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Chapter 1

Introduction

1.1 General context
The work presented in this thesis is concerned with hyperbolic systems of conservation laws, used in mechanics
to describe the propagation of mechanical waves. A wide variety of engineering problems including among others
acoustics, aerodynamics or impacts, which are of major importance for plenty of applications, are modeled with
this class of mathematical equations. Although these applications may involve solid and fluid media whose
constitutive responses differ, the focus is here on solid mechanics. More specifically, an important class of
models is that of dissipative solid behaviors depending on the loading history undergone. Such materials are
implicated in high-speed forming techniques, crash-proof design or in the reliability of structures.

In these solids the waves propagate while carrying the information about the loading, interacting with each
other and reflecting on the boundary so that complex structures arise. The accurate assessment of irreversible
deformations in dissipative solids therefore requires the correct description of those waves as well as the ability
to account for their interactions. Moreover, the time scale governing the propagation of waves may be different
from that of other phenomena also involved in a deformation, as for viscous effects in solids for instance. At
last, the problem may be further complicated by possibly large displacements, rotations or strains, undergone
by the solid.

Given the complexity of the equations, the numerical simulation provides a framework for approximating the
solutions of a model. It is a way to virtually experiment and highlight phenomena that are implicitly described
by a model but not necessarily observed. The simulation can then be seen as a way to make the theory explicit.
Furthermore, owing to feasibility reasons or to the limited amount of information that can be measured by
instrumental devices, experimental works leave some gaps which can be filled by numerical investigations.
Finally, the simulation allows understanding the models and therefore, to better design so that subsequently,
a given problem is addressed as well as possible. Nevertheless, numerical methods are based on parameters
that require interactions with experimental works, especially for the constitutive models in solid mechanics that
become more and more complex. Furthermore, non-physical parameters must sometimes be defined by the user
in order to obtain results that are close to a phenomenon one is focusing on.

Naturally, the numerical simulation is not a straightforward undertaking, particularly in solid mechanics
for the reasons mentioned above. More specifically, the solution of hyperbolic problems in finite deforming
dissipative solids is still an open scientific issue. Indeed, the combination of large deformations with a wave
structure can lead to complex loading paths that are not even observed at the model level. Most of the
time, these aspects are not directly tackled in constitutive numerical integrators, which however provide rather
satisfactory results.

1.2 Numerical methods for hyperbolic problems in solid mechanics
The numerical simulation of initial boundary value problems (IBVP), to which hyperbolic ones belong, has been
and is still widely performed in solid mechanics with the Finite Element Method (FEM) [1]. This approach is
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CHAPTER 1. INTRODUCTION

based on the discretization of a computational domain into a set of elements with simple geometries used to
solve the equations. An approximate solution is thus built by means of a combination of polynomial functions
whose degree defines the approximation order. FEM became attractive due to its ability to handle low or
high-order approximations, and to easily deal with complex geometries and nonlinear constitutive models as
those mentioned above. Nevertheless, difficulties may be encountered if large deformations occur when the finite
elements deform with the domain, according to a material description of the motion (Lagrangian approach).
Indeed, the method is less efficient and accurate when the elements are highly distorted or entangled so that
re-meshing techniques and projection steps must be employed. These issues can be avoided by using a spatial
description of the motion consisting in viewing the elements vertices as fixed points of the space (Eulerian
approach). However interface tracking techniques and diffusing convection steps are required in order to follow
the boundaries and transport internal variables which is less convenient for solid mechanics. Alternatively,
arbitrary Lagrangian Eulerian (ALE) methods aim at meeting advantages of both approaches by freeing itself
of their respective limits by distinguishing the motion of the mesh to these of material points. This type of
strategy nonetheless also requires re-meshing or re-zoning procedures that can be costly for fine meshes. They
also require diffusive projection steps of internal variables for solid media. In addition to problems caused by
finite deformations, classical explicit time integrators used in solid dynamics with FEM introduce high frequency
noise in the vicinity of discontinuities. Such regions of high gradient may be caused by the waves arising in the
solutions of hyperbolic problems. The removal of these spurious numerical oscillations with additional viscosities
is difficult to achieve without loss of accuracy, and can be troublesome for the wave tracking.

On the other hand, the Finite Volume Method (FVM) [2], initially developed for fluid dynamics, provided
until the 90s piece-wise constant or piece-wise linear approximate solutions in cells that discretize a continuum.
The extension to very high-order has since been proposed by increasing the stencil of the scheme (see WENO
[3]). This class of methods can embed tools based on the Total Variation Diminishing (TVD) stability condition
[4], thus ensuring that no numerical spurious oscillations arise in the solutions. The formulation moreover lies
on a conservative form leading to the same order of accuracy for all components of the unknown vector U.
In particular, one shows that both velocity and gradients arise in U in solid mechanics. This point makes a
big difference with respect to methods that do not use a formulation written as a differential system of order
one, namely FEM, for which the convergence rate of gradients is one order less than that of displacement. To
some extent, the writing of solid mechanics equations in the form of conservation laws amounts to a mixed
approach, well-known in FEM. FVM formulations moreover rely on numerical fluxes that enable to account
for the characteristic structure of hyperbolic equations. Hence, finite volumes enable an accurate tracking of
the path of waves although the most widely used approximations are second-order. Recent studies furthermore
extended these approaches to solid mechanics for problems involving history-dependent models [5, 6], or finite
deformations with a Lagrangian formulation [7, 8]. The latter methods are nevertheless grid-based techniques
for which the numerical difficulties linked to mesh occur.

The discontinuous Galerkin (DG) approximation [9] makes possible to build numerical schemes that benefit
from both FEM and FVM. In DG-methods, the approximate solution is sought as a combination of piece-wise
polynomial functions whose supports are dictated by the discretization used. Therefore, the combination of
the DG approximation with the finite element formulation (DGFEM) yields a local high approximation order,
the same order being achievable for both velocity and gradients if a conservative form is used. Furthermore,
numerical fluxes at the interface between elements, which enable to take into account the characteristic structure
of hyperbolic systems, arise from the introduction of DG approximation. Several development steps, aiming
at removing the numerical noise appearing in DGFEM solution, followed the works on FVM in order to reach
Total Variation Diminishing in the Means (TVDM) and Total Variation Bounded (TVB) high order schemes
that ensure convergence to entropy-satisfying solutions [10]. However, in spite of the piece-wise continuous
approximation, the methods fail to accurately capture discontinuities owing to the time discretization. Adopting
a similar approach, the Time-Discontinuous Galerkin (TDG) [11] and later, the Space-Time Discontinuous
Galerkin method (SDG) [12], relaxed the continuity of fields in the time domain. By discretizing the entire
space-time domain as a possibly unstructured mesh, SDG avoids the difficulties related to the time integrators
and hence, enables the following of waves. Nevertheless, although these approaches can easily handle mesh-
adaption strategies due to the relaxation of fields continuity, it does not eliminate the mesh tangling problems
for Lagrangian formulations [13].

In order to address the loss of accuracy caused by mesh distortion, another class of numerical methods based
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1.3. APPROACH FOLLOWED IN THIS WORK

on a space discretization using a collection of points has been developed in parallel to the above approaches
[14, 15]. In contrast to finite volumes or finite elements, mesh-free methods represent a spatial domain by means
of a collection of points that are given a support allowing them to interact with each other. A wide variety of
mesh-free methods such as the Smoothed-Particle Hydrodynamics [16] or the Element-Free Galerkin [17], have
thus been constructed.

Particle-In-Cell methods (PIC) [18] are, on the other hand, based on particles that move in a computational
mesh while carrying the fields of a problem. The underlying grid is used in order to compute an approximate
solution that is projected and stored at particles. Hence, the background mesh can be discarded at each time
step and re-constructed for computational convenience. The application of PIC to solid mechanics led to the
Material Point Method (MPM) in which the constitutive equations are managed at particles. As a result MPM
can be seen as a mesh-free extension of FEM with quadrature points moving in elements. Overcoming the storage
of the approximate solutions based on elements or cells enables to remove mesh entanglement instabilities. It
is nevertheless well-known that PIC exhibits numerical dissipation that can be reduced at the cost of spurious
oscillations [19].

In light of the above brief overview, it appears that in spite of the plenty of existing numerical methods, none
can easily deal with all the difficulties involved by hyperbolic problems in finite deforming dissipative solids.
First, the large deformations often met in solid mechanics problems make tricky the employment of mesh-based
approaches. Second, the waves propagating in media can be accurately followed providing that the scheme
used computes solutions devoid of spurious oscillations and too much numerical diffusion. At last, accounting
for the characteristic structure of the solution of hyperbolic problems within a numerical method yields results
closer to the expected output of the model. That is, the solution of the wave structure is in general not directly
tackled in solid mechanics solvers in such a way that the approaches are not devoted to the accurate description
of waves.

1.3 Approach followed in this work

1.3.1 Point of view of this thesis
This work is based on the idea that the accurate numerical solution of hyperbolic problems relies on robust
and efficient discretization techniques and the ability to embed information about some particular solution of
the model into the numerical scheme. The underlying concepts arise from the Godunov method [20] that first
proposed to account for the characteristic structure of the solution of hyperbolic problems within numerical
schemes. This approach, as we shall see later, enables significant improvements over some other methods.
Although the amount of information provided is limited by the computational cost, new model reduction tools
can now allow to ”compress” the amount of information and, in turn, to reconsider the use of more complex
Riemann solvers in order to improve the accuracy of numerical solutions.

Two scientific objectives have therefore been pursued in the present work:

• the development of a promising discretization for solid mechanics problems involving finite
deformations

• the identification of the response of two-dimensional elastic-plastic solids to dynamic step
loading

1.3.2 The strategy adopted
First, the numerical scheme developed here provides a material description of the motion so as to handle history-
dependent constitutive models while avoiding the shortcomings of ALE and Eulerian methods. In addition, in
order not to suffer from mesh entanglement, it seems better to turn to a mesh-free method. This method is
wanted to mimic the physics of hyperbolic problems by accounting for their intrinsic structure.

It is therefore proposed here to mix the above features by extending the material point method to the Discon-
tinuous Galerkin approximation. The Discontinuous Galerkin approximation provides an appealing framework
for describing moving discontinuities such as waves propagating in solids, and the potential ability of increasing
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CHAPTER 1. INTRODUCTION

approximation order. Moreover, the numerical fluxes naturally arising from the use of DG approximation intro-
duces the characteristic structure on the one hand, and takes advantage of the work done in the context of finite
volumes on the other hand. Furthermore, the use of an arbitrary grid motivates the choice of the MPM due to
the convenience it allows in computing the numerical fluxes at the interfaces between finite elements by means of
an approximate Riemann solver [21]. A balance between diffusion and oscillations exists in PIC methods in such
a way that there is some freedom in regard to the MPM setting used. It is however thought here that the use of
DG approximation leads to a reduction of the influence domain of the particles and hence, to a reduction of the
numerical diffusion. Therefore, it is preferred here to avoid oscillations at the risk of introducing diffusion, which
should be limited by the DG approximation. As a first development step of the Discontinuous Galerkin
Material Point Method, we restrict our attention to space-DG. At last, particular attention is paid here to
discontinuous solutions, the extension of the method to higher-order approximation for regular ones will be the
purpose of future works.

The approach described previously should be able to account for the characteristic structure of hyperbolic
problems. Indeed, the point of view adopted here is that a numerical scheme can properly mimic the solution
providing that a sufficient amount of information about the model is available. Nonetheless, it is not the case
for all the constitutive models considered in this work. More specifically, while the response of one-dimensional
elastoplastic solids is well-known, there are some lacks in describing the behavior of such materials in more
dimensions. As a consequence, the characteristic structure of the solution of hyperbolic problems in elastic-
plastic solids under small strains is also investigated in the present work. This preliminary work is expected to
pave the way for the solution of similar problems within the large deformations framework.

1.4 Organization of the manuscript
This manuscript starts with a review of some basics about general hyperbolic problems in chapter 2. Then,
the governing equations of solid mechanics including balance laws and constitutive models are recalled so that
hyperbolic systems of solid mechanics are written. Thus, applying the tools of characteristic analysis, it will
be seen that wave solutions naturally arise from the equations. In particular, the exact solutions of Riemann
problems in linear elastic and elastic-plastic solids are recalled and a plane wave solution in a hyperelastic
medium is developed. Given the complexity in computing the exact solution of Riemann problems for nonlinear
problems, a well-known approximate Riemann solver is at last presented.

A historical review of PIC methods is made and both Eulerian and Lagrangian formulations of the MPM
are derived in 3. After illustrating some shortcomings of the latter scheme on a simple test case, the extension
of the MPM to the discontinuous Galerkin approximation is developed. The DGMPM is then derived with a
total Lagrangian formulation. As we shall see, this new approach enables the use of fractional-step methods for
non-homogeneous systems as well as Riemann solvers for the computation of intercell fluxes. The remainder of
the chapter concerns the numerical analysis of the DGMPM in terms of stability and accuracy.

Chapter 4 is devoted to the comparison of the performance of the method with other existing schemes
and exact solutions. To begin with, problems falling in the linearized geometrical framework will be consid-
ered in one and two space dimensions. More specifically, the constitutive models assumed include elasticity,
elasto-viscoplasticity and elastoplasticity. Then, hyperbolic problems in one-dimensional and two-dimensional
hyperelastic media are looked at.

The simulations performed on elastic-plastic solids in chapter 4 emphasize that the numerical solutions can
be improved by using approximate elastic-plastic Riemann solvers, thus introducing the understanding one has
of the physics into the scheme. The purpose of chapter 5 is therefore to give a contribution to the solutions of
hyperbolic problems in two-dimensional elastic-plastic solids undergoing dynamic step-loadings. In particular,
the understanding of the structure of such problems, along with the study of loading paths in simple waves, are
addressed. Indeed, though a lot of numerical results of this class of problems may be found in the literature,
the structure of the solutions is rather unknown, as shown by the survey in the chapter. Thus, the proposed
characteristic analysis of plane strain and plane stress problems highlights the combined-stress wave nature of
the solutions. Then, the mathematical study of loading paths followed across plastic waves, supplemented by
numerical results, emphasizes typical responses of solids to given loading conditions. Finally, the idea of benefit
from the identified stress paths in numerical schemes by means of a dedicated Riemann solver is discussed.
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Chapter 2

Hyperbolic partial differential
equations for solid dynamics

Introduction
In this chapter, generalities about systems of Partial Differential Equations (PDEs) are first introduced. More
specifically, the notions of characteristics and hyperbolicity for PDEs are introduced in section 2.1 for first-order
systems, which will be of particular interest in the remainder of the manuscript. Then, introduction of balance
laws of solid dynamics and derivation of constitutive equations from the thermodynamics in section 2.2, lead
to first-order hyperbolic PDEs. By using tools introduced in section 2.1, the characteristic analysis of these
systems is carried out in section 2.3 in order to derive exact solutions of particular problems in section 2.4. These
solutions allow the highlighting of different types of waves: (i) discontinuous waves, governed by the Rankine-
Hugoniot jump condition, within one-dimensional linear elastic and elastic-plastic media (ii) shock waves, also
following the Rankine-Hugoniot condition, and simple waves, within a non-linear problem (one-dimensional
strain state in a Saint-Venant-Kirchhoff hyperelastic medium). At last, strategies enabling the computation of
approximate solutions of non-linear problems are reviewed in section 2.5.

2.1 Generalities – Hyperbolic partial differential equations
A wide variety of physical phenomena are modeled in the space-time domain by partial differential equations.
The purpose of this section is to review generalities about PDEs and suited strategies depending on the nature
of the equations so that solutions can be derived.

2.1.1 General concepts
A system of partial differential equations can be written by means of a vector operator G of independent and
dependent variables (x1, ..., xN ) and (u1, ..., uI):

G

(
x1, ..., xN , u1, ..., uI ,

∂u1
∂x1

, ...,
∂MuI
∂xMN

)
= 0 (2.1)

The dimension of the system is given by the size I of the array UT = [u1, ..., uI ] ∈ RI , referred to as the
unknown vector. The highest derivative of the unknown vector in the system defines the order of the system M .
In equation (2.1) and in what follows, sans-serif symbols refer to matrices while calligraphic symbols stand for
column arrays. Furthermore, the partial derivatives of a quantity u with respect to a variable x may be written
ux when there is no ambiguity. Making use of index notation and the convention of implicit summation over
repeated indices, a system of partial differential equations reads:

N∑
k=1

M∑
p=1

Apij
∂pUj
∂xpk

+ Si = 0

8
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or equivalently, in matrix form:
N∑
k=1

M∑
p=1

Ap ∂
pU

∂xpk
+ S = 0 (2.2)

Coefficients matrices Ap and the vector S may depend on independent variables and the unknown vector
(x1, ..., xN ,U) leading to different types of partial differential systems. Namely, whether those terms are func-
tions of the xk or not leads respectively to linear systems with variable coefficients or to linear systems with
constant coefficients. The system remains linear if S depends linearly on U, and is semi-linear if the relation is
non-linear. Finally, if Ap depends on the vector U and its derivatives up to order M − 1, the system is called
quasi-linear.

The Cauchy problem consists in finding a solution U of system (2.2) that satisfies a set of given prescribed
values. Geometrically speaking, the solution of such a problem can be seen as the building of a hyper-surface of
RI+N , hence the term of integral surface for U. Such a problem can be reduced to that of solving a first-order
Cauchy problem by using suitable changes of variables [22, p.54], we will therefore focus on first-order PDEs.

2.1.2 Notion of characteristics – Hyperbolic problems
The theorem of Cauchy–Kowalewski locally ensures the existence of solutions of a Cauchy problem for partial
differential systems and is based on the restrictive requirement of analytic coefficient matrices and initial data
(see [22, p.46]). The case of first-order systems however, only requires continuity and differentiability conditions
and is based on the concept of characteristics, which makes the development of a solution more flexible.

First-order quasi-linear equations

To illustrate the aforementioned notions, we consider the first-order quasi-linear PDE with independent variables
x and t:

aux + but = c (2.3)

where coefficients a and b are such that a2 + b2 6= 0. Given values of u are prescribed along a curve defined by
means of a parameter η in the (x, t) plane as C0 : (x(η), t(η)), so that u(x(η), t(η)) draws a curve C in the space
(x, t, u). We assume that C0 is regular, namely dx

dη

2 + dt
dη

2 6= 0, and that one of the derivatives, say dt
dη , does not

vanish. Figure 2.1 shows an example of such an initial curve C prescribing values of u along a parametrized
curve of the (x, t) plane. With data given along C , the Cauchy problem is equivalent to that of finding a surface

dx
ds

dt
ds

x
t

u

C
C0

Figure 2.1: Example of initial curve C in the (x, t, u) space and its projection C0 in the (x, t)
plane.

u(x, t) that contains the initial curve and satisfies (2.3). Thus, one seeks the partial derivatives ux and ut of u
on C in order to extend the given data into a strip in the neighborhood of the initial curve. The total derivative

9



2.1. GENERALITIES – HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS

of u along C being:
du

dη
= ux

dx

dη
+ ut

dt

dη

one gets, after multiplying the previous equation by dη, the following relation between the partial derivatives
of u on the initial curve:

ut = du

dt
− ux

dx

dt

Then, equation (2.3) can be rewritten as:

(a− bdx
dt

)ux = c− b du
dt

∣∣∣∣
t∈C0

(2.4)

The right-hand side of equation (2.4) is known along C so that the Cauchy problem admits a unique solution
ux if and only if:

dx

dt
6= a

b
(2.5)

An initial curve satisfying the condition (2.5) is a non-characteristic curve and enables to uniquely determine a
solution of the Cauchy problem. On the other hand, an initial curve defined such that dx

dt = a
b is a characteristic

curve and yields infinitely many solutions [23, p.65].

Geometrical representation of characteristic curves

Consider a partial differential equation of the form (2.3), and prescribed values of u along a characteristic curve
C . Since one cannot find a unique solution of the Cauchy problem in this case, infinitely many integral surfaces
u(i)(x, t) with normal vectors n(i) = [u(i)

x , u
(i)
t ,−1] can intersect C . Those integral surfaces satisfy equation

(2.3) and hence, n(i) ·w = 0 where w = [a, b, c], so that the set of tangent planes to solutions u(i)(x, t) forms a
fan whose axis is w. This situation is depicted in figure 2.2 for which an initial characteristic straight line C is
contained by integral surfaces satisfying a PDE of the form (2.3).

x
t

u

C

u(1)

u(2)

u(3)

Figure 2.2: Examples of integral surfaces passing through the same curve C defined such
that t = constant and u = constant along C .

Characteristic line elements, tangent to all integral surfaces u(i)(x, t) are then defined as:dxdt
du

 =

ab
c

 (2.6)

10
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Introduction of a parameter η and integration of equation (2.6) yield a one-parameter family of characteristic
curves of the PDE:

x = x(η) ; t = t(η) ; u = u(η)

Hence, a characteristic curve is tangent at every point to all the integral surfaces, and an infinity of integral
surfaces cross one characteristic curve. As a consequence, if the initial curve is a characteristic curve, infinitely
many integral surfaces contain it so that the Cauchy problem cannot be solved. However, the following statement
holds [23, p.63]:

Theorem 1 (Courant) Every surface u(x, t) generated by a one-parameter family of characteristic curves is
an integral surface.

Conversely, every integral surface is generated by a one-parameter family of characteristic curves.

This theorem will be used in what follows to solve the Cauchy problem.

First-order quasi-linear systems

The concept of characteristic curves is now extended to first-order quasi-linear systems of dimension I. Consider
the following system written in matrix form:

At (x, t,U) Ut + Ax (x, t,U) Ux + S = 0 (2.7)

Similarly to quasi-linear PDEs, given values of U are prescribed along a regular curve C0 : (x(η), t(η)) defining
an initial curve U(x(η), t(η)) of the (x, t,U) space. The Cauchy problem consists in finding all the derivatives
of U(x, t) such that equation (2.7) is satisfied in the vicinity of C . Making use of the total derivative of U along
the initial curve:

dU

dη
= Ux

dx

dη
+ Ut

dt

dη
→ Ut = dU

dt

∣∣∣∣
t∈C0

−Ux
dx

dt

system (2.7) can be rewritten: (
Ax − λAt

)
Ux + S + At dU

dt

∣∣∣∣
t∈C0

= 0 (2.8)

where:
λ = dx

dt
(2.9)

With S and At dU
dt

∣∣
t∈C0

known along C0, the Cauchy problem admits a unique solution Ux along C if the
determinant of the system does not vanish, that is:

D =
∣∣Ax − λAt

∣∣ 6= 0 (2.10)

where D is called the characteristic determinant of system (2.7). If D does not have real roots along C0, the
problem is said elliptic and the Cauchy problem can be solved. Indeed, in that case the knowledge of U along
the initial curve allows the computation of derivatives and hence, the building of an integral strip defined by
U,Ux,Ut. If the characteristic determinant admits I real roots on the other hand, system (2.8) can no longer
be solved. Those eigenvalues come along with left and right eigenvectors respectively defined as:

Lki Axij = λkL
k
i Atij ; AxijRkj = λkAtijRkj k = 1, ..., I (2.11)

Remark 1 Note that eigenvectors can be stored as matrices R and L where Rij = R
j
i and Lij = Lij.

Definition 1 A first-order system of I partial differential equations is said hyperbolic if it admits real eigen-
values and I independent eigenvectors [23]. For those problems, one can draw a set of one-parameter families
of characteristic curves ϕk in the (x, t) plane by integrating the relations λk = dx/dt (1 ≤ k ≤ I).

11
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Example 1 Consider the first-order system with variable coefficients[
x 0
0 −x

]
∂

∂t

[
U1
U2

]
+ ∂

∂x

[
U1
U2

]
=
[
0
0

]
whose characteristic determinant (2.10) is:

(1− λx)(1 + λx) = 0

We thus have two solutions λ1,2 = ±1/x leading, by integration of (2.9), to two one-parameter families of
characteristic curves:

t1(x) = 1
2x

2 + c1 and t2(x) = −1
2x

2 + c2

Those curves are drawn in figure 2.3a for several values of integration constants c1 and c2.

Example 2 Consider now the first-order system with constant coefficients[
1 0
0 2

]
∂

∂t

[
U1
U2

]
+ ∂

∂x

[
U1
U2

]
=
[
0
0

]
whose eigenvalues, according to equation (2.10) satisfy

(1− λ)(1− 2λ) = 0

Two real roots exist λ1 = 1 ; λ2 = 1/2, leading by integration of (2.9) to two one-parameter families of straight
lines:

t1(x) = x+ c1 and t2(x) = 2x+ c2

Unlike example 1, coefficient matrices do not depend on independent variables, thus yielding characteristic
straight lines in the (x, t) plane (see 2.3b).

(a) Example 1: λ1,2 = ±1/x

x

t

c1 = 0

c1 = −1

c1 = −2

c1 = −3c2 = 5

c2 = 6

c2 = 7

c2 = 8

(b) Example 2: λ1 = 1 and λ2 = 1/2

x

t

c1 = 0

c1 = −1

c1 = −2

c1 = −3

c2 = 0

c2 = 1

c2 = 2

c2 = 3

Figure 2.3: Family of characteristic curves corresponding to the eigenvalues of the first-order
systems given in examples 1 and 2.

2.1.3 The method of characteristics
As theorem 1 states, an integral surface is generated by a one-parameter family of characteristic curves. There-
fore the knowledge of those curves enables the building of the solution of the Cauchy problem. Indeed, the
projection of the quasi-linear system (2.7) onto the left eigenbasis or left characteristic basis leads to:

Lk
(
AtUt + AxUx

)
+ LkS = 0

12
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where Lk satisfies (2.11), and hence:

LkAt (Ut + λkUx) + LkS = 0

In this equation, the directional derivative of U along the kth characteristic curve ϕk arises, namely:

dU

dt

∣∣∣∣
t∈ϕk

= Ut + λkUx

Thus, along a characteristic curve a system of partial differential equations reduces to a system of Ordinary
Differential Equations (ODEs) composed of the following characteristic equations:

Lk

(
At dU

dt
+ S

)
= 0 (2.12)

Integration of equations (2.12) yields a set of integral curves from which the Cauchy problem can be solved.
Indeed, the solution at a point of the (x, t) plane can be determined by tracing backward the characteristic curves
to the initial curve and integrating ODEs (2.12) along those paths according to the method of characteristics.
Note that if S is zero, then U is constant along characteristic curves.

To illustrate the method, let us consider again the quasi-linear system of example 1 for which the Cauchy
problem is built by prescribing initial conditions along the x-axis. Note that ”initial conditions” have now a
physical meaning since they are defined at t = 0, the Cauchy problem is then an Initial Value Problem (IVP).
Through a point (x∗, t∗) pass two characteristic curves, each belonging to a different one-parameter family.
The solution at this point can be determined by integrating the ODE corresponding to the first (resp. second)
eigenvalue of the system between (x1, 0) (resp. (x2, 0)) and (x∗, t∗). The singularity of hyperbolic problems can
hence be circumvented by using the characteristic structure in order to determine a unique solution. We see that

x

t
λ1λ2

x1 x2

Domain of dependence

(x∗, t∗)

Figure 2.4: Domain of dependence of the solution at (x∗, t∗) for the system of example 1.

only a segment of the initial curve has an influence on the solution at a given point. Namely, the intersections of
the initial curve and characteristic curves with the highest and the lowest slopes define the domain of dependence
of the solution at this point (see figure 2.4). This property of hyperbolic problems implies the existence of waves
that propagate information at finite speeds corresponding to the eigenvalues of a quasi-linear form. The theory
presented so far will be applied in what follows to solid mechanics.

2.2 Governing equations of solid mechanics
The mathematical laws describing the deformation of a solid body are summarized in this section. First,
the kinematic laws governing the motion of each material point belonging to a solid are considered. Then
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2.2. GOVERNING EQUATIONS OF SOLID MECHANICS

strain measures are associated with internal forces through the thermodynamic framework so that constitutive
equations are derived. For a more exhaustive review of governing equations, see for instance [1, 24, 25, 26].

2.2.1 Kinematic laws – Strain measures
Consider a three-dimensional solid with volume denoted by Ω ⊂ R3 bounded by the surface ∂Ω. This body
undergoes external forces that can either be localized on a part of the external surface of the body (i.e. surface
forces) or act in the whole solid domain (i.e. volume forces). Due to the presence of such loads, the domain
may change within the time interval τ = [0, T ] and is hence written as a function of time Ω(t) (t ∈ τ). The
state of the solid at time t = 0, corresponding to a non-deformed state with volume Ω(t = 0) = Ω0, is
referred to as the initial configuration. Some problems require the use of a reference configuration that can
be deformed and to which equations are referred. In what follows, the reference and initial configurations are
identical. At a given time t > 0, the volume is Ω(t) = Ωt and the state of the solid corresponds to the current
configuration. These configurations are depicted in figure 2.5. The points of R3 are located with Eulerian or

E1, e1

E3, e3

E2, e2

Ω0

Ω(t)

•X

•φ(X, t)

Figure 2.5: Deformation of a solid body between a reference state Ω0 to a subsequent state
Ωt.

spatial coordinates x = xiei while material particles in the reference configuration are located with Lagrangian
coordinates X = XαEα. At time t, the particle initially located at X may have moved to a different position
given by the smooth mapping φ(X, t) = φi(X, t)ei, providing the path of every particle of the solid during
the deformation. Thus, the current volume of the solid is defined by means of Eulerian coordinates and the
deformation function φ(X, t) as: Ω(t) = {x ∈ R3 : x = φ(X, t), X, t ∈ Ω0 × τ}. Note that in the above
definitions Greek indices are used for quantities evaluated in the reference configuration whereas Latin ones
refer to quantities defined in the current configuration.

The displacement and velocity vectors of a particle at time t are respectively:

u(X, t) = φ(X, t)−X ∀ X, t ∈ Ω0 × τ (2.13)

v(X, t) = ∂φ

∂t
(X, t) = φ̇(X, t) ∀ X, t ∈ Ω0 × τ (2.14)

where the superposed dot denotes the material time derivative. The second-order two-point deformation gradient
tensor is defined as:

F = ∇0φ(X, t) (2.15)
where ∇0(•) is the gradient operator in the reference configuration. This tensor can also be written by using
equation (2.13):

F = ∇0u(X, t) + I (2.16)
with I, the second-order identity tensor. The deformation gradient tensor characterizes the variations of lengths,
angles, areas and volumes. Indeed, the infinitesimal vector, oriented surface and volume elements in the reference
configuration, respectively denoted by dX,dS and dV , transform respectively to:

dxi = FiαdXα

dsi = JF−1
αi dSα

dv = JdV

(2.17)
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in the current configuration. Transport equations (2.17) involve the determinant of the deformation gradient
J = det(F ) > 0, also called the Jacobian of the deformation.

Since it accounts for changes in lengths and angles (i.e. the change of shape of a body), the deformation
gradient is one strain measure among others. For instance, one also defines the right Cauchy-Green and the
Green-Lagrange tensors as:

C = F TF ; E = 1
2(C − I)

respectively. Making use of equation (2.16), the Green-Lagrange tensor reads:

E = 1
2(∇0u+ ∇0u

T + ∇0u
T∇0u)

In particular, when a deformation involves displacement vectors such that ‖∇0u‖ � 1, the last term of the
previous definition can be neglected, leading to:

E ≈ 1
2(∇0u+ ∇0u

T ) = ε (2.18)

with ε the symmetric linearized strain tensor. Such deformations fall in the small strains framework and are
characterized by small strains but possibly large displacements. Furthermore, when the deformation leads
to a displacement vector ‖u‖L � 1, where L is a characteristic length of the domain, reference and current
configurations are considered as identical within equations of the Initial Boundary Value Problem (IBVP). The
aforementioned situations correspond to the linearized geometrical framework or infinitesimal theory.

2.2.2 Balance equations
The time derivative of equations (2.15) and (2.18) combined with the definition of the velocity field (2.14) yield
respectively:

Ḟ −∇0v = 0
ε̇−∇sv = 0

(2.19)

where ∇s(•) denotes the symmetric gradient operator. By rewriting the gradient operators as:

∇0v = ∇0 · (v ⊗ I)

∇sv = 1
2∇ · (v ⊗ I + I ⊗ v)

with ∇0 · (•) and ∇ · (•), the right divergence operators in reference and current configurations respectively.
With these forms of gradient operators, geometrical relations (2.19) can be written as kinematic or geometrical
balance laws [27, 8, 28, 29]:

Ḟ −∇0 · (v ⊗ I) = 0 (2.20)

ε̇− 1
2∇ · (v ⊗ I + I ⊗ v) = 0 (2.21)

Then, assuming that the mass of some amount of matter remains constant during the deformation, one
writes the conservation of mass in integral form:∫

Ω
ρdv =

∫
Ω0

ρ0dV ∀ t ∈ τ, ∀ Ω0

which, with the third transport formula reads:∫
Ω0

(Jρ− ρ0) dV = 0 ∀ Ω0 (2.22)

Since equation (2.22) holds regardless of the volume Ω0, the integrand must vanish so that the local conservation
of mass is written:

ρ (φ(X, t), t) = ρ0 (X)
J

∀X, t ∈ Ω0 × τ
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Furthermore, Newton’s second law states the equilibrium between inertia and external forces undergone by a
solid Ω. In the current configuration this conservation law consists of the translational and rotational balances,
also known as linear momentum and angular momentum balance equations, which are respectively:

d

dt

∫
Ω
ρvdv =

∫
∂Ω
tds+

∫
Ω
ρbdv ∀ t ∈ τ, ∀ Ω (2.23a)

d

dt

∫
Ω
ρx× vdv =

∫
∂Ω
x× tds+

∫
Ω
ρx× bdv ∀ t ∈ τ, ∀ Ω (2.23b)

where t and b denote surface and volume forces and the cross operator denotes the vector product. The second-
order Cauchy stress tensor σ is then introduced by using Cauchy’s theorem t = σ · n where n is the outward
normal vector to the surface element ds.

Theorem 2 (Ostrogradski) The divergence theorem relates the flow of a quantity through a closed surface
∂Ω to the divergence of this quantity inside the volume Ω delimited by ∂Ω:∫

∂Ω
(•) · n ds =

∫
Ω

∇ · (•) dv ∀ Ω (2.24)

Definition 2 The Piola transform T P of a second-order tensor T is defined as:

T P = JT · F−T

and satisfies:
∇0 · T P = J∇ · T

The conservation of linear momentum (2.23a), combined with the volume transport theorem (2.17), reads
in the reference configuration:

d

dt

∫
Ω0

ρ0v dV =
∫

Ω0

J∇ · σ dV +
∫

Ω0

ρ0b dV ∀ t ∈ τ, ∀ Ω0

or, by using definition 2: ∫
Ω0

(ρ0v̇ −∇0 ·Π− ρ0b) dV = 0 ∀ t ∈ τ, ∀ Ω0 (2.25)

where the first Piola-Kirchhoff stress tensor (PK1) Π = Jσ · F−T is the Piola transform of Cauchy stress
tensor. Thus, the vanishing of the integrand in equation (2.25) yields the balance equation of the Lagrangian
linear momentum:

ρ0v̇ −∇0 ·Π = ρ0b ∀ X, t ∈ Ω0 × τ (2.26)
or equivalently for the current configuration:

ρv̇ −∇ · σ = ρb ∀ x, t ∈ Ω× τ (2.27)

On the other hand, the conservation of angular momentum (2.23b) leads to the symmetry of Cauchy stress
tensor σ = σT , or equivalently from the definition of PK1 tensor, Π · F T = ΠT · F [24].

We complete the set of balance laws by considering the first law of thermodynamics. This law is a balance
between the rates of change of kinetic and internal energies, the power of external forces, and the amount of
heat entering the system as volume or surface heat sources.

d

dt

∫
Ω

(
1
2ρv · v + ρe

)
dv =

∫
∂Ω

(σ · n) · v ds+
∫

Ω
ρb · v dv +

∫
Ω
ρr dv −

∫
∂Ω
q · n ds ∀ t ∈ τ, ∀ Ω

where q is the outward heat flux vector, r is a volume heat source and e is the internal energy density. The
divergence theorem (2.24) yields:

d

dt

∫
Ω

(
1
2ρv · v + ρe

)
dv =

∫
Ω

(∇ · (σ · v) + ρb · v) dv +
∫

Ω
ρr dv −

∫
∂Ω
q · n ds ∀ t ∈ τ, ∀ Ω
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The transport of this relation in the reference configuration and introduction of the Lagrangian linear momentum
(2.26) and of kinetic conservation laws (2.20) lead to:∫

Ω0

ρ0ėdV =
∫

Ω0

Π : Ḟ dV +
∫

Ω0

(ρ0r −∇0 ·Q) dV ∀ t ∈ τ

where Q = Jq · F−1 is the Lagrangian heat flux vector. One thus deduces the balance equation of internal
energy in the reference configuration:

ρ0ė−Π : Ḟ + ∇0 ·Q = ρ0r ∀ X, t ∈ Ω0 × τ (2.28)

Finally, the small strain version of equation (2.28) is:

ρė− σ : ε̇+ ∇ · q = ρr ∀ x, t ∈ Ω× τ (2.29)

Strain and stress are then conjugate fields through an energy function. The former are referred to as state
variables describing the evolution of the thermodynamic system while the latter are thermodynamic forces
governed by constitutive equations. In what follows, such constitutive equations are derived.

2.2.3 Constitutive equations – Thermodynamics
The closure of the continuum equations is given by constitutive equations for the stress. Once and for all, we
consider here constitutive models within the Generalized Standard Materials (GSM) framework [30].

The general hyperelasticity formulation

First, the Clausius-Duhem inequality resulting from combination of first and second laws of thermodynamics,
reads:

Π : Ḟ + ρ0 (θη̇ − ė)︸ ︷︷ ︸
Dint

− 1
θ
q ·∇0θ︸ ︷︷ ︸
Dth

≥ 0 ∀ X, t ∈ Ω0 × τ (2.30)

where θ and η denote the temperature and the entropy, and D int and D th are respectively the mechanical and
thermal dissipations. The relation (2.30) becomes an equality for reversible processes and a strict inequality for
irreversible ones. Furthermore, a widely used assumption consists in considering that mechanical and thermal
dissipations simultaneously satisfy non-negativeness. Note that the Fourier’s law of conduction is based on the
non-negativeness of the thermal dissipation and leads to the following definition of the heat flux vector in order
to ensure the positiveness of the thermal dissipation:

q = −k ·∇0θ

where k is a positive-definite second-order tensor.
We assume that the internal energy density is a function of strain, entropy and additional internal variables

Vp (1 ≤ p ≤ N), describing irreversible processes. The Helmholtz free energy density on the other hand, defined
as the Legendre transform of internal energy, is a function of temperature and not of entropy: ψ (F , θ,V) =
e (F , η,V) − θη. The free energy density is supposed objective or frame indifferent [26, p.255], concave with
respect to temperature and convex with respect to other variables. The mechanical dissipation thus reads:

D int = Π : Ḟ − ρ0
(
ψ̇ + ηθ̇

)
or, by introducing the time derivative of the Helmholtz free energy density ψ̇ = ∂ψ

∂F : Ḟ + ∂ψ
∂θ θ̇ + ∂ψ

∂V V̇

D int =
(

Π− ρ0
∂ψ

∂F

)
: Ḟ − ρ0

(
∂ψ

∂θ
+ η

)
θ̇ − ρ0

∂ψ

∂V
V̇

Since the mechanical dissipation must be non-negative regardless of the nature of the transformation, it
must in particular vanish for a reversible isothermal process (i.e. θ = const) for which every additional internal
variable is constant (i.e. V̇ = 0). With these considerations, we are left with the relation:(

Π− ρ0
∂ψ

∂F

)
: Ḟ = 0
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holding regardless of the deformation, and hence:

ρ0
∂ψ

∂F
= Π (2.31)

A material is said hyperelastic if there exists a stored energy density function ρ0ψ from which can be derived
the first Piola-Kirchhoff stress tensor [24, p.8].

Similar considerations lead to the state laws for entropy and are assumed for additional thermodynamic
forces associated with internal variables V:

∂ψ

∂θ
= −η ; ρ0

∂ψ

∂V
= −A (2.32)

Remark 2 Temperature has been introduced as a state variable and requires the first principle of thermody-
namics, rewritten as the heat equation, in order to close the system:

ρ0Cθ̇ = ρ0r −∇0 ·Q− ρ0
∂ψ

∂V
V̇ + θ

(
∂Π
∂θ

: Ḟ − ∂A

∂θ
V̇

)
Nevertheless, we will restrict our attention in the following to isothermal deformations so that temperature can
be omitted and internal energy balance equations (2.28) or (2.29) are not considered.

For isothermal reversible deformations in hyperelastic solids, the time derivative of equation (2.31) leads to:

Π̇ = ρ0
∂2ψ

∂F 2 : Ḟ = H : Ḟ

where H is the fourth-order tangent modulus tensor (major symmetric). The above discussion is now specified
to constitutive models that will be used in the remainder of the manuscript.

Example 3 (Nearly incompressible Neo-Hookean) The nearly incompressible neo-Hookean hyperelastic
model is well-suited to describe rubber-like materials and is based on the polyconvex stored energy function (i.e.
convex with respect to all its arguments):

ρ0ψ(J,F ) = κ

2 (J − 1)2 + µ

2

[
J−2/3(F : F )− 3

]
where κ is the bulk modulus and µ the Lamé shear modulus. The first Piola-Kirchhoff stress and the acoustic
tensor Aij = NαHiαjβNβ are for this model [8]:

Π = µJ−2/3
[
F − 1

3 (F : F )F−T
]

+ κ (J − 1)H

and

A =
[

5
9µJ

−8/3 (F : F ) + κ

]
(H ·N)⊗ (H ·N) + µJ−2/3I

− 2
3µJ

−5/3 [(H ·N)⊗ (F ·N) + (F ·N)⊗ (H ·N)]
(2.33)

where H = JF−T is the adjoint tensor of the deformation gradient. The polyconvexity of this model ensures
the positive definiteness of the acoustic tensor (2.33) [31].

Example 4 (Saint-Venant-Kirchhoff) The Saint-Venant-Kirchhoff hyperelastic model is based on the stored
energy function:

ρ0ψ = 1
8

(
F TF − I

)
: C :

(
F TF − I

)
(2.34)

where C is the fourth-order elasticity tensor defined as: Ciαjβ = λδiαδjβ + µ (δijδαβ + δiβδjα), with Lamé
parameters (λ, µ). By differentiating the stored energy function (2.34) with respect to the deformation gradient,
the PK1 stress is:

Π = 1
2λ (F : F − 3)F + µF

(
F TF − I

)
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whose derivative with respect to F yields the tangent modulus:

H = λ

[
F ⊗ F + 1

2(F : F − 3)I
]

+ µ (B− I) (2.35)

with Biαjβ = FkαFkβδij +FjαFiβ +FiµFjµδαβ and the fourth order identity tensor Iiαjβ = δijδαβ. The previous
tangent modulus finally leads to the acoustic tensor:

A = λ

[
(F ·N)⊗ (F ·N) + 1

2(F : F − 3)I
]

+µ
[
(F ·N) · (F ·N)I + (F ·N)⊗ (F ·N) + F · F T − I

]
Even though this model can lead to non-physical solutions, as we shall see in section 2.4.4, it will be used for a
one-dimensional strain problem for it enables the development of an exact solution.

The infinitesimal theory formulation

The linearized geometrical framework leads, by assuming the existence of a Helmholtz free energy density ψ
that depends on the temperature θ, the infinitesimal strain tensor ε and additional internal variables V, to the
following relation [26, Ch.2]:

ρ
∂ψ

∂ε
= σ (2.36)

The infinitesimal strain tensor is further assumed to be additively decomposed into an elastic and a plastic part:
ε = εe + εp. Then, with irreversible deformations due to plastic strains, the mechanical dissipation reads:

D int = σ : ε̇p − ρ∂ψ
∂V

V̇ ≥ 0

A yield condition is defined by means of function f(σ,A) so that the elastic domain E in forces space (σ,A)
corresponds to:

E = {(σ,A) | f(σ,A) ≤ 0} (2.37)
According to the GSM framework [30] we assume the existence of a dissipation pseudo-potential Φ(σ,V), convex
with respect to thermodynamic forces and vanishing at the origin of the (σ,V) space. This pseudo-potential
enables the derivation of the plastic flow and hardening rules:

ε̇p = ∂Φ
∂f

∂f

∂σ
(2.38a)

V̇ = −∂Φ
∂f

∂f

∂A
(2.38b)

where ∂Φ
∂f = ṗ is the equivalent plastic strain rate. An example of a model used for metals is the plastic J2

flow theory where the elastic domain is here described by a yield function that depends on the deviatoric part
of the Cauchy stress, s = σ − 1

3 trace σI, through its second invariant J2(s) = 1
2s : s. In addition, a set

of internal variables and associated forces describing the plastic hardening of the material is used {V,A} =
{[εp, p] , [s− Y ,−R(r)]} in order to define the von-Mises yield surface:

f (σ,A) =
√

3
2 ‖s− Y ‖ − (R(r) + σy) ≡ 0 (2.39)

where σy is the tensile yield stress and r is to be defined. In deviatoric stress space, the von-Mises yield surface
is a circle whose center and radius are Y and R(r). These thermodynamic forces hence respectively describe
the displacement of the elastic domain center due to kinematic hardening, and the evolution of its radius due to
isotropic hardening. Setting R(r) (resp. Y ) to zero amounts to specializing the yield surface (2.39) to kinematic
(resp. isotropic) hardening. Then, flow rules (2.38a) and (2.38b) applied to the yield function (2.39) lead to:

ε̇p = ṗ

√
3
2
s− Y
‖s− Y ‖ = ṗ

√
3
2m (2.40a)

ṙ = ṗ (2.40b)
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where r is identified from (2.40b) as the equivalent plastic strain andm is referred to as the plastic flow direction.
Next, assuming a Prager-Ziegler linear kinematic hardening [26, p.91], the Helmholtz free energy density

takes the form:
ρψ = 1

2ε
e : C : εe + 2

3Cε
p : εp +H(p) (2.41)

where H(p) is defined so that H ′′(p) = C is the hardening modulus, and C is the fourth-order elastic stiffness
tensor (major and minor symmetric) defined for isotropic materials as Cijkl = λδijδkl + µ (δikδjl + δilδjk).
Thermodynamic forces are finally related to internal variables by means of equation (2.32), that is:

Y = 2
3Cε

p

R = H ′(p)

We consider in what follows isothermal deformations of isotropic solids, that may be irreversible by specifying
the above developments to some well-known small strain constitutive models.

Example 5 (Linear elasticity) The simplest case that is considered hereinafter does not involve irreversible
deformations, and hence additional internal variables (i.e. εp ≡ 0), and is referred to as linear elasticity. The
combination of equations (2.36) and (2.41) then leads to Hooke’s law:

σ = C : ε

or in rate form:
σ̇ = C : ε̇ (2.43)

The elastic acoustic tensor is further defined as:

Aelast
ij = nkCkijlnl = λninj + µ (ninj + δij)

Example 6 (Elastoplasticity) Rate-independent plasticity or elastoplasticity is based on the assumption that
admissible thermodynamic forces lie within or on the boundary of the elastic domain (2.37). The equivalent
plastic strain rate becomes a Lagrange multiplier in order to ensure f(σ,A) ≤ 0 and must obey the Kühn-
Tucker compatibility conditions:

ṗ ≥ 0 ; f ≤ 0 ; ṗf = 0

The equivalent plastic strain rate, is determined by the consistency condition ḟ = ∂f
∂(s−Y ) : (ṡ− Ẏ )− ∂f

∂R Ṙ = 0
that leads to: √

3
2m : Ẏ + Ṙ =

√
3
2m : σ̇

Then, combination of the above equation with the elastic law σ̇ = C : (ε̇− ε̇p) and equation (2.40a) yields:

ṗ =
√

3
2

2µ
3µ+ (C +R′)m : ε̇ =

√
3
2

2µ
3µ+ (C +R′)m : ε̇ (2.44)

At last, equations (2.40a) and (2.44) can be successively introduced in the elastic law so that one gets [26, eq
(2.2.22)]:

σ̇ =
(
C− 6µ2

3µ+ (C +R′)m⊗m
)

: ε̇ = Cep : ε̇ (2.45)

with Cep the elastoplastic tangent modulus. The elastoplastic acoustic tensor is defined as:

Aepij = nkC
ep
ikjlnl = Aelastij − 6µ2

3µ+ (C +R′) (nkmik)(mjlnl)

which is positive-definite for positive linear hardening (C > 0 ; R′ > 0).
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Example 7 (Elasto-viscoplasticity) Viscoplasticity or rate-dependent plasticity can be seen as a regulariza-
tion of rate-independent plasticity that relaxes the condition f(σ,A) ≤ 0 and thus leads to admissible ther-
modynamic forces lying outside the elastic domain [26, p.58]. Viscoplasticity provides on the other hand an
explicit definition of the equivalent plastic strain, for example the Perzyna or Sokolowskii-Malvern model [32] is
governed by:

ṗ =
〈
f

γ

〉n
(2.46)

where 〈•〉 = •+|•|
2 is the positive part function, and n and γ are parameters. Hence, the plastic fluxes ε̇p, V̇ are

completely determined by (2.38a) and (2.38b). It then comes out that rate-dependent plasticity is driven by the
elastic law:

σ̇ = C : (ε̇− ε̇p)
in which ε̇p is given by the combination of equations (2.38a) and (2.46), namely:

ε̇p =
〈
f

γ

〉n √3
2m (2.47)

2.2.4 The general formulation
Balance and constitutive equations obtained previously are now summarized for various classes of materials
and regimes of deformation. Recall that the deformations are assumed isothermal and that history effects are
considered within the infinitesimal theory only.

Hyperelasticity

The system of conservation laws for problems involving hyperelastic solids is composed of kinematic laws (2.20)
and the balance equation of Lagrangian linear momentum (2.26), repeated here for convenience:

Ḟ −∇0 · (v ⊗ I) = 0
ρ0v̇ −∇0 ·Π = ρ0b

Assuming a Cartesian coordinate system, this system can be written in conservative form:

Ut +
D∑
α=1

∂F ·Eα

∂Xα
= S (2.48)

where the vector of conserved quantities U, flux vectors F ·Eα and the source term S are:

U =
[
ρ0v
F

]
; F ·Eα =

[
−Π ·Eα

−v ⊗Eα

]
; S =

[
ρ0b
0

]
(2.49)

A quasi-linear system may then be built by introducing an auxiliary vector Q =
[
v
Π

]
and using the chain rule

according to [33]:
∂Q

∂t
+
(
∂U

∂Q

)−1
∂F ·Eα

∂Q

∂Q

∂Xα
=
(
∂U

∂Q

)−1
S = S̃

In the quasi-linear form, the derivative of the vector of conserved quantities with respect to the auxiliary vector
leads to the diagonal matrices:

∂U

∂Q
=
[
I 03

03 ∂F
∂Π

]
⇒
(
∂U

∂Q

)−1
=
[
I 03

03 ∂Π
∂F

]
where the tangent modulus ∂Π

∂F = H arises and 0p is a pth-order zero tensor. Moreover, the derivative of the
flux vectors with respect to the auxiliary vector reads:

∂F ·Eα

∂Q
= −

[
02 1

ρ0
I ⊗Eα

I �Eα 04

]
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in which the operator I � Eα is the transpose on second and third indices of the classical tensor product,
namely: I �Eα = δjkej ⊗Eα ⊗ ek. Finally, the quasi-linear form associated with hyperelastic problems is:

Qt + Aα ∂Q

∂Xα
= S with: Aα = −

[
02 1

ρ0
I ⊗Eα

H ·Eα 04

]
(2.50)

where the dependence on Q of matrices Aα(Q) has been omitted for simplicity.

Linear elasticity and elasto-viscoplasticity

The governing equations of elasticity and elasto-viscoplasticity within the linearized geometrical framework
consist of the kinematic law (2.21), the balance equation of linear momentum (2.27) and the elastic law (2.43):

ε̇−∇ ·
(
v ⊗ I + I ⊗ v

2

)
= 0

ρv̇ −∇ · σ = ρb

σ̇ − C : (ε̇− ε̇p) = 0

Combining kinematic and elastic laws and considering again a Cartesian coordinates system yields, for a homo-
geneous media (i.e. ∇ρ = 0), the following conservative form:

Qt +
D∑
i=1

∂F · ei
∂xi

= S (2.51)

with conserved quantities, flux and source term vectors respectively defined as:

Q =
[
v
σ

]
; F · ei =

[ − 1
ρσ · ei

−C : v⊗ei+ei⊗v2

]
; S =

[
b

−C : ε̇p
]

Note that here, the direct writing of the conservative form in terms of v and σ is made possible by the linearity
of the elasticity tensor, avoiding thus the introduction of an auxiliary vector. The quasi-linear form of equation
(2.51) is derived by means of the chain rule:

Qt + Ai ∂Q

∂xi
= S (2.52)

where:
Ai = ∂F · ei

∂Q
= −

[
03 1

ρI ⊗ ei
C · ei 04

]
in which symmetries of the elastic stiffness tensor have been used. Since the elastic stiffness tensor is constant,
system (2.52) is linear for elasticity and semi or non-linear for elasto-viscoplasticity depending on the flow rule
(2.38a). Moreover, the source term arising due to the viscoplastic flow rule (2.47) can be written in terms of a
relaxation term S̄ and a relaxation time τ = (γ/σy)n as S = S̄/τ [34], so that the system (2.52) can be identified
to a relaxation system [35]. In the asymptotic limit τ → 0 or in the vanishing viscosity limit, system (2.52)
tends to the equilibrium system corresponding to elastoplasticity [34].

Elastoplasticity

The writing of a conservative form for elastoplasticity is similar to what was done for hyperelastic solids. Indeed,
the system composed of kinematic laws (2.21) and the balance equation of linear momentum (2.27):

ε̇−∇ ·
(
v ⊗ I + I ⊗ v

2

)
= 0

ρv̇ −∇ · σ = ρb
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can be written as:

Ut +
D∑
i=1

∂F · ei
∂xi

= S (2.53)

where the conserved quantities, flux and source term vectors are:

U =
[
v
ε

]
; F · ei =

[ − 1
ρσ · ei

−v⊗ei+ei⊗v2

]
; S =

[
b
0

]
(2.54)

Analogously to hyperelasticity, a quasi-linear form involving the elastoplastic tangent modulus (5.2c) is derived

by means of the auxiliary vector Q =
[
v
σ

]
and the chain rule:

Qt + Ai ∂Q

∂xi
= S with: Ai = −

[
02 1

ρI ⊗ ei
Cep · ei 04

]
(2.55)

2.3 Characteristic analysis – Structure of solutions
The quasi-linear forms written above enable the particularization of the theory of first order quasi-linear systems
developed in section 2.1 to solid mechanics problems.

For the sake of simplicity, studies of finite deformations and linearized geometrical frameworks will be
condensed in this part by using the generic notation of stress S and vectors written in the reference configuration.
Furthermore, instead of considering multi-dimensional systems of conservation laws, we will focus without loss
of generality on the quasi-linear form (2.50) projected on an arbitrary direction N = [E1,E2,E3] [2, p.425-426].
In this direction, one has:

Qt + J ∂Q

∂XN
= S (2.56)

in which XN = X ·N and the Jacobian matrix J = AαNα of dimension m arise. In three dimensions, the
non-symmetrical PK1 tensor in quasi-linear form (2.50) yields a Jacobian matrix of dimension m = 3 + 9 while
systems (2.52) and (2.55) involving the Cauchy tensor, lead to m = 3 + 6. The characteristic analysis of system
(2.56) is therefore equivalent to that of linear combinations of matrices Aα. With the previous developments,
the Jacobian matrix reads:

J = −
[

02 1
ρ0
I ⊗N

H̃ ·N 04

]
in which H̃ is either the hyperelastic or elastoplastic tangent modulus, or the elastic stiffness tensor depending
on the case considered. The characteristic structure of the problem is given by the m eigenvalues cK and
associated left eigenvectors LK =

[
vK , SK

]
of the Jacobian matrix satisfying:

LK (J− cKI) = 0

where I is the m×m identity matrix. Thus, for non-zero eigenvalues one gets:

− SK :
(
H̃ ·N

)
− cKvK = 0 (2.57a)

− 1
ρ0
vK ⊗N − cKSK = 0 (2.57b)

Substitution of SK obtained from (2.57b) in (2.57a) leads to:

(vK ⊗N) :
(
H̃ ·N

)
− ρ0c

2
Kv

K = 0 (2.58)

which is the left eigensystem of the acoustic tensor Aij = NαH̃iαjβNβ . Due to the symmetry of A, system
(2.58) is equivalent to the right eigensystem:(

NαH̃iαjβNβ − ρ0c
2
Kδij

)
vKj = 0
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or alternatively, with the eigenvalues ωp and associated eigenvectors of the acoustic tensor lp (p = 1, 2, 3):

(A− ωpI) · lp = 0

The condition for system (2.56) to be hyperbolic (real eigenvalues and independent eigenvectors) is thus ensured
by the positive definiteness of the acoustic tensor, also known as the strong ellipticity condition [24]:

(n⊗N) : H̃ : (n⊗N) > 0 ∀N ,n ∈ R3 ; N ,n 6= 0

If the condition holds, the acoustic tensor admits 3 couples of eigenvalue–eigenvector {ωp, lp} leading to 6 couples
{cK ,LK} for the Jacobian matrix, the 6 other eigenvalues being null [31]. The couples {cK ,LK} are referred
to as left characteristic fields. The left eigenvectors associated with non-zero eigenvalues of the Jacobian matrix
are obtained by using equation (2.57b) so that the following 6 eigenfields of the quasi-linear form (2.56) can be
defined: {

±
√
ωp
ρ0

;
[
±ρ0

√
ωp
ρ0
lp,−lp ⊗N

]}
, p = 1, 2, 3

At last, one has to find six independent left eigenvectors associated with the null eigenvalue of multiplicity 6 by
solving equation (2.57a) for the null eigenvalue:

SK :
(
H̃ ·N

)
= 0, K = 1, ..., 6

Following the same procedure for right eigenvectors RK =
[
vK

SK

]
, the Jacobian matrix right eigensystem reads:

− 1
ρ0
SK ·N − cKvK = 0

− H̃ :
(
vK ⊗N

)
− cKSK = 0

which leads to the right characteristic fields associated with the non-null eigenvalues:{
±
√
ωp
ρ0

;
[
±
√
ωp
ρ0
lp,−H̃ : (lp ⊗N)

]}
, p = 1, 2, 3 (2.60)

In equation (2.60), {ωp, lp} still denotes the eigenfields of the acoustic tensor. Moreover, the 6 independent
right eigenvectors associated with the zero eigenvalue required to complete the set of right characteristic fields
must satisfy:

SK ·N = 0, K = 1, ..., 6

Remark 3 Since the right-hand side of equation (2.56) is not involved in the characteristic analysis, linear
elasticity and elasto-viscoplasticity in small strains share the same characteristic structure.

Remark 4 In the case of a vanishing source term S, the specialization of characteristic equations (2.12) to
system (2.56) leads to:

LK · dQ = 0, K = 1, ..., 6

meaning that the solution is constant along each characteristic straight line with slope ξ = cK . Such solutions
Q(ξ) that only depend on the ray ξ are called self-similar solutions.

2.4 Some solutions of Riemann problems
The characteristic analysis carried out above is now applied to specific solid mechanics problems. Both linear
and non-linear problems, whose solutions involve several types of waves, are considered. As we shall see, the
different characteristic structures involved within linear elastic, elastoplastic and hyperelastic solids require the
use of different techniques in order to develop exact solutions. First a particular type of IVP, of particular
interest in this manuscript, is introduced.
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2.4.1 The Riemann problem
A Riemann problem is a Cauchy problem with piecewise constant initial data. In particular, the Riemann
problem based on the conservative form (2.48) for hyperelastic solids, in the arbitrary direction N = NαEα,
takes the form:

Ut + ∂F ·N
∂XN

= S,{
U(XN , t = 0) = UL if XN < 0
U(XN , t = 0) = UR if XN > 0

(2.61)

Analogously, for small strains one writes the Riemann problem corresponding to conservative forms (2.51) or
(2.53) in the direction n = niei:

Qt + ∂F · n
∂xn

= S,{
Q(xn, t = 0) = QL if xn < 0
Q(xn, t = 0) = QR if xn > 0

(2.62)

where xn = x · n. Problems of the form (2.61) or (2.62) are considered in the next section, in which exact
solutions are recalled or derived.

2.4.2 Linear elastodynamics problems
A homogeneous hyperbolic system of dimension m is considered in a linear elastic solid so that a Riemann
problem of the form (2.62) is written.

Characteristic variables – Waves solution

By introducing a set of characteristic variables P = R−1Q (Rij = R
j
i ), the quasi-linear form of system (2.62)

reads:
∂Pi
∂t

+ ci
∂Pi
∂x

= 0{
Pi(x, t = 0) = PLi if x < 0
Pi(x, t = 0) = PRi if x > 0

(2.63)

with Cij = ciδij , the matrix of eigenvalues so that JijRjK = RKi CKj . The solution of this problem is straight-
forward since it corresponds to a superposition of scalar linear advection equations, namely, the initial profile
Pi(x, t = 0) simply propagates with speed ci as depicted in figure 2.6. Thus, the solution Pi(x, t) at a given

x

t

ci

t1

t2

t0

Pi(x, t2)

x
cit2

Pi(x, t1)

x
cit1

Pi(x, t0)

x

PL
i PR

i

Figure 2.6: Solution to linear advection equation of the quantity Pi with characteristic speed
ci.

point is given by tracing backward the characteristic of slope ci passing through this point to the x-axis, that
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is: Pi(x, t) = Pi(x− cit, 0) [21, p.52]. The vector Q is then determined by inverting the relation:

Q(x, t) =
m∑
i=1

RiPi(x− cit, 0) ⇒


Q(x < 0, 0) = QL =

m∑
i=1

RiPLi

Q(x > 0, 0) = QR =
m∑
i=1

RiPRi

(2.64)

Equation (2.64) is an eigenvector expansion with coefficients P
R,L
i from which we see that Q is a linear super-

position of m waves, each having the shape RiPi(x, 0). Noticing that for given values of x and t, there exists
one characteristic I such that x− cit > 0 for all i ≤ I, and x− cit < 0 for all i ≥ I + 1, equation (2.64) can be
rewritten [21, p.56]:

Q =
I∑
i=1

RiPRi +
m∑

i=I+1
RiPLi (2.65)

or, by introducing the expansions of initial data (2.65):

Q =
m∑
i=1

RiPRi −
m∑

i=I+1
Ri
(
PRi − PLi

)
= QR −

m∑
i=I+1

Ri
(
PRi − PLi

)
Q =

m∑
i=1

RiPLi +
I∑
i=1

Ri
(
PRi − PLi

)
= QL +

I∑
i=1

Ri
(
PRi − PLi

)
These equations are equivalent to jump conditions across multiple discontinuous waves:

Q−QR = −
m∑

i=I+1
Riδi (2.66)

Q−QL =
I∑
i=1

Riδi (2.67)

where Q(x, t) is the state lying in the region of the (x, t) plane delimited by the characteristics I and I + 1,
and Riδi the jump carried by the ith wave. The coefficients δi = PRi −PLi are weighting coefficients involved in
wave strengths Wi = Riδi, that can be computed from the expansions of initial conditions by solving:

QR −QL =
m∑
i=1

Riδi = Rδ (2.68)

We see that the solutions of Riemann problem (2.62) consist of discontinuous waves emanating from the
origin of the (x, t) plane. Across such discontinuous waves, the following condition is satisfied [21]:

Definition 3 The Rankine-Hugoniot condition is satisfied across a discontinuous wave of speed si associ-
ated with the ith characteristic field, which is a solution of the hyperbolic system Qt + F(Q)x = 0:

JFK = siJQK (2.69)

where J•K denotes the jump operator across the discontinuity. More specifically, shock waves that will be met
for non-linear problems in section 2.4.4 also satisfy the Rankine-Hugoniot condition.

Solution of the elastic bar problem

The above discussion is now specified to a one-dimensional elastic medium, x ∈ [−l, l], of density ρ undergoing
one-dimensional stress and strain states within the infinitesimal framework: ε = εe1⊗e1 ; σ = σ e1⊗e1. As a
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consequence, the bar hypothesis holds with v = ve1. Neglecting body forces and introducing Young’s modulus
E such that σ = Eε, the Riemann problem takes the form (2.62) with conserved quantities and flux vector:

Q =
[
v
σ

]
; F =

[− 1
ρσ

−Ev

]
along with Riemann-type data on the horizontal velocity (i.e. v(x < 0, 0) = vL ; v(x > 0, 0) = vR) as
initial conditions. In addition, the solid is assumed to be initially unstressed. The eigenvalues, left and right
eigenvectors of the corresponding Jacobian matrix are:

c = ±
√
E

ρ
; Lp = [ρcp , −1] ; Rp =

[
1
−ρcp

]
The characteristic structure of the solution consisting of two elastic discontinuities emanating from the origin of
the (x, t) plane is depicted in figure 2.7. The solution Q∗ lying in the region bounded by the two elastic waves

x

t
c−c

QRQL

Q∗

Figure 2.7: Solution to Riemann problem (2.62) for an elastic bar.

is computed by means of equation (2.67) after solving (2.68) for the wave strength coefficients. For a system of
dimension 2 by writing QR −QL = ∆Q those wave strengths read:

δ = 1
R1

1R
2
2 − R2

1R
1
2

[
R2

2∆Q1 − R2
1∆Q2

R1
1∆Q2 − R1

2∆Q1

]
(2.70)

and more specifically for a bar:

δ = 1
2ρc

[
ρc∆v + ∆σ
ρc∆v −∆σ

]
Hence, equation (2.67) yields the solution:

Q∗ = QL + R1δ1 =
[ σR−σL

2ρc + vR+vL
2

ρc vR−vL2 + σR+σL
2

]

2.4.3 Elastic-plastic media in the geometrical linearized limit
The previous problem is now extended to elastoplastic media by considering the same bar made of a linear
hardening material of tensile yield stress σy. For such a solid domain, a Riemann problem of the form (2.62)
can be written by means of the following conserved quantities and flux vectors [6]:

Q =
[
v
σ

]
; F =

[− 1
ρσ

−Hv

]
where H = E for elastic loadings while H = dσ/dε is the tangent modulus for elastic-plastic evolutions. In
addition, Riemann-type data on the horizontal velocity (i.e. v(x < 0, 0) = vL ; v(x > 0, 0) = vR) are used as
initial conditions, so that plastic flow may occur.
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The discontinuity of H across the plastic threshold prevents here the direct derivation of the solution by using
the approach followed for linear elasticity. Indeed, two sets of characteristic speeds and associated eigenvectors
must be considered, that is [6, 36]:

c = ±
√
H

ρ
; Lp = [ρcp , −1] ; Rp =

[
1
−ρcp

]
so that waves are referred to as elastic or plastic waves. Whether a plastic wave appears or not hence depends
on the tangent modulus and subsequently, on the yield function. A predictor-corrector procedure must thus
be followed by first solving an elastic Riemann problem whose resulting (trial) solution Q is tested against the
yield criterion on both sides x < 0 or x > 0. In general, possibly different yield stresses, plastic strains and
hardening parameters in left and right regions lead to a yield criterion that may be violated or not, and hence
to one, two or no plastic waves that must be added as a correction to the original problem. If neither fL nor
fR leads to a violation of the criterion, the problem is elastic and the trial state is the solution. Otherwise, the
plastic correction is performed by computing the stress in regions of the (x, t) plane bounded by elastic and
plastic waves (Q̃L,R in figure 2.8a) so that the yield function satisfies fL,R = 0. Then, the velocity and elastic

(a) Characteristic structure

x

t

c

cp

−c

−cp

t1

t2

QL QR

Q̃
L

Q̃
R

Q∗

(b) Stress profile in the bar

σ(x, t1)

x
σy

σ(x, t2)

x
σy

Figure 2.8: Example of a solution of a Riemann problem in a homogeneous elastoplastic bar
with linear hardening and initial plastic strain εp(x, 0) = 0.

wave strengths in yielding regions are given by solving:

Q̃
R = QR − δ1

ER
1
E

Q̃
L = QL + δ2

ER
2
E

At last a plastic Riemann solver is used in order to compute the solution of the problem Q∗ by solving successively
the system (2.68) for plastic wave strengths, and either system (2.66) or (2.67), that is:

δP = R−1
(
Q̃
R − Q̃

L
)
⇒ Q∗ =

Q̃
R − δ2

PR
2
P

Q̃
L + δ1

PR
1
P

Figure 2.8a shows the characteristic structure of the solution of the Riemann problem in a homogeneous
medium considered here, involving two plastic waves, and figure 2.8b the corresponding stress field in the bar.

Remark 5 Note that the above solver also applies to plane wave problems characterized by one-dimensional
strain and multi-dimensional stress states by considering different wave speeds.

2.4.4 Hyperelastic media: A Saint-Venant-Kirchhoff solution
The approaches followed above are no longer possible for problems involving a non-linear Jacobian matrix. In-
deed, the writing of the Riemann problem (2.63) in terms of characteristic variables is valid for right eigenvectors
that are constant. Moreover, as we shall see with an example, the characteristic structure of such problems
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can be more complex and depend on the initial data. Consider a hyperelastic medium made of a Saint-Venant-
Kirchhoff material, infinite in directions E2 and E3, and semi-infinite in direction E1 (i.e. X1 ∈ [0,+∞[) in
the reference configuration. This medium suddenly undergoes a load at (X1 = X = 0, t = 0) in direction E1 so
that the deformation gradient and the PK1 tensors are respectively of the form:

F = Fe1 ⊗E1 + e2 ⊗E2 + e3 ⊗E3 (2.71)
Π = Π11e1 ⊗E1 + Π22 (e2 ⊗E2 + e3 ⊗E3)

which corresponds to a plane wave solution. We assume that F (0, t) = F̄ is given, leading to a Picard problem
[36, p.20] involving both initial and boundary conditions with neglected body forces:

Qt + ∂F ·N
∂XN

= 0,{
Q(XN , t = 0) = QR if XN > 0
F (0, t) = F̄

(2.72)

with N = E1 and:
Q =

[
v
F

]
; F =

[− 1
ρ0

Π
−v

]
where Π = Π11. The quasi-linear form is written by using the chain rule: Qt + ∂F

∂Q
∂Q
∂X = 0 so that the Jacobian

matrix reads:
J = ∂F

∂Q
= −

[
0 H1111

ρ0

1 0

]
The tangent modulus of the SVK model (2.35) yields the following characteristic fields:

c1 = −
√
λ+ 2µ

2ρ0
(3F 2 − 1)

c2 =

√
λ+ 2µ

2ρ0
(3F 2 − 1)

; Lp = [1 , −cp] ; Rp =
[
−cp

1

]
(2.73)

Remark 6 The non-linear flux function of the SVK model yields characteristic fields depending on the strain
state and possibly complex celerities leading to a loss of hyperbolicity of the problem for F <

√
1
3 .

Suppose now that initial data are given so that F̄ > FR. The resulting characteristic speeds then satisfy
c2(F̄ ) > c2(FR) and the two families of characteristics collide in the right region of the (x, t) plane (figure 2.9a).
On the other hand, F̄ < FR yields characteristics moving away from each other in the right region according to
c2(F̄ ) < c2(FR) (figure 2.9b). These two situations respectively correspond to a shock and a simple wave. Note
that this characteristic structure is similar to that resulting from the dam-break problem with shallow water
equations, the following developments are hence very close to those of [2, Ch.13].

(a) Right-going shock wave

X

t

(b) Right-going simple wave

X

t

Figure 2.9: Solutions of the Picard problem (2.72) depending on initial and boundary data.
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Shock waves

A shock wave is a discontinuous wave satisfying the Rankine-Hugoniot condition (2.69):

− 1
ρ0

(
Π̄−Πi

)
= s (v̄ − vi) (2.74)

− (v̄ − vi) = s
(
F̄ − Fi

)
(2.75)

where the shock speed s is to be defined and i ∈ {L,R}. In what follows, F̄ is considered as an unknown so
that a relation connecting Qi to a set of solutions Q through a shock wave can be developed. Substitution of s
from equation (2.75) and introduction in equation (2.74) where Π = λ+2µ

2
(
F 3 − F

)
yield:

s = − v̄ − vi
F̄ − Fi

v̄ − vi = ±
√
λ+ 2µ

2ρ0
(F̄ − Fi)

[
F̄ 3 − F̄ − (F 3

i − Fi)
]

(2.76)

In addition to the Rankine-Hugoniot condition, one has to consider the Lax entropy conditions, stating that
characteristic curves collide in a shock wave [2, p.268]:

c(F̄ ) < s < c(Fi) (2.77)

The Lax entropy condition implies that the square root in equation (2.76) is real, leading to two families of
curves in the phase plane (F, v). When considering an infinitesimal jump (i.e. F̄ = Fi ± ε with ε→ 0), each of
these curves is expected to identify with one of the jump conditions derived for the linear case (2.66) of (2.67).
Thus, equation (2.76) reads:

v̄ − vi = ±
√
λ+ 2µ

2ρ0
ε [(Fi + ε)3 − (Fi + ε)− (F 3

i − Fi)]

where, with ε→ 0:
(Fi + ε)3 ≈ F 3

i (1 + 3ε
Fi

)

so that: [
v̄
F̄

]
=
[
vi
Fi

]
+ ε

[
±
√

λ+2µ
2ρ0

[3F 2
i − 1]

1

]
The minus sign yields equation (2.66) associated with the right-going wave and therefore corresponds to a right-
going shock wave. On the other hand, the plus sign stands for equation (2.67) and left-going shocks. Finally,
the Rankine-Hugoniot condition across a left-going shock and a right-going shock respectively lead to:

v̄ − vL =

√
λ+ 2µ

2ρ0
(F̄ − FL)

[
F̄ 3 − F̄ − (F 3

L − FL)
]

(2.78)

v̄ − vR = −
√
λ+ 2µ

2ρ0
(F̄ − FR)

[
F̄ 3 − F̄ − (F 3

R − FR)
]

(2.79)

Simple waves

In order to study the evolution of fields within the region bounded by characteristics that move away in figure
2.9b, let’s write the left-going characteristic equation through it with L1 = [1,−c1]:

dv − c1(F )dF = 0 (2.80)

The complete set of states Q connected to QR through a simple wave is obtained by integration of equation (2.80).
Note that this integration results in a smooth evolution of fields inside a simple wave even for discontinuous
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initial conditions, unlike shocks. Moreover, the vanishing right-hand side of the conservative form of the Picard
problem (2.72) yields a similarity solution. The particular case of a simple wave constant along each ray ξ = x/t
corresponds to a rarefaction wave [2].

Integration of equation (2.80) is performed by using the change of variables: F 7→ ch(x)/
√

3 so that one
gets:

dv = −
√
λ+ 2µ

6ρ0
sh(x)2dx (2.81)

where, the hyperbolic cosine ch(x) and sine sh(x) satisfy: ch(x)2 − sh(x)2 = 1. Equation (2.81) can be easily
integrated with the exponential form of hyperbolic sine: sh(x) = ex−e−x

2 , thus yielding:

v − vR = −1
4

√
λ+ 2µ

6ρ0
[sh(2x)− 2x− (sh(2xR)− 2xR)]

At last, the inverse change of variables leads to the relation:

v − vR = −
√
λ+ 2µ
24ρ0

[
√

3
(
F
√

3F 2 − 1− FR
√

3F 2
R − 1

)
− ln

( √
3F +

√
3F 2 − 1√

3FR +
√

3F 2
R − 1

)]
(2.82)

In a similar manner, dv − c2(F )dF = 0 must hold through a left-going rarefaction wave so that:

v − vL =

√
λ+ 2µ
24ρ0

[
√

3
(
F
√

3F 2 − 1− FL
√

3F 2
L − 1

)
− ln

( √
3F +

√
3F 2 − 1√

3FL +
√

3F 2
L − 1

)]
(2.83)

Equations (2.82) and (2.83) correspond to integral curves that connect initial conditions to a set of solutions
through a right-going or a left-going rarefaction respectively.

Solution of the Riemann problem

The above developments are now generalized by considering the Riemann problem in an infinite medium:

Qt + ∂F ·N
∂XN

= 0,
Q(XN , t = 0) = QL =

[
v = 0
FL

]
if XN < 0

Q(XN , t = 0) = QR =
[
v = 0
FR

]
if XN > 0

(2.84)

such that the plane wave state (2.71) holds. As for the Picard problem, initial conditions influence the character-
istic structure of the solution. Indeed, if initial conditions are given such that FL < FR, left-going characteristics
will collide while right-going ones will move away from one another (see figure 2.10a). In that case, the first and
second characteristic fields are respectively referred to as a 1-shock and a 2-rarefaction. Conversely, if FL > FR
the solution corresponds to a 1-rarefaction and a 2-shock (figure 2.10b).

For the 1-shock–2-rarefaction solution one then seeks a state Q that is connected to QL and QR through a
shock wave and a rarefaction wave respectively. Hence, Q must satisfy equations (2.78) and (2.82), that is:

v − vL =

√
λ+ 2µ

2ρ0
(F − FL) [F 3 − F − (F 3

L − FL)]

v − vR = −
√
λ+ 2µ
24ρ0

[
√

3
(
F
√

3F 2 − 1− FR
√

3F 2
R − 1

)
− ln

( √
3F +

√
3F 2 − 1√

3FR +
√

3F 2
R − 1

)] (2.85)
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(a) FL < FR

X

t

(b) FL > FR

X

t

Figure 2.10: General wave patterns arising in the solution of the Riemann problem (2.84)
depending on initial data. (a): 1-shock–2-rarefaction. (b): 1-rarefaction–2-shock.

Analogously, the 1-rarefaction–2-shock solution is given by the solution of equations (2.83) and (2.79):
v − vL =

√
λ+ 2µ
24ρ0

[
√

3
(
F
√

3F 2 − 1− FL
√

3F 2
L − 1

)
− ln

( √
3F +

√
3F 2 − 1√

3FL +
√

3F 2
L − 1

)]

v − vR = −
√
λ+ 2µ

2ρ0
(F − FR) [F 3 − F − (F 3

R − FR)]

(2.86)

Once one of these systems is solved, the solution Q is known everywhere except inside the rarefaction fan.
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(a) Initial data: FL = 1 ; FR = 2
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(b) Initial data: FL = 2 ; FR = 1
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Figure 2.11: Set of connected states Q to initial data through shock and rarefaction waves
with vL = vR = 0 in both cases: (a) 1-shock, 2-rarefaction solution ; (b) 1-rarefaction,
2-shock.

Nevertheless, in this region Q only varies with the ray ξ = ci(F ) and hence, the solution inside an i-rarefaction
wave satisfies:

ξ = ±
√
λ+ 2µ

2ρ0
(3F 2 − 1) ⇒ F (ξ) =

√
2ρ0

3(λ+ 2µ)ξ
2 − 1

The curves corresponding to equations (2.85) and (2.86) are depicted in figures 2.11a and 2.11b for parameter
values such that λ+2µ

ρ0
= 1. In both cases, the solution Q(x, t) in the region bounded by the shock and the

rarefaction fan is given by the intersection of curves in the phase plane.
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Remark 7 Note that the above developments are based on a constitutive model that leads to a concave flux
function FT = −

[
1
ρ0

Π ; v
]

(i.e. ∂2Π
∂F 2 > 0). As a consequence, the characteristic speeds are monotonically in-

creasing functions of the deformation gradient (in absolute value). Since the dependence of characteristic speeds
on the deformation gradient governs the wave pattern (i.e.: either a rarefaction or a shock wave), the structure
of the solution differs from other constitutive laws with convex flux function such as the neo-Hookean model.
Comparisons of (F,Π11) and (F, |c|) are shown in figures 2.12a and 2.12b as an illustration of previous remarks.
At last, figure 2.12a shows the non-physical behavior of Saint-Venant-Kirchhoff model for high-compression loads
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Figure 2.12: Comparison of neo-Hookean and Saint-Venant-Kirchhoff hyperelastic models.

that lead to a stress tensor tending to zero.

2.5 Approximate–State Riemann solvers
It has been seen in the previous section that the complete solution of a Riemann problem in solid dynamics is
possible for simple problems. However, such a solution may become complicated for multi-dimensional problems
or for other non-linear problems. Numerical methods such as upwind or Godunov-based methods [2] require
the solution of many Riemann problems within a discretized medium. When dealing with non-linear problems,
the exact solution of those problems may increase drastically the computational cost, making the numerical
scheme unappealing. Moreover, numerical procedures often require only little information about the solution
of Riemann problems and do not need the complete solution. In that context, alternative procedures have been
developed in order to take into account the characteristic structure of a hyperbolic system by computing an
approximate solution of Riemann problems. Approximate Riemann solvers developed for Computational Fluid
Dynamics allow to extract information for either flux functions (HLL, HLLC, Roe and Osher approximate
Riemann solvers [37], [21]) or for vectors of conserved quantities (approximate–state Riemann solver [21, Ch.9],
[2, Ch.22]). Some of these have been applied to specific problems in solid mechanics problems such as the Osher
approximate solver (see [7] and [8]) or the HLLC approximate solver (see [38]) for hyperelasticity . We recall
here the formulation of the approximate-state Riemann solver for solid mechanics. The approach is then applied
to the non-linear problem of section 2.4.4.

2.5.1 General ideas
As in the previous section, we consider the Riemann problem in the space direction N :

Qt + J (Q) ∂Q

∂XN
= 0,{

Q(XN , t = 0) = QL if XN < 0
Q(XN , t = 0) = QR if XN > 0

(2.87)
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The approach for developing an approximate-state Riemann solver consists in linearizing the problem (2.87) by
approximating J in the vicinity of QL and QR by a constant matrix J̄ = J

(
QL,QR

)
[2, Ch.15]. Note that this

approximation is valid for small jumps in initial data (i.e QL ≈ QR) and that J̄ must ensure hyperbolicity of
the system, namely J̄ has real eigenvalues and a complete set of independent eigenvectors. The approximate
matrix also satisfies the consistency condition:

J̄ (Q,Q) = J (Q)

Such a matrix can be defined by using the definition of right eigenvectors and characteristic speeds JR =
RC⇒ J = RCR−1 in which left-going (resp. right-going) characteristics and associated eigenvectors are assumed
to depend on QL (resp. on QR) only. Namely, one writes:

R =
[
R1(QL), · · · ,RI(QL),RI+1(QR), · · · ,Rm(QR)

]

C =



c1(QL)
· · ·

cI(QL)
cI+1(QR)

· · ·
cm(QR)


where cI(Q) and m are the highest negative eigenvalue and the dimension of the Jacobian matrix.

At last, the linearized Riemann problem thus written enables the determination of every state vector Q(x, t)
by following the procedure described in section 2.4.2 for linear problems, recalled here for convenience for a
system of dimension m:

QR −QL =
m∑
i=1

Riδi

Q(x, t) = QR −
m∑

i=I+1
Riδi

Q(x, t) = QL +
I∑
i=1

Riδi

where the point (x, t) lies in the region bounded by the characteristics I and I + 1.

Remark 8 Note that since one can define a complete set of independent eigenvectors of the Jacobian matrix,
the matrix R is non-singular so that J̄ can be uniquely determined.

2.5.2 Application: Hyperelastic plane wave
We finish this section with an illustration of the approximate Riemann solver by considering the plane wave
problem in the Saint-Venant-Kirchhoff medium treated in section 2.4.4. Recall that the eigenvalues and right
eigenvectors matrices read for that problem:

C =
[
−c 0
0 c

]
; R =

[
c −c
1 1

]
, c =

√
λ+ 2µ

2ρ0
(3F 2 − 1)

Hence, the linearized problem is written with:

C =
[
−cL 0

0 cR

]
; R =

[
cL −cR
1 1

]
In section 2.4.2, the expression of the wave strengths vector δ has been established for general linear systems
of dimension 2 (see equation (2.70)):

δ = 1
cR + cL

[
cR∆F + ∆v
cL∆F −∆v

]
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leading to the solution Q between the two discontinuous waves:

Q = QL + δ1R1 =
[
vL
FL

]
+ δ1

[
cL
1

]
or Q = QR − δ2R2 =

[
vR
FR

]
− δ2

[
−cR

1

]
Substitution of δ1,2 from the second equations into the first provides straight line equations in the phase plane
(F, v):

v = vL + cL(F − FL) ; v = vR + cR(FR − F )

The intersection of those straight lines in the phase plane corresponds to the approximate solution. Figure
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Figure 2.13: Comparison of approximate (dashed lines) and exact (solid lines) solution for
a one-dimensional strain problem in a Saint-Venant-Kirchhoff hyperelastic material

2.13 shows comparisons of approximate and exact solutions for various initial data, all leading to a 1-shock–
2-rarefaction exact solution. As expected, approximate and exact solutions are different and get closer for
small initial discontinuities, satisfying the linearization assumption QL ≈ QR. As a consequence, a big initial
discontinuity is considered in figure 2.13a so that the approximation error is larger than that of figure 2.13b for
which initial data are based on a weak jump.

2.6 Conclusion
It has been seen in this chapter that solid dynamics balance equations can be written as a first order hyper-
bolic system whose theory has been recalled in section 2.1. Indeed, the thermodynamics framework assuming
generalized standard materials combined with conservation laws allowed in section 2.2 the building of conser-
vative or quasi-linear forms. Those systems of partial differential equations admit non-complex eigenvalues and
independent eigenvectors provided that some requirements on the stored energy function are satisfied (positive
definiteness of the acoustic tensor). Then, the characteristic analysis of the quasi-linear form in section 2.3
enabled the highlighting of specific wave types involved in the solutions of dynamic problems, that is: discon-
tinuous, shock and simple waves. Even though exact solutions of linear and non-linear problems have been
developed in section 2.4, it is not possible in general, hence the introduction of approximate-state Riemann
solvers in section 2.5. This solution strategy will be used in what follows as an element of the Discontinuous
Galerkin Material Point Method, which is the object of the next chapter.
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Chapter 3

The Discontinuous Galerkin Material
Point Method

Introduction
It has been highlighted in the previous chapter that even though exact solutions of hyperbolic systems have been
derived, it is not possible in general. It is indeed well known that in addition to the mathematical complexity
of PDEs, physics often involves multidimensional problems in domains with complex geometries that cannot be
solved analytically. Numerical strategies may then be employed in order to compute an approximate solution
to such problems.

Since the early 50’s, plenty of numerical methods consisting mainly of mesh-based schemes, that is methods
subdividing a complex domain into elements of simple shapes in which an approximate solution is sought, have
been developed (finite element [1], finite volume [2] etc.). Problems involving very large deformations may lead,
however, to numerical difficulties when this kind of approach is used with a material description (Lagrangian
formulation) due to severe mesh distortions. Alternatively, Eulerian methods avoid mesh entanglement by
building an approximate solution of a PDE system on a fixed mesh that corresponds to a discretized control
volume. Nevertheless, interface tracking techniques and convection steps are required in Eulerian approaches in
order to follow the boundaries and transport internal variables, which is less convenient for solid than for fluid
mechanics because of history dependent constitutive behaviors.

The Material Point Method (MPM) [39] mixes the advantages of both Lagrangian and Eulerian methods
in order to circumvent mesh entanglement. However, the MPM suffers from numerical dissipation and oscilla-
tions that make it unable to accurately capture discontinuous waves traveling in solids. These limitations have
been the object of research that led to significant improvements of the method. Nevertheless, the MPM is still
unable to capture discontinuities. This is the purpose of this chapter.

In what follows, a brief historical review of developments that led to the MPM formulation is made and the
original formulation is recalled in section 3.1. Next, after emphasizing some shortcomings of the method, an
extension of the MPM to the Discontinuous Galerkin (DG) approximation is proposed in section 3.2. At last,
the numerical analysis of the Discontinuous Galerkin Material Point Method (DGMPM) is performed in
section 3.3 in terms of convergence and stability. These studies of the numerical scheme show that the Courant
number may be set to unity in specific cases, at the cost of first-order accuracy in velocity.

3.1 The material point method
The early developments that led to the original MPM started with the Particle-In-Cell method (PIC) for fluid
dynamics problems [18]. The novelty brought by PIC was the representation of a fluid by a collection of moving
particles inside a background control volume subdivided into cells. Every single particle is given a constant
mass and a position which is updated based on the velocity field resulting from the solution of the discrete
linear momentum balance equation on the fixed background mesh. On the other hand, energy and pressure
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are stored at cell centroids during the whole computation as element-wise constant fields (C0 approximation).
During the movement of Lagrangian points, fields are temporarily projected back and forth between the grid
and particles so that the latter can transport information from one cell to another. This procedure is referred to
as the convective phase. PIC thus enables the merging of Lagrangian and Eulerian techniques since the moving
particles with ascribed masses allow the simulation of problems involving several highly deformed fluids without
mesh distortion.

In spite of the good results provided by PIC, the numerical diffusion it suffers from has been addressed by
two different ways. First, the method has been extended to a fully Lagrangian version [40] by storing not only
mass and position but all the fields at particles. Second, a new projection procedure from the grid to particles
has been proposed in order to reach second-order accuracy in space of the convective phase [41]. Rather than
ascribing cell velocity to particles as done in PIC, Lagrangian point velocities are updated based on the change
of linear momentum resulting from the solution of the discrete system. Merging those two improvements yielded
the so-called FLuid Implicit Particle method (FLIP) [42]. This approach enables the reduction of numerical
diffusion but introduces noise in the vicinity of discontinuities [19]. It is worth noticing that in this new PIC
formulation, the background mesh is used for solving balance equations only, thus providing an adaptive feature
to the numerical scheme.

Even though particles carry the whole history of the problem, FLIP has been essentially used until the 90’s
to model history-independent constitutive models which were dealt with at the grid level. The first application
of the method to history-dependent materials was made in the context of solid mechanics [39]. Lagrangian
particles are then seen as material points since they are used to store every field of the problem and to compute
constitutive equations, thus leading to the Material Point Method that is derived hereinafter.

3.1.1 Derivation of the MPM
Consider a solid domain with volume Ωt bounded by the surface ∂Ωt, subject to traction forces and prescribed
velocity on its boundaries within the time interval τ = [0, T ]:

σ · n = T d on ∂Ωσt
v = ṽ on ∂Ωvt

where n is the outward normal vector to ∂Ωt and the set of boundaries satisfies ∂Ωt = ∂Ωσt ∪ ∂Ωvt .

Weak formulation of the continuum problem

The weak form of the Eulerian balance equation of linear momentum (2.27) is written based on the Galerkin
approach and the following function spaces:

V 1 = {u ∈ H1(Ωt)} ; V 1
h = {u ∈ V 1|u = ṽ on ∂Ωvt } ; V 1

h,0 = {u ∈ V 1
h |u = 0 on ∂Ωvt }

where H1(Ωt) denotes the Sobolev space [1, Ch.4], [43, Ch.1]. Multiplication of equation (2.27) by a test function
w ∈ V 1

h,0 and integration over Ωt yields, after integration by parts, the following weak form:

Find v ∈ V 1
h such that∫

Ωt
ρv̇ ·w dv +

∫
Ωt
σ : ∇w dv −

∫
∂Ωσt

T d ·w ds =
∫

Ωt
ρb ·w dv ∀w ∈ V 1

h,0,∀ t ∈ τ
(3.1)

The MPM discretization

The continuum body is discretized into a set of Np material points in an arbitrary Cartesian grid. The grid is here
supposed to be made of Nn nodes and E non-overlapping cells or elements. The set of faces separating cells that
contain particles and empty ones defines the boundary of the mesh (see figure 3.1 for a two-dimensional case).
Analogously to the Finite Element Method (FEM) [1], the velocity is approximated on the MPM background
mesh by:

v(x, t) = Sj(x)vj(t) (3.2)
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Figure 3.1: Representation of a continuum body by a set of material points in R2.

where vi is the velocity of the ith grid node, and Si(x) the (linear) shape function attached to it. One feature
of the original MPM is that the mass density is approximated in the grid based on the mass carried by each
material point:

ρ (x, t) =
Np∑
p=1

mp δ(φ(Xp, t)− x) =
Np∑
p=1

mp δ(xp − x) (3.3)

where the Dirac delta function δ is often referred to as the characteristic function of material points, and xp is
the position of the pth particle. In what follows, the dependence on time will be omitted for simplicity and p
and (i, j) stand respectively for material points and nodes.

By introducing successively in the weak form (3.1) the specific Cauchy tensor ρσ̄ = σ and the approximation
of mass density (3.3), the integration property of the delta function allows writing:

Find v ∈ V 1
h such that

Np∑
p=1

mp [v̇(xp) ·w(xp) + σ̄(xp) : ∇w(xp)] =
Np∑
p=1

mpb(xp) ·w(xp) +
∫
∂Ωσt

T d ·w ds ∀w ∈ V 1
h,0,∀ t ∈ τ

Then, with the finite element approximation (3.2), the weak form reads:

Find v ∈ V 1
h such that

wi

Np∑
p=1

mp

[
SipSjpv̇

j + ∇Sip · σ̄p
]

= wi

 Np∑
p=1

mpSipb
p +

∫
∂Ωσt

Si(x)T d ds

 ∀w ∈ V 1
h,0,∀ t ∈ τ

(3.4)

in which Sip = Si(xp) and σ̄p = σ̄(xp). Next, the arbitrariness of the test function w leads to the semi-discrete
equation in matrix form:

Mij v̇
j = f iint + f iext (3.5)

where the definition of the mass matrix Mij and internal and external forces vectors f iint and f iext are:

Mij =
Np∑
p=1

mpSipSjp (3.6a)

f iint = −
Np∑
p=1

mp∇Sip · σ̄p (3.6b)

f iext =
Np∑
p=1

mpSipb
p +

∫
∂Ωσt

Si(x)T d ds (3.6c)

In addition, note that particles play the role of integration points in the semi-discrete form so that the mass
matrix depends on the positions of material points in the grid and must be computed at each time step. Hence,
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the MPM can be seen as an extension of FEM with moving Gauss’ points. However, this quadrature rule
results in a consistent mass matrix Mij that may be singular when only one material point lies in an element
due to reduced integration. The use of a linear combination of the (positive-definite) diagonally lumped mass
matrix ML

i =
∑
p Sipmp, and the (positive semi-definite) consistent mass matrix is then recommended [44].

Nevertheless, since no parameter values are prescribed for this combination, the lumped mass matrix is widely
used in MPM simulations in spite of additional dissipation of kinetic energy it introduces [19].

At last, system (3.5) is solved for nodal accelerations v̇i, from which time integration allows updating nodal
velocities. Hence, the time interval τ is discretized in NT sub-intervals of size ∆tn such that

∑NT
n=1 ∆tn = T

and time integration is performed with an explicit forward Euler algorithm. The discrete equations are thus
written:

vi,n+1 − vi,n
∆tn = v̇i (3.7)

where the superscripts •k,l denote the time step l at which the kth nodal field is evaluated.
Recall that the background grid inherited from FLIP is arbitrary so that fields must be projected between

particles and nodes to (i) solve the linear system (3.5) and (ii) advect the solution by moving material points.
The first mapping step, required to build the discrete form, aims at satisfying the conservation of linear mo-
mentum:

ML,n
i vi,n =

Np∑
p=1

Sipmpv
p,n (3.8)

that must be solved for every vi. Once the nodal accelerations are calculated from system (3.5), nodal velocity
increments can be computed to update the velocity of each material point by following FLIP approach [41]:

vp,n+1 = vp,n + ∆tn
Nn∑
i=1

Sipv̇
i (3.9)

On the other hand, updated nodal velocities resulting from the solution of (3.7) are used to update the particle
positions:

xp,n+1 = xp,n + ∆tn
Nn∑
i=1

Sipv
i,n+1 (3.10)

Remark 9 Equations (3.9) and (3.10) lead to a double definition of the velocity since the time derivative of
the displacement of a given particle does not correspond to its velocity. This can be seen in a finite differences
sense by combining equations (3.10) and (3.7):

xp,n+1 − xp,n
∆tn =

Nn∑
i=1

Sipv
i,n+1 =

Nn∑
i=1

Sip
(
vi,n + ∆tv̇i

)
(3.11)

Next, on gets from equation (3.9):

∆tn
Nn∑
i=1

Sipv̇
i = vp,n+1 − vp,n

which, once introduced in (3.11), yields:

xp,n+1 − xp,n
∆tn =

Nn∑
i=1

Sipv
i,n + vp,n+1 − vp,n

Considering the mapping (3.9), the right-hand side of this equation does not identify to the updated material
point velocity, it then comes out that ẋp,n+1 6= vp,n+1.

The computation of constitutive equations is performed at material points within the MPM, thanks to the
updated nodal velocity field and the gradient of the shape functions. One has therefore some freedom since
stress can be updated right after either the resolution of (3.7) or the projection (3.8). The first option yields
the Update Stress Last (USL) algorithm while the second implementation is called Update Stress First (USF)
[45].
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Boundary conditions enforcement

Writing the weak form of linear momentum balance on the grid implies that Neumann boundary conditions
are enforced on nodes through the external forces vector (3.6c). Next, since deformation gradient is updated
by means of the nodal velocity field, Dirichlet boundary conditions are also dealt with at nodes. For USL, it is
done once the solution is updated on the grid so that stresses can be computed and material point kinematics
can be updated. On the other hand, the USF formulation first requires applying Dirichlet boundary conditions
to compute the stress, and then again after solving discrete equations for particle kinematics [46]. Furthermore,
the enforcement of boundary conditions is still a challenging aspect of the material point method (as the other
mesh-free methods) for problems involving complex geometries, see for instance [47].

Solution scheme summary

All the ingredients derived above are now summarized to write the procedure followed within the MPM for one
time step. Position and velocity vectors xn and vn are supposed known at every material point that discretize
the continuum body in a computational grid at time tn. USL formulation further requires the knowledge of the
specific stress tensor σ̄n at material points. The MPM solution scheme then consists of the following steps:

(a) Computation of the consistent and lumped mass matrices as well as external forces (Neumann boundary
conditions) from equations (3.6a) and (3.6c).

(b) Projection of fields to the grid (3.8) and enforce Dirichlet boundary conditions on the nodal velocity.
USF formulation: enforcement of Dirichlet boundary conditions on the mesh and integration of consti-
tutive equations so that σ̄n is computed at material points.

(c) Evaluation of internal forces from equation (3.6b).

(d) Solution of the semi-discrete and discrete forms (3.5) and (3.7) so that nodal accelerations v̇i and updated
velocities vi,n+1 are determined. Enforcement of Dirichlet boundary conditions.

(e) Update material point velocities and positions with equations (3.9) and (3.10) respectively. At this point
the mesh has virtually moved, but since fields have been transferred back to particles, the underlying
grid can be discarded and rebuilt for computational convenience, thus involving the projection (b) at the
subsequent time increment.
USL formulation: computation of constitutive equations so that σ̄n+1 is stored at material points.

3.1.2 Other Lagrangian formulations of the MPM
The above formulation of the MPM, which is widely used, provides a material description of the motion while
being based on Eulerian quantities. Alternatively, one can solve a discrete system written on a reference con-
figuration, provided the use of a suitable stress measure [44]. Although both formulations lead to a material
description of the deformation, they are distinguished hereinafter by referring to them as the Eulerian for-
mulation and the Lagrangian formulation respectively. The derivation of the latter approach is now briefly
recalled.

Discretized equations

An approximate solution of the balance equation of Lagrangian linear momentum is sought within the time
interval τ = [0, T ], in a solid with volume Ω0 and boundary ∂Ω0 in the reference configuration. The body is
subject to traction forces and prescribed velocity on its boundaries:

Π ·N = T d,0 on ∂ΩΠ
0

v = ṽ on ∂Ωv0
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where N is the outward normal vector to ∂Ω0 and the set of boundaries satisfies ∂Ω0 = ∂ΩΠ
0 ∩ ∂Ωv0. Thus, the

weak form of equation (2.26) is written by means of the Galerkin method. After integration by parts, one gets:

Find v ∈ V 1
h such that∫

Ω0

ρ0v̇ ·w dv +
∫

Ω0

Π : ∇0w dv −
∫
∂ΩΠ

0

T d,0 ·w ds =
∫

Ω0

ρ0b ·w dv ∀w ∈ V 1
h,0,∀ t ∈ τ

The solid is represented in the reference configuration with a collection of Np material points whose masses,
combined with the Dirac delta function, define the reference mass density: ρ0(X) =

∑Np
p=1mpδ (Xp −X).

Thus, the specific PK1 stress tensor ρ0Π̄ = Π is introduced so that the weak form reads:

Find v ∈ V 1
h such that

Np∑
p=1

mp

(
v̇p ·wp + Π̄p : ∇0w

p
)
−
∫
∂ΩΠ

0

T d,0 ·w ds =
Np∑
p=1

mpb
p ·wp ∀w ∈ V 1

h,0,∀ t ∈ τ

Next, shape functions defined at nodes of a background grid and arbitrariness of the test field w lead to the
semi-discrete form:

Mij v̇
j = f iint + f iext (3.12)

Since the particles are considered as integration points, the diagonally lumped mass matrix is used in order
to circumvent an eventual singularity. Hence, the lumped mass matrix and forces vectors involved in the
semi-discrete system (3.12) equation read:

ML
i =

Np∑
p=1

mpSip (3.13a)

f iint = −
Np∑
p=1

mp∇0Sip · Π̄
p (3.13b)

f iext =
Np∑
p=1

mpSipb
p +

∫
∂ΩΠ

0

Si(x)T d,0 ds (3.13c)

At last, the explicit time discretization of equation (3.12) yields the discrete system that is solved at nodes
to advance the velocity from time increment tn to tn+1:

ML
i

vj,n+1 − vj,n
∆tn = f iint + f iext (3.14)

Solution scheme

Suppose that position and velocity vectors, as well as the specific PK1 tensor, are stored at material points at
time tn in the volume Ωn, that is: xp,n, vp,n and Π̄p,n are known ∀p = 1, ..., Np. In the reference configuration,
which may be defined as the the last computed configuration according to [44], one first has to compute the
mass matrix (3.13a). This updated Lagrangian formulation of the MPM bases the computation of the mass
matrix on the shape functions evaluated at particle positions xp,n. Alternatively, the reference configuration
may be kept constant during simulations so that the mass matrix is computed once and for all based on Xp.
It is however worth noticing that such a total Lagrangian formulation of the MPM does not, to our knowledge,
appear in the literature.

Next, analogously to the Eulerian formulation of the MPM, the mapping of the velocity from particles to
nodes aims at ensuring the conservation of Lagrangian linear momentum by solving the following system for
the nodal velocities:

ML
i v

i,n =
Np∑
p=1

Sipmpv
p,n
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Once the force vectors are built from equations (3.13b) and (3.13c), acceleration and velocity are computed
on the grid by successively solving systems (3.12) and (3.14). Then, according to the FLIP mapping (3.9),
these fields are used to update the material point kinematics (i.e. compute vp,n+1 and xp,n+1). Moreover,
the gradient of the shape functions provides the deformation gradient thanks to the following explicit time
discretization:

F p,n+1 − F p,n
∆t = ∇0v

p,n+1 (3.15)

The above equations yield directly the updated deformation gradient for the total Lagrangian formulation. On
the other hand, the use of the velocity gradient tensor is made in the updated Lagrangian formulation, which
is approximated as:

∇nv ≈
Np∑
p=1

∇Sip(xp,n)⊗ vi,n

where ∇n (•) = ∂v
∂x

∣∣
x=φ(X,tn) denotes the gradient operator in the configuration Ωn. The chain rule then allows

identifying this tensor in the right-hand side of equation (3.15):

∇0v
p,n+1 = ∇nv

p,n+1 · ∂φ(X, tn)
∂X

= ∇nv
p,n+1 · F p,n

so that the deformation gradient at time tn+1 in the updated Lagrangian formulation results from:

F p,n+1 − F p,n
∆t = ∇nv

p,n+1 · F p,n

Finally, constitutive equations can be dealt with at the particle level. Note that the choice between USL and
USF algorithms for the integration of constitutive equations also arises with Lagrangian formulations developed
above.

Although the material point method presented above has been successfully applied to a wide range of
complex engineering problems involving finite deformations [48], this approach suffers from limitations which
are discussed below.

3.1.3 Shortcomings of the MPM
The grid-crossing instability

The research on MPM mainly focused so far on the instability arising from the computation of internal forces
when material points move from one cell to another, the so-called grid-crossing error [49]. While particle
positions have no influence in total Lagrangian approaches, the discontinuity of the gradient the of shape
functions across element interfaces yields tremendous noise in the numerical solution of both Eulerian and
updated Lagrangian MPMs. The Generalized Interpolation Material Point Method (GIMP) addresses
this issue by modifying the particle characteristic function, thus widening the domain of influence of material
points [49]. By doing so, every particle is given a domain having a constant shape or not, that must be tracked
during the computation, leading respectively to the uniform GIMP (uGIMP) or contiguous particle GIMP
(cpGIMP) formulations [50]. In the cpGIMP algorithm, diagonal entries of the deformation gradient are used
to update the ”shapes” of particles. However, these methods involve other difficulties related to the tracking
of the deforming domains of material points in the Eulerian grid, and may also suffer from mesh entanglement
[51]. The Convected Particle Domain Interpolation (CPDI) [52], accounts for shear deformations and
rotations of particle domains and also considers alternative grid basis functions, thus providing an improvement
of GIMP. Other approaches consisting in the direct modification of the approximation basis have then been
followed to tackle the grid-crossing error. First, since the midpoint rule leads to significant quadrature error for
discontinuous functions over particle domains, the use of quadratic or cubic B-Spline as nodal shape functions
has been proposed in [53]. Then, the B-Spline Material Point Method (BSMPM) [54], based on continuous
gradients, allows circumventing the grid-crossing instability. Second, the classical approximation basis is used
and modified gradients with extended supports are introduced in the Dual Domain Material Point Method
(DDMPM) [51]. BSMPM and DDMPM both solve the grid-crossing error by widening the domain of influence
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of material points since B-Spline functions span more cells than Lagrange polynomials, and the support of the
modified gradient of DDMPM is larger than that of the shape functions.

Remark 10 Since it enables to get rid of the grid-crossing instability, the total Lagrangian formulation will be
used for all applications of the MPM in this work.

The back-mapping instability

Numerical oscillations that are due to the updating of the velocity field at material points [19] appear in the
MPM solution, even for problems that do not involve the grid-crossing instability. Although a total Lagrangian
formulation is considered, such a mapping of the velocity is required in order to, for instance, employ mesh-
adaption techniques. As an illustration, consider a one-dimensional elastic bar of length L = 6m with Young’s
modulus E = 200GPa and mass density ρ = 7800 kg ·m−3 within the infinitesimal theory. The bar is initially
in a free stress state and Riemann-type initial velocities are prescribed along the bar, that is: v = v0 > 0
for x ∈ [0, L/2[ and v = −v0 for x ∈]L/2, L]. Both ends of the bar are traction free so that this problem is
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equivalent to an impact of two elastic bars moving toward each other. The bar is discretized by using the MPM
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in a computational grid composed of 50 regular cells, each containing either one or two material points (1ppc or
2ppc). Single material points are centered in cells while particles sharing an element are placed symmetrically
with respect to elements centers and are regularly spaced. The exact solution of this problem (see section
2.4.2) consists of two elastic discontinuities emanating from the middle of the bar and propagating leftward and
rightward. In figure 3.2, numerical results provided by the USL and USF implementations of the MPM are
compared to the exact solution before reflection of the waves on the boundaries. Note that here and in what
follows, the stress and the velocity are extracted at material points.

Figures 3.2a and 3.2b show that both USL and USF solutions oscillate once the elastic front passed. Those
oscillations are much more significant in the USF solutions regardless of the number of particles used. Indeed,
the noise in USL results quickly reduces so that the correct stress level is reached in the middle region of the
bar. Moreover, even though the 1ppc and 2ppc discretizations provide different results (slightly different for
USL), neither of them enables the removal of oscillations. Figure 3.2c shows, on the other hand, the evolution
of numerical total energies resulting from an MPM approximation of kinetic and strain energies:

ekin = 1
2

∫
Ω
ρv · v dΩ ≈ 1

2

Np∑
p=1

mpv
p · vp

estrain = 1
2

∫
Ω
ρσ̄ : ∇u dΩ ≈ 1

2

Np∑
p=1

mpσ̄
p : ∇up

One can see that the USL formulation dissipates more energy than the USF for this problem. These results
differ from observations made in [45] in which no significant differences for problems involving smooth solutions
are noticed. At last, figure 3.3 shows the numerical velocities at various times. The same observations as before
are made by looking at figures 3.3a and 3.3b, namely numerical oscillations in both USL and USF solutions with
bigger peaks in the USF one. Furthermore, a notable numerical artifact that prevents the proper assessment of
the velocity occurs at the middle of the bar when two particles per cell are used. This can be partially explained
by the oscillating stress field that introduces noise in internal forces as well. However, the velocity field given
by the USL computation ”locks” in the central region although the stress field converges in time to the exact
solution (figures 3.2a and 3.2b), which implies that this issue is not due to the computation of internal forces,
but most likely to the convective phase.
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Figure 3.3: Comparison between exact, USF and USL velocities of the bars impact problem
for various discretizations.

Since the back-mapping is known to be responsible for noise introduced in the MPM solution [19], we propose
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to project the velocity onto particles by a simple interpolation, as it is done in PIC:

vp,n+1 =
Nn∑
i=1

Sipv
i,n+1 (3.16)

Particle positions are next updated as in FLIP, with the nodal velocity (3.10), thus amounting to deforming
Lagrangian particles with the grid and exactly satisfying the relation ẋp = vp, which is not the case in MPM. It
is then worth noticing that the weak form (3.4) is based on the definition (3.16), this projection seems therefore
more consistent.

The comparison between MPM using either PIC or FLIP mapping and exact velocities is plotted in figures
3.4a and 3.4b As can be seen, the PIC projection eliminates the noise in numerical solutions as well as the
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Figure 3.4: Comparison between USL algorithm with classical or PIC mapping and exact
velocities of the bars impact problem for various discretizations.

velocity locking in the central region of the bar. In addition, stress results provided by the USL using the
PIC mapping are also close to the exact solution (see figures 3.5a and 3.5b). However, the resolution of
discontinuities (i.e. the sharpness of the solution) allowed by the ”modified” USL–MPM is slightly lower than
that of the original formulation owing to numerical dissipation as shown in the energy plot in figure 3.5c. This
result was expected since the FLIP projection was preferred to PIC one for it enabled a reduction of numerical
dissipation [41].

3.1.4 Strategy for reducing oscillations and diffusion
We are concerned with the accurate solution of hyperbolic problems in solids undergoing finite deformations.
Although the MPM enables an efficient management of large strains, the oscillations it suffers from do not
allow accurate capture of waves propagating in a medium. The above numerical simulations however suggest
that noise can be removed by using an interpolation instead of an update of material point velocity, at the
cost of additional diffusion. Thus, the use of a linear combination of PIC and FLIP projections to update
particles velocity was proposed in [55], which can be seen as an artificial damping. Further, a tunable mapping
procedure based on a parameter m that completely eliminates noise in the MPM solution has been proposed
in the Extended PIC of order m (XPIC(m)) [56]. A classical interpolation is selected for m = 1 whereas the
mapping tends to FLIP as m → ∞ while avoiding oscillations without dissipating energy. Nevertheless, the
method is still unable to capture discontinuities due to numerical diffusion.

The point of view adopted in this thesis is that numerical diffusion is essentially due to the projection of
fields from nodes to particles which spreads the information. Hence, a reduction of the domain of influence of
nodes might result in lower dissipation. As a consequence, the reintroduction of the PIC mapping combined
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with the Discontinuous Galerkin approximation (DG) within the MPM is proposed here. These two features
are expected to respectively avoid spurious oscillations and limit numerical diffusion.
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3.2 Extension of the MPM to discontinuous Galerkin approximation

After a brief historical review of DG methods, the Discontinuous Galerkin Material Point Method is derived
within the large strain framework with a total Lagrangian formulation. It will be seen that this new numerical
approach makes use of the approximate-state Riemann solver developed in section 2.5 to compute intercell
terms whose purpose is to connect elements together. At last, the DGMPM solution scheme will be provided
for hyperbolic problems.

3.2.1 The discontinuous Galerkin approximation

The DG approximation was first introduced in the context of the finite element method for the solution of
the neutron transport equation [9]. This hyperbolic equation describes the advection of the angular flux which
describes the probable number of neutrons at a given location. Since neutrons can lie in a cell of a finite
element mesh while its neighbors are empty, the need for a discontinuous approximation of the primal field
across element interfaces within a FEM context arises. Hence, an approximate solution was sought by the
Galerkin method, in a domain discretized with triangular elements by means of Lagrange polynomials that can
be discontinuous across the cells. This approach amounts to duplicate the nodes of the mesh so that the support
of each shape function reduces to one finite element. This early work have launched a series of developments
of the Discontinuous Galerkin Finite Element Method (DGFEM) for parabolic [57], elliptic [58, 59], and
hyperbolic problems [10, 13]. Indeed, the DGFEM gained more and more popularity since the 80’s, even for
problems that do not involve discontinuities, on account of its ability to locally handle high-order approximation
and its highly parallelizable nature. Research conducted in the context of hyperbolic problems, of particular
interest here, enabled the introduction of numerical tools developed for Finite Volume Methods (FVM) within
finite element schemes. Namely, the use of suitable slope limiters [60] based on the total variation [4] enables
the formulation of flexible numerical methods in which good resolution of discontinuities is possible without
destroying the accuracy in smooth regions. Furthermore, these approaches can easily handle mesh-adaption
strategies thanks to the relaxation of the fields continuity. Nevertheless mesh tangling problems do not vanish.
Thus, the introduction of DG approximation in the MPM should lead to a numerical method that benefits from
both FEM and FVM features and enables local high-order approximation while avoiding mesh entanglement
instabilities.

3.2.2 Derivation of the DGMPM

Consider again a continuum solid body with volume Ωt within the time interval τ . The DGMPM is expected
to provide a material description of a deformation so that an approximate solution of a Lagrangian system of
conservation laws written in conservative form is sought. Recall that such a conservative form for some vector
of conserved quantities U reads, in Cartesian coordinates:

∂U

∂t
+

D∑
α=1

∂F ·Eα

∂Xα
= S ∀X, t ∈ Ω0 × τ (3.17)

The DGMPM discretization

As for MPM, a continuum body Ωt is discretized within the time interval τ into a set of Np material points in
an arbitrary Cartesian grid made of Nn nodes and E non-overlapping cells of volume Ωe. The boundary of the
domain is again defined by the set of edges separating empty cells from those containing particles (see figure
3.1 for a two-dimensional example). In addition, the reference mass density is described in the computational
grid by means of the Dirac delta function and particle masses:

ρ0 (X) =
Np∑
p=1

mpδ (Xp −X) (3.18)
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In a similar manner to FEM and MPM, the vector of conserved quantities is approximated on the mesh by:

U(X, t) =
Nn∑
i=1

Si(X)Ui(t) (3.19)

with Ui the vector of conserved quantities at node i, and Si(X) the shape function attached to it. Note that
the convention of denoting particle and nodal fields by p and (i, j) still holds in this section.

Weak formulation of the continuum problem

Multiplying equation (3.17) by a test function V yields the weak formulation of the problem:

Find U ∈ V 1
h such that∫

Ωt

∂U

∂t
V dΩ +

∫
Ωt

∂Fα
∂Xα

V dΩ =
∫

Ωt
SV dΩ ∀V, t ∈ V 1

h × τ

The key idea of DG methods is to allow the jump of fields across mesh elements faces by using broken polynomial
spaces for the approximate solution [43, Ch.1]:

V k = {V ∈ Hk(Ωe)} ; V k
h = {V ∈Pk(Ωe)} ⊂ V k

with Hk(Ωe), the Sobolev space and Pk(Ωe), the space of polynomials of degree k in Ωe. We restrict our
attention here to linear polynomials (k = 1). These broken polynomial spaces allow the rewriting of the weak
form element-wise. After integration by parts, one gets:

Find U ∈ V 1
h such that∫

Ωe

∂U

∂t
V dΩ−

∫
Ωe

Fα
∂V

∂Xα
dΩ +

∫
∂Ωe

(F ·N)V dΓ =
∫

Ωe
SV dΩ ∀V, e, t ∈ V 1

h × [1, E]× τ

where ∂Ωe is the boundary of the eth element with outward normal vector N . The dot operator F ·N denotes
the inner product between the outward normal vector and every component of the flux, thus yielding the intercell
flux, written FN for simplicity. Next, the introduction of specific fields:

U = ρ0Ū ; Fα = ρ0F̄α ; S = ρ0S̄

combined with the definition of mass density (3.18), leads to the following Lagrangian formulation:

Np∑
p=1

mp

[
∂Ū

∂t
V− F̄α

∂V

∂Xα
− S̄V

]
|X=Xp

+
∫
∂Ωe

FNV dΓ = 0 ∀V, e, t ∈ V 1
h × [1, E]× τ (3.20)

As a first development step of the method, only the total Lagrangian formulation is considered in order to
eliminate the grid crossing instability.

Introduction of the DGMPM approximation (3.19) and arbitrariness of the test field in the weak form (3.20)
finally provide the semi-discrete system that must be solved on the grid:

Np∑
p=1

[
SipmpSjp

∂Ū
j

∂t
− ∂Sip
∂Xα

mpSjpF̄
j

α − SipmpS̄
p

]
+
∫
∂Ωe

Si(X)FN dΓ = 0 ∀ e, t ∈ [1, E]× τ (3.21)

or, in matrix form:

Mij
∂Ū

j

∂t
−Kα

ijF̄
j

α − Si + F̂
i

= 0

Here again, particles play the role of integration points in volume integrals owing to the Dirac delta function.
Hence, the consistent mass matrix Mij may also be singular due to reduced integration so that the diagonally
lumped mass matrix ML

i is used.
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Remark 11 An extension of PIC to DG approximation for the solution of Maxwell’s equations is proposed in
[61] and [62] in which different projections of fields between the grid and particles are used. Although those
methods allow local high-order approximation, particles do not carry every field so that the DGPIC, as the
original PIC, cannot be considered as a fully Lagrangian approach. In addition, the use of the Gauss quadrature
rule for volume integrals of the weak form makes the approach different from that developed in the following.

The discrete system is derived by discretizing the time interval τ into Nt subintervals and using the explicit
forward Euler method:

ML
i

Ū
i,n+1 − Ū

i,n

∆tn = Kα
ijF̄

j,n

α + Si,n − F̂
i,n

(3.22)

where again, the superscripts (•)k,l denote a field evaluated at node k and time step l. Note that in general the
source term S may depend on the vector of conserved quantities, hence the superscript n in equation (3.22).
Alternatively, a second-order Runge-Kutta (RK2) explicit time discretization may be employed, leading to the
following two-stage discrete form:

ML
i

Ū
i,n+1/2 − Ū

i,n

∆tn = 1
2

(
Kα
ijF̄

j,n

α + Si,n − F̂
i,n
)

ML
i

Ū
i,n+1 − Ū

i,n

∆tn = Kα
ijF̄

j,n+1/2
α + Si,n+1/2 − F̂

i,n+1/2
(3.23)

Remark 12 We chose here one existing two-stage second order Runge-Kutta method among others. See for
instance [2, Sec. 10.4.2] for a Total Variation Diminishing version of the RK2 time discretization.

3.2.3 Non-homogeneous hyperbolic system
Solid mechanics equations may lead to source terms in the conservative form even for neglected body forces.
For instance, the writing of equations in cylindrical and spherical coordinates systems, in which the gradient
operators involve terms that are not derivatives, yields a right-hand side in system (3.17) that depends on U

and called a geometric source term [2, Ch.17]. This is also the case for relaxation systems as that identified in
section 2.2.4 for elasto-viscoplasticity. In the latter case, a small relaxation time τ compared to the time scale
governed by the convective part (i.e. the characteristic speeds of the problem) leads to a stiff system [63].

The solution of this class of problems on underresolved grids, that is τ � ∆t, requires the use of asymp-
totically convergent, accurate and stable numerical methods in order to avoid nonphysical results [64]. Thus,
the numerical scheme must enable the use of underresolved grids whose time step is dictated by the Courant-
Friedrichs-Lewy (CFL) stability condition. The method also has to be asymptotic preserving in the limit τ → 0
for fixed ∆t and ∆X [63], that is the limiting scheme is a good discretization of the equilibrium system even if
the source term is underresolved. At last, the order of accuracy in the stiff limit and stability at the discrete
level must be preserved [65], and the numerical scheme must be able to preserve the steady state numerically
[66].

A commonly used approach to solve non-homogeneous systems consists in solving alternatively a homoge-
neous PDE system and a system of ODEs, namely:

∂U

∂t
+

D∑
α=1

∂F ·Eα

∂Xα
= 0 (3.24a)

dU

dt
= S (3.24b)

Equation (3.24a) is solved by applying the DGMPM discretizations (3.22) or (3.23), while the solution of
equation (3.24b) is determined by some ODE solver. If the discrete solution operators associated with equations
(3.24a) and (3.24b) for one time step are denoted by H(∆t) and F (∆t) respectively, the discrete solution reads
[21]:

Un+1 = F (∆t)H(∆t)(Un) (3.25)
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The fractional-step method (3.25), known as Godunov’s splitting, is only first–order accurate in time when H
and F are at least first–order accurate solution operators. On the other hand, Strang splitting:

Un+1 = F (∆t/2)H(∆t)F (∆t/2)(Un) (3.26)

is second-order accurate if each solution operator is at least second-order accurate [2].
Two sub-problems are thus solved separately at each time step, the solution of the first one being used as

initial conditions in the second. Thus, fractional-step methods (3.25) and (3.26) enable to take advantage of
efficient tools already developed for homogeneous systems of conservation laws and of ODE solvers. However,
it is worth noticing that even though the use of an implicit solver for equation (3.24b) eliminates the influence
of the relaxation time on the CFL condition, an L-stable solver as the Euler implicit method [67] is required to
compute the correct solution.

3.2.4 Intercell fluxes
The DGMPM solution scheme reduces to the discrete solution operator H(∆t), or H for simplicity, which in
turn, aims at finding approximate similarity solutions since it only solves homogeneous systems (recall remark 4
in section 2.3). For a DGMPM space-time discretization made of Np material points and NT time increments,
those solutions can be written:

Qp,n+1 = H
(
Qj,n

)
p = 1..., Np ; j = 1..., Nn ; n = 0, ..., NT − 1 (3.27)

where the set of nodes j having an influence on Qp defines the stencil of the method.

Definition 4 A numerical scheme is said monotone if it satisfies:

∂H

∂Qj
≥ 0 ∀j

The following statement then holds:

Theorem 3 (Godunov [20]) Monotone linear numerical schemes can be at most first-order accurate.

Intercell fluxes of the weak form propagate information across cells by taking into account the different
values that fields can take on each side of the interface. DG methods for hyperbolic problems are based on
the requirement of ensuring monotonicity of the scheme for piecewise constant approximations [10]. Such a
numerical method is monotone for flux functions FN that are Lipschitz continuous, consistent and monotone,
namely, they must be E-fluxes [68]. One possibility, which is widely used and adopted here, is the Godunov flux
function.

The Godunov flux

The Godunov method [20] has been proposed in the context of finite difference schemes in which the piecewise
constant approximation of the solution naturally allows the definition of a local Riemann problem at cell
interfaces. That is, two cells i and i + 1 with interface having normal vector N , define a Riemann problem
in the direction XN = X ·N whose stationary solution is used to compute the intercell numerical flux F ·N .
The stationary solution U∗ is the similarity solution along the vertical characteristic in the (XN , t) plane of the
Riemann problem:

∂U

∂t
+ ∂FN
∂XN

= 0

U(XN , 0) =
{
UX−

N
if XN < 0

UX+
N

if XN > 0

(3.28)

where UX−
N

and UX+
N

are the states lying infinitely close to the interface in cells i and i + 1 respectively.
Godunov’s method hence allows accounting for the complete wave structure of the solution within the numerical
scheme. Since this method is known to be based on E-fluxes, intercell fluxes involved in boundary integrals of
the weak form of DG-methods can be computed as Godunov’s ones. To this end, Riemann problems are defined
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at cells faces by considering that initial data are piecewise constant even for high-order approximations. Note
that this strategy is also followed in FVM when high-order reconstruction techniques of the fields are used.

Let us consider as an illustration of the computation of interface fluxes within the DGMPM, the two-
dimensional case depicted in figure 3.6. One Riemann problem per interface is considered in order to avoid a
dramatic increase in computational times. Thus, by averaging nodal fields on each side of the interface, one
obtains mean downwind and upwind states UX−

N
and UX+

N
that correspond to the initial conditions of the Rie-

mann problem. Furthermore, as mentioned in section 2.5, the exact (time consuming) solution of the Riemann

1 2

4 3

1 2

4 3

XN

WL = W1+W4

2 WR = W2+W3

2

Figure 3.6: Duplication of nodes at an interface and building of initial conditions of the
Riemann problem (2D).

problem is not necessarily desired since only the stationary solution is kept. As a consequence, the station-
ary states are approximated here by means of an approximate-state Riemann solver, and the corresponding
Godunov fluxes are determined.

Remark 13 Hyperbolic systems having zero eigenvalues lead to stationary waves, propagating at zero celerity,
across which the solution of the Riemann problem may have discontinuities. In that case, the associated Godunov
flux is also discontinuous so that one stationary state must be considered on both sides of the characteristic.
This approach leads to the computation of two fluxes, each contributing to one cell only.

Recall that hyperelasticity and elastoplasticity conservative forms (equations (2.49) and (2.54)) involve
strains in the vector of conserved quantities, and stresses in the flux vector. Hence, the calculation of Go-
dunov fluxes requires the integration of constitutive laws that can be time-consuming for non-linear problems.
Nevertheless, the introduction of an auxiliary vector of conserved quantities Q and the Riemann problem it
provides:

∂Q

∂t
+ J ∂Q

∂XN
= 0

Q(XN , 0) =
{
QX−

N
if XN < 0

QX+
N

if XN ≥ 0

(3.29)

avoids the computation of constitutive equations. Indeed, the auxiliary vectors introduced in section 2.2.4 are
rearrangements of the flux components, that is FN (U) = LQ with L some localization matrix. Then, the
intercell flux is FN (U∗) = LQ∗ where Q∗ is the stationary solution of Riemann problem (3.29). Note that this
approach requires that stress as well as velocity and strain are projected back and forth between material points
and nodes within the DGMPM.

Remark 14 Moreover, solving Riemann problems for the auxiliary vector Q∗ does not avoid the integration
of constitutive equations on the grid when a multi-stage time integrator as the RK2 is used. Indeed, every
subsequent step 0 ≤ k ≤ 1 of the time integrator requires an initial auxiliary vector Qn+k, which is computed
from the vector of conserved quantities Un+k.

Transverse corrections

The method derived above for the computation of normal fluxes can be viewed as the Donor-Cell Upwind (DCU)
method [2] in which only contributions from upwind cells sharing an edge (in two dimensions) with the current
one are considered. For multidimensional problems waves can travel in several directions such that contributions
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coming from corner cells must be taken into account in order to improve accuracy and stability of the numerical
scheme. The Corner Transport Upwind (CTU) method [69] consists in considering contributions propagating
in bias and coming from upwind cells sharing only a node (in two dimensions) with another. This approach
allows improving the Courant condition especially for solid mechanics problems for which strain components
are coupled through Poisson’s effect. At each cell interface, one defines left-going and right-going fluctuations
as:

A−(∆U) = FN (U∗)−FN (UX−
N

) ; A+(∆U) = FN (UX+
N

)−FN (U∗)

Let’s consider the patch of grid cells shown in figure 3.7, and focus on the edge denoted (i) whose local

Ai,+(∆W)

Ai,−(∆W)

(i) N i

(k) (m)

(j) (l)

Nk

N j

Nm

N l

Bk,+Ai,−(∆W)

Bj,+Ai,−(∆W)

Bm,+Ai,+(∆W)

Bl,+Ai,+(∆W)

L R

T

Figure 3.7: Normal and transverse fluctuations defined from edge i.

normal vector is N i. The Riemann problem defined at this edge gives rise to normal fluctuations Ai,−(∆U)
and Ai,+(∆U) contributing to cells L and R respectively. These terms lead to the computation of transverse
fluctuations giving contribution to neighboring cells across edges (j) and (k) for cell L, and across edges (m) and
(l) for cell R. Transverse fluctuations are computed by projecting normal fluctuations onto the characteristic
basis associated with the Riemann problem (3.28) defined on the adjacent edge, hence the name transverse
Riemann solver. The spectral analysis of the corresponding Jacobian matrix, carried out in [31], leads to right
eigenvectors that are be written Ri

W hereinafter. The negative normal fluctuation is, for instance, decomposed
onto the characteristic basis associated with edge (j) as:

Ai,−(∆U) =
M∑
m=1

βmR
j,m
W

where R
j,m
W is based on the normal vector N j but also on different tangent moduli between grid cell L and its

neighbor T. Since only waves with positive characteristic speeds with respect to the orientation defined by the
outward normal vector to the considered edge will contribute to the transverse fluctuation, only the positive
operator B+ is used:

Bj,+Ai,−(∆U) =
M∑
m=1
cm>0

cmβmR
j,m
W (3.30)

with cm, the celerity of wave m. An additional numerical flux defined at edges is hence built from these
transverse fluctuations:

Fj,tran = ∆t
2∆Xj

Bj,+Ai,−(∆U)

which contributes to the flux between cell L and T (∆Xj being the length of edge (j)). In-going transverse
corrections must be counted positively while outgoing ones must be subtracted from intercell fluxes. At last,
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numerical fluxes computed at interfaces can be then integrated over cells faces in order to complete the discrete
system.

Remark 15 For linear elasticity, there is no need for an auxiliary vector of conserved quantities so that trans-
verse contributions are computed with the same eigenbasis as that of the approximate-state Riemann solver.

Boundary conditions enforcement

As in MPM [44, 70], boundary conditions (BC) are treated at nodes that compose the domain boundary. By
introducing ghost nodes on boundary interfaces, one can widen the use of the approximate-state Riemann solver
in order to enforce both Dirichlet and Neumann BC. Similarly to finite volumes [2], a state vector QG is ascribed
to those nodes so that the stationary solutions of Riemann problems are consistent with boundary conditions.
Dirichlet BC enforcement for instance consists of (i) setting stress and free velocity components at ghost nodes
equal to that of the associated interior node and (ii) solving the approximate Riemann problem for the velocity
that must be enforced on ghost nodes knowing the stationary one that is equal to that of the BC. The same
procedure holds for Neumann boundary conditions by interchanging velocity and stress.

Notice that the use of the auxiliary vector of conserved quantities so that state vectors contain stress allows
the easy enforcement of Neumann boundary conditions. Transverse corrections further require the introduction

Gc GB

GL N

Gc GB

GL N
Mesh nodes
Material points

Figure 3.8: Corner ghost nodes in a two-dimensional DGMPM mesh.

of corner ghost nodes equivalent to finite volume corner cells [2]. Consider the two-dimensional case depicted
in figure 3.8 in which boundary edges are represented by red lines. First, an inverse Riemann problem is solved
between the corner ghost node Gc and one regular ghost node, say GB , so that the stationary solution of the
Riemann problem between those ghost nodes corresponds to the boundary condition holding on the vertical
edge. Second, this procedure is repeated between the corner ghost Gc node and GL in order to enforce the
boundary condition holding on the bottom boundary between them.

Remark 16 The solution of the Riemann problem involving ghost nodes is made possible by extending material
properties of the adjacent cell so that the characteristic structure of the solution can be computed. This implies
that the deformation of interior nodes is duplicated at ghost nodes for problems such as hyperelasticity, whose
eigenstructure depends on the deformation gradient. Hence, for such problems ghost nodes may carry stress and
strain that are not related by constitutive equations. However, the deformation gradient at ghost nodes has no
physical sense and is only used to compute the correct wave speeds.

3.2.5 DGMPM solution scheme
Let us assume that the vector of specific conserved quantities Ū

n as well as the auxiliary vector Qn are known
at every material point that discretizes a continuum body Ω0, in a grid made of Nn nodes at a given time tn.
The computational procedure followed within the DGMPM between two time steps n and n + 1 can now be
summarized. We consider cases based on the use of an auxiliary vector, the others being only particular cases.
The procedure then reads:

(a) The lumped mass and pseudo-stiffness matrices ML
ij and Kα

ij of the semi-discrete form (3.21) are computed.
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(b) The discrete equation (3.22) and Riemann problems at cell interfaces (3.29) require a projection of fields
onto the grid:

ML
i Ū

i =
Np∑
p=1

SipmpŪ
p and ML

i Q
i =

Np∑
p=1

SipmpQ
p (3.31)

to be solved for each Ū
i and Qi respectively. The projection of fields from particles to nodes hence follows

the weighted least squares interpolation used in MPM.

(c) The specific flux vectors F̄
i

α involved in the equations are computed from Qi knowing ρ0, thus avoiding
the computation of constitutive equations.

(d) Enforce the boundary conditions on ghost nodes.

(e) Computation of interface fluxes:

1- Build the state vectors QX±
N

based on Qi,n where i denotes the nodes belonging to the face on both
sides of an interface.

2- Compute the stationary solution Q∗ by means of the approximate-state Riemann solver.
3- Calculate the corresponding Godunov flux FN (Q∗) by either using the DCU or the CTU approach.

(f) Advance the solution in time by solving the discrete equation (3.22) at each node.

(g) Back-mapping: as motivated at the end of section 3.1, the nodal updated solution is projected to material
points with the classical interpolation as in PIC:

Ū
p,n+1 =

N∑
i=1

SipŪ
i,n+1

(h) Material point kinematics and constitutive model: The new solution Ū
p,n+1 allows incrementing the

deformation ϕ(X, t) and updating stress components, which will be used in the auxiliary vector for the
next time step, through hyperelastic constitutive equations:

ϕp,n+1 = Xp + ∆tvp,n+1

Πp,n+1 = ∂Ψ
∂F

(F p,n+1)

The grid may then be discarded and reconstructed and in particular by means of adaptive algorithms
applied in the reference configuration, in order to improve wave front tracking in the current one. The
reconstruction of the grid is responsible for the presence of step (a).

Let’s now recall or highlight significant differences between the DGMPM and the original MPM schemes.
First, the use of conservation laws (3.17) instead of the momentum equation in the weak form implies that
both velocity and gradients are solved at nodes making this new approach close to finite volume methods,
which provides the same order of accuracy for both fields. Next, since the deformation gradient is no longer
calculated with shape function gradients, the task of choosing between USF and USL algorithms vanishes. In
that sense the DGMPM scheme is simpler. At last, the solution of Riemann problems at every edge of the
mesh increases computational time. Fortunately, the use of discontinuous Galerkin approximation makes this
numerical method highly parallelizable [10].

The numerical scheme derived above is analyzed in terms of stability and convergence in the next section.

3.3 Numerical analysis of the DGMPM
Following [71], the DGMPM discretization of scalar linear advection problems are now written in a finite differ-
ence sense. The equations thus obtained are the starting point for von Neumann linear stability analyses. First,
the one-dimensional problem is considered and the equations of the DGMPM space discretization combined
with both forward Euler and RK2 explicit time integrations are derived. Second, the two-dimensional equations
are written using the DGMPM space discretization along with the explicit forward Euler time integration only.
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3.3.1 One-dimensional stability analysis
Model equation - Space discretization

We consider the scalar linear advection equation for an arbitrary quantity q = ρq̄ moving at the constant speed
a ∈ R+∗ in a homogeneous one-dimensional medium of length l:

∂q̄

∂t
+ ∂f̄

∂X
= 0

with specific flux function f̄ = aq̄, leading to the quasi-linear form:
∂q̄

∂t
+ a

∂q̄

∂X
= 0 (3.32)

Equation (3.32) is discretized with the discontinuous Galerkin material point method. Thus, the medium
is divided with Np material points arbitrarily distributed in E two-node elements of constant length ∆X
(figure 3.9). The grid is such that at least one particle lies in every cell during the computation in order to
ensure that there is no hole in the bar. Moreover, periodic boundary conditions are considered to simplify the
analysis.

1 2

1

2k − 1 2k

k

2E − 1 2E

E

Figure 3.9: One-dimensional mesh made of E elements of constant length ∆X = l
E .

Since fields are carried by particles, we seek the scheme equation that gives the solution at a material point
for a given time step, with respect to the solutions at other particles at the prior time step. In this section,
Latin and Greek symbols are respectively devoted to nodes and material points. Since we consider here scalar
quantities, the information on nodes and particles can be written as subscripts without ambiguity with vector
components. In addition, to make the distinction between fields easier, upper and lower case Latin symbols are
used for particle and nodal fields respectively. Hence, the solution at material point α and time step n reads Q̄nα
whereas that of node i is q̄ni . Then, the cell containing the particle α will be denoted by c(α) so that the nodes
interacting with this particle are 2c(α) − 1 and 2c(α). At last, the linear shape functions defined in element
c(α) are:

S2c(α)−1(X) = X2c(α) −X
∆X S2c(α)(X) = X −X2c(α)−1

∆X X ∈
[
X2c(α)−1, X2c(α)

]
and Siα or Si,α correspond to the shape function of node i evaluated at the position of the αth material point.

Scheme equation: Euler time discretization

The method followed in order to write the scheme equation consists in tracing backward the numerical procedure
described in section 3.2 in order to get an expression of the form (3.27) for the material point α:

Q̄n+1
α = H

(
Q̄nβ
)

β = 1, .., Np
Quantities at time tn+1 are obtained by interpolating nodal solutions of the discrete equation (3.22) in the cell
containing the αth particle:

Q̄n+1
α = S2c(α)−1,αq̄

n+1
2c(α)−1 + S2c(α),αq̄

n+1
2c(α) (3.33)

The linear scalar advection equation leads to the interface flux function FN = (aq∗)N , where q∗ is the stationary
solution of Riemann’s problem at a cell interface and N = ±1 the outward unit normal. The discrete form
(3.22) thus reads for both nodes of cell c(α):

q̄n+1
2c(α)−1 = q̄n2c(α)−1 + ∆t

ML
2c(α)−1

(
K2c(α)−1,jaq̄

n
j − aρq̄∗2c(α)−1N2c(α)−1

)
q̄n+1
2c(α) = q̄n2c(α) + ∆t

ML
2c(α)

(
K2c(α),jaq̄

n
j − aρq̄∗2c(α)N2c(α)

) (3.34)
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where in a one-dimensional grid, the outward unit vectors are N2c(α)−1 = −1 and N2c(α) = 1. Discrete equations
(3.34) are then simplified by first considering that the mass density is defined in a cell as the ratio of total nodal
mass and the element volume:

ρ(X) =
ML

2c−1 +ML
2c

∆X =
∑Ncp
µ=1mµ

∆X , X ∈ [X2c−1, X2c]

where N c
p is the number of particles in cell c and mµ, the mass carried by the µth material point. For

homogeneous medium, we further assume that the mass is uniformly distributed between particles so that
the previous definition reduces to ρ = N c

pm
c/∆X, with mc the mass carried by particles lying in c. Second,

linear shape functions lead to the following the lumped mass matrix and pseudo-stiffness matrices:

ML
i =

Np∑
µ=1

Siµmµ = mc(i)
Np∑
µ=1

Siµ

K2c(α)−1,j =
Np∑
µ=1

∂S2c(α)−1,µ

∂X
mµSjµ = −mc(i)

Np∑
µ=1

Sjµ
∆X

K2c(α),j =
Np∑
µ=1

∂S2c(α),µ

∂X
mµSjµ = mc(i)

Np∑
µ=1

Sjµ
∆X

The discontinuous approximation basis moreover yields a bloc diagonal pseudo-stiffness matrix so that one can
write:

Kij q̄
n
j = Ki,2c(i)−1q̄

n
2c(i)−1 +Ki,2c(i)q̄

n
2c(i)

Third, a right-going wave (i.e. a > 0) leads to a stationary solution of the Riemann problem equal to the state
of the upwind node of an interface, that is:

q∗2c(α)−1 = ρq̄n2c(α)−2 = N c(α)
p

mc(α)

∆X q̄n2c(α)−2

q∗2c(α) = ρq̄n2c(α) = N c(α)
p

mc(α)

∆X q̄n2c(α)

Therefore, gathering all the previous considerations, equations (3.34) read:

q̄n+1
2c(α)−1 = q̄n2c(α)−1 −

a∆t
∆X


∑Nc(α)

p

µ=1

[
S2c(α)−1,µq̄

n
2c(α)−1 + S2c(α),µq̄

n
2c(α)

]
−N c(α)

p q̄n2c(α)−2∑N
c(α)
p

µ=1 S2c(α)−1,µ


q̄n+1
2c(α) = q̄n2c(α) + a∆t

∆X


∑Nc(α)

p

µ=1

[
S2c(α)−1,µq̄

n
2c(α)−1 + S2c(α),µq̄

n
2c(α)

]
−N c(α)

p q̄n2c(α)∑N
c(α)
p

µ=1 S2c(α),µ


(3.35)

where the volume flux contributions
∑Ncp
µ=1

[
S2c−1,µq̄

n
2c−1 + S2c,µq̄

n
2c
]

are written for simplicity fnc , and Courant
number a∆t/∆X arises. Introduction of these equations in the updated material point solution (3.33) leads
after some simplifications to:

Q̄n+1
α = S2c(α)−1,αq

n
2c(α)−1 + S2c(α),α

(
1− a∆t

∆X
N
c(α)
p∑

µ S2c(α),µ

)
qn2c(α) +N c(α)

p

a∆t
∆X

S2c(α)−1,α∑
µ S2c(α)−1,µ

qn2c(α)−2

+ a∆t
∆X

(
S2c(α),α∑
µ S2c(α),µ

− S2c(α)−1,α∑
µ S2c(α)−1,µ

)
fnc(α)

(3.36)

Then, the solution at nodes and time step n in equation (3.36) result from the projection between particles
and the grid (3.31):

q̄ni =
∑
β SiβmβQ̄

n
β∑

γ Siγmγ
=
∑
β Siβ q̄

n
β∑

β Siβ
(3.37)

56



CHAPTER 3. THE DISCONTINUOUS GALERKIN MATERIAL POINT METHOD

In particular, volume flux contributions can be written:

fnc =
Ncp∑
µ=1

[
S2c−1,µ

∑
β S2c−1,β q̄

n
β∑

γ S2c−1,γ
+ S2c,µ

∑
β S2c,β q̄

n
β∑

γ S2c,γ

]
=

Np∑
β=1

(S2c−1,β + S2c,β) q̄nβ (3.38)

Thus, introduction of mappings (3.37) and (3.38) in equation (3.36) and permutation of sums over β and i lead
after some simplifications to the scheme equation:

Q̄n+1
α =

Np∑
β=1

Q̄nβ

{
S2c(α)−1,α

S2c(α)−1,β∑
µ S2c(α)−1,µ

+ S2c(α),α
S2c(α),β∑
µ S2c(α),µ

− a∆t
∆XN c(α)

p

S2c(α),α∑
µ S2c(α),µ

S2c(α),β∑
µ S2c(α),µ

+ a∆t
∆XN c(α)

p

S2c(α)−1,α∑
µ S2c(α)−1,µ

S2c(α)−2,β∑
µ S2c(α)−2,µ

+a∆t
∆X

[
S2c(α),α∑
µ S2c(α),µ

− S2c(α)−1,α∑
µ S2c(α)−1,µ

] (
S2c(α)−1,β + S2c(α),β

)}
(3.39)

Note that the last term of formula (3.39) is non-zero if particles β and α share the same cell, and in that case
the parenthesis is one. Hence, the scheme equation can be rewritten as:

Q̄n+1
α =

Np∑
β=1

Q̄nβ


2E∑
i=1

Siβ
Siα∑
µ Siµ

+N c(α)
p

a∆t
∆X

 S2c(α)−1,α∑
µ S2c(α)−1,µ

S2c(α)−2,β∑
µ S2c(α)−2,µ

− S2c(α),αS2c(α),β(∑
µ S2c(α),µ

)2


+ a∆t

∆X

[
S2c(β),α∑
µ S2c(β),µ

− S2c(β)−1,α∑
µ S2c(β)−1,µ

]} (3.40)

The first (resp. second) bracket in equation (3.40) involves shape functions that are non zero if material points
β and α lie in adjacent cells (resp. the same cell). Hence, the numerical domain of dependence of the DGMPM
for the scalar linear advection equation covers two cells regardless of the number of material points. It is worth
noticing that in the particular case of one material point lying in every cell, the convective phase (3.37) simplifies
to: q̄ni = Q̄nα for c(i) = c(α). The mapping therefore amounts to a piece-wise constant reconstruction of the
field on the background grid that makes the DGMPM equivalent to the First Order Upwind (FOU) method.
However, this no longer holds for other distributions of material points within the computational grid.

Scheme equation: RK2 time discretization

The discrete system on the grid resulting from the second-order Runge-Kutta time integration consists of the
two-stage procedure (3.23) which, for the one-dimensional scalar linear advection equation, particularizes at
node i as:

q̄
n+1/2
i = q̄ni + 1

2
∆t
ML
i

a

 2E∑
j=1

Ki,j q̄
n
j − q∗,ni Ni

 (no sum on i) (3.41a)

q̄n+1
i = q̄ni + ∆t

ML
i

a

 2E∑
j=1

Ki,j q̄
n+1/2
j − q∗,n+1/2

i Ni

 (no sum on i) (3.41b)
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This procedure can be seen as a recursive use of the Euler scheme (3.35) with suitable time step sizes. The first
stage (3.41a) yields the intermediate nodal fields in cell c(α):

q̄
n+1/2
2c(α)−1 = q̄n2c(α)−1 −

a∆t
2∆X

fnc(α) −N
c(α)
p q̄n2c(α)−2∑N

c(α)
p

µ=1 S2c(α)−1,µ


q̄
n+1/2
2c(α) = q̄n2c(α) + a∆t

2∆X

fnc(α) −N
c(α)
p q̄n2c(α)∑N

c(α)
p

µ=1 S2c(α),µ

 (3.42)

and the second stage (3.41b) leads to the expression of nodal quantities at the end of the time step:

q̄n+1
2c(α)−1 = q̄n2c(α)−1 −

a∆t
∆X


∑Nc(α)

p

γ=1

[
S2c(α)−1,γ q̄

n+1/2
2c(α)−1 + S2c(α),γ q̄

n+1/2
2c(α)

]
−N c(α)

p q̄
n+1/2
2c(α)−2∑N

c(α)
p

µ=1 S2c(α)−1,µ


q̄n+1
2c(α) = q̄n2c(α) + a∆t

∆X


∑Nc(α)

p

γ=1

[
S2c(α)−1,γ q̄

n+1/2
2c(α)−1 + S2c(α),γ q̄

n+1/2
2c(α)

]
−N c(α)

p q̄
n+1/2
2c(α)∑N

c(α)
p

µ=1 S2c(α),µ


(3.43)

Then, introduction of the interpolation from nodes to particles (3.33) in equations (3.43) leads to the solution
at material point α and time step n+ 1:

Q̄n+1
α =S2c(α)−1,αq̄

n
2c(α)−1 −

(
a∆t
∆X

[
S2c(α)−1,α − S2c(α),α

∑
γ S2c(α)−1,γ∑
µ S2c(α),µ

])
q̄
n+1/2
2c(α)−1

+ S2c(α),αq̄
n
2c(α) + a∆t

∆X

[
S2c(α),α − S2c(α)−1,α

∑
γ S2c(α),γ∑

µ S2c(α)−1,µ
−N c(α)

p

S2c(α),α∑
µ S2c(α),µ

]
q̄
n+1/2
2c(α)

+N c(α)
p

a∆t
∆X

S2c(α)−1,α∑
µ S2c(α)−1,µ

q̄
n+1/2
2c(α)−2

Nodal values qn+1/2
i are provided by the first stage of RK2 algorithm and can be substituted in the second

stage:

Q̄n+1
α = S2c(α)−1,αq̄

n
2c(α)−1 + S2c(α),αq̄

n
2c(α)

−a∆t
∆X

[
S2c(α)−1,α − S2c(α),α

∑
µ S2c(α)−1,µ∑
µ S2c(α),µ

]q̄n2c(α)−1 −
a∆t
2∆X

fnc(α) −N
c(α)
p q̄n2c(α)−2∑

µ S2c(α)−1,µ


+a∆t

∆X

[
S2c(α),α

(
1− N

c(α)
p∑

µ S2c(α),µ

)
− S2c(α)−1,α

∑
µ S2c(α),µ∑
µ S2c(α)−1,µ

]q̄n2c(α) + a∆t
2∆X

fnc(α) −N
c(α)
p q̄n2c(α)∑

µ S2c(α),µ


+N c(α)

p

a∆t
∆X

S2c(α)−1,α∑
µ S2c(α)−1,µ

q̄n2c(α)−2 + a∆t
2∆X

fnc(α)−1 −N
c(α)
p q̄n2c(α)−2∑

µ S2c(α)−2,µ


(3.44)
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Note that the solution of the downstream node of the adjacent cell qn+1/2
2c(α)−2 results from the second equation of

the set (3.42). Therefore, by rearranging formula (3.44) as:

Q̄n+1
α =

(
S2c(α)−1,α −

a∆t
∆X

[
S2c(α)−1,α − S2c(α),α

∑
µ S2c(α)−1,µ∑
µ S2c(α),µ

])
q̄n2c(α)−1

+
(
S2c(α),α + a∆t

∆X

[
S2c(α),α

(
1− N

c(α)
p∑

µ S2c(α),µ

)
− S2c(α)−1,α

∑
µ S2c(α),µ∑
µ S2c(α)−1,µ

])
q̄n2c(α)

+1
2

(
a∆t
∆X

)2
N c(α)

p

[
S2c(α)−1,α∑
µ S2c(α)−1,µ

− S2c(α),α∑
µ S2c(α),µ

]
+ S2c(α),α

(
N
c(α)
p∑

µ S2c(α),µ

)2
 q̄n2c(α)

+N c(α)
p

a∆t
∆X

[
S2c(α)−1,α∑
µ S2c(α)−1,µ

(
1− a∆t

2∆X

(
1 + N

c(α)
p∑

µ S2c(α)−2,µ

))
+ a∆t

2∆X
S2c(α),α∑
µ S2c(α),µ

]
q̄n2c(α)−2

−1
2

(
a∆t
∆X

)2
N c(α)
p

S2c(α),α(∑
µ S2c(α),µ

)2 f
n
c(α) + 1

2

(
a∆t
∆X

)2
N c(α)
p

S2c(α)−1,α∑
µ S2c(α)−1,µ

fnc(α)−1∑
µ S2c(α)−2,µ

the use of mapping equations (3.37) and (3.38) allows to write:

Q̄n+1
α =

∑
β

Q̄nβ

{
S2c(α)−1,β∑
µ S2c(α)−1,µ

(
S2c(α)−1,α −

a∆t
∆X

[
S2c(α)−1,α − S2c(α),α

∑
γ S2c(α)−1,γ∑
µ S2c(α),µ

])

+
S2c(α),β∑
µ S2c(α),µ

(
S2c(α),α + a∆t

∆X

[
S2c(α),α

(
1− N

c(α)
p∑

µ S2c(α),µ

)
− S2c(α)−1,α

∑
γ S2c(α),γ∑

µ S2c(α)−1,µ

])

+
S2c(α),β∑
µ S2c(α),µ

1
2

(
a∆t
∆X

)2
N c(α)

p

[
S2c(α)−1,α∑
µ S2c(α)−1,µ

− S2c(α),α∑
µ S2c(α),µ

]
+ S2c(α),α

(
N
c(α)
p∑

µ S2c(α),µ

)2


+
N
c(α)
p S2c(α)−2,β∑
µ S2c(α)−2,µ

a∆t
∆X

[
S2c(α)−1,α∑
µ S2c(α)−1,µ

(
1− a∆t

2∆X

(
1 + N

c(α)
p∑

µ S2c(α)−2,µ

))
+ a∆t

2∆X
S2c(α),α∑
µ S2c(α),µ

]

+ 1
2

(
a∆t
∆X

)2
N c(α)
p

 [
S2c(α)−2,β + S2c(α)−3,β

]∑
µ S2c(α)−1,µ

∑
µ S2c(α)−2,µ

S2c(α)−1,α −
[
S2c(α)−1,β + S2c(α),β

](∑
µ S2c(α),µ

)2 S2c(α),α




Once the previous formula is simplified, the one-dimensional scheme equation of the DGMPM with the RK2
time discretization can be written:

Q̄n+1
α =

∑
β

Q̄nβ

{∑
i

Siβ
Siα∑
µ Siµ

+ a∆t
∆X

[
S2c(β),α∑
µ S2c(β),µ

− S2c(β)−1,α∑
µ S2c(β)−1,µ

]

+ a∆t
∆XN c(α)

p

 S2c(α)−1,α∑
µ S2c(α)−1,µ

S2c(α)−2,β∑
µ S2c(α)−2,µ

− S2c(α),αS2c(α),β(∑
µ S2c(α),µ

)2


+ 1

2

(
a∆t
∆X

)2
N c(α)
p

(
S2c(α),β∑
µ S2c(α),µ

− S2c(α)−2,β∑
µ S2c(α)−2,µ

)[
S2c(α)−1,α∑
µ S2c(α)−1,µ

− S2c(α),α∑
µ S2c(α),µ

]

+ 1
2

(
a∆t
∆X

)2
N c(α)
p

S2c(β),α(∑
µ S2c(α),µ

)2

[
N c(α)
p

S2c(α),β∑
µ S2c(α),µ

− 1
]

+ 1
2

(
a∆t
∆X

)2 S2c(β)+1,αN
c(α)
p∑

µ S2c(α)−1,µ
∑
µ S2c(α)−2,µ

[
1−N c(α)

p

S2c(α)−2,β∑
µ S2c(α)−2,µ

]}

(3.45)
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The three first terms of the latter scheme equation correspond to that obtained for the Euler algorithm (3.40)
while the second order terms are provided by the two-stage time integration. The brackets in those higher-order
corrections vanish when only one point is in each cell of the grid, so that the scheme is, as that of the previous
section, equivalent to the FOU method.

The von Neumann linear stability analysis

The scheme equations obtained above are written for simplicity:

Q̄n+1
α =

Np∑
β=1

DαβQ̄
n
β (3.46)

Moreover, the computational domain is repeated periodically by mapping it to the domain [−l, 0] so that the
solution at material point α and time step n is expanded into a discrete Fourier basis of 2E + 1 harmonics over
the domain X ∈ [−l, l]:

Q̄nα =
E∑

j=−E
Anj e

iαkj∆X

with Anj , the magnitude of the jth harmonic at time step n, i =
√
−1, and kj a wave number. Introduction of

this expansion in equation (3.46) yields:

An+1
j eiαkj∆X =

Np∑
β=1

AnjDαβe
iβkj∆X ∀j = −E, ..., E

The amplification factor between two time steps at a given point is defined as:

An+1
j

Anj
=

Np∑
β=1

ei(β−α)kj∆XDαβ ∀j = −E, ..., E (3.47)

A necessary condition to ensure the stability of a numerical scheme is that the amplification factor must be
lower than or equal to one in modulus:

∣∣An+1/An
∣∣ ≤ 1. This upper bound prevents an increasing error during

the computation. For expression (3.47), this leads to:∣∣∣∣∣∣
Np∑
β=1

ei(β−α)kj∆XDαβ

∣∣∣∣∣∣ ≤
Np∑
β=1

∣∣∣ei(β−α)kj∆XDαβ

∣∣∣ =
Np∑
β=1
|Dαβ | ∀j = −E, ..., E

where the triangle inequality, and the unit modulus of the complex number ei(β−α)kj∆X have been used. Hence,
the Courant number must be set so that the following condition is satisfied for all material points:

Np∑
β=1
|Dαβ | ≤ 1 ∀ α = 1, ..., Np (3.48)

Note however that the use of the triangle inequality leads to a more severe constraint than the one really holding.
As a consequence, the Courant number can be set in practice to higher values than that resulting from the
solution of (3.48).

According to scheme equations (3.40) or (3.45), the stability condition (3.48) can be very hard to find
analytically for general discretizations. Nevertheless, though the infinity of possible material point distributions
prevents the explicit derivation of a general stability condition, the optimal CFL number satisfying the equality
in (3.48) can be found numerically. Some configurations are studied in table 3.1 where the critical Courant
number resulting from the two time discretizations studied above are compared. Those results have been
obtained by using the same particle distribution in every element of a one-dimensional regular mesh. First,
the DGMPM scheme is stable for all CFL numbers lower than or equal to one when cells contain one particle
only regardless of their positions. This property characterizes the FOU method that is retrieved with this
discretization. Then, when many material points share the same element, several configurations are considered:
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(i) particles are positioned symmetrically with respect to cell centers and regularly spaced in the mesh. This
space discretization is referred to as the natural configuration in the following.

(ii) particles in the natural configuration are all shifted by u = ∆X/10.

(iii) the same as (ii) with u so that one material point overlaps every left node of the cells.

(iv) the same as (iii) for right nodes.

(v) particles are placed symmetrically with respect to cell centers but not regularly spaced in the mesh.
Material points in the left half of cells are shifted by u1 = −∆X/10 while those in the right half are
shifted by u2 = ∆X/10.

(vi) the same as (v) with the first and last particles overlapping left and right nodes of cells respectively.

Number of particles Position of particles in cell c Euler CFL RK2 CFL

1 (–) x1 ∈ [x2c−1, x2c] 1.00 1.00

2 (i) 0.43 1.00

2 (ii) 0.40 0.50

2 (iii) 0.50 0.61

2 (iv) 0.30 0.31

2 (v) 0.27 1.00

2 (vi) 0.00 1.00

3 (i) 0.30 1.00

3 (ii) 0.26 0.06

3 (iii) 0.33 0.73

3 (iv) 0.22 0.17

3 (v) 0.13 1.00

3 (vi) 0.00 1.00

4 (i) 0.23 1.00

4 (ii) 0.20 0.16

4 (iii) 0.25 0.79

4 (iv) 0.18 0.11

4 (v) 0.05 1.00

4 (vi) 0.00 1.00

Table 3.1: DGMPM critical Courant number values for Euler or RK2 time integration with
respect to the number and positions of material points in a one-dimensional grid. Black
circles denote material points while white ones represent grid nodes.

First, table 3.1 shows that the natural configuration leads to a better stability bound for the RK2 integrator
while the CFL number allowed by using Euler time discretization decreases with increasing numbers of particles
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per cell. Second, moving every point rightward in the mesh (i.e. cases (ii) and (iv)) causes a drop in the
critical Courant number for both RK2 and Euler algorithms. In particular, stability conditions for more than
two particles per cell provided by the RK2 are, in those cases, more restrictive than that of the Euler. Third,
the leftward shift (i.e. case (iii)) leads to an improvement of the stability condition for Euler time integration
compared to that in the natural configuration. The CFL number provided by RK2 integration also decreases
due to the shift while remaining higher than the Euler. At last, particle distributions conserving the symmetry
with respect to cell centers (i.e. cases (v) and (vi)), yield the optimal stability condition for the RK2 integrator
while the Euler CFL depends on the spacing between material points. More specifically, the Euler algorithm
leads to a vanishing CFL for the case (vi), thus preventing any simulation.

The distribution of material points, and therefore the resulting quadrature, has an influence on the stability
of the scheme. The optimal Courant number can be reached even with the Euler discretization, whereas the
classical DGFEM scheme developed in [72] is restricted to condition ∆t/∆X = O(

√
∆X). This limitation has

been addressed by introducing slope limiters in order to remove non-physical oscillations in the vicinity of sharp
solutions while providing high-order accuracy in smooth regions [73]. However, the stability of the method is
still bounded by CFL ≤ 1/2 and the scheme is first-order accurate. The use of a second-order Runge-Kutta [74]
allows second-order accuracy of the scheme, but the stability condition then reduced to CFL ≤ 1/3. It is worth
noting that space–time DGFEM formulations [12, 75] provided more recently the ability to relax constraints of
pure space DGFEM and obtain a critical CFL of 1.

3.3.2 Space convergence analysis of the one-dimensional scheme

We now propose to focus numerically on convergence properties of DGMPM schemes for linear elasticity prob-
lems in homogeneous solids undergoing one-dimensional stress and strain states so that the bar assumption
under small strains holds. The following system of one-dimensional linear scalar advection equations is then
considered:

∂

∂t

[
v
σ

]
− ∂

∂X

[ 1
ρσ

Ev

]
=
[
0
0

]
(3.49)

in a bar of length l = 1 m, with Young’s modulus E = 2× 1011 Pa, and mass density ρ = 7800 kg ·m−3. The
bar is assumed to be initially motionless in a free-stress state, that is: v(X, 0) = 0 ; σ(X, 0) = 0 ∀X ∈ [0, l],
and subject to the following boundary conditions on its left and right ends respectively:

σ(X = 0, t) = σ̃ sin
(

0.4πt
T

)
σ(X = l, t) = 0, ∀t ∈ [0, T ]

(3.50)

where T = l/c is the time taken by waves to travel from one end of the bar to the other at the sound speed
c =

√
E
ρ . The combination of the hyperbolic system (3.49) and boundary conditions (3.50) yields a Picard

problem whose exact solution is [36, Ch.2]:

σ(X, t) = σ̃ sin
(

0.4π(t−X/c)
T

)
v(X, t) = − σ̃

ρc
sin
(

0.4π(t−X/c)
T

)
, ∀X, t ∈ [0, l]× [0, T ]

(3.51)

The continuum system (3.49) is discretized with both MPM (the USF formulation is selected to limit the
numerical dissipation) and DGMPM by using 2i cells (i = 2, 3, ..., 7) each containing Np = 2, 3, 4, 8 regularly
spaced material points so that the regular grid size is ∆X = l/2i. The refinement of the mesh operates on both
nodes and particles in such a way that the number and position of material points per cell initially selected is
held constant. Configurations involving different numbers of particles per element are studied separately and
the CFL number can therefore be set once and for all (optimal for DGMPM, and 0.5 for the MPM). Numerical
solutions are then compared to the exact one (3.51) according to the relative L2 norm of the error, also referred
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to as the L2 error ε:

εσ(t) =

∆X
Np∑
α=1

(σα − σexact(Xα, t))2

σexact(Xα, t)2

 1
2

εv(t) =

∆X
Np∑
α=1

(vα − vexact(Xα, t))2

vexact(Xα, t)2

 1
2

The errors are computed at time t = 0.5T so that no reflection of waves on the right boundary occur and the
stress amplitude is set at σ̃ = 4 × 104 Pa. Figure 3.10 shows the evolution of the L2 errors εσ with regard to
the grid size for the MPM and the DGMPM using Euler and RK2 time discretizations for several numbers of
particles per element. We see that, despite the rates of convergence of stress are close to one (obtained by means
of non-linear least squares fitting and reported in table 3.2), the DGMPM–Euler and DGMPM–RK2 exhibit
lower rates compared to those of the MPM. Second, an increase in the number of particles per cell provides
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Figure 3.10: Evolution of the L2 errors in stress with regard to the number of particles lying
in every cell.

slightly higher convergence rates, according to table 3.2, and shifts DGMPM curves upward as can be seen in
figures 3.10a to 3.10d. On the other hand, the MPM error curves do not exhibit this behavior as observed in
[54]. At last, for coarse grids (i.e. ∆X = l/2i for i ≤ 3) the DGMPM–Euler leads to the lowest error but its
smaller rate of convergence makes it quickly less accurate than the two other methods. Similar behavior can be
seen for the velocity, whose convergence curves are depicted in figure 3.11 for the same discretizations. Again,
the DGMPM shows lower rates of convergence than the MPM, and increasing the number of particles per cell
leads to more error in DGMPM solutions. The same order of accuracy for velocity and stress resulting from the
DGMPM (see table 3.2) was expected since the weak form of system (3.49) leads to the same approximation
for both fields. The MPM is on the other hand, as FEM, characterized by a higher order of convergence for
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PPC DGMPM–Euler DGMPM–RK2 MPM MPM–PIC

σ v σ v σ v σ v

2 0.63 0.63 0.80 0.80 0.88 1.46 0.94 0.85
6 0.66 0.66 0.91 0.91 0.91 1.62 1.07 0.92
10 0.67 0.67 0.93 0.93 0.92 1.62 1.10 0.92
20 0.68 0.67 0.95 0.95 0.92 1.61 1.12 0.93

Table 3.2: Order of accuracy of MPM and DGMPM with regard to the number of particles
per cell

velocity than stress owing to the use of shape function derivatives for the computation of gradients. Hence, the
MPM rate of convergence in terms of velocity is getting closer to two.

The loss of accuracy for velocity in DGMPM can be explained by the mapping procedure it uses from nodes to
particles since the FLIP mapping has been introduced in order to reach second-order accuracy [41]. Convergence
properties of the MPM using the PIC projection shown in table 3.2 and figure 3.11 confirm the previous remark.
Indeed, modifying the way fields are projected from nodes to particles does not affect dramatically the rate of
convergence of stress but leads to a significant decrease in velocity accuracy.
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Figure 3.11: Evolution of the L2 error in velocity with regard to the number of particles
lying in every cell.

We now propose to set the Courant number to 0.1 for the MPM and the DGMPM-Euler in order to
compare the accuracy of those first order in time schemes with the same time steps. A comparison between
the convergence curves obtained for a CFL set to 0.1 and the previous results (i.e. figures 3.10 and 3.11) is
made in figure 3.12. The results first show that the order of accuracy of the DGMPM-Euler is also lower than
that of the MPM when the same CFL is used in the methods. Second, as can be seen in figure 3.12, the

64



CHAPTER 3. THE DISCONTINUOUS GALERKIN MATERIAL POINT METHOD
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(a) Stress convergence
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Figure 3.12: Evolution of the L2 errors in stress and velocity for two particles per cell. CFL
set to 0.1.

reduction of the time step yields additional error which can be explained by the numerical diffusion introduced
in the solutions. As a consequence, the curves resulting from computations performed with a Courant number
set to 0.1 are above those obtained previously. However, a lower CFL enables an improvement of the rates of
convergence of the methods. Indeed, the rates of convergence for both velocity and stress are in that case 0.66
for the DGMPM-Euler, and 1.00 for the MPM.

Since the DGMPM aims at capturing non-regular solutions (discontinuities), its first-order of convergence is
sufficient. Indeed, the achievable accuracy for such solutions is at most one [2, p.149]. Nevertheless, one might
be interested in solving problems that involve smooth solutions so that the need for higher-order accuracy arises.
Although linear shape functions have been employed so far, the method may handle higher-order approximation
by using Legendre polynomials or B-Spline functions for instance (higher-order Lagrange polynomials being to
be avoided for moving particles [54]). Furthermore, DG features enable the local increase in the approximation
order in regions where the solution is smooth. Note however that the particle-based quadrature rule limits
the shape function order one can select since few material points may lead to reduced integration. This issue
can however be avoided by means of function reconstruction techniques which build a (linear, quadratic etc.)
function on the grid that is based on the values a field takes at particle locations and which can be evaluated
everywhere in a cell. In particular, the use of moving least squares [76] or spline interpolation [54, 77] within
the MPM, enables evaluation of a reconstructed function at Gauss point locations in order to improve the
quadrature rule. However, the introduction of such reconstruction techniques in the DGMPM might lead to a
restrictive stability condition as it would make the method closer to DGFEM.

Finally, it is worth noticing that only regularly-spaced material points have been considered in the above
convergence analysis. An additional means of achieving high-order accuracy can be derived from the following
theorem applying to the one-dimensional scalar linear advection equation with a > 0:
Theorem 4 (Roe [21]) A numerical scheme of the form:

Qn+1
α =

∞∑
β=−∞

DβQ
n
α+β

is pth order accurate (p ≥ 0) in space and time if and only if:∑
β

βkDβ =
(
−a ∆t

∆X

)k
0 ≤ k ≤ p

The complexity of scheme equations (3.40) and (3.45) developed previously, and the lack of such equations for
MPM formulations prevent the straightforward calculation of convergence rates. However, one can imagine the
building of adaptive strategies of the set of particles based on theorem 4, so that a given order of accuracy
is reached. If such a distribution of material point exists, the corresponding Courant number can also be
computed, thus ensuring both stability and accuracy of the numerical scheme.
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3.3.3 Two-dimensional stability analysis
Model equation – Space discretization

We now move on to the scalar linear advection equation for an arbitrary quantity q = ρq̄ moving at constant
speeds a, b ∈ R+∗ in the X and Y directions respectively in a homogeneous two-dimensional medium:

∂q̄

∂t
+ a

∂q̄

∂X
+ b

∂q̄

∂Y
= 0 (3.53)

Note that the flux functions are in this case f̄X = aq̄ and f̄Y = bq̄. The physical domain [0, l] × [0, h] is
discretized with Np material points arbitrarily distributed in a Cartesian grid made of E four-node bilinear

elements with constant size ∆X×∆Y . With the nodal positions in cell C denoted by XC
i =

[
XC
i

Y Ci

]
, as depicted

ξ

η

1

-1

-1 1
X

Y

X1 X2

X3X4

X

ξ

Figure 3.13: Parent and current configurations of a rectangular four-node bilinear element

in figure 3.13, the current location X of an arbitrary point in cell C maps to the parent coordinates (ξ, η) in
the domain [−1, 1]× [−1, 1] according to:

ξ = 2X −X
C
1

∆X − 1 ; dξ = 2 dX∆X

η = 2Y − Y
C
1

∆Y − 1 ; dη = 2 dY∆Y

(3.54)

Horizontal and vertical edges lengths are distinguished here in spite of the Cartesian nature of the grid in order
to easily extend the following study to rectilinear grids. Again, there are no empty cells inside the physical
domain so that no hole is generated, and periodic boundary conditions are considered to simplify the analysis.

Two-dimensional scheme equation

One can imagine the combination of the DGMPM discretization with a multi-stage time integration, as proposed
for one-dimensional problems. The analysis of the DGMPM scheme for two-dimensional problems carried out
here however only considers the Euler time discretization. Therefore, the updated solution at material point α
is obtained by interpolation of nodal solutions satisfying equation (3.53), discretized as:

q̄n+1
i = q̄ni + ∆t

ML
i

(
KX
ij aq̄

n
j +KY

ij bq̄
n
j − f̂∗i

)
(3.55)

so that:

Q̄n+1
α =

4E∑
i=1

Siαq̄
n+1
i (3.56)
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The lumped mass matrix in equation (3.55) has the same expression as in the one-dimensional case that depends
on the shape functions of the four-node bilinear element: ML

i =
∑
µmµSiµ. Making use of parent coordinates

(3.54), the pseudo-stiffness matrices read:

KX
ij =

∑
β

∂Siβ
∂X

mβSjβ = 2
∆X

∑
β

∂Siβ
∂ξ

mβSjβ

KY
ij =

∑
β

∂Siβ
∂Y

mβSjβ = 2
∆Y

∑
β

∂Siβ
∂η

mβSjβ

As for the one-dimensional case, the homogeneous medium yields the same mass for every particle so that, by
writing ∂(•)

∂ξ = ∂ξ(•), one gets:

KX
ij

ML
i

= 2
∆X

∑
λ ∂ξSiλSjλ∑

γ Siγ

KY
ij

ML
i

= 2
∆Y

∑
λ ∂ηSiλSjλ∑

γ Siγ

The nodal solutions at time n being given by the projection q̄C,ni =
∑

β
SiβQ̄

n
β∑

γ
Siγ

, volume fluxes of the discrete
form can be rewritten as:

a
KX
ij

ML
i

q̄nj =
∑
β

Q̄nβ
2

∆X
a
∑
λ ∂ξSiλ

∑
j SjλSjβ∑

γ Siγ
∑
µ Sjµ

b
KY
ij

ML
i

q̄nj =
∑
β

Q̄nβ
2

∆Y
b
∑
λ ∂ηSiλ

∑
j SjλSjβ∑

γ Siγ
∑
µ Sjµ

(3.57)

Then, the nodal interface flux f̂∗i results from the integration of Godunov fluxes along edges connected to the
node, according to the weak form (3.21). Referring to a quantity defined at an interface by means of superscripts
in parentheses, the Godunov flux corresponding to equation (3.53) at interface (i) is:

f (i) = cnq
(i)
U = cnq

(i)
D︸ ︷︷ ︸

fN (q(i)
D

)

− cn(q(i)
D − q

(i)
U )︸ ︷︷ ︸

A+
U/D

(3.58)

where cn is the speed in the normal direction to the interface (i.e. b for horizontal and a for vertical edges).
Equation (3.58) further involves state vectors q(i)

U and q
(i)
D obtained by averaging nodal values connected to

interface (i) on upwind and downwind sides respectively, and the right-going fluctuation A+
U/D. The CTU

is adopted by subtracting from fluxes (3.58) transverse corrections based on those fluctuations according to
equation (3.30):

B+A+
U/D = ctcn(q(i)

D − q
(i)
U )

with ct the speed in the tangent direction to the interface. The final expression of intercell fluxes is hence:

f (i) = cnq
(i)
U − ctcn

∆t
2∆X(i) (q(i)

D − q
(i)
U ) (3.59)

Figure 3.14 shows transverse corrections in the cell C based on fluctuations coming from Bottom (B), Left (L),
Bottom Left (BL) neighbor elements. The use of the numbering of interfaces and nodes adopted in figure 3.14
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Figure 3.14: Two-dimensional patch of cells of constant size ∆X ×∆Y .

allows the specialization of equation (3.59) to intercell fluxes of cell C:

f (1) = b
qB,n3 + qB,n4

2 − ab ∆t
2∆Y

(
qB,n1 + qB,n4

2 − qBL,n2 + qBL,n3
2

)

f (2) = a
qC,n2 + qC,n3

2 − ab ∆t
2∆X

(
qC,n1 + qC,n2

2 − qB,n3 + qB,n4
2

)

f (3) = b
qC,n3 + qC,n4

2 − ab ∆t
2∆Y

(
qC,n1 + qC,n4

2 − qL,n2 + qL,n3
2

)

f (4) = a
qL,n3 + qL,n4

2 − ab ∆t
2∆X

(
qL,n1 + qL,n2

2 − qBL,n3 + qBL,n4
2

)

where qC,ni = ρq̄C,ni is the value at time step n and node i of cell C. Denoting the number of particles in cell C
and the mass they carry by NC

p and mC respectively, the mass density reads ρ = NCp m
C

∆X∆Y . Thus, introduction
of the particle fields projection yields the following expressions for interface fluxes:

f (1) =
Np∑
β=1

Q̄nβ
bNC

p m
C

2∆X∆Y

[(
SB3β∑
γ S

B
3γ

+
SB4β∑
γ S

B
4γ

)
− a ∆t

2∆Y

(
SB1β∑
γ S

B
1γ

+
SB4β∑
γ S

B
4γ
−

SBL2β∑
γ S

BL
2γ
−

SBL3β∑
γ S

BL
3γ

)]

f (2) =
Np∑
β=1

Q̄nβ
aNC

p m
C

2∆X∆Y

[(
SC2β∑
γ S

C
2γ

+
SC3β∑
γ S

C
3γ

)
− b ∆t

2∆X

(
SC1β∑
γ S

C
1γ

+
SC2β∑
γ S

C
2γ
−

SB3β∑
γ S

B
3γ
−

SB4β∑
γ S

B
4γ

)]

f (3) =
Np∑
β=1

Q̄nβ
bNC

p m
C

2∆X∆Y

[(
SC3β∑
γ S

C
3γ

+
SC4β∑
γ S

C
4γ

)
− a ∆t

2∆Y

(
SC1β∑
γ S

C
1γ

+
SC4β∑
γ S

C
4γ
−

SL2β∑
γ S

L
2γ
−

SL3β∑
γ S

L
3γ

)]

f (4) =
Np∑
β=1

Q̄nβ
aNC

p m
C

2∆X∆Y

[(
SL3β∑
γ S

L
3γ

+
SL4β∑
γ S

L
4γ

)
− b ∆t

2∆X

(
SL1β∑
γ S

L
1γ

+
SL2β∑
γ S

L
2γ
−

SBL3β∑
γ S

BL
3γ
−

SBL4β∑
γ S

L
4γ

)]
written for simplicity:

f (i) =
Np∑
β

Q̄nβ
cnN

C
p m

C

2∆X∆Y

[
φ

(i)
β + φ

(i),T
β

]
(3.60)

In the last expression, φ(i) is devoted to normal contributions while φ(i),T stands for transverse corrections at
interface (i). Numerical fluxes considered above are based on normal vectors oriented in the direction of the
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stream (see figure 3.14). Nodal interface fluxes on the other hand, as defined in the semi-discrete system:

f̂∗i =
∫

Γ
Si(X)f∗N dΓ

are based on the outgoing flux to an element so that f (1) and f (4) must be counted negatively. The integral for
cell C is then:

f̂∗i = −
∫ XC2

XC1

Si(X,Y C1 )f (1)dX +
∫ Y C3

Y C2

Si(XC
2 , Y )f (2)dY +

∫ XC3

XC2

Si(X,Y C3 )f (3)dX −
∫ Y C4

Y C1

Si(XC
1 , Y )f (4)dY

which can be computed analytically using parent coordinates (3.54):

f̂∗1 = −1
2

[
∆Xf (1) + ∆Y f (4)

]
; f̂∗2 = −1

2

[
∆Xf (1) −∆Y f (2)

]
f̂∗3 = 1

2

[
∆Xf (3) + ∆Y f (2)

]
; f̂∗4 = 1

2

[
∆Xf (3) −∆Y f (4)

]
A condensed way of writing those fluxes is adopted by means of the middle point of edge (j) with coordinates
X

(j)
1/2, at which the shape functions are:

Si(X(j)
1/2) =


1
2 if node i belongs to edge (j)

0 otherwise.

In addition, components of the outward normal vector to edges N (i)
X and N (i)

Y allow taking into account different
signs of intercell fluxes in the Cartesian grid. One thus writes:

f̂∗i = 1
2

edges∑
j

2Si(X(j)
1/2)

(
∆Y N (j)

X + ∆XN (j)
Y

)
f (j)

which, combined with equation (3.60) leads to:

f̂∗i =
Np∑
β

Q̄nβ

edges∑
j

Si(X(j)
1/2)

(
a∆Y N (j)

X + b∆XN (j)
Y

) NC
p m

C

2∆X∆Y

[
φ

(i)
β + φ

(i),T
β

]
These terms are divided by the lumped mass matrix in the discrete form:

f̂∗i
ML
i

=
∑
β

Q̄nβ∑
µ Siµ

edges∑
j=1

1
2Si(X

(j)
1/2)NC

p m
C

(
aN

(j)
X

∆X + bN
(j)
Y

∆Y

)[
φ

(j)
β + φ

(j),T
β

]
(3.62)

At last, gathering the mapping of updated nodal quantities to the particles (3.56), expressions of volume
fluxes (3.57) and intercell fluxes (3.62), the updated value at material point α contained in cell C reads:

Q̄n+1
α =

Np∑
β=1

Q̄nβ

4E∑
i=1

Siα∑
µ Siµ

Siβ + 2
4E∑
j=1

Sjβ∑
γ Sjγ

Np∑
λ=1

Sjλ

[
a

∆t
∆X∂ξSiλ + b

∆t
∆Y ∂ηSiλ

]

−1
2

edges∑
k=1

Si(X(k)
1/2)NC

p

(
a

∆t
∆XN

(j)
X + b

∆t
∆Y N

(j)
Y

)[
φ

(k)
β + φ

(k),T
β

]} (3.63)

Recall that transverse contributions φ(j),T
β depend on ∆t, thus providing second-order corrections in the two-

dimensional scheme equation (3.63), that can also be rewritten as:

Q̄n+1
α =

Np∑
β=1

Q̄nβDαβ (3.64)
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The von Neumann linear stability analysis

Analogously to the one-dimensional case, the solution at a material point can be expanded into a discrete
Fourier basis over the domain [−l, l]× [−h, h]. We consider here a structured distribution of particles made of
Np = NX

p ×NY
p material points so that one can denote the solution at particles by Q̄αβ , where α and β are the

row and column of material point indices. For one arbitrary Fourier mode, one has [2, Ch.20]:

Q̄nαβ = Anjqe
i(αkj+βkq)∆X

where kj and kq are wave numbers. Then, the amplification factor reads:

An+1
jq

Anjq
=

NXp∑
γ=1

NYp∑
µ=1

ei([α−γ]kj+[β−µ]kq)∆XDαβ,γµ

with i =
√
−1. The requirement that the absolute value of the amplification factor is lower than or equal to

one leads to the following stability condition:

∣∣∣∣∣A
n+1
jq

Anjq

∣∣∣∣∣ =

∣∣∣∣∣∣
NXp∑
γ=1

NYp∑
µ=1

ei([α−γ]kj+[β−µ]kq)∆XDαβ,γµ

∣∣∣∣∣∣ ≤ 1⇔
NXp∑
γ=1

NYp∑
µ=1
|Dαβ,γµ| ≤ 1

or more simply:
Np∑
β=1
|Dαβ | ≤ 1 ∀α = 1, ..., Np (3.65)

Again, the single particle-per-cell discretization leads to a piece-wise constant reconstruction of the field on
the computational grid after the projection from material points to nodes, thus providing the first order upwind
method. This method is known to be bounded by the stability requirements [2, Ch.20]:

|a| ∆t
∆X + |b| ∆t

∆Y ≤ 1 for DCU (3.66a)

max
(
|a| ∆t

∆X , |b| ∆t
∆Y

)
≤ 1 for CTU (3.66b)

Configurations involving more particles in the computational grid cells are then studied numerically by
assuming the same material points distribution in every element. Furthermore, we consider only regular cells
∆Y = ∆X and wave speeds satisfying a ≥ b > 0, so that Courant the number is a∆t/∆X. The scheme equation
(3.64) can then be written as a function of the CFL number by means of the speed ratio a/b. Hence, the maximal
Courant number satisfying the stability condition (3.65) also depends on the speed ratio. Evolutions of the CFL
numbers corresponding to several distributions of particles in a two-dimensional grid are gathered in tables 3.3
and 3.4 for the DGMPM scheme using DCU and CTU methods. The first column of these tables shows the
positions of material points inside cells for discretizations based on 2 or 4 particles per element.

The space discretization leading to 2 particles lying in every cell of the mesh is such that within an element,
the two material points are both either on the horizontal axis or on the vertical axis of the cell, corresponding
respectively to the results reported in the first and second rows of table 3.3. Two situations are then to be
distinguished:

• Material points are regularly-spaced within the grid and placed symmetrically two-by-two with respect
to cell centers. These distributions are drawn in the first column of table 3.3 by using blue circles to
represent particles.

• Material points still satisfy symmetry in cells, but are no longer regularly-spaced in the mesh. In that
case, particles are drawn with red crosses.
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Particles in cells Critical Courant number a∆t
∆X (a/b)

DCU CTU

∆X/2

∆X/4

1 10 20 30 40

0.3

0.4

0.5

a/b
1 10 20 30 40

0.2

0.3

0.4

0.5

0.6

a/b

∆X
2

∆X
4

1 10 20 30 40

0.3

0.4

0.5

0.6

0.7

a/b

1 10 20 30 40

0.3

0.4

0.5

0.6

0.7

a/b

Table 3.3: Values of critical Courant number a ∆t
∆X for two-dimensional DGMPM scheme

using either DCU or CTU with respect to the locations of the 2 material points lying in
every cell as a function of the speed ratio a/b.

First, the results of table 3.3 show that the CFL number exhibits a non-linear dependence on the speed ratio
a/b that asymptotically approaches some value which depends on the particle distribution. Second, we see that
a reduction of spacing between particles conserving the symmetry between them with respect to cell centers,
as for the one-dimensional case, yields an increase in the critical Courant number for both the DCU and CTU
approaches. Third, whether particles lie on the horizontal axis or the vertical axis of cells has a great influence
on the critical Courant number one can expect. Hence, the configurations of the second row of table 3.3 yield
higher CFL numbers for given speed ratios. It then appears that in order to improve the stability of the scheme,
one must use a lower number of material points in the direction of the dominating wave speed than in the
perpendicular one. For a Cartesian distribution of particles NX

p ×NY
p this corresponds to NY

p > NX
p if a > b,

and NX
p > NY

p if b > a. At last, it is worth noticing that the improvement brought by the CTU is much less
significant than in the case of one single particle-per-cell discretization for which the Courant number can be
set to one according to equations (3.66a) and (3.66b).

We now move on to cases for which grid cells each contain 4 material points, by considering a square
shaped distribution of particles in every element whose centers coincide with cell centroids. This pattern can
be contracted or simply translated without change of shape as depicted in the first column of table 3.4. Two
configurations are gathered in each row of the table and are distinguished by using either blue circles or red
crosses for material points. Again, we observe that the increase in CFL number enabled by the use of the CTU
approach is less important than in the case of one particle-per-cell. Next, as for the one-dimensional cases and
configurations studied in table 3.3, we see that the closer particles are from cell centers, the higher the CFL
number. Finally, it can be seen from the two last rows of table 3.4 that the translation of the square of particles
inside elements does not have great influence on the evolution of the Courant number with respect to the speed
ratio.
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Particles in cells Critical Courant number a∆t
∆X (a/b)

DCU CTU

1 10 20 30 40

0.2

0.3

0.4

0.5

0.6

a/b

1 10 20 30 40

0.2

0.3

0.4

0.5

0.6

a/b

1 10 20 30 40

0

0.1

0.2

0.3

0.4

a/b

1 10 20 30 40

0

0.1

0.2

0.3

0.4

a/b

1 10 20 30 40

0

0.1

0.2

0.3

0.4

a/b

1 10 20 30 40

0

0.1

0.2

0.3

0.4

a/b

Table 3.4: Values of critical Courant number a ∆t
∆X for two-dimensional DGMPM scheme

using either DCU or CTU with respect to the material points distribution as a function of
the speed ratio a/b.

3.4 Conclusion

In this chapter, the formulation of the MPM has been recalled and some drawbacks of the method when applied
to hyperbolic problems have been emphasized in section 3.1. It has been seen that the projection of the nodal
velocity field to material points inherited from FLIP, though it reduces the numerical dissipation, introduces
noise in the solution. Hence, an alternative method using both the PIC mapping procedure and Discontinuous
Galerkin approximation has been proposed in section 3.2 in order to avoid spurious oscillations. The resulting
DGMPM is based on the weak form of a system of conservation laws written element by element in an arbitrary
computational grid in which particles can move. Interface fluxes involved in boundary integrals of the weak form
result from the solution of Riemann problems at cell interfaces computed thanks to an approximate Riemann
solver (see section 3.2.4). This method combines thus the strength of Finite Element and Finite Volume methods.

The numerical analysis of the scheme applied to the solution of one and two-dimensional linear scalar
advection equations performed in section 3.3 led to the ability to determine the maximal Courant number
ensuring stability for a given discretization. This property allows to fully exploiting the ability of the method
to, for instance, rebuild the grid by employing adaptive mesh techniques on the reference configuration in order
to accurately track waves in the current one. Indeed, after such a reconstruction, the number and positions of
material points in grid cells can change and one must properly adapt the CFL number so that the scheme remains
stable. An advantage over the original MPM, for which the critical Courant number cannot be computed, is
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hence highlighted. It is however worth noticing that the MPM seems less dependent on the particle distribution
so that the CFL is usually set to an arbitrary value (0.5 or 0.7 for one and two-dimensional problems). The
DGMPM is on the other hand, characterized by a CFL number that can be set at one in particular cases.

In addition to the stability of the method, the convergence properties of the DGMPM have been compared to
that of the original MPM on a one-dimensional elastic problem. While the MPM, as FEM, shows a second-order
accuracy in velocity and first-order in stress, the DGMPM exhibits a first-order accuracy for both fields. The
loss of accuracy has been attributed to the back-mapping used in the DGMPM and strategies to handle higher-
order approximations have been proposed. However, the purpose of this work being the accurate capturing of
waves that can be non-regular, high-order accuracy goes beyond the scope of this thesis.

In the following, attention is paid to the capturing of waves without oscillations unlike what has been
highlighted for the MPM in section 3.1. The object of the next chapter is the illustration of the DGMPM
performances with one and two-dimensional simulations.
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Chapter 4

Numerical Results

Introduction
The Discontinuous Galerkin Material Point Method is now illustrated by comparing some of its solutions to those
of other numerical schemes and to exact solutions. First, problems falling in the small deformation framework
are considered in section 4.1. More specifically, DGMPM and MPM solutions of the Riemann problem in an
elastic bar are compared in section 4.1.1. The methods are then applied to the solution of problems involving
multi-dimensional stress and one-dimensional strain states (plane wave problem) in section 4.1.2, and a plane
strain state in sections 4.1.3 and 4.1.4. Comparisons with MPM, FVM, FEM and exact (when existing) solutions
are shown for elastic, elastic-viscoplastic and elastoplastic solids. These simulations highlight the ability of the
DGMPM to track sharp solutions and the possibility of using dedicated numerical tools to accurately deal
with history-dependent constitutive models, which are of particular interest for the applications targeted by the
method.

Second, in section 4.2 attention is paid to waves propagating in finite deforming solids, for which history
effects are not considered. For that purpose, DGMPM simulations performed on plane wave problems in a
hyperelastic Saint-Venant-Kirchhoff medium are compared to MPM and exact solutions in section 4.2.1. Then,
a comparison between DGMPM, FEM and MPM solutions of a plane strain state problem in a neo-Hookean
solid is proposed in section 4.2.2.

Although several constitutive models are assumed in this chapter, elastic, viscous and plastic properties
considered are the same for all materials. Table 4.1 summarizes the values of Young’s modulus E, Poisson’s
ratio ν and reference mass density ρ0. In addition, linear isotropic or kinematic hardening of modulus C and
tensile yield stress σy are assumed for plastic evolutions, along with the viscosity γ and sensitivity n for viscous
ones. At last, no body forces are considered here.

E = 2× 1011 Pa σy = 4× 108Pa n = 4.37
ν = 0.3 C = 109Pa γ = σy × τ1/n

ρ0 = 7800 kg.m−3

Table 4.1: Material parameters. The viscosity is expressed as a function of the relaxation
time τ characterizing relaxation systems (see section 2.2.4).

4.1 Linearized geometrical framework

4.1.1 Riemann problem in an isotropic elastic bar
To begin with, let’s focus on the problem that illustrated some shortcomings of the MPM in section 3.1 and
motivated the development of the DGMPM. We thus consider a bar of length l = 6m in direction e1 in which
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the Cauchy stress and infinitesimal strain tensors are of the form:

σ = σ e1 ⊗ e1

ε = ε e1 ⊗ e1

The stress is initially zero everywhere and Riemann-type initial conditions on the axial velocity v = v · e1 are
prescribed: v = v0 > 0 for x1 ∈ [0, L/2[ and v = −v0 for x1 ∈ ]L/2, L]. In addition, both ends of the domain
are traction free. The exact solution of this problem [36, Ch.1], recalled in section 2.4.2, consists of two elastic
discontinuities propagating leftward and rightward in the bar at constant speeds c = ±

√
E/ρ. The discretization

of the domain lies on a regular background grid made of 50 cells containing material points distributed so that
two situations are distinguished: each cell contains one particle that coincides with the element centroid for the
1ppc discretization; each cell contains two particles symmetrically placed with respect to element centers and
regularly spaced in the grid for the 2ppc discretization.

The problem is solved on the one hand with the MPM-USL in which the nodal velocity is based on either
FLIP or PIC mappings (CFL=0.5), and with the DGMPM coupled with both Euler (CFL=1 with 1 ppc and
CFL=0.5 for 2ppc) and RK2 (2ppc only and CFL=1) time integration on the other hand. Figure 4.1 shows
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Figure 4.1: Stress and velocity solutions of the Riemann problem in an isotropic elastic bar
at two different times (columns a and b). Comparison between DGMPM coupled with Euler
or RK2 time integration, MPM-USL formulation using either PIC or FLIP mapping, and
the exact solution for an initial velocity set to v0 = c

2000 .
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the numerical solutions at two different times in terms of stress and velocity, compared to exact ones. First,
since the Courant number can be set to one for the DGMPM-Euler with 1ppc, the method is able to capture
the discontinuities and yields solutions fitting perfectly the analytical ones. The same property holds for the
DGMPM-RK2 with 2ppc while for the same discretization the DGMPM-Euler is restricted by a lower CFL
number that prevents the accurate resolution of waves. As identified in section 3.1, the use of the PIC mapping
within the DGMPM leads to solutions that do not exhibit oscillations. In addition, this projection of updated
fields from nodes to particles eliminates the locking of velocity in the central region that can be seen in USL-
FLIP solutions. Moreover, the introduction of the DG approximation within the USL-PIC leads to

0 1 2 3 4 5 6

·10−4

0.9

0.95

1

time(s)

e
e
m

a
x

usl-flip 1ppc
usl-flip 2ppc
usl-pic 2ppc
dgmpm 1ppc
dgmpm 2ppc

dgmpm 2ppc (RK2)

Figure 4.2: Evolution of total energy e for DGMPM and MPM-USL solutions on the Rie-
mann problem in an elastic bar.

a reduction of numerical diffusion, though less significant than that permitted by using FLIP mapping as
originally proposed in the MPM. This can be seen in figure 4.2 in which the evolution of total energies resulting
from every numerical scheme is depicted. The situations for which the CFL number is set to unity for DGMPM
formulations obviously yields an exact conservation of the total energy during the computation while other
results suffer from dissipation.

Since, the number of material points per cell has little influence on USL results, the MPM is from now only
used with the 1ppc discretization. Furthermore, the PIC mapping has been used here within the MPM for
comparison purposes and is no longer considered in the remainder of the simulations.

4.1.2 Plane wave in a history-dependent material
We now consider a infinite medium in directions e2 and e3, and length l = 6m in direction e1. Riemann-type
initial conditions similar to those treated above are assumed to yield the following infinitesimal strain and
Cauchy stress tensors:

ε = εe1 ⊗ e1

σ = σLe1 ⊗ e1 + σT (e2 ⊗ e2 + e3 ⊗ e3)

which correspond to the plane wave case. In that configuration, a relation exists between longitudinal and
transverse stress components σL and σT in such a way that a one-dimensional hyperbolic system is solved
for σL = σ, and the transverse component σT is computed subsequently. In this section, the behavior of the
DGMPM on relaxation systems is looked at on a solid made of an elastic-viscoplastic material following the
Perzyna model with linear kinematic hardening [32]. In the asymptotic limit τ = (γ/σy)n → 0, where τ is the
relaxation time, the computed elastic-viscoplastic solution should tend to the elastoplastic one derived in [6].
The writing of the viscosity as a function of the relaxation parameter in table 4.1 enables the tuning of the
stiffness of the hyperbolic system by setting different values of τ .
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The solid is initially in a free stress state and the initial velocity is set so that plastic flow occurs:

v0 = 2 YH
ρcL

where YH = (λ + 2µ)σy/2µ denotes the Hugoniot elastic limit, cL =
√

(λ+ 2µ)/ρ is the elastic pressure wave
speed, and (λ, µ) are Lamé’s constants. Both ends of the medium are traction free so that rightward and
leftward compressive elastic waves reflect as unloading waves that interact with the incident plastic ones [34].

Elastoviscoplasticity

The elastic-viscoplastic problem is solved with the MPM using both USL and USF formulations, the DGMPM-
Euler with Godunov splitting, and the DGMPM-RK2 coupled to Strang splitting. The latter formulation is
however not used for stiff systems since this fractional method is known to fail to assess the correct solution
in those cases [34, 64]. The ODE systems resulting from fractional approaches are discretized with an implicit
backward Euler scheme for Godunov and a backward differentiation formula of order 3 for Strang splitting. The
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Figure 4.3: Plastic strain and longitudinal stress resulting from MPM and DGMPM simu-
lations before (column a) and after (column b) reflection of incident plane waves at the free
boundaries. Non-stiff problem: τ = 50∆t.

viscoplastic flow rule is then integrated explicitly at the end of the time step to update viscoplastic strains. On
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the other hand, constitutive equations are integrated with a radial return algorithm [26] in the MPM. First, the
relaxation system is considered in a non-stiff setting characterized by a relaxation time bigger than the time
step governed by the convection part, that is τ = 50∆t. Figure 4.3 shows a comparison of numerical stress
and plastic strain with the exact solutions of the elastoplastic limit. For this non-stiff configuration, viscous
effects lead to much smoother solutions compared to the elastic-plastic one as can be seen in figures 4.3a. First,
USL and USF results are quite similar in terms of stress, up to some oscillations on the plastic plateau that
lead to different assessments of the viscoplastic strain. Then, Godunov splitting with 1ppc and Strang splitting
provide solutions in which one can distinguish elastic waves from the viscoplastic flow while it is not possible
in the MPM solution and in DGMPM-Euler results with 2ppc due to numerical diffusion. Furthermore, local
overshoots appear in the viscoplastic strain computed with the MPM and the DGMPM-Euler when one ppc is
used (see figure 4.3a). The former can be explained by the velocity locking at the middle of the bar and the
latter can be eliminated by integrating implicitly the viscoplastic flow rule together with the source term [34].
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Figure 4.4: Plastic strain and longitudinal stress resulting from MPM and DGMPM sim-
ulations before (column a) and after (column b) reflection of incident elastic waves at the
free boundaries. Stiff problem: τ = ∆t× 10−2.

The same remarks as before can be made with a lower relaxation time τ = ∆t × 10−2 as can be seen
in figure 4.4. However, numerical solutions are sharper and get closer to the elastic-plastic stress and strain.
Furthermore, the decrease in the relaxation time leads, as expected, to an apparent yield stress tending to that
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of the elastoplastic solution for Godunov splitting with 1ppc and Strang splitting. Once again, the overshoots
arising in the DGMPM-Euler viscoplastic strain can be removed by integrating the flow rule implicitly. This is
also the case for the spurious oscillations that can be observed in the stress solution in figure 4.4a [34].

As for FVM, the DGMPM can benefit from splitting methods to compute source terms. Though these
methods are convenient and easy to implement, some of them can lead to non-physical solutions in the stiff
limit in such a way that the solution of the source term pollutes that of the convective part (i.e. as shown for
Strang splitting [34]). The Godunov splitting is robust and leads to acceptable results but is only first order
accurate. Higher-order of accuracy may require the employment of high-order time integrators for stiff systems,
such as implicit-explicit IMEX Runge-Kutta schemes [65]. These questions do not arise for MPM since classical
elastic-viscoplastic integrators are used (which may still have convergence troubles in the stiff limit).

Rather than solving the relaxation system in the stiff limit, the solution of the elastic-plastic problem can
be computed, for one-dimensional solids, based on dedicated approximate Riemann solvers. Such approaches
allow better accuracy while avoiding numerical difficulties related to the computation of stiff source terms. An
elastoplastic Riemann solver is used for the simulations presented below.

Elastoplasticity

The conservative and associated quasi-linear forms governing elastoplasticity under small strains derived in
section 2.2.4 are used within the DGMPM to write the discrete equations and to compute intercell fluxes
respectively. Those two systems are recalled here for convenience:

Ut +
D∑
i=1

∂F · ei
∂xi

= 0 (4.1a)

Qt + Ai ∂Q

∂xi
= 0

with U =
[
v
ε

]
, F · ei =

[ − 1
ρσ · ei

−v⊗ei+ei⊗v2

]
and Q =

[
v
σ

]
So far, the solution of Riemann problems at cell faces has been carried out by means of a Riemann solver that
only takes into account the characteristic structure of the elastic problem. Such a solver may also be used to
solve hyperbolic problems in elastic-plastic solids by considering only elastic characteristics for the computation
of numerical fluxes. The vector of conserved quantities U resulting from the solution of discrete equations is
then used to integrate the plastic flow at the particle level by means of a radial return algorithm.

On the other hand, the Riemann solver can be based on exact solutions for linear hardening one-dimensional
media [6, 36] by following a prediction-correction procedure: (i) the stationary state is computed based on
elastic characteristics only; (ii) the characteristic structure is corrected by adding plastic waves in regions where
the yield criterion is violated as described in section 2.4.3. Approximate elastoplastic Riemann solvers, in
which non-linear waves are solved as discontinuous ones, can also be employed for non-linear hardening one-
dimensional media based on the same solution scheme. This type of solver, by accounting for both elastic and
plastic waves, should yield more accurate results but does not avoid the integration of plastic flow by radial
return algorithms if a conservative form (4.1a) involving ε is used.

The solutions of the DGMPM-Euler scheme, combined with the two approaches discussed above, are com-
pared to MPM and exact solutions on the 1ppc space discretization in figure 4.5. It can be seen in figure 4.5a
that the use of an elastic Riemann solver in DGMPM yields slight oscillations on the plastic plateau before
the reflection of waves. The same behavior is noticed for the MPM solution. Furthermore, the plastic strain
is properly assessed by the DGMPM combined with the elastic-plastic solver while the field is overestimated,
in absolute value, by the MPM and the DGMPM using the elastic Riemann solver. Next, additional noise is
introduced in numerical solutions by the elastic unloading waves except if the elastic-plastic Riemann solver is
employed (see figures 4.5b). In the latter case the solution does not exhibit spurious oscillations. It is however
noteworthy that the discontinuity generated in the plastic strain is rather well solved by the DGMPM though
all the numerical schemes fail to capture the elastic unloading waves.

We now propose to compare the DGMPM solution based on the elastoplastic Riemann solver to FEM
and FVM solutions. For that purpose, finite elements and finite volumes coincide with DGMPM grid cells
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Figure 4.5: Plane wave solution of the Riemann problem in an elastoplastic material with
linear hardening. Comparison between DGMPM-Euler using either an elastic or an elasto-
plastic Riemann solver, MPM, and exact solutions in terms of stress and plastic strain.

for which only the 1ppc discretization is considered. The comparison is therefore made by extracting finite
element solutions at integration points, consistently with finite volumes centroids and particles. Figure 4.6
shows the solution of explicit P1-finite elements based on a lumped mass matrix and a radial return algorithm,
and a second-order TVD finite volume method using Superbee flux limiters (SB) and the forward Euler time
discretization [6]. The introduction of wave limiters in numerical schemes allows to avoids spurious oscillations
while steepening the solution near discontinuities by introducing some amount of artificial viscosity based on a
Total Variation criterion. The finite volume scheme also makes use of an elastoplastic Riemann solver in such
a way that both elastic and plastic waves are limited.

In figure 4.6a, the incident elastic waves are perfectly captured by all methods due to a CFL number set to
unity. On the other hand, plastic fronts are steeper for FEM and FVM solutions than for DGMPM, although
FEM oscillations yield an overestimated plastic strain. After reflection of waves at the free boundaries (figure
4.6b), additional noise appears in the FEM solution. Those oscillations however occur mainly on elastic waves
so that the finite element plastic strain does not exhibit more overshoots. Moreover, the elastic unloading waves
are differently solved by FVM and DGMPM. As a result, the plastic strain profiles in figures 4.6a and 4.6b are
not identical, the best solution being provided by second-order TVD finite volume. Thus, limiting elastic waves
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Figure 4.6: Stress and plastic strain solutions of the Riemann problem in a one-dimensional
elastoplastic medium: comparison between FEM, Superbee FVM and DGMPM-Euler using
an elastoplastic Riemann solver. All CFL set to 1.

as well as plastic ones, as is allowed by an elastoplastic Riemann solver, enables a significant improvement in
the accuracy for plastic waves.

The results presented above show the better accuracy allowed by the introduction of an elastic-plastic
Riemann solver. Although the characteristic structure of the solution for one-dimensional media considered
here is known, this is not the case in general. Hence, the two-dimensional, three-dimensional or hyperelastic-
plastic conservation laws are usually solved with finite volume by means of elastic Riemann solvers combined
with constitutive update algorithms at cell centroids [8, 78, 79]. Alternatively, the computation of interface
fluxes can take into account plastic flow if the Riemann problem is written based on the conservative form
(4.1a). Indeed, in that case the flux corresponding to the stationary solution can be calculated through the
integration of constitutive equations. Nevertheless, constitutive updates at each face of a grid drastically increase
the computational cost. Further research on the characteristic structure of solutions of hyperbolic problems in
(hyper)elastic-plastic solids would enable the development of approximate Riemann solvers for more complex
constitutive models.
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4.1.3 Plane strain problem – Elasticity
We now consider an elastic solid with square section of dimension l = 3m in the (e1, e2) plane, infinite in the
direction e3 so that the plane strain assumption holds (i.e. ε33 = ε13 = ε23 = 0). The solid suddenly undergoes
a tensile load on a part of its left boundary (see figure 4.7a) leading to shear and pressure waves propagating
in the medium until they reflect at the right end. The MPM and the DGMPM are compared to a Q1-finite

(a) Geometry and boundary conditions

l = 3m

a = 1mσ · e1 =



σd

0
0




e1

e2

(b) Material points set and grids

Nodes / particles

Grid 1

Grid 2

Figure 4.7: Geometry, loading and boundary conditions for the tensile impact problem on
a two-dimensional elastic medium.

element (bilinear approximation) solution coupled with a central difference explicit time integrator, computed
with the code Cast3M [80]. Since an upper bound of the CFL number cannot be determined for the DGMPM
scheme using RK2 time discretization for two-dimensional problems, we consider the DGMPM-Euler scheme in
the remainder of the manuscript. More specifically, the following simulations have been carried out by means
of the CTU method.

The domain is discretized such that material points are equivalent to finite element nodes: l × l ≡ 28 × 28
particles and nodes. Moreover, two arbitrary grids are used for the DGMPM so that either one or four material
points lie in every cell according to the situations depicted in figure 4.7b. Figure 4.8 shows the isovalues of

t
=

3.
5
×

10
−
4
s

(a) FEM (b) DGMPM 1ppc (c) DGMPM 4ppc (d) MPM 1ppc

-57

200

290

σ11 (MPa)

t
=

1.
0
×
10

−
3
s

-43

200

480

σ11 (MPa)

Figure 4.8: Isovalues of longitudinal stress σ11 solution of the tensile impact problem in
a two-dimensional elastic medium. Comparison between FEM (CFL=0.9), DGMPM-CTU
using 1ppc (CFL=1) or 4ppc (CFL=0.23), and MPM using 1ppc (CFL=0.7).

the longitudinal stress σ11 in the two-dimensional medium at two different times with the traction force set
to σd = 200 MPa. The two instants at which the solutions are depicted correspond to incident and reflected
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waves. In addition, the stress profiles along the bottom boundary of the domain are plotted in figures 4.9a and
4.9b for the same times.

Analogously to one-dimensional problems, the figures show that DGMPM solutions do not suffer from
spurious oscillations while FEM and MPM ones exhibit numerical noise. The 4ppc discretization leads to a
decrease in the CFL number which, in turn, yields a less accurate resolution of the jump discontinuity carried
by the longitudinal pressure wave than for 1ppc (see figure 4.9a). Next, the interaction of shear and pressure
waves traveling in the medium leads to a curved stress profile upstream of the discontinuity that is captured
differently by all methods. On the other hand, the cylindrical profile of the longitudinal stress is quite well
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Figure 4.9: Evolution of longitudinal stress σ11 along the bottom boundary of the elastic
square plate. Comparison between FEM (CFL=0.9), DGMPM-CTU using 1ppc (CFL=1)
or 4ppc (CFL=0.23), and MPM using 1ppc (CFL=0.7).

described by FEM and DGMPM with 1ppc, even after reflection at the fixed boundary, as can be seen in figure
4.8. The smoothness of DGMPM solutions using 4ppc and the oscillations in MPM results however prevent
from distinguishing this structure.

Figure 4.9b also shows that the stress level on the right boundary of the domain differs from one method to
another. Furthermore, MPM and FEM solutions after the passage of the reflected waves oscillate a lot compared
to those of DGMPM schemes. In particular, the stress levels greatly differ after the reflection of the pressure
wave.

4.1.4 Plane strain problem – Elastoplasticity
The above solid is now assumed to be made of an elastic-plastic material with linear isotropic hardening. A
tensile impact of amplitude σd = 2σy leading to plastic flow is considered.

Comparison between FEM (Cast3M), MPM and DGMPM using either one or four particles per element is
made. The computation of intercell fluxes within the DGMPM is based on an elastic Riemann solver, and plastic
flow is integrated by means of a radial return algorithm. The evolution of longitudinal stress σ11 and plastic
strain εp11 are depicted in figure 4.10. It can first be seen that similar remarks as above can be made about the
longitudinal stress though the integration of plastic flow leads to fewer oscillations in the finite element stress.
Next, DGMPM longitudinal plastic strains before the reflection of the pressure wave (figure 4.10a) are quite
close to each other. On the other hand, the FEM plastic strain curve is above the others and the MPM one
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is in advance compared to the other solutions. After the reflection (figure 4.10b), the stress profiles are rather
close to each other. However, the MPM solution is far higher than the others on the right end of the domain.
The same observations can be made on the longitudinal plastic strain which is quite similar for both DGMPM
and FEM solutions, though the DGMPM maximum value computed with one ppc is higher than the others.
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Figure 4.10: Evolution of longitudinal stress σ11 and plastic strain εp11 along the bottom
boundary of the elastic-plastic square. Comparison between FEM (CFL=0.9), DGMPM
using 1ppc (CFL=1) and DGMPM using 4ppc (CFL=0.23) solutions.

Figure 4.11 furthermore shows FEM and DGMPM solutions in terms of equivalent plastic strain p, before
and after reflection of the longitudinal pressure wave on the right end of the domain. MPM results for the
same time steps are plotted separately in figure 4.12 due to the large amplitude of equivalent plastic strain.

A concentration of plastic strain occurs at the interface between loaded and traction free parts of the left
boundary of the domain in DGMPM solutions. Such concentrations in the high gradient region can also be
seen in MPM solutions depicted in figure 4.12 so that this phenomenon seems to be a singularity owed to
boundary conditions. Although the final DGMPM and FEM profiles of equivalent plastic strain have the same
shape, the results highlight the fact that different numerical methods yield different assessments of irreversible
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Figure 4.11: Isovalues of equivalent plastic strain p in an elastic-plastic plate linear isotropic
hardening material at two different times. Comparison between FEM (CFL=0.9), DGMPM
using 1ppc (CFL=1) and DGMPM using 4ppc (CFL=0.23) solutions.
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Figure 4.12: MPM isovalues of plastic strain p in an elastic-plastic plate made of a linear
isotropic hardening material at two different times (CFL=0.7).

deformations. This point is crucial for the accurate simulation of solid mechanics applications such as forming
techniques or crash problems.

4.2 Large strain framework
4.2.1 Plane wave in a one-dimensional hyperelastic medium
A plane wave state is considered in a semi-infinite medium of length l = 6m in direction e1, made of a hyperelastic
Saint-Venant-Kirchhoff material:

F = Fe1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3

Π = Πe1 ⊗ e1 + Πr (e2 ⊗ e2 + e3 ⊗ e3)

where Π = 2µ+λ
2 F (F 2 − 1), Πr = λ

2 (F 2 − 1) and (µ, λ) are the Lamé’s coefficients. A traction force is enforced
on the left boundary of the solid initially at rest: Π · (−e1) = Πde1. The exact solutions of the Picard problem

85



4.2. LARGE STRAIN FRAMEWORK

thus formulated have been developed in section 2.4.4. With characteristic speeds depending on the deformation
gradient, a compressive (resp. tensile) load leads to a rarefaction (resp. shock) wave traveling in the medium.
Recall that this non-intuitive behavior is due to the concave nature of the SVK fluxes (see remark 7 in section
2.4.4). Both cases are considered hereinafter before reflection on the right end. Moreover, it has been established
that the problem is no longer hyperbolic if the deformation gradient is such that F <

√
1
3 (see remark 6 in

section 2.4.4). Hence, we consider here loading conditions that do not yield a loss of hyperbolicity.
The one-dimensional medium is discretized by using either 100 or 200 material points lying in 100 regular

grid cells. The 1ppc and 2ppc discretizations used here are the same as before as well as material parameters
of table 4.1.

Compressive impact on a SVK medium

To begin with, the body is submitted to a compressive load on its left end so that a rarefaction wave propagates
rightward. The total and updated Lagrangian formulations of the MPM are used along with DGMPM schemes.
First of all, the compressive load is set to Πd = 4 × 108 Pa and numerical solutions are compared in figure
4.13 at two different times. Though the low load amplitude applied results in a solution which looks like a
discontinuity, it avoids grid crossing.
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Figure 4.13: First Piola–Kirchhoff stress along a horizontal line of the one-dimensional
hyperelastic medium at different times: solution of the compressive impact problem Πd = 4×
108 Pa. Comparison between updated and total Lagrangian MPMs (CFL=0.5), DGMPM-
Euler with 1ppc (CFL=1) or 2ppc (CFL=0.5), DGMPM-RK2 with 2ppc (CFL=1), and the
exact solution.

First, both solutions of updated and total Lagrangian MPM formulations oscillate. It is noteworthy that
these two stress profiles are superimposed except at the left end of the domain where an instability occurs in the
updated Lagrangian solution due to the displacement of particles. Second, DGMPM solutions still behave well
and show good agreement with the exact solution. However, the enforcement of a higher load amplitude is more
relevant in order to see the error made by the DGMPM. The applied load is therefore raised to Πd = 2×1010Pa.

Significant differences between numerical methods and the exact solution are then visible in figure 4.14.
First, grid crossing now occurs so that the MPM results based on the updated Lagrangian formulation are no
longer correct. Hence, this formulation is omitted from now on. On the other hand, the total Lagrangian MPM
scheme yields a solution which does not oscillate more than for linear cases. Next, as expected from the use of
an approximate-state Riemann solver for non-linear problems, DGMPM stresses, though close to the analytical
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Figure 4.14: First Piola–Kirchhoff stress along a horizontal line of the one-dimensional
hyperelastic medium at different times: solution of the compressive impact problem Πd =
2 × 1010 Pa. Comparison between MPM (CFL=0.5), DGMPM-Euler with 1ppc (CFL=1)
or 2ppc (CFL=0.5), DGMPM-RK2 with 2ppc (CFL=1), and the exact solution.

solution, no longer fit it exactly (see figure 4.14b). Furthermore, the use of DGMPM-Euler with 2ppc leads to
a smoother solution.

One can imagine the employment of an exact Riemann solver based on the exact solution in order to reduce
the error made in the DGMPM. However, such an implementation requires the solution of a non-linear problem
at each cell interface and is very costly. Moreover, an exact solution is available for a SVK material but this is
not the case for other constitutive models, which prevents the generic use of an exact solver.

Tensile impact on a SVK medium

A tensile load of magnitude Πd = −2× 1010 Pa that gives rise to a shock wave in the medium is now studied.
Recall that for this problem, the characteristic speeds are: c = ±

√
λ+2µ
2ρ0

(3F 2 − 1) (see equation (2.73) in
section 2.4.4). It then follows that the higher the deformation gradient, the faster waves propagate. Hence, the
celerity of the fastest wave is given by the deformation gradient on the upwind side and must be used to adapt
the time step and hence, satisfy the CFL condition for fixed Courant number. This situation did not arise in the
above case of a rarefaction wave since the highest deformation gradient value was (constant) on the downwind
side.

Total Lagrangian MPM and DGMPM are used to solve this problem, and compared to the exact solution in
figure 4.15. The error made in the MPM solution grows during the computation, implying that the method is no
longer stable in spite of the CFL number set to 0.5, which ensured stability for the above problems. Moreover,
slight oscillations also appear after the shock in DGMPM solutions based on a unit Courant number (see figure
4.15a) but not in the DGMPM-Euler using 2ppc due to the lower Courant number used. Nevertheless, the
oscillations do not increase with time as can be seen in figure 4.15b, meaning that this noise is not an instability.
Next, despite a CFL number set to one, the DGMPM-Euler and DGMPM-RK2 do not perfectly capture the
discontinuity, though a good behavior is shown. Indeed, according to Lax entropy condition (2.77), the wave
celerity used for the time step evaluation is an upper bound of the shock speed so that such a wave cannot be
captured. Nevertheless, the loading conditions are deliberately extreme for the purpose of visualization.

A lower tensile load leads to a numerical solution closer to analytical results as can be seen in figure 4.16,
which shows the comparison for Πd = −2 × 109 Pa. In addition, the oscillations appearing in DGMPM-Euler
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Figure 4.15: First Piola–Kirchhoff stress solution of the tensile impact problem at different
times: Πd = −2 × 1010 Pa. Comparison between MPM (CFL=0.5), DGMPM-Euler with
1ppc (CFL=1) or 2ppc (CFL=0.5), DGMPM-RK2 with 2ppc (CFL=1), and the exact
solution.
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Figure 4.16: First Piola–Kirchhoff stress solution of the tensile impact problem at different
times: Πd = −2×109Pa. Comparison between MPM (CFL=0.5), DGMPM-Euler with 1ppc
(CFL=1) or 2ppc (CFL=0.5), DGMPM-RK2 with 2ppc (CFL=1), and the exact solution.

with 1ppc and DGMPM-RK2 with 2ppc solutions are almost eliminated in figure 4.16a. The MPM solution
on the other hand, still exhibits an increasing error although a Courant number ensuring the stability in the
scheme for linear problems is used.
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4.2.2 Problems in two space dimensions
Plane wave in a two-dimensional hyperelastic medium

We move to multi-dimensional simulations by considering an infinite medium in directions e2 and e3, and of
width l in direction e1 (see figure 4.17), with Riemann-type data on the initial velocity (v1(x) = v0 for x < l/2
and v1(x) = −v0 for x > l/2 with v0 = 100 m/s). Both ends of the domain are traction-free. The solid is
now made of a compressible hyperelastic neo-Hookean material which, unlike the SVK model, is based on a
polyconvex stored energy function so that hyperbolicity is ensured whatever F (see section 2.2.3). While it has
been seen that a compressive load on a SVK material leads to a rarefaction wave, this is not the case for the
neo-Hookean model for which a compressive load involves a shock wave (see remark 7).

h = 2.28× 10−1 m

l = 6m

e1

e2

Figure 4.17: Geometry and loading conditions for the plane wave problem in a two-
dimensional solid.

The domain is modeled by a finite medium, with zero shear stress and transverse velocity components
prescribed on the top, bottom and right boundaries (figure 4.17). In addition zero out-of-plane velocity and
strain components are assumed so that plane waves can be simulated. The solid is discretized with 80 × 4
material points in a regular grid made of either 80× 4 or 40× 2 cells so that the 1ppc and 4ppc discretizations
are used. The simulation has been performed with the DGMPM-DCU, since BCs reproduce a plane wave that
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Figure 4.18: Isovalues of the longitudinal PK1 stress Π11 solution of the plane wave prob-
lem in a two-dimensional compressible neo-Hookean material with Riemann-type data on
the initial velocity. Comparison between DGMPM-DCU with 1ppc (CFL=0.57) or 4ppc
(CFL=0.23) and MPM solutions also using 1ppc and 4ppc (CFL=0.7).

does not involve Poisson’s effect, and compared to MPM solutions. A similar problem is considered in [81] with
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a traction force on the left boundary applied on a SVK material, for which a comparison with the exact solution
shows a good agreement.

The isovalues of the longitudinal PK1 stress Π11 can be seen in figure 4.18 at two different times before the
wave reaches the left and right ends of the domain. As for one-dimensional problems, oscillations appear in
MPM solutions but not in DGMPM ones so that the maximum amplitude of stress in the former is mush higher
that in the latter. In contrast to the previous simulations, the lower CFL numbers used for this two-dimensional
problem lead to a less accurate resolution of the shock wave with additional numerical diffusion. Nevertheless,
the one-dimensional dependency of the solution is not disturbed within the numerical schemes.
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Figure 4.19: Evolution of total energy for the plane wave problem in a two-dimensional
compressible neo-Hookean material.

The evolutions of total energy during DGMPM and MPM computations are compared in figure 4.19. As
for the elastic case, it can be seen that the DGMPM is more dissipative than the MPM. It is however worth
noticing that both methods dissipate more energy than in the linear elastic case.

Two-dimensional plane strain problem

The plane strain problem studied in sections 4.1.3 and 4.1.4 is now considered in a compressible hyperelastic
neo-Hookean material submitted to an imposed velocity v1 = −1000 m/s on the bottom part of its left end.
The solid is discretized such that material points are equivalent to Q1-finite element nodes. Thus, the plate
is represented with l × h ≡ 28 × 28 material points, only with the 1ppc configuration. The finite element
computation is performed with the software Abaqus [82] using an explicit time discretization with no artificial
viscosity added. These numerical results are compared to those obtained from MPM and DGMPM using CTU
computations. The Courant number is set to unity in DGMPM and to 0.5 in MPM leading to average time
steps ∆tCTU = 1.41 × 10−5s and ∆tMPM = 6.13 × 10−6s, whereas the constant time step used in the FEM
simulation is ∆tFEM = 1.27× 10−5s. Figure 4.20 shows numerical results in terms of the Cauchy stress tensor
isovalues exported from Abaqus to the software Paraview [83] with the code developed in [84], particularized to
the present two-dimensional plane strain case. Cauchy stress is plotted on the current configuration in such a
way that figure 4.20 also enables the comparison of the deformed shape of the body. At the beginning of the
computation (first row in figure 4.20), stress profiles are quite similar despite slight oscillations visible in FEM
and MPM solutions. This can also be seen in figure 4.21, in which stress is plotted along the bottom boundary
of the domain. However, the MPM solution exhibits, as for small strain problems, a concentration of stress in
the high gradients region on the left boundary. It is worth noticing that the DGMPM shows the same behavior
that cannot be seen here due to the MPM stress values which are much higher. The deformed shapes of the
plate resulting from the three numerical approaches hence remain close, except at the junction of the loaded
and free zones of the left edge. When the pressure wave reflects on the fixed boundary at time t = 5.0× 10−4 s
(second row in figures 4.20 and 4.22), the stress profiles are still similar, though FEM and MPM solutions
oscillate even more. These spurious oscillations are more significant in the velocity fields depicted in figure 4.22
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Figure 4.20: Isovalues of Cauchy stress tensor component σ11 in a two-dimensional plate
made of a neo-Hookean material, submitted to a velocity v · e1 = −1000 m/s on a part of
its left end.
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Figure 4.21: Evolution of longitudinal Cauchy stress σ11 along the bottom boundary of the
domain.

as well as in figures 4.21 and 4.23 which depict the velocity along the bottom boundary. Furthermore, one
can see in figure 4.23b that the homogeneous Dirichlet boundary condition is not exactly enforced in DGMPM

91



4.2. LARGE STRAIN FRAMEWORK

when the incident wave hits the right end. This can be explained by considering a boundary cell of the
t
=

1.
8
×
1
0
−
4
s

(a) FEM (a) DGMPM (c) MPM

-1.2e3

70

v1 (m/s)

t
=

5.
0
×

1
0
−
4
s

-1.1e3

110

v1 (m/s)

t
=

1.
0
×

10
−
3
s

-1e3

120

v1 (m/s)

Figure 4.22: Isovalues of velocity component v1 in a two-dimensional plate made of a neo-
Hookean material, submitted to a velocity v · e1 = −1000m/s on a part of its left end.
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Figure 4.23: Evolution of horizontal velocity v1 along the bottom boundary of the domain.

arbitrary grid (i.e. containing one material point that belongs to the right end of the domain) that is about to
be reached by the wave through the upwind interface. The intercell flux on the upwind interface resulting from
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the discontinuity, and subsequently the conserved quantities vector resulting from the solution of the discrete
system on the grid, are non-zero. In particular, the horizontal velocity at upwind nodes of the boundary cell
does not vanish while that of the downwind edge satisfies the homogeneous Dirichlet condition. Hence, the
interpolation of the velocity from nodes to the particle yields a non-zero field at the material point level. Note
that this holds for the MPM as well in which the enforcement of boundary conditions is still a challenging
question [70].

Nevertheless, no significant displacements of particles can be seen on the right end in MPM and DGMPM
solutions in figures 4.20 and 4.22. At last, oscillations remain in FEM and MPM solutions until the end of the
simulation. Since the velocity field depicted in figures 4.22 and 4.23 is used to update the shape of the solid in
FEM, the numerical noise yields final configurations that are slightly different. On the other hand, updating
particle positions with the grid velocity within the MPM allows better results than if the oscillating material
point velocity is used.

4.3 Conclusion
The Discontinuous Galerkin Material Point Method has been applied to hyperbolic problems of solid mechanics.
It has first been shown on a Riemann problem in a linear elastic bar under small strains in section 4.1.1, that
the method is able to capture the exact solution that consists of two elastic discontinuities propagating in the
medium. Indeed, the stability properties of the one-dimensional schemes derived in section 3.3.1 enable, for
particular space discretizations, the use of a CFL number set to unity. Nevertheless, once the optimal stability
condition is lost, that is CFL < 1, the method is slightly more diffusive than the MPM. Next, the solution of
problems in history-dependent solids (sections 4.1.2) have shown that efficient tools can be embedded into the
method in order to deal with (visco)plastic flows. In particular, approximate elastic-plastic Riemann solvers
can be employed, provided that the characteristic structure of the problem is known. In addition, the results of
section 4.2.1 highlight that the total Lagrangian formulation of the DGMPM allows circumventing the eventual
grid-crossing occurring in updated Lagrangian MPM for problems involving waves in finite deforming solids.
As a consequence, the numerical scheme also provides solutions that are close to exact ones for non-linear
problems. Moreover, the arbitrariness of the grid can be fully exploited by employing adaptive mesh techniques
on the reference configuration so as to track accurately waves in the current configuration for problems involving
complex geometries. At last, the two-dimensional simulations performed in sections 4.1.3, 4.1.4 and 4.2.2 show
that DGMPM results are in good agreement with FEM while eliminating spurious oscillations.

Recall that the approach followed in this work consisted of: (i) removing the spurious oscillations that appear
in MPM solutions by reintroducing the PIC mapping; (ii) reducing the numerical diffusion thus introduced by
means of the Discontinuous Galerkin approximation. The results presented in this chapter showed that these
purposes have been fulfilled (see section 4.1.1 for point (ii)). It should be noted, however, that the adaptation
of the method to high-order space approximations, as well as the employment of the RK2 time discretization
for two-dimensional problems, are expected to further reduce the numerical diffusion exhibited by the scheme.

Moreover, numerical tools used for one-dimensional problems can be generalized for two-dimensional ones.
This is the case of splitting procedures that should enable the DGMPM to accurately follow waves traveling
in elastic-viscoplastic solids in 2D. As discussed in section 4.1.2, elastoplastic problems can be solved as the
stiff limit of elastoviscoplastic ones, provided that suitable ODE integrators are employed. On the other hand,
the use of approximate elastic-plastic Riemann solvers avoids the difficulties related to the integration of stiff
ODEs, and improves the resolution of plastic waves by means of limiters on both elastic and plastic waves [6].
However, this kind of solver does not exist for general two-dimensional problems owing to the lack of knowledge
of the characteristic structure of the solutions for multi-dimensional elastic-plastic problems. Such solvers for
the computation of intercell fluxes, which would improve the computation of plastic flows and hence a better
assessment of residual stresses and strains, are discussed in the next chapter.
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Chapter 5

Contribution to the solution of
elastic-plastic hyperbolic problems in
two space dimensions

Introduction
It has been shown throughout this manuscript that hyperbolic problems in solid mechanics are solved in a
different manner depending on the numerical method employed. In particular, irreversible deformations which
are usually numerically computed based on well-known constitutive integrators, may greatly differ from one
scheme to another even for one-dimensional problems. However, the accurate assessment of residual stresses
and strains are of major importance for many industrial applications such as high-speed metal forming, crash-
proof design or the study of the impact of earthquakes on structures. The simulations performed in chapter
4 emphasized the improvements enabled by the knowledge of the characteristic structure of the solutions of
conservation laws, especially for elastoplastic solids. Nevertheless, the use of an elastic-plastic approximate
Riemann solver is so far only possible for problems in one space dimension.

The purpose of this chapter is to identify typical behavior of the solutions of two-dimensional elastoplasticity
problems under small strains. It is believed that the knowledge of these solutions will allow, through the better
understanding of their mathematical features, the building of approximate numerical solutions embedding a
sufficient amount of information in order to mimic the analytical behavior. This will be possible at a low
computational cost provided that some key-properties of the exact solutions are clearly identified.

This chapter is organized as follows. A brief historical review of the solution of dynamic problems in
two-dimensional elastic-plastic solids is made in section 5.1. Then, the equations of plasticity are recalled in
section 5.2 so that the characteristic analysis, followed by the application of the method of characteristics, can be
carried out. In section 5.3, attention is paid to the evolution of stress components inside simple waves that might
propagate by means of a mathematical study of the ODEs satisfied within these waves. Since the developments
rapidly become cumbersome, the analysis is supplemented with numerical results in section 5.4. At last, some
identified trends are discussed at the end of the chapter in order to use them for building a dedicated Riemann
solver.

5.1 Historical review
Until the 50s, research on dynamic problems in elastic-plastic solids were focused on uni-axial stress or strain,
pure bending or pure torsion loading conditions [85, 86], and were carried out for materials characterization
purposes. The first references that brought some understanding about the response of linearly hardening
solids to combined shear and pressure loads are those of Rakhmatulin [87] and Cristescu [88]. These early
analytical investigations on plane stress impacts in the plastic regime led to the conclusion that elastic waves,
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as well as plastic combined-stress simple waves, can propagate in two-dimensional solids. While the former were
well-known, the latter were shown to fall into two families: the fast waves and the slow waves.

Later, Bleich and Nelson [89] considered superimposed plane and shear waves in an ideally elastic-plastic
material submitted to step loads. It has then been highlighted that different loading cases yield different
characteristic structures of the solution of a Picard problem, thus revealing the complexity of plastic flows in
more than one dimension. The same conclusions have been drawn by Clifton [90] for hardening materials under
tension-torsion, who furthermore studied the influence of plastic pre-loading on the solution. This contribution
established the existence of loading paths through the simple waves arising from the characteristic analysis of the
hyperbolic system. Indeed, the combined-stress wave nature lies in ODEs which govern the evolution of stress
components within the simple waves. The integration of these equations of the form dσ11 = ψdσ12 allows the
building of curves that connect the applied stress state of the Picard problem (σd11, σ

d
12) to the initial state of the

medium. It has been for instance shown that if a solid is acted upon by a traction force such that σd11 = 0 and σd12
lies outside the elastic domain, only an elastic shear discontinuity, followed by a slow simple wave, propagates.
Conversely, other loading conditions may lead to the combination of an elastic pressure discontinuity and a fast
wave, possibly followed by a slow wave. Another notable conclusion is that the combined loading paths followed
inside simple waves may lead to plastic unloading, whereas only elastic unloading occurs in the one-dimensional
theory.

Experimental data collected on a thin-walled tube submitted to a dynamic tensile load [91, 92] confirmed
the existence of two distinct families of simple waves, both involving combined stress paths. These works
nevertheless exhibited some discrepancies with the theory which have been attributed to the assumption made
on the von-Mises yield surface. As a matter of fact, a constant strain region lying between the fast and slow
waves that is predicted by the theory [90] could not be seen in experimental results. However, by following the
endochronic theory of plasticity [93] which does not require the introduction of a yield surface, Wu and Lin [94]
obtained numerical results that better fit the experimental data provided by Lipkin and Clifton [92]. The
good agreement showed between numerical and experimental results [94] thus confirmed the theory.

Ting and Nan [95] then generalized the work of Bleich and Nelson to hardening materials and Ting [96]
widened that of Clifton to more complex loadings, that is a superimposition of one plane wave and two shear
waves states. Once again, the mathematical study of the ODE system governing the stress evolution inside fast
and slow simple waves led to the construction of loading paths in stress space that depend on the external loads.
A review of governing equations for all the cases depending on one space dimension considered above can be
found in [97].

The information on characteristic structures thus provided has then been used by Lin and Ballman [98]
for the development of an iterative Riemann solver. This procedure is based on successive guesses of the stress
state lying in the stationary region so that the loading paths predicted by the theory of Clifton [90] can be
integrated numerically until convergence. The implementation of this solver within a second-order Godunov
scheme provided results that were in good agreement with the exact solutions. Nevertheless, the theoretical
investigations mentioned above restrict the development of such numerical tools to problems that depend on
one space dimension. Clifton tackled the solution of plane strain problems in elastic-plastic solids by looking
for bi-characteristics [99] in order to build finite difference schemes that account for plastic waves. The point
of view adopted here is that one can benefit from the simplifications introduced by the writing of Riemann
problems in an arbitrary direction. Indeed, the method of characteristics rather than the more complex method
of bi-characteristics can be employed with the quasi-linear forms presented in chapter 2.

On the other hand, the existence of plastic shocks in solids under plane wave assumptions has been investi-
gated by several authors. First, Mandel [100] showed the existence of stable plastic shocks in three-dimensional
elastoplastic media. In this work, Hugoniot curves are built by assuming that the internal variables followed
a radial loading path through a plastic shock. Lee and Germain [101] considered that Hugoniot curves in
elastic-plastic solids cannot be constructed without studying the internal structure of the shock. Thus, an
elastic-viscoplastic continuum problem is solved by magnifying the narrow region in the vicinity of the shock
in which the fields vary sharply. The shock solution was then taken as the limit when viscosity tends to zero.
A study of the internal structure of the shock has also been made by Stolz [102]. In the latter approach,
the Hugoniot conditions across a shock moving at constant speed are derived by doing an asymptotic analysis.
The author thus provided existence and uniqueness conditions for a shock in compression provided that elastic
stiffening dominates the (concave) hardening saturation. Nevertheless, according to Mandel [103], such an
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analysis of the internal structure of the shock is not required to build Hugoniot curves, provided one chooses
εp1 as internal variable and not the specific work w. However, the propagation of plastic shocks is still an open
scientific issue and subject to debate.

In what follows, simple waves are considered in elastic-plastic solids with natural initial conditions by as-
suming a concave hardening law with no stiffening so that plastic shocks do not arise.

5.2 Elastic-plastic wave structure in two space dimensions
Key points of the chapter: The simple wave structure in two-dimensional solids is studied by writing the
governing equations of plane strain and plane stress problems in a unique generic framework. Thus, the
works carried out on simple waves mentioned above, formulated in terms of elastoplastic softnesses, appear as
particular cases of the present investigation. As a result, we shall refer to those existing solutions in order
to confirm our development as much as possible.

5.2.1 Governing equations
We are concerned with linear isotropic hardening materials whose elastic domain is given by the von-Mises yield
surface, under isothermal deformations in the linearized geometrical framework. The balance equation of linear
momentum with neglected body forces, and the geometrical balance equations are:

ρv̇ −∇ · σ = 0

ε̇−∇ ·
(
v ⊗ I + I ⊗ v

2

)
= 0

(5.1)

In addition, the elastic-plastic constitutive equations derived from thermodynamics in section 2.2.3 are recalled
here: 

f (σ,A) =
√

3
2 ‖s‖ − (R(p) + σy) ≡ 0, with s = σ − 1

3 trace σI

R(p) = C p

σ̇ =
(
Celast − β s⊗ s

)
: ε̇ = Cep : ε̇

β = 6µ2

3µ+ C
× 1
s : s

Aepij = Aelastij − β(nkski)(sjlnl)

(5.2a)

(5.2b)
(5.2c)

(5.2d)

(5.2e)

In the expression of the von-Mises yield function (5.2a), the (positive) linear isotropic hardening law (5.2b) is
considered. Moreover, the elastoplastic acoustic tensor (5.2e) is decomposed as an elastic part Aelastij and a
plastic part depending on the direction of the plastic flow through the coefficient β (5.2d). By inverting the
(isotropic) elasticity tensor C involved in equation (5.2c), the following elastic law is written in the isotropic
case:

εe = 1 + ν

E
σ − ν

E
trace σI (5.3)

with Young’s modulus E and Poisson’s ratio ν.
The quasi-linear form of the sets of equations (5.1) and (5.2) in a Cartesian coordinate system and an

arbitrary direction n is:
Qt + J ∂Q

∂xn
= 0 (5.4)

where xn = x ·n, Q =
[
v
σ

]
, and J is the Jacobian matrix. It has been shown in section 2.3 that the 3 eigenvalues

ωp and eigenvectors lp of the acoustic tensor lead to 6 left characteristic fields of the Jacobian matrix {cK ;LK}
according to: {

±
√
ωp
ρ

;
[
±ρ
√
ωp
ρ
lp,−lp ⊗ n

]}
, p = 1, 2, 3 (5.5)
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In addition, three independent left eigenvectors associated with the zero eigenvalue of system (5.4), which is of
multiplicity 3, are found by solving:

σK : (Cep · n) = 0, K = 1, 2, 3 (5.6)

The present formulation differs from those of Bleich [89], Clifton [90], and hence these of Ting and Nan
[95] and Ting [96], in that equation (5.4) is based on the elastoplastic stiffnesses rather than softnesses. As
a consequence, it will be seen in what follows that the equations can be easily specialized to plane strain and
plane stress cases.

5.2.2 Problems in two space dimensions
We now focus on the solid domain x1 × x2 × x3 ∈ [0,∞[×[−h, h] × [−e, e] in a Cartesian coordinate system,
where e and h are arbitrary lengths. It is assumed that all quantities depend solely on x1 and x2 except the
velocity component v3 that may depend on x3. In particular, this is the case for e� h.

The solid is under plane strain conditions, that is ε · e3 = 0, if the velocity v does not depend on x3 and
if v3 vanishes. Thus, combining the additive partition of the infinitesimal strain tensor: ε = εe + εp, with the
elastic law (5.3) and the kinematic condition ε33 = 0, one gets:

σ33 = ν (σ11 + σ22)− Eεp33 (5.7)

Hence, the quasi-linear form (5.4) reduces for plane strain problems to a system of dimension 5 with unknowns
v1, v2, σ11, σ12, and σ22.

Alternatively, a plane stress state (σ · e3 = 0) is assumed if the planes x3 = ±h are traction free and e� h.
As a result, the stress component σ33 can be removed from the system (5.4). Nevertheless, the tangent modulus
must account for the vanishing out-of-plane stress component. Specialization of equation (5.2c) to σ33 yields:

σ̇33 = Cep33ij ε̇ij = 0

from which one writes:
Cep3333ε̇33 = −Cep33ij ε̇ij i, j = {1, 2}

Hence, the constitutive equations are rewritten by means of a two-dimensional tangent modulus C̃ep:

σ̇ij = Cepijklε̇kl −
Cepij33C

ep
33kl

Cep3333
ε̇kl = C̃epijklε̇kl i, j, k, l = {1, 2} (5.8)

The characteristic structure of the problem is then given by the associated acoustic tensor Ã
ep

= n · C̃ep · n.
The removal of σ33 from system (5.4) for both plane strains and plane stresses allows solving the problem

in a two-dimensional setting. Then, generically denoting the acoustic tensor by A, the characteristic structures
are given by the eigenvalues:

ω1 = 1
2

(
A11 +A22 +

√
(A11 −A22)2 + 4A12

2
)

(5.9a)

ω2 = 1
2

(
A11 +A22 −

√
(A11 −A22)2 + 4A12

2
)

(5.9b)

and the associated eigenvectors:

l1 = [A22 − ω1 , −A12] ; l2 = [−A12 , A11 − ω2] (5.10)

From equation (5.5), we see that two families of waves with celerities cf = ±
√
ω1/ρ and cs = ±

√
ω2/ρ may

travel in the domain. These waves are respectively referred to as fast and slow waves. Note that subtracting
equations (5.9a) and (5.9b) leads to:

ρc2f − ρc2s =
√

(A11 −A22)2 + 4A12
2 ≥ 0 (5.11)
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Hence, the characteristic speed associated with fast waves is always greater than or equal to that of slow waves.
The four left eigenfields of the Jacobian matrix thus read:{

±cf ; L
c±
f =

[
±ρcf l1,−l1 ⊗ n

]}
{
±cs; Lc±

s =
[
±ρcsl2,−l2 ⊗ n

]}
where L

c+
f and L

c−
f are associated with the right-going and left-going fast waves respectively. The same goes

for Lc+s and Lc−
s . Furthermore, one stationary wave associated with the zero eigenvalue of the Jacobian matrix,

and whose left eigenvector satisfies equation (5.6), has to be added:

L0T =



v0
1

v0
2

σ0
11

σ0
22

σ0
12


=



0
0

(C121iC222j − C221iC122j)ninj
(C111iC122j − C112iC121j)ninj
(C112iC221j − C111iC222j) ninj2


=


0
0
α11
α22
α12

 (5.13)

with C = Cep for plain strain and C = C̃ep for plane stress.
It has been seen in section 2.4.4 that the solution of non-linear problems may contain shock and/or simple

waves. Nevertheless, we restrict here to simple waves by assuming that: (i) the characteristic speeds satisfy
c1 ≥ cf ≥ c2 ≥ cs, where c1 and c2 are the speeds of elastic pressure and shear discontinuities respectively; (ii)
cf and cs monotonically decrease with the hardening of the material; (iii) the computational domain is in an
initial natural, plastic strain free state.

The characteristic equations LK · dQ = 0 are then written:

ρcf l
1 · dv − l1i njdσij = 0 along dx/dt = cf (5.14a)

−ρcf l1 · dv − l1i njdσij = 0 along dx/dt = −cf (5.14b)
ρcsl

2 · dv − l2i njdσij = 0 along dx/dt = cs (5.14c)
−ρcsl2 · dv − l2i njdσij = 0 along dx/dt = −cs (5.14d)
α11dσ11 + α12dσ12 + α22dσ22 = 0 along dx/dt = 0 (5.14e)

Integration of equations (5.14a) to (5.14e) leads to integral curves through simple waves in which several
stress components vary, hence the name combined-stress simple waves [88]. Following [90], the method of
characteristics is applied by combining equations (5.14a) to (5.14e). The approach consists in tracing every

(a) Slow simple wave

xn

t

c0s (Head)

cs (Tail)

P cf
−cf

−cs

(b) Fast simple wave

xn

t

c0f (Head)

cf (Tail)

P

cfcs −cs

Figure 5.1: The method of characteristics through slow and fast simple waves in the (xn, t)
plane.
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characteristic from some downstream point of a wave where the state vector Q is known, to an upstream point
where the solution is sought. Figures 5.1a and 5.1b schematically illustrate the method for slow and fast simple
waves in which the state is known along the head wave and is looked for at point P lying on the tail wave. The
integral curves through slow and fast simple waves are derived in the next section.

5.2.3 Integral curves through simple waves
The right-going slow waves are first looked at by adding equations (5.14a) and (5.14b):

l1i njdσij = 0

Given the geometry of the problem, the vector n may be reduced to e1 or e2. It therefore comes out:

dσ11 = − l
1
2
l11
dσ12 = ψs1dσ12 for n = e1 (5.15a)

dσ22 = − l
1
1
l12
dσ12 = ψs2dσ12 for n = e2 (5.15b)

where ψs1 and ψs2 are functions of all components of σ. Moreover, the s and f superscripts stand for slow
and fast waves respectively in the remainder of the manuscript. With the above equations, the characteristic
equation related to the contact wave (5.14e) reads:

dσ22 = −ψ
s
1α11 + α12
α22

dσ12 for n = e1 (5.16a)

dσ11 = −ψ
s
2α22 + α12
α11

dσ12 for n = e2 (5.16b)

The sets of equations (5.15a)-(5.16a) and (5.15b)-(5.16b) show the combined-stress nature of slow simple waves.
On the other hand, the subtraction of equations (5.14a) and (5.14b) leads to:

dv1 = ψs1dv2 = 1
ψs2
dv2

which, once combined with equations (5.15a)-(5.15b) and introduced in (5.14d), yields after simplifications:

dv1 = −dσ11
ρc2s

; dv2 = −dσ12
ρc2s

for n = e1 (5.17a)

dv1 = −dσ12
ρc2s

; dv2 = −dσ22
ρc2s

for n = e2 (5.17b)

Remark 17 The integral curves through a left-going slow wave result from the combination of equations (5.15a)-
(5.15b) introduced in (5.14c) rather than (5.14d). Therefore, the only difference lies in the signs in equations
(5.17a) and (5.17b).

Similar results are obtained for right-going fast simple waves by using l2 instead of l1 and cf rather than cs.
Hence, the evolution in slow and fast waves is governed by the loading functions:

ψs1 = − l12
l11

∣∣∣∣
n=e1

, ψs2 = − l11
l12

∣∣∣∣
n=e2

, ψf1 = − l22
l21

∣∣∣∣
n=e1

, ψf2 = − l21
l22

∣∣∣∣
n=e2

(5.18)

The equations satisfied across right-going slow and fast simple waves are summarized in table 5.1.
The integration of equations gathered in table 5.1 should provide the complete solution of a given problem

by means of integral curves, or loading paths. For instance, the velocity resulting from the passage of right-going
waves in the direction e1 obeys:

v1 = v0
1 −

∫ σ

σ0

dσ11
ρc2

; v2 = v0
2 −

∫ σ

σ0

dσ12
ρc2

(5.19)

where the zero superscript denotes the downstream state. Nevertheless, Clifton [90] emphasized that depend-
ing on the loading conditions, only one simple wave or both may arise in the solution. Therefore, it is crucial to
identify the stress path followed to properly compute integrals (5.19). This is the purpose of the next section.
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Right-going slow wave Right-going fast wave
n = e1 n = e2 n = e1 n = e2

dv1 = −dσ11
ρc2s

dv1 = −dσ12
ρc2s

dv1 = −dσ11
ρc2
f

dv1 = −dσ12
ρc2
f

dv2 = −dσ12
ρc2s

dv2 = −dσ22
ρc2s

dv2 = −dσ12
ρc2
f

dv2 = −dσ22
ρc2
f

dσ11 = ψs1dσ12 dσ11 = −ψ
s
2α22+α12
α11

dσ12 dσ11 = ψf1dσ12 dσ11 = −ψ
f
2α22+α12
α11

dσ12

dσ22 = −ψ
s
1α11+α12
α22

dσ12 dσ22 = ψs2dσ12 dσ22 = −ψ
f
1α11+α12
α22

dσ12 dσ22 = ψf2dσ12

Table 5.1: Summary of the ODEs satisfied inside right-going slow and fast simple waves.

5.3 Loading paths through simple waves
5.3.1 Properties of the loading paths
The stress paths followed within slow and fast simple waves are governed by the mathematical properties of the
loading functions (5.18). Before specializing the discussion to plane stress and plane strain cases, some general
properties holding regardless of the loading conditions are highlighted.

First, the functions satisfy the orthogonality properties: ψs1ψ
f
1 = −1 and ψs2ψ

f
2 = −1. Indeed, considering

the left eigenvectors of the acoustic tensor given in equation (5.10), the product ψs1ψ
f
1 reads:

ψs1ψ
f
1 = l12

l11

l22
l21

Since the eigenvectors of symmetric second-order tensors all satisfy l1·l2 = 0, it comes out that the above product
is equal to −1. Whereas this orthogonality has already been noticed for particular plane strain and plane stress
cases [90, 95], the generic formulation proposed here shows that this is valid for all problems in
two space dimensions. As a result, the study can be restricted to one function in each direction, say ψs1 and
ψs2.

Second, if the function ψs1 vanishes at some point of stress space, the projection in the (σ11, σ12) plane of the
loading path followed within a slow wave is vertical according to the ODE (5.15a) (i.e dσ11 = 0). Conversely,
if ψs1 → ∞, the loading path is horizontal in the (σ11, σ12) plane (i.e dσ12 = 0). These situations respectively
correspond to:

ψs1 = 0⇔ A12 = 0 (5.20a)
ψs1 →∞⇔ A22 − ω1 = 0 (5.20b)

In particular, if A12 = 0 equation (5.20b) reads:

A22 − ω1 = 1
2

(
A22 −A11 −

√
(A11 −A22)2 + 4A2

12

)
= −〈A11 −A22〉

where 〈•〉 denotes the positive part operator. Hence, if A12 = 0 and A11 6= A22, one has ψs1 = 0 and hence
ψf1 → −∞. If moreover A11 = A22, both components of the eigenvectors vanish and the functions ψs1 and
ψf1 are undetermined. At last, it follows from equation (5.11) that the simultaneous satisfaction of conditions
(5.20a) and (5.20b) leads to characteristic speeds of simple waves that are identical. Hence, the situation cf = cs
corresponds to a loss of hyperbolicity of the system.

Analogously, the function ψs2 is such that:

ψs2 →∞⇔ A12 = 0 (5.21a)
ψs2 = 0⇔ A22 − ω1 = 0 (5.21b)

Therefore, if both conditions (5.21a) and (5.21b) are satisfied on A12 and A22 − ω1, the system is no longer
hyperbolic with characteristic speeds of fast and slow waves that are identical.
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According to the ODEs of table 5.1, the particular values of the loading functions ψs,fi through the simple
waves propagating in direction ei for i = {1, 2}, provide information about the loading paths in stress space.
First, ψs,fi = 0 leads to dσii = 0 (no sum on i) so that the longitudinal stress is constant within the simple
wave. Conversely, with loading functions tending to infinity, the stress σ12 does not vary. Notice that the
coefficients αij of the left eigenvector of the Jacobian matrix associated with the zero eigenvalue (5.13) also
have to be regarded. Nevertheless, those terms resulting from products of the components of the elastoplastic
tangent modulus have complex expressions and are assumed to have non-zero values in the remainder of the
manuscript.

The above discussions are now specified to plane strain and plane stress, for which loading conditions leading
to A12 = 0 and A11 −A22 = 0 are identified.

5.3.2 The plane strain case
The case of plane strain is first considered by using the elastoplastic tangent modulus so that the components
of the acoustic tensor for n = e1 read:

Aep11 = Cep1111 = λ+ 2µ− βs2
11 (5.22a)

Aep22 = Cep2121 = µ− βs2
12 (5.22b)

Aep12 = Cep1121 = −βs11s12 (5.22c)

The associated eigenvalues are then:

ρc2s = 1
2

(
λ+ 3µ− β(s2

11 + s2
12)−

√
(λ+ µ− β(s2

11 − s2
12))2 + 4(βs11s12)2

)
(5.23a)

ρc2f = 1
2

(
λ+ 3µ− β(s2

11 + s2
12) +

√
(λ+ µ− β(s2

11 − s2
12))2 + 4(βs11s12)2

)
(5.23b)

Subtracting equations (5.22a) and (5.22b), one gets: Aep11 − Aep22 = λ + µ − β
(
s2

11 − s2
12
)
. Hence, the equation

Aep11−Aep22 = 0 admits a set of solutions in the deviatoric stress space. On the other hand, we see from equation
(5.22c) that Aep12 vanishes for s12 = 0 or s11 = 0. Each solution is studied in more details below.

Condition s12 = 0: According to equations (5.23a) and (5.23b), the eigenvalues of the acoustic tensor become:

ρc2s = 1
2
(
λ+ 3µ− βs2

11 −
∣∣λ+ µ− βs2

11
∣∣)

ρc2f = 1
2
(
λ+ 3µ− βs2

11 +
∣∣λ+ µ− βs2

11
∣∣)

Two cases are to be considered:

(i) if βs2
11 < λ+ µ, the expression further reduces to:

ρc2s = µ

ρc2f = λ+ 2µ− βs2
11

The characteristic speed of slow waves is therefore equivalent to that of elastic shear waves for plane strain
cs = c2 =

√
µ/ρ.

(ii) if λ+ µ− βs2
11 < 0, the characteristic speeds read:

ρc2s = λ+ 2µ− βs2
11

ρc2f = µ

Therefore, the celerity of fast waves reduces to that of elastic shear waves. Note, however, that the
characteristic speed of slow waves remains real if and only if λ+ 2µ > βs2

11. One then gets the following
bounds: λ+ 2µ > βs2

11 > λ+ µ.

At last, the equality βs2
11 = λ+ µ leads to Aep11 −Aep22 = 0 and hence, to undetermined loading functions.
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Condition s11 = 0: Considering the relation (5.7) between stress components for plane strain, one writes:

s11 = 2
3σ11 −

1
3(σ22 + ν(σ11 + σ22)− Eεp33)

so that s11 = 0 is equivalent to:

σ11 = 1 + ν

2− ν σ22 − Eεp33 (5.24)

In contrast to what has been seen previously, the functions ψ cannot be undetermined in the case s11 = 0 since
the equation Aep11−Aep22 = λ+µ+βs2

12 = 0 does not admit real solutions. However, the stress state (5.24) yields
the following characteristic speeds:

ρc2s = µ− βs2
12

ρc2f = λ+ 2µ

so that the celerity of fast waves is equivalent to that of elastic pressure waves under plane strain cf =√
(λ+ 2µ)/ρ = c1.

The same analysis can be carried out in the direction n = e2 by considering the following acoustic tensor
components:

Aep11 = Cep1212 = µ− βs2
12

Aep22 = Cep2222 = λ+ 2µ− βs2
22

Aep12 = Cep1222 = −βs22s12

The characteristic speeds are then:

ρc2s = 1
2

(
λ+ 3µ− β(s2

22 + s2
12)−

√
(λ+ µ− β(s2

22 − s2
12))2 + 4(βs22s12)2

)
ρc2f = 1

2

(
λ+ 3µ− β(s2

22 + s2
12) +

√
(λ+ µ− β(s2

22 − s2
12))2 + 4(βs22s12)2

)
With these expressions, the same remarks as for n = e1 can obviously be made by replacing s11 with s22.

Among the above results, the most significant arises from the condition s12 = 0. Indeed, it has been seen
that Aep12 = 0 leads to ψs1 = 0 and ψs2 →∞ in such a way that the corresponding loading paths in the (σ11, σ12)
plane are respectively vertical and horizontal. Under the orthogonality property of the loading functions, the
stress path followed in a fast wave propagating in the direction e1 is horizontal in the same plane. Hence, if the
path through a fast wave intersects the plane σ12 = 0, the shear stress component remains constant afterwards.
The same result holds for the slow wave propagating in the direction e2. The above conclusion are summarized
in table 5.2.

Stress path in (σ11, σ12) plane for σ12 = 0
n = e1 (i = 1) n = e2 (i = 2)

Slow wave: dσii
dσ12

= ψsi (i = {1, 2} no sum on i) ψs1 = 0⇒ vertical path ψs2 →∞⇒ horizontal path

Fast wave: dσii
dσ12

= ψfi (i = {1, 2} no sum on i) ψf1 →∞⇒ horizontal path ψf2 = 0⇒ vertical path

Table 5.2: Loading paths projected on the (σ11, σ12) plane followed across slow and fast
simple waves, under the condition σ12 = 0 assuming that Aep11 −Aep22 6= 0.
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5.3.3 The plane stress case
The elastoplastic tangent modulus under consideration is now that given in equation (5.8). Let’s first consider
ψs1 related to the vector n = e1. Thus:

Ãep11 = Cep1111 −
(Cep1133)2

Cep3333
= λ+ 2µ− βs2

11 −
(λ− βs11s33)2

λ+ 2µ− βs2
33

(5.27a)

Ãep22 = Cep2121 −
(Cep2133)2

Cep3333
= µ− βs2

12 −
(βs12s33)2

λ+ 2µ− βs2
33

(5.27b)

Ãep12 = Cep1121 −
Cep1133C

ep
1233

Cep3333
= βs12

λs33 − (λ+ 2µ)s11
λ+ 2µ− βs2

33
(5.27c)

In order to ensure the hyperbolicity of the system, the components of the acoustic tensor also have to be defined,
that is Cep3333 > 0. This condition leads to:

λ+ 2µ− βs2
33 > 0 ⇔ s2

33 <
λ+ 2µ
β

Second, from equation (5.27c), Ãep12 admits two roots in terms of the components of the deviatoric stress tensor,
namely:

s12 = 0 ; s11 = λ

λ+ 2µs33

In terms of the components of the Cauchy stress tensor, these conditions read:

σ12 = 0 ; σ11 = 2µ
3λ+ 4µσ22 (5.28)

If on the other hand the vector n = e2 is considered, the acoustic tensor components read:

Ãep11 = Cep1212 −
(Cep1233)2

Cep3333
= µ− βs2

12 −
(λ− βs12s33)2

λ+ 2µ− βs2
33

Ãep22 = Cep2222 −
(Cep2233)2

Cep3333
= λ+ 2µ− βs2

22 −
(βs22s33)2

λ+ 2µ− βs2
33

Ãep12 = Cep1222 −
Cep1233C

ep
2233

Cep3333
= βs12

λs33 − (λ+ 2µ)s22
λ+ 2µ− βs2

33

These expressions are similar to those obtained for n = e1 (5.27) with s22 instead of s11. It comes out that Ãep12
admits two roots:

σ12 = 0 ; σ22 = 2µ
3λ+ 4µσ11

The complexity introduced by the plane stress tangent modulus prevents finding other singular configurations
for the hyperbolic system. In particular, it is difficult to deal with the equation Ãep11 = Ãep22 due to the expressions
given in equations (5.27a) and (5.27b). Nevertheless, since the stress state s12 = 0 also constitutes a singular
point for plane stress, the same remarks as those made for the plane strain loading path hold. Namely, σ12
becomes constant if it falls to zero along the loading path followed inside a fast (resp. slow) wave propagating
in direction e1 (resp. e2) as summarized in table 5.2.

5.4 Numerical integration of stress paths
Although some properties of the simple waves have been emphasized in section 5.3, the complexity of the
equations prevents the complete characterization of the loading paths followed. In order to get additional
information on the evolution of the stress states, the systems of ODEs gathered in table 5.1 are numerically
integrated for plane stress and plane strain loadings. In particular, the thin-walled tube problem considered by
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Clifton [90] is first looked at so that the above developments can be validated. Next, the plane stress and
plane strain cases are treated. The values of the elastic properties considered here are those used in the previous
chapter (see table 4.1). On the other hand, the tensile yield stress σy = 1× 108 Pa and the hardening modulus
C = 1× 108 Pa are set arbitrarily. Finally, we restrict to positive shear stress σ12 ≥ 0.

5.4.1 Thin-walled tube problem
Consider the semi-infinite domain in the Cartesian coordinate system: x1 × x2 × x3 ∈ [0,∞[×[−h, h]× [−e, e],
being acted upon by a traction vector T d at x1 = 0 and free surfaces x2 = ±h and x3 = ±e. Only the first two
components of T d are non-null so that the stress and strain tensors within the medium are of the form:

σ =

 σ11 σ12 0
0 0

sym 0

 ; ε =

 ε11 ε12 0
ε22 0

sym ε33


By using the following mapping of coordinates: (1, 2, 3) 7→ (z, θ, r), such a state corresponds also to that holding
in a hollow cylinder with radius and length much bigger that its thickness, submitted to combined longitudinal
and torsional loads. Hence the name thin-walled tube problem. As a particular plane stress case, the set of
ODEs along characteristics derived in section 5.3 applies by taking into account the vanishing stress component
σ22:

σ̇22 = C̃ep22ij ε̇ij = 0 i, j = {1, 2}
⇒ C̃ep2222ε̇22 = −C̃ep22ij ε̇ij ij = {11, 12, 21}

where C̃ep is the plane stress tangent modulus (5.8). Thus, inverting the above equation and introducing it in
the constitutive equation, we are left with the following law:

σ̇ij = C̃epijklε̇kl −
C̃epij22C̃

ep
22kl

C̃ep2222
ε̇kl = Ĉepijklε̇kl ij, kl = {11, 12, 21} (5.30)

The characteristic analysis of the hyperbolic system based on this tangent modulus also leads to loading paths
followed across slow and fast waves, involving however two components of stress rather than three. For the sake
of simplicity, the stress components are denoted by σ11 = σ and σ12 = τ whereas the velocity components reads
v1 = u and v2 = v.

Thus, the ODEs governing the evolution of stress components inside the waves of combined-stress read:

dσ = ψs,fdτ (5.31)

where the loading functions ψs,f depend on the component of the acoustic tensor that corresponds to the tangent
modulus (5.30). Equations (5.31) as well as those of Clifton [90] have been numerically integrated, starting
from several arbitrary points lying on the initial yield surface. Since the loading functions are odd functions of
σ and τ [90], τ(σ) and σ(τ) are even functions and hence, the loading paths exhibit symmetries with respect
to τ and σ axes. Therefore, the study is restricted to the quarter-plane (σ > 0, τ > 0). Figure 5.2 shows one
stress path resulting from the integration of the ODE related to right-going fast waves with σ used as a driving
parameter. The initial stress state lies on the yield surface at σ = 0 and the ODE is discretized by means of the
backward Euler method, the integration being performed until the stress reaches the value σ = σy. The path
is respectively depicted in the stress space and in the deviatoric plane in figures 5.2a and 5.2b. The deviatoric
plane projection is obtained by drawing the paths in the eigenstress space and projecting them onto the plane
perpendicular to the hydrostatic axis σ1 = σ2 = σ3. In this plane, the von-Mises yield surface is a circle drawn
with dashed lines. As observed by Clifton, the path inside fast waves first follows the initial yield surface
up to the intersection with the σ-axis. Then, the loading path is such that dτ = 0 while σ increases as far as
hyperbolicity holds, that is for cf < c2 =

√
µ/ρ [90]. Notice that these conclusions are similar to those made

in the previous section. The ODEs derived in section 5.3 for plane stress, once adapted to the thin walled-tube
problem, then yield the solution originally proposed by Clifton.
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(a) Stress path in (σ, τ) plane
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(b) Stress path in deviatoric plane
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Figure 5.2: Stress path followed in a fast simple wave for the thin-walled tube problem.
Comparison between the results obtained from equations (5.31) and these of [90].

Adopting the same approach with τ as driving parameter, some stress paths through slow waves have been
reported in figure 5.3. Since fast waves lead to loading paths following the initial yield surface, the orthogonality
property of the loading functions implies that those of slow waves move away from it. This is seen in figure
5.3a. This property holds in the (σ, τ) plane but not in the deviatoric plane, as can be seen in figure 5.3b, since
the quasi-linear form (5.4) and hence, the ODEs, are not written in terms of s1, s2, s3.

(a) Stress path in (σ, τ) plane
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Figure 5.3: Stress paths followed in a slow simple wave for the thin-walled tube problem.
Comparison between the results obtained from equations (5.31) (cross markers) and those
of [90] (solid lines).

The behaviors highlighted above allow the solution of the Picard problem in a thin-walled cylinder, that is:

• initial conditions σ(x, t = 0) = 0, v(x, t = 0) = 0
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• step-loading boundary conditions σ(x1 = 0, t) = σd and τ(x1 = 0, t) = τd

Indeed, with given (σd, τd) outside of the initial yield surface, one can first integrate backward the loading path
through the slowest wave. Two situations are then distinguished:

(i) if the integration leads to some point of the initial yield surface, which can be reached by elastic discon-
tinuities, the solution is complete.

(ii) if the slow wave connects (σd, τd) to the σ-axis at some point lying outside of the initial yield surface,
then a fast wave must be integrated backward to the initial elastic domain. Indeed, analogously to the
results of table 5.2, it is shown in [90] that the paths followed through slow waves (resp. fast waves) are
perpendicular (resp. parallel) to the σ-axis. As a result and by virtue of the symmetries with respect to
the σ and τ axes of the loading paths, the initial yield surface can be reached by considering a fast wave.

At last, the cases τd = 0 and σd = 0 respectively lead to one single fast wave and one single slow wave. Once
the characteristic structure of the problem has been determined (i.e. one fast wave, one slow wave, or both),
the complete set of ODEs can be integrated in order to compute the solution. It is worth emphasizing the
complexity introduced by waves of combined-stress since the characteristic structure of the solution of a Picard
problem now depends on the boundary conditions. Hence, for developing a Riemann solver that would provide
the stationary solution, additional computational effort must be made.

The iterative procedure proposed by Lin and Ballman [98] to solve Riemann problems is based on the
above considerations. The left and right initial conditions of that problem satisfy equations similar to (5.19):

u∗ = uL +
∫ σ∗

σL

dσ

ρc
; v∗ = vL +

∫ σ∗

σL

dτ

ρc
(5.32a)

u∗ = uR −
∫ σ∗

σR

dσ

ρc
; v∗ = vR −

∫ σ∗

σR

dτ

ρc
(5.32b)

where the asterisk denotes the stationary state of the Riemann problem. First, a stress state (σ̄, τ̄) is assumed
to be connected to σL and σR (see figure 5.4 for the illustration of the method). By taking into account the

u

σ

uL

σL

u1 uR

σR

u2

σ̄

σ̂

v

τ

vL

τL

v1vR

τR

v2

τ̄

τ̂

Figure 5.4: Schematic representation of the iterative Riemann solver proposed in [98].

conclusions of Clifton the loading paths followed can be identified so that equations (5.32a) and (5.32b) can
be integrated. Thus, virtual integral curves are built in (u, σ) and (v, τ) planes as depicted with dashed lines in
figure 5.4. Second, the intersection of the curves joining respectively vL to v1 and vR to v2 gives a stress state
(σ̂, τ̂) that is used to apply the procedure again until some criterion

∥∥v1 − v2∥∥ ≤ ε is achieved. At last, the
state obtained (v̂, σ̂) corresponds to the stationary state of the Riemann problem and can be used to compute
numerical fluxes at cell interfaces. Notice that in this procedure, the intersection of integral curves is found by
means of the tangent lines approximation at σ̄ so that this solver does not fully account for the exact solution.
Therefore, it appears that the loading paths identified in [90] are crucial in order to determine the wave pattern
corresponding to a guessed stationary state. This is exactly what is lacking for the more general plane strain
and plane stress problems.
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5.4.2 Plane stress
We now move on to a more general plane stress case for which the stress σ22 is not zero. Although the equations
of section 5.3 have been derived for two directions of propagation, attention is paid here to n = e1 only. Thus,
the system of ODEs considered reads (see table 5.1):

dσ11 = ψs,f1 dσ12 (5.33)

dσ22 = −ψ
s,f
1 α11 + α12

α22
dσ12

One path through a fast simple wave is first looked at by assuming an initially free-stress state, brought
to the yield surface at the point σ11 = σ22 = 0. Equations (5.33) are thus integrated implicitly with σ12 as
driving parameter until the shear component σ12 vanishes. Two situations are considered for which the stress
σ11 increases or decreases. The resulting loading paths are depicted in figure 5.5a in (σ11, σ12) and (σ22, σ12)

(a) Projections of loading paths in (σ11, σ12) and (σ22, σ12) planes
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Figure 5.5: Loading paths through a fast simple wave starting from the initial yield surface
with initial condition σ11 = σ22 = 0 in directions of decreasing and increasing σ11.

planes, while the projection in the deviatoric plane can be seen in figure 5.5b. In addition, figure 5.5a shows the
evolution of the characteristic speed associated with the fast wave along the path by means of a color gradient.
Thus, it can be seen that for the loadings under consideration, the wave celerity is a decreasing function of the
stress so that the simple wave solutions are valid. Next, it appears that σ12 is an even function of σ11 and σ22.
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At last, analogously to the thin-walled cylinder solution, the stress components follow the initial yield surface,
which is obvious in the deviatoric plane (figure 5.5b). Furthermore, according to the property (5.28) the stress
path must be horizontal in the (σ11, σ12) and (σ22, σ12) planes, once the σ11-axis is reached. As depicted in figure
5.5b, this point corresponds to a direction of pure shear in the deviatoric plane. Nevertheless, the numerical
integration of ODEs once the shear stress σ12 vanishes is not possible owing to an indeterminacy of the loading
function ψf1 that has not been identified so far.

We now focus on the stress evolution inside slow waves. The same procedure is followed for several starting
points on the initial yield surface. In addition, various initial values are considered for σ22 since, even for a
solid in a free stress state at t = 0, a fast wave may lead to σ22 6= 0. The loading paths thus obtained for the

(a) Projections of loading paths in (σ11, σ12) and (σ22, σ12) planes
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(b) Loading paths in the deviatoric plane
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Figure 5.6: Stress paths in a slow simple wave for various starting points lying on the initial
yield surface for σ22 = −5.8×107Pa. Projections in the stress space (figure a) and deviatoric
plane (figure b).

(arbitrary) initial values σ22 = −5.8 × 107 Pa, σ22 = 0 and σ22 = 5.8 × 107 Pa, are respectively depicted in
figures 5.6, 5.7 and 5.8. The projections in the stress space and the deviatoric plane are shown. The evolution
of the characteristic speed associated with the slow wave can also be seen by means of a color gradient. Once
again, the simple wave solution appears to be valid with the considered loading conditions. Furthermore, one
can see that the stress paths are now more complex since, for instance, no symmetry appears in the (σ11, σ12)
plane. Moreover, the behavior is even more complex in the (σ22, σ12) plane in which the variations first mainly
concern σ22 and next, the slopes of curves roughly change so that the paths are almost vertical. This sharp
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change in slopes is also notable in the deviatoric plane in figure 5.6b.
On the other hand, similar observations can be made for the other initial values of σ22 as can be seen in

figures 5.7 and 5.8. However, the paths depicted in the (σ22, σ12) plane in figure 5.8a follow a direction opposite

(a) Projections of loading paths in (σ11, σ12) and (σ22, σ12) planes
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(b) Loading paths in the deviatoric plane
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Figure 5.7: Stress paths in a slow simple wave for various starting points lying on the initial
yield surface for σ22 = 0. Projections in the stress space (figure a) and deviatoric plane
(figure b).

to those corresponding to the initial condition σ22 = −5.8 × 107 Pa. The previous remark is also valid in the
deviatoric plane in figure 5.8b. Indeed, the integral curves first describe clockwise curved lines until the break
in slopes occurs, after which a behavior close to straight lines is seen. It is worth noticing that the driving
parameter used for slow waves has not been chosen arbitrarily. As a matter of fact, the numerical integration
does not go well when driven with σ11. Furthermore, numerical issues occur if the starting point is such that
σ12 = 0.

More generally, the loading paths resulting from the integration of ODEs governing the behavior inside
simple waves in plane stress can be summarized as follows. Whereas the integral curves inside a fast wave first
exhibit a phase in which the stress is restricted to the initial yield surface, the passage of a slow wave makes
the stress leave the elastic domain almost instantaneously. It is moreover noteworthy that the shear stress
component σ12 undergoes the biggest variation through a slow wave, in spite of the visible combined-stress
nature of the corresponding paths. In addition, roughs change in the slopes of the integral curves associated
with slow waves occur. However, such phenomena might also be observed for fast waves once the shear stress
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(a) Projections of loading paths in (σ11, σ12) and (σ22, σ12) planes
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(b) Loading paths in the deviatoric plane
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Figure 5.8: Stress paths in a slow simple wave for various starting points lying on the initial
yield surface for σ22 = 5.8×107 Pa. Projections in the stress space (figure a) and deviatoric
plane (figure b).

vanishes but have not been highlighted in figure 5.5 due to numerical issues in integrating an undetermined
function. Furthermore, after the slopes of slow wave integral curves broke, the paths are straights the deviatoric
plane.

5.4.3 Plane strain

Assuming that a solid initially at rest undergoes external loads leading to a plane strain case, the previous
approach is now repeated. However, the derivation of the hyperbolic system in a two-dimensional setting relies
on the writing of the out-of-plane stress component as a function of plastic strain. Hence, the integral curves
associated with simple waves are integrated implicitly, along with the plastic flow. To do so, the consistency
condition (see section 2.2.3) of the von-Mises yield surface (5.2a) is written:

ḟ = 0 ⇔
√

3
2
s : σ̇
‖s‖ = Cṗ
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In addition, combination of the plastic flow rule (2.40a): ε̇p = ṗ
√

3
2
s
‖s‖ , and the above consistency condition

yields:
ε̇p = 3

2C
s⊗ s
‖s‖2

: σ̇

Thus, the system of ODEs consists of the equations of table 5.1:

dσ11 = ψs,f1 dσ12 (5.34)

dσ22 = −ψ
s,f
1 α11 + α12

α22
dσ12

along with the ODE related to the out-of-plane component:

dσ33 = ν (dσ11 + dσ22)− Edεp33

Since a fast wave propagates faster than a slow one, a material particle is first acted upon by the effects
of the former. Thus, figure 5.9 shows the evolution of stresses resulting from numerical integration using σ11

(a) Projections of loading paths in (σ11, σ12) and (σ22, σ12) planes

1

2

3 4

5

6

−6 −4 −2 0 2 4 6

·108

0

2

4

6

·107

σ11(Pa)

σ
1
2
(P
a
)

1

2

3 4

5

6

−4 −2 0 2 4

·108

·107

σ22(Pa)

4,800

5,000

5,200

5,400

5,600

5,800

cf (m/s)

(b) Loading path in the deviatoric plane
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Figure 5.9: Loading paths through a fast simple wave with initial condition σ22 = 0 for
different starting points on the initial yield surface.

as a driving parameter by rearranging equations (5.34). Several starting points on the initial yield surface are
considered. The evolution of the celerity of fast waves along the integral curve confirms the validity of the
simple wave solution. Furthermore, the starting points are chosen in such a way that a symmetry of the loading
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path with respect to σ11 = 0 and σ22 = 0 planes is notable. Although the stress paths depicted in figure 5.9a
are rather different to those resulting from a fast wave in plane stress, the behavior in the deviatoric plane is
similar as can be seen in figure 5.9b. Indeed, the fact that the computed loading paths through a fast wave
is parallel to the initial yield surface is obvious when looking at the deviatoric plane. More specifically, the
von-Mises circle is traced by the integral curve even when the shear component σ12 is zero (see paths 1 and 6
in figure 5.9). Notice that the integration of the loading path in the plane σ12 = 0 is here possible contrary to
the plane stress. The integral curves of figure 5.9 however exhibit a cusp which is not explained (see the two
external arrows pointing toward axes of pure tensile/compression).

On the other hand, some loading paths resulting from the integration of slow wave ODEs are depicted in
figures 5.10, 5.11 and 5.12. Analogously to the plane stress case, three initial values σ22 = −1.3 × 108 Pa,
σ22 = 0 and σ22 = 1.3 × 108 Pa are considered since a fast wave may modify the initial free-stress state. The
integration of loading paths through slow waves in plane strain is performed by using σ12 as a driving parameter.
However, numerical difficulties arise owing to the characteristic speed associated with slow waves which start
increasing rather than decreasing at some point along the path. In order to circumvent this issue, the last
stress state leading to a decreasing celerity is used as an initial condition for a second integration driven by
means of σ11. The final value is set so that the variation of σ11 (i.e increasing or decreasing) undergone up to
that singularity is continued. This strategy allows carrying on the integration further. Nevertheless, the same
problem of increasing characteristic speed again occurs and the computation must be aborted. The integral

(a) Projections of loading paths in (σ11, σ12) and (σ22, σ12) planes
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(b) Loading path in the deviatoric plane
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Figure 5.10: Loading paths through slow simple waves for different starting points on the
initial yield surface for the initial condition σ22 = −1.3× 108 Pa.

curves depicted in figure 5.10 results from the negative initial value σ22 = −1.3 × 108 Pa for several starting
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points on the initial yield surface.
Whereas σ11 varies little as shown by the projection of the path in the (σ11, σ12) plane, this is not the case

for σ22 (see figure 5.10a). Indeed, the projections of the integral curves in the (σ22, σ12) plane exhibit complex
paths similar to those obtained for plane stress. In contrast, it can be seen in figure 5.10b that the paths first
follow the initial yield surface and next a direction of pure shear in the deviatoric plane, which differs from
plane stress solutions. Even though the paths for plane stress and plane strain have similar shapes in the stress
space, one cannot expect the same observations in the deviatoric plane due to the out-of-plane stress component.
Namely, the loading paths are restricted to the (σ1, σ2) plane under plane stress, while they can take values in
the whole space (σ1, σ2, σ3) under plane strain.

The same behavior is observed in figures 5.11 and 5.12 which respectively show the loading paths resulting
from the zero and the positive initial values of σ22. Nevertheless, the integral curves in figure 5.11 reveal
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Figure 5.11: Loading paths through slow simple waves for different starting points on the
initial yield surface for the initial condition σ22 = 0.

that numerical issues occur ”faster” than in the previous case. Indeed, the characteristic speeds quickly start
increasing so that the stress paths depicted are short. Furthermore, the projection in the (σ22, σ12) plane of the
integral curves 2 and 3 show that the slow wave mainly influences σ22. The projections in the deviatoric plane
in figure 5.11 however show that the stress paths first follow the initial yield surface until the direction of pure
shear is reached, and next follow the radial direction. In addition, considering figures 5.10, 5.11 and 5.12, it
can be seen that if the initial condition on σ11 is greater than the value corresponding to the maximum shear
stress on the initial yield surface, σ22 increases along the loading path. Conversely, σ22 decreases along the
loading path if σ11 is initially lower than the value that corresponds to the maximum shear stress on the initial
yield surface. Note that the same goes for σ11. Thus, it seems that the property sign(dσ22) = sign(dσ11) holds
along the loading paths followed inside a slow simple wave in plane strain, though this has not been proved
mathematically.
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Figure 5.12: Loading paths through slow simple waves for different starting points on the
initial yield surface for the initial condition σ22 = 1.3× 108 Pa.

Generally speaking, it appears that for the ranges of stress considered here, the hardening of the material
is mainly due to slow simple waves for plane strain cases. Indeed, the latter may lead to radial loading paths
that greatly increase the radius of the von-Mises cylinder in principal stress space, whereas the integral curves
corresponding to fast waves are restricted to the initial yield surface. Notice, however, that the above results
have been obtained by using a rather low hardening modulus.

The curves resulting from the use of the hardening parameter C = 1 × 1010 Pa exhibit slight differences.
First, the integral curves of fast waves are depicted in figure 5.13. As before, the integral curves follow the
initial yield surface but then branch off to reach a direction of pure tensile/compressive loading. Moreover, the
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Figure 5.13: Fast simple wave solutions of the plane strain problem C = 1× 1010 Pa.
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visible cusps in the loading paths 2, 3, 4 and 5, which already arise in the solutions based on a lower hardening
modulus, indicate that the path followed inside fast waves converges to a direction of pure tension/compression
under plane strain.

The increase in hardening parameter also allows the elimination of the integration issues that occur for a
lower one. As a result, the stress paths followed inside slow simple waves depicted in figure 5.14 lead to stress
states lying further outside of the initial elastic domain. Moreover, for every initial value of σ22 considered in
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Figure 5.14: Slow simple wave solutions of the previous problem with C = 1× 1010 Pa.

the figures 5.14a, 5.14b and 5.14c, the slopes of the integral curves no longer break but smoothly vary to reach
the direction of pure shear in the deviatoric plane.

Remark 18 The use of a higher hardening parameter for slow waves under plane stress also leads to smoother
paths in the deviatoric plane. On the other hand, the integral curves associated with the fast waves under plane
stress (slightly) move away from the yield surface up to a direction of pure shear. Nevertheless, at that point
numerical difficulties occur due to the indeterminacy of the loading functions already mentioned.

5.5 Conclusion
5.5.1 Summary of the chapter
In this chapter, the characteristic structure of the solution of hyperbolic problems in elastic-plastic solids in two
space dimensions has been highlighted. It is known since the 50s that plastic flow in two-dimensional solids
yields two families of waves whose speeds depend on the stress state, the slow and fast waves. In addition, these
plastic waves may have an impact on all stress components in contrast to elastic discontinuities, hence the name
of combined-stress waves. During the 60s, attention has been paid to simple waves in particular two-dimensional
problems thus providing, among others, solutions of Picard problems in an elastic-plastic medium undergoing
step loadings [90, 95, 104]. The singular nature of such problems lies in the fact that the characteristic structure
of the solution depends on the external loading undergone. Indeed, it has been shown [90] that boundary
conditions can lead to plastic flow involving one fast, one slow, or both simple waves. Therefore, it is crucial to
be able to identify typical stress paths followed in each simple wave in order to link the initial data to a given
stress state, and subsequently to determine the occurring wave pattern.

Based on these works, an iterative Riemann solver [98], whose procedure has been recalled in section 5.4, has
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been developed for the numerical solution of the thin-walled tube problem. This solver relies on the ability to
connect a stationary state to initial data by a characteristic wave pattern. Following this approach, identifying
characteristic wave patterns for general elastoplastic problems in two space dimensions should allow to enrich
the numerical solution with the knowledge of physics. For that purpose, the characteristic analysis of two-
dimensional problems in elastic-plastic materials with linear isotropic hardening under plane strain and plane
stress, in projection in an arbitrary direction of space, has been carried out in section 5.2. Fast and slow waves
are also involved in the solution so that applying the method of characteristic through the simple waves provides
a system of ODEs. Integration of this system leads to integral curves in terms of velocity and stress components
that are followed inside the combined-stress waves. Specializing the ODEs to one direction of a Cartesian grid,
it has been shown in section 5.3 that the loading paths satisfied through slow and fast waves are perpendicular
in the stress space for both plane strain and plane stress. Moreover, it has been established that the stress paths
exhibit particular behavior in the space (σ11, σ22, σ12), that is dσ11 = 0, dσ12 = 0 or dσ22 = 0, for special values
of the components of the acoustic tensor. These situations are achieved for different stress states depending on
whether the problem involves plane stresses of plane strains as shown in section 5.3.

The complexity of the ODEs derived in section 5.2 prevents identifying all the singularities which may occur
along the loading paths. Hence, the mathematical analysis has been supplemented with numerical results
consisting of the integration of stress paths from arbitrary initial stress values lying on the initial yield surface,
for the particular direction e1.

First, in section 5.4.1 the loading paths resulting from the integration of the ODEs derived in section 5.2
have been compared to those of Clifton [90]. The two different formulations, respectively based on elastoplastic
stiffnesses and softnesses, show good agreement.

Second, the evolution of stress components across fast and slow waves under plane stress has been looked
at in section 5.4.2. It appears that though the loading paths are rather complex in stress space through a fast
wave, the stress evolution in the deviatoric plane is restricted to the initial yield surface until one direction
of pure shear is reached. A singularity then occurs so that the numerical integration cannot be pursued. On
the other hand, the loading paths resulting from the integration of ODEs satisfied inside a slow wave exhibit
complex shapes along which σ11 varies much less than the other stress components.

Third, the plane strain case has been considered in section 5.4.3. Once again, the integral curves inside a
fast wave show complex shapes in stress space, and an evolution restricted to the initial yield surface in the
deviatoric plane. In that case, however, the paths may follow a direction of pure tension/compression in the
latter plane so that the plastic flow is radial for high values of the hardening modulus. In contrast, the paths
inside slow waves first rotate on the yield surface and then lead to a stress state of pure shear in the deviatoric
plane.

5.5.2 Towards a two-dimensional elastoplastic Riemann solver
The physical structures emphasized in this chapter enable a better understanding of the propagation of waves
in two-dimensional elastoplastic media, although further investigations are required. On the other hand, the
loading paths followed in fast and slow simple waves can be used in order to improve the numerical simulation
of these problems.

One possibility is to generalize the approach proposed by Lin and Ballman [98] based on the clues provided
above. The idea would be to successively assume stationary states of the Riemann problem in terms of stress
σ11, σ12 and σ22 in order to build stress paths starting from the initial data. Namely, considering the direction
e1, the loading paths followed through a slow wave can be integrated backward starting from the guessed state.
Then, different situations may occur:

(1-a) the curve thus obtained crosses the initial yield surface at a point where σ22 satisfies the initial data. In
that case, the elastic discontinuities led to that stress state so that the characteristic structure corresponds
to that depicted in figure 5.15a.

(1-b) if on the other hand the point reached on the initial yield does not satisfy the initial stress σ22, a fast
wave is added in order to browse the initial yield surface until the initial data is recovered. This situation
is depicted in figure 5.15b.
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(2-a) the curve resulting from the reverse integration across a slow wave intersects the plane σ12 = 0. Then,
assuming that the paths of slow waves are symmetric with respect to that plane, a fast wave is added in
order to reach the initial yield surface at the initial value of σ22. Indeed, the fast waves have been shown
to yield horizontal paths in the (σ11, σ12) plane, in such a way that only that type of wave enables the
achievement of the initial elastic domain. This also corresponds to figure 5.15b.

(2-b) if at last, the guessed state is such that σ12 = 0, a fast wave allows reaching the initial yield surface as
depicted in figure 5.15c.
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Figure 5.15: Characteristic structures possibly occurring in two-dimensional elastic-plastic
solids.

Notice however that the above elementary loading paths are based on strong assumptions about the sym-
metry of the loading paths that have not been shown so far. As a result, additional work must be performed
in order to develop this approach and to introduce it in numerical methods. Moreover, the hardening of the
material may modify the behavior of the loading paths and have not been considered yet. At last, the general-
ization of the approach followed in this chapter to more complex hardening models (kinematic, nonlinear etc.)
and other yield surfaces would be very interesting for the understanding of the physics.
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Chapter 6

Conclusion and future works

General conclusion
The purpose of this work was the development of a numerical method allowing the accurate solution of hyperbolic
problems in solid mechanics. This class of mathematical problems governs the propagation of waves in finite
deforming media. Given the ability to deal with large deformations enabled by mesh-free methods and the
possibility of describing discontinuous solutions provided by the DG approximation, it has been proposed to
merge those two approaches. Furthermore, particular attention has been paid throughout this manuscript
to the characteristic structure of the solution of hyperbolic problems in order to: (i) provide qualitative and
quantitative comparisons between numerical solutions and exact ones; (ii) allow numerical schemes to mimic
the behavior of physical systems.

In chapter 2 the balance laws and constitutive equations of solid mechanics have been derived and written as
a system of conservation laws in conservative form. The characteristic analysis of the associated quasi-linear
form then leads to the formulation of a hyperbolicity condition of the system in terms of the eigenstructure of
the acoustic tensor.

Exact solutions of one-dimensional problems have then been presented. First, the existing solutions of
Riemann problems in elastic and elastoplastic solids with linear hardening under small strains emphasized that
discontinuous waves may propagate. Second, the derivation of exact solutions of Picard problems in a
one-dimensional Saint-Venant-Kirchhoff hyperelastic medium highlighted the existence of shocks and
rarefaction waves in solid dynamics. Given the complexity hyperbolic systems may present, especially for more
than one space dimension or other constitutive models, a well-known approximate-state Riemann solver has
been presented. Such solvers represent an ideal way to take into account the characteristic structure of the
solutions within numerical schemes and are therefore widely used in finite volume.

Eulerian and Lagrangian formulations of the Material Point Method have been recalled in chapter 3. This
method constitutes the starting point of the present work due to its ability to avoid the mesh instabilities
caused by large deformations often met in solid mechanics. Nevertheless, the oscillating solutions provided
by this numerical scheme prevent accurately following the waves. The aforementioned numerical noise can
be eliminated by going back to the early version of the approach: the Particle-In-Cell method, at the cost
of additional numerical diffusion. Thus, the approach proposed consisted of: (i) removing the oscillations by
re-introducing within the MPM the diffusive mapping between material points and grid nodes used in PIC; (ii)
reducing the diffusion thus introduced by means of the discontinuous Galerkin approximation.

The Discontinuous Galerkin Material Point Method has therefore been derived with a total
Lagrangian formulation. The method inherits appealing features of the finite element, finite volume and material
point methods. First, it is based on the weak form of a system of conservation laws so that the same order
of accuracy is achieved for both velocity and gradients. Second, numerical fluxes defined at element interfaces
arising in the weak form are computed with the solution of Riemann problems by means of the approximate-state
Riemann solver presented in chapter 2. This approach not only allows the introduction of the characteristic
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structure in the numerical solution, but it also enables taking into account transverse corrections by
adapting the Corner Transport Upwind method. Third, the DGMPM solution scheme can be combined
with ODE integrators for source terms if fractional-step methods are considered. The last three points are
common with FVM. Then, the FEM approximation using polynomial shape functions is used, thus providing
a convenient framework for high-order approximation. In particular, as for other DG-methods, the order of
approximation may be modified element-wise. At last, the arbitrary grid of the MPM, in which the particles
move while carrying fields and internal variables, enables the employment of mesh-adaption strategies without
the need for additional diffusive projection steps. Notice however that the last aspect is not considered in this
thesis.

Then, the numerical analysis of DGMPM schemes showed that the stability properties of the method may
be better than those of the original MPM depending on the space discretization used. Namely, if the DGMPM
semi-discrete system is discretized in time with the forward Euler algorithm, the optimal Courant number can be
achieved when one particle lies in every cell of a one-dimensional grid. The same result holds if the second-order
Runge-Kutta time discretization is used, and even for more than one material point per cell depending on their
positions. Even though the condition CFL=1 is not valid in general, a formula for evaluating the critical
Courant number allows the ensuring of the stability of the scheme, whereas it is not possible for the
MPM. Analogously, the two-dimensional DGMPM scheme exhibits the optimal stability condition providing
that one particle per cell is used along with the CTU algorithm for transverse corrections. It has been also
shown that the stability features of the two-dimensional scheme depend on the ratio of the characteristic speeds
involved in the linear advection equation. On the other hand, the convergence analysis of the method on a
one-dimensional linear elasticity problem under small strains showed that by using first-order shape functions,
only first-order accuracy can be achieved for velocity and gradients. Although one could expect second-order
convergence since the DGMPM approximation is similar to that of FEM, the PIC mapping of the updated
nodal velocity from the grid to particles used yields first-order accuracy.

Chapter 4 was devoted to the illustration of the DGMPM on simulations of solid dynamics problems. Com-
parisons with other numerical methods and exact solutions showed very good behavior. More specifically, since
the optimal CFL number can be achieved, the DGMPM is able to capture the discontinuities arising in the
Riemann problem in an elastic bar within the linearized geometrical framework. On the other hand, it has
been shown that when this condition no longer holds, that is CFL < 1, the method suffers less from diffusion
than the original MPM using the PIC mapping. Furthermore, the same behavior has been observed for a two-
dimensional problem in an elastic medium. The DGMPM moreover provides good results on problems involving
large deformations in one and two-dimensional solids. Hence, the method fulfills its objectives.

Then, history-dependent constitutive models have been considered within the infinitesimal theory. First,
the solutions of a plane wave in an elasto-viscoplastic solid resulting from DGMPM, MPM, FVM and FEM
have been compared. In the stiff limit, that is when the viscosity is close to zero, the above solutions should
tend to the elastic-plastic one. The simulations based on fractional-step methods combined with the DGMPM
highlighted that the use of suitable ODE integrators is required in order to compute the correct solution and the
ability to achieve high-order accuracy. Alternatively, dedicated approximate Riemann solvers can be employed
within the DGMPM for elastoplasticity so as to take into account elastic as well as plastic characteristics and
hence, to get more accurate solutions. Nevertheless, the structure of the solutions of hyperbolic problems in
elastic-plastic materials is only known for one-dimensional solids in such a way that approximate Riemann
solvers do not exist for multi-dimensional cases.

The simulations in history-dependent materials performed in chapter 4, as well as the point of view adopted in
this thesis, motivated the developments presented in chapter 5. Indeed, the need for a better understanding of
the characteristic structure of elastic-plastic hyperbolic problems arises from the lack of approximate Riemann
solvers in more than one-dimension. Although some references have proposed the spectral analysis of hyperbolic
systems in elastoplastic solids under small strains since the 60s, the problems treated were limited to particular
cases of plane stress and plane strain conditions. The present approach consisted in rewriting the existing
formulations by means of the elastoplastic stiffnesses to provide a unified framework for all two-
dimensional problems in the Cartesian coordinates system. It is well-known that the particularity of
elastoplastic problems in more than one space dimension lies in the fact that the wave pattern of the solution
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depends on the external loads. More precisely, one must be able to connect the stationary stress state of a Picard
problem to the initial data through loading paths followed inside fast and slow simple waves of combined-stress.
Hence, the mathematical study of the loading paths resulting from the characteristic analysis of the
hyperbolic system, has been performed. This analysis resulted in the identification of typical behaviors of these
stress paths. Nevertheless, the complexity of the equations prevents the complete characterization of the stress
evolution inside the simple waves. As a consequence, a numerical study of the loading paths based on the
implicit integration of the ODEs governing the evolution of the system within the waves has been carried out
for plane strain and plane stress problems. First, the particularization of the equations to those governing
the thin-walled tube problem treated in the literature, allowed to validate the present approach. Second, the
loading paths followed inside fast and slow waves for problems under plane strain and plane stress
have been plotted so that additional features have been highlighted. Finally, some ideas in order to develop
an iterative Riemann solver have been drawn based on the identified behaviors of the loading paths.

This aspect of the present work aimed at building numerical schemes that are based on a robust discretiza-
tion, and embed a sufficient amount of information in order to mimic the physical response. Though interesting
features of the loading paths have been emphasized, additional effort is required so as to introduce the charac-
teristic structure by means of an approximate Riemann solver.

Future work
This thesis has consisted of: (i) the foundation of a computational framework for the simulation of hyperbolic
problems in finite deforming solids which enables several extensions; (ii) the study of the characteristic structure
of the solution of elastoplastic hyperbolic problems in two space dimensions. Each of these aspects comes with
medium/long term perspectives.

(i) Improving the DGMPM

Although the DGMPM has been developed in order to capture discontinuities so that its first-order accuracy is
sufficient, the method should be adapted so as to achieve higher-order convergence in regions where the solution is
smooth. Higher-order accuracy should be achieved by using shape functions based on high-order polynomials (p-
adaption). Notice furthermore that the polynomial order can be set arbitrarily within the background mesh due
to the discontinuous Galerkin approximation. Nevertheless, the particle-based quadrature of the DGMPM weak
form may limit the polynomial order for a given space discretization in order to avoid problems due to reduced
integration. Indeed, it has been seen that the diagonal lumping of the mass matrix can balance the reduced
integration with one particle and linear shape functions, but nothing can be stated for higher-order polynomials.
Hence, analogously to recent developments of the MPM [54, 77, 76], functions reconstruction techniques such
as moving least squares or spline interpolation may be employed in order to use Gauss quadrature even for few
particles in a cell. However, such an implementation would be equivalent to the DGFEM which suffers from a
very restrictive CFL condition that prevents the capturing of discontinuities, which is prohibitive. One solution
to circumvent this issue would be to combine the p-adaption with h-adaption by refining the arbitrary grid in
the vicinity of discontinuities. The underlying idea is to use a thin layer of elements containing one particle
along the discontinuity, for which the CFL number can be set to unity. The thickness h of that layer would
be set so that the time step ∆ts corresponding to the most restrictive Courant number in the smooth regions
CFLs, allows the capture of the discontinuity, that is: ∆ts = CFLs hc , where c is the speed of the fastest wave.

Alternatively, one can imagine a particle-adaption, while ensuring the conservation of mass, so that the
particle-based integration can be adapted to the regularity of the solution. That is: remove material points
in such a way that one particle per cell is used near a discontinuity; add particles in elements in which the
polynomial order requires so. Furthermore, one could benefit from Roe’s theorem 4 in order to adapt the
distribution of particles so that a given order of accuracy is achieved for a given polynomial order, as suggested
in section 3.3. Nonetheless, it is not guaranteed that such a configuration can be found.

Slope or wave limiters have not been considered so far within the DGMPM due to the non-oscillatory
solutions provided by the scheme. Nevertheless, the extension of the method to higher-order approximation
may require the introduction of such numerical tools that are well-known in DG-methods [10].

The second-order Runge-Kutta time integrator has not been considered for two-dimensional problems, due to
the lack of a formula to determine the critical CFL number for a given space discretization. Such a two-stages
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time discretization could be embedded in the method in order to reduce the numerical diffusion when more
than one particle lies in a cell, providing that a von-Neumann analysis of two-dimensional DGMPM schemes is
performed.

At last, some properties of the method which have not be considered so far must be investigated, that is,
the conservation of angular momentum and the performances for bending dominated problems in the nearly-
incompressible limit. The DGMPM formulation might then require the use of an alternative projection of the
nodal solution that conserves the angular momentum, and the introduction of the Jacobian J as a conserved
variable to solve bending dominated nearly-incompressible deformations [28].

(ii) On the solution of hyperbolic systems in elastoplastic solids

The study of the characteristic structure of hyperbolic systems in elastic-plastic solids allows perspectives.
First, the iterative procedure inspired by that of Lin and Ballman [98] and proposed in chapter 5 has

to be implemented. Moreover, the analytical developments proposed here can be prosecuted in order to get
additional information about the solution so that an approximate Riemann solver can be developed.

Second, the framework provided allows to take into account more general hardening laws that is, kinematic,
combined isotropic and kinematic, and nonlinear hardenings. Nevertheless, the resulting equations should be
much more complex and prevent the building of iterative or approximate Riemann solvers.

At last, plastic shocks, which raised scientific questions that are still unanswered, have to be studied for
they are involved in problems of dynamic impacts in elastic-plastic solids.
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Résumé :  Dans cette thèse, le Méthode des 
Points Matériels (MPM) est étendue à  
l’approximation de Galerkin Discontinue (DG) et 
appliquée aux problèmes hyperboliques en 
mécanique des solides. La méthode résultante 
(DGMPM) a pour objectif de suivre précisément 
les ondes dans des solides subissant de fortes 
déformations et dont les modèles constitutifs 
dépendent de l’histoire du chargement. A la 
croisée des méthodes de types éléments finis et 
volumes finis, la DGMPM s’appuie sur une grille 
de calcul arbitraire dans laquelle des flux sont 
calculés au moyen de solveurs de Riemann 
approximés sur les arêtes entre les éléments.  
L’intérêt de ce type de solveurs est qu’ils 
permettent l’introduction de la structure 
caractéristique des solutions des équations aux 
dérivées partielles hyperboliques directement 
dans le schéma numérique.  Les analyses de 
stabilité et de convergence ainsi que l’illustration 

de la méthode sur des simulations de 
problèmes unidimensionnels et 
bidimensionnels montrent que le schéma 
numérique permet d’améliorer le suivi des 
ondes par rapport à  la MPM.  
 
Par ailleurs, un deuxième objectif poursuivi 
dans cette thèse consiste à  caractériser la 
réponse des solides élastoplastiques à  des 
sollicitations dynamiques en deux dimensions 
en vue d’améliorer la résolution numérique de 
ces problèmes. Bien qu’un certain nombre de 
travaux aient déjà  été menés dans cette 
direction, les problèmes étudiés se limitent à  
des cas particuliers. Un cadre unifié pour 
l’étude de la propagation d’ondes simples dans 
les solide élastoplastiques en déformations et 
contraintes plane est proposé dans cette thèse. 
Les trajets de chargement suivis à  l’intérieur 
de ces ondes simples sont de plus analysés. 

 

Title :  The Discontinuous Galerkin Material Point Method: Application to hyperbolic problems in 
solid mechanics. 

Keywords :  Hyperbolic problems; Discontinuous Galerkin approximation; Material Point Method; 
Hyperelasticity; Plastic simple waves; Finite deformation. 

Abstract :  In this thesis, the material point 
method (MPM) is extended to the discontinuous 
Galerkin approximation (DG) and applied to 
hyperbolic problems in solid mechanics. The 
resulting method (DGMPM) aims at accurately 
following waves in finite-deforming solids whose 
constitutive models may depend on the loading 
history. Merging finite volumes and finite 
elements methods, the DGMPM takes 
advantage of an arbitrary computational grid in 
which fluxes are evaluated at element faces by 
means of approximate Riemann solvers. This 
class of solvers enables the introduction of the 
characteristic structure of the solutions of 
hyperbolic partial differential equations within 
the numerical scheme.  Convergence and 
stability  analyses, along with one and  

two-dimensional numerical simulations, 
demonstrate that this approach enhances the 
MPM ability to track waves. 
 
On the other hand, a second purpose has been 
followed: it consists in identifying the response 
of two-dimensional elastoplastic solids to 
dynamic step-loadings in order to improve 
numerical results on these problems. Although 
some studies investigated similar questions, 
only particular cases have been treated. Thus, 
a generic framework for the study of the 
propagation of simple waves in elastic-plastic 
solids under plane stress and plane strain 
problems is proposed in this thesis. The 
loading paths followed inside those simple 
waves are further analyzed. 
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