
HAL Id: tel-02051445
https://theses.hal.science/tel-02051445v1
Submitted on 27 Feb 2019 (v1), last revised 4 Apr 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unsupervised Gaussian mixture models for the
classification of outdoor environments using 3D

terrestrial lidar data
Artur Otavio Fernandes Maligo

To cite this version:
Artur Otavio Fernandes Maligo. Unsupervised Gaussian mixture models for the classification of
outdoor environments using 3D terrestrial lidar data. Automatic. INSA de Toulouse, 2016. English.
�NNT : 2016ISAT0053�. �tel-02051445v1�

https://theses.hal.science/tel-02051445v1
https://hal.archives-ouvertes.fr

 et discipline ou spécialité

 Jury :

le

!"#$%$&$'()$%*")+',-#'./%-"/-#'011+%2&3-#',-'4*&+*&#-'5!(.0',-'4*&+*&#-6

!"#$"%&'()*+
'''''''78'9)":%-;'7<=>

?"#&1-;:%#-,'@)&##%)"'A%B$&;-'A*,-+#'C*;'$D-'E+)##%C%/)$%*"
*C'F&$,**;'G":%;*"H-"$#'?#%"I'JK'4-;;-#$;%)+'L%,);'K)$)

GK.M.'N'O*P*$%2&-'Q7<<<Q>'

L00.RE(O.

O)11*;$-&;#'N
F+%:%-;'0S/);,T'A)U$;-',-'E*"C3;-"/-#
V)&+'ED-//D%"T'A)U$;-',-'E*"C3;-"/-#

GB)H%")$-&;#'N
A%/D-+'K-:ST'K%;-/$-&;',-'O-/D-;/D-
.%H*"'L)/;*%BT'K%;-/$-&;',-'O-/D-;/D-

.%H*"'L)/;*%B

Unsupervised Gaussian Mixture Models for the Classification

of Outdoor Environments Using 3D Terrestrial Lidar Data

Artur Maligo

March 22, 2016

i

Abstract

The processing of 3D lidar point clouds enable terrestrial autonomous mobile robots to

build semantic models of the outdoor environments in which they operate. Such models

are interesting because they encode qualitative information, and thus provide to a robot

the ability to reason at a higher level of abstraction. At the core of a semantic modelling

system, lies the capacity to classify the sensor observations. We propose a two-layer classi-

fication model which strongly relies on unsupervised learning. The first, intermediary layer

consists of a Gaussian mixture model. This model is determined in a training step in an

unsupervised manner, and defines a set of intermediary classes which is a fine-partitioned

representation of the environment. The second, final layer consists of a grouping of the

intermediary classes into final classes that are interpretable in a considered target task.

This grouping is determined by an expert during the training step, in a process which is

supervised, yet guided by the intermediary classes. The evaluation is done for two datasets

acquired with different lidars and possessing different characteristics. It is done quantita-

tively using one of the datasets, and qualitatively using another. The system is designed

following the standard learning procedure, based on a training, a validation and a test

steps. The operation follows a standard classification pipeline. The system is simple, with

no requirement of pre-processing or post-processing stages.

ii

iii

Contents

Abstract ii

1 Introduction 1

1.1 Context . 1

1.2 Problem Statement . 2

1.3 Contributions . 4

1.4 Thesis Structure . 4

2 State of the Art 5

2.1 Lidar Point Clouds . 5

2.1.1 Lidar Technology . 5

2.1.2 Data Structures . 7

2.1.3 Lidar Systems . 8

2.2 Semantic Models . 9

2.2.1 Applications of Semantic Models . 9

2.2.2 Structures of Semantic Models . 10

2.2.3 Localization . 12

2.3 Probabilistic Classification . 13

2.3.1 Supervised Learning . 16

2.3.2 Unsupervised Learning . 16

2.3.3 Feature Extraction . 17

2.4 Conclusion . 19

3 Classification 21

3.1 Feature Extraction . 21

3.2 Intermediary Classification: GMM . 26

3.3 Final Classification: Grouping . 27

3.4 Learning . 29

3.4.1 Learning Sets Composition . 31

iv

Contents

3.4.2 Feature Extraction . 33

3.4.3 Intermediary Classification . 36

3.4.4 Final Classification . 38

4 Evaluation 41

4.1 Metrics . 42

4.2 Datasets . 43

4.2.1 Freiburg Dataset . 43

4.2.2 Caylus Dataset . 46

4.3 Learning Sets Composition . 48

4.3.1 Freiburg Results . 50

4.3.2 Caylus Results . 51

4.4 Feature Extraction . 52

4.4.1 Freiburg Results . 52

4.4.2 Caylus Results . 54

4.5 Intermediary Classification . 56

4.5.1 Freiburg Results . 56

4.5.2 Caylus Results . 58

4.6 Final Classification . 58

4.7 Test . 59

4.7.1 Freiburg Results . 59

4.7.2 Caylus Results . 62

5 Conclusion 65

Bibliography 69

v

Chapter 1

Introduction

1.1 Context

Outdoor mobile robotics aims at designing robots to be employed in fields such as agricul-

ture, mining, inspection, monitoring, exploration, mapping and search and rescue. The

environments encountered vary from urban, characterized by artificial, relatively struc-

tured elements like buildings and streets, to off-road, characterized by natural, relatively

unstructured elements like vegetation and rough terrain. Mobile robots come in different

forms, including aquatic, terrestrial and aerial. This thesis considers the case of terrestrial

robots.

The control of robots by a human operator, or team of operators, faces obstacles in-

herent to mobile robotics applications: limited communication with the robot, difficult

access to the site, life-threatening hazards, repetitiveness of tasks, long duration of tasks,

and more [Dudek and Jenkin, 2000]. Thus, it is mostly desirable to design robots possess-

ing autonomy, in order to reduce their dependence on human intervention and increase

automation as much as possible. Autonomous, terrestrial mobile robots are known as

unmanned ground vehicles (UGVs), or autonomous ground vehicles (AGV s).

An autonomous mobile robot must be endowed with perception, decision and action

abilities. The robot uses perception to extract information about itself and about the

environment, then it makes decisions based on this information and on its goals, then it

finally acts according to the decisions made. The focus of this thesis is on perception.

Important examples of perception problems are terrain traversability analysis [Papadakis,

2013], detection of zones-of-interest, detection and tracking of objects-of-interest [Nüchter

and Hertzberg, 2008] and data association [Thrun, 2003].

Underlying the above-mentioned problems, and providing the base for their solution,

is the more fundamental problem of environment modelling. Many types of environment

models exist, each one containing information of a specific nature and being exploited in

1

1 Introduction

!"#$%&'(
#)*"++'%,

-".("-&')%

"%/'.)%#"%&
#)*"++'%,

(+$!!'0'($&')%

Figure 1.1: Perception Problems. A view to perception problems through sets. Classifi-

cation is a stage of semantic modelling, therefore the classification problem is an element

of the set of semantic modelling problems. Any semantic modelling problem, in turn, is

also an environment modelling problem, and thus semantic modelling problems consti-

tute a subset of the environment modelling problems. The same follows for environment

modelling and perception.

a different manner by other processes of a robot. Semantic models [Rusu, 2009], in this

context, are especially interesting because they encode qualitative information, and thus

provide to a robot the ability to reason at a higher level of abstraction. More specifically,

we are interested in classification, which is one of the core components of a semantic

modelling system. The relations just explained are illustrated in figure 1.1.

To perceive the outside world, robots use sensors such as cameras, radars and lidars.

Whereas cameras provide information, in colours or in greyscale, about the visual tex-

ture and shape of elements, radars and lidars provide information about the geometry

of elements, and in some cases about their reflectivity. Lidars, compared to radars, pro-

vide more reliable and accurate measurements, which allows the use of simpler processing

methods [Adams et al., 2011]. In this work, we focus on lidars. The sensors’ observations

are represented as 3D point clouds, which constitute the input of our system and allow

the robot to perceive and interpret the environment based on its geometry.

1.2 Problem Statement

The problem of classification can be generically defined as the assignment of labels to the

classification elements or inputs. The labels possess a semantic interpretation, and thus

the resulting model is semantic, providing qualitative information that can be exploited

2

1 Introduction

Figure 1.2: Classification Example. The left image shows the input point cloud, and the

righ image shows the output of the classification. The lidar was onboard a UGV, which

was located in the middle of the empty circle at the center of the image. Colours encode

the class labels: (road, orange), (trunk, pink), (vegetation, blue), (grass, green), (rough,

brown). From the right image, it is possible to see that this outdoor scene contains a road,

surrounded by some grass, shrubs and trees. A person, the robot operator in this case,

can be seen standing on the road, at the left. It is clear that points of the input cloud

are missing in the output. The classification of these points was ambiguous, and thus the

system left them out of the final result, marking them as unknown.

in high-level tasks. Figure 1.2 shows an example where classification is applied pointwise,

considering an input 3D point cloud acquired with a lidar.

The essencial information encoded in a point cloud is the geometry of the elements

in the world. However, interpreting the world’s geometry through a point cloud is not

a simple task. Difficulties arise, firstly, from the variability encountered in outdoor en-

vironments, which contain elements of all shapes and scales, possibly cluttered together.

Secondly, difficulties arise from the manner in which scene elements are sampled by a

lidar, which depends on their position relatively to the sensor, on occlusions, and on the

sampling pattern of the lidar.

We propose to approach the classification problem using the framework of probabilistic

classification [Bishop, 2006]. Although supervised learning can be employed, it is not

scalable with respect to the amount and complexity of the concerned data, due to the

necessity of manual labelling by a human domain expert. An alternative is to apply

unsupervised learning, which overcomes this necessity by automatically discovering the

classes that are represented in the data. The challenge becomes then to ensure that these

classes can be semantically interpreted, and thus exploited in some task.

3

1 Introduction

1.3 Contributions

Our main contribution, forming the core of our proposed approach, is a two-layer classifi-

cation model which mainly relies on unsupervised learning. The first, intermediary layer

consists of a Gaussian mixture model. This model is determined in the training step in an

unsupervised manner, and defines a set of intermediary classes which is a fine-partitioned

representation of the environment. The second, final layer consists of a grouping of the

intermediary classes into final classes that are interpretable in the considered target task.

This grouping is determined by an expert during the training step, in a process which is

supervised, yet guided by the intermediary classes.

The intermediary classes are used to represent the environment variability and the

different sampling conditions encountered in the data. The intermediary layer is thus data-

oriented, serving as an abstraction for the data factors that influence the classification.

The final classes, in turn, can be semantically interpreted as useful entities for the target

task. The final layer is therefore task-oriented, introducing the task-dependent factors in

the classification. The classification model, as a whole, is a predictive model and can be

used to classify new data.

A normal, full application of the approach consists in: (a) data acquisition; (b) compo-

sition of the learning datasets; (c) feature extraction, unsupervised training and supervised

grouping for a few different systems to be tested; (d) validation consisting of a qualitative,

visual inspection of the results of the tested systems; (e) selection of the system which

performed the best; (f) runtime operation with the selected system, consisting of feature

extraction, intermediary classification and final classification.

The approach is evaluated on two datasets acquired with different lidars and possessing

different characteristics. The evaluation is done quantitatively using one of the datasets,

and qualitatively using another. The approach was the subject of the following paper:

Artur Maligo, Simon Lacroix. Classification of Outdoor 3D Lidar Data Based on

Unsupervised Gaussian Mixture Models. IEEE International Symposium on Safety,

Security, and Rescue Robotics (SSRR), 2015. To appear.

1.4 Thesis Structure

Chapter 2 presents the state of the art. Chapter 3 explains the approach in detail. Chapter

4 describes the evaluation. Chapter 5 concludes the thesis with an overview and directions

for future research.

4

Chapter 2

State of the Art

In this chapter, we present the state of the art of the core elements of this work. This

is done with the goal of explaining the underlying concepts, putting in perspective the

possible alternatives and presenting the main challenges involved. Section 2.1 presents the

input of our system, lidar point clouds. Section 2.2 presents the output, semantic models.

Section 2.3 presents the framework of probabilistic classification, the adopted means to

compute semantic models from lidar point clouds. Section 2.4 concludes the state of the

art and points to our approach.

2.1 Lidar Point Clouds

In this section, we review, firstly, the technology behind lidars, then the issue of data

structures for point clouds, and finally the lidar systems used for acquisition.

2.1.1 Lidar Technology

Lidar, also written LiDAR or LIDAR, stands for light detection and ranging. A lidar works

by emitting a laser signal and using its reflection to calculate the distance between the

sensor and the reached surface. The distance is expressed in the sensor’s reference frame.

The terms depth and range are also commonly used to refer to this measurement. There

are a few different methods that may be used for distance computation. Lidar devices

can be classified according to the employed method. A deeper explanation of the internal

workings of lidars can be found in [McManamon, 2012].

Time-of-flight lidars (figure 2.1a) emit a laser pulse and use an electronic detection

system capable of measuring the time between its emission and its detection [Borenstein

et al., 1996]. The transmitter and receiver are located coaxially, or in close proximity,

and therefore the pulse travels in an essentially straight line from the sensor to the object

5

2 State of the Art

!

"

(a) Time-of-flight

!

"

(b) Flash

!

"

(c) Phase-shift

Figure 2.1: Lidar Methods. The methods are illustrated in a schematic way. t indicates the

transmitter, r the receiver. The different laser patterns are shown through the violet forms

on the target surface. 2.1b shows the array of detectors of the receiver. 2.1c emphasizes

how the signal is processed based on the laser wave phase.

and back. Because the speed of light is known, it is possible to compute the distance

separating the sensor from the object as a function of the elapsed time.

Flash lidars (figure 2.1b) are a variant of time-of-flight lidars. They emit a laser pulse

covering a large field-of-view, effectively illuminating the scene. The receiver is composed

by a 2D array of detectors, the focal plane array, in a design analogous to a camera.

Upon detection of the returned signal, each detector, through the time-of-flight principle,

provides a measure of the depth of the corresponding area of the scene.

Another method worth mentioning is the phase-shift measurement method (figure

2.1c). It consists in emitting a continuous lidar signal, amplitude-modulated (AM), and

then comparing it with the returned signal to compute the difference in phase. This

difference is used to compute the distance travelled by the laser.

Besides distance, lidars might also return other measured quantities. A common one

is the intensity of a detected laser signal. The intensity depends on the emission power of

the lidar, on the reflectivity properties of the target surface, and on the incidence angle of

the laser beam with respect to the surface.

A few problems may arise when dealing with lidars, due to the physics of these sensors

and their interaction with the world. Some of these are presented in [Adams et al., 2011].

A first problem is the phenomenon of a missed detection, which happens when there is

no valid return signal for an emission. Another problem is the production of an outlier,

which happens when the sensor measurement has no meaningful link with an object in the

world. A third problem is the noise present in the measurements. Noise may originate

from different factors: the inaccuracy of calibration parameters, the distance between the

sensor and the object, the imperfections in the computation of intensity and distance, and

others.

6

2 State of the Art

2.1.2 Data Structures

Lidars must have a known geometric model, or calibration model, so that the distance

measurements may be converted to 3D points expressed in Cartesian coordinates in the

sensor’s reference frame. Basically, such conversion can be done as a function of the

measured distance, of the angles defining the line-of-sight of the laser beam, and of the

sensor’s calibration model. The final output of this process is a set of 3D points, grouped

in a structure called point cloud.

There is, however, another structure which is commonly used to represent lidar data:

the range image. In this case, the points are defined directly by the distance value, as well

as by the angles of the line-of-sight of the laser beam: the azimuth angle and the elevation

angle. The resulting data is organized as a 2D, image-like structure, where pixel values

indicate depth. In many cases, the laser data is not dense enough to produce a complete

image, where all pixels are filled, and methods that extrapolate distances to the missing

pixels might be required.

Some works take into account the fact that a laser measurement also brings infor-

mation about the free-space between the sensor and the object [King, 2008], and thus a

measurement can be modelled as a segment, instead of just a point. Such representation

leads to a free-space model of the scene.

A point cloud must be stored in a certain data structure. When the structure keeps

points ordered in a way that reflects their positions in the scene, we say that the cloud is

organized. Otherwise, the cloud is unorganized. An organized cloud is usually represented

in the sensor reference frame, since this form allows it to be stored in a 2D matrix-like

structure where the rows represent the elevation angles and columns represent the azimuth

angles. The points can be expressed in their 3D coordinates, or through their distance

value. The latter case, in fact, corresponds to the range image representation. Another

form of creating an organized cloud is to build a neighbourhood graph, when the geometry

of the lidar allows it, as done in [Moosmann et al., 2009].

Processing point clouds usually requires the computation of distances between points

in order to find a pair or a group of close points, a problem known as nearest neighbours

search. Searching for the neighbours of every point in a cloud may take a prohibitive

amount of time, and an efficient search method must thus be applied. Organized point

clouds offer a great advantage in this situation, because the neighbours of a point can be

searched directly by examining points at adjacent rows and columns in the data structure.

Efficient search methods exist for unorganized point clouds too. In general, they

consist in exploiting special data structures that ease the search task. Some of these

data structures are tree-based, like the octree or kd-tree, as explained in [Rusu, 2009]. An

octree is relatively fast to be built but relatively less efficient for the search, compared

7

2 State of the Art

to the kd-tree. The work of [King, 2008] proposes another tree structure: the spherical

quad-tree. Other data structures are based on hashing, as done, for instance, in [Lalonde

et al., 2006].

2.1.3 Lidar Systems

Generally speaking, there are two forms of acquiring data using lidars: static and mobile.

Static acquisition involves placing a lidar sensor in a fixed position, usually with the help of

a support. A mechanism moves the orientation of the laser beam after each measurement,

allowing the sensor to gather points from the scene in all the programmed directions.

The lidar remains fixed during all the scanning process. This scheme is appropriate for

mapping small areas or specific objects, with high resolution and accuracy, and without

time constraints.

Mobile acquisition, on the other hand, involves mounting a lidar device on a mobile

platform, in such a way that data is collected all along the trajectory performed during

the mission. Mobile platforms can be airplanes, boats, submarines, cars or other ground

vehicles, robotic or not. Mobile scanning is suitable in cases where large areas must be

mapped, or when time is an important constraint. An example is the case of a UGV

that must navigate in the environment, and, for this, it must continuously model its

surroundings to be able to plan its path.

Mobile acquisition used to be done with lidars that scan along a 2D plane. This has

been changing since the Velodyne HDL sensors were introduced [Velodyne, 2007]. These

sensors possess not only one, but an array of emitters, and also a rotating head. The

combination of the firing of the emmiters and the continuous rotation of the head results

in a scan that covers a 360◦ horizontal field-of-view around the sensor and a certain vertical

field-of-view, instead of just a plane. For this reason, such lidars, in comparison to 2D

lidars, allow the scanning process to be performed faster, and provide scans that are denser.

The faster and denser scanning brought by these sensors has taken the mobile acquisition

possibilities to new levels.

Whichever the acquisition system used, perceiving the environment with a lidar is

subject to the following important challenges: nonuniform sampling, occlusions and in-

complete data. All these arise from the combination of the sensor’s’ sampling pattern and

the position of the objects relative to the sensor. Indeed, each lidar possesses a character-

istic sampling pattern. Nonuniform sampling is produced by the projection of this pattern

onto the objects in the world, located at different relative positions to the sensor. The

decrease of the sampling density in function of the distance to the sensor, an important

property of point cloud data, is a consequence of this phenomenon.

Occlusions are caused when an object cannot be fully perceived because it is located

8

2 State of the Art

behind another object along the field-of-view of the lidar. The same object is therefore

perceived in different ways if the laser is moved to different positions. Lastly, the presence

of incomplete data is related to the latter challenge. Incomplete data consists simply in

the case where the sensor’s point of view does not allow a full perception of the object,

producing an ambiguous representation.

2.2 Semantic Models

Environment models provide the base on which rely other tasks of a robot. A model is

composed by elements, the constituents of the model, and this elements define the model

structure. The data used for modelling may come from any type of sensor, but here

we consider models built with point clouds. One can distinguish two types of models:

geometric and semantic. A geometric model contains elements with purely geometric

information, such as occupancy or surface representation. A semantic model associates its

elements with classes which are meaningful in some way for a considered target task.

A semantic model may be built on the basis of a geometric model simply by the

assignment of classes to the geometric elements, or use a specific structure of its own.

Classification comes in as the stage of semantic modelling where the elements are classified.

Thus, the choice of the structure determines the type of element being classified, which in

turn, impacts the classification process. Indeed, different elements encode the information

about the environment in different ways. In this section, we review the applications of

semantic models, then the structures of semantic models. We finish by introducing the

problem of localization, inherent to any modelling task.

2.2.1 Applications of Semantic Models

An important application of semantic models is terrain traversability analysis [Papadakis,

2013]. A semantic model provides the capacity to distinguish zones in the environment

according to traversability classes. Each class is associated with a cost, resulting in a

cost grid that can be used by a robot to perform path planning, for example with the D*

Lite algorithm [Koenig and Likhachev, 2002]. It should be noted that geometric models

can also be used as a base for path planning tasks, but in this case with a continuous

traversability metric, or some geometric criterium, instead of a discrete metric based on

traversability classes.

Semantic models can also be found in applications involving object detection and track-

ing. The semantic information is represented in the detection step. Detection consists,

essentially, in processing the input observation and classifying it as being the object-of-

interest or not. In a case where many types of objects are considered, the input must be

9

2 State of the Art

classified into one of the types. The work of [Himmelsbach et al., 2009], for istance, tackles

the case of vehicle detection in an urban scenario.

Detection of zones-of-interest can also be performed by means of semantic modelling.

Applications such as search and rescue require the robot to interpret the environment

and find affected zones, which are possibly partially destroyed and contain rubble, debris

and maybe survivors. In fact, any application where the robot must interact with the

environment might require such type of capacity from the robot.

Semantic models can help at solving data association. Examples of data association

are place recognition [Granström et al., 2011], registration [Segal et al., 2009] and finding

correspondences between features in mapping [Thrun, 2003]. Performing the search and

matching processes at the semantic level leads to a reduction of the search complexity.

This property is exploited in [Das et al., 2014], where registration is performed classwise,

that is only between points belonging to the same class.

Another way of applying semantic models is as a visualization tool for humans. Such

visualization capacity is useful, for example, in a case of situation awareness [Birk et al.,

2009]. Indeed, models not only provide information to the autonomous robot itself, but

also to the human clients involved in the robot’s mission.

When semantic modelling consists in creating a map of the environment, we use the

term semantic mapping [Nüchter and Hertzberg, 2008; Pronobis, 2011]. Not all semantic

models are semantic maps. As an example of this distinction, we can take a case of object

detection and tracking, where the individual point clouds are processed in sequence, but

the output models are not integrated into a single, global model of the environement, a

map. In this case, the individual models are semantic because they represent the detected

objects, but there is no map construction.

Whichever the application, semantic modelling faces the problem of the environment

variability. This is especially true for the case considered in this thesis, the case of outdoor

environments. In outdoor environments, objects of a same type may present a great variety

of shapes and scales. Differences in shape and scale are multiplied when we consider objects

of different types. In addition, the environment might contain an important number of

objects types. One of the main challenges of semantic modelling is to try to capture all

this variability.

2.2.2 Structures of Semantic Models

Point clouds can be considered as the simplest model structure. In pointwise classification,

classification is applied directly to 3D points [Behley et al., 2012; Brodu and Lague, 2012;

Lalonde et al., 2006]. Only local information, that is information about the neighbourhood

of a point, is used for classification. Therefore, no assumptions regarding the segmentation

10

2 State of the Art

of the points are made, making this approach agnostic with respect to shapes.

A grid representation of the environment is a common type of structure. An example

of a grid-based geometric model is the occupancy grid. Basically, such models consist in

grids whose cells can be occupied, free, or in an unknown state. The basic, 2D version is

a projection of the world onto a 2D grid of occupancy cells. When the environment is too

complex to be represented in 2D, a 3D occupancy grid can be applied. In this case, we

speak of a volumetric model. Such models can be extended to multi-resolution versions by

using tree structures such as quadtrees in the 2D case and octrees [Hornung et al., 2013]

in the 3D case.

Semantic grid-based models extend the previous models through the classification of

the grid cells. Here, classification takes into account the data points lying inside the cells.

In comparison with pointwise models, these models impose a regular grid structure to

the environment. A consequence is that regions of the world which do not fit into a grid

structure may be poorly represented. An example could be a scene where the corner of a

building lies next to a road, and both entities are located inside a single cell. The cell in

case is ambiguous, because it represents different entities.

Other model structures represent surfaces through polygon meshes. A widely used

form of mesh is the triangular mesh. Alternatively, surfaces can be approximated by

a set of convex planar polygons, known as convex hulls [Rusu, 2009]. The mesh itself

constitutes a geometric model, and its construction corresponds to the problem of surface

reconstruction.

The semantic versions of polygonal models aim at finding the objects underlying the

mesh. In [Triebel et al., 2012], the point clouds are first converted to a triangular mesh.

The mesh is then segmented and the segments, classified. The use of a mesh has an

important consequence: it allows the sampling of points from the mesh, which makes it

possible to generate uniform samples for subsequent feature computations.

Another important class comes in the form of models based on 3D geometric primitives

such as plans, cylinders, spheres, cones and so on. These primitives serve as approxima-

tions of the objects’ shapes and surfaces. The problem of matching primitives to a set of

points is known as model fitting. It is interesting to note that here the distinction between

a geometric or a semantic model becomes less clear. Primitives can be used only to provide

geometric information, but we can rightly think of them as classes too, given that a robot

might have a specific form of reaction associated to each primitive type, which shows that

a primitive carries a meaning with it.

Some approaches apply segmentation on the points and then use the segments as

classification targets [Himmelsbach et al., 2009; Moosmann et al., 2009; Moosmann and

Sauerland, 2011]. Segmentation constitutes an alternative to geometric models, in the

sense that the resulting segmentation structure could not be considered as geometric, but

11

2 State of the Art

provides nevertheless the base for a subsequent semantic model. Segmentation permits the

use of global information in the classification, that is information about the whole object.

This approach allows for a richer description of objects, but it introduces the constraint

of dealing with all the variety of shapes.

There are methods that consider a specific form of segments: voxels [Aijazi et al., 2013;

Lim and Suter, 2009]. In these works, points are grouped into voxels of adaptive sizes,

then a subsequent segmentation step is applied, resulting in super-voxels, which are the

targets of classification.

The ideal structure for a semantic model lies in a trade-off between a structure that

encodes a sufficient amount of information and a structure that is able to properly segment

the objects in the environment. In other words, an element of the model should correspond

to a single entity, a single class. The more simple the structure, the more generic it is.

Pointwise models are at this end of the trade-off. More complex models may provide

better representations for the objects in a scene, but at the risk of including different

objects under the same element. In all the cases discussed, an important challenge that

must be faced is clutter.

2.2.3 Localization

As previously mentioned, one of the forms of acquiring data with lidars is mobile acqui-

sition. When it is applied to a mobile mapping task, an important problem that arises

is localization. Let’s examine the case where a UGV is equipped with a lidar, scanning

the environment while it moves. The points returned by the sensor are expressed in the

sensor reference frame. The sensor itself is positioned in a certain way on the robot, so

that its reference frame is linked to the robot reference frame by means of a transforma-

tion. Finally, the robot is in a certain position with respect to an original, global reference

frame. This position corresponds effectively to the transformation between the robot and

the global reference frame. By applying the proper transformation, points in a reference

frame can be represented in another frame. This is illustrated in a schematic way in figure

2.2.

Lets return now to the map that must be built by the robot in the mission. Map-

ping implies that the sensor point clouds, initially given in the sensor frame, must be

converted to the global frame, which is taken to be the map’s frame. In order to do so,

the transformation between the sensor and the robot frame must be known, as well as the

transformation between the robot and the global frame. The first transformation is usu-

ally known, since it is given by the robot’s setup. Estimating the second one constitutes

the problem of localization.

Mobile acquisition, therefore, when used for mobile mapping, comes with the require-

12

2 State of the Art

!"#"$
%&"#'&

()*("! ()*("!

!"#"$

$+,$

Figure 2.2: Mobile Acquisition and Reference Frames. The robot reference frame appears

at different positions, at instants t and t + 1, with respect to the global reference frame,

indicating that the robot has moved. The sensor reference frame changes accordingly.

The points acquired with the sensor are initially expressed in the sensor frame. Through

frame transformations, depicted by the arrows, we can express the points in other reference

frames.

ment of having an accurate, high-rate localization. The time constraints imposed by the

mobile mapping task are translated into time constraints for the localization task. Ide-

ally, the robot must know its position at the acquisition time of every observation. For a

mobile lidar such as a Velodyne sensor, for example, the localization must run at a very

high frequency.

In the case of errors in the estimation of the robot’s position, the acquired points

will be erroneously integrated into the map, making it inaccurate. Inaccuracies generated

in this way may be called localization noise. The noise affects the quality of both the

geometric and the semantic information that might be contained in the map.

2.3 Probabilistic Classification

Classification can be accomplished through the framework of machine learning [Bishop,

2006], or simply learning. In the standard classification problem, an input piece of data

must be assigned to a class. Often, the input data cannot be directly used for classification,

and it is first necessary to extract from it information in an exploitable format. We refer

to the extracted information as features, and we refer to the process as feature extraction.

An arbitrary number of features can be used. The space containing all the possible input

data is the input space, and the space containing all the possible feature values is the

feature space. Through feature extraction, the input piece of data, which is a point in the

input space, is thus mapped to a point in the feature space.

Classification is divided into two steps: inference and decision. Let x be an input point

in the feature space, that is, an input point after feature extraction, and ci be the i-th

13

2 State of the Art

!"#" $%"#&'%(%)#'"*#+,-

+-$%'%-*%

!%*+.+,- */"..

Figure 2.3: Classification. Firstly, an input piece of data goes through feature extraction.

Then, the resulting feature point is fed to the inference process. Finally, the inference

result is used as a base for decision, which outputs the class that should be assigned to

the input data.

class of the class set C = {c1, ..., cNC}, with NC being the number of classes in C. Let yi

be a variable indicating the assignment of class ci. This allows the distinction between the

class and the variable representing it. Inference consists in calculating the class posterior

probability p(yi|x) for each class. It is performed by a classification model, or classifier.

Decision, in turn, consists in analysing the posterior probabilities and assigning a class to

x. The processes of feature extraction, inference and decision can be viewed in figure 2.3.

Learning comes into play when we need to instantiate the stages of feature extraction,

inference and decision. A full learning process is usually divided into training, validation

and test. Learning is based on an input dataset, and on input prior information concerning

the stages of the classification pipeline: the features, the classifier, the decision method.

In fact, the dataset itself can be seen as part of the prior. In the best case, all the elements

of the pipeline are completely defined, with the exception of the classifier’s parameters.

Finding these parameters is the goal of training. The information guiding the training

phase comes from the dataset, which in this case is called the training set.

It turns out, however, that there are more parameters to be determined. Starting in

feature extraction, we may need to select a certain number of features that will be used

among a larger set of available features. Moreover, each individual feature may depend on

a list of parameters that must be set. Making these choices corresponds to the problem of

feature selection. Concerning the classifier, the situation is similar. A set of models can be

considered, each one depending on its parameters, but also on its complexity parameters,

or hyperparameters. The task of finding the most appropriate model among all the choices

is known as model selection. Finally, the decision model might also depend on a set of

parameters to be completely defined.

To compute the remaining parameters, many methods can be applied. Feature and

model selection, for instance, are full research topics on their own. However, a basic

approach is to use the validation stage to this end. In this way, the classifier’s parameters

are computed during training, as previously explained, while all of the other parameters

are computed in validation. Here, part of the dataset must be reserved to be used in this

14

2 State of the Art

step, constituting the validation set.

Once training and validation are over, the full classification system is defined. Its

performance is then assessed in the test phase. Testing requires its own share of the

dataset, the test set. The complete learning dataset is thus split into training set, validation

set and test set. The reason for using different data in each case is that the system must

be able to classify new data, data which is different from that used to find the parameters.

The ability to do so is called generalization, and is a core characteristic of learning-based

systems.

Classifiers can be distinguished between discriminant functions, discriminative models

and generative models. A discriminant function is a function that directly assigns a class to

the input, x. Such functions correspond to a case where inference and decision are merged

together and there are no intermediary probabilities. Without probabilities, such classifiers

loose in flexibility and in complexity, and therefore are only able to tackle relatively simple

problems.

Discriminative and generative models, on the contrary, are probabilistic. Their output,

as explained before, consists in the class posterior probabilities, p(yi|x). Discriminative

models represent these probabilities directly. Generative models represent them through

individual terms, according to the Bayes’ equation:

p(yi|x) =
p(x|yi)p(yi)

p(x)
. (2.1)

p(yi) is called class prior probability, and p(x|yi) likelihood. p(x) is the normalization

term, and can be computed as

p(x) =
�

j

p(x|yj)p(yj). (2.2)

The term generative reflects the fact that knowing the distribution p(x) allows us to

generate samples of x.

After inference, performed by such probabilistic classifiers, we proceed to decision. In

its most basic form, decision is simply done by selecting the class with the highest posterior

probability.

The factorization of the posterior into likelihood and prior constitutes an important

characteristic of generative models. Such factorization can be viewed as an extra knowledge

which is put into the model, that is, knowledge about its internal structure. However, it

can also be viewed as an additional assumption which must be made regarding the model.

If the assumption does not correspond to the real situation, the classifier’s accuracy is

impacted. Thus, working with discriminative or with generative models is a matter of

how much information, or knowledge, we possess about the model.

15

2 State of the Art

The classifiers discussed so far are called parametric classifiers. There is, however,

another type: nonparametric classifiers. Two common examples are the kernel classifiers

and the nearest-neighbour classifiers. Nonparametric methods, as the name indicates, take

a different approach, where the points in the dataset constitute the classification model

itself, and thus there are no parameters to be trained.

The advantage of nonparametric classifiers is that, because they use directly the struc-

ture present in the dataset, they are able to model complex distributions, as complex as

the dataset, in fact. The disadvantage is that the dataset must be always available, and

that accessing and searching the data in it might be slow. Nonparametric models are

used when we do not have enough information about the problem, or when the problem

is complex. In these cases, such models compensate for the lack of information by using

the richness of information present in the dataset.

2.3.1 Supervised Learning

Another important distinction that must be made regards supervised learning and unsu-

pervised learning. In supervised learning methods, the classes have already been defined

and assigned to the points in the dataset. Therefore, learning, in this case, assumes the

goal of finding the classification system that best generalizes the class assignments present

in the training set.

Supervised learning is frequently applied in 3D data classification. A comparison is

presented in [Behley et al., 2012]. [Brodu and Lague, 2012] uses linear classifiers, [Him-

melsbach et al., 2009] uses a SVM, [Lalonde et al., 2006] uses a GMM and [Lim and Suter,

2009; Munoz et al., 2009] use a CRF.

The crucial characteristic of such methods is that they work with predefined classes

whose semantic interpretation is already known. The disadvantage is that they require

manual labelling of the data by a human domain expert, a process which does not scale

well with respect to the amount and to the complexity of the data.

2.3.2 Unsupervised Learning

Unsupervised learning methods do not work with predefined classes. Instead, they are

free to find the patterns that can be encountered in the training set, and come up with

the most appropriate classes to represent these patterns. The predefined classes in the

supervised learning context represent an additional prior information which is assumed

about the problem. By not making such assumption, unsupervised methods adapt to the

data in a natural way. We may say that unsupervised learning is data-oriented.

The use of unsupervised learning is relatively less common. The work of [Moosmann

and Sauerland, 2011] presents a method where 3D points are segmented and the resulting

16

2 State of the Art

segments are used for the unsupervised discovery of classes. In [Ruhnke et al., 2010], an

unsupervised method based on range image features is used to generate a set of words,

which are in turn used to replace similar regions of a map to compress its size. The work

of Steder et al. [2011] applies k-means clustering to range image features in order to assist

in the place recognition problem.

The most important problem in this approach is that the output classes must then be

semantically interpreted or, in other words, be given meaning in the context of the target

task, which may not be always possible. Thus, the interpretation still requires supervision.

The key advantage, in this case, is that no manual labelling of the dataset is required.

2.3.3 Feature Extraction

We begin this section by making a remark concerning the use of the term feature. In the

literature, it is possible to find many related terms but that are not necessarily equivalent,

like descriptors, signatures and attributes. Here, we consider a feature as the input or as

one of the inputs given to the classifier. In this work, since point clouds are used as the

data for the classification task, features assume the format of the geometric and statistical

characteristics of the scene represented by the cloud.

The choice of features is crucial in a classification problem. Ideally, a feature should

be able to generate a unique description of each class. The more descriptive the features

are, the less complex the classifier needs to be [Behley et al., 2012]. In the rest of this sec-

tion, we discuss some important choices that must be made when computing features. We

explain the consequences of these choices with respect to some known challenges, previ-

ously mentioned, such as changes in the relative position of object and sensor, nonuniform

sampling, occlusions and clutter.

Support region type. Features are normally computed using the points contained in

the neighbourhood, or support region, of a query point. In pointwise classification, the

neighbourhood, can be determined either by the number of nearest neighbours of the query

point or by the size of a region around it [Behley et al., 2012]. In the second case, the

region can be a sphere, a voxel or other type of 3D element. The choice of the support

region depends on the application and on the geometric characteristics of the sensor being

used. Some sensors, like the Velodyne, provide a point cloud which is relatively sparse. In

this case, using a support region with a fixed number of neighbours means that features

are being computed in areas of varying sizes, which greatly alters the results. On the other

hand, using a support region with a fixed size means that features are being computed in

areas with a varying number of points, which also influences the results.

17

2 State of the Art

Keypoints. Sometimes feature computation is preceded by a search for keypoints. Key-

points are the points in a cloud whose neighbourhood exhibit a special property. For this

reason, they are used in the feature computation step, whereas the other points are ig-

nored. The neighbourhood of a keypoint is called a region of interest. One of the properties

that can be searched for is stability in orientation [Quadros et al., 2012]. A planar region

is well characterized by its normal vector orientation, and therefore features that use this

orientation to determine its reference frame are viewpoint invariant. Additionally, since

features are being computed only at a subset of the points in a cloud, the time spent in

the process is reduced.

Feature parameters. The design of a feature involves setting some parameters. An

important example is given by the frequently used histogram features, as shown in [Behley

et al., 2012]. Histogram parameters, like the bins’ size, must be chosen in order to reflect

the environment properties that are being evaluated. Histograms with larger bins lead to

features that can only describe coarser characteristics of the environment, while histograms

with shorter bins lead to features that capture the details, but that are therefore more

affected by noise in the data. The sampling density is an essential factor to be considered

when choosing the bins’ size. It is useless to try to describe and to compare poorly sampled

surfaces using histograms with many short bins and, in the same manner, it is useless to

use histograms with few and large bins to represent richly sampled surfaces.

Reference frame. In order to be matched and compared, features must be invariant to

the sensor’s viewpoint. In other words, it should ideally be possible to represent an object

of the environment in a way that does not depend on its position with respect to the

sensor. Therefore, features must be designed to be viewpoint invariant, or else techniques

to align them must be applied [Quadros et al., 2012]. It is common either to align features

to the z axis of the global reference frame, in order to ensure that they are expressed in

a stable reference frame, or to align features to the z axis of the region’s local reference

frame, in order to express them using the local geometry. This choice depends on the

nature of the classes that are being considered. Objects like cars and trees, which have a

strong vertical characteristic with respect to the ground, are well described in the global

reference frame. Other objects, like vegetation or surfaces with arbitrary orientations, can

be well represented in their own reference frame.

Scale. Besides choosing the support region type, it is necessary to define its parameters,

which can be either the number of neighbours or the region’s size. This choice depends

on the scale of the properties that the features are trying to encode [Behley et al., 2012;

Lalonde et al., 2006; Quadros et al., 2012]. When considering small support regions, a

18

2 State of the Art

car’s surface looks exactly like a flat ground’s surface. However, when considering big

support regions, a car’s appearance might be affected by nearby vegetation. Thus, the

size is important when dealing with cluttered environments. Moreover, by using bigger

support regions the occurrence of occlusions is increased. With respect to the number of

neighbours, using few points leads to features that are sensitive to noisy measurements,

while using many points leads to features that are less precise, because details are filtered

in the presence of a large number of points.

Considering pointwise classification, a standard method is, given a target point, to take

all points lying inside a spherical support region centred around it, and use these in the

feature computation [Behley et al., 2012; Lalonde et al., 2006; Steder et al., 2011]. Given

that a sphere radius is specified, the resulting feature only provides information about the

point neighbourhood on the specified scale. This method is not efficient when the classes

present in the environment are characterized by different scales.

To overcome the problem mentioned above, multi-scale methods have been proposed.

In [Unnikrishnan, 2008], an adaptive process is performed: the radius of the support region

is chosen based on the shape of the neighbourhood. This method is however computation-

ally expensive.

Another multi-scale approach was proposed in [Brodu and Lague, 2012]. In this work,

multiple spherical support regions, with different radii, are used simultaneously for feature

extraction. The resulting vector is a combination of the feature values extracted at the

different radii, and thus encodes how the shape of the point’s neighbourhood is perceived

at different scales.

Neuhaus et al. [2009] presents a hierarchical approach for dealing with multiple scales.

A point cloud is firstly analysed as a whole. If it is not considered flat according to their

criterion, it is divided in halfs, following a 2D grid model. These halfs, which are 2D cells,

are then submitted to the same analysis. This procedure continues in a recursive manner,

and the division terminates if a cell is considered flat or if it has reached a minimum size.

Works applying segment classification deal with the scale problem in an implicit way,

because segments assume different sizes depending on the object being segmented [Aijazi

et al., 2013; Himmelsbach et al., 2009; Moosmann and Sauerland, 2011; Lim and Suter,

2009].

2.4 Conclusion

Pointwise classification has the advantage of not biasing the classification by introducing

a segmentation. It is agnostic with respect to shapes, using only local information about a

point’s neighbourhood. Our approach adopts this method. We aim at avoiding the man-

ual labelling of datasets and at using a classification model capable of naturally handling

19

2 State of the Art

various types of data. We choose for this an unsupervised GMM. To provide the classes

with a semantic interpretation, we add a supervised grouping as a second layer to the

classification model. Regarding the feature extraction, besides considering a single spher-

ical support region, we also explore the method of using multiple regions simultaneously,

found in [Brodu and Lague, 2012] and previously discussed.

20

Chapter 3

Classification

Our approach relies on the proposed two-layer classification model. We perform pointwise

classification, such that a point, associated with its support region, or neighbourhood, is

the element being classified. In the multi-scale case, a point is characterized by multiple

neighbourhoods. The classification model is composed of two layers. The intermediary

layer consists of a GMM. This layer provides the intermediary classes. The final layer

consists of a grouping of the intermediary classes into the final classes, which are the

output of the system.

The whole system consists of the stages of feature extraction, intermediary classifi-

cation and final classification. Looking at the standard classification stages of feature

extraction, inference and decision, our feature extraction stage corresponds to the stan-

dard feature extraction stage, while our intermediary classification corresponds to the

inference and decision stages. Indeed, the intermediary classification performs both oper-

ations in sequence. Our final classification can be seen as an extra grouping stage. Figure

3.1 illustrates the classification system.

Sections 3.1, 3.2 and 3.3 explain the stages of feature extraction, intermediary classifi-

cation and final classification, respectively. Section 3.4 explains the learning process used

to obtain a full, definitive form of the classification system.

3.1 Feature Extraction

The feature extraction process is performed pointwise. In the single-scale case, it takes into

account a target point and the points in its spherical neighbourhood of radius r. In the

multi-scale case, it takes into account multiple spherical neighbourhoods, determined by a

set of radii R = {r1, ..., rNR}, NR being the number of radii. Three values are computed

for each scale, which leads to a feature vector x = [x1 x2 x3]T with dimension 3, if single-

scale, and to a feature vector x = [xT
1 ... xT

NR
]T with dimension 3NR, if multi-scale. In

21

3 Classification

!"#$%&'()(&*+,(#$%&'()-.&/#'/&$$($

-.*(,0(1-&,2
'/&$$-)-'&*-3.
45667

)(&*+,(
(8*,&'*-3.

)-.&/
'/&$$-)-'&*-3.
49,3+%-.97

-.*(,0(1-&,2#'/&$$($

:::

:::

Figure 3.1: Classification System. A target point in the 3D space is transformed to a

point in the feature space through feature extraction. Then, this point is classified into an

intermediary class by the GMM, and finally this class is mapped to a final class according

to the grouping.

the latter case, xi indicates the feature values computed at radius ri.

The input point cloud is assumed to be expressed in the sensor reference frame. More-

over, for the computation of the third feature value, the transformation to the world

reference frame is necessary. This transformation is assumed to be given. Thus, the in-

puts of feature extraction are actually a point cloud and its corresponding sensor-to-world

transformation. The reason behind these requirements will be made clear in the remaining

of the section.

The three feature values result from a Principal Component Analysis (PCA) opera-

tion applied to the target point’s neighbourhood. PCA works under the assumption that

the distribution of points in the neighbourhood is Gaussian. Its goal is to find the lo-

cal orthonormal basis whose axes are the directions of maximum variance, the principal

components, of the distribution.

Let Q = [p1 ... pNQ]
T be the matrix composed by the NQ points pi in the target point’s

neighbourhood. One way to perform PCA is to start by computing the sample mean and

covariance of the points:

µQ =
1

NQ

NQ�

i=1

pi, ΣQ =
1

NQ

NQ�

i=1

(pi − µQ)(pi − µQ)
T . (3.1)

The covariance matrix is then decomposed in order to find its eigenvalues and eigenvectors.

Because it is symmetrical and positive-semidefinite, specialized and efficient decomposition

methods can be used. The eigenvalues and eigenvectors constitute the result of PCA: the

order of the eigenvalues indicate the order of the principal components and the eigenvectors

indicate the components themselves.

22

3 Classification

The knowledge about the points’ distribution brings with it information about the

local surface shape. Numerous works on 3D lidar data processing exploit this property.

[Brodu and Lague, 2012] uses the normalized eigenvalues at multiple scales to describe the

dimensionality of the shape. [Lalonde et al., 2006; Munoz et al., 2009] use the differences

between the eigenvalues to this end. [Moosmann and Sauerland, 2011; Triebel et al.,

2012] use ratios, instead of differences. [Neuhaus et al., 2009] uses the eigenvalue of the

most vertical eigenvector to evaluate flatness. Much of this work is inspired by [Guy and

Medioni, 1997], that used the principal components under the framework of voting. Other

works applying PCA under this framework are [King, 2008; Stumm et al., 2012]. Our

approach, in turn, builds on the multi-scale PCA features found in [Brodu and Lague,

2012], as we explain hereafter.

Let λ1 > λ2 > λ3 be the eigenvalues output by PCA, and v1, v2 and v3 the eigenvectors.

As done in [Brodu and Lague, 2012], we can take the following values as the first two feature

values:

x̃1 =
λ1

λ1 + λ2 + λ3
, x̃2 =

λ2

λ1 + λ2 + λ3
. (3.2)

The normalization of the eigenvalues makes it possible to discard one value, and thus one

dimension, without loosing in description power. These two values encode the shape of

a distribution of points, or more especifically, its dimensionality, as shown in figure 3.2.

Considered separately, the first feature distinguishes between 1D and 3D shapes, while the

second feature distinguishes between 2D and 1D shapes. Taken together, they distinguish

between 1D, 2D and 3D shapes.

Another form to exploit PCA is to interpret it as a plane fitting operation, as explained

in [Klasing et al., 2009]. Through this point of view, the eigenvector v3, associated to the

smallest eigenvalue λ3, represents an estimation of the surface normal. The orientation

of the normal is, however, ambiguous. Here, we use the fact that the cloud is in the

sensor reference frame, and flip the normal in function of the viewpoint, which is the

frame’s origin. It is then possible to use the sensor-to-world transformation to transform

the vector into the global reference frame, resulting in the global normal n = [nx ny nz]T .

The third feature value is given by the z coordinate:

x̃3 = nz. (3.3)

In the 3D space, it makes no sense applying PCA on a set with less than four points,

because such points will always be collinear or coplanar. Four points, on the contrary,

can either be collinear, coplanar, or none of both, and thus can characterize arbitrary

3D shapes. Thus, during feature extraction we leave out points for which the condition

NQ < 4 holds. Such points are then also excluded from the classification. This situation

occurs with higher frequency in the furthest regions of scans, where the laser sampling is

23

3 Classification

!"## !"$! %"!!
&!!

!"!!

!"##

!"$!

&!"

!#

"#

$#

Figure 3.2: Eigenvalue Features. This is the space generated by the first two feature

values, which correspond to the normalized first two eigenvalues output by PCA. The

feature values lie inside the closed triangle. The edges of the triangle, [1.0 0.0]T , [0.5 0.5]T

and [0.3 0.3]T correspond to the cases where the 3D points assume pure 1D, 2D or 3D

shapes, respectively. The definitive feature space is obtained after standardizing, and

correspond to a translated and scaled version of this triangle.

24

3 Classification

Figure 3.3: Points Discarded in Feature Extraction. At the left, the radius used is r =

0.2m, while at the right, r = 1.0m. The discarded points are shown in red. There is a

large number of discarded points at the left, due to the sampling sparsity of the scan and

the small scale. Using a large scale, as in the scan at the right, is able to greatly improve

this situation.

more sparse. A beneficial consequence is that isolated outliers are naturally filtered out

from classification.

The filtering of points also poses a problem: at small scales, due to the sampling

sparsity, an important amount of points may be discarded. This situation is shown in

figure 3.3. Moreover, other factors, such as occlusions and missing data, also contribute to

this situation. A solution applicable when using the multi-scale features is to fill the values

at the missing scales with the values coming from the next available larger scale. This

operation is proposed in [Brodu and Lague, 2012]. It implies the assumption that a surface

will not change when perceived at a smaller scale, which is an approximation. Indeed, it

is a kind of smoothing operation, since at a larger scale, less details are perceived. In the

cases where there isn’t any larger scale available, the point is filtered out.

The feature extraction process concludes with a standardizing step. Features are com-

pared on the basis of a distance metric. Standardizing aims at ensuring that every feature

dimension contributes equally to the metric. In our case, we apply a statistical standard-

izing, relying on a mean µi and on a standard deviation σi for each feature dimension i.

As we will discuss in section 3.4, these values are determined during training. For every

point x, for every dimension i, standardizing is applied in the following manner:

xi =
x̃i − µi

σi
. (3.4)

Parts of feature extraction were implemented using tools such as Eigen [Guennebaud et al.,

2013] and Point Cloud Library (PCL) [Rusu and Cousins, 2011].

25

3 Classification

3.2 Intermediary Classification: GMM

The intermediary classification layer is a GMM. The GMM is a member of the family of

mixture models, which as the name indicates, are models composed by mixtures of distri-

butions. The basic goal of such a model is to represent a probability distribution, likely a

complex one, by means of mixing multiple distributions. The individual distributions are

called the model components.

The use of components has an important implication: it allows us to introduce the

notion of membership, that is, we assume that each observed point belongs to a single

component. This relation is captured by the introduction of a latent variable denoting

the component to which a point belongs. We can then view the component as the class

of the point, and use the model to perform classification. We exploit GMMs under this

assumption.

Through feature extraction, a 3D point belonging to a point cloud is associated with

a point x in the feature space. A GMM represents the distribution of x over the feature

space by employing Gaussian distributions as components [Bishop, 2006]. Let CY =

{cy1, ..., cyNCY } be the set of intermediary classes, NCY being the number of classes.

The component, or class, is indicated by the latent variable y = [y1 ... yNCY]
T . This is

done in the following manner:

p(x) =
�

y

p(x,y) =
�

y

p(y)p(x|y) =
NCY�

i=1

p(yi)p(x|yi) =
NCY�

i=1

πiN (x|µi,Σi). (3.5)

We note that y is a vector, and that we use yi to denote the case where yi = 1 and yj = 0

for j �= i, meaning that class cyi is assigned to x. Each class is Gaussian, and is defined

by the following parameters: the mixing coefficient πi, the mean µi and the covariance

Σi. We can also note, by the equation, that a GMM makes the following assumptions:

p(yi) = πi, p(x|yi) = N (x|µi,Σi). (3.6)

Having in hands the distributions p(yi), p(x|yi) and p(x), we can compute p(yi|x):

p(yi|x) =
p(yi)p(x|yi)

p(x)
=

πiN (x|µi,Σi)�NCY
j=1 πjN (x|µj ,Σj)

. (3.7)

This is the Bayes equation, as mentioned in chapter 2. Moreover, as explained in the

same chapter, we call p(yi) the class prior probabilities, p(x|yi) the likelihood and p(yi|x)
the class posterior probabilities. In the context of mixture models, the posterior is also

called the component responsibility. Since a GMM is able to model the likelihood, it

is a generative model, and because it models a distribution through components, it is

parametric.

26

3 Classification

The computation of the posterior distribution corresponds to the inference step of

classification. This is, therefore, how a GMM is able to perform classification. In our case,

having obtained the posterior distribution through inference, we perform the decision step

in sequence, and assign to a point the class that obtained the highest posterior probability.

Indeed, inference and decision are both done in this intermediary layer of the classification

model.

The GMM intermediary classes are data-oriented. They serve to capture all the dif-

ferent patterns that may be encountered. Ideally, if the model were powerful enough, it

should be able to capture, to abstract the different environmental and sensorial factors

influencing the perception. By environmental factors, we refer to the variability and the

clutter present in the environment, while by sensorial factors, we refer to the perception

effects derived from the sensor sampling pattern, as presented in chapter 2.

3.3 Final Classification: Grouping

The final classification layer is a grouping of the intermediary classes into final classes.

Viewing it purely through the point of view of classes, the set of intermediary classes is

denoted by CY = {cy1, ..., cyNCY }, while the set of final classes is denoted by CZ =

{cz1, ..., czNCZ}. NCY and NCZ respect the condition that NCZ ≤ NCY . This operation

aims at giving a single semantic interpretation to multiple intermediary classes. The

semantics are ideally connected to useful properties in a target task. We say thus that the

final classes are task-oriented.

As an example, consider a case where the robot must distinguish the ground in its

surroundings. The GMM might employ many classes to capture the distribution of ground

points, as well as of non-ground points, but these intermediary classes are grouped into a

set of two final classes, CZ = {ground , non-ground}.
The main limitation of this method is that, in fact, not all the intermediary classes

can be exploited. Some of them correspond to objects of different nature, and thus cannot

be grouped into a meaningful final class. In this case, the class is marked as unknown

final class. The unknown points do not contribute to the resulting semantic model. In a

way, this situation is analogous to the case where, in the decision stage, we refrain from

classifying a point, which is done based in some uncertainty criterion. In our system, as

explained, the decision is performed in the intermediary layer, but no uncertainty criterion

is applied: all the points are classified. The unknown classification is brought over in the

final layer, through the unknown class.

A property of this classification method is that a final class may be composed by

an arbitrary number of intermediary classes. This number is an indicator of how many

different patterns of the final class are encountered in the data. This is in constrast to the

27

3 Classification

(a) x1 (b) x2

(c) x3

(d) Output labels

Figure 3.4: Intermediary Classification. Figures 3.4a, 3.4b and 3.4c show the feature

extraction results. Figure 3.4d shows the intermediary classification result. Here, NCY =

50. In all scans, colours range from red, the lowest value, to blue, the highest value,

indicating either the feature values or the class labels. Note how the intermediary classes

apparently follow the patterns encountered in the features.

28

3 Classification

Figure 3.5: Final Classification. At the top-left, the result of the intermediary classifica-

tion. At the top-right, the points classified as unknown, marked in red. At the bottom, the

output of the final classification, coloured as: (orange, ground), (yellow, wall-building),

(pink, pole-trunk), (blue, vegetation-bicycle).

standard supervised GMM, where the number of components is the same for every class.

An example of final classification is shown in figure 3.5.

3.4 Learning

The learning of the full classification system follows the process of training, validation and

test, as explained in chapter 2. A schematic overview of this process, as applied in our

case, is shown in figure 3.6. During training, we must go through four stages: learning

sets composition, feature extraction, intermediary classification and final classification.

Each stage has parameters that must be determined. In a training instance, part of these

parameters is manually fixed, while the other part is determined automatically. The result

of training is a full classification system, which however might not be optimal due to the

choices for the fixed parameters.

During validation, the systems resulting from multiple training instances, with different

parameter choices, are evaluated, and the one with the best performance is selected. In

this way, validation allows us to determine the parameters that are not automatically

computed in training. The selected system is then submitted to a final evaluation in the

test step.

29

3 Classification

!"#!#$#!"%

!&'()()*+(

,'-(.'!(/)

-"'&)()*+#"!#
0/%1/#(!(/)

2"'!3&"+"4!&'0!(/)

()!"&%".('&$
0-'##(2(0'!(/)

2()'-
0-'##(2(0'!(/)

.'!'#"!

1&(/&

#$#!"%+(

Figure 3.6: Learning. Multiple training instances i are launched, each one resulting in a

classification system i. These systems are evaluated through validation and one is selected

for test. The inputs are the dataset and the prior, while the outputs are the selected

system together with its test evaluation.

30

3 Classification

Overall, the learning inputs are the dataset and the prior information. The dataset is

the source of the actual training, validation and test sets chosen during the learning sets

composition. The prior corresponds to any assumption, hypothesis or choice made about

the system. The features and the classification model, for example, are part of the prior,

as well as the set of different parameters used in validation. Seeing it through this point

of view, the dataset itself could actually be considered as part of the prior, since it implies

which type of environment and sensor setup are being targeted.

The learning outputs are the definitive classification system and its evaluation through

the test step. The system is predictive, able to classify new data, and must therefore be

able to achieve a certain degree of generalization. In our work, we aim at achieving a basic

level of generalization which we call the dataset level. Generalizing at the dataset level

means that the system is capable of classifying data coming from a similar environment

and acquired with a similar sensor setup. Achieving higher levels of generalization would

mean changing the environment or changing the sensor setup.

In the following, we describe the learning process for each of the four stages mentioned

above. Chapter 4 describes then how learning is implemented and used to evaluate our

approach.

3.4.1 Learning Sets Composition

Learning starts with the choice of the training, validation and test sets. The training set

provides the core input data. This data is not only used to train the GMM, but also

to find the standardizing parameters and to determine the grouping. A constant goal in

any learning task is to be as efficient as possible in the training. This means maximizing

the performance of the resulting system, while minimizing the size of the training set.

Minimizing the training set’s size is attractive because it means that less data needs to be

acquired and that less time is spent in training. Overall, it leads to a faster, and probably

simpler, learning process.

On the other side, the more information is given to a system, the more the system

is likely to perform better. However, this relation depends on the complexity of the

classification system. The complexity is determined by many factors, from feature extrac-

tion until the classification. Concerning feature extraction, it is affected, for instance, by

the dimensionality of the feature space. Detecting patterns in a feature space of higher-

dimensionality requires more observations. Concerning the classification, it is affected

by the number of components when using a mixture model, as in our case, for example.

A model with more components is capable of modelling more patterns, but only if the

sufficient number of observations is available.

Concerning the relation between the amount of training data and the performance of

31

3 Classification

a system, there are two important problems that may apply: underfitting and overfitting.

Underfitting happens when a system is not complex enough. This low complexity is the

factor limiting the performance. In this case, increasing the amount of training data

does not help. Overfitting happens when a system is too complex. This high complexity

is prejudicial for the performance because what the system learns is too close to what

is present in the training data, and thus the system generalizes poorly. Thus, here the

amount of training data is the limiting factor, and increasing this amount can improve the

system’s performance.

It is possible to characterize this behaviour by analysing the learning curve. Given a

certain system, with a certain complexity, we perform training multiple times, each time

varying the size of the training set. The performance of each system is evaluated, and a

curve of the performances in function of the training set size is built. Such curve is the

learning curve. It likely indicates the point from which increasing the data does not bring

a suitable increase in performance, because the complexity of the system is limiting its

capacity to learn more complex patterns.

The validation set is also an essential part of learning. As the name suggests, this

set provides the data which serves to validate, to confirm the performance of the trained

system. For this reason, this set must contain data different from the one in the training

set. This is necessary to ensure that the classification system is able to generalize. Here,

the ideal is to have a validation set as large as possible. The larger the set is, the more

reliable is the evaluation of the system.

The test set has a purpose similar to that of the validation set. It is used to perform a

final test on the system selected in the validation step. Analogously to the validation set,

this set should be as large as possible. The reason is the same: testing as much cases as

possible in order to ensure that the system is capable of generalizing. Because the test set

is supposed to be used once, as a final step in learning, normally it is unique. This is not

always the case when considering the training and validation sets, because these might

change depending on the training and validation scheme adopted.

It should be noted that, when speaking of the size of a set, it is implied that quality is

being considered too. Increasing the size means adding data constituting new test cases

to the set. In the context of classification, it is also important to try having a balanced

quantity of observations from each of the considered classes in a set, in order to ensure

that each class is being trained and evaluated on the same terms. This is usually difficult

to achieve, however. For this reason, evaluation methods should also take this point into

account, as it will be discussed in chapter 4.

32

3 Classification

(a) x1 in a Freiburg scan. The columns have a stronger blue colour at the right because their shapes

approach the 1D case. Analogously, the base of the columns and the foliage in the tree have a stronger

red colour, because their shapes approach the 3D case. Thus, these objects are better distinguished at the

larger scale. On the other side, the regions on the ground and on the wall which are at the interface of

different sampling densities are coloured differently from the rest of the ground or wall, respectively, and

this effect is more pronounced at the larger scale.

(b) x1 in a Caylus scan. The ground has a larger surface coloured in blue at the left, meaning that it

appears as 1D due to under-sampling. At the larger scale, this effect is diminished. On the other side, the

borders of the objects are less clearly perceived at the larger scale, a problem indicated by the pronounced

change in their colouring.

Figure 3.7: Feature x1 at Different Radii. r = 0.2m at the left, r = 1m at the right.

Colours range from red, indicating the lowest value, to blue, indicating the highest value.

The lowest value indicates a 3D shape, while the highest value indicates a 1D shape.

3.4.2 Feature Extraction

The feature extraction stage requires the choice of r or R, the radius or set of radii of

the support regions, respectively, as explained in section 3.1. These parameters determine

the scales at which the model operates. There are two factors which are central for the

choice of the appropriate radii: the capacity of distinction offered at a certain scale, and

the relation of the scale with the sampling densities found in a point cloud. These factors

are explained below, and illustrated in figures 3.7 and 3.8.

The first factor is how well objects are distinguished at the given scale. At a large scale,

isolated objects are better distinguished. Consider, for instance, the case of distinguishing

a wall from a post. At a small scale, a region from the post is not that different from a

33

3 Classification

(a) x2 in a Freiburg scan.

(b) x2 in a Caylus scan.

Figure 3.8: Feature x2 at Different Radii. r = 0.2m at the left, r = 1m at the right.

Colours range from red, indicating the lowest value, to blue, indicating the highest value.

The lowest value indicates a 1D shape, while the highest value indicates a 2D shape. Here,

conclusions analogous to the ones made in figure 3.7 apply, but concerning the distinction

between 1D and 2D shapes.

34

3 Classification

region of the wall. At a larger scale, however, the region of the post appears relatively

more linear, while the region of the wall appears relatively more planar. In a given

environment, there will be a certain minimum scale at which most of the objects can be

correctly distinguished.

On the other side, at a large scale, the problem of clutter exerts a more serious influence.

If the post were near a wall, the two would appear mixed, and thus would not be correctly

perceived. Different environments likely present different amount of clutter, therefore

imposing different upper limits on the scale. Thus, the first trade-off that must be dealt

with when choosing the radius is how well isolated objects are perceived versus how poorly

cluttered objects are perceived.

The second factor influencing the choice of the radii is the interplay of the scale with the

different sampling densities found in a point cloud. A sparsely sampled region might not

be properly perceived at a small scale, in which case we say the region is under-sampled.

For instance, points on the ground or on a wall, which should appear as planar, might

appear as linear because not enough neighbours were captured in the support region.

At the other extreme, at a large scale, there is an increased risk that a region of a single

object will be sampled at different rates. For instance, if there is a pronounced change in

density in some region of a wall, it may appear as linear due to the higher concentration

of points in the densely sampled part. This also affects the borders of objects: the border

of a wall, because of the empty space next to it, is perceived as relatively linear, instead

of planar. This effect is present at smaller scales too, but then the concerned regions are

smaller. Thus, the second trade-off involved in the choice of the radii is how well under-

sampled regions are perceived versus how poorly regions with different sampling densities

are perceived.

The training step is also where the standardizing parameters are computed. Once

the features have been extracted for all the points in the training set, the mean and the

variance along each feature dimension are computed. These values are kept for use during

subsequent feature extraction operations. The training points are standardized using

the values just computed, constituting the definitive version of the training set. Other

standardizing methods exist, but we choose to use this one because its statistical nature

is consistent with the GMM nature.

As discussed above, the parameters of feature extraction left open for manual setting

are the radii. Feature selection consists thus in searching for the most appropriate values

for the radii. In our approach, feature selection is included in the validation step. The

different radii values to be tested are included in different systems to be compared in the

validation. In this way, the features are implicitly tested, together with the whole system,

based on the unified evaluation performed during validation.

35

3 Classification

3.4.3 Intermediary Classification

The parameters of the GMM are determined in the training step. The parameter set

is denoted by θ = {π1, ..., πNCY , µ1, ..., µNCY , Σ1, ..., ΣNCY }. The training set is

denoted by X = {x1, ..., xNTS}, NTS being the number of elements in the set. The

set of the latent variables corresponding to the points in the training set is denoted by

Y = {y1, ..., yNTS}. From these, only X is given. Finding a function of θ given X that

could be optimized should provide a way to determine θ. One approach is to select, for

such function, the log likelihood of the data given the parameters, ln p(X|θ), which should

be maximized. This method is called maximum likelihood [Bilmes, 1997; Bishop, 2006;

Hastie et al., 2013]. The problem can be formulated as finding the solution to

argmaxθ L(θ|X) = argmaxθ ln p(X|θ). (3.8)

Taking equation 3.5 into account, the log likelihood can be developed as

ln p(X|θ) = ln
NTS�

i=1

p(xi|θ)

= ln
NTS�

i=1

NCY�

j=1

πjN (xi|µj ,Σj) =
NTS�

i=1

ln
NCY�

j=1

πjN (xi|µj ,Σj).

Let Nj =
�NTS

i=1 p(yij |xi). The solution of the maximization with respect to each πj , µj

and Σj is:

πj =
Nj

NTS
, (3.9)

µj =
1

Nj

NTS�

i=1

p(yij |xi)xi, (3.10)

Σj =
1

Nj

NTS�

i=1

p(yij |xi)(xi − µj)(xi − µj)
T . (3.11)

It is interesting to note the parallel between this solution and the maximum likelihood

solution (also used in equation 3.1) for the estimation of a single Gaussian distribution

from the same data:

µ =
1

NTS

NTS�

i=1

xi, Σ =
1

NTS

NTS�

i=1

(xi − µ)(xi − µ)T

The difference is that, for the mixture case, each data point is weighted by the class

posterior probability, p(yij |xi), and the terms are normalized by the sum of the posteriors,

Nj , which can be seen as the probabilistic number of points assigned to a component. In

the same way, if Y were given, we could estimate each Gaussian component separately,

36

3 Classification

taking into account only the points associated to the component, and thus using the

equations for the single Gaussian case.

The solution for θ is not a closed-form expression, because it depends on the class

posterior probabilities. These, in turn, require knowing θ, since we can think of p(yij |xi)

as p(yij |xi, θ). However, neither of them is given. This situation can be solved by the

iterative algorithm of Expectation-Maximization (EM). EM consists, in this case, in

• (Expectation - E step) computing p(yij |xi, θ̃) from a given estimate of the parameters

θ̃, then

• (Maximization - M step) computing a new θ using the equations 3.9, 3.10 and 3.11,

then

• if a given convergence criterion is not matched, assign θ to θ̃, and repeat the proce-

dure.

The algorithm starts with an estimate θ̃0. The training of the GMM is thus performed by

applying the EM algorithm, as discussed. In our work, it is implemented with scikit-learn

[Pedregosa et al., 2011].

NCY , the number of classes in the GMM, or the number of intermediary classes,

determine how fine is the model with respect to the patterns that it can represent. By

increasing the number of classes, the number of patterns is increased. Indeed, with an

unbounded number of classes, it is ideally possible to model arbitrary decision boundaries

in the feature space. NCY should be large enough so that the GMM is able to provide a

fine enough model of the patterns in the environment. Under this condition, we ensure

that the corresponding intermediary classes can be grouped afterwards into meaningful

final classes.

The number of classes indicate the complexity of the GMM. Increasing this number

implies that the EM-based training will be slower, and that a larger amount of training

data will be needed. Moreover, and perhaps most importantly, the grouping stage will be

made slower, because the expert will have to look at and examine more classes. Ensuring

that the grouping process remains simple requires that the number of classes should be

kept at a minimum. Therefore, the trade-off faced in the selection of NCY is providing a

fine enough representation versus having a simple enough EM and grouping processes.

The initialization is also an essential part of the EM training. EM is guaranteed

to converge to a local maximum only, and the quality of the local maximum achieved is

determined by the initial parameters. A commonly-used method is to randomly pick points

from the training set and use them as the initial means. The probability of sampling points

from denser regions is higher, which is advantageous because these regions are probably

37

3 Classification

the most relevant. The covariances are initialized, equally, with the sample covariance of

the whole set. The coefficients are all set to 1 divided by the number of components.

Another commonly-used method is to start with randomly sampled points, in the way

just described, and then proceed with a preliminary K-means clustering. The obtained

cluster centers are then set as the initial means for the EM, while the remaining EM

parameters are set as previously explained. K-means speeds-up the whole process, because

it converges faster than EM.

The process of randomly sampling points and applying K-means may be replaced by

the improved K-means++ algorithm [Arthur and Vassilvitskii, 2007], which makes an

essential alteration: after each cluster center is sampled from the training set, the points

are weighted proportionally to their squared distance to the nearest existing center, and

then the next center is sampled accordingly. This leads to cluster centers which are more

spread between themselves, better exploring the points of the training set. This method

is the one employed by default in scikit-learn. In fact, here the algorithm is ran 10 times,

and the best run is selected in the end. All the methods discussed so far are random.

However, this one, due to the combination of the K-means++ algorithm and multiple

runs, is the one which produces the least random initialization.

With a random initialization, each EM training results in a different GMM model.

This could be considered as a noise in the GMM training. This is a non-desired property,

especially when the subsequent grouping is considered, since it is not possible to perform

an arbitrary number of groupings in order to select the best one. Thus, we keep the method

used in scikit-learn. The random nature of the GMM training, even if considerably reduced

by the initialization, is a limitation of the approach.

The search for the right number of intermediary classes constitute the model selec-

tion. As for feature selection, model selection is performed implicitly in the validation

step. Multiple models, with different number of classes, are trained and compared during

validation, thus leading to a unified evaluation of the different values.

3.4.4 Final Classification

The grouping is determined during training. This step is done in a supervised manner,

by a human expert. Overall, it consists in examining the results of the intermediary

classification, by visual inspection, and assigning to each intermediary class a final class,

or the class unknown. This examination is performed on a grouping set, which does

not have to be the same as the training set, although it usually is. To perform this

task, a graphical interface is required. In our work, we found that the visualization tool

ParaView [Moreland, 2013] provided all the desired functions. Some examples of the

grouping training are shown in figure 3.9.

38

3 Classification

(a) Single intermediary classes that fail to represent a single element, and thus might not be grouped,

depending on the target task. In the Freiburg case, it could represent either building or vegetation. In the

Caylus case, it could represent either road or grass.

(b) Single intermediary classes that represent a single element, and thus are likely to be grouped. In the

Freiburg case, it represents ground. In the Caylus case, it represents vegetation.

(c) Intermediary classes that are grouped into one final class. In the Freiburg case, they represent ground,

while in the Caylus case, they represent vegetation.

Figure 3.9: Grouping Training. These are examples of the actual interface used in the

training process. Left: a scan from the Freiburg dataset. Right: one from the Caylus

dataset. The concerned classes are highlighted in colours.

39

3 Classification

The expert must have in mind the target task for which the classification system is

being designed. This means selecting a set of final classes with relevant properties. It is

implied, however, that these classes are properly distinguished among the intermediary

classes. If this is the case, and the intermediary model is indeed able to provide a flexible

enough set of classes, then the semantic complexity of the final model can be chosen.

For instance, the final class ground may be selected, or it may be divided into the more

specific classes road and grass. The semantic complexity required in the target task is

thus manually handled by the expert during training.

An important property that may be influenced by the expert in this stage is the

precision-recall balance. These metrics will be explained in more details in chapter 4.

Here, we may say that when inspecting an intermediary class cyi, changes in the precision

and recall of a final class czj can be roughly estimated, visually. If cyi is grouped under czj ,

the czj ’s precision decreases by the percentage of its points covered by the false positives

in cyi. Analogously, the czj ’s recall is increased by the percentage of its points covered by

the true positives in cyi. Among these two, the recall is easier to visually estimate.

The preceding comments suggest a criterion for the grouping, which is the maximiza-

tion of the recall. The criterion can be presented as follows: an intermediary class should

be grouped under the final class whose recall will have the largest increase, or, if this can-

not be clearly determined, marked as unknown. This criterion would be advantageous if a

post-processing step consisting of a filtering or smoothing operation is applied, in which

case a better recall is desired. The actual criterion used, however, would depend on the

target task.

The visual nature of the criterion eventually leads to errors by the expert, that is,

the expert may take the wrong decision regarding the grouping of an intermediary class.

This problem is reduced by the clarity requirement present in the criterion, but never

completely avoided. This could be considered as a kind of noise in the grouping training.

This noise, together with the noise in the GMM training, induced by the randomness of

the EM initialization, constitute the training noise.

40

Chapter 4

Evaluation

The evaluation of the proposed approach follows the training, validation and test steps,

as described in chapter 3. We evaluate the system under two separate contexts, each one

corresponding to a different dataset. Both datasets contain 3D point clouds of outdoor

environments. The first one is the Freiburg public dataset [Steder et al., 2011], for which

we have ground-truth, made available in [Behley et al., 2012]. The second one is a dataset

acquired with our own robot and sensor setup, for which there is no grount-truth available.

These datasets are described more carefully further in this chapter.

In each case, we train multiple systems to be compared through validation. A complete

validation is a search problem, and would consist of training all the possible combinations

of parameters. This leads to a combinatorial problem. In a supervised learning context,

it might be possible to perform a relatively complete validation, since once the different

parameters are chosen, the remaining of the process can continue automatically. This

condition holds if the time required is not prohibitive.

In our approach, each training case includes the supervised grouping process. Due

to the time required in the grouping and the combinatorial factor of the validation, it is

not possible for us to proceed in an exhaustive manner. Thus, we choose to perform a

constrained validation, selecting a set of training cases considered as most informative.

Concretely, this means testing each parameter at a time, by varying it while fixing the

others at relevant values. In the end, this leads to a system which is the best locally,

under the selected parameter set, yet it still leads to an informative exploration of the

different alternatives. The selection of the parameters is done based on a preliminary

training evaluation, which does not include any data from the validation or the test sets.

The actual selected parameters will be presented throughout this chapter, in the pertinent

sections.

The evaluation metrics are explained in section 4.1. The datasets are described in

section 4.2. Section 4.3 evaluates the learning sets composition, section 4.4 evaluates the

41

4 Evaluation

unk cz1 ... czi ... czNCZ rec F1

cz1 fpi,1
...

...

czi fni,unk fni,1 ... tpi ... fni,NCZ reci F1i

...
...

czNCZ fpi,NCZ

pre - prei - F1total

Table 4.1: Evaluation Metrics. This table shows the confusion matrix, with added infor-

mation about the precision, recall and F1 scores. The rows indicate the true classes, while

the columns indicate the predicted classes. unk refers to the unknown final class, czi to

the i-th final class, pre to precision, and rec to recall. tp indicates the true positives, fp

the false positives, and fn the false negatives.

feature extraction, section 4.5 the intermediary classification, and section 4.6, the final

classification. Lastly, section 4.7 presents the test results.

4.1 Metrics

The Freiburg dataset contains ground-truth data, therefore allowing a quantitative evalu-

ation. We choose to use the precision, recall and F1 metrics, as shown in table 4.1. These

metrics take into account the classwise performance, which is necessary when dealing with

unbalanced data, as is the case in semantic modelling. Moreover, F1 produces a generic

evaluation because it includes both precision and recall. For certain target tasks, it might

be desirable to prioritize either precision or recall, and then other metrics can be used.

Using the notation of table 4.1, the classwise scores are computed as

prei =
tpi

tpi +
�

j �=i fpi,j
, reci =

tpi
tpi +

�
j �=i fni,j

, F1i =
2 · prei · reci
prei + reci

, (4.1)

while the total F1 score is computed as

F1total =
1

NCZ

�

i

F1i . (4.2)

Note how precision and recall are obtained from the confusion matrix by a normalization

along a column or row, respectively. These scores, as the F1, may be averaged to produce

a total precision or recall score.

The accuracy metric is also reported. Accuracy is the ratio of the classification hits

42

4 Evaluation

over the total number of classified points, and is given by

accuracy =

�
i tpi�

j(tpj +
�

k �=j fpj,k)
, or equivalently, =

�
i tpi�

j(tpj +
�

k �=j fnj,k)
. (4.3)

It is the sum of the terms in the diagonal of the confusion matrix, divided by the sum of

all the terms of the matrix. However, it should only be used as a reference for comparison.

Point clouds usually present a relatively high number of points at close distance, and this

points usually correspond to the ground, or to a road, resulting in an accuracy with a high

bias towards these classes.

For the Caylus dataset, there is no associated ground-truth. Actually, this is an ex-

ample of a dataset for which ground-truth is difficult to produce, due to two factors: the

sampling sparsity and the presence of more natural, non-structured elements. The evalu-

ation, in this case, is done only in a qualitative manner, by visual inspection. This case

represents what would be a real application of our system: starting from a dataset with

no ground-truth, and ending with a visual inspection of the classification results.

It would be possible to base the visual inspection on the precision and recall metrics,

by visually examining the classes’ hits and errors and making estimates, but this would be

too cumbersome and prone to error. The great variance in the point density in function

of the distance is enough to make such estimates not reliable.

Alternatively, we note that not the absolute, but the relative difference in recall between

scans can be noticed. It is, most of the times, clear enough to see missing points in one

scan, compared to another. Therefore, the evaluation is done in a relative way. Scans

are compared between them, and differences on the recalls are noted down. This allows a

ranking to be established. This procedure is consistent with the grouping method adopted,

which also prioritizes the recall. It should be noted that, in fact, the actual criterion used

in the visual evaluation would depend on the target task, and could possibly prioritize

different factors, other than the recall.

4.2 Datasets

4.2.1 Freiburg Dataset

This is a public dataset, acquired at the Freiburg University’s campus [Steder et al., 2011].

There are 77 scans, each scan containing from 150,000 to 200,000 3D points. It contains

artificial elements such as streets, buildings of different types, road signs and lamp posts,

but also some natural elements such as trees of different shapes and sizes, shrubs and

vegetation areas. Some people appear in the scans too.

The dataset was acquired with a SICK LMS lidar, moved using a pan-tilt unit, on a

mobile robot. The SICK LMS sensors [SICK, 2015a,b] are 2D lidars, that is, they scan

43

4 Evaluation

Figure 4.1: Freiburg Dataset. The image at the left shows a region where the individual

scans overlap, causing important changes in the point densities. The image at the right

shows a facade with a variety of window types.

along a plane. There is one laser emitter, and through a rotating mirror, each emission

is redirected to a different orientation on the plane. The angular resolution can be set

to 0.25◦, 0.5◦ or 1◦, and the field-of-view covers 180◦. The maximum operating distance

is 80m. These sensors use the time-of-flight method for computing distances. The pan-

tilt unit is used to change the pitch orientation of the sensor, allowing a scanning along

multiple planes, and resulting thus in a 3D scan.

The acquisition was static: the laser acquired the points while the robot was stopped.

At each location, three scans at different orientations were taken and merged together. The

individual scans overlap each other, creating different sampling densities at the overlapping

regions. The scans are expressed in the robot’s reference frame, and are accompanied by

the respective robot’s positions. The robot frame is taken to be at ground height. We

assume the sensor is located 1m above it, and thus are able to determine the sensor-to-

world transformation.

The Freiburg environment is relatively flat, structured and uncluttered. The point

clouds are relatively dense. There are two main challenges encountered in the data. The

first one is the nonuniform sampling, consisting of significative changes in the sampling

density at the overlapping areas. The second one is the presence of some complex facade

features, such as windows, doors, roof and prominent features in general, all of them

in varied sizes and types. Such complex features are one example of the environment

variability problem. Figure 4.1 shows some examples of these.

For this dataset, the set of final classes is composed by four classes. They were not

manually pre-selected, but instead, discovered on the preliminary training evaluation.

They were checked against the ground-truth available, to ensure that the latter could be

used to support the evaluation. The classes are the following:

• ground. It corresponds to road, lawn, sidewalks, and so on. Geometrically, these are

flat and planar, with normals oriented upwards.

44

4 Evaluation

Figure 4.2: Freiburg Ground-truth. The colours encode the class labels. In the first picture,

at the bottom-right, a big structure, probably built of glass due to the presence of multiple

points inside it, is marked in red, indicating that it is not labelled. In the second picture,

some non-labelled regions in red can also be seen.

• building. It corresponds to buildings, including any facade structure, roofs, and so on,

and also to shrubs. Shrubs are included here because they are so precisely trimmed

that they appear clearly as low walls. Only in scarce cases, some edges present

random traces indicating vegetation. Geometrically, the facades and shrubs are

planar with normals oriented along the horizontal plane, whereas the more complex

structures have more varied geometries.

• post. It corresponds to posts, tree trunks and people. Geometrically, these are linear,

with normals oriented along the horizontal plane.

• vegetation. It corresponds to vegetation, tree foliage and to bicycles and bicycle

stations too. Parked bicyles and bicyles stations are common in the dataset, and their

relatively random and scatteered shape matches well that of vegetation in general,

therefore being included here. Geometrically, they are scattered, three-dimensional,

with normals oriented in unpredictable directions.

The ground-truth presents a fine distinction of elements, with twenty classes in total.

These include, for example, ground, sidewalk and lawn, as well as facade, window and

door. These are grouped into the smaller set of final classes. We follow approximately

the work done in [Behley et al., 2012], for which the ground-truth was produced, and

where the classes are also grouped for the evaluation. The classes considered in their case

were: ground, facade, pole and vegetation. These are relatively similar to ours, except

that we include bicycles as vegetation, whereas they leave out the bicycle points from the

evaluation, and that we include shrubs as facade, instead of as vegetation. Figure 4.2

shows some examples of the ground-truth.

Another point to be mentioned is that the ground-truth does not cover all the points

in the scans. Some complex features are left out, such as glass facades and the roofs of

45

4 Evaluation

bicycle stations. Isolated groups of points, and some erroneous artifacts, are also filtered

out. These points are thus not used in the evaluation. They are, however, still present in

the training set, which means that they still contribute to the training of the model.

4.2.2 Caylus Dataset

This dataset was acquired with our own robot and sensor setup. It contains a few thousand

scans, each one with approximately 76,800 points. The scenario is an artificial countryside

village. It presents a great variety of natural elements such as low and high grass, trees,

bushes and other vegetation, but also artificial elements like an asphalted road, buildings,

and some abandoned vehicles. The operator of the robot can be seen in some scans.

The scans were acquired with a Velodyne HDL-32 lidar [Velodyne, 2012], mounted on

the top of a Segway RMP-400-based UGV. The Velodyne HDL-32 is a 3D lidar, scanning

with a horizontal field-of-view of 360◦ and a vertical field-of-view of 41.3◦. It has 32

emitters that fire along a vertical plane, as illustrated in figure 4.3. It also has a rotating

head, which combined with the emitter arrangement, produces a 3D scan. The head

rotates at 10Hz. The sensor has a horizontal angular resolution of approximately 0.16◦

and a vertical angular resolution of approximately 1.33◦. The maximum operating distance

is 70m. The distance computation method is time-of-flight.

The Velodyne lidars, including the HDL-32, are designed to allow mobile acquisition.

The dataset was acquired in this way. The UGV was manually controlled by an operator,

while the lidar acquired data and a SLAM method, namely RT-SLAM [Roussillon et al.,

2011], provided the localization by fusing GPS, inertial and visual information. Each full

revolution of the sensor’s head produced a 360◦ scan, with points being transformed into

the sensor’s reference frame at the beginning of the revolution.

The area of the dataset presents some gentle slopes at specific points. Otherwise, it

is basically flat. It is less structured than the Freiburg area, with more grass, vegetation

and some natural terrain. However, the two main challenging characteristics are the

nonuniform sampling and the clutter. The nonuniform sampling is a consequence of the

sensor’s sampling pattern. In a Velodyne scan, at close range, the sampling is relatively

dense, but moving to farther ranges, the density decreases very fast, resulting in sparsely

sampled regions. The second challenge is the important amount of clutter present in the

environment, concerning particularly tree trunks, often surrounded by vegetation. Figure

4.4 shows examples of these phenomena.

For this dataset, after the preliminary training evaluation, the set of final classes was

composed by the six discovered classes:

• road. It corresponds to the asphalted road, and to sidewalks. Geometrically, these

are planar, with normals oriented upwards.

46

4 Evaluation

0
0.2

0.4
0.6

0.8
1

1
0.5

0
0.5

1

0.6

0.4

0.2

0

0.2

0.4

x
y

z

Figure 4.3: Velodyne HDL-32 Emitter Arrangement. This was determined on the basis of

the calibration system and data provided with the sensor.

Figure 4.4: Caylus Dataset. The image at the left shows an example of clutter found in

the set. At the top-left of it, we can see two tree trunks being surrounded by foliage and

vegetation. The image at the right shows the sampling sparsity problem. It is particularly

noticeable for the road, going from the bottom-center to the top-center of the image, and

presenting a dramatic decrease in sampling.

47

4 Evaluation

• building. It corresponds to buildings and facade features, such as doors and windows.

Geometrically, these are planar, with normals oriented along the horizontal plane,

except from the facade features which have varied geometries.

• trunk. It corresponds to tree trunks, posts and people. Posts are rare, but still

present in the dataset. People refers mainly to the robot operator who appears

in most of the scans. Geometrically, these are linear, with normals oriented mainly

horizontally, but sometimes in other directions, for example when a trunk is inclined.

• vegetation. It corresponds to tree foliage and vegetation. Some regions where the

grass is high can be considered as vegetation too. Geometrically, these are scattered,

three-dimensional.

• grass. It corresponds to grass. Geometrically, it is basically planar, but less than

road, because of the more scattered pattern of the grass.

• rough. It corresponds to rough terrain, usually found at the interface of grass and

vegetation, or at the base of trees. It also corresponds to regions of medium-high

grass. In fact, the classes grass, rough and vegetation represent a progression of

unstructured terrain, and of scatterness, in terms of geometric shape.

4.3 Learning Sets Composition

The implementation of the adopted validation method is done by defining one validation

and one test sets. The validation set is used to evaluate every training case, while the

test set is used to evaluate the selected system. The training set, however, may vary in

each case, as explained in chapter 3. Varying the training set allows the establishment of

a learning curve, which is the goal of this section.

From each dataset, 10 scans were reserved for use in the different training sets, 5 for

the validation set and 5 for the test set. The training scans were the first ones to be chosen,

followed by the validation scans, and finally by the test scans. Assigning the priorities in

this manner ensures that the system will learn with the best data available. The selected

scans were kept as spread as possible over the scenes, while at the same time being picked

from the most interesting areas, and aiming at having as much balance as possible between

the different elements.

Regarding the training set, one of the goals being the minimization of its size, the

decision made was to not use all the data available. Indeed, the datasets have many

more scans, so data was not a limiting factor. An examination of the data also revealed

that five scans already contained a reasonable amount of the main elements, for both

datasets. Lastly, reserving too much scans for training would have a negative impact on the

48

4 Evaluation

(a) Freiburg

(b) Caylus

Figure 4.5: Training Sets. These are the training sets with 2 scans and r = 0.6m. The

points filtered out at feature extraction were already removed.

composition of the validation and test scans, because there would be less interesting and

original scans available. Thus, reserving 10 scans for training seemed a good compromise,

as well as using 5 scans for validation and another 5 for test.

Using the scans reserved for the training, three training sets are tested, containing

respectively 2, 5 and 10 scans. Figure 4.5 shows the smaller training sets for Freiburg and

Caylus. We test two feature configurations: a single-scale one, with r = 0.6m, and a multi-

scale one, with R = {0.2m, 0.4m, 0.6m, 0.8m, 1.0m}. This choice of R aims at covering the

relevant scales, from the smaller to the bigger ones. r is picked as the middle scale, which

should constitute a good compromise. Moreover, these settings provided promising results

in the preliminary training evaluation. The actual evaluation of the feature parameters is

done in section 4.4.

The number of intermediary classes is fixed at NCY = 50. Choosing a larger number

of classes would be prohibitive for the grouping training, so this number is considered

as the maximum tractable number. As the system’s performance is expected to improve

proportionally to NCY , the maximum tractable value was chosen. This value was also

verified in the preliminary training evaluation. The evaluation regarding the number of

intermediary classes is performed in section 4.5. Lastly, concerning the grouping set, it is

taken to be the same as the training set with 5 scans.

49

4 Evaluation

(a) precision (b) recall (c) F1

Figure 4.6: Freiburg Learning Curves. The plots show the scores in function of the number

of scans in the training set. The scores are the total precision, recall and F1. The total F1

is the average of the classwise F1 scores, so the precision and recall shown are not directly

used in the computation, but rather indicators of the global trend across the classes. Blue

indicates the single-scale results, green indicates the multi-scale results. The accuracy

scores fell between 0.83 and 0.87.

4.3.1 Freiburg Results

Figure 4.6 shows the learning curves for the Freiburg tested systems. The first two single-

scale systems obtained F1 = 0.77, being the ones that performed the best. Overall,

the performances, indicated by the F1 score, decrease when the number of scans in the

training set is increased. The precision and recall curves reveal the reason: for the single-

scale system, the recall decreases, while for the multi-scale system, the precision decreases,

which drags the F1 down.

In the single-scale case, the recall decreases but the precision increases. What could

be happening is that adding points to the feature space is not qualitatively changing the

distribution, but quantitatively. The points added are reinforcing the core of the patterns,

while at the same time filling their periphery, filling the interface between patterns, and

creating smaller patterns, therefore making the division boundaries less clear. The GMM

components would adapt to this change, the core ones becoming more precise, the remain-

ing ones becoming more scattered, less precise, and thus being discarded in the grouping,

lowering the recall. In the multi-scale case, the opposite is observed, although in smaller

proportions, as the curves are smoother. It seems, therefore, that the multi-scale feature

space provides different properties to the system.

In spite of the overall decrease, the scores are very close, being in the range [0.75, 0.77]

for the single-scale and in [0.73, 0.74] for the multi-scale. The variations observed could

be simply a consequence of the noise in the GMM and grouping training. Thus, it is not

possible to point a definitive cause for the observed behaviour. However, it is possible

50

4 Evaluation

to conclude that the system’s performance does not change much across the tested cases.

This indicates that the system, regarding its complexity, is already at its full potential with

respect to the size of the training set. From the other point of view, it also means that the

smaller training set already provides a good representation of the patterns encountered in

the environment.

In order to deepen the analysis, and obtain curves that could reveal the behaviour

of the system more sharply, it would be necessary to examine more cases, consisting of

smaller and bigger training sets. Additionally, a change that could impact the results is

to replace the composition of the sets on a scan basis by one on a point basis. In such

method, the sets would be composed using the number of points as parameter, and the

points would be randomly sampled from the scans reserved for the sets. This would have

two positive effects, the first being the reduction of the scans biases in a set, and the second

being the use of the number of points as a more practical parameter in the composition.

4.3.2 Caylus Results

For Caylus, the qualitative evaluation allows the establishment of a ranking among the

systems. We use the symbol > to denote that a system performed better than another,

and is consequently in a higher position in the ranking. We use the symbol = to denote

that two systems performed equally well, and are thus equally positioned in the ranking.

This notation will be used for all the qualitative evaluations. The evaluation is done

independently for the single- and the multi-scale cases. Here, we refer to a training set

simply as set. The rankings are the following:

• Single-scale: 10-scan-set > 5-scan-set > 2-scan-set.

• Multi-scale: 10-scan-set = 5-scan-set > 2-scan-set.

Among the single-scale cases, the 2-scan-set system had a lower recall on grass, with

respect to the two others. The 5-scan-set system, in turn, had a lower recall on trunk,

with respect to the 10-scan-set system. Among the multi-scale systems, the only difference

was a lower recall on road and on grass for the 2-scan-set system.

Overall, the performances were higher when the training set size was increased. There-

fore, in comparison to Freiburg, the system was able to integrate more scans. It is true

that a Caylus scan has less than half of the points of a Freiburg scan. However, the number

of points alone is not necessarily informative. The important factor guiding the clustering

of the GMM is the relative number of points belonging to the different patterns. A scan

from Caylus, in this respect, offers less data then a scan from Freiburg.

The fact is, however, that the differences were not very significant, as for Freiburg,

and could be due to the training noise. Increasing the size of the sets could lead to better

51

4 Evaluation

results, but the small improvements observed suggest that a 10-scan training set provides

a good setup for the single-scale system, in the same way as a 5-scan training set, for

the multi-scale system. These training sets are good enough for the system complexity.

To definitively clarify the results though, the same two changes pointed out for Freiburg

could be applied here: testing smaller and bigger sets, as well as using a point-based set

composition.

4.4 Feature Extraction

In this section, the feature parameters, r and R, are evaluated. Five different values of r

are considered, 0.2m, 0.4m, 0.6m, 0.8m and 1.0m, as well as a multi-scale version with

R = {0.2m, 0.4m, 0.6m, 0.8m, 1.0m}. The training sets used are the ones with 5 scans,

since as mentioned before, it was expected that 5 scans allow the necessary elements to

be included in the set. The number of intermediary classes is chosen, again, as NCY = 50.

The percentage of points kept in the feature extraction, that is the points with 4 or more

neighbours, is also presented.

4.4.1 Freiburg Results

Figure 4.7 shows the scores computed for the different systems. The system which achieved

the best performance was the one with r = 0.6m, with a score of 0.77. This shows that

this radius was indeed a good choice to be used as basis in the validation. It is closely

followed by the one with r = 1.0m, with a score of 0.76. Besides this two, and apart

from the one with r = 0.2m, the scores are not so far away, remaining inside the range

[0.72, 0.77]. The 0.2m-radius system obtained the worst scores among the single-scale

ones, including its classwise F1 scores, not shown here. The percentage of points kept in

the feature extraction, for the different systems, is shown in figure 4.8a.

The worse performance of the 0.2m system and the overall better performance of

the larger-scale systems suggest that bigger radii are more appropriate for the Freiburg

scenes. Using bigger radii allows for a better distinction of the elements, and also copes

with the sampling sparsity present in the farthest regions of the point clouds. Moreover,

the Freiburg environment is relatively uncluttered, so the bigger radii can be used with

less negative effects due to clutter.

The multi-scale system obtained the fourth position, with a F1 of 0.73. Thus, in this

case, using all the scales does not lead to the best system. This could be due to the

inclusion of non-representative radii, such as the 0.2m radius. This radius could introduce

a negative influence in the clustering results because, through its corresponding feature

dimensions, points will look more similar. Another factor that could limit the performance

52

4 Evaluation

(a) precision (b) recall (c) F1

Figure 4.7: Freiburg Radii Results. The scores are given in function of the radius, noting

that the multi-scale system is denoted by the letter “M”. Blue indicates the single-scale

results, green indicates the multi-scale result. The accuracy scores fell between 0.80 and

0.89.

(a) Freiburg (b) Caylus

Figure 4.8: Percentage of Points Kept in the Feature Extraction.

is the inclusion of irrelevant radii. As observed, the larger-scale systems obtained all a

relatively similar performance, indicating that some of the larger radii are irrelevant if

used together, not adding any new viewpoint.

A clear peak was not present in the result curves, since the systems with r = 0.6m

and r = 1.0 reached very similar scores, of 0.77 and 0.76, respectively. The exploration

of different radii could lead to finer-shaped curves, possibly reinforcing the conclusion

that the radius 0.6m provides the best performance, and that, overall, bigger radii are

more adapted to the environment than the smaller ones. Additionally, it could allow the

detection of an upper limit for the radius, above which the performance starts decreasing

due to the problems of clutter and density bias. Lastly, testing a different combination

of radii for the multi-scale system, possibly with larger and more spread radii, could also

prove advantageous.

53

4 Evaluation

4.4.2 Caylus Results

The qualitative results for Caylus are the following, denoting the multi-scale system by

the letter “M”:

M = 0.6 > 0.2 = 0.4 = 0.8 = 1.0 .

Figure 4.9 shows the results in one scan from the validation set. Figure 4.8b shows the

percentage of points kept in the feature extraction. An interesting pattern appears in

the results: the lowest scale offered the best recalls for road and grass at close range,

the largest scale offered the best recalls for vegetation and grass at far range, and the

classes in between followed an apparent graduation from one behaviour to the other. The

multi-scale system provided a balanced classification, detecting from the close-range road

to the far-range vegetation.

Inspecting the results, the systems with r = 0.6m and multi-scale were elected the

ones with the best performances, because they were the most balanced in terms of recall,

that is, they achieved a reasonable recall for all classes. Once more, using 0.6 as the base

radius revealed itself to be a good choice. Comparing the two best systems, we observe

that the single-scale has a lower recall on road and vegetation, while the multi-scale has a

lower recall on building and grass. Thus, each one has different weak points that cancel

out. The other systems have different and complementary weak points too, but they stand

at a lower level of performance, in general.

The road and grass at close range are better distinguished at a smaller scale because

the characteristic scattered pattern of grass is more apparent under this condition. At a

larger scale, on the contrary, the scatterness of the grass is filtered and the grass is then

perceived as similar to the road. This effect is also increased by the fact that the grass

near the road is frequently shorter, in comparison to more distant grass, being perceived

naturally as more planar. Analogously, the grass and vegetation are better distinguished

at larger scales, because the difference in the more planar shape of the first and the more

three-dimensional shape of the latter becomes more apparent.

Another factor contributing to the distance-dependence of the results is the sampling

sparsity of the data. The point clouds in this set present a sharp decrease in sampling

density in function of the distance. This causes, for instance, the confusion of road with

building at far distances, because both are perceived just as lines. This characteristic exerts

its strongest influence at the lower scales, and is gradually overcome when increasing the

scale. But increasing the scale, in turn, brings another effect: the confusion of classes due

to clutter, characteristic of the Caylus scenario. This applies, for example, for the class

trunk, because most trunks are surrounded by vegetation or stand close to other trunks. It

also impacts the distinction between road and grass, making large regions at the interface

of both classes be incorrectly perceived.

54

4 Evaluation

(a) 0.2m (b) 0.4m

(c) 0.6m (d) 0.8m

(e) 1.0m (f) multi-scale

Figure 4.9: Caylus Radii Results in Scans. Colours: (road, orange), (building, yellow),

(trunk, pink), (vegetation, blue), (grass, green), (rough, brown). Note how the nearby

points gradually disappear, and how the correct classification of foliage and grass reaches

longer distances, when the radius is increased. The multi-scale system provides a relatively

accurate classification at both near and far ranges.

55

4 Evaluation

(a) precision (b) recall (c) F1

Figure 4.10: Freiburg NCY Results. Scores in function of NCY . Blue indicates the single-

scale system, green indicates the multi-scale. The accuracy scores fell between 0.81 and

0.87.

The multi-scale system was able to achieve a balance between the elements at close

distance and the ones at far distance. This is possibly due to the efficient combination of

the different scales, each one offering better performance for a specific element. This was

not the case for Freiburg, where the scales used were possibly not all advantageous, or not

complementary enough. In Caylus, because the changes with the scale are more dramatic,

as just discussed, the advantages of the multi-scale features become more significant. In

fact, comparing these results with the ones of Freiburg, we note that here a curve with a

clear global maximum, in addition to the multi-scale system, was obtained.

4.5 Intermediary Classification

This section evaluates the number of intermediary classes, NCY . As mentioned before,

using 50 classes is considered to be the maximum number acceptable, because higher

numbers would make the grouping training slower, and therefore too cumbersome. We

thus test models with 10, 30 and 50 classes. As before, the training sets used are the ones

containing 5 scans, while the feature configurations used are the single-scale one, with

r = 0.6m, and the multi-scale one, with R = {0.2m, 0.4m, 0.6m, 0.8m, 1.0m}.

4.5.1 Freiburg Results

The results for different NCY are shown in figure 4.10. Among the single-scale systems,

the one with NCY = 50 achieved the best score. Among the multi-scale systems, however,

the ones with NCY = 10 and NCY = 50 were the best, reaching the same score. The total

precision and recall do not seem to provide any helpful tendency that could clarify the

final behaviours.

56

4 Evaluation

(a) Single-scale. The model with 10 classes misclassified the borders and linear patterns of the buildings

as posts, which was the main factor for its worse performance.

(b) Multi-scale. The model with 10 classes misclassified most trunks as buildings, resulting in a lower recall

for trunk. The model with 50 classes misclassified the borders and linear patterns of buildings as trunks,

resulting in a lower recall for building. In the end, these weak points balanced each other and the final

scores were the same for both models.

Figure 4.11: Freiburg NCY Classification Results. At the left, NCY = 10, at the right,

NCY = 50. Colours: (ground, orange), (building, yellow), (post, pink), (vegetation, blue).

The single-scale curve is clearly increasing in proportion to the number of GMM classes,

as it was intuitively expected, since with more classes, the GMM should be able to capture

more elementary patterns. The multi-scale curve, on the contrary, suggests that the

performance may oscillate. A possible explanation is that there could be, indeed, some

specific number of classes that generate better clusterings, because the classes would be

able to fit better in the different patterns of the feature space. This effect could be more

pronounced on the multi-scale system, because of its greater complexity.

In the end, a finer analysis, including more tested cases, would have to be done to

verify the extent of the multi-scale case phenomenon. It could be, here again, that the

results are simply being affected by the training noise. In fact, this is likely because in the

multi-scale the values are quite close. Lastly, figure 4.11 shows some of the classification

results for one of the validation scans.

57

4 Evaluation

4.5.2 Caylus Results

The Caylus results are the following, noting that the rankings are established for the

single- and the multi-scale systems independently:

• Single-scale: 50 = 30 > 10.

• Multi-scale: 50 > 30 > 10.

The systems with NCY = 30 and 50 achieved the best performances in the single-scale

case. The system with NCY = 50 achieved the best performance in the multi-scale case.

Although no oscillations are present, the differences are still not significant enough to

confirm a definitive pattern, especially in the light of what was observed in the Freiburg

results. Thus, the same comments made for Freiburg apply here: it could be that the per-

formances are being subject to training noise, and in any case, a finer and more extended

analysis is necessary to verify the behaviour of the system.

4.6 Final Classification

In this section, we analyse briefly, and from a global point of view, the supervision com-

plexity resulting from the training of the grouping. The supervision process is simple in

comparison to the labelling of a whole dataset. This is due to the availability of the inter-

mediary classification results, which serve as a guide to the supervised grouping. However,

in terms of computational complexity, and looking at the system as a whole, we note that

the amount of supervision is actually increased. Instead of a single, preliminary supervised

labelling, the method requires a supervised grouping for every system submit to the vali-

dation step, leading to a linear complexity. Thus, as previously commented, the number of

systems that may be explored through validation is constrained by the supervised group-

ing, whereas in a supervised approach, this number is limited only by the computational

resources.

It is difficult to assess whether the various guided, supervised groupings occuring during

validation are effectively simpler than a single, not-guided supervised labelling occuring

as a preliminary step. The assessement can only be made on a case-by-case basis. If the

feature and model selection problems are simple, that is, if the optimal features and model

are approximately known, then only a few systems need to go through validation, and then

our approach is likely simpler. Otherwise, if the feature and model selection problems are

complex and an important number of systems need to go through validation, then our

approach is likely in disadvantage.

58

4 Evaluation

4.7 Test

The evaluations made in the previous sections constitute the validation stage. Now, we

select the best systems and submit them to a last step of evaluation: the test. The base

is provided by the test set.

4.7.1 Freiburg Results

From the validation results, we retrieve that the setups which obtained the best perfor-

mances were:

• regarding the training sets, {2-scan-set, r = 0.6m, NCY = 50} and {5-scan-set,
r = 0.6m, NCY = 50};

• regarding the feature radii, {5-scan-set, r = 0.6m, NCY = 50};

• regarding the number of intermediary classes, {5-scan-set, r = 0.6m, NCY = 50}.

This leaves us with two setups, {2-scan-set, r = 0.6m, NCY = 50} and {5-scan-set,
r = 0.6m, NCY = 50}. Considering that a smaller training set is better, the best system

is thus {2-scan-set, r = 0.6m, NCY = 50}.
In the set of final classes, {ground, building, post, vegetation}, ground has the purest

semantic interpretation. building includes shrubs too, as previously explained. post groups

posts, tree trunks, and people. vegetation includes bicycles. Therefore, these classes

mix elements of different nature, to some extent. There is, however, a consistent point

underlying them, discussed previously in their presentation: the geometry. A definitive

judgement on the semantic interpretation of the discovered classes depends on the target

task. In the case where geometry constitutes the required information, these classes can be

considered relevant. Otherwise, a finer classification system would be necessary, one that

could for instance join shrubs to vegetation, and exclude bicycles from vegetation. Such a

finer system would require as input more specific, detailed geometric representations, or

other types of information such as vision or information from a knowledge-base.

Table 4.2 shows the quantitative results of the test. Figure 4.12 shows the classification

on the test scans. The total F1 obtained is 0.74. It is lower than the score obtained in the

validation step, 0.77, yet close enough to confirm that the system was able to generalize

from the validation set to the test set. A generalization at the dataset level, in this case,

is therefore verified.

These observations confirm that the system is saturated in terms of its complexity. It is

clearly not over-fitted. Instead, the performance obtained is the best that can be achieved

under the current complexity. In order to increase the performance, the complexity of

the system must be increased, by either using a more complex feature extraction stage

59

4 Evaluation

Figure 4.12: Freiburg Classification Test Results. Colours: (ground, orange), (building,

yellow), (post, pink), (vegetation, blue). The misclassification of some facade regions as

vegetation can be seen in some of the scans, as well as the misclassification of the base of

posts as vegetation.
60

4 Evaluation

unk ground building post vegetation rec F1

ground 4424 387200 110 54 1933 0.98 0.98

building 34955 248 93438 3961 22120 0.60 0.73

post 4212 55 1733 7614 4809 0.41 0.50

vegetation 27389 4986 7405 666 106657 0.73 0.75

pre - 0.99 0.91 0.62 0.79 - F1total = 0.74

Table 4.2: Freiburg Test Results. Accuracy = 0.83.

or a more complex classification stage. Regarding the feature extraction, the selected

system already presents the feature parameters that obtained the best performance, so

the feature extraction process itself must be improved. As for the number of intermediary

classes, since it is already at its maximum, complexifying the classification model means

changing the model itself.

As for the remaining of the test scores, we can note that the precision scores are all

higher than the recall scores. The main reason behind this difference is the impossibility

of using all the intermediary classes provided by the GMM, leaving some of them as

unknown. This can be observed in the results: apart from the case of the class post, the

highest number of false negatives always appears under unknown. This is a characteristic of

our two-layer approach: the data-oriented, intermediary layer learns the different patterns

encountered in the data, but the task-oriented, final layer discards those which fail to

correspond to some meaningful semantics.

Classwise, ground obtained the best F1, precision and recall scores. This is under-

standable, because in the structured Freiburg environment, the ground can be consistently

distinguished due to its planar shape and upwards normal orientation. post obtained the

worst scores. It is confused with borders of other objects, especially corners of build-

ings, windows and doors. Additionally, the base and the top of tree trunks, as well as

the base of posts, are frequently misclassified as vegetation. This factor can be spot in

the confusion matrix, appearing as the high number of vegetation false positives actually

corresponding to post. In all these cases, the confusions between post and building or veg-

etation have a greater negative effect on post, because of its rarity. vegetation suffers from

misclassifications too, being confused with elements such as corners and roofs of buildings.

The limitations encountered are, in a way, due to the important density changes present

in the data. Such changes make the distinctions harder by multiplying the patterns cor-

responding to each element. However, this point is addressed in part through the set of

intermediary classes, which are able to represent some of the different patterns. Overall,

the main problem seems to lie in the variability of the complex facade features, such as

61

4 Evaluation

windows, doors, roofs, prominent regions, corners and so on. These are the elements most

frequently misclassified, either as post or vegetation, irrespective of sampling densities.

The source of this problem, in turn, are the features employed, which do not allow a

better distinction of the elements.

4.7.2 Caylus Results

From the validation results, we retrieve that the setups which obtained the best perfor-

mances were, denoting the multi-scale system simply by R:

• regarding the training sets, {10-scan-set, r = 0.6m, NCY = 50}, {5-scan-set, R,

NCY = 50} and {10-scan-set, R, NCY = 50};

• regarding the feature radii, {5-scan-set, r = 0.6m, NCY = 50} and {5-scan-set, R,

NCY = 50};

• regarding the number of intermediary classes, {5-scan-set, r = 0.6m, NCY = 30},
{5-scan-set, r = 0.6m, NCY = 50} and {5-scan-set, R, NCY = 50}.

This leaves us with the single-scale setups {10-scan-set, r = 0.6m, NCY = 50}, {5-scan-
set, r = 0.6m, NCY = 50}, and {5-scan-set, r = 0.6m, NCY = 30}. Among these, the two

last ones have equal performances, but compare unfavorably to the first one, according to

the training set analysis. Therefore the best single-scale system is {10-scan-set, r = 0.6m,

NCY = 50}. Concerning the multi-scale setups, we are left with {5-scan-set, R, NCY = 50}
and {10-scan-set, R, NCY = 50}. Because smaller training sets are preferable, the best

system is {5-scan-set, R, NCY = 50}. The two final systems, single and multi-scale,

have not been compared before. This is done as follows: the single-scale has lower recall

on road and vegetation, whereas the multi-scale has lower recall on building, trunk and

grass. The single-scale system {10-scan-set, r = 0.6m, NCY = 50} achieved thus the best

performance.

The set of final classes, {road, building, trunk, vegetation, grass, rough}, is larger than
the Freiburg set. road, building and grass have the purest semantic interpretations. trunk

includes the road, posts and people. vegetation includes high grass, bushes and foliage.

rough includes rough terrain, such as stony ground, and medium grass. As in the Freiburg

case, the common underlying link is the geometry. It is interesting to note that the

classes ground, grass, rough and vegetation can be interpreted as a progression in terms of

scatterness of the geometry, while, to some extent, still correspond to specific elements in

the environment.

Similarly to the Freiburg case, the test performance matched the validation perfor-

mance, so the system was able to generalize to the test set, confirming its capacity to

62

4 Evaluation

achieve a dataset-level generalization. As for Freiburg, the results correspond to the

system complexity. Because the best parameters were already determined through the

validation, increasing the performance would require a change in the feature extraction

stage or in the classification stage.

Figure 4.13 shows the classification results on the scans of the test set. The main

problem is the non-distinction of the points nearest to the sensor, which normally corre-

spond either to the road or to grass. In other words, the system was unable to separate

nearby road from nearby grass. Another problem was that, at far range, vegetation was

perceived as grass. Yet another difficulty encountered was one also present in the Freiburg

dataset: the confusion between vegetation, trunks and building features. In the Caylus

case, however, this effect was more constrained. Firstly, because the Caylus facades are

sampled in a relatively similar manner, while the Freiburg facades are sampled in a variety

of ways due to the overlapping scans. Secondly, because the Caylus facade features are

simpler, corresponding to simple squared windows and doors.

The nonuniform sampling in the data impacted the distinction between distant road

and distant buildings. At far range, because of the line-based sampling pattern of the

Velodyne lidar, these two elements appear simply as lines, therefore having the same

shape and normals oriented along unpredictable directions. The sampling also played a

part in the confusion between distant vegetation and grass. Were the sampling denser,

these two elements would maybe have been better distinguished. Clutter, on the other

side, affected the classification of trunks, as many were considered as vegetation because

they were entirely surrounded by it.

In the end, among the class confusions, the nonuniform sampling effects, and the

clutter, the main source of difficulty remains the class confusions: nearby road with grass,

distant vegetation with grass, buildings with trunks and vegetation. These, in turn, are a

consequence of the feature representation used. Thus, as happened in the Freiburg case,

the features do not allow a better distinction between these elements.

63

4 Evaluation

Figure 4.13: Caylus Classification Test Results. Colours: (road, orange), (building, yellow),

(trunk, pink), (vegetation, blue), (grass, green), (rough, brown). The missing nearby points

can be clearly detected in the scans. Some misclassifications of building features as trunk

can also be observed.

64

Chapter 5

Conclusion

The approach proposed in this thesis consists of a classification system with a feature

extraction stage and a two-layer classification model. It takes as input a 3D point cloud

with its corresponding sensor-to-world transformation, and outputs a classified version of

the point cloud. The feature extraction represents the shape of a point neighbourhood

using information from a PCA operation. Regarding the classifier, the first, intermediary

layer corresponds to a GMM trained in an unsupervised manner, and the second, final

layer corresponds to a grouping of the intermediary classes into final classes. The approach

avoids the necessity of manual labelling the input dataset, instead requiring a manual

training of the grouping which is based on the trained intermediary layer.

The evaluations show that the approach is able to achieve a dataset generalization.

The main advantages are the following:

+ Data-orientation. The unsupervised training of the GMM brings the data-oriented

aspect to the system. The GMM classes are able to capture, at least in part, the

variety of patterns in the data, addressing challenges such as non-uniform sampling,

environment variability and clutter in an unsupervised manner.

+ Task-orientation. In spite of its unsupervised core, the approach is able to deliver

final classes which, under certain conditions, can be semantically interpreted. In

all cases, the final classes are consistent with the geometry represented through the

features. The final classes are defined with the grouping, which brings the task-

oriented aspect, in a principled and explicit manner. The system can be used as a

predictive model in a target task.

+ Standard design and operation. The design follows the standard learning procedure

of training, validation and test. The operation follows the standard classification

pipeline. It is composed by a feature extraction and a classification stages. The

classification stage groups the elementary stages of inference and decision.

65

5 Conclusion

+ Simplicity. There is no requirement of pre-processing or post-processing stages,

although these may be included. The feature extraction and classification stages are

simple. The design procedure, heavily based on unsupervised learning, is simple.

The main disadvantages are the following:

- Training noise. This refers to two factors. The first is the randomness present in

the GMM training due to the random initialization method, constituting the GMM

training noise. The second is the randomness present in the grouping training due

to the expert supervision process, which is bound to be erroneous from time to time,

constituting the grouping noise. Together, they both constitute the training noise.

Such noise is a disadvantage because it affects the final classification performance,

which ideally would be deterministic and predictable in all cases.

- Supervision computational complexity. The approach requires a supervised training

of the grouping, which is done for each system evaluated in the learning process.

In terms of computational complexity, this corresponds to a linear complexity. A

supervised approach, on the contrary, requires a single, supervised labelling of the

input dataset, offering a lower computational complexity. If taken individually, on

the other hand, the grouping training is much simpler than the dataset labelling,

because it is guided by the intermediary classes discovered by the GMM.

- Final performance. Considering the simplicity of the system, the performance is

reasonable. With respect to the state-of-the-art, however, it does not compete with

more advanced classification systems.

Between the feature extraction, the intermediary GMM and the final grouping, the

feature extraction constitutes the main factor limiting the performance of the approach.

In this context, a first extension could be the addition of an extra feature value, x4, coming

also from the PCA operation: the z coordinate of the world-frame representation of v2, the

second PCA eigenvector. This value can be seen as the natural complement for the current

value x3, which is the z coordinate of the world-frame representation of the normal, or v3.

This would add one extra dimension of information about the orientation of the points.

It would allow, for instance, to isolate vertical linear elements such as vertical tree trunks

and posts, with x3 and x4 being both zero in this case.

It would be interesting to test the approach under a full application case. A natural

case would be terrain traversability analysis. A rough scheme of how our system can be

used in such context is given hereafter. The final classes are each linked to a traversability

class, which in turn are each linked to a traversability cost. The output pointwise structure

is transformed to a 3D-voxel model. Under a conservative criterion, the class of a voxel

66

5 Conclusion

may be set as the highest-cost class among the classes of the individual points within the

voxel. For a 2D path planning, the voxels above a certain height may be ignored, and the

others projected onto a subsequent 2D-grid model, using the same conservative criterion.

For a 3D path planning, the 3D-voxel model would already be enough. The classes of the

final model, corresponding to traversability costs, would provide the cost criterion for a

path planning algorithm. As an example, we regard the model produced for the Caylus

dataset as being appropriate to tackle such problem in that environment, although at a

global level, that is, merging many individual scans into a global map.

Besides terrain traversability analysis, the proposed approach may also be useful in a

number of other cases. An example is the rapid production of an operational semantic

model in a case of search and rescue. The simplicity of design of the system would be

advantageous. The model produced could be used as a preliminary but operational model,

while maybe a finer, more complete model would be put under construction. Another

example is the comparison of different classification systems. In this case, our system

could be used as a baseline, reference in the comparison, its simple and unsupervised

nature allowing it to be rapidly designed. Yet another example is the labelling of a

dataset, or equivalently, the production of a ground-truth, which, after all, was one of the

main concerns behind this work. Because our system is unsupervised at its core, it can

justly be used as an aid in the full labelling of a dataset. Thus, even if our approach does

not lead to the final classification system, it may assist in its construction. Lastly, our

approach can, of course, be used in any case where it already provides a fine-enough model

for the required target task.

The previous observations about possible applications of our approach also lead to an

important, but sometimes undervalued point: the best, most complete evaluation of any

semantic modelling system is its testing under the target task for which it was designed.

In other words, “the definitive quality of a product is measured by the client’s satisfaction

with it”. This seems evident, but it is often overlooked in classification works, including

ours. The reason for this importance is that the generic evaluation criteria used in classifi-

cation, such as precision-recall-F1, are not able to predict the system’s performance at the

actual application. Considering the case of terrain traversability analysis, for example, it

is clear that using just the precision-recall-F1 metrics is not enough to predict wether the

robot will be able to correctly assess traversability and plan its path in all cases. It would

be necessary to look for finer details, because a false positive could be enough to lead to

disastrous results, while a false negative could be enough to restrain the robot of finding

a path. Counting the percentage of times a robot was able to correctly find a path could

serve as a more definitive evaluation of the system, compared to the standard classification

metrics.

A last point is worth mentioning: the relation between supervision and lifelong learn-

67

5 Conclusion

ing. In learning, supervision is a very precious resource, because it provides the core

information as how to perform a task, while at the same time being demanding in the

point of view of the human domain expert. It is a constant goal, therefore, to optimize the

amount of supervision. This becomes especially important in the light of lifelong learning,

because it may be expected that a lifelong learning system will require episodic, unlim-

ited supervised interventions to guide its development. To keep the process scalable, the

system must thus be designed not only to accept these future interventions, but to ease

them. This point was brought out during the implementation of our approach, when it

became clear that the grouping training, despite being a simple supervised process, was

still demanding when done multiple times.

Another form of minimizing supervision is to employ unsupervised learning. For a

lifelong learning system, this seems to be extremely valuable, since it would allow it to

develop and adapt to some modifications in the environment which do not necessariliy

need any supervised guidance. The relevance and capacity of an unsupervised process were

recalled in our work, which showed that the unsupervised GMMwas indeed able to discover

the pertinent patterns present in the features. However, unsupervised methods possess the

inherent limitation of not producing directly interpretable results. This happens because

they adapt to the data and to the prior only. A system learns by qualifying its output

relatively to an external reference. The learning is relative to the reference. Unsupervised

learning alone does not necessarily converge as desired, because it does not have the desired

classes as its reference. It only has the data and the prior, which cannot be more than an

implicit approximation of the reference.

It seems as if it is only by exploiting supervised and unsupervised learning together that

lifelong learning could be approached. In this context, it would be mostly interesting to

explore interactive techniques to do so, making systems which are truly designed to change,

opposed to systems designed to converge towards a definitive model. Change would be

brought in an interactive, episodic and flexible manner, by unsupervised processes as well

as by optimized supervised processes.

68

Bibliography

Martin Adams, John Mullane, and Ba-Ngu Vo. Laser and radar based robotic perception.

Foundations and Trends in Robotics, 1(3):135–252, 2011.

Ahmad Aijazi, Paul Checchin, and Laurent Trassoudaine. Segmentation based classifica-

tion of 3d urban point clouds: A super-voxel based approach with evaluation. Remote

Sensing, 5(4):1624–1650, 2013.

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. In

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1027–1035, 2007.

Jens Behley, Volker Steinhage, and Armin Cremers. Performance of histogram descriptors

for the classification of 3d laser range data in urban environments. In IEEE International

Conference on Robotics and Automation (ICRA), pages 4391–4398, 2012.

Jeff Bilmes. A gentle tutorial of the em algorithm and its application to parameter esti-

mation for gaussian mixture and hidden markov models. Technical Report TR-97-021,

International Computer Science Institute, 1997.

Andreas Birk, Narunas Vaskevicius, Kaustubh Pathak, Sören Schwertfeger, Jann Pop-

pinga, and Heiko Bülow. 3-d perception and modeling. IEEE Robotics & Automation

Magazine, 16(4):53–60, 2009.

Christopher Bishop. Pattern Recognition and Machine Learning. Springer-Verlag New

York, Inc., 2006.

Johann Borenstein, H. Everett, Liqiang Feng, et al. Where am i? sensors and methods for

mobile robot positioning. Technical Report 119.120.15, University of Michigan, 1996.

Nicolas Brodu and Dimitri Lague. 3d terrestrial lidar data classification of complex natu-

ral scenes using a multi-scale dimensionality criterion: Applications in geomorphology.

ISPRS Journal of Photogrammetry and Remote Sensing, 68(0):121–134, 2012.

Arun Das, Michael Diu, Neil Mathew, Christian Scharfenberger, James Servos, Andy

Wong, John Zelek, David Clausi, and Steven Waslander. Mapping, planning, and sample

69

Bibliography

detection strategies for autonomous exploration. Journal of Field Robotics, 31(1):75–

106, 2014.

Gregory Dudek and Michael Jenkin. Computational Principles of Mobile Robotics. Cam-

bridge University Press, 2000.

Karl Granström, Thomas Schön, Juan Nieto, and Fabio Ramos. Learning to close loops

from range data. The International Journal of Robotics Research, 30(14):1728–1754,

2011.

Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2013.

Gideon Guy and Gérard Medioni. Inference of surfaces, 3d curves, and junctions from

sparse, noisy, 3d data. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 19(11):1265–1277, 1997.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Springer, 2013.

Michael Himmelsbach, Thorsten Luettel, and Hans-Joachim Wuensche. Real-time object

classification in 3d point clouds using point feature histograms. In IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), pages 994–1000, 2009.

Armin Hornung, Kai Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram Burgard.

Octomap: an efficient probabilistic 3d mapping framework based on octrees. Au-

tonomous Robots, 34(3):189–206, 2013.

Bradford King. Range Data Analysis by Free-space Modeling and Tensor Voting. PhD

thesis, Rensselaer Polytechnic Institute, 2008.

Klaas Klasing, Daniel Althoff, Dirk Wollherr, and Martin Buss. Comparison of surface

normal estimation methods for range sensing applications. In IEEE International Con-

ference on Robotics and Automation (ICRA), pages 3206–3211, 2009.

Sven Koenig and Maxim Likhachev. D* lite. In National Conference on Artificial Intelli-

gence (AAAI), pages 476–483, 2002.

Jean-Franois Lalonde, Nicolas Vandapel, Daniel Huber, and Martial Hebert. Natural ter-

rain classification using three-dimensional ladar data for ground robot mobility. Journal

of Field Robotics, 23(10):839–861, 2006.

Ee Lim and David Suter. 3d terrestrial lidar classifications with super-voxels and multi-

scale conditional random fields. Computer-Aided Design, 41(10):701–710, 2009.

70

Bibliography

Paul McManamon. Review of ladar: a historic, yet emerging, sensor technology with rich

phenomenology. Optical Engineering, 51(6):060901–1, 2012.

Frank Moosmann and Miro Sauerland. Unsupervised discovery of object classes in 3d

outdoor scenarios. In IEEE International Conference on Computer Vision Workshops

(ICCV Workshops), pages 1038–1044, 2011.

Frank Moosmann, Oliver Pink, and Christoph Stiller. Segmentation of 3d lidar data

in non-flat urban environments using a local convexity criterion. In IEEE Intelligent

Vehicles Symposium, pages 215–220, 2009.

Kenneth Moreland. The paraview tutorial. Technical report, Sandia National Laboratories,

2013.

Daniel Munoz, Nicolas Vandapel, and Martial Hebert. Onboard contextual classification

of 3-d point clouds with learned high-order markov random fields. In IEEE International

Conference on Robotics and Automation (ICRA), pages 2009–2016, 2009.

Frank Neuhaus, Denis Dillenberger, Johannes Pellenz, and Dietrich Paulus. Terrain driv-

ability analysis in 3d laser range data for autonomous robot navigation in unstructured

environments. In IEEE Conference on Emerging Technologies and Factory Automation

(ETFA), 2009.

Andreas Nüchter and Joachim Hertzberg. Towards semantic maps for mobile robots.

Robotics and Autonomous Systems, 56(11):915–926, 2008.

Panagiotis Papadakis. Terrain traversability analysis methods for unmanned ground ve-

hicles: A survey. Engineering Applications of Artificial Intelligence, 26(4):1373–1385,

2013.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

Andrzej Pronobis. Semantic Mapping with Mobile Robots. PhD thesis, KTH Royal Insti-

tute of Technology, 2011.

Alastair Quadros, James Underwood, and Bertrand Douillard. An occlusion-aware fea-

ture for range images. In IEEE International Conference on Robotics and Automation

(ICRA), pages 4428–4435, 2012.

71

Bibliography

Cyril Roussillon, Aurélien Gonzalez, Joan Solà, Jean-Marie Codol, Nicolas Mansard, Si-

mon Lacroix, and Michel Devy. Rt-slam: A generic and real-time visual slam imple-

mentation. In Computer Vision Systems, volume 6962 of Lecture Notes in Computer

Science, pages 31–40. Springer, 2011.

Michael Ruhnke, Bastian Steder, Giorgio Grisetti, and Wolfram Burgard. Unsupervised

learning of compact 3d models based on the detection of recurrent structures. In

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages

2137–2142, 2010.

Radu Rusu. Semantic 3D Object Maps for Everyday Manipulation in Human Living

Environments. PhD thesis, Computer Science Department, Technische Universitaet

Muenchen, Germany, 2009.

Radu Rusu and Steve Cousins. 3d is here: Point cloud library (PCL). In IEEE Interna-

tional Conference on Robotics and Automation (ICRA), pages 1–4, 2011.

Aleksandr Segal, Dirk Haehnel, and Sebastian Thrun. Generalized-icp. In Robotics: Sci-

ence and Systems (RSS), 2009.

SICK. Lms200-30106. Datasheet, 2015a.

SICK. Lms291-s05. Datasheet, 2015b.

Bastian Steder, Michael Ruhnke, Slawomir Grzonka, and Wolfram Burgard. Place recog-

nition in 3d scans using a combination of bag of words and point feature based relative

pose estimation. In IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS), pages 1249–1255, 2011.

Elena Stumm, Andreas Breitenmoser, Franois Pomerleau, Cedric Pradalier, and Roland

Siegwart. Tensor-voting-based navigation for robotic inspection of 3d surfaces using

lidar point clouds. The International Journal of Robotics Research, 31(12):1465–1488,

2012.

Sebastian Thrun. Robotic mapping: A survey. In Exploring Artificial Intelligence in the

New Millennium, pages 1–35. Morgan Kaufmann San Mateo, CA, 2003.

Rudolph Triebel, Rohan Paul, Daniela Rus, and Paul Newman. Parsing outdoor scenes

from streamed 3d laser data using online clustering and incremental belief updates. In

AAAI Conference on Artificial Intelligence, pages 2088–2095, 2012.

Ranjith Unnikrishnan. Statistical Approaches to Multi-Scale Point Cloud Processing. PhD

thesis, Robotics Institute, Carnegie Mellon University, 2008.

72

Bibliography

Velodyne. Velodyne’s hdl-64e: A high definition lidar sensor for 3-d applications. White

Paper, 2007.

Velodyne. Hdl-32e. User’s Manual, Revision E, 2012.

73

