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General Introduction and Objectives 

 

Cells are the building blocks of any superior living organism. From a functional 

point of view they are complex self-regulating systems.  Eukaryotic cells, the ones found 

in evolved organisms, contain, by the roughest description, a nucleus (where the genetic 

information is found), a cytosol (the internal medium where the organelles, “specialized 

organs” of the cell are found) and the cellular membrane. This membrane has multiple 

functions. Firstly, it delimits the intracellular medium from the external medium, providing 

mechanical support. This gives the cell its shape. It also constitutes an anchoring 

platform: internally, for the organelles and, externally, for the binding between cells to 

form tissues. Secondly, and its most important function, is the regulation of metabolites’ 

transport for the cell. Being a self-regulating transport system, it does cover all functions, 

from feeding the cell with glucose, to regulating the membrane potential via ion-

exchangers and regulating the uptake in water[1]. A model of the cellular membrane is 

presented in Figure 1. 

                                                          

 

Figure 1: Fluid mosaic model for membrane structure. The fatty acyl chains in the interior of the 
membrane form a fluid, hydrophobic region. Integral proteins float in this sea of lipid, held by 
hydrophobic interactions with their nonpolar amino acid side chains. Both proteins and lipids are 
free to move laterally in the plane of the bilayer, but movement of either from one face of the bilayer 
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of the other is restricted. The carbohydrate moieties attached to some proteins and lipids of the 
plasma membrane are exposed on the extracellular surface of the membrane. [1]  

 

Regarding energy consumption, there are two types of transport: passive, where 

no spending of energy is required, and active, where the cell “spends” energy to move 

species across the membrane. There are four main types of mechanisms for transport 

through the lipid bilayer of a cell: 

· Diffusion and passive osmosis, which are used for small molecules like O2 

and CO2, as passive forms of transport, where the driving force of the 

process is the concentration gradient. 

· Using transporters, such as transmembrane proteins, in the form of 

channels or carriers. These are passive or active forms of transport, which 

account for the passage of water, nutrients (like sugars for energy), or amino 

acids (for protein synthesis) and ions. These proteins have been extensively 

studied because of their efficiency and selectivity. 

· Endocytosis, the complex process through which the cell membrane 

surrounds solid particles or foreign elements (such as bacteria) and 

internalizes them for consumption - an active form of transport. 

· Exocytosis, another complex process in which, the cell, using its membrane, 

generates a vesicle made up of a lipid bilayer with the purpose of expulsing 

different species out of the cell. These can be metabolites, hormones, 

enzymes, or waste in general. This too is a form of active transport.[1]  

In order to give a general idea of the particular types of transport for small 

molecules across lipid bilayers, a schematic is presented in Figure 2. All of these with the 

exception of simple diffusion are mediated by proteins. In a biomimetic or bioinspired 

approach, one tries to replicate the simplest of these transport mechanisms. 
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Figure 2: Types of transport of small molecules through lipid bilayers    [1] 

 

In the case of this work, two particular mechanisms are of interest. The carrier 

system is well described in the case of the selective potassium transporter valinomycin 

[2]–[6]. The transporter resides in the bilayer and complexes an incoming potassium ion 

when it reaches the interface of the membrane. This complex then moves through the 

bilayer. The ion is set free through the internal interface of the membrane. The freed 

protein travels along the membrane and complexes another ion. The schematic of this 

process for valinomycin transporter is presented in Figure 3. This transport phenomenon 

is characterized by saturation kinetics based on the availability of the transporter to 

complex the potassium ion. Although this type of transport is susceptible to inhibition, a 
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good selectivity overcomes this aspect. In the case of valinomycin the selectivity between 

potassium and sodium is 20000 to 1. 

 

Figure 3: Schematic of the carrier mechanism in the case valinomycin system. (Left) valinomycin-
potassium complex. (Right) schematic of the transport through the lipid bilayer. 

 

 The second mechanism of interest is facilitated diffusion. Facilitated diffusion is 

significantly faster than simple diffusion, this difference in speed varies from one system 

to another. The functioning of facilitated diffusion revolves around energy consumption. 

In order for an ion to pass through a lipid membrane, it must give up its hydration shell. 

The activation energy ΔG‡ for this process is so high that, under normal conditions, the 

lipid bilayers are completely impermeable towards charged species such as ions. In the 

case of facilitated diffusion, the protein effectuates a passive form of transport. It 

intervenes in the dehydration process of the ion and thus lowers the activation energy 

ΔG‡. These proteins are different from enzymes, since they do not change their 

conformation in order to perform the transport function. They stretch from one side to the 

other of the membrane. Usually, they present polar groups on the inside of the so-formed 

channel [1]. Figure 4 depicts the facilitated diffusion process. 
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Figure 4: Energy changes accompanying passage of a hydrophilic solute through the lipid bilayer of a 
biological membrane. (a) In simple diffusion, removal of the hydration shell is highly endergonic, and the 
energy of activation (ΔG‡) for diffusion through the bilayer is very high. (b) A transporter protein reduces the 
ΔG‡ for transmembrane diffusion of the solute. It does this by forming noncovalent interactions with the 
dehydrated solute to replace the hydrogen bonding with water and by providing a hydrophilic transmembrane 
passageway. [1]  

 

The term biomimetic is defined as to aim in replicating the function and not the 

form of certain natural functional units by using synthetically generated compounds. 

These would exhibit, as least in part, the efficiency and selectivity of their natural 

counterparts, while creating a simpler, easier to apply system. Although the biomimetic 

term is often used (sometimes wrongly), in this case, we are rather following a 

bioinspired approach, as we are not trying precisely to imitate nature, but only to take a 

few key elements from known biological processes and to implement them in our artificial 

systems. In order to create our transporters, we relied on the concepts of self-assembly, 

dynamic and supramolecular chemistry. 
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Supramolecular chemistry is a field pioneered by C.J. Pedersen, J. M. Lehn and 

D. Cram [7]. Jean Marie Lehn in his Nobel prize lecture defined it like this: 

“Supramolecular chemistry may be defined as “chemistry beyond the molecule”, bearing 

on the organized entities of higher complexity that result from the association of two or 

more chemical species held together by intermolecular forces” [8]. In a simplistic 

perspective, supramolecular chemistry stated that the whole is larger than the sum of its 

parts, namely that the fashion in which molecules group and interact with each other 

fundamentally changes their properties. Two important concepts are considered in 

supramolecular chemistry: molecular recognition and self-assembly. 

Molecular recognition has been defined as a process involving both binding and 

selection of substrate(s), by a given receptor molecule, as well as performing a specific 

function [8]. This is a property of biological and chemical systems to distinguish between 

molecules and regulate behavior accordingly. 

Self-assembly and multiple binding with positive cooperativity, are processes of 

spontaneous molecular organization. These also allow to envisage amplification 

molecular devices [8]. It is a process in which components, either separate or linked, 

spontaneously form ordered aggregates. Self-assembly can occur with components 

having sizes from molecular to macroscopic, provided that appropriate conditions are 

met. The interactions found are physical, and can be: hydrogen bonding, dipole-dipole 

interactions, guest-host interactions, π stacking and other more specific and punctual 

cases of interactions.  

Dynamic constitutional chemistry targets the generation of chemical systems 

which are dynamic and adaptive, responding to internal and external stimuli. For this the 

presence of multiple species that reversibly interact at the molecular and supramolecular 

levels (in an agonistic or antagonistic fashion) is required. “Dynamic interactive systems 

are defined by networks of exchanging and reversibly connected objects 

(supermolecules, polymers, biomolecules, biopolymers, pores, nanoplatforms, surfaces, 

liposomes, cells). They operate under natural selection to allow spatial/temporal and 

structural/functional adaptability in response to internal constitutional or to external 

stimulant factors” [9]. The parameters can be physical, such as temperature, pressure, 
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concentration, or chemical such as the absence or presence of a chemical species, a 

change in pH generated by addition of acid or base, etc. Depending on the nature of the 

system, the dynamic aspect can be induced by one or more of the factors mentioned 

before. A system is dynamic if to an appropriate stimulus the system presents a 

response.[9]–[24]. 

The general objective of the first part of this work, spanning over the first two 

chapters, focuses on the transport across lipid bilayers, the generation and 

characterization of translocation-effector structures for different species (cations, protons 

and water). As mentioned previously, in natural systems transport is done via proteins. 

Proteins are complex structures, with specialized functions, thus they exhibit great 

selectivity. This also implies that there are many limitations in their use, to name the two 

most important: difficulty in obtaining them though a synthetic pathway, difficulty in 

isolating them from organisms. This, in turn also makes them unfeasible from an 

economic stand point. Another aspect to consider is their sensitivity towards the 

modification of physical parameters such as temperature, pH, etc., as these variations 

can lead to a loss of activity. Given these short comings the approach chosen is a 

bioinspired one.  

The possibilities in a field of science as wide as the one of supramolecular chemistry 

are endless. One system that was particularly studied in our group is that of urea [9]–[24]. 

The urea moiety has the property of self-assembly by generating hydrogen bonds. The –

NH-CO-NH- interacts through the oxygen atom with other species containing a slightly 

positivized proton. In the case of homomeric associations, the urea binds to another urea 

moiety resulting in a urea ribbon (Figure 5, a). However, by creating more complex 

structures, that containing this type of hydrogen atom, a heteromeric hydrogen bond can 

be obtained (Figure 5, b).  
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Figure 5: Urea hydrogen binding (a) homomeric and (b) heteromeric 

 

The directionality of the urea type self-assembly has many practical uses. In our 

group the subject of hybrid materials was exploited using the assemblies of urea based 

molecules. Moving forward, to the subject of translocation of chemical species urea based 

compounds, have also been applied to this challenge. The types of species that were 

successfully transported are cations and anions [19] or water [22]. The types of systems 

created can be split into mono [16], [17] and polymolecular [15]. These findings will be 

further presented in chapters 1 and 2. 

In order to point out the versatility of urea derivatives, totally different applications 

are recorded. Sabadini et al report a solvent triggered giant micelles formation, based on 

a diurea derivative[25]. Fremaux et al apply the directionality of urea moieties in order to 

obtain aliphatic oligourea foldamers [26]. The spatial orientation of this type of bond is 

also used by van  Gorp et al[27]. They report fibers and gels composed of tris-urea 

derivatives based on the natural helical structures generated by this type of species.  

Professor Lehn applies the tris-urea motif in polydimethylsiloxane based materials 

to confer these self-healing properties [28]. The generation of three consecutive ureas 

provides a total of six possible hydrogen bonds. These are extended over the three 

dimensions, with four being in a single plane and the remaining two in an orthogonal plane 

to the first one. By incorporating this system in an elastomer, the resulting hybrid material 
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gains the self-healing properties (being able repair mechanical damage suffered), as a 

consequence of these very strong directional bonds. The possibility of giving special 

properties to a material, by inserting a designed supramolecular system, is very likely to 

be one of the paths towards “intelligent” materials. 

Although the third chapter of this work doesn’t concern the transport of species 

through lipid bilayers, it does use the principles defined beforehand. Triarylamines are 

species that interact and generate supramolecular assemblies. Particular ones self-

assemble under irradiation to form cylindrical nanoscale structures. The structures, 

presenting a cation radical charge, have very good electrical conductivity. These systems 

were inserted in a mesoporous silica structure in order to preserve the electrical 

properties. The silica structure was manufactured trough a templated electro-deposition 

technique on gold electrodes. The resulting array presents the property to translocate 

electrons between the external medium and the gold interface of the electrode. An 

application was designed for the resulting devices in the form of biocathodes. The details 

of this project will be treated in detail in Chapter 3. 
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Chapter 1: Cation and Proton Translocation 

across Vesicular Lipid Bilayers 

 

1.1. Introduction  

 

Synthetic ion channels are a much more explored subject compared to synthetic 

water channels. The general approach is bioinspired, starting from the natural ion 

channels. Frequently used are modified peptides and proteins as well as compounds 

character of the molecules containing calixarenes or heterocycles. One other common 

feature is the amphiphilic character of such molecules [29]–[31], containing both a 

hydrophobic and a hydrophilic part. The hydrophobic part is required in order to have both 

a good affinity with the lipid bilayer and a significant repulsion of the aqueous 

environment. The hydrophilic one confers the possibility to interact with the ion, either in 

its hydrated or in its dehydrated form. 

When discussing synthetic ion channels there are a few considerations to keep in 

mind. One criterion is the structure. Simple structures are preferred to more complex ones 

for several reasons. One reason would be the limitations of the characterization methods. 

The more complex a system is, the harder it is to characterize by the standard methods 

used in ion channels standard experiments. Another reason could be easiness in 

synthesis, which, of course, makes a species more (or less) available as a potential 

candidate for further applications. The cost is also an issue, it increasing from simple 

small self-assembling channels towards isolated proteins. 

One other criterion is the compatibility between the membrane and the functional 

structure. This comes as a consequence of the characterization methods, which work 

around the insertion of the channels directly in the lipid membrane. There are a few 

strategies regarding this aspect, namely in generating the hydrophobic part of the 
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molecule. Long hydrocarbon chains, saturated or unsaturated are usually employed as 

being the simplest solution to this requirement. When assessing self-assemblies, the 

properties of the resulting suprastructure should also be taken into consideration, not only 

the structure of one monomer. For this reason, phenyl rings and other derivatives that are 

able to generate a more stable and sturdy structure are also included. 

 

1.1.1. Natural Ion Channels 

 

The best described ion channels found in the literature are amphotericin and 

gramicidin. Extensive research was dedicated to them because of their relatively simple 

structure compared to the much larger protein channels[32]–[38] . They represent the 

simplest natural ionic channels that are appropriate for comparison to the synthetic 

solutions. 

Amphotericin is the smallest known ionic channel. It has a polyene structure with 

a polar segment. Multiple monomers assemble in order to form the channel, the polar 

head aligns towards the aqueous phase while the lipophilic part stays tucked in the 

bilayer. The length of the hydrophobic part is approximately half the length of the 

membrane, so self-assembly is required in order to transport ions from one side to the 

other of the membrane [37], [38] (Figure 6) 
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Figure 6: Linear structure of Amphotericin and schematic of the amphotericin channel [39]  

 

The gramicidin oligopeptide channel is better known for its properties of being an 

ionic channel. However, the size of the generated channel also allows the passage of 

water and as well as protons [40]–[44] . Structurally speaking, gramicidin is a small protein 

having just 16 amino acid residues. It was one of the first channel proteins to be 

discovered, by Rene Dubos in 1939, who isolated thyrotricin. The compound in fact 

contained 20% gramicidin along with 80% tyrocidine. The key to the activity of gramicidin 

is 4 tryptophan residues, which are in the positions 9, 11, 13, and 15. The way in which 

these 4 functions are positioned forms the cavity of the channel. It is worth mentioning 

that gramicidin channels have very little selectivity towards monovalent ions, water or 

protons. Gramicidin transports the hydronium ion very well because of its similarity in size 

with Na+ [44]. Its channel is generated by a β-helix conformation, made by alternating L 

and D amino acids. The hydrophilic side is on the inside and the hydrophobic one on the 

outside. Gramicidin assembles in a dimeric form in order to form a transmembrane 

channel. The dimeric self-assembly of the gramicidin channels was evaluated from a free 

energy perspective[45]. These are presented in Figure 7, displaying the favorable 

energetic profile towards the dimeric form. 
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Figure 7: Linear structure of Gramicidin (up) (A) Formation of a gA channel from two nonconducting 
subunits. (Top) Nonconducting monomeric subunits. (Middle) Monomers separated by δ relative to 
the conducting state. (Bottom) Conducting channel dimer. (B) Side view of a bilayer-spanning 
gramicidin channel. The carbon atoms of the two subunits are in yellow and green, respectively. 
Figure based on energy minimized structure representing a composite of structures determined 
using solid-state or solution NMR. (C) Energy landscape for the monomer-dimer reaction. The 
stippled line illustrates the contribution from the bilayer elastic energy. [45]  

 

The transport mechanisms of the two afford mentioned ion channels are also 

different. In the case of amphotericin, the ions go through the channels in their hydrated 

form (with the hydration sphere). In the case of gramicidin, the ions are dehydrated in the 

interior of the channel, where the hydrophilic residues lie. Both of these channels have 

applications as antibiotics, against fungi, bacteria and many types of microbes. Their 

active principle is linked directly to the property of being able to transport ions and to have 

a good insertion in lipid bilayers. Once in place, they act by changing the electrolyte 

balance of the microorganism which leads to its death. 
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1.1.2. Synthetic Approaches 

 

There are two types of approaches in the case of synthetic ion channels, based on 

the employment of unimolecular channels or of polymolecular channels. 

The unimolecular channels are large molecules containing a lipophilic body and 

polar, hydrophilic heads. Their spatial disposition modifies based on how constrictive the 

environment is. The active structure must be long enough to spread all across the lipid 

bilayer. One very interesting example is the molecule called “hydraphile”, one of the first 

unimolecular channel investigated [46]–[50] (Figure 8) . This molecule consists of three 

diaza, 16, 6 crown ethers bound one to another by long dodecyl tails. The ions interact 

with the macrocycles, while the hydrocarbon tails increase the affinity of the channel 

towards the lipid membrane. It is interesting to note that the spatial disposition of this 

compound is not linear, and thus is not forming a perfect sequence of 

hydrophilic/hydrophobic segments. The mechanism this channel is based on the passage 

of ions from hydrophilic (aqueous solution) to hydrophobic (lipid bilayer) environments, 

facilitated by each macrocycle in a different way. The ones on the extremities only have 

roles as an entrance and respectively as an exit. The middle one, whose size and 

conformation suffer modifications, provides to the transported ion an equilibration step, 

necessary as the ion travels through a very hydrophobic environment such as the 

membrane. By using fluorescence techniques, the species that are able to pass through 

this system were quantified, in this case water and partially dehydrated ions. 

 

 

Figure 8: Hydraphile molecule 
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The second class, polymolecular channels are structures resulting from the self-

assembly of a number of building blocks. In their case, the characterization is more 

difficult. Since the systems are usually dynamic and the exact number of molecules is 

unknown, they can only be characterized on a molecular (or supramolecular) scale. 

However, direct characterization as an inserted structure in unavailable, as opposed to 

proteins which have been characterized directly in lipid environments. In case of 

polymolecular channels, the effect of the transport function is measured. Nevertheless, 

they do present the advantage of having better solubility, allowing a larger amount of 

active compound to act on the substrate, by comparison to the unimolecular channels. 

As presented in the introduction, the types of moieties that are generally used are the 

ones that present good interactions with the target ions, such as calixarenes/crown ethers 

or heterocycles. These segments are combined with a support that is compatible with the 

lipid bilayer. 

Thomas Fyles is one of the scientists that has contributed most to this field of 

research [2], [51]–[54]. Recently, he published together with Jonathan K. W. Chui a very 

detailed review in which they account and classify all types of engineered synthetic ion 

channels [53]. These structures were ordered on a bidimensional scale as a function of 

conductance versus duration based on their Voltage Clamp activity. These are presented 

in the following figures (Figures 9-11) in order to give a general idea of the vastness of 

the field. 
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Figure 9: First class of ion channels, peptidic and amidic macrocycles (red underlay) and second 
class beaded strings topology (blue underlay) [53] 
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Figure 10: Third class of ion channels, displaying the tree morphology [53] 
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Figure 11: The fourth and fifth class, complex topologies and other linear synthetic channels [53] 

  

 In this paper the totality of molecules able to perform transport is split into five 

classes, each with subclasses. The first three of these can be easily compared to the 

natural ion channels gramicidin or amphotericin. Their constitutive skeletons either rely 
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on amidic/peptidic bonds (like the gramicidin), or on esters/ether macrocycles reminiscent 

of the amphotericin structure. The forth class can be associated with metalo-proteins 

similar that present other transport functions (like porphyrins for example). The last class 

contains other compounds, unrelated structurally with natural channels. These have 

specific mechanisms and are not a unitary class. 

 Within group five we can find a class of dianilide derivatives[55], [56] reported as 

anion transporters.  A library of compounds has been synthetized and is presented in 

Figure 12.  

 

Figure 12: Structural modifications on the dianilide compounds as presented in [56]. 

 

The X-ray single crystal diffraction of self-assembling compounds, like the ones 

depicted here, provides important information on the spatial disposition of the molecules, 

and hints at possible conformations of a transporting suprastructure. The crystalline 

matrix of compound 4 and other related species were previously published [57], [58].The 

packing of compound four displays that two molecules in a cell are stacked together, 

rotated at 60°, while maximizing the overlap between the electropositive and 

electronegative parts of the molecule.  

By means of fluorescence, the compounds were tested for the transport of the Cl- 

on vesicle populations.  The overall activity exhibited by the compounds towards transport 

is proven to be structure dependent. From the six analyzed compounds, the best activity 

was exhibited by compound 6 followed by compounds 4 and 3. Interestingly, the structural 

variation that increases activity is the presence of the strongly electron attractive group, -
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NO2 in the para position. Surprisingly the effect of the nitrogen atom of the pyridine 

presents a negligible influence in this matter. This result is presented in Figure 13. 

 

Figure 13: Chloride transport through DOPC vesicles mediated by dianilides 1–6. [56] 

 

 This result entices to believe that a phenyl nucleus which is poorer in electrons 

may have a significant impact on the transporting properties of molecules. This change 

in activity is related to the interaction which such a phenyl moiety is able to perform in 

terms of self-assembly and will be discussed further in chapter 1.2.1.  

As mentioned in the general introduction, our group has previously worked on self-

assembled functional transporting units. One monomolecular transporting system, 

previously investigated in our group, is that of ureido crown ether derivatives (Figure 14). 

In the design of the molecule three elements are necessary, each with its own role. Alkyl 

chains increase the lipophilicity of the molecule, the urea motif confers the directionality 

of the supramolecular assembly and the crown ether represents the active center towards 

cations. 
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Figure 14: Dynamic self-organization in solution and in the solid state of the heteroditopic 
receptors 2-7 (left) and the two types of orientation of the receptors [16] 

 

This type of superstructure may present two types of relative orientation of crown-

ethers within the ribbon, parallel and anti-parallel as seen in Figure 14Figure . For example 

if the lateral R group is aromatic the parallel orientation is adopted, while the aliphatic R 

groups induce antiparallel conformation. In Figure 15 the X-ray crystallographic data is 

presented together with the conformation adopted by the structure in a lipid bilayer. 
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Figure 15: Crystal structure of macrocyclic receptor 6 stick representation of (a) a single dimer, (b) 
dimer packing distances, (c) and (d) two side views of the crystal packing of 6 in the H-bond 
channel-type superstructures (left) and schematics of the double barreled model, lateral and  top 
view and the possible organization of components in a toroidal model (right)[16]. 

 

Bimolecular ion receptor systems were also designed [15]. This type system 

displays the two molecular components as pairs of receptors for both anions and cations. 

A urea based molecule acts as an anion interaction center, while a crown ether acts as 

the cation interaction center. Although the bicomponent type system is more complex to 

use practically in the translocation of charged species, it does shed light on the possible 

design of species able to perform transport based on π-cation interactions (Figure 16). 
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Figure 16: Structures of the cation-carriers18-crown-6, 1and15-crown-6,2M1–M3 and of the 
phenylureidoarene anion-carriers 3–5 (left) and crystal structure (stick representation) of the 
[1·K]+[5·I]− complex showing clear cation–π interactions between the macrocyclic complexed K+ 
cation and indole group of the phenylureidoindole 5. K+: black and I−: white spheres (right) [15] 

 

Recently, a heterocycle based channel-like supramolecular assembly (a bola-

amphiphile-triazole compound, referred as TCT) was published [19]. The self-assembled 

structure of TCT reveals intertwined strains of the monomer, which form a double helix. 

This, in turn, generates an internal pore throughout the channel, having a diameter of 5 

Å. This size is very similar to the one exhibited by the gramicidin channel (Figure 17).  
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Figure 17: Molecular structures and crystal packing. (a) Chemical formula of TCT. (b) Top and (c) 
side views in line and stick representation, respectively, of the T-channels; the water molecules are 
shown as (b) red dots and (c) the Van der Waals surface of the pore is shown as a blue surface. The 
latter was calculated by the HOLE program, which was first applied to the Gramicidin pore. Pore 
structures of (d) T-channel and (e) Gramicidin A (gA) at the same dimensional scale. The gA 
coordinates were taken from the literature. Red ellipsoids (for TCT) or balls (for gA) designate 
oxygen atoms, blue for nitrogen, grey for carbon and white for hydrogen.[19]  

 
 

 The TCT channels were tested in conditions specific for water transport, proton 

transport, cation and anion transport. In the case of water transport, by using Dynamic 

a  

b c  

d e  
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Light Scattering (DLS) methods, an increase in the average diameter of the population of 

large unilamellar vesicles (LUVs) was observed. The ion transport experiments were 

made using fluorescence methods on LUVs. The system’s activity towards the transport 

of cations was also evaluated using Voltage Clamp techniques. The key results are 

shown lower in Figure 18. 

a b  

Figure 18: a) Transport of Na cations as determined in a pH gradient assay as a function of TCT 
concentration. b) The transport activity of T-channels versus dehydration energy of alkali cations 
show an increasing single-order exponential behavior. The abrupt change in transport of low 
hydration energy cations (Cs, Rb), not observed for cation-water single file gA channels, involves 
double file dipolar water wires and ion wires along the T-channel[19]. 

 

 The nature of the TCT channels proves to be similar to the gramicidin natural 

channel in terms of size and in certain activity aspects. The structure allows the transport 

of water and ions while displaying a selectivity between cation and anions. Designing this 

type of bioinspired synthetic channels is useful in the sense of a better understanding of 

naturally occurring processes such as the transport of ions. 

 

1.1.3. Objectives and Methods Employed 

 

The objective of the work presented in this chapter is the creation and 

characterization of systems able to perform cation transport across lipid bilayers. The 

systems in question are generated by employment of self-assembly. The activity and 
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selectivity of the systems are assessed. The study was performed on a library of 

compounds in order to characterize in a systematic fashion the variation of activity as a 

function of structural modifications. 

The methods employed during this study are the most commonly used and best 

described in the field of ion channels, namely fluorescence methods on large unilamellar 

vesicles (LUVs). LUVs (or liposomes) are spherical elements, constituted by an internal 

medium of buffer, which is separated from the external solution by a lipid bilayer. LUVs 

have been described as mimic cells, in the sense that they provide this membrane 

separation between the two media. Their membrane is much simpler than that of living 

cells, but still provides comparable conditions when it comes to the transport of ions. The 

advantages are related to cost, uniformity of size and characteristics, but most of all 

convenience: the LUVs can be varied in size during extrusion, the lipid composition can 

be modified according to experimental requirements and also, the content of the LUVs (in 

this case fluorescent dye) can be subject to modification.  
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1.2. Experimental Results 

 

1.2.1. Description of Compounds 

 

In order to describe the influence of structure over the transporting properties of 

compounds, a library was created and is presented in Table 1. This library contains 

several modifications on the same general backbone. The compounds present a phenyl 

ring as hydrophobic moiety, a urea bond as structuring agent and a heterocycle derivative 

which constitutes the hydrophilic head. 

As presented in the introduction, the types of molecules presenting  ion channels 

properties are very varied [53], though the simplest common feature is the presence of 

substituted heteroatoms, capable of generating weak bonds. For this reason two 

heterocycles were chosen in this case as the active center for our species, namely 

imidazole and 3-aminotriazole. 

Another variation was the introduction of a chiral center in the molecules. Since 

lipids present chiral centers, the assessment of the effect of a compound’s absolute 

configuration on its activity, could provide interesting results.  

The last modification made on the structure was to vary the electron richness of 

the phenyl nuclei. By the introduction of a fluorine atom in the para position the respective 

nuclei become poorer in electrons.  As Yamnitz et al. [56] showed in the case of their 

library in the case of anion transport, this small modification has a great effect on the 

activity of compounds. Moreover, the dianilide structures proposed by Yamnitz are similar 

on more accounts to the compounds designed for this project. The dianilides present 

three phenyl-like flat moieties bound by the fixed amidic bond. The compounds used in 

the project present flat moieties, the phenyl and the heterocycle linked through a urea 

directional bond. In both cases the supramolecular assemblies are responsible for 

activity.  
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The compounds where synthesized using either scheme (1) for the histamine 

derivatives or scheme (2) for the 3-amino triazole derivatives, presented in Figure 19. 

These are simple, one-step reactions, with almost quantitative yields. The protocol for the 

synthesis is presented in the annexes. The chiral modifications of the structures were 

introduced by using chiral isocyanates. The isocyanates may present a fluorine atom in 

the para position, leading to variations of the electron density of the phenyl ring in the 

resulting structures. The resulting compounds are presented in Table 1. 

 

 

Figure 19: Synthetic route used in the synthesis of the compounds 
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Table 1: Library of compounds used for the construction of self-assembled transporters 
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All the compounds have been characterized by the appropriate methods, 1H NMR 

and mass spectrometry in order to confirm the structure. This data can be found in the 

annexes. 

Single crystal structures were obtained for five of the compounds tested. These 

can be considered as models for the self-assembly of the molecules in membranes. The 

weak interactions (hydrogen bonding, π stacking, hydrophobic interactions, etc.) between 

different atoms are at the origin of packing patterns and may provide information on the 

possible assemblies that the molecules can adopt in bilayers.  

For compounds 3 and 4 the displayed structure contains a head to tail arrangement 

of the polar part of the molecules. The urea by hydrogen bond extends to the imidazole 

moiety and not to other ureas in this case. The polar part is bordered by stacks of phenyl 

rings. The presence of hydrogen bonds made by the fluorine atom towards two slightly 

acidic hydrogen atoms generates a distortion of the stack, the phenyl rings are not found 

in the same plane. The structure does not present channel type structures in solid state, 

which does not imply the inactivity of the compound in transport experiments. Through 

the presence of multiple weak bonds as well as an amphiphilic character of the 

suprastructure permits a possible interaction with ions. The crystal packing of compound 

3 is presented in Figure 20. 
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Figure 20: Crystal packing of compound 4. Crystals obtained in water. a) crystal packing along b 
axis; b) head to tail packing of the polar part of the molecule; c) spatial representation of the urea 

self-assembly, red –  front plane, blue – back plane 

 

 A very similar arrangement is displayed by compound 7. The grouping of 

polar/non-polar regions follows the same pattern as in the case of compound 4. The 

phenyl moieties stack over each other, again under an angle. The amino-triazole 

heterocycles generate hydrogen bonding towards another heterocycle moiety, while the 

urea generates the directionality of the structure. The packing of this molecule can be 

seen in Figure 21. It is important to note that this structure is much closer to that of 

compounds 3 and 4 (presented in Figure 20), than that of compounds 5 and 6 (presented 

in Figure 22). This underlines the greater influence of the fluorine atom in the para position 

compared to the variation of the heterocycle moiety. 
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Figure 21: Crystal packing of compound 7 along the b axis. Crystals obtained in water.  

 

The structures for compounds 5 and 6 display a very tight packing, as a 

consequence of the absence of the two carbon atom spacer fond in histamine derivatives. 

Hydrogen bonds are extended between the urea oxygen, the available urea NH and the 

amino group of the triazole of the same molecule. The phenyl ring is almost perpendicular 

to the 3-amino triazole moiety, with an angle of 83.44° between the triazole NH, the urea 

oxygen and the para hydrogen of the phenyl ring. Moreover, the molecules have an 

embraced disposition, hydrophobic pockets being plugged by a perpendicular triazole 

moiety. The structure is less labile than in the case of compounds 3 and 4, the packing 

being overall tighter. The structure of compound 5 is presented in Figure 22. 
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Figure 22: Crystal packing of compound 5. Crystals obtained in water. a) Crystal packing along b 
axis; b) Crystal packing along a axis 

 

 Although the X-ray single crystal data is very valuable, it does not give a complete 

representation of the interaction of a system in a complex environment such as a lipid 

bilayer. The absence of channel-like molecular associations does not give a definite 

verdict on the activity towards the translocation of ions across lipid membranes. As 

mentioned in the introduction, two possible mechanisms are employed by artificial ion 

channels, a carrier transport mechanism or a facilitated diffusion mechanism for the 

transport of ions.  

The transport capabilities of the synthesized compounds have been assessed. 

However, the specifics of the transport mechanism cannot be fully described by the 

available methods in the case of supramolecular structures. The dynamism of the 

systems and the complexity of the vesicular methods prevent the in situ characterization. 

This does not hinder the possibility of both quantitative and qualitative studies on the 

transport effect which the compounds manifest. 

1.2.2. Fluorescence Assays 
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As presented previously, in the case of ionic transport across lipid bilayers, the 

most common methods employed are fluorescence related. These techniques can 

provide both a quantitative and a qualitative result for this phenomenon. 

One of the strengths of the method is the possibility to test multiple ions on the 

same vesicle substrate in order to describe the selectivity of a certain compound. The 

other one is that this method allows a wide scale concentrations of the same chemical 

species. The concentration assays are particularly important in this case since the 

channels are generated by using the compounds’ property of self-assembly, which, of 

course, benefits from an increase in concentration.  

For a better understanding of the experiments involving self-assembled 

transporting units on LUVs, monitored by means of ratiometric fluorescence techniques, 

a simplified scheme is presented in Figure 23. The method will be presented in detail in 

the following section, covering the principles, as well as, the data processing and 

interpretation. 
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Figure 23: Simplified scheme of ionic transport using vesicular methods 

 

The ratiometric method employed is based on the equilibrium between the acidic 

form of HPTS “pyranine” (8-Hydroxypyrene-1,3,6-Trisulfonic Acid, Trisodium Salt) and its 

basic form HPTS-. The acidic form is predominant at a pH value of 6.4 while the basic 

form is to be found at a pH value of 7.4 (Figure 24). This method is very well described in 

the literature [59]–[63] in relation to evaluating the transport capabilities of supramolecular 

self-assembled channels. The two forms of the fluorescent dye have two different 

excitation wavelengths, namely 405 nm for the acidic form and 450 nm for the basic form, 

while sharing the emission wavelength of 510 nm. The instrument measures alternatively 

the excitation at 405 nm and 450 nm and divides one signal to the other, thus revealing 

their relative amount, also correlated with the change in pH. 
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Figure 24: HPTS, the fluorescent probe used in the ratiometric measurements 

 

By enclosing the acidic form of HPTS inside the LUVs (in a PBS buffer that has 

the value of 6.4 pH units), the acidic form is prevalent. The exterior pH is suddenly 

increased to a value of 7.4 (pH shock to the suspension of vesicles), creating the 

conditions in which the basic form of pyranine, HPTS- is found. Still, the two pH media 

are isolated by the lipid membrane. Therefore the basic form can only appear if positive 

ions, metals, are transported across the membrane. An injection of a compound, which 

might present transport capabilities in the fluorimetric cell (containing the pyranine loaded 

cells), will generate a quantifiable modification in the signal, proportional to its activity in 

translocating ions across the bilayer.   

The transport activity of the entire library was tested using the ratiometric 

fluorescence method. The large unilamellar vesicles were suspended in a PBS buffer 

solution (10mM) containing a concentration of 100 mM of the respective alkali salt ( LiCl, 

NaCl, KCl, RbCl, CsCl).  Each of the salts was used in order to transport the 

corresponding ion. As previously stated, the change in ratio between the two forms of 

HPTS, acidic and basic, can be attributed to the influx of cation ions through the lipid 

bilayer.   In order to be able to compare different experiments, the recorded signal was 

normalized form 0 to 1, using the following formula: 

 

Where It is the value of the intensity at a given moment, I0 is the value of the 

intensity before the transport occurs and I∞ is the value of the intensity after the lysis of 
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the vesicles (where all of the dye spills in the exterior medium, with a pH of 7.4), 

considered to be the maximum value. 

As seen from Figure 25 the two raw signals of HPTS and HPTS- are transformed 

to a ratio, which represents the transport curve. The transport curve presents the following 

events: the initial signal Ni=0, the injection of the compound, the pH shock, the transport 

interval, the vesicle lysis and the final signal Nf=1. The initial signal in the ratiometric data 

is normalized to 0. At this moment, it is considered that all the HPTS is in its acidic form. 

The injection of the compound is done at a moment in time (ex. t=-50s compared to the 

start of the transport) in order to allow the self-assembly of the compound in the lipid 

bilayer. This is followed by the pH shock generated by the injection of an experimentally 

determined amount of NaOH at time t=0. The amount of NaOH injected is previously 

calibrated for each batch of vesicles in order to provide an exact pH variation of 1 unit. A 

pH jump of 1 unit from 6.4 to 7.4 in the external solution is sufficient to change the entire 

HPTS amount into its basic form. t=0 represents the moment when transport starts. The 

transport takes place over an interval of time, chosen to be long enough that the system 

reaches and equilibrium. At the end of this interval, the LUV population is lysed. The lysis 

is done by means of a surfactant, Triton 100, which breaks up the vesicles and releases 

the HPTS in the solution. The 7.4 pH of the solution forces the remaining HPTS to turn to 

its basic form. This produces a jump on the ratio curve, due to the sudden disappearance 

of the acidic HPTS signal.  Therefore, in the ratiometric data the final signal is normalized 

to 1, corresponding to the signal of the basic HPTS. 
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Figure 25: Sample fluorescence curves in ionic transport. (Up) raw signals of HPTS and HPTS- in 
the fluorescence spectrum. (Bottom) ratiometric normalized curves for an active compound and for 
a control experiment using DMSO. The events over the course of the experiment are marked. 

 

The most important criterion in interpreting the results is the shape of the curve. 

When employing vesicular methods, the liposomes and their properties vary from one 

batch to the other, therefore one must always keep in mind that the method is referential 

to self. When analyzing the curves, the first aspect that is relevant is the amplitude of the 

normalized signal compared to the blank sample, as seen in Figure 25. A second aspect 
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is the curvature. In general, a sigmoidal shape represents transport, but, it is not always 

the case [64]. An ascending signal is also a good indication of transport as seen in Figure 

25. However, depending on the nature of the compound, one species may promote a very 

fast and active transport, therefore reaching a maximum and followed by a signal descent, 

with a final point that is lower than the maximum. Working with self-assembled 

supramolecular structures in the role of the transporter also implies that the concentration 

must have a positive effect on the rate of transport. In other words, by increasing the 

concentration, one should observe an increase in transport. The absence of coherence 

in the signal distribution of specific concentrations is a strong indication of the absence of 

activity towards the ion. One last observation is that, in the case of very active 

compounds, one can talk about a saturation of transport. In this case increasing the 

concentration over the effective necessary concentration, does not have any other effect 

than a more accelerated increase of the curve. 

The mathematical interpretation of the results was made using a Hill type plot [65]. 

This method, though more complex than the pseudo first order interpretation [22] provides 

a better understanding of the complex process of transport when employing self-

assembled channels. The main difference is that instead of presuming a pseudo first 

degree constant, the Hill interpretation considers an “n” degree system, without imposing 

restrictions. This interpretation proves to be more accurate, since self-assembled 

channels do not present a finite number of molecules in constructing the channel, while 

the behavior changes form one compound to the other. So, instead of simplifying the 

system in a reductionist manner, it’s considered and treated as a whole. 

The Hill analysis provides three parameters, Y- activity, EC50 and the Hill number. 

The calculation method is presented lower. 

 

Where Y is the activity of the channels, (conc) is the molar concentration of the 

monomer and EC50 is the concentration at which 50% of the transport is performed and 

n is the Hill number. 
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This equation can be linearized in the following form: 

 

Where Y is the activity of the channels, log(conc) is the 10 base logarithm of the 

molar concentration of monomer KD is the dissociation constant and n is the Hill number. 

In order to calculate the EC50 value the following formula is applied: 

 

Where Ft is the signal at a given time, in our case 500 seconds, Nconc is the 

normalized signal for a certain concentration, Nmin is the normalized signal for the 

minimum concentration, in our case for the blank sample, DMSO, and Nmax is the signal 

for the highest concentration tested. By plotting the Ft values over the range of tested 

concentrations, the EC50 value can be obtained through interpolation for a corresponding 

value of F=0.5.  

The significance of EC50 is, by definition, the concentration of compound for which 

one half of the total number of ions are transported through the membrane. This is directly 

tied to the total possible transport done by a particular species in the given interval. So, 

for example, if a certain system is able to do a 0.6 transport rate the EC50 value will be 

the concentration of monomer for which a transport rate of 0.3 occurs.  

The Hill analysis provides information on the type of channel that is being formed. 

There are two types of channels, type I and type II. Each of which can be either A or B, 

namely stable or unstable. The difference between type I and type II channels is the 

known stoichiometry of the formed structure. While type I channels consist from a known 

number of molecules, type II does not. A Hill number greater than 1 is specific for a type 

I channel. One that is lower or equal to 1 corresponds to a type II channel. For type I 

channels standard analyses (like NMR or spectrometry) do not provide any useful 

information on the structure. In the case of type II they do, for example shifts in a proton 

NMR based on concentration. One last difference between the two channel types is that 

type II formation is exergonic (ΔG<0), while type I formation is endergonic (ΔG>0) [65]. 
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All the alkali metals have been tested, with a strong emphasis on sodium and 

potassium, the ones most common in living systems. The proton transporting capabilities 

of the compounds were also assessed because of similarities between this ion and the 

alkali metals. All the fluorescence data has been interpreted using a Hill model. 

 

1.2.2.1. Sodium Transport Experiments 

 

 The fluorescence spectra were recorded over a period of 800 seconds, out of 

which, the active transport took place over 500 seconds. The resulting transport curves 

are therefore presented expressed in N500 as function of time as can be seen in Figure 

26. The direct interpretation of the curves is presented lower in Table 2.  

Table 2: Sodium transport activity 

Compound 1 2 3 4 5 6 7 8 

Nmax500 0.50 0.50 0.72 1 0.52 NA 0.78 0.60 

Activity Weak Weak Good Excellent Weak No Good Weak 

 

From a structural point of view, we can observe that the presence of the fluorine 

atom in the para position has a strong and positive effect on the activity of compounds 

towards the transport of the sodium ion. Both the amino triazole and the histamine 

derivatives outperform the corresponding compounds that are lacking the fluorine atom. 

As a general rule, the R isomers present a better activity compared to the S isomers with 

the exception of compound 4 which is the most active. 
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Figure 26: Ratiometric normalized fluorescence sodium transport curves of compounds 1-8. LUV 
suspension in PBS pH=6.4 (10mM), NaCl 100mM. N500 normalized transport over 500 seconds. 
Compound insertion at time=-50s, NaOH (25 µl, 0,5M) added at t=0. Fluorescent probe HPTS 
λ1ex=405nm, λ2ex=460nm, λem=510nm. 
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The Hill plots, representing the logarithm of Y versus the logarithm of molar 

concentration, are first order curves with R2 coefficients of 0.95. The slope of these curves 

represents the Hill number, determining the type of channel that is formed. The Hill plots 

for the tested compounds are presented in Figure 27. 

 

Figure 27: Hill plots for sodium transport. (Left) Blue – compound 1; Red – compound 2; Gray – 
compound 3; Yellow – compound 4. (Right) Blue – compound 5; Red – compound 7; Gray – 
compound 8 

 

By application of fitting methods, the Hill number is obtained. The results are 

presented, in Table 3. As it can be seen, the type I channels, with a Hill number value 

greater than 1, are attributed to the compounds that do not contain a fluorine atom in the 

para position. One hypothesis is that the compounds self-assemble in a similar fashion 

as in the X-ray single crystal structures, and they remain as stable and fixed moieties. 

The compounds containing the fluorine atom (that probably offers higher fluidity and 

better compatibility within the membrane), have probably a more dynamic structure and 

are able to form a cavity where they can accommodate ions. 

Table 3: Hill number and type of channels 

Compound 1 2 3 4 5 6 7 8 

Hill 

number 

1.124 1.790 0.662. 0.899 1.396 NA 0.534 0.477 

Type of 

channels 

Type I Type I Type II Type II Type I No Type II Type II 
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Finally, the EC50 value can be calculated and is represented in Figure 28. The NA 

(not available) is used for the cases in which the compound does not present activity. 

 

Figure 28: EC50 values for sodium transport. Blue – compound 3; Red – compound 4 ; Gray – 
compound  1; Yellow – compound 2; Dark blue – compound 7; Green – compound 8; Light blue – 
compound 5; Pink – compound 6 

 

The EC50 value provides interesting information. These values should be referred 

to the total amplitude of the signal, and not to each other, as explained in the introductory 

part. Namely they represent, a “critical concentration” for which 50% of the total possible 

transport occurs. So, for example, between compounds 7 and 8 the lower value is for 

compound 8, which is weaker transporter. This value represents the fact that compound 

8 reaches half transport at lower concentration values compared to compound 7, though 

the better transporter is compound 7.  

1.2.2.2. Potassium Transport Experiments 

The potassium transport method is very similar to the sodium method, with the sole 

exception that the exterior solution contains potassium chloride with a concentration of 

100mM instead of sodium chloride. The ratiometric fluorescence curves are presented in 

Figure 29. 
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Figure 29: Ratiometric normalized fluorescence potassium transport curves of compounds 1-8. LUV 
suspension in PBS pH=6.4 (10mM), KCl 100mM. N500 normalized transport over 500 seconds. 
Compound insertion at time=-50s, NaOH (25 µl, 0,5M) added at t=0. Fluorescent probe HPTS 
λ1ex=405nm, λ2ex=460nm, λem=510nm. 
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The curves have been interpreted using the principles presented for sodium 

transport. The direct interpretation of the curves is presented lower in Table 4.  

Table 4: Potassium transport activity 

Compound 1 2 3 4 5 6 7 8 

Nmax500 0.49 0.63 0.88 0.84 0.59 0.57 0.73 0.62 

Activity No  No  Excellent Excellent  Weak  Weak  Good Good 

 

 Similarly to the case of sodium, the fluorinated compounds present better activity. 

Especially the histamine derivatives perform an excellent transport. Compounds 1 and 2 

don’t display any type of activity towards the transport of potassium, while compounds 5 

and 6 are very weak transporters. This also tends to confirm the crystallographic 

observations related to the very inflexible structure of compounds 5 and 6. 

The Hill analysis was performed on the fluorimetric data in the same manner as in 

the case of sodium. The results are presented in Figure 30. 

 

Figure 30: Hill plots for potassium transport. (Left) Blue – compound 2; Red – compound 3; Gray – 
compound 4. (Right) Blue – compound 5; Red – compound 6; Gray – compound 7; Yellow – 
compound 8 

 

As in the case of sodium, the weak transporters have the tendency to form type I 

channels, while the fluorinated compounds generally favor type II channels. One 

exception is compound 4 which has a Hill number of 1.086, this value however, still is too 

low to be considered a type I channel (Table 5).  



54 
 

 

Table 5: Hill numbers and types of channels for potassium transport 

Compound 1 2 3 4 5 6 7 8 

Hill number NA 1.354 0.6647 1.086 0.977 1.113 0.219 0.223 

Type of channels No  Type I Type II Type II Type II Type I Type II Type II 

 

The EC50 values have been calculated for the active compounds. These reveal 

higher overall activity for compounds 3 and 4, while compounds 7 and 8 have much lower 

EC50 values (one order of magnitude) at the expense of 15-20% activity. This provides 

the interesting option of choosing between the amount of compound used and the total 

provided activity. Compounds 1 and 2, which underperformed, in the transport of sodium 

present no activity towards potassium. Compounds 5 and 6 have a better affinity for 

potassium than sodium, but are overall very weak transporters (Figure 31). 

 

 

Figure 31:  EC50 values for sodium transport. Blue – compound 3; Red – compound 4 ; Gray – 
compound  1; Yellow – compound 2; Dark blue – compound 7; Green – compound 8; Light blue – 
compound 5; Pink – compound 6 
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The EC50 values display very low critical concentrations for compounds 7 and 8, 

two good transporters. On the other hand, the most active transporters compounds 3 and 

4 display this at the expense of a higher EC50 concentration. 

In order to valorize these differences in activity, the preference towards certain 

cations was further tested. 

 

1.2.2.3. Ion Selectivity Transport Experiments 

 

In the case of self-assembled artificial ion channels, the selectivity towards ions is 

a very important feature. Each type of transporter, based on its structure and disposition, 

favors the transport of certain species. This behavior is closely tied to the dehydration 

energy, volume and charge exhibited by each ion. By testing our library towards the 

transport of the monovalent metals of the first group, we can assess this intrinsic 

preference towards certain species. For this reason, one intermediary concentration of 

each type of compound was injected in transport conditions. The testing protocol was 

described in the sodium transport section, the variation being the solutions used, each 

containing a 100 mM chloride solution of the tested ion. A medium concentration (400µM), 

was chosen to avoid both capping effects and extreme behaviors characteristic of high 

concentrations of active system. Low concentrations were avoided in order and to obtain 

sufficient transport for reliable data. For each experiment a blank injection of DMSO 

(concentration=0) was also recorded. The fluorescence curves are presented lower in 

Figure 32. 
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Figure 32: Ratiometric normalized fluorescence transport curves of compounds 1-8 towards first 
group cations at a fixed concentration of 400 µM. LUV suspension in PBS pH=6.4 (10mM), for each 
transport experiment a solution of 100mM the corresponding chloride of the transported cation was 
used. N450 normalized transport over 450 seconds. Compound insertion at time=-50s, NaOH (25 µl, 
0,5M) added at t=0. Fluorescent probe HPTS λ1ex=405nm, λ2ex=460nm, λem=510nm. 
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The experimental curves were fitted using a Hill sigmoidal curve. Hill functions 

represent dose-response curves, thus applicable to this type of experiment. This was 

done because, in the absence of a range of concentrations, the Hill number and the EC50 

cannot be determined. The Hill function is presented lower in Figure 33 as a sample curve. 

Applying this fit, with a chi square value better than 10-9, we can obtain the theoretical 

calculated values of activity in order to compare them to experimental results.  

 

 

 

Figure 33: Sample Hill function curve [http://www.originlab.com/] 

 

Where y is the normalized signal, Vmax is the maximum y, x is the time, k is the 

slope for the initial increase and n is the exponent of the function, presuming an “n” degree 

system. 

This method was successfully applied to the curves with a few exceptions. In the 

case of compound 1 for the Rubidium ion, although the fit is good, the result has no 

physical sense (Y larger than 1). For some other particular cases, the fit gave a much 

larger activity value than the experimental one, but as a general observation, the 

calculated values (Table 6) are similar to the experimental ones (Table 7). 
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Table 6: Calculated maximum values of activity 

Comp. 1 2 3 4 5 6 7 8 

Cesium 

Vmax 0.530 0.497 0.540 0.867 0.527 0.666 0.556 0.571 

k 4.386 4.431 22.267 159.048 82.322 160.405 19.341 33.131 

n 2.017 2.069 1.187 0.373 0.452 0.559 1.170 1.097 

Rubidium 

Vmax 1.233 0.789 0.949 0.736 0.648 0.637 0.717 0.665 

k 214.10 64.729 104.439 33.616 83.343 41.266 9.992 10.883 

n 0.3839 0.589 0.535 0.727 0.527 0.701 1.965 1.506 

Potassium 

Vmax 0.423 0.387 0.559 0.610 0.514 0.443 0.710 0.551 

k 7.279 7.146 18.42 21.173 18.511 25.217 18.388 18.355 

n 1.037 0.728 1.758 1.879 1.781 1.913 2.729 1.982 

Sodium 

Vmax 0.731 0.495 0.444 0.566 0.371 0.393 0.624 0.522 

k 17.408 4.434 6.777 15.687 16.333 20.033 16.064 29.915 

n 0.227 1.191 1.136 0.761 2.213 1.442 1.070 1.417 

Lithium 

Vmax 0.664 0.612 0.379 0.734 0.385 0.403 0.576 0.478 

k 5.332 5.626 8.382 24.875 6.788 9.057 26.236 13.972 

n 1.939 2.347 3.660 0.411 1.465 1.193 1.489 0.577 

 



59 
 

Table 7: Experimental maximum values of activity 

Comp./Ymax 1 2 3 4 5 6 7 8 

Cesium 0495 0.466 0.551 0.522 0.345 0.423 0.542 0.531 

Rubidium 0.698 0.598 0.641 0.634 0.455 0.535 0.723 0.655 

Potassium 0.432 0.375 0.566 0.616 0.530 0.454 0.715 0.549 

Sodium 0.475 0.484 0.452 0.529 0.366 0.396 0.613 0.495 

Lithium 0.617 0.550 0.342 0.558 0.375 0.403 0.578 0.430 

 

By comparing the two values (Figure 34), the calculated one, based on the initial 

rate of transport, and the experimental one, we can differentiate between ideal and 

practical conditions. In this case of a good correlation between the two, we can conclude 

that the experimental activity is validated. 

For all compounds, the experimental activity was plotted for each ion tested (Figure 

35). For the systems that displayed good activity towards sodium and potassium 

(compounds 3, 4, 7 and 8), the preference vs ions follows the order Rb > K ≥ Cs > Na ≥ 

Li. For the less active systems, compounds 1, 2, 5 and 6, a certain order can’t cannot be 

fully established. For example, the first two compounds present a strong activity towards 

Lithium, which is not true for compounds 5 and 6. These differences in behavior can be 

attributed in the different types of channels that the compounds form. In the case of 

compounds 3, 4, 7 and 8, which were proven to be type II channels in the experiments 

for sodium and potassium transport, we can attribute a self-assembled labile and adaptive 

structure. Since these don’t have a determined number of molecules forming the 

functional supramolecular structure, they are better accommodating for larger ions like 

rubidium, cesium and potassium. In the case of the other compounds, the supposedly 

rigid structures they form, better accommodates the smaller size of lithium. Their overall 

activity is lower. This fact, besides underlining once again that they are weak transporters, 

also hints at some selectivity differences towards certain cations.  
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Figure 34: Correlation between the experimental values of transport (blue) and the fitted ones 
(red). 



61 
 

 

Figure 35: Activity of compounds towards alkaline metals as revealed from the experimental data 

 

Although each compound presents preferences towards certain cations, the term 

selectivity is a bit restrictive in this case. Indeed, compound by compound, one could 

make some observations, like in the case of compound 3, where the activity towards the 

rubidium ion is twice that for lithium ion. The general behavior of the compounds could be 

classified as a percentage based favoritism towards certain ions. The results are plotted 

in Figure 35. 
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1.2.2.4. Proton Transport Experiments 

 

In the case of proton transport experiments, the principle of transport is different, 

although the data is treated in the same way as in the case of ion transport. In ionic 

transport conditions, for each ion that is transported through the membrane a proton must 

leave the liposome, in order to have a fixed charge. In this case, the proton transfer is 

achieved through simple diffusion. In proton transport conditions the proton is transported 

through a functional structure. For this to happen, a transporter is inserted in the bilayer 

of the liposomes, a non-selective potassium carrier valinomycin. The LUVs are 

suspended in a potassium solution and valinomycin is injected over the LUV population. 

This generates ideal transport conditions for the potassium ion, from the external solution 

towards the interior of the vesicles. In order to balance the charge out, protons must be 

transported from the interior of the vesicles towards the exterior. A compound is injected 

over the vesicle population, in order to verify its activity. If the compound self-assembles 

in transporting structure, the signal in ratiometric fluorescence will change in comparison 

to a blank experiment. The blank experiment only contains DMSO and its signal can be 

attributed to the simple diffusion of protons across the lipid bilayer. Thus the difference in 

activity between the compound and the blank experiment can be attributed to the direct 

transport effect of the active system. 

This method uses the same pH-sensitive fluorescent dye, HPTS. The increase of 

pH inside the vesicle is given by the active carrier system, valinomycin. This is translated 

to an overall higher signal than in the case of the ion channels. The second influence on 

the spectra is the speed at which the protons leave the LUVs, equilibrating the system. In 

order to have a clearer picture Figure 36 illustrates the differences between ionic transport 

and proton transport. 
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Figure 36: Differences between ionic and proton transport 

 

The proton transport was monitored over a 500 second interval. The ratiometric 

fluorescence curves are presented lower in Figure 37. 
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Figure 37: Ratiometric normalized fluorescence potassium transport curves of compounds 1-8. LUV 
suspension in PBS pH=6.4 (10mM), KCl 100mM. N500 normalized transport over 500 seconds. 
Compound insertion at time=-100s, valinomycin (1nM) insertion at time=-50s, NaOH (25 µl, 0,5M) 
added at t=0. Fluorescent probe HPTS λ1ex=405nm, λ2ex=460nm, λem=510nm. 
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As in the case of ionic transport, the compounds containing the fluorine atom in 

the para position displayed much higher activity than the other systems tested. The 

histamine compounds proved to be particularly efficient, especially the S isomer (Table 

8). 

Table 8: Proton transport activity 

Compound 1 2 3 4 5 6 7 8 

Nmax500 NA NA 0.75 0.82 0.67 0.62 0.76 0.76 

Activity No No Excellent Excellent Weak Weak Excellent Excellent 

 

The Hill interpretation of the results was applied to the proton tests. In this case, 

compounds 1 and 2 present no activity and compounds 5 and 6 weak activity.  The 

minimal activity of compounds 5 and 6 is not due to the amplitude of the signal, which is 

high, but to the lack of correlation between concentration and activity. 

The Hill plots are presented in Figure 38 together with the calculated Hill numbers 

(Table 9). Consistent with the ions transport tests, the best transporters present type II 

channels while compounds 2 and 6 present type I channels as seen in Table 9. 

 

 

Figure 38: Hill plots for proton transport. (Left) Blue – compound 2; Red – compound 3; Gray – 
compound 4. (Right) Blue – compound 5; Red – compound 6; Gray – compound 7; Yellow – 
compound 8. 
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Table 9: Hill numbers and types of channels for proton transport 

Compound 1 2 3 4 5 6 7 8 

Hill number NA 2.11 0.276 0.693 0.786 2.615 0.520 1.062 

Type of channels No  Type I Type II Type II Type II Type I Type II Type II 

 

The EC50 values are presented in Figure 39. 

 

Figure 39: EC50 values for proton transport. Blue – compound 3; Red – compound 4 ; Gray – 
compound  1; Yellow – compound 2; Dark blue – compound 7; Green – compound 8; Light blue – 
compound 5; Pink – compound 6 

 

 Compounds 4 and 5 presented the best activity towards protons. In this case, the 

EC50 values are correlated directly with the activity. Namely, the critical dose for the best 

transporters are also the lowest critical concentrations. This observation is in contrast with 

the potassium transport experiments where the best transporters did not display the 

lowest EC50 values.  
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1.3. Conclusions and Perspectives 

 

A library of small molecules was synthesized and characterized. The compounds 

in the library were varied based on three features: the heterocycle moiety used, absolute 

configuration and the electronic density of the phenyl ring. By inserting self-assembling a 

motif in the molecules, urea, functional supramolecular structures were obtained. These 

modifications were generated so that a systematic study of ionic transport could be 

performed, while assessing the structure-activity relation.  

The single crystal structures obtained did not present channel structures in the 

crystal matrix. However, transport experiments on these systems proved to be active, 

with variations based on their constituting atoms. The systems that present a fluorine 

atom have a less condensed structure, with grouped hydrophobic and hydrophilic parts. 

Opposed, the compounds lacking this feature, present a very compact interlocked 

structure. 

From the eight systems tested, four proved to be better transporters over most 

tests. These were the compounds containing the fluorine atom on the phenyl ring. Out of 

these, the histamine derivatives displayed better activity towards all applications. 

However, the selectivity of the systems was low. The better activity of the histamine 

compounds is a particularly interesting observation, since it’s contrary to the other 

observations of our group in this field. Namely, for similar structures that only differ 

through the heterocycle moiety, the amino triazole containing compounds were 

considered more active in the case of ion transport that their histamine counterparts [19], 

[22]. 

As perspectives, complementary experiments have to be done. From a 

supramolecular perspective, NMR titration experiments could provide valuable 

information regarding the interaction of the compounds with ions. The transport activity 

should also be described using Voltage Clamp techniques. This method, initially used in 
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electrophysiology, measures the potential of a planar lipid bilayer. The transport of ions 

through the membrane causes a change in membrane potential, which is recorded by the 

instrument. The resulting conductance-time plot describes the activity of a given 

compound. The strong suits of this method are the very good sensibility and high time 

resolution. 

Another point that must be further investigated is the influence of the chirality of 

the isomers on the insertion in the lipid bilayers. No pair of enantiomers ever reached the 

same rate of transport for any of the given ions, suggesting a different behavior based on 

their conformation (R or S). In this work, these differences has been underlined for 

different species, when interacting with optically active substrates like lipids. In Chapter 2 

an experiment involving circular dichroism techniques is presented on other compounds, 

in an attempt to better understand the particularity of these interactions. This behavior, 

related to the easiness of insertion through the membrane, could prove to be a powerful 

tool in optimizing the potential activity of synthetic ion channels. 
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Chapter 2: Water and Proton Translocation 

across Vesicular Lipid Bilayers 

 

2.1. Introduction  

 

As the planet’s needs for freshwater increase, the availability of this resource 

decreases. As such, one plausible solution would be sea the desalination of sea water. 

For this reason, the topic of water transport and purification becomes increasingly more 

important and present in the scientific community. 

The technologies today are able to produce fresh water by the desalination of sea 

water, through industrial processes like reverse osmosis. The problem associated with 

these processes is the large amount of energy required for pressure filtration and thus its 

cost. A new approach is needed within this context, related to the use of selective water 

permeation or facilitated transport. Naturally occurring proteins, Aquaporins, are able to 

transport water through lipid membranes in mild conditions of temperature and pressure. 

Besides their efficiency, the selectivity of these proteins is also remarkable [40], [66]. 

By using the principles of supramolecular chemistry, self-assembled channels can 

be designed in order to replicate partially the function of aquaporins. This bioinspired 

approach envisions avoiding the cost related issues of the industrial water purification by 

taking advantage of the available natural solutions. Thus, an artificial water transport 

system operating on mimic cells, is a good first step towards large scale applications. 

Surprisingly enough, the amount of literature on the subject of function replication 

of Aquaporin family is scarce. Only a few publications produced by several groups treat 

this subject, and will be assessed in the following sections. 
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2.1.1. Natural Water Channels: Aquaporins 

 

Aquaporins are a distinct class of proteins which handle the transport of water 

through the cells’ membranes. The first Aquaporin was discovered and purified by Peter 

Agre in 1992 [67]–[70], a discovery for which he received the Nobel prize in 2003. The 

first identification, however, of a mixture of proteins containing Aquaporin 1 was done in 

1986 by Gheorghe Benga and his group, but who were unable to isolate it [71].  

These proteins are ubiquitous in all living organisms, from bacteria to humans [70]–

[74]. In mammals there are 13 distinct proteins, but more are expected to be discovered 

in the near future. In plants, there are five groups of Aquaporins, each with subgroups 

and isomeric forms [71]. To give a figure of the importance of this protein family, the 

human kidney filters every day 180L of dilute urine, which is then concentrated, and the 

metabolites are removed, while the purified water is then recirculated through the body. 

All this is done by Aquaporins, the kidney being the place where most types of these 

proteins can be found, within the cellular walls, where the largest concentration of these 

proteins is placed [70]. 

 AQP1 (Aquaporin 1), is found in the cellular membrane as a group of four units, a 

tetramer (Figure 40) which permeates from one side to the other of the lipid bilayer. Each 

of the protein monomers presents one water channel. One monomeric unit contains 269 

amino acid residues. Both the NH2 and the COOH heads are highly hydrophilic and can 

be found in the cytosol of the cell. 
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Figure 40: Aquaporin structure: Various views of the prototypical Aquaporin (AQP)1 crystal 
structure. (a) Cartoon of an AQP1 monomer as viewed from the side depicting the two repeated 
protein halves (blue and yellow helices) and the two short pore forming helices HB (green) and HE 
(red). The connecting loops are shaded in gray. (b) Vertical cross-section of AQP1 showing the 
location of the conserved aromatic/arginine (ar/R) constriction and the Asn-Pro-Ala (NPA) region. 
The arrows indicate the viewing direction on (c), i.e., residues of the ar/R constriction, and (d), the 
NPA Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Univ. Kiel, Germany) after 
the original  [75] 

 

One monomeric unit has a structure of six α-helixes bundled together and five inter 

helical group regions, named A through E (Figure 41). Two of these loops, namely B and 

E contain what is called the NPA motif, a succession of asparagine-proline-alanine, to 

which the transporter properties are attributed. These two loops, B and E are 

hydrophobic, permitting a spatial arrangement in the form of a channel, through which the 

water circulates across the cellular membrane. The succession of amino acids in 

Aquaporins varies from case to case, but the active function of the NPA motif remains the 

same[71]. A monomer unit has a diameter of 30 Å and a height of about 60 Å. 
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Figure 41: Membrane orientation of AQP1 predicted from primary amino acid sequence. Two 
tandem repeat units of the protein each have three bilayer-spanning domains and are oriented 1808 
with respect to each other. The loops B and E each contain the conserved motif Asn-Pro-Ala (NPA). 

[70] 

 

 It is important to note that the water transfer is made through the protein in a single 

file line, which implies that the channel formed through the protein’s fold has to be of a 

precise diameter. In the case of AQP1, the channel has an hourglass shape, at its 

narrowest 3 Å. The size of the pores does vary from one Aquaporin to another but, in the 

case of AQP1, the channel is selective enough to totally block the transport of protons 

even, not only of ions or other chemical species.  

 It is also important to note the presence of the ar/R filter which confers the 

extraordinary selectivity of the Aquaporins. In AQP1 the filter is constituted from Arg 195, 

His 180, Phe 56 and Cys 189. The way in which these residues are arranged, with the 

arginine and histidine on one side (hydrophilic) and the phenylalanine on the other 

(hydrophobic) generates the 3 Å wide channel, only slightly larger than the 2.8 Å diameter 

of a water molecule. 

As stated previously the objective is to obtain specific and efficient transport through 

lipid bilayers. By investigating natural solutions for the transport of water, synthetic 
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systems can be envisioned. These mimic the function of the natural active factors but 

remove their complex and fragile forms. 

Evaluation of the Aquaporin channels: 

· Specificity: For Aquaporins, in particular for AQP1, the specificity is very high. 

This is generated by the residues of amino acids called the ar/R 

(aromatic/arginine) filters which block all other species except for water from 

passing through the channel [71]. By comparison, in the case of gramicidin 

channel (which allows with the transport of water together with ions) specificity 

is very low [40]. Thus, in order to replicate the function of AQPs, steric restrains 

and an arrangement which can form a single file water channel, a “water wire” 

must be present. 

· Efficiency: The active site of Aquaporins contains the NPA motif asparagine–

proline–alanine. AQP1 has a calculated Arrhenius energy of less than 

5kcal/mol [70] and a permeability of about 3x109 water molecules per subunit 

per second. For comparison, the gramicidin channel’s active site is constituted 

of four tryptophan units.  The diffusion of water through the channel is known 

to be of about 9.3 X10-5 cm2s-1, of which a significant part is proton conduction 

(3 X10-5 cm2s-1). The conduction of ions is done through a gramicidin channel 

through a column of water, differently from the single file mechanism of 

Aquaporins [76]. In conclusion we can attribute the activity to an effector, which 

is a plurality of amine functionalities, and a structure which spatially defines the 

molecule, that has to be hydrophobic. 
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2.1.2.   Synthetic Approaches  

 

The interest on the selectively enhanced water transport subject is growing, since 

the sources of fresh water are limited and desalination processes are usually expensive. 

A synthetic approach offers, of course, the advantages of industrial production and of 

better stability compared to the naturally occurring proteins. Yet little progress has been 

made, literature mentioning only very few approaches. These will be presented lower [13]-

[14]. The aim of this research is a channel that displays an efficiency as close as possible 

to that of the proteins, while maintaining the selectivity towards metallic ions [21], [70], 

[77]–[92]. 

It should be mentioned that there are several attempts on integrating proteins into 

artificial matrixes. Yang et al [93] reviewed these and underlined the two major constraints 

of this approach: finding a suitable matrix and the practical amounts in which the protein 

can be isolated. Kumar et al [94], [95] have explored this route and published in 2012 the 

results of this type of assay. By replacing a lipid bilayer membrane with amphiphilic block 

copolymers (BCPs), they were able to successfully and functionally insert the less-

specific Aquaporin, AQP0. It must be noted that the performance per molecule of AQP0 

is much lower (2.5 X 10-15 cm3/s) than that of AQP1 (1.17 X 10-13 cm3/s) or AQPZ (~1 X 

10-13 cm3/s) in terms of water permeability. The BCP vesicles presenting functioning 

AQP0 channels had a water permeability of 1409± 409.5 X 10-6 m/s up from 189.7± 61.3 

X 10-6 m/s for the vesicles without the protein channels. Thus the concept has been 

proven, however the applications are yet very limited. 
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2.1.2.1.  Dendritic Peptides 

 

One of the first successful attempts of creating artificial water channel was 

published in 2007 by Kaucher et al.[80]. They used a stabilized dendritic peptide (6Nf-

3,4-3,5)12G2-CH2-Boc-L-Tyr-L-Ala-OMe, which, in bulk is able to form channels in lipid 

bilayers. The structure formed is reported to be 82.3 Å with a pore diameter of 14.5±1.5 

Å. The methods employed to prove transport were: fluorescence techniques and a 

microscopy technique applied to GUVs (giant unilamellar vesicles). This technique 

consists in filming the evolution of the volume of water in a micropipette tip in contact with 

the lipid bilayer of the GUV containing the active compound. These channels are 

described as being selective against metallic ions like sodium and potassium but 

permeable to water and protons (which are excluded by Aquaporins) (Figure 42). It also 

must be noted that, since the date of this paper, the methods employed in measuring 

water transport across lipid bilayers have become more standardized. 

 

 

Figure 42: (6Nf-3,4-3,5)12G2-CH2-Boc-L-Tyr-L-Ala-OMe (1). (a) Cross section of the helical pore 
assembled from 1. Color code: -CH3 of the protective group of Tyr, blue; -CH3 of the methyl ester 
of Ala, white; C, gray; O, red; N-H, green. (b) Wide angle XRD of an oriented fiber of the helical pores 
assembled from 1. [80] 
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2.1.2.2.  Imidazole Quartet  

 

Barboiu et al. [22] reported a simple supramolecular structure able to perform 

water transport across lipid bilayers. This is achieved by using a urea motif and imidazole 

moieties as active parts of the system. The urea motif generates hydrogen bonds, 

organizing so called “urea ribbons”, while the imidazole self-organizes in units of 4, an I4 

quartet. Alkyl chains are present on the opposite head of the molecule in order to generate 

an amphiphilic character to the species. The resulting self-assembled structure is in fact 

a supramolecular water channel. This system has a good compatibility with lipid bilayers 

through its hydrocarbon chain backbone (lipophilic part) and hydrophilic heads through 

the imidazole moieties (lyophobic part). The published systems are displayed in Figure 

43. 

The channel diameter is calculated to be 2.6 Å, very similar to the selective AQP 

1 channel pore dimensions. This also implies that, as is the case of the Aquaporins’ 

channels, it is not permeable by ions, which present larger radii than water. These findings 

were supported by X-ray single crystal diffraction, dynamic light scattering and 

fluorescence assays. The constants for water transport are kI4=1.2 X10-3 for the active 

compound versus kDMSO=8.7 x 10-5 for the DMSO blank sample. The similarity to the AQP 

channel presumes ion selectivity, fluorescence studies proved a rejection effect over 

cations. 
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Figure 43: Solid-state structures of a) 1 and b) 2: side and top views in stick representation (N, black, 
C, gray, O, light gray, H white) of continual planar arrays of the H-bonded urea ribbons. c) Water 
assisted formation of I-quartet “open form” through CH···N and NH···O H-bond interactions. Water 
molecules in ball-and-stick representation are H-bonded through OH···O interactions. d) Formation 
of I-quartet “off form” through CH···N and NH···N H-bond interactions in the absence of water. [22] 

 

2.1.2.3.  Hydrazide Functionalized-[5] Pillar Arene Derivatives 

 

Xiao-Bo Hu et al[96] reported in 2012 that hydrazide-appended pillar- [5] arenes 

are species able to form unimolecular water channels. The molecules display the 

propriety of coiling in the form of a tube using supramolecular interactions like hydrogen 

bonds. Through this a channel is formed. The resulting channels are selective against 
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protons, similar to natural occurring Aquaporins. However the mechanism is quite 

different, as single file transport of water is not possible along the channel. Discontinuous 

files were observed along the tubular structures. The methods employed for the 

characterization of the water channels are fluorescence based vesicular methods (LUVs), 

while the interactions with water are characterized through X-ray single crystal diffraction.  

 The performance of these channels is reported to be 8.6 x 10-10 cm/s in terms of 

water permeability. This is achieved at relatively low compound concentrations, which 

vary from 0.027%-0.45% (mol %) vs. lipids amount. The above permeability was obtained 

for a concentration of 0.3% mol (Figure 44).  

 

Figure 44: Structures of compounds constituting the water channels.  [96]  

 



79 
 

2.1.3. Objectives and Methods Employed 

 

As stated before, the objective of this project is the design of a functional class of 

self-assembled water channels. These should display efficiency and selectivity as close 

as possible to that of Aquaporins.  

The compounds synthetized kept the general structure and observations made 

previously by our group. A library was designed around the concept of the I4 quartet. 

These molecules self-assemble using the urea-ribbon motif into supramolecular 

structures. By varying the constituent elements of the molecules, the resulting 

supramolecular structures are different, allowing a study of activity as a function of them. 

The chain length and the absolute configuration were varied throughout the library, 

allowing for a more systematic study of the matter at hand. 

For the characterization of the compounds, NMR and mass spectrometry were 

used in the determination of the chemical structure and composition. X-ray single crystal 

diffraction was employed for describing the supramolecular self-assembled structures of 

the species and as a theoretical model. 

In the case of water transport two methods were used, dynamic light scattering 

(DLS) and light-scattering stopped flow techniques. The proton transport experiments and 

the ion selectivity were performed using fluorescence methods as well as through 

fluorescence stopped flow techniques. Supporting tests were done using circular 

dichroism. Large Unilamellar Vesicles (LUVs) were used in correlation with all these 

techniques in order to provide a similar assay to that of using real, natural cells. The 

composition of the LUVs was changed according to the experiment undertaken. While for 

fluorescence methods simple PC was used in the case of all stopped flow techniques a 

composition of L-α-phosphatidylcholine (PC): L-α-phosphatidylserine (PS): Cholesterol 

(Chl) [97] in a ratio of 4:1:5 was used. 
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2.2. Molecular Simulations on the HC6 Channel 

 

The HC6 system previously reported by our group [22] was very recently described 

using computational chemistry methods. These simulations were performed by Marc 

Baaden and Samuel Murail at Université Denis Diderot Paris 7. 

They investigated the I4 water channel formed from HC6 molecules over 250ns 

with variations of the lateral pressure on the channels. These pressures were of -10, 0, 

10 and 100 atm. The starting structure chosen for the calculations was based on the atom 

positioninng of the crystal structure of HC6. A small system was used (about 61000 

atoms), in a model membrane with a composition of phosphatidylcholine (POPC): 

phosphatidylserine (POPS): cholesterol (Chl) of 4:1:5. The results of these simulations 

are presented in Figure 45. 

 

 

Figure 45: On the left, a typical cross-section of the HC6 simulation systems illustrates how water 
(blue surface) connects through artificial channels traversing the HC6 aggregate (atom-colored 
licorice representation) held together by the membrane (white surface). On the right, the structural 
drift measured as RMSD is shown for the first 250 ns of the pressure-dependent simulations at -10, 
1, 10 and 100 atm. Courtesy of Marc Baaden and Samuel Murail  

 



81 
 

Figure 46 shows the theoretical aspect of the water channels formed by the HC6 

in simulations, laterally sealed by the membrane. The higher the applied pressure, the 

closer the simulation remains over time (250ns) to its starting structure. Only half of the 

HC6 molecules are shown, concentrating on the « stable » ones and discarding the very 

mobile second half of these molecules. 

 

 

Figure 46: Temporal snapshots of the three pressure-dependent simulation systems at -10, 1 and 
10 atm. Data for 100 atm is not shown. 
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Figure 47: Water density in the 200-250 ns period of the pressure-dependent simulations shown 
as isosurface. The HC6 aggregate is shown as black lines. The membrane is omitted for clarity. 

 

Figure 46 shows initial, intermediate and final structure snapshots for three 

simulations. Visual inspection shows that both initial water channels are lost after around 

90, 103 and 109 ns, for the systems at -10, 1 and 10 atm pressure, respectively. Still, in 

the simulation at 10 atm, a distinct planar area remains water filled with renewing 

formation of water wires. In the simulation at 100 atm (not shown) the channels are much 

better preserved, one is fully intact at the end of the simulation, the other has started to 

unstructure and loose some of its water. This is nicely visible in Figure 46. 

Figure 47 depicts the water density during the 200-250 ns period of each 

simulation and confirms that increasing pressure stabilizes water within the HC6 
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assembly. While one water wire density is clearly visible in the simulation at 10 atm, both 

wires are still identifiable at 100 atm, with one of them being perfectly formed. Although 

the simulation at 1 atm has less water structure, it contains globally more water molecules 

than at other pressures but these water molecules are more dispersed than at 10 or 100 

atm, where internal structuring is visible.  

Water flow, i.e. single water molecules crossing the membrane completely by 

traversing the I4 assembly, was observed on a few occasions in these simulations, yet is 

difficult to characterize quantitatively. 

In conclusion the HC6 structure stays confined within the membrane region 

throughout all simulations, even though a few HC6 molecules may diffuse away in the 

bilayer. The system stabilizes water within the membrane environment only at higher 

pressure values. The stability of the system is influenced by the size (surface-to-volume 

ratio) of aggregates, by lateral pressure on the membrane and possibly by the peripheral 

packing of cholesterol molecules. Higher pressure favors structuring of water wires and 

stabilizes the structure of the aggregate. The observed cholesterol stabilization effect is 

not sufficient to hold together the small aggregates studied in this exploratory study. 

Under the conditions (size of aggregates, pressure, etc.) tested here, the tubular I4 

structural arrangement is not preserved within bilayers. The aggregates tested here are 

probably too small (and hence unstable) to reproduce the real water permeation 

phenomenon measured experimentally. Much larger assemblies should be tested for this. 

However the physicochemical observations for it acting as a pressure-dependent water 

reservoir, eventually with structured water wires traversing the membrane, should hold. 

Even for the small systems tested here (<65000 atoms), the several hundred nanosecond 

timescale seems not sufficient to fully stabilize. The characteristic timescale for this 

system must therefore lie in the microsecond range or beyond. The simulations provide 

first insight about the dynamic behaviors of water molecules under confined conditions. 
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2.3. Experimental Results  

 

2.3.1. Description of Compounds 

 

Based on the initial findings presented in Leduc et al [22], homologous structures have 

been designed varying the chain length and their optical activity in order to have a 

systematic study over the transport proprieties the display. Along with HC6 and HC4 

which have been synthetized and characterized by Yann LeDuc, the compound library 

was extended with related compounds. These are presented in Table 10. 

 

Table 10: List of compounds synthetized 

NR.  STRUCTURE NAME MOLECULAR 

FORMULA 

CODE 

1  

 

1-(2-(1H-imidazol-4-

yl)ethyl)-3-butylurea 

C10H18N4O HC4 

2 

 

(R)-1-(2-(1H-imidazol-4-

yl)ethyl)-3-(3-methylbutan-

2-yl)urea 

C11H20N4O RHC5 

3 

 

(S)-1-(2-(1H-imidazol-4-

yl)ethyl)-3-(3-methylbutan-

2-yl)urea 

C11H20N4O SHC5 

4 

 

1-(2-(1H-imidazol-4-

yl)ethyl)-3-hexylurea 

C12H22N4O HC6 

5 

 

(R)-1-(2-(1H-imidazol-4-

yl)ethyl)-3-(hexan-2-

yl)urea 

C12H22N4O RHC6 

6 

 

(s)-1-(2-(1H-imidazol-4-

yl)ethyl)-3-(hexan-2-

yl)urea 

C12H22N4O SHC6 
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7 

 

1-(2-(1H-imidazol-4-

yl)ethyl)-3-octylurea 

C14H26N4O HC8 

8 

 

(R)-1-(2-(1H-imidazol-4-

yl)ethyl)-3-(octan-2-yl)urea 

C14H26N4O RHC8 

9 

 

(S)-1-(2-(1H-imidazol-4-

yl)ethyl)-3-(octan-2-yl)urea 

C14H26N4O SHC8 

 

The synthetic route for the compounds in question is quite simple and straight-forward, 

a one-step synthesis between the corresponding isocyanate and the amine, histamine, 

as seen in Figure 48. The yields are practically quantitative. The protocol for their 

synthesis is presented in the annexes. 

 

 

Figure 48: General reaction scheme. R= corresponding hydrocarbon chain 

 

All compounds tested were characterized through the appropriate methods, NMR and 

mass spectrometry and the results of these analyses are presented in the annex. These 

compounds were described by single crystal X-ray diffraction and were subjected to 

appropriate methods in order to describe their transport capabilities for water and protons. 

The X-ray single crystal structures provide a very good understating on the active 

system throughout the library of compounds. All the crystals in the library were obtained 

in pure water, in order to maximize the chances of obtaining suprastructures that present 

sterically hindered water. As stated, the amphiphilic nature of the molecules is given by 

the lipophilic tail as well as the polar imidazole head. The urea motif is generated in order 

to assist the self-assembly of the molecules in supramolecular structures. As presented 

earlier, imidazole containing compounds display the I4 quartet, made of four individual 

units. These do present a type of polymorphism when it comes to the spatial orientation 

of the units when water molecules are found in the formed channels. The infinite packing 
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of a compound forming a channel with the I4 motif, reveals a continuous file of water 

molecules, the so called water wires. The water molecules present a type o pseudo 

permanent dipole, meaning that their orientation is the same throughout the channel. This 

forces the imidazole moieties to adapt in order to accommodate this polarized water, 

adding a supplementary degree of order to the supramolecular structure. Depending on 

the system several conformations can be achieved as seen in Figure 49. 

 

 

Figure 49: polymorphism o the I4 quartet. a – I4 generated by HC6 specie; b – I4 generated by RHC8 
packing (type I, majoritarian); c – I4 generated by RHC8 (type II, minoritarian). Crystals obtained in 
pure water. 

 

 Crystals of the members of the library can be used to give an initial hint on the link 

between structure and activity. Starting from the shortest member, HC4, we can see a 

packing pattern that is entirely composed of urea-imidazole hydrogen bonding. The 

molecules have a head to tail arrangement creating a very dense structure. The binding 

doesn’t create an I4 quartet but a semi-dimeric pseudo-polymeric structure.  This type of 

semi-dimeric structure provides unfavorable conditions for the insertion of other species. 

The X-ray packing of HC4 can be observed in Figure 50. 
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Figure 50: X-ray single crystal structure of HC4, packing. Crystals obtained in pure water. 

 

The next compounds in the series, RHC5 and SHC5 present a different type of 

packing. Here the urea motif generates a ribbon type structure on the c axis, while the 

imidazole moieties are hydrogen bonded to each other. The optical center forces 

hydrophobic interactions in the form of an arrow-like pattern. The packing here is also 

very condensed, and the I4 quartet is not formed, or we could assume its structural 

collapse based on the ramified hydrocarbon chain. This structure could be considered the 

opposite of the systems that form channels, as a consequence of the hindrance 

generated by aliphatic part of the molecule. The X-ray packing of SHC5 can be observed 

in Figure 51. 
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Figure 51: X-ray single crystal structure of SHC5, packing. Crystals obtained in pure water. 

 

The X-ray structure of HC6 was discussed in detail in reference [22]. It is worth 

mentioning that HC6 is the shortest member that generates a water channel. This channel 

is presented transversally in Figure 52. The water is hydrogen bonded by four imidazole 

units, the I4 quartet. 

 

Figure 52: X-ray single crystal structure of HC6, packing. Crystals obtained in pure water. 
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R and SHC6 present a head-to tail packing, with imidazole-urea hydrogen bonding. 

Although the alkyl chain has the same length as in the case of HC6, the interactions 

between the elements of the molecule are completely different. The optical center acts 

like a spacer elongating the distance between two molecules, with a succession up/down 

of the methyl groups between two neighboring molecules. The resulting packing has a 

zig-zag shape and does not present the I4 quartet. As a consequence of the length of the 

chain the structure is less crowded, but no cavities are formed. The packing of SHC6 is 

presented in Figure 53. 

 

 

Figure 53: X-ray single crystal structure of SHC6, packing. Crystals obtained in pure water. 

 

The linear HC8 molecule present a pattern vey similar the HC6 structure. Here, 

the I4 quartet is formed and the water is entrapped within it. As in the case of HC6 the 

hydrophobic tails are arranged linearly opposite of the I4 quartet. The water wires 

generated are oriented with a permanent pseudo-dipole moment. This structure can be 

seen in Figure 54. 
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Figure 54: X-ray single crystal structure of HC8, packing. Crystals obtained in pure water 

 

S and R HC8 present a channel type structure. The packing of RHC8 is presented 

lower, with its two isomorphic forms. In comparison to the SHC6 structure there are 

differences worth pointing out. The packing is comprised by two chains of molecules, one 

ascending and one descending. The chiral centers go along this trend being on either 

one or the other side of the channel, as opposed to the alternating positioning of the SHC6 

structure. The I4 quartet is well represented in both morphologies containing two oriented 

molecules of water per quartet.  Compared to the HC6 and HC8 channels in which the I4 

quartet is almost plane, the I4 displayed by RHC8 is spatially distributed on the three 

axes. The two morphologies are different by the relative position of the imidazole 

moieties, the first one accounting for 80% and the second for 20%. In both, the water 

molecules present fixed orientations, leading to the conclusion that the polymorphism 

encountered is a form of the system to adapt to the guest molecule.  The packing of the 

two RHC8 morphologies is presented in Figure 55. 
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Figure 55: X-ray single crystal structure of RHC8, packing along b axis. (Left) the first morphology, 
80% of the structure and (Right) the second one 20% of the structure. Crystals obtained in pure 
water. 

 

Regarding the compatibility with the structure of a lipid bilayer, it’s intuitive why a 

structure like the one displayed by RHC8 would be favored for insertion, compared to 

HC6 and HC8. The angle, described by the hydrophobic chain, is compressing the total 

width of the structure in the case of RHC8 while, for HC6 and HC8 the modifications that 

the membrane should adopt would be significantly greater in order to fit the completely 

linear structure. 

While the X-ray diffraction data does not provide certainties regarding the 

interaction of the supramolecular channels with the LUVs, it does constitute a good 

starting point for theoretical considerations.  

The affinity between a specific compound and the bilayer is a primary 

consideration that must be taken into account. For example, the amphiphilic nature of the 

membrane would better suit species that have a longer hydrocarbon chain. On the other 

hand, the length of the chain limits the compound’s solubility in aqueous solutions, where 

the experiment concerning the suspension of LUVs takes place. The dynamic nature of 
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the channels implies that they can be formed and unformed within the bilayer. As a 

consequence, just like in the case of the ionic channels, the formation of the channels 

can’t be specifically characterized. In turn, the effect of the channels over the substrate, 

in other words, its effect, can be registered and well described. This principle is applied 

to all the methods used, where the activity of the supramolecular structures is observed 

and calculated, as the formation of such structures cannot be. 

 

2.3.2.  Water Transport Experiments 

 

Our initial attempt was to describe the water transport phenomenon by means of 

Dynamic Light Scattering (DLS). DLS is a very useful technique in describing the size 

(and not the charge, or the surface rugosity, etc…) of small particles (between 5 nm & 

1µm) in suspension.  

In DLS, a laser is passed through the probe contained in a cell. When a polarized 

beam of light passes through a medium containing particles, these are subsequently hit 

and the light diffracts in all directions. This diffraction is then registered on a screen. By 

repeating this process at known intervals of time the images formed on the screen 

become a pattern. 

The mathematics behind the method is quite complex. The interpretation of the 

result relies on Rayleigh scattering (when the particles are small compared to the 

wavelength of the laser). The system also accounts for the Brownian movement of the 

molecules. The auto correlation function of the system is a single exponential decay in 

the case of a monodisperse population. In the case of polydisperse populations a sum of 

exponential decays is applied for each population. The processing of this data is then 

done using either a cumulant method, or a CONTIN algorithm. The first method is applied 

for a population with high homogeneity and involves the summing of the exponentials, 

while the CONTIN analysis is done through an inverse Laplace transform, and is used for 

very heterogeneous samples. The latter is a high resolution method. For our experiments 
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the CONTIN analysis was used in order to determine the heterogeneity of the sample (if 

any).  

 

The equation describes the autocorrelation function at a particular wave vector, g2 

(q,τ), q is the wave vector, τ is the delay time, I is the intensity, <> denote the expected 

value operator. 

The experiments were performed according to the following protocol. In 1880µl of 

pure MilliQ water, 100 µl of LUVs, containing 10mM PBS and 100mM NaCl, were added 

directly in the cell. An initial measurement was performed in order to have a referential of 

the size, before the adding of any modifier. After the first measurement, 20µl of DMSO 

containing the channels solution or just DMSO (as a blank sample) were injected in the 

cell. Immediately after the sample was measured. Timed experiments were performed 

over the course of 1500s, registering the modification of the diameter of the LUVs. The 

samples were mixed between experiments in order to maintain homogeneity. 

By exposing the vesicle suspension to a hypotonic solution (pure water) the 

transport of water inwards is expected to work against the concentration gradient. The 

inflow of water leads to an increase in volume and thus and increase in diameter. The 

diameters of the vesicles were referenced to the initial diameter (%D/D0) both for the 

active compounds and for the blank sample. The entire library was tested in this fashion 

and in Figure 56 the results of the HC8 series are presented. 
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Figure 56: Variation of LUV size over time using DLS methods for HC8 and its isomers. Internal 
solution PBS pH=6.4 NaCl 100mM, 10 mM, external solution MilliQ water. Light blue – RHC8; Orange- 
SHC8; Gray – racemic mixture of R&S HC8; Yellow - HC8, Dark blue – blank sample, DMSO (CM=0). 
Compound concentration in solution 300µM 

 

As expected, a sharp increase is observed for the linear HC8 species, as well as 

for the S isomer of the series. However, by repeating the measurements it became clear 

that the increase is not constant in each experiment series, and thus the technique is not 

suitable as a quantitative method. This methods only provides a qualitative merit. A similar 

observation was also recently reported [98]. The results of two experiments made on the 

same date and on the same batch of vesicles for HC8 are presented in Figure 57. Both 

series of measurements present an increase in diameter, but since the reproducibility is 

low, a quantitative calculation becomes unsuitable. 
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Figure 57: DLS experiments performed on HC8. Internal solution PBS pH=6.4 NaCl 100mM, 10 mM, 
external solution MilliQ water. Light blue – DMSO; Orange- HC8, series I; Gray – HC8 series II. 
Compound concentration in solution 300µM 

 

A new method of describing the phenomenon was needed, and it was found in the 

form of light scattering stopped flow techniques. 

Stopped flow techniques present the advantage of having very good temporal 

resolution, of millisecond scale. The central aspect of the method is the very quick, 

accurate and controlled mixing of two solutions. This is done using pistons, which provide, 

in combination with a hard stop valve, the instant insertion of the solutions in the mixing 

camber. When the mixing chamber is filled, the flow is abruptly stopped. A schematic of 

this type of system is presented in Figure 58.  
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Figure 58: Schematic of a stopped flow system connected to a spectrometer 

 

As this is not a physical method of its own, it can be associated with other detection 

techniques (spectrometric or light scattering). The name of the method is related to this 

trigger, which allows the recording of the signal over very short periods of time, at the 

moment when the flow is stopped and the solutions are present in the mixing chamber. 

The method is widely employed in the study of proteins in order to observe folding [99], 

[100]. Kinetic studies of chemical reactions are also described using this technique, both 

in the original form, as well as a quenched flow instrument form. The latter implies that 

the reaction is stopped by exterior means. 

Because of its good temporal resolution (ms), stopped flow was widely used as a 

technique in measuring water transport on various substrates, such as different types of 

vesicles (block copolymer and lipids of various compositions) [94], [95], [101].  

In our case the stopped flow system was coupled to a spectrometer in light 

scattering mode. By having the vesicles in a buffer solution and quickly subjecting them 

to an osmotic shock, the transport of water can be investigated. In the case of a positive 

osmotic shock, the vesicles have the tendency to shrink, with the water coming out, while 

in the case of a negative shock the vesicles have a tendency to swell, the water going 

inside as presented in Figure 59. 
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Figure 59: Simplified schematic of scattering stopped flow on LUVs systems 

 

This work has been performed in collaboration with Dr. Manish Kumar from Penn 

State University. Because of this, we were able to elaborate two strategies. The water 

transport was measured under two different sets of conditions, by inserting the 

compounds on the outside of the vesicles (part made here at IEM) and by mixing the 

molecules directly in the lipid bilayer (part done by Yuexiao Shen at Penn University). In 

both cases the goal was to obtain the water permeability of the system. The calculation 

is explained in the following section. 

The abrupt change of the vesicle size leads to variation in the light scattering at 

90°. According to the Rayleigh-Gans theory applied to this system, the signal can be fitted 

in the form a sum of two exponential functions. The osmotic permeability (Pf) was 

calculated by the following expression: 

 

Where k is the exponential coefficient of the change in the light scattering.  S and 

V0 are the initial surface area and volume of the vesicles, respectively; Vw is the molar 

volume of water, and Δosm is the osmolarity difference. Two types of k can be determined, 

k1 and k2, depending on the light scattering response of the vesicles compared to the 

control liposomes. This interpretation of the results will be explained further. 
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The entire library was subjected to this type of testing in order to assess the 

variation of activity vs. the modifications on the structures, namely chain length and 

absolute configuration. The first modification taken into account was the chain length, the 

results are presented lower. The results are presented in Figures 60-62, while the 

processed data is presented in Figure 63. 

 

 

Figure 60: Stopped-flow traces from experiments on liposomes with different imidazole derivatives 
in the shrinkage mode. All the liposomes were abruptly exposed to a shock solution of +200 mM 
sucrose. Light blue – blank; Red – HC4; Gray – HC6; Orange – HC8 
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Figure 61: Stopped-flow traces from experiments on liposomes with different imidazole derivatives 
in swelling mode. All the liposomes were abruptly exposed to a shock solution of - 200 mM sucrose. 
Light blue – blank; Red – HC4; Gray – HC6; Orange – HC8 

 

 

Figure 62: Stopped-flow traces from experiments on liposomes with different imidazole derivatives 
of the same chain length and different chirality in the shrinkage mode. All the liposomes were 
abruptly exposed to a shock solution of +200 mM sucrose. Light blue – blank; Red – HC8; Gray – 
RHC8; Orange – SHC8 
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Figure 63: (Left) The percentage based permeability increase of the channels assembled by different 
imidazole compounds in the shrinkage and swelling mode. (Right) The net permeability of the 
channels assembled by different imidazole compounds in the shrinkage mode. 

 

Both hypertonic and hypotonic conditions were undertaken, which yielded 

significantly different results. In shrinkage mode, the light scattering signal increased and 

could be fitted in the form of a single exponential function, like in the case of HC8 and its 

chiral isomers (RHC8 and SHC8).  There, a significant increase of the larger exponential 

coefficient (k1) was observed after the channels’ insertion in the liposomes, while the 

second exponential coefficient (k2) was almost null. In swelling mode, the fitting yielded 

two shrinkage rates characterized by two exponential constants and thus two permeability 

values: a larger value constant (k1) and a smaller value constant (k2). The net 

permeabilities increased, in both modes, with the increase of the carbon chain length. 

The permeability values were comprised, in shrinkage mode between 30 and 40 μm/s 

while in swelling mode between 70 and 150 μm/s. The water transport rates of the HC8 

channels were found to be 39% higher in swelling, while in shrinkage mode it was 111% 

higher versus the control experiments. With this method, the net permeability of HC8 

channels was found to be 38 μm/s, while for its chiral isomers RHC8 and SHC8, their 

permeabilities were of 37.5 μm/s and of 39.9 μm/s, respectively. 

The second approach, consisting in the direct mixing of the compounds in lipid 

composition (prior to the LUV formation), was performed at Penn State University. The 

artificial channels constituted by the imidazole compounds assembled within PC/PS/Chl 
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liposomes were water permeable. The water transport rates greatly differed for 

compounds based on the different carbon chain lengths. Due to the shrinkage of the 

liposomes, driven by outwardly directed osmotic gradients, the light scattering signal 

increased and could be fit in the form of a sum of two exponential functions. The fitting 

yielded two shrinkage rates characterized by two exponential constants and thus two 

permeability values: the larger value constant (k1) and the smaller value constant (k2). For 

HC4 and HC6, k1 was found to be independent of channel concentrations and k2 

increased when the channel to lipid ratio was increased (see Figure 64 a and b). This 

result indicated that the contribution to the overall liposome’s permeability by the channels 

assembled by HC4 and HC6 was less than lipid background. Thus the smaller 

exponential coefficient (k2) was used to calculate the channels’ permeabilities for HC4 

and HC6. This approach has also been suggested in a recent study with the low-water-

permeability Aquaporin, AQP0 [102]. For HC8 and its chiral isomers RHC8 and SHC8, 

there was a significant increase of the larger exponential coefficient (k1) after the addition 

of the channels into the liposomes. In this case the second exponential coefficient (k2) 

was almost null for liposomes with different channel ratios (see Figure 64 d, e and f). The 

permeabilities of these higher efficiency channels were thus calculated using k1. The net 

permeabilities of HC4 and HC6 channels at a lipid to channel weight ratio of 1 (LCR1) 

were 0.012±0.003 μm/s and 0.027±0.015 μm/s respectively. The water transport rates of 

the HC8 channels were found to be 1~2 orders of magnitude higher than those of HC4 

and HC6. The net permeability of the HC8 channels at LQR1 was 0.989±0.306 μm/s, 

while for its chiral isomers RHC8 and SHC8, the permeabilities were 2.771±0.738 μm/s 

and 4.120±0.152 μm/s respectively. 
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Figure 64: Stopped-flow data shown are single traces). (a-e) Stopped-flow traces from experiments 
on liposomes with different weight lipid to channel ratios (LCRs: 1, 10 and 10). All the liposomes 
were abruptly exposed to a hypertonic solution of 200 mM NaCl. (f) The net permeability of the 
channels assembled by different imidazole compounds at LCR of 1. Experiments done by Yuexiao 
Shen at PENN State University 

 

In conclusion, these experiments showed a significant increase in activity in 

relation with the increase of chain length and with the presence of the chiral center. For 

the shorter species, HC4 and HC6 the calculations are made using the second transport 

constant, k2, a mark of weak transporters (compared to the blank samples). HC8 and its 

isomers are calculated using the constant k1, since they present significant modifications 

in the first step of transport compared to the control experiments. The permeabilities 

obtained using both approaches are several fold larger in the case of HC8 and its isomers. 

This observation is particularly striking in the second protocol, where the channel forming 

compounds are added directly in the lipid mixture. On account of chirality, a difference 

can be observed between RHC8 and SHC8. While this difference is not as impressive as 

in the case of chain length variation, the S isomer does present a 25% better activity in 

terms of permeability to its counterpart. The possible reasons for this will be presented in 

chapter 2.3.4. 
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2.3.3.  Proton Transport Experiments  

 

The formation of water containing supramolecular structures provides a very 

promising start in applications as proton channels. The high degree of order exhibited by 

the channels due to the I4 quartet [22] influences directional transport in a very similar 

way to that of natural proton pumps. Having a pillar of water in the center of the 

transmembrane channel, provides an ideal mean of proton communication between the 

intravesicular environment and the external solution. Moreover, the pseudo-permanent 

dipole moment given by the chiral orientation of the water molecules, provides pathways 

that are less labile (less degrees of freedom), and thus faster for proton circulation.  

As in the case of water, in the case of proton transport, two complementary 

methods were employed, both relying on fluorescence as the principle of measuring the 

transport of protons across the lipid bilayer. 

The first method employed is the standard HTPS/Valinomicyn ratiometric 

fluorescence method [60], [103]–[105]. It was used to assess the proton conduction of 

each system, at equilibrium, over a long period of time (500 sec), and is characterized by 

N500, as described in the ion transport experiments. This systematic study over the entire 

library of compounds allowed for a better understanding of the influence of the structural 

motifs varied, namely chain length and absolute of the compounds. The fluorescence 

curves are presented in Figure 65 and Figure 66. 
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Figure 65: Ratiometric fluorescence transport curves of HC4 (up-right); HC6 (up-left); RHC6 (middle-
left); SHC6 (middle-right); racemic mixture of RHC6 and SHC6 (down). LUV suspension in PBS 
pH=6.4 (10mM), NaCl 100mM. N500 normalized transport over 500 seconds. Compound insertion at 
time=-100s, valinomycin (20µl, 1nM) injected at time=-50s, NaOH (25 µl, 0,5M) added at t=0. 
Fluorescent probe HPTS λ1ex=405nm, λ 2ex=460nm, λem=510nm. 
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Figure 66: Ratiometric fluorescence transport curves of RHC8 (up-right); SHC8 (up-left); HC8 (down-
left); racemic mixture of RHC6 and SHC6 (down-right). LUV suspension in PBS pH=6.4 (10mM), NaCl 
100mM. N500 normalized transport over 500 seconds. Compound insertion at time=-100s, 
valinomycin (20µl, 1nM) injected at time=-50s, NaOH (25 µl, 0,5M) added at t=0. Fluorescent probe 
HPTS λ1ex=405nm, λ 2ex=460nm, λem=510nm. 

 

The curves were interpreted accounting for total amplitude, comparison to the 

blank sample and shape of the curve. The structure-activity relation is positively 

influenced by the increase in chain length, varying from no activity for HC4, to weak 

activity for HC6 and good activity for HC8. Regarding the activity of enantiomers, the S 

and the R isomers might present different means of interacting with the LUVs, which, of 

course, affect their overall activity in the transports of protons. For the shorter C6 isomers, 
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the R doesn’t present any activity, while the S presents a strong activity. In the case of 

the longer C8 isomers, both configurations present good activity better than the linear 

structure. This implies that the effect of chain length is much more important than the 

effect of enantiomer. Tests over an equimolecular mixture of the isomers were also 

performed the results displaying a weak synergistic behavior in both cases. This finding 

is supported by the shape of the curves and by the EC50 values. 

A Hill type interpretation of the results was performed. The Hill numbers and the 

EC50 values were calculated by fitting the experimental results for each of the active 

compounds in a linear manner. The results are presented in Table 11 

Table 11: Hill numbers and EC50 values  

CODE HILL NUMBER EC50(µM) 

HC8 0,735 121,47 

RHC8 0,496 69,53 

SHC8 0,205 11,20 

RACHC8 0,424 28,20 

HC6 0.493 269.41 

RHC6 NA NA 

SHC6 0.347 85.01 

RACHC6 1.133 92.97 

HC4 NA NA 

 

As in the case of the of ion transport, the EC50 value represents the concentration 

at which, one given compound is able to perform half of its total transport potential, taking 

into account the compounds’ intrinsic transport capabilities. Thus, a general comparison 

is inapplicable (presented in Figure 67). However, the much lower values of the C8 

isomers point to the general conclusion of better activity. One other important observation 

is that the S isomer reaches this critical concentration sooner than its R counter 

counterpart. In spite of this, the overall transport is better for the R compound. The Hill 

numbers determine also the type of channel formed. All of the presented channels belong 

to the type II class, n<1, and their formation is exergonic (ΔG<0). Type two channels are 
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made up of a variable number of molecules, number which can’t be precisely determined. 

One possible exception is the racemic mixture of R&SHC6 which presents a Hill number 

of 1.13, thou the difference is not large enough to be conclusive. One possibility is that 

the two enantiomers form a self-standing finite structure that behaves as a unitary 

channel. 

 

Figure 67: Calculated EC50 values in µM for the library of compounds 

 

The Hill plots are presented in figure 68. They display a linear dependency log(Y) 

vs. log (Cm) as predicted. 
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Figure 68: Hill plot for species that display activity. (Left) Yellow – SHC6; Orange – HC6; Green – 
Racemic mixture of RHC6 and SHC6; (Right) Yellow – RHC8; Orange – HC8; Green – SHC8; Green 
– Racemic mixture of RHC8 and SHC8. Linear dependency displayed. 

 

As part of our ongoing collaboration with the group of Manish Kumar at Penn 

University, non-equilibrium (kinetic) measurements of proton transport were performed 

using stopped flow techniques. The compounds were assessed in different molar ratios 

related to the lipid substrate. The behavior of the system was determined with high 

resolutions over short time spans over some of the compounds of the library. The resulting 

curves are presented in Figure 69. 
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Figure 69: Kinetic proton transport curves. Fluorescently labeled dextran as the fluorescent probe 
λex=494 nm, λem=521nm. LUV suspension in 10 mM Hepes, 100 mM KCl,  pH=6.4. Transport starts 
by applying a pH shock with the same buffer, pH=8.4. Light blue – control; Red- compound/lipid 
molecular ratio 1/500; Gray- compound/lipid molecular ratio 1/100; Yellow- compound/lipid 
molecular ratio 1/50; Dark blue- compound/lipid molecular ratio 1/10. Experiments done by Yuexiao 
Shen at Penn State University. 
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This high resolution method allows the actual calculation of the number of protons 

that are transferred across the membrane in the unit of time. The results confirm the 

measurements made in equilibrium conditions: the lack of activity of HC4 and the positive 

influence of chain length over activity. For example HC8 transports 4.75 times more 

protons in unit of time and of surface than HC6. Truly remarkable results were obtained 

for the enantiomers RHC8 and SHC8 that exhibit 3 to 4 times more proton conduction 

than the linear isomer. The increased efficiency of the enantiomers versus the linear 

isomer could be attributed to the different packing of the crystal matrix in the case of these 

species. This observation corresponds to the initial presumption formulated on the crystal 

packing of the species, in which a tightly packed linear structure has more difficulty in 

inserting itself in the lipid bilayer.  

The proton flux (JH
+) is determined according to the following equations: 

 

Where dpH is the evolution of pH, dt is the evolution of time andβ is the buffer capacity: 

 

Where Kw is the water constant, [H+] is proton concentration, Ka is the acidity constant. 

Therefore the proton transport rate (#/s·μm2) can be calculated as . Where 

NA is the Avogadro’s number, V0 the initial volume and S the surface of the vesicle. The 

results are presented in Figure 70. 
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Figure 70: Proton flux through the lipid bilayer as calculated from the kinetic experiments performed 
at Penn University. up-right - HC4, up-left - HC6, middle - HC8, bottom left - RHC8, bottom right - 
SHC8 
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By plotting the values of the proton conduction vs. concentration, the tested 

systems can be better defined (see Figure 71). As such, the linear isomers, HC6 and HC8 

prove to present a capping effect, probably given by a partition function of affinity for the 

lipid bilayer. This restricts the efficiency of the system to a certain concentration over 

which, any increase does not further increase the conduction of the system. On the 

contrary, the RHC8 and SHC8 isomers have perfect linear profiles, implying that all 

increases in concentration will lead to an increase in activity. 

 

Figure 71: Types of mathematical dependencies of transport as a function to relative concentration 
vs. lipids amounts for HC6 (up-left) - capping effect, HC8 (up-right) – second degree dependency 
capping effect, RHC8 (left-low)- linear dependency, SHC8 (right-low) – linear dependency.  

 

In order to explain the different activity exhibited between the HC8 enantiomers, 

the initial slope of the transport curves can be compared. The linear increase domain of 
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the signal was isolated, immediately following the initial jump. This slope represents the 

difference in behavior between the two isomers. The S isomer presents the steeper slope, 

representing a better overall transporter after the initial moment. 

Our hypothesis is that the speed or degree of insertion in the lipid bilayer varies 

between the R and the S isomer. POPC (α-L-Phosphatidiylcholine) similarly to natural 

vesicles presents an absolute configuration and, as a consequence, a preference towards 

one of the isomers, in this case S. This could imply a much faster insertion of the species 

in the membrane as a possible explanation for the steeper slope of the proton transport 

curves (as visible from the stopped flow experiments). So, while the R formed structure 

inserts itself from the outer interface inwards, the S isomer inserts itself very quickly (and 

probably as a monomer) that self-assembles in a channel structure in the bilayer. For the 

S isomer this promotes a very quick initial transport followed by a slow decrease (see 

fluorescence curves, in Figure 66). Therefore, the transport mechanism is quite different 

between the two isomers. This presumption is also supported by the fact that in the case 

of the HC6 isomers, the R does not present any activity while the S is a better transporter 

than the linear isomer of same length, HC6. 

 

2.3.4.  Effect of Chirality on Transport 

 

This difference in behavior between enantiomeric species  is very present in real 

biological systems, for example in the preference for the L isomer when it comes to amino 

acids and the D when it comes to sugars [106]–[108]. Recently this property was also 

proven for artificial systems such as vesicles[109], [110]. In these cases the different rate 

of penetration across a lipid bilayer for pairs of enantiomers is harnessed as a method of 

purification and separation. We made an attempt to prove the different type of interaction 

between RCH8 and SCH8 using circular dichroism (CD) techniques. The experiments 

were made in conditions similar to those of the fluorescence transport condition, in a PBS 

buffer containing 100mM NaCl. The CD spectrum of a suspension of vesicles was first 
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registered, followed by the addition of the species RHC8 and SHC8 as well as an 

equimolecular mixture of the two. The spectra of the two compounds by themselves, 

could only be obtained in a simple dilution in pure methanol, and not in the buffer system. 

This was caused by weak optical activity and solubility issues. The results are presented 

in Figure 72 and Figure 73. 

 

Figure 72: CD spectra of vesicle systems made in PBS buffer (10mM, pH=6.4) NaCl 100mM. Light 
blue - LUVs solution, Red - LUVs solution with RHC8; Gray - LUVs solution with SHC8; Orange - 
LUVs solution with a racemic mixture of RHC8 and SHC8. Compound concentration 600µM. Step 

size 0.5nm. 

 

Figure 73: CD spectra of RHC8 and SHC8 in pure methanol (high concentration, 50mM). Step size 
0.5nm. 
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The CD spectra of the vesicles show a strong signal between 210 and 220 nm. By 

adding the active compounds some differences in interaction become visible. In the case 

of the S isomer, the signal disappears entirely, probably signifying a strong rearrangement 

of the membrane due to the quick insertion of the compound. In the case of R, the signal 

is amplified and broadened over a large interval 210-250 nm. This could mean that the R 

isomer is interacting with the membrane from the exterior medium, possibly creating 

multiple structures that modify the intrinsic signal of the vesicles through binding. By 

adding the racemic mixture, we see an intermediate result that accounts for the decrease 

in the 210 peak of the vesicles, but also for the broadening of the signal generated by the 

R isomer. By comparing these results with the CD spectra of the two isomers in solution, 

we can observe a large increase in signal (from millidegrees to tens of millidegrees), as 

a consequence of the interaction with the lipid substrate. 

Although this experiment does not completely elucidate the difference in activity 

between the enantiomer pairs, it is a starting point for a better understanding of their 

interaction differences. Although the entire mechanism is not completely elucidated, our 

hypothesis is that the R isomer probably forms channels in the external solution, 

structures that then insert themselves in the bilayer, while the S isomer penetrates the 

membrane and forms channels in that exact spot, leading to a  modification the self-

assembly of the lipid bilayer. The activity of the enantiomers, in all cases, is better than 

that of the linear isomer, suggesting a conformational preference of the liposomes 

towards the types of structures formed by these optically active compounds. 
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2.3.5.  Cation Transport  

 

 

Figure 74: Sodium transport curves for HC8 (Orange), RHC8 (Yellow), SHC8 (Gray), Compound 8 
Chapter I (Dark blue), DMSO (Light blue). LUV suspension in PBS pH=6.4 (10mM), NaCl 100mM. 
N500 normalized transport over 500 seconds. Compound insertion at time=-50s, NaOH (25 µl, 0,5M) 
added at t=0. Fluorescent probe HPTS λ1ex=405nm, λ 2ex=460nm, λem=510nm. 

 

The selectivity of the compounds was tested using fluorescence methods. An active 

compound was chosen as comparison (compound 8 from chapter 1). The ion picked for 

this experiment was sodium, for its very general and common behavior. The 

concentrations chosen were moderate (200µM), in order to obtain data without any trace 

of interference from extreme concentrations. The fluorescence curves are presented in 

Figure 74. The curves were interpreted on the same principles applied for ion transport 

curves. The conclusion is that the compounds are not active towards the transport of 

sodium, based on the following criteria: small response versus the blank and versus the 

witness and the lack of variation of activity with concentration (data not presented here). 

The selectivity of the channels is manifested by their ability to discriminate between 

protons and sodium. Opposed to the compounds presented in chapter one, which do 

display some similarities to this library (small molecules, same heterocycle unit), these 

compounds do not perform ionic transport.  This could be a very useful feature in 
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applications such as water purification, where the presence of protons, contrary to ions, 

does not have bad implications. 

 

2.4. Conclusions and Perspectives 

 

A library of compounds was assessed as self-assembled supramolecular 

transporters, based around the concept of the I4 quartet. The direct link between structure 

and activity was evaluated through modifications of both chain length and chirality of the 

species. The larger members of the series presented water transport and proved to be 

very efficient proton transporting units, while displaying a good selectivity towards 

monovalent ions. 

The water transport capabilities of the tested systems were assessed through 

multiple methods: computational chemistry, dynamic light scattering and stopped flow 

light scattering measurements. For the latter two different approaches were used, with 

the characterization of the systems, either introduced on the exterior of the LUVs, either 

through direct incorporation in the bilayer. This very thorough set of experiments 

constitutes a very accurate description of the synthetic water channels tested. 

A positive influence on activity was found to be the enlargement of the chain length. 

This is probably due to a better affinity to the lipid bilayer but also, as the crystal structure 

packing revealed, the way in which the species self-assemble. Starting from HC4 (the 

shortest member), through HC8 (the longest member), derivatives the structures become 

less crowded and the linked structure effect is lessened, going from a continuous 

structure for HC4 and the two HC5 isomers towards the water channels exhibited by the 

HC8 isomers. 

The influence of the enantiomeric effect was also addressed. For the long RHC8 

and SHC8, in all accounts, the activity presented was higher than for their linear 

counterpart, HC8. Here, a discussion is needed to optimize the water channels. Given 
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the fact the lipids are optically active, one new strategy could be, the modification of 

molecules by adding favorable optical centers which, that would affect the speed of 

insertion through the bilayer. This may be an alternative to other structural modifications 

in order to increase the activity of a given species. One other observation is that in the 

case of the enantiomers, R and S, the activity vs. concentration dependency is linear, 

which makes solubility is the limiting factor, as opposed to intrinsic affinity. This also 

implies that, on a reasonable domain of concentration, there is not capping effect which 

would affect total efficiency of the system. 

Structurally speaking, the chiral water molecules that present a pseudo-permanent 

dipole, should be further investigated. The passage of species, cations, protons and 

anions, is strongly affected by the number and exact positioning of the water molecules 

in a supramolecular structure, and, as such, these effects over the speed of transfer 

should be assessed. 

The field of artificial water channels is still underdeveloped and thus many 

contributions are still needed. The goals of obtaining the efficiency and selectivity of 

proteins is far from being reached. However, advances in regards to self-assembled 

structures able to perform water transport, while also manifesting certain types of 

selectivity are being made. 
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Chapter 3: Molecular Electrodes Systems 

 

3.1. Introduction  

 

Silica is a very well-known and characterized “wonder” material. The multiple and 

various applications of mesoporous silica stretch from separation and catalysis to 

biosensors, bioimaging, drug delivery and enzyme immobilization. This is due to the very 

well controlled, narrow distribution, size of pores it creates[111]–[119]. The issue to 

overcome in the creation electroactive devices is the isolating nature of the silica. 

Walcarius et al.[120] proposed methods based on electrochemically deposited thin 

silica films on the surfaces of conducting surfaces. The resulting structures are controlled 

by using a surfactant template, which generates well-ordered pores on conductive surface 

supports. Hexagonal in shape, these pores connect the conducting under layer of the 

support to the external medium. Conductive assemblies can be inserted in the resulting 

perpendicular pores. Towards this target the silica must be modified in changing its 

hydrophilic nature. This type of system has been previously designed, in which 

supramolecular structures of interest have been introduced in confined space 

systems.[23], [24], [121]–[124]. By combining these concepts, nanoscale electrode 

systems could be designed, under the condition of finding suitable conductive species. 

In order to obtain metal-like conduction using organic species there are a few 

known candidates. One of these is the “metallic” carbon nanotubes, which are allotropes 

of carbon presenting a cylindrical nanostructure with a very small diameter (1-3 nm) and 

very well defined structure as a crystal lattice. Because of these very strict requirements 

they are very difficult to use [125]–[127]. One other better known solution is that of 

conjugated polymers which can then be doped (polyaniline for example)[128]. These 
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ones have been known for some time. Multiple methods of production are employed with 

an adequate control over the resulting material. 

A newer approach is that of supramolecular self-assembled structures. The most 

promising of these are the π-conjugated systems[129]–[136]. One such system is that of 

triaryl amines (TAAs). Although TAAs are not conductive on their own, some species of 

the family of compounds display the property of generating a cation radical on the nitrogen 

atom. This promotes a non-covalent polymerization, in which the charged molecule self-

assembles with its neutral counter parts, generating a structure with a delocalized charge 

[137] (Figure 75) 

 

 

Figure 75: Neutral and charged TAA. Y1, Y2, Y3 generic substituents 

 

Combining these concepts opens the possibility to design and obtain an electrically 

active device. This device would present molecular self-assemblies in a mesoporous 

silica matrix. Because of the very good electrical properties of TAAs the devices would 

act as an array of nanoscale electrical contacts, which would perform electron 

translocation. 
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3.1.1. Electrodeposited Templated Mesoporous  Silica and Functionalized 

Silica 

 

Silica is a universally used material because of its properties. Just to mention some 

of the most important ones [23], [24], [111]–[124], [132]: 

· Relatively cheap to produce. Silica is synthetized from industrially made 

precursors, making the cost of the material low. 

· Almost chemically inert and good mechanical properties. The Si-O-Si bond is 

unbreakable by aggressive media such as acids, bases or organic compounds. It 

is dissolved by hydrofluoric acid and sodium hydroxide, but aside from that, it is 

not reactive towards species in general. Silica’s density can be adjusted in the 

fabrication process and thus its mechanical properties can be adapted.  

· Easily modifiable. Since silica is made out of precursors, by changing the 

precursor, functionalized silica can be obtained. The most interesting aspect of this 

is the possibility of obtaining so called hybrid materials, made of silica that have 

organic chains with functions such as, alcohols, amines, thiols, double bonds, long 

alkyl chains etc. This opens the possibility of producing materials which are tuned 

for specific purposes. While retaining the robustness of the silica matrix, a 

hydrophobic material can be obtained by attaching a long alkyl chain. Other 

possibilities include dynamic systems that could be manufactured using a 

reversible bond such as an iminic bond, by inserting amines in the matrix. 

· Many synthetic procedures. Silica can be obtained through numerous methods: 

sol-gel protocols, CVD (chemical vapor depositions), or electro-assisted 

depositions just to name the most common. All the methods can be used by 

themselves or as a combination.  

Alain Walcarius has pioneered the field of mesoporous silica films in 

electrochemical applications[120], [138]–[140]. The generation of the film can be done by 

spin coating, dip coating of by electro-generation. This approach is based on the 

surfactant-assisted hydrolysis/condensation of precursors, which is a sol-gel procedure. 
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From a chemical point of view, silica is made by using as precursors the alkoxy 

silanes (Figure 76). These species present hydrolysable alkane-oxygen bonds, which free 

up derivatives of the silicic acid, which can then condense, in order to obtain the 

polymerized silica network. Besides the typical tetra alkoxy silanes, like tetraethoxy silane 

(TEOS) and tetramethoxy silane (TMOS) that present four hydrolysable bonds, 

derivatives containing functional groups (on non-hydrolysable hydrocarbon chains linked 

to the silicon atom), can be added to the sol-gel in order to alter its properties. In this work, 

(3-Mercaptopropyl)trimethoxysilane (MPTMS) was used for this purpose.  

 

 
 

 

TMOS TEOS MPTMS 

 

Figure 76: Silica precursors 

 

 In turn, the resulting films must be templated by employing a surfactant. For this 

purpose either CTAB (cetyltrimethylammonium bromide), a cationic surfactant, or, the 

neutral pluronic triblock copolymer can be used. The resulting mesoporous silica has well 

defined pores with constant diameters. For this project CTAB was chosen because of its 

compatibility with the electrodeposition technique. CTAB self-assembles in column like 

structures, with a diameter of 4-5 nm, when inserted in the silica sol-gel. When the 

surfactant is removed, pores of the mentioned diameter are generated.  A schematic of 

the CTAB self-assembly is presented lower in Figure 77. 
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Figure 77: CTAB self-assembly 

The templated mesoporous silica obtained by this method can serve as a host for 

various species. A previous project developed at IEM has used similar concepts[124]. In 

that project, a mesoporous layer of silica was electrodeposited on ITO electrodes. These 

electrodes were then modified with the assistance of chlorosilanes in order to entrap C60 

fullerenes in the modified pores. The schematic of the process is presented in Figure 78. 

 

Figure 78: Schematic representation of the synthetic route to obtain thin-layer mesoporous silica 
ITO electrodes: (a) electrochemical deposition of mesostructured silica–CTAB and then washing 
with HCl to generate E, (b) reaction with Me2SiCl2 to generate hydrophobic EMe and (c) physical 
filling with the fullerene, resulting in the formation of an EMeC60 system [124] 
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 The key aspect of the project was the physical entrapment of the fullerenes in the 

pores, which relies only on the hydrophobic interactions and affinity for the medium in 

order to generate the confined space system. 

The system was characterized by all appropriate methods, scanning electron 

microscopy and transmission electron microscopy to describe the silica morphology while 

X-ray diffraction and electrochemical methods were used to evidence the presence of the 

fullerenes in the mesoporous system. The porous electrode (E), the modified electrode 

(EMe) and the fullerene doped electrode (EMeC60) were investigated via cyclic 

voltammetry. These results are presented in Figure 79. In the case of EMeC60 two 

reduction peaks are observed, corresponding to two successive steps of the fullerenes’ 

reduction, C60/C60- and C60-/C602-. These signals were not observed for the other the 

two types of electrodes, thus confirming the presence of the fullerenes in the confined 

system. 

 

Figure 79: Cyclic voltammograms (CV) in 0.1 MTBAPF6 acetonitrile–toluene (1/1) of: (a) E and EMe 
after immersion in a 0.5 mM fullerene solution for 1 h. The light grey curve features a bare ITO 
electrode immersed in 0.5 mM fullerene solution; (b) continuous scanning procedure of a EMeC60 
electrode at different intervals of time; (c) comparison of the first scanning CV and the CV of an 
EMeC60 electrode kept in air for one day at ν = 100 mV s-1 [124] 

 

The reduction of the fullerenes in the pores is a slow kinetic process, so the lifespan 

of the modified electrode is short. However this system may work as an excellent 

capacitor, while the system also tends to re-oxidize in contact with the atmospheric 

oxygen. These properties shed light on the possibilities to use it as a long time electron 

donor system for biological applications. Still, this result leaves room for improvement in 

the sense of stability and repeated use. 
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3.1.2. Triaryl Amines and Their Properties 

The use of triaryl amines as conductive nanofibrils was recently discovered in 2010 

[141]. By irradiating a TAA solution in a chlorinated solvent with white light, the aspect of 

the solution changed, because of the formation of supramolecular assemblies[137], 

[141]–[145]. These findings were confirmed by means of proton NMR and a study was 

conducted order to describe the structure modifications of the TAA. The self-assembly 

proprieties were found to be in correlation with the substituents on the phenyl rings of the 

TAAs. It was shown that the modifications in the NMR spectrum were generated by the 

presence of the radical-cation (Figure 80). By means or electron paramagnetic resonance 

(EPR) the amounts of TAA radicals generated could be measured (Figure 81). By 

irradiation for an hour with 20W of power the maximum number of radicals was achieved 

and measured at about 11%. Further the generated structures were described by DLS 

and AFM techniques. It was concluded that the radical species pull together the neutral 

TAA species resulting in nanoscale fibers (10-50 nm in width and 50-1000 nm in length).  
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Figure 80: a) Structures and key synthetic step to access triarylamine derivatives 1–8. b) Typical 1H 
NMR spectra (CDCl3) of 1 obtained immediately after purification (A); after 10 min exposure to 
visible light, (B); and after subsequent heating overnight at 60°C (C); [1]=10 mM [141] 

 

Figure 81: Quantitative EPR data as a function of time, showing the evolution of the ratio of the 
triarylammonium radical 1.+ over neutral 1: without visible light excitation at RT (point A); upon 
visible light excitation (A–B); in the absence of light at RT (B–C); and after subsequent heating 
(60°C) in the dark (from C; [1init.]=10 mM). Dotted line: y-axis value of 6x10-3. b) Time autocorrelation 
function of the scattered electric field vector for an irradiated solution of 1 ([1init.]=7.5 mM in 
chloroform at T=20°C) and for a scattering angle q=90°. Solid line: exponential fit. [141] 
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 The property of having very well defined charged organic assemblies mandated 

another experiment to be conducted. A groove of about 80 nm was made between two 

metals, gold and nickel, to avoid the contact between the two metallic surfaces not being 

in contact. In the trench, a TAA solution was drop casted and was irradiated in order to 

produce assemblies, Supramolecular Triaryl Amine Nanowires (STANWs). The current 

had increased six orders of magnitude compared to the blank experiments of the circuit 

immersed in a solution of not irradiated TAAs. The conclusion was that the nanofibrils 

have very good electrical properties, comparable to those of metals. In the STANWs the 

charge is probably dislocated throughout the whole “roll of coins” but unidirectional 

through the middle. The experiment also showed that the resulting structures adapt 

themselves to a finite space (the trench in the case). The very good electrical properties 

recommend the TAAs as organic components in electrical devices (Figure 82). 

Besides, due to their unique self-assembly process that can be achieve in situ, 

these molecules are promising for implementing numerous devices in which conducting 

nanochannels are needed. 
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Figure 82: Triggered self-construction process for STANWs in a nanotrench geometry together with 
corresponding AFM imaging. a,b A solution of triarylamine 1 (a, 1 mg ml-1 in C2H2Cl4) is drop-cast, 
in the dark, on nanopatterned gold/nickel electrodes (b: trench width, 100µm; length, 0.08 µm; 
ΔV=0.3–0.8 V). The device is then submitted to white light irradiation (power density, 10Wcm-2 for 
10 s), which enables the production of a catalytic quantity of radicals 1.+. The triarylammonium 1.+ 
induces a supramolecular polymerization with neutral 1 that results in the self-assembly of STANWs 
aligned in the direction of the electric field and strongly connecting the two electrodes. c, Left: 
topography of the opened gap seen by AFM before light irradiation. Right: topography of the closed 
gap filled with STANWs after light irradiation. d, Left: AFM phase image of a fibre-free gap (surface 
scale,1,500 x 1,500 nm2) before light irradiation. Middle: AFM phase image of a gap filled with 
STANWs (surface scale, 1,500× 1,500 nm2) after light irradiation. Right: AFM zoom into the gap, 
which is filled with STANWs after light irradiation (surface scale, 250× 250 nm2).[137] 
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The process of generating supramolecular STANWs by employment of radical 

TAA species was further investigated [146]. The radicals can be generated by three 

methods, namely irradiation with visible light, by employment of a chemical oxidant 

2,3,5,6-tetrabromobenzoquinone (TBQ), or by seeding the solution of TAAs with fibril 

fragments. All these methods of promoting self-assembly have be characterized and 

studied in detail by multiple, adequate techniques (NMR, UV spectroscopy, EPR, X-Ray 

diffraction, AFM etc). In the case of the irradiation triggered assembly, a very prerequisite 

of the self-assembly is constituted by a solvent able to generate a negative charged 

counter ion. In this case chloroform was used, and the counter ion generated was Cl-. 

The growth and morphology of the TAA systems were measured and the processed 

results are presented in Figure 83, together with proposed mechanisms. 
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Figure 83: TAA fibrils in chloroform after 1 h exposition to white light. (I) (a,b) AFM height image (dry phase) of 
maize-like structures formed in 1 mM solution of TAA1 in chloroform. (c) The original XRD pattern from 10 mM 
TAA1 sample (bottom, black) accompanied by its magnification in the WAXS range (top, black) and in the SAXS 
range (top, blue) registered on the high-flux line. (d) The proposed internal molecular organization of TAA1 
fibrils (in the plane normal to the c-axis) based on the XRD: the lattice cells are shown by rectangles; each 
crystalline cell consists of 8 molecules and includes two layers (TAA molecules belonging to different layers 
are shown with green and blue colors, respectively). Amide bonds are shown with red segments, and alkyl 
side chains with brown curly lines. (e) The simulated all-atomic structure of snowflake double column: the 
conducting pathways formed between nearest-neighboring carbons (marked with violet color) of adjacent TAA 
molecules (RCC = 0.36-0.37 nm) are marked with violet arrows (hydrogens are not shown). (II) Light-induced 
aggregation kinetics in TAA solutions. (a) Highly improbable spontaneous flattening of isolated neutral TAA 
molecule (transition TAA -> TAA’ ). (b) Light induces oxidation of a neutral TAA molecule producing TAA.+ 
radical and Cl- anion. (c,d) Two free radicals TAA.+ complexed with the Cl- counter ions attract each other head-
to-tail. (e,f) A growing stack of radical dipoles. (f,g,h) Tightening of the stack: chloride ions move sideways (g); 
aromatic rings of TAA molecules benefit from closer contacts, while chloride anions are finally accommodated 
in the gaps between ether tails of TAA molecules (h). (i) Formation of double-columnar nuclei stabilized by H-
bonds between the columns. (j) Growth of the structure by attachment of neutral TAA molecules. (III) Molecular 
arrangements in bicolumnar “snowflake” stacks of neutral TAA3: (a) A cartoon showing alternating molecular 
orientation in the columns. (b) The top view (along the main axis), and (c) the side view of the structure. (d) A 
cartoon with zigzag chain of H-bonds connecting the columns. [146] 

 

 From these findings, one is of particular importance for this project, the “snowflake” 

pattern of the STANWs. The fibrils present a double columnar assembly, based on dipole-
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dipole interactions and π-π stacking, while the side chains generate van der Waals 

interactions also required for this type of self-assembly. 

A novel application could be the insertion of these supramolecular assemblies in 

a confined medium. Mesoporous silica is such a medium, in which this application could 

be developed. It would take advantage of the good electrical contacts the TAA self-

assemblies provide. In order to demonstrate the functioning of such device, bioelectrodes 

can be designed starting from the mesoporous electrodes. 

 

3.1.3. Laccase Biocathodes 

 

Biocathodes are electrodes modified with a biological component, an enzyme or a 

yeast typically, that is able to perform the role of a cathode in an electrochemical cell. A 

lot of research has been put in this application, since by adapting an enzyme to a support, 

an eco-friendly bioinspired fuel-cell could be obtained. Although this field is quite new 

there are several comprehensive publications on this subject [147]–[149]. 

On the account of oxygen reducing enzymatic cathodes, there are two main 

enzymes used, namely Bilirubin oxidase and Laccase, the differences between the two 

being a higher current output of Laccase, versus a better overall stability of Bilirubin 

oxidase. N. Mano [150] had a major contribution on the subject of Bilirubin oxidases, but 

also on Laccase biocathodes [151]. He proposed a very interesting redox hydrogel as a 

compliment to the enzyme. The use of an osmium pyridine complex as a doping on a 

poly(benzimidazobenzophenanthroline) derivative polymer, allowed the gain of a 2+/3+ 

redox charge in the mentioned polymer. The redox doped polymer as well as an undoped 

one were mixed with Laccase and applied to carbon nanofibers as a support. The 

resulting biocathodes were then compared to a platinum wire, which served as a model 

electrode. The doped electrode outperformed the undoped one and provided the 

reduction of oxygen at lower potentials vs. the platinum wire. It was concluded that the 

redox complex provided the much needed electrons for the laccase active centers, thus 
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influencing the potential where the oxygen was reduced and bringing it to as low as 0.07 

V. 

The access of electrons to the Laccase enzyme is quite slow and all applications 

based on this enzyme have to overcome this short coming. One simple solution is the 

adding of a chemical mediator, that transfers the electrons from the electroactive surface 

of the electrode to the enzyme. One such mediator is 2,2'-azino-bis(3-

ethylbenzthiazoline-6-sulphonic acid) (ABTS) [152], [153] (Figure 84). 

 

Figure 84: Electron transfer processes at the biocathode. [153] 

 

Another important aspect, in preparing biocathodes, is the available surface. One 

solution comes in the form of electrospun PAN fibers (polyacrylonitrile). These form a 3D 

structure, while their parameters (thickness and surface area) can be closely controlled. 

Since they don’t present conductivity, they must be modified accordingly.  

The first approach could be the thermal treatment of such material until the material 

becomes carbonized and conductive[153]. The advantage of this approach is that the 

resulting electrode are self-standing, not requiring a support. The resulting material had 

a surface are of 11.8 m2/g and a conductivity of between 26-70 S/cm2. The enzyme was 
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then incorporated in the fibrous mass. A film of pyrrole was electropolymerized over the 

electrode. 

The resulting cathodes through this method displayed high efficiency in terms of 

current output of 950µA/cm2. This is attributed to the direct interlocking of the enzyme in 

the electrode. Compared to the values reported in literature for laccase with ABTS as 

mediator on various supports the system is several times more performant, as seen in 

Table 12. 

Table 12: Current densities of various cathodes prepared with the Laccase/ABTS couple 

Electrode type Current density 

(µA/cm2) 

pH 

value 

Silica on porous carbon paper 450[154] 5 

Carbon ceramic electrodes 150[155] 4.8 

Modified carbon nanotubes with Nafion/glassy 

carbon 

120[156] 5.2 

Polypyrrole on porous carbon tubes 300[157] 4.8 

Carbonized PAN fibers covered in polypyrrole 950 3 

 

A second approach is the sputtering of gold on the spun fibers[152]. This 

modification makes the electro spun fibers conductive while keeping their macroporous 

structure. A support of silica wafer was used in order to perform the gold sputtering. The 

thickness of the gold layer was controlled during the deposition procedure. 

The electrodes designed in this procedure had the enzyme immobilized on their 

surface and protected by a layer of Nafion. The output of the electrodes was very high, of 

3 mA/cm2. Due to the leaching of the ABTS, as well as the natural inactivation of the 

enzyme, this current density decreased to half of its initial value over the course of 6 days 

(Figure 85). 



134 
 

 

Figure 85: a) Schematic pathway for electron transfer between the PAN/ Au NFs and O2. (b) 
Polarization curves of a biocathode with and without PAN NFs in O2-saturated phosphate solution 
(pH 5, 0.1 M). Scan rate 3.3 mV s-1. (c) Stability of the PAN/Au NFs bioelectrode evaluated from 
polarization curves plotted the 1st day after repeated scans, after 3 h, and the 3rd and 6th days [152] 

In conclusion, there are a few key aspects to keep in mind concerning the 

improvement of the performances of Laccase biocathodes. Firstly, a large surface area, 

which increases significantly the performance of the cathode. Supports that present large 

specific areas, like fibers, carbon nanotubes or carbon powder, have a positive effect on 

the efficiency of the electrode. Secondly, the used chemical mediator, ABTS, has a 

tendency to diffuse in the solution. This can be partially circumvented by coating the 

surface with a fluorinated ion-exchange polymer, Nafion, which slows down this leakage 

of mediator. However, this can’t be mitigated totally. Lastly, when considering 

bioelectrodes, one must take into account the natural inactivation of the enzyme, meaning 

a limited life span for the resulting electrodes. 
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3.1.4. Project Objectives 

 

The objective of this chapter is the design and application of a system composed 

from the self-assemblies of conducting species, inserted in an oriented mesoporous 

matrix.  

The concept is to go from the angstrom size of a molecule, to the nanoscale size 

of the supramolecular structure of the molecule. Then, to integrate these structures with 

conductive properties in a macroscale device, resulting in an array of nanocontacts 

(Figure 86). These will be able to perform electron translocation and will be suitable for 

applications such as biocathodes. This project is a collaboration with the SAMS team from 

Institut Charles Sadron, Strasbourg, as part of the DYNANO Marie Curie ITN. 

 

Figure 86: Concept of the device. Individual nanoscale contacts are spread and distributed in the 
silica matrix 

 

Oriented mesoporous silica was chosen as the matrix which holds the TAA 

nanostructures for several reasons. The confined medium is needed in order to keep the 

nanofibrils in place. Moreover, silica is isolating, offering the perfect support in which the 

individual structures constitute the only means of electron transport between the gold 
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surface and the external solution, ensuring the criteria of generating nanoscale contacts. 

Another reason is the easiness of modification presented by silica, in order to be able to 

accommodate the TAAs in the mesoporous structure through hydrophobic interactions. 

The silica was generated through a process of templated electrodeposition. This 

method allows a very good control over the type of silica created, while the surfactant 

template generates well defined and relatively uniform pores. The deposition was done 

on gold electrodes (glass plated with a layer of deposited gold). 

The successive modifications of the generated device were followed by means of 

electrochemical measurements, cyclic voltammetry and impedance spectroscopy. These 

techniques are very accurate, present very good sensitivity and have high reproducibility. 

The surfaces of the electrodes were characterized both morphologically through 

electronic microscopy (Scanning Electron Microscopy (SEM) and Atomic Force 

Microscopy (AFM)) and composition wise through X-ray photoelectron spectroscopy 

(XPS). 

The compounds used were two triaryl amine derivatives (TAA1 and TAA2) kindly 

provided by our collaborators at ICS Strasbourg (Figure 87). 

 

Figure 87: Structures of TAA1 and TAA2  
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3.2. Experimental Results 

 

3.2.1. Electrode Manufacturing 

 

The electrodes were made via a 5 step procedure presented in the scheme (Figure 

88). The first step is the templated condensation of silica on the gold plate using an 

applied negative potential. The surfactant is then removed in step 2 in order to obtain the 

mesoporous thin layer; with the pores perpendicularly oriented to the surface. In step 3 

the pores are modified to be more hydrophobic and suitable for step 4 the doping of the 

electrode with the active agent, the triaryl amines (TAA). In order to obtain the functioning 

biocathodes another step is required, the enzyme immobilization on the electrode 

surface. All these steps will be presented in detail in the following sections. 

 

Figure 88: Electrode manufacturing process 

 

 The gold electrodes used are glass plates, with a layer of 60 nm of chromium over 

which a 300-400 nm layer of gold is deposited. The electrodes are cleaned, both 

chemically and electrochemically (Annexes), prior to the electrodeposition of the silica 

layer. 
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 The mesoporous layer of silica is made of a sol-gel mixture containing the 

surfactant, which acts a templating agent. The sol-gel is a mixture of two solutions, one 

of which is alcoholic and one that is aqueous. The aqueous one contains NaNO3 (0.1M) 

in which CTAB (cetyl trimethylammonium bromide) is dissolved. CTAB is commonly used 

in silica synthesis to generate controlled pore sizes of 40-50 Å. The NaNO3 serves both 

as electrolyte but also is required in the condensation of the silica. The alcoholic phase 

contains TEOS (tetraethoxy orthosilicate), MPMTS (3-thiopropyl trimethoxy silane), both 

dissolved in absolute ethanol, the two components being in a molar ratio of 4:1. The TEOS 

is the main precursor for silica, while the MPMTS is necessary in order to make the silica 

adhere to gold, via a thiol bond. When the two solutions are homogenous, they are mixed 

together and HCl (0,1M) is added to obtain a final pH of 3. The sol-gel is left to hydrolyze 

for 2.5 hours. 

 The pH is important since the condensation of silica from siloxanes is a two-step 

process. The first step is the hydrolysis of the precursor and takes place in an acidic pH 

(ideally pH=3), while the second in a basic medium (pH=8) (Figure 89).Since the 

polymerization of the silica must be controlled and done electrochemically, the pH must 

remain acidic until a negative potential is applied to the gold electrode. 

 

Figure 89: Silica polymerization from precursors 
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The electro-deposition is made in a standard 3-electrode system electrochemical 

cell. The reference is an Ag/AgCl standard electrode, the counter electrode is a steel plate 

electrode and the working electrode, on which the silica will be deposed, is the gold on 

glass plate. 

 To obtain the silica film on the gold surface, a negative potential is applied on the 

working electrode that induces the production of hydroxide ions, according to the reaction 

(1): 

 

This results in a locally increased pH at the interface, to a value which promotes 

the polymerization of the silica. It also makes the cationic surfactant to stick electrically to 

the gold surface, which, in turn, forces the silica to condense around it. Through this 

process the templated mesoporous structure is obtained.  

 The potentials tested were: -1.2V, -1,4V and -1.6V vs. the reference electrode. The 

deposition time was also varied, between 5 and 30 seconds, in concordance to previous 

work[124]. The optimal conditions were found to be a potential of -1.4V and a time of 10 

seconds, in regards to the limitations, a uniform and homogenous deposition with a 

defined layer thickness. A layer too thick would not generate straight, perpendicular 

pores, while this method in not suited to produce layers that are extremely thin.  The 

variation of these parameters resulted in a compact porous layer of an average thickness 

of about 100 nm. 

Scanning Electron Microscopy (SEM) was employed in order to describe the 

surface of the electrodeposited layer and its thickness (Figure 90). As mentioned 

previously, several parameters were varied, namely the deposition time and the applied 

potential during the deposition. The micrographs presented here correspond to an 

electrode manufactured using the following conditions, an applied potential of -1.4V and 

a deposition time of 10 seconds.  From the surface micrographs the standard pattern of 

the electrodeposited, amorphous silica can be distinguished. The layer fully covers the 
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gold surface, without defects to the structure. The section micrograph reveals the 

thickness of the layer of approx. 100 nm. This thickness is considered ideal for 

applications, as earlier stated. 

 

 

Figure 90: SEM micrographs of the surface (left) and section (right) of an electrodeposited silica 
electrode. Scales: (left) - 2µm, (right) – 0.6µm. In section the thickness of the silica layer is seen 91.3 
nm and of the gold layer 400 nm 

 

 After the deposition the electrodes are cured overnight at 60°C to stabilize the 

polymeric silica network. The surfactant templating agent was then removed by washing 

the electrodes several times with distilled water and ethanol. The resulting porous 

surfaces are tested by electrochemical methods. 

In order to create a suitable confined medium for the triaryl amines, the 

hydrophobicity of the silica must be modified. Silica is generally hydrophilic, while the 

TAAs are hydrophobic.  This is achieved by treating the electrodes with a solution of 

chlorosilanes of different chain lengths (1 carbon atom, 6 carbon atoms and 18 carbon 

atoms) in toluene. Thus grafting on the inside of the pores hydrophobic alkyl chains that 

would act as anchors for the TAAs. Chlorosilanes are highly reactive species which can 

bind to the free hydroxyl groups of silica. This reaction is presented in Figure 91.  
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Figure 91: Modification of silica with chlorosilanes 

 

 The porous electrodes were immersed in a toluene solution of the respective 

chlorosilane (concentration of 50 mM) for 6 hours at a temperature of 60°C. After this time 

the hydrophilicity of the electrodes was drastically changed, as can be seen from the 

contact angle measurements (Figure 92).  

 

Figure 92: Contact angle measurements. Left: silica electrode, complete dispersion, angle =0°, 
middle C6 modified electrode, hydrophobic surface, angle=145.5°, right doped electrode, 
hydrophobic surface angle=149.3°. 

 

The hydrophilicity of unmodified silica causes the complete absorption of the water 

drop on the surface of the porous electrode. For the modified electrode an angle of 145.5° 

is obtained, confirming the change in surface properties. The hydrophobic interactions 

that would hold the TAAs in the pores are thus present.  
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The last step of the process is the doping using TAAs. As presented before, the 

modified TAAs have the unique property of generating a cationic radicals by irradiation, 

which then promote self-assembly, generating supramolecular structures. Their 

unidirectional conductive properties along the formed “fibril” have the purpose of 

connecting the gold from the bottoms of the pores to the electrolyte solution. The confined 

medium of the mesoporous silica will keep the fibrils intact. The doping procedure is 

performed by irradiating, with white light (approx. 1W/cm2), a glass vial that contains the 

modified electrode, immersed in a chloroform solution of TAAs (1mg/ml). After an hour 

the self-association of the molecules is complete and it is considered that they have filled 

the pores. The resulting systems present very good stability, and are perfect working 

condition for at least a month in the presence of atmospheric oxygen. The protocol is 

described in the annexes.  

 

3.2.2.  Characterization of the Electrode Manufacturing Process by Cyclic 

Voltammetry 

 

Each step of the process was monitored by cyclic voltammetry. Cyclic voltammetry 

is a very reliable electrochemical analysis, which strongly relies on its good reproducibility. 

The method uses a redox probe, a compound that has well defined oxidation and 

reduction states, depicted by identified peaks. The potential values at which the redox 

probe exchanges electrons are called peak potentials (Eox, Ered) and have an associated 

intensity of current (Ipox, Ipred). From cyclic voltammetry the redox specie can be 

characterized by the peak current intensity and the separation of peak potentials (ΔEp). 

The current intensity is directly proportional to the amount of reduced/oxidized species 

and thus, to the electroactive surface of the tested electrode. This property is essential in 

our case, since the modifications of the electrodes also, modify their electroactive surface. 

The redox probe selected was the hexaamino ruthenium chloride, Ru(NH3)6Cl3. 

Figure 93 depicts the electrode manufacturing process step by step, associating the 
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electrochemical signal of Ru(NH3)6
3+to the corresponding state of the pores. The cyclic 

voltammograms of Ru(NH3)6
3+ (1 mM in NaNO3 100mM), using either a bare gold 

electrode or electrodes subjected to the successive steps of modification are presented 

on the same figure (Figure 94) for easier comparison. In this case, the doping of the 

mesoporous electrode was performed with TAA1 

 

 

Figure 93: Cyclic voltammograms of Ru(NH3)6
3+ (c=1mM in 0,1M aqueous solution 

NaNO3,ν=20mV/s vs. Ag/AgCl) at the electrodes subjected to the successive steps of 
modification 
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Figure 94: Cyclic voltammograms of Ru(NH3)6
3+ (c=1mM in 0,1M aqueous solution NaNO3,ν=20mV/s 

vs. Ag/AgCl). Curves bare gold-yellow; after deposition-dark blue; porous-light blue; modified C6-
orange; doped with TAA1-gray 

 

On bare gold, the redox probe is characterized by a well-defined Ru3+/Ru2+ 

reduction and oxidation peaks (E1/2=135mV). Here, the electroactive surface corresponds 

entirely with the geometrical surface of the electrode. At this moment, the redox exchange 

can be done in any point on the gold. In the second step, the whole surface is covered by 

the electrodeposited silica, and the surfactant is still in the pores. It doesn’t show any 

electrochemical signal, indicating that the silica structure generated is completely 

isolating. The third voltammogram depicts the behavior of the porous electrode, after the 

removal of the surfactant. Here the electroactive surface is much lower than the 

geometrical one, the redox exchange being done only through the gold on the bottoms of 

the pores. Since the intensity of the peak current is proportional to the surface, the actual 

electroactive surface can be determined. This was found to be around 66%. After the 

hydrophobisation of the pores, as seen in the fourth step, the weak electrochemical signal 

reveals hindered access of the redox probe in the hydrophobic, nano-sized, channels. 

However after the insertion of the TAAs in the pores the redox signal is restored, and is 

nearly equal to the one recorded for the empty pores system. This result shows that the 
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TAA assemblies are conductive, and are able to act as an electrical contact, between the 

ruthenium ions, and the gold surface on the bottom of the pores. Moreover the well-

defined peaks as well as the total amplitude of the signal confirms the good conductivity 

of these structures.  

The sol-gel procedure has the disadvantage of some reproducibility issues. On this 

account the electroactive surface can be calculated from the electrochemical peak 

currents. Both the intensity of the oxidation peak, and of the reduction peak, can be 

compared. Since a system is tested, entire intervals of current intensity are also 

evaluated. In conclusion, every system has to be compared to itself, since minor 

differences in the sol-gel composition, along with any electrochemical impurities on the 

electrode surface and charge uniformity issues during the electro-deposition, can result 

in a very strong effect on the surface obtained. A comparison between the geometrical 

surface (as in the case of gold equal to the electroactive surface), and the actual 

electroactive surface (in the case of porous electrodes) is presented lower. A large 

number of electrodes was tested and some of them are presented in Table 13. Although 

the available surface in the case of porous electrodes varies, we can conclude that it 

corresponds to 60-80% of the geometrical surface of the electrode. The calculations are 

made using the Randles–Sevcik equation (2).  

  (2) 

With ip = current maximum (A); n = number of electrons transferred in the redox 

event (1); A = electrode area (cm2); F = The Faraday Constant (C.mol−1); D = diffusion 

coefficient of Ru(NH3)6
3+  (cm2.s); C = concentration (mol/L); ν = scan rate in V/s.  

For the same experimental conditions, it results from eqution (2) that: Ip gold electrode/Ip 

porous electrode = A gold/A porous electrode. By considering that the diffusion coefficient of the 

Ru(NH3)6
3+ species in NaNO3 in water is similar at the gold electrode surface and within 

the pores of the porous electrodes. It results Aporous electrode = A gold * Ip gold electrode/Ip porous 

electrode. 
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Table13: Electroactive surfaces for porous electrodes estimated from the Randles–Sevcik 
equation 

Porous  

Electrode 

 number 

IOX porous/IOX bare gold 

 (%) 

IRED porous/IRED bare gold  

(%) 

1 60.21% 65.31% 

2 46.25% 73.07% 

3 63.71% 72.15% 

4 72.77% 82.42% 

5 63.16% 93.33% 

 

 

TAA2 doped electrodes were also manufactured. Given the larger size of the 

molecule these systems were less efficient than the TAA1 ones. Probably due to the 

difficulties of obtaining the self-assembled structures in the pores, where the anchorage 

was designed for the TAA1 structure. Still, the resulting devices were functioning and 

well-defined signal was registered. By comparison to TAA1, where the doped system 

presented a peak current intensity of 82% vs. the porous system, in the case of TAA2, 

the signal was just 25% confirming a lower doping yield, as can be seen in Table 14. The 

TAA2 system is presented lower in Figure 95. 
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Figure 95: Cyclic voltammograms of Ru(NH3)6
3+ (c=1mM in 0,1M aqueous solution NaNO3,ν=20mV/s 

vs. Ag/AgCl). Curves: porous-yellow; modified C6-green; doped with TAA2-dark red. The first two 
steps of the process omitted for clarity. 

 

Table 14: Comparison of the Ru3+/2+ signal at the doped electrodes with TAA1 and TAA2  

DOPED Vs. POROUS IOX DOPED/IOX POROUS (%) IRED DOPED/IRED POROUS (%) 

TAA1 system 71.12% 89.59% 

TAA2 system 30.45% 22.78% 

 

 

3.2.2.1. Electrochemical Detection of TAAs in the Pores 

 

Cyclic voltammetry was also applied, to electrochemically detect the presence of 

the TAAs in the pores. Previously our colleagues from ICS Strasbourg were able to 

register the electrochemical signal for the TAA oxidation in a chlorinated solvent solution. 

The reported values of E1/2 were of approx. 0.8V vs. Ag/AgCl for TAA1 and 0.4V vs. 

Ag/AgCl for TAA2 (data not shown here). By conducting the experiment at very slow 
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scanning speeds (5mV/s) and in the absence of the Ruthenium redox probe, the 

electrochemical signal of the TAAs confined in the mesoporous electrode, can be 

registered in the NaNO3 (0.1M) electrolyte solution. 

 

Figure 96: Electrochemical signal of TAA1. Electrolyte solution NaNO3 (0.1M) scan speed 5mV/s 
ref. Ag/AgCl.  

 

 

Figure 97: Electrochemical signal of TAA2. Electrolyte solution NaNO3 (0.1M) scan speed 5mV/s 
ref. Ag/AgCl 
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Figure 96 and Figure 97 illustrate the electrochemical detection of TAA1 and TAA2 

in the pores. The current intensity for both TAAs is very feeble, and correlated directly 

with the very small amount of compound that is found in the pores. In the case of TAA1 

the oxidation potential couldn’t be reached without damaging the electrode. However the 

reduction potential was detected around 0.5V. In the case of TAA2 both potentials could 

be registered, due to the differences in structure this compound presents a lower 

oxidation potential, at 0.78V. The reduction potential for this species is encountered at 

0.5V. By comparison to a porous electrode, the presence of the redox signal of TAAs, 

proves the confinement of these molecules in the pores. 

One other test was performed on a TAA2 doped electrode, in order to verify further 

the presence of the TAA in the pores. The scan speed has been varied in order to see an 

increase in signal amplitude directly proportional to this increase. The expected result 

was obtained: the reduction peak current intensity, characteristic of TAA2 reduction, 

increasing with the scan speed, a mark of the presence of a chemical system. This result 

is presented in Figure 98. 

 

Figure 98: Scan speed variation experiments of a TAA2 doped electrode. Electrolyte solution NaNO3 
(0.1M) ref. Ag/AgCl. The peak current intensity and the peak potential vary with the increase of 
speed. 
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3.2.2.2. Influence of Chain Length in Pore Modification 

 

The incorporation of TAA1 in the pores was tested by varying the length of the 

alkyl chains within the silica mesopores. Three different chlorosilanes, that hold non-

covalently the nanofibrils in place, namely chains of 1 (C1), 6 (C6) and 18 (C18) carbon 

atoms were applied (Table 15). The effect on the yield of doping was then monitored by 

cyclic voltammetry. Figure 99 compares the three types of modifications, and clearly 

shows that in the presence of C6 alkyl chains, the doping is one order of magnitude higher 

than the other types of functionalization, based on peak intensities. This higher affinity for 

the C6 modified pores is to be expected, given the two dodecyl chains present on TAA1 

favoring hydrophobic interactions. The size of the pores decreases significantly by 

grafting the C18 modification, leaving very little space available for TAA1, while in the 

case of the C1 modification, the hydrophobic interaction is too weak to hold the TAA 

structures in place. The several fold difference in peak current intensity recommends the 

C6 modification to be optimal. 

Table 15: Chlorosilanes used for silica modification 

 

 

Structure Name 

 
Dimethyldichlorosilane (C1) 

 
Trichloro(hexyl)silane (C6) 

 

 
 

Trichloro(octadecyl)silane (C18) 
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Figure 99: Influence of chain length over doping. Cyclic voltammograms of Ru(NH3)6
3+ (c=1mM in 

0,1M aqueous solution NaNO3,ν=20mV/s vs. Ag/AgCl). C18-blue, C6 gray, C1-orange, electrode 
doped withTAA1. 

 

3.2.2.3. Influence of irradiation  

 

In a similar fashion, the influence of the irradiation on the doping process was 

evaluated. For this purpose, electrodes that were doped with the active compound under 

irradiation and in the dark were both prepared.  
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Figure 100: Influence of irradiation on a TAA1 system. Cyclic voltammograms of Ru(NH3)6
3+ (c=1mM 

in 0,1M aqueous solution NaNO3,ν=20mV/s vs. Ag/AgCl). Gray- C6 modified electrode; Blue 
electrode prepared in the dark; Green- electrode prepared under irradiation. 

 

From the resulting cyclic voltammograms (Figure 100) of the redox probe, one can 

observe higher peak intensities for the system where the insertion of TAA1 was done 

under irradiation confirming, thus the importance of the self-assembling trigger. 

 

3.2.2.4. Influence of the Presence of TAAs 

 

In order to display the electroactive characteristics of the TAAs, an electrode 

system containing tridodecyl amine, C12H26)3N, (TDA), was made in the same fashion as 

the TAA1 systems.  The differences between the two chemical species is the absence of 

self-assembling and conductive properties in the case of TDA. Without the possibility to 

self-assemble in the form of charged nanofibrils, the resulting system is expected to not 

display any electrochemical properties. The process was monitored through cyclic 

voltammetry, and the result was the envisioned one as can be seen from Figure 101. This 
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also signifies that the electrode systems created only rely on the intrinsic properties of 

TAA in order to function. 

 

 

Figure 101: Cyclic voltammogram of a TDA system, TAA1 system plotted for comparison. Cyclic 
voltammograms of Ru(NH3)6

3+ (c=1mM in 0,1M aqueous solution NaNO3,ν=20mV/s vs. Ag/AgCl). 
Orange- C6 modified system; Yellow- TDA doped system; Blue-TAA1 system. 

 

3.2.3. Impedance Spectroscopy 

 

Electrochemical impedance spectroscopy (EIS) is used as an electrochemical 

method of characterizing systems. The measured parameter is impedance over a range 

of frequencies, practically registering the frequency response of the system. This reveals 

the energy storage and dissipation properties of the tested element.  Since a theoretical 

model circuit can be attributed to a physical electrochemical system, a number of 

elements (like resistors and capacitors) and their connection type (series, parallel) are 

proposed. The experimental data is then fitted using this model circuit. 

The resulting TAA1 electrode systems were characterized by impedance 

spectroscopy. EIS was performed in 0.1M PBS (pH 7), containing the redox probe 
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potassium hexacyanoferrate trihydrate Fe(CN)6
3-/ Fe(CN)6

4- 10 mM. The frequency range 

on EIS was varied from 10 kHz to 0.1 Hz, with 10 points per decade, at the half wave 

potential (E1/2 = 0.208 V). The EIS spectra are presented in Figure 102. 

 

 

Figure 102: EIS of the electrodes (frequency range 0.1-10 000 Hz) in a solution of 10 mM Fe(CN)6
3-/ 

Fe(CN)6
4- in 0.1 M phosphate buffer, ref. Ag/AgCl 

 

 A Randles circuit was proposed for the fitting of the results. The Randles circuit 

consists of an active electrolyte resistance Rs, in series with the parallel combination of 

the double-layer capacitance Q, and an impedance of a faradaic reaction. The impedance 

is associated to an active charge transfer resistance Rct and an electrochemical element 

of diffusion, Warburg (Rdif). This data is presented in Table 16. 
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Table 16: The charge transfer resistance of modeled Randles circuit modeling was chosen to fit 
the impedance data. 

Electrode Rs/ Ω Q A Rct / Ω Rdif / Ω Td Area 

Bare gold 46 7.3E-05 0.730 165.7 1904 2.2 0.255 

Empty porous 39 5.0E-06 0.894 26733 41037 0.76 0.35 

TAA non-irradiated 0 1.8E-06 0.603 10385 204223 0.10 0.331 

TAA irradiated 0 1.0E-05 0.480 156.8 48182 0.07 0.336 

 

The Randles circuit model fits the data quite well despite the 100nm silica layer. 

From the model, the charge transfer resistance should be a good approximation to the 

resistance provided by the wire. The bare gold charge transfer resistance can be used as 

the charge transfer resistance, intrinsic to the gold layer and to the transfer to the redox 

probe.  

From the data obtained, a few conclusions can be drawn. The resistance (Rct) of 

the irradiated electrode is similar to that of the gold layer and both are two orders of 

magnitude under the control electrodes tested. This underlines the very good electrical 

properties of the TAAs. One last observation is linked to the importance of irradiation, the 

non-irradiated electrode strongly underperforming the irradiated electrodes. 

By using the EIS data, the conductivity of the TAA can be determined. Assuming 

the silica layer thickness determined by SEM is the thickness of the path length of the 

TAA (91.3nm), and the determined polarization resistance is primarily from TAA charge 

transfer, the charge transfer resistivity of each layer can be determined by: 

 

Where ρ is the resistivity; R is the charge transfer resistance determined before, A is the 

surface of the electrode and l is the length of the layer. The calculations are presented in 

Table 17. 
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Table 17: The charge transfer resistivity of modeled Randles circuit was chosen to fit the impedance data 

Electrode Rct / Ω Area / cm2 Resistivity/ Ω*m 

Gold 165.7 0.255 4.63E+04 

Porous Gold 26733 0.35 1.03E+07 

TAA non-irradiated 10385 0.331 3.77E+06 

TAA irradiated 156.8 0.336 5.77E+04 

 

Assuming the surface area of the TAA determined by the XPS 25% (see chapter 

3.2.4.), and the determined charge transfer resistance is primarily from the TAA wires; 

leads to a remarkable TAA wire conductivity of 0.39 mS/m (considering that the wires are 

not directly connected to the gold layer). In terms of resistivity the irradiated TAA has a 

very similar value to gold, confirming once again the metal-like conductivity exhibited by 

the species. Moreover if the resistivity intrinsic to the gold is removed and the charge 

transfer to the redox probe results in the resistivity of irradiated TAA layer alone of 

1.14E+04 Ω*m. By comparison in terms conductivity the other electrodes, are two times 

lower of the porous electrode and a five times lower for the non-irradiated TAA electrode. 

 

3.2.4. Surface Characterization  

 

The surface was characterized using three distinct methods scanning electron 

microscopy (SEM) which was presented in chapter 3.2.1., atomic force microscopy (AFM) 

and X-ray photoelectron spectroscopy. While the first two methods characterize the 

morphology of the surface on a micron and respectively nanometer resolution, the latter 

determines the chemical composition of the layer. 

In order to describe the morphology of the layer on a nanometer level AFM 

methods were employed. These experiments were performed at Institut Charles Sadron, 

Strasbourg. This method can experimentally determine the size of the pores. This was 

found to be around 5nm, in concordance with the templated procedure used in the 



157 
 

fabrication of the electrodes and the theoretical data.  The AFM topography of a porous 

electrode and a doped electrode are shown in Figure 103. The tips of the TAA1 fibrils are 

visible as coming out of the pores. 

 

Figure 103: AFM topography of mesoporous silica electrodes. Left – before the insertion of the TAA; right – 
after the insertion of the fibrils. Courtesy of Prof. Mounir Maaloum SAMS team ICS Strasbourg. 

 

By increasing the resolution to 5 nanometers, each individual pore can be 

characterized. At this scale the individual fibril tips can be described. The pictures reveal 

a bicolumnar arrangement of the TAA structures (Figure 104).  

 

Figure 104: AFM topography of doped mesoporous silica electrodes. Doped individual pores are presented 
with fibril tips visible. Two interlocked structural units stick out of the cavity. Courtesy of Prof. Mounir Maaloum 
SAMS team ICS Strasbourg. 
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 This finding fits well with the anterior published results on the self-assembly of 

TAA1 [146]. The generation of a cation radical pulls together other molecules generating 

a roll of coins-like structure. Taking into account the diameter of one molecule, which is 

equal to the diameter of an individual fibril, in a 5 nm pore two of these structures would 

fit. The two fibrils are held together by a zipper like hydrogen bonding. The representation 

of four molecules of TAA1 is presented lower (Figure 105) 

 

 

Figure 105: Model of 4 molecules of TAA1. Side chains not presented for clarity. Model elaborated 
at ICS Strasbourg 

 

XPS or X-ray photoelectron spectroscopy is a quantitative surface evaluating 

method. The modified the surface of the electrodes was evaluated using this technique. 

The results of the wide scan are presented in Table 18. By correlating the wide scan 

results with the high resolution results the chemical composition of the surface can be 

obtained. This then can be correlated with the information provided by the AFM study. 
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Table 18: XPS results on modified silica electrodes 

Sample Element (%) C O Si N S 

Porous Atomic conc. 43.28 34.69 15.68 4.25 1.5 

Mass conc. 31.62 33.76 26.79 3.62 2.92 

C6 Modified Atomic conc. 53.6 25.75 20.65 0.0 0.0 

Mass conc. 39.35 25.18 35.47 0.0 0.0 

TAA1 Doped Atomic conc. 48.59 30.8 17.58 2.15 0.0 

Mass conc. 32.89 27.78 27.82 1.7 0.0 

 

The results of the XPS analysis confirm the expected composition of the systems. 

The doped system in comparison to the C6 modified system contains nitrogen, from the 

presence of the TAA1 in the pores. Also the percentage of carbon decreases while the 

percentage of oxygen increases, as the insertion of the compound covers the C6 chains 

making them unavailable to be scanned. The porous system also contains traces of 

sulfur, from the silica precursor MTMPS, as well as some nitrogen and carbon from the 

surfactant template. 

Moreover, the XPS data is complementary to the AFM findings, and makes 

available the calculation of the number of pores occupied by the TAA wires. Taking into 

account the dimensions of the two TAA molecules and considering that all the nitrogen 

signal comes from them, we can determine the area of 1.5 nm x 2.3 nm = 3.45x10-18 m2. 

Since in this basic structure there are 4 nitrogen atoms per cell, the area can be divided 

by 4 giving a result of 8.63 x10-19 m2. The ratio between the area of the TAA1 to a single 

nitrogen atom is 8.63 x 10-19/ 7.54 x 10-20 = 11.5, where 7.54 x 10-20m2 is the area of the 

covalent radius of the circle defined by one single nitrogen atom. XPS determined a 

molecular percentage of 2.15% nitrogen, which makes the percentage of the TAA1 equals 

to 2.15 % x 11.5 = 24.6 %. This means that about one third of the pores are occupied by 

TAA1, taking into account that the porous surface compared to bare gold is between 60-

80%, is in good correlation with the AFM observations. This relative percent further points 

at the very good electrical properties of the TAAs. 
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3.2.5. Design of Biocathodes 

. 

The doped electrodes were envisioned for an application as bioelectrodes. 

Bioelectrodes are components for biofuel cells, which oxidize a substrate at the anode 

using an oxidant generated at the cathode. The typical substrates are glucose, methanol 

or ethanol, while the oxidant is generally oxygen, making the byproduct of the biofuel cell 

water, a very attractive perspective. For this purpose the enzyme Laccase was used. The 

enzyme immobilization protocol is described in the annexes. This enzyme reduces 

oxygen to water in an acidic (pH=5) medium at high redox potentials. The chemical 

mediator, ABTS was used to provide quick electron transfer between the surface of the 

modified electrodes and the enzyme. Tests were performed to determine if the doping 

agents (TAAs) could also fill in the function of the chemical mediator, but were 

unsuccessful, meaning that the nanofibrils cannot access the electroactive core of the 

enzymes in these modified electrodes.  

The electrochemical response of the electrodes (tested for each step of the 

process, doped or not with TAAs), are typical for the enzymatic reduction of O2 in 

phosphate buffer at pH 5.  The oxygen reduction current starts around 0.6 V vs Ag/AgCl 

and current densities feature a semi-plateau indicating a control of the electrocatalytic 

reaction by diffusion of O2 to the active enzymes in the film. The presence of a peak 

around 0.3 V is attributed to the reduction of some weakly adsorbed ABTS molecules. 

The modified electrodes were submitted to various tests, in order to characterize 

their efficiency. Bio-cathodes using TAA1and TAA2 as doping agents were tested in 

terms of current intensity, initial potential and stability. For comparison reasons the same 

tests were done on porous and functionalized electrodes, as well as bare gold electrodes. 

For a TAA1 electrode, the open circuit potential (i=0) was 590 mV and the current intensity 

was 240 μA/cm2. Bioelectrodes were also made using the other modified electrodes for 
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comparison reasons. One thing to point out is the case of the gold electrode, which 

presented an initial potential of 650mV and a current intensity of 220 μA/cm2. However 

this initial positive result is misleading, since the electrode couldn’t be used after the first 

experiment. This is due to the lack of adherence of the enzyme mixture to the very smooth 

surface of the gold. These results are presented in Table 19 

Table 19: Current intensities and initial potential for the four types of bioelectrodes 

Electrode type Ip(µA/cm2) Ei=0(V) 

Doped TAA1 240 590 

Modified C6 140 490 

Porous 130 620 

Bare gold 220 650 

 

The polarization curves are presented in Figure 106. In conclusion the TAA1 

electrode displayed the largest current intensity, proving the importance of the TAA wires 

in the system. The stability of the electrodes was assessed by performing repeated scans 

on the biocathodes. These curves for the TAA electrode are also presented in Figure 106. 

The systems proved to stay within the parameters, the current intensity not varying 

significantly, with the sole exception of the bare gold electrode which had the adhesion 

issues.  
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Figure 106: Polarization curves of the biocathodes. Electrolyte solution PBS pH=5 (0.1M) scan speed 3.33 mV/s, 
ref. Ag/AgCl. Orange - c6 modified electrode; Light blue – porous electrode; Yellow – bare gold electrode; Gray, 
Dark blue, Blue and Green – TAA1 electrode.  

 

Since the enzyme Laccase loses its activity in time due to inactivation, as well as 

because of the leeching of the chemical mediator ABTS, several evaluations were made 

about this aspect. The conclusion was that the main cause of the decrease in activity was 

the diffusion of the chemical mediator ABTS from the enzyme containing layer. This was 

proven by adding ABTS to the electrolyte solution after two weeks, and performing the 

same experiment with and without ABTS. The results proved that the decrease in initial 

potential, and, to a somewhat extent, the decrease in current density is due to this factor. 

These experiments are presented in Figure 107 for a TAA1 electrode. 
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Figure 107: Influence of the presence of ABTS. Electrolyte solution PBS pH=5 (0.1M) scan speed 3.33 mV/s, 
ref. Ag/AgCl. Light Blue – day 1; Orange - day 5; Yellow – day 13 (added ABTS); Gray – day 13 (no ABTS); 
Green – day 21 (added ABTS);  Blue – day 21 (no ABTS); Dark red – day 26 (added ABTS); Dark blue – day 26 
(no ABTS).  

 

The electrodes were tested over 4 weeks, in order to see the evolution of their 

performance in this period of time. The current efficiency was normalized to the initial 

activity (on day 1) and the results plotted in Figure 108. The conclusion is that the enzyme 

activity decrease isn’t affected by the type of electrode used, the inactivation resulting in 

the same type of curve for all electrodes. After a period of four weeks, the electrodes 

retain a percentage of activity between 15-22% However, in absolute numbers the current 

intensity values are two fold greater for the TAA1 electrodes, compared to the other types 

of electrodes tested, as seen in the table in the annexes.  
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Figure 108: current efficiency for the electrodes tested versus time. Values normalized to the initial 
current intensity of each biocathode. Blue – porous electrode; Orange – C6 modified electrode; 
Gray – TAA1 doped electrode. 

 

The results could be improved by other methods to immobilize the enzyme on the 

electrode surface, by avoiding the necessity of the chemical mediator, or by increasing 

the stability of the enzyme beyond 4 weeks, in order to increase the practical uses of the 

bioelectrodes. 
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3.3. Conclusions and Perspectives  

A functioning system of nanoscale contacts has been designed and fabricated, 

based on growing supramolecular stacks of triaryl amine molecules inside the oriented 

mesopores of a silica layer. In the view of future applications, these systems were 

implemented towards the design of biocathodes. 

The electrically charged nanofibrils which are generated by TAAs under irradiation 

have been successfully inserted in a templated mesoporous matrix. The resulting 

macroscale device is composed from an isolating silica layer that can transfer electrons 

only through the organic nano-assemblies. This array of nano contacts was characterized 

by electrochemical methods in order to verify both the presence of the TAAs in the pores, 

as well as, to monitor the preservation of the electrical properties of the supramolecular 

structures. The presence of the TAAs was evidenced also through AFM and XPS 

techniques, further describing structural factors, as well as the degree of the presence in 

the matrix. Throughout the project, comparison electrodes were used in order to test the 

effect of the presence of the electrical nano contacts. These tests showed that the system 

over performs on all criteria the comparison electrodes, and indeed the TAAs form 

efficient electrical contacts. 

To take advantage of the resulting electric conduction of the doped electrodes, the 

manufactured electrodes were further implemented towards the construction of 

biocathodes. The resulting biocathodes based on enzyme immobilization, were applied 

to electrocatalytically reduce oxygen to water. The TAA doped biocathodes were two fold 

better in terms of current efficiency, compared to the control electrodes. The remarkable 

observation is the performance of the biocathodes, on the account of the very small 

amount of confined TAAs, and the very little specific surface .this, keeping in mind that 

the system is electroactive only through the tips of the nanofibrils. 

 From a perspective point of view the nano-sized electrode systems can be 

improved in several ways. From the practical point of view, the silica matrix can be 

modified in order to suit other types of TAAs. This could be done on the pore, by changing 

their diameter or shape, or on the hydrophobic anchor. Several other types of anchoring 
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systems could be envisioned, relying on stronger supramolecular forces, like hydrogen 

bonds for example. Other matrixes could also be designed, for example polymeric ones, 

the only criterion for a suitable matrix being the control over the structure, in the sense of 

a well-defined confined space to keep the TAA assemblies in place. From an application 

point of view, there are many opportunities in the field of organic electronics, taking 

advantage of the nanoscale of the electrodes in question, and their very good 

conductivity.  Exploiting these two characteristics could lead us to envision a system that 

would act as an electrode, being able to permeate the lipid membrane of a cell, without 

having adverse effects on its integrity. This would provide a method to measure 

electrically such a complex unit as a living cell. 
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General Conclusion 

 

The transport process is a phenomenon ubiquitous in nature. Chemical species 

have to be translocated across living organisms, in order to maintain life through the 

balance of equilibria. Multiple mechanisms have been documented in regards to 

transport. These are both transporter specific and transported species specific. Natural 

transporters also display a remarkable efficiency as was reported in the introduction, i.e. 

Aquaporins. 

This work approached the transport subject in a bioinspired fashion. It took a look 

at the natural solutions, as well as to previously reported synthetic solutions, in order to 

have an understanding of the key aspects. The first part, comprising the first and second 

chapters, applied the translocation of species on mimic cells, large unilamellar vesicles 

(LUVs). The LUVs are systems that emulate, in part, the complexity of a cell membrane. 

Through their tunable composition LUVs narrow the gap between natural occurring 

transport and entirely artificial transport. 

The compounds used were small molecules. Their design was made in accord to 

the principles of supramolecular chemistry. The small molecules synthetized have three 

distinct segments: a hydrophobic part, constituted from an alkyl chain or an aryl moiety, 

which provides compatibility to the lipid substrate, an ordering structure in the form of the 

urea moiety, with its directional hydrogen bonding and multiple types of self-assembly 

presented in the introduction, and, finally a heterocycle moiety as the active center of the 

molecule. The species synthetized self-assemble in various supramolecular structures as 

a function of their structural variations.  

The first chapter treated cation and proton transport across lipid bilayers. A library 

of 8 compounds was prepared and tested. X-ray single crystal diffraction did not reveal 

channel like self-assemblies, however the compounds proved to be active transporters. 

These highly dynamic small molecule systems have the inconvenient of being impossible 

to characterize in situ, in the lipid bilayer. Their transport effect was characterized by 

means of fluorescent ratiometric measurements. A structure feature that made a strong 
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impact on their activity was the presence of a fluorine atom in the para position of the 

phenyl ring. Versus all the species tested, the compounds that had this modification 

proved to be better transporters. The selectivity of the compounds proved to be low, and 

could be better characterized as a preference towards certain ions. This subject was not 

fully developed. Questions remain on the transport mechanism of these compounds, 

while a carrier type transport was proposed. One other feature to be exploited is the 

Voltage Clamp planar membrane transport experiments. This method has very good 

sensitivity and accuracy and would be a further confirmation of the fluorescence results. 

The second chapter treated the transport of water and across lipid bilayers as part 

of a collaboration with Prof. Manish Kumar from Penn State University. Here also, a small 

library of compounds was created, presenting variations in chain length and chirality. One 

of the systems, HC6, was also described by molecular simulation techniques, for 

predicting its behavior in lipid membranes. This part of the project was done with the help 

of Marc Baden from Universite Paris Diderot. The supramolecular structure of the 

compounds, as was obtained from the X-ray single crystal diffraction, showed the strong 

influence of the hydrophobic tail on the formation of channel like structures. Namely, while 

the shorter members of the library present a very tight packing, the longer ones (HC6, 

HC8, RHC8, SHC8) present channels with hydrogen bonded water inside. The center of 

the channels is the I4 moiety, previously reported by our group. The water molecules are 

very well ordered and oriented in a continuous single file line, generating “water wires”. 

The initial assumption, based on the X-ray diffraction data was confirmed from an activity 

point of view in regards to transport. Our collaboration allowed two approaches to be 

experimented in the transport of water, either by inserting the channels on the outside or, 

directly in the LUV membrane. The longer members of the library had better water 

transport capabilities. The two chiral HC8 isomers, R and S displayed different behaviors 

towards the translocation of species. This phenomenon was further investigated and the 

hypothesis of different insertion speeds was formulated. The promising water transport 

results encouraged further testing on protons and cations. The systems proved to be very 

good proton transporters. Moreover they present very good selectivity against sodium. 

This finding proposes this type of systems as suitable for applications in the field of water 

purification.  



169 
 

The third chapter treats the translocation of electrons through nanoscale organic 

electrical contacts. This work was done in collaboration with Professor Nicolas 

Giuseppone and his group, SAMS, from Institut Charles Sadron Strasbourg, as part of 

the DYNANO Marie Curie Actions ITN. Triaryl amines (TAAs) are organic species that 

don’t present any conduction properties. However, some TAA structures are able, under 

irradiation and in a chlorinated solvent to produce a cation radical molecule. This molecule 

then pulls together its neutral counter parts, and self-assembles into a column like 

structure, a nanofibril. These nanofibrils are reported to present metal-like conduction 

properties. They transport electrons in a unidirectional fashion, only through the center of 

the fibril. This project’s objective was the design and manufacturing of a confined medium 

system in which these structures could be kept intact in their self-assembled form, while 

being able to exploit their electrical properties. The solution was the fabrication of a 

mesoporous silica matrix on the gold surface of an electrode. This material was obtained 

through templated electrodeposition methods in order to control the size and shape of the 

resulting pores. The TAAs were inserted in the 5 nm pores and a working device was 

created. The central point of this project is that the resulting electrode communicates from 

an electrochemical perspective with the environment through the nano sized TAA 

contacts. The system was described through electrochemical methods like cyclic 

voltammetry and impedance spectroscopy. The conclusion of these was the retention of 

the good conductivity properties of the TAA self-assemblies. The presence of the TAAs 

in the porous matrix was detected electrochemically, through X-ray photoelectron 

spectroscopy and atomic force microscopy methods (AFM). The AFM study confirmed 

the presence of two fibrils in each pore.  An application was envisioned for the resulting 

electrodes in the form of biocathodes. The enzyme Laccase was immobilized on the 

surface of the mesoporous silica, being connected to the gold underlay only through the 

TAA molecular contacts. The resulting biocathodes performed better in terms of current 

intensity over control electrodes, proving the positive effect of the presence of TAAs. This 

result encourages future pursuits in designing electronic devices containing organic 

species with very good conductive properties such as TAAs. 

The translocation of species over different environments is as fascinating as it is 

wide. By using the principles of supramolecular chemistry transporters have been 
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designed with applications for water, ions, protons and even electrons. This transposition 

of theoretical notions into practical system conception is the very definition of materials’ 

chemistry.  I hope that this work will make a small contribution to this area of research 

and will help in its development. 
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Annexes 

 

Chapter 1 and Chapter 2 

Compounds’ synthesis and characterization  

Synthesis 

For this project the following compounds were synthesized and characterized: 

Table 20: List of compounds synthetised 

Nr

. 
Structure Structure name 

Chemical 

formula 

Molecula

r weight 

1 

 

(R)-1-(2-(1H-

imidazol-4-yl)ethyl)-3-

(1-phenylethyl)urea 

C14H18N4O 258.32 

2 

 

(S)-1-(2-(1H-

imidazol-4-yl)ethyl)-3-

(1-phenylethyl)urea 

C14H18N4O 258.32 

3 

 

(R)-1-(2-(1H-

imidazol-4-yl)ethyl)-3-

(1-(4-

fluorophenyl)ethyl)ur

ea 

C14H17FN4

O 
276.31 

4 

 

(S)-1-(2-(1H-

imidazol-4-yl)ethyl)-3-

(1-(4-

fluorophenyl)ethyl)ur

ea 

C14H17FN4

O 
276.31 
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5 

 

(R)-5-amino-N-(1-

phenylethyl)-1H-

1,2,4-triazole-1-

carboxamide 

C11H13N5O 231.25 

6 

 

(S)-5-amino-N-(1-

phenylethyl)-1H-

1,2,4-triazole-1-

carboxamide 

C11H13N5O 231.25 

7 

 

(R)-5-amino-N-(1-(4-

fluorophenyl)ethyl)-

1H-1,2,4-triazole-1-

carboxamide 

C11H12FN5

O 
249.24 

8 

 

(S)-5-amino-N-(1-(4-

fluorophenyl)ethyl)-

1H-1,2,4-triazole-1-

carboxamide 

C11H12FN5

O 
249.24 

9 

 

 

1-(2-(1H-imidazol-4-

yl)ethyl)-3-butylurea 
C10H18N4O 

 

210.28 

10 

 

(R)-1-(2-(1H-imidazol-4-

yl)ethyl)-3-(3-

methylbutan-2-yl)urea 

C11H20N4O  

11 

 

(S)-1-(2-(1H-imidazol-4-

yl)ethyl)-3-(3-

methylbutan-2-yl)urea 

C11H20N4O  

12 

 

1-(2-(1H-imidazol-4-

yl)ethyl)-3-hexylurea 
C12H22N4O 238.33 

13 

 

(R)-1-(2-(1H-imidazol-4-

yl)ethyl)-3-(hexan-2-

yl)urea 

C12H22N4O 238.33 
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14 

 

(S)-1-(2-(1H-imidazol-4-

yl)ethyl)-3-(hexan-2-

yl)urea 

C12H22N4O 238.33 

15 

 

1-(2-(1H-imidazol-4-

yl)ethyl)-3-octylurea 
C14H26N4O 266.38 

16 
 

(R)-1-(2-(1H-imidazol-4-

yl)ethyl)-3-(octan-2-

yl)urea 

C14H26N4O 266.38 

17 
 

(S)-1-(2-(1H-imidazol-4-

yl)ethyl)-3-(octan-2-

yl)urea 

C14H26N4O 266.38 

 

The compounds were prepared according to the reaction schemes (1) or (2) in 

one-step reactions according to the protocol presented lower: 

 

Figure 106: Reaction schemes 1 and 2 

Synthetic protocol 

All of the compounds have been synthesized following either the scheme (1) for 

compounds 1-4 and 9-17 or scheme (2) for compounds 5-8. The amine (30 mmol) is 

mixed with the corresponding amount of isocyanate, under sonication (1 eq.: 1eq). The 

mixture was solubilized in 10 ml of THF (tetrahydrofuran), 5 ml of ethylacetate, and 10 ml 

of dimethylacetamide. The reaction mixture was heated to 80°C for 15 minutes. When 

the precipitation begins 5 ml of acetonitrile are added and the heating is maintained for 

another 4 hours. The resulting product will be a white powder which is then filtered and 

washed with methanol on the filter paper. The exceptions of the protocol are compounds 
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9, 10 and 11 for which the reaction temperature is 40°C. Compounds 9, 10 and 11 are 

soluble in the reaction mixture and therefore the purification procedure is as follows. The 

reaction mass is evaporated under vacuum in a round bottomed flask and the compound 

is then recystallized from CHCl3. 

Alternatively a microwave reactor can be used. The procedure is the following: the 

isocyanate is dissolved in 5 ml of acetonitrile and added over the amine in the microwave 

reactor. The reaction is performed at 140°C under high stirring for 15 minutes. The 

product is then filtered and washed with acetonitrile. In the case of compounds 9, 10 and 

11 the temperature is 70°C and for compounds 12, 13 and 14 is 90°C. For compounds 9, 

10 and 11, the purification method is the same. 

The exact amounts of compounds used and the yields obtained are presented for 

a reaction between 30 mmols of each component in table 21: 

Table 21: Amounts and yields for a theoretical preparation of 30 mmols of compound 

Compound 

number 
Isocyanate name/ formula 

Isocyanate 

mass (g) 

Amine 

name/ 

formula 

Amine 

mass 

(g) 

Overall 

yield 

(%) 

1 

(R)-(1-

isocyanatoethyl)benzene/ 

C9H9NO 

4.41 
Histamine/ 

C5H9N3 
3.35 91 

2 

(S)-(1-

isocyanatoethyl)benzene/ 

C9H9NO 

4.41 
Histamine/ 

C5H9N3 
3.35 94 

3 

(R)-1-fluoro-4-(1-

isocyanatoethyl)benzene/ 

C9H8FNO 

4.95 
Histamine/ 

C5H9N3 
3.35 92 

4 

(S)-1-fluoro-4-(1-

isocyanatoethyl)benzene/ 

C9H8FNO 

4.95 
Histamine/ 

C5H9N3 
3.35 93 

5 

(R)-(1-

isocyanatoethyl)benzene/ 

C9H9NO 

4.41 

3-amino-

1,2,4-

triazole 

2.52 88 
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6 

(S)-(1-

isocyanatoethyl)benzene/ 

C9H9NO 

4.41 

3-amino-

1,2,4-

triazole 

2.52 91 

7 

(R)-1-fluoro-4-(1-

isocyanatoethyl)benzene/ 

C9H8FNO 

4.95 

3-amino-

1,2,4-

triazole 

2.52 90 

8 

(S)-1-fluoro-4-(1-

isocyanatoethyl)benzene/ 

C9H8FNO 

4.95 

3-amino-

1,2,4-

triazole 

2.52 91 

9 Butyl isocyanate/ C5H9NO 2.97 
Histamine/ 

C5H9N3 
3.35 99 

10 
(R)-2-isocyanato pentane/ 

C6H11NO 
3.39 

Histamine/ 

C5H9N3 
3.35 98 

11 
(S)-2-isocyanato pentane/ 

C6H11NO 
3.39 

Histamine/ 

C5H9N3 
3.35 98 

12 
Hexyl isocyanate/ 

C7H13NO 
3.81 

Histamine/ 

C5H9N3 
3.35 99 

13 
(R)-2-isocyanato hexane/ 

C7H13NO 
3.81 

Histamine/ 

C5H9N3 
3.35 97 

14 
(S)-2-isocyanato hexane/ 

C7H13NO 
3.81 

Histamine/ 

C5H9N3 
3.35 96 

15 Octyl isocyanate/ C9H17NO 4.65 
Histamine/ 

C5H9N3 
3.35 96 

16 
(R)-2-isocyanato octane/ 

C9H17NO 
4.65 

Histamine/ 

C5H9N3 
3.35 95 

17 
(S)-2-isocyanato octane/ 

C9H17NO 
4.65 

Histamine/ 

C5H9N3 
3.35 94 
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Characterization of compounds 

 

All reagents were obtained from commercial suppliers and used without further 

purification. 1H NMR were recorded on an ARX 300 MHz Bruker spectrometer in d6-

DMSO, with the use of the residual solvent peak as reference. Mass spectrometric studies 

were performed in the positive ion mode using a quadrupole mass spectrometer 

(Micromass). All the structures have been measured on an Agilent Technologies Gemini-

S four circle diffractometer using Mo-Ka radiation (l ¼ 0.71073 °A) and equipped with a 

Sapphire3 detector at 175 K at the joint X-ray scattering facility of the Pole Balard at the 

University of Montpellier, France. 

Compound 1 

 (R)-1-(2-(1H-imidazol-4-yl)ethyl)-3-(1-phenylethyl)urea : (Mass spectrometry, ES 

M*+=259.1) 

RMN1H (DMSO-d6, 300 MHz) δ (ppm) =1.29 (d,3H, CH3) ; 2,57 (t, 2H, NHCH2CH2) ; 

3,21 (q, 2H, CH2CH2NH) ; 4.70 (qv, 1H, CH3CHNH) ; 5,79 (s mod, 1H, NHCH2) ; 6,37 

(d mod,1H,NH-CH-Ph) ; 6,77 (s,1H,C CHNH imidazole) ; 7.17-7.33 (m,5H, phenyl) ; 7,56 

(s,1H,N CHNH imidazole) 

Compound 2 

(S)-1-(2-(1H-imidazol-4-yl)ethyl)-3-(1-phenylethyl)urea : (Mass spectrometry, ES 

M*+=259.1) 

RMN1H (DMSO-d6, 300 MHz) δ (ppm) =1.29 (d,3H, CH3) ; 2,60 (t, 2H, NHCH2CH2) ; 

3,19 (q, 2H, CH2CH2NH) ; 4.72 (qv, 1H, CH3CHNH) ; 5,79 (s mod, 1H, NHCH2) ; 6,37 

(d mod,1H,NH-CH-Ph) ; 6,80 (s,1H,C CHNH imidazole) ; 7.19-7.33 (m,5H, phenyl) ; 7,61 

(s,1H,N CHNH imidazole) 
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Compound 3 

 

 

 

 (R)-1-(2-(1H-imidazol-4-yl)ethyl)-3-(1-(4-fluorophenyl)ethyl)urea : (Mass 

spectrometry, ES M*+=277.1) 

RMN1H (DMSO-d6, 300 MHz) δ (ppm) =1.28 (d,3H, CH3) ; 2,58 (t, 2H, NHCH2CH2) ; 

3,20 (q, 2H, CH2CH2NH) ; 4.78 (qv, 1H, CH3CHNH) ; 5,80 (s mod, 1H, NHCH2) ; 6,40 

(d mod,1H,NH-CH-Ph) ; 6,80 (s,1H,C CHNH imidazole) ; 7.13-7.18 (m,2H, CHCCH 

phenyl) ; 7.27-7.32 (m,2H,CHCFCH phenyl) ; 7,52 (s,1H,N CHNH imidazole) 
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Compound 4 

 

 

 (S)-1-(2-(1H-imidazol-4-yl)ethyl)-3-(1-(4-fluorophenyl)ethyl)urea : (Mass 

spectrometry, ES M*+=277.1) 

RMN1H (DMSO-d6, 300 MHz) δ (ppm) =1.28 (d,3H, CH3) ; 2,58 (t, 2H, NHCH2CH2) ; 

3,22 (q, 2H, CH2CH2NH) ; 4.72 (qv, 1H, CH3CHNH) ; 5,79 (s mod, 1H, NHCH2) ; 6,39 

(d mod,1H,NH-CH-Ph) ; 6,79 (s,1H,C CHNH imidazole) ; 7.09-7.15 (m,2H, CHCCH 

phenyl) ; 7.27-7.31 (m,2H,CHCFCH phenyl) ; 7,58 (s,1H,N CHNH imidazole) 
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Compound 5 

 

 

(R)-5-amino-N-(1-phenylethyl)-1H-1,2,4-triazole-1-carboxamide : (Mass 

spectrometry, ES M*+=232.1) 

RMN1H (DMSO-d6, 300 MHz) δ (ppm) =1.52 (d,3H, CH3) ; 4.98 (qv, 1H, CH3CHNH); 

7.19-7.23 (m,1H, CHCHCH phenyl) ; 7.31-7.35 (m,2H,CHCHCH phenyl) ; 7.39-7.41 

(dm,2H,CHCCH phenyl) 7,56 (s,1H,N CHN triazole), 8.52-8.56 (d, 1H, CH-NH-C) 
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Compound 6 

 

 

 (S)-5-amino-N-(1-phenylethyl)-1H-1,2,4-triazole-1-carboxamide : (Mass 

spectrometry, ES M*+=232.1) 

RMN1H (DMSO-d6, 300 MHz) δ (ppm) =1.51 (d,3H, CH3) ; 4.96 (qv, 1H, CH3CHNH); 

7.21-7.26 (m,1H, CHCHCH phenyl) ; 7.30-7.35 (m,2H,CHCHCH phenyl) ; 7.40-7.42 

(dm,2H,CHCCH phenyl) 7,57 (s,1H,N CHN triazole), 8.52-8.58 (d, 1H, CH-NH-C) 

Compound 7 

 

(R)-5-amino-N-(1-(4-fluorophenyl)ethyl)-1H-1,2,4-triazole-1-carboxamide : (Mass 

spectrometry, ES M*+=250.1) 
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RMN1H (DMSO-d6, 300 MHz) δ (ppm) =1.48 (d,3H, CH3) ; 4.98 (qv, 1H, CH3CHNH); 

7.11-7.16 (m,2H, CHCCH phenyl) ; 7.45-7.50 (m,2H,CHCFCH phenyl) ; 7,57 (s,1H,N 

CHN triazole), 8.61-8.64 (d, 1H, CH-NH-C) 

Compound 8 

 

 

(S)-5-amino-N-(1-(4-fluorophenyl)ethyl)-1H-1,2,4-triazole-1-carboxamide: (Mass 

spectrometry, ES M*+=250.1) 

RMN1H (DMSO-d6, 300 MHz) δ (ppm) =1.50 (d,3H, CH3) ; 4.96 (qv, 1H, CH3CHNH); 

7.12-7.18 (m,2H, CHCCH phenyl) ; 7.43-7.48 (m,2H,CHCFCH phenyl) ; 7,58 (s,1H,N 

CHN triazole), 8.60-8.62 (d, 1H, CH-NH-C) 
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Compound 9 

 

 

 

 

1-(2-(1H-imidazol-4-yl)ethyl)-3-butylurea : (Mass spectrometry, ES M*+=211.1) 

RMN1H (DMSO-d6, 300 MHz) δ (ppm) = 0,86 (t, 3H, CH3CH2) ; 1,30 (m, 4H, 

CH3CH2CH2CH2) ; 2,58 (t, 2H, NHCH2CH2) ; 2,96 (q, 2H, CH2CH2NH) ; 3,21 (q, 2H, 

CH2CH2NH) 5,75 (s mod, 1H, NHCH2) ;5.83 (s mod, 1H, NHCH2) ; 6,78 (s,1H,C CHNH 

imidazole) ; 7,55 (s,1H,N CHNH imidazole) 
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Compound 10 

 

 

 (R)-1-(2-(1H-imidazol-4-yl)ethyl)-3-(3-methylbutan-2-yl)urea : (Mass spectrometry, 

ES M*+=225.2) 

RMN1H (DMSO-d6, 300 MHz) δ (ppm) = 0,81 (q, 6H, CH3CHCH3) ; 0,92 (d, 3H, 

CH3CHHC2) ; 1,57 (h, 1H, CH3CHCH3) ; 2,60 (t, 2H, NHCH2CH2) ; 3,21 (q, 2H, 

CH2CH2NH); 3,45 (m, 1H, CH2CH3CHNH); 5,68 (s mod, 1H, NHCH2) ;5.71 (s mod, 1H, 

NHCH2) ; 6,82 (s,1H,C CHNH imidazole) ; 7,51 (s,1H,N CHNH imidazole) 
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Compound 11 

 

 

(S)-1-(2-(1H-imidazol-4-yl)ethyl)-3-(3-methylbutan-2-yl)urea : (Mass spectrometry, 

ES M*+=225.2) 

RMN1H (DMSO-d6, 300 MHz) δ (ppm) = 0,81 (q, 6H, CH3CHCH3) ; 0,92 (d, 3H, 

CH3CHHC2) ; 1,56 (h, 1H, CH3CHCH3) ; 2,57 (t, 2H, NHCH2CH2) ; 3,20 (q, 2H, 

CH2CH2NH); 3,45 (m, 1H, CH2CH3CHNH); 5,68 (s mod, 1H, NHCH2) ;5.70 (s mod, 1H, 

NHCH2) ; 6,76 (s,1H,C CHNH imidazole) ; 7,51 (s,1H,N CHNH imidazole) 

Compund 12 

1-(2-(1H-imidazol-4-yl)ethyl)-3-hexylurea : (Mass spectrometry, ES M*+=239.1) 

RMN1H (DMSO-d6, 300 MHz) δ (ppm) = 0,86 (t, 3H, CH3CH2) ; 1,24-1.34 (m, 8H, 

CH3(CH2)4CH2) ; 2,57 (t, 2H, NHCH2CH2) ; 2,96 (q, 2H, CH2CH2NH) ; 3,21 (q, 2H, 

CH2CH2NH) 5,75 (s mod, 1H, NHCH2) ;5.84 (s mod, 1H, NHCH2) ; 6,75 (s,1H,C CHNH 

imidazole) ; 7,54 (s,1H,N CHNH imidazole) 
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Compund 13 

(R)-1-(2-(1H-imidazol-4-yl)ethyl)-3-(hexan-2-yl)urea : (Mass spectrometry, ES 

M*+=239.3) 

RMN1H (DMSO-d6, 300 MHz) δ (ppm) = 0,86 (t, 3H, CH3CH2) ; 0,97 (d, 3H, CH3CHHC2)  

1,24 (m, 6H, CH3(CH2)3CH2) ; 2,57 (t, 2H, NHCH2CH2) ; 3,21 (q, 2H, CH2CH2NH); 

3,54 (m, 1H, CH2CH3CHNH); 5,64 (s mod, 1H, NHCH2) ;5.69 (s mod, 1H, NHCH2) ; 

6,81 (s,1H,C CHNH imidazole) ; 7,51 (s,1H,N CHNH imidazole) 

Compound 14 

 

 

 (S)-1-(2-(1H-imidazol-4-yl)ethyl)-3-(hexan-2-yl)urea : (Mass spectrometry, ES 

M*+=239.2) 

RMN1H (DMSO-d6, 300 MHz) δ (ppm) = 0,84 (t, 3H, CH3CH2) ; 0,97 (d, 3H, CH3CHHC2)  

1,23 (m, 6H, CH3(CH2)3CH2) ; 2,56 (t, 2H, NHCH2CH2) ; 3,20 (q, 2H, CH2CH2NH); 
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3,54 (m, 1H, CH2CH3CHNH); 5,63 (s mod, 1H, NHCH2) ;5.70 (s mod, 1H, NHCH2) ; 

6,80 (s,1H,C CHNH imidazole) ; 7,50 (s,1H,N CHNH imidazole) 

Compound 15 

 

 

1-(2-(1H-imidazol-4-yl)ethyl)-3-octylurea : (Mass spectrometry, ES M*+=267.1) 

RMN1H (DMSO-d6, 300 MHz) δ (ppm) = 0,86 (t, 3H, CH3CH2) ; 1,25-1.34 (m, 12H, 

CH3(CH2)6CH2) ; 2,58 (t, 2H, NHCH2CH2) ; 2,95 (q, 2H, CH2CH2NH) ; 3,21 (q, 2H, 

CH2CH2NH) 5,74 (s mod, 1H, NHCH2) ;5.82 (s mod, 1H, NHCH2) ; 6,76 (s,1H,C CHNH 

imidazole) ; 7,52 (s,1H,N CHNH imidazole) 
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Compound 16 

 

 

(R)-1-(2-(1H-imidazol-4-yl)ethyl)-3-(octan-2-yl)urea : (Mass spectrometry, ES 

M*+=267.2) 

RMN1H (DMSO-d6, 300 MHz) δ (ppm) = 0,85 (t, 3H, CH3CH2) ; 0,97 (d, 3H, CH3CHHC2)  

1,24 (m, 10H, CH3(CH2)5CH2) ; 2,57 (t, 2H, NHCH2CH2) ; 3,20 (q, 2H, CH2CH2NH); 

3,53 (m, 1H, CH2CH3CHNH); 5,67 (s mod, 1H, NHCH2) ;5.69 (s mod, 1H, NHCH2) ; 

6,82 (s,1H,C CHNH imidazole) ; 7,51 (s,1H,N CHNH imidazole) 
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Compound 17 

 

 

 (S)-1-(2-(1H-imidazol-4-yl)ethyl)-3-(octan-2-yl)urea : (Mass spectrometry, ES 

M*+=267.2) 

RMN1H (DMSO-d6, 300 MHz) δ (ppm) = 0,85 (t, 3H, CH3CH2) ; 0,97 (d, 3H, CH3CHHC2)  

1,23 (m, 10H, CH3(CH2)5CH2) ; 2,57 (t, 2H, NHCH2CH2) ; 3,20 (q, 2H, CH2CH2NH); 

3,49 (m, 1H, CH2CH3CHNH); 5,66 (s mod, 1H, NHCH2) ;5.69 (s mod, 1H, NHCH2) ; 

6,75 (s,1H,C CHNH imidazole) ; 7,51 (s,1H,N CHNH imidazole) 

 

 

 

 

 



189 
 

Protocols for transport experiments 

Cation and proton transport using ratiometric fluorescence techniques 

All fluorescence experiments were performed on a PerkinElmer LS 55 fluorimeter. 

Vesicle preparation for fluorescence experiments 

Egg yolk L-α-phosphatidylcholine (EYPC chloroform solution, 20 mg, 26 mmol) 

was dissolved in a 1:1 CHCl3/MeOH mixture (2 ml total volume), the solution was 

evaporated under reduced pressure and the resulting thin film was dried under high 

vacuum for 2 h. The lipid film was hydrated in 0.4 mL of phosphate buffer (10 mM sodium 

phosphate, pH = 6.4, 100 mM NaCl) containing 10 µM HPTS (pyranine, 8-hydroxypyrene-

1,3,6-trisulfonic acid trisodium salt) for 40 min. After hydration, the suspension was 

submitted to 5 freeze-thaw cycles (liquid nitrogen, water at room temperature). The large 

multilamellar liposome suspension (0.4mL) was submitted to high-pressure extrusion at 

room temperature (21 extrusions through a 0.1 m polycarbonate membrane afforded a 

suspension of LUVs with an average diameter of 100 nm). The LUV suspension was 

separated from extravesicular dye by size exclusion chromatography (SEC) (stationary 

phase: Sephadex G-50, mobile phase: phosphate buffer) and diluted to 2.8 ml with the 

same phosphate buffer to give a stock solution with a lipid concentration of 3.66 mM 

(assuming 100% of lipid was incorporated into liposomes). 

Sodium transport experiments 

The preparation of the vesicles is described beforehand. 100 μL of HPTS-loaded 

vesicles (stock solution) was suspended in 1.9 mL of the buffer (PBS 10mM pH=6.4 

containing 100mM of NaCl) and placed into a fluorimetric cell. The emission of HPTS at 

510 nm was monitored with excitation wavelengths at 403 and 460 nm simultaneously. 

During the experiment, 20 µL of a 0-30 mM DMSO solution of the compound of interest 

was added at t = 50s, followed by injection of 21 µL of 0.5 M aqueous NaOH at t = 100s. 

The addition of the NaOH resulted in a pH increase of approximately 1 pH unit in the extra 

vesicular buffer. Maximal possible changes in dye emission were obtained at t = 500s by 

lysis of the liposomes with detergent (40 µL of 5% aqueous Triton X100). The experiment 
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is ended at t = 800s. This offers a window of 500 seconds of transport. The final transport 

trace was obtained as a ratio of the emission intensities monitored at 460 and 403 nm 

and normalized to 100% of transport. 

In the case of other ions the protocole is adapted by changing the 100 mM NaCl 

in the PBS buffer with a solution of the respective ion. 

Proton transport experiments 

The preparation of the vesicles is described previously. 100 μL of HPTS-loaded 

vesicles (stock solution) was suspended in 1.9 mL of the buffer (PBS 10mM pH=6.4 

containing 100mM of KCl) and placed into a fluorimetric cell. The emission of HPTS at 

510 nm was monitored with excitation wavelengths at 403 and 460 nm simultaneously. 

During the experiment, 20 µL of a 0-maximum allowed concentration mM DMSO solution 

of the compound of interest was added at t = 50s, followed by injection of 20 µL of 1 nM 

solution of valinomycin in DMSO at t = 100s. at time =150s an injection of 21 µL of 0.5 M 

aqueous NaOH  The addition of the NaOH resulted in a pH increase of approximately 1 

pH unit in the extra vesicular buffer. Maximal possible changes in dye emission were 

obtained at t = 500s by lysis of the liposomes with detergent (40 µL of 5% aqueous Triton 

X100). The experiment is ended at t = 800s. This offers a window of 500 seconds of 

transport. The final transport trace was obtained as a ratio of the emission intensities 

monitored at 460 and 403 nm and normalized to 100% of transport. This offers a window 

of 500 seconds of transport. The final transport trace was obtained as a ratio of the 

emission intensities monitored at 460 and 403 nm and normalized to 100% of transport. 

Proton transport using stopped flow techniques (performed by Yuexiao 

Shen at Penn State University) 

6 mg/ml PC, and 400 mmol/ml fluorescently labeled dextran (D-3305, Life 

Technologies) were first dissolved in buffer containing 10 mM Hepes, 100 mM KCl and 

pH=6.4 and the detergent n-octyl-β-D-glucoside (OG, 4% w/v). The liposomes formed 

after being dialyzed for 36 hours and were subsequently extruded through the 0.2 μm 

track-etched filters. The resulting monodisperse unilamellar vesicles were further subject 

to size exclusion in order to remove residual free dye. Because of the dilution of the size 
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exclusion process, the purified liposomes, with 400 mM/mL fluorescent dextran only 

encapsulated inside the vesicles, contained approximately 3 mg/ml PC. 1 μl valinomycin 

(0.5 mg/ml in DMSO) and 10 μl imidazole compounds (various concentrations in DMSO) 

were then added to 400 μl fluorescent vesicles . After 5 min, the mixture was mixed with 

same buffer at pH of 8.4 in stopped flow experiments, which caused a pH gradient across 

the lipid bilayers (pH 6.4 inside the vesicles and pH 7.4 outside the vesicles). The 

fluorescent signals (λex=494 nm, λem=521nm) were recorded on the stopped-flow 

instrument at a fixed photomultiplier tube value of 571 V. The fluorescent vesicles at 

different pH without the additions of valinomycin and imidazole compounds were 

prepared and tested on the stopped-flow for fluorescence vs. pH calibration. 

Vesicle preparation for Stopped flow experiments 

A mixture of PC (Egg yolk L-α-phosphatidylcholine , EYPC chloroform solution, 

18.6 mg, 24.2 mmol), PS (L-α-phosphatidylserine, Brain, Porcine, sodium salt chloroform 

solution, 5 mg, 6.04 mmol) and cholesterol (3β-Hydroxy-5-cholestene, 5-Cholesten-3β-

ol, powder, 11.7 mg, 30.3 mmol), corresponding to a 4:1:5 molar ratio,  was dissolved in 

a 1:1 CHCl3/MeOH mixture (5 ml total volume). The solution was evaporated under 

reduced pressure and the resulting thin film was dried under high vacuum for 2 h. The 

lipid film was hydrated in 1 mL of phosphate buffer (10 mM sodium phosphate, pH = 6.4, 

100 or 200 mM sucrose) for 40 min. After hydration, the suspension was submitted to 5 

freeze-thaw cycles (liquid nitrogen, water at room temperature). The large multilamellar 

liposome suspension (1mL) was submitted to high-pressure extrusion at room 

temperature (21 extrusions through a 0.1 m polycarbonate membrane afforded a 

suspension of LUVs with an average diameter of 100 nm). The LUV suspension was then 

diluted to 7 ml with the same phosphate buffer to give a stock solution with a concentration 

of 8.61 mM (assuming 100% of lipid was incorporated into liposomes). 

Water transport using stopped flow techniques 

Phosphatidylcholine (chicken egg, PC) and phosphatidylserine (porcine brain, PS) were 

purchased from Avanti Polar Lipids. Cholesterol (Chl) was obtained from Sigma. They 

were used without further purification.  
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Two incorporation methods were employed to introduce the imidazole derivatives within 

the lipidic phase.  

METHOD 1 (performed at Penn State University): Liposomes were prepared using the 

film rehydration method (1). The imidazole compounds, in chloroform/methanol mixture 

(CHCl3/MeOH,v/v: 1/1) were added to the 1 mg PC/PS/Chl mixture with a molar ratio of 

4/1/5. The solution was dried on a rotary evaporator and subsequently under high vacuum 

to remove residual solvent. After rehydration with 1 ml buffer containing 10 mM Hepes 

(pH=7), 100 mM NaCl and 0.01% NaN3, the suspension was incubated with stirring at 4 

°C for 24 h and extruded through 0.2 μm track-etched filters for 10 times (Whatman, UK) 

to obtain monodisperse unilamellar vesicles, the size of which was characterized by 

dynamic light scattering (Zetasizer Nano, Malvern Instruments Ltd., UK). The water 

permeability tests were conducted on a stopped-flow instrument (SF-300X, KinTek Corp., 

USA). Exposure of vesicles to hypertonic osmolyte (10 mM Hepes, 300 mM NaCl, 0.01% 

NaN3 and pH=7) resulted in the shrinkage of the vesicles due to an outwardly directed 

osmotic gradient. The abrupt decrease of the vesicle size lead to the increase in the light 

scattering at 90° according to the Rayleigh-Gans theory applied to this system (2). The 

changes of light scattering caused by vesicle shrinkage were recorded at a wavelength 

of 600 nm 

METHOD 2 (Performed at IEM Montpellier): Liposomes were prepared using the same 

film rehydration method as above. A PC/PS/Chl mixture with a molar ratio of 4/1/5 was 

dissolved in chloroform/methanol mixture (CHCl3/MeOH,v/v: 1/1). The solution was dried 

on a rotary evaporator and subsequently under high vacuum to remove residual solvent. 

After rehydration with 1 ml buffer containing 200 mM sucrose / 10 mM PBS buffer solution 

(pH=6.4), the suspension was extruded through 0.1 μm track-etched filters for 21 times 

(Whatman, UK) to obtain monodisperse unilamellar vesicles, the size of which was 

characterized by dynamic light scattering (Zetasizer Nano, Malvern Instruments Ltd., UK). 

The water permeability tests were conducted on a stopped-flow instrument (SFM3000 + 

MOS450, Bio-Logic SAS, Claix, France). Exposure of vesicles to hypertonic & hypotonic 

osmolyte (400 & 0 mM sucrose / 10 mM PBS buffer solution, pH=6.4) resulted in the 
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shrinkage and swelling of the vesicles due to an outwardly and inwardly directed osmotic 

gradient. The changes of light scattering were recorded at a wavelength of 345 nm. 

Stopped flow experiments 

100 µl of the vesicles prepared according to the described protocol are suspended 

in 1.880 µl of an isotonic solution of buffer, PBS, 10mM, pH=6.4, containing a known 

concentration of sucrose (100mM or 200mM). Am aquilot (20µl) of active compound in 

different concentrations, or blank (DMSO) is injected. The sample is then let to rest for 30 

minutes so that the channels are formed. The sample containing the SUVs and the pre-

formed channels is loaded in one of the reservoirs of the instrument. A solution containing 

the same buffer with a different osmolality (+ or – 100 mOsm) is loaded in another 

reservoir of the instrument. The measurements are made by quickly mixing the two 

solutions in equal volumes thus resulting the osmotic shock. The analysis is carried out 

for 4 seconds, enough time so that the system reaches equilibrium and the signal 

becomes a flat line. 

Formation of liposomes for DLS experiments 

Egg yolk L-α-phosphatidylcholine (EYPC chloroform solution, 20 mg, 26 mmol) 

was dissolved in a 1:1 CHCl3/MeOH mixture (2 ml total volume), the solution was 

evaporated under reduced pressure and the resulting thin film was dried under high 

vacuum for 2 h. The lipid film was hydrated in 0.4 mL of phosphate buffer (10 mM sodium 

phosphate, pH = 6.4, 100 mM NaCl) for 40 min. After hydration, the suspension was 

submitted to 5 freeze-thaw cycles (liquid nitrogen, water at room temperature). The large 

multilamellar liposome suspension (0.4mL) was submitted to high-pressure extrusion at 

room temperature (21 extrusions through a 0.1 m polycarbonate membrane afforded a 

suspension of LUVs with an average diameter of 100 nm). The LUV suspension was 

diluted to 2.8 ml with the same phosphate buffer to give a stock solution with a lipid 

concentration of 3.66 mM (assuming 100% of lipid was incorporated into liposomes). 

Chapter 3 

Electrode cleaning 
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The gold on glass plates were thoroughly washed with ethanol and MilliQ water. 

The electrochemical cleaning was done in a 3 electrode cell (Ag/AgCl ref, steel counter 

electrode) using a 0.1M HCl solution. The potential was varied between 0.6 and -0.8V 

with a speed of 100mV/s. this cycle was repeated 8 times. The electrode was then rinsed 

with MilliQ water and dried. 

Electrodeposition of mesoporous silica layer 

 The silica matrix was made through electrodeposition methods with a procedure 

adapted from Walcarius et al. [125, 143-145] A mixture of tetraethylsiloxane (TEOS) and 

(3-mercaptopropyl)trimethoxysilane (MPTMS) in ethanol was mixed with CTAB 

(hexadecyltrimethylammonium bromide) as template agent dissolved in a 0.1 M solution 

of NaNO3. The solution was aged under stirring for 2.5h at pH 3 prior to electrodeposition. 

The mesoporous silica films were deposited by applying a negative potential of -1.4 V for 

10 s on the gold electrode immersed in the pre-hydrolysed precursor solution. The 

electrode was removed from the solution and the electrodeposited surfactant-templated 

film was cured overnight at 60 °C and washed in ethanol. 

 Alkylation of mesoporous silica layer and subsequent in-pores self-

assembly of TAA nanowires.  

The resulting electrode was modified with hexyltrichlorosilane (C6) in a toluene 

solution at 60 °C for 6 h in order to obtain a hydrophobic surface coating, covalently linked 

to the inner silica mesopores. Triarylamines were non-covalently confined in the 

hydrophobic mesopores by immersing the functionalized electrodes in a 1.5 mM 

chloroform solution of TAA that was irradiated for one hour with a halogen lamp of 20 W.  

Bioelectrode preparation  

15 mg of commercial carbon powder Super P (TIMCAL) were sonicated for 5 min 

in PBS (phosphate buffer solution) pH=5 and stirred for 30 min. 333 μL of this mixture 

were pipetted over 5 mg of Laccase enzyme from Trametes Versicolor (20 U/mg*solid), 

and mixed for 2 min. Separately, a solution of ABTS (2,2’–azino-bis(3-

ethylbenzothiazoline-6-sulphonic acid)) was made out of 2.7 mg of ABTS in 500 μL of 
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PBS at pH=5 and homogenized. 100 μL of the enzyme solution were mixed with 90 μL of 

the ABTS solution, and stirred for another 30 min. 10 μL of Nafion resin (5 wt%) solution 

were added and the solution was homogenized for another 3 min. The electrode surfaces 

were pre-treated with a solution of PAA. 15 μL of the enzyme solution was drop-cast on 

a surface of 20 mm2 (estimated laccase loading of 560 µg/cm2). The electrodes were then 

left to dry at room temperature and then stored in the fridge. 

X-ray photoelectron spectrometry-XPS  

XPS analyses were performed on a KRATOS Axis Nova (Kratos Analytical, 

Manchester, United Kingdom), using AlKα radiation, with 20 mA current and 15 kV voltage 

(300 W), under a base pressure of 10-8 to 10-9 Torr in the sample chamber. The incident 

monochromatic X-ray beam was focused on a 0.7 mm x 0.3 mm area of the samples 

bearing surface. XPS survey spectra were collected in the range of -10 ÷ 1200 eV, with 

a resolution of 1 eV, at a pass energy of 160 eV. The high resolution spectra for all the 

elements identified in the survey spectra were collected using a pass energy of 20 eV 

and a step size of 0.1 eV. XPS data fitting were performed making use of the Vision 

Processing software (Vision2 software, Version 2.2.10), and mixed Gaussian-Lorentzian 

curves. The linear background was subtracted before the peak areas were corrected. The 

binding energy of the C 1s peak was normalized to 285 eV. Elemental analyses were 

performed using a scanning electron microscope (Quanta 200-FEI) equipped with an 

energy-dispersive X-ray spectroscopy system (EDX). Elemental nitrogen analysis was 

performed on a Perkin Elmer 2410 Series II CHNS/O ANALYZER 2400. We thank I. A. 

Dascalu (”Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, Iasi, 

Romania) for XPS Measurements. 

 Other experimental data 

   Influence of Electrolyte Solutions 

The electrochemical characterization of the electrodes was made in several 

electrolyte solutions (NaNO3, KClO4, PBS pH=7) using the redox probe Ru(NH3)Cl3.  This 

variation was used to describe the type of the system created. Classical electrodes have 

a well-defined, integer surfaces which behave in a predictable manner. In the case of our 
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designed systems, there is a question of the behavior of the array of nanoscale contacts, 

namely would they function as a whole or as individual contacts. An accurate description 

of the fashion in which these nanofibers conduct electricity is imperative. One of the 

premises of designing the modified electrode was the metal-like conductive properties of 

the TAA1; therefore the contact’s response is key to the devices’ functioning. These two 

aspects were characterized by doing scan speed variation tests on the electrodes in three 

different electrolyte solutions: NaNO3, KClO4, and PBS (in Figure 109, Figure 110 and 

Figure 111) represent these experiments.  

 

 

Figure 109: Scan speed experiments in NaNO3 (0.1M) redox couple Ru3+/Ru2+, TAA1 system ref. Ag/AgCl. Speed 
varied between 5 and 200 mV/s. The electrochemical signal increases with the increase of the scan speed. 
Light blue- 5 mV/s; Orange- 10 mV/s; Gray- 20 mV/s; Yellow- 30 mV/s; Blue- 40 ; Green- 50 mV/s; Dark Blue- 
100 mV/s; Dark red- 200 mV/s. 
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Figure 110: Scan speed experiments in KClO4 (0.1M) redox couple Ru3+/Ru2+ TAA1 system ref. Ag/AgCl. Speed 
varied between 5 and 100 mV/s. The electrochemical signal increases with the increase of the scan speed. 
Light blue- 5 mV/s; Orange- 10 mV/s; Gray- 20 mV/s; Yellow- 30 mV/s; Blue- 40 ; Green- 50 mV/s; Dark Blue- 
100 mV/s. 

 

 

Figure 111: Scan speed experiments in PBS, pH=7 (0.1M) redox couple Ru3+/Ru2+ TAA1 system ref. Ag/AgCl. 
Speed varied between 5 and 200 mV/s. The electrochemical signal increases with the increase of the scan 
speed. Light blue- 5 mV/s; Orange- 10 mV/s; Gray- 20 mV/s; Yellow- 30 mV/s; Blue- 40 ; Green- 50 mV/s; Dark 
Blue- 100 mV/s; Dark red- 200 mV/s. 
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The fact that the systems react to the variation of the scan speed indicates that 

they are indeed electrochemically active and electron transfer is coupled to the diffusion 

of species. From the intensity value of the electrode it was concluded that the size of the 

anion does affect the functioning of the system and there are small variations that could 

be found as seen from Figure 112. The peak-to peak separation ΔE, have very similar 

values (100 mV for NaNO3, 84 mV for PBS and 81 mV for KClO4), making KClO4 the most 

efficient electrolyte. 

 

 

 

Figure 112: Influence of electrolyte on a TAA1 electrode redox couple Ru3+/Ru2+, scan speed 20mV/s ref. 
Ag/AgCl. Electrolyte solutions NaNO3 (light blue), PBS (orange), KClO4 (gray) having the same concentration 

(0.1M). Differences in current intensity observable. 



199 
 

 

Figure 113: Linear dependencies of the oxidation peak current intensity vs. the square root of scan speed. 
Up- Orange - porous electrode in NaNO3; Gray - TAA1 electrode in NaNO3; Blue - TAA1 electrode in PBS; 

Yellow - TAA1 electrode in KClO4. In all cases an electrolyte concentration of 0.1M was used together with 
the redox couple redox couple Ru3+/Ru2+ ref. Ag/AgCl 

 

By using the peak intensities a correlation between them and the square root of 

the scan speed can be made as predicted by the Randals-Sevcik equation. These 

representations are presented in Figure 113. All of them present a linear dependency with 

very good R2 values, over 0.95. This implies that the diffusion of the ruthenium ions is the 

limiting factor of the charge passing through the electrodes and not the intrinsic 

conduction displayed by the TAA1 wires. If another type of dependency would have been 

found, the system’s electrical properties would be in question. Thus, the doped electrodes 

behave as a gold electrode would, implying the metal like conductivity of the TAA1. A 

scan speed variation on a porous electrode was also performed and the same linear 

dependency is also presented in Figure 113. The experiments were also used 

characterize the TAA2 system in NaNO3 with very similar results. These results are 

presented in Figure 114. 
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Figure 114: Scan speed tests on a TAA2 electrode in 0.1 M NaNO3, redox couple Ru3+/Ru2+, ref. Ag/AgCl, (left) 
and linear dependency of Iox vs. the square root of the scan speed (right). Curve colors: Light blue- 5 mV/s; 
Orange- 10 mV/s; Gray- 20 mV/s; Yellow- 30 mV/s; Blue- 40 ; Green- 50 mV/s; Dark Blue- 100 mV/s; Dark red- 
200 mV/s. 

 

Performance of the biocathodes over 4 weeks  

The data is presented in Table 22. 

Table 22: Normalized and numerical values for the evolution of current intensity for the four types of 
biocathodes tested. 

Porous electrode Modified C6 electrode TAA1 electrode 

days I (A) % activity days I (A) % activity days I (A) % activity 

1 -1,25E-04 100,00% 1 -1,44E-04 100,00% 1 -2,43E-04 100,00% 

4 -9,76E-05 78,14% 5 -6,69E-05 46,59% 5 -1,96E-04 80,62% 

8 -3,96E-05 31,66% 13 -2,37E-05 16,52% 13 -9,29E-05 38,30% 

15 -4,52E-05 36,20% 21 -1,74E-05 12,14% 21 -5,28E-05 21,75% 

25 -2,71E-05 21,67% 26 -2,23E-05 15,53% 26 -5,36E-05 22,12% 
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