with a flat and pure cosmological constant universe.

As explained in section 1.1.2.2, the CMB provides a lot of information about the
physics in the early universe. But it is also a powerful probe of the presence of dark energy
or a cosmological constant. The late-time modifications of gravity can affect the CMB
anisotropies and polarization. We briefly mention some of the most important effects of
dark energy or modified gravity models on the CMB anisotropies, further details can be
found in [47] :
— change the expansion history and hence the distance to the last scattering surface
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Figure 5.17 – The 68% and 95% confidence level contour plots for Ωm and ΩΛ for BOSS
DR12 galaxies alone (pink), combined with eBOSS DR14 quasar (orange), and when
adding Planck data (green and grey contours). The combination of CMB and large-scale
structure observations is very powerful as each probe is sensitive to cosmology in a different
way.

which would lead to a shift in the peaks [48]

— change the growth of structure which would lead to a mismatch between the ampli-
tude of the fluctuations As and late-time measurements of σ8 [49, 50]

— change in the lensing potential due to additional dark energy perturbations or mo-
difications of GR [51, 52]

— affects the ISW effect (low-l region of figure 1.9 by causing the decay of gravitatio-
nal potential at late times affecting the CMB anisotropies at low l (large angular
scales) [53] or by enhancing the cross-correlation between the CMB and LSS [54]

Therefore, by combining CMB constraints from Planck [17] with LSS measurements, we
can break degeneracies and provide tighter constraints. The grey contour in figure 5.17
shows the constraints on ΩΛ and Ωm when adding Planck data. It illustrates well the
constraining power of combining independent probes.
The combination of BOSS DR12 galaxies, BOSS DR12 Ly-α, eBOSS DR14 quasars and
Planck yields the following constraints [3] on Ωm, ΩΛ and hence the curvature density Ωk,

Ωm = 0.3094+0.0076
−0.0080 (5.29)

ΩΛ = 0.697+0.035
−0.032 (5.30)

Ωk = −0.007± 0.030 (5.31)

The results are in agreement with an universe dominated by dark energy with no curvature.
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5.5.2 Constraining alternative gravity models

In section 1.1.5, we reviewed some examples of alternative gravity models. In gene-
ral, the modifications of GR make an order-unity change in the dynamics at cosmological
scales. At the solar-system scales, these modifications need to have a very small or negli-
gible effect and it is usually the case by invoking non-linear screening mechanisms, such as
the Chameleon or the Vainshtein effects, to restore GR in high density regions and agree
with the local tests of GR.

In September 2015, the first detection of gravitational waves from a black hole
merger was confirmed using the Laser Interferometer Gravitational-Wave Obser-
vatory [LIGO, 55]. In August 2017 it was followed by the detection of gravita-
tional waves from the merger of two neutron stars using the two interferometers
of LIGO. The recent addition of the interferometer Virgo allowed to localize
the source by the absence of signal from Ligo which suggested that the source
was located in the parallel direction of the mirrors [56] (we refer to this event as
GW170817). Thanks to the localization of the source, it was possible to relate the
emission of gravitational waves with the emission of a short burst of gamma-rays
from a similar location in the sky few seconds after using the Fermi satellite [57].
Follow-up observations by other telescopes confirmed that the gravitational wave
and gamma rays came from the same source, a binary neutron star merger in
the NGC 4993 galaxy at z = 0.009787, which is approximately 130 million light
years away from Earth.
The association of both events allowed to make a very precise measurement of
the speed of gravitational waves. It is compatible with the speed of light with a
time delay [58],

∆t =
∫ 1

ae

da

aH

(
1− c

cg(a)

)
+ δt = 1.74± 0.05s (5.32)

where ae is the scale factor associated with the redshift of the host galaxy,
ze = 0.009787 and δt is the time delay between the gravitational wave and light
emission where [58] provide a conservative constraint δt ∈ [−1000s, 100s]. The
fact that the two signals traveled from this distance to Earth with just few se-
conds delay implies that gravitational waves travel at the same speed as light to
within cg/c − 1 < 10−15 . Previous constraints on the relative speeds had only
been at the level of 10−5, so this single observation improved our knowledge of
a fundamental property of gravity by 10 orders of magnitude. Using this recent
detection, four research groups have now placed some of the tightest constraints
to date on modified gravity scenarios which predict different speeds for gravita-
tional waves compared to light [59, 60, 61, 62]. Indeed, additional fields coupled
to gravity can affect the propagation speed of graviatational waves, this is the
case for the full Galileon and for most of the scalar-tensor theories whose equa-
tions of motion are at second order in time derivatives at most. Among the viable
theories after GW170817, quintessence and f(R) theory survive for instance.

First detection of a gravitational wave associated with a gamma-ray burst
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A general way to parametrize modified gravity theories is to specify the relation bet-
ween the two gravitational potentials Ψ and Φ which govern the motion of matter and
of light respectively. Indeed, modified gravity models affect the clustering of galaxies and
changes how mass affects the propagation of light. As a consequence the Poisson equations
are modified accordingly and a way of parametrizing these modifications is to introduce
two dimensionless parameters GM and GL [e.g. 63] :

∇2Ψ = 4πGNa
2ρ∆GM (5.33)

∇2(Ψ + Φ) = 8πGNa
2ρ∆GL (5.34)

where GN is the Newton constant.
Alternatively one could also use the ratio of the two potentials, referred to as the gra-
vitational slip γslip instead of GL to parametrize the modified Poisson equations. In the
general case, GM and GL are functions of time and scale. Therefore, special care is required
when comparing theoretical predictions with measurements which are obtained assuming
a scale-independent growth rate over the fitting range.

5.5.2.1 Constraints on the growth index

Allowing the growth index γ to vary is one of the minimal extension to GR that has
been widely used to search for any departure from its GR+ΛCDM prediction. We remind
the prediction for the growth rate given by [64, 65] :

f(z) = [Ωm(z)]γ where γ = 3(1− wDE)
5− 6wDE

(5.35)

where wDE = −1 for a cosmological constant which gives γ = 0.55 in the ΛCDM model.
The ΛCDM+GR prediction cannot be accurately tested given the statistical precision of
the eBOSS quasar sample only. Combining our data to the measurement of Ωm from Planck
produces γ = −0.2 ± 1.2. The lack of precision also arises because in the eBOSS quasar
redshift range, Ωm is close to 1 and the sensitivity to γ is therefore reduced as can be seen
from the black curves in figure 6.9, which shows theoretical predictions of fσ8 for different
values of γ. The lack of sensitivity is also shown by the pink contour in the top panel of
figure 5.18 which represents the eBOSS DR14 quasars + Planck constraints on the Ωm-γ
plane. The combination of Planck with BOSS DR12 galaxies and eBOSS DR14 quasars
is shown by the grey contour. Table 5.11 summarizes the most recent measurements of γ
using the BOSS DR12 galaxies alone with Planck and the BOSS DR12 galaxies with the
eBOSS DR14 quasar sample which can be compared directly. A recent paper [66] explored
the cosmological implications of the latest observations in the context of modified gravity
models and we reported their constraints on γ for two data sets :

— ’ALL17’ which includes LSS measurements (BOSS DR12 galaxies BAO and RSD
and other BAO measurements), CMB measurements using Planck data, SN JLA
sample, H0 measurments using local probes and the ages of passive galaxies and
weak lensing measurement using the CFHTLens sample

— ’ALL18’ which includes ’ALL17’ with tomographic BAO and RSD measurements
using the eBOSS DR14 quasar sample in [12]. These measurements account for the
redshift evolution of the cosmological parameters better compared to measurements
at effective redshifts. However, at the level of the current precision of the DR14
quasar sample, no significant improvement has been found and all the full-shape
measurements are comparable (more details can be found in section 5.2.)
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Table 5.11 – Constraints on the growth index from various data sets.
data sets reference γ

Planck+BOSS DR12 galaxies FS [67] 0.52± 0.10
Planck+BOSS DR12 galaxies CF [68] 0.609± 0.079

Planck+BOSS DR12 galaxies+eBOSS DR14 quasars [3] 0.55± 0.19
ALL17 [66] 0.506± 0.031
ALL18 [66] 0.485± 0.031

The bottom panel of figure 5.18 shows the 68% and 95% confidence level contour for
γ and σ8 derived in [66]. We focus the discussion on the comparison between the red
contour (’ALL17’) and the orange contour (’ALL18’). The contour is slightly shifted but
the surface is unchanged, meaning that for the moment the constraining power of the
eBOSS quasar sample is limited in the plane γ - σ8.

5.5.2.2 Galileon theories

We remind the action of the disformally coupled Galileon in the Einstein frame given
by equation 1.67 in section 1.1.5.2 :

SGalileon =
∫
d4x

√
−g̃

[
M2
P

2 R− 1
2

5∑
i=1

ci
M3(i−2)Li −

MP

M3 cG∂µ∂νT
µν

]
(5.36)

where L1 = π behaves like a cosmological constant, so c1 = 0 is imposed as we look for
alternatives to the cosmological constant and cG is the disformal coupling to matter as the
conformal coupling is disfavored by observations [69]. The presence of couplings with mat-
ter can be interpreted again as a fifth force while the presence of non-linear Lagrangians
(L3,4,5) are necessary to screen this fifth force at small scales, in the vicinity of massive
objects using the Vainshtein effect [70]. We call the ’cubic Galileon’ the Galileon model
up to L3 and ’full Galileon’ the Galileon model with the five Lagrangians.

Leloup et al. (in prep) derive the Galileon predictions using their own modified version
of CAMB and performed an MCMC exploration of the parameter space using their own
modified version of CosmoMC using different data sets : CMB temperature, polarization
and lensing maps using Planck data, BAO constraints using BOSS DR12, WiggleZ, SDSS
MGS and 6dFGS and JLA SN sample. Then, they perform a posteriori comparison to
the speed of the gravitational wave from GW170817 event for the full Galileon where the
speed of gravitational wave depends on c4,5,G (while for the cubic Galileon, the speed of
gravitational wave is equal to the speed of light). They show that even without considering
the GW constraint, the disformally coupled Galileon model is very disfavored by current
data. In addition, the time delay between gravitational wave and light they infer for the
full Galileon model from their best-fit values is between 10 and 100 years which is much
higher than the constraint put by GW170817 (see the box above). Therefore, the full
Galileon can be considered as ruled out.

However, since Leloup et al. (in prep) did not consider the growth rate measurements
as an additional probe, we just show a posteriori comparison between Galileon predictions
for fσ8 and the latest observations in figure 5.19. The predictions for fσ8 using the best-
fitting values for the cubic and full Galileon models of Leloup et al. (in prep) are shown in
dashed and solid red lines respectively, while the prediction from the uncoupled Galileon
model of [69] is shown in dotted red line.
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Figure 5.18 – Top panel : The 68% and 95% confidence level contour plots for Ωm and γ
using DR14 eBOSS quasars with Planck (pink), DR14 eBOSS quasars with BOSS DR12
galaxies (orange), DR14 eBOSS quasars + BOSS DR12 galaxies + Planck (grey).The
dotted line shows the ΛCDM+GR prediction : γ = 0.55. From [3]. Right panel : The 68%
and 95% confidence level contour plots for γ and σ8 using different data sets presented in
table 5.11. From [66].
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Figure 5.19 – Growth rate measurements compared to Galileon predictions for the full
disformally coupled case (solid red), the cubic disformally coupled case (dashed red) and
the full uncoupled case (dotted red).

We could be tempted to interpret the figure saying that measurements of the growth
rate at z ∼ 0.5 are in ∼ 3σ tension with the predictions of the full and cubic Galileon theo-
ries. However, the comparison between predictions of fσ8 from modified gravity models
and measurements is not trivial because of two effects at least :

— Scale-dependent growth rate : The prediction for the growth rate can depend on
the scale which is considered as we mentioned previously. Fortunately, this is not the
case for Galileon theories which introduce a scale-independent effective gravitational
coupling Geff in the modified Poisson equations as follows :

∇2Ψ = 4πGeffa
2ρ∆ (5.37)

— Non-linearities : The Galileon predictions for the growth rate are obtained sol-
ving the equation that governs the growth function in the linear regime. Linear
perturbation theory in the ΛCDM+GR framework breaks down on scales k >
0.05hMpc−1, taking into account theoretical uncertainties could go up to kmax =
0.10−0.15hMpc−1 depending on redshift. However, current analyses with modeling
of the non-linear power spectrum can go up to k = 0.3hMpc−1. Some studies used
N-body simulations in a Galileon theory to investigate the effect of non-linearities in
the matter power spectrum prediction [71, 72]. In particular, [71] found that for k-
scales between 0.1 and 0.4hMpc−1, non-linearities affect the matter power spectrum
by 5% only at redshifts z < 0.2. More important deviations and unphysical solutions
in dense regions have been reported in [72] (resp.[73]) when they studied the quartic
Galileon (resp. full Galileon) models, making the comparison with observations more
difficult.
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5.5.2.3 Scalar-tensor theories with chameleon effect

In this section, we comment the results obtained by [66] who used another widely
used parametrization of the potentials based on µ(a, k) and η(a, k) which are functions of
the scale factor (hence redshift) and the scale (here in k-space) that modify the Poisson
equations as follows :

k2Ψ = −4πGNa2µ(a, k)ρ∆ (5.38)
Φ
Ψ = η(a, k) (5.39)

where in GR we have Ψ = Φ and µ(a, k) = η(a, k) = 1. Here, the growth of structure
depends on the scale, and we follow the approach in [66] that treat the scale-independent
and scale-dependent cases separately.

Scale-independent case A general parametrization for µ(a) and η(a) is to use
power-law functions [74] :

µ(a) = 1 + µsa
s (5.40)

η(a) = 1 + ηsa
s (5.41)

(5.42)

where we report the results for s = 1 and s = 3 found by [66] in figure 5.20. The comparison
between ’ALL17’ (red) and ’ALL18’ (orange) whose only difference is the inclusion of the
RSD measurements using the eBOSS DR14 quasar sample shows that the additional gain
provided by the DR14 sample is marginal. The associated mean and 68% confidence-level
uncertainties on µ and η are :

data set s µ− 1 η − 1
ALL17 1 −0.131± 0.075 0.863± 0.286

3 −0.405± 0.184 2.555± 0.835
ALL18 1 −0.132± 0.075 0.873± 0.289

3 −0.398± 0.184 2.516± 0.832

The combination of all these data sets excludes the case (µs = ηs = 0) at 2.2σ and 3.1σ
levels for s = 1 and s = 3 respectively. It can be compared to the GR prediction where
µ = η = 1 (i.e. µs = ηs = 0) which therefore seems to be strongly disfavored by data. Ho-
wever, the parametrization given by equations 5.42 adds two parameters compared to GR,
so one should compute the Bayesian evidence to compare models with different parame-
ter spaces. Moreover, additionnal data is definitely necessary before setting any conclusion.

Scale-dependent case For general scalar-tensor theories, µ(a, k) and η(a, k) can be
parametrized and is referred to as the BZ parametrization [75] :

µ(a, k) = 1 + β1λ
2
1k

2as

1 + λ2
1k

2as
(5.43)

η(a, k) = 1 + β2λ
2
2k

2as

1 + λ2
2k

2as
(5.44)

where β1,2 are dimensionless couplings, s the power index and λ1,2 are length scales.
f(R) theories are a special case of scalar theories whose action is given by :

Sf(R) =
∫
d4x
√
−g−M

2
P

2 f(R) (5.45)

231



Chapitre 5 : Clustering measurements of the eBOSS DR14 quasar sample

Figure 5.20 – The 68% and 95% contour plots for µs and ηs where the left panel is for
s = 1 and the right panel for s = 3. We focus on the difference between ALL17 (red)
and ALL18 (orange) when adding the RSD measurement using the eBOSS DR14 quasar
sample.

We usually work with a simple version of f(R) in which the background evolution (homo-
geneous and isotropic metric) is set to match that of ΛCDM. In this case, the additional
degree of freedom is encoded in only one parameter by fixing β1 = 4/3, β2 = 1/2 and
λ2

2/λ
2
1 = 4/3. In [66] they fix s = 4 following [76] to closely reproduce the ΛCDM model

for the background evolution while scalar perturbations of the metric lead to the modified
Poisson equations defined by equation 5.39. Therefore, there is only one free parameter,
λ1 but usually constraints are put on logB0 where B0 = 2H2

0λ
2
1/c

2 is dimensionless. The
GR limit corresponds to B0 = 0. The left panel of figure 5.21 shows the 68% and 95%
confidence-level contour plots for Ωm and logB0. The blue contour uses BOSS DR12 BAO
and RSD results at three effective redshifts while the pink contour uses the tomographic
BAO and RSD results on the same data sample (i.e. BOSS DR12 galaxies) performed
by [77] using a similar technique to the hybrid redshift-weighting technique in [12] that we
presented in section 5.2.1.2. We can see the improvement between the two contours when
taking into account the redshift evolution of the cosmological parameters. The improve-
ment is not that significant when adding the tomographic RSD measurements of [12]. The
final upper limit derived on logB0 using ALL18 is logB0 < −4.93 at 95% confidence-level,
which represents an improvement compared to the latest constraint logB0 < −4.54, set
by [18] using several data sets among which the consensus BAO and RSD measurements
of [24].

For general scalar-tensor theories, the following consistency relations hold : β1 =
λ2

1/λ
2
2 and β2 = 2/β1 − 1. These relations could reduce the parameter space but [66]

did not apply them as a constraint and rather perform a direct comparison a posteriori
with their best-fitting constraint. The right panel of figure 5.21 shows the 68% and 95%
confidence level contour plots for β1 and β2 derived from the results using ALL18 for
two priors on s : s ∈ [0, 10] (grey contour) and s ∈ [1, 4] (orange contour). It yields the
following constraints :
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Figure 5.21 – The 68% and 95% contour plots for f(R) theory in the plane Ωm - logB0
for different data sets (left panel) and for more general scalar-theories in the plane β1 - β2
for ’ALL18’ using two priors on s.

parameter s ∈ [1, 4] s ∈ [0, 10]
β1 0.974± 0.033 0.928± 0.061
β2 1.349± 0.165 1.647± 0.296

According to figure 5.21, the special f(R) which mimics the ΛCDM background evolution
with β1 = 4/3, β2 = 1/2 and s = 4 is strongly disfavored by data compared to general
scalar-tensor models following the BZ parametrization. Thanks to the upcoming data, we
expect to provide tighter constraints, and even to rule out some f(R) models more strongly.

Growth of structure Figure 5.22 shows the predictions for the fσ8 for the f(R)
model favored by ’ALL18’ along with the predictions for the general case with β1,2 favored
by ’ALL18’ and the scale-independent case with power laws s = 1, 3. The lever arm to
discriminate between these models seems more interesting at low redshifts (z < 0.5).
The Bright Galaxy Sample (BGS) at median redshift 0.2 that DESI will provide would
be of particular interest to constrain the scalar-tensor theories following the BZ form
(equation 5.44).

However, the comparison between the predictions of these models and measurements
are again not trivial, for the same reasons as for the Galileon : scale-dependent growth rate
and non-linear effects. f(R) models have been one of the most studied modified gravity
theories and although the results are not necessarily valid for other scalar theories, it is
interesting to have in mind the order of magnitude of both effects :
— Scale-dependence : Compared to the Galileon, these scalar-theories predict a scale-

dependent growth rate. Figure 5.23 shows the f(R) prediction for the growth rate
f as a function of k-scale for the f(R) favored by ’ALL18’ with logB0 = −4.392
for three redshifts z = 0.5, 1.0, 1.5 (red,green,blue). The scale dependence is small
with a ∼2% effect up to k = 0.2hMpc−1 at z = 0.5 where the dependence is more
important. It seems to be negligible for this f(R) theory given the present precision
of the data, but it is not necessarily the same for all the scalar-tensor theories.

— Non-linearities : Using N-body simulations in the f(R) framework, [78] looked at
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Chapitre 5 : Clustering measurements of the eBOSS DR14 quasar sample

Figure 5.22 – Predictions of fσ8 as a function of redshift from f(R) theory with
logB0 = −4.392, general scalar-tensor theories in the BZ form with the two priors on
the power index s and the two scale-independent predictions for power laws with s = 1, 3.
All predictions correspond to models favored by ’ALL18’. The prediction from ΛCDM+GR
is also shown in black, along with the measurements of fσ8.
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Figure 5.23 – The growth rate prediction from f(R) theory with logB0 = −4.392 favored
by ’ALL18’ [66] as a function of k-scale for three redshifts : z = 0.5, 1, 1.5.

the difference in matter power spectrum between f(R) models with predictions from
linear perturbation theory and when including non-linear effects. At z = 0 where
non-linearities are the most important and for logB0 < −5, they found a ∼6%
difference for k < 0.3hMpc−1.
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One of the biggest questions of contemporary cosmology is the origin of late-time
cosmic acceleration and the formation of large-scale structures. Chapter 1 presents the
ingredients of the standard cosmological model called ΛCDM and the different surveys
whose major goal is to probe the nature of the cosmic acceleration. One approach consists
in measuring cosmological distances using the baryon acoustic oscillations (BAO) as a
standard ruler. This technique has been shown to be very robust towards non-linearities
and redshift space distortions (RSD). A complementary approach is to measure the growth
of structure by modeling the full shape of the two-point correlation function using the
RSD technique. The growth rate can be used as a direct test of the underlying theory
of gravitation, general relativity (GR). Any departure from the ΛCDM+GR prediction
would imply modifications of the theory at cosmological scales.

6.1 Conclusions of this work

Among the ongoing surveys, eBOSS is the fourth iteration of SDSS and started taking
data in 2014. It extends the BOSS spectroscopic survey with two new tracers : quasars in
the intermediate redshift 0.8 ≤ z ≤ 2.2 and emission line galaxies (ELG) in the redshift
range 0.6 < z < 1.1. Contrary to BOSS where quasars were observed at high redshift
z > 2.1 to use the Lyman-α forests in quasar spectra as tracers of the neutral hydrogen
in the intergalactic medium, eBOSS uses quasars themselves at lower redshifts as direct
tracers of the matter field.

During my thesis work, I worked on a key science goal of eBOSS, namely the analysis
of the anisotropic clustering in configuration space of the eBOSS DR14 quasar sample.
This sample represents two years of data from eBOSS and includes 148,659 quasars spread
over the redshift range 0.8 ≤ z ≤ 2.2 and spanning 2112.9 square degrees. In chapter 2,
we present the SDSS-IV eBOSS experiment, its survey strategy including the target selec-
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tion and the spectroscopic pipeline to obtain a catalogue of all spectroscopically-observed
quasars in the redshift range of interest. We also investigate the issue of redshift uncer-
tainties, as emission lines in quasar spectra are shifted due to matter outflows around
the super-massive black hole. It is therefore necessary to control the impact of redshift
uncertainties on the cosmological parameters. Then, we explain the construction of the
large-scale structure catalogues for clustering analysis which takes into account the missing
targets by resorting to a weighting scheme.

Chapter 3 reviews the theoretical formalism used to predict the two-point correlation
function in redshift space. Three types of non-linearities at least are challenging to model :
the non-linear evolution of density and velocity fields, the non-linear relation between
dark matter and quasars and the non-linear mapping from real to redshift space. As a
consequence, the RSD technique requires more efforts to evaluate the performance of the
modeling, compared to the BAO-only method.

In chapter 4, we describe the methodology with the RSD model, the decomposition of
the two-point correlation function into the first three even Legendre multipoles and into
three wedges, the covariance matrix and the way parameters are inferred. Our RSD model
uses the Convolution Lagrangian Perturbation Theory (CLPT) with a Gaussian Strea-
ming (GS) model and we demonstrate its applicability for dark matter halos of masses of
the order of 1012.5M� hosting eBOSS quasar tracers at mean redshift z ' 1.5. In order
to estimate the systematic error budget related to the RSD modeling, we use the N-body
Outer Rim simulation to test the predictions of CLPT in real space and then evaluate
the performance of the model in redshift space using a hundred mock catalogues created
for that purpose. We investigate both the effect of the bias model and the spectroscopic
redshift resolution in the RSD modeling. The eBOSS quasar sample suffers from an im-
portant systematic uncertainty related to spectroscopic redshift precision : we study its
effect by modeling a Gaussian redshift resolution and a more physical resolution using
the comparison between different redshift estimates, z and zMgII. We demonstrate that
accounting for the non-Gaussian tails of the physical distributions has a sizeable impact
on the response of the model. In fact, about half of the quoted uncertainty on ∆fσ8 arises
from redshift resolution effects. In this analysis, we propose a way of investigating spec-
troscopic redshift resolution using mock catalogues. We also propose to move beyond the
traditional weighting scheme that was used for BOSS galaxies and the BAO measurement
with the DR14 sample to account for redshift failures and close-pairs. We validate the
procedure on a thousand of approximate EZ mock catalogues. This approach allows the
observational systematics to be much smaller than the current statistical precision, this
is why eventually we only report a systematic uncertainty related to the modeling. We
also perform a series of consistency checks on the data, including tests on the weighting
scheme, change in the covariance matrix and in the fitting conditions.

Chapter 5 presents the main results of this thesis work. The full-shape (FS) analysis
in configuration space and BAO-only analysis have been published in [1, 2].
Regarding the FS analysis, we first check that the multipoles and wedges approaches yield
consistent results. The decomposition into Legendre multipoles provides the cosmologi-
cal measurements with the best statistical precision. At the effective redshift zeff = 1.52,
the growth rate of structures fσ8(zeff) = 0.426 ± 0.077, the expansion rate H(zeff) =
159+12
−13(rfid

s /rs)km.s−1.Mpc−1, and the angular diameter distanceDA(zeff) = 1850+90
−115 (rs/rfid

s )Mpc
where rs is the sound horizon at the end of the baryon drag epoch and rfid

s is its value
in the fiducial cosmology. The quoted uncertainties include both systematic and statis-
tical contributions. We also split the redshift sample into two bins and find consistent
results with a redshift evolution for the bias and the redshift uncertainties, but the cur-
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rent statistics is not enough to be sensitive to the redshift evolution of the cosmological
parameters. We find consistent results with our companion paper in Fourier space [3] both
at effective redshift zeff = 1.52 and for the two bins in redshift. New techniques that ac-
count for the redshift evolution applying optimal redshift weights [4, 5] are also described
and a comparison between the five RSD analysis [1, 3, 6, 4, 5] is proposed. The results
presented in this work are found to be in agreement with the other companion papers
using the same data sample but analysed with different techniques, demonstrating the
complementary and the robustness of each method. Regarding the BAO-only analysis, it
corresponds to the first detection of the BAO in a quasar sample at intermediate redshifts
1 < z < 2. We obtain a 3.8% measurement on the spherically-averaged BAO distance
DV (zeff = 1.52) = 3843 ± 147(rd/rfid

s ) and it is consistent with the measurement of DV

from FS analysis. Using the BAO data alone from our work and previous independent
BAO measurements from BOSS galaxies [7] and Ly-α forests [8, 9], we tested a ΛCDM
model with free curvature, assuming only that the acoustic scale has a fixed comoving
size. We find ΩΛ > 0 at 6.6σ significance. The results on the evolution of distances from
BAO and are consistent with the predictions of ΛCDM with Planck parameters assuming
the existence of a cosmological constant to explain the late-time acceleration of the expan-
sion of the Universe. The measurement of fσ8 is consistent with General Relativity (GR)
in the almost unexplored redshift range probed by the eBOSS quasar sample. Previous
works have started exploring the z > 0.8 range using ELG [FastSound, 10] and from a
multi-sample of galaxies [VIPERS, 11] and obtained a ∼25% measurement of fσ8 using
the monopole and the quadrupole at fixed H and DA. In this thesis work, we measure
simultaneously fσ8, DA and H and obtain a 18% measurement of fσ8 after marginalizing
over the full set of parameters. When fixing DA and H, we measure fσ8 with 11% preci-
sion. Therefore, this work improves the precision of the cosmological parameters, but also
extends the inferred cosmological parameters and provides a measurement of the growth
rate of structure that can be used to extend the tests of modified gravity models at higher
redshift (z > 1). We emphasize that measurements of fσ8 at fixed DA and H obtain smal-
ler uncertainties that do not account for the marginalization over the full set of parameters
and hence cannot be used to test alternative scenarios of gravity in general. In chapter 5,
we also discuss the cosmological implications of the eBOSS DR14 quasar sample. The
combination of BOSS DR12 galaxies, BOSS DR12 Ly-α, eBOSS DR14 quasars [1] and
Planck [12] yields the following constraints : Ωm = 0.3094+0.0076

−0.0080, ΩΛ = 0.697+0.035
−0.032 and

hence the curvature density Ωk = −0.007 ± 0.030. The results are in agreement with a
universe dominated by dark energy with no curvature. Moreover, we test the ΛCDM+GR
prediction for fσ8 where f = Ωγ

m with γ = 0.55 by allowing γ to vary. Our measurement
alone is not sensitive enough to provide competitive constraint on γ. When combining
Planck with BOSS DR12 galaxies and eBOSS DR14 quasars, we find γ = 0.55 ± 0.19,
and when combining with additional probes such as Type Ia supernovae, weak lensing and
measurements of H0, we find γ = 0.485± 0.031 [13]. We also provide a discussion on the
cosmological implications in the framework of alternative gravity models for the Galileon
and scalar-tensor theories, including a f(R) theory that mimics the background evolution
of ΛCDM. This specific f(R) is found to be strongly disfavored by current data and might
be even ruled out with the constraints from the final eBOSS samples.
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6.2 Prospects

6.2.1 eBOSS prospects : analysis of the final quasar sample

This study is a first use of eBOSS quasars for BAO-only and full-shape analyses and
will be included for the final eBOSS sample. The final projected area for the full quasar
sample will correspond to 5500 square degrees compared to the 2213 square degrees of
the DR14 sample. eBOSS observations will end in February 2019 and we are planning to
release the final catalogue, DR16, along with the BAO and full-shape analyses by the end
of 2019. The following table summarizes the expected statistical precision on DV , DA, H
and fσ8, which can be obtained by re-scaling the current precision given the projected
final area :

Sample area (deg2) σDV /DV σDA/DA σH/H σfσ8/fσ8
DR14 2213 3.8% 5.5% 7.9% 16.4%
DR16 5500 2.4% 3.4% 4.9% 10.1%

Given the statistical precision of the current DR14 quasar sample, the reported systematic
uncertainty is not dominant in our analysis, but further investigations including a full blind
mock challenge similar to that undertaken for BOSS is in progress and will be available
in time for the analysis of the final eBOSS sample. In parallel, further improvements in
the model to take into account the shape of the redshift uncertainties distribution are also
considered to reduce the systematic error budget. In fact, if we allow the systematic budget
to represent 20% of the statistical precision of the DR16 sample,the requirement on the
allowed shift for fσ8 is ∆fσ8 < 0.01. It implies a reduction of a factor 2-3 of the current
systematic uncertainty related to the modeling. There is therefore an important effort
within the galaxy-quasar working group to prepare a mock challenge to test modeling and
observational effects using different RSD models. Among the publicly available models for
RSD, the following will be considered :

— In Fourier space : an extension of the TNS model [14] using 2-loop resummed pertur-
bation theory (RPT) as in our companion paper [3], or using regularized perturbation
theory [15, RegPT,]

— In configuration space : the CLPT-GS model used in this work [1], the CLEFT-
GS model [16] which is an extension of CLPT including additional bias terms and
effective contributions. We can also test the TNS model in configuration space in
association with RegPT or with gRPT (Crocce, Blas and Scoccimarro in prep.) as
in [6].

Regarding redshift quasar uncertainties, there are ongoing efforts within the pipeline team
to provide new pipeline redshifts. Their performance in terms of catastrophic redshifts rate
and resolution will be evaluated and the visual inspection procedure will be determined
accordingly. Eventually, the direct use of quasars as tracers is not the only study using
eBOSS data. The BAO-only analysis of the luminous red galaxies (LRG) at an effective
redshift zeff = 0.72 yields a 2.6% measurement on DV and the RSD analysis will be
published soon. Ongoing analyses are focused on ELG at z ∼ 0.8 and preliminary results
on mock catalogues without systematic effects find H, DA and fσ8 with respectively 6.1%,
4.6% and 14% precision. The improvement of statistics would also allow different methods
and tracers to be combined and thus to provide even tighter constraints on cosmological
parameters.
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Figure 6.1 – The five cosmological tracers of DESI that will cover the redsfhit range up
to z = 3.5.

6.2.2 Prospects for stage IV experiments

Together with BOSS, eBOSS is of particular interest since it paves the way for future
programs such as the ground-based Dark Energy Spectroscopic Instrument [DESI, 17, 18],
the space-based mission, Euclid [19] and the Large Synoptic Survey Telescope [LSST, 20].
These Stage-IV experiments will mark the beginning of an era of precision with sub-percent
measurements of cosmological parameters across the redshift.
— DESI is a spectroscopic survey (2020-2025) that will cover 14,000 deg2 and that

will use five tracers as illustrated in figure 6.1 : a new sample of ∼10 million bright
galaxies (BGS) at low redshift z < 0.5, 6 million LRG between 0.4 < z < 1.0, 17
million ELG between 0.6 < z < 1.6, 1.7 million quasars between 0.9 < z < 2.1 and
0.7 million Ly-α forests at z > 2.1.
DESI will therefore extensively probe the intermediate redshift range 1 < z < 2
with millions of spectra, pushing an order of magnitude beyond current measure-
ments from BAO and RSD techniques. Its science goals is to measure the distance
scale from BAO to sub-percent levels all across the redshift range. The top panel of
figure 6.2shows the DESI forecasts for the expansion rate H(z)/(1 + z) as a func-
tion of redshift and the bottom panel represents the DESI forecasts for the growth
rate as a function of redshift. We add the forecasts for the final eBOSS samples in
blue for comparison. We stress that the reported precision for eBOSS is obtained at
the effective redshift of each sample, while DESI will have a better precision across
narrow redshift bins of width ∆z = 0.1.

— The Euclid mission (2021-2026) has been optimized for two complementary cosmolo-
gical probes : BAO and weak gravitational lensing. It will produce a catalogue of up
to 100 million galaxy redshifts and an imaging survey that will estimate the galaxy
ellipticity of up to 2 billion galaxy images. The survey will cover ∼15,000 deg2 and
will target Hα emitters since they guarantee both relatively dense sampling and an
efficient method to measure redshifts. In particular, Euclid will observe 50 million
ELG in the redshift range 0.8 < z < 1.8. The Euclid scientific goals is to measure
the dark energy equation of state w = w0 + (1 − a)wa with 2% precision on w0
and 10% on wa, improving the current constraints by a factor of 10 and 50 at least.
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Figure 6.2 – Top panel : The DESI forecasts (in red) for the baseline survey, i.e. 14,000
deg2, for the expansion rate as a function of redsfhit. The eBOSS DR16 forecasts from
LRG at zeff = 0.72, ELG at zeff = 0.86 and quasars at zeff = 1.52 are plotted in blue.
We emphasize that the eBOSS forecasts are obtained by averaging over the redshift range
while DESI will measure sub-percents across redshift bins of width ∆z = 0.1. Bottom
panel : Same for fσ8.
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The Euclid scientific goals also include a measurement of the growth index γ with
a precision of 2%, improving the current constraint by a factor 30. In the context of
dark energy and as a test of general relativity in particular, it would also be highly
valuable to combine weak gravitational lensing and galaxy redshift-space clustering
to break degeneracies between the growth rate of structure and the amplitude of
dark matter fluctuations and to measure the gravitational slip parameter EG defi-
ned as the ratio between the two gravitational potentials Ψ and Φ. In the standard
cosmological model, this parameter should asymptote towards a given value on large
linear scales. If such a test fails, it would either imply an incorrect matter energy
density or a departure from standard gravity.

— LSST (2022-2032) is an optical/near-infrared imaging survey of half the sky (20,000
deg2 in the South) in ugrizy bands to r ∼ 27.5 (100 times fainter than SDSS) which
will produce a catalogue of 20 billion stars and 20 billion galaxies. After ten years,
half of the sky will be imaged about 1000 times, providing exquisite photometry,
astrometry and image quality. LSST and Euclid will have an overlapping area of
∼10,000 deg2 which will allow us to combine measurements and reduce the impact
of potential systematics.

On one hand, the precision of DESI and Euclid will be sufficient to highlight a possible
time-evolution of dark energy and to discriminate between dark energy and modified-
gravity theories. Both will target with the highest priority the intermediate redshift range
1 < z < 2 as it corresponds to a transition to the present epoch dominated by cosmic
acceleration. On the other hand, Euclid and LSST will extensively map the matter dis-
tribution using the weak lensing technique. We mentioned above the example of the EG
parameter as a promising observable that combines both galaxy clustering and weak len-
sing statistics. There is no doubt that additional tests of ΛCDM will emerge as a result
of the combination of independent probes which will reduce systematics and break dege-
neracies in the cosmological information we can extract. The bottom line is that we are
really entering an area of precision cosmology with a huge amount of data coming from
complementary facilities and I am very enthousiastic about developing new skills that will
allow me contributing to the synergy among the future surveys.
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Résumé substantiel

6.3 Introduction
La cosmologie a pour but de retracer l’histoire de l’univers en s’appuyant à la fois

sur des modèles mathématiques et sur des observations. Dès les années 1920, l’analyse du
mouvement des galaxies, ces regroupements d’étoiles attirées sous l’effet de leur masse, ont
montré que les raies spectrales de leurs spectres se décalaient vers le rouge. Cet effet, appelé
redshift 1 (ou décalage vers le rouge en français) est d’origine cosmologique : les galaxies
s’éloignent les unes des autres car l’univers (i.e. l’espace lui-même) est en expansion. A
la fin des années 90, d’autres observations ont révélé que les distances entre les galaxies
augmentent plus rapidement les derniers 6 milliards d’années de l’univers, lorsque nous
estimons que notre univers est âgé de 13,8 milliards d’années. Cette découverte capitale
de l’accélération de l’expansion de l’univers est considérée comme l’une des plus grandes
énigmes de la cosmologie et est au cœur de mon sujet de thèse.

6.3.1 Le modèle ΛCDM

Les observations du fond diffus cosmologique (CMB, Cosmic Microwave Background)
ont révélé que l’univers primordial était beaucoup plus chaud, plus dense et plus uni-
forme que l’univers actuel, avec des fluctuations de température de seulement 10−5 K.
Ces fluctuations primordiales de température, et donc de densité, ont ensuite grandi par
effondrement gravitationnel dans un univers en expansion pour former une hiérarchie de
structures liées par interaction gravitationnelle jusqu’à représenter une toile cosmique que
nous observons aujourd’hui. Cette histoire de l’univers est retracée sur la droite de la
figure 6.3 depuis un univers primordial dominé par le rayonnement puis la matière avec
formation de structures jusqu’à la phase d’expansion accélérée qui dure depuis 6 milliards
d’années.

Afin d’expliquer ces observations, le modèle actuel de la cosmologie, appelé modèle
ΛCDM, repose sur les éléments suivants :

— l’univers est homogène et isotrope à très grande échelle
— la gravitation est décrite par la théorie de la relativité générale
— le modèle dépend de 6 paramètres : la densité baryonique Ωb, la densité de matière

noire Ωcdm, la densité d’énergie noire ΩΛ, l’indice spectral des perturbations pri-
mordiales scalaires ns, l’amplitude des perturbations primordiales de courbure As et
l’épaisseur optique de réionisation τ .

Le contenu énergétique de l’univers aujourd’hui est représenté à gauche de la figure
6.3 avec 5% de matière ordinaire (étoiles, galaxies, gaz, poussière, nous, ...) ; 25% de

1. Le redshift cosmologique est défini par : 1+z = λobs
λR.F.

= 1
a(t) où λobs est la longueur d’onde observée,

λR.F. est la longueur d’onde de référence au repos et a(t) est le facteur d’échelle qui quantifie le taux
d’expansion de l’univers.
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Figure 6.3 – Gauche : contenu énergétique actuel de l’univers. Droite : Frise retraçant
l’histoire de l’univers depuis le Big Bang il y a 13.7 milliards d’années jusqu’à aujourd’hui.

matière noire autrement dit des particules massives froid (Cold Dark Matter, CDM) non
sensibles à l’interaction électromagnétique et qui doivent interagir très peu avec la matière
ordinaire pour rendre compte des observations de la formation des structures ; et enfin 70%
d’énergie noire un fluide exotique aux propriétés constantes dans le temps et l’espace, aussi
appelé constante cosmologique et qui serait responsable de l’accélération de l’expansion
de l’univers.

Dans le cadre de ma thèse, je m’intéresse à la question de la nature de l’énergie noire qui
domine le contenu énergétique de l’univers aujourd’hui. Une autre alternative à l’énergie
noire pour expliquer la phase d’expansion accélérée de l’univers serait de modifier la théorie
de la relativité générale aux échelles cosmologiques, là où nous supposons qu’elle est valable
alors qu’elle est essentiellement testée, et ce avec une précision remarquable, aux échelles
du système solaire. A ce jour, aucune théorie ne permet d’expliquer de manière satisfaisante
l’origine de l’accélération de l’expansion de l’univers, d’où le nombre croissant de projets
qui y sont consacrés.

6.3.2 Cartographier les structures de l’univers

Dans le cadre de ma thèse, je fais partie de l’un des plus ambitieux programmes
d’observation, le programme SDSS (Sloan Digital Sky Survey) qui utilise un télescope
de 2,5 mètres de diamètre, situé à l’observatoire de Apache Point au Nouveau Mexique,
États-Unis. Le télescope est en opération depuis les années 2000 et a déjà permis de
collecter la position dans le ciel de plus d’un million de galaxies.

La figure de gauche 6.4 montre une carte des structures obtenue avec le SDSS où
l’observateur est au centre et chaque point correspond à une galaxie repérée par ses deux
coordonnées angulaires (ascension droite RA et déclinaison DEC) et par le redshift z. On
observe que les galaxies ne sont pas distribuées de manière uniforme, certaines régions sont
plus denses, d’autres semblent vide de matière. Pour décrire la distribution des structures,
nous définissons un champ de densité de contraste δ(x) défini par :

δ(x) = ρ(x)− ρ̄
ρ̄

(6.1)

où ρ̄ correspond à la densité moyenne de l’univers. La distribution des corrélations spatiales
des galaxies peut alors être étudiée au moyen d’outils statistiques, en particulier la fonction
de corrélation à deux points xi(r) définie par :

ξ(r) = 〈δ(x)δ(x + r)〉 (6.2)
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Cet outil statistique quantifie le degré de structuration de la matière, une autre interpréta-
tion est de considérer la fonction de corrélation comme l’excès de probabilité par rapport
à une distribution uniforme de trouver deux galaxies séparées par une distance r.

BAO 

RSD 

µ
LOS 

δ(x)

δ(x+r)

r 

Figure 6.4 – Gauche : carte des structures obtenue avec le SDSS où l’observateur est
au centre et chaque point représente une galaxie. Droite : Fonction de corrélation à deux
points représentée dans les directions parallèle et perpendiculaire à la ligne de visée.

La mesure de cette distribution au moyen de grands relevés comme le SDSS a ouvert
une nouvelle piste pour explorer la nature de l’énergie noire grâce à l’exploitation d’une
nouvelle sonde : les oscillations acoustiques de baryons (BAO pour Baryon Acoustic Oscil-
lations). Il s’agit d’ondes d’ondes de pression formées par le plasma primordial de baryons
et de photons lorsque que l’univers était plus chaud et dense que l’univers que nous obser-
vons aujourd’hui. Ces ondes sonores qui se sont propagées pendant les 380 000 premières
années de l’univers, se sont figées au moment où les baryons se sont couplés aux électrons
pour former des atomes d’hydrogène et ont donc cessé d’interagir avec les photons dans
le plasma primordial. L’arrêt de ces oscillations a laissé une empreinte sous forme d’une
distance caractéristique dans la distribution actuelle de la matière, appelée « pic BAO » et
qui est utilisée pour mesurer les distances dans l’univers, notamment le taux d’expansion
de l’univers H et la distance angulaire DA. A droite de la figure 6.4 est représentée la
fonction de corrélation à deux points dans les directions parallèle et perpendiculaire à la
ligne de visée (LOS pour Line of Sight). On distingue un anneau de rayon 100 h−1Mpc qui
correspond au pic BAO : une sur-densité de galaxies distantes de 100 h−1Mpc. On observe
également un écrasement de la fonction de corrélation le long de la LOS qui correspond
à l’effet de distorsions dans l’espace des redshifts (RSD pour Redshift Space Distortions).
Cet effet est relié à la mesure de la distance entre une galaxie et l’observateur à partir du
redshift. La position de la galaxie notée s contient deux termes : une contribution due à
l’expansion de l’univers (on parle de flot de Hubble) notée r et une autre contribution due
à la composante le long de la LOS de la vitesse particulière de la galaxie notée vz :

s = r + vz(r)
aH

ẑ (6.3)

où ẑ est le vecteur unitaire le long de la LOS. On appelle aussi s la position dans l’espace
des redshifts et r la position dans l’espace réel. La prise en compte des vitesses propres des
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galaxies introduit des déformations de la fonction de corrélation qui sont directement liées
à la dynamique des structures qui s’attirent sous l’effet de l’attraction gravitationnelle.
L’amplitude de l’effet de RSD est directement proportionnelle aux taux de croissance des
structures cosmiques f . Le modèle actuel de la cosmologie, basé sur la relativité géné-
rale d’Einstein comme théorie de la gravitation, établit une prédiction théorique pour ce
paramètre cosmologique :

f = d lnD(+)

d ln a = Ωγ
m (6.4)

où γ = 0.55 pour un univers ΛCDM plat. L’exploitation de l’effet de RSD permet donc de
tester directement la théorie de la gravitation aux échelles cosmologiques.

6.4 L’échantillon de quasars de la DR14 du SDSS-IV eBOSS

La collaboration SDSS avaient déjà auparavant utilisé la technique des BAO et RSD
avec des galaxies plus proches pour z < 1 pour mesurer les distances dans l’univers et la
croissance des structures. Pour étendre les mesures faites jusqu’à présent grâce aux galaxies
et être capable de sonder l’univers tel qu’il était il y a plus de 6 milliards d’années, il faut
pouvoir observer des astres très brillants et très lointains. Les quasars sont les candidats
idéaux pour réaliser la carte la plus aboutie à ce jour des grandes structures de l’univers.
Il s’agit de galaxies actives avec un trou noir super-massif. L’incroyable luminosité des
quasars est due à l’interaction entre le disque d’accrétion et le trou noir super-massif.
Leurs processus de formation et les interactions avec la matière environnante font partie
des phénomènes les plus violents de l’univers et sont encore méconnus. Le fait qu’ils se
soient formés tôt dans l’histoire de l’univers permet de sonder une époque pratiquement
inexplorée, lorsqu’il n’était pas encore dominé par une phase d’expansion accélérée. Des
quasars lointains (z > 2.5) avaient déjà été observés par le programme précédent BOSS
pour analyser la forêt Ly-α qui correspond à l’absorption de l’hydrogène par le milieu inter-
galactique. Avec eBOSS, l’objectif au contraire est d’utiliser les quasars entre 0.8 ≤ z ≤ 2.2
comme traceurs direct du champ de matière.

Pour réaliser la carte la plus aboutie à ce jour des grandes structures de l’univers,
le télescope SDSS, relié au multi-spectrographe eBOSS, a observé pendant deux ans un
nombre sans précédent de quasars. Il a permis de mesurer précisément la position de plus
de 149 000 quasars. La première phase de la stratégie d’observation correspond à un relevé
photométrique de la zone étudiée obtenu avec la caméra de SDSS. Une analyse de ce relevé
permet de définir quels sont les candidats quasars, appelés cibles, que le spectrographe va
analyser afin d’obtenir leurs coordonnées le long de la ligne de visée, c’est-à-dire leur
redshift. Plus de 300 plaques en aluminium ont alors été percées afin de correspondre
parfaitement aux coordonnées des candidats pré-sélectionnés. Ces plaques sont placées au
plan focal du télescope pour ne récupérer que la lumière émise par ces sources grâce à des
fibres optiques.

6.4.1 Propriétés et traitement des effets de sélection

L’échantillon DR14 (Data Release 14) correspond à deux ans de prise de données dont
les principales caractéristiques sont présentées dans le tableau 6.1. Il s’agit d’un échantillon
peu dense avec une densité moyenne de n̄ ∼ 10−4[h−1Mpc]−3 soit un ordre de grandeur
plus faible que la densité moyenne des galaxies de BOSS.

Dans n’importe quel relevé du ciel réaliste, plusieurs raisons peuvent conduire à des
variations de la densité de galaxies comme la géométrie du relevé, des effets observationnels,
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Table 6.1 – Nombre de quasars entre 0.8 ≤ z ≤ 2.2 pour l’échantillon eBOSS CORE et
surface effective des pôles galactiques nord (NGC) et sud (SGC).

NGC SGC Total
Nquasar (0.8 ≤ z ≤ 2.2) 89233 59426 148659
Surface effective (deg2) 1214.6 898.3 2112.9

instrumentaux... Pour corriger ces effets, nous définissons des poids que nous appliquons
aux données. Le schéma de pondération que nous adoptons permet de corriger les effets
suivants :
— in-homogénéités dans la sélection de cibles dues à la photométrie : un poids est défini

à partir de plusieurs observables comme la densité d’étoiles, la poussière galactique,
la profondeur de la photométrie, ... Ce poids est appelé poids photométrique et est
noté wphoto.

— collisions de fibre : chaque plaque d’aluminium est percée de 1000 trous reliés au
spectrographe par des fibres optiques. Le diamètre d’une fibre empêche deux quasars
séparés de moins de 62” d’être observés. Certaines régions sont observés par plus
d’une plaque et permettent de résoudre ces collisions. Lorsqu’un quasar est manqué,
on rajoute un poids +1 au quasar le plus proche, ce poids est noté wcp.

— erreurs d’assignation de redshift : toutes les observations spectroscopiques ne per-
mettent pas d’obtenir un redshift valide. La méthode utilisée jusqu’à présent consti-
tuait à rajouter un poids +1 au quasar le plus proche mais dans ma thèse, nous avons
proposé une amélioration : on peut calculer une efficacité d’assignation de redshift
en fonction de la position de la fibre dans le plan focal et donc donner définir un
poids en fonction de l’inverse de cette efficacité. On note ce poids wfocal

— poids pour minimiser la variance noté wFKP

Le poids total Wtot est alors défini par :

Wtot = wFKP · wphoto · wcp · wfocal (6.5)

Le nombre effectif de quasars correspond alors à Nquasars,eff =
∑
iWtot,i et on définit le

redshift effectif zeff par zeff =
∑
i ziWtot,i /

∑
iWtot,i = 1.52.

6.4.2 Incertitudes sur la détermination du redshift des quasars

La détermination du redshift procède de l’analyse de la position des raies spectrales.
Un quasar possède un continuum qui correspond à l’émission thermique du disque d’accré-
tion qui entoure le trou noir super-massif ainsi que des raies d’émission étroites et larges
associées à des régions situées autour du trou noir. La position de ces raies d’émission
peut être décalée à cause d’éjection de matière lors de processus d’accrétion autour du
trou noir, ces effets astrophysiques peuvent donc conduire à un biais systématique dans la
détermination du redshift.

Au cours de ma thèse, j’ai étudié l’impact des incertitudes sur la détermination du
redshift sur la fonction de corrélation des quasars. Plusieurs estimateurs du redshift sont
disponibles dans le catalogue de quasars DR14, en particulier :
— le redshift de référence noté ’z’ qui correspond au redshift déterminé par l’algorithme

de traitement des spectres qui utilise plusieurs raies d’émission noté ’zPL ou au
redshift déterminé par une inspection visuelle des spectres identifiés comme suspects
par l’algorithme noté ’zVI’.
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— le redshift déterminé à partir de la position de la raie Magnesium II noté ’zMgII’
car pour des raisons astrophysiques et étant donné le rapport signal sur bruit des
spectres eBOSS et l’intervalle en redshift sondé cet estimateur est considéré comme
celui étant le moins biaisé.

Toutefois, tous les spectres ne présentent pas de raie MgII suffisamment prononcée pour
fournir un zMgII à tous les quasars de l’échantillon. Par conséquent, le redshift utilisé pour
l’analyse reste z et pour avoir une estimation de la résolution en redshift, nous regardons
le RMS et la forme de la distribution ’z − zMgII’. La figure 6.5 montre la distribution des
différences entre plusieurs estimateurs de redshift pour deux bins en redshift, la distribution
’z− zMgII’ est représentée en vert. On voit que par rapport à une distribution Gaussienne
en noir pointillé, la distribution physique présente des queues non-Gaussiennes.�2000 �1000 0 1000 2000

c · �z/(1 + z)
⇥
km s�1

⇤
100

101

102

103

N
um

b
er

of
qu

as
ar

s

0.8 < z < 1.5

zMgII � z

zPCA � z

zPCA � zMgII

�2000 �1000 0 1000 2000
c · �z/(1 + z)

⇥
km s�1

⇤
100

101

102

103

N
um

b
er

of
qu

as
ar

s

1.5 < z < 2.2

zMgII � z

zPCA � z

zPCA � zMgII

�2000 �1000 0 1000 2000
c · �z/(1 + z)

⇥
km s�1

⇤
100

101

102

103

N
um

b
er

of
qu

as
ar

s

0.8 < z < 1.5

zMgII � z

zPCA � z

zPCA � zMgII

�2000 �1000 0 1000 2000
c · �z/(1 + z)

⇥
km s�1

⇤
100

101

102

103

N
um

b
er

of
qu

as
ar

s

1.5 < z < 2.2

zMgII � z

zPCA � z

zPCA � zMgII

Figure 6.5 – Distribution des différences entre deux estimateurs du redshift pour deux
domaines en redshift, 0.8 < z < 1.5 à gauche et 1.5 < z < 2.2 à droite.

6.5 Méthodologie de l’analyse ’clustering’
Nous commençons par construire des catalogues des grandes structures qui prennent en

compte la géométrie angulaire et radiale du relevé. Nous utilisons l’estimateur de Landy-
Szalay pour calculer la fonction de corrélation, il est défini par :

ξ̂(s, µ) = DD(s, µ)− 2DR(s, µ) +RR(s, µ)
RR(s, µ) (6.6)

où s est la distance qui sépare deux quasars dans l’espace des redshift, µ est le cosinus de
l’angle entre la paire et la LOS, DD correspond au nombre de paires dans le catalogue
de données, RR au nombre de paires pour une distribution homogène de même densité
moyenne obtenue en générant un catalogue de points répartis de manière uniforme dans le
volume couvert par le relevé, et DR correspond au nombre de paires entre un quasar du
catalogue de données et un point du catalogue aléatoire. Puis la fonction de corrélation
est projetée sur la base des polynômes de Legendre :

ξl(s) = 2l + 1
2

∑
j

ξ(s, µj)Pl(µj)dµ , (6.7)

où nous considérons uniquement l = 0, 2, 4 pour le monopole, le quadrupole et l’hexade-
capole respectivement.
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6.5 Méthodologie de l’analyse ’clustering’

6.5.1 Analyse BAO

L’analyse dite BAO utilise uniquement les informations contenues dans le monopole.
Pour mesurer ξ(r) et la position du pic BAO, nous avons besoin de transformer les

coordonnées observationnelles des quasars en coordonnées cartésiennes (en h−1Mpc). Pour
effectuer cette transformation, il est nécessaire de définir une cosmologie fiducielle, c’est-
à-dire de fixer les paramètres cosmologiques du modèle ΛCDM. Fixer ces paramètres
cosmologiques fixe également la position théorique du pic BAO dans la fonction de cor-
rélation et celle des oscillations dans le spectre de puissance. La position du pic est alors
ajustée, tandis que la forme de la fonction de corrélation sans pic BAO (nommée broad-
band en anglais) est reproduite à l’aide d’un modèle qui comporte généralement plusieurs
paramètres de nuisance. Nous mesurons alors α, le rapport entre la position mesurée et la
position théorique du pic BAO. Quand la statistique du relevé est trop faible pour obtenir
une mesure des distances parallèles et perpendiculaires à la ligne de visée, il est préférable
de réaliser une mesure isotrope pour former la distance DV (z) :

DV(z) =
[
(1 + z)2cz

D2
A(z)
H(z)

] 1
3

(6.8)

où H(z) est le taux d’expansion de l’univers et DA est la distance comobile angulaire. Une
mesure isotrope permet alors de contraindre le rapport αiso :

αiso = DV (z)/rd
Dfid
V (z)/rfidd

. (6.9)

La mesure de la position du pic BAO est très robuste, car il est peu probable qu’un
effet systématique puisse générer un pic de corrélation. La plupart des effets systématiques
seront absorbés par le broadband, et vont seulement élargir le pic et réduire la précision
de la mesure. Cependant, la faiblesse de l’amplitude du pic nécessite un échantillon de
données conséquent, donc les mesures sont limitées par la précision statistique.

Une analyse jointe du monopole de la fonction de corrélation et du spectre de puissance,
sa transformée de Fourier ont permis de mesurer la position du pic BAO pour accéder à
la distance DV avec une précision de 3.8%. La mesure obtenue est compatible avec les
mesures faites jusqu’à présent en utilisant les galaxies à z < 1 et les quasars avec leurs
forêts Ly-α à z > 2.5.

6.5.2 Analyse "Full Shape"

L’analyse dite ’Full-Shape’ utilise les informations contenues dans les trois multipoles.
Contrairement à l’analyse BAO qui utilise un broad band, l’analyse Full-Shape nécessite de
modéliser toute la fonction de corrélation, et ce pas uniquement aux échelles linéaires (s >
80h−1Mpc) mais aussi aux échelles intermédiaires (20−80h−1Mpc) où il est indispensable
de prendre en compte des effets non-linéaires.

6.5.2.1 Modélisation de la fonction de corrélation à deux points

La construction d’une prédiction théorique de la fonction de corrélation à deux points
requiert trois éléments :

— un modèle pour l’effet de RSD, i.e. le passage de l’espace réel à l’espace des redshifts
— une prédiction théorique pour le champ de densité et de vitesses, ainsi que leurs

couplages aux échelles intermédiaires
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— un modèle de biais pour relier les propriétés statistiques du champ de matière à celles
des traceurs, ici les quasars de eBOSS qui évoluent dans des halos de matière noire
dont la masse typique est de l’ordre de 1012 M�h−1

Le premier élément est traité de la manière suivante : la fonction de corrélation dans
l’espace des redshifts ξ(s, µ) peut être modélisée comme étant la convolution de la fonc-
tion de corrélation dans l’espace réel ξ(r) avec la densité de probabilité G des vitesses
d’effondrement v12 de dispersion σ12 :

1 + ξs(s, µ) =
∫
d3r‖[1 + ξr(r)]G(s‖ − r‖, v12, σ12) (6.10)

Dans le modèle adopté, la densité de probabilité G peut être approximée par une Gaus-
sienne centrée sur µv12(r) avec une dispersion qui dépend de l’échelle σ12(r, µ) de sorte
que G devient :

G = 1√
2πσ2

12(r, µ)
exp[

(s‖ − r‖ − µv12)2

2σ2
12(r, µ)

] (6.11)

Le modèle de RSD dépend donc de trois ingrédients, ξ(r) relié à la variance du champ
de densité, v12(r) relié au couplage densité-vitesse et σ12(r, µ) relié à la variance du champ
de vitesse. Les prédictions théoriques sont obtenues en utilisant un des modèles les plus
récents qui prend en compte l’évolution non-linéaire des champs de matière et de vitesse
en se basant sur la théorie des perturbations dans le formalisme Lagrangien (CLPT pour
Convolution Lagrangian Perturbation Theory). Chaque ingrédient est prédit de la manière
suivante :

A = A0 + 〈F ′〉A10 + 〈F ′′〉A01 + 〈F ′〉2A20 + 〈F ′′〉2A02 + 〈F ′〉〈F ′′〉A11 (6.12)

où chaque coefficient Aij coefficient est calculé avec le code public CLPT 2. Les termes A10
et A01 correspondent ) des corrections du premier ordre ; A20, A02 et A11 des corrections
du deuxième ordre.

Les paramètres F ′ et F ′′ correspondent aux paramètres du modèle de biais qui per-
mettent d’obtenir les propriétés statistiques des quasars à partir de celles des halos de
matière noire. Le modèle de biais adopté est un modèle non-linéaire et local dans le for-
malisme Lagrangien.

6.5.2.2 Étude des effets systématiques

Les effets systématiques pouvant affecter la mesure des paramètres cosmologiques
peuvent se classer en 2 catégories :
— Effets systématiques liés à la modélisation de la fonction de corrélation à deux points :

le modèle avait déjà été utilisé pour une analyse antérieure sur l’échantillon de ga-
laxies proches obtenu avec BOSS mais il n’a jamais été testé pour un échantillon de
quasars beaucoup plus lointains. Par conséquent, j’ai étudié les performances et les
conditions d’utilisation du modèle à partir de simulations numériques d’univers. J’ai
participé à la génération d’une centaine de catalogues fictifs qui reproduisent notre
échantillon de données et pour lesquels nous commençons les paramètres cosmolo-
giques injectés. Les effets systématiques liés à notre modèle correspondent à 40% de
la précision statistique où plus de la moitié provient des incertitudes sur le redshift.
Pour étudier leurs impacts, j’ai généré des catalogues fictifs avec différentes distribu-
tions d’incertitudes sur le redshift : pas d’incertitudes, une distribution Gaussienne

2. CLPT
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6.5 Méthodologie de l’analyse ’clustering’

d’après la courbe en pointillé noir de la figure 6.5 et une distribution physique d’après
la courbe verte de la même figure. Les multipoles pour ces trois configurations sont
montrés sur la figure de gauche 6.6 où l’on voit que le quadrupole est le plus impacté
par la résolution en redshift, surtout pour des échelles s < 40h−1Mpc. Il est possible
de mesurer les incertitudes sur le redshift en rajoutant un paramètre de dispersion
de vitesse supposé constant dans le modèle noté σtot qui inclut aussi les effets de
dispersion des vitesses à petites échelles au sein d’un halo.

— Effets systématiques liés aux conditions d’observation et à l’instrument : j’ai testé
différents schémas de pondérations sur 1 000 catalogues fictifs reproduisant nos don-
nées mais avec une résolution moins bonne que les catalogues précédents basés sur
des simulations à N-corps. Ces catalogues sont aussi utilisés pour déterminer la ma-
trice de covariance à partir de laquelle nous estimons les erreurs statistiques. J’ai
montré que le nouveau schéma de pondération Wtot = Wfocal−µ que nous avons
proposé pour l’analyse Full-Shape des quasars permettait de retrouver les mullti-
poles avec une meilleure précision comparé à l’approche classique Wnoz, notamment
le quadrupole comme le montre la figure de droite 6.6. Grâce à l’amélioration de la
définition des poids, nous n’avons pas de systématiques observationnelles résiduelles.

 
 
 
 
 
 
 
 

Figure 6.6 – Gauche : Monopole (bleu), quadrupole (rouge) et hexadecapole (vert) de la
fonction de corrélation pour 3 configurations de catalogues fictifs générés à partir d’une
simulation numérique à N-corps : sans incertitude sur le redshift (pointillé), distribution
Gaussienne (plein), distribution physique ’z − zMgII’ (tiret). Droite : Effet des différents
schémas de pondération sur le quadrupole : en rouge lorsqu’on applique un poids +1 au
quasar le plus proche pour corriger des erreurs d’assignation de redshift, en vert Wfocal
lorsqu’on applique un poids en fonction de l’inverse de l’efficacité d’assignation de redshift,
en bleu Wfocal−µ on rajoute un traitement spécial pour les collisions de fibre où l’on retire
les paires dans la région proche de la LOS.

La figure 6.7 montre les multipoles de la fonction de corrélation des données quasars
DR14 où les barres d’erreur statistique sont obtenues à partir de la matrice de covariance
des 1 000 générations fictives. Les courbes en tiret correspondent aux prédictions théo-
riques obtenues à partir du modèle décrit précédemment qui dépend de 5 paramètres : 1
paramètre de biais linéaire F ′ ; 3 paramètres cosmologiques : décalage parallèle et perpen-
diculaire à la ligne de visée du pic BAO α‖, α⊥ et le taux de croissance des structures f ;
1 paramètre qui contient les incertitudes sur le redshift σtot. Les paramètres α‖ et α⊥ sont
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Bias 
 
Cosmo 
 
 
 
 

Redshift uncertainty 

Figure 6.7 – Monopole (bleu), quadrupole (rouge) et hexadecapole (vert) de la fonction
de corrélation des quasars de DR14. Les courbes en tiret correspondent aux prédictions
théoriques du modèle utilisé qui dépendent de 5 paramètres définis dans le tableau à droite
avec leurs intervalles de valeurs respectifs.

Table 6.2 – Resultats des ajustements des données avec les incertitudes statistique et
systématique.

paramètre best-fit statistique systématique
bσ8 1.038 +0.060

−0.057 –
fσ8 0.426 +0.070

−0.070 0.033
αpar 1.012 +0.071

−0.064 0.038
αperp 1.031 +0.050

−0.048 0.006
σtot 5.94 +1.19

−1.40 –

reliés au taux d’expansion de l’univers H(z) et à la distance comobile angulaire DA par :

α‖ = Hfid(z)rfid
d

H(z)rs
(6.13)

α⊥ = DA(z)rfid
d

Dfid
A (z)rs

(6.14)

Les résultats de l’ajustement des données DR14 quasars avec le modèle décrit pré-
cédemment sont présentés dans le tableau 6.2, ainsi que les incertitudes statistique et
systématique où seule une incertitude liée à la modélisation est prise en compte.

6.6 Résultats et implications cosmologiques

Les résultats de l’analyse BAO ont été publiés dans Ata et al. (2017) 3, il s’agit de
la première détection du BAO entre 1 < z < 2 réalisée avec un échantillon de quasars

3. M. Ata et al., The clustering of the SDSS- IV extended Baryon Oscillation Spectroscopic Survey
DR14 quasar sample : First measurement of Baryon Acoustic Oscillations between redshift 0.8 and 2.2,
arXiv:1705.06373.
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Table 6.3 – Constraints on the BAO distances from BAO-only analyses using various
large-scale structure surveys.

survey reference z DV DM H

6dFGS BAO Beutler et al. 2011 0.106 4.5% – –
WiggleZ BAO Kazin et al. 2014 0.44 4.8% – –

0.60 4.5% – –
0.73 3.4% – –

WiggleZ FS Blake et al. 2012 0.44 – 9.4% 9.4%
0.60 – 6.9% 6.9%
0.73 – 7.0% 7.2%

SDSS MGS BAO Ross et al. 2015 0.15 3.8% – –
SDSS BOSS galaxies BAO+FS Alam et al. 2016 0.38 1.09% 1.5% 2.4%

Alam et al. 2016 0.51 1.01% 1.4% 2.2%
Alam et al. 2016 0.61 1.03% 2.8% 2.2%

SDSS BOSS Ly-α BAO Bautista et al. 2017 2.40 – 5.8% 3.4%
du Mas des Bourboux et al. 2017 2.33 – 3.9% 2.8%

combinaison 2.40 – 3.0% 2.0%
SDSS eBOSS LRG BAO Bautista et al. 2018 0.72 2.6% – –

SDSS eBOSS quasars BAO Ata et al. 2017 1.52 3.8% – –
SDSS eBOSS quasars FS Zarrouk et al. 2018 1.52 4.1% 5.5% 7.9%

suffisamment important. Les résultats de l’analyse Full-Shape utilisant la fonction de cor-
rélation ont été publiés dans Zarrouk et al. (2018) 4.

6.6.1 Distances cosmiques

Le tableau 6.3 résume les mesures des distances cosmiques à partir des analyses BAO et
Full-Shape en utilisant des données de différents relevés des grandes structures. L’analyse
de l’échantillon quasars DR14 apporte les contraintes suivantes sur le taux d’expansion
de l’univers H(zeff) = 159+12

−13(rfid
s /rs)km.s−1.Mpc−1, et la distance angulaire DA(zeff) =

1850+90
−115 (rs/rfid

s )Mpc où rs correspond à l’horizon sonore au moment de la recombinaison
et rfid

s est sa valeur dans le modèle de cosmologie fiducielle adoptée pour l’analyse. Les
résultas obtenus avec l’analyse BOSS DR12 fournissent les meilleures contraintes avec
un précision de l’ordre de 1-3% aux redshifts 0.38, 0.51, 0.61 avec des galaxies et au
redshift z = 2.4 avec les forêts Ly-α. Nos mesures de distance obtenues avec le monopole
uniquement (analyse BAO) et avec toute la fonction de corrélation (analyse Full-Shape)
sont présentées dans le tableau.

La figure 6.8 présente les mesures de distances cosmiques comparées à la prédiction
donnée par le modèle Λ-CDM avec les paramètres de Planck 2015. Nos mesures avec
l’analyse BAO et Full-Shape sont compatibles entre elles et sont compatibles avec les
mesures des autres analyses. Elles sont en accord avec l’expansion de l’univers décrite par
le modèle standard.

4. P. Zarrouk, E. Burtin, et al., The clustering of the SDSS-IV extended Baryon Oscillation Spectro-
scopic Survey DR14 quasar sample : measurement of the growth rate of structure from the anisotropic
correlation function between redshift 0.8 and 2.2, 477, 1639 (2018), doi:10.1093/mnras/sty506.
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Figure 6.8 – Evolution des distances BAO avec le redshfit comparée à la prédiction du
modèle Λ-CDM pour un univers plat avec les paramètres de Planck. Les résultats de cette
thèse utilisant les données eBOSS quasars sont représentés par une étoile *.

6.6.2 Croissance des structures

L’analyse des anisotropies de la fonction de corrélation des quasars DR14 eBOSS a
conduit à mesurer le taux de croissance des structures fσ8(zeff = 1.52) = 0.426 ± 0.079
qui est représenté sur la figure 6.9. Ce résultat est obtenu en réalisant un ajustement des
multipoles de Legendre l = 0, 2, 4, la barre d’erreur contient le incertitudes statistique
et systématiques (liées au modèle de RSD) ajoutées en quadrature. Notre mesure est
compatible avec les mesures précédentes et est en accord avec la prédiction du modèle
ΛCDM basé sur la relativité générale et confirme donc la validité de la théorie pour un
intervalle en redshift intermédiaire (1 < z < 2).

Notre mesure a été réalisée en laissant varier le modèle cosmologique que nous devons
supposer pour transformer les coordonnées galactiques en coordonnées cartésiennes, ce qui
revient à réaliser un ajustement des données avec les paramètres fσ8, H et DA. Ce n’est
pas le cas de toutes les mesures effectuées, celles en tiret ont été obtenues pour un modèle
cosmologique fixée (H = Hfid, DA = Dfid

A ).
Le tableau 6.4 résume les mesures de fσ8 et précise celles qui ont été effectuées en

marginalisant sur H et DA donc en laissant varier le modèle cosmologie. Lorsque la cos-
mologie est fixée, nous obtenons une mesure de fσ8 à 11%. Toutefois, ilest important de
souligner que si un ajustement joint de fσ8, H et DA n’est pas réalisée, l’incertitude sur
fσ8 ne reflète pas la marginalisation sur le modèle cosmologique et la mesure ne peut donc
pas être utilisée pour contraindre des scénarios de gravité modifiée.

6.6.3 Contraintes sur ΛCDM et au-delà

En utilisant notre résultat de l’analyse BAO combiné avec d’autres mesures de BAO
indépendantes, les contraintes actuelles favorisent un modèle d’univers avec une densité
d’énergie noire sous la forme d’une constante cosmologique non nulle avec ΩΛ > 0 à 6.6σ
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Table 6.4 – Contraintes sur fσ8, DA and H obtenues à partir d’analyses Full-Shape
provenant de différents relevés des grandes structures.

survey reference z fσ8 cosmologie fixée
2dFGRS Percival et al. 2004 0.17 13% oui
6dFGS Beutler et aL. 2012 0.067 13% oui
WiggleZ Blake et al. 2012 0.44 19.4% non

0.60 16.2% non
0.73 16.5% non

VVDS Guzzo et al. 2008 0.77 36.7% oui
VIPERS Pezzotta et al. 2017 0.60 21.8% oui

0.86 27.5% oui
Subaru FastSound Okumura et al. 2016 1.4 25% oui

SDSS MGS Howlett et al. 2015 0.15 30.6% non
SDSS BOSS galaxies FS Alam et al. 2012 0.38 9.5% non

0.51 8.7% non
0.61 8.8% non

SDSS BOSS galaxies BAO+FS Alam et al. 2012 0.38 9.2% non
Alam et al. 2012 0.51 8.3% non
Alam et al. 2012 0.61 8.0% non

SDSS eBOSS quasars Zarrouk et al. 2018 1.52 18.1% non

Figure 6.9 – Mesures de fσ8(z) en fonction du redshift comparées à la prédiction du
modèle Λ-CDM pour un univers plat avec les paramètres de Planck. Le résultat de ce
travail de thèse avec les quasars eBOSS DR14 est représenté par une étoile * et la barre
d’erreur contient les incertitudes statistique et systématiques.
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de significance.
En combinant les mesures effectuées dans cette thèse à partir de l’analyse Full-Shape

sur les distances avec d’autres mesures indépendantes (BOSS galaxies et Ly-α + Planck),
nous obtenons les contraintes suivantes sur le modèle ΛCDM :

Ωm = 0.3094+0.0076
−0.0080 (6.15)

ΩΛ = 0.697+0.035
−0.032 (6.16)

Ωk = −0.007± 0.030 (6.17)

Les résultats sont en accord avec un univers dominé par une constante cosmologique et
sans courbure.

Concernant les extensions au modèle ΛCDM, nous considérons :
— une extension minimale à la relativité général consiste à faire varier l’indice de crois-

sance γ où fσ8 = Ωγ=0.55
m . En combinant les résultats de ce travail sur l’analyse

Full-Shape des quasars eBOSS avec Planck, nous trouvons : γ = −0.2 ± 1.2. Le
manque de précision provient du fait qu’au redshift des quasars, Ωm est proche de
1 car l’univers est dominé par la matière et pas encore par sa phase d’expansion
accélérée.

— un modèle de gravité modifiée en particulier a été étudié dans mon groupe, il s’agit
du Galileon qui rajoute un champ scalaire supplémentaire qui peut se coupler à la
matière. Le modèle complet présente 5 Lagrangians supplémentaires par rapport à la
RG. Un ajustement de ce modèle sur les données Planck, l’analyse BAO des galaxies
BOSS et les supernovae JLA a été réalisé, et est exclu par la réionisation. De plus,
le modèle a été exclu par la détection jointe d’une onde gravitationnelle et d’un
sursaut γ qui indique une vitesse de propagation des ondes gravitationnelles et des
ondes électromagnétiques très proche, ce qui n’est pas le cas dans le cadre du modèle
complet du Galileon. Dans mon travail j’ai regardé a posteriori la prédiction de fσ8
faite par ce modèle avec les paramètres résultant de l’ajustement. La prédiction
est en accord avec ma mesure mais présente quelques tensions avec les mesures de
croissance des structures à plus bas redshift.

— une autre catégorie de modèles de gravité modifiée correspond aux modèles scalaire-
tenseur, dont le plus connu est le modèle f(R) avec un degré de liberté supplémen-
taire. L’ajout de champ supplémentaire modifie les équations de Poisson et introduit
des dépendances en fonction de l’échelle et du temps qui peuvent être exprimées avec
la paramétrisation BZ. Notre mesure seule n’a pas encore la précision requise pour
contraindre fortement l’espace des paramètres de ces modèles aux redshifts intermé-
diaires 1 < z < 2 mais en combinant les mesures à différents redshifts, on contraint
de mieux en mieux l’histoire de la croissance des structures, et donc la théorie de la
gravitation sous-jacente.

Ce travail de thèse constitue une première étude menée avec les données de quasars
de eBOSS et sera utilisé pour l’analyse de l’échantillon final à la fin 2019 où l’on attend
une amélioration de la précision statistique d’un facteur 2. La première détection du pic
BAO dans un échantillon de quasars à un redshift intermédiaire (1 < z < 2) combiné aux
autres mesures à plus bas redshift avec les galaxies BOSS et à plus grand redshift avec les
Ly-α a permis de confirmer le scénario d’un modèle d’univers avec constante cosmologique
et sans courbure. Les mesures de croissance des structures à grand redshift, comme la
première mesure que j’ai effectuée avec l’échantillon quasars de eBOSS vont ainsi apporter
des nouvelles contraintes sur les modèles de gravité alternative, des contraintes qui sont
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complémentaires de celles qui sont en train d’être apportées par les ondes gravitationnelles
et qui s’annoncent aussi très prometteuses. Associé à BOSS, eBOSS ouvrira la voie pour les
futurs programmes d’observation, comme le télescope au sol DESI et le satellite Euclid.
Ces deux programmes sonderont intensivement l’époque de l’univers entre 1 < z < 2
en observant plusieurs millions de spectres, ce qui permettra d’améliorer d’un ordre de
grandeur au moins les contraintes actuelles sur les paramètres cosmologiques.
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des structures, gravité modifiée, relevé spectroscopique
Résumé : Le modèle ΛCDM de la cosmologie repose sur l’existence d’une composante exotique, appelée énergie noire,
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de ce travail sur l’évolution des distances cosmiques sont compatibles avec les prédictions du modèle ΛCDM utilisant
les paramètres de Planck et basé sur l’existence d’une constante cosmologique. La mesure du taux de croissance des
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