Compréhension et modélisation d’essais de ténacité avec pop-in : application à l’aluminium 6061-T6 et influence de l’irradiation neutronique - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2018

Comprehension and modeling of toughness tests with pop-in : application to 6061-T6 aluminum and effect of neutron irradiation

Compréhension et modélisation d’essais de ténacité avec pop-in : application à l’aluminium 6061-T6 et influence de l’irradiation neutronique

Résumé

Pop-in is a phenomenon of crack propagation instability observed during toughness tests on some materials. This phenomenon has been observed on the 6061-T6 aluminum alloy, which has been identified as an essential structural element of the core of the Jules Horowitz research reactor. This thesis was initiated to understand the origin of this phenomenon on 6061-T6 aluminum and to propose a physics-based modeling, usable for the exploitation and interpretation of toughness tests, especially in the irradiated state.The different origins identified in the literature have been experimentally tested. Different aging times (4/8/12/16h) were applied to obtain different mechanical behaviors. Tensile tests with image correlation have shown that the observed pop-ins are not due to a PLC effect. Nor do they correspond to microstructural heterogeneity; they are not linked to different fracture mechanisms, because the rupture is typically ductile, whether a pop-in is involved or not. These mechanisms and the different microstructures were compared using several techniques (SEM, EBSD, EDS, Atom Probe Tomography, tomography, synchrotron laminography and nanolaminography). Pop-ins are therefore only the result of an acceleration of the ductile fracture.In fact, they are due to an interaction between two parameters: the reduced material crack growth toughness (i.e. the low tearing modulus), and the significant compliance of the test device (i.e. the low stiffness). In order to investigate this second parameter, an innovative setup has been designed to vary the machine stiffness during toughness tests. Two analytical criteria, one based on the load-opening curve, the other on the J-integral, have been established, making it possible to reliably quantify the conditions for initiation and arrest of pop-in.To take into account the central role of hardening for ductile propagation, a new stress-controlled nucleation criterion has been introduced into a single GTN model. This makes it possible to simulate and capture by finite elements the various J-Δa toughness curves by modifying only the elastoplastic law. By adding springs in the models and with an adapted control, the pop-ins are successfully simulated, and remain exploitable with the analytical criteria.Studies on irradiated specimens carried out in hot cells have shown that the increase in pop-ins with irradiation results from the decrease in the tearing modulus, itself due to hardening. As in the non-irradiated state, pop-ins thus appear solely because of the interaction between the tearing modulus and the test device stiffness, and not because of a range of industrial development not mastered.
Le pop-in est un phénomène d’instabilité de propagation de fissure observé lors d’essais de ténacité sur certains matériaux. Ce phénomène a été observé sur l’alliage d’aluminium 6061-T6 qui a été identifié pour constituer des éléments de structure essentiels du cœur du réacteur de recherche Jules Horowitz. Cette thèse a été initiée pour comprendre l’origine de ce phénomène sur l’aluminium 6061-T6 et en proposer une modélisation à bases physiques qui pourra être utilisée pour l’exploitation et l’interprétation des essais de ténacité, notamment à l’état irradié.Les différentes pistes identifiées dans la littérature ont été testées expérimentalement. Des revenus (4/8/12/16 h) ont été appliqués afin d’obtenir différents comportements mécaniques. Des essais de traction avec corrélation d’images ont montré que les pop-ins observés ne sont pas dus à un effet PLC. Ils ne correspondent pas non plus à une hétérogénéité microstructurale ; ils ne sont pas liés à des mécanismes d’endommagement, car la rupture est typiquement ductile, qu’un pop-in soit intervenu ou non. Ces mécanismes et les différentes microstructures ont été comparés par le biais de plusieurs techniques (MEB, EBSD, EDS, Sonde Atomique Tomographique, tomographie, laminographie et nanolaminographie par rayonnement synchrotron). Les pop-ins sont donc uniquement le résultat d’une accélération de la rupture ductile.En réalité, ils sont dus à une interaction entre deux paramètres : une résistance réduite du matériau à la propagation de fissure (i.e. un faible module de déchirement) et une complaisance importante du dispositif d’essai (i.e. une faible raideur). Afin d’investiguer ce deuxième paramètre, un dispositif innovant a été conçu, permettant de faire varier la raideur de la machine d’essai lors d’essais de ténacité. Deux critères analytiques, l’un basé sur la courbe force-ouverture, l’autre sur l’intégrale J, ont été établis, permettant de quantifier les conditions d’amorçage et d’arrêt de pop-in de façon fiable.Pour prendre en compte le rôle central du durcissement vis-à-vis de la propagation ductile, un nouveau critère de germination piloté par les contraintes a été introduit dans un unique modèle GTN. Cela permet de simuler et de reproduire par éléments finis les différentes courbes de ténacité J-Δa en modifiant uniquement la loi élastoplastique. En rajoutant des ressorts dans les modélisations et avec un pilotage adapté, les pop-ins sont simulés avec succès, et restent exploitables avec les critères analytiques.Des études sur éprouvettes irradiées réalisées dans des enceintes blindées ont montré que l’augmentation des pop-ins avec l’irradiation résultait de la diminution du module de déchirement, elle-même due au durcissement. De même qu’à l’état non irradié, les pop-ins apparaissent donc à cause de l’interaction du module de déchirement avec le dispositif d’essai, et non pas à cause d’une gamme d’élaboration industrielle non maitrisée.
Fichier principal
Vignette du fichier
2018PSLEM019_archivage.pdf (27.48 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-02051841 , version 1 (28-02-2019)

Identifiants

  • HAL Id : tel-02051841 , version 1

Citer

Tom Petit. Compréhension et modélisation d’essais de ténacité avec pop-in : application à l’aluminium 6061-T6 et influence de l’irradiation neutronique. Mécanique des matériaux [physics.class-ph]. Université Paris sciences et lettres, 2018. Français. ⟨NNT : 2018PSLEM019⟩. ⟨tel-02051841⟩
663 Consultations
263 Téléchargements

Partager

Gmail Facebook X LinkedIn More