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Model-Based Software Engineering: Methodologies for
Model-Code Synchronization in Reactive System Development

Abstract: Model-Based Software Engineering (MBSE) has been proposed as a promising
software development methodology to overcome limitations of traditional programming-
based methodology in dealing with the complexity of embedded systems. MBSE promotes
the use of modeling languages for describing systems in an abstract way and provides means
for automatically generating different development artifacts, e.g. code and documentation,
from models. The development of a complex system often involves multiple stakeholders
who use different tools to modify the development artifacts, model and code in particular
in this thesis. Artifact modifications must be kept consistent: a synchronization process
needs to propagate modifications made in one artifact to the other artifacts.

In this study, the problem of synchronizing Unified Modeling Language (UML)-based
architecture models, specified by UML composite structure (UML-CS) and UML state
machine (UML-SM) elements, and object-oriented code is presented. UML-CSs are used
for describing the component-based software architecture and UML-SMs for discrete event-
driven behaviors of reactive systems. The first challenge is to enable a collaboration between
software architects and programmers producing model and code by using different tools.
This raises the synchronization problem of concurrent artifact modifications. In fact, there
is a perception gap between diagram-based languages (modeling languages) and text-based
languages (programming languages). On the one hand, programmers often prefer to use
the more familiar combination of a programming language and an Integrated Development
Environment. On the other hand, software architects, working at higher levels of abstrac-
tion, tend to favor the use of models, and therefore prefer diagram-based languages for
describing the architecture of the system. The second challenge is that there is a signif-
icant abstraction gap between the model elements and the code elements: UML-CS and
UML-SM elements are at higher level of abstraction than code elements. The gap makes
current synchronization approaches hard to be applied since there is no easy way to reflect
modifications in code back to model.

This thesis proposes an automated synchronization approach that is composed of two
main correlated contributions. To address the first challenge, a generic model-code synchro-
nization methodological pattern is proposed. It consists of definitions of necessary func-
tionalities and multiple processes that synchronize model and code based on several defined
scenarios where the developers use different tools to modify model and code. This con-
tribution is independent of UML-CSs and UML-SMs. The second contribution deals with
the second challenge and is based on the results from the first contribution. In the second
contribution, a bidirectional mapping is presented for reducing the abstraction gap between
model and code. The mapping is a set of correspondences between model elements and code
elements. It is used as main input of the generic model-code synchronization methodological
pattern. More importantly, the usage of the mapping provides the functionalities defined
in the first contribution and eases the synchronization of UML-CS and UML-SM elements
and code. The approach is evaluated by means of multiple simulations and a case study.

Keywords: UML, model-based software engineering, architecture model, UML state ma-
chines, composite structures, component-based architecture, model-code synchronization,
code generation, reverse engineering, software architects, programmers.



Model-Based Software Engineering: Methodologies pour la
synchronisation entre modéle et code dans le développement de
systémes réactifs

Résumeé: Model-Based Software Engineering (MBSE) a été proposé comme une méthodolo-
gie prometteuse de développement de logiciels pour surmonter les limites de la méthodolo-
gie traditionnelle basée sur la programmation pour faire face a la complexité des systémes
embarqués. MBSE favorise 'utilisation de langages de modélisation pour décrire les sys-
témes d’une maniére abstraite et fournit des moyens pour générer automatiquement de
différents artefacts de développement, p.ex. code et documentation, a partir de modéles.
Le développement d’un systéme complexe implique souvent de multiples intervenants qui
utilisent différents outils pour modifier les artefacts de développement, le modéle et le
code en particulier dans cette thése. Les modifications apportées aux artefacts évoquent
le probléme de cohérence qui nécessite un processus de synchronisation pour propager les
modifications apportées dans I'un artefact aux autres artefacts.

Dans cette étude, le probléme de la synchronisation des modéles d’architecture basés
sur les éléments UML composite structure (UML-CS) et UML state machine (UML-SM) du
langage de I’Unified Modeling Language (UML), et le code orienté objet est présenté. UML-
CSs sont utilisés pour décrire 'architecture du logiciel basée sur les composants et UML-SMs
pour les comportements discrets liés aux événements des systémes réactifs. Le premier défi
est de permettre une collaboration entre les architectes de logiciels et les programmeurs
produisant de modéle et de code, en utilisant différents outils. Il souléve le probléme de
synchronisation ou il existe de modifications simultanées des artefacts. En fait, il existe
un écart de perception entre les langages a base de diagramme (langages de modélisation) et
les langages textuels (langages de programmation). D’une part, les programmeurs préférent
souvent utiliser la combinaison familiére d’un langage de programmation et d’'un environ-
nement de développement intégré. D’autre part, les architectes logiciels, travaillant a des
niveaux d’abstraction plus élevés, favorisent 1'utilisation des modeéles et préférent donc les
langages & base de diagramme pour décrire I'architecture du systéme. Le deuxiéme défi est
qu’il existe un écart d’abstraction significatif entre les éléments du modéle et les éléments
du code: les éléments UML-CS et UML-SM sont au niveau d’abstraction plus élevé que les
éléments du code. L’écart rend la difficulté pour les approches de synchronisation actuelles
car il n’y a pas de facon facile de réflecter les modifications du code au modéle.

Cette thése propose une approche automatisée de synchronisation composée de deux
principales contributions corrélées. Pour aborder le premier défi, on propose un patron
méthodologique générique de synchronisation entre modéle et code. Il consiste en des défi-
nitions des fonctionnalités nécessaires et plusieurs processus qui synchronisent le modéle et
le code en fonction de plusieurs scénarios définis ot les développeurs utilisent différents out-
ils pour modifier le modéle et le code. Cette contribution est indépendante de UML-CSs et
UML-SMs. La deuxiéme contribution traite du deuxiéme défi et est basée sur les résultats
de la premiére contribution. Dans la deuxiéme contribution, un mapping bidirectionnel
est présentée pour réduire ’écart d’abstraction entre le modéle et le code. Le mapping est
un ensemble de correspondances entre les éléments de modéle et ceux de code. Il est utilisé
comme entrée principale du patron méthodologique générique de synchronisation entre mod-
éle et code. Plus important, I'utilisation du mapping fournit les fonctionnalités définies dans
la premiére contribution et facilite la synchronisation des éléments de UML-CS et UML-SM
et du code. L’approche est évaluée au moyen de multiples simulations et d’une étude de cas.



Mots-clés: UML, model-based software engineering, modéle d’architecture, UML ma-
chines & état, composite structures, architecture basée sur les composants, synchronisation
entre model et code, génération de code, reverse engineering, architectes de logiciels, pro-

grammeurs.



Synthése en francais

Synthése: Cette thése se déroule dans le contexte de 'utilisation d’Ingénierie Dirigée par
les modéles pour les systémes embarqués. L’hypothése de la thése est que les développeurs
d’un systéme logiciel embarqué réactif complexe utilisent les éléments de modélisation Com-
posite Structure (UML-CS) et State Machine (UML-SM) du langage UML pour concevoir
le systéme et ils utilisent différents outils pour manipuler les artefacts de développement,
le modéle et le code en particulier. Le modéle de conception et le code peuvent évoluer
simultanément car les différentes pratiques, a savoir la modélisation et la programmation,
modifient ces artefacts. Le probléme est que, lorsque le modéle de conception et le code
sont modifiés, il est trés difficile de synchroniser les modifications simultanées des artefacts,
car il existe un écart d’abstraction entre les éléments UML-CS et UML-SM et le code. De
nombreuses approches et outils ont tenté de résoudre le probléme de synchronisation des
artefacts dans différents domaines, tels que la synchronisation des modéles, la programma-
tion bidirectionnelle, la synchronisation des codes de modéles, 'ingénierie aller-retour et la
co-évolution de la mise en ceuvre d’architecture. Cependant, ces approches ne permettent
pas de résoudre le probléme posé en raison de deux problémes: (1) la gestion des modifica-
tions simultanées du modeéle et du code; et (2) prendre en charge la synchronisation entre
le modéle et le code également pour les éléments avec un grand espace d’abstraction, en
particulier les éléments UML-CS et UML-SM (qui n’ont pas de représentation directe dans
les langages de programmation orientés objet).

Dans cette thése, un ensemble d’exigences pour une approche de synchronization est ex-
posé et une nouvelle approche pour le probléme de la synchronisation du modéle d’architecture
logicielle, spécifiée a I'aide d’éléments de modélisation UML-CS et UML-SM, et du code
orienté objet est développée. L’approche proposée fait le lien entre les pratiques de mod-
élisation et de programmation, permettant ainsi une collaboration transparente entre les
développeurs. L’approche prend en charge la synchronisation des éléments structurels et
comportementaux du modéle et du code. La démarche s’appuie sur les contributions suiv-
antes:

e Mappage bidirectionnel entre un langage de programmation existant et des éléments
de modélisation en ajoutant des constructions de programmation supplémentaires au
langage existant pour les éléments de modélisation sans représentation en code.

e Un ensemble de modeles de génération de code permettant ’exécution de I’exécutable
des constructions proposées et le débogage du code utilisateur.

e Un modéle méthodologique générique de synchronisation modéle-code pour permettre
la synchronisation du code étendu avec le modéle d’architecture.

L’approche est mise en ceuvre au-dessus de l'outil de modélisation Papyrus Software
Designer. Plusieurs expérimentes sont menées pour évaluer 'approche proposée par rapport
a ’ensemble d’exigences identifiées pour examiner les approches existantes. Les mécanismes
de cartographie et de synchronisation bidirectionnels sont évalués en détail au moyen de
multiples simulations d’éléments de diagramme de classes UML et de C ++, d’une étude de
cas de I'exécution de Papyrus-RT développée en C ++ et d’une étude de cas de I'usine de
voitures Lego utilisant UML. Eléments -CS et UML-SM. Les modéles de génération de code
sont évalués pour déterminer si la prise en charge de la génération de code pour les éléments



de modélisation de la machine a états est compléte, la conformité sémantique du code généré
(comme défini dans UML PSCS et PSSM): I’exécution du code généré pour chaque scénario
de test Les suites de tests PSCS et PSSM sont affirmées; et 'efficacité du code généré en
ce qui concerne les performances de traitement des événements et la consommation de
mémoire: le code généré par notre modéle pour deux exemples de machines a états est
rapide et nécessite une consommation de mémoire faible par rapport aux approches incluses
dans le contexte de la thése.

Mots-clés: model-based software engineering, modeéle d’architecture, machines & état,
systémes embarqués, architecture basée sur les composants, synchronisation entre model et
code, architectes de logiciels.
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Abstract: This chapter highlights the importance and scientific challenges of the syn-
chronization between model and code in the context of Model-Based Software Engineering
(MBSE). The focus is on model elements used for reactive system development. While
synchronization is important in general and has received lots of research contributions, this
chapter examines particular issues of synchronization between design model for a reactive
system and code. The problem and research question are then defined. Next, the assump-
tions for this research work are presented. Then, we provide a brief description of our
contributions. Finally, we describe the structure of the thesis.

1.1 Context

Software programming is one of the most important activities during software development
life cycle because of the increasing use of software for various purposes. Software-based
systems now play a very important role in many domains.

The integration of more and more functions into software contributes to the increas-
ing complexity of software-based systems, especially embedded systems. The latter are
often constrained by resource infrastructure and timing requirements. An embedded sys-
tem responds to stimuli from its running environment or from other systems. A reactive
architecture is useful for designing flexible, loosely-coupled and scalable embedded systems
[Dunkels 2006, Reactive Manifesto |. The development of software for reactive embedded
systems has presented many challenges [Posse 2015]. The latter need appropriate software
development methodologies to deal with. MBSE has been proposed and considered as a
promising approach to address the complexity of such systems. In MBSE, a software system
is represented in terms of abstract models, which provide different views of the system to
stakeholders. MBSE has several advantages such as complexity management, model-based
system analysis and automation [Selic 2012]. Generally speaking, this latter is the ability
to automatically produce different artifacts such as documentation and code from models
to raise software productivity and reduce software bugs.

Despite the many advantages of MBSE, there is, however, still significant reticence to
adopt a fully model-centric approach [Hutchinson 2014, Selic 2012] in industrial practice.
Perhaps there are several reasons that cause this reticence, such as the sharp distinction
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between modeling and programming habits, the freedom of using text-based Integrated
Development Environment (IDE)s for programming compared to the very strict structure
of modeling tools, the ability to describe software behaviors in programming and modeling
languages, and the tooling such port such as IDEs and version control system. In fact,
there is a perception gap [Brown 2015] between diagram-based languages and text-based
languages. On the one hand, programmers often prefer to use the more familiar combination
of a programming language and an IDE. On the other hand, software architects, working at
higher levels of abstraction, tend to favor the use of models, and therefore prefer graphical
languages for describing the architecture of the system.

In order to foster the industrial adoption of MBSE, the sharp distinction between
MBSE modeling and current software programming must be blurred. A process of inte-
grating MBSE into current software companies, whose developers are very familiar with
programming, should profit the advantages of both of the modeling and programming
practices, where MBSE and programming practitioners can work together. Indeed, this
vision has been motivated by different perspectives [Taylor 2007, Van Der Straeten 2008,
Cicchetti 2016]. The collaboration between MBSE and programming practitioners produc-
ing different types of artifacts, in different languages, using different tools, raises the issue of
artifact synchronization. In MBSE, artifact synchronization can be model synchroniza-
tion, that maintains consistencies between two models, and model-code synchronization,
that maintains consistencies between model and generated code.

Among many modeling languages, UML has been the most widely used modeling lan-
guage in MBSE [Selic 2012, Hutchinson 2014]. UML has become an industry de facto
standard to describe and document the architecture of complex systems [Hilliard 1999,
Hutchinson 2014] despite the emergence and disappearance of a number of architecture de-
scription languages. In addition, UML class (UML-Class), UML state machine (UML-SM),
and UML composite structure (UML-CS) diagrams and their visual representations prove
to well capture the architecture design of a component-based reactive system [Posse 2015,
Ciccozzi 2014]. Based on these observations, the focus of this thesis is to propose a model-
code synchronization, where the design model is specified using UML-CS elements for de-
scribing component-based software structure and UML-SM for components’ behavior.

In fact, the survey described in [Hutchinson 2014] polled stakeholders in companies
who adopt MBSE approaches. The survey reveals that models are highly used for MBSE
activities including the use of models for understanding a problem (95.2%), for team com-
munication (92.7%), for capturing design (90.6%) and for code generation (88.2%). In
addition, it notes that 70% of the respondents primarily work with models, but still require
manually-written code to be integrated. Besides, 35% of the respondents answered that
they spend a lot of time and effort merging the manually-written code to the model for
avoiding the loss of this code during code regeneration from model.

In the following section, we describe our research goal and challenges.

1.2 Research challenges

Software architecture design is done at the model level by means of UML-CS and UML-SM
elements and fine-grained behavior is done at the code level. Both design model and code
can evolve concurrently. The problem is stated as follow:
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When both design model and code are modified, it is hard to synchronize the concurrent
modifications of the artifacts because there is an abstraction gap between UML-CS and
UML-SM elements, and code.

Works that are strongly related to this problem include model synchronization and
model-code synchronization. However, current model synchronization approaches only work
under assumptions that there is an explicit traceability model between two models [Giese 2009]
(not model and code) or do not consider the abstraction gap that exists between the archi-
tecture design model and code. In addition, many model-code synchronization approaches
only allow either model or code to be changed at a time [Van Paesschen 2005], do not
propagate code modifications to model (especially partial round-trip engineering or spe-
cialized comment approaches) [Kelly 2007], or do not take the UML-CS and UML-SM
elements into account since there is an abstraction gap between these elements and code
[Antkiewicz 2006]. The detailed discussion of these approaches will be presented in Chapter
2.

The problem is divided into the following research challenges.

Research challenge 1 (RC1) - Model-code synchronization methodology How
to synchronize the modifications of model and code while allowing MBSFE and programming
practitioners to work with their favorite artifact (model or code)? In traditional consid-
erations, either model or code is modified and the other artifact is updated accordingly,
or modifications are made in a restricted way through unfamiliar editors provided by tool
vendors or separated regions. In this thesis, we address the case where both model and code
can be edited concurrently by using favorite tools of model practitioners and programmers,
respectively.

Research challenge 2 (RC2) - Model-implementation abstraction gap Synchro-
nizing the design model specified by using the UML-CS and UML-SM elements is a chal-
lenging task because there is a significant abstraction gap between the model elements and
code elements [Zheng 2012]. Current artifact synchronizations are not applicable because
of this abstraction gap. The synchronization can be realized if a bidirectional mapping
between the model and code is established.

In the next section, we propose assumptions used in this thesis.

1.3 Assumption

We intend to solve the problem under the following assumptions:

e Artifiact modification: MBSE adopters (e.g. software architects) can work in a
model-centric way for model manipulations while traditional programmers can con-
tinue using their favorite programming environment.

e Fine-grained behavior code: Model can hold fine-grained behavior code (e.g. code
bodies for operations or state machine actions) as blocks of texts embedded into it,
e.g. UML opaque behavior. This assumption does not break existing practices with
UML-based modeling tools that allow to use such capability.

e Information containment: Model contains more information than its associated
code. The code is a view of the model because not all of the information in the model
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Figure 1.1: Model partitioning and information containment

is used for code generation and fine-grained behavior code can be embedded into
model as the above assumption. Fig. 1.1 depicts the information contained by the
model. This latter contains two model parts: Code generation-related part and Other
information part such as information used for model-based security or performance
analysis. The code is generated from the Code generation-related part. The two
model parts are synchronized with each other by a model synchronization. That is
to say one of the two parts might be updated correspondingly to the modifications
made in the other part. Such model synchronization between the two parts is out
of the scope of the thesis. Hence, we only deal with the synchronization of the code
with the code generation-related model part. When we say model, we mean the code
generation-related part. Except some cases we explicitly mention the two model parts.
The semantics of Code generation-related part is similar to the concept of skeleton in
[Seifert 2011]. This latter considers the problem of model synchronization where a
model is partitioned into a skeleton part and a clothing part. The skeleton part is
information that is shared between the two models to be synchronized and thus used
during synchronization.

1.4 Contributions

The outcome of this research is to provide an approach for automated synchronization be-
tween code and architecture model, specified by the UML-CS and UML-SM elements. More
importantly, the approach targets collaboration between software architects and program-
mers and allows them to work on their preferred artifact, model for the architects and code
for the programmers in particular, by using their preferred language and tool.

In light of achieving this goal, we propose the following contributions for addressing the
identified research challenges.

Thesis contribution 1 : In order to overcome the research challenge 1, a model-code
synchronization methodological pattern is proposed. This contribution consists of defini-
tions of necessary functionalities and multiple processes that synchronize model and code
based on several defined scenarios where the developers use different tools to modify model
and code concurrently. This contribution is independent of UML-CSs and UML-SMs and
is detailed in Chapter 4.
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Thesis contribution 2 : The second contribution is proposed based on the results from
the first contribution to deal with the challenge 2. In the second contribution, a bidi-
rectional mapping is presented for reducing the abstraction gap between model and code.
The mapping is a set of correspondences between model elements and code elements. It
is used as main input of the generic model-code synchronization methodological pattern.
More importantly, the usage of the mapping provides the functionalities defined in the first
contribution and eases the synchronization of UML-CS and UML-SM elements and code.
The overview of the contributions is described in Chapter 3 and their details are presented
in Chapters 4 and 5.

1.5 Thesis outline

The remaining structure of this thesis is as follows:

e Chapter 2: This chapter provides foundations of the basic concepts of MBSE as well
as the UML-CS and UML-SM elements. It then presents a set of requirements that
are identified as criteria for examining existing approaches and for validating the
proposed approach and contributions.

e Chapter 3: This chapter presents the overview of the approach for solving the identi-
fied research challenges. Based on the approach, it describes where the contributions
are positioned within the approach in order to provide readers a sketch of the re-
search contributions. In other words, the chapter will answer the question: how are
the contributions collaborated with each other to solve the problem.

e Chapter 4: This chapters describes the model-code synchronization methodological
pattern in the first contribution where concurrent modifications of the model and the
code are synchronized. This contribution addresses the RC1 research challenge.

e Chapter 5: This chapter disseminates the second contribution that is an approach for
bidirectionally mapping between architecture model specified by the UML-CS and
UML-SM elements, and code. The mapping is used as input for the synchronization
methodological pattern of the first contribution presented in Chapter 4.

e Chapter 6: This chapter concludes the thesis and discusses some perspectives related
to the thesis.
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Abstract: In this chapter, we first give an overview of key concepts used as foundations
in this thesis. Specifically, the basis of Model-Based Software Engineering (MBSE), the
component-based modeling using UML-CS concepts such as ports and connectors, and
UML-SM elements are described. The requirements for the synchronization of code and
the UML elements are then proposed. These requirements are used as criteria for com-
paring different approaches in the literature and for validating the work in this thesis.
Subsequently, the state of the art of existing approaches related to the study, including
reverse engineering, model-code synchronization, model synchronization, viewpoint synchro-
nization, bidirectional transformation, view update problem, architecture-implementation co-
evolution, diagram-based and textual languages, and code generation, is presented to show
that the research challenges are not solved yet in the literature.

2.1 Foundations

2.1.1 Model-Based Software Engineering (MBSE)

MBSE is a software engineering methodology [Brambilla 2012] that focuses on creating and
exploiting models. It provides views of a system to different stakeholders participating in
the development of a software project. MBSE moves the focus from programming language
code in traditional programming to models expressed by elements of modeling languages.
An element in a modeling language often has a graphical representation and a semantics.
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Figure 2.1: Overview of the MBSE methodology excerpted from [Brambilla 2012]

A model of a system can be used for different model-based activities such as system per-
formance analysis or security analysis [Selic 2012]. In MBSE, a model that represents a
software system can be automatically transformed into different artifacts such as code (im-
plementation), documentation, or models conforming to another modeling language through
a transformation or code gemeration that can be specified by specialized languages such as
QVT [QVT OMG 2016] or Xtend [Bettini 2016], respectively. A transformation uses a set
of rules for translating elements in one modeling language to elements in another language.
Fig. 2.1 excerpted from [Brambilla 2012| shows the overview of MBSE/MDE! in prac-
tice, without showing the model-based analysis such as performance analysis or security
analysis. The followings give the description of the concepts appearing in Fig. 2.1.

2.1.1.1 Modeling languages

A modeling language is a mean that lets engineers specify or create models for a certain
aspect of a system or a complete system [Brambilla 2012]. An element of a modeling
language has its clearly defined semantics and may have graphical representations and/or
textual specifications. Metamodeling is the process of defining modeling languages. The
detail of metamodeling is out of the scope of this thesis.

Among many of the modeling languages, UML [Specification 2015] with its different dia-
grams is the most widely and extensively used for modeling software systems [Sendall 2003].
Furthermore, not just as a General-Purpose Modeling Language (GPML), UML provides
means, namely profiles, for language engineers to extend the UML language itself to reuse
a number of concepts defined in UML and express their concerns in the domain of the
language engineers. An example of the UML extensions is the Modeling and Analysis of
Real-Time and Embedded Systems (MARTE) language for modeling and analyzing real-
time embedded systems.

1In this thesis, MBSE and MDE are considered as the same methodology that uses models as first
artifacts to represent software/systems.



2.1. Foundations 9

Among the different defined diagrams of UML, the UML composite structure (UML-
CS) and UML state machine (UML-SM) diagrams are widely used for modeling and code
generation of component-based software architecture and discrete event-driven behaviors of
reactive systems [Specification 2015, Posse 2015, Ciccozzi 2014, IBM 2016a, Ringert 2014],
respectively. The detailed description of these diagrams is presented in Subsection 2.1.2
and 2.1.3.

2.1.1.2 Transformation

Transformations are "the heart and the soul" of MBSE [Sendall 2003]. It is the process of
taking as input one or more source models and producing as output one or more target
models by applying a set of transformation rules. The latter can be specified by using
a transformation language such as Query/View/Transformation (QVT) and established
between the metalmodel elements of the source and target models.

Model-to-text transformation is a specialized transformation that takes models as input
and derives text such as documentation or code as output. If code is produced, the model-
to-text transformation is called code generation.

A transformation can be either forward or backward. A backward or reverse transfor-
mation takes as input the target models produced from the source models and reconstructs
the source models as output. The process of creating an abstract model from source code
is called reverse engineering.

In the next subsection, we describe the concept of synchronization.

2.1.1.3 Synchronization

Once a transformation between a source model and a target model is executed, the target
model can be modified for various reasons. The modifications made in the target model
must be synchronized back to the source model. Synchronization is the process of keeping
multiple artifacts, that share some common information, in coherence with each other.
The artifacts considered in this thesis are model and code. Synchronization can either
align two models (model synchronization) or a model and its generated code (model-code
synchronization). This latter is the focus of this thesis.

Modifications in the target artifact can be minor or even major. In the meantime,
the source model might have changed for various reasons such as for responding to new
requirements. Synchronization of these concurrently modified artifacts becomes difficult
and challenging when there is a significant abstraction gap between these modified artifacts
[Zheng 2012].

The next subsections describe the overview of component-based architecture modeling
using UML-CS diagrams and the UML-SM elements for modeling discrete event-driven
behaviors.

2.1.2 Composite structure for component-based modeling

In UML, the UML composite structure (UML-CS) diagrams provide modeling elements for
describing the internal structure of a class or a component and the interaction between
the internal parts of a component or between a component with other components. The
elements of UML-CS are very useful in modeling a component-based software structure.
The following list briefly describes the UML-CS main elements.
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e Component: A component can be modeled as a UML Class or a UML Component.
It has its own structure composing ports, parts and connectors. In component-based
engineering [Cai 2000], a component often serves a function of the system.

e Part: A part represents a role played at runtime by one or more instances of a
classifier as specified by its multiplicity. A part is modeled as a composite attribute.

e Port: A port of a component is an interaction point between the component and its
environment or between the component and its internal parts [Specification 2015]. A
port can specify the services that it provides and/or the services it requires. In UML,
the services are modeled as operations of interfaces meaning that a required port can
request operations provided by operations of the interface of a provided port if there
is a connector between them. Ports can either delegate received requests to internal
parts, or they can deliver them directly to the behavior of its containing component.
A port can also have a multiplicity factor.

e Connector: A connector specifying links enables communication between two or
more instances. A connector can have multiple connector ends. Here we consider the
case where a connector has only two ends. An assembly connector of a component
links two or more parts or ports on parts [Ciccozzi 2016a]. A delegation connector,
on the other hand, links a port p of a component to an internal part or a port on
an internal part of the component. It means that what arrives at the p port will be
passed on to the internal part for handling [Ciccozzi 2016a].

Fig. 2.2 shows a publisher-subscriber model example. The latter has a publisher part
pub with a pPush port requiring the IPush interface, and a subscriber part sub with a sPush
port providing the IPush interface. The connector linking the two ports on the two parts
denotes that pub can send some data to sub via the pPush port by calling the operations
of IPush.

2.1.3 UML State Machine

UML state machine (UML-SM) defines a set of concepts used for modeling discrete event-
driven behavior of reactive systems. UML-SM is a significant enhanced realization of the
mathematical concept of finite automaton [Rabin 1959] or finite state machines in computer
science. Compared to the finite automaton, UML-SM introduces the new concepts of
hierarchically nested state, orthogonal regions, state actions, transition kinds, and pseudo
states. The followings describe these new concepts.
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Hierarchical or composite state: A composite state contains at least one region.

Orthogonal regions: Regions are orthogonal to each other if they are either owned
by the same state or, at the topmost level, by the same state machine. A region owns
a set of vertexes and transitions, which determine the behavior flow within the region.
Orthogonal regions execute concurrently if their owning state is active, meaning that
multiple substates of the owning state can be active at the same time. Orthogonal
regions can coordinate their execution behaviors by sending event instances to each
other.

State actions: A state in UML-SM can have associated actions, namely entry, exit,
and doActivity, which are executed when the state is entered, being active, and exited,
respectively. The actions give UML-SM more powerful than finite state machines in
modeling complete discrete event-driven behaviors of reactive systems.

Transitions: A transition in UML-SM is either external, local, or internal. The
execution for an external transition exits the source state and enters the target state
of the transition. Local and internal transitions are specialized transitions in UML-
SM. A local transition only exists in composite states and its source and target vertex
cannot be the same. The execution of a local transition does not exit its containing
composite state. An internal transition is a local transition specializing that its source
and target states are the same. The execution of an internal transition does not exit
and re-enter its source/vertex state.

Pseudo states: Pseudo states are used for chaining and coordinating multiple transi-
tions. UML defines different pseudo state kinds and their associated visualizations and
semantics. Pseudo state kinds are divided into five pairs: initial/terminate, fork/join,
choice/junction, shallow history/deep history, and entrypoint/ezitpoint.

Event: For modeling events, that trigger state machine transitions, UML defines four types
of events: call-event, signal-event, time-event, and change-event, described as follows:

e Call-event: A call-event is associated with an operation/method and emitted if the

operation is invoked.

Signal-event: A signal-event is associated with UML Signal type containing data.
It is emitted if the class receives an instance of the signal. When a component, whose
behavior is described by a UML state machine, receives a message/signal instance
through its ports, a signal-event is automatically emitted and stored in an event
queue for later processing by the state machine.

Time-event: A time-event specifies a wait period, starting from the time when a
state with an outgoing transition triggered by the time-event is entered. The time-
event is emitted if the state remains active longer than the wait period to trigger
the transition. In other words, the state, which is the source vertex of a transition
triggered by a time-event, will remain active for a maximal amount of time specified
by the time-event.

Change-event: A change-event has a boolean expression and is fired if the value of
the expression changes from false to true. For example, a change-event can be used
to detect changes of some information such as temperature measured by a sensor.
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If no event is used for triggering a transition from a state, the transition is said: triggered
implicitly by a completion-event. In addition, events that triggers transitions starting from
pseudo states are not considered.

Fig. 2.3 shows a state machine example of a telephone, excerpted from [Specification 2015].
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Figure 2.3: Example of a state machine excerpted from [Specification 2015]. The state
machine consists of a composite state Active, 10 simple states, and 4 pseudo states including
2 initials, 1 terminate, and 1 entry point. Call-events such as lift receiver and dial digit
are used. A time-event, which has a wait period of 15 seconds, triggers the transition from
DialTone to Time-out.

2.1.4 Relations to Architecture Description ISO/IEC/IEEE 42010
standard

This subsection presents several common terminologies defined within the ISO /IEC /IEEE
42010 Systems and software engineering — Architecture description international standard
[ISO 2011] and relates them to this thesis. The purpose is to provide to readers a conscious
understanding during reading the thesis. In fact, the ISO/IEC/IEEE 42010 standard defines
many concepts related to architecture description. We only extract the concepts that are
the most relevant to the thesis. The definitions of the extracted concepts are given as
follows.
We first define Concern as follow.

Definition 1 (Concern) A concern is any interest in a system relevant to one or more
of its stakeholders [ISO 2011].

This thesis focuses on the purpose, structure and behavior concerns of the architecture.
The structure and behavior can appear at the architecture as well as implementation level,
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depending stakeholders who are interested in these concerns. The concept of stakeholder
can be defined as follow.

Definition 2 (Stakeholder) Stakeholders are individuals, groups or organizations hold-
ing Concerns for the System of Interest. Examples of stakeholders are: client, owner, user,
consumer, supplier, designer, maintainer, auditor, CEQ, certification authority, architect,

developer [ISO/IEC/IEEE |.

For a collaboration between stakeholders in this thesis, we focus on two specific types
of stakeholders: software architects who use models to describe their concerns (structure or
behavior) and software programmers who mainly work with code to realize the structure
and behavior at a finer granularity.

In order to define the concept of Architecture Model, the definition of Model Kind is
first given as follow.

Definition 3 (Model Kind) A Model Kind defines the conventions for one type of mod-
eling.

In the terms of the ISO/TEC/IEEE 42010 standard, examples of model kinds include
UML class (UML-Class) diagrams, Petri nets, UML-CS and UML-SM models. We now
give the definitions of Architecture Model, Architecture View, and Architecture Viewpoint.

Definition 4 (Architecture Model) An architecture model uses modeling conventions
appropriate to the concerns to be addressed. These conventions are specified by the model
kind governing that model.

Definition 5 (Architecture View) An Architecture View expresses the architecture of
the system from the perspective of one or more Stakeholders to address specific Concerns,
using the conventions established by its viewpoint.

Definition 6 (Architecture Viewpoint) An Architecture Viewpoint is a set of conven-
tions for constructing, interpreting, using and analyzing one type of Architecture View. A
viewpoint includes Model Kinds, viewpoint languages and notations, modeling methods and
analytic techniques to frame a specific set of Concerns.

Following these definitions supplied by the ISO/IEC/IEEE 42010 standard, a UML-CS
diagram or a UML-SM diagram is an architecture model. In addition, an architecture view
is composed of one or more architecture models. It is somewhat different from the meaning
of architecture/design model used in this thesis. On the one hand, we consider that an
architecture model consists of UML-CS and UML-SM model elements in this thesis. On
the other hand, if we consider UML — CS UUML — SM as a single Model Kind, the
architecture model in this thesis and that of the ISO/IEC/IEEE 42010 standard can be
considered as having the same understanding.

In the next section, requirements for synchronization of the UML elements and code are

identified.
2.2 Requirements for model-code synchronization

This section identifies requirements for synchronization of the UML-CS and UML-SM ele-
ments and code for reactive system (reactive system) development. This step is important
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Table 2.1: Requirements for model-code synchronization
ID Requirement Description
R1 Model modification | If a modification in model is relevant to code, it must
propagation be reflected to code
R2 Code modification | If a modification in code is relevant to model, it must
propagation be reflected to model
R3 Model  modification | If a modification in model is irrelevant to modifications
preservation in code, it must be preserved during propagation of the
code modifications back to the model
R4 Code modification | If a modification in code is irrelevant to modifications
preservation in model, it must be preserved during propagation of
the model modifications to the code
R5 Concurrent modifica- | If there are concurrent modifications in model and
tion code, the modifications must be synchronized to keep
the model and the code consistent

because the identified requirements are used for assessing how far the support of an ap-
proach or a tool for the model-code synchronization for reactive system development is,
and what is missing with the existing approaches found in the literature. Furthermore, the
requirements are also a useful means for validating our contributions presented in Chapters
3,4 and 5.

Tables 2.1 and 2.2 show our requirements for synchronization of UML-CS and UML-SM
elements, and code for reactive system. The requirements are divided into two groups.
The
second is specific to UML-based design for reactive system development. We specify these
requirements in the following definitions.

The first group is related to requirements for artifact synchronization in general.

2.2.1 Requirements for artifact synchronization

Requirement 1 (Model modification propagation - R1) Model modification propa-
gation requires that changes made in the model, relevant to the code, must be reflected to
the code by the synchronization.

Requirement 2 (Code modification propagation - R2) Code modification propaga-
tion requires that changes made in the code must be reflected to the model by the synchro-
nization.

The R1 and R2 requirements are derived from the propagation property of the model
synchronization in [Xiong 2007], the PUTGET property in [Foster 2007], and the consis-
tent condition of relational views in [Bancilhon 1981]. On the model side, by relevant, we
mean that changes made to model elements that are used for code generation should be
propagated to the code. Otherwise, changes irrelevant to code generation make no effect to
the code. For example, changing the value of a stereotype attribute used for model-based
performance analysis is irrelevant to the generated code.

Requirement 3 (Model modification preservation - R3) Model modification preser-
vation requires that the propagation of code modifications should preserve model elements,
which are modified by some MBSE adopters and are not relevant to the code modifications.
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Table 2.2: Requirements for UML-based reactive system design

ID Requirement Description

R6 Structure  complete- | Synchronization supports UML class and composite
ness structure elements, especially ports and connectors of

the latter

R7 Behavior completeness | Synchronization supports UML state machine elements

RS UML runtime exe- | Runtime execution of code generated from UML state
cution compliance | machines complies with the UML specification for
(UML-conformance) UML state machines

R9 Generated code effi- | The performance and memory usage of generated code
ciency

Requirement 4 (Code modification preservation - R4) Code modification preserva-
tion requires that the propagation of model modifications should preserve code elements,
which are modified by some programmers and are not relevant to the model modifications.

The R3 and R4 requirements are similar the model synchronization preservation prop-
erty in [Xiong 2007]. These requirements guarantee that modifications made in model
(code) are kept intact during the propagation of modifications in code (model) to the
model (code) if the modifications in the model and in the code are not in conflict.

Requirement 5 (Concurrent modification - R5) Concurrent modification requires that
if model and code are both modified, the synchronization should bidirectionally propagate the
modifications between the artifacts to make them consistent again.

2.2.2 Requirements for UML-based reactive system design

The five above requirements are similar to those of artifact synchronization in general. The
following definitions give requirements specifically dedicated to the synchronization of code
and model specified by UML-CS and UML-SM elements for embedded systems.

Requirement 6 (Structure completeness - R6) Structure completeness requires that
model-code synchronization must synchronize model and code if structural elements, class
structure and UML-CS elements in model, are concurrently modified.

Requirement 7 (Behavior completeness - R7) Behavior completeness requires that model-
code synchronization must synchronize model and code if behavioral elements, class opera-
tion and state machine elements, are concurrently modified in model and code.

The R6 and R7 requirements allow the structure and behavior of a system can be
modified both at the model and the code. These requirements give flexibility and equality
between modeling and programming habits and potentially benefit from advantages of these
practices.

Requirement 8 (UML runtime execution compliance - R8) UML runtime execution

compliance requires that the runtime execution of generated code conforms to the semantics
defined by model.
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Figure 2.4: State of the art of approaches related to model-code synchronization

RS8 is a must-hold requirement to assure that the generated code conforms to what is
created in the model. The code must respect the semantics of structural and behavioral
elements, the UML-CS and UML-SM elements in particular.

Requirement 9 (Generated code efficiency - R9) Generated code efficiency requires
that generated code must be efficient: fast in event processing and little in memory con-
sumption.

This thesis is to provide model-code synchronization support for embedded systems. It
is then the efficiency of the code, including event processing speed in reactive system and
memory consumption, must be important.

In the next section we show literature review of existing approaches for solving the
problem(s) in this thesis.

2.3 State of the Art: Literature review

This section reviews different approaches proposed in the literature. The purpose of this
review is to show that the research challenges identified in this thesis are not solved by the
existing approaches.

The synchronization of code and UML-CS and UML-SM model elements is related
to different research categories. Fig. 2.4 shows the categorization of approaches in the
literature related to the problem presented in this thesis. First, the synchronization includes
basic themes of software engineering, namely, forward engineering and reverse engineering.
Forward engineering in MBSE is particularly composed of different steps, which create a
software design model at a high abstraction level and refine the model to a detailed level
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model. The latter is in turn used for code generation. We are interested in approaches
for generating code from UML-CS and UML-SM elements. Code generation and reverse
engineering often transform a source artifact into a target artifact. In general, these software
engineering themes do not involve the propagation of modifications in the target artifact
back to the source artifact. In code generation, the source artifact is model and the target
artifact is code. Conversely, in reverse engineering, the source and target artifact are code
and model, respectively.

Second, we consider approaches in the literature that deal with modifications in both
artifacts to keep them consistent. Thus, the synchronization is related to different arti-
fact synchronization approaches. These approaches include: model-code synchronization,
model synchronization, viewpoint synchronization, bidirectional transformation languages,
view-update problem in relational databases, architecture-implementation co-evolution, and
diagram-based and textual languages.

The architecture-implementation co-evolution problem is considered because model in
MBSE is often considered as description of software architecture. Thus, the synchronization
of the model and code is a means to solve this problem.

The comparison of diagram-based and textual languages is presented because a model
in MBSE is often represented in diagram-based modeling languages and code in textual
programming languages. Then, a review of approaches for synchronization of diagram-
based and textual languages might open possibility to solve the proposed problem.

In the followings, we first describe the review of the code generation approaches in Sub-
section 2.3.1. Then, the review of reverse engineering techniques is presented in Subsection
2.3.2. Subsequently, we show our review of the different approaches related to artifact syn-
chronization in Subsection 2.3.3. Finally, we present a synthesis of the comparison of these
approaches with the identified requirements in Subsection 2.3.4.

2.3.1 Modeling and code generation using UML-CS and UML-SM
elements

Code generation has been extensively researched to automatically produce code from models
conforming to UML or Domain-Specific Modeling Language (DSML)s. Multiple techniques
are proposed for implementing code generators. However, the details of these techniques
are not the focus of this thesis. We concentrate on the patterns (namely, code generation
patterns) that are used for generating code from UML-CS and UML-SM elements and the
application of these patterns to generate software.

In the followings, we first describe the code generation patterns for UML-CS and UML-
SM elements. Then, we present some approaches that use these patterns to generate fully
operational code (the code that is readily for compilation and execution).

2.3.1.1 Code generation patterns for UML-CS and UML-SM elements

Code generation from UML-SMs and UML-CSs has received a lot of attention in automated
software development. This subsection first identifies patterns used for generating code from
UML-SM elements since they receive lots of effort. We then review approaches for gener-
ating code from modeling containing both UML-CS and UML-SM elements. A systematic
review of code generation proposals for UML-SMs is presented in [Dominguez 2012]. This
subsection only presents the most widely used code generation patterns.

Regarding code generation for UML-SM elements, perhaps switch/if is the most intuitive
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technique for implementing a "flat" state machine. Commonly, it either uses a scalar
variable [Booch 1998] and a method for each event, or two variables as the active state and
the incoming event used as the discriminators of an outer switch statement to select between
states and an inner one/if statement, respectively. The state table approach [Douglass 1999]
uses one dimension for representing states and the other one for all possible events. In fact,
these approaches require a transformation from hierarchical to flat state machines. However,
these approaches are hardly applied to state machines containing pseudo states such as deep
history or join/fork while taking concurrent states into account.

Besides, the object-oriented state pattern [Shalyto 2006, Douglass 1999] transforms a
state into a class and an event into a method. Specifically, this pattern delegates event
processing from the class containing the state machine to its sub-state classes. Separation
of states in classes therefore makes the code more readable and maintainable. Nevertheless,
this technique only supports flat state machines. Subsequently, the authors in [Niaz 2004]
extend this pattern for supporting hierarchical state machines. Recently, a double-dispatch
(DD) pattern presented in [Spinke 2013] extends [Niaz 2004] to support maintainability by
representing both states and events as classes, and transitions as methods. However, as the
results shown in [Spinke 2013], these patterns require much memory because of an explosion
of the number of classes and the use of dynamic memory allocation, which is not preferred
in embedded systems. In addition, it is worth noting that none of these approaches provides
implementation for all of UML-SM pseudo states as well as the four event types, namely
call-event, signal-event, time-event, and change-event.

In industry, tools such as [SparxSystems 2016, IBM 2016a] apply different patterns to
generate code. However, true concurrency, some pseudo-states, and UML events are not
supported (see Section 5.4 on page 92 for more details). FXU [Pilitowski 2007] is the
most complete tool for generating code from UML-SM elements, but generated C# code
is heavily dependent on their own library. Furthermore, C# is not suitable for embedded
systems. Papyrus-RT [Posse 2015] does not support concurrent states, shallow history
pseudo states, and transitions from a vertex at the outside of a composite state to one of its
sub-vertexes. The reason might be that Papyrus-RT transforms hierarchical state machines
into flat state machines before code generation and the transformation is hardly applied to
the unsupported elements.

For the purpose of generating code for different programming languages, several ap-
proaches have been proposed. Umple [Badreddin 2014] is a textual UML modeling lan-
guage, which supports code generation for different languages such as C+-+ and Java from
state machines. However, Umple does not support pseudo states such as fork, join, junction,
and deep history, and local transitions. Furthermore, only call-events and time-events are
specified in Umple. The ThingML [Harrand 2016] modeling language for embedded and
distributed systems relies on non-UML state machines and connectors and supports code
generation from these elements to various programming languages. A textual modeling
language and code generation for UML are also presented in [Christian 2017].

Speaking about code generation from UML-CS elements, several tools such as Papyrus-
RT [Posse 2015, IBM Rhapsody [IBM 2016a| and Enterprise Architect [SparxSysems 2016]
produce code from UML ports and connectors. However, most of these tools do not con-
sider the multiplicities of connector ends during code generation. In fact, the semantics of
UML connectors for communication ports depends on the multiplicities of connector ends.
The Object Management Group (OMG) standard Precise Semantics for UML Composite
Structure (PSCS) precisely specifies the semantics. However, none of code generation ap-
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proaches takes this standard into account. A brief description of the PSCS standard will
be presented in Section 5.1 on page 66.

2.3.1.2 Application of code generation patterns

The usage of both UML-CS and UML-SM elements for reactive system modeling and code
generation is commonly found in industrial tools such as Papyrus-RT and IBM Rhapsody.
Nonetheless, the difference between Papyrus-RT and the targeted solution of this thesis
is that the latter conforms to the UML specification and generated code does not rely on
an additional runtime library, while Papyrus-RT conforms to the UML Real-Time Profile
(UML-RT) [Selic 1994]. This latter consists of concepts suitable for modeling complex
real-time systems [Cheng 2001]. Furthermore, code generated by Papyrus-RT relies on a
runtime library - the Papyrus-RT runtime.

In order to generate fully operational code from models, we need some means to express
fine-grained behavior. There are often two possible directions for it as follows:

1. Embedding fine-grained behavior code directly into model.
2. Employing a text-based model-aware action language for expressing the behavior.

Considering the first direction, industrial adoption of MBSE allows to write fine-grained
behavior code into model as blocks of text. Typical tools are Papyrus-RT, Enterprise Archi-
tect [SparxSysems 2016] and IBM Rhapsody [IBM 2016a]. This practice enables integrating
programming code written in common programming languages such Java and C++ into
model. However, since the programming code is manually inserted, there is a possibility of
producing syntactical as well as computational errors. Some tools [[BM 2016a] overcome
the syntax problem by providing a code editor as a limited IDE assisting developers for in-
serting code. However, this support forces developers to change their favorite development
practice, thus reduces more or less programming efficiency. Furthermore, when there are
computational errors, developers tend to directly modify the generated code with modern
IDEs with powerful support such as graphical interface-based debugging.

As for the second direction, Action Language for Foundational UML (ALF) is often
considered as a potential language for expressing the fine-grained behavior at the model
level in a textual way. Formally, "ALF is a textual surface representation for UML mod-
elling elements, whose execution semantics is given by mapping ALF’s concrete syntax
to the abstract syntax of the Foundational Subset For Executable UML Models (fUML)"
[Ciccozzi 2016b]. Significantly, ALF allows to preserve consistency at the modeling level.
Furthermore, it enables a full-fledged code generation approach [Ciccozzi 2014]. However,
what makes this latter not sound is its popularity in the programming community. It is
even unknown in the world of programming with strong languages such as C++ and Java.
Also, there are several questions regarding integration of ALF into the industry: how much
effort do programmers spend for learning it? Does it increase or decrease productivity?
How should industrial adopters integrate it? How does it interact with legacy code, e.g.
Application Programming Interface (API)s of legacy code? If the syntax of ALF is much
similar to Java [Ciccozzi 2016b], why should it be invented as a new language? To the best
of our knowledge, these issues are not only for ALF but also for other model-aware action
languages. As long as these questions are left for answering, the adoption of these action
languages into industry struggles and is limited.
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The review has shown the incompleteness of the existing approaches for providing code
generation for all elements of UML-CS and UML-SM and the adoption of the code genera-
tion patterns for generating fully operational code from UML-CS and UML-SM elements.
Thus, the requirements R6-R7 cannot be satisfied by these approaches. We argue that
the production of fully operational code from models is important in MBSE to increase
productivity and quality. However, since there are many developers practicing traditional
programming in software development, a collaboration between the adopters of MBSE and
traditional programmers should be enabled. Thus, a model-code synchronization should be
realized that involves both code generation and reverse engineering.

As previously discussed, while the code generation approaches mainly concern the for-
ward engineering of software engineering, the reverse engineering focuses on providing a
model from a source code base. In the next subsection, we present our review on reverse
engineering approaches.

2.3.2 Reverse engineering

Reverse engineering is commonly defined as "the process of examining an already imple-
mented software system in order to represent it in a different form or formalism and at a
higher abstraction level" [Chikofsky 1990, Bruneliere 2014]. In practice, reverse engineering
can be used in various purposes such as for updating software documentation or models
from source code or finding one possible source code from artifacts such as binary files.
The former is discussed in this thesis, especially approaches that can produce models from
code for model understanding and manipulation in MBSE, because it is related to the R1
requirement in Table 2.1.

Modisco Modisco [Bruneliére 2014] is a Model-Driven Reverse Engineering Framework.
The objectives of Modisco are to (1) discover initial models from legacy artifacts, espe-
cially source code, composing a given system; and (2) understand these models to generate
relevant views on the given system. To achieve it, Modisco discovers and represents the
given system as a set of models without loss of information. That is to say every code
element, e.g. statement and expression, is represented in terms of model elements. The
recovered system models can then be analyzed and/or re-factored using model transforma-
tions to generate other views of the system or create a new source code base of the system
for deployment. For the purpose of demonstration, the authors in [Bruneliére 2014] show
an example that modifications in the recovered models can be propagated back to code,
which satisfies the R2 requirement. However, the recovered models seem to only provide
visualizations of source code elements at a very low level, e.g. statement, operators and
operands of expressions. Thus, it is not sure that the model provides better understand-
ing than the code. Furthermore, Modisco cannot deal with the semantics of the source
code such as state machine execution. Hence, the R5-R8 requirements cannot be satisfied.
JavaMoPP [Heidenreich | is similar to Modisco in the sense that everything in the code is
reversed and represented as elements in model. Actually, JavaMoPP does it by providing
an Ecore-based metamodel of the Java programming language so that a Java program is
reversed to an instance of the metamodel.

fREX fREX [Bergmayr 2016] is a specific application of Modisco to discover Java code
and transform the discovered Java model (based on a Java AST metamodel) to the OMG’s
Foundational UML (fUML) standard language. The latter is an executable format for
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dynamic behavior analysis. The ATL-based transformation from the Java model to the
fUML model relies on a trivial mapping from a subset of Java language elements to UML
activity elements, e.g. a MethodInvocation in Java is mapped to a CallOperationAction
in f{UML. However, this mapping is far from obvious that there exists such clear mapping
between UML-CS and UML-SM elements and Java code elements.

Software architecture recovery Architecture erosion designates the "progressive gap
observed between the planned and actual architecture of a system as implemented by source
code" [Van Gurp 2002, Terra 2012]. Software architecture recovery is considered as a soft-
ware architecture repair technique used for controlling architecture erosion [De Silva 2012]
and for software re-engineering. The recovery process extracts architectural information
from its source code by using reflexion models [Murphy 2001], dependency and call graphs
[Mancoridis 1999], abstract syntax graph of source code for matching design patterns speci-
fied as graph transformation rules [Niere 2002|, or query language-based recovery [Sartipi 2003].
Recovered architectures in the approaches are, however, not the intended architectures, but
are often supplemented by an architecture reconciliation process using refactoring tech-
niques to obtain the intended architectures [De Silva 2012]. That means that a complete
automatic process for recovering an intended architecture from its implementation is miss-
ing. Therefore, doing the process manually multiple times during development might nega-
tively affect the development process. Furthermore, the authors in [De Silva 2012] pointed
out that despite the support of a number of tools and techniques, architecture recovery
does not have broad adoption in industry. Usually, UML models are extracted from source
code combining with design documentation.

The process of extracting UML models from source code is supported by many commer-
cial tools and research prototypes. Many tools [IBM 2016a, SparxSysems 2016, Magic 2016,
Paradigm 2016] support the creation of UML class diagram elements from the source
code. A systematic review of the tools for reverse engineering for UML-Class is found
in [Cutting 2015]. Several tools such as UMLLab [Yatta Solutions 2012| and MagicDraw
[Magic 2016] provide the propagation of code modifications back to model in real-time: a
change in code is immediately reflected back to the model. However, the propagation is
limited to some structural UML-Class elements. A few tools such as MagicDraw and Visual
Paradigm [Paradigm 2016] support the construction of a sequence diagram for code state-
ments of a method. However, if the sequence diagram and its code concurrently change, no
synchronization is supported: modifications in either the diagram or the code are ignored.
A few approaches [Abadi 2012, Sen 2016] support extracting state machines from sequen-
tial code by using static analysis of source code. However, the extracted state machines
in these approaches are often different from the original ones and are mainly used for sys-
tem understanding, rather than code generation and synchronization. None of these tools
supports the synchronization of UML-CS and UML-SM elements and code as the problem
that is addressed in this thesis.

2.3.3 Artifact synchronization

Differently from code generation and reverse engineering where only one of the artifacts,
model and code, is modified, artifact synchronization allows to make modifications in both
artifact and keep them consistent. In the followings, we present our review on the ap-
proaches related to the artifact synchronization. We start with the two categories: model-
code synchronization and model synchronization because they are proposed in the context
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of MBSE. Next, we elaborate the review to other research categories including viewpoint
synchronization and bidirectional transformation that can be applied to the artifact syn-
chronization in MBSE. Then, we show some approaches in the relatively classical categories:
view-update problem and archiecture-implementation mapping because they also have the
issue of keeping two different artifacts consistent. Finally, we discuss works related to
the use of diagram-based and textual languages for modeling and some approaches that
synchronize these two representations.

2.3.3.1 Model-code synchronization

Model-code synchronization has been an important aspect since the creation and use of
DSMLs. The need of the model-code and model synchronization (that is described in
the next subsection) has triggered a technique called round-trip engineering [Sendall 2003,
Hettel 2008] that automatically maintains the consistency of the artifacts once they are
modified. Multiple model-code round-trip engineering approaches are described in this
section. Round-trip engineering can be divided into partial and full round-trip engineering.
Partial round-trip engineering is a way to integrate user-code into generated code and
preserve it from being overwritten by code generators. Different mechanisms for partial
round-trip engineering have been proposed to separate the code generated from the model
from the user-code, which is subjective to be manually modified. The followings describe
the solutions proposed for partial round-trip engineering.

Protected Regions A protected region is a section of the generated code that can be
modified. Generally, the developers should not modify any code outside of protected re-
gions. Actually, the latter are separated from the generated code by using specialized/ded-
icated comments. For illustration, Listing 2.1 shows an example of using a protected region
for the getName method of the GeneratedClass class, separated from other elements by
PROTECTED REGION comments/tags. As a result, a modification to the code within
this protected region remains as it is after code regeneration because the generator recog-
nizes the specialized comments. Also, the Eclipse Modeling Framework (EMF) framework
[Steinberg 2008| implements this approach to allow developers to insert their code in the
protected regions to replace the default code generated by the framework.

Listing 2.1: Protected region example

1 class GeneratedClass {
public:
3 string name;
GeneratedClass (string name) {

this—>name = name;
7 changes outside of protected regions will be ®overwrittens
public string getName()
9 / PROTECTED REGION ID (GeneratedClass.getName) ENABLED START

changes inside of protected regions are *xprotectedsx*
11 return name;
PROTECTED REGION END

Although this approach seems quite elegant, it causes more problems than it solves.
Because the protected regions require a density of comments in the code, it requires that
developers are so highly disciplined that the comments are never broken. If either acci-
dental modifications occur in the comments or modifications are outside of the protected
regions, the modified code within the region is erased by code regeneration because the
code generator no longer recognizes these comments [Zheng 2012] to preserve the modifi-
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cations. Further problems with protected regions include modifications of the model which
lead to the invalidation of manually written code (such as renaming of classes and methods)
[Kelly 2007].

Fine-grained code within model To overcome the limitations of protected regions,
many UML tools such as IBM Rhapsody [IBM 2016a], Enterprise Architect [SparxSysems 2016],
and Papyrus-RT [Posse 2015] allow to embed fine-grained behavior code/user-code directly
within model to keep a single source containing all necessary information. This practice

is consistent with the Information containment assumption in Section 1.3. In UML,
OpagqueBehavior is a mechanism to contain code associated with an operation. By this
way, fully operational code can be generated without the need of modifying the gener-
ated code. Modifying the fine-grained code is realized right at the model level. However,
the code modification practice does not allow programmers to use their favorite IDEs or
programming editors, thus might reduce their efficiency and productivity.

Full round-trip engineering It points to approaches that allow changes in both model
and code. Generally, this type of round-trip engineering requires that a synchronization
mechanism must support both directions of change propagation: model to code and vice
versa. This synchronization is non-trivial to realize in practice because it requires, at least,
a bidirectional mapping between model and code. Nonetheless, this bidirectional mapping
currently does not exist between the model elements in UML-CS and UML-SM. Even if
there exists such a bidirectional mapping, the synchronization is still a challenge if model
and code are both modified. Actually, there are several attempts to solve this full round-trip
engineering problem.

Fujaba Fujaba [Klein 1999] abbreviates for "From UML to Java and Back Again". It is
a public research prototype. It aims to support round-trip engineering for UML diagrams,
both structural and (to some extent) behavioral diagrams. Software structure and behavior
in Fujaba are modeled as UML class (UML-Class) diagrams and so-called story diagrams,
respectively. Story diagrams are the combination of UML activity diagrams and collabora-
tion diagrams. The generated code in Fujaba contains pre-defined implementation patterns,
using naming conventions. Actually, the latter are combined with a certain amount of an-
notations in the generated code for reconstructing the software model. Fujaba can satisfy
the requirements R1 and R2. However, to the best of our knowledge, the requirements
R3 and R4, which involve the preservation of artifact modifications during change propa-
gation, are not supported in Fujaba, especially regarding UML-SM. Furthermore, software
architecture in Fujaba is not modeled in terms of UML-CS.

Tool support for round-trip engineering of UML-Class elements and code Sev-
eral commercial and open-source tools [SparxSysems 2016, IBM 2016a, Magic 2016, Yatta Solutions 2012]
support the round-trip engineering between UML-Class elements and code. Generally
speaking, this round-trip engineering allows developers to modify the code and propa-
gate the modifications back to the original UML model containing UML-Class elements.
Systematic reviews of some of these tools are available in [Cutting 2015]. Support for Java
round-trip is prominent in most tools. Other languages such as C++ are only available in a
few tools [IBM 2016a, SparxSysems 2016, Magic 2016]. Importantly, these tools can satisfy
the R1-R4 requirements, but there is no methodology for supporting the other require-
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ments. In addition, Enterprise Architect [SparxSysems 2016], IBM Rhapsody [IBM 20164/,
and Magic Draw [Magic 2016] allow to modify generated code within protected regions and
the modification is preserved during code regeneration. However, the mechanism to support
this preservation feature is based on the protected region techniques, which present other
problems as previously discussed.

Round-trip engineering using Framework-Specific Modeling Language (FSML)
[Antkiewicz 2006] Usually, many applications for a framework rely on specific provided con-
cepts such as supported APIs and object-oriented classes of the framework. Unfortunately,
the use of the provided concepts to create an application is obviously not easy because the
application developers need to know which framework-provided concepts are available and
how to instantiate them correctly. In addition, the instantiation often involves multiple
steps, which create multiple framework-based objects. These objects produce the desired
effect if correctly created. In order to deal with the challenges during creation of framework-
based applications, the authors in [Antkiewicz 2006] propose Framework-Specific Modeling
Language (FSML)s. Generally speaking, the latter are a special category of DSMLs and are
created by using concepts provided by the framework. An instance of a Framework-Specific
Modeling Language (FSML) is then used in a forward engineering process for generating
pieces of code using the provided concepts for interacting with the framework. The authors
also state that the code generated from the FSML instance can be used in a reverse engi-
neering process for reconstructing the instance model. Through the support of the forward
and reverse engineering, the authors then define an agile round-trip engineering to make
the instance model and the generated code synchronized in case there is a concurrent mod-
ification of the two artifacts. However, the proposed round-trip engineering can only deal
with framework-specific applications. In fact, the reverse engineering requires the modifica-
tions in the generated code to follow very strict rules conforming to the FSML so that this
process can understand and parse the modified generated code. Hence, if the rules are not
respected, the round-trip engineering is broken. Furthermore, this approach relies a lot on
a specific framework while UML-CS and UML-SM elements are framework-independent.
Another point to remember is that a FSML model is used for generate a code segment of
the application code. It means the code always contains more information than the FSML
model. In contrast, in our Information containment, model contains more information
than code.

SelfSync In [Van Paesschen 2005], the authors propose SelfSync as a dynamic round-trip
engineering environment. It aims to synchronize a data modeling view and its correspond-
ing implementation objects written in the Self object-oriented implementation language
[Ungar 1987]. The authors assume that the data modeling view and the implementation
contain the same information. For round-trip engineering, the authors propose four scenar-
ios: (1) view entities are modified, the implementation is updated accordingly; (2) relation-
ships between view entities are modified, the implementation is updated accordingly; (3)
implementation objects are modified, the data modeling view is updated accordingly; and
(4) relationships between implementation objects are modified, the data modeling view is
updated accordingly. In addition, the update process is in real-time in the direction from
the modeling view to the implementation, which means that modifications in the modeling
view are instantly propagated to the implementation. Compared to the requirements in
this thesis, SelfSync can satisfy the requirements R1-R4 but not the other ones.
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Figure 2.5: Bidirectional invariant traceability framework by horizontal bidirectional syn-
chronization excerpted from [Yu 2012]

Maintaining invariant traceability through bidirectional transformations In [Yu 2012],
the authors deal with the problem of maintaining consistency between an Ecore-based model
and code generated by Eclipse Modeling Framework (EMF). Commonly, EMF generates
default behavior code for Ecore-based metamodel elements. If users customize this default
behavior code and preserve the customizations by using @generated NOT comments or
users change code generation templates for generating the default behavior code, a "mis-
match problem" between the default behavior code, namely template-generated code, and
the user-modified code might occur. Specifically, the authors propose a framework that
combines the existing vertical synchronization of model and code in EMF, which is based
on protected regions as previously discussed, and a horizontal bidirectional synchronization.
The overview of the approach is shown in Fig. 2.5. Actually, the horizontal bidirectional
synchronization is a code-code synchronization or code merging rather than a model-code
synchronization. Furthermore, a specialized comment @generated INV is introduced to
annotate methods, that contain default behavior code. In effect, the purpose is to merge
user modified code of a @generated INV-annotated method with code of the same method
generated by the code regeneration in case model or code generation templates is changed.

Syntactic Model-Code Round-Trip Engineering The authors in [Angyal 2008] pro-
pose a round-trip engineering approach for fully and syntactically synchronizing model and
code. The goal is to synchronize model conforming to a DSML and code to provide iterative
development. In the latter, the model and the code can be concurrently modified and the
proposed round-trip engineering synchronizes the modifications during development. They
propose to synchronize the code with a platform specific model, which is very similar to
the Abstract Syntax Tree (AST) of the code, using a three-way approach. The platform-
specific model is then synchronized with the model conforming to the DSML. However,
despite claiming support for model-code round-trip engineering, the proposed approach is
only the synchronization of the AST in the code space with an AST model conforming to
an AST metamodel in the model space. This approach then assumes that the synchroniza-
tion of the AST model in the model space can be synchronized with the original model
conforming to the DSML by using model synchronization approaches. This assumption is
too strong and non-trivial because the hard point of the synchronization of model and code
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is the abstraction gap between the obtained AST model and the DSML model.

Model-code consistency Model-code consistency checking helps detect inconsistencies
between the design model and source code during their co-evolution. The authors in
[Riedl-Ehrenleitner 2014] argue that model and code in MBSE do evolve frequently and
concurrently, which is consistent with our argument. Therefore, there is a need to check
the consistency between the evolving artifacts. They propose an incremental consistency
checking approach that detects inconsistencies between the model and the code instantly.
Their framework integrates both UML model and Java code into an in-memory common
representation. This latter is used by a consistency checker that relies on a set of con-
sistency rules written by developers in constraint languages such as Object Constraint
Language (OCL). The checker incrementally detects and informs the developers about a
project’s consistency status during development. However, they do not intend to reconcile
consistencies by a synchronization mechanism if inconsistencies are detected.

2.3.3.2 Model synchronization

As MBSE is increasingly used in industry, model synchronization is indispensable in the
daily usage of MBSE. Model synchronization aims to maintain consistency between a source
model (or a set of source models) and a target model (or a set of target models). Indeed,
this consistency problem raises when two models, sharing some information, are modified.
Many approaches are proposed in MBSE for model synchronization. Actually, model syn-
chronization works are usually categorized by their model transformation which can be
total, injective, bi-directional, or partial non-injective [Hettel 2008].

Query/View/Transformation (QVT) The QVT OMG standard [QVT OMG 2016]
consists of three languages for model transformation. Among them, QVT-Relations (QVT-
R) is a declarative bidirectional model transformation language. As the QVT specification
says, it supports pattern matching and creates traces to record what have occurred during a
transformation execution. Generally, a bidirectional transformation in QVT-R is specified
as a set of relations between elements of a source model and those of a target model. A
single specification of relations is used for bidirectional transformation in both directions:
from source to target model and vice versa. From the created specification, modifications
in one model can be propagated to the other model. In fact, two case studies of the
applicability of QVT-R are shown in [Westfechtel 2015| and [Greiner 2016]. In the latter,
even though the authors claim round-trip engineering UML class models and Java source
code, using bidirectional transformations with QVT-R, what they do is synchronizing the
UML models with the Java model of the Java code. This is because QVT-R cannot deal with
synchronization for text-based representation of code. One might argue that code can be
transformed into an AST model, e.g. the Java AST model of Java code, and this AST model
and be synchronized with UML models as in [Greiner 2016, Westfechtel 2015]. However,
as previously discussed, the question is how do we map the AST model to UML-CS and
UML-CS elements that have an abstraction gap? Regarding the backward transformation of
QVT-R, as revealed by the authors in [Cicchetti 2010], some tools supporting QVT-R such
as Medini [Kiegeland 2014] produce undesired results: in Medini, when reconstructing the
source model from a target model without modifications, the reconstructed source model
differs from the original one. Furthermore, the work in [Stevens 2010] points out several
semantic issues of QVT-R.
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Triple-Graph Grammar (TGG) Triple-Graph Grammar (TGG) [Giese 2009] is a model
transformation and synchronization technique based on graph theory. In TGG, a trans-
formation is specified as a graph-based specification. In general, mapping rules between
elements of the source and the target metamodel are graphically defined. A rule consists
of a source metamodel element (or a pattern involving a set of source elements), namely
the left hand side of the rule, and a target metamodel element (or a pattern involving a
set of target elements), namely the right hand side of the rule. From the graph-based map-
ping specification, Java code is generated to execute the actual transformation. Commonly,
both forward and backward directions of the transformation can be generated to support
model synchronization. In [Hermann 2012], the authors formalize TGG for synchronizing
concurrently modified models. TGG has shown its applicability and feasibility in several
case studies in [Giese 2010] in which the authors use TGG to keep SysML [Holt 2008§]
and AUTOSAR [Fiirst 2009] models consistent. However, the synchronization approach in
[Giese 2010] requires that only one of the models is changed at a time. Furthermore, TGG
for model synchronization requires an explicit and typed traceability model that maintains
the links between the left hand side and the right hand side. In fact, the traceability model
must be persisted with the source and the target model in the same model store so that
the traceability model can refer to the elements of the source and the target model, us-
ing XMI identifiers of model elements [Bergmann 2012]. Therefore, in applying TGG to
the model-code synchronization, the main issue is, however, how to create this traceabil-
ity given that code elements have no associated XMI identifiers. In addition, other issues
are related to the complexity of the graph-based specification between UML-SM elements
and code elements: the code is usually too fine-grained, thus hard to represent by a graph
specification.

Atlas Model Transformation Language (ATL) : Atlas Model Transformation Lan-
guage (ATL) [Jouault 2006] is a model transformation language running on EMF. Trans-
formations written in ATL are compiled to ATL byte code, which is executed in the ATL
Virtual Machine. In fact, ATL originally does not support backward propagation: modifi-
cations in the target model of an ATL model transformation are not propagated back to
the source model. Seeing that, the authors in [Xiong 2007] propose to automatically de-
rive put-back functions associated with the model elements of the source model of an ATL
transformation. Furthermore, they extend the semantics of each ATL byte-code instruction,
which also associates the generated values with appropriate putting back functions. When
a model element in the target model is modified, appropriate putting-back functions are
called to propagate modifications back to the source model. In addition, a synchronization
mechanism based on differencing source and target model states to detect modifications is
then proposed. However, addition of an element in the target model that can be reflected
to the source model is not well handled according to the authors. A "toy case study" of
synchronization of UML classes and XMI-based representation of Java is presented to eval-
uate the approach. Nevertheless, the approach is too ATL byte code-specific and the case
study is too simple where an obvious mapping between model and code can be provided.
Hence, it is not clear how it can be applied to more complex cases such as UML-SM and
code that have an abstraction gap.

Change-driven model transformation Change-driven transformation [Bergmann 2012]
aims to incrementally detect changes made in a source model and propagate the changes
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to a target model using pre-defined transformation rules. Unlike TGG and QVT-R, model
synchronization with this approach must be done through two unidirectional transforma-
tions. Therefore, this approach is dedicated to model transformation, especially incremental
model transformation, that updates the target model following changes in the source model,
rather than model synchronization.

Janus Transformation Language (JTL) : In [Cicchetti 2010], the authors propose
JTL as a declarative model transformation language supporting non-bijective transfor-
mation and change propagation. Generally, non-bijective transformation is the ability of
transforming a model into a set of other models, e.g. a target model might semantically
correspond to a family of source models. In their work, JTL has a QVT-R-like syntax and
uses the Answer Set Programming (ASP) language and the DLV solver [Leone 2006] to
execute transformation and change propagation in both directions: forward from source to
target and backward from target to source. In this approach, the backward propagation of
changes in a target model creates a set of source models, instead of one. However, little
changes in a target model usually correspond to a combinatorial explosion of the source
model space [Eramo 2015]. In [Eramo 2015], the authors present an approach based on
JTL for managing the source model space returned from little changes in the target model.
The authors demonstrate a small change in the target model of a transformation from a hi-
erarchical state machine to a flat state machine, the back propagation of this small change
results in 48 different source models. Consequently, a change in code generated from a
hierarchical state machine would correspond to many source models, which are hard for
programmers to accept the synchronization. Therefore, they propose to use uncertainty
models to manage the many generated source models. However, they require to change the
existing metamodel of the source model for adding elements for uncertainty management.
Furthermore, the approach relies on trace elements each of which refers to a single source
model element and a single target model element. These trace elements are impossible for
model-code synchronization since a model element might be translated into multiple code
elements (declarations/definitions/statements,/expressions) at multiple places in the source
code repository. In our approach that will be presented in Chapters 3, 4 and 5, code changes
related to UML-SM elements are unambiguously propagated to only one UML-SM.

In the literature, a few approaches provide formal definitions for round-trip engineering
and artifact synchronization as in [Hettel 2008]. The authors of the latter propose an
abductive logic programming-based approach [Hettel 2009] which propagates changes from
one model to the other model to achieve the synchronization. However, it is not clear how
this approach can handle the concurrent modification problem.

As a final note, model synchronization has been extensively studied in MBSE. The
majority of the proposed approaches can satisfy some of identified synchronization require-
ments, R1 and R4 in particular, related to the propagation of model modifications to code.
Nevertheless, it is not clear how these approaches can deal with the requirements R5-R9,
especially the case when there is a significant abstraction gap between model and code that
are both modified.

2.3.3.3 Viewpoint synchronization

Generally, viewpoint modeling is one of the ways to cope with the complexity of a complex
system by dividing the design phase, according to several areas of concerns [Eramo 2008].
Viewpoints enable the partitioning of the model of a system into several representations
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[Finkelstein 1991]. Each viewpoint usually has its own language for expressing its particular
concern. Elements in each viewpoint are related to elements in other viewpoints to ensure
the consistency and completeness of the system globally. Ordinarily, the relationships be-
tween the elements of viewpoints are expressed in terms of correspondences [Eramo 2008].
To keep the viewpoints consistent, changes made in the representation of a viewpoint need
to be propagated to representations of other viewpoints. Both model and code can be
considered simply as different views of the same system. Informally, the ability of propa-
gating changes between viewpoint representations is viewpoint synchronization. This latter
is considered as model synchronization where the representation of a viewpoint plays the
role of a model.

In [Grundy 1998], the authors focus on the management of inconsistencies between ar-
tifacts used during analysis, design and implementation of multiple-view and multiple-user
integrated tools. As a result, they propose a generic architecture with tooling support that
supports the representation of the specifications and the detection, definition, representa-
tion, and propagation of inconsistencies between the specifications. However, according
to [Eramo 2008], they do not have any well-defined underlying architectural framework
that allows the precise and explicit specification of viewpoints, views, and correspondences
between them.

For the purpose of improving the modeling of relationships and constraints between el-
ements in different viewpoints, the authors in [Eramo 2008] propose an approach for better
guaranteeing the consistency. The approach is based on a change management mechanism
that consists of three steps: change identification, change classification, and change com-
mitment and propagation. The steps are very similar to those of incremental model trans-
formation [Kusel 2013]. Subsequently, the authors in [Romero 2009, Ruiz-gonzalez 2009]
extended this approach for a mechanism of managing correspondences between the ele-
ments of different viewpoints. In their approach, they combine extensional and intensional
correspondences by using QVT. Generally speaking, extensional correspondences are es-
tablished at the instance level of the viewpoints while intensional correspondences are at
the level of the metamodels of the viewpoints.

In [Kramer 2013, Kramer 2015a], the authors propose a generative approach for view-
point synchronization. The approach is based on the Orthographic Software Modeling
(OSM) concept [Atkinson 2008] where a single model is maintained and views are gen-
erated from this single model. Therefore, the synchronization between views becomes a
propagation of changes made in one view to the single model and another change propa-
gation from the latter to other views. Indeed, the significance of this approach is that it
automatically derives the synchronization mechanism from a set of declarative correspon-
dence rules, consistency invariants, and imperative actions written in a domain-specific
language and OCL. Hence, developers do not need to deal with technical details of the
synchronization.

In [Goedicke 2000], the authors argue that inconsistencies will exist in systems developed
by different actors, using different viewpoints. Being that, they suggest that tools must be
able to tolerate inconsistencies. As a result, they propose a distributed graph transformation
to deal with the problem of formalizing the integration of multiple viewpoints in software
development. However, their work focuses on requirements engineering, while this thesis
targets specifically both model and code.

In contrast to the above approaches that mainly focus on the synchronization of views
of viewpoints represented as models, this thesis targets specifically both model and code.
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Viewpoint synchronization usually does not consider code because code is deemed to be
too fine-grained. Thus, modeling of explicit relationships between model and code elements
is non-trivial. Furthermore, there is a significant abstraction gap between model and code
that hinders the modeling of the relationships.

2.3.3.4 Bidirectional transformation languages

A bidirectional transformation (bx) written in a bx programming language is a mecha-
nism for maintaining the consistency of two related sources of information. Bx can be
applied to various areas such as Model-Based Software Engineering (MBSE) and relational
databases [Hu 2011, Czarnecki 2009]. A bx program is either symmetric [Diskin 2011a,
Hofmann 2011] or asymmetric [Diskin 2011b|. In asymmetric bx, one source of informa-
tion, e.g. code, is a view of the other source, e.g. model. It means that a source of
information contains more information that the other source. This characteristic is iden-
tical to the Information containment assumption presented in Section 1.3 on page 3.
In contrast, in symmetric bx, each source of information contains information that can-
not be represented in the other source. Bidirectional transformation languages can be
applied to many areas of artifact synchronization from basic data structures such as strings
[Barbosa 2010, Foster 2008] and lists [Hofmann 2011] to complex data such as software
models [Diskin 2008]. However, "as the two transformations always update one artifact
according to the other, bidirectional transformations do not allow parallel updates on the
two artifacts" [Xiong 2009]. The following paragraphs review approaches for asymmetric
bx since it is related to the model-code synchronization with the assumptions in this thesis.
Lens techniques [Foster 2007] are originally proposed for tree synchronization. Gener-
ally, a lens consists of a get function, which computes the view v (the source of information
that contains less information that the original source), and a put function, which updates
the source s if the view is updated. The formalisms of these two functions are as follows:

get(s) =v (2.1)
put(s,v’) = s (2.2)

where s’ and v/ are the updated source and view. A lens-based bidirectional transfor-
mation is considered reasonable if the following conditions are satisfied:

put(s, get(s)) = s (2.3)
get(put(s,v")) = get(s’) = v’

Based on the lens formalisms, various languages are proposed for writing lenses to
execute bidirectional transformations for basic data formats such as lists and complex data
structures such as graphs.

In order to write lenses in practice, various approaches have been proposed. In [Wider 2011],
the authors embed lens functions into Scala to do model transformations bidirectionally.
Boomerang [Bohannon 2008| allows to write lenses for bidirectional transformations be-
tween string data. In addition, Boomerang also deals with the problem of order in collec-
tions [Hidaka 2011]. Subsequently, matching lenses [Barbosa 2010] generalize Boomerang
by lifting the update translation strategy to support a set of different alignment heuris-
tics. Besides, the authors in [Matsuda 2015] propose to use functional programming to deal
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with bidirectional transformations. In [Hidaka 2010], the authors challenge the problem
of bidirectional graph transformations by providing a formal definition of a well-behaved
bidirectional semantics for UnCAL, which is a graph algebra form the graph query language
UnQL [Buneman 2000]. Their approach is also tested for several examples. However, the
tested examples usually have a trivial bidirectional relationship or mapping between the
elements of the source information and those of the target information. Unfortunately, this
bidirectional mapping is hardly to find in the case of UML-CS and UML-SM elements, and
code. Thus, there is still a big gap in the application of bidirectional transformations to
the synchronization of model and code when there is a significant abstraction gap.

In summary, bidirectional programming languages are useful for transformations be-
tween basic data structure formats such as list, string or more complicated such as XML
and models. However, there is still a gap in applying them to synchronize the high level
design model and the source code. This is because bx programs mainly maintain the consis-
tency of two data formats with a non-significant abstraction gap, especially the semantics
gap between the model and the code addressed in this thesis. Furthermore, in case of
model and code, a model element is transformed into (many) lines of code that are located
in multiple separate locations, while the examples demonstrated by bx programs operate
on simple data, e.g. a string in a data format is mapped to another string contained by a
pair of tags in an XML file.

2.3.3.5 View update problem

Commonly, code can be considered as a view of the system generated from the design model.
Code is then similar to the concept of views in relational databases. Views in a relational
database provide different representations for the database. A view is created by queries
written in Structured Query Language (SQL), e.g. a view allows to show the name and the
date of birth of a person while the database can contain other information such as address
and phone number.

In practice, a view is changeable and the changes should be updated back to the
database. However, the propagation of the changes from a view to its underlying database
is not trivial, which is known as view-update problem [Chen 2011, Hettel 2010]. The chal-
lenge is that given a view created by a query, there is often not a unique way for translating
an update made in the view to the database. Sometimes, there is no way for translation
and sometimes there are more ways. To deal with it, many authors have proposed various
approaches since 1980s, such as [Bancilhon 1981] (see the next paragraph for more details).
Regarding to the classification of the proposed approaches, the authors in [Chen 2011]
present a survey of the approaches for the view-update problem.

The authors in [Bancilhon 1981] address the view-update problem with the concept of
view complement. This latter is defined as the information of an underlying database that is
not exposed (or not visible) in a view when this view is created by using queries. Addition-
ally, the authors argue that a view complement and the corresponding view are sufficient to
recompute the whole database. In their proposed approach, given a constant complement
of the view, there is only one way to put view updates back to the underlying database
[Xiong 2009] and the complement remains invariant. The authors in [Dayal 1982] argue
that it is not always possible to translate a view update to the underlying database. They
then derive conditions under which the translation of view updates will produce correct re-
sults. Additionally, other approaches in those years focus on analyzing the characteristics of
views [Masunaga 1984] and view-update policies [Medeiros 1986], and designing translation
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mechanisms [Masunaga 1984].

Besides, the view-update problem is also studied in the context of bidirectional trans-
formation languages presented in Subsection 2.3.3.4. Several approaches based on lenses
[Foster 2007, Barbosa 2010] have been recently proposed in this context. However, these
approaches do not directly address the complexity of the view-update problem since these
approaches only deal with simple data structure such as trees [Foster 2007] and strings
[Barbosa 2010].

2.3.3.6 Architecture-implementation mapping and co-evolution

Maintaining the consistency between architecture and implementation is crucial in cur-
rent software development. Unfortunately, both architecture and implementation might
evolve frequently, thus introducing inconsistencies between the modified architecture and
the modified implementation. Researchers have proposed many approaches for addressing
this problem. The proposed approaches in the literature range from conformance check-
ing, architecture recovery as discussed in Subsection 2.3.2 on page 20 and architecture-
implementation co-evolution. In fact, reverse engineering techniques presented in Subsec-
tion 2.3.2 for architecture recovery can be considered as potential hints for the consistency
problem. However, there are differences between the latter and reverse engineering. Ordi-
narily, consistency maintenance involves keeping both architecture and code (implementa-
tion) consistent. Therefore, the starting point of the consistency maintenance requires both
architecture and implementation, while reverse engineering approaches start from a source
code base.

Informally, architecture conformance checking verifies whether an implementation com-
plies to constraints defined in its architecture. Usually, architecture conformance checking
can be considered as a step of detecting inconsistencies during the co-evolution of archi-
tecture and implementation. However, the conformance checking is out of scope since our
focus is how to propagate changes made in the architecture to the implementation and vice
versa during co-evolution. In other words, given that there are inconsistencies between the
two artifacts, how to make them consistent again.

In the sequels, we review several current approaches for architecture-implementation
co-evolution.

ArchJava ArchJava in [Aldrich 2002| unifies a formal architecture specification and its
implementation in a single entity [De Silva 2012|, allows flexible implementation techniques,
ensures traceability between architecture and code, and supports the co-evolution of archi-
tecture and implementation [Aldrich 2002]. Furthermore, ArchJava guarantees communi-
cation integrity between an architecture and its implementation, even in the presence of
advanced architectural features like runtime component creation and connection. With this
intention, ArchJava extends Java by adding new language constructs to it. Specifically, the
new language constructs are components, connections, and ports, which are available in
UML. Thus, the constructs help programmers to describe architecture right in the imple-
mentation and enable a synchronization of model and code. In addition, the authors provide
an ArchJava compiler for generating Java standard code from the code written in Arch-
Java. However, ArchJava does not conform to UML. First, a port in ArchJava can provide
and/or require methods instead of interfaces as in UML. Second, connections in ArchJava
do not support multiplicities for connector ends for designing different connection patterns.
Third, code in ArchJava cannot be directly used for execution and debugging since only
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[List 2]

01: interface component cSubject {

02: pointcut getState():execution(String getState());

03: pointcut setState():execution(void setState(String));
04: pointcut notify():execution(void notify());

05: pointcut notifyObservers() :

06: cflow(execution(void setState(String)))
oT: && call(void notify());
08: :

Figure 2.6: Example of Archface excerpted from [Ubayashi 2010]

the ArchJava compiler can understand the language syntax and semantics and no debugger
is available for ArchJava. Thus, ArchJava is only Java backward compatible, thus not effi-
ciently used with programming assistance in existing Java IDEs [Abi-Antoun 2005]. Last,
behavioral elements are not supported in ArchJava. Consequently, we consider ArchJava
as an architecture description language (ADL) that allows to embed Java code within a
single entity rather than a programming language that can be executed and debugged by
modern IDEs and standard compilers.

Archface Archface in [Ubayashi 2010] tries to solve the problem of co-evolution of design
and code by proposing an interface mechanism. This latter in fact plays a role as ADL at the
design phase and programming interface at the implementation phase [Ubayashi 2010]. Sim-
ilarly to ADLs, architectural design in Archface is based on the component-and-connector
architecture. In detail, Archface exploits technologies of Aspect-Oriented Programming
(AOP), such as pointcut and advice, to specify the collaboration among components of
the architecture. There are multiple Archface pointcuts such as class, method and field for
designing structure, and call, execution and cflow for designing behavior. Furthermore, ar-
chitecture constraints in Archface are based on these pointcuts. For instance, Fig. 2.6 shows
multiple constraints specified using Archface in the design. Specifically, the constraints for
implementing cSubject are: (1) three public methods getState, setState, and notify must
be defined; and (2) notify must be called under the control flow. Based on the design in
Archface, a programmer can manually implement the system. During the evolution, the
Archface compiler detects errors or inconsistencies if the implementation does not conform
to the design [Ubayashi 2012]. Thus, either the design or the implementation should be
manually modified accordingly to the other artifact. However, in Archface, the implementa-
tion is not automatically generated and the Archface compiler only detects inconsistencies
between the design and implementation rather than makes them consistent again. Fur-
thermore, Archface relies on AOP that makes its implementation limited to aspect-oriented
programs.

1l.x-mapping In [Zheng 2012], the authors propose an approach, namely 1.z-mapping, for
tackling the problem of architecture-implementation evolution of Java code and model writ-
ten in the A DL [Dashofy 2001] architecture description language. They argue that existing
approaches for architecture-implementation consistency management are found inefficient
in (1) mapping code changes back to architecture; (2) mapping architecture changes to
code; and (3) supporting for behavioral mapping. To deal with these issues, 1.x-mapping
puts architecture-prescribed code (or architecture-generated code) and user-code in dif-
ferent programming constructs, classes in particular, instead of separating user-code from
architecture-prescribed code by using specialized comments. In addition, 1.x-mapping relies
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on a semi-incremental code regeneration and architecture change monitoring and manage-
ment. In particular, 1.x-mapping records architecture changes and propagates them to the
corresponding implementation by only regenerating architecture-prescribed code. For the
purpose of supporting behavior, 1.x-mapping uses a subset of UML sequence diagram-like
and UML-SM elements (only simple states, external transitions and effects are supported)
to model architecture behaviors. However, this approach has several issues: (1) 1.x-mapping
only allows to modify the architecture at the model level; (2) programmers are not able
to change the design at the code level; (3) developers must write detailed statements such
as local variables within sequence diagrams by using the modeling tool to change the se-
quence diagram-based behavior of a component; and (4) an architecture of components in
1.x-mapping does not conform to UML and only a small subset of sequence diagram and
UML-SM elements is utilized.

2.3.3.7 Diagram-based and textual languages

Generally, diagram-based languages, also called graphical languages, are a subset of visual
languages. In fact, a number of efforts were undertaken that compared textual languages
and visual languages.

In [Schanzer 2015|, the authors discuss the pros and cons of visual languages, compared
to textual languages, in various contexts. Others [Brown 2015| discuss what limits the
adoption of visual languages.

Contrary to these works, the objectives of this thesis do not strictly oppose textual
languages to visual languages like diagram-based languages. Instead, the approach that we
seek prefers to blur the boundaries between them. Actually, the idea that visual languages
can co-exist with textual languages has been noted by other authors. Besides, others suggest
that the gap between visual languages and textual languages is not as huge as it is perceived
by both the MBSE and software engineering communities.

In [Conversy 2014], the authors argue that the gap between textual and visual languages
is narrow. As a result, they propose a framework to represent code in a visual language to
improve comprehension of the code.

In domains such as requirements engineering, tools, such as IBM Rational Doors [IBM 2016b]
and Visure Requirements [Visure 2016], are conscious of the importance of supporting re-
quirements written traditionally in plain text by developers. Notably, these tools allow
the transformation of requirements written in a textual human language to use-cases and
structured requirements.

Generally, one of the artifact is only used to assist comprehension. There is no need for
synchronization between artifacts because the transformation only proceeds in one direction.

In order for developers to be more efficient, they should not be forced to choose be-
tween a diagram-based or textual language. Works [Von Mayrhauser 1995] that emphasize
the role of software comprehension, for efficient software maintenance and evolution, date
back to as far as the late eighties/early nineties. In this thesis, we consider specifically
both software architects and programmers. The former generally foster diagram-based lan-
guages for architecture description and comprehension. On the other hand, the latter prefer
textual languages since they are deemed much more expressive for specifying fine-grained
algorithms, for example.

Some approaches allow to do modeling in a textual way. Representatives of these ap-
proaches include the works in [Addazi 2017, Jouault 2014, Engelen 2010, Gronniger 2014,
Maro 2015]. Most of these works focus on providing the ability of manipulating modeling
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Table 2.3: Existing approaches with respect to the model-code synchronization require-
ments. R1 = Model modification propagation; R2 = Code modification propagation; R3 =
Model modification preservation; R4 = Code modification preservation; R5 = Concurrent

modification. "N/A" = not applicable; "+" = support; "-" = not; "+-" = partial (either
require manual intervention or produce unintended results or need significant effort if used).
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elements, especially UML model elements, in a textual editor. The sets of supported UML
elements include the model elements of UML activity, UML-Class, UML-CS, UML-SM and
some stereotypes. These approaches rely on Xtext [Bettini 2016] with facilities for creating
textual languages. In fact, the textual modeling offers several advantages over graphical
modeling such as productivity, version control, and textual modifications at a fine granu-
larity [Gronniger 2014]. These advantages are consistent with our argument that allowing
to work in both graphical and textual representations has many advantages. Some of the
approaches [Addazi 2017, Maro 2015] provide synchronization of the textual and graphi-
cal representations. However, the synchronization only allows to modify one of the two
representations at a time. More importantly, what these approaches try to do is not model-
code synchronization since the textual representation of the model is not code. A textual
modeling language is not a mainstream programming language with multiple IDEs that
assist the development by integrating many other tools such as compilation and debugger.
Furthermore, a programming language also has a richer set of language features such as

expressions and statements than a textual modeling language.

2.3.4 Synthesis

This subsection synthesizes the results of comparing what the previously reviewed categories
offer with the identified requirements. Tables 2.3 and 2.4 show the synthesis for the two

sets of requirements.

Regarding the model-code synchronization requirements, each of the reviewed categories
provide some of the requirements. Code generation approaches can provide model modifi-
cation propagation (R1) and code modification preservation (R4) since these requirements
are related to forward engineering. Reverse engineering approaches support limited capa-
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Table 2.4: Existing approaches with respect to the requirements for UML-based design.
R6 = Structure completeness; R7 = Behavior completeness; R8 = UML-conformance; R9

= Generated code efficiency; "N/A" = not applicable; "+" = support; "-" = not; "+-" =
partial (either require manual intervention or produce unintended results or need significant

effort if used).
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bilities for code modification propagation (R2) and model modification preservation (R3)
since these requirements related to creating model from code. Most of approaches in the
categories model-code synchronization, model synchronization, bidirectional transforma-
tion and architecture-implementation provide a limited level of satisfaction for the R1-R4
requirements. For example, some of the model synchronization approaches require trans-
lating the AST of Java code to a Java model in the model space and synchronizing the Java
model with a UML model [Greiner 2016]. That means the UML model is synchronized with
the Java model that is persistently stored, but not the Java code. Furthermore, they do
not offer any means to synchronize model-code in case of concurrent modification. Some
of the architecture-implementation approaches provide hints to satisfy the R5 requirement
but they often recover architecture models that are not the intended results (not the same
as the original architecture models) (see Subsection 2.3.3.6 on page 32 for more details).
Speaking about the UML-based design requirements, a few of the reviewed approaches
are applicable. Most of the approaches related to architecture-implementation co-evolution
offers the R6 requirement but not the others because they often deal with structural aspects
of software architectures only. In addition, most industrial UML code generation tools such
as IBM Rhapsody [IBM 2016a] and Enterprise Architect do not provide code generation
for all of the UML-CS and UML-SM concepts (see Section 5.3 on page 80 for more details).

2.4 Summary
This chapter presented the foundations and the state-of-the art in the context of UML
composite structure (UML-CS) and UML state machine (UML-SM) elements and model-
code synchronization. We started by revisiting the basic concepts of MBSE including
modeling languages, transformation, and synchronization. We then briefly described the

semantics of the UML-CS and UML-SM elements which are important in the context of
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the thesis. Next, we identified a set of requirements based on the literature that the proposed
approach should satisfy. The purpose of the requirements is to serve as partial criteria for
comparing the existing approaches with the objectives of the thesis. Furthermore, they are
also used for evaluating and validating the contributions of the thesis. Finally, we showed
the review of the existing approaches as well as the research topics related to the problem
being addressed by thesis. In fact, we also used the requirements identified in this chapter
to explore what are missing in these approaches.

In the next chapter, we show the overview of our approach to the proposed problem and
our contributions during solving the problem.






CHAPTER 3
Overview of approach and
contributions

This chapter describes the overview of the approach proposed in this thesis and its contri-
butions for addressing the research challenges identified in Chapter 1.

Our approach is inspired by the research challenge proposed by Woods in [Woods 2010].
Woods argues that current practices have a lack of architectural information in the im-
plementation. This lack leads to a series of the problems related to software architecture
such as outdated architecture description or undesired recovered architecture from code.
Subsequently, the author proposes to integrate explicit architectural information into the
implementation. Eventually, a number of benefits of this integration are discussed: (1) keep-
ing implementation aligned with architecture; (2) recovering an intended architecture from
its implementation; and (3) reducing the drift between architecture and implementation.

Returning to the context of this thesis, we think that the synchronization of an archi-
tecture model, specified by UML-CS and UML-SM elements, and code can be possibly real-
ized if architectural elements can be explicitly represented in an implementation language.
With this intention, we raise the abstraction level of an existing programming language
by extending it with architectural modeling elements that have no representations in this
programming language. We describe the overview of the realization of the approach in the
followings.

Fig. 3.1 shows the overview of the approach. The latter consists of a mapping mechanism
between architecture model and code, and a model-code synchronization mechanism. This
synchronization uses the mapping as a means to synchronize the model and code in case of
concurrent modifications. The mapping mechanism is formed by a bidirectional mapping
and an in-place text-to-text transformation that acts as a preprocessing. The followings
describe the concepts in the figure.

UML -
Metamodel Mapping
|

1 ]
1 Conform I Conform 1IConform
| 1

1
Standard code
<’ Extended code |:> (Delegatee code)

Extended Programming |Extend Programming
language > language

A

Synchronization

>

C

Moderlrin;nodification Code m&i}fication

Architecture
model
In-place text-to-text

Transformation/preprocessing

Figure 3.1: Overview of approach and contributions
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UML Metamodel The subset of the UML metamodel is used for modeling and designing
component-based design of UML-based reactive systems. The subset essentially consists of
the concepts supported by UML class (UML-Class) and UML composite structure (UML-
CS) diagram elements for structure design (see Appendix A for more details), and UML
state machine (UML-SM) elements for discrete event-driven behavior design.

Architecture model The architecture designed by using the concepts of the subset of
the UML metamodel. The architecture model might be modified by the software architects
or indirectly updated by the synchronization, which propagates modifications in code back
to the model.

Programming language It is a (standard) programming language, especially an object-
oriented programming language such as C++ or Java, that is intended to be synchronized
with the UML-based Architecture model.

Standard code It is the code conforming to the Programming language.

Extended Programming language As discussed in Chapter 1, one of the identified
research challenges is the abstraction gap between the model and the standard code. The
motivation behind this question is that modeling elements are at a higher level of abstrac-
tion than that of standard code elements [De Silva 2012]. To bridge the gap, our idea
is to raise the abstraction level of the standard programming language. We extend the
latter by adding new programming constructs for modeling elements that have no direct
representations in common programming languages, notably UML ports, connectors, and
state machine elements. We choose these model elements because ports and connectors
are widely used in many Architecture Description Languages (ADLs), and state machines
are suitable to model the discrete event-driven behavior of components in reactive systems.
The Extended Programming language is the standard language with the additional
constructs. It is as close as possible to the existing standard programming language in or-
der to be suitable for programmers perception to minimize additional learning efforts. The
additional constructs are created by using specialized built-in features or mechanisms of the
standard programming language such as templates, and macros in C+-+ or annotations in
Java. The use of the Extended Programming language term is used for distinguishing
the language, which has the additional constructs, from the standard language. The details
of the constructs are presented in Chapter 5. At this point, it is at best to know that
because the constructs are syntactically valid to the standard code, the extended code is
valid to the standard code.

Extended code Code that conforms to the extended programming language. It uses the
additional constructs, that are added to the standard programming language, to express
related architectural information right at the code. The extended code syntactically con-
forms to the standard programming language because the additional constructs are created
by the built-in features of the standard programming language. By this way, the extended
code can seamlessly reuse legacy code or library written in the standard programming lan-
guage. This is especially important because current development of complex systems relies
a lot on library support [Zhai 2016]. On the other hand, programming facilities such as
syntax highlights and auto-completion in IDEs for assisting the development are reused.
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Figure 3.2: Annotation processing in Java

Programmers, working with the extend code, can therefore change the architectural infor-
mation or the fine-grained code behavior at the code level while the code modifications can
be reflected to the model by the synchronization mechanism.

Mapping The mapping consists of a set of correspondences [Brambilla 2012] between
the modeling elements of the UML metamodel subset and the extended language. This
mapping is bidirectional and is used as a means to ease the model-code synchronization.
In the following sections, we use the terms Eztended code and code interchangeably and
Ezxtended language refers to the standard language with our additional constructs.

In-place transformation/Preprocessor The additional programming constructs in
the extended programming language are compilable by standard compilers such as GCC
(because the constructs are syntactically valid to the programming language), and ease the
connections from code to architecture model. However, they are natively not executable.
The in-place transformation indeed acts as a preprocessing step. Let’s explain why the
extended code itself is not executable and why there is a need to have the transformation.
The extended code and the transformation act exactly similar to annotated Java code and
a Java annotation processing [Pawlak 2016] in case of Java at compile time.

In Java, annotations are means used for embedding metadata in program code. They
are used as markers by frameworks for altering the behavior of the annotated program code.
Fig. 3.2 shows how the annotations are used [Pawlak 2016]. The alteration is realized by
generating additional source code based on a set of code generation templates and the
semantics of the annotations [Deors 2011]. In Step 1, the annotated Java source code is
parsed for extracting a semantics model of the annotations. In Step 2, the annotation
processing takes the semantics model and the code generation templates to produce a set
of newly generated classes. Lastly, the final program is composed of the annotated Java
code and the generated classes in Step 3.

Projecting the extended code and the transformation in the thesis into the Java anno-
tation processing, the extended code, model semantics and (in-place) text-to-text (T2T)
transformation correspond to the annotated Java code, the annotation semantics model
and the annotation processing, respectively. Similar to the Java annotation processing that
generates additional classes, namely Generated classes in Fig. 3.2, at compile time, the
T2T transformation also produces a set of classes from the additional constructs of the ex-
tended code. We call the classes generated by the transformation delegatee classes and the
standard code containing these delegatee classes delegatee code. The final executable code
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Figure 3.3: Extended code and Standard code in the same repository

is then composed of the extended code and the generated delegatee code. The delegatee
code can be defined as follow.

Definition 7 (Delegatee code) Delegatee code is hidden from developer’s perspectives
and consists of multiple standard source code files or classes that are generated from the
extended code by the T2T transformation. It is part of the final code used for compilation
and execution.

Note that, even though Fig. 3.1 conceptually separates the extended code and the stan-
dard code generated by the transformation, namely delegatee code as previously described,
these code entities are physically located within the same repository as shown in Fig. 3.3.
There are execution interactions between these code entities that will be detailed in Chapter
5. At this point, it is at best to know that the delegatee code generated from the extended
code exists as an additional code part, and a standard compiler such as GCC must take as
input both of the extended code and the generated standard code to produce an executable.

Model modification Software architects or modeling users make modifications/changes
to the architecture design model during development.

Code modification Programmers make modifications/changes to the extended code dur-
ing development.

Synchronization Once the model and/or the code are/is modified, the synchronization
mechanism reflects modifications made in one artifact to the other artifact and vice-versa
(see Section 5.5 for more details).

Discussion The idea of adding new programming constructs for architectural elements
to an existing programming language is similar to ArchJava [Aldrich 2002]. However, as
discussed in Subsection 2.3, there are multiple fundamental differences between ArchJava
and the approach presented in this thesis. First, ArchJava does not conform to UML and
a port in ArchJava can provide and/or require methods instead of interfaces as in UML.
Secondly, a major difference between the two approaches is that code in ArchJava cannot be
directly used for execution and debugging while the extended code and the complementing
standard code generated by the T2T transformation designed in this thesis are completely
compilable by standard compilers, thus executable and debug-able. ArchJava does not have
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this ability since ArchJava is only Java backward compatible and developers using Arch-
Java must debug the code generated from the ArchJava code instead [Abi-Antoun 2005].
Therefore, if there are bugs in the code generated from ArchJava, programmers cannot di-
rectly modify the generated code but manually relate the code segment containing the bug
to the ArchJava code segment. Thus, ArchJava is simply an architecture description lan-
guage rather than a programming language that can be executed in standard IDEs. In our
approach, the extended language is truly executable and programmers modify it directly
if they find bugs. Our support is more practical since programmers usually prefer to work
with a programming language that they can modify and debug directly. Lastly, behavioral
elements are not supported in ArchJava. Furthermore, connectors represented in ArchJava
do not support multiplicities for connector ends for designing connector patterns between
components that will be detailed in Chapter 5. Therefore, our approach has a broader
scope than ArchJava.

Several approaches [Christensen 2011, Krahn 2006] use annotations to embed architec-
tural information into Java. The authors in [Christensen 2011] discuss the need to have
architectural information embedded within source code in agile development methods where
"the code is the central artifact". They propose to use annotations to describe design pat-
terns directly within the source code. They argue that valuable architectural information
is retained by parsing the annotations. This approach is code-centric. The architectural
information embedded in code describes the design patterns and the role of each code ele-
ment in the design patterns rather than relationships with UML elements at the model level
while we consider both model and code as development artifacts. The use of Java annota-
tions is also discussed in [Krahn 2006] where annotations for Part and Port are proposed.
These annotation-based approaches are not generative. It means that the annotations are
not used for generating other code as the text-to-text transformation in our approach does
(see Sections 5.3 and 5.4 for more details). In contrast, the annotations are only used for
describing or documenting the code.

Contributions The approach above that will be detailed later in this thesis contains the
contributions described as below.

Thesis Contribution 1 (TC1) - Synchronization This contribution is to provide a
model-code synchronization mechanism for concurrent modifications of model and code.
It addresses the research challenge 1 (RC1). Specifically, we propose a model-code syn-
chronization methodological pattern. This latter defines and explores different processes
dedicated for software architects and programmers to synchronize model and code, using
their preferred tool of choice. The description and formalization of this contribution are
detailed in Chapter 4.

Thesis Contribution 2 (TC2) - Mapping This contribution addresses the research
challenge 2 (RC2). It provides a bidirectional mapping between the extended code and
the UML metamodel subset including UML-CS and UML-SM elements. This mapping is
used as input for the synchronization mechanism in Thesis Contribution 1 to address the
synchronization problem between UML-CS and UML-SM elements, and code. The final
result is that architecture model specified by the UML elements and the extended code
can be synchronized in case there is a concurrent modification of the two artifacts. In
addition, to make the extended code executable and debug-able as previously described,
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an in-place text-to-text transformation is proposed. This transformation relies on several
code generation patterns. The bidirectional mapping and the transformation are presented
in Chapter 5.
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Abstract: This chapter presents a methodological pattern for model-code synchronization
supported by corresponding tooling. The methodological pattern addresses the Thesis
Contribution 1 for solving the research challenge RC1. The contribution proposes to use
automated model-code synchronization as a means of bridging the gap between model edited
by software architects, and code written by programmers. Our approach is based on the
following sub-contributions, described in detail later in this chapter:

1. A generic model-code synchronization methodological pattern to solve the problem of
collaboration between different types of developers, when model and code co-evolve.
This contribution is based on the following requirement and proposition:

e Requirement: the availability of a generic IDE with functionalities necessary for
model-code synchronization. The functionalities are not dependent of a par-
ticular approach or technology. The required IDE will be described in Section
4.1.

e Proposition: Processes to use the IDE to synchronize model and code based on
several defined scenarios, which correspond to common development practices
(see Section 4.2).

2. An Eclipse-based implementation of the approach for synchronization between UML
models and corresponding C++ code (see Section 4.3).



46 Chapter 4. A model-code synchronization methodological pattern

3. Experimentation-based evaluations of the model-code synchronization approach to
the artifact synchronization requirements in Table 2.1 and applying the proposed
solution for the development of a real-world example (see Section 4.4).

This contribution is presented before the bidirectional mapping because it is a generic
methodological pattern. It can be applied to a specific model-code synchronization, e.g.
synchronization of UML-SM elements and code that will be presented in Chapter 5, when-
ever the functionalities of the IDE are available.

Contrary to traditional solutions, we generalize our approach by considering the case
that the model is not only used for architectural design, but also for full implementation
since model can contain fine-grained behavior code as stated by the assumptions in Section
1.3.

The rest of the chapter is organized as follows. Section 4.1 presents the IDE, different
actors that use the IDE, and the availability of generic functionalities in the IDE. The
processes for synchronization are then presented in Section 4.2. Section 4.3 instantiates an
implementation of the approach. Evaluations of the approach are presented in Section 4.4.
We conclude the chapter in Section 4.5.

4.1 Collaborating actors and use-cases of synchroniza-
tion

In this section we define the actors who will use our model-code synchronization approach
to collaborate during development. Then we define the main functionalities, as use-cases,
expected from a generic IDE used by these actors. Some basic concepts related to the actors
and use-cases are also defined in this section.

4.1.1 Collaborating actors and development artifacts

For the sake of generality, we postulate that the architect and programmer are actors with
starkly opposite development practices. This allows the approach to be used even in cases
where model and code can both be used for the full implementation of a system, rather
than just architectural design for the former, and code implementation for the latter. First,
we introduce the concepts of development artifact and baseline artifact.

Definition 8 (Development artifact) A development artifact is an artifact, as defined
in [OMG 2008], that can be used for the full implementation of the system.

For example a system can be entirely implemented as code. The code is then a develop-
ment artifact. Similarly, a model may also be a development artifact. It is then not only a
documentation of the specification but also is used for generating the implementation. For
example a model can be used for implementation by generating code from the model, and
compiling the code without the need to edit or complete the code. As previously discussed
in Section 2.3.1 on page 17, full implementation of a system can be generated from the
model by embedding user-written code as blocks of text associated with model elements,
e.g. UML OpaqueBehavior. However, this embedding reduces programming efficiency and
thus is not preferred by programmers who prefer using modern IDEs with well-supported
development assistance such as syntax highlights and auto-completions. Model and code
are both development artifacts in a model-code synchronization mechanism. A development
artifact may be the baseline artifact, defined in this thesis as follows:
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Definition 9 (Baseline artifact) A baseline artifact is an artifact which may be edited
manually. All other artifacts are produced or updated from the baseline artifact through a
process. Manual edition of artifacts other than the baseline artifact is forbidden.

Two primary actors, called model-driven developer and code-driven developer, are intro-
duced. The main difference between them is what they consider as the baseline artifact.

Definition 10 (Model-driven developer) A model-driven developer is an actor in a
software development process for whom the baseline artifact is the model.

In other words, for a model-driven developer, only the model should be edited manually.
The code must always be produced from the model automatically by some process that
guarantees that the code is consistent with the model. A software architect is a kind of the
model-driven developer who edits the model to specify the architecture of the system. An
architect presumes that the reference for the architecture of the system should be specified
as a model.

Definition 11 (Code-driven developer) Code-driven developer is an actor in a soft-
ware development process for whom the code is the baseline artifact.

A programmer is a specialization of the code-driven developer. Indeed, programmers
may modify the code, such as editing method bodies. The code is then the main reference
for the implementation of methods.
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4.1.2 Main use-cases of IDE for collaboration

In this section we propose a generic IDE with the main use-cases that represent function-
alities required by our model-code synchronization approach. Figure 4.1 shows a UML
use-case diagram of the IDE and associations to the actors.

There are some use-cases for manual edition of artifacts. The Edit-Artifact use-case
implies that the IDE must have some tool to let the developer manually edit an artifact.
The Edit-Model and Edit-Code use-cases are specializations of the Edit-Artifact use-
case where the artifact is the model or code.

There are also some use-cases related to the synchronization of artifacts. The Synchronize-Artifact
use-case is the synchronization of two artifacts by: (1) comparing them, (2) updating each
artifact with editions made in the related artifact, and (3) reconciling conflicts when ap-
propriate. The Synchronize-Model and Synchronize-Code use-cases are specializations
where, respectively, the model or the code are the artifacts being synchronized.

Definitions of batch and incremental code generation The Generate-Code use-
case is related to forward engineering. It is the production of code in a programming
language from a model. In this thesis, we assume that the model is syntactically correct
and the validation of model is out of the scope of this thesis. The developer can either use
Generate-Code (Batch) or Generate-Code (Incremental).

Definition 12 (Batch code generation [Giese 2006]) Batch code generation is a pro-
cess of generating code from a model, from scratch. Any existing code is overwritten by the
newly generated code.

Incremental code generation is a specialization of incremental model transformation,
which is defined in [Giese 2006] as model transformation that does not generate the whole
target model from scratch but only updates the target model by propagating edition-
s/changes made in the source model. Incremental code generation is defined in this thesis
as follows:

Definition 13 (Incremental code generation) Incremental code generation is the pro-
cess of taking as input an edited model, and existing code, and then updating the code by
propagating model changes to the code.

Example of batch versus incremental code generation To illustrate the differences
between batch and incremental code generation, let’s look at a simple example in Fig. 4.2.
We assume that the model M and the code C are initially consistent. An y attribute is
then added to the Capsule class of M and a test method added to the code. In the step
2a, using the batch code generation reproduces the Capsule class in the code C' a. This
latter has the y attribute updated from the model but the previously added test method
is lost by the batch code generation. If the incremental code generation is used in the step
2b, the resulting code C' b preserves the test method.

Definitions of batch and incremental reverse engineering The Reverse-Code use-
case is related to reverse engineering. Reverse-Code is the production of a model from
code. As mentioned in the assumption in Section 1.3, the model contains more information
than the code since some information in the model is used for model-based activities such
as security analysis or performance analysis. Therefore, it is impossible to reconstruct the
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Figure 4.2: Batch and incremental code generation

entire model including information not related to code generation. In this thesis, we assume
that there is no loss of information when reversing code to thecode generation-related part.
If some information not related to code generation exists in the model, the Reverse-Code
(Incremental) use-case should be used for preserving such information during reversing.
The developer can either use Reverse-Code (Batch) or Reverse-Code (Incremental),
which are defined in this thesis as follows:

Definition 14 (Batch reverse engineering) Batch reverse engineering is a process of
producing a model from code, from scratch. The existing model is overwritten by the newly
produced model.

Definition 15 (Incremental reverse engineering) Incremental reverse engineering is
the process of taking as input a edited code, and an existing model, and then updating the
model by propagating editions in the code to the model.

For readability, in this thesis we will sometimes designate batch and incremental as
modes of code generation/reverse; e.g. we say that we generate code in batch mode from a
model.

The use-cases are generic. They do not depend on any particular approach or tool.
Therefore, software developers can choose the approach or tool that suits better his/her
development preferences best.

In the next section, the use-cases of the IDE are integrated into multiple processes that
cover model-code synchronization in several scenarios. The latter correspond to behaviors
performed by both kinds of actors, i.e. model-driven developers and code-driven develop-
ers.
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Figure 4.3: Synchronization process for scenario 1, in which only code is edited (CDD =
Code-Driven Developer). The API calls for Model and Code are represented generically as
"Read" and "Write".

4.2 Processes to synchronize model and code

This section describes multiple processes for synchronizing model and code in different
scenarios. The scenarios are differentiated according to the type of developers, i.e. the type
of actors, working on the system to be developed.

For each of the scenarios, we assume that the common starting point of each process is
a complete model. Therefore, if legacy code exists outside of the model, it must first be
reversed back before the processes described below can be applied. This can be done with
the Reverse-Code (Batch) use case of the IDE proposed in Section 4.1.2.

Each of the following subsections describes a scenario and the process associated with it
for model-code synchronization. The last subsection discusses how the proposed processes
can be applied to reconcile conflicts between editions made the model and the code.

4.2.1 Scenario 1: code-only editions

The assumption in the scenario 1 is that the code is the only baseline artifact. In other
words, only the code may be edited manually. We assume that during development, the
model needs to be synchronized sporadically with the code. This scenario is usually more
appropriate for the code-driven developer.

Figure 4.3 shows a sequence diagram that illustrates the process for synchronizing code
and model in the scenario 1. The general approach is to always overwrite the model with
a new model produced from the edited code.

In Figure 4.3, the code-driven developer interacts with the IDE which then writes and
reads from code and model. Keep in mind the general assumption that the starting point
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of the process is a model. Note that messages between the code-driven developer and the
IDE are the use-cases of the IDE proposed in Section 4.1. In Figure 4.3, there are some
markups to highlight the general steps of the process. The general steps of the process are
described as follows:

- Scenario 1 synchronization process general steps -

Step 1 To begin implementation, the code is generated in batch mode from the model.
The developers then work with this generated code.

Step 2 The code is edited.

Step 3 After the code has been edited, it is reversed in batch mode, i.e. the existing model
is overwritten by a new model reversed from the code.

Obviously code can evolve several times through successive editions. After each change
cycle, the code can be reversed. Therefore steps (2) and (3) may be repeated multiple times
in this process. Since code is the baseline artifact here, we only need to overwrite the model
by batch reverse for both artifacts to be synchronized. Incremental reverse engineering
can also be used in place of the batch reverse. For a model that only contains information
related to code generation, using incremental code reverse has the same effect as batch code
reverse. However, if there is a model part not used for code generation, the batch reverse
might not preserve such part. Therefore, the incremental reverse engineering should be
used in this case.

4.2.2 Scenario 2: model-only editions

Scenario 2 is the opposite of the scenario 1: the assumption here is that the model is the
only baseline artifact. That is, only the model may be edited manually. This scenario is
appropriate for the model-driven developer.

The process for scenario 2 is similar to the process for the scenario 1. Therefore, the
sequence diagram for this scenario is put in Appendix B on page 131. In this scenario, code
is first generated in batch mode from the model. The model is edited. After each edition
of the model, code is generated in batch mode, i.e. the existing code is overwritten by new
code generated from the model.

4.2.3 Scenario 3: concurrent editions

Note that the processes proposed for the scenario 1 and scenario 2 are classic cases of
forward and reverse engineering, rather than fully-fledged round-trip engineering with a
need for synchronization. Indeed, code is produced from model in batch mode. When
it is reversed, it is revered to the model in batch mode. There is no need for additional
synchronization strategies, since only either the code or the model is the baseline artifact,
i.e. only one is edited manually and there are no concurrent editions being made to the two
artifacts. Therefore batch code generation and reverse are sufficient for synchronization.
However, in the scenario 3, there is no unique baseline artifact; both the model and the
code may be edited manually. Therefore, they may evolve concurrently during development
activities and synchronization issues will occur. This scenario tackles the problem where
model-driven and code-driven developers are working together on the same system.
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Figure 4.4: Synchronization process for scenario 3 using the first strategy, in which the
model and the code are concurrently edited with code as the synchronization artifact (CDD
= Code-Driven Developer, MDD = Model-Driven Developer). The API calls for Model and
Code are represented generically as "Read" and "Write".

We propose two synchronization strategies for this scenario. The general approach
behind our synchronization strategies is to represent one artifact in the language of its
corresponding other artifact. These two can then be compared. For this, we define a
concept of a synchronization artifact:

Definition 16 (Synchronization artifact) An artifact used to synchronize a model and
its corresponding code is called a synchronization artifact (SA). It is an image of an artifact,
either model or code, in a different representation. In this context, an image I of an artifact
A is a copy of A obtained by transforming A to I. A and I are semantically equivalent but
are specified in different languages.

For example, an SA can be code that was generated from the edited model in batch
mode. In that case, it is code that represents an image of the edited model.

Using the concept of SA, two strategies are proposed in this thesis: one in which the
SA is code, and the other in which the SA is a model. We propose two strategies so
the developer can choose to either use the Synchronize-Code or Synchronize-Model use-
cases of the IDE. The choice may be determined by preferred development practices or the
availability of suitable tools (e.g. the programmer may prefer to synchronize two artifacts,
both represented in the same programming language, because he prefers to work exclusively
with code). Figure 4.4 shows the first synchronization strategy based on using code as the
SA. The highlighted general steps of the process are described as follows:

- Scenario 3 synchronization process steps -

Step 1 Both the model and code may be edited concurrently. (To simplify Figure 4.4, we



4.2. Processes to synchronize model and code 53

don’t show the Read and Write interactions for this step.) After both artifacts have
been edited concurrently, we need to synchronize them.

Step 2 First we create a synchronization artifact from the edited model by generating code
in batch mode. This synchronization artifact is code and it is an image of the edited
model.

Step 3 The synchronization artifact is synchronized with the edited code. Since the syn-
chronization artifact is code itself, this step is done with the Synchronize-Code use-
case of the IDE.

Step 4 Once synchronization artifact and edited code are synchronized, the former is re-
versed incrementally to update the edited model.

The second strategy, based on using model as the synchronization artifact, is the op-
posite of the first strategy. In the second strategy, the synchronization artifact is obtained
by reversing the edited code in batch mode. Afterwards the synchronization artifact is
synchronized with the edited model. Finally, we generate code incrementally from the
synchronization artifact to update the edited code.

We propose two strategies based on the preferences of the developers. They may even
use both strategies, successively, as a kind of hybrid strategy. This may be useful when
developers want to synchronize parts of the system using one strategy, and other parts
using the other strategy. For example, they may choose to synchronize method bodies
using strategy 1, where the synchronization artifact is code. Then strategy 2, in which
the synchronization artifact is a model, is used to synchronize architectural elements of the
system.

Synchronization example with the first strategy Fig. 4.5 shows how the first strat-
egy works to synchronize the Capsule class of the Edited model with that of the Edited code.
The step 2 in the strategy 1 in Fig. 4.4 produces the Synchronization artifact, which is
code in this case, by using the batch code generation. This synchronization artifact contains
updates from the model including the y added attribute. The synchronization artifact and
the edited code, which contains the test added method, are then merged with each other
by using the Synchronize-Code use case defined previously. The result is that Synchronized
code contains both editions, the added method and attribute, made in the edited model and
edited code previously, The last step updates the added method test in the synchronized
code back to the model by using the incremental reverse engineering. At the end of the
synchronization, the modifications of the Capsule class at the code and the model level are
reconciled and model and code become consistent.

Synchronization example with the second strategy The edited model and code in
the Capsule example in Fig. 4.5 can also be synchronized by using the second strategy as
in Fig. 4.6. The Synchronization artifact created in this case by using the batch reverse
engineering is a model. The Synchronize-Model use case in the step 3 then merges the
edited model and the synchronization artifact into the Synchronized model that contains
the added method test and attribute y. Note that, the synchronization model use case only
reconciles the code generation-related part of the edited model with the synchronization
artifact. The synchronization between models as described in Subsection 1.3 is in charge
of propagating model editions from the code generation-related part of the model made by
the Synchronize-Model use case to the other information part.
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4.2.4 Discussion

This subsection discusses the following questions related to the proposed processes:

e How are conflicts tackled in concurrent editions?

e Do the processes allow multiple concurrent editions made by several model-driven
developers or code-driven developers on the same artifact?

Conflicts between editions made in model and code occur when propagation of editions
from the model made by a model-driven developer to the code is in conflict with code
editions made by a code-driven developer in the code. An example of a conflict is that the
same class is renamed in the model and deleted in code. Since the purpose of the processes
is to provide a synchronization mechanism while still allowing the developers to work with
their preferred choice of tools and development artifacts, we also provide such capability
when dealing with conflicts. The reconciliation can be done following one of the following
ways:

e At the code level: A code-driven developer can reconcile conflicts while working at the
code level and then automatically propagate modifications made in the code during
the reconciliation of the conflicts to the model. Using the first strategy of the syn-
chronization processes, the reconciliation of the problem of concurrent modification of
model and code with conflicts becomes the reconciliation of modifications made to the
same code, Generated Code and Edited Code in the step 3 in Fig. 4.4. An example of
reconciliation is described below. Such code-code reconciliation is supported by the
Synchronize-Code use case defined in Section 4.1.

e At the model level: A model-driven developer can reconcile the conflicts while working
at the model level and then automatically propagate modifications made in the model
during the reconciliation of the conflicts to the code. Such way is similar to the other
one at the code level. The problem of dealing with conflicts here becomes the model-
model reconciliation supported by the Synchronize-Model use case defined in Section
4.1

Let’s examine a realistic example of conflicts. The model and the code of a system
initially contain three classes, namely ClassA, ClassB, and ClassC. The model and the code
are stored in a remote Git repository. A model-driven developer (MDD) and a code-driven
developer (CDD) collaborate with each other for developing the system. Each developer has
a copy of the model and the code and can push as well as get data from the remote repository.
Suppose that the MDD renames ClassB to ClassD, regenerates the code using the batch or
incremental code generation, and pushes the files containing the renaming-affected editions
with a change log. Note that, the push and the change log are typically used in version
control systems such as Git. At this point, the pushed code is the Synchronized Artifact in
Fig. 4.2.3 since it is generated from the model edited by the MDD.

In the meantime, the CDD deletes ClassB at the code level. The code modified by
the CDD now becomes the FEdited Code. The CDD now gets the pushed code from
the remote repository and merges the locally edited code and the remotely edited code
(Synchronization Artifact) as the step 3. The CDD reads the change log and sees a
conflict that the class that he/she has just deleted is renamed. This conflict is also detected
by Git. He/she then decides to either reject the edition of the MDD (so to delete the class)
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or accept it (so to keep the class). Whatever decision is taken on, the CDD only works
at the code level and does the step 4 to automatically propagate the edition decision to
the model. Eventually, the CDD pushes the synchronized model and the code to the re-
mote repository. The conflicts are reconciled without requiring the CDD to change her /his
preferred practice of working with code.

Multiple editions by multiple developers In software development of a project, there
might be multiple model-driven developers editing the same model element and multiple
code-driven developers editing the same code element. In this case, the synchronization
must deal with concurrent editions made in the model and the code by multiple developers.
To deal with this issue, each developer of a certain type (model-driven or code-driven)
should repeat the strategy appropriately adapted to his preferred practice. A model-driven
developer uses the second strategy whenever he/she wants to synchronize his/her editions
in the model with the editions made in the model by other model-driven developers and in
the code by other code-driven developers. Similar procedure is also applied to code-driven
developers, who use the first strategy to synchronize with other editions in the model and
the code by other developers.

In the next section we present an approach that reuses different existing technologies
and tools to implement the proposed IDE and synchronization processes.

4.3 An Implementation: synchronizing UML models and
C-+-+ code

This section describes the instantiation of the proposed model-code synchronization ap-
proach for the particular case of OMG standard UML 2.5 and C code. We focus on elements
of the UML meta-model that are used to model a low-level software design, represented
in a class diagram. UML elements that are considered are classes, data types, primitive
types, properties, operations, opaque behaviors, value specifications, template signatures,
template parameters, and template bindings. At the C++ side, we consider a number of
elements that are present in the runtime system exposed in Section 4.4.2. Some C+-+ ele-
ments that are considered are classes and structs, type definitions, C primitives, attributes,
methods and method bodies, modifiers for attribute and method, includes, macros, and for-
ward declarations, pointers and references, function pointers, variable initialization, class
and function templates.

The lack of tools could be a risk to the usability and validity of the approach. It is
critical that tools are readily available or implementable with moderate effort. We examine
an Eclipse-based implementation of the IDE proposed in Section 4.1.2. The implementation
is used in the synchronization processes proposed in Section 4.2. The use-cases of the IDE
are implemented with some Eclipse technologies. More information on the technologies is
available on the Eclipse Projects website [Eclipse Foundation |.

Eclipse CDT is an IDE for C++ development. It is used in the Edit-Code use-case.
Eclipse Papyrus is used for the Edit-Model use-case. Papyrus is an open-source UML
modeler that uses the Eclipse Modeling Framework (EMF) implementation of the OMG-
standard UML 2. The EMF implementation of UML 2 stores UML models as XMI files.
Papyrus supports UML profiles for domain-specific modeling. We use the UML profile
of Papyrus dedicated to C++. The profile has a number of stereotypes to model C+-+
elements that cannot be created directly in UML (e.g. function pointer).
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Formerly, Papyrus supports the Generate-Code (Batch) from UML to C++, We devel-
oped the Generate-Code (Incremental) and Reverse-Code use-cases for Papyrus. The
batch modes of these use-cases do not need additional technologies to implement. For the
use-cases Generate-Code (Incremental) and Reverse-Code (Incremental), we choose
to listen to modification events in the model and code respectively. Listening to modifi-
cation events is one possible approach in incremental model transformation [Kusel 2013].
The Viatra API is used to listen to such events in the model. The Eclipse CDT API is
used to listen to modification events in the code. These lists of events are used to either
generate code or reverse code incrementally.

EMF Compare is used for the Synchronize-Model use-case when models are imple-
mented with EMF. Eclipse CDT is used for the Synchronize-Code use-case with its built-in
C++ features.

By implementing the proposed model-code synchronization approach with several Eclipse
technologies, we faced some technical issues. The following paragraphs describe the diffi-
culties we faced, and how limitations of Eclipse technologies were leveraged.

Eclipse CDT Modification Events Editions made to the code trigger three kinds
of Eclipse CDT modification events: ADDED, REMOVED, and CHANGED. Events ADDED and
REMOVED mean addition and deletion of classes, attributes or methods in the code. Event
CHANGED is the update of elements in code including (1) renaming attributes, classes, or
methods, (2) changing the type of attributes, parameters, or (3) changing the behavior
of methods. For attributes and methods, CDT does not always trigger an appropriate
CHANGED event, rather the framework triggers an ADDED event, followed immediately by
a REMOVED event. Many events had to be filtered and combined as appropriate CHANGED
events, according to heuristics.

EMF Compare Stereotype Comparison EMF Compare is used to compare UML
elements that may be stereotyped. The stereotypes are those of the UML profile for C++
elements modeling, within Papyrus. We adapted EMF Compare for stereotype application
comparison. Indeed, EMF Compare always detects differences between stereotype applica-
tions if they do not have the same XMI identifier, even if semantically they represent the
same information. The EMF Compare API offers post-comparison hooks to filter differences
according to the user’s needs. We thus filtered differences between stereotype applications,
when they are semantically equal.

Eclipse CDT Code Comparison The Eclipse CDT code compare feature only com-
putes differences between two codes. It does not consider that the two codes may share
some history. It is therefore difficult to know what to compare for elements that underwent
editions such as renaming, either in the edited UML model (reflected in the synchronization
artifact) or the edited C++ code. User knowledge is necessary to solve this issue with the
current implementation. We help the user by providing a list of filtered editions in both
the UML model and the C++ code.

In conclusion the implementation of the approach, with Eclipse technologies, was not
straightforward. For synchronization strategy 1, using code as synchronization artifact,
heuristics and user intervention had to be introduced. The limitations of Eclipse CDT
prevented the full automation of this strategy. For synchronization strategy 2, using model
as synchronization artifact, tools like EMF Compare had to be extended in order to fully
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automate this strategy.
The next section describes our experimentation performed using the above implemen-
tation of our synchronization solution to evaluate the proposed methodological pattern.

4.4 Experiments and Evaluations

As areminder, the purpose of the proposed model-code methodological pattern is to address
the challenge RC1 and satisfy the requirements for model-code synchronization as shown
in Table 2.1 on page 14. First, in the forward direction, the R1 (model modification propa-
gation) and R4 (code modification preservation) requirements are satisfied if the batch and
incremental code generation are correct, respectively. Secondly, in the reverse direction,
the R2 (code modification propagation) and R3 (model modification preservation) require-
ments are met if the batch and incremental reverse engineering are correct, respectively.
Lastly, the R5 (concurrent modification) requirement is validated if the proposed processes
for model-code synchronization functions correctly.

This section reports our experiments with the proposed model-code synchronization
approach and its implementation based on Eclipse technologies to assess the requirements
for the case of synchronization of UML and C++. Two experiments have been conducted
in order to assess the proposed methodology and its applicability to the development of a
realistic system. In the following subsections, we first describe the results of multiple simula-
tions designed to test the correctness of the batch code generation and reverse engineering
(see 4.4.1.2), of the incremental reverse engineering (see 4.4.1.3), and of the incremental
code generation and synchronization processes for concurrent modifications (see 4.4.1.4).
Next, we report on a realistic case-study intended to help us assess certain scalability and
usability aspects (see 4.4.2).

4.4.1 Simulations to assess synchronization processes

Simulations have been conducted to test that the implementation of our proposition respects
the round-trip engineering laws [Foster 2007| right-invertibility and left-invertibility. These
laws are stated as follows:

Law 1: Right-invertibility means that not editing the code (or model, respectively) shall be
reflected as not editing the model (respectively code). If no editions are made to the code,
the model used for generating the code and the model received by immediately reversing
the generated code must be the same.

This law is strong since there can be more than one correct way to reverse a code
element. For example, a pointer in a class A to a class B in code can be reversed to
model either as an attribute of the class A or an association from A to B. Furthermore,
an interface in C++, which is a class whose methods are pure virtual can be reflected in
UML as either a UML class or a UML interface. For those cases, the developments of code
generation and reverse engineering are required to be tightly related to each other. It is a
limitation of the evaluation imposing on code generation and reverse engineering. However,
the tight relationship between them helps developers avoid ambiguities between the model
elements created by model-driven developers and the elements created by reversing code
elements written by code-driven developers. To deal with the ambiguous cases as above,
a stepwise comparison of two models in determining whether they are the same or not is
based on comparing both syntactics and semantics of the two models. Table 4.1 shows pairs
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Table 4.1: Model elements with same semantics

Model element 1 Model element 2

Interface Class with all abstract operations
Aggregation association from A to B Shared attribute in A typed by B
Composition association from A to B Composite attribute in A typed by B
Attribute tagged by a pointer stereotype Shared attribute

Attribute tagged by an array stereotype Composite attribute with multiplicity
Attribute tagged by a pointer and an array | Shared attribute with multiplicity
stereotype

of model elements that have the same semantics. According to the table, an interface of
the model for code generation is equivalent to a class with all abstract operations of the
model created by reverse engineering.

Law 2: Left-invertibility means that all editions on the code are captured and correctly
propagated to the model so that the edited code can be fully recreated by applying code
generation to the updated model.

Note that this law is correct if the batch code generation, the batch and incremental
reverse engineering are correct.

In the following sections, the model generator used for the simulations is presented first.
Then, the simulations performed for both above laws are described. Finally, we discuss the
simulation of the process defined for scenario 3 (Section 4.2.3), in which both the model
and the code are edited concurrently.

4.4.1.1 Randomly generated UML models

In the simulations, random UML models are generated with a configurable model generator
we implemented. The generated models contain C++ features represented via UML. The
generator can be configured to generate a desired average number of each type of C+-+
feature to be represented as a UML element.

Three packages are generated for each model. Each package contains 60 classes, and,
on the average 10 enumerations, 10 structures, and 10 function pointers. Class members
include methods with parameters, and attributes. Types of parameters and attributes
are chosen randomly. Methods have randomly generated bodies that use other classes.
Attributes have randomly generated default values of the appropriate types.

Relationships between classes are also generated: associations, inheritances, and depen-
dencies. When dependencies are generated, the generator enforces that the source class of
the dependency has a method that uses the target class of the dependency.

4.4.1.2 Simulation for Law 1 right-invertibility

In the first simulation, Law 1 is evaluated. The procedure for the simulation is shown in
Figure 4.7.

The general idea behind the simulation procedure is to do a full round-trip of the UML
model randomly generated in step (1). The round-trip of the model is done through steps
(2) to (3). The randomly generated model is compared with the reversed model after the
round-trip. This is done in step (5).

A full round-trip is also done for the C++ code that is generated from the original
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Figure 4.7: Simulation 1 for Law 1 (right-invertibility)

randomly generated model in step (2). The round-trip is done through steps (3) to (4).
The code generated from the original model is compared with code generated from the
reversed model in step (6).

Code generation and reverse are done in batch mode since no editions are made to the
models or code in this simulation. Comparison of models is done by first syntactically
comparing the number of each type of elements and then semantically using Table 4.1 and
EMF Compare. Comparison of code is done by using the built-in code comparison tool in
the Eclipse CDT.

200 models, with random numbers of elements were created by the generator. We
limited ourselves to 200 models for practical reasons. These same models were later used
for a simulation that involved some manual editions (presented in the next subsection).

After launching the simulation for the 200 models, no differences were found during
model comparison and code comparison. This result assesses that the tooling of our model-
code synchronization approach with respect to Law 1 of round-trip engineering. The limita-
tion of the result is that the generated models share some properties since they are produced
by the same generator. To increase the confidence, the approach is applied to a case study
that is presented in the subsection 4.4.2.

4.4.1.3 Simulation for Law 2 left-invertibility

In the second simulation, Law 2 was evaluated. The procedure for the simulation is shown
in Figure 4.8. The general idea behind the simulation procedure is to do a full round-trip
of a randomly generated UML model, but with editions introduced to the generated C+-+
code. As shown in Figure 4.8, the procedure to test our tooling consisted of the following
steps:

Step 1 A UML model is randomly generated and becomes the generated model.
Step 2 Through batch code generation, we obtain code from generated model.

Step 3 The code produced from the generated model is then edited. We thus obtain
edited code. The different kinds of editions will be described when we discuss the

results of this simulation.

Step 4 The edited code is reversed incrementally to the generated model. The gen-
erated model then becomes an updated model.

Step 5 The edited code is also reversed in batch mode to a model from edited code.
This model is an image of the edited code.
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Figure 4.8: Simulation 2 for Law 2 (left-invertibility)
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Table 4.2: Editions and the modifications events they trigger (A = ADDED, C = CHANGED,
R — REMOVED)

Edition kind A | C R
Renaming attributes of all classes 0 1903 | O
Renaming methods of all classes 0 | 1197 | 0
Deleting attributes 0 0 46
Adding attributes 25 | 0 0
Adding methods 10 | 0 0
Changing method body 0 |30 0
Manual editions 39 | 34 30

Step 6 The updated model (the previously generated model) is compared to the
model from edited code (image of the edited code).

Step 7 Afterwards, we also generate in batch mode code from the updated model.

Step 8 The code from the updated model is compared to the edited code.

The simulation is run for 200 randomly generated models. We limited ourselves to 200
models for practical reasons because in step (3), some of the editions have to be done
manually to emulate real development conditions. Therefore, the limit of 200 models is
purely based on practical concerns.

During the simulations, the code generated from each model undergoes seven kinds of
editions independently. The kinds of editions performed are listed in Table 4.2. As its
name suggests, only "Manual editions" were done manually by a developer, to emulate
actual development conditions.

As a reminder, the editions trigger three kinds of Eclipse CDT modification events:
ADDED, REMOVED, and CHANGED. Table 4.2 shows the average number of ADDED, REMOVED, and
CHANGED events that were triggered by each of the seven kinds of editions. For example, there
are 1903 CHANGED events related to attribute renaming. Two kinds of editions are not listed
in the table because they trigger the same number of events as other editions. Indeed,
changing modifiers of attributes/methods is equivalent to renaming attributes/methods.
Deleting methods is equivalent to deleting attributes.

For all 200 models, no differences were found during model comparison and code com-
parison. This result assesses that the tooling of our model-code synchronization approach
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Figure 4.9: Simulation 3 for concurrent editions case

with respect to Law 2 of round-trip engineering.

4.4.1.4 Simulation for concurrent edition of model and code

A third simulation aims at emulating the process described in Figure 4.4 of Section 4.2.3,
in which the model and the code are concurrently edited. A simplified representation of
the procedure of simulation 3 is shown in Figure 4.9. The simulation is executed for 200
randomly generated UML models and their generated C++ code.

The idea behind the procedure in Figure 4.9 is to simulate editions in the original ran-
domly generated model, and its corresponding generated code (step (1) to (4)). To simplify
the simulation of the artifact synchronization use-case, the simulator only introduces at-
tribute renaming on the model. On the code, the simulator only makes editions to method
bodies, which is a limitation of the experimentation based on the simulations. More ex-
periment about modifications with conflicts and reconciliation is scheduled for future work.
Edited model and code must then be synchronized and then we must assess that they are
indeed synchronized. This is done in step (5).

To synchronize edited model and edited code, first we use the strategy based on code as
the synchronization artifact. The simulator propagates all method body editions from the
edited code to the synchronization artifact. The simulator then propagates all attribute
renaming from the synchronization artifact to the edited code. Next, the synchronization
artifact is reversed incrementally to produce the edited model. At this point the model and
the code are considered synchronized.

To assess that both synchronized model and code are images of one another, the synchro-
nized code was reversed in batch mode to a new model. The new model was then compared
with the synchronized model. No differences were found during these simulations. We
also generated new code in batch mode from the synchronized model. The new code was
compared to the synchronized code. No differences were found during the comparison.

The same simulation is repeated for the case where the model is used as synchronization
artifact. Again the synchronized code and model were images of one another.

Once the tooling was verified through the three simulations, we applied it to the devel-
opment of a real-world system. The results of this experiment are discussed in the next
section.

4.4.2 Papyrus-RT runtime case-study

In Section 4.4.1 the approach was tested for UML and C++ synchronization, using simu-
lations. In this section we describe the application of the full synchronization approach to
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Table 4.3: Differences in Papyrus-RT runtime versions

Original Object-oriented

Directives to control compilation of OS- | Abstract OS-independent classes inherited

dependent code by OS-dependent classes with implementa-
tion

Variables, functions and type definitions | Refactored as static entities inside a class.
outside of class Visibility defined according to scope of
original entities.

a case-study. The intent here was to evaluate:

e The usability of the proposed synchronization approach

e The scalability of the tooling to a real system

The case-study is related to the development of the runtime underlying Papyrus-RT
[CEA 2016]. This latter is an open-source custom modeling tool, based on Papyrus, that
supports the UML extensions for the design of event-driven real-time systems (UML-RT).
Papyrus-RT features full automated code generation for UML models. The generated code
executes within a corresponding runtime environment, which provides C++ realizations of
the high-level concepts defined in UML-RT.

At the beginning the resource available to develop the aforementioned runtime was an
experienced C++ programmer. For the pragmatic reasons of project management such as
time restrictions, it was decided to implement the runtime in C++ without the benefits of
models. However, later it was concluded that even if the result was satisfactory, it would
be beneficial to exploit the advantages that MBSE provides. Thus, an MBSE approach
would improve both the maintainability and the evolvability of the runtime. Moreover,
as development progressed, the project was expanded to include new developers, who are
proponents of MBSE and are eager to work with models.

As a result, this project represented an ideal case study to assess the practicality of
the proposed approach. In particular, we were interested in determining its usability and
scalability

The runtime was originally implemented as an open-source plain C++11 project. Most
of its architecture is object-oriented. The runtime has 65 classes and 14,945 lines of code.
Other than containing typical entities found in object-oriented architectures, the runtime
uses C/C++ features such as type definitions, templates, pointers, references, function
pointers, and variadic functions to name a few. These features are supported by the reverse
and code generation tools in Papyrus, coupled with the C++ UML profile.

In order to use our model-code synchronization approach, the original Papyrus-RT run-
time had first to be reversed to a UML model. This step was crucial because the original
runtime contained some elements that were not object-oriented. Consequently, some modi-
fications and refactorings were made to the original runtime to make it fully object-oriented.
This enabled it to be modeled entirely in a language like UML. Table 4.3 shows the two
main differences between the original runtime, and the revised object-oriented runtime.

The reverse in batch mode of the object-oriented runtime takes about 12 seconds. All
65 classes were reversed, with all of their attributes and methods. Code generation in batch
mode of the entire reversed UML model takes about 5 seconds and produces 22,053 lines



64 Chapter 4. A model-code synchronization methodological pattern

of code. The difference in the number of lines of code is due to automatically generated
documentation comments. The generated runtime compiles and the updated existing unit
tests pass when applied on the runtime compiled from generated code.

Once the runtime has been reversed, our model-code synchronization processes could be
used. We noticed that using the proposed approach introduced MBSE style development
for the Papyrus-RT runtime. This brought about several advantages as several manual
tasks were automated:

e Automatic handling of relationships between model elements, i.e. association, depen-
dency, inheritance

e Automatic generation of includes and forward declarations in the code that avoids
cyclic dependencies

e Graphical representation of architecture in automatically updated UML diagrams
(feature of Papyrus)

In applying the proposed approach to achieve a collaborative development of the run-
time system, we found that the only real difficulty faced was initializing the synchroniza-
tion processes. This required the reverse engineering of the original runtime, with some
non-object-oriented code, into an object-oriented UML model. The reverse was successful
following some modifications and refactorings. Once the full model-code synchronization
process was in place, we were able to use it and develop concurrently both the UML model
and its generated C++ code.

4.5 Summary

This chapter presents a generic model-code synchronization methodological pattern. It can
be used to solve the issue of model-code synchronization when artifacts co-evolve. The
proposed approach is designed to support a continuous collaboration between software
architects and programmers allowing each to use the language and tools of choice. An
Eclipse-based implementation of the approach was presented for synchronizing UML models
and C++ code.

Multiple simulations were conducted to validate our synchronization approach with re-
spect to both laws of round-trip engineering and the artifact synchronization requirements in
Table 2.1. In addition, a simulation of scenarios in which both the model and the code were
edited concurrently was performed, further demonstrating the viability of the approach.
The approach was then applied to a real-world application: the Papyrus-RT runtime sys-
tem. The experimentation showed that the main difficulty of using our approach applied to
such a system was to refactor and reverse the code into a corresponding UML model with-
out loss of information, which respect to the information containment assumption. Once
the processes of our synchronization solution were bootstrapped in this way, we were able
to reap the important benefits of MBSE; development was facilitated through increased
automation.

Since the proposed methodological pattern is generic, it is then applicable to other
synchronization scenarios with the support of the use-cases defined in Section 4.1. In
the next chapter, we will show how to apply the proposed model-code synchronization
methodological pattern to the problem of synchronizing UML-CS and UML-SM elements
with the extended code.
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Abstract: The previous chapter presents a generic model-code synchronization method-

ological pattern (synchronization mechanism). This chapter shows how to use the latter to

contribute to the overall approach presented in Chapter 3 for synchronizing changes made

in architecture design model, specified using UML-CS and UML-SM elements, and code.
To do it, we first establish a mapping mechanism. The mapping mechanism consists of

a bidirectional mapping between the architecture design model and the code, which have
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a significant abstraction gap, and an in-place text-to-text transformation that acts as a
preprocessing step. The bidirectional mapping includes equivalences of model elements and
code elements so that the synchronization can be eased. The realization of the IDE use-
cases of the synchronization mechanism such as incremental reverse engineering and code
generation can be greatly simplified by using the mapping as a means. The in-place text-to-
text transformation is based on a set of code generation patterns for producing code from
UML-CS and UML-SM elements. We then show how the mapping and the synchronization
methodological pattern are combined with each other to produce the desired requirements.
The remaining structure of this chapter is as follows: Section 5.1 establishes the bidi-
rectional mapping. Section 5.2, 5.3 and 5.4 describe the set of code generation patterns
used by the text-to-text transformation. The application of the methodological pattern
using the mapping mechanism to synchronize the architecture design model and code is
shown in Section 5.5. Section 5.6 presents the evaluations of the contribution related to the
previously described requirements. The chapter is finally concluded in Section 5.7.

5.1 Bidirectional Mapping between architecture struc-
ture and behavior with code

In this section, we describe the bidirectional mapping for the UML-CS and UML-SM el-
ements, and code. We present the bidirectional mapping through a producer-consumer
example, whose architecture is shown in Fig. 5.1 @, @, and @ This example is ficti-
tiously created for illustration purposes only and it might not fit to realistic usages. The
p producer sends data items to a first-in first-out component FIFO storing data. The
FIFO queue has a limited size, the number of currently stored items (numberOfltems) and
the isQueueFull operation for checking its fullness. The pPush port of the producer with
IPush as required interface is connected to the pPush port of FIFO that provides the IPush
interface. The producer and FIFO can interact with each other through their respective
port. FIFO also provides the IPull interface for the consumer to get data items. FIFO
implements the two interfaces as in Fig. 5.1 and Fig. 5.2 at lines 28-29.

The behavior of FIFO is described by a UML-SM as shown in Fig. 5.1 @ Initially,
the Idle state is active. The state machine then waits for an item to arrive at the fifo part
(through the pPush port). The item is then checked for its validity before either adding it
to the queue or discarding it (if the queue is full).

Table 5.1 and 5.2 show the UML meta-classes and our ad-hoc equivalent constructs in
the extended language. The constructs are categorized into structural (four upper rows
in Table 5.1 and Table 5.2) and behavioral constructs (nine lower rows in Table 5.1). We
explain these constructs as follows.

5.1.1 Structural constructs

This section explains the programming constructs corresponding to the concepts used for
modeling the component-based architecture structure, including Port and Binding.

Port A UML port does not have an equivalent element in code. In the extended lan-
guage, we propose programming constructs based on template mechanisms of the standard
language corresponding to UML ports. RequiredPort<T> and ProvidedPort<T> (see Ta-
ble 5.1) are equivalent to UML uni-directional ports, which have only one required or one
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Figure 5.1: Architecture and behavior example model

1. class System { 31.Statemachine FIFOMachine {

2. public: 32. InitialState Idle{};

3 Producer p; 33. State SignalChecking {

4 Consumer c; StateEntry entryCheck() ;

5 FIFO fifo; E StateExit exitCheck() ;

6. void configuration() { 36. };

7 bindPorts (p.pPush, fifo.pPush); |37. State DataQueuing {

8. bindPorts(c.pPull, fifo.pPull); 38. StateEntry entryQueue() ;

9. } 39. State Queuing() ;

10.} 40. '}

11.class IPull { 41. State Discarding{};

12.public: wvirtual Data* pull() = 0; 42. PseudoChoice dataChoice{};

13.} 43. CallEvent (push (Data&)) DataPushEvent{};
14 .class IPush { 44 . TransitionTable {

15.public: 45. ExT (Idle,SignalChecking,

16. wvirtual void push(Data& data) = 0;|46. DataPushEvent ,NULL,signalCheck) ;
17.} 47. ExT (SignalChecking,dataChoice,
18.class Producer { 48. NULL,NULL,NULL) ;
19.public: RequiredPort<IPush> pPush; |49. ExT (dataChoice,Queuing,NULL,valid, NULL)
20.}; 50. '}

21.class Consumer { 51.};

22 .public: RequiredPort<IPull> pPull; [52.void entryCheck(){//fine-grained code}
23.}; 53.void exitCheck(){//fine-grained code}

24 .class FIFO : public IPush, IPull { 54 .void entryError(){//fine-grained code}
25.public: 55.void signalCheck(Data& item) {

26. ProvidedPort<IPush> pPush; 56.//trans effect from Idle to SignalChecking
27. ProvidedPort<IPull> pPull; 57.}

28. Data* pull(){//fine-grained code} |58.bool valid(){return !isQueueFull()}

29. wvoid push(Data& data){//..} 59.}

30. //attributes + methods..

Figure 5.2: Generated extended code example
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Table 5.1: Mapping between UML and Extended Language and Examples-1

UML Extended Language Code example in Fig. 5.2
Port requiring Attribute typed Ports pPush and pPull at lines
an interface [ by RequiredPort<I> 19 and 22
Port providing Attribute typed Ports pPush and pPull at
an interface [ by ProvidedPort<I> lines 26-27
Bidirectional
port providing BidirectionalPort<R, P> Not available in the example
R and P
Connector Binding Lines 7-8
State Machine StateMachine '1"he FIFO state machine at
lines 31-51
. State SignalChecking at
State State/InitialState lines 33.36
Region Region Not available in the example
Pseudo state Class-like elements The. dataChoice pseudo state
at line 42
Action/Effect Method Methods at lines 52-57
Transitions Transition table Transition table at lines 44-50
Event Event The call-event at line 43

State attribute typed

Deferred Event
eterred Lven by deferred event type

Not available in the example

Transition guard | Method  returning a | The valid method at lines 58-59 as the
boolean transition guard at line 49

provided interface. The T template parameter is an interface in code (e.g. interface in Java
or class with pure virtual methods in C++) equivalent to the interface required/provided
by a UML port. BidirectionalPort<R,P> is also proposed to map to UML bidirectional
ports, which have one R required and one P provided interface. Because a UML port is
translated into an attribute in the extended code, a UML port with multiplicity > 1 can
be transformed into an array attribute with its size as the multiplicity of the port. Since
the size of an array should be fixed, we only allow fixed multiplicities for model elements to
avoid runtime memory allocations of component parts and ports in embedded systems and
to specify the exact number of components and inter-component connections at design-time.
This restriction is similar to that of the approach in [Ciccozzi 2014].

Lines 19 and 22 in Fig. 5.2 on page 67 show ports with a required interface and lines
26-37 show ports with a provided interface of the Producer, Consumer, and FIFO classes
respectively.

Binding A binding (see Table 5.1, row 4) connects ports on two parts. It is equivalent
to a UML connector that can connect two UML ports. Here we consider the case where a
UML connector has two connector ends. A method call to our predefined method bindPorts
connects two ports. This method can be called for various types of connectors. Table C.1
on page 133 shows the equivalences of different connector types and bindPorts. A call of
bindPorts takes as input four parameters: the first two are port references; and the last
two are the multiplicities of the two connector ends of the connector. The multiplicities of
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the connector ends are used for specifying which connector pattern/topology or connection
pattern/topology used for interactions between component instances in the architecture.
There are two types of connector patterns: array and star. The last two parameters are
by default 1’s to simplify the array pattern where the multiplicities of the connector ends
are 1’s. The connector patterns are defined by the Precise Semantics for UML Composite
Structure (PSCS) [OMG 2015] standard of OMG. We briefly describe these two patterns
and how to relate to the proposed constructs in the followings.

Precise Semantics for UML Composite Structure (PSCS) PSCS defines how pre-
cisely the considered composite structure elements, part, port and connector in particular,
should behave in presence of multiplicities, that are not well supported in the literature.
For parts, ports, and connectors, PSCS provides two patterns with conditions constraining
the multiplicities of these elements. The two patterns are called array pattern and star
pattern.

To give a clear explanation of these patterns, assuming that two parts A and B with
their ps and pp respective ports are connected by a connector with two ends e4 and ep;
mul(e) is the multiplicity of the e element, e.g. we say that there are mul(A) instances of
the A part.

e Array pattern [OMG 2015]: In an array pattern, each port instance at one end of
the connector, e.g. p4, is only connected to another port instance at the other end of
the connector, e.g. pg. The conditions for the multiplicities for the elements are as
belows:

mul(ea) = mul(eg) =1 (5.1)
mul(A) x mul(pa) = mul(B) x mul(pp) (5.2)

The connectors in the producer-consumer example in Fig. 5.1 on page 67 are of
the array pattern in which the multiplicities of all of the parts, the ports, and the
connector ends are 1. The multiplicities of these elements satisfy the 5.1 and 5.2
conditions.

e Star pattern [OMG 2015]: In a star pattern, each port instance at one end of the
connector, e.g. an instance of p4, is connected to all port instances at the other end
of the connector, e.g. mul(B) * mul(pg) instances of pp. Requests from an instance
of pa to pp is propagated alternatively to instances of pg. The conditions for the
multiplicities for the elements are as belows:

mul(A) * mul(pa) = mul(en) (5.3)
mul(B) * mul(pg) = mul(ep)

To illustrate this star pattern, let’s consider the publisher-subscriber example in Fig.
5.3a. The system has a pub publisher part with 2 instances (mul(pub) = 2) and a sub
subscriber part with 3 instances (mul(sub) = 3). The multiplicities of the connector
ends of the connector between the two parts satisfy the 5.3 and 5.4 conditions for a star
pattern. This example is equivalent to the composite structure in Fig. 5.3b, where
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Figure 5.3: Composite structure diagram for a publisher-consumer example with multiplic-
ities for a star pattern connector

the pPush port of a pub part instance is connected to all of the sPush port instances
of all sub instances. The pPush ports of publ and pub2 become sending/forwarding
points that allow to alternatively send out data to its connector-connected subscribers
instances. For example, the first request from the first instance of pPush is sent to
the first instance of sub and then the second request to the second instance of sub.

These pattern conditions are also applicable to delegation connectors.

Table C.1 on page 133 shows a specification of how to map from UML connectors with
multiplicities for connector ends and ports to invocations of bindPorts and parameters.

For example, lines 7-8 in Fig. 5.2 on page 67 show two invocations of bindPorts for two
port-port connectors of array pattern. Each of the invocation takes as input two ports (the
two ports of the producer and the fifo, for example) and the multiplicities of the connector
ends for the array pattern are by default 1s. Because, in this case, the UML connectors
between the parts of the system in Fig. 5.1 are of the array pattern. Each code class
associated with a UML component contains a single configuration (as a method in lines
6-9) with bindings. The configuration method is restricted to have only invocations of
bindPorts for synchronization ease. Statements other than invocations of bindPorts in the
configuration method do not have any effect.

Other elements in the UML class diagram in Fig. 5.1 are mapped to the corresponding
code elements as found in industrial tools such as IBM Rhapsody [IBM 2016a] and Enter-
prise Architect [SparxSysems 2016]. UML parts of a class, e.g. p, fifo, ¢, are mapped to
composite attributes of the corresponding class at the code level, e.g. the System class; the
UML operations and properties are mapped to the class methods and attributes, respec-
tively; the UML interfaces (IPush and IPull) mapped to interfaces in code, e.g. classes
with pure virtual methods in C++ at lines 11-17 in Fig. 5.1.

Usage of additional constructs The purpose of adding new programming constructs is
to (1) provide bidirectional mapping between model and code and (2) allow programmers to
write fine-grained behavior of components using the constructs: programmers can use the
required and/or provided interface of a port to call the methods of the interface. To do it,
we provide attribute interfaces as members of the port additional constructs corresponding
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Table 5.2: Mapping between UML and Examples of Extended Language-2

UML and MARTE Extended Language Example in Listing 5.1
Attrd

In flow port I;ELT;?:X?;?{}E}, Ports pInData at line 10
Attribute typed by Ports pOutData at lines

Out fl t

b How por OutFlowPort<Sig> 3 and 11

Attribute t db

Bidirectional flow port n g;t;’lsw;iit< S};g> Not available in the example

UML Signal A class The example does not show a

signal class

to the UML ports as follow: a requiredIntf attribute (a class attribute in Java or a pointer
attribute in C++, e.g.) typed by the required interface of the required or bidirectional port
and a providedIntf attribute typed by the provided interface of the provided or bidirectional
port. For example, to call the push method implemented by the fifo from the producer, a
programmer can write pPush.requiredIntf- >push(data) in fine-grained code of the producer.

Flow port UML only provides service ports that have provided and/or required inter-
faces. Some UML extensions/profiles such as MARTE [OMG 2011] define flow ports to
support data-flow like communication schemas in additions. Flow ports enable message-
driven and data-flow oriented communication between components, where messages ex-
changed between ports represent data items. The direction of a data-flow of a flow port
can be in/out/inout. The data items exchanged between components through flow ports
are modeled in terms of UML signals. Papyrus-RT [Posse 2015| also allows the exchange
of messages between ports. The difference is that Papyrus-RT uses the concept of a pro-
tocol to specify which messages are incoming to or outgoing from a port of a component
[Papyrus-RT 2017]. Moreover, a message in Papyrus-RT protocols is represented as an op-
eration, which can have data as its parameters, while we use the concept of UML Signal with
the MARTE profile stereotypes to better represent a message-oriented or data flow-oriented
communication. Furthermore, a flow port is useful when being used with signal-events for
a UML-SM. The details of signal-events are discussed in Subsection 5.1.2.

In the bidirectional mapping, new programming constructs are also proposed corre-
spondingly to the UML flow ports. Table 5.2 shows our mapping and examples for flow
ports. Similarly to the service ports, there are also three template-based flow port pro-
gramming constructs including InFlowPort, OutFlowPort, and InOutFlowPort with the
template parameter as a class in the source code, transformed from the UML Signal of
the corresponding UML flow port. The multiplicities of flow ports are translated into code
exactly similar to that of service ports as previously described.

For better understanding of flow ports, let’s redesign the producer-consumer example by
using flow ports. The data items flow from the producer to the fifo (through the connector
between the p and fifo parts) and then to the consumer. The changes made to the design
in Fig. 5.1 @ on page 67 are as follows:

e pPush and pPull of the producer and the fifo become OutFlowPort ports, namely,
pOutData in their respective class since data are sent from these ports.

e pPush and pPull of the fifo and the consumer become InFlowPort ports, namely,
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Figure 5.4: Composite structure diagram of the producer-consumer example using flow
ports

pInData in the respective class since data are received on these ports.

Fig. 5.4 shows the composite structure diagram of the flow port-based producer-
consumer example with the use of the MARTE flow port stereotypes. The data flow between
the flow ports is visible through the use of the MARTE stereotype notations.

Listing 5.1 shows the generated code for the flow port-based producer-consumer exam-
ple. The constructs OutFlowPort and InFlowPort are used. Note that, in this example,
the FIFO class no longer implements the IPush and IPull interface for receiving signal in-
stances since the signal reception is now handled by the state machine of FIFO (not shown
in Listing 5.1 for simplification). The details of how the reception is handled by the state
machine are presented in Subsection 5.1.2 and Section 5.4.

From an implementation perspective, the producer sends data items to the fifo via the
port pOutData by calling pOutData.outf->push(item) (lines 4-6). Similarly to the service
ports, out-flow ports also have an interface attribute outIntf for writing code to send signals
from a component to another component and in-flow ports have an interface attribute inintf.
If the behavior of the receiving component (the fifo, for example) is described by a state
machine, the push method will fire a signal-event instance that is handled by the state
machine later. The details of signal-events are discussed in sub-section 5.1.2.

Listing 5.1: Producer-consumer using flow ports

class Producer {
2 public:
OutFlowPort<Data> pOutData;
4 void sendToFifo(Data& item) {
pOutData. outIntf—>push (item) ;
6 }

}
s class FIFO {
public:
10 InFlowPort<Data> pInData;
OutFlowPort<Data> pOutData;

class Consumer {
14 public:
InFlowPort<Data> pInData;

class System {
12 public:
Producer p;
20 FIFO fifo;
Consumer c;
22 void configuration () {
bindPorts (p.pOutData, fifo.pInData)
24 bindPorts (fifo .pOutData, c.pInData)

}
26}

In the next sub-section, we present our proposed additional programming constructs

)
3

corresponding to the behavioral modeling concepts, in particular UML-SM elements.
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31.Statemachine FIFOMachine {
InitialState Idle{};
State SignalChecking {
3 StateEntry entryCheck() ;
35. StateExit exitCheck() ;
6.}
37. State DataQueuing {
38 . StateEntry entryQueue() ;
39. State Queuing{};
40, };
4 State Discarding{};
42 . PseudoChoice dataChoice{};

3 CallEvent (push (Data&)) DataPushEvent;

4. TransitionTable {

45. ExT (Idle,SignalChecking,

4 ¢ DataPushEvent ,NULL, signalCheck) ;
ExT (SignalChecking,dataChoice,

18. NULL,NULL,NULL) ;

49, ExT (dataChoice,Queuing,NULL,valid, NULL)
50. }

51.};

52.void entryCheck(){//fine-grained code}
53.void exitCheck() {//fine-grained code}

54 .void entryError(){//fine-grained code}
55.wvoid signalCheck(Data& item) {

56.//trans effect from Idle to SignalChecking
57.}

58.bool valid() {return !isQueueFull ()}

59.}

Figure 5.5: Generated extended code for FIFO state machine example copied from Fig. 5.2

5.1.2 Behavioral constructs

In our approach, UML-SMs are used for modeling the discrete event-driven behavior of
components. Our behavioral programming constructs correspond to the UML-SM concepts
at the modeling level. These behavioral constructs are grouped into three parts: topology,
events, and transition table in the extended code.

Topology A topology contains the constructs to describe the state machine hierarchy.
The root of the topology is specified via the StateMachine as in Fig. 5.5. Note that, for
readability reasons, Fig. 5.5 is coped from Fig. 5.2 on page 67. A StateMachine contains
class-like declarations of vertexes (see Fig. 5.6 for more details about the syntax). Similarly
to the concepts of vertexes in UML-SMs, a vertex can be either a state, which can in turn
contain one or more regions, or a pseudo state. The vertex elements are declared as state
machine sub-elements.

In UML, a UML-SM state can have associated actions: entry, exit, and doActivity. In
the mapping, the entry/exit/doActivity state actions are declared within the corresponding
state in the extended code as state methods-like. And, these actions must be implemented
as methods in the owning class and have no parameter.

For example, in Fig. 5.5, Idle is declared as an initial state. The SignalChecking state
(lines 33-36) is declared with its entry and exit state actions, entryCheck and exitCheck,
respectively. The owning class FIFO of the state machine implements the two methods
entryCheck and exitCheck (lines 52-53) for the state actions. The separation of declarations
and definitions of state actions is similar to that of C++ where declarations are in header
files and definitions in source files.
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(statemachine)
(vertexes)
(vertex)

(state)
(initial-state)
(state-content)
(initial-effect)
(state-actions)
(state-entry)
(state-exit)
(state-doactivity)
(connection-points)
(entry-point)
(exit-point)
(pseudo-state)
(pseudo-keyword)
(regions)

(region)

(events)

(event)

(name)
(deferred-events)

(deferred-event)

TTTTTTTTTTTTTTTT T T T T T T T

StateMachine (name) { (vertexes) (events) (trans-table)} ;

(vertex) ; (vertexes) | (vertex)

(state) | (initial-state) | (pseudo-state)

State (name) { (deffered-events) (state-content) } ;

InitialState (name) { (initial-effect) | A (deffered-events) (state-content) } ;

(state-actions) (connection-points) (vertexes) | (regions)

InitialEffect (name) ();

(state-entry) (state-exit) (state-doactivity)

StateEntry (name) ();
StateExit (name) ();

StateDoActivity (name) ();

(entry-point) | exit-point | A (connection-points)

PseudoEntryPoint (name){};
PseudoExitPoint (name){};
(pseudo-keyword) (name){};

Pseudolnitial | PseudoTerminate... | PseudoDeepHistory

(region)(regions) | A

Region (name){(vertexes)};

(event) (events) | A

(Call-event) | (Time-event) | (Signal-event) | (Change-event)

Identifier

(deferred-event) (deferred-events) | A

DeferredEvent (name);

Figure 5.6: A concrete syntax for state machine topology in C++. For syntax of event
types and transitions, see Fig. 5.7 and 5.8 for more details. A denotes an empty string
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Note that the state machine in the extended code is syntactically valid in the standard
programming language by using its built-in features such as macros in C+-+ and annotations
in Java. Here, we do not impose a specific syntax for the state machine in the extended
code. It is left for the developers of the synchronization mechanism to implement a concrete
syntax. The constraints for the syntax are: (1) it must be syntactically valid in the standard
programming language by using built-in features; and (2) it must explicitly explore the
UML-SM concepts within the code. For example, the extended code state machine hierarchy
can be defined as an object-oriented class hierarchy, in which the StateMachine keyword can
be defined as a macro for replacing the class keyword. It means that the underlying layer
behind the macros for state machine elements is class hierarchy. That is why it is compilable
with standard compilers. Therefore, programmers can easily write fine-grained code for the
state action methods within a standard IDE while fully profiting from assistance features
of the IDE such as automatic completion.

Concurrent states can have multiple orthogonal regions in the extended code. A region
in turn can have multiple vertexes defined. Listing 5.2 demonstrates an example of a
component A with a state machine SM as its behavior in the C++ extended code. The
state machine has an initial concurrent state with two regions, namely OrthogonalRegionl
and OrthogonalRegion?2. While the representation of states and regions is very similar to
Textual Modeling Language (TML) [Mazanec 2012], the difference is that the state machine
in the extended code is syntactically valid in the standard programming language.

Listing 5.2: Example of orthogonal regions

1 class A
StateMachine SM {
Initial State S1 {
Region OrthogonalRegionl {
Initial State S2{};

7 Region OrthogonalRegion2 {
Initial State S3{};

Pseudo states can be declared within Statemachine/State/Region in the extended code.
The syntax is similar to class declarations with keywords different from class. The keyword
of pseudo states is one of PseudoEntryPoint, PseudoExitPoint, Pseudolnitial, PseudJoin,
PseudoFork, PseudoChoice, PseudoJunction, PseudoShallowHistory, PseudoDeepHistory,
PseudoTerminate, which correspond to the pseudo states defined in UML-SM. For example,
line 42 in Fig. 5.5 declares the dataChoice choice pseudo state corresponding to the pseudo
state in the FIFOMachine state machine at the model level.

Events In UML, four event types including CallEvent, SignalEvent, TimeFvent, and
ChangeFEvent are defined for modeling discrete event-driven behavior using UML-SMs. The
semantics of these events is clearly defined in the UML specification and is briefly described
in the list below.

e Call-event: A call-event is associated with an operation/method and emitted if the
operation is invoked.

e Signal-event: A signal-event is associated with a UML signal type containing data.
When a component, whose behavior is described by a UML state machine, receives a
message/signal through its in/inout flow ports, a signal-event is automatically emitted
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(Call-event)

(Time-event)

CallEvent ( (op_signature) ) (name){} ;
TimeEvent ( (dur) ) (name){} ;

(Signal-event) SignalEvent ( (sig_name) ) (name){} ;

LI [ [

(Change-event) ChangeEvent ( (change expr) ) (name){} ;

Figure 5.7: A concrete syntax for event declarations in C++

and stored in an event queue for later processing by the state machine. Note that,
in case there is a delegation connector from the port of the component to one of its
inner parts, a signal-event instance is emitted to the inner part.

e Time-event: A time-event specifies a wait period, starting from the time when a
state with an outgoing transition triggered by the time-event is entered. The time-
event is emitted if the state remains active longer than the wait period. Once emitted,
it triggers the transition. In other words, the state, which is the source vertex of a
transition triggered by a time-event, will remain active for a maximal amount of wait
period specified by the time-event.

e ChangeEvent: A change-event has a boolean (change) expression and is fired if the
expression value changes from false to true. For example, a change-event can be used
to detect some information such as changes of temperature measured by a sensor.
The change expression is, in the mapping, transformed into a change method, which
returns a boolean value.

Following the UML specification [Specification 2015], the processing of a call-event can
be either synchronous or asynchronous depending on the design of the operation associated
with the call-event. Synchronous processing of a call-event means that it runs within the
thread of the operation caller. Developers should pay attention to the use of synchronous
call-events to avoid a deadlock problem that will be presented in detail later in Subsection
5.4.3.3 on page 98. The processing of other events is asynchronous meaning that the received
events are stored in an event queue which is maintained by the component of the state
machine at runtime for later processing. A simple usage of synchronous call-events is in
user interaction (UI) applications, in which users click on a button. The click then emits
an event and calls user code for synchronously processing the event to respond to the users.
We support all of these events with the aforementioned semantics.

Again, we do not impose a specific syntax for event declarations. As a proof of concept,
Fig. 5.7 gives a concrete syntax example for the syntax of the event declarations in C+-+.

Essentially, each component in the syntax carries known semantics defined in the UML
specification which is described as follows:

e name: The unique identifier for an event.

e op_signature: The signature of the operation/method associated with a call-event.
This signature includes the name and the parameter types of the method.

e dur: The duration in millisecond associated with a time-event.

e sig_name: The name of the signal class type (a UML Signal is transformed into an
object-oriented class) associated with a signal-event. Typically, upon reception of an
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instance of this signal type on a port, a signal-event is emitted. Listing 5.3 shows an
example of a signal-event SE_ Example for the Data signal.

e change_expr: The name of the change expression method associated with the change-
event.

Transition table It describes the mapping of our syntactical constructs equivalently
to UML transitions at the model level. Three kinds of UML transitions, external, local,
and internal are supported. The differences between the transition kinds are previously
described in 2.1. While an external or a local transition is specified as (kind, source,
target, guard, event-name, effect), an internal transition, which does not need to
know its target vertex because its source and target are the same, is specified as (kind,
source, guard, event-name, effect) with components defined as follows:

e kind: transition kind (external, local, internal).

e source: The name of the source vertex of the transition.

target: The name of the target vertex of the transition.

e event-name: The name of the event that triggers the transition.

guard: The name of a transition guard method. A guard method in the extended
code is equivalent to a transition guard at the model level. A guard method is a
member method of the component, whose behavior is described by the state machine,
and returns a boolean value. The guard method allows programmers to write the
boolean expression of the UML guard in a method-like style, which programmers are
familiar with. If the transition is triggered by an event, the guard method should
have access to the data of the event for reasoning the activation of the transition.
The guard method, therefore, can have parameters depending on the event type. If
the event is a call-event, the guard method has the same parameters as the associated
method of the call-event has. The values that will be passed to the parameters of the
guard method are those of an invocation of the method. If the event is a signal-event,
the guard method has a parameter typed by the signal type.

e effect: The name of a transition effect method. An effect method in the extended
code is equivalent to a transition effect at the model level. It is executed if the returned
value of the guard method is true; Similarly to the guard method, the effect method
also has parameters that follow the same rules of the parameters of the guard method.

As a proof of concept, we give the syntax for declaring transition table and transitions
as shown in Fig. 5.8.

Lines 44-50 in Fig. 5.5 show a transition table with three external transitions (defined
by the "ExT"keyword). The first one is from Idle to SignalChecking, triggered by the
DataPushEvent call-event declared within the state machine, and has signalCheck as its
transition effect. The call-event is declared at line 50 and an instance of it is emitted
whenever there is an invocation of the push method of the FIFO class. The processing of
the emitted event activates the transition from Idle to SignalChecking, and executes the
signalChecking transition effect method. The data item brought by the invocation will be
checked for validity and further put to the queue or discarded. The signalCheck method
is implemented within the FIFO class owning the state machine, and has the same formal
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(trans-table) =  (transitions)

(transitions) = (transition)(transitions) | A

(transition) |= (ExternalTrans) | (LocalTrans) | (InternalTrans)
(ExternalTrans) = ExT((source),(target),(event-name),(guard),(effect));

(LocalTrans) = ExT((source),(target),(event-name),(guard),(effect));
(InternalTrans) =  ExT((source),(event-name),(guard),(effect));

Figure 5.8: A concrete syntax for transitions

parameters as the push method associated with the call-event. This first transition does
not have a guard method since "NULL" is specified for this guard.

The second transition does not have any guard, triggering event, and effect. The last
transition has a guard method wvalid that is implemented in the FIFO class.

Note that the state machine example in Fig. 5.1 and 5.5 can replace the DataPushFvent
call-event of the transition from Idle to SignalChecking with a signal-event associated with
the Data signal.

Deferred event A state can declare deferred events by introducing attributes typed by
our class-like additional construct DeferredEvent and named as event names to be deferred.
A deferred event will not be processed while the state remains active. The deference of
events is used to postpone the processing of some low-priority events while the state machine
is in a certain state. The execution semantics of deferred events is: given a current active
state with declared deferred events and the event queue, the deferred events appearing at
the head of the queue will be moved to a deferred set and pushed back to the front of the
queue once a non-deferred event is processed. Listing 5.3 shows a state machine with an
initial state S1 that defers the SE_ Fzample signal-event.

Listing 5.3: Example of signal-event and deferred event

class A {
2 StateMachine SM {
Initial State S1 {
4 DeferredEvent SE_Example;

}
6 SignalEvent (Data) SE_Example;
}

s }

We have shown a bidirectional mapping between the architecture model and the ex-
tended code. The next sections show the text-to-text transformation to make the additional
constructs in the extended code executable and debug-able.

5.2 Overview of in-place text-to-text transformation /Pre-
processor

As a reminder, the previously generated extended code contains our template-based and
syntactic additional programming constructs and user fine-grained code, e.g. state machine
action methods. This extended code itself is compilable by standard compilers (because
the additional constructs are created by using built-in features of the standard program-
ming language) but natively not executable and debug-able (see Chapter 3 on page 39 for
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Figure 5.9: Delegation from a component to its delegatee

explanation). That is why an in-place text-to-text (T2T) transformation, which acts as a
preprocessing is needed. The role of the T2T transformation is similar to that of a Java
annotation processing as previously described in Chapter 3 on page 39.

For each component class containing the additional constructs such as ports, bindings,
and state machine elements, the T2T transformation creates an additional code file/class,
whose name has Delegatee as its postfix, complementing the extended code. In the fol-
lowings, we refer "extended code component" as a component within the extended code,
which use additional constructs, and "delegatee" as the additional code class created by the
T2T transformation. The created delegatee classes/files are in the same repository with
the extended code but hidden from developer perspectives and not intended to be modified
by the developers. These delegatee files play as role of dynamic library code executing the
runtime semantics and logic specified by the additional constructs. If programmers modify
the extended code in a file, the T2T transformation will re-generate the dynamic library
code file so that this latter executes the desired semantics of the modified extended code.

Fig. 5.9 shows the relationships/associations and control flows between an extended
code component and its corresponding generated delegatee as follows:

e An extended code component owns a composite attribute typed by its delegatee class.

e The execution of the extended code component is passed to the delegatee through the
owned composite attribute.

e The user code (e.g., state entry/exit actions or transition effects) in the extended
code component is invoked by the delegatee execution via a component reference to
the extended code component.

The process of generating delegatee code from the additional constructs is similar to
a code generation process from component-based design and state machines. This code
generation is supported by several tools such as IBM Rhapsody [IBM 2016a|, Papyrus-RT
[Posse 2015|, and Enterprise Architect [SparxSysems 2016]. However, the code generated
from these tools is mixed with fine-grained behavior code such as state action or transition
effect code, which makes the reconstruction of state machines and component-based ele-
ments from code impossible. Our code generation, on the other hand, completely separates
the delegatee code and user-code in different files. By this way, the code after the T2T
transformation is composed of two parts: wvisible files, which are extended code files and
modifiable by programmers, and delegatee code files, which are automatically generated or
modified by the T2T transformation if the extended code files change. The delegatee code
after the transformation is compilable, executable, and debug-able (but not modifiable in
the sense that modifications in the delegatee code are overwritten by the transformation).
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Example formalization To formally illustrate the delegation from an extended code
component to the corresponding delegatee, Fig. 5.10 shows a sequence diagram that for-
malizes the interactions between the extended code component and the delegatee during
delegation for the producer-consumer example. For simplification, let’s assume that the
main method of the program creates an instance of the system. The creation of the system
instance entails the creation of its corresponding delegatee instance. The three parts p,
fifo and ¢ of the system are then created by the system instance. For each created part,
an instance of the delegatee associated with the extended code component of the part is
instantiated. The delegation from the system instance to the system delegatee is that: to
establish the connections between ports communicated by connectors at the model level, the
main method calls Create Connections of the system delegatee instead of calling methods
of the extended code system. The details of the connections through the system delegatee
are presented in Section 5.3. Similarly, the delegation of the state machine behavior execu-
tion of the FIFO instance is the call of Start State Machine Behavior of the fifo delegatee.
Hence, the state machine execution of the fifo is run within the fifo delegatee instance.
More information about such execution delegation is shown in Section 5.4.

The idea of the complete separation of the delegatee code from the extended code is, to
some extent, similar to that of deep separation presented in [Zheng 2012]. Deep separation
intends to support the co-evolution of architecture model, specified by the xADL 2.0 archi-
tecture description language with behavior support specified by simplified state machine and
sequence diagrams, and Java implementation, by separating architecture-prescribed code
from user-defined code. However, the separation in this thesis differs from deep separation
fundamentally: Deep separation does not allow users to (1) change architecture at the code
level and (2) modify the architecture and implementation concurrently. The separation in
this thesis, on the other hand, is the way of making the proposed additional constructs
executable and allows both of changing architecture at the code level and modifying archi-
tecture model and code concurrently. Furthermore, the support of state machines in this
thesis is more rigorous than that of the deep separation: we support a complete set of UML-
SM elements rather than a simple set of the elements as in the deep separation approach.
In addition, this thesis intends to generate code that is conforming to the UML specifica-
tion while the deep separation in [Zheng 2012| follows the xADL [Khare 2001] architecture
description language.

The T2T transformation is based on a set of patterns for generating code from UML-
CS and UML-SM. Note that, instead of applying the patterns to generate code within
the extended code component as in the existing tools (IBM Rhapshody and Enterprise
Architect), the T2T transformation takes as input the information of the constructs declared
within the extended code component to generate code for the corresponding delegatee. The
details of the patterns are presented in the next sections.

Since the T2T transformation is based on a set of code generation patterns, in the
followings, we use the code generation and transformation terms interchangeably.

5.3 Transformation from Component-Based to Object-
Oriented Concepts

This section describes the process and patterns to generate object-oriented code from
component-based concepts or additional structural programming constructs contained by
the generated extended. A standard compiler can then make use of the extended code
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Figure 5.10: Formalization of operation of delegation from extended code to delegatee code
for the producer-consumer example when a system is created from the main method
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Figure 5.11: Delegation from a component to its delegatee

Termination

and the delegatee code to compile, execute and debug them. Because a binding in the
extended code is equivalent to a UML connector, in the followings, these two terms are
used interchangeably. The objectives are: (1) to generate delegatee code from an extended
code component given that the two codes should be physically separated from each other so
that programmers do not need to pay attention to the existence of the delegatee code (the
extended code is executable from the programmers perspectives); (2) to support the two
codes being logically related with each other through delegation as described in Section 5.2
on page 78; and (3) to support a complete set of the structural constructs as well as their
semantics, especially the connector patterns, namely the array and star patterns.

Fig. 5.11 shows the overview of the process. The first step is to verify whether the
structural constructs contained in the extended code of a component are validated by an
array or a star pattern since these patterns have different semantics. The next step is to
use a set of code generation patterns to produce delegatee code.

5.3.1 Verification

The verification process checks the multiplicities of structural elements, namely parts, ports,
and connector ends for finding out which connection patterns are used in the architecture.
There can be multiple connectors from the same port to multiple other ports. PSCS allows
such usage of multiple connectors for exploring architectures. In existing code generation
tools, they impose a restriction in which a required port is connected to only one provided
port [Posse 2015, Ciccozzi 2014]. We allow the use of multiple connectors from the same
port and generate delegatee code accordingly. Fig. 5.12 shows examples of using multiple
connectors from the same port (pA) to multiple ports (pB and pC in (a)) and a port and
a part(pB and c in (b)).

Note that in Fig. 5.12 (b), UML-CS allows a connector to connect a port on a part with
a part (without port). We call such a connector a port-part connector that is different from
a port-port connector. A port-part connector is useful when using with a legacy object-
oriented class without modifying it. For example, in Fig. 5.12 (b), if the class C is a legacy
class and does not have any port, we need to add a port to it so that a port-port connector
can connect the part a with ¢. A port-part connector does not need to have this addition
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Figure 5.12: Composite structure examples of port-port connectors (a), and both port-port
and port-part connectors (b)

and therefore keeps the legacy class intact.

A port-part connector can be considered as a port-port connector in which a virtual
port is created in the part and the multiplicity of this virtual port is always 1. For example,
in Fig. 5.12 (b), we can assume that the conn3 connector connects the pA port on the a
part to a virtually created port, namely pC, on ¢ where the multiplicity of pC is 1. Every
discussion related to port-port connectors can be generalized to port-part connectors, e.g.
mapping between a port-part connector and a bindPorts method call.

The semantics in Fig. 5.12 (a) is that each port instance of pA connects to:

1. A port instance of pB.

2. All port instances of pC (totally 12 instances since each of 4 part instances of ¢ has
3 port instances).

Therefore, there are actually 13 connections from the pA port during execution. In
Fig. 5.12 (a), assume that the pA port requires the ICompute interface and pB and pC
provide this interface. A call of one of the operations of ICompute through pA is propagated
to one of 13 instances including: 1 instance of pB and 12 instances of pC. In the PSCS
standard, the solution for selecting which instance the call is propagated to is alternative.
By applying this solution to the example, the first call might be propagated to pB, the
second to the first instance of pC, the third to the second instance of pC, and so on. In
general, if we consider the 13 instances of pB and pC' as an ordered set and pB as the first
element (with the index as 0) of the set, the k' call from an instance of pA is propagated to
the (k%13)!" instance of the set. In effect, this ability of allowing to use multiple connectors
starting from a port greatly simplifies the modeling, abstracts the low-level implementation
of the interactions between components, and allows designers to specify connector patterns
between components in a condensed way.

In the followings, we discuss the verification of connector patterns for assembly port-
port connectors. Assembly port-part connectors are, as previously discussed, similar to
port-port connectors. The discussion for delegation connectors, which is very similar to
that of assembly connectors, is then presented.

Assembly connectors Let’s remind the multiplicity of an element e is written as mul(e).
We assume a set of connectors C' that start from the same port p. For each connector
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c € (', assume that ¢ connects p to the other port poiper 0n a part agener and the connector
ends that connect to p and pogher are e and epgner respectively. The algorithm 1 shows
the verification process. The algorithm checks whether each connector ¢ € C' satisfies the
conditions for an array pattern or a star pattern that are described in Subsection 5.1.1. This
algorithm is actually a generalization of the 5.1, 5.2, 5.3 and 5.4 conditions for checking a
single connector satisfying one of the two patterns.

Algorithm 1 Verification for port-port connectors

Require: A set of connectors C' that start from the same port p of a part a to other ports
Ensure: Check whether the connectors satisfy the conditions for valid patterns
1: procedure VERIFY VALIDPATTERNSOFPORTS(p, a, C)
2: for Vc € C do
if mul(e) == 1 A mul(eother) == 1 then
if mul(p) * mul(a) # mul(Pother) * mul(aother) then
Throw exception: Not an array pattern
else
if mul(p) * mul(a) # mul(e) V mul(pother) * mul(aother) # mul(€other) then
Throw exception: Not a star pattern

® TS g oW

Delegation connectors In this case, delegation connectors are specializations of assem-
bly connectors that connect a port p of a component to ports of the inner parts of the
component. The verification process is similar to Algorithm 1, except that mul(a) = 1.

In the next section, the code generation patterns are presented.

5.3.2 In-place text-to-text transformation or code generation pat-
tern for UML-CS elements

This section presents our code generation patterns for UML-CS elements in the extended
code, ports and bindings in particular. We start with the patterns for ports. Then, a
createConnections method is created for each configuration of bindings.

5.3.2.1 Code generation for ports

ProvidedPort For each provided port of an extended code component, a getter method
is generated within the corresponding delegatee. The purpose of this method is to return
the providedIntf provided interface attribute of the provided port (see Subsection 5.1.1 on
page 66 for more information about this attribute). Obviously, this attribute is initially
null. The value assignment of this attribute depends on the internal structure of the class
containing the port. If the multiplicity of the provided port > 1, the getter has a portIndex
additional parameter, that indicates which port instance’s provided interface should be
returned. There are three cases to be considered for provided interface assignment as
follows:

1. Case 1: If there are no delegation connectors from the provided port as the example
in Fig. 5.13 on page 87, the attribute simply refers to the component class (or the
extended code component) since this latter must implement the provided interface.
Lines 9-12 of Listing 5.5 illustrate this case where the getter method get pB returns
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the component reference implementing the ICompute interface. The significance is:
for a request for one of the services provided by a port, unless this port delegates the
request to an inner part, the request should be handled directly by the extended code
component.

2. Case 2: If there are no delegation connectors and there are call-events associated
with methods of the provided interface, the delegate must implement the interface.
The attribute refers to the delegatee. The implementation of the interface by the
delegatee acts as a wrapper and follows the following rules:

e Rule 1: For a method m of the interface not associated with any call-event,
its corresponding wrapper method to be implemented by the delegatee should
invoke m of the extended code component. By this way, invocations of the
method through the port are also handled by the extended code component
similarly to Case 1.

e Rule 2: For a method m associated with a call-event, the difference between
its wrapper method and that of Rule 1 is that its wrapper method calls the
event processing method generated from the call-event to tell the state machine
execution in the delegatee to handle this event before invoking m of the ex-
tended code component. Listing 5.4 on page 86 illustrates this rule. Remember
that, in this delegatee code generated from the extended code components of the
service port-based producer-consumer example, the push method of the IPush
interface is associated with the DataPushEvent call-event. The FIFODelegatee
class therefore implements IPush. The push wrapper method calls the process-
DataPushEvent event processing method corresponding to the event to emit an
event instance to an event queue (for asynchronous call-events) or synchronously
process it (for synchronous call-events).

3. Case 3: If there exists at least a delegation connector from the provided port, the
initialization of the attribute is done by the createConnections method, which is cre-
ated by the T2T transformation from the configuration of the extended code compo-
nent. The process of generating code for createConnections is described in Subsection
5.3.2.2.

RequiredPort For each required port of a component, a setter method is generated
within the corresponding delegatee for setting the required interface attribute of the port
to an appropriate implementation of the interface. The method has an additional parameter
portindex if the multiplicity of the port > 1.

InFlowPort An InFlowPort port provides an inlntf attribute typed by our pre-defined
interface IPush<Sig> as previously described in Section 5.1.1. The template parameter
Sig indicates the data signal type whose instances flowing through the port. This interface
contains a single method, namely push. The interface with a signal type here plays the
role as the provided interface of the port: other components call the push method of the
interface to send signal instances. Therefore, the code generation for an in-flow port is
similar to that of a provided port.
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Listing 5.4: Getters and setters in the delegatee classes of the service-port producer-
consumer example
class ProducerDelegatee {
2 public:
Producer* component;
1 void set pPush(IPush* impl) {
component—>pPush.requiredIntf = impl;

¢ class ConsumerDelegatee {
public:
10 Consumer#* component ;
void set_pPull(IPull* impl) {
12 component—>pPull . requiredIntf = impl;

class FIFODelegatee: public IPush {
16 public:
FIFO* component;
18 IPush* get pPush()
component—>pPush. providedIntf = this;
20 return this;

¥
22 IPull* get pPull()
component—>pPull. providedIntf = component;
24 return component;

}
26 void push(Data& data) {
processDataPushEvent (data);
28 component—>push (data) ;

}

void processDataPushEvent (Data& data) {
32 method body is generated by state machine code generation process

}

OutFlowPort Similar to the discussion of code generation from in-flow ports, an out-flow
port acts as a required port with IPush<Sig> as required interface. Sig is the data signal
type flowing out through the port.

BidirectionalPort A bidirectional service port is the combination of a provided port
and a required port. The code generation for the bidirectional port is then equivalent to
that of the two ports: a getter for the provided port and a setter for the required port.

InOutFlowPort Similar to service ports, the code generation for an in-out flow port is
equivalent to that of an in-flow port and an out-flow port.

5.3.2.2 Code generation for connectors/bindings

As shortly described in Section 5.2, a createConnections method is generated for each
configuration of an extended code component for establishing the connections between
ports defined by connectors/bindings, e.g. connect the required interface of a required port
to the provided interface of a provided port. This createConnections method is created
in the corresponding delegatee of the extended code component. In the followings we only
detail the code generation pattern for assembly port-port connectors. The discussion for
port-port delegation connectors will be shortly presented afterwards.

Code generation for assembly port-port connectors For each required port p of a
part a, we assume C' as a set of assembly connectors starting from this port. Without loss



5.3. Transformation from Component-Based to Object-Oriented Concepts 87

System

+a:A[3] + b: B [2]

< connl 5

+ pA: ICompute [2] + pB: ~ICompute [3]

Figure 5.13: Example of single connector for array pattern

of generality, we assume that each port in the extended code has multiple port instances,
e.g. port p is an array of mul(p) instances. We distinguish two cases:

e Single Array: C contains only one single connector for an array pattern.

e Hybrid: C contains connectors for star patterns and connectors for array patterns.

The distinction of the two cases is based on the difference between their semantics. In
the first case, following the semantics of the array pattern, an instance of the port p at the
one end of the single connector of C' is connected to only another one port instance at the
other connector end. In contrast, in the second case, an instance of the port p is connected
to multiple port instances.

The followings describe the code generation patterns for the two cases.

Single Array This is the simplest case where there is only one connector in C' and the
multiplicities of the two connector ends are both 1s. Let p and ¢ be the two ports connected
by the single connector ¢ € C. Let a and b be the parts with the p and ¢ ports, respectively.
Note that, each instance of the a part contains mul(p) instances of the p port. Following
the PSCS specification, each instance of p connects to an instance of the ¢ port at the other
end of the single connector of C' and the 5.2 condition must be held. We denote a[é].p[j] as
the j*" instance of the p port of the i*" instance of the a part. The connections between
the instances of p and ¢ are the same as the approach presented in [Ciccozzi 2014]. In this
latter, we need to find the b[k].q[m| port that should be connected to a[i].p[j]. k and m are

computed as follows:

k= (i mul(p) + j)/mul(q)
m = (i * mul(p) + j)%mul(q)

Listing 5.5 on page 88 shows the code generation for the example in Fig. 5.13 on page
87. The createConnections method uses the equations 5.5 and 5.6 to find out which port
of the b part should be connected to a given port of the a part.

Hybrid This case assumes that the set of connectors C' containing more than one con-
nector. Let Cyrrqy and Cgier be the subsets of C' where Cgppqy only contains connectors
of the array pattern and Cy,, only contains connectors of the star pattern. We have
C = Carray U Csior. The semantics of this hybrid structure is as follows:
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Listing 5.5: Generated code for single array pattern

class ADelegatee {
2 Ax component;
void set pA(IComputex impl, int portIndex) {

4 component—>pA [ portIndex|. requiredIntf = impl;

}
6

class BDelegatee {

8 Bx component;

ICompute* get pB(int portIndex) {
10 component—>pB|[portIndex]. providedIntf = component;

return component;

12 }

114 class SystemDelegatee {
System* component ;
16 void createConnections () {
for(int i = 0; i < mul(a); i++) {

18 for (int j = 1; j < mul(pA); j++) {

int partldx = (i * mul(pA) + j)/mul(pB);
20 int portldx = (i * mul(pA) + j)%mul(pB);
ICompute* impl = component—>b|[partldx]. delegatee —>get pB(portldx);
component—>a[i]. delegatee —>set pA(impl);

e For each ¢ € Cyyy, the connections between the p port and the g port at the other
end of the ¢ connector follow the star pattern semantics.

e The array pattern semantics is applied to all connectors in Cypray-

The hybrid structure allows both of the star and array pattern semantics to be applied
to a set of connectors starting from the same port. It means that each invocation of one
of the methods required by p is alternatively propagated to the port instances at the other
ends of the connectors in C' as illustrated in Section 5.3.1 on page 82. In Fig. 5.12 (a) on
page 83, the connl and conn2 connectors start from the same port pA. Requests (method
calls) from pA are alternatively propagated to all instances of the pC' port (12 ports) and
an instance of the pB port, which is specified by the equations 5.5 and 5.6.

To realize this semantics, an intermediate component, namely intermediary, is created to
bridge the connections between the p port and the ports at the other ends of the connectors
of C. In the delegatee code, p is connected to the intermediary instead of the other end ports.
The purpose of the intermediary is to receive requests from the p port and alternatively
propagate them to the other ports following the hybrid structure semantics as described
above. The intermediary can be considered as a forwarding point that receives a request
from the p port and alternatively forward it to other connected ports.

Fig. 5.14 shows how the intermediary for the example in Fig. 5.12 (a) works. Requests
are sent from an instance of pA, a[l].pA[0] in particular, to the intermediary. By using
the equations 5.5 and 5.6, the instance of pB that is connected to pA via the connl array
pattern connector can be computed. The intermediary is also connected to all instances of
the pC port since the conn2 connector is of the star pattern.

Let’s examine the code generation process through the example in Fig. 5.12 (a) on page
83 with its corresponding generated code in Listing 5.6 on page 90 as follows:

1. The first step is to create the Intermediatel Compute intermediate class for the re-
quired interface ICompute of the port pA. As said, this intermediary maintains a
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Figure 5.14: Example of using intermediary to bridge the connections between p and b and
c

references list of implementations of the required interface (line 10) to which the
pA port is connected. The intermediate class implements the add(int, int) method of
ICompute to alternatively call the corresponding method of the instances connected
to the pA through the references attribute.

2. Secondly, a pA_ A _intermediate attribute typed by the intermediary is declared
within the SystemDelegatee delegatee of the container of the connl and conn2 con-
nectors. The purpose is to connect the required interface attribute of the pA port to
this intermediary (lines 3-5) so that requests can be sent from pA to the intermediary.

3. Lastly, the createConnections method is created for the system configuration. For
each port instance of pA, the method uses the equations 5.5 and 5.6 to compute the
instance of pB that should be connected to pA following the array pattern (36-40).
For the conn2 connector, the method follows the star pattern semantics to establish
the connections between the intermediary and the pC port instances (lines 41-49). It
calls the setters of pA to connect this port to the intermediary (line 49).

By this way, code can be systematically generated. It is worth noting that if all of the
connectors in C satisfy the array pattern conditions, the code segment in lines 41-49 for
star pattern connections is not generated.

In fact, as earlier discussed, the purpose of the delegatee code is to make the additional
structural constructs executable by generating the createConnections code from the con-
nector definitions. On the other hand, in an extended code component, only one composite
attribute, which is typed by the delegatee class as previously described by the delegation
pattern, is added by the T2T transformation. As long as the attribute is not modified by
programmers, the extended code complemented by the generated delegatee code is fully
compilable, executable, and debug-able by existing IDEs. "Ezxecutable” and "debug-able”
here mean that developers can execute and debug, respectively, user-code/fine-grained be-
havior code where required and provided interfaces of ports are accessed.

We have shown the process of generating code for assembly connectors. The following
section discusses how to apply this process to delegation connectors.
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Listing 5.6: Generated code for hybrid pattern

1 class ADelegatee {

11

Ax component ;
IntermediateICompute pA intermediate [mul(pA)]|; //intermediate part
IComputex listsOfIntfs [mul(pA)|[NUMB OF CONNS|; //maintained lists of
interaces for ports
void set pA(IComputex* impls, int portIndex) {
for (int i = 0; i < NUMB_OF CONNS; i++) {
listsOfIntfs [portIndex|[i] = impls[i]; //refering implementations

pA _intermediate.setReferences (listsOfIntfs [portIndex], NUMB_OF CONNS) ;
component—>pA|[portIndex |. requiredIntf = &pA intermediate;

}

13 class IntermediateICompute: public ICompute {//intemediate component
private:

IComputex* references;
int numberOfRefs; int nextInstance;

17 public:

23

void setReferences (IComputex* refs, int numberOfRefs) {
this—>references = refs;
this—>numberOfRefs = numberOfRefs; nextInstance = 0;

}
void add(int a, int b)
references [nextInstance]—>add(a,b);

nextInstance++; //point to the next instance
if (nextInstance = numberOfRefs) {
nextInstance = 0;

}

class SystemDelegatee {

-

System* component ;
void createConnections () {
for(int i = 0; i < mul(a); i++) {
for(int j = 0; j < mul(pA); j++) {//loop over each port
ICompute* intfs [NUMB_OF CONNS|; //a list of interfaces
int partldx = (i * mul(pA) + j)/mul(pB);
int portIdx = (i * mul(pA) + j)%mul(pB);
int count = O0;
//the first connections to the ports instances of array connectors
intfs [count++4] = component—>b[partldx|. delegatee —>get pB(portldx);
//the other connections for star connectors
for(int k = 0; k < NUMB_OF CONNS — 1; k++) {
int cIndex = k / mul(pC);
int pCIndex = k % mul(pC);
'/connect all of port instances of ¢ to listOfIntfs
intfs [count++] = component—>c[cIndex]. delegatee —>get pC(pClndex) ;

//call setter for the port
component—>a[i]. delegatee —>set pA(intfs, j);
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Figure 5.15: Delegation connectors example with star and array pattern

Provided delegation connectors A provided delegation connector transfers the method
calls from the provided port of a component to one of the inner parts of the component. For
example, the connd connector in Fig. 5.15 delegates from pB to pD on the d part. There
can be multiple connectors from the same port of the component to multiple parts with port
of the component. Code generation for provided delegation connectors is largely similar to
that of assembly connectors by assuming that the component is a virtual part with 1 as its
multiplicity and the port of the container acts as a required port. Hence, an intermediary
is also created within the component similarly to the case of assembly connectors.

Required delegation connectors A required delegation connector transfers the method
calls on the required port of an inner part contained by a component to the component’s
port. There can be multiple components from the required port to multiple ports of the
component. The ports of the component, which might actually connect to other ports, act
as provided ports from the point of view of the port of the inner part. Similar to the code
generation for assembly connectors, an intermediary is created within the container.

Code generation for flow ports As previously discussed, flow ports enable data flow-
based communication schema between components, in which messages modeled as UML
Signals are sent and received. We also provide an attribute typed by the pre-defined
IPush<Sig> interface for flow ports to send out or receive messages. The semantics of
the interface is similar to that of a required/provided interface of a service port. Therefore,
the in-place text-to-text transformation of flow ports is similar to that of service ports.

5.3.3 Discussion

We have shown a set of code generation patterns used in the text-to-text transformation
from additional structural constructs to delegatee code. The novelty is that the patterns
make the constructs executable and concretely provide an automated way for producing
code conforming to the array and star connection patterns precisely specified by PSCS.
The semantics of the connection patterns is also discussed in [Cuccuru 2008]. Those
semantics are later standardized by the OMG in PSCS. In [Radermacher 2009], a model-
driven tool chain is proposed to automatically generate code from UML models, that use
UML-CS elements. The semantics of ports and connectors are redefined to adapt it to
the context of distributed embedded systems. However, no concrete code generation for the
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array and star connector patterns is taken into account in [Radermacher 2009]. The support
of these connector patterns is also missing in several modeling tools such as Papyrus-RT
[Posse 2015], IBM Rhapsody [IBM 2016a| and Enterprise Architect [SparxSysems 2016,
although these tools provide code generation from UML ports and parts with multiplicities.

The only work that takes the connector patterns into code generation is in [Ciccozzi 2016a].
This latter supports generation of explicit links among port instances. The array pattern is
supported with multiplicities for parts and ports. Furthermore, the author also defines two
other patterns, namely star connector pattern and perfect shuffle pattern. These patterns
are actually specialized cases of the array pattern where multiplicities of parts and ports
are some special values such as even numbers. Note that, the star connector pattern in
[Ciccozzi 2016a] is different from what is understood in this thesis and standardized by
the OMG. Leaving out this variation of the star connector pattern, the multiplicities of
connector ends are not discussed by the author.

In this next section, we will show the code generation patterns and delegation from state
machine constructs.

5.4 Transformation from state machine elements to code

This section describes the text-to-text transformation from state machine programming
constructs, e.g. state, transition, event, pseudo state, used in the extended code as previ-
ously discussed to delegatee code. This latter complements the extended code so that the
proposed constructs are executable. The missions of this transformation are, on the one
hand, similar to that of the T2T transformation for the structural constructs: (1) to gen-
erate delegatee that is physically separated from each other; (2) to support the two codes
being logically related with each other through delegation as described in Section 5.2 on
page 78; and (3) to support a complete set of the behavioral constructs. On the other hand,
the transformation should generate efficient code for embedded systems. For this latter, we
are especially interested in producing code that enables fast event processing and requires
a small amount of memory.

The T2T transformation is based on a set of patterns for generating code from state
machine elements. Many tools and approaches have been proposed to automatically trans-
late UML-SM elements into executable code in the context of MBSE [Mussbacher 2014].
However, those existing tools and approaches either support a subset of UML-SM elements
or handle composite state machines by flattening into simple ones. The latter implies a
combinatorial explosion of states, and excessively generated code [Badreddin 2014]. In the
context of UML-SM elements, the following specific issues are found in the current UML
tools.

e Completeness: The existing tools and approaches mainly focus on the sequential as-
pect while the concurrency of state machines is limitedly supported. Pseudo states are
not rigorously supported by existing tools such as Rhapsody [Shinji 2016]. Rhapsody
does not support deferred events, doActivity, and change-event [Shinji 2016, Harel |.
Enterprise Architect [Sparx Systems 2017] supports doActivity in a sequential man-
ner. Pseudo states such as history, choice and junction are poorly supported in
Enterprise Architect [SparxSysems 2016] and Sinelabore [SinelaboreRT |. Designers
are then restricted to a subset of the UML-SM elements during design.

e Semantics: The semantics of UML-SM is defined by Precise Semantics for UML
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State Machine (PSSM). This standard is not (yet) taken into account for validating
the runtime execution semantics of generated code. Rhapsody only allows a pseudo
state junction to have an outgoing transition [Shinji 2016].

5.4.1 Features

Compared to existing approaches for code generation from UML-SM elements, the T2T
transformation here has the following features.

Completeness The transformation supports all state machine elements including all
pseudo states and transition kinds such as external, local, and internal. Hence, this trans-
formation also improves flexibility of using UML-SM elements to express the event-driven
behavior of components that does not appear in current tools and approaches.

Separation Current tools mix automatically generated code with manually written code
(user code), e.g. UML tools place manually written code next to blocks of generated code.
Instead, the T2T transformation completely separates the generated code, namely delega-
tee code, from the user code that appears in the extended code component. In this latter,
the user code exists in forms of methods including class methods, state action methods,
guard methods, transition effect methods, and change expression methods that are equiv-
alent to UML-SM elements in the bidirectional mapping (see Section 5.1 for more details).
When the extended code component needs to process some event, it delegates the event
processing to the execution control of the delegatee. This latter, during event processing,
if necessary, calls appropriate user code methods, e.g. the delegatee calls a transition ef-
fect method during event processing. Again, as previously discussed, this transformation
is, to some extent, shares the same idea with the deep separation [Zheng 2012]. However,
our transformation has a much broader scope than deep separation. This latter only sup-
ports flat state machines (state machines with only simple states) without pseudo states
and transition guards as well as the four event types. Deep separation uses the state pat-
tern [Shalyto 2006, Douglass 1999] to generate code while we extend the switch/if pattern
[Booch 1998] to avoid dynamic memory allocation and to reduce memory consumption in
the state pattern. Furthermore, no synchronization for UML-SM and code is supported in
deep separation.

Event support The transformation promotes the use of all four UML event types and
event deference mechanism, which are able to express synchronous and asynchronous be-
haviors and exchange data between components.

UML-conformance PSSM defines a test suite with 66 test cases for validating the con-
formance of runtime execution of code generated from UML-SM elements. We have exper-
imented the transformation-generated code with the test suite. Traced execution results of
the test cases comply with the standard and are, therefore, a good hint that the execution
is semantically correct.

Efficiency We conducted experiments on two benchmarks to show that code generated
from UML-SM elements by the transformation is efficient and can be used to develop
resource-constrained embedded software. Specifically, event processing is fast and the size
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of executable files compiled from the generated code is small. The experimentation is shown
in Subsection 5.6.2.

Concurrency Concurrency aspects in state machines including doActivity of states, or-
thogonal regions, event detection, and event queue management are handled by the execu-
tion of multiple threads. The design of the latter is presented in Subsection 5.4.2.

5.4.2 Concurrency

The execution of a state machine of a component instance can consist of multiple actions
that run concurrently. Imagine that, during the execution, there is at least one active
state that can have an associated doActivity. Therefore, there are at least two concurrent
actions: (1) an action that listens to events coming to the state machine and processes
them; and (2) the action of running the doActivity of the active state. By the definitions of
UML-SMs, a composite state can contain multiple regions, each of which can also contain
other composite states. It turns out that multiple states can be simultaneously active.
Therefore, the doActivity actions associated with these active states execute concurrently.
As a result, the execution of a state machine should consist of multiple threads. Rhapsody
does not support doActivity actions, thus eliminates the need to have concurrent actions for
them. Enterprise Architect [Sparx Systems 2017] supports doActivity actions in a sequential
manner. The code for a doActivity action is not concurrent with entry state actions in
Enterprise Architect.

This section describes our design of concurrency aspects of state machines in delegatee
code at runtime.

5.4.2.1 Thread-based design

Typically, each state machine instance in Rhapsody runs within a single state machine
main thread (often called super loop) that consumes events stored in an event queue. The
support of Rhapsody for time-events (that are called timeouts in [Harel |) is based on a fixed,
predefined framework called Object eXecution Framework (OXF) [IBM Rhapsody 2017].

The concurrency of UML-SMs should be, by native, based on multiple threads including
permanent and spontaneous threads. Each thread runs an action that is concurrent with
other actions. Permanent threads are created once and their associated actions keep running
even there are no events incoming to the state machine. In contrast, spontaneous threads
are spawned and only exist for a while during event processing.

The rationale of this multi-thread design is based the execution semantics of UML-SM.
First, we examine which actions should be executed if no events are incoming to a state
machine. These actions should run concurrently with the state machine main thread that
detects and processes incoming events, thus be associated with permanent threads as shown
in Fig. 5.16. Second, there might have multiple actions executed during the processing of
an event, we investigate which actions should occasionally run concurrently with each other,
e.g. when entering a concurrent state with two orthogonal regions, the state entry actions
of the active sub-states of the two regions should be concurrently executed. Following the
run-to-completion semantics of UML-SM [Specification 2015], these actions should complete
before the state machine can process other events in the queue, thus be associated with
spontaneous threads. The use of spontaneous threads for actions conforms to the UML
specification [Specification 2015] since these actions must conceptually run concurrently.
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In most of existing tools such as IBM Rhapsody and Enterprise Architect, the state entry
actions of the sub-states of orthogonal regions are sequentially executed.

According to the UML specification, only doActivity actions of active states of the state
machine are executed. Other doActivity actions should be suspended until their states
become active. It turns out that there is a need to have a mechanism that suspends or
activates the permanent threads. This mechanism is based on a paradigm wait-execute-
wait. In the latter, a permanent thread waits for a signal to execute its associated
method /action and goes back to the wait point if it receives a stop signal or the execution of
its associated thread method completes. We identify the actions associated with permanent
threads as follows:

e doActivity: As previously described, each doActivity is associated with a permanent
thread.

o Time-event detection: The detection of time-event occurrences needs a timer to counts
its associated wait-period. This timer should run even if no event is incoming to the
state machine. Therefore, a permanent thread is created for a time-event. This
permanent thread has a method that counts ticks and emits the event after the wait-
period associated with the time-event expires (see Subsection 5.4.3 on page 96 for
more details).

e Change-event detection: Fach change-event is associated with a function, namely
change-event detect function, for monitoring and evaluating the previous and current
values of the boolean expression of the change-event to decide whether an emission
of the change-event should be launched. The change-event detect function observes a
variable or a boolean expression and pushes an event to the queue if there is a value
change of the expression from false to true. Since the observation does not depend on
whether the state machine has incoming events, a permanent thread is assigned to a
change-event.

e Super loop: The state machine main thread is associated with the state machine
method that is commonly called the super loop method. It reads events from the
event queue and calls appropriate event handlers. Furthermore, this main thread
also controls other permanent threads based on the wait-execute-wait paradigm.
In particular, the main thread sends start and stop signals to permanent threads
associated with doActivitys and time-events.

Spontaneous threads are used for the following cases:

e FEffects of transitions: During event processing, multiple transitions outgoing from a
pseudo state fork to vertexes of the orthogonal regions of a concurrent state can be
activated. The UML specification states that the effects of these outgoing transitions
are "executed concurrently with each other" [Specification 2015]. Therefore, a sponta-
neous thread is assigned to each effect. Similarly, the effects of transitions incoming to
a pseudo state join are concurrently executed, thus each of which is associated with a
spontaneous thread. In most of existing approaches [[BM 2016a, SparxSysems 2016,
Spinke 2013], these effects are executed in a sequential manner, thus not faithful to
the UML specification.

e Entry actions of sub-states: When entering a concurrent state, after the execution of
its entry action, the entry actions of the active sub-states of its orthogonal regions
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Figure 5.16: Thread-based concurrency design for state machine execution

should be concurrently executed. Therefore, a spontaneous thread is created for each
orthogonal region to manage the entering of the region running concurrently with
that of the other orthogonal regions.

o FExit actions of sub-states: Similar to entering, when exiting a concurrent state, before
the exit action of the state, the exit actions of the active sub-states of the concurrent
state are executed concurrently. A spontaneous thread is therefore created for each
orthogonal region to exit the corresponding region.

5.4.2.2 Thread communication

Each permanent thread is associated with a mutex for synchronization in the multi-thread-
based generated delegatee code. The mutex must be locked before the method associated
with the thread is executed.

Run-to-completion The event processing must follow the run-to-completion semantics
of UML-CS. It says that the state machine completes processing of each event before starting
the processing of the next event. If all events are asynchronous, the main thread processes
events by reading one-by-one from the event queue. However, because we allow call-events
to be synchronous, which means that the processing of call-events happens in the threads
of components that call methods associated with the call-events. Therefore, the processing
of synchronous and asynchronous events can violate the run-to-completion semantics. To
avoid it, a mutex, namely main muter, is associated with the main thread to protect
the run-to-completion semantics. Each event processing must lock the main mutex before
executing the actual event processing. This is to ensure that at any moment, there is at
most one event being processed regardless of in which thread the processing happens. In
generated delegatee code, lock and unlock are implemented using the convenience of signals
and conditions in POSIX [Butenhof 1997].

5.4.3 Code generation pattern-based separation of state machine
extended code and delegatee code

This section describes our code generation pattern for states, regions, events, and transi-
tions.
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5.4.3.1 Separation for state action

Commonly, a UML state is transformed into an enumeration literal element in SWITCH/IF /ELSE-
based approaches [Booch 1998] or a class in state pattern-based approaches [Niaz 2004,
Spinke 2013]. The latter can generate code from hierarchical state machines but entail the
use of dynamic memory allocation, which is not preferred by embedded systems. Further-
more, the authors in [Charfi 2012] show that state pattern-based generated code consumes
much memory. In this thesis, a common state type [State is created. The type has two
attributes, namely actives for active sub-states of the hierarchy of composite states and
previousActives for referring to previous active sub-states in case of the presence of history
states. For each UML state, an IState instance is created and a state identifier is assigned
to each state. During initialization, each instance initializes its attributes to a default value
meaning inactive state.

Listing 5.7 shows the state type and its instances where STATE MAX indicates the
number of states and is computed for each state machine!. Three methods, namely en-
try/exit/doActivity, are created for calling state action methods in the extended code by
using the component reference as shown at lines 9-16 of Listing 5.7. An example of the
interaction between the component in the extended code and its delegatee is shown in Fig.
5.18.

Listing 5.7: IState type in C++

typedef struct IState {
int previousActives[2]; int actives|[2];
; } IState;
class FIFODelegatee {
5 private:
FIFO* component;
7 IState states [STATE MAX];

public:
9 void entry(Stateld id) {
switch{id}
11 case SIGNALCHECKING ID:
component—>entryCheck () ;
13 break;

code for other states

As previously discussed in Subsection 5.4.2, multiple doActivity actions of states might
concurrently run during the execution of the state machine if this latter has composite
states. For the state machine example in Fig. 5.1 on page 67, the doActivitys of the
DataQueuing and Queuing state can be semantically run simultaneously. Each doActivity
is then run within a permanent thread and a mutex is created for controlling it as designed
in Subsection 5.4.2. Listing D.1 on page 135 shows a code segment example for doActivity
threads.

5.4.3.2 Region

A region contains multiple vertexes and transitions. Semantically, during state machine
execution, a region of a composite state can be entered in several ways:

e Entering by default: A transition ends at the border of a composite state. By this
way, this latter is first entered and its entry action is executed. The initial state of the

! To avoid runtime memory allocation, STATE MAX is computed for each state machine, rather than
for all state machines, which will waste memory for small state machines.
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Figure 5.17: Example illustrating different ways entering a composite state

region is then entered. For the example in Fig. 5.17, the region of the SI composite
is entered by default through the ¢ transition.

e Border-crossing transition: A transition ends at a direct or an indirect sub-vertex
of the region. As in UML, the entering of the region follows the activation of the
composite state and the sub-vertex then becomes active. The transitions ¢2 and t5
in Fig. 5.17 illustrate such border-crossing transitions.

Papyrus-RT [Posse 2015] generates code from state machines using IF /ELSE statements
but it does not support orthogonal regions as well as border-crossing transitions. Papyrus-
RT requires that a transition to a composite state ends at an entry point of the composite
state. IBM Rhapsody [IBM 2016a] and Enterprise Architect [SparxSysems 2016] have sup-
port for orthogonal regions and region entering ways but it does not have a separation of
the extended code and delegatee code as in this thesis.

We consider regions as first elements each of which is transformed an entering and an
exiting method for controlling the ways the region is entered and exited. The details of
how the code for the methods is generated are shown in Listing D.2 for keeping the main
content of thesis focused at the right abstraction level.

5.4.3.3 Event

An event in UML is a notable occurence at a particular point in time [Specification 2015].
Niaz et al. [Niaz 2004] supports the mapping of time-events and signal-events to Java.
They extend the state pattern [Shalyto 2006] to represent a state as a Java class. For time-
events, Niaz et al. requires that the class associated with a state relevant to a time-event
implements a predefined interface TimedState. This latter has a method timeout that is
invoked as soon as the wait-period of the time-event expires. Niaz et al. assume that
there is a single-event queue for the whole system. A signal-event is sent from a sender
to a receiver by placing the event in the queue. The system then dispatches the event
to the right receiver for processing [Niaz 2004]. Rhapsody relies on the Object Execution
Framework to detect time-event occurrences and a gen operation to generate and manage
signal-event occurrences.

Differently from the approach in [Niaz 2004], we have an event queue for each component
instance. In the delegatee code, we provide the design for the detection of time-events
and change-events based on permanent threads as described in Subsection 5.4.2 on page
94. Furthermore, we provide an implementation for detecting change-events that are not
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supported in the existing approaches. Specifically, the following list briefly describes how
the detection of the four event types is implemented in the delegatee code.

e Call-event: When its associated operation is called, an instance of the call-event is
created. Typically, a call of the operation associated with the call-event is invoked
through a service port of the extended code component containing the operation. As
previously described, the processing of call-events can be either synchronous or asyn-
chronous depending on the design. For a synchronous call-event, the event processing
method waits and locks the main mutex protecting the run-to-completion semantics
as previously mentioned, and executes the event processing code (see 5.4.2). The syn-
chronous event processing is realized by directly calling the event processing code since
the processing must be run within the thread of the operation caller. The details of
how the event processing code is generated are described in Section D.3 in Appendix
D on page 135. Listing 5.8 on page 100 shows the event processing method gener-
ated from the DataPushFEvent call-event in the service port-based producer-consumer
example. Note that the only way to call this processing event method is to invoke
the push method associated with this call-event through a service port as shown in
Subsection 5.3.2.

Rhapsody also provides synchronous call-events in term of ¢riggered operations [Harel |.
In the latter, the authors also note the deadlock problem of synchronous call-events.
It occurs when there is an invocation of the operation associated with a call-event
in the midst of performing a transition effect [Harel |. Therefore, developers should
pay attention to the use of synchronous call-events to avoid the deadlock problem.
Asynchronous call-events do not have this problem because event instances are put to
the event queue and the event processing happens in the thread of the event receiving
state machine.

e Signal-event: An API push is created for other components to send an instance
of the signal associated with the event by calling it through a data-flow port. As
previously described in Section 5.1 on page 66, for the flow port-based producer-
consumer example in Fig. 5.4 on page 72, when the push method is called via the
pOutData port of the p part, the push method of FIFO is called, a signal-event is
then emitted and written into the event queue managed by FIFO.

e Time-event: As previously discussed in Subsection 5.4.2, a thread associated with
the time-event is created and initialized at the initialization. The thread then enters
a wait-for-start point. Assume that a state S has at least an outgoing transition
triggered by the time-event. Within the thread execution, the method associated with
the thread waits for a start signal, which is sent after the execution of the entry action
of the S state completes, to go to a sleeping point. At this point, the thread sleeps
for a wait period specified by the time-event. When the wait period expires, an event
instance is emitted and written to the event queue if the state is still active. The
thread then goes back to the wait-for-start point. If it receives a stop signal before
the wait-period expires (i.e. while sleeping), it goes back to the wait-for-start point
without emitting any event.

e Change-event: Similarly to time-events, a thread is initialized and its method waits
for a re-evaluation signal. As previously mentioned, the boolean expression of a UML
change-event is transformed into a change method in the extended code component.
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Note that the method of the thread assigned to the change-event is of the delegatee
class. This change-event thread method checks whether the value of the boolean
expression of the event is updated from false to true by calling the change method
through the component reference. If so, an event instance is sent to the event queue.

Listing 5.8: Event processing method for the DataPushFEvent call-event in the service port-
based producer-consumer example
1 class FIFODelegatee: public IPush {

public:
void processDataPushEvent (Data& data) {
if (active state = IDLE_ID) { check the idle state active
component—>signalCheck (data) ; call the transition effect method
7 active state = SIGNALCHECKING_ID; change the active state
}

As above presented, all asynchronous incoming events are stored in a runtime priority
queue, in which each event type has a priority. The completion-event always has the highest
priority. Others are equal by default.

Note that the code generated for the event types is put within the delegatee associated
with a component. The generated code uses information related to events such as wait
period of time-events. Since the generated delegatee code is hidden from programmers
perspectives, the only way to change it is to modify the state machine code in the extend
code and then re-execute the T2T transformation. This latter is therefore a powerful means
that makes the additional constructs being considered executable from the perspectives of
programimers.

5.4.3.4 Transitions and pseudo states

A transition in UML can go from a vertex to any other vertex in the state machine regard-
less of the depth of the state machine hierarchy. Transitions can be combined with pseudo
states and events to make them powerful for modeling dynamic aspects of reactive systems.
However, most of the existing approaches do not implement all pseudo states as noted
on page 92. Furthermore, none of the existing approaches supports the synchronization
for transitions and pseudo states. A transition can be implemented as SWITCH/IF/ELSE
statements, a combination of source state and event in a state table pattern [Douglass 1999],
or even a method in an object-oriented pattern [Spinke 2013]. This latter, however, uses
dynamic memory allocations. The state table pattern only deals with flat state machine.
However, when there are multiple transitions that have the same source vertex, have differ-
ent guards and are triggered by the same event, the state table pattern fails to deal. It is
because this pattern only uses the source vertex and the event to specify a transition. We
extend a SWITCH/IF /ELSE-based pattern to provide code generation with full support
for transitions.

The challenges in dealing with code generation for transitions and pseudo states while
taking the synchronization into consideration are identified as follows:

e Full support for transitions and pseudo states and semantics conformance: An imple-
mentation pattern for transitions and pseudo states is proposed. This pattern takes
into account the semantics of UML-SM according to PSSM.
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e Complete separation of code generated for transitions and pseudo states within the
delegatee code from the extended code: The delegation from the extended code state
machine to the delegatee code is used.

The implementation pattern for transitions and pseudo states involves many implementation-
related details. In order to keep the main part of the thesis at the right abstraction level,
such details are put into Section D.3 on page 136 of Appendix D on page 135.

Signal-event processing example Fig. 5.18 on page 102 shows the interactions between
the fifo part and its delegatee during processing of an incoming signal-event. Here, we use
the flow port-based producer-consumer example with signal-events as in Listing 5.1 on
page 72 for illustration. The discussion of the service port-based one is very similar. Let’s
assume that an instance of the Data signal is sent from the producer to the fifo through
the pInData port of FIFO (see Listing 5.1 on page 72) and that the current active state of
the FIFOMachine state machine is Idle. Upon reception of the signal instance, a signal-
event is emitted and saved to the event queue managed by the fifo delegatee instance. This
latter reads the event from the queue and starts the processing. The latter checks whether
the current active state is Idle and then invokes the signalCheck transition effect method
implemented in the fifo via the component reference. The event processing then changes
the current active state to SignalChecking and uses the component reference to call the
entryCheck entry action method implemented in the fifo. Upon completion of the event
processing, the fifo delegatee goes back to a wait-point for reading next events from the
queue.

Support for non-deterministic transitions It is possible multiple transitions from the
same source vertex (state or pseudo state) are triggered by the same event. In this case,
there is ambiguity for selecting which one of the enabled transitions should be activated.
Consider the example in Fig. 5.17 on page 98 and assume that the transitions t1, t2, and t5
with guardl, guard?, and guard5 as their respective expression guard, can be triggered by
the same event egq. If SO is active and an instance of egq is received by the state machine,
non-determinism occurs if at least two of the three guard expressions become true. We
assume the values of guardl and guard5 are true at runtime in this case. Either ¢1 or t5
should be activated and the next active configuration of the state machine is different from
each activation. S8 is active if ¢1 is activated and S2 is active otherwise. For transition
selection in this situation, we propose three options to deal with the non-deterministic
transition selection, as follows:

1. Priority by creation: Among the enabled transitions, the transition created (by mod-
elers) first is chosen to be activated. If tI is created before t5, it is selected for
activation.

2. Random selection: One of the enabled transitions is randomly selected to be activated.

3. User configuration: A UML profile is created and allows users/modelers to explicitly
specify which transition has higher priority. The transition has the highest priority
in the enabled set is selected.

The Moka model execution engine [Papyrus 2016] also intends to support several op-
tions for transition selection in case of non-determinism. The current implementation of
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Moka supports the first option [Papyrus 2016]. We use Moka for our evaluation for UML-
conformance of generated code in Subsection 5.6.1 on page 108 since it provides a precise
execution semantics for both UML-CS and UML-SM elements.

5.4.4 Discussion

The introduction of additional constructs into an existing programming language provides
it with more functionalities while keeping source code written in the programming language
executable. It is investigated in a few approaches. In [Hinkel 2015, the authors discuss the
trade-off between the use of general-purpose programming languages (GPL) for implement-
ing model transformations vs the use of specialized model transformation languages. They
argue that, on the one hand, GPLs like Java are widely used by developers but not suitable
for model transformations. On the other hand, model transformation languages like QVT
provide high-level concepts suitably for efficiently expressing the intent of developers but
are not popular in industry. They then propose an internal model transformation language
within an existing GPL, C# in particular. The existing GPL is called hosting language.
The same argument is applied to our approach: the standard programming language is
hardly applied to manage system complexity that can be better addressed by the addi-
tional programming constructs. The latter can be considered as an internal language while
the standard programming language as a hosting language.

This principle is also applied to the recently proposed P [Desai 2013] and P# [Deligiannis 2015]
programming languages. P and P# embed a small subset of UML-SM elements, in par-
ticular the state and transition concepts, into C and C#, respectively, for dealing with
complexity. P and P#, however, do not intend to conform to UML as our approach does.
In [Henry 2008], UML-SM elements are embedded into C++, namely meta state machine.
We compare this latter with our approach by seeing from them from different perspectives.
Seeing them from a perspective of supported UML-SM elements, the extended language
has a broader scope. As previously presented, we provide a complete set of UML-SM ele-
ments represented in C+-+. Meta state machine, however, does not support pseudo state
join, choice, junction, signal-event, time-event, and change-event. Speaking about state
machine-based design, we use a UML-SM to define the behavior of a component that can
interact with other components through its ports. On the other hand, each state machine
in the meta state machine is not associated with any component. Regarding the implemen-
tation, state machine elements in the extended code are used for generating dynamic library
code, namely delegatee code as previously described, by using a code generation pattern
that is customizable (another code generation pattern can be used instead). Here, dynamic
means to only generate the delegatee code for the used state machine elements. In con-
trast, the meta state machine encodes the supported state machine elements into a static
library. In fact, it uses an internally "hard-coded" code generation pattern that is hard to
replace. Besides, the syntax of the state machine in the extended code is flexible and can be
adapted to developers’ preference. Subsection 5.1.2 on page 73 shows our proof-of-concept
for the syntax that is similar to that of some textual modeling languages such as Umple.
In contrast, the approach in [Henry 2008| proposes a rather complicated syntax.

We argue that, our approach has broader support than these approaches in the sense
of completeness of the UML-SM elements. Furthermore, our goal is to use the additional
constructs, which correspond to elements of UML-SM, for synchronizing code with UML-
based architecture model in MBSE rather than their code-centric approaches.
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5.5 Application of the synchronization mechanism by
providing use-cases

As described in Chapter 4, a generic methodological pattern for the synchronization of
concurrent modifications of model and code is proposed. This synchronization mechanism
especially requires the availability of the following use-cases:

e Batch code generation: generates and overwrites any existing code from model.

e Incremental code generation: updates the code by propagating changes from the
model to the code.

e Batch reverse engineering: creates and overwrites any existing model from code.

e Incremental reverse engineering: updates the model by propagating changes
from the code to the model.

The definitions of these use-case are found in Subsection 4.1.2. The batch code genera-
tion and reverse engineering are straightforwardly supported by using the proposed bidirec-
tional mapping between the architecture model and code. The incremental code generation
and incremental reverse engineering need a classification and management of modifications
made in the model and code.

Incremental code generation Table 5.3 shows our actions for propagating model mod-
ifications to code. We distinguish structural and behavioral modifications (since the struc-
tural and behavioral elements correspond to different code parts), which result in creat-
ing/removing/regenerating the corresponding code part. Although only add/remove/up-
date modifications are detected, the moving of a model element can be detected as a com-
bination of a removal of the element from an old container, followed by an addition of the
element to a new container.

In fact, modifications related to Remove/Update a type (Class/Component/Inteface)
might require regeneration of multiple other types that are dependent on the modified
type. However, the re-transformation is not needed in some cases because the delegatee
code associated with an extended code component only depends on the additional constructs
used in the extended code component. Therefore, if the modified type does not have
any effect on the additional constructs used within the dependent components, e.g. the
required /provided interface of a service port or the signal of a flow port, the re-generation
of the delegatee code for the dependent components is not needed. For example, a class
A is renamed and a class B has an attribute typed by A. The renaming of A requires the
regeneration of class B while the regeneration of the delegatee code for B is not needed. If
there is a deletion of a type, a class containing attributes typed by the deleted type should
be regenerated to avoid unknown type problems during compilation.

Incremental reverse engineering Our incremental reverse engineering is similar to
change translation [Hettel 2010] and change-driven transformation [Rath 2009]. The latter
listens to changes made in a model and uses predefined rules to propagate the changes back
to another model. However, change-driven transformation cannot be applied directly to
propagate changes in code back to the model because the detection of changes in code is
non-trivial. The approach in [Kramer 2015b] records every developer operation by creating
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Table 5.3: Model change classification and management

Element type Modification Action

Part/Port/ Add/ Regenerate the extended code and re-

Structure | Connector Remove/ transform it to update the delegatee code
Update for the extended code component contain-

ing the modified model element.

Class /Compo- | Add/ Create/Remove/Update the corresponding

nent /Interface | Remove/ code file(s). If the modification is remove

Update or rename (update), regenerate the ex-

tended code of the classes/components/in-
terfaces that depend on the removed/re-
named element.

Property Add/ Regenerate the corresponding extended
Remove/ code class
Update
Behavior | Operation Add/ Regenerate the corresponding extended
Remove/ code class
Update
UML state ma- | Add/ Regenerate the extended code and re-
chine Remove/ transform it to update the delegatee code
Update for the extended code component that con-

tains the modified state machine

a dedicated code editor. However, this approach is not reliable because it is hard to monitor
all of developer modifications if the developer uses different editors to modify the code.

In our approach, we do not record all of modifications made to code elements. In
contrast, we use a File Tracker to detect which files are changed by developers. This kind
of tracking is much easier to realize and more realistic than the above approaches. More
importantly, it is also supported by several tools such as Git (that supports tracking file
changes, among other features). The details of our approach are shown in Fig. 5.19.

The file tracker monitors all of the extended code files generated from the architecture
model. In fact, the tracker does not listen to changes made to fine-grained programming
language elements such as renaming an attribute, adding a method or changing a statement.
After all modifications have been made in the extended code, the tracker returns a list of
files which have been changed. We do not allow renaming or deleting a class because
doing these modifications at the code level requires doing some additional re-factorings.
For example, deleting a class requires re-typing class attributes typed by this deleted class.
We believe that working at the model level is more suitable for these modifications because
the re-factorings can be done through code re-generation from the modified model. The
incremental reverse engineering then propagates code modifications within the class scope
(ports, attributes, methods, state machines) back to the model. It means that renaming
and deletion of elements inside a class are supported but renaming of a class is not.

The modified files and the model are then used as input for reverse engineering to update
the model. For each modified file, the incremental reverse engineering for each code element
in the file follows a Update-Create-Delete strategy described in Algorithm 2. The latter
is explained as follows:
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Figure 5.19: Incremental reverse engineering with file tracker

e Step 1 - Update-Create classes in model (lines 4-6): Find a class umlClz in model
matching the class clz in code by using its name and hierarchy. If umlClz is found,
use the information of the code element to update the model element. Otherwise, it
means that the class clz has been added to code since class renaming and deleting
are not allowed. Therefore, a class is created in the model (line 6).

e Step 2 - Update-Create model elements within class: A similar strategy is
applied as the first step. For each code element (attribute/method/port/state machine
element/binding/event) of a class in code (line 8), the information of the code element
including name, element type and related information (signature for method) is used
for updating or creating a corresponding model element (lines 9-11). For example, if
we modify the method body of entryCheck in Fig. 5.5 on page 73, the incremental
reverse engineering will automatically propagate the changed body to the architecture
model as a block of text. If a programmer adds a state to the state machine example
in Fig. 5.5, a UML state will be created in the model. The updated or created model
element is then added to a list of elements, namely touchedModelEles. This latter
contains model elements that have associated code elements.

e Step 3 - Delete: The touchedModelEles list contains UML elements (attributes,
ports, connectors, methods, state machines, bindings, and events), which have asso-
ciated elements in the code. Therefore, if a model element is not found in this list, it
should be deleted (lines 13-15).

It is worth noting that the incremental reverse engineering detects a renaming in code
as an addition followed by a deletion at the model level.
In the next section, we describe our experiments to evaluate the approach.

5.6 Evaluation results

Implementation Section 4.3 on page 56 in Chapter 4 describes an Eclipse-based instan-
tiation of the proposed model-code synchronization methodological pattern for UML 2.5
and C. The implementation reuses the existing Eclipse-based technologies, namely, Eclipse
CDT, EMF-IncQuery and notably Papyrus [Gérard 2010] and the Papyrus component soft-
ware designer [LISE |. The resulting UML-C++ synchronization tool is integrated into the
latter. In the sequel, we describe the building blocks already available and the differences
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Algorithm 2 Propagation of code modifications in a modified file to model

Require: A modified file containing a set of object-oriented classes ModC and a UML
model M to be updated
Ensure: Modifications within ModC' are propagated back to model M
1: procedure PROPAGATEMODIFICATIONS(M odC\, M)

2: CodeClasses < An empty list of code classes;

3 for clz € ModC do

4 umlClz < findModelClass(clz); > Update a class

5 if umlClz == NULL then

6: umlClz + createModelClass(clz); > Create a class

7 touchedM odel Eles < An empty list of UML elements;

8 for codeEle € getCodeElements(clz) do

9: umlEle € findModel Element(codeEle,umlClz); > Update model element

10: if umlFEle == NULL then

11: umlEle < createModel Element(codeEle, umlClz); > Create model
element

12: touchedModel Eles + touchedModel Eles U {umlEle};

13: for umliEle € getModel Elements(umlClz) do

14: if umlEle ¢ touchedModel Eles then

15: Delete umlEle; > Delete model element

compared to our work. Formerly, Papyrus software designer also allows using a subset
of UML-CS and UML-SM elements for component-based design and features full C+-+
code generation through embedding of fine-grained code as blocks of texts. It allows to
use some time notions from the MARTE [OMG 2011] profile to specify the wait-period of
time-events. Papyrus software designer did not support a model-code synchronization as
in this chapter. The approach presented in this chapter for model-code synchronization
of component-based reactive system design and implementation is integrated into Papyrus
software designer and implemented on top the previous UML-C++ synchronization exten-
sion. C++ generated code runs within POSIX systems such as Ubuntu, in which pthreads
are used for implementing threads for concurrency of UML-SM. This section presents the
evaluations of results of the approach through experimentation.

Evaluation The experimentation-based evaluations presented in this section are related
to the requirements described in Section 2.2 on page 13. For the UML-based reactive system
design requirements in Table 2.2 on page 15, the R6 and R7 requirements related to the
completeness of supported UML-CS and UML-SM elements are satisfied since the T2T
transformation patterns support a complete set of the UML-CS and UML-SM elements.
Therefore, we present here the following evaluations:

e UML-conformance: This evaluation is to assess the R8 requirement. We assess the
conformance of the runtime execution of generated code to the UML semantics.

e Efficiency of generated code: This evaluation is to assess the R9 requirement.
We assess the performance and memory consumption of generated code since these
aspects are important in embedded systems.

e Feasibility of the approach: We assess the feasibility of the application of the
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model-code synchronization methodological pattern presented in Chapter 4 and the
bidirectional mapping between model and code proposed in this chapter in a case
study.

5.6.1 Semantic conformance of runtime execution

This section presents our results found during experiments with Papyrus to answer the
following research question.

Research question 1: Is the runtime execution of code generated from UML-CSs
and UML-SMs by Papyrus semantic-conformant to PSSM?

To evaluate the semantic conformance of runtime execution of the generated code, we
do unit testing by using the test suites provided by PSCS and PSSM. PSCS and PSSM are
standardized by the OMG to provide a precise execution semantics for UML-CS and UML-
SM, respectively. Each of them provides a test suite that contains many test cases that a
model execution and simulation engine should pass to demonstrate its conformance to the
standards. These standards are defined to avoid different semantics variations [Shinji 2016,
Fecher 2005, Luo 2016, Deligiannis 2015, Desai 2013, Knapp 2004].

Moka [Papyrus 2016] is a model execution engine offering PSSM and PSCS. As Papyrus
software designer, it is an additional component for the Papyrus modeler. Fig. 5.20 shows
the evaluation method. The latter consists of the following steps:

Step 1 For a Test case from the PSCS and PSSM test suites, we simulate its execution
by using Moka to extract a sequence Trace 1 of observed traces including executed
actions.

Step 2 From the same test case, we generate the C++ Extended code for execution.
Note that the code generation process here includes generating the extended code
and executing the T2T transformation on this generated extended code.

Step 3 The sequence (Trace 2) of the actual runtime execution traces is obtained by
compiling and executing of the code generated in Step 1.

Step 4 Trace 1 and Trace 2 are compared. The semantic-conformance test case is asserted
if Trace 1 and Trace 2 are the same [Blech 2005].

Note that, the execution trace is obtained by simply logging execution steps, e.g. the
execution of a state action, as strings to the standard output stream in C++, e.g. std::out.
Thus, the comparison of the execution traces is only string-based comparison and thus much
simpler than conformance checking techniques or model checking techniques. However, to
the best of our knowledge, the application of these techniques to the problem of verifying
a C++ implementation conforming to the UML-CS and UML-SM semantics with full con-
cepts is far from obvious and still a challenge. It is also complex even for the conformance
between Java and a very simplified state machine [Blech 2005] even though Java is much
better supported by conformance checking tools than C++ [Zhang 2014, Rahim 2010]. This
difficulty of the verification mainly originates from: (1) the abstraction gap between the
model elements and the code elements; (2) the complexity of generated code verification
[Rahim 2010]; (3) the concurrency aspect of UML-SM; and (4) the complexity of the C++
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Figure 5.20: Semantic conformance evaluation methodology

Table 5.4: Sub-test suites and the number of test cases of the PSCS test suite

Sub-test suite | Instantiation | Communication 1 | Communication 2 | Destruction
Test cases 8 14 8 3

programming language itself that makes tooling support for it hard. We expect this sit-
uation will be improved in future. Therefore, the evaluation method is chosen because
of the availability of tooling support and the ease to realize, rather than the rigor of the
testing results. Furthermore, as noted in the PSCS specification [OMG 2015], Moka and
the test suites allow us to demonstrate the compliance of generated code in Papyrus with
the specifications if no assertion fails when executing the test cases.

PSCS-conformance evaluation Table 5.4 shows the structure of the PSCS test suite.
It is divided into sub-test suites for validating certain aspects of the execution of UML-CS.
The sub-test suites are described as follows:

e Instantiation focuses on the instantiation semantics of composite structures and the
management of multiplicities of elements.

e Communication 1 focuses on the propagation of requests across ports through con-
nectors, especially the request propagation through delegation connectors.

e Communication 2 is similar to Communication 1 in the sense of focusing on
communication aspects of the UML-CS elements. Furthermore, it specifically consists
of test cases for testing the reactions when some request is received on a specific port.

e Destruction: focuses on the destruction semantics of UML-CS.

Formerly, the instantiation and destruction sub-test suites have been partially available
in Papyrus software designer. We extended this latter to support multiplicities of elements.
Since this thesis focuses on the model-code synchronization and partially on dynamic exe-
cution aspects of the model and its generated code, we only assert the runtime execution of
generated code through the Communication 1 and Communication 2 sub-test suites.

To illustrate the evaluation method, let’s go into details of an example of the Com-
munication 1 sub-test suite shown in Fig. 5.21. The IImpl interface has a setP(Integer)
operation that is implemented by the B component. The implementation of the method
setP within the class B assigns the passed parameter value to its attribute . When calling
setP with 4 as input parameter on the p port of C, the call should be forwarded by a for-
warding chain. In the latter, the invocation is alternatively propagated to the instances of
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Figure 5.21: An example of multiple delegation with multiple port-port connectors of PSCS
excerpted from [OMG 2015]
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Figure 5.22: An illustrative example of test cases for PSSM

A and then delegated to the b instance in A. In short, the test case is asserted if: c.al.b.x
=4 || c.a2.b.x =4 || c.a3.b.x =4 || c.a4.b.x = 4. This is Trace 1 resulting
from the simulation in the step 1. Therefore, for this test, the execution of the generated
code is considered as "passed" if Trace 2 is the same as Trace 1.

In applying the evaluation method to the Communication 1 and Communication 2
sub-test suites including 22 test cases, we found that the runtime execution of the generated
code for each test case produces the same result as that is monitored during the simulation
of the test case.

PSSM-conformance evaluation The PSSM test suite consists of 66 test cases for dif-
ferent state machine element types. The test cases cover the following cases: choice (3),
deferred events (6), entering (5), exiting (5), entry(5), exit (3), event (9), final state (1),
fork (2), join (2), transition (14), terminate (3), others (2), behavior (6). All of the test
cases of the PSSM test suite pass.

Fig. 5.22 shows an illustration model example for the evaluation. The simple state
machine describes the process of incrementing a counter count from 0 to 5. The increment
starts if the state machine receives a Start signal-event. this event is emitted if the com-
ponent of the state machine receives a StartSignal signal. Listing 5.9 shows the generated
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extended code containing the state machine that is written in the additional behavioral
constructs and that also contains the delegetee part. The test case is asserted if the gener-
ated code runtime execution trace is <T3><T3><T3><T3><T3><T}> since the effect
of the T8 transition is repeated 5 times.

The results of this UML-conformance evaluation of code generated from UML-CS and
UML-SM elements are not enough to prove that the implementation pattern and the tooling
support preserve the execution properties of UML-CS and UML-SM. However, it is a good
hint that runtime execution of generated code is semantically correct.

Limitation This evaluation methodology has the limitation that it is dependent on PSCS,
PSSM and the Moka model execution. In particular, for event support, PSSM, at the writing
moment, only has test cases for signal-events. For pseudo-states, histories are not supported.
Thus, the evaluation result is limited to the current versions of the specifications.

Listing 5.9: C++ generated extended code for the model example in Fig. 5.22

1 class IncrementTest {
IncrementDelegatee delegatee; the reference to delegatee
StateMachine Machine {
Initial State Waiting{};
State Incrementing{};
FinalState FS1{};
7 SignalEvent (StartSignal) Start;
TransitionTable

9 ExtTransition( Waiting , Incrementing ,Start, NULL , NULL)
ExtTransition(Incrementing , Incrementing ,NULL , guardT3, effectT3)
11 ExtTransition(Incrementing , FS1 J,NULL , guardT4, effectT4)

int count;
15 bool guardT3 return count < 5;}
bool guardT4 return count =— 5;
17 void effectT3 () {
count+4-+;
19 std :: count << "<T3>";

}
21 void effectT4 ()
std :: count << "<T4>";

Threats to validity Operation behaviors in the PSCS and PSSM test suites are defined
by activity diagrams and ALF while the tooling support requires fine-grained behavior
defined as blocks of C+-+ code embedded into models. Therefore, an internal threat is that
we manually re-create these tests and convert activity diagrams into programming language
code.

5.6.2 Efficiency of generated code

In this section, we present the results obtained through the experiments on the efficiency
of generated code to answer the following question.

Research question 2: Runtime performance and memory usage are undoubtedly
critical in real-time and embedded systems. Particularly, in event-driven systems, the
performance is measured by event processing speed. Are the performance and memory
usage of code generated by our tool comparable to existing approaches?

The objective of the evaluation is to compare the efficiency of code generated by Papyrus
using the proposed code generation patterns, that extend the SWITCH/IF /ELSE pattern,
with code generated by other tools, and to demonstrate that Papyrus can generate efficient
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Figure 5.23: Simple state machine example from [Boost 2016b]

code. We first present the state machine examples and the tools used in the evaluation.
Then, we present the comparison of the event processing performance and the memory
usage of the code generated by Papyrus and the used tools.

State machine examples Two state machine examples are obtained by the preferred
benchmark used by the Boost C++ libraries [Boost Library 2016a] in [Jusiak 2016]. One
simple example in Fig. 5.23 on page 112 only consists of atomic/simple states and the other
consists of both atomic/simple and composite states as in Fig. 5.24 on page 113.

Evaluated tools Two UML code generation tools and three C-++ libraries, which stat-
ically encode a sub-set of state machine elements in C++, are included in the evaluation.
The list of these approaches is shown in the list below. These tools and libraries are cho-
sen based on their availability and the successful compilation of code generated by or code
written in them. The three C++ libraries for state machines, namely MSM, MSM-Lite and
EUML, are based on the Boost C++ library [Schéling 2011]. In case of IBM Rhapsody
[IBM 2016a], we were not able to successfully compile generated code because of incompat-
ibilities between generated code and C++ libraries provided by tool vendors.

e Sinelabore [SinelaboreRT |: It generates efficient code for Magic Draw [Magic 2016],
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Figure 5.25: Event processing speed for the benchmarks

Enterprise Architect [SparxSysems 2016].

e Quantum Modeling tool (QM) [Quantum Leaps 2016]: It generates code for
event-driven active object frameworks.

e Meta State Machine (MSM) [Boost Library 2016b]: A C++ library for a subset of
state machine elements excluding signal-event, change-event, time-event, and pseudo
state choice, junction, join.

e Meta State Machine Lite (MSM-Lite) [Jusiak 2016]: A C++14-based library
for a subset of state machine elements as the MSM.

e Function programming like-EUML [Boost Library 2016¢|: Another C++ library
for the subset state machine elements as additional part of the Boost library.

Regarding the runtime environment, we used a Ubuntu virtual machine 64 bit hosted
by a Windows 7 machine. For each tool, we created two applications corresponding to the
two examples, generated C+-+ code and compiled it with GCC optimization options -O2
-s. As the experimentation conducted in [Jusiak 2016], 11 millions of events are generated
and processed by the simple example and more than 4 millions for the composite example.
For performance evaluation, event processing execution time is measured for each case.

Performance Fig. 5.25 shows the event processing performance of the approaches for the
two benchmarks. In both of the simple and composite benchmarks, MSMLite and Papyrus
run faster than the others in the scope of the experiment. Let’s look closer at the event
processing performance in terms of time medians. Fig. 5.26 shows the figures of the two
benchmarks, relative to the performance of Sinelabore (normalized to 100%). For the simple
(blue) benchmark, Papyrus (51.3%) is the fastest. For the composite (red) benchmark, with
the support of C++14, the performance in MSM-Lite (42.7%) is the fastest and Papyrus is
the second.
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Table 5.5: Executable size in KB

State machine example | MSM | MSM-Lite | EUML | Sinelabore | QM | Papyrus
Simple 22.9 10,6 67,9 10,6 16,6 | 10,6
Composite 31,1 10,9 92,5 10,6 21,5 | 10,6

Table 5.6: Runtime memory consumption in KB. Columns from left to right are MSM,
MSM-Lite, EUML, Sinelabore, QM, and Our tool, respectively.

State machine example | MSM | MSM-Lite | EUML | Sinelabore | QM | Papyrus
Composite 75.5 75.8 75.5 75.8 75.7 | 76.38

Memory usage Table 5.5 shows the executable size compiled from the code generated
from the examples. MSMLite, Sinelabore and Papyrus require less static memory than the
others. We also examine the runtime memory consumption of the composite example in
the tools, we use the Valgrind Massif profiler [Valgrind 2016, Nethercote 2007] to measure
memory usage. Table 5.6 shows the memory consumption measurements including stack
and heap usage for the composite example. Compared to the others, the code generated by
Papyrus requires a slight overhead with regard to runtime memory usage (0.35KB). This
is predictable since a major part of the overhead is used for C++ multi-threading based
on POSIX Threads and resource control using POSIX Mutex and Condition. However, the
overhead is small and acceptable (0.35KB).

Based on the evaluation results for the performance and memory consumption of code
generated by Papyrus, we assess that the proposed code generation pattern for state machine
elements provides efficient code.

5.6.3 Case study

This section presents the application of the synchronization approach to the development of
a relatively complex case study. The objective is to evaluate the feasibility of the approach
and the correctness of the synchronization of architecture model and extended code, us-
ing the bidirectional mapping and the model-code synchronization methodological pattern.
Three cases for the synchronization correctness are to be dealt with:

e Can the extended code be used to reconstruct the original architecture model?

e If the extended code is modified, can the code modifications be propagated back to
the model?

e If both extended code and model are concurrently modified, can our approach make
the model and code consistent again?

Such three cases are indeed similar to the synchronization evaluation through simulations
presented in 4.4. However, this time, we apply the synchronization to a real case study that
uses UML-CS and UML-SM elements for design, rather than randomly generated models.

The case study is an embedded software for LEGO. The LEGO car factory consists
of assembly machines for small LEGO cars used for simulating a real industrial process
[CEA-LIST LISE |. It is chosen for the evaluation because it is a realistic embedded system
with enough complexity.
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Figure 5.26: Event processing performance in optimization mode

Previously, it was developed by a developer using Papyrus without synchronization
support. However, the developer found it difficult and error prone to write fine-grained code
within a limited textual editor supported by the tool. The developer then programmed in a
C++ editor instead to use a familiar and effective editor with programming facilities such
as syntax highlights and auto-completion. She then copied the code from the C++ editor
back to the model (update opaque behavior) and regenerated the code. The developer
considered this process inefficient and prone-to-error. Furthermore, programming activities
such as creation of methods are much easier in the code than in the model.

A LEGO car is composed of four modules: chassis, front, back, and roof. The commu-
nication between these modules is based on Bluetooth and master-slave like. In the latter,
the chassis acts as master while the other modules act as slaves. Each slave module con-
sists of five components: bluetooth communication controller, conveyor, robotic arm, press,
and shelf. The behavior of each component is described by a UML-SM. The components
communicate with each other through a data flow-like communication schema. Previously,
each component holds references (pointers in C++), modeled as UML associations, to other
components to exchange data between the components. Furthermore, the components use
these references to call API of each other for interactions. The references, however, made
the design not purely component-based and not reusable. Therefore, a design amelioration
was studied for the synchronization case study.

To adopt a fully component-based approach, in the architecture model of the ameliorated
design, we use flow ports to exchange data items/signals between the components within
a module. API invocations are re-designed by using service ports. Fig. 5.27 shows the
UML-CS diagram for the front module without showing detailed structures of each of its
components. Furthermore, for simplification, only flow ports are shown in the figure. The
three flow port types are used. For example, the controller can send StopProcess signal
instances to the other four components through its ports. The robotic arm component
can send the StopProcess signal to the conveyor or receive it from the controller through
its bidirectional flow port respectively. Note that the processing of signals incoming to a
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component via its ports is realized by the state machine describing the behavior of the
component.

5.6.3.1 Reconstruction of model from code

In this first experimentation, for each module in the ameliorated architecture model without
fine-grained code embedded as blocks of text, we generated its corresponding extended code.
The model used for code generation contains 97 classes, 111 connectors, 119 ports, 15 state
machines with 240 vertexes, 296 transitions and 11 events including signal-events and time-
events. From the extended code, a reversed model was created by using the batch reverse
engineering. This reversed model was then compared with the original module model. No
differences were detected for the four modules. This result assesses that our approach and
its implementation can be used for reconstructing a model from its corresponding generated
code.

5.6.3.2 Propagation of code modifications back to the model

In this second experimentation, for each extended code generated, we added class attributes
and fine-grained code to each component. Specifically, state actions, transition effects, and
class methods are created following the rules described in Section 5.1. Furthermore, API in-
vocations and exchange of messages/signals between components through UML associations
and C-++ references are re-factored with the use of service and flow ports and invocations
through the required interface of the ports.

After enrichment of the generated code, we automatically propagated the code modifi-
cations back to the corresponding module model by using incremental reverse engineering.
We then manually checked the module model for updates as follows:

e Are UML properties created in the model corresponding to the class attributes in the
code?

e Are UML state actions and transition effects created within the model? Has each a
block of text containing the fine-grained code filled in the extended code?

e Do UML operations created in the model correspond to the class methods in the
code?

All of the model elements corresponding in the modified elements in the code were found
in the updated model. This result assesses that our approach and its implementation can
propagate modifications in code back to model.

5.6.3.3 Synchronization of concurrent modifications

To assess our approach in case of concurrent modifications, we emulated a typical situation,
in which the Lego architecture model, namely, the original model, and its generated code
are concurrently modified. To simplify the emulation, we only introduced modifications
to method bodies in the code (become the modified code) and additions of UML ports,
connectors and states in the model (becomes the modified model).

To synchronize the modified model and modified code, we used the model-code
synchronization methodological pattern presented in Chapter 4 on page 45 with the specific
use cases supported in Section 5.5 on page 104, whose steps are as followings:
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Figure 5.27: Composite structure diagram of the front module for flow ports (see Appendix
E on page 142 for more details about design model and generated code.)

e Step 1: Through the incremental reverse engineering of the modified code, the
original model is updated and becomes the code-updated original model.

e Step 2: Using EMF Compare to merge the model modifications from the modified
model to the code-updated original model. The latter becomes the synchro-
nized model.

e Step 3: Re-generate to create the synchronized code from the synchronized
model by using batch code generation.

To assess the consistency of the synchronized model and synchronized code, we
use batch reverse engineering to create a reconstructed model. We then compare the
reconstructed model with the synchronized model. No differences were found during
this comparison. We assess that our approach can synchronize architecture model and code
in case of concurrent modifications.

Note that, the model term here means the architecture design model part that is related
to code generation.

Binary size comparison After the experimentations of the synchronization, we com-
pared the generated code in our approach (Sync support), that is found at [Pham 2017b],
with the code generated from the original design model by Papyrus without the use of the
synchronization. Table 5.7 shows the comparison of the codes generated with and with-
out our synchronization approach. The size of the binary code created by an ARM 32 bit
Linux-based cross compiler (Sync support) is larger than that of the approach without
synchronization (No sync). However, the difference between the binary sizes of the exe-
cutables is very subtle: our approach produces on average 6.7% larger (3% for chassis and
8% for the other modules), normalized to the binary size in case of the approach without
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Table 5.7: Lego Car Factory with and without synchronization. Sync support (SS)
denotes the code generated by the presented approach while No sync (NS) denotes the
code generated by the existing approach

Lines of code Binary size (KB)
Module

No sync | Sync support | No sync | Sync support
Chassis | 9659 11193 256 264
Front 9660 12246 248 268
Roof 9725 12232 248 268
Back 9703 12245 268 256

synchronization support. The extra binary size is due to the use of component ports, that
gain component-based advantages such as re-usability and independence between compo-
nents, instead of associations, that tightly couple the components with each other.

Code complexity evaluation Can the extended code reduce the program complezity
compared with that of the code generated by the existing approach without synchronization
support (WS)? If the extended code is so complex that programmers cannot understand
and manage, the idea of introducing additional constructs and making them executable is
not significant.

Let’s look at the complexity of the generated code since it should not be too complex in
order for programmers to be able to understand and edit. Two metrics can be used: lines
of code and cyclomatic complexity since they effectively provide means to quantitatively
evaluate the complexity of a source code base [Gold 2005, Gill 1991]. The cyclomatic com-
plexity often deals with control flow of code. However, the extended code that uses the
additional constructs is based on description rather than control flow. Therefore, it is not
significant to look at the cyclomatic complexity here. Hence, we only focus on lines of code
to evaluate the complexity of the generated code.

The numbers of lines of code in Table 5.7 for the Sync support are the total of numbers
of extended code and delegatee code for each module. Remember that the delegatee code
is hidden from perspectives of programmers. It means that, programmers only need to
manage the extended code. We then extracted the numbers of lines of the extended code
to compare them with the generated code in case without synchronization. Fig. 5.28 shows
the comparison results. Around 4000 lines of code are generated for delegetee code that
does not need to be managed. Programmers only pay attention to the extended code whose
the number of lines is around 2000 less than the code generated by the No sync code.
Reduction of 2000 lines of code (20% of the No sync code) for each module would lead to
significant improvement of the code complexity.

Let’s look closer at what portion of the extended code programmers should manage. It
is important to note that generated code for each module consists of application code and
library code (this division is applied to both cases: No sync and Sync support). The
application code uses API and data structures of the library code. The application code is
generated from design model elements created by model-driven developers while the library
code is generated from model libraries that are imported into and used by the design model
of each module. It means that, the application code uses the library code but programmers
do not actually need to manage the library code as well as model-driven developers do not
need to manage the model libraries.
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Figure 5.28: Comparison of lines of code

Now, if we only take the application code into account, only code metrics related to
the main components, namely bluetooth communication controller, conveyor, robotic arm,
press and shelf, of each module need to be considered. We measure the lines of the extended
code of the components for each module and compare them with those of the No sync
generated code. We measure the metrics for these codes because: programmers in case of
synchronization support only need to manage the extended code of the application code.
The purpose is to precisely see how much the code complexity is reduced when comparing
the extended code with the No sync generated code within the application code.

Fig. 5.29 shows the comparison of the numbers of lines of application code to be managed
in both cases: No sync and Sync support. When programming with the extended code,
programmers monitor around 2000 lines of code (around 65%) less than doing with the No
sync code.

This assesses that the proposed approach does not only bring the ability to synchronize
UML-based architecture models and code, but also improves code complexity management
in terms of lines of code.

There is a threat to the validity of the correctness evaluation of the synchronization
based on the case study. Even though the case study is realistic, it does not cover all UML-
CS and UML-SM elements. To give more confidence about the approach, we think that
further evaluation based on different simulations similar to those of Chapter 4 on page 45
should be realized to take modifications made to all element types into account. However,
because both of the two simulations-based evaluations have an identical methodology, the
correctness of the synchronization much depends on the implementation of the use-cases.
Therefore, the simulations-based evaluation in this case should not be significant.

For demonstration of the simulation-based evaluations, we developed a configurable
model generator [Pham 2017a| that automatically produces random UML models that use
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UML-CS and UML-SM elements to describe software architectures and behaviors. Method-
ologically, each randomly generated model (original model) is then used for generating code.
This latter is then used as input in a reverse engineering step to reconstruct the model. The
reconstructed model and the original model are then compared. Further synchronization
evaluation based on this model generator is planned for future work (see Section 6.2 on
page 124 of Chapter 6 for more details about future work).

5.7 Summary

We have presented an approach for synchronization of object-oriented programming code
and architecture model specified by UML-CS and UML-SM elements. The approach is
based on extending an existing object-oriented programming language by introducing addi-
tional ad-hoc programming constructs for modeling concepts that have no representation in
common programming languages such as Java and C++. The extended code written with
the additional constructs is used as input of an in-place text-to-text transformation to gen-
erate delegatee code files to be executable. The synchronization mechanism synchronizes
the extended code with the model in case of concurrent modifications.

Multiple experiments were conducted to evaluate the approach. The evaluations are
tightly related to the identified requirements in Section 2.2 on page 13 for validating the con-
tributions. Specifically, we presented the evaluation results related to the UML-conformance
of code generated from model. Next, we evaluated the efficiency of generated code by using
two state machine examples. Finally, the feasibility and the correctness of the approach for
synchronizing UML-CS and UML-SM elements, and code are assessed through a relatively
complex case study. The approach can synchronize concurrent modifications in model and
code. The synchronization ability adds little memory overhead to the generated code.
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Moreover, the approach allows to extract architecture model from the extended code. We
think that the extracted architecture can also be used for architecture analysis. That is an
other advantage of the approach: allowing to execute the system and analyze architecture.

The bidirectional mapping approach is based on using built-in programming language
features to add new programming constructs to the language. Therefore, it is dependent
on the programming language that we want to synchronize with UML. It is currently
applicable to C++ with macros, Java and C# with annotations, and Python with macropy
[Macropy 2017] (that needs to be investigated more). In future, more languages should be
investigated to elaborate the approach.

Another limitation of the approach is that it does not deal with non-functional proper-
ties other than the efficiency of generated code. The non-functionalities are, for example,
security as well as energy consumption. Indeed, these limitations are shared with other
synchronization approaches such as deep separation noted in [Zheng 2012].
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6.1 Conclusion

The hypothesis of the thesis is that developers of a complex reactive embedded software
system use the UML-CS and UML-SM modeling elements for designing the system and
that they use different tools for manipulating development artifacts, model and code in
particular. Both design model and code can evolve concurrently since the different prac-
tices, namely modeling and programming, modify these artifacts. The problem is that,
when both design model and code are modified, it is hard to synchronize the concurrent
modifications of the artifacts because there is an abstraction gap between UML-CS and
UML-SM elements, and code. Many approaches and tools have been trying to address the
artifact synchronization problem in different areas such as model synchronization, bidirec-
tional programming, model-code synchronization, round-trip engineering and co-evolution
of architecture-implementation. However, these approaches fail to deal with the stated
problem because of two challenges: (1) handling of the concurrent modifications of model
and code; and (2) supporting the synchronization between model and code also for elements
with high abstraction gap, in particular UML-CS and UML-SM elements (which have no
direct representation in object-oriented programming languages).

In this thesis, a new approach for the problem of synchronization of software architecture
model, specified using UML-CS and UML-SM modeling elements, and object-oriented code
is developed. The proposed approach bridges the gap between the modeling and program-
ming practices, thus allows a seamless collaboration between the developers. The approach
supports the synchronization of both structural and behavioral elements of the model and
the code. The approach is based on the following contributions:

1. A bidirectional mapping between an existing programming language and modeling
elements by adding additional programming constructs to the existing language for
modeling elements that have no representations in code.

2. A set of code generation patterns that enable the execution of the proposed constructs
executable and the debugging of user-code.

3. A generic model-code synchronization methodological pattern for enabling synchro-
nizing the extended code with the architecture model.
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The approach is implemented on top of the Papyrus software designer modeling tool.
Multiple experiments are conducted for evaluating the proposed approach with respect to a
set of identified requirements for examining the existing approaches. In detail, the bidirec-
tional mapping and synchronization mechanism are evaluated through multiple simulations
for UML class diagram elements and C++, a case study of the Papyrus-RT runtime that is
developed in C++, and a case study of the Lego car factory using UML-CS and UML-SM
elements. The code generation patterns are evaluated for the completeness of the code
generation support for state machine modeling elements, the semantic-conformance of the
generated code (as defined in UML PSCS and PSSM): the runtime execution of generated
code for each test case of the PSCS and PSSM test-suites are asserted; and the efficiency of
the generated code regarding the event processing performance and the memory consump-
tion: code generated by our pattern for two state machine examples runs fast and requires
little memory consumption compared to the approaches in the scope of the thesis.

6.2 Discussion and perspectives

The content of this thesis is related to modeling, design, and implementation of software
architecture, especially monolithic architectures. In this section, we discuss different per-
spectives that are related to the proposed approach.

Further evaluation of correctness of synchronization The evaluations of the ap-
proach presented in the thesis are related to the requirements. However, there are still
issues that are not explored as shown in the following items:

e Correctness of synchronization: The correctness of the synchronization that combines
the model-code synchronization methodological pattern with the bidirectional map-
ping is evaluated against a case study in Section 5.6. However, this evaluation only
demonstrates the synchronization ability for certain element types of UML-CS and
UML-SM used in the case study. Specifically, the case-study uses model elements as
follows: required and provided port, in-flow, out-flow, and bidirectional flow port, con-
nector, state and state actions, external and internal transitions, pseudo state choice,
initial, and signal-event and time-event. Future work should take other element types
into consideration to provide further evaluation.

e Learning effort measurement: The bidirectional mapping is based on introducing
multiple ad-hoc additional programming constructs. Even though the latter are based
on built-in language familiar features such as templates, macros and annotations to
minimize learning effort of programmers, it is not clear how practical the approach is.
How do programmers react to these additional constructs? Therefore, future research
should elaborate an empirical study on how the constructs are used by traditional
programmers. The results of this future experimentation will be able to confirm the
effectiveness of the approach.

Distributed architecture A question related to our approach is whether it can be used
for development of distributed architectures such as client-server architecture. Currently,
it is only applied to a monolithic architecture. However, we believe that we can apply
the approach to certain distributed architectures with some extensions. In our previous
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work [Pham 2014], we propose to use interaction components to model the communica-
tion between components within a distributed system. Interaction components are first
introduced in [Fredj 2010]. Connectors between components ports are transformed into
interaction components. The latter are modeled as UML components/classes and then
translated to a middleware-based interaction implementation (see [Pham 2014] for more
details). We apply the proposed approach to synchronize code and an architecture model
with interaction components in distributed architectures.

For a client-server system model as in Fig. 6.1 (a), the client requests services from the
server through a remote interface. The interaction component AsyncCall can be split into
two fragments: client-fragment on the client-side and server-fragment on the server-side.
In the generated extended code in Fig. 6.1, the system at the client-side contains the client,
the client-fragment, and a binding from the required port of the client to the provided
port of the client-fragment. The system at the server-side, on the other hand, consists of
the server, the server-fragment, and a binding from the provided port of the server and
the required port of the server-fragment. The two fragments realize the communication
implementation between the two sides. For example, for each call from the client through
its port, the client-fragment establishes a socket connection, marshals and send the call’s
parameters to the server-fragment. This latter demarshals the received data to extract the
parameters values sent by the client, and calls the corresponding method of the server via
the required port of the interaction component.

The propagation of modifications in the model and the code is as follows:

e If the model is modified:

— If the client is modified, propagate the modifications to the client-side code.

— If the server is modified, propagate the modifications to the server-side code.
e If the code is modified:

— If the client at the client-side is modified, propagate the modifications to the
client component at the model level.

— If the server at the server-side is modified, propagate the modifications to the
server component at the model level.

One might ask how the propagation acts if the interaction component is modified. We
argue that the generated code for the interaction component should be hidden from per-
spectives of the application developers because it is part of an existing library, not part
of the application user-code. For separation of concerns, application developers should use
interaction components to interact with other components, but not modify them. Interac-
tion components should be developed or modified by developers of interaction components
as middle-ware should be modified by middle-ware developers. Application developers can
use or replace an interaction component used in the application with another one but not
modify the internal code of the interaction components.

We will study how the proposed synchronization and interaction components can be
used in other distributed architectures such as peer-to-peer.

Action Language for Foundational UML (ALF) Usually, UML-based MBSE ap-
proaches only generate skeleton code from UML model. To produce fully operational code,
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Figure 6.1: Client-server example including interaction component transformation, client-
side, and server-side code

more or less additional effort is required to add more information about fine-grained be-
havior to the model. ALF is utilized for expression fine-grained behavior [Ciccozzi 2014].
The use of ALF enables model-based simulation execution of systems as well as fine-grained
behavior code generation [Ciccozzi 2014]. However, the main limitation that makes this ap-
proach not sound is that ALF is not a common, even unknown language in the traditional
programming community with very strong and widely used programming languages such as
Java and C++. The question is whether users of ALF, who mainly work with models, col-
laborate with programmers, who use mainstream programming languages, without forcing
them to change their favorite development tool and language.

In a UML design model specified by UML-CS and UML-SM elements, fine-grained be-
haviors are written in the bodies of the following elements, namely fine-grained behavior
model elements: operation, state actions, transition guards and transition effects. In the
bidirectional mapping, these elements are equivalent to class methods in code. To provide
a seamless collaboration between the users of ALF, who write the bodies of the fine-grained
behaviors in ALF, and programmers, who write equivalent bodies in a classic programming
language, a synchronization between fine-grained behaviors based on ALF and a certain
programming language should be realized in future. We believe that this synchronization is
a harmonization of using ALF and common programming languages and allows to benefit
from advantages of both of the modeling and programming community. Fig. 6.2 shows an
example of this synchronization for an If/Else ALF statement written for a fine-grained
behavior and an if/else in a C++ class method excerpted from [Ciccozzi 2016b]. In the lit-
erature, the approach in [Ciccozzi 2016b| provides a unidirectional (forward) mapping from
ALF to C++. Future research should extend the approach in [Ciccozzi 2016b] for providing
a backward mapping from C++ to ALF and a synchronization mechanism. The latter takes
as input both of the forward and backward mapping to automate the synchronization.

Further verification of the conformance of generated code to the UML speci-
fication As discussed in Subsection 5.6.1 that presents the evaluation results related to
UML-conformance of runtime execution of generated code, the evaluation has a limitation.
The runtime execution of generated code only conforms to the test suites of PSCS and
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Figure 6.2: A synchronization example of ALF and C++ excerpted from [Ciccozzi 2016b]

PSSM. The results of the test suites-based evaluation are not enough to ensure that gener-
ated code always follows the standards. In the future, we will investigate model checking
techniques to test certain properties of model within generated code. Furthermore, we also
wish to use these model checking techniques for testing the conformance of generated code
for time-events and change-events. These two events present challenges because they in-
volve monitoring changes of some data and timing constraints. Eventually, we want to give
developers more confidence about the runtime execution of generated code.

Synchronization of architecture design model and architecture analysis model
In Section 1.3, we assume the partition of a UML model into two parts: code generation-
related part including model elements such as UML-CS and UML-SM elements, and the
other model part, namely model analysis part, that may be used for model-based analysis
activities such as security or performance analysis. The two parts use different concepts
to represent their concerns. Obviously, the two parts sometimes share the same model
elements, e.g. a component used for code generation may be annotated by some UML
stereotypes used for model-based analysis. In any case, the two parts always share some
information that needs to be synchronized if modifications are made in one of the two parts.
We think that, the synchronization of the two parts in certain cases, where model elements
for model-based analysis can be produced from UML-CS and UML-SM, and vice versa,
can potentially provide a further collaboration between domain experts, who do model-
based analysis, designers, who mainly work with UML-CS and UML-SM elements, and
programmers, who work at the code level. There is evidence that component-based design
can be transformed into other models [Koziolek 2008, Petriu 2004, Petriu 2007, Xu 2003,
Brosig 2011] for performance analysis. In the future, we will investigate these approaches
to see whether an automated synchronization of the design model and performance analysis
model is realizable.
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Table A.1: UML Class and Composite Structure metamodel elements supported by the

synchronization

UML diagram type

UML metamodel element

UML Class diagram

Class

DataType

PrimitiveType

Property

Operation

OpacqueBehavior

ValueSpecification

TemplateSignature

TemplateParameter

TemplateBinding

Interface

Enumeration

Package

Usage

Generalization

InterfaceRealization

Signal

UML Composite
Structure diagram

Part

Connector

Port (with a provided and/or a required interface

Port (in/out/inout flow ports)
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Figure B.1: Synchronization process for scenario 2, in which only code is edited (MDD =
Model-Driven Developer). The API calls for Model and Code are represented generically
as "Read" and "Write".
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Appendix: Bidirectional mapping

Table C.1 presents the equivalences of two types of connectors (port-port and port-part)
combining with the connector patterns (array and star), and the corresponding binding and
its parameters. It is worth noting that the multiplicities of pA, a, pB and b must satisfy
the conditions for corresponding connector pattern specified in the 5.1, 5.2, 5.3, and 5.4
conditions. In Table C.1, for a delegate binding, e.g. the delegate binding from pA of a

container a to its inner part, the first parameter becomes this->pA.

Table C.1: Equivalences between connector and binding

- Star pattern

Connector Binding
Param 1 | Param 2 Param 3 Param 4

Between port pA of a and pB of | a.pA b.pB 1 1
b- Array pattern
Between port pA of a and pB of | a.pA b.pB mul(a) x mul(pA) | mul(b) * mul(pB)
b - Star pattern
Between port pA of a and part b | a.pA b 1 1
- Array pattern
Between port pA of a and part b | a.pA b mul(a) * mul(pA) | mul(b)
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Appendix: Patterns for code
generation from UML-SM
elements and examples

D.1 Code generated for doActivityThread method

Listing D.1 shows a code segment for the method doActivityThread. The latter takes as
input a state id to use and call the appropriate mutex and doActivity, respectively. The
method does nothing and stays in a waiting point if the state corresponding to the input
parameter state identifier is inactive (line 5). If the state is active, a start signal is sent
to this thread method to start the execution of doActivity. The generated code typically
follows the common paradigm in POSIX threads [Butenhof 1997].

Listing D.1: Example code generated for doActivity

1 while(true) {
pthread mutex lock(&mutex[stateld]) ;
while (!isStarts [stateld]) {
await start signal
pthread cond wait(&cond, &mutex|[stateld];}
doActivity (stateld);
7 isStarts [stateld] = false; reset wait flag
pthread mutex unlock(&mutex|[stateld]) ;
9 if (!isStops[stateld]) {
if (stateld==IDLE_ID||...) {//atomic states
11 pushCompletionEvent (stateld);

}
13 }
}

D.2 Code generation for regions

The entering method controls how a region r is entered from an outside transition and
the exiting method exits completely a region by executing exit actions of sub-states from
innermost to outermost.

To illustrate the entering method, we use an example as in Fig. 5.17 on page 98 with
S1 as a target composite state. ¢ is in the way (1) while ¢2, t5, t6 in the way 2.

The entering method associated with the region of SI has a parameter enter mode
telling how the entering should be executed. enter mode takes values depending on the
number of transitions coming to the composite state. The detail of implementing these
modes depends on specific programming languages that code is generated for. Listing D.2
shows the generated C+-+ code.

By default, the region’s active sub-state is set after the execution of any effect associated
with the initial transition. Therefore, S3 is set as active sub-state of S1. Entering at (52)
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Listing D.2: Example code generated for the region of S1

void S1RegionlEnter(int enter mode) {

2 if (enter mode — DEFAULT) {
states [S1_ID|. actives [0] = S3_ID;

1 entry (S3_TID); sendStartSignal(S3_ID);
S3RegionlEnter (DEFAULT) ;

6 } else if (enter mode = S2 MODE) {

8 } if (enter mode = SH MODE) {
StatelDEnum his;

10 if (states[S1 ID].previousActives[0]!=STATE MAX){

his=states [S1_ID]|. previousActives [0];
12 } else { -
his = S2_ID;

itatcs[Sl ID|. actives [0] = his;

16 entry (his); sendStartSignal(his);
if (S3_ID == his) {

18 S3RegionlEnter (S3_REGION1 DEFAULT) ;

20 } ]élse if (enter _mode == S4 MODE) {
states [S1 _ID|. actives [0] = S3_ID;

2 entry (S3_ID); sendStartSignal(S3_ID);
S3RegionlEnter (S4 MODE) ;

24 } else if (enter _mode = ENP_MODE) {...}

sets the active sub-state of S1 directly to S2. In case of an indirect sub-state (S4), the
entry action of S3 is executed before S4 is set as the active-sub state of S3 and the entry
execution of S4. It is worth noting that after the execution of each entry action, a start
signal is sent to activate the waiting thread associated with doActivity of the corresponding
state.

The method generated for exiting a region is simpler than that of entering because tt
basically executes the exit actions of all the active sub-states from innermost, specified by
the current active sub-state, to outermost.

D.3 Code generation for transitions and pseudo states

To discuss the implementation pattern, let Ti.i4(e) be a list of transitions triggered by
an e event, and Si.i4(e) be the set of source states of the transitions in Ty.i4(€). Sirig(e)
is ordered based on the depth of the source states of the transitions (from innermost to
outermost). We now present how to generate the code for these transitions. Algorithm 3
describes the procedure to generate the code.

The algorithm starts by finding the innermost source states of Sy,.;4(e). This is to ensure
that the code for the transitions outgoing from the innermost states will be generated, and
thus executed before that of the transitions outgoing from the outermost states. For each
transition from an innermost state, code for active states and deferred events, guard check-
ing, and transition code segments are generated by GEN CHECK, GEN_GUARD(t)
and GEN_TRANS, respectively. If the identifier of the e event is equal to one of the list
of deferred events declared by the corresponding state, GEN CHECK generates code,
which checks whether should be deferred and - if yes - pushes the event to a deferred event
queue managed by the runtime main thread.

For a transition t, GEN _CHFECK can generate single or multiple active state checking
code. The latter occurs if the target of the transition is the pseudo state join because the
transitions incoming to a join are fired if and only if all of their source states are active. In
Listing D.3, lines 2-3 show a portion of the code with multiple checking generated for the
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Algorithm 3 Code generation for events

Require: Event e
Ensure: Code generation process for event method
1: procedure EVENTGENPROCESS(e)
2 for Vs € Siig(e) do
Ts = {t € Tyigle)|sre(t) = s}
for Vt € T do
GEN CHECK(s,t,e)
GEN_GUARD(t)
GEN_TRANS(s,t,tgt(t))

e gk ®w

completion event processing. The transitions t14 and t15 incoming to Joinl are executed
if S6 and S7 are active. In addition, the code portion checks the state associated with the
current completion event emitted upon the completion of either S6’s or S7’s doActivity. In
lines 4-6, the code concurrently exits the sub-states of S6 by using FORK and JOIN, which
are respectively used to spawn and wait for a thread, for the region methods associated with
S6’s orthogonal regions, which actually exit S7 and S8. Then, ezit(S6) is executed before
the concurrency of transition effects ¢14 and t15 is taken into account.

GEN_TRANS generates code for transitions between two vertexes. Algorithm 4 shows
how it works.

Firstly, Algorithm 4 looks for the s., and s, vertexes, that are contained in the same
region. And s., and s., also contain the source and target vertexes of the transition ¢,
respectively. For example, s., and s., in case of the ¢3 transition are S0 and S1 contained
by the top region. If the transition ¢ is part of a compound transition involving some
junctions, IF-ELSE statements for junctions are generated first (as PSSM says junction is
evaluated before any action). The composite state is exited by calling the associated exiting
region methods (FORK and JOIN for orthogonal regions) in lines 4-9 and followed by the
generated code of transition effects (lines 10-15). If the parent state s.,, of the target vertex
vy is a state (composite state), the associated entry is executed (lines 16-18). Entering
region methods are then called once the above code completes its execution (lines 19-24).
If the target v; of the transition ¢ is a pseudo state, the generation pattern corresponding
to the pseudo-state types is called. These patterns are as follows:

Note that, the procedure in 4 only applies for external transitions. Due to space limi-
tation, the detail of generating local and internal transitions is not discussed here but the
only difference is that the composite state containing the transitions is not exited.

Listing D.3: Example code generated for completion events triggering transitions t14 and
t15

1 if(event.stateld==S6_ID || event.stateld==S7_ID){
if (states[S6_ID]. actives[0]==S7_ID &&
states [S6_ID]|. actives[1]==88 ID) {
thread rl1=FORK(S6RegionlExit);
5 thread r2=FORK(S6Region2Exit);
JOIN (thread rl); JOIN(thread r2);
7 sendStopSignal (S6_ID); exit(S6_ID);
thread t14=FORK(component—>effect t14);
9 thread t15=FORK(component—>effect t15);
JOIN (thread t14); JOIN(thread t15);
11 component—>effect t16 () ;
active StateID=STATE MAX; inactive
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Algorithm 4 Code generation for transition

Require: A source vy, a target vertex v; and a transition ¢

Ensure: Code generation for transition

1:
2:

10:
11:
12:

13:
14:
15:

16:
17:
18:
19:
20:
21:

22:

23:
24:

© P N S gk W

procedure GEN _TRANS(vs, v¢, )

Find s.; and s., as vertexes in the same region and directly or indirectly contain-

ing/being v, and v;.
Generate IF-ELSE statements for junctions
if s.; is a state then
for r € regions of s., do
FORK (RegionExit(r))
Generate JOIN for threads created above
Generate sendStopSignal to s,
exit(Ses)
if v; is a pseudo state join then
for in € incoming transitions of v; do
FORK (ef fect(in))
Generate JOIN for threads created above
else
ef fect(t)
if s, is a state then
entry(Sen)
Generate sendStartSignal to se,
if s, is a composite state then

for r € regions of s, do
FORK (RegionEnter(r))

Generate JOIN for threads created above
else
Generate for pseudo states by patterns

> threads for exiting region

> exit the state

> threads for transition effect

> execute transition effects

> state entry

> enter region threads
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Listing D.4: Example code generated for Forkl and junc

if (activeRootState=—=S1 ID) {
junc = 0; //transition t9 of junc
if (guard) {junc = 1;}
1 //Exit substates of S1 and S1
component—>effect t9 ();
6 if (junc==0) {
component—>effect t11();
8 } else {
component—>effect t10 ()

N

10
FORK(component—>effect t12()); FORK(component—>effect t3());
12 /JOIN...=>concurrent execution
Enter state S6, S7 and S8
14}
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Table D.1: Pseudo state code generation pattern

Pseudo Code generation pattern

state

join Use GEN_TRANS for v’s outgoing transition (Listing D.3, lines 4-6).

fork Use FORK and JOIN for each of outgoing transitions of v (see Listing
D.4, lines 11-12).

choice For each outgoing, an IF — ELSE is generated for the guard of the
outgoing together with code generated by GEN TRANS.

junction As a static version choice, a junction is transformed into an attribute
juncgsr and evaluated before any action executed in compound transi-
tions (see Listing D.4, lines 2-3 and 6-10). The value of juncgss, is then
used to choose the appropriate transition at the place of junction.

sl.lallow The identifiers of states to be exited are kept in previousActives of

history . . . . . .
IState. Restoring the active states using the history is exampled as in
Listing D.2. The entering method is executed as default mode at the first
time the composite state is entered (lines 9-19). previousActives is up-
dated with the active state identifier before exiting the region containing
the history.

deep . . . .

history Saving and restor-lng active stat.es. are done at al'l state hierarchy leve.ls
from the composite state containing the deep history down to atomic
states. Updating previousActives is committed before exiting the region,
which is directly or indirectly contained by a parent state, in which a
deep history is present.

entry point | If an entry point has no outgoing transition, the composite state is en-
tered by default. Otherwise said, GEN_ TRANS is called to generate
code for each outgoing transition.

exit point The code for each transition outgoing from an exit point is generated by
using GEN _TRANS. If the exit point has multiple incoming transi-
tions from orthogonal regions, it is generated as a join to multiple-check
the source states of these incomings.

terminate The code executes the exit action of the innermost active state, the effect
of the transition and destroys the state machine object.
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(% Package.. [{ ProjectEx.. &7 Plug-ins |5 Git Reposi.. B ModelExp.. 32 = O

= S
4 =5 «Includes LegoCarFactoryRefactoringForSync
[ ?;:, <Package Import> UML Primitive Types
B ?;:, <Package Import> componentlib
4 3 «Includes LegoCarComponents
=1 State-machine support is enabled with a container rule
4 £ Modules
» B3 Chassis
4 3 Front
. & FrontModuleSystem
. & «Includes FrontControlComponent
. & FrontRoboticArm
5 Q FrontConvoyer
Eﬁ Diagram Front ClassDiagram
Diagram Front CompositeDiagram
Diagram Interface Front CompositeDiagram
- B3 Back
i B3 Roof
» B3 Slaves
Diagram CompositeDiagram ChassisControl
Diagram CompaositeDiagram SimpleSM
E‘§ Diagram ClassDiagram
> B3 platform
> B3 deployment
» B3 events
- B3 signals
i B2 «Modellibrarys componentlib
I B3 sysinterfaces
- BE= Carfactorylibrary
i B8 «CodeGenOptionss LegoCarfactory
i BE5 Caorfactorylibrary
I B2 MindsensorsPapyruslibrory
 B= EV3Papyruslibrary

v BE% «EPackage, Modellibrary= UML Primitive Types

Figure E.1: The organization of the Lego Car application model contains 4 UML packages
for 4 modules.
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Front

@ ol

Initialization

Jentry OpaqueBehavior init

nit_bluetooth_communication0]

Principalstate

Initial

CheckMessage

@ el
9
/do OpaqueBehavior read

MD_STOP]

Fi

[ms
[msg == CarFactoryLibrary:CMD_DELIVER]

/do OpaqueBehavior null
Restart FactoryLibrary:CMD_PING] <>
Opaqﬁ";gww [msg =f CarFactoryLijrary:CMD_LOAD_CAR] MD_RESET]
emergency_button.value(0)] send restart_event
Ping LoadCar Deliver Reset
EmergencyButtonPress. Jentry
/entry OpaqueBehavior fentry fentry fentry
sendStopProcessEvent i reset
? ping_response sendprepareConveyor) deliver L
[msg == CarFactoryLibrary:CHD_GET_STATUS] [msg == CarFactoryLibrar IREWIND]
ID_ASSEMBLE]
Getstatus Assemble Rewind

Jentry
OpaqueBehavior
rewind

fentry
OpaqueBehavior
send_check racks_eve

rrorDetection(..)/

fentry
OpaqueBehavior
get status response.

EndOfModule
ShowstopGUL

Misplace
fentry

OpaqueBehavior
show_stop_GUI

fentry
OpaqueBehavior
endStopProcess

[ev3Brick.topButton.pressed()]

Tev3Brick topButton.pressed(]

Figure E.2: The state machine diagram of the FrontControlComponent.
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[% Package Explorer 52 | [ Project Explorer 4 Plug-ins ’g",:",'] Git Repositories 2 Model Explorer

4 Eﬁ% _Lego_CErFactoryRefactoringForSync_defauItNbde_FronthduIeSystemDepPIan [f:est-lego-car masfer]

> = Debug

(7 model

(7 Release

=

|

B S| -
Ll =Y )

-

I [y reversed_models

[

iy src-gen

> (7 AnsiClibrary
I (& BootlLoaderCpp
> (3 CarFactorylibrary

> &y ev3dev_Cpp

> (7 EV3PapyrusLibrary

4 [y _Architecture_Delegatee
> [y AbstractClasses
> [ Actuators
> [ CarFactorylibrary
> [ ConcreteClasses
> [y EV3Brick
> [z EV3BrickPackage
> [ EV3PapyrusLibrary

LegoCarFacteryRefactoringForSync

m

4 [ Front
[ FrentControlComponent_Delegates.cpp
[ FrentControlComponent_ Delegatee.h
[ FrontConvoyer_Delegatee.cpp
[ FrontConvoyer_Delegatee.h
[ FrentModuleSystem_ Delegatee.cpp M
|._a_, FrentModuleSystem__Delegatee.h
[} FrontRoboticArm_ Delegatee.cpp
[ FrontRoboticArm_ Delegatee.h
[# Pkg_Fronth

> [y Sensors

> (5 Slaves

[ Pkg__Architecture_Delegatee.h

> [ deployment
4 7 LegoCarComponents

4 5 Modules

4 i

, oy

Front

ir FrontControlCompaonent.cpp
ifi) FrontControlCompanent.h
[} FrontConvayer.cpp

A FrontConvayerh

[} FrontModuleSystem.cpp
[# FroentModuleSystem.h
[ FrontRoboticArm.cpp

Ay FrontRoboticArm.h

E"]l Pkg_Front.h
Slaves

Figure E.3: The CDT C++ project generated for the front module. It contains multiple

folders for C+-+ libraries.

The "Architecture Delegatee" contains delegatee code. The

"LegoCarComponents" contains extended code for the front module application model.

Listing E.1: Code segment generated for the Front module configuration,float=false

void FrontModuleSystem ::
2 bindPorts(controller .
controller.

bindPorts
bindPorts

(
(convoyer.
bindPorts (
(
(

controller
6 bindPorts

bindPorts(controller
8 bindPorts(controller

bindPorts(controller.

bindPorts
bindPorts
12 bindPorts
bindPorts
bindPorts

controller
controller

pInStopProcess,

controller.

controller.
roboticArm .
roboticArm .

connectorConfiguration ()

pOutStopProcess Shelf, shelf.pInStopProcess);
pOutStopProcess _RoboticArm, roboticArm.pStopProcess);
controller.pStopProcess Convoyer) ;
.pOutStopProcess Press, press.pInStopProcess);
pOutRestart Shelf, shelf.pInRestart);

.pOutRestart _Convoyer, convoyer.pRestart);
.pOutRestart_Robotic, roboticArm.pInRestart);
pOutRestart Press, press.pInRestart);

.pPrepare, convoyer.pPrepare);
.pCheckRack, shelf.pCheckRack);
pDelivered , convoyer.pDelivered);
pDelivered , convoyer. pDelivered% ;
pStopProcess, convoyer.pInStopProcess);
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bindPorts(convoyer.pCheckRack, shelf.pCheckRack);

16 bindPorts(convoyer.pErrDetect, controller.pErrDetect);
bindPorts (convoyer.pEndOfMo_ Control, controller .pEndOfMo) ;

18 bindPorts (convoyer.pEndOfMo_Shelf, shelf.pEndOfMo) ;
bindPorts (convoyer.pEndOfMo Robotic, roboticArm .pEndOfMo) ;

20 bindPorts (convoyer.pEndOfMo_Press, press.pEndOfMo) ;
bindPorts(shelf.pErrDetect, controller. pEeretectg H

22 bindPorts(shelf.pPickPiece, roboticArm.pPickPiece);
bindPorts(convoyer.pOutAssemble, press.pPressAssemble);

24 bindPorts(controller .pLCD, roboticArm .pLCD) ;
bindPorts(controller .pLCD, shelf.pLCD);

26 bindPorts(controller .pLCD, press.pLCD) ;
bindPorts(controller .pLCD, convoyer.pLCD) ;

28 bindPorts(controller .pModule, roboticArm.pModule);
bindPorts(controller .pModule, convoyer.pModule);

30 bindPorts(controller .pModule, shelf.pModule);
bindPorts(controller . .pModule, press.pModule

5

32 bindPorts(controller . pIFloatMotor, roboticArm.pIFloatMotor);
bindPorts(controller . pIlLargeMotor, convoyer.plLargeMotor);
34 bindPorts(controller . pPressILargeMotor, press.plLargeMotor);

bindPorts(convoyer.pGotoProcess, roboticArm.pGotoProcess);

Listing E.2: Code segment generated for the FrontControlComponent header,float=false

class FrontControlComponent :
2 public ::CarFactoryLibrary :: Module

i public:
DECLARE DELEGATEE COMPONENT (FrontControlComponent )
6 StateMachine FrontControlStateMachine {
InitialState Initialization
8 StateEntry init ();

s
10 State PrincipalState {
Region Regionl {

12 Initial State EmnergencyStopState {
Initial State Check
14 StateDoActivity doActivityCheck ();
16 PseudoChoice wait {};
State EmergencyButtonPress
18 StateEntry sendStopProcessEvent () ;

i

StateEntry sendStopProcess();

3

b
State Misplace {
}.
S

24 tate ShowStopGUI {
StateEntry show_stop GUI() ;
26 }s
PseudoChoice choicel{};
28 State Restart {

StateEntry send restart_event () ;

PseudoChoice choice2{};

}s

Region Region2 {

34 Initial State CheckMessage {
StateDoActivity read ();

}.

PseudoChoice choice{};

38 State Ping

StateEntry ping response();

¥
State GetStatus {
42 StateEntry get status response();
}.
14 State LoadCar {
StateEntry sendPrepareConveyorEvent () ;

16 }s
State Assemble
18 StateEntry send check racks event();
}s
50 State Rewind {
) StateEntry rewind () ;
i State Deliver {
54 StateEntry deliver ();
}s
56 State Reset {
StateEntry reset ();
58 }s

i
FinalState FinalStatel {
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90

94

96

100

102

104

106

108

110

}s
TimeEvent (50) TE 50 ms_{};
SignalEvent E CarFactoryLibrary :: events :: EndOfModule) EndOfModule;
SignalEvent (CarFactoryLibrary :: events:: ErrorDetection) ErrorDetection;
TransitionTable {
ExT(fromlInitializationtoPrincipal State, Initialization , PrincipalState,
fromlInitializationtoPrincipal StateGuard, void, H
ExT(fromEmnergencyStopStatetoEmnergencyStopState, EmnergencyStopState,
EmnergencyStopState, NULL, EndOfModule, NULL) ;
ExT(fromEmnergencyStopStatetoMisplace , EmnergencyStopState, Misplace, NULL
, ErrorDetection, effectFromEmnergencyStopStatetoMisplace) ;
ExT(fromChecktoWait, Check, wait, NULL, void, NULL) ;
ExT(fromEmergencyButtonPresstoShowStopGUI, EmergencyButtonPress,
ShowStopGUI, NULL, void, NULL) ;
ExT(fromMisplacetoChoice2, Misplace, choice2, NULL, void, NULL);
ExT(fromShowStopGUItoChoicel , ShowStopGUI, choicel, NULL, void, NULL);
ExT(fromRestarttoEmnergencyStopState, Restart, EmnergencyStopState, NULL,
void, NULL) ;
ExT(fromCheckMessagetoChoice, CheckMessage, choice, NULL, void, NULL);
ExT (fromPingtoCheckMessage , Ping, CheckMessage, NULL, void, NULL) ;
ExT (fromGetStatustoCheckMessage , GetStatus, CheckMessage, NULL, void, NULL

ExT (fromLoadCartoCheckMessage , LoadCar, CheckMessage, NULL, void, NULL) ;
ExT(fromAssembletoCheckMessage, Assemble, CheckMessage, NULL, void, NULL) ;
ExT(fromRewindtoCheckMessage , Rewind, CheckMessage, NULL, void, NULL);
ExT(fromDelivertoCheckMessage , Deliver , CheckMessage, NULL, void, NULL) ;
ExT(fromResettoCheckMessage, Reset, CheckMessage, NULL, void, NULL);
ExT(fromWaittoCheck, wait, Check, NULL, TE 50 ms , NULL) ;
ExT(fromWaittoEmergencyButtonPress, wait, EmergencyButtonPress,
fromWaittoEmergencyButtonPressGuard , void, H
ExT(fromChoiceltoRestart , choicel, Restart, fromChoiceltoRestartGuard,
void, NULL) ;
ExT(fromChoiceltoShowStopGUI, choicel, ShowStopGUI, NULL, void, NULL);
ExT(fromChoice2toMisplace , choice2, Misplace, NULL, void, NULL) ;
ExT(fromChoice2toRestart , choice2, Restart, fromChoice2toRestartGuard ,
void, NULL) ;
ExT(fromChoicetoPing , choice, Ping, fromChoicetoPingGuard, void, NULL);
ExT(fromChoicetoGetStatus, choice, GetStatus, fromChoicetoGetStatusGuard ,
void, NULL) ;
ExT(fromChoicetoLoadCar, choice, LoadCar, fromChoicetoLoadCarGuard, void,

ExT’fromChoicetoCheckMessage, choice, CheckMessage, NULL, void, NULL) ;

ExT(fromChoicetoDeliver , choice, Deliver, fromChoicetoDeliverGuard , void,
NULL) ;

ExT(fromChoicetoRewind, choice, Rewind, fromChoicetoRewindGuard, void,
NULL) ;

ExT(fromChoicetoAssemble, choice, Assemble, fromChoicetoAssembleGuard,
void, NULL) ;
ExT(fromChoicetoFinalStatel, choice, FinalStatel, fromChoicetoFinalStatel
Guard, void, NULL);

ExT (fromChoicetoReset , choice, Reset, fromChoicetoResetGuard, void, NULL) ;

s

InFlowPort<CarFactoryLibrary :: events :: ErrorDetection> pErrDetect;
InFlowPort<CarFactoryLibrary :: events :: EndOfModule> pEndOfMo;
OutFlowPort<LegoCarFyactoryl%,efactoringForSync ::signals :: Stopi’rocess>
pOutStopProcess Shelf;
OutFlowPort<LegoCarFactoryRefactoringForSync:: signals :: StopProcess>
pOutStopProcess RoboticArm;
OutFlowPort<LegoCarFactoryRefactoringForSync:: signals :: StopProcess >
pStopProcess 5onvoyer;
OutFlowPort<LegoCarFactoryRefactoringForSync ::signals ::
RestartAfterEmergencyStop> pOutRestart helf;
OutFlowPort<LegoCarFactoryRefactoringForSync:: signals ::
Restart AfterEmergencyStop> pOutRestart Convoyer;
OutFlowPort<LegoCarFactoryRefactoringForSync:: signals ::
RestartAfterEmergencyStop> pOutRestart obotic;
Ou%)FlowPort<LegoCarFactoryRefactoringFoﬁync ::signals :: PrepareConveyor>
pPrepare;
OutFlowPort<LegoCarFactoryRefactoringForSync :: signals :: StopProcess>
pOutStopProcess Press;
OutFlowPort<LegoCarFactoryRefactoringForSync:: signals ::
RestartAfterEmergencyStop> pOutRestart ress;
OutFlowPort<CarFactoryLibrary :: events :: CheckRack> pCheckRack;
OutFlowPort<CarFactoryLibrary :: events :: DeliveredCarConveyor> pDelivered;
RequiredPort<CarFactoryLibrary :: CommunicationInterfaces ::
IRoboticArmFloatMotor> pIFloatMotor ;
Reqﬁliredport<EV3PapyrusLibrary :: Interfaces :: Actuators :: ILargeMotor>
plLargeMotor;
RequiredPort <EV3PapyrusLibrary ::Interfaces :: Actuators:: ILargeMotor>
pPressILargeMotor;
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Résumé: Model-Based Software Engineering
(MBSE) a été proposé comme une méthodologie
prometteuse de développement de logiciels pour
surmonter les limites de la méthodologie tradition-
nelle basée sur la programmation pour faire face
a la complexité des systémes embarqués. MBSE
favorise I'utilisation de langages de modélisation
pour décrire les systémes d’une maniére abstraite
et fournit des moyens pour générer automatique-
ment de différents artefacts de développement,
code et documentation, a partir de mod-
Le développement d’'un systéme complexe
implique souvent de multiples intervenants qui
utilisent différents outils pour modifier les arte-

p-ex.
éles.

facts de développement, le modéle et le code en
particulier dans cette thése. Les modifications ap-
portées aux artefacts évoquent le probléme de co-
hérence qui nécessite un processus de synchroni-
sation pour propager les modifications apportées
dans 'un artefact aux autres artefacts.

Dans cette étude, le probléme de la synchroni-
sation des modeéles d’architecture basés sur les
éléments UML composite structure (UML-CS) et
UML state machine (UML-SM) du langage de
I'Unified Modeling Language (UML), et le code
orienté objet est présenté. UML-CSs sont util-
isés pour décrire ’architecture du logiciel basée
sur les composants et UML-SMs pour les com-
portements discrets liés aux événements des sys-
témes réactifs. Le premier défi est de permettre
une collaboration entre les architectes de logiciels
et les programmeurs produisant de modéle et de
code, en utilisant différents outils. Il souléve le
probléme de synchronisation ot il existe de mod-
ifications simultanées des artefacts. En fait,
il existe un écart de perception entre les lan-
gages & base de diagramme (langages de mod-
élisation) et les langages textuels (langages de
programmation). D’une part, les programmeurs
préférent souvent utiliser la combinaison familiére
d’un langage de programmation et d’un environ-

nement de développement intégré. D’autre part,
les architectes logiciels, travaillant & des niveaux
d’abstraction plus élevés, favorisent 1'utilisation
des modéles et préferent donc les langages a base
de diagramme pour décrire 'architecture du sys-
téme. Le deuxiéme défi est qu’il existe un écart
d’abstraction significatif entre les éléments du
modéle et les éléments du code: les éléments UML-
CS et UML-SM sont au niveau d’abstraction plus
élevé que les éléments du code. L’écart rend la
difficulté pour les approches de synchronisation
actuelles car il n'y a pas de facon facile de réflecter
les modifications du code au modéle.

Cette thése propose une approche automatisée
de synchronisation composée de deux principales
Pour aborder le pre-
mier défi, on propose un patron méthodologique
générique de synchronisation entre modéle et code.
Il consiste en des définitions des fonctionnalités

contributions corrélées.

nécessaires et plusieurs processus qui synchro-
nisent le modéle et le code en fonction de plusieurs
scénarios définis ou les développeurs utilisent dif-
férents outils pour modifier le modéle et le code.
Cette contribution est indépendante de UML-CSs
et UML-SMs. La deuxiéme contribution traite du
deuxiéme défi et est basée sur les résultats de la
premiére contribution. Dans la deuxiéme contri-
bution, un mapping bidirectionnel est présen-
tée pour réduire ’écart d’abstraction entre le mod-
éle et le code. Le mapping est un ensemble de cor-
respondances entre les éléments de modéle et ceux
de code. 1l est utilisé comme entrée principale
du patron méthodologique générique de synchro-
nisation entre modéle et code. Plus important,
I'utilisation du mapping fournit les fonctionnal-
ités définies dans la premiére contribution et fa-
cilite la synchronisation des éléments de UML-CS
et UML-SM et du code. L’approche est évaluée
au moyen de multiples simulations et d’une étude
de cas.
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Abstract: MBSE has been proposed as a
promising software development methodology to
overcome limitations of traditional programming-
based methodology in dealing with the complexity
of embedded systems. MBSE promotes the use
of modeling languages for describing systems in
an abstract way and provides means for automat-
ically generating different development artifacts,
e.g. code and documentation, from models. The
development of a complex system often involves
multiple stakeholders who use different tools to
modify the development artifacts, model and code
in particular in this thesis. Artifact modifications
must be kept consistent: a synchronization pro-
cess needs to propagate modifications made in one
artifact to the other artifacts.

In this study, the problem of synchronizing UML-
based architecture models, specified by UML-CS
and UML-SM elements, and object-oriented code
is presented. UML-CSs are used for describing the
component-based software architecture and UML-
SMs for discrete event-driven behaviors of reactive
systems. The first challenge is to enable a collab-
oration between software architects and program-
mers producing model and code by using different
tools. This raises the synchronization problem of
In fact, there
is a perception gap between diagram-based lan-

concurrent artifact modifications.

guages (modeling languages) and text-based lan-
guages (programming languages). On the one
hand, programmers often prefer to use the more
familiar combination of a programming language
and an Integrated Development Environment. On
the other hand, software architects, working at
higher levels of abstraction, tend to favor the use

of models, and therefore prefer diagram-based lan-
guages for describing the architecture of the sys-
tem. The second challenge is that there is a signif-
icant abstraction gap between the model elements
and the code elements: UML-CS and UML-SM el-
ements are at higher level of abstraction than code
elements. The gap makes current synchronization
approaches hard to be applied since there is no
easy way to reflect modifications in code back to
model.

This thesis proposes an automated synchroniza-
tion approach that is composed of two main corre-
lated contributions. To address the first challenge,
a generic model-code synchronization method-
ological pattern is proposed. It consists of def-
initions of necessary functionalities and multiple
processes that synchronize model and code based
on several defined scenarios where the develop-
ers use different tools to modify model and code.
This contribution is independent of UML-CSs and
UML-SMs.
the second challenge and is based on the results
from the first contribution. In the second contri-

The second contribution deals with

bution, a bidirectional mapping is presented for
reducing the abstraction gap between model and
code. The mapping is a set of correspondences
between model elements and code elements. It is
used as main input of the generic model-code syn-
chronization methodological pattern. More im-
portantly, the usage of the mapping provides the
functionalities defined in the first contribution and
eases the synchronization of UML-CS and UML-
SM elements and code. The approach is evaluated

by means of multiple simulations and a case study.
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