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Abstract 

The structural stability and mechanical integrity are key elements for the proper 

functioning and preservation of complex living systems. Being in constant interaction 

with their surroundings and subjected to external inputs, such systems need to be 

able to face changes in order to thrive. These inputs can affect the system both in a 

localized way or disturb it as a whole. Any perturbations that cannot be mechanically 

withstand by the living system will result in a crucial malfunctioning or, ultimately, 

in its death. The general mechanism responsible for maintaining the system’s 

physiological conditions at the proper state, despite environmental variations, is 

identified as homeostasis. More specifically, one of the processes known in 

mechanobiology to preserve the appropriate mechanical equilibrium of a living 

system is called tensional homeostasis.  

It is important to note that all of the above stated holds true both at the scale of 

collective behaviour of complex organisms, and all the way down to the single cell 

level. In fact, it is actually this last small scale which draws our interest. Cells face 

constant mechanical perturbations from their surrounding and are able to respond 

accordingly maintaining a relatively stable internal mechanical state. The existence of 

this internal tensional equilibrium relies on a very dynamic process with constant 

feedback loops between the internal biochemical contractile machinery and the 

external active generated forces. 

Our interest is to understand better this active mechanism by dynamically perturbing 

the tensional homeostatic system while studying its return to equilibrium.  
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CHAPTER 1 - Background and research 

environment 

1.1 Mechanical integrity 

As a general term, mechanical integrity can be defined as the condition of a system 

where its parts are properly arranged and in optimum conditions, in order to ensure 

both the correct functioning of such system and the prevention of any possible failure 

that might affect it [1]. In nature, this condition can be seen at every level of 

hierarchy. From the collective behaviour of independent organisms, as is the case of 

fire ants, through organs and tissues, all the way down to the cell.  

Over the last few decades, the emerging field of mechanobiology has identified the 

cell not only as a widely known complex biochemical sensor, first described as such 

by Pfeffer in 1884, but also as a sophisticated biomechanical structure were 

mechanical signals, both internal and external, affect the cellular decision-making in 

complex environments. Physical environmental and intracellular factors significantly 

influence vital cellular processes such as migration, differentiation and fate [2]–[6]. 

It is essential for the cell, and the tissue of which it is part, to ensure mechanical 

integrity, sustaining optimum tensional values and mechanical equilibrium. Collapse 

of this integrity and abnormal interpretation of mechanical cues may lead to 

physiological dysfunctions or pathologies such as fibrosis, atherosclerosis and even 

cancer [7], [8]. A dysregulation of cell and tissue forces can disturb the mechanical 

integrity of the system and its mechanotransduction, thus promoting disease 

progression [9]–[11]. 

Among the mechanisms used by the cell to preserve this mechanical integrity, one of 

the most important, and the one we will be focused on henceforth, is what is known 

as tensional homeostasis. 
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1.2 Tensional homeostasis  

 1.2.1 The concept of homeostasis 

The process of cellular tensional homeostasis started to be defined after the work 

done by Brown and colleagues in 1998. However, the general mechanism of 

homeostasis has been around since the 19th century and I would like to spare a few 

lines to bring this concept into context, before diving into the more specific tensional 

one. 

In 1865, French physiologist Claude Bernard (Fig. 1A left) elaborated the concept of 

‘milieu interieur’ (internal environment), stating that it is the stability of this 

environment what gives an organism freedom and independence from the external 

environment.  

Quoting one of Bernard’s arguments: 

“The stability of the internal environment implies an organism so perfect that it can 

continually compensate for and counterbalance external variations. Consequently, 

far from the higher animals being indifferent to their surroundings, they are on the 

contrary in close and intimate relation to them, so that their equilibrium is the result 

of compensation established as continually and as exactly as if by a very sensitive 

balance.’’ [12]. 

 

Figure 1 A) Claude Bernard (left) and Walter Cannon (right). B) Graphic simplified representation of the 

homeostatic process where the system fluctuates, within an accepted range, around an ‘ideal’ 
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physiological state. Adapted from ‘An Introduction to the History of Medicine’ by Fielding Hudson 

Garrison. [13]. 

 

Almost 70 years later, the American physiologist Walter Cannon (Fig. 1A right) 

reformulated Bernard’s idea of the constancy of the milieu interieur by coining the, 

now widely known, concept of homeostasis (The Wisdom of the Body, 1932). This new 

term conveyed the idea that biological organisms, being in constant interaction with 

the outer environment, would be able to maintain and adjust internal conditions 

within ‘narrow limits’ when faced with external disturbances. It is important to note 

that the choice of the word was not arbitrary. Cannon decided to use the prefix 

“homeo” (Greek meaning ‘like’ or ‘similar’) instead of “homo” (‘same’ or ‘fixed’), to 

transmit the notion that the constancy of this internal physiological state is more 

relative than absolute [12], [13] (Fig. 1B).  

Following this same line, Bornstein and colleagues coined the term of dynamic 

reciprocity in 1982, which was further elaborated by Mina Bissell et al during that 

same year (Fig. 2). This concept derived from the homeostasis ideas of Cannon but 

also introduced the notion that cells actively react to the extracellular matrix (ECM) 

influences, responding accordingly and altering the composition and structure of the 

ECM, hence creating a feedback loop in between both sides. Bissell's work would 

emphasize the idea of the important role that the ECM played on the cell's fate by 

stating that “the influence of ECM on the cell, both during the developmental process 

and in established tissues, appears to evolve continually.” [14]. This idea of a 

bidirectional interaction between cells and their microenvironment proved to be 

right, enhancing the understanding of the cellular homeostasis and expanding the 

approaches needed to study such a dynamic phenomenon.  
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Figure 2 A graphic depiction of the principle of Dynamic Reciprocity. The ECM impacts on the 

cell’s functions and behaviour, and the cell responds accordingly modifying the environment. Adapted 

from [15]. 

 

 1.2.2     Tensional homeostasis at the single cell level 

The term homeostasis has been kept until today and used in many different fields 

and at different hierarchies. As a consequence, it was in 1998 that Brown et al 

presented tensional homeostasis as “the control mechanism by which fibroblasts 

establish a tension within their extracellular collagenous matrix and maintain its 

level against opposing influences of external loading” [16]. Since then, tensional 

homeostasis has had slightly diverse definitions in the literature but it roughly 

relates to the ability of cells to maintain or attempt to maintain a constant level of 

tension when faced with perturbations from the extracellular matrix. 

Such control mechanism is of utmost importance for the cellular integrity. Attempts 

at properly understanding the processes involved in this phenomenon have rapidly 

increased over the last few years and I will talk about them throughout this chapter. 
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Figure 3 Extracellular matrix influences in cellular mechanic responses. Mechanical interactions 

between the cell and its environment can be divided into three main categories. A normal loading 

situation is where forces applied by the ECM are correctly countered by the cell resulting in the 

maintenance of a physiological tensional state. An overloading, such as an abnormal remodelling of 

the ECM, can exceed the limits of tensional response of the cell, resulting in a pathological response 

such as fibrosis. A degradation or loss in the mechanical properties of the ECM can induce the cell into 

apoptosis. Adapted from [17]. 

 

Nowadays, it has been well reported that the process of tensional homeostasis is 

regulated in the cell through mechanotransduction; the cellular machinery senses 

internal and external mechanical cues and transforms them into biochemical 

signalling [18]. 

1.2.3      Cellular mechanosensing tools 

The mechanosensing machinery (Fig. 4) of the cell comprises both intracellular and 

extracellular ingredients, among which the most important structural ones are the 

membrane and its cell surface adhesive protein complexes, the nucleus, and the 

cytoskeleton. The cell surface adhesive protein complexes that mediate the 

attachment to the surrounding extracellular matrix are known as focal adhesions, 

and the ones involved in attaching to neighbouring cells are identified as cell-cell 

junctions. Focal adhesions are macromolecular assemblies consisting of 
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transmembrane proteins, integrins, which mediate the cell interaction with 

extracellular ligands, and intracellular proteins connected to the actomyosin 

cytoskeleton [19]–[22]. Cell-cell junctions, on the other hand, consist mainly of 

Cadherins, transmembrane proteins that form adherent junctions binding cells to 

each other [23], [24]. On the non-adhesive side of the cell surface there are 

mechanosensitive ion channels (or stretch-gated ion channels) involved in sensing 

mechanical forces coming from variations in the flow of fluids, such as blood, or 

pressure differences, as is the case of sound. They are vital for processes such as 

touch and hearing, as well as feeling and memory formation [25], [26], and when 

opened by physical forces and deformation they can induce electrical signals and ion 

exchange. 

Looking at the inner part of the cell, the cell nucleus and the nuclear lamina have 

been found to possess its own mechanical machinery that can respond to and 

transduce mechanical stimuli coming both from the cell (through the actomyosin 

cytoskeleton) and from inside the nucleus (through altered gene expression and 

transcriptional profiles) [27]–[31]. 

The cytoskeleton, consisting mainly of actin filaments, microtubules and 

intermediate filaments, is a network which spans the whole cell body preserving its 

shape and mechanical integrity. It is connected to each of the previously mentioned 

components, allowing for force transmission in between cells and in between the cell 

and the extracellular matrix. This network, in collaboration with motor proteins, such 

as  myosins, modulates crucial cellular processes such as migration [32], division [33], 

differentiation [34] and cell shape [35]. By provoking actomyosin contraction it 

balances intracellular and extracellular forces [7], [36]–[38]. Moreover, the variations 

of its length, density, cross-linking and arrangement, together with its kinetics and 

dynamics, directly regulate cell’s mechanical properties such as contractility, rigidity 

and motility [7], [37], [39]. Finally, the membrane as a whole has been seen to act as a 

global tensional sensor which, through the combination of cortical, substrate and 
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membrane tension, regulates cellular processes and parameters such as shape, 

polarity and motility [40]. Moreover, recent results suggest that the overall shape of 

the cellular membrane  is a separate signal source which can modulate mechanical 

signalling and ‘store’ information coming from both chemical and physical sources 

[41]. 

 

Figure 4 A representative scheme showing the processes and structures involved in cellular 

mechanosensing. An initial external mechanical stimulus (such as shear flow, ECM remodelling or cell-

cell contact) is sensed by the cell surface proteins which trigger a signalling cascade inside the cell. This 

cascade may lead to a modulation of gene expression at the nucleus that will impact on cell functions 

such as polarity, migration and fate.  Adapted from [42]. 

 

 Signalling elements, which work in tight interaction with focal adhesion proteins, 

are the second set of important ingredients that contribute to the cellular tensional 

homeostasis and mediate cellular force responses and contractility (Fig. 5). Among 

the main players that can be activated at the onset of a physical stimuli, we found the 

Rho-family GTPases, such as RhoA, responsible for inducing actin cross-linking and 

remodelling, protein phosphorylation and ultimately mediating gene expression by 

affecting the activity of transcriptional factors [7], [43]–[45]. Another signalling 

pathway which can be activated through integrin sensing and has been recorded to 

regulate cell differentiation and proliferation, is the mitogen-activated protein kinase-

extracellular signal-regulated kinase (MAPK-ERK) pathway [8], [17], [46]. 
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Figure 5 Simplified graphic depiction of the key signalling pathways connected to integrin 

activation in the cellular mechanosensing processes. Transmembrane receptors known as integrins 

mediate the external mechanical interaction between the cell and the ECM while at the same time 

being in direct contact with the internal signalling molecules that also make up the focal adhesion 

complexes. Upon mechanical stimulation (communicated by the integrins) these signalling molecules 

will trigger the signalling cascades MAPK and Rho that will lead to gene regulation at the nucleus, and 

mechanical responses from the actomyosin network, ultimately affecting posterior cellular response 

and adaptation.  Adapted from [17]. 

 

All the sensing machinery aforementioned safeguards the mechanical integrity of the 

cell against an environment that subjects it to a variety of exogenous forces such as 

shear stress, gravity, and compressive and tensile forces [47]. The proper 

understanding of how mechanical signals are assimilated and transduced into 

biochemical responses is of paramount importance. Dysregulation or malfunction of 

any of these sensing elements can affect the cell and the whole tissue, leading to 

apoptosis or progress into pathological conditions. Moore and collaborators have 

reported that the inhibition of the RhoA pathway affects the developing lungs by 

preventing branching angiogenesis and epithelial budding [48]. Other authors have 
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found that erroneous mechanical response from endothelial cells to turbulent blood 

flows can lead to a pro-inflammatory state which can develop into atherosclerosis 

[49], [50]. A higher uncontrolled cytoskeletal tension as a result of abnormal stromal 

interaction increases the risk of expression of malignant genes leading to tumours 

[18], [51]. 

 1.2.4      Extracellular matrix contribution to the cell 

mechanical state 

Even though I have focused so far on explaining why it is so important that the cell 

protects itself against extracellular modifications, we are missing the other half of the 

story. As it was hinted by the concept of dynamical reciprocity in the opening 

paragraphs, the cell not only relies on external cues and physical stimuli to thrive 

and develop (Fig. 6), but it also exerts forces and plays an active role in modifying 

the mechanical properties of its surrounding. As a matter of fact, tissue rigidity and 

exogenous and cell-cell forces play an important role on cellular activities [47].  

 

Figure 6 Graphic depiction of how the stress and physical stimuli from the cellular environment 

impact on the physiological state of the cell. Similar to what it was depicted on Figure 3, this 

condensed graph shows a minimum of cellular apoptosis when the stress that the cell senses is within 

the homeostatic range, and an increase in cell death outside this range. Adapted from [52]. 
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Indeed, this concept of the cell relying on mechanical stimuli from the environment 

was also posed by Grinnell in 1994: “As long as the tissue is under mechanical stress, 

cell proliferation and biosynthetic activity will persist. Once mechanical stress is 

relieved ... cells will switch to a non-proliferative phenotype and begin to regress 

even in the continued presence of growth factors.’’ [53]. 

 The role of the ECM in mechanically regulating the cellular behaviour and 

development has been thoroughly researched in the field of mechanobiology [47], 

[52], [54]. Kilian et al found that geometric features which increased actomyosin 

contractility promoted osteogenesis while reduced actomyosin contractility drove the 

stem cells towards adipocytes [55] (Fig.7). Geometrical cues have been also shown to 

control the positioning of branching during morphogenesis of mammary epithelial 

cells and primary organoids [56].  

 

Figure 7 Stem cells differentiation towards adipocytes or osteoblasts based on geometrical 

constraints. (A) Quantification of cells captured on rectangles of varying aspect ratio differentiating to 

adipocytes or osteoblast lineage. (B) Quantification of cells differentiating to either lineage when 

captured on fivefold symmetric shape. Adapted from [55].  
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In the case of tissues used to high loading, such as bones and cartilage, it has been 

reported that reduced mechanical stimulation results in a reduction of proteoglycan 

content and bone mineral density [47]. Moreover, further studies have shown an 

enhancement in the expression on bone-transcription factors, induced by 

MAPK/ERK pathways, on stiff matrixes in contrast with softer matrixes [46]. Bissell 

and Radisky have even claimed that an effective regulation or ‘normalization’ of the 

tumour mechanical environment can help in the prevention of cancer progression 

[57]. The rearrangement of the ECM physical properties inflicted by cell forces and 

protein deposition can also lead to pathologies in case of exacerbated or altered 

modifications. Fibrotic diseases appear as a consequence of abnormal or elevated 

ECM deposition by the cell [58], and increased matrix stiffness as a result of ECM 

remodelling can play a crucial role in tumour progression [59].  

 

1.2.5        Interrogating the homeostatic system 

From all of what it has been presented previously, it would seem to derive that 

understanding the mechanical interplay between the cell and its surrounding is vital 

for the treatment and prevention of a variety of diseases [47]. Unmistakably, we can 

talk about a dynamic feedback between the internal biochemical contractile 

machinery and the external active generated forces, as well as a reciprocal force 

interaction or force feedback loop in between the cell and its environment [47]. A 

better characterization of the mechanical properties of cells and cellular force 

dynamics can improve the diagnosis of their biological state and the understanding 

of the pathogenic basis of diseases [60]. 
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 1.2.5.1 Biochemical and genetic perturbations 

Several pharmacologic reagents have become a standard approach at the moment of 

characterizing the mechanical properties of the cell and its contractility. They consist 

mainly of small-molecule inhibitors, which are membrane permeable, that target 

different mechanosensing mechanisms and structures of the cell and are normally 

supplemented to cell growth medium during experiments. To recover the targeted 

cellular mechanism, the reagents have to be washed out from the medium. 

Blebbistatin has been well-established as a modulator of cell contractility by 

inhibiting molecular motor myosin II and thus the actomyosin network tension [61]. 

Polymerization processes of actin can be blocked using latrunculin or cytochalasin D 

[62] or enhanced by using jasplakinolide [63], a reagent known to bind strongly to 

filamentous actin. Nocodazole is an agent known to depolymerize microtubules and 

prevent FA disassembly [64]. The RhoA signalling pathway can be modulated 

through the use of rho kinase inhibitors such as Y27639 [65] or fasudil [66]. Upstream 

regulators of myosin phosphorylation such as ML-6 and ML-9 can also be used to 

modulate cellular contractility [67].  

The molecular-genetic methods intended at disrupting the mechanical properties of 

the cell can target both signalling pathways and structural proteins. This tool uses 

two main approaches: knockdown, the expression of one or more genes is reduced 

(with the use of siRNA), and knockout, genetic modification that inactivates an 

existing gene by replacing it or disrupting it. Therefore, a perturbation can be done in 

the cellular mechanosensing mechanism by targeting the gene or the mRNA 

responsible for the studied protein enabling the regulation or inactivation of it [68]–

[70]. The first method is generally reversible, unlike the second one where the 

targeted gene is disrupted and therefore the cell cannot express it anymore, unless 

exogenously added. 
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1.2.5.2 Physical perturbations 

Applying controlled external mechanical stresses to cells in order to study their 

mechanical properties has been done in many ways for the last forty years. 

Techniques have ranged from the conventional micropipette aspiration [71], [72] and 

cell poking [73], to deformable culture substrates [74] and fluid shear stresses [75], 

[76]. More localized and subcellular mechanical perturbations and force measuring 

techniques have been made with the use of optical [77] and magnetic [78] tweezers. 

These methods consist on manipulating surface-bound microbeads through the use 

of optical traps or magnetic fields, allowing the application of mechanical inputs 

specifically to integrin receptors in the membrane and their linked cytoskeletal 

counterparts [79].  

I would like, however, to focus on the attempts aimed at specifically probing and 

interrogating the cell tensional homeostatic system that have slowly increased in the 

recent years. Brown and collaborators presented tissue mechanical response against 

mechanical loading by using a culture force monitor where precise tensional loads 

were applied across a fibroblast populated collagen lattice, through a computer-

controlled microdrive motor [16]. A few years later, Mizutani et al used an elastic 

deformable substrate to probe single fibroblast stiffness responses and concluded 

that the cellular mechanical response to deformations was due to actomyosin 

contractile tension [80]. This backed up the idea that dynamical tensional 

homeostasis was regulated by the tensile forces that phosphorylated myosin would 

generate on already existing stress fibres, and not on the reorganization of the actin 

network. In parallel, many studies supported the importance of motor proteins in cell 

mechanosensitivity and identified myosin II as a main regulator of cytoskeletal 

tension and, hence a mayor responsible of maintaining tensional homeostasis in 

dynamic mechanical environment [81]–[83]. 
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Figure 8 Scheme showing the dependence of the tumour-malignant transformation with the 

exogenous stiffness evidencing the ERK- and RHO- mechanoregulatory circuits. An increase in 

the extracellular matrix stiffness prompts focal adhesion formation and subsequent activation of both 

Rho and ERK, ultimately resulting in inner cellular tension. Major matrix stiffening enhances the 

probabilities of oncogene activation, which may lead to “tumorigenesis”.  Adapted from [84]. 

 

With the intention of probing the role of integrins and the signalling pathways 

known to be involved in cellular contractility (Rho and ERK), Paszek et al subjected 

tumour cells to a wide range of matrix rigidities (Fig. 8). Their results showed that 

both signalling molecules are mayor players in the cellular mechanoregulatory 

system which connects the physical external cues sensed by the integrins, with 

signalling pathways that mediate cell proliferation and tissue phenotype [84]. From 

these observations they concluded that the cellular tensional homeostasis is favoured 
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in soft matrix but in the event of an abnormal rigidity increase that persists through 

time, this tensional regulation can be lost leading to malignant transformations in the 

cells favouring the apparition of a tumour. 

Although it had been demonstrated that a cell can respond to mechanical stimuli, 

little data had been presented to prove that there is a basal internal equilibrium stress 

state at the single cell level [85]. One of the first ones to do so was Fletcher and 

collaborators using Atomic Force Microscopy (AFM) as a direct force measurement 

technique, isolating the cell between a patterned substrate and the AFM tip (Fig. 9). 

They recorded steady-state cellular forces in time even after imposing mechanical 

displacement perturbations through controlled movements of the AFM cantilever 

[86]. 

 

Figure 9 Stable tensional state and response to displacement perturbations in isolated 

fibroblasts. (A) Depiction of the probing device. Isolating the cells between a micropatterned 
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substrate and an AFM tip enables both measuring and modulating forces while also imposing 

displacements, as mechanical perturbations, to individual contracting cells. (B-D) Application of a 1 μm 

displacement in different time windows shows a force response followed by a tensional stabilization. 

Adapted from [86]. 

 

Very recently, Zollinger and collaborators also studied the tensional basal state both 

of single cells and cell clusters through the use of Traction Force Microscopy (Fig. 10). 

Measuring the traction forces of cells in a continuous manner, they concluded that 

the  cellular force steady-state is in fact a cell-type dependent phenomenon [87]. 

 

Figure 10 Temporal fluctuations of traction forces in isolated and clustered cells of different 

types. (a-b) The normalized contractile moment of isolated endothelial cells presents significantly 

higher fluctuations than for the case of clusters. (c-f) Both fibroblasts and vascular smooth cells present 

steady state contractility at the single cell and multicellular scale. Forces were obtained using Force 

Traction Microscopy and each colour represents a different cell. The results obtained implied that the 

phenomenon of tensional homeostasis is cell-type dependent. Scale bars, 25 μm. Adapted from [87]. 

 

Finally, a recent and very interesting study done by Weng et al analysed the 

subcellular rheostasis of the cellular mechanosensing mechanism (Fig. 11).  Using 

stretchable micropost array cytometry and pharmacological perturbations of the 

contractile cellular machinery, they arrived to a biophysical model which provided a 
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quantitative characterization of single cell mechanical homeostasis [88]. Their results 

supported and re-vindicated tensional homeostasis, referred by them as mechanical 

homeostasis, as a single-cell phenomenon regulated mainly by the actomyosin 

network tension and the focal adhesions. 

 

Figure 11 Single cell mechanical homeostasis dynamics at the subcellular level. (a) Depiction of a 

single cell suffering a mechanical perturbation followed by the homeostatic process of regaining 

mechanical equilibrium. (b) Fibroblasts spread on the microposts and SEM image of the cell-micropost 

attachment corresponding to the white rectangle. Scale bar, 20 μm. (c) Upper row shows subcellular 

forces (yellow arrows) exerted on the microposts (red dots) before, during and after the mechanical 

stimuli. Lower row shows the fluorescently stained focal adhesions corresponding to the upper row 

images during the same states. The colour-coded arrowheads identify the changes in force and focal 

adhesions variations during mechanical stimulation. Scale bar, 10 μm. Adapted from [88]. 
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1.3 Summary 

The evidence showing the relevance of mechanical homeostasis in crucial processes 

across tissue, cellular and subcellular levels is varied and irrefutable. Tensional 

homeostatic balance is of great importance for the cell and mechanical forces are one 

of the main factors controlling it. A better understanding of the major mechanisms 

involved in modulating cell mechanical responses when faced with external physical 

stimuli is needed. Much work has been done addressing this issue. However, most of 

the methods lack molecular specificity in their manner of stress application; they 

either distort whole cells or large areas of cell membrane. Moreover, many 

experimental approaches seeking to probe tensional homeostasis at the single cell 

level have coupled external mechanical perturbations to cell mechanical readouts in a 

unidirectional manner. But tensional homeostasis relies on the bidirectional coupling 

between external mechanical cues and internal biochemistry circuits. The overall 

process implying dynamic feedback loops.  

We find that there is still work to be done and there is still a need for much better 

quantification so that functional interactions can be isolated and established.  For this 

reason we decided to design a novel approach where the perturbation could be made 

internally, rather than externally, and with very high spatiotemporal resolution 

under controlled and reproducible conditions. In the following chapter I will present 

and describe our approach in which we coupled a dynamic input, making use of the 

emergent and powerful technique of optogenetics, to a dynamic output measuring 

tool that will record the live cellular mechanical responses, patterned traction 

cytometry. 
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CHAPTER 2 – Our approach to interrogate the 

cellular tensional homeostasis 

 

2.1 Introduction 

Since our aim was to study the mechanical response of a cell to dynamical and 

transient tensional perturbations with high-temporal and spatial resolution, we 

needed a better method than the traditional ones. Physical external probes such as 

sharp tips or stretchable substrates can provide useful information about the 

dynamic general cell response to physical stimuli. However, they do not allow the 

possibility of pulling apart the internal cell tensional mechanism and connecting a 

perturbation with a specific internal response. Pharmacological perturbations have 

proven to be very effective at controlling internal nodes but they lack spatial control 

and temporal flexibility, particularly when considering their reversibility speed and 

the possibility of using them in multiple off-on cycles [89], [90]. Similar limitations 

are present when using genetic perturbation techniques, such as mutations, 

knockdowns and siRNAs [91], [92]. These are highly specific but relatively slow and 

broad in their effects with very little to none modulation possibilities causing 

generally permanent perturbations.  

Therefore, we turned our focus towards a more recent and powerful method that 

offers precise spatio-temporal perturbations and live-cell signalling activity readouts: 

optogenetics. In the following section I will briefly review how this approach was 

developed and the impact it has had in the scientific community. Afterwards, I will 

describe it in the context of my project. 
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2.2 Optogenetics 

 

It could be argued that using light to interfere in biological structures and processes 

is not a novelty. Biologists had already been using a few light-based methods to 

probe biological systems before the appearance of optogenetics. Such is the case of 

laser ablation and laser inactivation. These techniques enable high spatiotemporal 

resolution at the moment of inhibiting proteins, by destroying them [93], or 

understanding the role of cellular structures by simply ablating them [94]. 

However, not only these approaches can entail unwanted cytotoxic effects, but they 

also lack modular and reversible characteristics. Not to mention the fact that with 

these tools, biological signals or structures can be disrupted or destroyed but not 

triggered or induced. 

Optogenetics, on the other hand, brought about the possibility of intervening in 

biological processes in a highly precise, robust, reliable and reversible manner, hence 

revolutionizing science. 

 

 

Figure 12 Optogenetic system plugged to the head of a mouse. By selectively inserting opsins—

which react to light—into them, neurons can be activated or inactivated for research purposes Then, 

when light shines on the brain through optic fibres, only those neurons will respond and induce a 

certain behaviour in the studied animal. Early behavioural applications of the technique induced mice 

to act in certain, easily observable ways (left). A simplified graphical representation of a light-gated ion 

channel activated by light (right). (Source: Optogenetic methods Julich, John B. Carnett/GETTY). 
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Everything started when the Rhodopsins came into play back in the 70s. Rhodopsins 

are biological light-energy transducers and abundant phototropic mechanisms. They 

were first found in the early 1970s in the archaeal halophiles where their main 

function was as proton pumps used to generate a light-driven proton gradient as a 

source of energy for the cell. However, it was not until the year 2000 when, thanks to 

metagenomics, they were found in green algae Chlamydomonas reinhardtii [95]. 

This allowed for better isolation and characterization of their function. As a result, in 

the following years Nagel and collaborators described two membrane channel 

proteins responsive to blue light which when hit by blue photons, would suffer a 

conformational change, regulating the flow of positively charged ions [96], [97]. 

Having the genetic code for this membrane channel proteins there was no need any 

more for injecting light-sensitive reagents into cells as they would be the ones 

expressing them. From then onwards, the bioengineers took the lead. In 2005, 

Boyden and Deisseroth were the first ones to publish their achievement of using 

channel rhodopsin II for light-induced firing neurons with unprecedented time and 

spatial resolution, opening officially a new field: optogenetics [98] (Fig. 13). Allowing 

precise neural activity control, this tool revolutionized neurobiology, consequently 

being chosen method of the year in 2010 by Nature methods.  

 

Figure 13 Working principles of optogenetics. Electrical stimulation would induce a generalized 

action potential in the neuron axons that are in the vicinity of the electrode. Optogenetic allows for a 

selective excitation or inhibition of neurons action potential happening only on photosensitive cells. 

Adapted from [99]. 
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Although neuroscience was the first field to exploit and make use of this technique, 

the versatility and efficiency of the method attracted the rest of the scientific 

community [99]. Further tools and approaches where discovered and developed 

since then, turning optogenetics into a technique that enables real-time precise 

control of cellular processes, cells, networks and animal behaviour by using light-

activated proteins that affect membrane voltage or intracellular signals [100]. 

Several optogenetic systems have been designed to control spatio-temporally the 

activity distribution of a protein with such accuracy and specificity that activation is 

possible even at the subcellular scale. Moreover, these light-based perturbative tools 

fulfil the following properties: reversibility, are rapid and modular, and they allow 

for a direct readout of light-induced activity. The potential cytotoxicity of this 

method is almost negligible due to the fact that the light energies and wavelengths 

used to activate the photo-sensitive systems share the same range as the ones used 

for optical imaging [92].  

The working principle of these systems when subjected to light is based either on the 

significant conformational change of its main protein or on the high affinity in 

between two components (Fig. 14). The first case refers to a light-switchable allostery, 

meaning that the presence of light causes a conformational change on the 

photosensitive protein that can switch it to its active mode, a membrane channel for 

example. The second case exploits the association capabilities of two components. 

Being one of the two sensitive to light, it will suffer a conformational change when 

subjected to light that will strongly increase its affinity towards the other component. 

Both components by themselves have no signalling or triggering capabilities but can 

be easily coupled to other proteins or to specific parts of the cell. As a result, a target 

protein can be localized to a precise part of a cell or two separate components can be 

brought together to trigger a response through the use of the photosensitive system. 

Each of these systems has their practical considerations and has been used based on 

their advantages and adaptability.  
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Figure 14 Different optogenetic approaches depending on the process studied and the photosensitive 

protein. Adapted from [101]. 

 

 

2.2.1 The PHYTOCHROME B (PHYB) protein and PID6. 

 

First one to be used to enable light-controlled protein translocation, described by 

Levskaya et al [102], is an optogenetic system obtained from the Arabidopsis thaliana 

phytochrome signalling network. Upon red light (650 nm) illumination PHYB binds 

to its natural interaction partner, phytochrome interaction factor 3 (PIF3), and it 

dissociates when subjected to infrared light (750 nm). Depending on the biological 

process under study, the fact that a direct inactivation is needed gives higher control 

and temporal resolution to the experimentalist. The main issue with this system is 

the requirement of a chromophore only present in photosynthetic organisms, thus 

the need to be exogenously added when studying non-photosynthetic systems.  
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2.2.2 The CRYPTOCHROME 2 protein (CRY2) and CIB1/CIBN. 

 

Cryptochromes (Crys) are photoreceptors found almost in every living being. They 

require a ubiquitously expressed endogenous flavin adenine dinucleotide (FAD) 

chromophore that is characterized by blue light-induced reduction. CRY2, the most 

widely used cryptochrome, has been found in A. thaliana and upon blue-light 

exposure (405-488 nm) it homo-oligomerizes and binds to its partner, CIB1 

(cryptochrome-interacting basic helix–loop–helix 1), within seconds. Dissociation and 

return to initial state of both previously activated components happens 

spontaneously after ~5 minutes in the dark. In 2010, Kennedy et al described an 

enhanced Cry2-CIB dimerization system where only the N-terminal photolyase 

homology region (PHR) of the CRY2 was used and a shorter N-terminal version of 

CIB1 (CIBN) was tested. This modification rendered a smaller and more versatile 

dimerization system. In that same work they presented what is known as the split 

protein approach, where the protein under study is expressed as two inactive 

fragments that upon light absorption reconstitute into a functional protein [103].  

 

2.2.3 The LOV (Light-oxygen-voltage-sensing) domains. 

 

This optogenetic system consists mainly on the LOV sensory domains which have 

been described in several different organisms and which also use the ubiquitously 

expressed endogenous flavin as a chromophore. Hence, these domains are all 

sensitive to blue light (440-473nm). As a first strategy it can be used allosterically by 

changing conformation upon blue light and allowing, as a result, the activation of a 

protein of interest bound to it [104]. The second strategy was described by Yazawa et 

al in 2009 using the blue light-activated dimerization between the LOV protein FKF1 

and GIGANTEA, an interacting protein obtained from A. thaliana, to direct the 

localization of a signalling protein to the membrane in order to trigger a specific 
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signalling cascade [105]. A third strategy consists on using the light-induced 

homodimerization of a LOV domain bound to DNA, thereby regulating gene 

expression [102][101]. 

The pursuit of a smaller system, with enhanced capabilities and tunable properties 

led, three years later, to the appearance of what Strickland et al decided to call 

TULIPs. Tunable, light-controlled interacting proteins (TULIPs) derived from the 

LOV2 domain of Avena sativa phototropin 1 (AsLOV2) and its synthetic interaction 

with an engineered PDZ domain (ePDZ). Through bioengineering and mutation, 

TULIPs offer a tunable range of binding and kinetic parameters which makes them 

easily adaptable to signalling pathways with diverse sensitivity and response times 

[106].   

 

 

Figure 15 Proposed applications for three most widely used photosensory proteins: LOV domains, 

cryptochromes and phytochromes.  Adapted from [107]. 
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2.2.4 The Dronpa protein. 

 

This tool is based on fluorescent protein-based interactions that do not need small-

molecule chromophore. Upon light activation (390 nm) the quaternary structure of 

the Dronpa protein monomer changes inducing a dimerization of the system. The 

activity of a protein of interest can be modulated by fusing it to a Dronpa monomer 

and inducing dimerization with light, flanking it and thus inhibiting its function. 

Shining light at a wavelength of 490 nm reverses the system to the monomer state 

reactivating, at the same time, the protein of interest [108]. In contrast with the 

previously discussed approaches, Dronpa can be used to target proteins that cannot 

be controlled by relocalization. Moreover, the inherent fluorescence of this protein 

anticipates the need for an exogenous reporter or biological endpoints, reducing 

potential variability or delay in measurements [109]. 

 

Figure 16 Contrasting the different optogenetic systems described. Adapted from [110]. 
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2.3 State of the art of optogenetics in mechanobiology 

 

Recapitulating, the optogenetic technique allows for a reliable, robust probing of the 

system, at the subcellular scale, with precise doses and repetitions, highly modular 

and reversible, and capable of targeting varying steps in a signalling cascade (Fig. 

17). In other words, it enables the opening of the biochemical circuit’s black box to 

study each part of it with precise resolution and in a time-controlled manner.  

 

Figure 17 Benefits of optogenetic approaches in cell signalling and biochemistry. (a) Targeting a 

specific node in a signalling pathway to better understand the intermediates involved in it. (b) 

Possibility of studying single cell response avoiding distortion of data from multiple heterogeneous 

cells. (c) Being a reproducible and non-toxic method, the same cell can be probed in different 

conditions and be used as its own control. (d) The intensity of light stimulation can be modulated, 

hence obtaining a modulated activity or response in the cell. Adapted from [101]. 
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Since its discovery it has been given a diverse range of applications such as, 

controlling the firing of neurons [98], modulating protein activity [111], gene 

expression  regulation [112], [113], inducing signalling cascades [102], and even for 

metabolic engineering processes [114], among others. 

It is not surprising then that the field of mechanobiology decided to make use of 

optogenetic approaches. As it has been discussed in the first chapter, the 

mechanosensing machinery of the cells consists of both structural components and 

signalling pathways. With the aim to better understand these intracellular pathways 

and the interaction of the proteins involved in the cellular mechanical responses, 

recent work has been done to couple them to optogenetic probes.  

At the multicellular scale, a CRY2-CIB1 protein dimerization system was used to 

better understand the role of cell contractility during embryonic development by 

inducing cortical actin polymerization and cell contractility through the activation of 

a phosphoinositide PI(4,5)P2, a regulator of actomyosin contraction [115]. This 

approach enabled the analysis of the spatial range of force integration necessary to 

drive collective contractions and tissue invagination in a drosophila embryo with 

high spatio-temporal resolution [116]. 

Moving to the single cell level, in 2009, Yi Wu and colleagues designed a 

photoactivatable Rac1 protein to study its activity in cells by sterically blocking its 

interaction capabilities with a photosensitive LOV domain. Rac1 is one of the main 

members of the Rho-family GTPases, involved in the regulation of actin cytoskeletal 

dynamics, ultimately inducing the formation of protrusions rich in actin at the 

cellular edges [117]. By reversibly and repeatedly activating Rac1 to drive localized 

cell protrusions and ruffling, they could better understand the role of Rac activity in 

the generation of polarized cell movement [104]. 
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Figure 18 Working principle and cellular response to the activation of the photosensitive Rac1 

construct. (a) Graphic depiction of the optogenetic set-up used. Upon irradiation the LOV domain 

detaches from Rac1 triggering its activity. (b) Mutant Rac1 was obtained to diminish unwanted 

interactions with growth factors. (c) Light activation of a HeLa cell. (d) Localized photoactivation (red 

circle) evidencing the formation of ruffles and protrusions after repeated light pulses.  Adapted from 

[104]. 

 

The scope was extended shortly after to the other two important Rho-family GTPases 

Cdc42 and RhoA. Cdc42 drives, as well as Rac, the polymerization of branched actin 

via the activation of Arp2/3, inducing in this case the formation of filopodes and focal 

adhesion there where the filopodes contact the substrate (Fig. 18). RhoA, on the other 

hand, regulates the myosin activation, its crosslinking with the actin fibres, the 

presence of stress fibres enriched in actin and the formation of focal adhesions. 

Levskaya et al presented a light-switchable system based on the Phy-PIF interaction 

to induce translocation of the guanine nucleotide exchange factors (GEFs) 

responsible for the activation of the Rho- and Ras-family small G-proteins under 

study. Results demonstrated a global cell body contraction when triggering the 

recruitment of RhoGEF with light, and the possibility of inducing localized 

lamellipodia and actin assembly through the high spatiotemporal regulation in the 

activity of Rac and Cdc42, respectively [102].  

Having proven to be an important modulator of cell contractility and stress fibre 

formation, RhoA and its signalling pathway have been in the spotlight these last few 
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years. Taking advantage of the precision and high specificity of the optogenetic 

approach, Rao et al used a LOV2 domain to photoactivate a downstream effector of 

the RhoA signalling pathway, a diaphanous related formin mDia1. This enabled a 

better characterization of this signalling domain showing its role in inducing 

filopodia, lamellipodia and F-actin formation, and uncoupling it from the cell 

contractile response [118].  

 

Figure 19 Working principle and cellular response to RhoA light activation. (A) Scheme showing 

the RhoA signalling cascade. (B) Cartoon depicting the activation of RhoA through the recruitment of 

GEF to the membrane using a TULIP optogenetic set-up. Images and quantification of the relative 

fluorescence intensity increase upon activation of GEF recruitment to the membrane (C-D), F-actin 

polymerization and reinforcement (E-F) and myosin accumulation (G-H). Scale bar, 10 μm. Adapted 

from [119]. 
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As RhoA has also been shown to be involved in cytokinesis, TULIPs were used to 

gain precise and tight control of RhoA activity, through the photoactivation of 

RhoGEF, in order to better define the spatiotemporal regulatory logic of the 

contractile ring assembly at the final stage of cell division [119] (Fig. 19). 

 

All the work previously described had managed to expand our knowledge on how 

mechanotransductory signalling pathways work and can be regulated. However, not 

much had been done in understanding the dynamics of cellular force production and 

the force interaction with the extracellular matrix. To start addressing this, Valon and 

collaborators designed a system similar to that of Levskaya et al where the GEF 

catalytic domain responsible for the activation of Cdc42 (Intersectin) [120], or RhoA 

(RhoGEF) [121], was recruited to the cellular membrane or the mitochondria 

membrane. They introduced the CRY2/CIBN optogenetic system in MDCK cells and 

claimed to obtain a higher recruitment yield compared to PHYB/PIF6 or TULIPs 

[120] in a reproducible and easy to set up way. Through single and repetitive 

photoactivations of the RhoA pathways they could measure cellular traction force 

changes in a non-toxic and highly versatile manner, thus establishing an efficient and 

reliable tool for interrogating and controlling cell contractility and tissue deformation 

with a large dynamic range and a temporal control of a few tens of seconds [121] 

(Fig. 20). 
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Figure 20 Modulation of cell contractility by optoGEF-RhoA translocation. (a-f) Clusters of cells 

expressing the optoGEF-RhoA construct and their response before and after photo-activation. (g, I, k) 

Mean traction profile of cells expressing optoGEF-RhoA that will translocate to the cell membrane 

upon light stimulation. Force peaks can be observed during light exposure. (h, j, l) Mean traction 

profile of cells expressing optoGEF-RhoA that will translocate to the mitochondria membrane upon 

light stimulation. Decrease of force can be observed during light exposure. Scale bar, 20 μm. Adapted 

from [121]. 

In parallel, Oakes and collaborators used a similar approach but based on the 

LOV/PDZ interaction, in order to subcellularly activate the RhoA pathway and delve 

into the dynamics of actomyosin-based force generation [43] (Fig. 21). Their 
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experimental result, along with a molecular model presented in their work, 

demonstrated the elastic behaviour of stress fibres and identified zyxin, an 

established mechanosensitive protein [122], as a regulator of stress fibre mechanics. 

 

Figure 21 Cell contractile responses to increasing sub-cellular RhoA activation areas. (a-b) 

Evolution of stained vinculin and traction forces in a cell before, during and after photo-activation. The 

orange box indicates the stimulated region. (c) Quantification of the strain energy and average number 

of focal adhesions in time before, during and after a period of light stimulation. (e) Traction force 

images showing the force increase with sequential number of photo-activations and augmenting light 

illuminated region (orange box). (f) Time plot of the experimental (black line) and theoretical (red line) 

contractile response to photo-stimulation in activation areas with increasing size. (g) Schematic of the 

biophysical model used to describe the cell behaviour. Scale bar, 10 μm. Adapted from [43]. 

 

The work done by both last authors addressed and restated the tensional homeostatic 

mechanism present in the cell, while at the same time presented optogenetics as an 

ideal tool to interrogate such dynamic mechanism. 

The optogenetic approach presented in this work is the one developed by Valon et al 

to characterise RhoA signalling and induce cell contractility and traction forces. I will 

talk about it in the following section. 
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2.4 Our probing system 

 

2.4.1 The optogenetic set-up: CRY2/CIBN RhoA 

activation 

 

Briefly recapping, RhoA is a major regulator of cell contractility through the 

promotion of actin polymerisation via the downstream effector Diaphanous-related 

formins (Dia) and the phosphorylation of myosins via Rho-associated kinase 

(ROCK). In addition, the activity of RhoA regulates the enrichment of stress fibres 

and focal adhesion formation [45]. Being a clear modulator of the cellular 

mechanosensing mechanisms, and following the lead of the previously presented 

works, we decided to focus on the RhoA pathway as a way to interrogate the cellular 

tensional homeostasis. 

 

To do so we obtained the fibroblast cell line engineered by Leo Valon during his PhD 

thesis at Dr. Coppey’s lab, Curie Institute, Paris. We decided to use fibroblasts as a 

model cell system based on their normal exposition to tensional inputs in their 

natural microenvironment, and also due to their previous use in tensional 

homeostasis experiments. This NIH 3T3 optoARHGEF11 fibroblast cell line  has a 

plasma membrane CRY2/CIBN optogenetic system composed of two proteins 

expressed by the cell: CIBN-GFP-CAAX (CIBN) localized at the cell membrane with a 

CAAX anchor and CRY2PHR-mCherry-ARHGEF11 (CRY2), which is initially 

cytoplasmic. This CRY2/CIBN optogenetic construction to activate RhoA was 

developed during Dr. Valon’s PhD project [123] and used in a scientific publication 

to activate Cdc42 [120]. Such a system does not require the addition of any 

exogenous chromophore. When the cell is subjected to blue light (460 nm), CRY2 is 

recruited to the plasma membrane with a time window of a few seconds (Fig. 22). 

Recruitment to the membrane of the nucleotide exchange factor ARHGEF11 triggers 
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the activation of RhoA, which is naturally anchored to the cell membrane by its C-

terminus. Taking into consideration the fact that most intracellular signalling 

pathways are slower than the time of recruitment, the light-induced perturbation can 

be assumed to be instantaneous [120].  

 

The advantages of using this approach are manifold. In the first place, having a cell 

transfected with a RhoA activator instead of RhoA itself ensures that, upon blue 

light, the cell contractile response will be triggered by endogenous levels of RhoA. 

Respecting these endogenous levels guarantees that the cell’s tensional homeostatic 

response is the closest to the physiological one [121]. Secondly, the specificity of the 

tool ensures no other pathway or secondary protein to be activated apart from RhoA. 

Moreover, the amount of activated RhoA is directly proportional to the amount of 

blue light used, thus allowing for a modulated perturbation and an accordingly 

modulated homeostatic response. The versatility and reproducibility of the method 

allows for different activation cycles done on a same single cell without affecting its 

viability. 

 

Figure 22 The optogenetic system – CRY2/CIBN RhoA activation. (A) Scheme of the optogenetic 

system to trigger cell contractility. The system is based on overexpressing a RhoA activator (DHPH 

domain of ARHGEF11) fused to the light-sensitive protein CRY2-mcherry. The resulting protein is called 

optoGEF-RhoA. Upon illumination, CRY2 changes conformation and binds to its optogenetic partner 

A 

B 
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CIBN. To increase contractility, the translocation of optoGEF-RhoA is forced to the cell surface, where 

RhoA is located, by targeting CIBN-GFP to the plasma membrane. The system dissociates to its initial 

state spontaneously. (B) Confocal fluorescence images of a cell with the opto-construct before, during 

and after light activation. The time scale of maximum membrane recruitment after photo-activation is 

20~30 seconds while the dissociation time is 3~5 minutes. 

 As it was already stated, single cells balance internal and external mechanical stimuli 

through adhesion and cytoskeletal related forces following a process called tensional 

homeostasis. In other words, for the cell to maintain a mechanical equilibrium 

against external perturbations, there has to exist a constant mechanical feedback loop 

between the cell and the surrounding matrix. This implies that, if we are to 

interrogate such a system, a dynamic and rapid approach is required, both to induce 

a perturbation and to record and measure the cellular response. The optogenetic 

system of choice presents itself as an ideal probing tool, allowing rapid light-

mediated perturbations, with low toxicity and fast reversibility. In the following 

section I will present and describe the method in charge of dynamically measuring 

the cellular output: time resolved traction force imaging. 

 

2.4.2 Time resolved traction force imaging 

  

Techniques to study and quantify the force interaction between the cell and the 

extracellular matrix have been under development for the last 40 years. The main 

readout on which traction force imaging approaches are based is the deformation 

imposed by the cell onto the substrate to which it is attached. First observations of 

this were done by the pioneer Harris and co-workers in 1980 (Fig. 23A), where they 

attempted to quantitatively measure the elastic distortion and wrinkling phenomena 

occurring when a cell spread over a flexible silicone substrate [124].  Unfortunately, 

quantitative analysis was very complex due to the non-linearity between the 

wrinkling and magnitude of the applied cellular traction force. Therefore, 

suppressing the wrinkles was crucial for a proper analysis. This was finally achieved 

4 years later by Lee et al who introduced a stretchable non-wrinkling film that 
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incorporated beads as fiduciary markers of the film’s reaction to cell traction forces 

(Fig. , giving birth to the technique known as Traction Force Microscopy (TFM) [125].  

 

Figure 23 Pioneer traction force microscopy experiments. (A) A fibroblast attached to a silicon 

rubber substrate that wrinkles under the exerted cellular force. (B) Graphic depiction of the non-

wrinkling substrate. Small arrows represent the pulling forces exerted by the cell on the substrate and 

the long big arrow represents the direction of migration. (C) Phase contrast image showing a cell 

spread over the silicon substrate with latex beads embedded.  Scale bar, 50 μm. Adapted from [124], 

[125]. 

   

2.4.3 Traction force microscopy 

 

Since the seminal work of Lee et al, traction force microscopy became the standard 

method to study the cellular traction forces produced by stationary or migrating cells 

on elastic substrates [126]. The transition from glass substrates to elastic substrates 

was a tipping point in mechanobiology since in their natural environment the most 

common attachment site for a mammalian cell is another similar cell or the 

extracellular matrix. Such materials have elastic moduli on the order of 10 to 10.000 

Pa against petri dishes which have elastic moduli of 1 GPa [127], [128] (Fig. 24). 

Usually consisting of polyacrylamide (PAA) or polydimethylsiloxane (PDMS), these 

elastic substrates can be tuned to a specific physiologically relevant stiffness and 

coated with extracellular matrix proteins such as fibronectin or collagen.   
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Figure 24 Scheme of physiological tissue rigidity, from fat to cardiac muscle, compared to a rigid dish. 

Adapted from [129]. 

Fluorescent microbeads are embedded close to the surface of the polymer gel and are 

the markers which will aid the quantitative traction force measurement. When a cell 

is adhering to the soft substrate it will exert forces through its adhesion sites 

provoking a deformation. Consequently, as the gel is deformed the microbeads will 

suffer a displacement from their initial position. Knowing the mechanical properties 

of the substrate and calculating the microbeads displacement, the cellular traction 

forces can be reconstructed. In order to achieve this, two images are needed: the 

image of the beads when the cell is adhering and deforming the substrate and the 

beads image when the cell has been removed and the gel has elastically returned to 

its original configuration. The displacement field of the substrate’s top surface is 

obtained when comparing both images. To estimate the traction field, one of the most 

widely used analytical method is known as the Boussinesq formulation [130], first 

adopted by Dembo and Wang [131]. Calculation of the Bousinessq formulation was 

significantly improved later on by Butler et al by solving the equation using Fourier 

transform, coining the new term of traction field calculation as Fourier transform 

traction cytometry (FTTC) [132], [133]. 

  

2.4.4 TFM theoretical description  

 

The aim of the traction force microscopy technique is to calculate the forces (F) 

exerted by a cell on a continuous substrate using the deformation measurements. To 

do that experimentalists need to solve an inverse problem that is ill-posed due to the 
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presence of noise. From this inverse problem solution, it is possible to calculate 

traction forces at each adhesion site by using linear elasticity theory. Here linear 

theory of elasticity has been used to calculate the cellular stress field [134]. For FTTC 

calculation the substrate is considered to be homogeneous and a linear elastic semi-

infinite half space. The prepared polyacrylamide gel has to be thick enough for this 

assumption. Both the lateral distance over which displacement is measured, and the 

lateral dimension of force or deformed area should be small with respect to the 

substrate thickness in order to approximate semi-infinite elastic continuum to finite 

one. Thickness of our gels is 70 - 80 µm as considered for all experiments. The 

displacement vector induced by cellular forces at any point can be written as ui on 

the elastic substrate as convolution form:  

 

Where ui represents the experimental displacement and fj the desired traction field. 

The force field includes forces from all other points x apart from the applied point of 

force. Gij(x) is the Green function which includes the mechanical properties of the 

substrate used and can be written in index notation as 

 

 

or in full form as 

 

 

Where 

 

 

(1.1) 

(1.2) 

(1.3) 
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E is the young modulus and ν is the Poisson ratio of the substrate under 

consideration. 

The Green function for the system under consideration has the following properties: 

1. It has singularity at the origin. 

2. It varies as 1/r. 

 

This makes the inverse problem of extracting the force more complicated since the 1/r 

factor has long range effect. Mathematically three standard methods have been 

established to calculate the force from the displacement field: 

1. Boundary element method (BEM) [135]. 

2. Fourier transform traction cytometry (FTTC) [132]. 

3. Traction reconstruction with point forces (TRPF) [136]. 

 

BEM technique is based on inverting a large number of linear equations in real space. 

Hence it requires long computational time and in exchange a very high resolution 

can be reached. FTTC method solves the inverse problem in Fourier space which 

turns out to change the previous convolution (1.1) in a simple matrix multiplication 

making the computation easy and considerably less time consuming. Some recent 

advances in the technique called TRPF have been shown by Schwarz et al [137]. TRPF 

gives a better accuracy in point force measurement, but it requires a prior knowledge 

of focal adhesion placements that turns out to add microfabrication steps in the 

experimental set-up. Comparative study conducted by Sabass et al demonstrated 

that FTTC, when combined with a proper regularization parameter and filtering, is 

comparable with results obtained by using BEM0 [136]. 

 

As one of our goals is to provide statistical measurements, we have chosen to 

implement a home-made FTTC algorithm for our cell traction calculation. A 

MATLAB expert in our group, Irene Wang, developed a Fourier Transform Traction 
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Cytometry software which combines Particle Image Velocimetry (PIV) and Particle 

tracking for displacement field measurements. 

 

2.4.4.1 Displacement field extraction  

 

To determine cell-induced displacement field, the very first step of the analysis is 

global correction of stage drift using images of beads before (stressed) and after 

(relaxed) killing the cell. Drift correction is achieved by cross correlating the two 

images. Position of the maximum peak of cross-correlation corresponds to the global 

translation. After determining this maximum cross-correlation in between stressed 

and non-stressed bead images, translation is corrected and bead images are resized 

to the same dimension. On the first step of displacement field analysis, we perform 

PIV calculation, where stressed and relaxed bead images are overlapped and 

subdivided into small windows. Here all the small window sizes are kept constant, 

typical size of 64 or 128 pixels. Cross-correlation is obtained between the 

corresponding pair (stressed and relaxed) of bead images [131], [136]. Mean 

displacement is calculated from the peak of the maximum cross-correlated 

image[132], [138], [139], then each bead displacement is mapped using particle 

tracking in each sub-window. A schematic diagram (Fig. 25) shows the displacement 

field calculation. The new displacement for each bead turns out to be: 

 

 

 

 where i corresponds to each PIV window. Xi gives the average displacement in each 

case and the value of Xi is constant for the all beads on the same PIV window. This 

calculation needs to determine the bead identity as the displacement can be 

measured when initial and final position of the beads are known. PIV requires a large 

enough window to yield accurate values. Therefore, there is a compromise between 

resolution and accuracy. 

(1.4) 
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Figure 25 Schematic diagram showing the displacement field determination by Particle Image 

Velocimetry and particle tracking. Adapted from [140]. 

 

During particle tracking there will be no ambiguity between a bead and its 

neighbour in the radius of bead displacement, as large displacements have already 

been corrected. The accuracy of the measurement will depend on the bead density 

which translates into a good spatial resolution. These two step processes (PIV and 

Particle tracking) help to track the beads more accurately. A grid is designed on the 

displacement field with regular intervals. By interpolation we obtain a field vector on 

each node of the grid as shown in figure 26. 

 

2.4.4.2 Traction field determination 

 

 As previously described by Butler et al 2002 [132] we used Fourier transform (FT) to 

solve the inverse problem. Thus, matrix convolution equation becomes a simple 

matrix multiplication. Ğ(k) becomes diagonal in Fourier space. After Fourier 

transform eq (1.1) becomes: 
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Where ũ(k), Ğ(k) and ~f(k) are the displacement field, Green’s tensor, and force 

field, respectively, in Fourier space. And k is the wave vector in the Fourier space. 

 

 

 

Where 

 

 

It is easy to calculate Ğ-1(k) since it is diagonal in Fourier space. The displacement 

field ũ(k) is calculated by Fourier transform. Since we have obtained the 

displacement field in regular mesh, it fulfils the requirement of the Fast Fourier 

transform. Force field is calculated in Fourier space by multiplying the displacement 

with the inverse of the Boussinesq Green function. It has been shown before that 

inverse problem is “ill-posed” in the presence of noise and spatial resolution of force 

can be achieved by adapting a regularization scheme [136], [137]. With the 

regularization Fourier transform equation becomes: 

 

 

(1.5) 

(1.6) 

(1.7) 

(1.8) 
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For the regularization kernel Ĥij (x-x’) 0th order regularization has been chosen. 

Finally, force is mapped into real space by inverse fast Fourier transform. After 

calculation it is then transformed back to the real space by inverse Fourier transform 

to map the traction force. 

In the following figure we present an example of classical traction force calculation 

with NIH 3T3 cells cultured on non-patterned polyacrylamide gel substrate by using 

the technique as described before (Fig. 26). 

 

 

Figure 26 Classical traction force calculation on a single cell. (A) Brightfield image of a cell cultured 

on 5 kPa soft substrate (B) Image of the fluorescent beads embedded on the soft gel (C) Cell force 

map showing the calculated force arrow at each point plus the two main force axes (green and violet) 

and a reference line (red) (D) Cell stress map with colour bar showing the intensity of stress exerted by 

the cell (in Pa). Scale bar, 20 μm.  
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To understand more about cell-substrate interaction, contractile or strain energy is 

also calculated by integrating the traction force times the displacement over the 

whole area of an individual cell. The strain energy or contractile energy U is equal to 

the net force applied by the cell on the substrate integrated over the whole projected 

surface area of the cell. The element of the shear moment matrix can be written as: 

 

 

 

In other words, the strain energy represents the energy used by the cell to deform the 

substrate while the total force represents the non-vectorial sum of each point force 

exerted by the cell without considering the gel displacement or the cell area. The 

FFTC technique we have implemented has the advantage to be computationally not 

intensive. It requires a few seconds to analyse the force field. Making use of PIV and 

PTV coupled to FTTC technique results in a highly accurate displacement field 

determination. 

 

2.5 Proof of concept – Testing our approach 

 

Having coupled optogenetics as a dynamical input with traction force microscopy as 

a dynamical output we were ready to interrogate the tensional homeostasis of 

fibroblasts. Unlike Valon and Oakes, who mainly probed the mechanical responses 

of either multicellular assemblies or at the subcellular scale, our interest was to focus 

on the single cell global homeostatic response.  

 

If we consider the mechanosensing machinery of the cell as a closed pre-stressed 

structure, it follows that an accurate way of studying it is to measure its global 

response instead of a localized one. In other words, to understand the tensional 

cellular behaviour as an integrated, hierarchical system rather than as isolated parts.  

(1.9) 
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In figure 27 we present a graph showing the time course of the total force of single 

cells with a 100 ms photoactivation at t=10 minutes. The cells analysed were freely 

spreading on a homogenous layer of fibronectin, deposited over a polyacrylamide 

layer with a Young modulus of 4.47 kPa . Observing the colour code, which identifies 

different cells with increasing total cell area from blue to red, we could conclude that 

there is a positive correlation between the basal traction force level and the cell size. 

Moreover, when quantifying the relative force increase upon photoactivation of 

every cell, we found a tendency that would also indicate a positive correlation 

between cell size and force response.  
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Figure 27 Freely spread cells force dynamics upon photo-activation. (A) Quantification of the total 

force in time for cells expressing the optoGEF-RhoA construct. The light-blue discontinuous vertical 

line represents a light pulse of 100 ms exposure time at time=9.75 minutes. Each coloured curve 

A 

B C 
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represents one cell and the colour code used is related with an increase in cell size from blue to red. 

(B) Time plot of the total force for a single cell subjected to a light pulse of 100 ms exposure time. (C) 

Quantification of the relative force increase upon photo-activation. Each blue dot represents a single 

cell and its value was obtained by subtracting the basal tension to the highest point of the force peak 

after photo-stimulation. 

 

At this point, it is worth rising three arguments that will narrow down our study and 

support the addition of another ingredient to our experimental approach: 

 

1) It has been recorded in the work of both Valon and Oakes that the cellular 

contractility increase, as a result of photoactivation, does not induce changes 

in focal adhesion morphology or distribution, at least for the conditions used 

in those experiments [43], [121]. 

2) The work done by Mizutani and collaborators concluded that the mechanical 

cellular responses to the induced physical perturbations originated with the 

contractile tension generated by the stress fibres. This would imply that the 

dynamical tensional homeostasis is carried out mainly by the actomyosin 

network [80]. 

3) The findings of Valon and Oakes also showed that light stimulation does not 

induce de novo stress fibre formation, hence implying that the dynamic 

mechanical homeostatic response could mainly be modulated by the already 

existent actomyosin network, and not by a reorganization or reassembly of it 

[43], [121]. 

 

As a matter of fact, the cellular actomyosin skeleton is not a randomly arranged 

network. Work done on cell shape and actin organization [35], [141], along with 

results obtained during this project, show that depending on the cell geometry, size 

and matrix rigidity, actin filaments and stress fibres present a certain level of order 

and organization (Fig. 28). The geometry and mechanics of the cellular environment 

impact on cell architecture and play a notable role by modulating the forces 

produced by cells. 
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Figure 28 Impact of different micropatterned geometries in the cellular actin skeleton and stress 

maps. (a) Top row: fluorescence fibronectin images of a non-patterned substrate and 3 different 

adhesive geometries. Bottom row: actin stained cells spread on the 4 different substrates (non-

patterned, Disk, Pac-man and bow). Scale bar, 10 μm. (b) Representative image showing the overlap 

between the bead image before and after detaching the cell, evidencing the gel deformation. (c-d) 

Experimental and theoretical force traction fields, evidencing how the geometry of the adhesive 

fibronectin patterns induces a particular stress distribution. Adapted from [141].  

 

The aim of this project is to study the spatio-temporal tensional homeostatic response 

of a cell to dynamic perturbations of its internal signaling pathway. It has been 

shown that a main regulator of this mechanical response is the actomyosin network. 

However, considering that this network depends on factors such as size, geometry 
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and rigidity, and that tensional homeostasis intrinsically relates tensional balance to 

cell shape regulation, the interplay between internal machinery perturbations and 

external forces generations would appear to be best studied in situations where cell 

shape can be controlled. In this way we can actually manage to narrow down 

possible variables, being able then to examine effects of single parameters that are 

often coupled. As a result of this we can better understand the link between cellular 

force and stress energy dynamics with the actomyosin network arrangement. For 

that purpose and through the use of micropatterning techniques, we introduced a 

new component to our experimental approach that would impose specific 

geometrical constraints: patterned traction cytometry. 

 

2.6 Patterned traction cytometry 

 

This approach couples microfabrication techniques with force imaging. Using a 

combination of cell micropatterning and traction force microscopy on soft elastic 

substrates it is possible to systematically probe the existing relation in between cell 

shape and cell force generation in response to ECM physical properties.  

 

2.6.1 Micropatterning 

 

Microfabrication is a very useful approach in cell mechanics as well as in fluid 

mechanics. The main interest for researchers relies on the possibility to design model 

environments with fixed boundary conditions (micropatterns, microwells, 

micropillars etc.). By designing the artificial environment, cell internal organization 

and multi-cellular assemblies can then be modulated enabling at the same time a 

statistical analysis of cell morphological behavior.  
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The geometry and architecture of the external matrix surrounding the cell can be 

mimicked and tailored using surface micropatterning. This technique is based on the 

fabrication of extracellular matrix (ECM) protein patches of controlled size and 

shape, called micropatterns, surrounded by antifouling polymers which prevent the 

cell or other proteins from nonspecific adhesion (Fig. 29). It has been widely shown 

that the cell adhesive microenvironment geometry regulates many vital physiological 

processes such as cell shape, internal cell organization, cell fate, differentiation, etc. 

[35], [142]. Studies have proven that cell shape plays a role in various cellular 

processes, such as focal adhesion assembly [143] or stem cell lineage commitment 

[144]. 

 

 

Figure 29 (A) Micropatterns on acrylamide gel after detachment from the initially patterned surface. (B) 

Plot profile of ECM protein fluorescence measured along three micropatterns confirms the specificity 

of the coating, showing reproducible spacing between patterns and robust fluorescence intensity. 
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The micropatterning technique used is based on the one already described by 

Vignaud et al [142]. During the procedure the patterned soft substrate is obtained 

directly from the photomask, ensuring in this way a very high spatial resolution. The 

patterning process is efficient at large scales. The great interest of this technique is 

thus to fabricate tens of thousands of patterns at a time on the same coverslip. The 

patterning substrate of choice is polyacrylamide hydrogel (PAA), the rigidity of 

which can be modulated to very low Young modulus, around 0.5 Pa and higher up 

to 40 kPa, by controlling the concentration of the acrylamide and bis-acrylamide used 

for polymerization. 

 

The interest of working with polyacrylamide gels is manifold:  

 

1. Polyacrylamide (PAA) is a soft elastic material that allows experimentalists to 

measure cellular tractions forces.  

2. PAA is very transparent enabling imaging through the gel.  

3. PAA is very easy to prepare.  

4. PAA is mechanically very stable and its mechanical properties can be easily tuned.  

5. PAA material is biocompatible. 

 

In recent years, micropatterning on soft substrates [145], [146] has enabled the study 

of traction forces associated with a given cell shape. Consequently, traction forces 

were found to increase with the cell spreading area [147], [148] and cellular force 

distribution was shown to be strongly affected by the cell aspect ratio [149], [150]. All 

of these studies where done on soft substrates using adhesive patterns with convex 

shapes, such as full disks, squares or rectangles [55], [151]. Such patterns made it 

possible to control the overall shape and area of cell envelope. Considering that both 

the spatial organization of the ECM protein and the substrate stiffness have 

consequences for cell physiology it is logical to combine both in order to faithfully 

reproduce and control cell microenvironment [142]. 
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2.7 Summary 

 

Pulling together the techniques described in this Chapter, we developed a unique 

tool coupling a CRY2/CIBN optogenetic system with patterned traction cytometry. 

Such a set-up would enable us to apply global internal perturbations to living single 

cells via reproducible and highly controlled pulses of blue light (460 nm), while 

acquiring traction force cellular responses with a subcellular resolution in real time. 

Leveraging the unique capability of systematically activating the endogenous level of 

RhoA, we can successfully characterize the dynamic cell contractile response by 

triggering the RhoA signaling pathway in a controlled manner with high 

spatiotemporal resolution. Moreover, the addition of geometrical constraints, 

through the use of micropatterns, enables the control of actomyosin organization, 

enabling a deeper understanding of its role in dynamical tensional homeostasis. 
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Chapter 3 – Results and model 

3.1 Tuning the set-up 

 

The starting point of our experimental quest was to corroborate some of the 

statements done during the introduction. In the first place, we needed to confirm the 

existence of a basal tensional level in a cell constrained to a micropattern. As far as 

we knew, the main record of this had been presented by Webster and colleagues 

when studying the tensional homeostasis in single fibroblast, by constraining the cell 

in between an AFM cantilever tip and a fibronectin coated micropatterned substrate 

[86]. The following step would be to tune and characterize the optogenetic system, 

verifying the onset of contractile episodes upon light activation and testing the 

reproducibility and modularity of the approach. The confirmation of the previous 

steps would then enable us to start the tensional homeostasis interrogation and its 

connection with the actomyosin network. 

 

3.2 Choosing the micro-pattern geometry 

 
We fabricated soft substrate micropatterns with high spatial resolution to constrain 

the cell under study to a specific adhesive geometry which would remain virtually 

unaffected. The geometry of choice was a full circle or disk-shaped micropattern with 

a projected area of 1000 um2. The choice of geometry was not arbitrary. Studies have 

shown that micropatterns that present corners or asymmetric geometries can 

modulate the polarity and organization of the cellular actomyosin network [151]–

[153] (Fig. 30), hence imposing a bias on the cytoskeletal tension. It is in our interest 

to study the cells dynamic tensional homeostasis and its actomyosin network with 

the least number of pre-imposed mechanical stresses. For this reason, we designed a 

circular micropattern where we expected the cell to present a more unbiased 

behavior [152]. 
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Figure 30 Lamellipodia behaviour on micropatterned endothelial cells. Actin Fluorescence 

microscopy image of cells spread on 50 μm diameter circular micropattern (A) and on a 40μm x 40μm 

square adhesive geometry (B). DAPI stain in blue enables the visualization of the nuclei. Comparison in 

between both cases show that cell processes start preferentially from the corners. Adapted from [152]. 

Studying only cells which covered the full extension of the disk-shaped micropattern, 

we used live traction force microscopy to record the tensional state of a cell 

throughout time and static traction force microscopy to obtain higher statistical data. 

In parallel, we used phalloidin to stain the actin cytoskeleton and study the stress 

fibres organization. Observing the cellular force and stress maps together with the 

actin staining (Fig. 31) we encountered our first striking result. Being in a completely 

symmetric shape, we had expected the cell to present isotropic force behavior and a 

random actin distribution. From the force and stress images obtained we could see a 

polarized cell with what it seemed a bipolar force pattern. This was further 

supported by the fact that the stress fibres presented a clear direction of alignment 

instead of a random disorganized one. 

 

 

Figure 31 Fibroblast constrained to a circular micropattern of 1000 um
2
 adhesive area. (A) Disk 

shaped fibronectin micropattern on polyacrylamide hydrogels with 1000 um
2
 surface area. (B) 

Individual actin-labelled cell. (C) Bright-field image merged with respective force maps and two main 

force cell axes. (D) Individual stress map calculated by Fourier Transform Traction Cytometry shows 

that traction forces are localized at cell contour. Both (C) and (D) show a bipolar force pattern. 
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In order to better quantify and characterize this potential polarized behavior of the 

constrained cell we decided to calculate the first order moment of the force 

distribution [132], also known as force dipole. This is defined as a 2x2 tensor Mij, 

which has energy dimensions and describes the contraction/dilation forces as well as 

the torque applied by the cell. The elements Mij are obtained by integrating the 

coordinate ri times the traction stress Tj over the cell envelope: 

 

𝑀𝑖𝑗 = ∫𝑟𝑖𝑇𝑗(𝒓)𝑑𝒓 

 

Since the net torque exerted by the cell is expected to be zero, the matrix M is 

symmetrical in theory. Hence, it is possible to find the principal contractile axes by 

applying a rotation operator to obtain a diagonal matrix. In this description, the force 

distribution is reduced to two contractile dipoles along the two principal directions 

(Fig. 32). 

Practically, the first order moment tensor M is calculated from the experimental 

traction map for individual cells and the dominant orientation is determined from 

the direction of the eigenvector corresponding to the largest eigenvalue. This 

direction should indicate the cell orientation in the case of a polarized force pattern 

(for further information please see [151]).  

 

Figure 32 Graphic depiction of the polarization degree. Values vary in between 0, where both main 

force axes are equal and isotropic, and 1, where all the cellular force is directed towards one axes 

implying maximum cell polarization. 
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The division of the main contractile dipole (λ1) by the second one (λ2) yields what we 

consider as the cellular force polarity degree. Figure 33 explains it graphically. 
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Figure 33 Quantification of the polarity degree of fibroblasts cultured on a disk-shaped micropattern 

of 1000 um2 adhesive area. Each blue dot represents a cell and 135 cells were analysed. 

 

From a population of 135 cells we found a mean value for the polarization degree of 

0.1928. This result is not strong enough to consider that cells on the studied 

micropattern present a high polarization. However, it showed that even when 

constrained to a completely symmetric geometry the cell will still attempt to polarize 

and align in a specific direction. 

 

3.3 Tensional homeostasis in a constrained cell 

 

To record the live tensional state of cells on the circular micropattern we used live 

traction force microscopy. Pictures of the cell and the microbeads embedded on the 

soft gel were taken every 20 seconds during a period of 52 minutes. The stack of 

images obtained from that experiment was used to reconstruct the traction forces 

exerted by the cell on the substrate during that time window. A total of 23 cells were 

studied and their tensional profile was obtained and graphed. Both the non-vectorial 

sum of all the forces exerted by the cell (Total force) and the strain energy are shown. 

In the graphs of figure 34 we can see an average of the studied cell population 



     

 

 61 

showing a steady-state in the cellular forces with time, thus confirming the concept 

of a stable tensional homeostasis. The averaged strain energy showed a mean value 

of 2.086e-13 ± 7.996e-015 J and a variation coefficient of 3.83%, and the averaged total 

force showed a mean value of 434.1 ± 9.150 nN and a variation coefficient of 2.11%. 

Both force and stress values were consistent with previous observations [35], [139], 

[141], [151]. The coefficient of variation shows the extent of variability in relation to 

the mean of the population and it’s a good measure of how much the tensional level 

fluctuates. 

 

 It is important to point out that this stability was studied in the course of 52 minutes 

were none of the cells suffered cell division or detachment from the micropattern. 

Vianay et al have very recently shown that traction forces vary as the cell goes 

through its natural cycle of division [154].  
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Figure 34  Time course of the strain energy and total force for cells spread on the disk-shaped 

micropattern. Full lines show mean values, shaded regions correspond to standard deviations. The 

curves represent averages of the reduced set of 23 circle-patterned cells and the duration of the 

experiment was of 52 minutes. 

  

We can corroborate, from the discussed results and for non-dividing cells in the time 

window studied, the existence of a stable cell tensional state that is not affected or 

hampered by constraining the cell to a micropattern. We can now carry on with the 

photo-perturbations. 
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3.4 Tuning the optogenetic system 

 

As it was described on Chapter 2, the experimental approach used involves a 

CRY2/CIBN optogenetic system, developed originally by Dr. Valon at the Curie 

Institute in Paris [120]. Upon blue light activation, this system relocalizes the 

nucleotide exchange factor ARHGEF11 to the cell membrane bringing it closer to 

RhoA and, consequently, triggering the activation of the RhoA signaling cascade. 

 

However, there is an extra feature in this optogenetic construction which consists of a 

mCherry reporter linked to the CRY2 molecule. It gives the advantage of testing the 

system to confirm the interaction of the CRY2/CIBN couple before tackling the 

analysis of the RhoA activation. An increase of mCherry fluorescence in the 

membrane and a depletion of it in the cytoplasm right after photo-activation, 

confirms the well-functioning of the optogenetic system (Fig. 35). Failure to see such 

recruitment would imply that the cell has lost the optogenetic construct and further 

analysis is futile. 

 

 

Figure 35 CRY2 membrane recruitment upon blue light (480 nm) activation. Fluorescence confocal 

microscopy images of a cell cultured on a disk-shaped adhesive island. During the “light-off” periods 

the CRY2-mCherry construct is cytoplasmic and this can be confirmed by an homogenous intensity 

with exception of the nucleus. When the blue light is switched on CRY2 translocates to the cell 

membrane where CIBN is anchored and this can be confirmed by an intensity increase at the cell 

edges.  
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Once the CRY2 recruitment to the membrane upon light activation was confirmed, 

we could address the contractile response of the cell to the photo-perturbation.  

 

In the following two graphs on figure 36, we present the two main experiments 

aiming at tuning and characterizing the optogenetic system. In the first graph we can 

see the averaged strain energy profile of 7 individual cells being subjected to a 50 ms 

pulse of blue light followed by another one of the same exposure time 15 minutes 

later. Not only there is a clear response to the perturbation and a return to the 

tensional homeostatic level, but there is also an evident reproducibility and 

robustness in the method.  
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Figure 36 Cell tensional response to repetitive or modulated light perturbations. Full lines show 

mean values, shaded regions correspond to standard deviations. The curves represent averages of the 

reduced set cells. Light blue dotted lines represent light activation events.  (A) Quantification of the 

mean strain energy over 42 minutes for 7 cells on disk-shaped micropattern subjected to one 50 ms 

pulse of blue light followed by another one of the same exposure time 15 minutes later. (B) 

Quantification of the mean strain energy over 47 minutes for 12 cells on disk-shaped micropattern 

subjected to three pulses of increasing exposure time (10 ms, 20 ms , 50 ms) separated by a period of 

10 minutes every time. Both graphs show clear tensional response upon light activation with a 

successive return to basal state. 

 

These last two characteristics are also supported in the second graph with 12 cells 

analysed, where we also find the possibility of a modulated response dependent on 

the amount of light used for the perturbations. The light pulses on the second 

experiment were of 10, 20 and 50 ms of exposure time. Consistent with what is 

shown in Dr. Valon’s work [123], where the recruitment intensity increases with the 
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light exposure time (Fig. 37), we find the same positive correlation between the light 

exposure and the cellular contractile response. 

 

Figure 37 Membrane recruitment of the CRY2/CIBN system upon increasing time exposure light 

activations. Quantification of fluorescence increase in the same cell, with a light exposure variation 

from 3 to 200 ms, and constant laser power. Adapted from [123]. 

.  

In a more detailed analysis of the graphs in figure 36, it can be seen that a light pulse 

of 50 ms time exposure induced an averaged cellular contractile energy maximum 

increase of 3.20456E-13 ± 1.34598E-13 J in 2.025 ± 0.56 minutes. The relaxation time of 

the system to the basal tensional state was 8.61 ± 1.82 minutes. For 20 ms light pulse 

the maximum stress amplitude 1.28448E-13 ± 9.10807E-14 J was achieved in 1.73 ± 

0.41 minutes with a return to equilibrium in 3.44 ± 0.74 minutes. Finally, a light pulse 

of 10 ms exposure time induced a contractile maximum increase of 4.51817E-14 ± 

4.01348E-14 J in 1.42 ± 0.42 minutes with a time relaxation of 2.54 ± 1.15 min. This 

results seem to imply a correlation in between the amount of light used and the cell’s 

tensional response, both in amplitude and time. 

 

Having confirmed the tensional homeostatic behavior in constrained single cells and 

characterized the probing system we can move on to the more detailed analysis and 

interrogation of the cellular dynamical contractile responses.  

 

 



     

 

 65 

3.5 Mechanical adaptation to area changes and 

perturbations 

 

As presented at the end of Chapter 2, during the analysis of the tensional dynamic 

response on freely spread cells, we found a positive correlation between the basal 

traction force level and the cell size. Moreover, when quantifying the relative force 

increase upon photoactivation of every cell, we found also a tendency that would 

indicate a positive correlation between cell size and force dynamic response to 

perturbation. 

 

Following the concept that tensional homeostasis intrinsically relates tensional 

balance to cell shape regulation, these findings led us to include the micropatterning 

technique as part of the experimental approach with the aim to better quantify the 

cellular contractile behavior and narrow down the variables. Constraining the cell to 

a specific geometry would enable us to better regulate both the size ranges and 

parameters involved in the cellular mechanical response of the actomyosin network, 

such as cellular size and shape. With the aim to repeat the experiment done on freely 

spread cells with varying spread areas in a more controlled manner, we decided to 

use 3 disk-shaped micropatterns of increasing surface area: 500 um2, 1000 um2 and 

1500 um2.  

 

In Figure 38 the 3 representative sizes can be observed along with the respective 

properly spread cell stained for actin. A plug-in from the image software Fiji, called 

OrientationJ, was used to qualitatively show the actin orientation of cells on the 3 

sizes. A more detailed and quantified study of this orientation will be addressed 

further on. Stress maps of the 3 representative cells show qualitatively an increasing 

stress range. To characterize this trend in a more accurate way we performed live 

traction force measurements. 
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Figure 38 (A) Disk shaped fibronectin micropatterns on polyacrylamide hydrogels with increasing 

surface area. The patterns cover an area of 500-1000-1500 μm
2
. (B) Fluorescence confocal microscopy 

images of individual actin-labelled cells. (C) Colour-coded map obtained with OrientationJ (plugin from 

Fiji) showing the orientation of actin fibres in the respective cells. (D) Individual stress maps calculated 

by Fourier Transform Traction Cytometry show that traction forces are localized at cell contour. (E) 

Bright-field images merged with respective force maps show that NIH 3T3 cells fully spread on all 

three patterns. 
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The first result when studying the live basal contractile state of individual cells 

spread on each of the 3 sizes showed 3 defined strain energy levels in a time window 

of 56 minutes (Fig. 39 A). It could already be concluded that changing the size did 

not affect the force regulation and tensional homeostasis of the cell. It did, however, 

change the basal level values for each size. We observed a strain energy mean value 

of 7.121e-014 ± 5.638e-015 J for cells on 500 um2 disk with a coefficient of variation of 

7.92%. Cells on 1500 um2 presented average strain energy of 5.139e-013 ± 9.977e-015 J 

with coefficient of variation of 1.94%.  

 

When analyzing a larger set of cells through static force microscopy (Fig. 39 B) we 

obtained higher variability but we still found 3 significantly different strain energy 

levels. The mean contractile level was 3.422e-014 ± 2.039e-014 J, 2.446e-013 ± 1.513e-

013 J and 3.198e-013 ± 1.575e-013 J for 500 μm2, 1000 μm2 and 1500 μm2 disk-shaped 

patterns, respectively. Regarding the coefficient of variation we calculated the values 

59.58%, 61.87% and 49.26% for 500 um2, 1000 um2 and 1500 um2 disk-shaped 

patterns, respectively. 

 

The increase in cellular basal tension associated with size increase has been 

interestingly discussed by Wang and collaborators who described the cell as an 

active mechanical structure with a certain level of pre-stress [155]. This active stress is 

exerted by the actomyosin network even in the absence of an externally applied force 

and, in other words, could be considered as none other than the cellular tensional 

homeostasis. However, this pre-stress is directly related to the cell’s shape and size 

and thus whenever the active structure, in this case the cell, suffers an increase in 

shape, it will necessarily suffer an increase in internal pre-stress. What we see in our 

results would appear to be consistent with this statement.  
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Figure 39 Stable tensional levels displayed on cells of different sizes. (A) Time course of the strain 

energy for cells on the different disk sizes. Full lines show mean values, shaded regions correspond to 

standard deviations. Each curve represents averages of the reduced set of 8, 6 and 7 cells on 500, 1000, 

1500 μm
2
 respectively. Duration of the experiment was 56 minutes. (B) Static strain energy for cells 

spread on the three different disk sizes. A 1-way ANOVA test showed significant difference in between 

the three data groups. 

 

Now, our aim was to interrogate this internal pre-stress in order to understand its 

dynamics. We did so by photoactivating the cells spread on each of the 3 different 

disk-shaped patterns with only one pulse of light of 100 ms (Fig 40). 

 

This photoperturbation induced an averaged cellular contractile energy maximum 

increase of 9.068e-014 ± 4.883e-014 J, 3.005e-013 ± 1.659e-013 J and 4.262e-013 ± 3.251e-

013 J for cells on 500 μm2, 1000 μm2 and 1500 μm2 respectively. The time to peak was 

of 2.56 ± 0.67 min, 3.61 ± 0.72 min and 3.25 ± 1.35 min with a relaxation time of 4.47 ± 

1.2 min, 5.71 ± 1.45 min and 5.97 ± 0.72 min for cells on 500 um2, 1000 um2 and 1500 

um2 respectively. It could be confirmed that the change in cell size did not affect its 

potential of recovering the basal tensional state. Interestingly, it could also be 

observed that the higher pre-stressed state of cells on larger patterns did not prevent 

or diminished its force response capabilities. As it had been seen with the freely 

spread cells, the cell’s contractile response was higher for cells on larger disk-shaped 

micropatterns. 
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Figure 40 Larger cells produce higher strain energy both before and during activation. (A) Time 

course of the mean strain energy for cells on the different disk sizes subjected to one light pulse of 100 

ms. Full lines show mean values, shaded regions correspond to standard deviations. Light blue dotted 

vertical light represents the photo-activation event. (B) Strain energy increase for every activated cell 

on the three different disks. A 1-way ANOVA test shows significant difference between the strain 

energy increase of cells on 500 μm
2
 and the two bigger sizes. Each dot represents one cell. 

 

The question that we had to pose ourselves after obtaining these results was whether 

the spreading size was the only explanation to the differences in the force levels and 

responses or if there was any variation in the internal tensional mechanism being 

also involved. 

 

Since it had been mentioned many times that there is a direct link between the active 

cellular internal stress and the actomyosin network, a better way to understand the 

obtained force dynamic readouts was to study what was happening with the cellular 

contractile machinery.  

 

A statistical analysis of the actin network organization in phalloidin inmunostained 

cells gave an interesting outcome. To study the arrangement of stress fibers in the 

cells we implemented a software that calculates the local orientation of actin stress 

fibres and renders an ‘order parameter’. This parameter represents how parallel the 

local orientation of each actin stress fibre is to the average orientation. The closer to 1 

means the more aligned the fibres are with each other (a more detailed description of 
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this parameter can be found in the Materials and Methods Appendix). When 

analyzing the cells on the 3 disk-shaped patterns we found a trend that implied a 

positive correlation between the size and the internal actin alignment (Fig. 41). This 

trend had been seen in the cases were the micropattern changed, elongating the cell 

[35]. However, this finding meant that even when the geometry and shape envelope 

of the cell was preserved, the size increase was altering the internal actin alignment, 

hence possibly modifying the actomyosin contractile network dynamics.  

 

O
rd

e
r 

p
a

ra
m

e
te

r

5
0

0
 u

m

2

1
0

0
0

 u
m

2

1
5

0
0

 u
m

2
0 .0

0 .2

0 .4

0 .6

0 .8 N = 1 9 N = 1 8 N = 3 1

 

Figure 41 Larger cells display a higher actin arrangement. Quantification of the global cellular actin 

fibre alignment for cells spread on each disk size. Each dot represents one cell. 

 

In order to go one step deeper in the actomyosin network analysis we decided to 

record its behavior in live mode and verify if the photo-activations where inducing 

actin rearrangements. To track the stress fibers throughout the photo-perturbation 

protocol we incubated the cells under study with SiR-actin. Based on the fluorophore 

silicon rhodamine and the actin binding natural product jasplakinolide, Sir-actin 

allows the labelling of filamentous actin in live cells with high specificity and low 

background [156]. Videos done recording the cellular stress fibres while the cell was 

being photo-activated supported the data presented by Valon et al and Oakes et al. 

While photo-activation induced an increase in the intensity of labeled stress fibres 

(not so evident when doing global photo-activation), implying a reinforcement of 

these structures, it did not prompt the rearrangement of the actomyosin network 

(Fig. 42).  
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Figure 42 Photo-activation does not induce actin re-arrangement. Time sequence of fluorescent 

microscope images of SiR actin stained cells on the three different disk adhesive geometries. At t=10 

minutes cells were photo-activated with a pulse of blue light of 100 ms time exposure. Live actin 

images post-light activation, at t=15 minutes and t=20 minutes, do not show a change in the actin 

arrangement in any of the three sizes. 

 

Our main goal was to interrogate the dynamic tensional homeostasis to better 

understand the response of the actomyosin network to the internal perturbations 

induced by photoactivation. In order to do so, we had to narrow down possible 

variables that would be linked to that response such as shape, migration potential 

and rigidity. However, as it could be concluded from the order parameter, there also 

seemed to exist a link between the actomyosin network dynamics and the cell size. 

This led us to pose ourselves a new question: Can we uncouple those parameters 

inducing a different actin alignment independently from the cell spread area? If we 

could achieve that then the dynamic tensional interrogation would be directly 

addressed to the actomyosin network arrangement.  
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3.6 Decoupling area from actin organization in cellular 

response to photoperturbation 

 

It has been shown that cells with similar shape maintain the same contractile state 

regardless of the adhesive geometry [151], [157]. Nevertheless, as far as we are 

concerned the dynamics of this global state and its response against a mechanical 

perturbation have not been addressed. We would like to probe that contractile state 

in single cells with the same shape but modifying their actomyosin alignment. In 

other words, we want to keep the same adhesion area and cell envelope while 

affecting the actin architecture and understand how that could impact on the 

tensional homeostasis dynamics. 

 

As we found for the case of the 1000 μm2 disk-shaped micropatterns (hereinafter 

referred as Disk), the actin and stress fibers alignment is considerable. Basing our 

conclusion strictly on the order parameter, cells spread on Disk present high actin 

alignment. What would happen with the cellular mechanical response if we could 

keep the shape and size of the cell while reducing the internal actin alignment? At 

what level does the actomyosin network arrangement affects the cell’s contractile 

response to perturbations?  

 

3.7 Searching for the actin troublemaker   

 

Taking advantage of the versatility of microfabrication and micropatterning we 

designed different potential candidates (Fig. 43). We had seen through own 

experience and scientific publications [141], [151], [158], [159], that subcellular 

geometries and non-adhesive borders can induce particular actin arrangements. 

Based on this knowledge we designed 10 different micropatterns which imposed the 



     

 

 73 

same projected area (1000 μm2) and shape (circular) on spread cells but offered 

different sub-cellular geometries or boundary adhesiveness.  

 

Figure 43 A study of actin arrangement on different micropatterned geometries. (A) Circular 

fibronectin patterns on polyacrylamide hydrogels, with similar projected area but different contours 

and internal geometries. All the patterns cover an area of 1000 μm
2
. (B) Fluorescence confocal 

microscopy images of individual actin-labelled cells. All cells fully cover the adhesive patterns. (C) 

Averaged fluorescence confocal microscopy images of actin-labelled cells.    
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On 4 of those patterns we decided to maintain the same adhesive contour while 

including different internal potential anchoring points that would affect the actin 

networking, the idea being that those points would add branching points in the 

network and also decrease the number of long and aligned stress fibers. For the rest 

we also modified the adhesive boundary to modulate and modify the available 

anchoring points (focal adhesions) of stress fibers that span the whole cell body. 

  

Studying the actin network of the cells on each of these patterns led us to a promising 

result. Even though a few of the geometries would induce cellular actin 

misalignment, only one of them would do it in a stable, reproducible, repetitive and 

significant way. The need for reproducible and stable misalignment was not a minor 

issue considering the fact that having most of the fluorescence spectra dedicated to 

photo-activation, micropatterns and microbeads, the possibility of tracking the 

cellular actin while coupling light stimulations with traction force measurements was 

not experimentally achievable. As it can be observed on figure 43, the micropattern 

that resembles a 3-spoked wheel with a discontinuous contour (hereinafter referred 

as Wheel) imposed what could be lightly called a triangular actin arrangement with 3 

main stress fiber orientations. A qualitative idea of this can be obtained by observing 

the averaged actin stained images, where the internal geometry is still visible, 

implying that most of the stress fibers adopt the mentioned triangular arrangement 

instead of going over the “spokes”. 

 

A more quantitative approach was done by comparing the order parameter obtained 

for cells spread on all the shapes designed. In the graph of Figure 44 we plotted the 

order parameter of cells spread on each of the 10 micropatterns. With an averaged 

order parameter of 0.1724, calculated over a sample number of 46 cells, the Wheel 

pattern induced the lowest actin alignment on cells.  
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Figure 44 Quantification of the order parameter of cells on 10 different micropatterns. Each dot 

represents one cell and each data set corresponds to cells cultured on the micropattern depicted 

directly above, at the top of the graph. 

 

The ‘stability’ of the actin disarrangement imposed on the cell by the wheel shape 

was followed and corroborated with the use of live SiR-actin stained cells. As it can 

be observed for a representative cell in Figure 45, it maintained the ‘triangular actin 

arrangement’ aforementioned throughout a period of 10 hours.  

 

 

Figure 45 Time course actin organization for cells on wheel. Fluorescence confocal images of a SiR-

actin stained cell spread on a Wheel pattern. Pictures were taken every 10 minutes for a total 

experimental time of 10 hours. 

 Finally, the comparison of the order parameter between the Disk and the Wheel 

showed a significantly lower global actin alignment for cells spread on the second 

micropattern (Fig. 46). Having found the desired actin troublemaker we moved to 

the following step of characterizing its tensional behaviour. 
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Figure 46  Cells on Wheel present a lower actin alignment than those on Disk. (A) Order parameter 

quantification for cells spread on Disk (blue) and Wheel (red). Each dot represents one cell. (B) 

Qualitative comparative analysis between cells on both shapes showing the fibronectin patterns on 

polyacrylamide gels, fluorescence confocal images of individual actin-labelled cells and actin images 

analysed with OrientationJ (Fiji plugin). 

 

3.8 Force and tensional characterization of the 

confronted patterns 

 

Using live and static traction force microscopy we analyzed the tensional 

homeostasis of cells spread on the Wheel and contrasted it afterwards with the data 

obtained for cells on the Disk. Consistent with what had been discussed regarding 

cells with same shape and size, the unperturbed tensional state of cells on the Wheel 

was similar to the ones on the Disk with no significant differences (Fig. 47). 

Averaging the basal strain energy of 23 cells spread on the Wheel shape we obtained 

a mean value of 2.289e-013 ± 5.686e-015 J with a coefficient of variation of 2.48% (for 

the disk we had measured an average strain energy of 2.086e-13 ± 7.996e-015 J). The 

static traction force analysis showed a mean contractile level of 2,341e-013 ± 1,046e-

013 J and 2,199e-013 ± 9,662e-014 J for cells on Wheel and Disk, respectively. 

 

This result not only supported the claim that cell’s with similar projected area 

presented the same tensional baseline, but also proved that the degree of order of the 

cellular actomyosin network doesn’t appear to affect such baseline. On the other 
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hand, a clear tripolar force pattern could be appreciated on cells spread on Wheel in 

contrast to the more dipolar force pattern seen already on the Disk. 
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Figure 47 Similar tensional level for cells on Disk vs cells on Wheel. (A) Qualitative comparison 

between a representative cell on Disk and another on Wheel. From left to right and then inverted: 

Fluorescence confocal microscopy images of individual actin-labelled cells. Disk/Wheel shaped 

fibronectin micropatterns on polyacrylamide hydrogels. Both patterns cover an area of 1000 μm
2
. 

Individual stress maps calculated by Fourier Transform Traction Cytometry show a tripolar force 

pattern for the Wheel and a more bipolar one for the Disk. (B) Time course of the strain energy for cells 

on the two different patterns. Full lines show mean values, shaded regions correspond to standard 

deviations. Each curve represents averages of the reduced set of 23 cells. Duration of the experiment 

was 52 minutes. (C) Static strain energy for cells spread on the Disk and the Wheel shape. Using a non-

parametric t-test, significant difference is not found between the two cases. 

 

Indeed, even when this result was expected, based on what was discussed regarding 

cells with same size and envelope, it was paramount for our intentions of decoupling 

the cellular size and shape variables from the actomyosin network arrangement. 

Now, this last parameter could be linked to the cellular response against perturbation 

in a more clear and straightforward way. 
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3.9 Actomyosin alignment response to perturbation 

 

Having a confirmed and significant difference between the stress fibres alignment on 

cells on Disk against those on Wheel, we performed photo-activation pulses on both 

cases. Results obtained after photo-perturbation with 100 ms time exposure light 

pulse revealed a difference in the magnitude of tensional response in between the 

two cases (Fig. 48). Cells spread both on the Disk and on the Wheel presented a force 

increase upon light activation and a subsequent return to tensional equilibrium. The 

average time to peak after photo-activation of 7 cells on Wheel was of 2.27 ± 0.54 

minutes with a subsequent relaxation time of 4.70 ± 1.40 minutes. Both times were 

lower than for the case of cells on the Disk: time to peak of 3.61 ± 0.72 min and 

relaxation time of 5.71 ± 1.45 min. This time difference had to be linked with the 

tensional response difference. Cells on Wheel didn’t achieve the same force level of 

response as the ones on the Disk. With an averaged contractile maximum response of 

1.853e-013 ± 8.601e-014 J against 3.536e-013 ± 2.284e-013 J, cells on Wheel exerted a 

lower contractile response to photo-activation than cells on Disk.  
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Figure 48 Higher contractile response obtained for cells on Disk against Wheel. (A) Normalized 

quantification of the mean strain energy over time for cells on both shapes subjected to one light 

pulse of 100 ms. Full lines show mean values, shaded regions correspond to standard deviations. Each 

curve represents averages of the reduced set of 7 cells. Duration of the experiment was 22 minutes. (B) 

Strain energy increase for every activated cell on the two different shapes. Calculation is made by 

subtracting the strain energy value before activation to the highest strain energy value obtained after 

light activation. A non-parametric t-test showed significant difference in between both data sets. 
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This was a remarkable result considering the fact that we had shown that cells on 

both shapes had a similar basal tensional state. On top of that, such steady-state 

value had neither been modified by the available subcellular spreading area nor by 

the internal actin global alignment. The difference appeared when disrupting the 

cellular mechanical equilibrium, forcing the cell to contract. In the event of a photo-

perturbation, the actin arrangement would be controlling the efficiency of force 

production in terms of the amplitude of the induced perturbation. 

 

Our observations led us to the realization that the concept of tensional homeostasis 

needs to be characterized both in an unperturbed state as well as during a perturbed 

one. While the system parameters may not modify the steady-state, they could 

determine the out-of-equilibrium dynamics. 

 

The conclusion that we could draw from our specific findings is that the cell’s 

contractile machinery performance is susceptible to the internal actin order in a 

clear significant way. The arrangement of stress fibers and the actin organization 

strongly modulates the dynamic cellular force response. 
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3.10  Modelling the experimental data 

 

In order to obtain a quantitative experimental recapitulation and a better 

understanding of the cell's tensional responses, a mechano-biophysical model was 

constructed by the theoreticians Dr. Ulrich Schwarz and Dimitri Probst from the 

Institute for Theoretical Physics in Heidelberg, Germany.  

 

Briefly stated, the model considers the cell as a Kelvin-Voigt viscoelastic system with 

an elastic component, represented by Ec, and a viscous component, represented by η 

(Fig. 49). Both components are parallel to each other giving the material a damped 

response behavior against any instantaneous signal. An active stress component σ is 

included in the system. This stress tensor represents the “background stress” (σback) 

that the cell exerts on the substrate, i.e. the homeostatic cellular tensional state, plus 

the stress contribution that occurs upon photoactivation (σph). The substrate to which 

the cell is attached is represented as springs of constant density Y and is non-zero at 

any place of the pattern where the cell can actually create anchoring points. 

 

 

Figure 49 Effective physical representation of the cell and the elastic substrate on different 

fibronectin patterns and qualitative distribution of simulated traction stresses contrasted with 

experimental ones. (A) A Kelvin-Voigt model with active contractility and coupling to an elastic 

foundation is used to reconstruct the dynamic energy response of cells upon global optogenetic 

activation (side view). (B) From top to bottom: Distribution of the spring stiffness, experimental stress 

maps obtained during photo-activation and a typical qualitative stress map during the simulated 

photo-activation of Disk-patterned and Wheel-patterned cells, respectively. 

A B 
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This active Kelvin-Voigt model as a mechanical representation of the cell was used to 

fit the experimental curves obtained for both the disks of varying sizes (500 μm2, 1000 

μm2 and 1500 μm2) and the Wheel, and also to characterize times of activation and 

relaxation. A full description of the model and the data obtained can be found in the 

Appendix C.  

 

 

3.11  Supporting our findings  

 

3.11.1 Decoupling adhesive area from actomyosin 

organization  

 

The main feedback obtained when presenting this work to the scientific community 

was the question whether there was an actual correlation between the contractile 

response and the available spreading area. Was it safe to claim that the responsible 

for the lower force production was mainly the actin alignment? An available 

spreading area disparity of 570 μm2 in the Wheel against the 1000 μm2 offered by the 

Disk could very possibly be another reason for this force response difference, as this 

could be having a significant impact on focal adhesion distribution and stress fiber 

anchoring points. 

 

3.11.2 One ring to rule them all (the findings)  

 

To tackle this matter and put our findings to the test we went back to our previously 

designed micropatterns to see if we could find the proper compromise that would 

decouple the adhesive area from the actomyosin organization. We were looking for a 

shape that would maintain a high actin alignment as the Disk while having a similar 

adhesive area as the Wheel. Observing the results obtained for the previous shapes 
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we considered that the best candidate for the control experiments would be the Ring 

(Fig. 50), an ‘empty’ circular micropattern with an available spreading area of 630.75 

μm2, a closer area value to that one of the Wheel: 570 μm2. 

 

Figure 50 A representative cell spread on the Ring shape. From left to right: 1000 μm
2
 ring shaped 

fibronectin micropattern on polyacrylamide hydrogels. Individual actin-labelled cell. Colour-coded map 

obtained with OrientationJ (plugin for Fiji) showing the orientation of actin fibres in the cell. Bright-

field image merged with respective force map. Individual stress map calculated by Fourier Transform 

Traction Cytometry, showing dipolar force traction similar to that one seen for cells on the Disk. 

 

The stress map obtained for cells on the Ring showed a similar dipolar pattern to that 

one seen for cells on the Disk. In the same manner, we found the actin alignment to 

be comparable in cells on both shapes. The graph of Figure 51 shows no significant 

difference in the order parameter of cells on Disk and Ring, and a clear difference 

with the Wheel. 
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Figure 51 Cells on the Ring display a similar order parameter than that of the Disk. Order 

parameter quantification for cells spread on Disk (blue), Ring (Pink) and Wheel (red). Each dot 

represents one cell. A 1-way ANOVA test showed significant difference in between cells spread on 

Wheel and those on Disk and Ring, but no significant difference between Ring and Disk.  
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3.11.3 Response to photo-perturbation for cells on Ring 

and focal adhesions comparison 

 

Using a light pulse of 100 ms exposure time we probed the response of 10 cells on 

Ring to contrast it with the already obtained data for cells on Disk and Wheel (Fig. 

52). With a mean strain energy increase of 3.741e-013 ± 1.869e-013 J, cells on the Ring 

presented a significant higher contractile response against photo-stimulation than 

those on the Wheel but no significant difference with those on the Disk. 
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Figure 52 Similar contractile response obtained for cells on Disk and Ring. (A) Normalized 

quantification of the mean strain energy over time for cells on the three shapes subjected to one light 

pulse of 100 ms time exposure. Full lines show mean values, shaded regions correspond to standard 

error of the mean. Duration of the experiment was 22 minutes. Light-blue dashed vertical light marks 

the photo-activation event. (B) Strain energy increase for every activated cell on the three different 

shapes. Calculation is made by subtracting the strain energy value before activation to the highest 

strain energy value obtained after light activation. A 1-way ANOVA test showed a significant difference 

in between the Wheel and both the Ring and the Disk. No significant difference was seen between 

Ring and Disk. 

 

This result would seem to support our previous statement linking actin alignment to 

force response. However, another variable that had to be looked at was how the focal 

adhesions were being affected by the shape and available spreading area differences. 

Was there any variation in the focal adhesions size or quantity that could account for 

the contractile response differences observed? 
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To answer this we performed vinculin staining assays on cells spread on the 3 

patterns (Fig. 53).  Vinculin is a cytoskeletal protein present in the focal adhesion 

complex involved in the link between integrins and filamentous actin [160]. Staining 

of this protein has been a standard way of focal adhesion characterization.  

 

The analysis gave some interesting results. Observing the vinculin stained cells 

individually showed a similar trend in the morphology and orientation of the focal 

adhesion to that one seen on the actin stained cells. Elongated focal adhesions in cells 

on Ring and Disk showed high alignment in one preferred direction while those in 

cells on Wheel seemed to follow the already mentioned ‘triangular arrangement’. 

 

 

Figure 53 Similar focal adhesion characteristics for cells spread on Ring, Disk and Wheel.  (A) Disk, 

Ring and Wheel fibronectin patterns on polyacrylamide hydrogels. (B) Individual vinculin- stained cells.  

 

On the other hand, the statistical analysis proved that with a mean total area of 64.07 

± 20.84 um2, 69.09 ± 16.20 um2 and 56.10 ± 14.71 um2 for Disk, Ring and Wheel 

respectively, there was no significant difference in the overall cell focal adhesion 

coverage. Similar results were obtained for the case of the mean average area of 

single focal adhesions in Disk, Ring and Wheel with mean values of 0.7060 ± 0.2069 

um2, 0.7859 ± 1553 um2 and 0.7721 ± 0.1842 um2, respectively.  
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Figure 54 Plot showing focal adhesion characteristics for cells spread on Ring, Disk and Wheel. 

(A-B) Quantification of the total area covered by the focal adhesions, and average area of individual 

focal adhesions on each pattern. Each dot represents a cell. Disk (N=69), Ring (N=43) and Wheel 

(N=41). 

 

Taken together, results obtained from graphs A and B of Figure 54 showed that there 

was no significant difference in the size and amount of focal adhesions present in 

cells spread on any of the 3 shapes. This would be confirming the major role of the 

actin organization in the force production response. 

 

3.11.4 Saturation phenomena after multiple photo-

activations of increasing intensity 

 

In order to further characterize the optogenetic system and the cell contractile 

responses to varying photo-activations, we tried out one last experiment. We carried 

out a similar light protocol used by Dr. Valon (Fig. 37) when studying the 

CRY2/mCherry membrane recruitment, which consisted on increasing the exposure 

time of the light pulses in the following order: 10 ms, 20 ms, 50 ms, 100 ms, 150 ms, 

200 ms (Fig. 55).  
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Figure 55 Effect of the cellular area on the strain energy level as well as its energy gain and 

dynamics upon photoactivation of increasing duration. Full lines show mean values, shaded 

regions correspond to standard error of the mean. Each curve corresponds to an average of 9, 11, and 

11 cells for 500 μm
2
, 1000 μm

2
 and 1500 μm

2
 circular adhesive micropatterns, respectively. The 

activation pulses (represented by light-blue vertical discontinuous lines) were of 10, 20, 50, 100, 150 

and 200 ms duration. 

 

Results obtained from this experience showed that the cell’s contractile response 

reached a saturation point at 100 ms time exposure light pulse. Such behaviour did 

not follow the same trend reported by Dr. Valon, where the signal of CRY2/mCherry 

recruitment to the membrane increased all along the protocol. This would imply that 

no matter the increase of RhoGEF to the membrane, the cell reached its force 

maximum response after a stimulation of 100 ms of blue light. The saturation was 

corroborated repeating the activation protocol for cells on the Wheel (Fig. 56). Cells 

both on Disk and Wheel reached their force saturation point with the same light 

exposure as in the previous experiment (100 ms), but for the cells on the Wheel 

pattern the force increase was always lower than that of the ones on the Disk.  

 



     

 

 87 

T im e  (m in )

N
o

r
m

a
li

z
e

d
 s

tr
a

in
 e

n
e

r
g

y
 (

J
)

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0

0

2 .01 0 -13

4 .01 0 -13

C e lls  o n  W h e e l u m
2

 N = 7

C e lls  o n  D is k  u m
2

 N = 7

 

Figure 56 Effect of the actin alignment on the normalized energy gain and dynamics upon 

photoactivation of increasing duration. Full lines show mean values, shaded regions correspond to 

standard error of the mean. Each curve corresponds to an average of 7 cells both for the Disk and the 

Wheel micropatterns. The activation pulses (represented by light-blue vertical discontinuous lines) 

were of 10, 20, 50, 100, 150 and 200 ms duration. 

 

As already mentioned, an appropriate physical model which allowed capturing the 

dynamics of the cellular energy based on the geometry and size of the micropatterns, 

had been obtained by our collaborators in Heidelberg. Comparing the stress peaks 

measured during the photo-activation protocol for both the Disk and the Wheel, we 

corroborated the accuracy of the model at reproducing the cellular contractile 

behaviour. On Figure 57 a fitting of the theoretical model is done over the 

experimental stress increases obtained after each photo-activation. An increment in 

cell contractility with augmenting light time exposure can be observed, as well as a 

clear higher contractile response from cells on Disk over those on Wheel, reaching a 

maximal stress response of 17.33 kPa and 12.56 kPa for Disk and Wheel, respectively. 

Both the experimental data and the model showed force saturation after 100 ms light 

exposure.  
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Figure 57 Stress dynamics as a function of the photo-activation duration. (A) Stress increase versus 

photo-activation duration for cells on Disk and Wheel showing a saturation point after 100 ms 

exposure time. Dots represent experimental values and full lines were obtained with the biophysical 

model. A higher strain response can also be observed for the cells on the Disk all along the opto-

protocol. (B) Stress activation (full dots) and relaxation (crosses) times versus photo-stimulation 

exposure times. (C) Stress activation (full dots) and relaxation (crosses) constants versus photo-

stimulation exposure times. Both activation times and constants are independent of the PA duration. 

Relaxation times and constant increase in a saturating manner as a function of the PA duration, i.e. a 

longer PA duration has a longer impact on the contractility of cells. Grey dots and crosses correspond 

to the Disk pattern, while blue dots and crosses refer to the Wheel pattern.  

 

Taking advantage of this mathematical model, we studied also the peaks dynamics 

by obtaining the activation/relaxation constants and real times. Results showed that 

the activation dynamics are unaffected by photo-activation pulse duration, cells 

reached their maximum contractile response within the same time window no matter 

the time exposure. On the other hand, relaxation times increased in a saturating 

manner as a function of the photo-activation duration, implying that longer light 

pulses had a longer impact on the contractility of cells and on its return to basal 

tensional state. Further studies on the actin rheology of the relaxation and possible α-

actinin cross-linking variations upon photo-activation could give interesting insights 

into the difference between activation and relaxation. 
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The common saturation point discussed earlier would be implying a fascinating fact: 

the highest contractile point that a cell spread on any of the studied micropatterns 

could reach upon photo-activation did not depend on its size or its internal actin 

arrangement. Consequently, the reason for this saturation could be linked to a 

saturated myosin capacity or a RhoA activity limit. Deeper understanding and 

characterisation of this force response saturation could be addressed in further 

research projects. 
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Abstract 

Cellular decision-making in complex environments depends on both biochemical and mechanical 

signals. Adherent cells generate mechanical forces to sense the adhesive geometry and rigidity of 

their environment, with dramatic consequences for cell migration, division, differentiation and fate. 

Like for many other physiological processes, it has been suggested that cells maintain a characteristic 

setpoint in tension, so that they can adapt to their mechanical environment (tensional homeostasis). 

Here we test this hypothesis combining recent advances in traction force microscopy on soft elastic 

substrates, micropatterning and optogenetics. We find that after transient whole-cell Rho-activation 

achieved by a Cry2/CBAN-construct, cells return to a constant tension setpoint with near perfect 

precision. However, we also find that this setpoint is variable, increasing not only with cell spread 

area, but also with the actin order parameter. Fitting the experimental traction force data to a 

theoretical model for active contractile systems reveals that force transmission to the environment is 

reduced when different actin orientations work against each other in the same cell. The peak values 

for the activation stresses saturate with increasing activation time at a value around 100 ms and are 

largest for completely polarized cells. Together, our results show that single cells do maintain internal 

setpoints for tension, which however are constrained by actin architecture and biochemical 

activation. 
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Introduction 

Living tissues are constantly submitted to mechanical perturbations, arising both from external forces 

and from internal cell activity. In order to maintain tissue integrity, cell collectives therefore use 

mechano-chemical circuits to adapt their mechanical state to changes in their environment (Valerie 

Weaver, Balancing forces, Nature Reviews MCB 2011). Such tensional homeostasis (TH) makes tissue 

an active material that can keep a desired mechanical function in a robust manner (MacKintosh and 

Schmidt Active cellular materials 2010; Trepat and Sahai, Nature Physics 2018). TH has first been 

demonstrated in a quantitative manner by varying the macroscopic stress applied to cell-populated 

collagen gels (Brown Tensional homeostasis in dermal fibroblasts: mechanical responses to 

mechanical loading in three-dimensional substrates J Cellular Physiology 1998). It was found that 

cells dynamically counteracted the effect of externally applied stress, effectively working towards a 

setpoint of tension. For epithelia it was shown that progression towards a tumour is strongly related 

to changes in TH, with a central role of the signalling molecule Rho, the master regulator for cell 

contractility (Weaver 2005, Tensional homeostasis and the malignant phenotype).   

Despite the importance of TH on the tissue level, a corresponding understanding on the cell level is 

still elusive. During recent years, it has been established that cell actively pull on their environment 

to sense its mechanical properties (review Discher), with dramatic consequences for migration 

(Isenberg et al, 2009), division (Lafaurie-Janvore et al, 2013) and differentiation (Engler et al, 2006). It 

also has been shown that cellular force generation is closely related to the organization and 

regulation of the actin cytoskeleton (Blanchoin review, Koenderink and Paluch COSB review 2018). 

However, it is not clear if tensional homeostasis on a single cell level corresponds to a well-defined 

tension setpoint or not. The main obstacle to progress in this direction is the lack of appropriate 

techniques to dynamically vary the stresses in cells. Traditional approaches in biology use 

pharmacological or genetic approaches to perturb cell contractility, but these are typically slow and 

hard to control in a quantitative manner. Direct application of physical force has an immediate effect, 

but tends to be a strong perturbation to the biological system. Combining micropatterning with an 

AFM-setup to dynamically measure and control forces, it has been shown that single cell tension 

evolves towards a plateau, but that this setpoint is variable and depends on the history of mechanical 

loading (Webster BPH 2014). While cells maintained tension during slow loading, they strongly pulled 

back during fast loading. In order to quantify TH for single cells in a less intrusive manner, a more 

flexible and configurable approach is needed to rapidly and dynamically change cell forces. The 

optimal solution in fact would be a direct manipulation of the regulatory machinery for contractility 

inside cells. This dynamic control can in fact be achieved with optogenetics (Deisseroth et al, 2011). 

This technique allows rapid light-mediated protein activation, with the added advantages of low 
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toxicity and reversibility. Although originally developed for neuroscience, where ion channels or ion 

transporters are activated by light, during recent years it has been also increasingly applied to the 

cytoskeleton, where light-sensitive domains are used to effect an allosteric change in a protein of 

interest (Weitzman & Hahn, 2014; Tischer & Weiner, 2014; De Renzis review Trends in Cell Biology 

2016).  

Here we combined optogenetics, to induce cell contractility, with traction force microscopy, to 

measure the strain energy that cells impart to their environment, thus achieving an immediate 

relation between cell input and output. Moreover, as cell forces are closely related to cell shape, we 

performed our experiments on micropatterned substrates, to uncouple our findings from cell shape 

modulation effects. Our experimental data on living cells show that individual cells maintain a 

constant setpoint of tension, but that it strongly depends on cell size and actin organization. By 

changing the actin cytoskeleton organization through micropatterning while keeping similar cell 

envelope and spreading area, we were able to show that actin architecture has a decisive role in 

determining cellular force production efficiency. As confirmed by a theoretical model for actively 

contracting thin films with different domains, maximal efficiency is obtained only for completely 

polarized cells. Force generation is in addition limited by the biochemistry of Rho-activation, as 

shown here by systematically varying activation time. 

 

Larger cells display a higher strain energy production in response to transient RhoA perturbations 

To investigate how cells react to fast transient perturbations, we coupled time resolved force imaging 

with optogenetic stimulations. Our strategy was to trigger the activation of the small GTPase RhoA, 

the major regulator of cellular contraction (ref Alan Hall). We used previously described NIH3T3 cells 

stably expressing a Cry2-CIBN optogenetic probe to dynamically control the localization of ArhGEF11, 

an upstream regulator of RhoA, by using blue light [Valon et al., 2014]. To limit our measurements 

from cell shape variability, we used soft micropatterning to restrict cells to predefined areas and 

shapes (Figure 1a). An established mathematical model that describes the physical core of this 

situation is the continuum mechanics of a thin contractile film of the same geometry (Figure 1b) 

(Edwards and Schwarz PRL 2011, Mertz et al. PRL 2012, Oakes Geometry Regulates Traction Stresses 

in Adherent Cells BPJ 2014).  This model describes the cell as a Kelvin-Voigt solid with isotropic active 

stresses and an elastic foundation. Using traction force microscopy, we first quantified the forces and 

strain energies exerted by single opto-3T3 fibroblasts spread on disc shaped fibronectin 

micropatterns printed on soft (5kPa) polyacrylamide hydrogels of increasing areas (500, 1000, 1500 

m2) (Figure 1a). Cell strain energy increases as a function of cell spreading area (Figure 1c), as 

previously described by other studies [Tan-Chen PNAS 2003; Reinhart-King-Hammer BiophysJ 2005; 

Tseng-Balland LabChip 2011, Oakes BiophysJ 2012] and also as predicted by the standard model 
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(solid line in Figure 1c). The slight differences between experiment and model can be understood 

from the fact that the actin organization changes in a non-linear fashion with cell size, with actin 

organization saturating with increased size as measured by the actin order parameter (Figure 1d). 

Upon photo-activation (100 ms blue light pulse) cell strain energy quickly increased (~2 minutes) 

before slowly relaxing (6 to 8 minutes) (Figure 1e), in good agreement with earlier reports (Valon 

BPJ). Most importantly in the context of TH, cell strain energy recovered its original baseline level, 

confirming the concept of a stable setpoint in tension. We measured an average strain energy 

baseline of 0.0801 ± 0.0005 pJ, 0.2622 ± 0.0009 pJ and 0.4501 ± 0.0010 pJ on small (500 µm²), 

medium (1000 µm²) and large (1500 µm²) micropatterns, respectively (Figure 1e), reflecting the 

higher pre-stress induced by cell spreading area (Figure 1c) and in good agreement with the model 

predictions. We then quantified the Relative Strain energy Increase upon photoactivation (RSI, 

maximum peak value minus baseline strain energy). Surprisingly, pre-stressed cells were not limited 

in their traction efficiency as they were able to generate even higher contractility.  The RSI upon a 

100 ms blue light stimulation was only 0.0907 ± 0.0173 pJ for cells spread on small micropatterns, 

but reached 0.3005 ± 0.0627 pJ and 0.4262 ± 0.1150 pJ on medium and large micropatterns, 

respectively (Fgiure f, error values are expressed as SEM). These results could be reproduced by our 

model by assuming a double-sigmoidal activation of the active stresses, as suggested by earlier 

experiments (Valon BPJ). In our simple model, we then also obtained increasing energy gains with 

increasing cell size. Together, these results validate the concept of TH and show that a simple model 

can explain the main experimental results. However, Figure 1d also suggests a role of the actin 

organization that is not reflected by the model. We therefore set out to investigate this point in more 

detail by using a larger variety of different micropatterns. 

 

Actin polarity determines the efficiency of force production during optogenetic activation 

In order to investigate the relationship between the organization of the actin cytoskeleton and 

efficiency in cellular forces production, we designed a circular micropattern with three branches, 

hereafter named the “wheel” micropattern (Figure 2a). This micropattern led to a projected cell area 

similar to its discoidal counterpart while inducing a different organization of the actin cytoskeleton 

(Figure 2b). Because cells on the disc patterns break the circular symmetry and spontaneously 

polarize in one direction, the wheel pattern is effectively more isotropic, as it enforces three different 

domains with pairwise balance each other. In order to adapt the standard model to this actin 

organization, we divided the computational domain in different parts, each with the main direction 

of actin orientation determining the direction of the anisotropic stress (Figure 2c). Surprisingly, such 

a model gives similar strain energies, in very good agreement with the experimental results and in 

line with the concept of TH. Interestingly, the experiments also revealed a smaller variance on the 
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wheel pattern. Unexpectedly, however, we measured a different response to blue light stimulation 

on cells spread on disc versus wheel micropatterns (Figure 2d). The speed of cell contraction was 

similar on both micropatterns, however, cells on discs, presenting an anisotropic, dipolar actin 

cytoskeleton, exerted a greater response to photo-activation in terms of force amplitude, with a time 

to peak of 3.43 ± 0.83 min and a RSI of 0.3536 ± 0.05898 pJ. Cells on wheel patterns, with a more 

isotropic, tripolar actin organization, responded with a time to peak of 2.71 ± 1.02 min and a RSI of 

0.1853 ± 0.02386 pJ.  We also verified that the observed responses in terms of force production were 

not impacted by differences in the fibronectin adhesive area allocated to the cells. To this end we 

used a ring shaped micropattern that has an adhesive area close to the wheel micropattern and 

measure both adhesive expression of the cells and the efficiency of their force production. We found 

no significant differences in the total area occupied by focal adhesion on the three different shapes 

(see SI). Interestingly the ring shaped micropattern induced an actin organization close to the one 

observed in the discoidal pattern case. Strikingly the force dynamic response to the optogenetic 

stimulus was fairly identical for ring and disc patterns demonstrating the main role of the 

organization of the actin cytoskeleton in the efficiency of force production.  

 

Figure 1: Larger cells display a higher strain energy production in response to transient RhoA 

perturbations 

(a) Disk shaped fibronectin micropatterns on polyacrylamide hydrogels with increasing surface area. The 

patterns cover an area of 500-1000-1500 um2. (b) Individual actin-labelled cells. (c) Bright-field images merged 

with respective force maps. They show that NIH 3T3 cells fully spread on all three patterns. (d) Individual stress 

maps calculated by Fourier Transform Traction Cytometry show that traction forces are localized at cell 

contour. (e) Static strain energy for cells spread on the three different disk sizes. Using a 1-way ANOVA test, 

significant difference is found between cells spread on 500 um2 pattern and the other two bigger sizes. (f) 

Global cellular actin fibre alignment for cells spread on each disk size. This is represented by the actin order 

parameter. (g) Quantification of the mean strain energy over time for cells on the different disk sizes subjected 

to one light pulse of 100 ms. (h) Strain energy increase for every activated cell on the three different disk sizes. 

Calculation is made by subtracting the strain energy value before activation to the highest strain energy value 

obtained after light activation. 

 

Figure 2 Actin organization regulates the cell’s contractile efficiency.  

From left to right: 1000 um2 disk shaped and hazard shaped fibronectin micropatterns on polyacrylamide 

hydrogels with increasing surface area (both patterns cover the same projected area). Colour-coded map given 

by OrientationJ (plugin for Fiji) showing the angle of oriented features in the image. Individual actin-labelled 

cells. Bright-field images merged with respective force maps. Individual stress maps calculated by Fourier 

Transform Traction Cytometry. (b) Static strain energy for cells spread on the 1000 um2 disk and the hazard 
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shape. Using a 1-way ANOVA test, significant difference is not found between the two cases. (c) Global cellular 

actin fibre alignment for cells spread on both fibronectin micropatterns. This is represented by the actin order 

parameter. (d) Normalized quantification of the mean strain energy over time for cells on both shapes 

subjected to one light pulse of 100 ms. The inset shows a close up of the curve right after photo activation. (e) 

Strain energy increase for every activated cell on the two different shapes. Calculation is made by subtracting 

the strain energy value before activation to the highest strain energy value obtained after light activation. 

 

 

Figure SI Cells with similar actin organization display identical force response 

To be written 

 

 

Materials and methods 

TFM gel preparation - MASK METHOD  

Description of the procedure based on the work done by Vignaud, Hajer Ennomani, and Théry, 2014 

with modifications done at Motiv group.  

A photomask (TOPAN), previously rinsed with water and isopropanol, and a glass coverslip (20 mm) 

are activated together with air plasma (4 minutes) and oxygen plasma (40 seconds). Then a pLL–PEG 

drop (35 µl) is sandwiched between the chrome side of the mask and the glass coverslip. After 30 

min incubation, the glass coverslip is removed and saved for the following step as it is now a 

passivated surface. The photomask is exposed to deep UV during 3 minutes from the quartz side, 

burning the pLL–PEG at defined loci with minimum loss of resolution due to diffraction. Then again, a 

drop (35 µl) of sodium bicarbonate (100 mM) solution of fibronectin (20 ug/ml, Sigma) and Alexa546-

conjugated fibrinogen (5 ug/ml, Invitrogen) is sandwiched between the mask and the passivated 

glass coverslip and incubated for 30 min. For 4.47 kPa hydrogels, a solution containing 12.5% 

acrylamide (from 40% stock solution) and 7.5% bisacrylamide (from 2% stock solution) was prepared 

in a 10 mM DPBS solution (pH 7.4). Finally, the polyacrylamide solution is mixed with passivated 

fluorescent beads (0.2 um, Invitrogen) by sonication before addition of ammonium persulfate (APS) 

and N,N,N’,N’-tetramethylethylenediamine (TEMED). A drop (47 µl) of this solution is sandwiched 

between the patterned region of the mask and a silanized glass coverslip. After 30 min 

polymerization, the coverslip with the hydrogel is carefully removed from the mask and stored in 

DPBS solution at 4 °C. Cells were plated on them the following day.  
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Cell culture and plating 

Stable cell line NIH 3T3 fibroblasts with CIBN-GFP-CAAX and optoGEF-RhoA constructs (kindly 

provided by L. Valon and M. Copper, Institute Curie, Paris, France) were cultured in Dulbecco’s 

Modified Essential Medium (DMEM) containing 10% foetal bovine serum (FBS) and 0.2% penicillin-

streptomycin. Cells were grown in a humidified 5% CO2 incubator at 37ºC. Cells were seeded on 

patterned substrates at a density of 200.000cells/cm3. All traction force measurements or 

immunostainings were performed 4 hours after seeding to ensure full spreading of the cells. 

Leibovitz’s L-15 medium, supplemented with 10% FBS and 0.2% penicillin-streptomycin, was used as 

imaging media for every live imaging experiment. 

 

Live cell imaging and activation 

Cell imaging and activation intended for posterior force measurements was carried out using a Nikon 

Ti-E microscope, Zyla sCMOS camera (Andor, Belfast, UK) and Plan Apo VC 60x/1.40 Oil objective 

(Nikon). The microscope was equipped with an incubator that maintains the temperature at 37 °C. 

Global cellular photoactivation was performed using a LED light source (X-Cite/XLED1, Lumen 

Dynamics, Canada) coupled to a Mosaic digital micromirror device (Andor). Depending on the 

experiment done, activation pulses were 10-20-50-100-150-200 ms long using an LED at 460 nm with 

power of 256.7 uW (measured at the back focal plane of the objective). 

 

Cell stainings 

For stress fibre labelling, cells were permeabilized and fixed for 10 min with 0.2% W/V Triton X-100 

and 4% paraformaldehyde in DPBS buffer to preserve cell shape. Fixed samples were washed with 

PBS and incubated in blocking buffer for 45 min. Afterwards, cells were stained with phalloidin at 1 

mM (Sigma-Aldrich) for 1 hour and finally mounted on glass slides with Mowiol 4-88 (Polysciences, 

Inc.) and kept at 4ºC overnight.  

For live actin measurements, cells were incubated overnight in DMEM medium supplemented with 

100 nM SiR-actin (SPIROCHROME) and 10 M verapamil. 

Both live and fixed actin imaging was carried out with a Leica TCS SPE confocal microscope with an 

HCX PL APO 63x/1.40 oil objective. The microscope was controlled through the Leica Application 

Suite (LAS) X software. Pictures were then processed using Fiji software. 

 

Actin order parameter analysis 

This parameter was obtained with a program that calculates the local orientation in actin images 

using the structure tensor. The program will first smooth the original image using a Gaussian filter. 

Then, based on the intensity level, the region in the cell is segmented.  
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For each pixel in the cell, the structure tensor J (that has 3 elements: J11, J12 and J22) is computed in 

a local neighbourhood that is also Gaussian. The orientation angle, the coherency and a measure of 

local gradient (grey level is constant or it changes) are computed from the elements of the structure 

tensor (λi are the eigenvalues of J): 

 

The average orientation and order parameter S will be computed by averaging over all pixels for 

which the coherency is above a threshold value, which can be changed. 

Average angle: θm=〈θ〉c>thres 

Order parameter: S=〈cos(2(θ−θm))〉c>thres 

 
(S=1 means that the local orientation is parallel to the average orientation, S=0 means that they are 

orthogonal). 

 

 
Vinculin staining 

After 4 h of culture on the micropatterns, cells were fixed with 3.7% formaldehyde in PBS, 

permeabilized with 0.2% Triton X-100 in TBS (50 mM Tris-HCl, 0.15 M NaCl, pH 7.4) and blocked with 

2% BSA (Sigma Aldrich) in TBS. The samples were then incubated with primary antibodies against 

vinculin (Sigma Aldrich) and detected with Alexa 488-conjugated, isotype-specific, anti-IgG antibodies 

(Invitrogen). Actin was labelled with phalloidin-TRITC (Sigma) and nuclei were stained with DAPI (Life 

Technologies).  

Areas of focal adhesions were segmented and measured by using a home-made Image J (National 

Institutes of Health) routine.  

 

Traction force microscopy 

Displacement fields describing the deformation of the polyacrylamide substrate are determined from 

the analysis of fluorescent beads images before and after removal of the adhering cells with trypsin 

treatment. The displacement field can be obtained by merging the images of the gel under stress, 

that means while the cell is alive, and the non-stressed image, which is after the cell has been 

detached using trypsin. Its calculation is made by a two-step method consisting of particle image 

velocimetry followed by individual bead tracking (Sabass, 2008, Butler, 2002). Force reconstruction 

was conducted with the assumption that the substrate is a linear elastic half-space, using Fourier 

Transform Traction Cytometry (FTTC) with zeroth-order regularization (Sabass 2008). The shear 
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modulus of the gels used in these experiments was 4,47 kPa. All calculations and image processing 

were performed in Matlab combining particle image velocimetry and single particle tracking.  
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Figure 1
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Figure 2
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Figure 3 
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Chapter 4 - Discussion and conclusions 

 

4.1 Discussion 

 

Tensional homeostasis is a fascinating and intriguing concept in the field of 

mechanobiology that has received increasing attention as its dysregulation has an 

important contribution to pathological conditions, such as developmental defects, 

cardiovascular and pulmonary diseases, and cancer [9], [10], [17], [84]. In 

environments where mechanical modifications and perturbations are common, 

stresses and strains can accumulate, and lead to tissue deformations that can 

significantly affect tissue integrity and structures. In consequence, a better 

understanding of how cell/tissue maintains a stable physiological state against 

intrinsic and extrinsic mechanical perturbations is of utmost importance.  

 

Although this concept of mechanical integrity preservation is broadly understood 

and accepted, I would like to draw the discussion towards the fact that being a 

developing term, the concept of tensional homeostasis is the target of interesting 

debates both in open discussions and in the bibliography.  Idea exchanges with 

collaborators and colleagues have evidenced the existing dilemma in what is actually 

meant by single cell tensional homeostasis, if there is such a thing and whether there 

is a more accurate way of referring to the active process under study. 

 

 In the first place a study done by Canovic et al concluded that tensional homeostasis 

was a multicellular phenomenon and that “it may require a higher level of 

organization than that of a single cell” [161]. Such a claim introduced controversy in 

the scientific community as Webster et al and Weng et al, among others, had 

presented it also as a single cell process in previous publications, the last ones using 

the term mechanical homeostasis. Considering that Canovic had used endothelial 
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cells and previously mentioned studies had worked with isolated fibroblasts, further 

work within the same group led to a recent study by Zollinger and colleagues where 

different cell types were compared. In their attempt to clear out if tensional 

homeostasis started at the cellular, multicellular or tissue level they studied the 

temporal fluctuations of traction forces in isolated and clustered endothelial, 

fibroblasts and vascular smooth cells. Their conclusion was that the phenomenon of 

single cell tensional homeostasis does exist, but is cell-type dependent [87].  

 

Other variables have also been shown to impact on the cellular tensional 

homeostasis. Paszek and collaborators when studying how tissue stiffness could 

modulate the onset of tumor-malignant behaviour, showed that substrate rigidity 

impacted significantly on the homeostasis-related cell mechanosensing processes 

[84]. This dependence with the substrate rigidity was also seen in preliminary results 

obtained at the end of this project where basal tension levels would vary with 

different substrate stiffness. Moreover, results presented in the previous chapter 

showed that such a variation was also happening when increasing cellular sizes, 

implying that single cell tensional homeostasis is also a size-dependent phenomenon. 

 

A final criticism to this apparently unclear homeostatic concept was done by Webster 

et al. when studying the tensional steady state of single fibroblasts and their response 

to perturbations with an elegant approach [86]. Isolating the cells between a 

micropatterned substrate and an AFM tip they would both measure and modulate 

forces while also imposing displacements, as mechanical perturbations, to individual 

contracting cells. Their experiments showed that, after cell displacement 

perturbation, the cellular contractility did not return to the original basal level but 

instead reached a new one, increased after a positive strain and reduced after a 

negative strain. This shifting compensation in the cell contractile state led the authors 

to redefine the concept of tensional homeostasis with what they decided to call 

tensional buffering.   
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Instead of focusing on the details and the parameters of the perturbations chosen for 

that experiment, which could also give material for discussion, I would like to point 

out one of the concluding remarks of Webster et al.’s work:  

 

“This behaviour (the non-returning to original steady-state) is in contrast to the strict 

definition of tensional homeostasis that predicts a fixed contractile setpoint…” 

 

Such remark puts in evidence how the concept of tensional homeostasis has received 

different interpretations since it was coined in 1998. At that time, Brown et al 

presented it as a control mechanism that would, based on the environment, keep a 

certain level of tension in the cell against external mechanical variations. For some, 

this certain level has meant a dynamic range and for others a more specific value. 

Tensional buffering does appear as a more accurate definition, but I would dare to 

say that although it considers the tensional compensations that the cell presents 

against perturbations, it disregards the fact that the cell will attempt to go back to the 

basal state as long as the external environment is still the same. That is what 

homeostasis is understood as, “an active promotion of equilibrium by biological 

systems” [162]. 

 

My take in this debate is that tensional homeostasis should be regarded as the way 

that the cells have to adapt their tensional state, within the desired properties, to 

the mechanical environment by means of feedback loops. It is a description that 

also tries to embrace Mina Bissell’s idea of dynamical reciprocity as it can evolve 

in the event of permanent external modifications. This definition implies 

inevitably a more general concept than a fixed setpoint. 

 

As a consequence, such an interpretation could lead to the conclusion that the 

tensional homeostasis is not a very accurate and scientifically relevant term 

considering its dependence on so many factors. However, the fact that it might be too 



     

 

 105 

much of a general concept does not prevent possible further characterization and 

understanding of the mechanisms involved in such process. It is in this light that we 

aimed at narrowing down the variables to test the dynamics of the homeostatic 

responses. We probed the contractile reaction of the single fibroblast to photo-

perturbations while modifying the cellular size and the internal network 

arrangement. As a consequence, we were able to ‘normalize’ the basal level and just 

interrogate the active process involved in recovering it. 

 

At this point, it is an undeniable fact that every healthy, non-dividing cell has a 

certain internal tensional equilibrium. From my point of view, and based on what I 

presented in this work, tensional homeostasis is the correct way to address it. As a 

future perspective, I would set the focus of the research on the previously mentioned 

feedback loops, both the positive and the negative ones, and how neighbouring cells 

impact on them. Most of the work already done has targeted positive feedback loops 

by imposing ‘positive’ perturbations, inducing the cell to readjust the system by 

reducing the momentary tensional increase. Valon et al have recently used an 

optogenetic construct to downregulate the activity of RhoA [121]. Probing negative 

feedback loops, as the one just mentioned, might bring exciting insights and better 

contribute to our understanding of the cellular tensional balance. 

 

4.2 Conclusion 

 

The aim of this thesis project was to delve into the phenomenon of tensional 

homeostasis in single cells. Derived from the general concept of homeostasis: an 

elemental adaptive biological process that is of vital importance in maintaining 

whole-cell/tissue physiology against external perturbations; this tensional by-product 

is the cellular homeostasis to mechanical perturbations. To study this phenomenon 

we used an engineered fibroblast cell line carrying a CRY2/CIBN light-gated 
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dimerizer system coupled to a RhoA activator ARHGEF11. This optogenetic 

approach allowed us to perturb the global cellular contractile state through the 

activation of the RhoA signaling cascade with high spatio-temporal resolution. In a 

reliable and reproducible fashion we were able to study the stress energy increases of 

the cell to light pulses of varying intensities. The force and contractile readouts were 

obtained by using a Traction Force Microscopy (TFM), a standard method to study 

the cellular traction forces produced by stationary or migrating cells on elastic 

substrates. Finally, in order to constrain the cell so as to avoid migration, analyse 

contractile responses on different cell sizes and actin network arrangement, and 

narrow down variables we included the micropatterning technique in our 

experimental set-up.   

 

All the work done during this project significantly increased my understanding of 

optogenetic techniques and cellular force measurements, giving me a thorough 

introduction to the field of mechanobiology. Moreover, on the experimental side, I 

gained huge expertise in soft substrate engineering and live cell experimentation. 

 

Results obtained all along the thesis taught me many interesting things. Starting from 

a general point of view, they reinstated the inherent variability of biological systems 

and the difficulty and complexity of classifying cellular mechanical behaviours 

within a defined range of values, hence the necessity of a critical spirit at the moment 

of evaluation.  

 

In more specific project-related terms, results confirmed the existence of a basal 

contractile state in non-dividing fibroblasts, which was preserved against mechanical 

perturbations and has been lately referred to as tensional homeostasis. This state was 

maintained throughout experiments that lasted up to 90 minutes and which involved 

photo-perturbations of increasing intensities. Moreover, studying cells with different 

spreading areas showed that this tensional equilibrium still occurred and increasing 
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the cell size increased its basal value. However, this increase in the internal ‘pre-

stress’ of the cell didn’t prevent a proportional stress response against photo-

perturbations. This result would imply that the cells spreading area modulates the 

process of tensional homeostasis. Coupled with this result we also observed a 

positive correlation between the increase in the actomyosin network alignment and 

the cell size. Inspired by these findings we aimed at probing the possible link in 

between the stress fibers alignment and the tensional homeostasis responses to 

perturbation. To do this, we kept the cell size unchanged in order to keep the same 

basal tensional state, but modified the global cellular actin arrangement through the 

design of particular sub-cellular patterning geometries. Results showed a significant 

decrease in the cellular contractile response to the same perturbation for cells with 

lower stress fibers alignment. A higher actin alignment translated to a higher force 

production upon perturbation. This outcome led us to the conclusion that the 

arrangement of stress fibers and the actin organization have a strong impact on the 

dynamic cellular force response.  

 

A good analogy to illustrate this concept can be made with a tissue that is present in 

most complex biological systems, the skeletal muscle. The fine alignment between 

myofibrils bundled in the fibers that make up skeletal muscle is a clear example of 

efficient force production through high ordered organization. In the same way, a cell 

with highly aligned stress fibers can exert higher force responses than one where the 

actomyosin network presents a lower global alignment.  
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Appendix A - Materials and Methods 

 

Polyacrylamide hydrogel micropatterning -Mask method  

Description of the procedure based on the work done by Vignaud, Hajer Ennomani, and Théry, 2014 

with modifications done at Motiv group [142]. 

Coverslip silanization 

• This glass treatment is necessary to ensure a good attachment between the PAA gel and the 

underlying coverslip. 

• As silane solutions are toxic, this process should be performed under a chemical hood with 

appropriate user protection, the silane solution should not leave the hood outside of a hermetically 

closed container. 

• Mix in a 15 ml falcon: 5ml of 100% alcohol, 161ul of 10% acetic acid and 18,5ul bind silane (Plusone 

Bind-Silane, Silane A-174, M.W. 248.35 g/mol).  

• Put 100-200ul of silane solution on each coverslip. 

• After 3-4 minutes wipe each coverslip with a kimwipe. (Do not let the coverslip dry before wiping 

it). 

• Leave for 10 minutes to make sure the coverslips are dry and store them at room temperature in a 

petri dish. Seal the petri dish with parafilm to avoid air dust from getting in. 

•This treatment is quite stable over few weeks so you can do many coverslips at the same time to 

avoid always repeating this fastidious time-consuming process. 

 

pLL–PEG solution preparation 

• This solution will be used for the passivation of coverslips before UV exposure and protein coating 

to avoid unspecific adsorption of protein outside of the exposed area. 

• pLL–PEG is usually received as powder and should be stored under protective atmosphere (Argon) 

if possible, at 20° C. The final concentration we want to achieve is 0.1 mg/ml. Since the powder is 

usually made of grains that weigh a few mg each, we first produce 1 mg/mL solution that is aliquoted 

and stored at 20° C. The final solution will be diluted from stock. 

• Prepare HEPES 10 mM from powder and milliQ water. 

• Equilibrate the pH of the HEPES solution to 7.4 using NaOH. 

• Weigh the pLL–PEG and add corresponding HEPES volume to reach a final concentration of 1 

mg/mL. Then filter the solution using a syringe and a filter of 0.22 mm mesh size. Aliquot the solution 

and store at 20° C. 

• When needed, thaw an aliquot and dilute it 10 times in HEPES solution to achieve a 0.1 mg/mL 

pLL–PEG concentration. The pLL–PEG solution should be then stored at 4° C and used within few 

days. 

 

Preparation of acrylamide solution and polymerization reagent 

• Again, as acrylamide is carcinogenic, handle it with care under chemical hood and using proper 

user protection. 

• To know the proportions required for a specific desired final gel rigidity, one can use the table from 

Tse and Engler (2001) which covers a wide range of rigidities. 

• Mix acrylamide and bis-acrylamide solution in PBS to obtain the desired concentration. 

• This solution can be stored for a couple of months at 4° C. 

• TEMED solution was used as received without further preparation. 

• APS solution was prepared from powder in water milliQ at a concentration of 10% w/w and 

immediately frozen in small 10 mL aliquots and stored at 20° C. 
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• Since APS is not very stable, one aliquot was used for each experiment and the remaining solution 

was systematically discarded. 

 

 

Mask treatment; cleaning and activation 

• Dip the mask in a Pyrex with Electroscrub for 5 min rubbing the mask on the chromium side 

constantly using gloves. This process should be performed under a chemical hood with appropriate 

user protection.  

• After the 5 min, rinse the mask with plenty of deionized water. Dry the mask with nitrogen air gun. 

• Rinse both sides of the mask with isopropanol and then dry the liquid carefully using nitrogen gas. 

• Use 20mmx20mm coverslips and using the air gun make sure they are dust free before the plasma 

activation. 

• Use megahertz plasma cleaner at 100% power. 

• Pre-clean the empty plasma cleaner by running air plasma at 0.2-0.3 mbar pressure during 3 

minutes. 

• Put the mask (chromium side facing the air) and the coverslips in the plasma cleaner. 

• Start pumping out the air in the reactor and wait for the pressure to stabilize at 0.3 mbar. 

• Open the air inlet and let plenty of air flow for a minute. 

• Pump out the air in the reactor and wait for the pressure to stabilize at 0.3 mbar. 

• Run the plasma at 100% power for 4 min.  

• Inject plenty of oxygen for a minute. 

• Pump out the oxygen in the reactor and wait for the pressure to stabilize at 0.3 mbar. 

• Run the plasma at 100% power for 1 min.  

• Close the gas inlet, stop pumping, and ventilate the reactor (a filter should be placed on the air inlet 

to avoid dust intake into the reactor). 

 

pLL–PEG quartz mask coating 

• Put one drop of pLL–PEG solution (25 mL/cm2) on the region of interest on the mask. For the case of 

20x20mm coverslips you should use 35 μl, and for the 32 mm round coverslips use 70 μl. 

• Cover the drop by flipping the activated glass coverslip on it and let it incubate for 30 min. 

• Meanwhile, prepare a solution of NaHCO3 pH 8.3. Dissolve 420 mg of sodium bicarbonate in 50 ml 

of miliQ water using a 50 ml falcon tube. 

• At the end of the incubation, lift the coverslips carefully without scratching the coating on the 

photomask. Leave the coverslips drying face up on a kimwipe. As the coverslips have been coated at 

the same time we will keep them for the incubation with the ECM protein; they will provide a fully 

passivized surface that will be used to sandwich the ECM droplet on the activated mask after UV 

insolation. 

• Put the photomask vertically. The solution should run off by itself. Rinse with pll-peg/HEPES and 

let it dry. Be careful to remember which size has been coated with pLL–PEG to prevent any damage 

on this side. 

 

Deep UV insolation and protein coating 

• At this step, we will burn the passivized surface at specific positions by shining UV light through 

the chrome photomask from the non-passivized side. The UV light will burn the passivized treatment 

directly on the mask and this will then allow the adsorption of protein at these specific positions. 

• Heat up the UV lamp. This is very important. Power measurements of the lamp have shown that the 

steady state power is reached after 2–5 min depending on the age of the lamp. We usually let it run for 

5 min and then immediately put the sample inside the lamp and start the insolation process. The 

power measured at steady state was 6 mW/cm2 at a distance of 1 cm from the lamp and a wavelength 

of 190 nm (you should take care to control the power frequently). 
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• Flip the mask to have the coated side away from the UV source. You can use small holders on the 

squares of the mask to prevent scratching of the coating. Expose to UV for 3 min. 

• Prepare protein coating solution: we use a solution of 20 mg/ml of fibronectin diluted in sodium 

bicarbonate 100 mM. A small amount of fluorescently labeled protein could be added in order to see 

the micropatterns by fluorescence microscopy. Store the solution on ice. 

• For the coating solution use 2 μl of fibronectin dilution, 2 μl of fluorescently labeled protein 

(fibrinogen) and 96 μl of the NaHCO3 solution previously prepared. 

• Remove the mask from the UV lamp and set it on a horizontal surface, passivized side now facing 

up. 

• Put a droplet of protein solution (25 ml/cm2) on the region of interest (35 μl for the case of the 20x20 

mm coverslips) and then put the pLL–PEG coated coverslips saved previously on the top, passivized 

side facing the droplet. Protect from light and let it incubate for 30 min. 

• In the meantime, aliquot the desired amount of acrylamide solution and put it to degas in a vacuum 

bell. 

• At the end of the incubation, remove the glass coverslips and discard them. Having the mask 

horizontally, pour some bicarbonate solution on it to rinse. Afterwards, put the mask vertically and 

pour some more bicarbonate solution on the coated spots. Let the solution dry by itself. 

 

Transfer on acrylamide gel 

• Here we will polymerize the acrylamide gel sandwiched between the patterned photomask and the 

silanized coverslips. During detachment, the gel will stay attached to the silanized coverslip and the 

protein from the patterned mask will be transferred to the free surface of the acrylamide gel, resulting 

in a micropatterned acrylamide surface. 

• Set the photomask horizontally with the pattern side facing up. Make sure that you have waited 

long enough for the solution to dry. 

• Collect the acrylamide solution from the vacuum bell and keep the container closed. 

• Optional: If you want to add some fluorescent beads in your gel for force measurements, they 

should be added at this stage (0.4 μl) of the process in the acrylamide solution and the solution should 

be sonicated for 3 min to destroy any bead aggregates that could have formed during the storage. 

• Prepare TEMED and APS and the silanized coverslips. You will add TEMED and APS solution to 

the acrylamide with the following proportions: 1 ml of TEMED and 1 ml of APS 10% for 165 ml of 

acrylamide solution. You should proceed as fast as possible in the next steps. 

• First, add TEMED to the acrylamide solution, briefly but vigorously mix. 

• Second, add APS solution to the acrylamide solution, briefly but vigorously mix. 

• Put a drop of 7 ml/cm2 of the acrylamide polymerization mix on the mask in each patterned area of 

interest. For the case of the 32 mm diameter round coverslips, you should add 47 μl of the mix. 

• Slowly place the silanized coverslip on top while taking care to avoid bubbles. 

• Put a cap (to prevent evaporation) and let the gel polymerize for 30 min. Keep the rest of acrylamide 

in a closed container as a control of gel polymerization. 

• Once the polymerization is finished (you should check it by detaching the remaining acrylamide 

from the tube, it should have the shape of the container and be elastic if you try to pinch it with a 

pipette tip), cover the coverslips with PBS and let the gel hydrate for 2 min. 

• Detach the acrylamide gel by very carefully lifting the silanized coverslip using a razor blade. To do 

that you should first detach gently all around the coverslip until it comes off by itself. Due to the 

silanization process, the gel will stay attached to the coverslip. Make sure that the gel is fully 

immersed during the entire detachment process otherwise you will end up with collapsed 

micropatterns. 

• Rinse the acrylamide gel attached to silanized coverslip (acrylamide coverslips) in PBS several times. 

• Control quality with fluorescence microscope if possible. 

• Store at 4° C and use within a week. 
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Mask cleaning 

• Start the mask cleaning process while it is still wet with PBS. Do not let it dry otherwise the 

polyacrylamide will be harder to remove afterwards. 

• Use water, soap and a sponge if possible and clean the mask thoroughly. Dry with nitrogen gas gun. 

• Rinse both sides with acetone. Dry with nitrogen gas gun. 

• Rinse both sides with isopropanol. Dry with nitrogen gas gun. 

• Pre-clean the empty plasma cleaner by running air plasma at 0.2-0.3 mbar pressure during 3 

minutes. 

• Put the mask (chromium side facing the air) in the plasma cleaner. 

• Start pumping out the air in the reactor and wait for the pressure to stabilize at 0.3 mbar. 

• Open the O2 inlet and let plenty of oxygen flow for 10 minutes. (Oxygen plasma has a much higher 

cleaning efficiency than air plasma). 

• Pump out the O2 in the reactor and wait for the pressure to stabilize at 0.3 mbar. 

• Run the O2 plasma at 100% power for 15 min.  

• Close the gas inlet, stop pumping, and ventilate the reactor. 

• Store the mask in a dust free environment. 

 

Oxygen plasma (Wikipedia) 

 

If the gas used is oxygen, the plasma is an effective, economical, environmentally safe method for 

critical cleaning. The VUV energy is very effective in the breaking of most organic bonds (i.e., C–H, C–

C, C=C, C–O, and C–N) of surface contaminants. This helps to break apart high molecular weight 

contaminants. A second cleaning action is carried out by the oxygen species created in the plasma 

(O2+, O2−, O3, O, O+, O−, ionised ozone, metastable excited oxygen, and free electrons). These species 

react with organic contaminants to form H2O, CO, CO2, and lower molecular weight hydrocarbons. 

These compounds have relatively high vapour pressures and are evacuated from the chamber during 

processing. The resulting surface is ultra-clean. 

 

Cell culture and plating 

Stable cell line NIH 3T3 fibroblasts with CIBN-GFP-CAAX and optoGEF-RhoA constructs (kindly 

provided by L. Valon and M. Copper, Insitut Curie, Paris, France) were cultured in Dulbecco’s 

Modified Essential Medium (DMEM) containing 10% foetal bovine serum (FBS) and 0.2% penicillin-

streptomycin. Cells were grown in a humidified 5% CO2 incubator at 37ºC. Cells were seeded on 

patterned substrates at a density of 200.000 cells/cm3. All traction force measurements or 

immunostainings were performed 4 hours after seeding to ensure full spreading of the cells. 

Leibovitz’s L-15 medium, supplemented with 10% FBS and 0.2% penicillin-streptomycin, was used as 

imaging media for every live imaging experiment. 

 

Live cell imaging and activation 

Cell imaging and activation intended for posterior force measurements was carried out using a Nikon 

Ti-E microscope, Zyla sCMOS camera (Andor, Belfast, UK) and Plan Apo VC 60x/1.40 Oil objective 

(Nikon). The microscope was equipped with an incubator that maintains the temperature at 37 °C. 

Global cellular photoactivation was performed using a LED light source (X-Cite/XLED1, Lumen 

Dynamics, Canada) coupled to a Mosaic digital micromirror device (Andor). Depending on the 

experiment done, activation pulses were 10-20-50-100-150-200 ms long using an LED at 460 nm with 

power of 256.7 uW (measured at the back focal plane of the objective). 
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Cell stainings 

For stress fibre labelling, cells were permeabilized and fixed for 10 min with 0.2% W/V Triton X-100 

and 4% paraformaldehyde in DPBS buffer to preserve cell shape. Fixed samples were washed with 

PBS and incubated in blocking buffer for 45 min. Afterwards, cells were stained with phalloidin at 1 

mM (Sigma-Aldrich) for 1 hour and finally mounted on glass slides with Mowiol 4-88 (Polysciences, 

Inc.) and kept at 4 ºC overnight.  

 

For live actin measurements, cells were incubated overnight in DMEM medium supplemented with 

100 nM SiR-actin (SPIROCHROME) and 10 M verapamil. 

 

Both live and fixed actin imaging was carried out with a Leica TCS SPE confocal microscope with an 

HCX PL APO 63x/1.40 oil objective. The microscope was controlled through the Leica Application 

Suite (LAS) X software. Pictures were then processed using Fiji software. 

 

Actin order parameter analysis 

This parameter was obtained with a program that calculates the local orientation in actin images using 

the structure tensor. The program will first smooth the original image using a Gaussian filter. Then, 

based on the intensity level, the region in the cell is segmented.  

 

For each pixel in the cell, the structure tensor J (that has 3 elements: J11, J12 and J22) is computed in a 

local neighbourhood that is also Gaussian. The orientation angle, the coherency and a measure of local 

gradient (gray level is constant or it changes) are computed from the elements of the structure tensor 

(λi are the eigenvalues of J): 

 

 
 

The average orientation and order parameter S will be computed by averaging over all pixels for 

which the coherency is above a threshold value, which can be changed. 

Average angle: θm=〈θ〉c>thres 

Order parameter: S=〈cos(2(θ−θm))〉c>thres 

 

(S=1 means that the local orientation is parallel to the average orientation, S=0 means that they are 

orthogonal). 

 

 

Vinculin staining 

After 4 h of culture on the micropatterns, cells were fixed with 3.7% formaldehyde in PBS, 

permeabilized with 0.2% Triton X-100 in TBS (50 mM Tris-HCl, 0.15 M NaCl, pH 7.4) and blocked 

with 2% BSA (Sigma Aldrich) in TBS. The samples were then incubated with primary antibodies 

against vinculin (Sigma Aldrich) and detected with Alexa 488-conjugated, isotype-specific, anti-IgG 

antibodies (Invitrogen). Actin was labeled with phalloidin-TRITC (Sigma) and nuclei were stained 

with DAPI (Life Technologies).  

 

Areas of focal adhesions were segmented and measured by using a home-made Image J (National 

Institutes of Health) routine.  
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Traction force microscopy 

Cellular traction force is the physical force exerted by cells on the extracellular matrix. At present, 

traction force microscopy (TFM) is an efficient and reliable method to determine the cellular traction 

forces acting on a flat flexible substrate. For that purpose, fluorescent trackers are embedded in the 

substrate during its fabrication. The key concept of traditional TFM is the acquisition of a pair of 

‘‘before kill’’ and ‘‘after kill’’ microscopy images (hereafter referred to as BK image and AK image, 

respectively). A BK image is a fluorescence image of the deformation of soft substrates caused by cells, 

and an AK image is a fluorescence image of non-deformed elastic substrates taken at the same location 

by detaching the cell through trypsinization. The displacement field can be obtained by merging the 

images of the gel under stress, that means while the cell is alive, and the non-stressed image, which is 

after the cell has been detached using trypsin. The composite image reveals the areas in which the cell 

exerts a force and displaces the beads.  

 

 

 
Figure 58 (A) Scheme of cells plated on the gel (left), and cell detached from the gel after trypsination 

(right). (B) ‘‘before kill’’ and ‘‘after kill’’ microscopy fluorescence images. (C) Composite image of the BK 

and AK images, with a close-up clearly showing the displacement of beads as a consequence of the 

deformation of the gel done by the cell. Scale bar, 15 μm. 

 

For the analysis of the displacement a Matlab program which combines particle image velocimetry 

and single particle tracking is used. By tracking the movements of the fluorescent trackers, and 

knowing the mechanical properties of the substrate, one can derive the force field applied on the 

substrate. 

 

Four hours after plating, the culture medium was discarded, gels where placed on microscope 

chamber and CO2 independent medium was added. After placing the chamber on the microscope 

stage, the gel was manually scanned and each properly spread cell was photographed in brightfield, 

far red, and mCherry mode. Afterwards, the culture medium was retrieved and 2 ml of trypsin were 

added. Five minutes later the medium was flushed to remove the cells from their original position and 

 

A 

B 

C 
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fluorescent pictures were taken of the coordinates where the cells were. In Figure 59 it can be clearly 

seen how forces exerted by the cell deform the ECM geometries on which they are plated. 

 

 

Figure 59 Deformation field exerted by the cell on the ECM geometry. (A) [N] shaped isolated 

micropattern. (B) [N] shaped micropattern being deformed by cell. (C) Composite image with 

unaffected micropattern in red and plated micropattern in green showing the deformation made by 

the cell. Scale bar, 15 μm. 

 

 

  



     

 

 115 

Appendix B – Nuclear mechanosensing 

 

Introduction 

This Annex will briefly present an important collaboration done with David Graham 

from the group of Keith Burridge, University of North Carolina, which led to a 

publication in the Journal of Cell Biology. This work aimed at better understanding 

the role of the nucleus in cell migration, polarity and mechanotransduction. 

 

The physical role of the nucleus 

As it was mentioned during Chapter 1, the nucleus is amongst the most important 

elements of the cellular mechanosensing machinery. It not only regulates cellular 

physical behaviour through gene expression, but it is also physically connected to the 

actomyosin network and the cytoskeleton through the LINC (Linker of 

Nucleoskeleton and Cytoskeleton) complex [163], thus playing also a mechanical role 

in the cellular mechanoresponses (Fig. 60).    

 

Several studies have been carried out to clarify how DNA replication, gene 

regulation and molecular pathways triggered by the nuclear lamina impact on the 

cellular mechanotransduction [28], [164]–[166].  

 

However, not much is known when it comes to identifying how important is, for the 

cell, the nucleus physical presence at the moment of regulating cell polarity, 

migration and tensional homeostasis. For this reason, the following study focused on 

studying these processes in the absence of the nucleus. Using enucleated cells and 

knock-out cell lines, Graham et al. studied the onset of cellular polarization and 

migration in 1D, 2D and 3D environments and on substrates with varying rigidities.  
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Figure 60 The complex machinery that transmits the mechanical perturbations from the 

environment to the nucleus. External forces are sensed by the integrins at the focal adhesions, 

information that is then transferred to the actomyosin network that is physically connected to the 

nucleus LINC complex, which delivers the information to the internal part of the nucleus potentially 

altering its functions and activating or regulating gene expression.  Adapted from [28]. 

 

My contribution to this work consisted mainly on performing image analysis to 

obtain the cellular force readouts using static force microscopy and providing line 

micropatterns for 1D migration studies.  

 

Traction force measurements showed that even though mammalian fibroblasts 

without nucleus (cytoplasts) and cells with nuclear lamina defects were able to exert 

forces, these were considerably lower than those of intact control cells. Similarly, 

cytoplasts sensed mechanical cues, such as rigidity variations, but responded in an 

impaired way. These observations implied that the nucleus plays a fundamental role 

in the mechanotransduction of the cell. In parallel, results showed that enucleated 

cells were capable of polarizing and migrating in 1D lines and 2D environments, but 

not in 3D environments.  
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Overall, the data obtained suggested that normal cell polarization occurs 

independently of the nucleus, but the regulation of normal cell contractility and 

mechanosensing is nucleus dependent. 

 

In the following pages you will find the publication in its published format. 
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Appendix C – Biophysical model to predict the 

experimental data
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