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Summary

A variety of circuits and devices based on Josephson junctions have been developed
since Josephson effect was predicted in 1962. These circuits display a range of effects
which can only be described by the laws of quantum mechanics. They provide unique
opportunities to study quantum effects where a circuit can be designed specifically
to study a particular effect. Superconducting quantum circuits rank among the best
candidates for realizing a quantum computer. They also have possible applications
in metrology, namely, one-dimensional arrays of Josephson junctions were proposed
to provide a quantum definition of the unit of current, the ampere. At low frequency,
a single Josephson junction can behave as an inductor whose inductance is due to
the kinetic energy of Cooper pairs. A long chain of junctions has a large inductance.
This superinductance is a necessary component of fluxonium qubit, as well as of the
proposed circuit for quantum current standard.

In the regime of small phase oscillations, a single Josephson junction can behave
as a quantum weakly anharmonic oscillator hosting the plasma oscillation with fre-
quency wy. The oscillations of a homogeneous chain of N junction have N normal
modes. These normal mode frequencies vary in the range from zero to w, because
each superconducting island interacts with the ground via the electrostatic field. This
interaction can be described by a ground capacitance. In this thesis, the normal mode
frequencies of Josephson junction chains are studied. Three main results are presented
in this work.

Firstly, a theoretical model has been developed in order to calculate the resonance
frequencies of the system including a homogeneous Josephson junction chain coupled
to a transmission line. This model is used to describe the chain which has been realized
experimentally at the Néel Institute. The frequencies of the normal modes can be
determined in the transmission coefficient measurement. The standard model often
used to describe such experiments, assumes that a ground plane is placed very close to
each superconducting island, and Coulomb interaction of charge on each island with

the ground is described by a fixed ground capacitance. The Coulomb interactions
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between charges on each island and its nearest neighbors are described by Josephson
capacitance. This standard model fails to fit the observed mode frequencies. In
the experiment, the ground plane was relatively far from the chain. In this case of
remote ground, the Coulomb interactions between the charges on an island and on
other islands are strongly non-local and lead to a different frequency spectrum. We
proposed a new model based on image method in electrostatics to take into account
this non-local Coulomb interactions. The normal mode frequencies obtained from the
remote ground model fit with the experimental measurement.

The second problem I studied is about an intrinsic dissipation mechanism in a
Josephson junction. If the junction contains an odd number of electrons, then a
single quasiparticle is present even at zero temperature. Tunneling of the quasiparticle
between the two sides of the junction generates dissipation in the junction. Namely,
the quasiparticle can absorb energy from the phase oscillation in the junction in
order to move from a lower energy level to a higher one. The rate of this process
depends on the energy of the quasiparticle, which in turn depends on the incident
microwave power in the transmission coefficient measurement. In this thesis, damping
of the plasma oscillation in a Josephson junction due to a single non-equilibrium
quasi-particle is studied. The dependence of internal quality factor and transmission
coefficient on the incident microwave power is investigated.

Finally, T studied superinductance optimization. A longer chain (with larger num-
ber of junctions) has a higher inductance. However, the frequency region where the
chain can behave as an inductor, ranges from zero to the first mode frequency. In
the case of spatially homogeneous chain whose junctions have identical parameters,
the first mode frequency is inversely proportional to the number of junctions, so,
a longer chain has a smaller bandwidth. Increasing the first mode frequency can
make this bandwidth larger. The first mode of a chain with a fixed junction number
can be modified by independently adjusting the parameters of each junction such
as junction areas. In addition, each junction of the chain can be implemented as a
superconducting quantum interference device (SQUID). A SQUID, made by a loop
of two Josephson junctions, can behave as a single Josephson junction with an ef-
fective Josephson energy which is tunable by changing the magnetic flux though the
SQUID. In this thesis, T focus on finding the optimal spatial profile of an inhomo-
geneous Josephson junction chain which maximizes the first mode frequency. We
obtain that the homogeneous chain used in previous studies, is the best result in the
case of varying junction areas. An improvement over the homogeneous result can be

obtained by representing the junctions by SQUIDs with different loop areas.
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Résumé substantiel en francais

Une grande variété de circuits et dispositifs basés sur des jonctions de Josephson a été
développé depuis la prédiction de I'effet de Josephson en 1962. Ces circuits affichent
une gamme d’effets qui ne peuvent étre décrits que par les lois de la mécanique
quantique. Ils offrent des opportunités uniques pour étudier les effets quantiques
ol un circuit peut étre concu spécifiquement pour étudier un effet particulier. Les
circuits supraconducteurs sont parmi les meilleurs candidats pour réaliser un ordina-
teur quantique. IlIs ont également des applications possibles en métrologie, a savoir,
des réseaux de jonctions de Josephson unidimensionnels ont été proposés pour fournir
une définition quantique de 1'unité de courant, "ampére. A basse fréquence, une seule
jonction de Josephson peut se comporter comme un inducteur dont 'inductance est
due a I’énergie cinétique des paires de Cooper. Une longue chaine de jonctions a une
grande inductance. Cette superinductance est un composant nécessaire de qubit de
fluxonium, ainsi que du circuit proposé pour le standard quantique du courant. Le
premier chapitre du manuscrit donne une introduction a cette physique.

Dans le régime de petites oscillations de la phase supraconductrice, une seule
jonction de Josephson peut se comporter comme un oscillateur quantique faiblement
anharmonique hébergeant I'oscillation de plasma avec la fréquence w,. Les oscillations
d’une chaine homogéne de N jonctions ont N modes normaux. Les fréquences de ces
modes normaux se trouvent dans l'intervalle de fréquences entre zéro et w, parce
que chaque ile supraconductrice interagit avec la masse par le champ électrostatique.
Cette interaction peut étre décrite par une capacité vers la masse. Dans cette thése,
j’étudie les fréquences de modes normaux des chaines de jonctions de Josephson. Trois
principaux résultats sont présentés dans ce manuscrit.

D’abord, dans le Chapitre 2, je présente un modéle théorique qui permet de cal-
culer les fréquences de résonance d’une chaine de jonctions Josephson homogéne cou-
plée & une ligne de transmission. Ce modéle est utilisé pour décrire la chaine qui a
été réalisée expérimentalement a 'Institut Néel. Les fréquences des modes normaux

peuvent étre déterminées dans la mesure du coefficient de transmission. Le mod-
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¢éle standard souvent utilisé pour décrire de telles expériences, suppose que la masse
est trés proche de chaque ilot supraconducteur, et interaction Coulombienne de la
charge sur chaque ilot avec la masse est décrite par une capacité vers la masse fixe.
Les interactions Coulombiennes entre les charges sur chaque ilot et ses plus proches
voisins sont décrites par la capacité de Josephson. Ce modéle standard ne correspond
pas aux fréquences de mode observées. Dans expérience, le plan de masse était
relativement loin de la chaine. Dans le cas d’'une masse éloignée, les interactions de
Coulomb entre les charges sur une ile et sur d’autres iles sont fortement non locales
et produisent un spectre de fréquences différent. Nous avons proposé un nouveau
modéle basé sur la méthode de 'image en électrostatique pour prendre en compte ces
interactions de Coulomb non locales. Les fréquences de modes normaux obtenues a
partir du modéle non local correspondent & la mesure expérimentale.

Dans le chapitre 3, j’ai étudié la dissipation intrinséque dans un atome artificiel
supraconducteur, représenté par une seule jonction Josephson ou une chaine de jonc-
tions Josephson. Si 'atome artificiel contient un nombre impair d’électrons, alors
une quasi-particule est présente méme a température nulle. Les transitions de la
quasiparticule entre les deux cotés de la jonction par leffet tunnel générent une dis-
sipation dans la jonction, parce que la quasi-particule peut absorber I’énergie des
excitations de 'atome artificiel afin de passer d’un niveau d’énergie inférieur a un
niveau supérieur. Contrairement aux études précédentes sur la dissipation induite
par les quasiparticules, ici je prends en compte le chauffage de la quasiparticule par
la micro-onde utilisée pour sonder les excitations de 'atome artificiel. Pour simpli-
fier, on suppose que le refroidissement des quasiparticules par émission de phonons
acoustiques est inefficace et peut étre négligé, de sorte que I'état de la quasiparticule
est déterminé par le couplage aux degrés de liberté supraconducteurs. Le taux des
transitions de la quasi-particule par Ieffet tunnel dépend de I’énergie de la quasipar-
ticule, qui & son tour dépend de la puissance micro-onde incidente dans la mesure du
coefficient de transmission. Je montre que le facteur de qualité intrinséque correspon-
dant, mesuré dans une expérience de transmission, augmente avec la puissance de la
pompe. Cela se produit parce que la densité d’états de la quasiparticule diminue avec
Iénergie de la quasiparticule, de sorte qu’avec un pompage plus fort, le tunneling de
la quasiparticule est plus lente.

Au chapitre 4, j’ai étudié la possibilité d’optimiser I'intervalle de fréquences o une
chaine de jonctions de Josephson peut fonctionner comme un super-inducteur, par un
choix judicieux du profil spatial des paramétres de jonction. Une chaine plus longue

(avec un nombre de jonctions plus grand) a une inductance plus élevée. Cependant,



Iintervalle de fréquences ot la chaine peut se comporter comme une inductance va de
zéro a la fréquence du premier mode normal. Dans le cas d’une chaine spatialement
homogene dont toutes les jonctions ont des parameétres identiques, la fréquence du
premier mode est inversement proportionnelle au nombre de jonctions, de sorte qu’une
chaine plus longue a une largeur de bande plus petite. L’augmentation de la fréquence
du premier mode peut rendre cette bande plus large. Le premier mode d’une chaine
avec un numéro de jonctions fixe peut étre modifié en modulant indépendamment les
paramétres de chaque jonction tels que les surfaces des jonctions. Dans cette theése,
je me concentre sur la recherche du profil spatial optimal d’une chaine de jonctions
Josephson inhomogéne qui maximise la fréquence du premier mode. On obtient que la
chaine homogéne utilisée dans les études précédentes, est le meilleur résultat dans le
cas de surfaces des jonctions variables, ce qui laisse invariant le produit de I'inductance
et de la capacité de chaque jonction. Une autre facon d’introduire une variation
spatiale est de représenter les jonctions par des dispositifs d’interférence quantiques
supraconducteurs (SQUIDs) dont les aires des boucles sont différentes. Un SQUID,
fait par une boucle de deux jonctions de Josephson, peut se comporter comme une
seule jonction Josephson avec une énergie de Josephson efficace qui peut étre ajustée
en changeant le flux magnétique a travers le SQUID. Ensuite, en appliquant un champ
magnétique, on peut faire varier les inductances des jonctions indépendamment de
ses capacitances. Je montre que cette stratégie peut en effet donner une amélioration
par rapport au cas homogeéne, si les jonctions les plus inductives sont placées prés des
extrémités de la chaine, et les moins inductives au milieu. Cependant, je constate

que cette amélioration devient moins importante pour les chaines plus longues.
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Chapter 1

Introduction: superconducting

circuits for quantum metrology

1.1 Josephson junction

In the superconductivity, the complex order parameter has a phase. In 1962, Joseph-
son predicted an existence of a zero voltage-biased supercurrent flowing across a
junction made of two superconducting electrodes separated by a thin insulating bar-
rier. This supercurrent depends on the phase difference ¢ between the Cooper pair
wavefunctions in the two electrodes as [1]

I, = I.sin . (1.1)

Here I. is the critical current which is the maximum supercurrent that the junction
can support. By applying the microscopic theory, the dependence of the critical
current on the material, the junction geometry and the temperature is determined
as [2]
A
I.R, = — tanh —— (1.2)

where A is the superconducting gap, and R,, is the resistance in the normal state,
(1.3)

where A is the cross section area of the junction. If there is a voltage V' applied

between two superconducting islands, the phase difference ¢ evolves according to the
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Figure 1.1: (a) A schematic view of a voltage-biased Josephson junction. (b) Equiv-
alent circuit of the Josephson junction.

following differential equation

dp 2e

— =—V. 1.4

dt h v (1.4)
Here e is the absolute value of the electron charge. Thus, the electron charge is —e.
Combining this with Eq. (1.1) gives us the relation between the applied voltage and

supercurrent
h dl

V= 2el. cos¢ dt

This relation shows that the Josephson junction behaves as an inductor with induc-

(1.5)

tance I
L=—"2 1.6
cos @’ (1.6)

where L; = h/(2el.) is defined as the Josephson inductance. In addition, the energy
stored in the inductor is defined as

Is

By = / Lidl. (1.7)

0
Using Eq. (1.1) and Eq. (1.5) gives us

Is

é
EL(¢) :/LIdI: /LJIfsingodg0:EJ(1 — cos ¢), (1.8)
0 0

where E; = hl./(2e) is called Josephson energy. In addition, two superconducting

electrodes of the Josephson junction form a capacitance called Josephson capaci-



tance C';. The electrostatic potential energy stored in this capacitance is defined as

Eq = Q—‘QJ = 4n’F, (1.9)
2C
where (); = 2ne is the total charge in the capacitance, and E¢ = €?/(2C) is called
charging energy.
In the regime F; > E¢ and small variation of phase ¢, one can set cos¢ ~ 1
in Eq. (1.6), so the Josephson junction behaves as a linear inductor with the induc-

tance L.

1.2 The RCSJ model

The behavior of a Josephson junction can be described by the simple resistively and
capacitively shunted junction (RCSJ) model |3; 4|, in which we model the physical
Josephson junction by an ideal one described by Eq. (1.1), shunted by a resistance R
and a capacitance C, as shown in the Fig.1.5. The resistance describes the dissipation
due to quasiparticles and the capacitance C' is formed by two sides of the junction.
In the RCSJ model, the dynamic equation for the phase difference ¢ in the presence

of an external applied bias current I can be derived by using the Kirchhoff’s law as

follows v W
I =1.5si — +C—. 1.10
sin ¢ + 7 + T ( )
Using Eq. (1.4) gives us
d*¢  1do R |

where the dimensionless time variable 7 = wy,t, with

/1 2el..
u_)p = _LJO = hC s (1.12)

Q = w,RC, (1.13)

and

being the so-called plasma frequency and the quality factor of the junction, respec-

tively.

Equation (1.11) is similar to Newton’s equation of motion for a classical particle



of effective mass (%/2¢)?C moving along the ¢-axis in an effective potential
1 I
U(¢) = —EJ(‘,()S(f)— Z_e¢= —EJ <(‘Ob¢+[—(f)> . (114)

This potential is shown in Fig.1.2. The minimum positions of the potential in the

case of I < I.. are the solutions of following equation

dU . I
pra E; (smgb - -[_c> = 0. (1.15)

The minimum positions correspond to d*U/d¢* > 0. Thus, solving Eq. (1.15) gives

us the minimum positions in the tilted-washboard potential as

I
¢m = arcsin A + 2m. (1.16)
0
-1
W5
s T
-3
-4
-5
0 2m 4T 6T
@

Figure 1.2: The tilted-washboard potential representation of the RCSJ model with
hi/(2eE;) =0.2

We assumed above that the phase and charge in the island behave as classical
variables. The charge is the conjugate momentum variable of the phase. We have al-
ready known that the coordinate and momentum cannot simultaneously have definite
values. It is limited by Heisenberg uncertainty relation. In the quantum mechanical
description of the Josephson junction, the phase and charge are described by the
charge operator ) and phase operator gb and these operators satisfy the commutation
relation [5]

[é, Q} = e, (1.17)



and the Heisenberg uncertainty relation
APAQ > 2e. (1.18)

When phase fluctuations are large, A¢p ~ 27, so, the phase particle can go to the
neighbor potential minima. This transition from a potential minimum to another
one is called phase-slip. A phase-slip can either occur by thermal excitation over
the barier or by quantum tunneling through the barrier. Thus, the phase-slips are
referred to as thermally activated phase-slip (TAPS) and quantum phase-slip (QPS),
respectively.

In the case of quantum phase-slip event, the quantum tunneling rate from the

minimum position ¢,, to the ¢,,;1 is given by using WKB approximation as [6]

¢m+1

1
D=l e~ [ doy /5106 - Uy (119)
bm

This tunneling rate is proportional to [7]

I' x exp (—\ / %) : (1.20)

Therefore, the tunneling effect can be ignored when E; > Es. In other words, we

can treat the phase particle as a classical particle when E; > Ec.

1.3 Shapiro steps

We start with the simplest case. Let us apply both a DC and an AC voltage across
the junction
V =Vpe + Ve cos(wt), (1.21)

as shown in Fig. 1.3. Using Eq. (1.4) gives us the phase difference as

2 2
= 6‘}?07&4— ei_ZJAC sin(wt). (1.22)

o(t)
Inserting this ¢(t) into Eq. (1.1) yields the supercurrent as

2€VDC’ 2€VAC
t
h + hw

I, =1 sin sin(wt) | , (1.23)



Figure 1.3: Voltage-biased circuit.

I

-2 L Vv 2V, po

Figure 1.4: Shapiro spikes of width V; = hw/(2e)

and using the mathematical expansion of the sine in the Fourier series in wt, we have

L=1Y (-1)"J, <2eh\f;40 ) sin [(wo — nw)t], (1.24)

where wy = 2eVpe/h, and J,(z) is the Bessel function. The total curent is obtained
by adding the shunt current V/R

26VAC

> sin [(wg — nw)t] + K (1.25)

v
:Ie _:Ic _lnn
T=1I.+4 zn:( )J< 0

The current contains a DC contribution only when wy = nw. It is equivalent to

Ve = % =V,, n=0+1,4+2 .. (1.26)



Figure 1.5: Euquivalent circuit of RCSJ model with current bias.

Therefore, the total DC current though the junction is Vpe /R unless Vpe = V,,, in

which case v
I=1,+-2 1.27
+ 2 (1.27)
where the DC part of the supercurrent
2€V4C
I, =1.(-1)"J, - . 1.28
1 (52) (129

Therefore, the total DC current is linear as Vpo/R except when the voltage is
Vo, = nhw/2e where the DC supercurrent jumps suddenly to the value I,, given by
Eq. (1.28). These are called Shapiro spikes as shown in Fig. 1.4.

Realistic circuits are usually driven by a current. Let us consider that a Josephson
junction is biased by the current which contains DC and AC current as shown in
Fig. 1.5:

I = Ipc + Lac cos(wt). (1.29)

In the case of E; > E¢, the tunneling probability of the phase particle though the
tilted-washboard potential is very weak. Therefore, we can treat the phase particle
as a classical particle. The equation motion of the classical particle in the case of
current, biased Josephson junction in the RCSJ-model is follows

¢ 1do Ipc  Iac

?4—5%4-8111(/): L. + L.

cos [(w/wp)T] . (1.30)

This is a non-linear differential equation, then numerical calculations give the voltage

Shapiro steps in the I-V curve shown in Fig. 1.6 [8].



VIR,

Figure 1.6: I-V characteristic of the current-biased Josephson junction: v = w/27 [8]
The value of the voltage at this step is
Vpo=n—=n—. (1.31)

This relation can be used to build a metrological voltage standard [9]. Indeed, this
equation relates voltage to the frequency which can be measured very precisely by

atomic clock.

1.4 Bloch band and quantum phase-slip junction

The Hamiltonian of the Josephson junction is given by

0?2
H = 20 Ejcos ¢. (1.32)

The phase ¢ and the charge () are conjugate quantum variables. Therefore, the

charge operator () in the phase representation is given as momentum operator in the
coordinate representation,

Q= —Zez'(%. (1.33)



Then the stationary Schrodinger equation in the phase representation is given by

2

—4an8—¢,)2 — By cos | 9(@) = Bb(9), (1.34)

where 1(¢) is the wave function which stastifies the boundary condition (¢ + 27) =
€'3:2™)(¢), and ¢ is the quasi-charge analogous to the Bloch quasi-momentum for the
particle in a periodic potential. The Schrédinger equation is the Mathieu equation
and can be solved anlytically in terms of Mathieu functions. The eigenenergies are

given by [10]

E.
Bn(a/20) = Bt (2fktm.a/2e) — /20l 52 ) (139)
where My (m, x) is the Mathieu’s characteristic value, and k(m, n) is the integer-value
function defined as

1
k(m,n) = [n + 5] +(=D)™((m+1)div2) (20 ([n+1/2] —n) — 1), (1.36)
where [z] is integer closest and less then z, and O(xz) is the Heaviside function of x.
The charge dispersion is shown in Fig. 1.7. In the case of F; < E¢ the bands
are almost parabolic with a width of F¢ and a gap approximate to ;. In the case

of E; > Eg¢, the dispersion relation E,,(q) is sinusoidal [10]

E..(q/2¢) ~ E,,(q/2e = 1/4) — % cos (277%) , (1.37)

where €,, = F,,(¢/2¢ = 1/2) — E,,(¢/2e = 0). In the case of E; > E¢, €, is given as

oim+s  [5 / [ Z+3
€m ~ (—1)™E¢ \/j( J ) e~ V8Es/Ee (1.38)
T

In the case of E; > FE¢, using Eq. (1.37) gives us the Hamiltonian for the lowest
band as

Hes = —2€cos 2. (1.39)
e

where € is also the tunneling amplitude of the phase particle in the tight-binding

limit |7].
_ 4 3 1/4 _ 8EJ
€= 7 (8E3Ec) " exp ( ”_EC . (1.40)

In this Hamiltonian, the potential energy is a cosine function of the junction quasi-
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charge and related to the phase slip in the junction. The circuit element obeying
the Hamiltonian as Eq. (1.39) is called a phase-slip element which represented as a

diamond shaped symbol as Fig. 1.8.

Let us consider a circuit of a phase slip element connected to an inductor as shown

10



Figure 1.8: A phase-slip element.

in Fig. 1.9. The Hamiltonian of the system can be written as

o2 Tq D \? Tq
H= o —2€COS? _EL<«:}TO> —26008?, (1.41)
where E; = ®2/(2L), and @ is flux through in the inductance, conjugate to the
quasi-charge ¢. This is the Hamiltonian describing a fictitious charge particle. This
is simillar to the Hamiltonian of the phase particle described by Eq. (1.32) but with
charge and phase interchanged. Therefore, the circuit of a phase-slip element and an

inductor is called phase-slip junction. The voltage across to the junction is given by

)
%z@z%—q:%sin?, (1.42)
where V, = 27e/e.
ES
o

Figure 1.9: A phase-slip junction.

1.5 Quantum current standard circuit

Similar to the limit £; > E¢ when the phase particle behaves as a classical particle

in a Josephson junction, the charge particle can be treated as classical particle in

11



the limit € > E7. In the case of a phase-slip junction biased by the current I(t) =
Ipc + 1, coswt, the charge ¢(t) is determined as

t

Lyw
q(t) = /Ib(T)dT = Ipct + = sinwt. (1.43)
w

(~)
(&

Y —

7
V Do ! Ao

Figure 1.10: Voltage-biased phase-slip junction.

Subsituting Eq. (1.43) into Eq. (1.42) gives us the voltage across the junction

ew

V=V, (1", (WI“W> sin [(wo — nw)i], (1.44)

where wy = mlpc/e. Similarly to the spikes in the voltage of the voltage-biased

Josephson junction in Sec. 1.3, we obtain the Shapiro spikes in current at

Ipc = n% (1.45)

where w/27 the frequency of the microwave drive.

In the case of a phase-slip junction biased by the voltage V;(t) = Vpo + Ve cos wt,
we obtain the tilted washboard potential for the charge particle. In addtion, when
€ > Ep, the charge particle behaves as a classical particle described by following
equation of motion

mq  d’q  .dg

t =V.sin— + L— —. 1.4
Voo + Vac cosw sin — + s +Rdt (1.46)

This is dual to the Eq. (1.30), thus gives us the currents steps dual to the Shapiro

12



Figure 1.11: I-V characteristic of QPS junction: v = w/2m [8].

steps Eq. (1.26) [8]
Inc =nZ. (1.47)
T
The numerical calculation gives us the Shapiro current-step in I-V curve as shown in

Fig. 1.11. This circuit can be used for realization of a current standard in metrol-
ogy [8; 11].

1.6 Motivation for the thesis

To reach the limit ¢ > FE; in which the current steps could be observed, a large
inductance L working at high frequency is required as discussed in Sec. 1.4. Tt is
difficult to realize a large geometrical inductor on chip because any geometrical in-
ductor also necessarily possesses a parasitic self-capacitance which starts to dominate
at high frequencies. One possible strategy is using superconducting materials whose
inductance is due to the kinetic energy of the Cooper pair condensate [12]. One way
to produce such superinductance is to put a large number of Josephson junctions in
series to form a Josephson junction chain, which has the total inductance N L, where
N is number of junctions and L is the inductance of a single Josephson junction given
by Eq. (1.6). Long Josephson juction chains are fabricated and studied in microwave
experiments at the Néel Institute. It is known that long chains host low-energy ex-
citations, corresponding to small oscillations of the superconducting phase on the
junctions [13; 14], also known as plasma oscillations or Mooij-Schén modes [15]. To

interpret experiments, a theoretical model is needed. In chapter 2, I studied the the-

13



oretical model used to determine the parameters of a homogeneous chain by fitting
experimental values of the normal modes frequencies to the theoretical result.

In microwave transmission experiments, the dissipation in the chain can be char-
acterized by measuring quality factors. The external quality factor is related to the
dissipation due to coupling between the chain and external circuit (a transmission
line). The intrinsic dissipation could be produced by different mechanisms. One of
these mechanisms is due to the tunneling of quasi-particles between the two sides
of a junction. A quasi-particle can absorb energy from the plasma oscillation in the
junction in order to move from a lower energy level to a higher one. The rate of
this process depends on the energy of the quasi-particle. Therefore, the microwave
transmission coefficient measurement could depend on the incident microwave power.
In chapter 3, damping of the plasma, oscillation in a Josephson junction due to a sin-
gle non-equilibrium quasi-particle is studied, and the dependence of internal quality
factor and transmission coefficient on the incident microwave power is investigated.

To work as a linear inductor, each junction of the chain must be in the regime
E; > Ec. In addition, the frequency bandwidth where the chain behaves as a
linear inductor is limited by the first Mooij-Schén mode frequency w; o< 1/(N + 1).
Therefore, it is crucial for the homogeneous Josephson junction chain that when the
junction number is increased in order to increase the total inductance of the chain,
the frequency bandwidth is reduced. A Josephson junction chain does not have
to be spatially homogeneous, the junction parameters can be controlled individually
during fabrication, and can be chosen on purpose to increase the first mode frequency.
This suggests us consider an inhomogeneous junction chain whose normal modes are
modified by a spatial modulation of junctions. The first mode of the chain can
be modified by independently modulating the parameters of each junction such as
junction areas. In addition, each junction of the chain can be implemented as a
superconducting quantum interference device (SQUID). A SQUID, made by a loop of
two Josephson junctions, can behave as a single Josephson junction with an effective
Josephson energy which is tunable by changing the magnetic flux though the SQUID.

In chapter 4, optimization of an inhomogeneous chain is investigated.

1.7 Thesis outline

In this thesis, theoretical investigations of the normal mode engineering of the Joseph-
son junction chain are presented. Firstly, an introduction of the normal modes of a
homogeneous Josephson junction chain and the transmission coefficient in the mi-

14



crowave measurement is presented in Chapter 2. I present a theoretical model devel-
oped in order to determine the resonance frequencies of the system which consist of
a homogeneous chain coupled to a transmission line. This system is realized exper-
imentally at the Néel Institute. Namely, the mode frequencies of the chain can be
determined by the transmission coefficient measurement. In these experiments, the
ground plane was relatively far from to the chain. In this case, the Coulomb inter-
actions between the charges on an island and on other islands are strongly non-local
and lead to a different frequency spectrum. This case could not be described by the
standard model which is used for the case of the ground close to the island. A new
model based on image method in electrostatics to take into account this non-local
Coulomb interactions is presented. The normal mode frequencies obtained from the
remote ground model fit with the experimental measurement. These results will be
published in a joint paper with the experimental group at the Néel Institute |16].

In Chapter 3, investigations of the intrinsic dissipation in a single Josephson junc-
tion due to a single non-equilibrium quasi-particle are presented. If the junction
contains an odd number of electrons, then a single quasiparticle is present even at
zero temperature. The dissipation in the junction can be generated by the tunneling
of the quasiparticle between the two sides of the junction. Namely, the quasi-particle
jumps to higher energy lever by absorbing energy from the plasma oscillation in the
junction, and the its transition rate depends on the energy of the quasiparticle, which
in turn depends on the incident microwave power. The dependence of internal quality
factor and transmission coefficient on the incident microwave power in transmission
coefficient measurement is presented in this chapter. The calculation is then extended
to the case of a Josephson junction chain hosting few quasi-particles. These results

are published in [17].

Finally, Chapter 4 turns to the optimization of a inhomogeneous chain. T fo-
cus on finding the optimal spatial profile of an inhomogeneous Josephson junction
chain which maximizes the first mode frequency while keeping the total inductance
large. We obtain that the homogeneous chain used in previous studies [14], is the
best solution in the case of varying junction areas. In the case of modulating the flux
thought the SQUIDs, an improvement over the homogeneous result can be obtained
by representing the junctions by SQUIDs with different loop areas. These results are
published in [18].

15



Chapter 2

Normal modes of a Josephson
junction chain and microwave

measurements

2.1 The “standard” model of a Josephson junction

chain

2.1.1 Lagrangian and Hamiltonian of a Josephson junction

chain

We consider a Josephson junction chain of N junctions which is made of N + 1
superconducting islands shown in Fig. 2.1. The nth island is connected to the (n +
1)th island by a capacitance C),, and a Josephson junction having Josephson energy
Ej,. The Josephson energy of each junction is related to its critical current as
E;. = (h/2¢)l.,. In the case when each superconducting island is very close to
the ground, the interaction between the charge in each island and the ground is
short-range Coulomb interaction. Therefore, each superconducting island and the
ground plane form a ground capacitor Cy,. This is the typical model for describing
a Josephson junction chain [19; 20; 21].

We denote the superconducting phase and flux of the nth island by ¢, and ®,,,
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Figure 2.1: A schematic view of the Josephson junction chain.

respectively. Note that

h

D, = —b,, 2.1
i (21a)
B .

Vo= —0, = &,. 2.1b
e (211)

Now, let us study the classical theory for an isolated Josephson junction chain. The

equations of motion are given by applying the Kirchhoff’s law as follows:
2 . . .
Ic,l sin |:E6(CI)2 — (I)l):| + 01((1)2 — (1)1) + Cg)lq)l == 0, (22&)
2 . . .
Ic,n—l sin |:Ee(q>n - q)n—l):| + Cn—l(q)n - (I)n—l) + Cg,n(I)n+

2 . .
+ I, sin [—e@n - <I>n+1)] 4 Cp(bp — Bpyr) =0, T<n<N+1, (2.2b)

h

.| 2e . . .
I,;,N Sin [E((I)N - (I)N+1):| + O]V(q)]\[ - q)]\/'+1) + Cg,N+1(I)N+1 =0. (22C)

The Lagrangian that yields the equations of motion (2.2), is given by

N o N+ 9%
— L _ 9 " P _ - —
L—; 5 < n+1 n) +Z ZEJn[ (h((l)n—l—l (Dn)>]

(2.3)

The charge @,, conjugate of the flux ®,, is defined as

0L . . .
Qn = a@ = (Cn + Cn—l + Og’n) @n - Cn_]_®n_]_ - On(I)n+l (2.4)
This equation can be written in matrix form

Q= Cd, (2.5)

17



where C is the capacitance matrix which is defined as

o+ 0y, e 0 - 0 0
- Ci+Cy+Cyy —Cs
C= : : : . : :
0 0 0 - Oy +C0n+Cyn —Cy
L —Cn Cn + Cyny1 |
(2.6)
This matrix is symmetric and positive definite; indeed, for an arbitrary vector x we
have N1
x'Cx = Z Co(Tpi1 — x,)° + Z Cynzs > 0. (2.7)

The kinetic term in the Lagrangian (2.3) can be written in the matrix form as

N O ) N+1 ) 1
> 2 (i - ) +Z Cong <I>TC<I>— <I>TQ=§QTC‘1Q. (2.8)

n=1

Using the matrix notation, the Lagrangian (2.3) is rewritten as

1 . . 2e
=3 > 2uCrum P — ; Ejn [1 — cos (%((bnﬂ — @n)ﬂ : (2.9)

n,m

We obtain the Hamiltonian of the Josephson junction chain in terms of the inverse

capacitance matrix C~1 as

H = Z(DQO - ZQ'I‘L anm + ZEJn |:1 — COs (2;((1)114—1 - (I)n)>:| .

(2.10)

2.1.2 Normal modes of a Josephson junction chain

In the case of small variation of the phase, in the equations of motion (2.2), we can
approximate sin(¢, — ¢,11) ~ ¢, — ¢nr1. This corresponds to the harmonic limit,
each junction behaves as linear inductance L,, = h/(2el.,,) as shown in Fig. 2.2. So,
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Figure 2.2: Circuit representation of a harmonic Josephson junction chain

these equations of motion become

2L L Cy(Dy — 1)+ C,p iy =0, (2.11a)
1
(I)n — cI)n_ . .
—1 + On—l(q)n - (I)TL—1)+
Ln—l
(Dn - q)n-i-l

——f——44%@n—éwg+6@@nzm l<n<N+1, (2.11b)

by — . . .

% + On(PNy — Pnp1) + Cgn1Pry1 =0
N

(2.11c¢)

These equations of motion correspond to the Lagrangian which is quadratic in ®
and ®,,

QMZ

2

n=1 2Ln

C, . W N (@ — B’

Cn _ +§:9my E:_L__J_

9 ( n+1 n)
1 n=1 (212)
Z ((I) On,m¢m - q)nLginq)m>7

l\DI»—t

where the inverse inductance matrix L~! is defined as

1 1 7
I I 0 0 0
1 1 1 1

o ontn T 0
L= : : : (2.13)

1 1 1

Ly + Iy T In
1 1
L T Iy Ly

Similar to the capacitance matrix C, the inverse inductance matrix L~ is also sym-

metric and positive definite. The quadratic Hamiltonian corresponding to the La-
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grangian (2.12) is given by

1

H==
2

> (QnCrpiQum + Py, ). (2.14)

n,m

The equations of motion (2.11) can be written in matrix form
Cod+L'®=0 (2.15)
where ®T = (&, ®y, ..., Pyy1). We look for the solution of Eq. (2.11) in the form
B(t) = De ™t 4 (PW) e, (2.16)
Substituting (2.16) into (2.15) gives us
(L' - w’C) ¥~ =0, (2.17)
then we obtain the secular equation as
det (L7' — w?*C) = 0. (2.18)

Note that, det (L' — w?C) = det (C~/?L'C /2 — w?1) det C and det C # 0, thus

we obtain an equivalent equation
det (CT'?’L7'C™Y/2 —w?1) = 0. (2.19)

Thanks to the matrix L~" is real and symmetric, so the matrix C~"/?L~'C~"/? is real
and symmetric, and its eigenvalues w? are non-negative. Therefore, the normal mode
frequencies of the harmonic Josephson junction chain are determine numerically by
Eq. (2.19).

Introducing the new variables

U =C2p, (2.20)

the Lagrangian (2.12) and the corresponding Hamiltonian are rewritten as

1 1

L= §¢;T¢z — §\IJT0—1/2L—10—1/2\I:, (2.21a)
Loge 1
H= E\IIT\II + quTc—l/QL—lc-l/qu. (2.21b)
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The equation of motion obtained from this new Lagrangian is
¥+ CTVALICT2e = 0. (2.22)

Solving this equation of motion yields Eq. (2.19). Let us denote by {¥} the complete
and orthogonal set of eigenvectors of the matrix C~'/2L~'C~%/2, thus,

C VL CTVA ey, = Wi, (2.23)
and

Ui, =) U, = 0" =1 (2.24)

n

The solution of equation (2.22), ¥(¢) is a combination of eigenvectors Wy
() =) Wpa(t). (2.25)
k

Let us denote by ¥, and U,,(¢) the nth element of vector ¥ and W (), respectively.
Therefore, we obtain

t) = Z Wy (1), (2.26a)

=ch}n/2\p Zc Y2y (). (2.26b)

Substituting W(t) = > ¥,zx(t) into Eq. (2.21), we obtain the canonical form
[

1 .
L= 3 Z (&7 — wiz}), (2.27a)
k
1
H=3 > (@7 + wiap). (2.27b)

k

Using the standard canonical quantization procedure,

Ty = 2—%(% +ay), (2.28a)

el
P = S, (2.28h)

we obtain the quantized form of the Hamiltonian which describes the oscillations of
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the Josephson junction chain

H =" hw(a}ar +1/2). (2.29)
k

Substituting 2, = +/h/2wy(ax + &};) into Eq. (2.26b), yields the quantized form of
the flux o,

D= D oMW/ () i+ ). (2.30)
m,k

2.1.3 Kerr effect in Josephson junction chain

In the previous sections we discussed the normal modes of the Josephson junction
chain in the linear limit when each Josephson junction is replaced by a linear inductor
of inductance L;. In this section we will take into account the non-linearity, so the
normal mode freugencies of the Josephson junction chain are shifted due to Kerr
effect.

In the non-linear case, we follow Ref. [22]. The Lagrangian in the Eq. (2.12) is
replaced by the Lagrangrian in Eq. (2.3) which is written as

1 . . 2e
L= 5 nzn:z q)nCn,m(I)m + Zn: EJ,n |:]- — COS <ﬁ(q)n+1 - (I)n)>:| : (231)

where C,, ,,, is the element of capacitance matrix C which is defined by the Eq. (2.6).
In the case of weak non-linearlity, the Josephson energy can be expanded as

2e (cI)n-i-l - q)n)Z E.]n ((I)n-l-l - (I)n)4
E;,|1—cos|—(®,.1 — P, = - —= , 2.32
§ [ < plPon )ﬂ 2Ly, T

The Hamiltonian can be approximated as

H=Hy,+ Hy, (2.33)
where )
1 _ (Ppy1 — D)
H, == E CL 0O, E imndl  n) 2.34
0 92 £ Q On,mQ + - 2LJ,n ) ( 3 )
is the quadratic unperturbed Hamiltonian and
E.Im ((I)erl - (I)m)4
H =— : , 2.35
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is the nonlinear quartic term. In the case of weak nonlinearity, we can treat this term

as a perturbation to the quadratic Hamiltonian Hy. Replacing @, = > C;}/ zlllzykxk
Lk

into the Eq. (2.35), yields

4
E;
H, = ~54 a (; Oém,kxk> ) (2.36)

where )
e _ ¢ _ B
Ak = E (Om}i-/lz,l - C1mll/2> qjl,k- (237)
l

We can rewrite the sum in the expression of H; in other form

4
E (E am}kxk> :E E A key Oy keo O, kg Om ey They Thog Loy Ty (238)
k

m m ki,ka k3 ka

With using standard quantization procedure & = /h/2wg(ay + d;), the perturbative
part of the Hamiltonian H 1, Eq. (2.35) can be expressed in the quantized form

. h i h TR ,
H1 = —5 Z Kkk/az,ak — 5 Z Kkk/az,akaz,,ak/ -+ (Off — dlag.), (239)
kK k!
where the "(off-diag.)" terms are off-diagonal in the photon occupation numbers.
These terms will be neglected because they are not probed in the experiment presented

in this thesis. The coefficients K are called Kerr coefficients which are defined as

2(2 — Oopp )RE; 9 o
Ko = 22O DDT ™02 a2 2.40
kk (Uk&)k;/(h/ze)4 K k ( )

m

After neglecting the off-diagonal terms, we finally determine the Hamiltonian as:

A e h TN
H= Z h(wk - z Kkk’/2> az,ak — 5 Z Kkk/a,iaka,z,ak,. (2.41)
k k!

k,k!

Let us denote the eigenvalues and eigenstates of the operator &L&k by n and |ng),
respectively:

The Fock sate |ni,ng, ..., ng,...) =|n1) @ |ng2) @- -+ |ng) @- - - is the eigenstate of the

Hamiltonian (2.41), and it corresponds to the eigenvalue F(ni,na, ..., ng,...) which
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1S written as

. h -
E(Tll,ng, ey Ny e ) = hz (wk — Z Kkk//2> nk—§ Z Akk/nknk/. (243)
k k'

kK’

The frequency Q; = [E(nq,ng,...,ng+1,...) — E(ny,na,...,nk,...)] /his given by
O =wp— =3 K +0w) -2 K (2.44)
k= Wk B . kk/ kk/ B . Kk Tl - .

This expression shows that there are three effects of the weak nonlinearity. Firstly,

the linear mode frequencies Wy, are shifted to lower frequencies
w, / + /). .
k 9 Ek/ kk kk

Secondly, two photons present in same mode & interact together, therefore, the cor-

responding nonlinear frequency shift determined by the self-Kerr coefficent Kjy:

1.
—ikkknk. (2.46)

Lastly, two photons present in diffierent modes k and k' also interact with each other,

the corresponding frequency shift is determined by the cross-Kerr coefficient Ky for
k # K"
1
—éKkk/nk/. (247)
In the case of low input power n, ~ 0, the mode frequencies could be measured in

experiment
1
Qk >~ W — 5 ; Kkk/(l + 5kk/) (248)

2.1.4 Normal modes of a homogeneous Josephson junction

chain

Let us consider the case of a homogeneous Josephson junction chain, L, = L, C,, = C
and Cy,, = C;. We look for the solution in the form (2.17), so Eq. (2.11b) reduces to

24



Dy — Py

7 Cw? (DY — %) — Cyw?d¥ =0, (2.49a)
26);}_&)2— _(i)b’ri Fw Fw Fw Fw
L1 o Cw?(20% — @Y — %, ) — Cyw?d¥ =0, (2.49b)
Y — D% S .
% — O (D% — %) — Cpu’®%,, = 0. (2.49¢)

Let us construct the solution as

DY = Ay, cos (kn + 6y,) . (2.50)

Substituting this solution into (2.49b), we obtain the dispersion relation for the ho-

mogeneous Josephson junction chain as |14]

B 2(1 —cosk)
Wk wp\/Q(l —cosk) + A2 (2:51)

where w, = 1/vLC and A = /C/C, are called the plasma frequency of each junction
and the screening length, respectively. The dispersion is shown in Fig. 2.3.
Equations (2.49a) and (2.49c¢) together with the dispersion relation (2.51) yield

(Dw
@Ti =2cosk — 1, (2.52)
1
W
~wN =2cosk — 1. (2.53)
(I)N+1

Substitution of Eq. (2.50) into Eq. (2.52) gives us

% — 2cosk— 1. (2.54)
This can be rewritten as an equation for 6,:
cosy = cos (k+ 6) . (2.55)
Then, the solution is
O = —g. (2.56)
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Figure 2.3: Dispersion relation of the Josephson junction chain. The normal mode
frequency verus wave vector for different values of A = /C/C,: X = 25 (green), A =1
(red), and A = 0.2 (blue), respectively.

Similarly, substituting Eq. (2.50) into Eq. (2.53), we obtain:

cos (kN — k/2)

———~ =2cosk — 1. 2.
cos (kN + k/2) o8 (257)

It is equivalent to
cos (kN + 3k/2) = cos (kN + k/2). (2.58)

The solution of this equation gives us the allowed values of k of the normal modes of

the homogeneous Josephson junction chain as

mm

]{IZN—_H, m:O,l,Q,...,N. (259)

Having found the normal modes of a homogeneous chain, we can evaluate Eq. (2.40)

for the Kerr coefficients explicitly:

1 5kk’ h2wkwk/
Key=z—— ) ————. 2.
w (2 8 ) INE, (2.60)
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Figure 2.4: A schematic view of the homogeneous Josephson juncton chain connected

to the external circuit: Ly = Ly = --- =Ly =L, C; =Cy = --- = Cy = C and
Cg,l = 09,2 == UgN+1 = Cg-

v oo .

] E |: 45—1

| i f
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Figure 2.5: The nth element of the circuit.

2.1.5 Impedance and admittance matrices of a homogeneous

Josephson junction chain

Now we consider a homogeneous Josephson junction chain connected to an external

circuit as shown in Fig. 2.4. The impedance matrix Z of the chain is defined as

[znoze | & .61
Z‘Ql 2'22 IN+1 ’

and the admittance matrix Y is defined as

Vi

V41

ool _[ve vl w 262
]N+1 Yél Yé? ‘/:V-H
The admittance matrix Y is related to the impedance matrix by
Y =21 (2.63)

The elements of the impedance matrix are defined as
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v
211 = (I_1> : (2.64a)
1/ Ingy1=0
Vi
2ig= ( i ! ) , (2.64b)
N+1/ =0
Vi
Zog = < ]}[H) ; (2.64c)
E Iny1=0
Vi
Zo9 = (IVH) . (2.64d)
N+1/ =0

A homogeneous chain has spatial symmetry n <> N + 2 — n. Thus, the elements of

the impedance matrix can be determined as

v

219 =291 = <I . ) ; (2.65a)
N+1 I1=0

Zos = 211 = (‘]/N+1> , (2.65b)
N+1/ 1=0

where 259 = Zyi1 is the impedance between node N + 1 and the ground. This

impedance is determined by using recursive approach as shown in Fig. 2.5

(Zn+ Z1c)Zes
Zn+Zrc+ Ze,

Zn+1 = (266)

in which Zc and Z¢, are the impedance of LC' element and the ground capacitance

Cy, respectively:

twL :
Zie = T fC —iXp, (2.67a)
1 1 X
Zos = ——— = = 9.
c w0 B (2.67b)

where X = 3/(wC,) and g = \/(C’g/C’) w?/ (w2 — w?).
In the case f < 1, we can assume that cot 3 ~ 1/. Thus, the impedance of the

ground capacitance can be rewritten as
Zy = Ze, =1iX cot . (2.68)

Using the definition (2.66) we have

cotfeotf—1 ,Xcotﬁcotﬁ— 1

Z:‘X ~
2= cotf+cotf— ! cot 8 4 cot 3

= iX cot(23). (2.69)
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To obtain this expression, we use the approximation cot 8 > 5 due to S < 1, so, we
can neglect § term in the denominator. Similarly, the impedance Zx ., is determined
as

(ZN + Zrc)Zcs Z,Xcot(NB) cotf—1
In+ Zic+ Zoa cot(Np) + cot 3

Zns1 = —iXcot[(N+1)5]. (2.70)

Thus, the diagonal elements of the impedance matrix are
ZQ’Q = le = ZN+1 = 1.X cot [(N + ].)B] . (271)

The off-diagonal elements defined as Eq. (2.65a) can be rewritten

N N
VN+1 Vn Vn
Tio =201 = =7 . 2.72
1,2 2,1 [N+1 !;_[1 Vn+1 N+1 !;_[1 Vn+1 ( )

Note that, the ratio V;,/V,,41 relates to the impedances in the circuit as

n ZTZ /
Vo _ __cot(nf) (2.73)
Vori  Zn+Zpe  cot(npB) =5
Since 8 < 1, we assume that 8 ~ tan 3 and cos 8 =~ 1. Then, we obtain
Vi cos(nf3)
~ . 2.74
Vo1 cos[(n+1)p] (2.74)
Thus,
ﬂ cos 3 N 1 (2.75)
s Vi cos [(N+1)8] ~ cos[(N+1)3] '
As a result, the off-diagonal elements are given by
iX
Zig=2o1 " ————. 2.76
1,2 21~ [(N—i— 1)5] ( )

In this derivation, we assumed § < 1 and neglected some terms of order 3. As
the result, within our precision we can not distinguish between (N + 1)3 and Nf.
Thus, we write the impedance matrix Z and the admittance matrix Y = 27! of a

homogeneous Josephson junction chain as

1X
sin Nj

1 cos Nf3 ~ Xsin N3 -1  cosNpB

cos N3 1 ] v - i [ cos Nj -1 ] @)
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Strictly speaking, Eq. (2.18) should be equivalent to det 'Y = 0. Indeed, both rep-
resent the condition for existence of non-trivial solutions for the phases (&%, ..., &%)
and the voltages Vi = —iw®%, V1 = —iwds, +1, respectively, in the absence of ex-
ternal currents. However, for the matrix Y (w) from Eq. (2.77), det Y(w) = 1/X?
which vanished only at w = w,. This is an artifact of our approximation 5 < 1. The

exact impedance and admittance matrices are given by

1 2sin(5/2) cos[(N + 1/2)p] cos(8/2)
2 = iwCy sin [(N + 1)8] [ cos(B/2) cos[(N +1/2)0] ] ’ (2.78)
and
- iwCy cos[(N +1/2)p] —cos(83/2)
Y = T n(3/2) s N B [ Ces(3)2) sV 4 125 ] , (2.79)

where 1 — cos # = (Cy/20)w*/(w; — w?). This matrix can be obtained by including
external currents Iy and Iy in the right hand side of Eq. (2.17) , looking for the
solution in the form <i>¢j = A" 4 Be=#" and finding A and B form the equations
for n =1and n = N 4 1. Then we have

1 w?C? sin[(N +1)8]

Y: =
WY = 3662 ~ Tn?(3/2)  smNB

(2.80)

Solutions of det Y (w) = 0 give the normal modes of an isolated chain, determined by
condition (N 4 1)8 = mm, with m = 0,1,..., N. Solutions of det Z(w) = 0 give the
normal modes of a chain whose ends are grounded, V; = Vy.; = 0, with arbitrary
currents [; and Iy,; which can flow to the ground. These correspond to N5 = mm.
The difference between the allowed values of 8 for the two boundary conditions is of
the order of 1/N. Tt is missed by the small g approximation (2.77).

In the following, we will not be interested in 1/N effects, so we will adopt the
simplified approximate expressions (2.77). As we will see below, one can use them to
model observable quantities such as transmission coefficient and to extract the normal
mode frequencies from its frequency dependence, assuming the "standard" model is
valid. It turns out that the limitations of this description are due to the "standard"

model rather than the small 8 approximation.
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2.1.6 ABCD matrix for a Josephson junction chain

The ABCD matrix of a Josephson junction chain is defined as

b
Vi _|@ V41 (2.81)
L c d —Ing
It is equivalent to
Vl = CLVN_H - bIN+1a (2823)
11 = CVN+1 — dIN-{-l: (282b)

where a and d are dimensionless, while b and ¢ have the dimension of impedance and

admittance, respectively. Using the definition of the impedance matrix,

Vi = Zidi + Zioly s, (2.83)
Ve = Zotdh + Zoadn i1, (2.83b)

one can relate the elements of the ABCD matrix to the impedance matrix as

Z
o N _fu (2.84a)
VN+1 InNt1=0 Z’21
o Vi _ Z11%99 — 2’122’217 (2.84h)
Inia Vi 41=0 Zo1
I 1
c= = —, 2.84c
VN+1 IN41=0 Z'21 ( )
I .
d=—— _ 2 (2.84d)
IN+1 Vi1 1=0 Z’Ql
The ABCD matrix of a homogeneous chain is given by
a b | 1 cos[(N +1/2)p] —iXsinNg
¢ d | cos(8/2) | —(i/X)sin[(N+1)8] cos[(N+1/2)8]
~ .cos N.B —iXsin NG 7 (2.85)
—(i/X)sin NG  cosNf

where the upper line with X = 2sin(3/2)/(wC,) is the exact expression, while the
second line with X = 3/(wCy) is the small 8 approximation.
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Figure 2.6: Coaxial transmission line indicating voltages and currents (top). Lumped
element representation of a transmission line with capacitance per unit Cy and induc-
tance per unit Ly and discrete step Az — 0.

2.2 Transmission line

2.2.1 Lagrangian, Hamiltonian and wave propagation in a trans-

mission line

Josephson junction chain is often characterized experimentally by microwave mea-
surements. In these experiments, the microwave is guided by a transmission line and
the Josephson junction chain is coupled to the transmission line via capacitors or in-
ductors. We consider now a transmission line modeled as a perfectly conducting wire
with inductance per unit length L, and capacitance to ground per unit length Cy, as
shown in Fig. 2.6. We denote the voltage at position x,, = nAz at time ¢ by V,,(t),
and the current through the inductance L, (L, = AxLg) by I,,(t). Therefore, the
charge on the ground capacitance C, (C, = AxCp) is Qn(t) = AxCyV,(t). The

t .
flux at node n is defined as ®,(¢t) = [ V,(r)dr and V,(t) = ®,(¢). Applying the

Kirchhoff’s law for the nth node gives us

(.I.)n - (I)n+1 (I)n - (Dn—l b
AzCyd, = 0. 2,

The Lagrangian which gives this equation of motion is

(q)n - (I)n+1)2

AL (2.87)

1 .
L= SAaCod; —
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The charge @,, conjugate to ®,, is defined as

0L
8<I>n
The Hamiltonian is given by
: Q2 ((I)n - (I)7L+1)2
= -4 = L — . 2.

We take the continuum limit Az — 0. Then the local voltage and current are given
by
V(z,t) = &(x, 1), (2.90a)
1
I(z,t) = —L—8I(I>(m,t), (2.90b)
0

and so @,/ Az becomes the charge density ¢(z,) = Co®(x,) = C;V (). The contin-

uum Lagragian and Hamiltonian are

/ dx {CO (0,D)* — (a @)] (2.91)

and

H = /dz [200‘] +2—L0(5 cp)] (2.92)

The Euler-Lagrange equation for ®(x,t) is

0*d 02

— — =0 2.93

oz o2 (2:93)
where v = 1/4/LyCY is wave velocity. This wave equation has solutions which propa-

gate by uniform translation

O(z,t) = O (x,t) + ¥ (x, 1), (2.94)

where
O (x,t) = &7 (x — vt), (2.95a)
O (z,t) = O (2 + vt), (2.95b)

33



I I
VNN e b VIV,V
1! Vs 2

V]L(-\/\/V\ I c d !

_—t =

Figure 2.7: A two-port network described by the transmission matrix called ABCD
matrix.

where @7 and ®¢ are arbitrary functions. For an infinite transmission line, ®~ and

®* are completely independent. Using Egs. (2.90) gives us

Vi, t) =Vl 4+ VE (2.96a)

1
Iz, t)=T1"+1% = A (VE—v"), (2.96b)
o
where VL/B(zt) = ®L/R(z,t) and Zy = \/Ly/Cy is called the characteristic impedance

of the transmission line.

2.2.2 Reflection and transmission coefficients

Let us consider a circuit which includes a system characterized by an ABCD matrix
embedded in a transmission line as shown in Fig. 2.7. The incident wave comes in the
port 1 and the transmitted wave goes out in the port 2. The reflected wave at port 1
and the transmitted wave at port 2 are described by the reflection and transmission
coefficients. Let us denote the transmission and reflection coefficients by Ss; and Siq,

respectively. They are defined as

VL
S = V—IR, (2.97a)
VR
So1 = V_gR' (2.97b)
!

where Vi, VL and V,E are incoming, reflected and transmitted waves respectively.
These coefficients are related to electrical properties of the embedded system which
is described by the transmission matrix (ABCD matrix). Let us assume that there

is only transmitted wave at the port 2. Therefore, the currents and voltages can be
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expressed in term of the transmission and reflection coefficients as.

Vi=VE+VE=VEQA4+85)), (2.98a)
VR _ VL VR
S S WS U 9.
1 ZO ZO ( Sll)? ( 98b)
Vo = Vit = VES,, (2.98¢)
VE VE
IL=1F= ZLU = ZLOSQL (2.98d)

Substituting (2.98) into (2.82) gives us following equations

b
1-+S511 =aSy + 7821, (2993)
0
1-S d
70 o ¢Sor + 70521. (299b)

Solving these equations, we obtain the transmission and reflection coeffictients as
functions of the elements of the ABCD matrix

a+b/Zy—cZy—d
Ca+b/Zy+cZy+d
B 2

Ca+b/Zy+cZy+d

Sll

(2.100a)

821

(2.100b)

2.3 Comparison of the "standard model" with the

results of microwave measurements

2.3.1 Side-coupling measurement

In the case of side-coupling measurement, the chain is coupled to the transmission
line via capacitances formed by the electrodes and the transmission line as shown in
Fig. 2.8(a). An example of experimentally measured transmission coefficient Sy; (w) is
shown in Fig. 2.9 (the experiment was performed by Yuriy Krupko at Néel Institute).
Normal modes of the chain manifest themselves as sharp dips in S5 (w)].

To model the system, we can represent it by the circuit shown in Fig. 2.8(b). The

ABCD matrix of this system can be written as
a b |
c d|
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Figure 2.8: (a) Optical image showing the SQUID chain connected to the transmission
line via capacitances formed by the end electrodes and the coplanar transmission
line (courtesy of Yu. Krupko). (b) Equivalent electrical scheme of the chain and
transmission line. (c¢) Equivalent system corresponding to Z(w) = 0.

where Z is the total impedance between node N + 2 and the ground. Therefore, the

transmission coefficient of this system is determined by using Eq. (2.100b)

27 (w)

SRR

(2.102)

In the case of ideal chain in which there is no dissipative resistance, the impedance

is imaginary: Z(w) = i|Z(w)|. Thus, we obtain the amplitude of the transmission
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Figure 2.9: Spectrocopy of propagation modes in the chain of 500 SQUIDs which is
measured in NéelL Institute: (a): 15 modes are resolved withthin the bandwidth of
the measuring 2-18 GHz; (b) Zoom out of mode 2 including the amplitude and phase
(courtesy of Yu. Krupko).

coefficient 212(0)|
S (w)] = “ (2.103)

VA4Z(W) + 23

The measured dips in |Sy;(w)| correspond to the minima of this expression which

occur when
Z(w)=0. (2.104)

In this thesis, we used this method to determine the normal mode frequencies of the
system including a Josephson junction chain coupled to a transmission line via ca-

pacitances as shown in Fig. 2.8(a,b).

There is another method to determine the normal mode frequencies as mentioned
in section 2.1.2. According to Eq. (2.104), in the case of ideal chain, the measured
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frequencies wy, correspond to Z(wy) = 0, so that at w = wy, node N + 2 is equivalent
to ground. In other words, wy are the normal mode frequencies of the isolated system
shown in the Fig. 2.8(c), which can be determined by the following secular equation

det (CT'L™" —w’1) = 0. (2.105)
In the case of system shown in Fig. 2.8c, the (N + 1) x (N + 1) capacitance matrix

C and the inverse inductance matrix L~ are defined as

[ C4C 4 CErCe+ 0 —C e
—C 20 + C, 0 0
C= 0 -C —C 0
0 0 2C + C, —C
i el 0 .. —C  CHC+Cs+ 05+ |
(2.106)
[ 1L -1/L 0 0
~1/L 2/L 0 0
L' = | o -1/L ~1/L 0 (2.107)
0 0 2/ —1/L
0 0 ~1/L 1/L

Here, the capacitances C{ and Cf are formed by the two large electrodes and the
coplanar transmission line. The electrodes’ coupling to the ground plane generates
the capacitances C§ and C¥. The capacitance Cf is between the two electrodes.

This method gives us exact values of the normal mode frequencies of the system.
However, the computation is expensive because we have to invert and diagonalize
matrices (N + 1) x (N + 1). One can use the first method with low cost of compu-
tation and one can derive approximate analytical expressions for the normal mode
frequencies. We used this method in our calculations. In this chapter, we determined
the normal mode frequencies of the system shown in the Fig. 2.8 by solving equation
Z(w) = 0, where the impedance Z between the node N + 2 and the ground is defined
as

(2.108)
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Aplying the Kirchhoff’s law for nodes: 1, N 4+ 1, and N + 2, gives us

Yog (Vi = Viver) + Yeg (Vi = Vivgo) + YosVi = =1,
Yoo (Vg = Vi) 4+ Yoo (Vivgr — Vivge) + YosVivgr = — Iy, (2.109)
Yoo (Ve — Vvg) + Yoe (Ve = Vi) = Ingo = 1,

where Yo = —iwCy,, m = 1,...,5. The currents I, and Iy, at the ends of chain

are related to voltages Vi and Vy 1 as

I _ Y11 Yi2
Ing Y21 Y22

where, y;; (7,5 = 1,2) are the elements of the admittance matrix of a homogeneous

Vi

: (2.110)
VN+1

Josephson junction chain, given by Eq. (2.77). Replacing I; and Iy, defined in Eq.
(2.110) into Eq. (2.109) we obtain

(Yoo + Yoo + Yer +y11) Vi + (=Yoe 4+ y12) Vs — Yoe Vivga = 0,
(=Yee + ya1) Vi + (Yoo + Yoo + Yog + y22) Vv — Yo Vv = 0, (2.111)
= YoeVi = YooV + (Yoo + Yo )Vvia = Inya.

These equations can be rewritten in the matrix form as
YV=I (2.112)
where the voltage and current matrices are defined as

V = (Vi. Vgt Vivea) T, (2.113a)
I=(0,0,In2)7, (2.113b)

and the admittance matrix Y is written as

Yog + Yoo +Yos +yu Y12 — Yo e
Y = | yor — Yoy Yoo + Yoo + Yog + 4o — Yo . (2.114)
—Yee —Yee Yoo + Yo

Equation (2.112) can be rewritten as

V = 7ZI, (2.115)
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where Z = Y ! is the impedance matrix. Substituting Eqs. (2.113) into Eq. (2.115),
we obtain
Vinte = ZgszIno. (2.116)

Therefore, the impedance of system is the diagonal element of the impedance matrix:

Inverting the matrix (2.114), we obtain

1 picosNB+ (g +71/B)sin NS+ s

= 2.118
iwCypycos NB + (quff +1ra/B)sin NS + s’ ( )
where,
Cf + C5 + C5 + 205 + C
p1=— )
Cy
_ (G5 +C5 4 C5)(C5 + C5 + Cg) — (C)°
Q1 - C2 9
g
r = —].,
2C¢
S1 = C:?
(Cf + CE)(Cf + C5 + C§ + 205 + C5) — (CF)” = (C5)° (2:119)
P2 = — 2 )
(Cy)
o = (Cf + C5)(C5C5 + C5CF + Q§CZ) + CTC5(Cs + C%)
(Cy)’
5 + O
o = — ICg 57
. 205(C + C¢) +205C¢
2 — .
(Cy)?

The frequencies determined in the side-coupling measurement correspond to the con-
dition Z(w) = 0, which is equivalent to

prcos NG+ (18 +1r1/B)sin NS + s; = 0, (2.120)

where

- R (2.121)

"B+ C,/C

In other words, solving this equation gives us the normal modes frequencies of the
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Figure 2.10: Fiting of the first 40 modes of the 1000-junctions chain. The red squared
points present the measured frequencies while the blue rounded points are the numer-
ical calculation result. The fitting parameters are w,/27 = 21.45 GHz, C, = 0.13{F,
Cy+ C5 = 4.181F, CS + C¢ = 1.431F, and Cf = 0.26 fF coresponding to the given
value of C' = 32.4fF.

system in Fig. (2.8). Fitting the normal mode frequencies which are solutions of
Eq. (2.120) to the measured values, one can determine the parameters of the chain.
In the fit, we can only determine 5 parameters: w,, C,/C, (C{+C5)/C,, (C5+C%)/Cy,
and C§/C,.

2.3.2 In-line measurement

In the case of the in-line measurement performed by Yu. Krupko at Néel Institute,
the ends of the Josephson junction chain connect directly to the transmission line as
shown in Fig. 2.11(a). Then the normal modes of the chain manifest themselves as
peaks in transmission coefficient (see Fig. 2.12).

It is convenient to separate the system in three elements: the homogeneous chain
and two connecting parts. The homogeneous chain is the main part of the system,
and its ABCD matrix is written as (Sec. 2.1.6)

[a2 by ] _ [ ( cos Nj3 —iX sin NS | (2122)

co  do i/X)sin Nj cos Nj

where X = (/(wCy) and 8 = \/ (Cy/Cw?/(w2 —w?). The two connecting parts
are modeled as two identical transmission lines, these ABCD matrices are written
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800 um, 500 SQUIDs

Figure 2.11: (a) Optical image showing the 500-junctions chain connected in-line to
the transmission line. Each junction is represented by a SQUID (courtesy of Yu.
Krupko). (b) The equivalent electrical sheme.

respectively as

ap by _ CoS ¢ —i 7 sin ¢y (2.123)
c dy —1Y] sin ¢ Cos ¢1 ’ :
as bs _ COS @3 —i 73 8in ¢3 (2.1230)
c3 ds —iY3 sin ¢ COS O3 ’ :

where 7, = Z3 and Y, = 1/Z; = Y3 = 1/Z; are characteristic impedance and
admittance of the connecting transmission line, ¢1 = wii/v, = ¢3 = wls/v, is the
phase difference between the ends of the connecting transmission lines.

The ABCD matrix of the whole system is given by

a b _ as b3 Qo bQ aq bl , (2124)
c d cs ds co dy 1 dy
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Figure 2.12: Spectrocopy of propagation modes in the chain of 500 junctions. (a) 15
modes are resolved withthin the bandwidth of the measuring 2-18 GHz; (b) Zoom
out of mode 3 including the amplitude and phase (courtesy of Yu. Krupko).

where

a = cos2¢; cos N —
b= —iZsin2¢,cos N§ — i (Xcos2q§1 — Z12Ysin2¢1) sin N3,
c=—1Y;s8in2¢;cos NG — ¢ (Ycos2¢1 — Xstin2¢1) sin N,

d = cos2¢; cos NfF —

M sin 2¢; sin N3,

M sin 2¢; sin N 3.

The transmission coefficient for this model is

821

1

(2.125a

(2.125b
(2.125¢

~— O~ ~—

(2.125d

~ k1 cos NB +nsin N3 —i{kycos N3+ n9sin N3}’

(2.126)

where the parameters ki, 71, k2, and 7., which are functions of frequency w, are

defined as

K1 = €08 2¢1,

X2+ 7
Ui 2X 7, sin 2¢y,

2+ 7
KJ2:£TZOOSIHQ¢1’

X2+ 2z, Zt+ X278,
=Xz, 0 o1 - 72X Z, o 28
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When the chain is directly coupled to the transmission line, we have ¢; = 0. Then,

[a b] _ lag bg]zl 'COS]\f'ﬁ 7 —iXSiI%]Vﬁ , (2.128)
c d ¢y do —(t/X)sin NG cos Nf

and the transmission coefficient Sy; written in Eq. (2.126) becomes

1
Sop = : . (2.129)
72+ X*?
cos NG — %% sin NG

The normal mode frequecies of the chain w,, are determined by maximizing |S2; (w)|-

Since (2% + X?)/(2X Zp) > 1, max|Sy (w)| = 1 occurs at N3, = mm, so, we obtain

the dispersion relation of an isolated Josephson junction chain as
mn /N

VN +C,/C

W = Wy (2.130)

In fact, X ~ \/L/C, ~ 1—10kQ > Z, = 50Q. Thus, the denominator of Eq. (2.129)
is dominated by a single term which is in fact proportional to the b element of the
ABCD matrix (2.85). Therefore, the obtained frequencies are close to the solutions
of det Z(w) = 0, condition for existence of non-trivial solutions of ZI = 0, that is,
for a chain with both ends grounded. Indeed, the low impedance transmission line
effectively corresponds to grounding the ends of the chain.

Because of the coupling capacitances and inductances, the measured frequecies
wk no longer correspond to 5,, = mmx/N. In computation, it is more convenient to
determine f,, instead of w,,. Namely, /3,, are the positions of minima, of the following

function:
F(B) = (k1 cos NS + ny sin NB)* + (kg cos N3 + 1, sin N3)?

1,y oy oy .
= 5 (5] + K3 — nf — ) cos 2N B+ (2.131)

. 1
+ (ko2 + K1) sin 2N B + 3 (nf + 77% + K% + /{g) .

Here the parameters 1, 71, ko, and 7y are functions of 5.

In the in-line measurement data, if we use the model taking into account the
coupling parts which are modeled as transmission lines (Z; # 0, ¢, # 0), we obtain
the normal modes as shown in Fig. 2.13 (upper panel). In this model, the fitting is
better than fitting of the grounded chain model with ¢; = 0 (not shown). However,
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Figure 2.13: (upper panel) Fitting the measured frequencies (blue circles) to the
theoretical standard model (red squares): f, = w,/2m = 21.33 GHz, A = 16.61, C, =
0.11fF, Zy = Z3 = 455.5Q, and [, /v, = l3/v, = 0.02ns. (lower panel) Deviation of
the mode frequencies obtained using two models (the "standard" model the grounded
chain ¢; = ¢3 = 0, blue circles, and the long-range model, orange stars) from the
experimental data.

the fitting value of the coupling parts are not reasonable. In detail, the value of the
characteristic impedance of the coupling parts obtained by fitting is 455.5 €2, much
larger than the value estimated from geometry of system which is around 126 Q [23].
Note also the systematic non-monotonic deviation of the "standard" model result
from the experimental result seen in Fig. 2.13 (lower panel).

It turns out that a better fit with physically reasonable parameters is obtained if
one describes the chain by a model which differs from the "standard" one presented
in Sec. 2.1. Namely, to model correctly the system we have to take into account the
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long-range interaction of the charges in the superconducting islands. This model is
presented in detail in the next section. In this model, the theoretical values of the
normal modes fit well with experimental data as shown in Fig. 2.13 (lower panel).

2.4 Long-range screening model

When the ground plane is not close to each superconducting island, the distance from
the superconducting islands to the ground is much larger than the distance between
neighboring islands. Therefore the screening by the ground plane of each charge in
the superconducting islands can be non-local. Hence, one has to take into account
the long-range Coulomb interactions between the charges of superconducting islands.

Let us denote by ¢, and V,, the total charge and the voltage of the nth island,
respectively,

Vo= CptQm, (2.132)

where C,1 is an element of the inverse capacitance matrix which depends on the
parameters of the dielectric layer. Following [24]|, we assume that each charge @,

residing on the corresponding island consists of three parts:
Qn = n—l(Vn - Vn—l) + Cn(vn - Vn+1) + Qn (2133)

The first two terms are the charges concentrated on the tunnel junctions between
nth island and the neighbor islands. These junctions are modeled as ideal capaci-
tors due to the width of tunnel junctions being very small. Thus, the electric field
due to these charges exists only inside the junction and does not interact with the
external dielectric layer. In other words, each junction is neutral with the external
environment. The last term Qn is somehow distributed over the island. This charge
is not, screened by the junctions and can interact with the environment. In the case
of the ground close to the islands, shown in Fig. 2.14, this charge is screened by the
ground, so the ground plane and the island provide an ideal capacitor called ground
capacitor Cy and Q. = CyVi,. Therefore, the capacitance matrix element C,,,, is given
by Eq. (2.6).

When the ground plane is not close to the superconducting islands, one should

take into account the long-range part of the Coulomb interaction between the charge
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Figure 2.14: The "standard" model: the island charge is screened by the ground
independently from other charges.

Q. and Q,n, so the voltage V,, on the island n relates to the charge Q,, on the island m,

Vi=> CphQn. (2.134)

Thanks to the distance between the ground plane and the superconducting islands
being large, we can treat Q. as a point charge, and the element C’,;}l is determined
by the image method described bellow.

Let us consider a system consisting of a point charge ¢y located at a distance
2o from the surface of a dielectric layer of thickness d and a grounded conducting
plane on the other side of the dielectric layer as shown in Fig. 2.16. Using the image
method [25], this system can be replaced by a system of image point charges. The
electric field above the surface of the dielectric is generated by the physical charge
qo and the image point charges ¢, located at the distance z, from surface of the
dielectric layer, while the electric field inside the dielectric layer is due to the image
point charges ¢/, and ¢!. These charges and their positions are determined by the

image method as

1—c¢€
d1 = —— 4o, Z1 = —2o,

‘! (2.135)
ql = ‘ q0 2 = 2
e+ 1™ ! ’
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Figure 2.15: Long-range screening model: the ground plane is far away from the
chain.

in the case of n > 2,

q;: = _q;w Z’Z = —2d — Zln?
1—¢

=Ty = A (2.136)
2

=1 eq’;_l, Zn =214

Finally, we oblain

1_ n—1 2 1_ n—1
q;=< 6) q) = 6( E) 4o, z, = 2(n — 1)d + 2,

1+¢€ 1+e\l+e
¢"n=—q,=— 2 (Loc n_lq zn=—2n+1)d -z (2.137)
n n 1+€ ].—|—€ 05 n 05 .
4e 1—e\"? "
= —— —— , n=2% _.==2(n—1)d— z.
q (1+€)2(1+€> do n—1 ( ) 0

Therefore, the voltage at the nth superconducting island when zy — 0 is

_ Qm 1 > 2e(1—e) (1 +e)
Vi = zm: ome

o(1+¢) \/(m —n)2a? + dppal =1 \/(m —n)%a? + (2ld)*
(2.138)

Here, a is the island size, and aq is a short-distance cut-off length which must be

introduced to avoid the divergence of the term with m = n. The parameter ag

represents the size of the charges on the island which must be taken into account at
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Figure 2.16: The image charges gn, ¢,, and ¢”,, are marked red, blue and green
points, respectivley.

short distance. Thus, ag could have same order of the size the island size a. In the
following, it will be treated as a fitting parameter. According to Eq. (2.134), the

matrix element C 1 is

F1 1 1 _i 2¢(1—¢) /(1 +e) (2.130)

e 2meg(l 4 €) \/(m _ n)2a2 + 5mna(2) =1 \/(m — n)2a2 + (2ld)2

We note that although the long-range screening model looks significantly more
complex than the "standard" model, it contains only one unknown fit parameter ag
(the parameters a, €, d are known from geometry), just like the "standard" model

which contains an unknown parameter C,.
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Using the long-range screening model, applying the Kirchhoff’s law gives us

(I)n - (I)n—l
Ln—l

(I)n - (I)n-i-l

(D, — D,
+ Ch1(Py 1) + I

+ On(q)n - ('I.)nJrl) + Z é’nmcbm — 0
(2.140)

As mentioned in Sec. 2.3.2, we assume both ends to be grounded: ®; = &, = 0.

Then, the Lagrangian of the Josephson junction chain is given as

L o i Cn,m(i)n(i)m - Nz_l ((I)TL+1 - (I)n)z . 3% o (I)%V
s 2 — 2L, 2L, 2Ly (2.141)

1 . : »
=53 (cbncn,m% - @nancI)m).

Here, in the case of the homogeneous chain the (N —1) x (N — 1) capacitance matrix
C, L is defined as

[ 2¢ —C 0 - 0 |
-C 20 -C -~ 0 0
C=| : '+ : =~  |+C (2.142)
o 0 0 --- 20 -C
0o 0 0 - —C 20

where C is the ground capacitance matrix which can be calculated numerically by

inverting the matrix C~*. The (N — 1) x (N — 1) inverse inductance matrix L' is

given by
[ 2/L -1/L -+ 0 0
-1/L 2/L - 0 0
L'=| o -1/L . =1/L 0 |, (2.143)
0 0 «eo 2/L —1/L
0 0 .. —1/L 2/L
In the matrix form,

L= % (chch - <I>TL‘1<I>> : (2.144)
where ®7 = (&, ®,, ..., ®nyy). Therefore, the Euler-Lagrange equations of motion
are given as

C®+L'®=0. (2.145)
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Similarly to Eq. (2.15), the normal modes of the chain are determined by solving the
secular equation
det (L' — w?C) = 0. (2.146)

So far, we discussed normal modes of the Josephson junction chain in the linear limit
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Figure 2.17: The dispersion curve for the 500-SQUID chain: The measured modes
frequencies (blue); theoretical fits with the "standard" model with the grounded chain
(green) and the long-range screening model (red) from Ref. [16].

when each Josephson junction is replaced by a linear inductor of inductance L. In
the present of Kerr nonlinearity, the normal mode frequencies of the chain are given
by Eq. (2.48), where the linear mode frequencies wy, of the chain are calculated by
Eq. (2.146). The nonlinear effect is determined by the Kerr coefficients (2.40) with
the matrix elements «,, ; determined using the capacitance matrix (2.142).

This approach is used to calculate numerically the normal mode frequencies.
Namely, the mode frequencies calculated by the long-range model are used to fit
the measured mode frequencies of the 500-SQUID chain as shown in Fig. 2.17. In
this sample, the distance d = 300 um, the junction capacitance C' = 32.4fF, the
dielectric constant ¢ = 11.6 for the silicon layer. In this fit, the mode frequencies cal-
culated by the long-range screening model fit well to the measured ones. In addition,
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two parameters that are junction inductance and the parameter ag are determined
L =1.56nH and ap = 0.74 pm.
In the long-range model we can obtain the analytical dispersion relation if we

assume that the chain is infinitely long and use the Fourier transform:
Cn,m — Z eik(n—m)ck” (2147&)

k
Cr=>Y e ™*mmc, . (2.147D)

Substituting Eq. (2.142) into Eq. (2.147b) gives us
Cy = 2C (1 — cos k) + Cy, (2.148)
where C, is defined as

— ==Y ethmm oL 2.149
Ck k E n,m ( )

n

Substituting C; L, determined by Eq. (2.139) into Eq. (2.149), we obtain

. 1 a 2 21d
e~ D 1n(2—cosk) — o | — 2.1
C 2meg(14+¢)a | ag n(2 - cosk) 1+e ;5 Tk < a >] ’ (2.150)
where £ = (1 —¢)/(1 + ¢). The function g, (z) is defined as
=\ 2coskn
= —_—. 2.151

In the case of d > a and k < 1, we replace the sum by the integral and obtain the

2ld 2ld

Therefore, C, ' can be rewritten as

modified Bessel function:

1
- 2mee(l +€)a

it

a de g 21d
— —In(2 — cosk) — T e Z{’ Ky (\k\ 7)] . (2.153)

a
0 =1
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Figure 2.18: Screening length versus wave number.
When k& — 0, the modified Bessel function can be expanded as
Ky <|k| %) ~—In|k|—1Inl — ln%l - Vg, (2.154)
where vg =~ 0.5772 is the Euler-Mascheroni constant. Thus,

E ' 1“ [/ . 2.1

2meo(1+¢)a

- a 2d
Cilo= (a—+2’yE+2ln—+
0 a

The Lagrangian in Eq. (2.141) can be rewritten as

1 .12 2(l—cosk) .
L=§Xk:{ck’<pk‘ -y } (2.156)
The Euler-Lagrange equation of motion is
- 2(1 — cos
b, = 2= cosk) g (2.157)

LCy,
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The normal mode dispersion is determined as

2(1 — cosk) 2(1 — cosk)
LC;, ~ VIC 2(1 — cosk) + A\, 2

Wk = (2.158)

Here the screening length A is defined as

e =\/CCY, (2.159)

with C; ! defined in Eq. (2.153). The dependence of \; versus wave number & is
shown in Fig. 2.18 for the parameters given after Eq. (2.146).

2.5 Conclusion

In this chapter, I discussed normal mode frequencies of homogeneous Josephson junc-
tion chains. T started with the simplest case of a homogeneous isolated chain, de-
scribed by the "standard" model which includes local screening of the charges on
each superconducting island by the nearby ground plane. T discussed the linear
regime, as well as corrections to the normal mode frequencies due to a weak Kerr
nonlinearity originating from the Josephson coupling. Then, I included the effect of
the chain coupling to the external circuit, T focused on two specific configurations
used in experiments at the Néel Institute: the side-coupling configuration, when the
chain was attached to a transmission line by one end, and the in-line configuration,
when the chain was inserted into the transmission line. The experimental results for
the resonance frequencies of the systems were compared to those obtained from the
models.

For the side-coupling configuration, the experimental results were well described
by the "standard" model with local screening. For the in-line configuration, it was
impossible to fit the experimental data by the local screening model with physically
reasonable parameters. In order to account for the non-monotonic discrepancy at low
frequencies, a new model had to be introduced, which includes long-range screening of
island charges by the ground plane and contains the same number of fitting parameters
as the "standard" local screening model. When the nonlinear frequency shifts due
to the Kerr effect were included, the long-range screening model fitted perfectly the
experimental results. The reason, for which the in-line configuration was sensitive to
long-range effect, while the side-coupling configuration seemingly was not, remains

unknown.
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Chapter 3

Dissipation in a superconducting
artificial atom due to a single

non-equilibrium quasiparticle

3.1 Introduction

Quantum optics studies interaction between light and matter at fundamental level,
where the physical description needs to include quantum mechanics to account for
dynamics of single photons and atoms. Originally, quantum optics was performed
with natural atoms, sometimes placed in cavities formed by mirrors. This approach
is called cavity quantum electrodynamics. In the last few decades, other systems
such as quantum dots, nitrogen-vacancy centers in diamond have also attracted at-
tention [26; 27]. However, the most promising of the new experimental approaches to
quantum optics is that of superconducting circuit, often referred to as circuit quan-
tum electrodynamics [28]. In the case of superconducting circuits, transmission line
(TL) on a chip are used to guide microwave photons to and from artificial atoms
(AA). The artificial atoms are based on Josephson junction of various types, and in
combination with traditional circuit elements such as capacitors and inductors.

Due to superconductivity, electromagnetic signals propagate in such circuits with
extremely low losses, and the circuit properties can be tuned by applying an ex-
ternal magnetic field. Using superconducting circuit technology, a single microwave
photon can be strongly coupled to an artificial atom represented by a superconduct-
ing qubit [28]. As discussed in previous chapter, an artificial atom can be probed

spectroscopically by coupling it to an open superconducting transmission line and
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by measuring resonances in reflection or transmission of TL photons at frequencies
corresponding to the transitions between the AA energy levels [29; 30].

The AA transitions are broadened by a variety of mechanisms. By analyzing the
resonance shape, one can separate the extrinsic broadening, which arises because of
the coupling between the AA and the TL and is essentially due to spontaneous emis-
sion of photons into the TL, and intrinsic broadening, which is due to dissipation in
the AA itself [14; 31]. Here we focus on a specific intrinsic dissipation mechanism,
which is due to non-equilibrium quasiparticles. At low temperatures, the quasiparticle
density is expected to be very low, determined by thermal activation across the super-
conducting gap 2A. However, many experiments indicate that residual quasiparticles
often remain trapped in the sample [32; 33; 34; 35; 36; 37|, and their recombination
can be extremely slow [38; 39)].

Many experiments involving residual quasiparticles are successfully described by
the theory developed in Refs. [40; 41]. This theory is based on the assumption of a
fixed average quasiparticle distribution which perturbs the superconducting degrees
of freedom; the resulting net effect is equivalent to that of a frequency-dependent
resistance included in the circuit. Technically, this corresponds to a description in
terms of the AA reduced density matrix, while the quasiparticles are treated as a
bath whose effect can be accounted for by standard dissipative terms in the master
equation. The fixed distribution assumption is valid in the weak signal regime, when
the back-action of the superconducting condensate excitations on the quasiparticles
can be neglected. This assumption must be reconsidered in situations when the
probing signal is strong enough to modify the quasiparticle distribution and the latter
can affect the quantities which are measured.

Here, we study a simple model problem of an AA which is capacitively coupled
to a coherently driven TL, as schematically shown in Fig. 3.1, and which contains
exactly one quasiparticle. Indeed, if the AA initially contains one quasiparticle, it
cannot escape into the external circuit because of the capacitors, and has no partner
to recombine with. At the same time, we assume the drive to have subgap frequency
w < 2A and to be not too strong, so the system remains at low energy and new
quasiparticles are not produced. The AA is represented by a Josephson junction (or
a chain of junctions) whose Josephson energy strongly exceeds the Coulomb charging
energy. Technically, we derive the master equation for the AA coupled to a TL anal-
ogously to Refs. [42; 43], but the quasiparticle degrees of freedom are included in the
reduced density matrix following the approach of Refs. [44; 45] and its application to

a Cooper-pair box in Ref. [46]. Here we focus on the simplest case, assuming the en-
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artificial
atom

Figure 3.1: A schematic representation of an artificial atom capacitively coupled to
a superconducting transmission line. A coherent signal is sent into the transmission
line, whose reflection and transmission are measured.

ergy exchange with the AA excitations to be the only mechanism of the quasiparticle
energy relaxation and fully neglecting acoustic phonon emission by the quasiparticle.

Under these assumptions, we calculate here the transmission coefficient in the TL
and the intrinsic quality factor of the AA transition, which depend on the coherent
drive strength. Indeed, the stronger the drive, the higher is the typical quasiparticle
energy, the lower is the quasiparticle density of states, the lower is the probabil-
ity of quasiparticle tunneling. Thus, the intrinsic quality factor increases with the
drive strength (as long as new quasiparticles are not produced). We also extend our
calculation to the case when the AA is represented by a Josephson junction chain
(configuration discussed in Sec. 2.3.1) containing a few quasiparticles (less than one
per junction) whose total number is fixed, and calculate the corresponding intrinsic
quality factor of the electromagnetic modes of the chain, obtaining the same power
dependence. Such power dependence has been observed in high-quality superconduct-
ing resonators [47; 48; 49] and was attributed to a saturation of two-level systems.
The mechanism discussed here may provide an alternative explanation for these ob-

servations.
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3.2 The model

3.2.1 The system Hamiltonian

We consider an artificial atom represented by a single Josephson junction (JJ), made
of two superconducting islands, and coupled to a transmission line (TL) by a ca-
pacitance C.; and grounded via a capacitance C, as shown in Fig. 3.2. The TL is
characterized by its inductance Ly and capacitance Cy per unit length, and their ratio
determines the TL impedance, Z; = \/m. As in Sec. 2.2.1, we model the TL by a
discrete array of inductors and capacitors with the discretization length z{, the limit
x1 — 0 to be taken in the end. The JJ is characterized by two energy scales: the
Josephson energy E; and the charging energy E¢, related to the Josephson inductance
L; and the junction capacitance C; as F; = (h/2¢)*(1/L;) and Ec = €*/(2C5). In
the following, we assume E; > F(, then the quantum fluctuations of the supercon-
ducting phase are small and the JJ can be viewed as a weakly anharmonic oscillator

whose linear frequency is the JJ plasma frequency, w, = 1/4/L;C;. We assume that
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Figure 3.2: A schematic circuit representation of a Josephson junction coupled to a
transmission line, modeled as an infinite discrete array of inductors and capacitors.

the JJ hosts a single quasiparticle which can tunnel between the two islands, but
cannot leave the junction because of the capacitors. This system can be described by

the following Hamiltonian
HZHJ+ﬁt]+HJt1+ﬁqp+ﬁJqp. (31)

The first three terms describe the JJ, the photons in the TL, and their coupling,
respectively. They are given by the sum of the electrostatic energy of each capacitor
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and the energy of each inductor:

Hy= 2C, +E;(1—cos - (3.2a)
2 QO U ((i)n - (i)nJrl)2
H _ 2
u= QCJ + nz 20()(1]1 ; 2L0$1 ’ (3 b)
g = %. (3.2¢)
J

Here Qn;,go is the operator of charge on the upper plate of the nth capacitor Cpx; and
@Jn is the corresponding canonically conjugate flux, [Qn, @Dm] = —ihd,m, whose time
derivative is the voltage on the node n. At n = 0, d, is related to the voltage of the
node n = 0, while & is related to the voltage drop across the junction. The conjugate
charges QO and Q s are given by the appropriate linear combinations of the charges
on the three capacitors C.;, Ceo, and C;. The electrostatic energy of the n = 0 node
is expressed in terms of C,. = C1Cra/(Ce1 + Cra), the series capacitance of capacitors
C. and Cgy. The electrostatic energy of the junction is given by (Qo + Q)%/(2C,),
and it is split between the three terms H; + Hy + Hyy. The superconducting phase
difference on the junction is given by ¢ = (2¢/h)®, (we assume e > 0, so the electron
charge is —e).

The last two terms in Eq. (3.1) describe the quasiparticle and its interaction with
the superconducting phase difference on the JJ [40; 41]:

‘E[CIP = Z Zep|j> p><]7p’a (32d)

j=ul p

Hiqp = Z Tpp’ (upup/e_wi’"/h — vpvp/eie‘i’"/h> [u, p)(1,p’| + h. c. (3.2e)

p.p’

Here |7, p) is the state of the quasiparticle on the upper/lower island of the junction,
j = u,1, with momentum p. The quasiparticle energies, e, = /&2 + A2—A, measured
from the gap A, are assumed to be the same for both islands. The quasiparticle
energy in the normal state, &, determines the normal state density of states per spin

projection, which can also be represented as the inverse of the mean level spacing ¢

5= 206 -0 (33)

on each island:
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¢ is assumed to be energy-independent. Being inversely proportional to the island
volume, ¢ is small but finite. The quasiparticle density of states is given by

vie) = Z dep —€) = % ble)(e+ A) (3.4)

(e+A)2— A?’
where 0(e) is the Heaviside step function. The quasiparticle Bogolyubov amplitudes

1 §
21 2= _(1-—® ), .
g=1-u = (1- =) 35)

The tunnelling matrix elements, T/, are assumed to be real, symmetric, and energy-

are given by

independent, in which case they are related to the Josephson energy by the Ambegaokar-
Baratoff relation [2]:

E
}:Tgﬁ@y-fqagp—e)=%j%. (3.6)
p,p’

Below we assume that the quasiparticle energy always remains small, e, < A, so we
approximate e, ~ & /(2A), v(e) = (1/0)\/2A /e, and we expand up, v, < 1/vV2+
(1/2)y/ep/A. Also, in the regime of small phase oscillations, we expand et*®s/" ~

1+ 4e®, /h. Then, the matrix element of the tunneling Hamiltonian (3.2¢) becomes

716@‘]/71 _

iebs/h o, Vo LV icDy (3.7)

UpUpy € UpUpr€

The first term of this expression corresponds to elastic quasiparticle tunneling with-
out changing the JJ state. The second term describes quasiparticle tunneling which
induces a transition between the JJ energy levels up or down by one level, and is the

crucial ingredient for the master equation, derived below.

3.2.2 Quantization of a translationally invariant transmission
line

Here, for simplicity, we discuss a translationally invariant TL with the Hamiltonian
A similar to Hy in Eq. (3.2b), but with the n = 0 node equivalent to all others.
The classical description of such transmission line was discussed in Sec. 2.2. The flux

®, and the conjugate charge Q, obey the commutation relation
[@n,ézm} = i, (3.8)
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and in the continuum limit it becomes
[@(x), 4(1:’)] = ihd(z — ). (3.9)

The flux and the conjugate charge can be written in Fourier transform as

ikx
0,=5"0.5, (3.10a)
297

Pikx

P, = Zk:cﬁk/w, (3.10b)

and

12

1 _
e =— [ dxg(x)e*,
qr NG / q(x)

—1/2
1/2

~ 1 A .
o) = i / dx & (x)e ™,

~1/2

(3.11)

where [ — oo is the length of the transmission line. The operators d, and Qi obey

the commutation relation, following from Eq. (3.9)
[cik,qk,} — i, (3.12)

Eq. (3.11) gives us the properties of the flux & and charge conjugate Q; as

A ~

>, =

. (3.13)
Q r=0Q.

Subsituting (3.10) into (2.92) gives us the Hamiltonian of the free translationally

invariant transmission line

2 (0 QQ— . Cow? - -
HY :Z( ot 3 k@k¢k>, (3.14)
k

in which o ,
A O_, C A
_ QkQ k + oWg b,

o 1
Hp 2, 5 ks (3.15)

together with f]:(_k describe two harmonic oscillators with frequencies wy and w_, =
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wi. We can quantize these oscillators in the usual way by introducing creation and
annihilation operators obeying

[z}k, EL,] = Sws (3.16)

b ()= [ ).
Qi = i\/ gc'owk ((;T_k - 6k> = i\/ZIZkO' (BT_k - Bk> ;

where Zy = \/Lo/Cj is the characteristic impedance of the transmission line. The

quantum Hamiltonian for a transmission line is therefore
. . s 1
0) _ _ T -
Hy' = Ek Hy = Ek Ay, (bkbk + 2), (3.18)

where wy, is the mode frequency of the transmission line. The wave propagating in

and

(3.17)

transmission line is described by ®(z,¢). This field operator can be written in term
of the combination of left- and right- moving second quantized fields as

d(x,t) = D (x,t) + DT (1), (3.19)

(i)R(x t) B \/TZ gke—i(wkt—km) + (A)Lei(wkt—km)
’ N 2[00 >0 \/ Wk ’

where

R [ B_ke—i(wkt+k:c) + gf kei(wkt-‘,—kw) (320)
OF (w, 1) = > - .
20Cy £~ N
These waves are obtained by subtituting (3.17) into (3.10).
In the continuum case,
. 7 Ao 1
o = /dw hw < T+ 5), (3.21)
0 j=L,R
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we obtain

(e}

SR (. t) = %/d_‘: (bRC—i(wt—kwx) +85Tci(wt—kwx))7
0

: 7o T dw o) yrir o ore

q)L(x7t) = 4_77-0/_(;: (bie_lf(“)t+kw-r) +b£T€l(wt+kw.L)>
0

bco = %bﬁk»
. D) .
bE = ,/% S bib(w — wi),
k>0
. D )
b£ = ?Zbké(w—wk).
" k<0

where v = 1//LoCy and k, = w/v.

3.2.3 Coherent drive and transmission coefficient

(3.22a)

(3.22b)

(3.23)

In the following, we assume that the JJ is probed by sending a coherent wave in the
transmission line and measuring its amplitude transmission coefficient S; as discussed
in Sec. 2.2. Our calculation will focus on the dynamics of the JJ degrees of freedom,
Q ; and @ 7, s0 we would like to express the observable Sy; in terms of the quantum

average <Q;) To do this, let us write the Heisenberg equations of motion for the TTL

operators:

d@n o (i)n—i-l + (i)n—l - 2ci)n

dt N L()IUl '
d®, _ Qn
= 0
dt CO:L'] (n 7& ) ’
ddy  Qy Qo @
0_Q & 0

a C. C; Cy
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These equations are linear, so their solution can be formally written as
0nlt) = Q(1) / Galt —1) Q1) dt (3.25)

where Qr¢(t) is a solution for the free TL (i. e., taking into account the Hamiltonian
Hy (3.2b) only), while the last term represents the effect of Hyy with Q(t) treated

as a source. G,,(t —t') is the retarded Green’s function, given by

Gult — 1) = [ 5216, w), (3.26)
s
[1 - ’l(sno COt(kwﬂ?l/Q)]Coxlcceikw‘mzl

Gn ( = ; . 3-27
(u)) CCCJ — Cofﬁl(CJ + Cc)[l —1 COt(kwl'l/Q)] ) ( )
where £k, is the wave vector, related to w by the TL dispersion relation,
wix? k.1 1
= 4sin® — = . 2
) sin” ——, v IoCo (3.28)

In the continuum limit, z; — 0, nzy = z, G,(w) = x19(x, w), the expressions simplify
as k, = w/v and

§(z,w) =

—iwT.(Co/Cy) [1 _ 2iv5(x)] eiwlel/v, (3.29)

1+C./Cy —iwrT. w

where 7. = C.Zy/2 is the classical RC-time of the C, capacitor coupled to the TL.
The free part Qf{ee(t) is assumed to be the sum of the vacuum part with zero

quantum average and the classical part. The latter contains the incident coherent

wave with frequency wy, momentum k,; determined by the dispersion relation (3.28),

and voltage amplitude Vj, as well as the scattered wave:

Yfree

M _ Vde—iwdt (eikdnm + Teikdln\m) (1 4 C5n0) +c.c., (330)
Coxl

o iC jcan(kdx1/2) (= CeCy _1 (3.31)

1 — i tan(kqx1/2) (Ce+ Cy)Coxy

The scattered wave appears in Q(t) because Hy in Eq. (3.2b) is not translationally
invariant. Indeed, the n = 0 site differs from all other sites by the coefficient at Q%
Thus, left- and right-traveling waves (3.22) are not normal modes even for the “free”
TL. Taking the quantum average of Eq. (3.25) and the ratio of the transmitted wave

64



amplitude to the incident one [note that the last term in Eq. (3.25) does not con-
tain the incident wave|, we can relate the transmission coefficient Sy; to the average

(Qu(#) = Que™™ 4+ Q1™ as

14+ C./Cy —iwgTeQ4/(CyVy)

Sar(wa) = 1+ C./Cy —iwgr.

(3.32)
where the continuum limit z; — 0 has been taken.

In the next section, we will study the master equation for the JJ and the quasipar-
ticle, treating the TL as a bath. It is much simpler to write down the master equation
when the bath is in the vacuum state, rather than in a coherent state. Thus, we will
replace the above system with the driven TL by an equivalent one, where the TL is
in the vacuum state, but the oscillator is driven directly. To see this equivalence, we
write down the Heisenberg equations of motion for Q; and @ :

dQ;  h 2ed

. g G
dt _QeLJ st 3 + ;—l[HquQJ]? (3.33a)
dd;, Qs Qo
@ o, o (3.33h)

The JJ is driven by the incident coherent wave via the last term, Qo /Cy. Let us
now recall that Qy can be represented in the form (3.25) where the first term Qe
contains the vacuum part and the coherent part including the incident wave, while the
second term in QO does not contain the incident field. Thus, the Heisenberg equation
for Q;, &, will have exactly the same form if we assume Qgee to have only vacuum
contribution, while Q) is driven by an external voltage V;(t) = (Qr*)/C;. Tn other
words, the JJ quantum dynamics is the same if no incident field is sent in the TL,
but an additional driving term is introduced in the JJ Hamiltonian:

~ Cc Vde_iwdt
o, = —=¢
=

_ T CL/C +c. C.> Q. (3.34)

The perturbative master equation derived in the next section assumes the weak-

coupling limit, that is, €, < C; and w,C.Z, < 1. Then, the denominator in the
brackets can be set to unity.
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3.3 Master equation

Tt is convenient to rewrite the bosonic part of the Hamiltonian in terms of the creation
and annihilation operators. For the JJ operators we have the standard harmonic

oscillator expressions,

T i
d;= 5 ((l+(l), Qr= 27, P (335)

where the JJ impedance Z; = \/L;/C;; then the harmonic part of the JJ Hamiltonian
becomes hw,(afa + 1/2), where the plasma frequency w, = 1/v/L;C;. For the TL
in the continuum limit, nax; — x, ;1 — 0, we introduce the fields o, — @(1) and

Qn — x1G(x), which are expressed in terms of normal modes of the Hamiltonian
Hy (3.2b). As discussed in Sec. 3.2.3, these normal modes are not given by left-
and right-travelling waves, because of scattering at n = 0. Taking advantage of the
symmetry n — —n, we separate the normal modes into even (e) and odd (o), so the

flux and charge density fields are represented as

- ¥ 7 A A A A
O(x) = /dw \/ ;_ci [(be,w + bl‘w) cos (# + 6w> + (bo,w + b;w) sin %} .
0

(3.36a)
R . OCCJ th()
i) [CO TG 5(@] / N o
(A)ew - I;T ) i)ow — IA)T
X - e,w cos <W|x| 4 ew) _|_ ’—.07"‘) Sin %] R (3.36b)
i v t v

Here 6, = arctan|wr./(1+C./C})] is the scattering phase shift, and the commutation

relations for the bosonic operators are

[, bl1] = 0500 (w — '), 4, j = e,0. (3.37)
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Note the 0(z) contribution to ¢(x); it corresponds to a finite value of Qo = fooj G(z) dzx.
The resulting Hamiltonian takes the form ﬂo + ﬁl, where

Ho = 7dw he (Be,wi);w + Bo,wégw) +
0

+ Hy — ih Qe 4+ Q) (a —al) +

> 25—2 (ILp){L pl + v, p){w, p)), (3.382)

H, = —/dw hk(w) (3% - ?)Zw> (a—a') +
0

+ > iTpp ([LP)(w, P = [0, p)(Lp']) (@ +al), (3.38b)

p.p’

where H, describes the TL photons, the JJ excitations (plasma oscillations) driven
by an external force [related to the incident wave amplitude via Eq. (3.34)|, and the
quasiparticle, while H, describes the coupling between the TL and the JJ, as well as
the JJ coupling to the quasiparticle. The coupling constants for the JJ-TL coupling,
the external drive strength, and the JJ-quasiparticle coupling amplitude are given by

r(w) = |22 Ce , (3.39a)
AnZ; \/(Cy+ C.)?2 + (wC.CZp/2)?
Ce Vi
0= , 3.39b
Cy+C. —iwdCCCJZQ/Q V2hZ; ( )
~ hw
Tor =\ 55 Tow' (3.39c)

The master equation is obtained assuming the following Ansatz for the density
matrix of the full system (the TL, the JJ, and the quasiparticle) to hold at all times
[44; 45; 46]:

F) =3 gty ® L p){d p| +2 lwp){wp| b, (3.40)

p
Here py is the density matrix of the TL which is treated as an infinite bath, so its
state cannot be changed by interaction with a finite number of degrees of freedom.
We assume py to be that of the vacuum state (as discussed in Sec. 3.2.3, the effect
of the incident wave is incorporated into the driving term in the Hamiltonian). The

quasiparticle is assumed to be located on any of the two islands with equal probability,
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thus the density matrix of the subsystem “JJ + quasiparticle” is proportional to the
unit matrix in the island index j = u,l. We also assume the density matrix to be
diagonal in the quasiparticle momentum, thereby neglecting any coherence between
different quasiparticle states (this assumption is discussed in more detail in the end
of this section). Thus, p, is the non-trivial part of the system density matrix which
remains after having factored out the vacuum gy and the unit matrix in the island
index.

The subsequent steps are quite standard. Passing to the interaction representa-

tion,

[)full(t) _ e—z’Hgt/h 5fu11(t) ez’Hgt/f‘17 (3.41

~

Hy(t) = e Hot/h fr, ¢iHot/n, (3.42)

and treating H, as a perturbation, we obtain the equation for 5p(t) where the trace
is taken over the TL variables. Using the Markovian approximation for the time
integral, neglecting fast oscillating terms, and going back to the original Schrédinger

representation, we arrive at the following master equation for p,(t):

dp | A ) )
Do i1y ) + [ tal — @, ) +
N L P e
+Tyappal — 7t1 {a'a, pp} +
w82

t A Zé(ep — I, — €p) appral +
| o

wp52 Ata A
+ Zé(ep—l—hwp— €p) 4 Py —

4T A
p
wpd? e
- 87A 25(613 + hwy, — €p1) {a a, Pp} -
p/
wpd? b
N 25(61) — hw, — €p) {aa »Pp} ) (3.43)
p/

where T, is the JJ excitation decay rate due to emission of TL photons in the weak-
coupling limit:
wp(Z0/224)C? o Ce o

(Cr + C2 + (Zo)22,2C2 ~ C; T (3.44)

Iy =
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Since pp can depend on p only via energy ep, it is convenient to pass to
(ert) = —— 3" ()6 THEAY (3.45)
P& = v(e) S P 2A '

with the normalization [ Tr j(e) v(€) de = 1, where v(e) ~ (1/8)/2A /€ is the quasi-
particle density of states, defined in Eq. (3.4) above. Then the master equation takes

the form
O — L]+ 9 — e, (0] +
+Tadp(odl - 2 {alaplo)} +
+ Z;’Z 5—22% i ple — hw,) a' +
-2hci -
;:i {MT . } (3.46)

where the square roots should be set to zero if the argument is negative (which may
occur for € < hw,). In the next section, we will us Eq. (3.46) to study the JJ dynamics
in the presence of the quasiparticle.

To conclude this section, let us discuss the assumptions made in the derivation
of Eq. (3.46). Using the Markovian approximation is equivalent to calculating the
transition rates in Eq. (3.46) from the Fermi Golden Rule. In both cases, it is impor-
tant that the energy spectrum of the final states for the transition is continuous, or
at least discrete but sufficiently dense, so that the level spacing is smaller than the
obtained transition rate. For the photon emission into the TL this is perfectly valid

because the TL photon spectrum is continuous. However, the quasiparticle levels are

discrete, and the relevant energy level spacing is ~ §y/max{e, hw,}/A, which should
be compared to the typical rate, ~ 0(w,/A)\/A/max{e, fiw,}, from Eq. (3.46). It
is easy to see that the rate is always smaller. Thus, for the above derivation to be

valid, we need the TL-induced broadening, I';, to be sufficiently strong compared to
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the level spacing and thus to the quasiparticle tunneling rate '-2.

The very same broadening mechanism that justifies the Markovian approximation,
also enables us to neglect the quasiparticle coherence (the off-diagonal elements of
the density matrix in the quasiparticle subspace). Indeed, when the quasiparticle
performs a transition from a level with the energy e into a bunch of levels with
energies spread over an interval of width ~ Al'y around € £ hw,, the off-diagonal
terms beating at relative frequencies ~ I'y; have already dephased on the quasiparticle
tunneling time scale. Thus, the quasiparticle is treated as a “mini-bath”, in the sense
that the coherence is neglected, but change of the quasiparticle state by exciting or
deexciting the JJ is accounted for [45].

So far, we did not assume the separability of the density matrix p(¢) into a product
of the JJ and quasiparticle matrices. However, the smallness of the quasiparticle
tunneling rate with respect to the photon emission rate enables us to do so. Indeed,
during the time the quasiparticle stays on one level, the JJ exchanges many photons
with the TL and fully samples the allowed part of its Hilbert space. Thus, in the
following we will use the separable form p(e¢) = p; f(¢), where p; is the JJ density
matrix which does not depend on the quasiparticle energy, and f(¢) is the quasiparticle

distribution function. Both are normalized:

Trjpy — 1, /0 T RO (e de = 1. (3.47)

I'The quasiparticle levels are also broadened by the phonon emission. However, in the regime
we are interested in, this broadening is not sufficient. Indeed, the large phonon emission rate would
imply faster equilibration of the quasiparticle with phonons than with the JJ. Then the quasiparticle
energy distribution is determined by the phonon temperature and we are back to the regime of
Refs. [40; 41].

?Besides tunneling accompanied by a JJ transition, the quasiparticle can also tunnel elastically,
without changing the JJ state. The corresponding matrix element is given by the first term in
Eq. (3.7). The Golden Rule estimate for the rate of this tunneling is

I\el é& TQH A
PR A ANV Ty

When E; > A (good contact, which is quite a realistic situation), this rate does exceed the quasi-
particle level spacing §+/Tug /A, so the quasiparticle does tunnel between the two islands. However,
this elastic tunneling does not lead to level broadening. Indeed, the elastic coupling results in strong
hybridization between the quasiparticle states on the two islands, but the exact eigenstates, although
delocalized over the two islands, are still discrete, with the level spacing just twice smaller than on
a single island.
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3.4 Solution of the master equation

3.4.1 The role of anharmonicity in the junction

As in Sec. 2.1.3, let us expand the cosine term in Eq. (3.2a) to the fourth order:

. 1 E
Hy = hw, <&Ta + 5) — 1—§ (@' +a)" (3.48)
Since Ec = €*/(2C;) < hw,, the last term produces an anharmonic correction to the
JJ level energies, E, = hwy(n + 1/2) — (E¢/2)(n* +n + 1/2). For not too large n,
the anharmonic correction to the transition energy E, i — F, is small compared to
hw,. However, we are studying a resonantly driven junction, so we are interested in

drive frequencies wy close to the transition frequency,
|Epi1 — By — hwq| ~ ALy (3.49)

Then, even though E¢ < Iw,, the difference in energies of the first two transitions,
(Ey— Fy)— (Ey— Ey) = —E¢, can be large compared to I'y, if E¢ > Al'y. In this case
the resonance condition (3.49) can be satisfied only for one of the transitions, so the
JJ effectively behaves as a two-level system, also known as the transmon qubit [10].
In the opposite limit, Ay > E¢, the JJ can be treated as a harmonic oscillator,
provided that its degree of excitation is not too high. Below we will consider both
these limits separately. The qubit limit will be treated by simply truncating the JJ
Hilbert space to two levels and by replacing the creation and annihilation operators
a',a in the master equation (3.46) by the Pauli raising and lowering counterparts,

O4,0_.

3.4.2 Effective quasiparticle temperature

The kinetic equation for the quasiparticle distribution function f(e) is obtained by
taking the trace over the JJ variables in Eq. (3.46):

af(&) o Wpé2 _ _
o~ vle ) (e =) =m0+
PO et ) [LF (et ) —Af(@), (3.50)

where i = Tr{o 0_p,} or it = Tr{a'ap,} is the average number of excitations in the
JJ in the qubit or harmonic limit, respectively, and the upper/lower sign corresponds
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to the qubit/harmonic limit.
We are interested in the stationary situation, so we assume 7 to be constant.
Then, the stationary solution of the kinetic equation (3.50) is !

0
f(f):\/m

where 6(¢) is the step function, and we defined

e~ (e), (3.51)

T, = I,

“In(1/nT1) (3:52)

which has the meaning of the JJ effective temperature. We emphasize that this is

just a convenient notation; the driven JJ is not in a thermal state [50].

3.4.3 The junction state

To find the JJ state, we multiply the master equation (3.46) by v(¢) and integrate
with respect to e, which gives the equation for the J.J density matrix p;(t),

% = —iwyata. py] + [Qe~metat — Qreata, b)) +
SN aaoa Fa+Tq (s, .
+(La+ 1) apa’ — 9 = {aTa»PJ} +
I+
+ L dtpya — =2 {aa' o} +
F*
+ 13 afapsata — 7"5 {ataa'a, ps) . (3.53)

written here for the harmonic limit; in the qubit limit one should just replace a" — o,
a— o ,ala— (0, +1)/2. The last term in Eq. (3.53) represents a pure dephasing
contribution with the rate I'j that we included phenomenologically. Other dissipa-
tion mechanisms in the artificial atom can be straightforwardly incorporated into
the master equation (3.53); in the weak-coupling approximation the corresponding
rates should be simply added to the absorption, emission and dephasing terms of

the equation. In both qubit and harmonic limits, the rates T'Z, of the JJ excita-

L Strictly speaking, any distribution of the form f(e) = u(e) e=“/"7 §(¢) with an arbitrary pe-
riodic function u(e) = u(e + hw,), is a stationary solution of Eq. (3.50); however, since the energy
conservation in absorption/emission of energy quantum fiw, is not exact, but only up to the level
broadening, the periodic part u(e) will eventually flatten.
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tion/deexcitation by the quasiparticle are given by

;p:;u_p r fe)de T = Oof €+hwp)de (3.54)

™) €(e + hw,) ™) + hwy)
These expressions are smaller than those in Ref. [51] by a factor of 4; this is because
in that reference equal occupation was assumed for each spin and at both sides of the
junction, while here we have a single quasiparticle.

Equation (3.53) has the form of the standard master equation for a driven har-
monic oscillator (or a driven two-level system in the qubit limit) coupled to a Marko-
vian bath [50]. The difference from the standard case is that the rates I'f, depend
on f(e), which, in turn, depends on p; itself. For the stationary distribution func-

tion (3.51), they are given by

I =To e\ /2x /7 Ko(x), (3.55)

where Ky(x) is the modified Bessel function, and

0 [hw,
Ty= —
0 h 2 ) X

These expressions are different from those obtained in Ref. |[51] under the assumption

h’wp
T (3.56)

of equilibrium-like form for the distribution function: the difference stems from the
fact that here the quasiparticle number is fixed to one. Also, we remind that here
we assumed 7w, < A; corrections can be calculated analogously to Ref. [51]. The
following asymptotic expressions for low and high temperature illustrate the overall
behavior of the rates I'}, from Eq. (3.55):

I, ~Ty Td ~Tee ™/ T) < hw, (3.57a)
hw huw 4T;
[T mTo /=2 (1+ =21 T . .
ap 7TT] < 2T]> n e’thp7 J >> hUJp (3 57b)

Here v = 0.577. .. is the Euler-Mascheroni constant.
The stationary solution of Eq. (3.53), found in the standard way (namely, by
rewriting it as Bloch equations in the qubit limit or by acting on it by & and tracing

in the harmonic limit), determines the stationary oscillating coherent polarization in
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the two limits:

I /2 — i(w, — wq)] Qe wdt

a Ftot (U.)p _(J.}d)Q_’_1—‘35/44_2|£)|2];—‘¢/].—1t0t7
A Qe—iwdt

(@) = —— —~—5

i(wp — wa) + (U +17)/2

I, =Ta+T, - T

qap’

(3.58a)

(o

(3.58b)

Liot =T+ 1T, + Pj{pa Ly =T + 175

Equation (3.58a) coincides with the textbook solution of the Bloch equations |52]
for 'Y, = 0. Here T', has the meaning of relaxation rate for the excitation number,
and I',/2 is the total dephasing rate. The average number of excitations 7 is found
straightforwardly in the two limits. It is more convenient to give an expression for

e™»/Ts | which has the same form in both cases,

LIQP + (Ta + Tyy) [(wa — wp)? +T7/4]

eth/TJ —
DIQ2 + T [(wa — wp)? +T2/4]

(3.59)

provided that one substitutes I' = I'y,; in the qubit limit and I' = I',, in the harmonic
limit. Since the rates I'?, depend on T, Eq. (3.59) is a self-consistency equation
for Ty, strictly speaking. However, as hw,/T; changes from zero to infinity, the right-
hand side of Eq. (3.59) varies in an interval between two finite values, and this interval
is very narrow for I'g < I'y. In fact, to find Ty as a function of the drive amplitude V;
or of the incident power Py, = 2|Vy|*/Zy = 2hw,|Q|* /Ty, one can simply neglect T'E
in Eq. (3.59), whose right-hand side then becomes 1+ [(wg —w,)?+1%/4]/|Q]?. Then,
the relation between the input power and the effective temperature is

(wa — wp)® + TH/4 hw, b

=1+4—". (3.60)

husp /Ty —
‘ * /2 P P

3.4.4 Transmission coefficient and quality factors

Equations (3.58a) and (3.58b), together with Eq. (3.35), determine the average (Q,(¢)),
which, when substituted into Eq. (3.32), gives the following expressions for the trans-
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mission coefficient in the qubit and the harmonic limits, respectively:

g (Ld)_l—@l—‘n w—w, —ily/2
2 2 Ptot (OJ — wp)Q + Pé/4 + 2|Q|2F¢/Ftot7
iTa/2

w—wp+i(Tn +1%)/2°

(3.61a)

Sor1(w) =1— (3.61Dh)
where we used Eq. (3.44), as well as the weak-coupling assumptions C, < C; and
w,CeZy < 1. We also consider driving not too far from resonance, |wy — w,| < wp.
For I'}) = 0, Eq. (3.61a) coincides with Eq. (55) of Ref. [43]. Eq. (3.61b) can be
compared to the phenomenological expression for the transmission coefficient near a

resonance [31; 48; 53; 54]:

W — wy + ZWO/(QQI)
W — Weo + L(U()/(2Ql) + ’in/(QQe) ’

So1(w) = 957 (3.62)
Here S57 is the constant high-frequency asymptote, w,, and wy are the resonant
frequencies with and without coupling to the TL (we neglected the frequency shifts
in our weak-coupling limit, so both coincide with the plasma frequency w,), and Q.
and Q; are the external and internal quality factors, respectively. Thus, we adopt
the following expressions for the external and internal quality factors in terms of the

quantities, calculated above:

@ 221 G “p

Qe: ~ TR i= )
T 7y C? T+ T, + I, I,

(3.63)

where the upper /lower sign in the expression for Q; corresponds to the qubit/harmonic
limit.

While Eq. (3.63) is straightforwardly obtained by comparing Eqs. (3.61b) and
(3.62) in the harmonic limit, for the qubit limit Eq. (3.61a) can be cast into the
form (3.62) only when the power broadening term, oc |2|?, in the denominator of

Eq. (3.61a) is neglected. The low-power condition reads
8|1 < Ligil'y ~ T3, (3.64)

which for near-resonant driving, |wq —w,| S I'y, is equivalent to P,, < P.. This con-
dition then implies, via Eq. (3.60), low quasiparticle effective temperature, 7)) < w,,.

Moreover, even in this regime, in order to attribute any power-dependent broadening
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TL impedance Z; 50 ©

JJ inductance L; 1 nH

JJ capacitance C 100 {F

Coupling capacitance C., 10 fF
Superconducting gap A 200 peV = 2rh x 48.4 GHz
Density of states Dp 1.45 x 107 J 7 tm =3
Island volume 0.1 pm?
Electron-phonon coupling ¥ | 2.0 x 108 W -m=3-K™°

Table 3.1:  Parameters for a Josephson junction coupled to a transmission line.
Superconductor material parameters are taken for aluminum.

to heating of quasiparticles, the more stringent condition,
AQP < Ty (T, +T5) (3.65)

should be met. Since already under the weaker condition we have I'l, < I'.,, and
I';, = I'g is independent of power, we conclude that no spectroscopic signature of
quasiparticle heating can be detected in the qubit case.

In the above considerations, we have neglected the pure dephasing rate I';. FEx-
perimentally, it can be made as small as ', ~ 10 kHz (see Ref. [55] and references
therein for a recent discussion), a value comparable to Ty, see Table 3.2. Theoreti-
cally, one can estimate the pure dephasing rate I'} due to the quasiparticle as done
in Ref. [51]; it is shown there that such dephasing rate is of the order of the elastic
tunneling rate ' (see the footnote in the end of Sec. 3.3). The latter, for realistic
parameter values, is in principle power-dependent, but is at most comparable to I'g,
see Tables 3.1 and 3.2. Therefore, including I'} does not change our conclusions for
the qubit regime.

In Fig. 3.3 we plot Q;, relative to its low-power value, Qip = w,/I'y, as a function
of the dimensionless input power, P, /P,, as obtained from Eqs. (3.55) and (3.60),
for the harmonic limit and neglecting the pure dephasing I'; for simplicity. For a
numerical estimate, we use typical structure parameters from Tables 3.1 and 3.2.
However, the parameters in these tables show that the junction is in the qubit limit,
Ec > hl'y, so the quasiparticle heating effect is smeared by the power broadening.
In the next section, we show that the harmonic limit is relevant for an artificial atom,

represented by a chain of Josephson junctions.
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Figure 3.3: Plot of the internal quality factors Q;, relative to the low-power value
Q0 = w,/Iy, as a function of the dimensionless input power, P,/ Pk, for the harmonic
limit, neglecting the pure dephasing contribution.

Josephson energy F; 680 peV = 27h x 160 GHz
Charging energy €?/(2C;) | 0.80 ueV = 2rh x 194 MHz
Plasma frequency 7w, 66 peV = 2wh x 16 GHz
Mean level spacing ¢ 0.86 neV = 27wh x 0.21 MHz
Photon emission rate hAl'y 136 neV = 27h x 33 MHz
Quasiparticle rate hl'y 66 peV = 27h x 13 kHz
Phonon rate h/7p,(€ = hw,) | 39 peV = 2wh x 9.5 kHz

Table 3.2: Energy scales for a Josephson junction coupled to a transmission line,
derived from the parameters in Table 3.1.
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3.5 Few quasiparticles in a Josephson junction chain

The theory developed in the previous sections can be quite straightforwardly extended
to the case when the artificial atom is represented by a more complex system: instead
of a single Josephson junction coupled to the transmission line, we consider a chain
of N junctions connecting N + 1 islands. Each junction is characterized by the same
parameters E; and C; as before, and, in addition each island is assumed to have
a small capacitance C, < C; to the ground. The first island is coupled to the TL
via a capacitance C.. Thus, we consider the setup of Sec. 2.3.1 (Fig. 2.8) with
Ci=C=05=0.

As discussed in Sec. 2.1, such a chain has N eigenmodes with frequencies

NmCy ™
W = Wpt | =———————, Nm =2 — 2C0S , 3.66
”\/ Cy+ 1mCy ; N+1 (3.66)

where m =0,..., N and w, = 1/4/L;C} is the same plasma frequency as before. For
sufficiently long chains, N 2 A\ = /C,/C,, the first few modes are well separated in

frequency from each other and from the rest of the modes. Any of these first modes

can be treated as a harmonic oscillator, and all the theory developed above for a single
junction can be applied to this mode as well, with some modification of parameters.

Namely, the rate of photon emission into the transmission line becomes

2 w2 1.C,
 N+1C,+n.Cy

Ty (3.67)
The anharmonic correction to the energy of mode m with n,, photons can be written
as (hKm/2)n?,, with the self-Kerr coefficient K, given by Eq. (2.60). Numerical
values of parameters for the lowest mode (m = 1) of a chain of N = 200 junctions,
given in Table 3.3, show that the mode is in the harmonic limit, due to low frequency
and large N.

The quasiparticle state is now characterized by the island number j = 1,..., N+1,
as well as momentum p. The quasiparticle can tunnel across any of the N junctions,
with the Hamiltonian

Hygy =Y iT) (m +al,) x (1 = Lp)5. P = 15, p)(i — L.P']), (3.68)
Jp.p’
_ g T
AN+VE;, ™ N+

() _
T, = (3.69)
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Island ground capacitance Cy 1{F

Number of junctions N 200

Lowest mode frequency Awq 10.2 ueV = 27wh x 2.5 GHz
Self-Kerr coefficient A K 0.14 neV = 27wh x 34 kHz
Photon emission rate il'y 3.8neV = 27h x 0.92 MHz
Quasiparticle rate hl'y 0.22 peV = 27h x 53 Hz
Phonon rate i/ 7y, (e = hwy) 57feV = 2mh x 14 Hz

Table 3.3: Parameters and energy scales for the lowest mode of a 200-junction chain
coupled to a transmission line.

We assume that the quasiparticle can reside on any island with equal probability, and
can tunnel to any of the two neighboring islands. Then the intrinsic quality factor is
determined by

) R,

'y =
T (N+1)mh V 2A°

(3.70)

instead of Eq. (3.56). As seen from Table 3.3, this rate is very low. However, a long
chain should contain an extensive number N, of quasiparticles. As long as Ny, <
N, they can be treated independently, and their effect is additive, so I'g should be
multiplied by N,,. Using the parameters from Table 3.3, we obtain Q;y ~ 5 X 107/ Nyp,
which gives Qi ~ 10° for Ny, = 50 (one quasiparticle per four junctions) This value
is rather high, so the quasiparticle-related dissipation will be important only if not
masked by other mechanisms. Still, such high quality factors, varying from 10° at low
power to 107 at high power, have been reported for superconducting resonators [48],
and quality factors larger than 10% have been obtained in superconducting qubits,
both comprising one or two junctions (transmon [37; 55]) or about 100 junctions

(fluxonium [56]).

3.6 Quasiparticle relaxation by phonon emission

In the above calculations we neglected the effect of the quasiparticle energy relaxation
by phonon emission. To check the validity of this assumption, let us estimate the
corresponding rate. For a quasiparticle with the energy much higher than the phonon

temperature, the rate of acoustic phonon emission was calculated in Ref. [57]:

1 16 %7
7on(€)  315(5) Dpv2A’

(3.71)
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Here we introduced the effective coupling strength X, which controls energy exchange
between electrons and phonons for the material in the normal state: the power per
unit volume transferred from electrons and phonons which are kept at temperatures
T, and Ty, respectively, is given by (72 — T7)) [58]. The coefficient 3 can be
represented in terms of the microscopic material parameters as

6¢(5) Dp=?
Y=t
mhivppovd

(3.72)

where = is the deformation potential, vr and v, are the Fermi velocity and the speed
of sound, pg is the mass density of the material, Dp is the density of states at the
Fermi level for the material in the normal state, taken per unit volume and for both
spin projections. The coefficient ¥ can also be measured experimentally (see Ref. [59]
for a review). Using the parameters of aluminum, we estimate the phonon emission
rate at energy ¢ = hw, for a single junction or ¢ = hw, for a Josephson junction chain
(Tables 3.2 and 3.3). The phonon emission rate is smaller than the quasiparticle
tunneling rate, but the inequality is not very strong. Thus, a more detailed study of

the competition between the two relaxation mechanisms is desirable.

3.7 Conclusions

To conclude, in this chapter I have studied intrinsic dissipation due to quasiparticle
tunneling in a superconducting artificial atom, represented by a single Josephson
junction or a Josephson junction chain. The artificial atom is assumed to contain
exactly one residual quasiparticle and is capacitively coupled to a coherently driven
transmission line. In contrast to previous studies of quasiparticle-induced dissipation,
I take into account heating of the quasiparticle by the drive. For simplicity, it is
assumed that quasiparticle cooling by acoustic phonon emission is inefficient and can
be neglected, so that the quasiparticle state is determined by the coupling to the
superconducting degrees of freedom. I have shown that the corresponding intrinsic
quality factor, as measured in a transmission experiment, increases with the drive
power. This happens because the quasiparticle density of states decreases with the

quasiparticle energy, so at stronger drive the quasiparticle tunneling is slower.

80



Chapter 4

Inhomogeneous Josephson junction
chains for superinductance

optimization

4.1 Introduction

As mentioned in Chapter 1, the proposed circuit for the quantum current standard
needs a large inductance. Indeed, producing the current Shapiro steps I,, = nw/m
requires the phase particle behaving as a classical particle. However, any geometrical
inductor (a coil being the standard textbook example) also necessarily possesses a
parasitic self-capacitance which starts to dominate at high frequencies, so its non-
dissipative impedance is limited by the vacuum impedance, ~ \/,uo—/€0 = 4aRg,
where a ~ 1/137 is the fine structure constant, and Ry ~ 13 k2 is the resistance
quantum [60]. Indeed, the inductance of a geometrical inductor is due to the magnetic
field produced by the current, which acts on the current itself. The relativistic nature
of this effect is the intrinsic reason for its weakness. This limitation can be overcome
by using superconducting materials whose inductance is due to the kinetic energy
of the Cooper pair condensate [12], and thus is of non-relativistic origin. The term
“superinductance” is often used to denote such superconductivity-based inductance.

Several structures, based on Josephson junctions (JJs), have been reported to
work as superinductors [14; 61]. In the first one, a large inductance was obtained by
putting N Josephson junctions in series, which gave the total inductance N L (L is the
inductance of a single junction). In Ref. [61], magnetic-field-induced frustration was

used to increase the inductance, which then exhibited a strong nonlinearity. Here, we
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focus on the linear case, and analyze structures analogous to that of Ref. [14].

A simple strategy to increase the total inductance of a JJ chain would then be
to make L and/or N as large as possible. However, in either case one faces some
limitations. In the first case, the JJ inductance L is inversely proportional to the
Josephson energy of the junction, E; = (h/2e)*(1/L). To work as an inductor, the
junction must be in the superconducting regime, F; > F, where the charging energy
Ec = (2€)?/(2C) is determined by the junction capacitance. This condition sets a
lower limit on Ej, or, equivalently, an upper limit L < Ly, or a lower limit on the
junction area A, as both E;, C' x A.

Limitations on the junction number N arise from the dependence of the chain
response on the frequency w: the effective bandwidth of the inductive response is re-
stricted by electromagnetic modes supported by the chain, w < w; (the lowest mode
frequency). Crucially, besides the capacitance C' of the junction between neighboring
superconducting islands, each island has a small capacitance C® to the ground. As
discussed in Sec. 2.1.4, this capacitance gives rise to screening of the Coulomb interac-
tion between the islands on a length scale A = \/m and produces an acoustic-like
region of the mode dispersion (2.51) of spatially homogeneous chains (Fig. 2.3). The
first mode corresponds to k = 7/(N + 1), so for large N > 7, the frequency of
the lowest mode w; « 1/N, and the inductive response bandwidth shrinks with in-
creasing N. This was the main limitation for the device studied in Ref. [14], where a
special effort was made to decrease the parasitic ground capacitance C®.

The above argumentation works for spatially homogeneous chains, whose total
inductance is determined by just two parameters, the single-junction inductance L
and their number of junctions NN, if L is assumed to be the same for all junctions.
This, however, need not be the case, since an arbitrary spatial profile of junction sizes
along the chain can be produced during the sample fabrication. A spatial modulation
of junction parameters modifies the normal modes of the chain, and can manifest
itself in various situations. For example, spatial modulation of the chain parameters
was shown to affect Josephson energy renormalization by coupling to the normal
modes [62] as well as the amplitude of coherent quantum phase slips [63]. Effect
of the normal mode structure on dephasing of the fluxonium qubit was discussed
in Ref. [64]. For the present problem, one can try to optimize the total inductance
and the operation bandwidth of the chain using many more degrees of freedom than
just L and NNV, because the parameters of each of the N junctions can be treated as
optimization variables. In this chapter I study whether one can take advantage of

this large number of variables and improve the homogeneous chain result of Ref. [14]
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Figure 4.1: A schematic representation of a SQUID (top view): two superconducting
islands, top and bottom, are connected by two junctions forming a loop. At zero
magnetic field, the SQUID inductance L,,(0) is determined by the total area of the
junctions A,,, shown by hatching. When a magnetic field B is applied, the inductance
L,(B) = L,(0)/|cos(mBS,/®o)| is determined by the magnetic flux B.S,, through the
SQUID loop area S,,, represented by the white circular region in the center.

by carefully choosing the spatial profile of the junction parameters.

I consider two ways to introduce a spatial inhomogeneity into the structure. One
is to vary the area A, of each junction n (assuming the island area to be already
optimized to minimize the ground capacitance as was done in Ref. [14]). This leads
to a simultaneous variation of the junction inductances L,, and capacitances C,,, such
that their product L, C, = const. Optimizing over all areas {A,}, I find that the
best result is still achieved for a homogeneous configuration.

The second way to introduce a spatial variation of the junction parameters is to
represent each junction by a SQUID (superconducting quantum interference device).
When subject to a magnetic field B, a SQUID behaves like an effective Josephson
junction with a field-dependent Josephson energy E;(B) = E;(0)| cos(mBS/®y)|,
where ®, = 27h/(2e¢) is the superconducting flux quantum, and S is the SQUID loop
area which determines the magnetic flux BS through the SQUID (Fig. 4.1). Then,
if all SQUIDs have different areas S,, the inductance of each junction of the chain,
L,(B) = L,(0)/|cos(mBS,/®Po)|, varies in space, and this variation is independent of
the variation of the capacitance C,, (the latter is controlled by the junction area A,
independent, of the loop area S,). In this case, one can indeed improve over the
homogeneous result, by placing SQUIDs with larger loop area (higher inductance)
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near the ends of the chain. Still, the obtained improvement over the homogeneous
result turns out to decrease with the increasing chain length.

4.2 Formal setting of the optimization problem

Consider a chain of N + 1 superconducting islands. Each island is connected to its
nearest neighbors by Josephson junctions, so the chain has N junctions (Fig. 2.4),
assuming N > 1. The impedance and admittance matrices Z(w) and Y (w) were
defined in Egs. (2.61) and (2.63), respectively. The chain impedance at zero ground
current is Z = Z1 1+ 2Zn4+1.8+1 — L1841 — Zn+1.1. At low frequencies, the admittances
are dominated by the inductive part, so the impedance is given by Z(w — 0) =

—iwLiot, where Ly is the total inductance of the chain,

N
Liw =Y L. (4.1)
n=1

The approximation Z(w) &~ —iw Ly is valid as long as w < wq, where wy is the lowest
normal mode frequency, for which det Y (w) = 0.

As discussed in Sec. 4.1, ideally one would like to increase both L. and wq,
but these two requirements are in conflict. Thus, one can try to maximize L at
fixed wy, or maximize w; while keeping L. fixed. We prefer the second option, as
the constraint expressed by Eq. (4.1) is much easier to resolve than the constraint
wy = const. Thus, our optimization problem is formulated as follows: find the spatial
profile of L,,. C,.C% which maximizes w; while keeping L, fixed. To complete the
formulation of the problem, we have to specify the independent variables over which
the optimization is performed.

The shape and size of the superconducting islands and of the junctions between
them can be well controlled in the fabrication process. It is easy to notice that while
the parameters L,,C, are mostly determined by the junction areas, the parasitic
ground capacitances C& are mostly determined by the island sizes. Thus, the first
obvious step is to minimize the island sizes as much as possible while keeping constant
the junction areas, as any part of the island area which does not participate in the
junctions, does not contribute to the inductance, but decreases w;. This optimization
was performed in Ref. [14]. As a result, the ground capacitance of the nth island
becomes a function of the areas of the junctions in which it particpates, n — 1 and n.

This function was calculated numerically in Ref. [14], and the resulting dependence
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resembles a weak power law or a logarithm. We will assume that this first optimization
step has been performed.

Then, our first setting corresponds to independent variation of all junction areas,
which are allowed to vary in a certain range. In the fabrication process, quite a
wide range of sizes can be achieved, and the restriction on the areas rather comes
from physical considerations. If the junction area is too small, the condition Ej; >
E¢ is violated, and then the classical description of small phase oscillations is no
longer valid. If the junction area is too large, it can no longer be treated as a zero-
dimensional object, because the frequency of its own electromagnetic modes becomes
too low. The first of these conditions defines a certain maximum inductance L,,,, and
minimum capacitance Cp;, of the junction which are allowed. It is then convenient
to normalize the inductances and capacitances to these values and to treat the areas
as dimensionless quantities, the area unit being the smallest allowed area. At the
same time, the largest allowed area Ap., > 1 is then an independent dimensionless
parameter of the problem. Thus, we have N dimensionless variables A,, allowed to
vary in the range

1 <A, < Anax- (4.2)

They determine the inductance and the capacitance of each junction as

Ln = Cn = Cmin'An» (43)

and Eq. (4.1) thus imposes a constraint on the set {A,}. Finally, for the ground

capacitances we use a simple form
Cr = Chin 9(An—1/2 + A /2), (4.4)

where g(x) is some function, growing sublinearly with x (a power law or a loga-
rithm). All qualitative arguments given below are not sensitive to the specific depen-
dence g(x); in the numerical calculations, we set g(x) = v/x. To define Eq. (4.4) at
the ends, we set Ag = Ay, Ay 1 = An. Thus, the first optimization problem is fully
defined as maximization of w; determined from Eq. (2.18) where the matrices C (2.6)
and L~ (2.13) are determined by Egs. (4.3) and (4.4) in terms of the dimensionless
areas A,,. The optmization variables are the areas A,, in the allowed range (4.2) and
subject to constraint (4.1), as well as the number of the junctions N itself. Note

that constraint (4.1) and inequalities (4.2) restrict the number of junctions N to the
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interval
_ Ltot -
Ny = 7 < N < NoApax. (4.5)

The second way of producing a spatial variation of the JJ chain parameters is to

replace each junction by a SQUID. Each SQUID is characterized by its loop area .S,
independent of the junction area A, (Fig. 4.1). By applying a magnetic field B, one
can change the SQUID inductance as

_ L,(0)
| cos(nBS,/®o)|

Ln(B) (4.6)
where the zero-field inductance L,,(0) is determined by the junction area A,,. This way
of tuning the properties of the JJ by magnetic field is routinely used in experiments
(see, e. g., Ref. [65]). Here, it is crucial for us that the spatial variation of inductance
is independent of that of capacitance, which was not the case in the previous model,
since in Eq. (4.3) the product L,,C,, remained fixed. Thus, instead of the optimization
problem defined by Eqs. (4.2)—(4.4) via variables Ay, ..., Ay, we consider another

problem defined via variables Fy, ..., Fx:

1< Fn < Fanas (4.7a)

Cn = Cmim sz = Cg

min’

(4.7b)

All junction areas are assumed to be the same, A,, = 1, and each variable F,, represents

the ratio BS. /B 1 o
— | cos(mBSy/ 0)‘, = cog L _Mmex o (4.8)
co8(MPmax /Do)~ Finax o

where ., is some maximal magnetic flux allowed to pierce the SQUID loops in order

for the device to remain in the superconducting regime E; > FE¢. Clearly, {F,}
are independent variables, because {S,} are independent, and additional freedom
is introduced by the magnetic field. Just like before, the only constraint on &, is
Eq. (4.1), and it restricts the chain length N to the interval

— Ltot

No = 7 < N < TN, (4.9)

The two optimization problems, defined by Eqs. (4.2)—(4.4) and by Egs. (4.7a)—
(4.7b), will be studied in the next two sections, respectively.
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4.3 Junction area modulations

Before we proceed with optimization for inhomogeneous JJ chains, it is useful to see
what can be achieved in the homogeneous case, for future reference. For the problem
(4.2)—(4.4), with all A, = A, we have only two variables, A and N. Constraint (4.1)
fixes A = N/No, L, = LypaxNo/N, C,, = CoinN/Ny, C&8 = C2. g(N/Np). Tt is
convenient to denote the first mode frequency for this homogeneous chain by Q. It
is obtained form Eq. (2.51) as

02— L 1 —cos[r/(N + 1)]
N LC 1 —cos[n/(N +1)] + C&/(2C)
(Lmaxcmin)il
+ (Coin/ Crnin) (No /)2 [/ g () >

~

(4.10)

for N > 1. This is a decreasing function of z = N/Nj for any g(z) growing slower
than linearly with x. Thus, w; is maximized by taking N = Ny, all L,, = L. We
denote the corresponding value of wy by Q.

To improve this result using an inhomogeneous chain, one should take some N >
Ny [a smaller one would be incompatible with the constraint (4.1)], and hope that the
gain in w; from the inhomogeneiety would overcome the loss due to the length increase.
A qualitative idea of the best spatial profile A,, can be obtained from the perturbation
theory for system (2.17), developed in Ref. [66]. Let us use the homogeneous chain
of length N with all A, = A = N/N;y and the first mode frequency Qy as the zero
approximation. If we now modify each junction area by a small amount AA,, the

first-order frequency shift is given by [66]

A(,(Jl N 1 2 A.A,n

QN = N——|—1 (1 — QNLmamein) ;(J{n A , (4113)
2A¢ 2

o, = sin? Nﬂj—ll + f;ii;q) X (COS N:r_ 1 sin’ NWZ 1~ cos® ]\7;:_ 1> . (4.11b)

The dependence of a,, on n is quite simple (sin?+ const), and «,, is the largest for
n = (N +1)/2, in the middle of the chain. The value at the maximum o (11)/2 > 0
as long as [2Ag'(A)/g(A)]sin?[7/(N + 1)] < 1, which is the case for any sublinear
g(x) and N > 4. Thus, the center of the chain contributes the most to the increase
of wi.

Let us take N = Ny + 1. Then, the largest increase of the areas near the center,

allowed by constraint (4.1), is obtained by keeping Ny — 1 junctions with A, = 1,
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and two more junctions with A, = 2, to be put in the center. (Note that it is
impossible to keep Ny junctions with A, = 1, as the constraint would require the
remaining one to have A, = 00). As the area change for the central junctions is not
small, the perturbative Eq. (4.11a) is not sufficient to describe this situation. Still,
wy for this structure can be found analytically. The result of this straightforward but
bulky calculation, given in Appendix to this chapter, is that the resulting frequency
is always smaller than Q.

The full optimization of all junction areas {A,}, subject to constraint (4.1), can
be performed numerically. For any N > Ny, we maximize w; as a function of all
the areas, calculated numerically from the eigenvalue equation det Y(w) = 0. The
resulting maximum w is plotted versus N in Fig. 4.2 for several values of Cy;,/C8.
and An.x. The analytical result of Appendix shows that the curve starts to bend down
at N = Ny + 1, and the numerics shows that the same trend is followed for all N.
Thus the optimal w; at N > Ny is always below the best value for the homogeneous
chain, Qy,. In Fig. 4.3 we show the optimal spatial profile {A,, }, corresponding to one
of the points in Fig. 4.2. Indeed, the best w, for a fixed N is obtained by placing the
largest junctions in the middle of the chain. Still, the resulting gain in w, is smaller
than the loss due to the increase of the chain length from Ny to N.

(a) (b)
R S \ 0.4
0.8t h »
A Y ? 0.3
§a0,7- » ., Qn.
2 0.6+ 3 2 0.2 “a
05f off e
0.4L °
0 50 100 150 200 250 OU 50 100 i 150 200 250
N

Figure 4.2: The first mode frequency w; (in units of the plasma frequency w, =
1/v/LinaxCrain) Obtained by full numerical optimization of all junction areas {A,},
subject to constraint (4.1). We take Ny = 25 for all curves, while \? = Cin /CE,, =
400 and 16 for panels (a) and (b), respectively. Two values of A« = 3 and 10 were
chosen, shown by the blue and red symbols (lower and upper curves), respectively, on
each panel. The solid curve shows {2y, the first mode frequency for the homogeneous
chain with L, = Ly No/N, C,, = CruinN/Ny, C8 = C2. \/N/N,, and the dashed
horizontal line shows the best homogeneous result Q.
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Figure 4.3: The optimal spatial profile {A,}, giving the largest w; for Ny = 25,
N =50, Amax = 10, Coin/C%... = 400.

4.4 SQUID loop area modulations

As in the previous section, we start by a straightforward study of the homogeneous
case. Constraint (4.1) fixes § = N/Ny, so for the chain with L, = Ly..No/N,
C’n = c’mina cs=Cs

n min?

assuming N > 1, instead of Eq. (4.10) we have

9 T N/(mA)
N~ T o TE N2 () (412)

where A = \/m is the screening length, which does not depend on N and
{F,} for problem (4.7b)—(4.7a). Expression (4.12) reaches maximum at N = 7w,
so we have to consider three cases for the position of this value with respect to the
interval (4.9).

(i) In the case A > TaxNo, the frequency is maximized by taking the longest
possible chain, N = F,..No. This case corresponds to the regime when for all
allowed N the first mode is on the flat part of the mode dispersion curve (Fig. 2.3).
This means that we have demanded a value of L, which is too small; a larger
inductance can be obtained by simply increasing the length at almost no cost in w.
So, this case has no practical relevance.

(i) When Ny < 7\ < FaxNo, the frequency is maximized at N = wA. This
corresponds to the first mode frequency roughly at the boundary between the flat
part of the mode dispersion curve and its acoustic part.

(iii) In the case mA < Ny, the frequency is maximized by taking the shortest
possible chain. This regime corresponds to demanding such a large inductance Lt

that the first mode necessarily belongs to the acoustic part of the dispersion curve.
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This is the regime where the competition between Ly, and w; is the most severe; it
is in this regime that a gain in w; by introducing a spatial variation of F,, would be
the most interesting for practical purposes.

The perturbation theory in small modulations AF,, with respect to a homogeneous

chain with N junctions gives a result, similar to Eq. (4.11a):

Awy 1 N AT, sin? ™
QN_N+1n:1 F N+1’

(4.13)

which again tells us that inductance modulations in the center of the chain contribute
the most to the increase in w;. As in the previous section, we now consider a chain
of length N = Ny + 1 with inductances of two junctions in the center smaller by a
factor & = 2. The explicit calculation given in Appendix shows that this chain has
w1 > (y,, and thus one can indeed improve over the homogeneous result. However,

for long chains, Ny > 7w, the gain is quite small:

1 2\ °
w; — Oy, ~ ——— . 414
! Mo 2N0\/E <N0> ( )

Is it possible to gain more in w; by choosing a chain length N significantly exceed-

ing No? As a trial spatial profile, let us consider a long chain with a central region
of length N — 2N; > 1 where the inductances are smaller by a factor F than in the
surrounding (although this piecewise profile does not coincide with the true optimal
one, found numerically below, it allows for a simple analytical solution):

Lmax; ]-gng]vl:
Ln =1 Lyw/F., Ni<n<N-—N, (4.15)
Lmax7 N_ngngN

Constraint (4.1) then fixes
N TN - N
P g -1

For N — 2N; > 1, we can study the problem in the continuum limit, replacing

(4.16)

the junction number n by a continuous variable z. In addition, let us focus on the
most interesting case of long chains Ny > 7\, then one can approximate the mode
dispersion by the acoustic one, w(k) ~ k/v/LCe. Then, Eq. (2.17) is transformed

into the Helmholtz equation with von Neumann boundary conditions at the ends of
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the chain,

0. (4.17)
r=0,N

a1 0 L
<%_L(:C)£ +w C ) <I>(:r) = 0, 8.’];

For the piecewise function L(x), given by Eq. (4.15), and for a given frequency w,
the wavenumbers in the outer regions and in the central region are given by k =
w\/m and by k/ V'F, respectively. Thus, taking advantage of the symmetry of
L(x) with respect to x — N — x, we seek ®(x) in the form (the first mode is odd)

Acoskzx, 0<x< Ny,
®(x) =< A'sin[k(N/2 —z)/VTF], Ny <z <N—Ny, (4.18)
—Acos(kN — kzx), N—-N; <z <N.

The requirement of continuity of ® and (1/L)(0®/0z) at x = N, N — N, yields the

following equation for k:
No
tan | VT k 5 M| = VT cot kN;. (4.19)

For all ¥ > 1, upon increasing N; from 0 to Ny/2 (that is, upon decreasing N
from NoF to Np), the solution monotonically rises from k = 7/(NovF) to k =
/Ny (Fig. 4.4), the highest frequency being achieved in the shortest homogeneous
chain. This means that in the limit Ny > 7\ the gain in w; is so small that it is not

captured by the acoustic approximation.

L " 1 L L L
0 01 02 03 04 05
Nf/NO

Figure 4.4: Solution of Eq. (4.19) as a function of N; for different values of F =
2,4,8,16 (from the upper to the lower curve, respectively).

To check these considerations numerically, we perform the full optimization of
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Figure 4.5: The first mode frequency w;, in the units of the plasma frequency
Wp = 1/v/LinaxCrnin, obtained by full numerical optimization of all {,}, subject
to constraint (4.1), shown by symbols for F,,. = 2 and 10 (blue circles and red
squares, respectively). The solid curve shows the first mode frequency Qy for the
homogeneous chain with L, = LyaxNo/N, C,, = Chin, C8 = C%, . We take Ny = 25
for all curves, while A = 20 and 4 for panels (a) and (b), respectively. The dashed
horizontal line shows the best homogeneous result.
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Figure 4.6: The optimal spatial profile of the inductance, L,/ L.y, giving the largest
wy for N = 46, Fpa = 2 (blue circles) and for N = 111, F.c = 10 (red squares).

Other parameters are Ny = 25, A = 20.

all {F,}, subject to constraint (4.1). As in the previous section, for any N > Np,
we maximize w; as a function of all the areas, calculated numerically from the eigen-
value equation (2.18). The resulting maximum w; is plotted versus N in Fig. 4.5 for
several values of A\ and F,... The optimal spatial profile of the inductance is shown
in Fig. 4.6; as in the previous section, it corresponds to putting the small-inductance
junctions in the middle of the chain, and the large-inductance ones near the ends.
From the analytical arguments above, we do not expect the first mode frequency for
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Figure 4.7: (a) The Ny dependence of the first mode frequency for the optimal inhomo-
geneous chain having the optimal length (symbols) and for the shortest homogeneous
chain with N = N (solid curve). The frequencies are measured in the units of the
plasma frequency w, = 1/v/LiyaxCumin- (b) The Ny dependence of the chain length
Nopt, at which the optimal value of w; is obtained. On both panels the blue circles
and the red squares correspond to F,.. = 2 and 10, respectively, and we took A = 20.

the optimal inhomogeneous chain of optimal length to be much larger than for the
shortest homogeneous chain. This is checked numerically in Fig. 4.7(a), where we plot
the two frequencies as a function of Ny (we remind that at fixed F,ax, No parametrizes
the desired total inductance). For long chains, the improvement due to spatial mod-
ulation is indeed negligible. The optimal length of the modulated chain is close to N
at large Ny (up to a constant offset), as shown in Fig. 4.7(b).

4.5 Conclusions

In this chapter, I explored the possibility to optimize the frequency range where a
JJ chain can work as a superinductor, by a careful choice of the spatial profile of the
junction parameters. In the case when junction areas are varied, the product L, C,
remains constant, and then the best result is still obtained for a spatially homogeneous
chain, as in Ref. [14]. Another way to introduce a spatial variation is to represent the
junctions by SQUIDs whose loop areas are different. Then, by applying a magnetic
field, one can vary the junction inductance independently from its capacitance. 1 show
that this strategy can indeed give an improvement with respect to the homogeneous
case, if the most inductive junctions are placed near the ends of the chain, and the
least inductive ones in the middle. Still, this improvement becomes less important

for longer chains.
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Appendix: Chain with two central junctions modi-
fied

Let us start by recalling the derivation of the dispersion relation for a homoge-
neous chain of N junctions with parameters L,,...,Ly = L, C;,....Cy = C,
Ct,...,Cx = C8 and \/C/Ce = ), given in Sec. 2.1.4. Eq. (2.11b) gives

1 —Ww?LC
w?LCs

(2@;; e, - <i>:;_1) — 3 =0, (A.1)
A plane wave, ¥ = A.e** with any A. and k satisfies this equation, provided

that
1 —w?LC

w2LCs
which gives the usual dispersion (2.51). For a given w, we seek the solution in the
form A e+ A_e~%" and substitute it into Eqgs. (2.11a), (2.11c) at the ends of the
chain, which play the role of the boundary conditions. These give, respectively,

2(1—cosk)—1=0, (A.2)

A (1 — e ) 4 A_emh(1 — ) = 0, (A.3a)
AP VED(] — ) 1 A e R INFD (1 — o7y = 0. (A.3b)

The first of these equations requires the solution to have the form
¥ = Acos[k(n —1/2)], (A.4a)
while the second one imposes the form

¥ = Bcos[k(n — N —3/2)], (A.4b)

with some A and B. Matching these expressions in the bulk of the chain, we obtain
two possibilities, corresponding to even and odd modes with respect to reflection
n— N+2—n:

A=B, k(n—-1/2)=k(n— N —3/2)+2mm, (A.5a)
A=—B, k(n—1/2)=k(n— N —3/2) +2rm +, (A.5b)

where m is an integer. Thus, the even modes have k = 2mn /(N + 1), and the odd
ones k = (2m + 1) /(N + 1). Note that the first mode is odd.
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Figure 4.8: A schematic representation of a JJ chain with two modified central
junctions.

Now, let us consider a chain with two central junctions modified. We assume
N = Ny +1 to be even, N = 2N, then we can again take advantage of the reflection
symmetry, n — N + 2 —n. In the homogeneous part of the chain we assume L, = L,
C,, = C and C& = (C®, while in the central region we set

L
Ly,— =Ly = © (A.6a)
Cny = Oyt = (C, (A.6D)
C}g\/l = C§[1+2 = ncg7 C%ﬁ-‘r]_ = nlcg' (A'6C)

For the junction areas’ variation, considered in Sec. 4.3, we have to set £ = ( = 2,
n = ¢(3/2), = ¢(2). For the loop areas’ variation (Sec. 4.4), we have & =

¢ =n =mn" = 1. The reflection symmetry is preserved, so the modes can still be
classified as even or odd, and by continuity we know that the first mode is odd.
Thus, similarly to Eqs. (A.4a), (A.4b), we can seek ®% in the form

Acoslk(n —1/2)], n < Ny,
P =< 0, n=N;+1, (A7)
—Acos[k(n — N —=3/2)], n>=N;+2,

with yet unknown & which will be determined by matching the solutions in the mid-
dle of the chain. Note that as k is related to the frequency by the dispersion re-
lation (2.51), which is a monotonically increasing function, it is sufficient to check
whether the value of k, obtained by matching the solutions, is larger or smaller
than the one corresponding to the shortest homogeneous chain, kg = 7/(Nog + 1) =
7/(2Ny). @ in the form (A.7) automatically satisfy the Kirchhoff laws for the nodes
n=1,...,Ny—1,Ny+1,N +3,...,2N; + 1. The Kirchhoff laws for the remaining

n = Ny, N1+2 are identical, so we have one independent equation which determines k:
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Tﬁﬁﬁgk%%Ny—Mﬂ—m%%Nr%%ﬂﬂ+

N (5—@;%0 (A.8)

T n) cos(kNy — k/2) =0,

where the frequency w is related to k by Eq. (2.51). Note that n’ dropped out of the

equation as éﬂ = 0. Eq. (A.8) can be identically rewritten as

S(k)cos(kNy — k/2) — cos(kNy — 3/2) =0,

Sky=1+¢+ [/\2(5— ) —77] 4sin2§,

or, equivalently, as

2— €= [L—n+ V(€= QMsin’(k/2) |k
E-[L—n+ (- QUsi(k/2) 2

cot kNy = (A.9)
The left-hand side of this equation passes through zero precisely at k = 7/(2N;) =
ko < 1, with a large negative slope. Thus, to find out whether the solution k& = k,
is larger or smaller than £y, we just need to check the sign of the right-hand side at
k = ko.

When only junction areas Ay, , An,+1, are varied, that is, £ = ( = 2 and n =
g(3/2) > 1, the large factor A\? drops out, so the right-hand side of Eq. (A.9) is
necessarily positive, and thus k, < kqo. For the variation of SQUID loop areas only,
we have £ = 2, ( =1 = 1, which leads to k. > ko. Note, however, that the difference
k., — ko is quite small:

T a2
by — ko~ — [ =2 . A.10
02%(%) (A.10)
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Chapter 5

Conclusions and Outlook

In this thesis, I have studied normal modes of superconducting phase oscillations in

Josephson junction chains. The main results are the following:

e I developed theoretical models used to describe microwave reflection and trans-
mission of Josephson junction chains coupled to a transmission line in different
configurations. In collaboration with the experimental group at Néel Institute,
we demonstrated the importance of taking into account the long-range interac-
tions of the charges on the superconducting islands and the weak nonlinearity
effect, in order to describe well the reflection and transmission measured in the

experiment.

e Tinvestigated the intrinsic dissipation mechanism due to a single non-equilibrium
quasi-particle in a superconducting artificial atom, represented by a single Joseph-
son junction or a Josephson junction chain, coupled to a transmission line, in
the regime when the probe microwave signal can overheat the quasiparticle.
Neglecting the quasiparticle relaxation by phonon emission, so that the quasi-
particle state is determined by the coupling to the superconducting degrees of
freedom of the artificial atom, I showed that the intrinsic quality factor increases
with the drive power.

e T explored the possibility to improve the characteristics of a Josephson-junction-
chain-based superinductor by using a spatially inhomogeneous chain. I opti-
mized the structure of the Josephson junction chain in two ways: modulation of
the Josephson junction area and modulation the flux though the SQUIDs loop.
In the case when junction areas are varied, the best result is still obtained for a
spatially homogeneous chain. Another way to modify junction parameters is to

vary the flux though the SQUIDs loop by varying the loop area. This approach
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can give an improvement with respect to the homogeneous case, if the most
inductive junctions are placed near the ends of the chain, and the least induc-
tive ones in the middle. However, this improvement becomes less important for

longer chains.

The presented studies can be extended in several directions. One possibility would
be to optimize spatially inhomogeneous Josephson junction chains used in other de-
vices. For example, operation of superconducting parametric amplifiers is sensitive to
normal mode dispersion [67; 68]. Optimization of the spatial profile of the chain may
improve the amplifier gain. Another example is that of quantum phase-slips whose
amplitude is sensitive to spatial modulations 63|, so it may also be controlled by
spatial modulation.

The treatment of quasiparticle overheating by probe microwave signal, as pre-
sented in this thesis, was based on a simplifying assumption that the phonon emission
can be neglected. Relaxing this assumption would mean to treat the quasiparticle
coupling to circuit photons and to phonons on equal footing. For this, one has to
deal with the full non-equilibrium kinetic problem. This would be an interesting and
challenging task.
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Abstract

The subject of thesis is a theorerical study of normal modes of plasma oscillations in superconducting
Josephson junction chains. The properties of these normal modes can be controlled by choosing an
appropriate spatial modulation of the junction parameters along the chain and/or an appropriate
coupling to the external environment. The theoretical work at LPMMC is performed in a close
collaboration with the experimental Quantum Coherence group at Néel Institute. The specific
problems studied in this thesis are

v detailed modeling of the normal mode coupling to the environrment for probing them in a
microwave transmission experiment;

v intrinsic dissipation of plasma oscillations due to the presence of non-equilibrium quasi-
particles;

v optimization of the spatial structure of the Josephson junction chain for its use as a super-
inductance.

Résumé

Le sujet de thése est une étude théorique des modes normaux d'oscillations plasma dans des chaines
de jonctions Josephson supra-conductrices. Les propriétés de ces modes normaux peuvent étre
contr6lés en choisissant une modulation spatiale appropriée de parametres des jonctions le long de
la chaine et/ou un couplage approprié a I'environnement extérieur. Le travail théorique au sein du
LPMMC se fait en étroite collaboration avec I'équipe expérimentale "Coherence Quantique" a I'Institut
Néel. Les problémes spécifiques étudiés dans la these sont

v" modélisation détaillée du couplage des modes normaux a l'environnement pour leur
caractérisation dans une expérience de transmission de micro-ondes;

v’ dissipation intrinséque des oscillations du plasma a cause de quasi-particules hors équilibre;

v I'optimisation de la structure spatiale de |a chaine de jonctions Josephson pour son utilisation
en tant qu'une super-inductance.



