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Chapter 1

(General introduction

This manuscript presents the study of two physical systems belonging to the field
of out of equilibrium statistical physics: the diffusive epidemic process, and ho-
mogeneous isotropic fully developed turbulence. The former is a simplified model
for the diffusion of an epidemic in a population. More specifically, we focus on
the continuous phase transition it undergoes when the population density is varied.
The second system is a fluid in a turbulent stationary state, as described by the
Navier-Stokes equation subjected to a random forcing. Both systems, in addition to
share the property of being intrinsically out of equilibrium, are examples of critical
phenomena. In this work, the study of each system is conducted using the tools
coming from the framework known as the non-perturbative (or functional) renor-
malization group. Before delving into the particular physics of each system, let us
present in this general introduction the more general context of universality and
critical phenomena in statistical physics, with an emphasis on the case of systems
out of equilibrium, as well as the field theoretical methods to address them.

Statistical physics is the study of systems containing a large number of degrees
of freedom. Its aim is to derive a description of the global macroscopic phenom-
ena emerging from the properties of the microscopic elementary constituents of the
system and of their interactions. Due to the incomplete knowledge of the system,
one is faced with the existence of fluctuations, which have to be taken into account.
One often aims at building a minimal microscopic model, in the sense that it should
reproduce all the known macroscopic features of the statistical system under study
in the simplest way and with the least possible amount of ingredients needed. This
approach is made possible because the macroscopic observables are built up by the
contributions of a large number of microscopic degrees of freedom. Thus they should
not be too sensitive to the microscopic details. The resolution of the model can in
turn lead to new predictions and guide experiments. In this back-and-forth process,
one hopes to find unifying pictures or mechanisms which shed light on universal
phenomena in physics.

A prominent example of such universality is given by critical phenomena, such as
continuous phase transitions. Indeed, in such case, the degrees of freedom become
correlated over all the range of scales spanned by the system. As a consequence, the
long distance behavior of the system loses memory of the microscopic scales and does
not depend on the details of the model under study. This is reflected for example
in the universality of exponents related to singular quantities at a continuous phase
transition. Unfortunately, such singularities plague the approaches usually applied
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to derive the macroscopic behavior from a microscopic model. Critical phenomena in
statistical physics were identified to be closely related to the problem of renormaliza-
tion in quantum field theory. Thus, it was tempting to apply the methods developed

in this framework (Dyson ; Stueckelberg and Petermann ; Bogolyubov and
Shirkov ), to study the critical properties of such systems. In the case of equi-
librium physics, this bridge was made by (Wilson and Kogut ; Fisher )

building on earlier work by (Kadanoff ). They interpreted the early renor-
malization schemes developed for quantum field theory in a new framework, the
Renormalisation Group (RG). The general idea of this method is to constuct the
effective theory by integrating the degrees of freedom present in the system on an
infinitesimal shell of wave-numbers, beginning from the ultraviolet (UV) cutoff of
the system (the inverse of the smallest size in the system), up to the infrared (IR).
If the system is at a critical point, the integration of all degrees of freedom from
the UV to the IR generates singularities. To do the integration infinitesimaly allows
one to understand how these singularities appear. This operation can be formulated
as a differential equation giving the evolution of the system under a change of the
RG scale. An exact equation for the RG flow was given by Polchinski (Polchinski

). In the following decade, this exact RG flow was reformulated in terms of the
effective action by Wetterich, Morris and Ellwanger (Wetterich ; Morris ;
Ellwanger ). This approach is now called the Non-Perturbative (also named
functional) Renormalisation Group (NPRG).

Now, let us emphasize somes specificities of out of equilibrium systems in statis-
tical physics. The most successful framework to take into account fluctuations is the
theory of systems at equilibrium with a thermal bath, whose dynamics satisfies the
detailed balance. For a system at equilibrium, the logarithm of the probability of
a given configuration is assumed to be proportional to the energy associated to the
configuration (Gibbs ). But a large part of phenomena in statistical physics do
not fit in the framework of equilibrium. For example, the correlation and response
functions of those systems are found not to satisfy the fluctuation-dissipation the-
orem. Because the dynamics of out of equilibrium systems are not constrained
to satisfy detailed balance, they describe a richer physics than the one accessible
to systems at or dissipating to equilibrium. For example, these systems can ex-
hibit continuous phase transitions between fluctuating and non-fluctuating steady
states (Hinrichsen ), which is impossible at equilibrium. Moreover, numerous
out of equilibrium systems are found to be generically critical. For systems at equi-
librium, critical behaviors are generally associated to continuous phase transitions.
In these cases the critical behavior emerges from a fine-tuning of some parameters
of the theory. However, for many out of equilibrium systems, this critical behavior
emerges without any fine-tuning of the parameters. This phenomenon, sometimes
termed self-organized criticality (Bak, Tang, and Wiesenfeld ), has maybe its
famous examples interface growth, modeled by the celebrated Kardar-Parisi-Zhang
equation (Kardar, Parisi, and Zhang ). These peculiarities of classical out of
equilibrium systems make it an exciting playground to study the physics of critical
phenomena using the tools of the RG (Cardy and Tauber ; Tauber ) and
the NPRG (Canet, Chaté, and Delamotte ; Canet et al. ).

Unfortunately, contrary to equilibrium systems, for out of equilibrium systems
there does not exist a general framework to account for fluctuations. Thus one has to
average directly over the noise chosen in the model. There are two traditional ways



to generate such stochastic dynamics for classical systems. The first one is to write
a spatio-temporal partial differential equation whose solutions are the space-time
trajectories of the system. To account for the stochasticity, this differential equation
couples the observables to a noise, which is generally assumed to be Gaussian. This
facilitating hypothesis is justified by viewing the noise as emerging from the sum
of many unknown small independent effects. This setup, which can be seen as
a generalization of the Langevin equation, is named stochastic partial differential
equation (SPDE) in the following. The second way to build a dynamics is to assume
that the process can be described by a time-continuous Markov chain and in this
case, the prescription of the dynamics is done by giving the master equation of
the process. However, both of these formulations are not directly amenable to
the treatment by renormalization methods. This gap led to many developments
in the ’60, notably for applications to turbulence (Kraichnan ; Wyld ),
which were synthetized and popularized by (Martin, Siggia, and Rose ). It
was realized that the dynamics of a statistical system given by a SPDE could be
written in formal closeness with quantum field theory at the price of introducing
an extra field for each degree of freedom of the theory. This breakthrough, named
the response field formalism, enabled the use of the tools of quantum field theory
to tackle critical phenomena in out-of-equilibrium statistical systems. Later it was
shown by (Janssen ) and (De Dominicis ) that the field theory for the
observables and the response fields could be formulated as a partition function,
summing over configurations in space-time weighted by the exponential of an action.
This formulation opens the way to powerful approximations relying on saddle-point
methods and to a systematic way to account for particular symmetries of the model.
The mapping from a SPDE to a partition function for a field theory is known
collectively as the Martin-Siggia-Rose-Janssen-de Dominicis (MSRJD) formalism.
Although it is not the focus of this work, let us note that in the case of quantum
systems there also exist a formalism to write a partition function when the system
is not at equilibrium. It is known as the Schwinger-Keldysh formalism (Schwinger

; Schwinger ; Keldysh ) and its semi-classical limit gives back the
action of MSRJD (Kamenev ). In the same decade, starting directly from
the evolution of the probability distribution of the observables, Doi devised another
method to map statistical systems into field theory akin to the “second-quantization”
in quantum systems (Doi ). This method leads to a different field theory from
the one obtained by the MSRJD formalism and the link between the two is still
subject to some discussions. The method was presented and refined in the case of
reaction-diffusion processes (also named birth-death processes) on a lattice in (Peliti

) and since then bears the name of Doi-Peliti formalism. In the present days, out
of equilibrium statistical physics is often presented as subdivided in two categories.
On the one hand, processes which are defined in the continuum through their SPDE
and casted to a field theory using the MSRJD formalism. On the other hand, jump
processes with countable state space such as reaction-diffusion processes on a lattice,
defined by their master equation and whose continuum limit is taken at the level
of the Lagrangian, after using Doi-Peliti formalism. This separation is represented
in this work, as the forced Navier-Stokes equation is a SPDE, and the diffusive
epidemic process is a reaction-diffusion process on a lattice.

In Chap. 2 we will present the physics of both systems and the open problems
which motivated our study. In Chap. 3, we will make a short presentation of the
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framework of the NPRG, with an emphasis on its application to out of equilibrium
field theories. Finally, in Chap. 4 and Chap. 5, we will present respectively our take
on the characterization of the phase transition of the diffusive epidemic process,
and on the breaking of scale invariance in homogeneous isotropic fully developed
turbulence.

Version francaise

Ce manuscrit présente ’étude de deux systémes physiques appartenant au domaine
de la physique statistique hors équilibre : le processus épidémique diffusif et la turbu-
lence 1sotrope homogeéne et pleinement développée. Le premier est un modele simpli-
fié pour la diffusion d’une épidémie dans une population. Plus spécifiquement, nous
nous concentrons sur la transition de phase continue qu’il subit lorsque la densité de
population est variée. Le second systeme est un fluide a ’état stationnaire turbulent,
tel que décrit par l’équation de Navier-Stokes soumise a un forcage aléatoire. Les
deux systemes, en plus de partager la propriété d’étre intrinsequement hors équili-
bre, sont des exemples de phénoménes critiques. Dans ce travail, [’étude de chaque
systeme est réalisée a l'aide des outils issus du formalisme dit de la renormalisation
non perturbative (ou fonctionnelle).

Dans le Chap. 2 nous présenterons la physique des deux systémes et les prob-
lemes ouverts qui ont motivé notre étude. Dans le Chap. 3, nous ferons une bréve
présentation du formalisme du NPRG, en mettant ['accent sur son application auz
théories des champs hors équilibre. Enfin, dans le Chap. J et Chap. 5, nous présen-
terons notre contribution respectivement sur la caractérisation de la transition de
phase du processus épidémique diffusif, et sur la rupture de l'invariance d’échelle en
turbulence isotrope homogéne et pleinement développée.



Chapter 2

Universal behaviors in the diffusive
epidemic process and in fully
developed turbulence

In this chapter, the phenomenology and challenges of the two systems studied as
part of the thesis work are presented. Firstly, in Sec. 2.1 we give a short account on
the physics of the diffusive epidemic process and in particular of the phase transition
between a fluctuating state and an absorbing state that this system undergoes. We
take the time to present the existing literature on the subject and to uncover some
remaining issues in the description of this sytem. Secondly, in Sec. 2.2 after giving
the general phenomenology and challenges of fully developed turbulence in fluids, we
focus on the two subjects studied here: the time-dependence of correlation functions
in both two- and three-dimensional turbulence, and the existence of intermittency
in two-dimensional turbulence.

Version francaise

Ce chapitre présente la phénoménologie et les défis des deux systémes étudiés dans
le cadre des travaux de thése. Premierement, dans la Sec. 2.1, nous donnons un bref
compte- rendu de la physique du processus épidémique diffusif et en particulier de la
transition de phase entre un état fluctuant et un état absorbant que subit ce systéme.
Nous prenons le temps de présenter la littérature existante sur le sujet et de mettre
en lumiére certaines questions en suspens. Deuxiemement, dans la Sec. 2.2, aprés
avoir présenté la phénoménologie générale et les défis de la turbulence pleinement
développée, nous nous concentrons sur les deux sujets étudiés ici : la dépendance
temporelle des fonctions de corrélation dans la turbulence bidimensionnelle et tridi-
mensionnelle, et ['existence de ['intermittence en turbulence bidimensionnelle.

2.1 The absorbing phase transition in the diffusive
epidemic process

The first part of the manuscript is devoted to studying the absorbing phase transition
occuring in the diffusive epidemic process. Absorbing phase transitions are phase
transitions to a state from which the system cannot escape, a phenomenon exclusive
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to out of equilibrium physics. The diffusive epidemic process (DEP), proposed
in (Wijland, Oerding, and Hilhorst ), is the simplest model available to describe
the propagation of an epidemy in a population without immunization. The absorbing
phase in this case is the state without any individuals infected such that the epidemy
has disappeared. As announced in the introduction, DEP belongs to the class of
reaction-diffusion processes. Let us first give a brief general introduction to these
models.

Reaction-diffusion processes are defined in this work as discrete stochastic pro-
cesses continuous in time, given by a set of particles hopping on a lattice and un-
dergoing reactions randomly, such as annihilation of two particles on the same site.
These processes are very simple to formulate in the form of a master equation but
they can describe an extremely rich diversity of physics. The particles can be of
different types and the reaction rates can be chosen such as to account for addi-
tional effects such as exclusion. The hoppings and reactions are most often chosen
local, such that the particles perform random walks and the reactions happen be-
tween particles on the same site. Because each reaction can be chosen individually
to model a particular process, reaction-diffusion processes are a rich playground to
formulate and test minimal models. To fix the idea, let us already give the set of
reactions and diffusions defining DEP:

Infection A+BLH B+ B
Recovery BYL 4

Diffusion of A A+0250+ A
Diffusion of B B+02%0+B

(2.1)

When a A and a B individuals are on the same site, B can infect A at the rate
k. B individuals recover at rate 1/7. Finally, A and B diffuse at rate D4 and Dp
respectively.

Going back to general reaction-diffusion processes, the first level approximation
of their dynamics, the mean field approximation, gives partial differential equations
which are a subject of study in themselves (Kolmogorov et al. : Turing ).
For homogeneous systems and with reaction rates chosen to model elementary pro-
cesses, the mean-field approximation is simply the law of mass action for chemical
reactions.

In order to theoretically study such systems further than their mean field de-
scription, one generically has to solve the infinite hierarchy of the coupled temporal
evolutions obeyed by the moments of the observables of the system. One way to
tackle this difficulty is to turn to numerical studies. These systems are conceptually
simple to simulate numerically and can be implemented with cost-effective meth-
ods. In general, these methods are based on the Monte-Carlo algorithm to explore
the phase space of the system through jumps between states (Marro and Dickman

).

A subset of the reaction-diffusion processes are said to be integrable. Formally,
these are systems which possess enough conserved quantities such that one can
decouple all the degrees of freedom of the system. For these systems, one can hope to
find closed analytical expressions for any averaged observables. Integrable stochastic
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processes are closely linked to quantum integrable models. In particular, stochastic

processes in one spatial dimension and with exclusion can often be mapped to a

quantum spin chain problem. The methods developed in this field are thus closely

related to their quantum mechanical counterparts (Babelon, Bernard, and Talon
).

However, the largest part of physically relevant reaction-diffusion processes do
not satisfy the conditions of integrability. As a consequence, one has to devise
approximations to go further. Many approaches to get an approximate picture from
the exact hierarchy of equations have been devised over the years. Among these
and without exhaustivity, let us cite two approaches which have been successful
in describing critical phenomena in reaction-diffusion systems. The first kind of
approaches consist in modifying the reaction rates such as to inhibit the propagation
of the correlations. In this family one finds for example the cluster mean-field
method (Gutowitz, Victor, and Knight ). Another type of approach aims at
devising mesoscopic Langevin equations for the coarse-grained observables. These
Langevin equations are often justified on phenomenological grounds (Janssen ;
Wiese ), but they can sometimes be derived rigorously (Kampen ; Gardiner
et al. : Kurtz ). Finally, reaction-diffusion processes can be mapped to
a field theory in order to use the tools of RG and NPRG. As announced in the
introduction, this is our choice in this work.

After this general survey on the different approaches to tackle reaction-diffusion
processes, let us turn to their physics. However, before expounding on DEP, we
present in the next section the directed percolation process, which is a simpler and
well-studied one-species model.

2.1.1 Directed percolation

Let us give a brief summary of the directed percolation process. Indeed, the di-
rected percolation process (DP) is the most paradigmatic model for transitions to
an absorbing state and DEP can be seen as a extension of it. Furthermore, it can
serve as a pedagogical introduction to the framework of reaction-diffusion processes
for unfamiliar readers.

A simple way to define DP is as the continuous-time evolution of a population
of particles, noted X, which are distributed on the sites of a lattice (most generally
a d-dimensional hypercubic one). Each particle can hop to neighbouring sites with
diffusion rate D. Moreover each particle can replicate itself with rate o and disin-
tegrate with rate p, and two particles can merge with rate 2\ upon encountering.
These rules are symbolically summarized in the following table:

Branching X5 X+X
Disintegration X509
Coagulation 2X 2 X
Diffusion X+020+X

(2.2)

The names branching, coagulation, and directed percolation come from an equivalent
formulation of this model in term of a percolation problem with a preferred direction.
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We refer to (Hinrichsen ) for an extensive review of the subject of DP. This
set of rules can lead the system to a state with zero particles but do not allow to
escape from it. The zero particle state is the simplest example of what is called an
absorbing state. The natural question at this point is whether and for which initial
conditions and values of the parameters the system will fall into this absorbing state.

Let us give a first rule of thumb answer. We assume that the diffusion rate is much
faster than the branching, disintegration and coagulation rates, such that the system
can be considered as homogeneous and can be described by only one observable: the
total number of particles, N. For N initially large, the branching and disintegration
rates should be proportional to N and the coagulation rate should be proportional
to N2, as it is proportional to the number of pairs. In this approximation, the
variation of N is given by

ON = (0 — )N — AN?. (2.3)

A quick stability analysis of this equation tells us that for ¢ — pu < 0, the only
stationary state is N = 0, which turns out to be stable, while for o — 1 > 0 the
only stable stationary state is N = (6 — u)/A = N*. The system thus undergoes a
phase transition from a fluctuating state (N = N*) to an absorbing state (N = 0).
Furthermore, it is readily calculated that for ¢ — u # 0, (2.3) gives an exponential
approach to the stationary state, with a typical time 7 = (0 — u)~! while it acquires
an algebraic behavior in t~! at 0 —u = 0. This critical slowing down of the dynamics
is typical of second-order phase transitions. Of course, this first approximation has
the obvious drawback that it describes a transition to a state with zero particles by
making the assumption of a large number of particles in presence and by neglecting
the pair correlations.

These findings prompt to give a more precise description of the model. The
rules (2.2) can be interpreted in terms of a Markov process, whose master equation
is given in Appendix A. In that appendix, we explain how the time evolution of the
averaged observables can be derived using the generating function. In particular,
the equation for the mean occupation number at the site k reads

O (Ni(t)) = {(0 — ) {Ne(t)) = MNx(0)®) + D[ D (Nj(t)) — 2d (Ni(1))] } (2.4)

J/<k.j>

where Nt = N!/(N — {)! is the falling factorial and < i,j > for two neighbouring
sites i and j.s Let us interpret this result. We found an evolution for (Vi (¢)) which
couples (Ny(t)) to a higher order moment (Ny(¢)?). This coupling appears because
the coagulation rule involves pairs of particles, thus the pair correlation information
is necessary. If we were to derive the evolution equation for (N (¢)?), it would involve
(Ni(t)?) and so on. Thus we would be left with an infinite hierarchy of equations
coupling the moments of the process.

The most straightforward approximation is at this point to neglect the pair
correlations; this is the mean-field approximation. It is often justified when the
mean number of particle is large with respect to its fluctuations. Thus one writes
(Ni(t)) = Npi(t), where N is a large number of the order of the number of par-
ticles in the systems and pg(t) has a finite limit when N — oo. The mean-field
approximation consists here in writing

(Ni(t)%) ~ (Ni(t))* = N*pi(t)*. (2.5)
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Noting X = AN, which is of order one, one obtains a closed expression for the
densities at each site of the lattice {px(?)}:

Aipi(t) = (0 — wpe(t) = N + D[ S py(t) = 2dpu(0)] . (2.6)

3/ <k.j>

For homogeneous fields, we recover the same behavior as was derived in first approx-
imation. However (2.4) allows us to make a more refined approximation. If we want
our derivation to be valid at the transition, the number of particle per site cannot be
large. This shortcoming could be patched up by not looking directly at the number
of particles per site but at a coarse-grained density averaged over neighbouring sites.
In doing so, one obtains the equation for the density field p(x) depending on space-
time: x = (¢, 7). Under the same assumptions as for the mean-field approximation,
one can hope for an end result looking like

Bip(x) = Fp(x) — Ap(x)* + D Pp(x) (2.7)

with the tilde denoting effective rate due to the coarse-graining. This type of ap-
proach is fruitful in certain systems such as one-dimensional random walk with
exclusion and leads to strong mathematical results (Bertini et al. ). Note that
we recover formally the same equation directly from (2.6) if we let the space be-
tween sites go to zero and if we assume that the interpolating density is sufficiently
smooth.

If one is only interested in the universal quantities associated to the absorbing
phase transition of DP, this kind of approach is in fact valid in dimensions d > 4,
the (upper) critical dimension of DP. The mean-field equation (2.7) allows one to
refine the previous picture of the transition in d > 4. Because of the diffusive scaling
between space and time, if we note £ the typical length of the correlations of spatial

fluctuations (the correlation length), we have & ~ \/E, where in this expression 7
is the correlation time. As 7 diverges as 7 ~ £~! at the transition, where & — 0, we
deduce that ¢ diverges as & ~ £~'/2 in this approximation.

Let us list the algrebraic behaviors characterizing the continuous absorbing phase
transition. The transition is driven by the control parameter &, its order parameter
is the spatially averaged density p. Using standard notations, we have

Order parameter p~RP,
Correlation length E~RTY
Correlation time T~E ~RT
(2.8)
In the mean field approximation, we have
=1, v=1/2, and z=2. (2.9)

Furthermore, it can be shown using saddle-point methods in the field theory of DP
that above d = 4, the fluctuations of the field at the phase transition (which cannot
be captured by our mean-field approach) are given by the standard Gaussian field
theory with heat kernel (see Chap. 3). This fact is reflected in the scaling of the
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two-point correlation C' and response (or Green) functions G of the theory, which
are defined respectively as

C(r) = (p(x +1)p(x)),

G(r) = 5h(zx) (p(x+r1)). (2.10)

The response function measures the variation in the mean density at a space-time
point x + r due to a Dirac delta perturbation h of the system at a point x. At a
second order phase transition, these functions are scale invariant. This defines two
critical exponents, named the anomalous dimensions and noted here 1 and 7, such
that in the general case one has the property

C(b*t,br) = b=4"C(r),
G(b*t,bi) = b= """ G(r), b>0. (2.11)

For d > 4, when the fluctuations are described by the Gaussian field theory with
heat kernel, both anomalous dimensions are found to be zero: n =7 = 0.

For d < 4, although the continuous phase transition still exists, the critical
exponents differ from their mean-field values and depend on the spatial dimension.
We can try to cure this problem by modifying the partial differential mean-field
equation (2.7). Although we have in essence derived an equation for the mean
density, we can try to incorporate fluctuations by hand by adding a noise n to the
above equation. Assuming that the fluctuations are produced by a large amount
of uncorrelated events, this noise is chosen to be a centered (GGaussian process. To
preserve the feature of DP that p = 0 is an absorbing state, the variance of the noise
has to vanish if the density is zero. The simplest choice thus reads

Op=rkp—Mp’+Dp+1
(n(x)n(x)) = 2Xap(x)6(t — t')0(Z — ') (2.12)

with some effective parameters {k, D, A1, \o}. Although it is customary in the
physics literature, for the more mathematically inclined reader the noise with a vari-
ance proportional to the density seems ill-defined. In the case of a Gaussian noise
this problem can be cured by a rescaling, see Chap. 3. There exist more rigorous
tools to extract expressions for the correlation of the noise around the deterministic
solution from the master equation (Gardiner et al. ).

It turns out that as long as one is concerned with only the universal properties of
the transition to the absorbing state, the process defined by (2.12) is equivalent to
the initial DP reaction-diffusion process. The exponents obtained from simulations
of (2.12) (Dickman ) are the same as those obtained from simulations of the
initial master equation for DP (Jensen ). In other words, they belong to the
same universality class. This fact was explained using RG power-counting arguments
by (Janssen ) and may seem not surprising from this background. However, it
begs the question as to whether we can generally describe the critical points of
reaction-diffusion processes by SPDE and if there is a systematic way to do so. This
question finds an answer within perturbative RG. However, we will see below that
outside of the validity of perturbation theory, subtleties may arise.

The DP universality class appears in fact to represent an attractor for a large class
of theoretical models. This has led to a conjecture (Janssen ; Grassberger )
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stating that any model exhibiting a phase transition to one absorbing state with a
single scalar order parameter, with no other conserved quantities or symmetries and
described by local dynamics belongs to the DP universality class. Paradoxically, the
definite evidences of the DP exponents in experimental realizations are not numer-
ous (Hinrichsen ). This fact led to investigate models with phase transitions to
absorbing state which do not fall in the DP universality class. The reaction-diffusion
processes with one type of particles have been substantially studied and universality

classes different from DP have been identified (Hinrichsen : Odor ; Elgart
and Kamenev ). For example, it is the case for processes which conserve the
parity of the number of particles (Cardy and Tauber : Canet et al. ). The

universality classes associated to absorbing phase transitions with more than one
type of particles are far less explored. DEP, which is one of the simplest two-species
process with a transition to absorbing states fit in this context.

2.1.2 Diffusive epidemic process

The DEP is a toy model of propagation of an epidemy without immunization. It
was first proposed by (Wijland, Oerding, and Hilhorst ) in 1997 and we will
stick to their presentation. It involves particles of two types moving on a lattice, the
healthy individuals and the sick ones, that we shall denote A and B respectively.
Each state of the system is then described by the occupation number of A and B
at each site. We will not take into account any exclusion effects.

Let us recall the set of reactions of DEP:

Infection A+BL B+ B
Recovery B4 4

Diffusion of A A+02450+ 4
Diffusion of B B+0250+B

(2.13)

One notices that as DP, DEP possesses an absorbing state. Indeed, the species B
can become extinct leaving only freely diffusing A particles. However, regarding the
conjecture of Janssen and Grassberger, DEP differs from DP in a crucial feature:
the total number of particles is conserved by the reactions. The master equation of
DEP and the time evolution of the corresponding generating functional are given in
Appendix A as well. The mean-field equations for the densities p4(Z,t) and pp(Z,t)
are deduced following the same methods as in the previous section. They read

Opa = —k paps +7 'pp+ Dad’pa
Owpp =k paps — T_lpB + Dp a2pB (2.14)

By summing both lines, it is seen that these equations conserve the total number of
particle as well. Noting pg the initial spatially averaged total density, ¢ = pa+ps—po
and renaming pg = p, (2.14) is equivalent to

op=k(c+ao)p—kp*+ Dgd*p,
Oic = D40 (c—up), (2.15)
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where we have defined o = py — (k7)™ and the following crucial parameter

Dy — Dp
Dy ’

o (2.16)

One can interpret (2.15) as a field p evolving according to the dynamics of DP
but whose control parameter is modulated by a conserved field. Thus, looking at
homogeneous solutions, it is readily seen that the mean field exponents of DEP are
the same as those of DP: f =1, v = 1/2 and z = 2. Furthermore, it can be shown
that the two processes share the same upper critical dimension d. = 4.

It is tempting to upgrade (2.15) to a set of two coupled Langevin equations to
account, for the fluctuations, as was done in Sec. 2.1.1. The noise acting on the
first line must account for the existence of an absorbing state at p = 0 as in DP
and the noise acting on the second line must be conservative, so as not to break
the conservation of the number of particles. Thus the simplest coupled Langevin
equations that one can propose are

Owp = k(c+0)p—kp*+ Dp*p+1,
Oc =D, 0 (c—pup)+n°, (2.17)

with the following covariance for the noises

(" ()’ (X)) = 2K p(x)o(t — t')6%(F — &) ,
(n°(x)1° (X)) = 2/ Da(=0?)3(t — )87 — &),
(n”(x)n°(x)) = 0. (2.18)

In fact, this model was proposed in (Janssen ) under the name of the directed
percolation with a conserved quantity (DP-C) and its equivalence, in the sense of
being in the same universality class, with DEP was justified using the same type of
arguments used to prove the equivalence between the DP reaction-diffusion process
(2.2) and the DP Langevin equation (2.12). We will expound these arguments in the
case of DEP in Chap. 4 after having introduced the field theories of those processes.
For now, it is enough to have in mind that at all orders of perturbative RG, DEP
and DP-C belong to the same universality class.

At this point, let us make a short semantic note. In the sandpile community,
the name C-DP (for conserved directed percolation) is often used to refer to the
specific case Dy = 0 of DP-C, see (Janssen and Stenull ). This case is of high
interest because it is known to belong to the Manna universality class describing a
certain type of avalanche phenomena. Furthermore, it was shown that C-DP and the
quenched Edwards-Wilkinson model for an interface moving in a quenched disorder
belonged to the same universality class (Le Doussal and Wiese ; Janssen and
Stenull ). It would be interesting to try to recover this result in our framework.
However, to stick with the historical choice in the study of DEP and DP-C, we will
absorb D, in a redefinition of time. Because we only probe the stationary state of
the system, the limit D4 = 0 is inaccessible in our framework.

Let us concentrate now on D, # 0. The particular case of two diffusion con-
stants taken equal (u = 0) had been introduced in (Kree, Schaub, and Schmittmann

) before the work of van Wijland et al. to model the effect of pollution on a
population and had been studied using perturbative RG. The authors found that a
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continuous absorbing phase transition indeed occurs in spatial dimensions d. < 4.
The corresponding critical point was new. In particular, it was different from the
ubiquitous DP universality class. The critical exponents of this KSS universality
class were found to be in most part fixed exactly by the symmetries. To all order in
perturbation, they found

v=2/d, z=2, n=mn, and [=v(d+n)/2. (2.19)

These relations leave only one exponent to be determined, n. Its value was calculated
in a first-order expansion in € = 4 — d, which yielded

n=—¢/8. (2.20)

Van Wijland et al. confirmed the previous results for 4 = 0 and studied the case
1 # 0. Although their starting point was the master equation of DEP, in their work
they truncated the resulting action to a form equivalent to DP-C. For p # 0, they
found a new fixed point of the RG flow equation, signaling yet a new universality
class (distinct from DP and KSS). For p < 0, (D4 < Dp), they predicted the
existence of a continuous phase transition to an absorbing state described by this
new (WOH) universality class. For u > 0 (D4 > Dg), however, the fixed point is not
reachable from physical initial conditions within pertubative RG. Indeed, in order
to reach the fixed point for p > 0, one of the microscopic reaction rate would have
to be negative. This fact was interpreted as the existence of a discontinuous phase
transition for x> 0 induced by fluctuations. This conjecture was backed up by semi-
phenomenological arguments and seemingly confirmed by numerical simulations of
DEP in d = 2 (Oerding et al. ).

Almost every exponent of the WOH universality class is fixed by the following
relations

v=2/d, z=2, n=0, and S=v(d+n)/2=1. (2.21)

to all orders in €. Although the relation v = 2/d was not made explicit in (Wijland,
Oerding, and Hilhorst ), it was shown in (Janssen ) that the DP-C model
implied this relation for p # 0 as well. The only independent exponent which is not
fixed in this case is 7. It was found to be to first-order in € = 4 — d given by

A* 1
f=——" ¢, with A\ =
L YO (24 3)5 + (2—/3)3 — 2
ie. 7~-—0313¢ (2.22)

However, some of the RG predictions seem to be invalidated by further numerical
simulations of DEP, reported in Tab. 2.1. The three issues concern

i) the nature of the phase transition in the case y > 0,
ii) the value of v in the cases p < 0 and p = 0,
iii) the value of g for p # 0.

Regarding i), all simulations performed after (Oerding et al. ), both in d =
1 (Fulco, Messias, and Lyra : Maia and Dickman ) and d = 2 (Dickman
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L d 1w [ 8w | 8 [ v [z |
0.197(2) | 0.435(14) | 2.21(5) | -
0 0.226(20) | 0.452(40) - -
0.192(4) | 0.384(46) 2.0(2) | 2.02(4)
- - 2.037 | 1.980
0.5125 2 2
0.113(8) 0.20(2) 1.77(3) | 1.6(2)
1 >0 | 0.165(22) | 0.330(44) - -
- - 2.0 1.992
first order
0.404(10) | 0.929(144) | 2.3(3) | 2.01(4)
<0 | 0.336(15) | 0.672(30) - -

- 2.0 | 1.992
1/2 1 2 2
0 | 0.856(4) | 0.797(8) |0.932(5) | —
2 0.875 1 2
>0 | 0.88(5) | 0.93(9) | 1.06(4) | 1.89(8)

first order

Table 2.1: Critical exponents of DEP from Monte Carlo simulations and field theo-
retical analyses. The values in gray are deduced assuming v = 2/d and the values
in italic are theoretical predictions. Reproduced from (Tarpin et al. )

and Maia ), strongly indicate that the phase transition is continuous also in
the case p > 0, checking in particular the absence of hysteresis (Dickman and Maia
). Regarding ii), early simulations in d = 1 for u = 0 (Freitas et al. )
found v = 2.21(5). This result was criticized by Janssen (Janssen ) using
the exact result v = 2/d = 2 from the DP-C model. The authors of (Freitas et al.
) replied by observing that the full DEP action includes terms which violate the
symmetries which fix v = 2/d. Although these terms are irrelevant in a perturbative
RG analysis near the upper critical dimension d. = 4, they could become relevant
away from it and in particular at d = 1. If the transition appearing in simulations
of DEP is not driven by the DP-C fixed point, but instead by another one having
less symmetries, the argument of (Janssen ) does not hold and the value of v
is not fixed. It could depart from 2/d and possibly be compatible with values from
simulations. Subsequent simulations reported in (Fulco, Messias, and Lyra )
partially reconcile both results suggesting that the discrepancy could be imputed to
corrections to scaling. However the debate exposed in (Janssen ; Freitas et al.
) is still unresolved. Numerical simulations in d = 2 for equal diffusion constants
i = 0 convincingly ruled out the DP exponents, but could not settle on whether
v = 1 (with possible logarithmic correction) in accordance with the pertubative
results, or v < 1 (Bertrand et al. ). Finally, regarding iii), Tab. 2.1 shows that
for p < 0in d = 1, either v # 2 or § # 1, and likewise for p > 0. Yet, if the
transition is controlled by the DP-C fixed point, the symmetries constraints imply
v=2/d=2and f=1.
In Chap. 4, we expound on our take on these issues, which was published in
(Tarpin et al. ) We applied the tools of NPRG, in the form of the modified
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local potential approximation to both DP-C and DEP to try to clarify the relation
between both systems. The NPRG calculations are guided by a careful analysis of
symmetries of both models. Now, let us turn to the second system studied in the
thesis, that is fully developed turbulence.

2.2 Breaking of scale invariance in fully developed
turbulence

The second part of the manuscript is devoted to the study of incompressible fully
developed turbulence within the NPRG formalism. In this section, we take some
time to present the physics of turbulence. In Sec. 2.2.1 we give a short historical
introduction to the Navier-Stokes equation and to the development of the study of
turbulence, up to its scale-invariant description by Kolmogorov in 1941. In Sec. 2.2.2,
we present the phenomenon of intermittency in three-dimensional (3-D) turbulence
and we give a brief summary of the theoretical efforts aimed at understanding it.
Finally, in section Sec. 2.2.3 and Sec. 2.2.4 we focus on the two particular subjects
of the thesis: the time dependence of the correlation functions in turbulence and
the intermittency in two-dimensional (2-D) turbulence respectively.

2.2.1 The Navier-Stokes equation and scale-invariance in
turbulence

Let us give a selected historical account on the steps which led to the discovery
of power-law behavior and universality in turbulence. This account is mainly an
abridged version of (Davidson et al. ). The equation which models the motion
of the fluid is Navier-Stokes (NS) equation, supplemented with the continuity equa-
tion. Due to the finite viscosity of the fluid, the NS equation is dissipative. As a
consequence, in order to probe the stationary state one has to inject energy into
the fluid. This is done by adding a forcing term to the NS equation, making it a
prime example of driven-dissipative system. We will limit ourselves to the study of
flows with constant density, such that the continuity equation is equivalent to the
condition that the velocity flow is divergenceless. The Navier-Stokes equation and
the incompressibility condition read

—

1= -
i+ (7-0)0 = —;ap+u826+f7

—

0 -

<y
Il

0. (2.23)

In this equation, ¥ is the velocity field, p is the pressure field (which is fixed by the
incompressibility condition) and f is a forcing per unit of mass acting in the bulk
(all the potential forces such as gravity are already included in the pressure term).
p is the density and v is the kinematic viscosity of the fluid. This equation dates
back to the early 19th century. Indeed it was derived in 1822 by (Navier )
building upon the work of (Euler ). Euler derived the equation of conservation
of momentum in the continuum for perfect fluids and Navier extended it to the
viscous case by assuming the linearity of the stress tensor. The derivation was
revisited by Stokes, in a more readable form (Stokes ). However, the progress
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on the understanding of this equation and its relation to turbulence has been slow.
Stokes limited himself to the study of flows whose velocity is the gradient of a scalar
potential or in the limiting case of laminar flow, where dissipative effects dominate.
However, let us note that he is the first to derive an energy balance for fluid motion
in (Stokes ), that we write below in the case of incompressible turbulence. We
note

E(t) = %/sz, (2.24)

the energy per unit of density, where the integration is done over the spatial domain
Q of the fluid. If we stipulate that the velocity is zero at the boundary of €2, the
energy balance equation simply reads

HE=W —¢. (2.25)

In this expression, W = fQ f - v is the power furnished per unit of density and the

total dissipation £ is given by
s:/e:/zmﬂ, (2.26)
Q Q2

where e is twice the Cauchy infinitesimal strain tensor:
€ap = Oavg -+ 85% . (2.27)

The convective term @ - 97 does not bring in nor dissipate energy out of the sytem,
thus its name of inertial term. One can already make the elementary observation
that in order to have a stationary state of the fluid, the dissipation must be equal
to the injected power.

It is only in 1883 that Reynolds investigated the transition to turbulent flows,
where Stoke’s solutions would not apply (Reynolds ). A fluid initially at rest
which is stirred or accelerated will develop turbulent features such as the random
apparition of swirls above a certain threshold of velocity. An adimensionned number
characterizes the strength of the turbulence, named since the Reynolds number. It
is constructed from the kinematical viscosity of the fluid, v, the typical large length
scale of the system, L and the typical velocity V of the flow at scale L. The Reynolds
number is the ratio of the strength of the convective force felt by a fluid element
over the strength of the dissipative force. It reads

VL

Re = (2.28)

v
Thus, in a flow with a low Reynolds number (Re < 2000) the dissipative effects dom-
inate and the turbulent swirls are damped down, the flow is said to be laminar. For
example honey, with its viscosity of Vjene, = 10m?.s7! is always laminar in everyday
life situations. A laminar flow is entirely determined by its boundary conditions.
On the contrary, when the Reynolds number is high, the convective effects dominate
and the velocity field becomes turbulent. The transition to turbulence was studied
in (Reynolds ) by the same author, using the now called Reynolds-averaged
NS equations, which marks the beginning of the statistical approach to turbulence.
We will concentrate our study on fully developed turbulence, that is a statistically
stationary flow at very high Reynolds number.
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Following (Lesieur ), we can define a turbulent flow as having the following
three characteristics: it is unpredictable, it possesses good mixing properties, and it
involves a large range of scales. Example of natural realizations of fully developed
turbulence are numerous. The first example which may come to mind is the flow
downstream of a high throughput structure such as a dam (Re ~ 10*). However, let
us not forget that the prominent example is simply atmospheric air. Indeed the very
low viscosity of air (4, ~ 107°m?2.s7!) implies that a turbulent flow is produced
even for low velocities. In the atmospheric boundary layer, the Reynolds can be
as high as 107 (although at these scales the density cannot be considered constant
anymore). Due to the ubiquity of turbulent flows, a better understanding of the
mechanisms of turbulence is a high stake subject for many fields of science such
as geophysics and astrophysics as well as for the industry (aeronautic, wind and
hydrolic energy generation,...).

However, with the exception of the isolated work of Richardson in (Richard-
son ; Richardson ) which introduced the idea of energy cascade and self-
similarity, it took some forty years to see progresses in the statistical theory of
turbulence. Under the impulsion of Prandtl and Taylor, the two-point correlations
in turbulence and the energy spectrum were investigated experimentally in wind tun-
nels using hot-air anemometry (Prandtl and Reichardt ; Simmons and Salter

: L. et al. ). These experimental data were interpreted by Taylor using
the hypothesis that the fluctuations of the velocity in the turbulent region of the
fluid could be well approximated as isotropic, even if the mechanism for producing
the turbulence was not (Taylor ; Taylor ; Taylor ; Taylor ;
Taylor ). Following this insight, we will concentrate as well on homogeneous
and isotropic turbulence.

At the end of the ’30, hints for the scale-invariance of turbulence were piling
up. When the Reynolds number is high enough, the scale at which the energy is
injected, named the integral scale and noted L, and the viscous scale are well sep-
arated. The range between these two scales is named the inertial range, because
"inertial" convective effects dominate. In the inertial range, the power spectrum
was found to be self-similar and universal (Simmons, Salter, and Taylor ; Tay-
lor ; Prandtl ). The idea that vortex stretching, through the non-linear
convective term of the NS equation, was the main transfer mechanism in the inertial
range received support from the theoretical side, after Karmén and Howarth derived
the exact equation giving the evolution of the two-point correlation (Karman and
Howarth ). Due to the non-linearity present in the Navier-Stokes equation,
the Karméan-Howarth equation brings into play the three-point correlation function,
thus it is not a closed equation (see also (Karman : Taylor and E. : Taylor

; Taylor ) for an earlier discussion on the importance of the convective
term in turbulence).

This series of results paved the way for the decisive step made by (Kolmogorov

: Kolmogorov ) and (Obukhov ), and independently and later by (On-

sager ; Prandtl and Wieghardt ; Heisenberg ; Weizsdcker ). For
the first time, the hypothesis of universality of turbulence in the inertial range was
clearly formulated. In (Kolmogorov ), the author stated the bold hypothesis
that the equal-time statistics of fully developed homogeneous isotropic 3-D turbu-
lence for scales much smaller than L was independent of how energy was supplied to
the flow and depended only on the total energy dissipation &, and on the viscosity.
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By dimensional analysis, this gives a scale at which the viscous effects dominate.
This scale, named the Kolmogorov scale and noted 7 has the following expression

3 1

N = (%) . (2.29)

Futhermore, the second assumption that for scales much larger than 7, the statistics
do not depend on the viscosity fixes the scaling of every n-point velocity correlations
in the inertial range, that is for scales ¢ such that n < ¢ < L. We define the
longitudinal velocity increment, dv;(€), as

~ | )

oy (0) = - - [6(t, 7 + 0) — T(t, 7)] . (2.30)
The structure function of order n, noted S,,(¢), is the n-th moment of the longitudinal
velocity increment. The universality hypothesis implies that in the inertial range,

Sull) = ([60)(0)]") ~ Culet) | (2.31)

where the (), are universal constants. In particular, it implies that the isotropic
Fourier spectrum of the energy, noted E(p) has the following behavior

E(p) ~p~°* (2.32)

in the inertial range.

A strong support to these hypotheses was given by the exact result for S3 derived
in (Kolmogorov ) from the Karméan-Howarth equation. Looking back at the
balance equation of energy (2.25), the condition of stationarity implies that the total
dissipation € is equal to the total injected power and has a finite limit when the
viscosity goes to zero. This fact is known as the dissipative anomaly. Kolmogorov
found that at infinite Reynolds number,

Sy(6) = (Suy(0)%) ~ &t (2.33)
=0 5

This result is the first exact law derived from the NS equation in the regime of fully
developed turbulence. It is remarkable because the numerical prefactor is universal,
thus its name of "four-fifths law". This law can be understood as stemming from
the existence of an energy cascade in 3-D turbulence: at a wave-number £ such
that L™! < k < n~!, the energy injection and dissipation occcuring at scale k& can
be neglected. As a consequence, in a stationary flow, the energy flux through the
momentum scale £ must be independent of k£ and equal to the total dissipation £.
A modern and pedagogical derivation of the four-fifth law is given in (Frisch ).
Adding the hypothesis of scale invariance to the four-fifths law immediately gives
back the Kolmogorov scaling (2.31) for all structure functions. The Kolmogorov
hypothesis and scaling are referred to as K41 in the following. Although the hy-
potheses leading to K41 was questioned early on (see (Frisch ) for a historical
account), K41 theory was considered as the standard phenomenological tool to de-
scribe turbulence and it remains useful in the present days in applied turbulence as
a valid first approximation.



2.2. Breaking of scale invariance in fully developed turbulence 25

2.2.2 The phenomenon of intermittency in turbulence

In spite of the success of the K41 theory, more precise measurements by (Batchelor
and Townsend ), showed that the equal-time statistics cannot be strictly scale
invariant. Indeed, the authors investigated the behavior of the flatness of the velocity
n-th derivative, defined as

((Opv)h)

((Opv)2)*
While oy seems more or less independent of the Reynolds number, for higher val-
ues of n, a,, grows with the Reynolds number. Moreover, the dependence on the
Reynolds number grows with n. As higher values of n probe variations of the ve-
locity on smaller spatial scales, it signals that extreme turbulent events are more
susceptible to happen at small scales. This phenomenon is termed intermittency.
Although such findings (see also (Kuo and Corrsin )) do not directly invalidate
K41 because they concern the dissipative range (Kraichnan ; Frisch and Morf

), it hinted at a possible deviation from K41 in the inertial range. The existence
of intermittency in the inertial range was proven beyond doubt in (Anselmet et al.

), whose result is reproduced in Fig. 2.1. The authors measured the scaling ex-
ponents ¢, of the structure functions 5,,(¢) as function of n. Intermittency translates
into the multiscaling of the structure functions:

ap, = (2.34)

Sp(£) ~ 5 (2.35)

for n < ¢ < L, where the (,, do not depend linearly on n. The exponent (3 = 1 is
fixed by the four-fifth law, but (,.3 # n/3.

The clearest way to picture this phenomenon is to plot the distribution of proba-
bility of the velocity increment dv) (¢) for different scales ¢. Today, these distributions
are accessible experimentally. We reproduce in Fig. 2.2 a figure from (Chevillard
et al. ), using data from (Kahalerras et al. ). The Gaussian distribution at
large spatial scales (lowest curve) reflects the Gaussian nature of the forcing. When
going to smaller and smaller scales, the distribution moves away from a Gaussian
one as extreme events become more and more probable.

Many phenomenological models of turbulence which account for this phenomenon
have been put forward. As noted by Landau and Onsager (Eyink and Sreenivasan

: Frisch ), and by (Kraichnan ), the K41 phenomenology relied on
using the mean field approximation for the local dissipation:

(™) ~ (e)" o & (2.36)

Multiscaling can be modeled by taking into account the fluctutations of ¢. In this
setting, the inertial-range intermittency is thus contained entirely in the intermittent
fluctuations of €. If we note e, the local dissipation averaged over a scale ¢, the
intermittent behavior of ¢ means that the fluctuations of ¢, will depend on ¢. This
is the content of the refined similarity hypothesis:

|3

S(0) ~ (3005 (2.37)

proposed by Obukhov and Kolmogorov. In their phenomenology, the fluctuations of
log(g,) are postulated to follow a Gaussian distribution with variance proportional
to In(L/¢). This hypothesis readily gives the behavior (2.35), with the ¢, following
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Figure 2.1: (, as a function of n, from (Anselmet et al. 1984, p. 24). The points
are experimental measurements. The e, [1 and x are from the authors. The chain-
dotted line is the prediction from K41, the dashed one from the -model and the
full one from the log-normal model (see below for an explanation).

a parabola as a function of n (Obukhov 1962; Kolmogorov 1962). The intermit-
tency of ¢ can also be modeled by a multiplicative stochastic process for ,. This
approach was pioneered in (Novikov and Stewart 1964). Such phenomenological
model can be reformulated as taking litteraly the idea of Richardon of a cascade
of dissipative structures (Richardson 1922), but where the dissipative structures at
scale ¢ have a fractal dimension dr < 3 (Mandelbrot 1974). A constant fractal di-
mension at all scale give the S-model (Frisch, Sulem, and Nelkin 1978), equivalent
to the process defined in (Novikov and Stewart 19641). However, this model gives
corrections to the scaling exponents (,, which are linear in n. To obtain a non-linear
dependency, Parisi and Frish postulated the existence of a set of such fractal struc-
tures (Parisi and Frisch 1985). They showed that in this framework the (,, are the
Legendre transform of the singularity spectrum d(h) giving the fractal dimension of
the structure as a function of the associated scaling exponent. In turn, the singular-
ity spectrum can be related to the fluctuations of ¢, in the corresponding random
cascade process (Benzi et al. 1981). Predictions for the fractal dimension can be
made using phenomenological guess of the exact dissipative structure at play in the
cascade process (Corrsin 1962; Tennekes 1968). For example, it is the case of the
She-Lévéque model (She and Lévéque 1994), which assumes that the most dissipa-
tive structures are vortex filaments. The She-Lévéque model has been understood
as the Poissonian limit of a random cascade process with infinite number of steps, it
was generalized as a particular case of log-infinitely divisible process (Dubrulle 1994;
She and Waymire 1995; Bacry and Muzy 2003). Finally, the multifractal formalism
was given its modern probabilistic formulation in (Mandelbrot 1991).
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Figure 2.2: Logarithm of the distribution of the dv|(¢) for different value of ¢, taken
from (Chevillard et al. 2012). Each distribution has its variance normalized to
unity and has been shifted vertically for readability purpose, with a higher curve
corresponding to a smaller /. The lowest curve corresponds to ¢ = 1.13L and the
highest one to ¢ = L/610.

The multifractal formalism is sufficiently powerful to describe intermittency in
turbulence (Halsey et al. 1986; Meneveau and Sreenivasan 1991; Muzy, Bacry,
and Arneodo 1993). Interestingly, it gives predictions for finite-Reynolds effects
although it was developed to describe inertial range intermittency (Paladin and
Vulpiani 1987; Nelkin 1990; Frisch and Vergassola 1991; Meneveau 1996). It can
also be extended to directly describe the intermittency in the velocity increments
distribution, shown in Fig. 2.2, or in the velocity gradient (Castaing, Gagne, and
Hopfinger 1990; Benzi et al. 1991; Chevillard et al. 2006). However, there is no hope
presently to derive the singularity spectrum of turbulence from the Navier-Stokes
equation. Furthermore, these models say nothing of the peculiar features of the ten-
sorial structure of turbulent flow, such as the preferred alignement of the vorticity
with the second eigenvector of the strain tensor (Ashurst et al. 1987). More re-
cently, a more mathematically-minded phenomenological approach to intermittency
has been put forward: the construction of synthetic velocity field having the cor-
rect properties (Benzi et al. 1993; Bacry and Muzy 2003; Robert and Vargas 2008;
Chevillard, Robert, and Vargas 2010). These approaches may lead to a complete
description of turbulence relying on a single parameter, characterizing the strength
of the intermittency. However, at this point the mathematical complexity of these
phenomenological models seems to rivalize with the Navier-Stokes equation. Finally,
let us stress that all these approaches have in common to focus on describing the
equal-time statistics of the flow, leaving aside its non-zero time-delay properties.

To obtain intermittent behavior from the Navier-Stokes equation is the holy grail
of the theoretical research in turbulence post-K41. The literature is profuse and we
will focus only on field-theoretical approaches, and in particular the RG ones, as
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our own work descend from it. We will not discuss here the various approaches
consisting in solving approximations of the Navier-Stokes equation. In this category
are the shell models (Desnianskii and Novikov ; Ohkitani and Yamada ),
which are approximated dyadic versions of the Navier-Stokes equation and which
show intermittent behavior. We will neither dwell on the closure approach to turbu-
lence, which consists in closing the hierachy of equations for the correlation functions
of turbulence by approximating higher order moments in terms of lower ones. This
method has been explored in (Millionschikov ; Heisenberg ; Chandrasekhar

), but the first valid approximation of such kind was proposed by (Kraichnan

; Kraichnan ). A review of closure models and the issue of their realiz-
ability is given in (Bowman, Krommes, and Ottaviani ). Closure models were
succesfully applied to plasma physics (Krommes ) but to our knowledge, none
of them is able to predict intermittency corrections for turbulence.

Before describing the field-theoretical attempts, let us make a comment on
the forcing f appearing in the Navier-Stokes equation (2.23). To model the non-
deterministic nature of turbulent flow, without having to introduce randomness from
the initial conditions, or from the way motion is conveyed at the boundary of the
fluid (which would break homogeneity and isotropy), a convenient way is to use a
random forcing acting on the bulk of the fluid. By asking for a statistically station-
nary, homogeneous and isotropic forcing, one enforces the (statistical) stationarity,
homogeneity and isotropy of the velocity field. Furthermore, because it is known
experimentally that the turbulent state of the flow does not depend on the details
of the forcing as long as it is concentrated on the large scales, fcan be modeled as
a memoryless centered Gaussian process for convenience,

(falt, 2)f5(t', 7)) = 0(t — ') Dap (|7 — 7). (2.38)

Furthermore, f can be chosen solenoidal (0uDos = 0) without loss of generality.
These properties of the forcing are common to all the field-theoretic treatment of
fully developed turbulence that we will present. Let us point out that a recent work
undertook to analyzse the case of a forcing with small time correlations (Antonov
et al. ). These correlations break the Galilean invariance originally present in
the NS equation. However, the authors found that this symmetry is restored at
large scales, such that the presence of small time correlations of the forcing do not
alter the properties of the turbulent state. Hence, we restrict in the following to a
forcing delta-correlated in time.

Although it has been stressed that fully developed turbulence is not a scale-
invariant theory, it is an example of critical phenomena, in the sense that its physics
is nonetheless controlled by a scale-invariant theory. This justifies to attack the
problem with the tools of the RG. The first application of the tools of renormalization
to randomly stirred fluids dynamics was done in (Forster, Nelson, and Stephen ).
Their analysis did not describe the fully developed turbulent cascade but only the
case of equipartition of energy, where the spectrum F(k) goes like E(k) ~ k? in 3-D.
However, it was the first time that invariance of the Navier-Stokes equation under
Galilean transformations

VYV eR? Gt %) — 0t T — Vi) + V, (2.39)

was exploited to deduce non-renormalization theorems. The case of fully developed
turbulence was pioneered by (De Dominicis and Martin ). They chose a power-
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law for the spectrum of the forcing Dag(q), defined as the Fourier transform of the
forcing correlation D,s(|7 — 2'|):

Dap(q) ~ ¢* =7, for ¢>> L™ (2.40)

where L' is an IR cutoff and ¢ is a real parameter not to be confused with the
energy dissipation €. This choice of spectrum for the forcing is necessary in order to
carry on with pertubative RG. Indeed, contrary to standard critical phenomena in
equilibrium statistical physics, the Navier-Stokes equation does not possess an upper
critical dimension d. above which the theory is described by Gaussian fluctuations.
As a consequence, one cannot treat the problem using calculations perturbative in
the distance to d.. For the choice of the forcing above, € plays the same role as
d. — d in standard critical phenomena. The picture of the energy cascade applies
when all the energy input is concentrated at large scale. This happens for € > 2.
The authors of (De Dominicis and Martin ) found a fixed point of the RG flow.
They obtained that the critical exponents obtained at first order in ¢ were in fact
exact at all order. Specifically looking for scale-invariant solutions for the energy

spectrum gave
E(p) ~p'™*/3. (2.41)

They used the transformation

3(t,7) — U(t,T — R(t)) + R(t), (2.42)
which is a time-gauged version of Galilean invariance (2.39), to argue how this result
could hold up to € = 2, where one recovers the same scaling as in K41: E(k) ~ k=573,
This result may seem underwhelming in regard of the heavy RG machinery involved,
as the critical exponents of the Navier-Stokes field theory are completely fixed by
the Galilean symmetry and the requirement of stationarity. Therefore, to ask for
scale invariance cannot give something else than the K41 scaling (Kraichnan ).
The statement becomes thus that K41 is an attractive fixed point of RG trajectories
for the Navier-Stokes equation. However, this result brings two comments. First, at
this point it is not so clear why the critical exponents should “freeze” at their value
for € = 2 for other IR-concentrated forcing spectrum with e > 2 (Fournier and Frisch

). Secondly, following de Dominicis and Martin, we note that as we need to
reach € > 2 to make contact with physical energy cascade, non-perturbative effects
may occur. This possibility opens the road to intermittency corrections to the K41
scaling. This research program was undertaken by Adzhemyan et al. (Adzhemyan,

Vasil’ev, and Pis’'mak ; Adzhemyan, Vasil’ev, and Gnatich ; Adzhemyan,
Antonov, and Vasil’ev ), as well as in (Antonov : Antonov, Borisenok, and
Girina ) using perturbative RG and operator product expansion (Collins ).

Let us state their findings. First, in the physical region € > 2, the scale-invariant
correlation functions, and in particular the spectrum, are finite when v — 0 at fixed
dissipation energy . This shows that intermittency corrections do not come from
UV singularities. Secondly, they showed how in this framework the exponents freeze
at their € = 2 value for € > 2. Thirdly, they proved that for equal-time quantities,
at € < 2, scale-invariant correlations functions are finite when the IR cutoff L goes
to zero. However, they were not able to extend this result for € > 2. In this range,
the situation can be summarized as follows on the structure functions:

Sn(0) = CL(80)5 (£/L)™ , for £ < L. (2.43)
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Crucially, the authors used the symmetry(2.42) to discard a potential L™ singularity
for € > 3/2. More technically, at € = 3/2, a family of operators become dangerous,
that is their scaling dimensions in the IR cutoff L' become negative. The time-
gauged Galilean invariance is used to show that these operators do not participate
in the operator product expansion of equal-time quantities, and thus do not play a
role in their scaling. The intermittency corrections, given by 7, were out of reach

of the method. See also (L’vov and Lebedev ; Antonov ) for a shorter
derivation of the same result.
This conclusion was rederived in (L’vov and Procaccia ) with a diagrammatic

method, without the need of renormalization and working directly with an IR-
concentrated forcing. To bypass the IR divergences appearing at ¢ = 3/2, they
worked with a transformed velocity field invariant under (2.42), the quasi-Lagrangian
variables (Belinicher and L’vov ). They were able to obtain expressions linking
the different 7, together but no predictions for their values was obtained. Finally let
us signal an isolated work conducted in (Giles ), which combines self-consistent
determination of the effective viscosity and noise, elimination of the sweeping effect
by random Galilean invariance, the operator product expansion and truncation of the
renormalization flow to obtain analytical predictions for the intermittency exponents
M, which quantitatively agree at low order (n < 6) with experiments. The attempts
to tackle fully developed turbulence with the NPRG are described in Sec. 2.2.3.

At this point, let us make a quick digression on another model exhibiting inter-
mittency, but where field-theoretical methods were successfully applied. Instead of
looking directly at the velocity field, Kraichnan proposed a model of a passive scalar
submitted to diffusion and advected by a memoryless (white-noise in time) Gaussian
velocity field (Kraichnan ). The velocity field is chosen incompressible and is
given a roughness exponent £. This model reads for a generic space dimension d

0,0 +7-00 = k%0,

g ! = / e“j(f_fl)
alts Bes(0,7) = Dostt =) [ Puse) e
where
Pap(q) = (8ap — 4ads/q?) (2.45)

is the transverse projector ensuring incompressibility. With the choice d = 3 and
£ = 4/3, one recovers the K41 velocity field (the m? is an IR cutoff, necessary to
prevent the integral from diverging at ¢ = 0 for £ > 0). In this setting, Kraichnan
was able to make an educated guess for the anomalous scaling of the 6 structure
functions (Kraichnan ), which was put on a more rigorous footing a year later
using the so-called zero-mode method (Gawedzki and Kupiainen ). A review of
this approach is given in (Falkovich, Gawedzki, and Vergassola ). This led to
develop a new theoretical framework to understand the origin of the intermittency
in the Navier-Stokes equation. However, for the original stochastic Navier-Stokes
(SNS) problem, the method did not suceed to produce predictions for the exponents.
Another more recent promising approach is the application of the instanton method,
pioneered for turbulence in (Falkovich et al. ). This approach allowed to obtain
the intermittency exponents in the Kraichnan model, see (Dombre ) for a recent
development, linking instanton and zero-mode method. However, the situation is
the same as for the latter as no predictions could be made in the case of the Navier-
Stokes equation. It is worth noting that the perturbative RG approach described
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above was also able to give results for intermittency corrections in the Kraichnan
model (Adzhemyan, Antonov, and Vasil’ev ; Antonov ). These works were
successfully reformulated in the NPRG framework in (Pagani ), although only
the perturbative regime was considered.

Let us wrap up this section by a comment. Kolmogorov original hypothesis
concerned only equal-time statistics. Indeed, at unequal times, other effects play
a role which may severely spoil scale invariance. Accordingly, all the phenomelog-
ical models of intermitency and fields theoretical studies that were reviewed here
have in common to concentrate on equal-time statistics. Symptomatically, the only
available rigorous predictions concerning fully developed turbulence concern equal-
time statistics as well. Thus, it seems worthwhile to stress that the breaking of
scale-invariance exhibited by unequal-time statistics in turbulence is far from triv-
ial within the theory of critical phenomena. As a consequence, these effects were
the subject of some controversy (Yakhot, Orszag, and She ; Nelkin and Tabor

; Chen and Kraichnan ) (see next section). Furthermore, new predictions
in this direction may help to broaden the contact of theory with experiments and
simulations (Canet et al. ; Debue et al. ). Unequal-time properties of fully
developed turbulence are the subject of the next section.

2.2.3 Time dependence of correlation functions in
turbulence

The typical decorrelation time of the velocity, and also the behavior of the frequency
energy spectrum, have early been debated. Indeed, the extension of Kolmogorov
original local similarity hypothesis to unequal-time statistics, as proposed in (Monin
and Yaglom ), leads to a typical time at wave-number p which goes like

TK "~ 571/3

p~23, (2.46)
This scaling is in contradiction with considerations stemming from other semi-
phenomenological arguments taking into account the sweeping of small eddies by
larger ones (Heisenberg ; Kraichnan ; Tennekes ). The corresponding
typical time is in this case the following

Teddy ~ (é_L)—l/?)p—l . (247)

In the above expression, (£L)'/? is of the order of the rms velocity of the fluid. This
second option breaks K41 self-similarity hypothesis, as it involves explicitly the
integral scale L. From the analysis of a simplified model of advection, Kraichnan
deduced that the sweeping effect should yield for the two-point correlation function a
Gaussian behavior in the variable pt where p is the wave-number and ¢ the time delay.
Such time-dependence would have a direct consequence for the energy spectrum.
Whereas the local similarity hypothesis extended to the time domain predicts an
energy spectrum behaving as w2 for Eulerian velocities, the sweeping effect leads
instead to the power law w™>/3 see also (Nelkin and Tabor ) on the subject.
The sweeping effect was identified early on by Kraichnan as an obstacle to prove
K41 scaling or corrections to it (Kraichnan ). To overcome this difficulty, he
was led to develop a Lagrangian version of his closure model (Kraichnan ).
The same difficulty appears in the field-theoretical approach and is at the origin of
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the quasi-Lagrangian variables of Belinicher and L’vov (Belinicher and L’vov ).
However, the first RG studies seem to overlook this problem and obtain the K41
spectrum although they work with Eulerian velocities and do not seem to address
sweeping (De Dominicis and Martin ; Fournier and Frisch ; Yakhot and
Orszag ). In fact, the authors of (Yakhot, Orszag, and She ) claimed
that scale invariance would hold also in the time domain, questioning the result of
Kraichnan. (Chen and Kraichnan ) argued that the RG analysis of (Yakhot,
Orszag, and She ), which used the power-law forcing of (2.40), could only hold
at small e and was not valid for e > 2. In the light of the result obtained by the RG
method in the previous section, this concern seems justified.

This controversy was finally settled: the Gaussian behavior predicted from sweep-
ing has now been observed in many numerical simulations (Orszag and Patterson

; Sanada and Shanmugasundaram ; He, Wang, and Lele ; Favier,
Godeferd, and Cambon ; Canet et al. ) and also in experiments (Poulain
et al. ). Let us also point out that the Gaussian in pt for the two-point function

was confirmed in a RG study of a modified NS equation with an effective viscos-
ity verifying K41(Antonov ). In (Kraichnan ), the analysis of sweeping
was extended to a particular three-point correlation, but the general expression of
the sweeping effect for n-point correlation functions was not known. Furthermore,
approximations had to be made in order to derive such expressions from the NS
equation. In conclusion, while today the sweeping effect is well accepted in fully
developed turbulence, we are still missing a satisfactory explanation for it from first
principles and until recently its consequences for general correlation functions were
not known.

At this point, let us present the results obtained in fully developed turbulence
using the method of the NPRG. This approach was pioneered by (Tomassini ).
Because the NPRG method does not rely on a perturbative expansion, the choice
of a power-law (2.40) for the forcing is not necessary anymore. The spectrum of the
forcing can thus have a more physical form, regular and concentrated around the IR,
cutoff L't. A common choice is

Daslq) ~ ¢*"e” @™, with m, n € N7, (2.48)

but the result should be independent of the precise form of the forcing. In order
to integrate numerically the NPRG flow, (Tomassini ) proposes that the renor-
malization of the Navier-Stokes action is described by an effective viscosity and
an effective noise, which both acquire non-trivial wave-number dependency. This
ansatz was used to integrate numerically the RG flow equation and to reach a fixed
point of the flow. At the fixed point, the author obtained the functional form of the
effective viscosity and noise. Although, as explained above, the critical dimensions
of a scale-invariant theory of fully developed turbulence cannot differ from their K41
value, a very peculiar and meaningful feature of the renormalized viscosity obtained
in (Tomassini ) was observed but not commented upon. In the inertial range,
the effective viscosity is found to have the following power-law behavior as a function
of the wave-number

Verr(p) ~p " - (2.49)
This result is in stark contrast with the scaling obtained by assuming scale invari-
ance, or equivalently the K41 scaling, which is veg ~ p~%3. As expected, this
anomalous behavior disappears in equal-time quantities and in particular the —5/3
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scaling for the energy spectrum is recovered, in accordance with K41'. Nonetheless,
it is the first time that a RG treatment of turbulence indicates breaking of scale
invariance. In hindsight, this behavior corresponds to the sweeping effect present in
turbulence. The power-law forcing (2.40) was revisited within the NPRG formal-
ism in (Mejia-Monasterio and Muratore-Ginanneschi ), with the same anzatz
as above. The main point of the paper was to investigate the freezing of exponents
above € = 2, which is a necessary feature of pertubative RG, but was questioned
within the nonperturbative formalism. However, it appears that its most interesting
result was the behavior of ver(p) obtained by integrating the RG flow:

) pT, if0<e<3/2,
Ve ~
my p~t, ife>3/2.

This behavior was interpreted correctly by the authors as a sweeping effect. Further-
more, they show that from a RG perspective, it arises from the following equation
verified by g at the RG fixed point:

(PO, + 2€/3) ver ~ % , forp> L7 (2.50)
D Ve
Looking for power-law solutions veg ~ p~%, one sees that as long as a < 1, the
right-hand side (r.h.s.) can be neglected in the large p behavior and one recovers
standard scaling: « = 2¢/3. This scaling is not consistent anymore if € > 3/2
and in this case the left-hand side (L.h.s.) and the r.h.s. need to have the same
scaling, leading to a = 1. In standard critical phenomena, the r.h.s. of the RG
fixed point equations is always sub-leading at large p, enforcing standard scaling.
However in turbulence (at least for unequal time quantities), the appearance of
a non-negligible r.h.s. can lead to corrections to the scaling exponents and more
generally to breaking of scale invariance. This is a genuine non-perturbative effects,
which explains why it was missed by perturbative RG approaches using the same
kind of anzatz (Yakhot, Orszag, and She ). The value ¢ = 3/2 at which this
crossover happens corresponds to the value of € at which certain dangerous operators
have to be controlled by the time-gauged Galilean symmetry in the perturbative RG
related in previous section, this fact leads to conjecture that both phenomena are
two manifestation of the same swepping effect.

The above results were followed by the work of Canet et al. (Canet, Delamotte,
and Wschebor ; Canet, Delamotte, and Wschebor ; Canet et al. ). The
main technical innovation is that the incompressibility condition is not enforced by
projecting the Navier-Stokes equation on transverse fields using the projector defined
in (2.45), but by enforcing it dynamically with the help of a new field playing the role
of a Lagrange multiplier for the incompressibility condition. This has the advantage
that the interaction vertex is local, at the price of introducing two new scalar fields in
the action. This step allowed the authors to discover a new time-gauged symmetry
of the Navier-Stokes field theory. Related Schwinger-Dyson equations were used
in (L’vov and Lebedev ) but it was the first time that the corresponding change
of variable was identified and used as a symmetry of the Navier-Stokes field theory.
This new symmetry allowed the authors to generalize exact relations which had

INote that in order for the K41 spectrum to be recovered, the effective noise has also to receive
an anomalous correction due to sweeping.
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been derived previously in (Falkovich, Fouxon, and Oz ). In the second paper,
the same ansatz as in (Tomassini ; Canet et al. ; Mejia-Monasterio and
Muratore-Ginanneschi ) is used to integrate numerically the RG flow and find

the K41 fixed point. More importantly, in the same paper it is shown that the exact
RG flow equation of the two-point functions can be closed in the limit of wave-
numbers large compared to the IR cutoff. This result uses the newfound symmetry
and the time-gauged Galilean one and, contrarily to previous analysis, makes no
reference to any particular ansatz. The RG flow equation obtained this way is
exact in the limit of large wave-numbers. Contrary to what is usually termed as
closures in turbulence, this result does not depend on any uncontrolled heuristic
and is exactly controlled by an expansion in large wave-number. In the last paper,
the resolution of these equations at the RG fixed point gave the leading behavior
of the correlation and response functions. It was found that at small time delay
and large wave-number, both functions were Gaussian in the variable pt, with p the
wave-number amplitude and ¢ the time delay. This result put on a firm ground the
early phenomenological predictions based on the sweeping effect and was found to
agree remarkably well with DNS (Canet et al. )

In the first part of Chap. 5, we give an account on the work published in (Tarpin,
Canet, and Wschebor ). We extended the above result by deriving the leading
RG flow equation for any n-point generalized (velocity and response) correlation
function, for any time delays as long as they are controlled by the fixed point equa-
tion. The corrections to this leading behavior are controlled by the inverse of the
minimum wave-number appearing in the correlation functions, measured in term of
the TR cutoff. We solved the corresponding fixed point equation and obtained an
analytical expression for n-point correlation functions which is exact in the limit of
large wave-numbers (and for non-exceptional wave-vector configurations), in both
regimes of small and large time delays. Such rigorous theoretical results are scarce
in the context of turbulence. The expressions obtained for generalized n-point cor-
relation functions are identified as the manifestation of the sweeping effect at small
time delays, but takes a different form at large time delays, suggesting a more gen-
eral mechanism of the NS field theory at play. The calculated effect disappears
when looking at equal-time quantities. This seems to be in accordance the previous
RG analyses. However, we cannot exclude that sub-leading terms which are not
captured by our result at leading order play a role at equal times and lead to inter-
mittency corrections. This idea is more easily explored in 2-D, for reasons that will
become clear in the follwing. Thus, let us turn to 2-D turbulence.

2.2.4 The question of intermittency in the direct cascade of
2D turbulence

Before giving the motivation of our studies of 2-D turbulence, let us present quickly
its peculiarities. Up to now, we have not mentioned historical developments in 2-D
turbulence. However, they ran in parallel to the 3-D ones. The fundamental fact of
2-D turbulence was noted by Taylor in 1917 (Taylor ): the vorticity w = curl ¥
is conserved in a perfect fluid. As a consequence, in 2-D turbulence the total energy
dissipation, which can be rewritten

1
£ ox u/ ~w?, (2.51)
02
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cannot stay finite in the limit v — 0, contrary to what happens in 3-D turbulence.
There is no energy dissipative anomaly in 2-D. The integrand in the expression
above is called the enstrophy. This fact prevented the study of 2-D turbulence as it
was thought that it could not develop a stationary energy cascade. This argument
was put on a more rigorous footing in (Lee ), where it was shown that there
cannot be direct energy cascade (a cascade with energy transfer from low to high
wave-number), in 2-D turbulence. A hint of the peculiar behavior at large scale was
given in (Onsager ), which considered a gas of point-vortices in a plane. This
apparently unrelated system can be shown to approximate the 2-D Euler equation
when the number of point-vortices goes to infinity (Eyink and Sreenivasan ). His
surprising finding is that this equilibrium system can be in a negative temperature
state, where the vortices aggregate. This feature reminds of the appearance of large,
coherent structure known to appear in 2-D flow (such as stable streams and vortices
in Earth atmosphere, or the spectacular vortex in Jupiter’s one).

In the breakthrough paper (Kraichnan ), the author argued that in 2-D,
there was in fact two separate cascades. For scales much smaller than the integral
scale, that is for k& > L', there is an enstrophy direct cascade towards the small
scale, where it is dissipated by viscosity, while the energy transfer is zero. The
corresponding energy spectrum goes like E(k) ~ k=3 (actually, it was argued by
the same author that this spectrum was corrected by a logarithmic factor in the
form E(k) ~ k=3(InkL)™'/3 (Kraichnan )). For scales between the integral
scale and the system size Lo, that is for Lj' < k < L, the enstrophy transfer is
zero and there is an inverse energy cascade, towards the low wave-numbers, giving
a energy spectrum going like E(k) ~ k=°/3. This prediction spawned a flurry of
activity on the subject, to begin with the exploration of Batchelor and his student
Bray (Batchelor ), in fact undertook earlier than Kraichnan’s paper, and the
one of Leith (Leith ). Asin 3-D turbulence, an exact law similar to the four-fifth
law in 3-D can be derived from the equation of motion, although it took more time
to be recognized (Bernard ).

Due to the inverse energy cascade, in the absence of a term to dissipate energy
at large scales, the flow cannot reach a steady state. Such a term can be derived by
considering a physical situation, where the 2-D flow is embedded in a 3-D space. This
has the effect to add a friction term acting in the bulk, named the Ekman drag. The
presence of such term gives a well understood intermittent correction to the above
Kraichnan scaling (Nam et al. ; Bernard, D. ; Boffetta et al. ). In
what follows, we will not consider such term and concentrate instead on the case
where the energy sink is limited to happen at an IR friction scale Lg' < L. Many
results seem to point to the fact that in such configuration, there is no intermittency
in the direct cascade. First, there exist mathematical results which bound the
magnitude of the hypothetical intermittency exponents (Eyink ). Second, a
work using diagrammatic methods borrowed from 3-D, such as the quasi-Lagrangian
variables, obtained that the two-point functions of the monomes of the vorticity did
not receive intermittency corrections apart for the dimensional logarithm factor
mentioned above (Falkovich and Lebedev : Falkovich and Lebedev ).
Third, experiments (Paret, Jullien, and Tabeling ) and simulations (Babiano,
Dubrulle, and Frick ), both find weak or zero intermittency corrections in the
direct cascade (see also the more recent work of (Bruneau and Kellay ))-

Study of 2-D turbulence using perturbative RG method are scarce. To the
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difficulties inherent to the choice of a power-law forcing, the dimension 2 adds new
difficulties which plagued the first attempts. In 2-D, new IR divergences appear,
such that the RG approaches have to be adapted. A review of these attempts is
made in (Mazzino, Muratore-Ginanneschi, and Musacchio ). However, in the
2-D case, we discovered new symmetries specific to 2-D turbulence which gave us
hope to continue the line of work started in (Tarpin, Canet, and Wschebor ).
As presented in Sec. 2.2.3, in the previous works, we obtained the leading term of
the exact RG flow equation at large wave-numbers with respect to the IR cutoff.
This term was found to vanish for equal-times quantities. In Chap. 3, we will show
that in order to investigate possible intermittency corrections, one thus has to obtain
the sub-leading order of the RG flow. In 3-D an exact calculation seems possible
for the moment. However in 2-D, the newfound symmetries may allow to obtain
exact expressions. If the next-to-leading order terms of the flow equation can be
given a closed form and do not vanish at equal-time, they give a way to calculate
intermittency corrections. If it can be shown that the next-to-leading order terms
vanish at equal time, this would constitute a proof of the absence of intermittency
correction in the direct cascade of 2-D turbulence.

This work is presented in the second part of Chap. 5. Because our method probes
the regime of wave-numbers large compared to the IR cutoff, we concentrate on the
direct cascade and we set the integral scale equal to the IR friction scale. First, we
use the particularity of 2-D to express the NS action in terms of a scalar field, the
stream function. We use this formalism to express the known and new symmetries
of the 2-D NS action. The symmetries are then used to simplify the RG flow.

In conclusion, we presented in this chapter two examples of out of equilibrium
physical systems exhibiting critical phenomena. The first system is the absorbing
phase transition in DEP. We have shown that the current theoretical descriptions
available are not entirely satisfactory. In Chap. 4 we present our take on this subject
using the NPRG. The second system is homogeneous isotropic fully developed tur-
bulence. It should be clear at this point that a theoretical description of turbulence
is missing, and in particular of the intermittency effects. Our study, presented in
Chap. 5 is restrained to the two subjects outlined above: time-dependence of corre-
lation functions, and intermittency in the direct cascade in 2-D. Before delving into
each of these subjects, let us first give in the next chapter a short introduction to
the framework of NPRG in the context of out of equilibrium field theories.

Version francaise

En conclusion, nous avons présenté dans ce chapitre deux exemples de systémes
physiques hors de [’équilibre présentant des phénomenes critiques. Le premier sys-
teme est la transition de phase absorbante dans le DEP. Nous avons montré que
les descriptions théoriques actuellement disponibles ne sont pas entierement salis-
faisantes. Dans le Chap. 4, nous présentons notre point de vue sur ce sujet a l’aide
du NPRG. Le second systéme est la turbulence isotrope homogene et pleinement
développée. Il devrait étre clair a ce stade qu’une compréhension théorique compléte
de la turbulence reste a bdtir, en particulier concernant les effets de l'intermittence.
Notre étude, présentée au Chap. 5, se limite auzr deux sujets décrits ci-dessus : la
dépendance temporelle des fonctions de corrélation et lintermittence dans la cascade
directe en 2D. Avant de se plonger dans chacun de ces sujets, le chapitre suivant est
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consacré a une bréve introduction au NPRG dans le contexte des théories de champs
hors de l’équilibre.






Chapter 3

Introduction to non-perturbative
renormalization group for out of
equilibrium field theories

In this chapter, we present the framework of the NPRG applied to out of equilbrium
field theories. In order to introduce out of equilibrium field theories, we first present
in Sec. 3.2 the mapping from a SPDE with Gaussian noise to an action functional
known as the MSRJD formalism. This allows us to discuss the specificities of out
of equilibrium field theories, in particular the properties of causality of such field
theories. Then in Sec. 3.3 we give a short presentation of the saddle point method
in statistical field theories as well as its shortfalls. This prepares and motivates the
introduction of the NPRG in Sec. 3.4. Finally in Sec. 3.5 we spend some time on the
treatment of causality in this setting. Prior to this, let us introduce some notations
used throughout the manuscript.

Version francaise

Dans ce chapitre, nous présentons le formalisme du NPRG appliqué aux théories
des champs hors équilibre. Afin d’introduire les théories des champs hors d’équilibre,
nous présentons d’abord dans la Sec. 3.2 la mise en correspondance d’une SPDE
avec bruit gaussien & une action fonctionnelle, connue sous le nom de formalisme
MSRJD. Cela nous permet de discuter des spécificités des théories de champ hors
d’équilibre, en particulier les propriétés de causalité de ces théories de champ. En-
suite, a la Sec. 3.3, nous donnons une bréeve présentation de la méthode du point-col
dans les théories statistiques des champs, ainsi que de ses lacunes. Ceci prépare et
motive lintroduction du NPRG dans la Sec. 3.4. Enfin, a la Sec. 3.5, nous nous
attardons sur le traitement de la causalité dans ce contexte. Avant cela, introduisons
quelques notations utilisées tout au long du manuscrit.

3.1 Notations

In this work, the vectors are noted with an arrow as ¥ and their components with
greek indices, x, or x® indifferently. The Einstein notation for the summations is
used. Bold symbols indicate both a space coordinate and the corresponding time
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coordinate, with the conventions: x = (¢,7), y = (u,9), z = (v, 2) for real space and
p = (w,p), 9= (w,q), k = (v,k) in Fourier space. The integrals are abbreviated
according to the following notation:

/E/ddxdt in real space,

diqd
/ / 1% in Fourier space. (3.1)

271' d+1

The Fourier transform is noted with a tilde and the following sign convention is used

- [ faen
= /X f(x)e P>, (3.2)

p-x=p-¥—wt (3.3)

with the shorthand notation

and with the obvious generalisation for many-point functions. Due to invariance
under space-time translations, functions of many momenta such as the Fourier
transforms of correlation functions are often proportional to the delta-fonction of
conservation. The Fourier transform with the delta extracted is noted with a bar as
follows

F(p..o o) = Cr)™ 5 (Y w) 0! (Yo5) Flpr o opat). (3.4)

3.2 Response field formalism for Langevin
equation

To present the MSRJD formalism we will concentrate on the simple example of
the Langevin equation for DP, while the general setting, with more than one field
and accounting for explicit constraints along the time evolution, is deferred to Ap-
pendix B.1. The Langevin equation for DP reads

Op=rp—Mp*+Dp+n, (3.5)

where 7 is a centered Gaussian random field of covariance

(nG)n(x)) = 2X2p(x)d(t — )0 (7 - 7). (3.6)

This definition can seem somewhat problematic as the covariance of 1 depends on
p, which is a process defined through 7. In fact, the right way to read this Langevin
equation would be to discretize it, using a forward discretization scheme. In this
particular case of a Gaussian noise 7, this problem can be solved in the following
way. We can rescale the noise such that the Langevin equation reads

Op = kp — M p* + DO?p+ \/2\pi (3.7)
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with the centered Gaussian noise 77 having now the following variance:
((x)n(x)) = 8(t — )" (7 - &), (3.8)
or equivalently, the probability P[7] of a given trajectory for 7 is given by
P[] oc ez 700 (3.9)

The It6 calculus is the mathematical apparatus which has been developed for
this formulation, when a forward discretization scheme is chosen (Gardiner ). In
the following, we will work with the continuum SPDE (3.7) using formal functional
manipulations, having in mind that what we really mean is a discretized version of
the process. The first step of the MSRJD formalism is to add a linear spacetime-
dependent perturbation, 7, to the Langevin equation:

Op =kp —Mp?+Dp+\/2N\opil + 7. (3.10)

and we note (F[p]);, with F a functional of p, the mean value of the (functional of
the) solution of the Langevin equation (3.10) above over realizations of the noise 7.
This will allow us to get informations on the response of the system to infinitesimal
perturbations. For example,

(x))5
3.11)
/ ’ (

=) |,
the functional derivative of (p) with respect to 7, is the Green function, the response
of the system at the point x to an infinitesimal perturbation concentrated at the
point x'.

Our goal is now to find an expression for the generating functional of the process
p:

Glxx) = 22

Z[j,3]) = (ehI0r);. (3.12)

We see that j and 7 play similar roles. For example, the Green function can be
rewritten as

0°Zj,]]
Gx,x)= ——2=— 3.13
22) = 5000 | 1
The first step is to write Z as a functional integral
2.0 = [ Dlaleh(8lo - pil)s. (3.14)

The integration measure D[] and the functional Dirac delta §[-] are to be understood
as the continuum limit of their discretized versions in space and time. pj; is the weak
solution of the Langevin equation (3.10) for a given 7. The second step is to replace
the constraint (6[p — p;]); by the explicit equation of motion of p in the presence of
the perturbation 7, which can be written as F(-) = 0, with

F(X) = 0p—kp+ p* = D&p—7T—/2xapi]. (3.15)

Assuming existence and unicity of weak solutions of (3.10) (at least almost every-
where for the measure D]p] for a given initial condition), one obtains

20,7 = / Dlplehi” (§[F]) x T (3.16)
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with 7 the Jacobian of the transformation, J = |det (gf;((;f;ﬂ, which depends on

the choice of discretization of (3.10). In this work, we always assume that it has to
be understood in the Ito6 convention, which amounts to have a forward discretization
scheme of the differential equation. As a consequence, J does not depend on the
fields (Tauber ). Accordingly, it can be ignored it the calculation of correlation
and response functions and it is absorbed in the functional measure.

The last step is to use the Fourier representation of the functional Dirac deltas.

25,7 = / Dlp, plel=3e (i %)

— / Dlp. p]eijpﬂjﬁe*i S ﬁ(atpfanlpLDa?p)@ifx NM@
_ / Dlp, ﬁ]ej;(ijrijﬁe—S[p,ﬁ}

with S[p, p| = / {iﬁ(@tp —Kkp+ Mp? — D0Op) + >\2,0ﬁ2} : (3.17)
using the property (3.9) to compute the average value in the second line. Finally,
one usually absorbs the complex ¢ in a redefinition of the response fields ip = p
yielding

S= [ {00 = o+ 3~ Do)~ rapi?} (3.18)

This concludes the MSRJD mapping. By rescaling p = :\\—be and p = %(5;

rescaling the time ¢ — D~!t and noting ¢ = kD™', X = /A )y, one obtains
without loss of generality

23,7l = /D[¢, (E]eij¢+i$e*5[¢,$]
Slo, ¢l = / {(E(& — 0 —0)p+ A\po(¢p — q‘s)} : (3.19)

This action is known in high energy physics as the Reggeon field theory, its mapping
with DP was understood in (Cardy and Sugar ). One sees that it depends on
two scalar fields, although we have started with a Langevin equation for the density
only. This is a general feature of the action obtained through this formalism: they
contain twice the number of degrees of freedom present in the deterministic limit of
the process. These new fields, associated to each equation of motion or constraints
are called the response fields and we call the field associated to the original degrees
of freedom the observable fields. From (3.19), we can rewrite the Green function as

G(X, X/) _ 52Z[J7ﬂ

= Sitogte)| — exel. (3.20)

In the following, we will call the average of an arbitrary product of observable
and response fields a generalized correlation function. The matrix of two-point
generalized correlation function is often called the propagator, somewhat abusively
as it contains also the two-point correlation of the observable field.

Now, let us discuss general properties of out of equilibrium field theories on the
above example. By construction, the action vanishes when the response fields are set
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to zero. Furthermore, due to the choice of discretization of the Langevin equation,
the response fields are evaluated at a later time in the action than the observable
field. These two properties are in fact more general than the case of Gaussian noise.
Both of them are necessary to have a causal process, in the sense that
(Sm
— — o(x)) ... o(x));=0
5](X1)](Xm)< ( l) ( n >]

i3k, V,le, tp>t. (3.21)

In other words, the process is causal if any multi-times response function vanishes
when its largest time is the one of a response field. The treatment of this causality
property within the framework of NPRG will be discussed further in Sec. 3.5. In the
following, we always assume that these two properties hold, whatever the way we
obtained the action. It will be the case for all actions obtained through a response
field formalism generalizing MSRJD. Whether and how to interpret the action ob-
tained using the Doi-Peliti formalism, to be presented in Chap. 4, in this setting
may be more delicate, at least non-perturbatively.

3.3 Statistical physics and mean-field theories

The Chap. 2 of this memoir has been devoted to the presentation of two examples
of systems belonging to the field of statistical physics. However these examples
were peculiar in the sense that the emphasis was given on correlations that develop
at all scales in these systems, either because we placed ourselves at a particular
point in the parameter space or because it was a generic feature of the theory. It is
worthwhile at this point to take a step back and review first the statistical physics
of non-interacting or weakly interacting degrees of freedom. This will allow us to
motivate and introduce the general formalism of the NPRG.

We will restrict ourselves to stochastic systems which can be described by a
(non-normalized) functional partition function of the following form:

Z[j = / DgleS+i%. (3.22)

For field theories obtained through a response field formalism, ¢ contains both the
observable and response fields. The above formal notation has to be understood in
the following sense. The symbol with brackets represent a functional dependency in
its argument. The symbol D is a measure in a certain space of functions. The dot is
a formal scalar product in this space of functions. For example, for a n-component
field theory living in a d-dimensional box of linear size L and from the time 0 to 7,
it writes

j - :n ddd .i’7_)i7_): 'i % . .
o= [ i @een = [ie00. (623

=1

Let us introduce two more shorthand notations. For any linear operator A and field
¢, we write A - ¢ the field defined as

[A-0],(x) = / A (%,5)95(y) (3.24)
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and if A is symmetric,
¢p-A-¢=0¢-[A-¢]=[A-9¢]-¢. (3.25)

To give a rigorous meaning to these notations is often a hard task that we do
not aim nor need to undertake. Indeed, in statistical physics, these generating
functionals are often defined with a natural cutoff for the small length scales, or
equivalently for high wave-numbers. For theories defined on a lattice for example,
this cutoff corresponds to the inverse lattice spacing (in the language of field theory,
an UV cutoff, generically noted A). When the cutoff is not explicitly present, it has
to be understood as the limit of validity of the model used to write the theory. The
operation to take the UV cutoff to infinity is called the continuous limit. While the
continuous limit often makes the task of computing quantities easier, it is in fact
not a necessary step. As a consequence, we will manipulate formally the functional
expressions in the continuum, having in mind that they contain a UV cutoff which
regularizes the theory. Now, let us begin by an introductive section on the calculation
of statistical field theories when the tools of the renormalization group are not
needed. This will also be the occasion to set up some notations.

3.3.1 Free theories and saddle point methods

A particular case where the integration over the fields can be done exactly is the
case of non-interacting, or free, theories. The theory is said to be free if S is at most
quadratic in the fields. A linear term can be absorbed in a shift of j, so we write in
all generality

1 1
Sl =56+5%-0=5 [ 6P xN6E) (3.26)
X,y
with S@ the symmetric linear operator defined as the Hessian of S:
525(0)
SPxy)=—2 | 3.27
v 0¥ = 5 w00, 320

If S@ is definite positive, we note Gy = [S?] ~" and the partition function is readily
calculated to be L
Z[j] = N e2 16T, (3.28)

where N is independent of j. From the expression of Z[j], one obtains the full set
of generalized correlation functions defining the theory:

[ Dlgle5¥I0g; (x1)ds,(x2) . . . di, (X1)
<¢i1 (X1)¢i2 (Xz) Qi (Xk)>j - f 'D[gb]e_s[qﬂﬂ"ﬁ

- ]| (3.29)

Z[j] 0jiy (x1)0jiy (x2) - . - i, (xk)
Note that we have defined the correlation functions without setting the sources j to
zero, thus these are still functionals of j. This is why we have to divide by Z[j] to
get a normalized expression. This dependency is made explicit in the j subscript of
the mean value. The physical content of the theory is written more compactly using
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the complex logarithm of the partition function, that we shall note W following
common usage in the field. It is the analogous of the Helmoltz free energy for
out of equilibrium systems. While functional derivatives of Z give the correlation
functions, functional derivatives of VW give connected correlation functions - the
functional generalisation of cumulants (Le Bellac ). Let us introduce more
notations. The mean value of the fields is denoted as

L 0Z[j] oW
Zj| 0ji(x)  dji(x)’
and an arbitrary n-point generalized connected correlation functions is defined as

%Y
0y (X1) - - 03, (Xn)

Di(x) = (4i(x)); = (3.30)

Gz(l zn[{xf}1<é<n7.]] (331)

Note that in this definition as well, Gif)m is still a functional of the sources, which

is materialized by the square brackets and the explicit j dependency. We indicate
that a correlation function is evaluated at constant fields j, using the notation

G ({xehi<esnsdo) = G xedsi = ol (3.32)

In the case of jo = 0, we write simply Gg?.)“in({Xg}lgggn). The Fourier transforms of
these functions follow the conventions given in the introduction:

G ({pchr<r<ny o) :/ G ({x¢}1<eens jo)e P (3.33)
{xe}

and for systems invariant under space-time translations, extracting the delta func-
tion of conservation of wave-vector and frequency gives

({pe}1<e<n,Jo 27T dH(Sd Zpk Zwk {p€}1<£<n 1>J0) (3-34)

Going back to the Gaussian theory (3.28), we obtain simply

= [Go }
Gy Iyl = [Gal
e {xe}1<0<n;j] =0, forn > 2. (3.35)

11...0n

In the context of out of equilibrium field theories, we will often use the name of
Gaussian theory and Gaussian fields for the particular case of

Samsin = [ {(00= 0+ 7)o — 257} (330

with ¢ and A two positive numbers. This MSRJD action corresponds to the follow-
ing Langevin equation:

0ip = (0" — a)o+1
(n(x)n(x)) = 2A6(x — x), (3.37)
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which describes for example the propagation of heat in a material subjected to heat
loss and noise. Following the previous discussion, this field is generally only defined
up to an UV cutoff.

However, most theories of interest are not free. As a consequence one has to find
a way to calculate approximately the partition function. Let us assume that the
non-quadratic part of S is proportional to a small coupling g. In this case, one can
try to approximate the partition function using a functional saddle-point. Let us
assume S is smooth and expand the argument of the exponential in powers of the
fields around an arbitrary value ¢™*:

0S
s
—56=6)-8PIE) (6= 6) +gSwle o - ], (339)

=Slg+j- 0= =Slo7)+ (i — 2 1¢7]) - (6= 67) +i "

where Sin[0*, ¢ — ¢*| is at least cubic in ¢ — ¢*. Let us choose ¢* = ®y[j] the solution
of the classical equation of motion
4S
0o*

such that the term linear in ¢ in (3.38) vanishes. It can be shown that ®y diverges
when ¢ goes to zero at j fixed. For example, in the case of a polynomial interaction,
1

(0] =1, (3.39)

®y ~ g2-n», where n is the degree of the interaction. As a consequence, the first two
terms of (3.38) diverge with g, the quadratic term is of order ¢° and the interaction
part has positive powers of g. The partition reads, neglecting S;,; for the moment,

Z[f] o e SIPol+i®o / D[g]e2(#~P0) 8720l (9=20) (3.40)

Assuming that the Gaussian integration can be done, it gives

[NIE

) -
/DMQ—§(¢—q>0).3(2>[<1>0]-(¢—<1>0) _ (det w) _ Ne—%mng(z)[@o] ) (3.41)

™

The argument of the exponential goes as ¢. Furthermore, if one calculates per-
tubatively the higher order terms which have been neglected, they appear in the
exponential with a positive power of g. In the limit g < 1, one is thus left with

where ®( depends on j through (3.39). At this point, let us make a note about out of
equilibrium field theory. In equilibrium field theory, the action S in (3.22) is real. In
this case, the saddle point calculation is done exactly as described above. However,
actions of out of equilibrium field theories are complex and cannot generally be
deformed to the pure real case. We have thus hidden the choice of a path of constant
phase in our symbolic notations, as well as the task of proving the positivity of the
Hessian. At least in the case of actions obtained from MSRJD formalism, this can
be checked rigorously. However, it is a subtle matter that we will not undertake
here.



3.3. Statistical physics and mean-field theories 47

Let us calculate the mean value of the fields from the definition (3.30) and the
expression (3.42)

D(x) = ajix> (= il +5- 20)
RS §g 6(Po)
— r%[ ] 5 Z(X) + Poi(x) + |] 5 ]Z(X)
- [(j - 5%@0]) - ‘i;—‘j () + Bo(x)
— Dy, (x) (3.43)

Furthermore, in this approximation,

@ o 0Pi(y) _ 0Po,(y) | O] - 0 fe@-lr
Gij [X7Y7J] - 5J1<X> - 5J1(X) - [5(1)0]” [X7Y7.]] - [S( )LJ [X7Y7q)]' (344)

In other words, the propagator of the theory is G, the inverse of the Hessian of the
action. In the last equality, the dependency on j appears implicitely through the
dependency on ® = ®;[j|]. Taking a derivative of the equation above with respect to
jk(z) and using the formula

)
5¢k (Z)

0A[Q]
5¢k (Z)

[Alg]],

. (x,y) =— [A_l : -A_1] (x,y), (3.45)

for the derivative of the inverse of an arbitrary linear operator A depending on a
field, one obtains

0P o

d -
3) _ 0 a® _ 0 1@ Yk v
Giboyill = G byl = 5 55 [S®] %,y 9]
—— [ [Galbexi[Gol vy )Gl [ 2SI 2 .
x/ y/ z/

(3.46)

In the saddle-point approximation, all the correlation functions can be constructed
from the derivatives of S. In fact, the result is more precise: an arbitrary generalized
connected correlation function G™ is given by the sum over all tree diagrams whose
edges are the Gy and whose vertices are the S, 3 < k < n. Each of this diagram
appears with a signed symmetry factor which will be irrelevant in the following.
This property is easily demonstrated iteratively, starting from G~ and taking
one j derivative:

n . 5 n
Gl (xehsesnii] = 5 )GEI o xehizni]

od n—1)
= 6jin<xn) 57;1 i 1[{Xe}1<n 17<I)]

)
GO 5(1)7;§ K 1[{X€}1<n 17(1)] ) (Xn)7 (347)
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P

Figure 3.1: Field derivative of the propagator

where 7"~D[®] is the tree decomposition of G("~V. Either the derivative hits on one
of the S or on one of the Gy composing 7" ~V[®]. In the first case, it gives SE1),
without changing the tree structure. In the second case, the equation (3.45) for the
derivative of the inverse applies and a S® vertex is inserted with a minus sign. This
operation is represented diagrammaticaly in Fig. 3.1. Then the propagator coming
from % is attached to where the field derivative has hit to give back a sum of
trees 7 (™[®] as announced.

3.3.2 The effective action

The saddle point calculation is known as the Landau approximation (Landau ).
Within this approximation, the microscopic action generates the equations of motion
for the averaged degrees of freedom. In fact, these properties can be formalized
and generalized out of the mean field approximation using the Legendre-Fenchel
transform of W, which is traditionally noted [' and named the effective action. It is
defined as

I[®] = sup {j-cb—W[j]} - —njlf{wm —j~<I>}. (3.48)
J
In general, it may be difficult to define the infinum if W is not real as it is in
equilibrium field theories. This difficulty can be circumvented in the saddle-point
approximation.
Let us rewrite the properties of the previous section in terms of the effective
action. Within the saddle-point approximation, we can write

1708 1 0S
l—j-®=—S[® —(——'>. @) q>.(——'). 4
W] =] S+ 5 (55 [SP] 19 (55 (3.49)
The r.h.s. reaches its minimum for j such that & satisfies the classical equation of
motion and one obtains simply that

T[®] = S[®]. (3.50)

Thus one sees that I' contains all the information necessary to reconstruct the cor-
relation functions of the theory. This fact is more general than the saddle-point
approximation. Assuming VWV is sufficiently differentiable and have a single non-
degenerate saddle-point, I' can be defined by

Lo+ Wil =j- @, (3.51)

where j is determined implicitely by

ow
500 = ®,;(x) . (3.52)
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In this case, j can be interpreted as the linear bias necessary to add to the action
such that ® is the mean value of the field. Taking a ® derivative of (3.51) and using
the above definition of j, one obtains that

or (353)

Thus, I" plays the role of the classical action for the mean value ® in the sense that
it generates its equation of motion from a minimization principle. Furthermore

._.1[x, y; @], (3.54)

v

Oy vl — _ B T RN e
Gy by dji(x) 0ji(x) 0P ) =[]

-1
60;(y) _ 0%,(y) _ laj ]

ij
where I'®) is the Hessian of I' (evaluated at the field ®[j]).

In the same fashion as in the mean field approximation, all the connected cor-
relation functions can be constructed from the derivatives of I', called the vertex
functions. The vertex functions are often presented as the one particle-irreducible
(1-PI) correlation functions for diagrammatic reasons, see (Amit ). Let us take
this occasion to introduce useful notations for the following. The n-point vertex
(1-PI) functions are defined with the same conventions as the connected correlation
functions:
onr

F(")
6<I>i1 (Xl) RN 5(1)171 (Xn> ’

i1...0n

(X1, ..., X, D] =

(3.55)

Accordingly, we define FZ(?)ZW (X1, .. .,X,, Py) and FE?)M (x1,...,X,) as the previ-
ous vertex functions evaluated at constant (resp. zero) field. Finally we define as
well the Fourier transforms before and after having extracted the delta function
of conservation of wave-vector and frequency, respectively f(n)<{pg}1§g§n, ) and
I™({pe}i<e<n_1,Po). Using (3.54) and the rule for the derivative of the inverse
(3.45), the same demonstration as in the mean-field approximation goes through to
show the following property: any n-point connected correlation function G™ can
be constructed as a sum of tree diagrams whose vertices are the 1-PI functions I'®),
3 < k < n and whose edges are the propagators G = [[?]~!, Thus I' generalizes
S when the saddle-point approximation is not valid. Of course, to obtain the exact
expression of I' is as difficult as the original problem of calculating the correlation

functions. Thus one has to devise approximations.

3.3.3 Corrections to the mean field approximation

Finally, let us understand how the mean field approximation can fail. To do this,
let us calculate the first correction to the saddle-point.

T[] = 8[#] + Sirin 5[] + O(g") (3.56)

where we remember that S[®] diverges when g — 0 at fixed j and o > 0. The first
order correction comes from the normalization of the Gaussian integration in (3.41).
Let us for example use this expression to calculate the two-point vertex function of
the theory at zero field. In order to do this we take two functional derivatives of
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Figure 3.2: First order correction to I'?)

the equation above. For a interaction polynomial of degree n, writing explicitly the
trace and using the rule (3.45) for the derivative of the inverse, the result reads

1

2 2 4
Iy ey) =87 y) + 5 / [Gol (21, 22) Sy (1, 22, . )
Zz1,Z2

—/ Si(;?l)(xazhzz)[Go]km(zlazza)[GOLH(ZhZOSS)U‘(Zl,Z27Y) +0(9$)'
o (3.57)

The mean field corrections are more simply expressed in Fourier space, using invari-
ance under space-time translations:

M) =87m) + 5 [ Gl (Sl (a0 ~ap)
- / 58 (p.a)[Go],,, (~a) [Go,, (P + QS (~a,p+a) +.... (3.58)

The correction can also be represented in a diagrammatic form. Using a full line
for the two-point connected correlation function G = [['®]~! a dashed line for
its mean field counterpart G = [S®®]~! and circles for the vertices S, the above
equation is represented in Fig. 3.2. At this point, let us take the example of the
following generic action corresponding to an out of equilibrium field theory for one
scalar defined by a Langevin equation

S= [{d0 -+ 0= a@6r+i00) - (P U], (359)

with U! and U? are polynomials beginning at quadratic and linear order respectively

and o, A > 0, such that the classical homogeneous stationary solution is ¢ = ¢ = 0.

The parameter a can take the value zeo or one. a = 0 corresponds to a non-

conservative noise, such as the one appearing in the Langevin equation (3.37), while

a = 1 corresponds to a conservative noise. An example of such noise was introduced

for the DP-C model in Sec. 2.1. The case Uy = 0 is analysed in details in (Tduber
). From the above equation, we obtain that

-~ _ 2Ap2a
[GO] ¢¢(p) - wz + (p2 + 0_)2 )
- 1
(Golos® = oo

(Gl 55(p) = 0. (3.60)
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In the following, we use the shorthand notations

Ui = UI(D)],_,
@0} ¢¢(q) = C, )
GO} ¢¢Z(q) = Rfl‘
(3.61)

We will concentrate on the inverse propagator fgz(p) at p = 0. This should give the

first corrections to o. First, we look at the corrections proportional to S*. They

read
1

T2, = 5 /q {Oqul,g + Rqigs + c.c.} (3.62)

where c.c. stands for the complex conjugate of the second term in the curly braces.
It will be shown in Sec. 3.5 that due to the causality property of the action, the last
two terms are both zero after integrating over the frequency. Furthermore,

Aan B o0

where ¢, is the correlator of the equilibrium Gaussian field theory. For ¢ > /o, i.e.
short distances, the correlations decay with a power-law behavior. For ¢ < /o, i.e.
long distances, the power law is cut off by \/o. In the language of Euclidean field
theory /o is the mass of the excitations of the field. Now looking at the corrections
proportional to S©® | they read

I_’((;(;(O)‘?) = — /q {U1,2U2,1R—qRq + uypup RgRq + c.c.+

+ uizR,qu + c.c.}

1

=3 / {u172u271 ¢+ A uiQ q2“cg} (3.64)
q

where again, the integration over frequencies is done using the causality property of
the action. Inserting everything back into the expansion, we obtain

_ 1
FE;Z(O) =0+ 3 /@{(A Uz — u172u271)cq — A ui2 qzacg} + ... (3.65)

Now integrating over the wave-vector, we use invariance under spatial rotations
of the integrand to rewrite each term of the correction in the following form:

/2“—2 /AQd i (3.66)
A N R |

with vy = 1/(2d+17rgF(g)). The first term of (3.65) corresponds to the above formula
with £ = a, £ = 1, the second to £k = 0, £ = 1 and the third to k = a, £ = 2. The
behavior of this integral depends drastically on the dimension. For d + 2k > 2(, it is
dominated by the UV scale and goes like A%t2#=2¢, This is not so surprising, as the
original couplings of the theory are defined at the scale A, and if we want to take the
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limit A — oo, we should scale the couplings accordingly. Let us examine the case
d+ 2k < 2¢, where the integrand is UV convergent, such that we can “forget” about
the dependency on the UV scale and let A — co. The integral can be calculated and
have the following behavior when the linear size of the system, L, goes to infinity

00 dik—1
2
/ dy - o o ¥t (3.67)
0 (y+o)
However, we see that for the massless case, o = 0, the integral behaves as L~972k+2¢,

In this case, the correction term becomes dominant in the limit L — oo. For a = 0,
this problem appears for d crossing 4. For a = 1, it will appear only below d = 2.

This divergence signals a breakdown of the mean-field approximation. In high
enough dimensions, the contribution of the fluctuations of the fields which are ne-
glected in the saddle point calculation can be taken into account by expanding the
interaction terms and calculating pertubatively the corrections. However, below a
certain critical dimension d. which depends on the theory, if the theory is massless
the corrections to mean field diverge faster than the leading term in the large volume
"thermodynamic" limit even if the coupling of the interaction is weak. At this point
we direct the reader to a more in depth presentation of the subject in the context
of out of equilibrium field theories in (Tauber )

Let us note also that in the case of strong coupling g > 1, the corrections can be
strong enough to change qualitatively the result of the mean field calculation, even
above the critical dimension.

3.4 Introduction to the non-perturbative
renormalization group

We have seen in the previous section that the mean field approximation is not valid
below a certain spatial dimension if we want to study a theory whose action has a
Hessian that possesses zero-modes in the IR, or in other terms when the mass of
the theory is zero. This is in particular the case of critical theories, that we will
define more precisely later. When a theory is at such critical point of its parameter
space, the integrals appearing in the corrections to the mean-field may diverge in
the “thermodynamic” limit L — oo faster than the leading term, which signals a
breakdown of the approximation. As a consequence, the saddle-point calculations
are not directly possible. The framework of the renormalization group was developed
to bypass this problem.

3.4.1 The Wilson renormalization group

In Sec. 3.3.3 it was shown that irrespectively of the value of the microscopic coupling
of the interaction, below a certain dimension, the corrections to the mean field
diverge in the thermodynamics limit if the action is at a critical point. This fact
can be understood in terms of the fluctuations of the fields. At a critical point,
the correlations of the fluctuations are not damped by a mass and span the whole
system. The interaction terms probe the correlations of the fluctuating fields at the
same space-time point. If the fluctuations are critical, the corrections coming from
the interaction will receive contributions from all Fourier modes, from the UV cutoff
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A to the IR one L~!. When the limit L — oo is taken, the correction may thus
diverge in the IR in low enough dimensions.

The idea of Wilson is thus not to do the integration on all modes directly but
to do it progressively, starting with the UV ones. By doing this, one constructs
an effective theory for the remaining IR modes. This idea can be traced back to
the block spin renormalization a la Kadanoff. This method was originally devised
for Ising models or its generalizations. The idea is to obtain an effective theory
for “mesoscopic” spins, which are averaged over the microscopic initial degrees of
freedom. For example, from an infinite d-dimensional lattice with lattice spacing a,
one forms hypercubic blocks of 2¢ adjacent spins and assigns a spin value to each
block, representing the values of the spins composing the block. The mesoscopic
spins thus defined live on a lattice of spacing ¢’ = 2a and interact through an
effective Hamilonian that has to be determined. Then, rescaling the distances and
the fields by the new lattice spacing a’, one obtains a new theory for effective degrees
of freedom whose number of modes is divided by two. By studying the effect of the
renormalization group transformation on the Hamiltonian or the action defining the
theory, one can understand how divergences appear in physical quantities at a critical
point. More precisely, the different critical exponents characterizing the critical point
under study are encoded in the behavior of the theory under the transformation at
or near the critical point, which is a fixed point of the transformation.

The method proposed by Wilson follows the same principles, although directly
in Fourier space. In the modern reformulation, one writes the field as a sum of the
slow and the fast degrees of freedom:

¢=0<+ o5, (3.68)

where ¢~ contains only the part of the Fourier modes of the original field which
are in an UV shell from A to Ab, with b smaller but close to 1, and ¢. contains
the modes from Ab to the IR cutoff. Let us assume that j couples only to the slow
degrees of freedom in the partition functional. Then it can be rewritten as follows

/D eJ de /D o~ Slo<+¢5] /D eJ $< o—Sillo<] (3.69)

where the second equality defines S ¢. The heart of the difficulties lies in calculating
Seir.. However, the situation is different from the calculation of perturbations in the
previous section. Indeed the fluctuating field we are integrating on, ¢-, possesses
Fourier modes only in the small shell [Ab, A]. As a consequence, the saddle point
method of the previous section can be applied as long as the coupling is small
enough and the corrections from the interactions can be calculated without risk of
divergences, either pertubatively as in Sec. 3.3.3 or with other mean. The next step
is to change to the rescaled field variables, which read in Fourier space as

0<(@) = b9 (q/b). (3.70)

The exponent « is linked to the dimension of the field and is generally necessary for
the transformation to have a fixed point. Rescaling the wave-numbers to get back
A as UV cutoff, one obtains finally

= / Dig]e’ ¥ 511, (3.71)
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where

S'[¢] = Sealo<]
J'(@) = b*5(0q). (3.72)

If the initial action is invariant under the consecutive integration on the fast degrees
of freedom and the rescaling, S[¢] = S’[¢'], then

Z[jl = 2[1'], (3.73)

from which one deduces that the correlation functions of the system are scale invari-
ant. This method presents the advantage that it can be done infinitesimaly. Setting
b = e~® and letting s go to zero, one obtains the infinitesimal RG transformation.

3.4.2 The regulator and the Wetterich equation

It was realized that one can write down an exact differential equation for the effec-
tive action S$I under a change of parameter b (Wegner and Houghton ). One
starts from the mean field effective action S§T at b = 1 and ends at the effective
action ST when all modes have been integrated. Later it was understood that the
sharp cutoff induces spurious effects and an exact evolution equation for a smoother
cutoff between fast and slow modes was proposed in (Polchinski ). A modern
formulation of this idea is to add a non-local quadratic term, called the regulator
and noted here AS,; to the action (or Hamiltonian in an equilibrium context). This
term depends on a new scale that is introduced by this procedure: the renormaliza-
tion scale k. The role of the regulator is to act as a mass for the degrees of freedom
of the field with wave-number below . In the same time, the regulator should have
no effect on the degrees of freedom with wave-numbers above x, with the additional
requirement that the transition between these two regimes is sufficiently smooth.
To fix the idea, let us write the regulator as

as- | (R y)0000) - . / (R fa @yl-aol-a)
:%¢.RH.¢' (3.74)

In order not to break artificially the invariance under spatio-temporal translations
and spatial rotations which could be present in the microscopic action or are expected
to be realized in the IR, we will always choose a regulator of the form
Rl (@.@) = @0)*5(@ + &)@+ D[R (@ ). (3.75)
Looking at the requirements stated above, R, as a function of ¢ should have the
behavior sketched in Fig. 3.4.2 (and the same type of behavior as a function of w).
By varying smoothly x from the UV cutoff of the theory, where the regulator ensures
that the saddle-point is exact (see below), to its IR cutoff, one integrates smoothly
fluctuations of the fields.
In the presence of the regulator AS,, the generating functional defined in (3.22)
becomes scale dependent, and is denoted Z,.. Accordingly, we define a scale depen-
dent “free energy” W, = In Z,;. The average value of the fields in the presence of the



3.4. Introduction to the non-perturbative renormalization group 55

Ry (q)

Figure 3.3: Typical behavior of the regulator (from Delamotte 2007)

sources, ®, and all the derivatives of W, become scale dependent. When the renor-
malization scale x varies, W, evolves according to the following exact flow equation
(this equation is reminiscent of the original Polchinski equation (Polchinski 1984),
which was formulated in terms of S¢f):

1 02W, W. oW
aant - — = / 61-@7?% AX = - .H + = a - -
2 x,y[ ]”( y) {5Jz‘(x)5Jj(Y) dji(x) 5Jj(y)}
= —% tr [GHRR (GP+o® @)] . (3.76)

In the last line, tr is the trace and ® is the tensor product: [® ® @] y (x,y) = ®;(x)0;(y).
As W, is the generating functional of the generalized connected correlation func-
tions, G,({"), the flow of an arbitrary G is obtained by taking n derivatives of the
flow equation with respect to j;,, 1 <k <n.

The operation of varying x is the counterpart of the operation of integrating a
momentum shell in the Wilson RG. This integrationg was followed by the additional
operation of rescaling the distances and the fields. Only then, a fixed point of the
transformation was reached in the case of a critical action. Within the NPRG, the
situation is equivalent. Because we have introduced the IR cutoff k, it is only once
properly measured in units of x that the NPRG flow of W, and its derivatives have
the possibility to reach a fixed point, if one starts from a critical action. We expound
on this in Sec. 3.4.3. From the characteristic of this fixed point, universal properties
of the critical field theory can be obtained.

It was realized by (Wetterich 1993; Morris 1994; Ellwanger 19941) that the exact
renormalization group equation could be more easily formulated and interpreted in
terms of the effective action. The effective average action (EAA), I',; is defined as
the modified Legendre transform of the scale-dependent W,, where the regulator
term has been substracted:

Lel®@] + Wil =] - @ — AS.[9], (3.77)
and where j is defined implicitely by the relation
W,
. = ;(x) . 3.78
6ji(x) (x) ( )

Let us note that we have defined ', as the Legendre transform of W, and not as the
more general Legendre-Fenchel transform as in Sec. 3.3.2. This is justified by the
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presence of the regulator, which ensures that W, is differentiable and has a single
non-degenerate saddle-point. The formula of the previous section for the Legendre
transform applies with ' replaced by T'y, + AS,[®]. Notably,

ji(x) = oL + [Re - @].(x). (3.79)

3P, (x) ‘

and 1
2 . _
Gl yii] = [P +Ri] [x,y: @] (3.80)

More generally, the (scale dependent) generalized connected correlation functions
can be constructed from the (scale dependent) vertex functions of Iy, + AS,[P].

The flow of I'y under variation of the RG scale x is given by the Wetterich
equation (Wetterich )

1 -1
aﬁrn = 5 / [anR/{] ij(X - }’) |:F,n(<2) + RN:| . (Y7 X)
X,y J
1
=t [am- @ 4 Rﬁ)—l} . (3.81)
The reader can turn to (Delamotte ) for a pedagogical introduction and deriva-

tion of this equation. As well as Eq. (3.76), the RG flow equation (3.81) is exact.
Its initial condition corresponds to the ‘microscopic’ model, which is the action S.
Indeed, the flow is initiated at the UV cutoff A which is the inverse lattice spacing or
the scale at which the continuous description in terms of a SPDE starts to be valid.
At this scale, I'y identifies with the microscopic action I'y = S, since no fluctuation
is yet incorporated.

To show this, let us take the exponential of the EAA using the definition (3.77)

~Tal®] _ / DgleSIA-ASK01+i:6 i@ AS.[2] (3.82)

Inserting the explicit definition of j, (3.79) and using the change of variable ¢ = &+,
we arrive to an alternative expression for I',:

o Trl®] /D[X}€—8[<I>+x]—ASK[X}+65F£'X‘ (3.83)

Let us apply the saddle point method for the regulated action. For this, we expand
the argument of the exponential in the integrand to second order:

) or., 08
5[0 +x] — AS.] + 5 x = —sle]+ (S5 - 52
1
50 [SP R oD (384)

For k ~ A, the regulator gives a large mass to all the modes present in the the-
ory, thus even if the microscopic action is critical, the saddle-point method is well-

controlled and gives
CA[®] = S[P]. (3.85)

From the starting point x = A, the renormalization scale is lowered until it
reaches 0 or a natural IR scale L' of the model. At this point the regulator is
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Figure 3.4: Diagrammatic representation of the flow of r

either zero for all wave-numbers or reaches its original physical value, such that the
scale dependent EAA becomes equal to the original EAA: I'y = I'. At the end of
the flow, one recovers the actual properties of the model, when all fluctuations up
to the physical IR cutoff have been integrated over. The interest of Eq. (3.81) is
that it provides an exact smooth interpolation between these two scales. Due to
the presence of the derivative of the regulator in the integral, the contribution at
the scale k is dominated by values of ¢ < k. This property and the smoothness
of the EAA for k # 0 allows to devise approximation schemes out of the usual
perturbative calculations. When the initial theory is at a critical point, by looking
at the properties of the flow one can thus hope to catch how the fluctuations at all
scales build up progressively the singularities of [' which lead to phenomena such as
scale invariance.

As well as for the flow equation of W,, one can deduce from the flow equation
of T'y (3.81) the flow equation for a generic n-point vertex function by taking the
n corresponding functional derivatives. This yields equations which are exact, but
which involve (n + 1) and (n + 2) vertex functions, such that if no approximations
are made, one has to solve an infinite hierarchy of flow equations. For example,
for the two-point function, writing the flow equation in Fourier space and using the
conservation of wave-vector and frequency, it reads

_ _ _ 1-
0.r0p) = [ [0R] (@G @] - 5T (0 -0
q
+ TP (a,p)GY (@ + )T (a + p, —p) |G (q) . (3.86)

The r.h.s. is represented diagrammatically in Figure 3.4: the dashed circles are the
vertex functions, the thick lines are propagators and the cross is the derivative of
the regulator. Notice the similarity with Fig. 3.2. The terms in the r.h.s. depend on
a wave-vector and frequency of integration, q, called internal, besides to depend on
the external wave-number and frequency p at which the vertex function is evaluated.
In order to go further in the study of the infinite hierarchy of flow equations, we are
guided by the properties of the regulator which ensure that the integral in the r.h.s.
is dominated by values of ¢ < k.

In most applications, the property ¢ < k is used to approximately close the
hierarchy by simply truncating higher-order vertices, or proposing an ansatz for I',
(Berges, Tetradis, and Wetterich ). In the work on DEP, presented in Chap. 4,
we indeed use such an ansatz for the EAA, named the modified local potential
approximation (LPA’), which consists in approximating the EAA by its behavior
at small wave-numbers. In the work on SNS (in Chap. 5), we concentrate on the
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behavior at large external wave-numbers. We will see that in this limit, it is not
necessary to make an ansatz for the EAA due to some properties that are particular
to the SNS action.

3.4.3 Fixed point solutions of the flow and scale invariance

Having established the general formalism of NPRG, we can explain the link between
scale invariance and fixed-point solutions of the RG flow equation. For this, we follow
the presentation of (Delamotte, Tissier, and Wschebor ). Let us first examine
the case of a critical theory. The generalized correlation functions are expected to
exhibit scale invariance, which means that they are expected to be invariant under
the following change of variables:

with d;, z the scaling exponents of the corresponding critical theory. Let us perform
this change of variable inside Z,[j], and take the infinitesimal limit b = e = 1 + € + o(e).

$i(x) = di(x) + dchi(x) + o(e)
with  8.¢(x) = € (d; + T - O +ztat)¢( )
e[D 9] (x (3.88)

The jacobian of the change of variables is non-zero but it is constant in the fields so
it does not play a role in the correlation functions and it is omitted in the following.
Writing that the partition function is invariant under a change of dummy variables,
we obtain

<6€S>j + <6EASH>j :J : 55(1)7 (389)

where 6 X is the first order variation of the functional X[¢] under the change of
variable (3.88). This derivation will be written in more details in the general case of
a change of variables linear in the fields in Sec. 3.6. The regulator term AS, depends
explicitly on the scale k, thus its variation is non-zero. However, the xk-dependency
of AS, is chosen in a standard way such that

SAS, = —cd,AS, (3.90)

where s is the “RG-time” s = In (k/A). It amounts to choosing a power-law depen-
dence in k for the regulator. Explicitly,

with x = (K*t, KT)
and RY ~ p2dt2=di=d; (3.91)
This means that, for this form of regulator, the variation due to dilatation of space-
time and fields is equal to (minus) the variation due to a dilatation of the renormal-

ization scale. Taking a derivative with respect to s of the partition function at fixed
sources, the variation of the regulator can thus be rewritten as

(0eAS); = € O Weljll; (3.92)
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Replacing in (3.89), we obtain first the Ward identity of dilatations for W,:

J
cOW, + (0.S); = €j - [D : 5—jm] . (3.93)
Furthermore, using the modified Legendre transform (3.77) in (3.92), we have also
that

(6.A8,); = —e (r,i[cp} + ASH[Q])‘ , (3.94)

@
which leads to the Ward identity of dilatations for T',:

ol
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This equation states that I', is scale invariant up to the two terms of the r.h.s.:

the scale invariance-breaking terms of the microscopic action, and the regulator.

Even if the theory is invariant under dilatations ( i.e. if 6.S = 0), the presence of

the renormalization scale k breaks scale invariance. Thus, in the presence of the

regulator, one has to choose k as the unit of scale for space-time and the fields, and

to introduce dimensionless quantities in order to recover scale invariance. Defining

T [®] = .[®], with &;(x) = k™ 4®;(2/k,1/K?), (3.96)

. [D-®] = (5.8); — €0,T[)]. (3.95)

and replacing in (3.95), one obtains that
€ 0,14 [P] = (6.S); . (3.97)

We say in this work that a theory is critical if the microscopic action is scale invariant,
or if the r.h.s. of the above equation goes to zero for kK — 0. In short, (3.97) states
that critical phenomena, in the sense above, is equivalent to having a fixed points
of the dimensionless RG flow in the IR. This is the motivation to look at fixed point
of T'.. From (3.81), we finally write down the RG flow equation for I',:

... oL, .

O.0#] =~ - [D- 4] +%tr[DRf-(f(f)+f)‘1], (3.98)

with

For a given set of scaling dimensions d; and z, using (3.97), the flow equation can
be reinterpreted as a condition on the IR EAA of the critical theory. Indeed, for
critical phenomena according to our definition, the r.h.s. of (3.98) is equal to zero
in the IR. Of course, in the particular case of a scale-invariant I',, the first term of
the r.h.s. vanishes by definition.

In standard critical phenomena, the second term of the r.h.s. can be shown to
go to zero compared to the first one for external wave-numbers p; > k. In this case,
the RG flow equation decouples the fast variables of the system from the slow ones.
This decoupling property is satisfied by the RG flows corresponding to equilibrium
phase transitions for example (Berges, Tetradis, and Wetterich ), and also to
many critical phenomena out-of-equilibrium (Canet, Chaté, and Delamotte ;
Canet ; Canet et al. ). If the RG flow has this decoupling property, only
the first term of the r.h.s. remains when x goes to zero and one deduces that the
EAA of the theory is scale invariant, in the precise sense of invariance under (3.88).
However, as it was hinted at in Sec. 2.2, it may happen that the RG flow does not
have the decoupling property. In this case, even if the NPRG flow equation (3.98)
reaches a fixed point, it does not necessarily entails the scale-invariance of L,.
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3.4.4 Running scaling dimensions and dimensionless
quantities

In most situations, the scaling dimensions of the critical theory are not exactly
known. Moreover, for a given scale x, the EAA T', may not be scale-invariant. In
this case, there are no well defined scaling dimensions of the fields and of time.
One idea at this point is to define scale dependent scaling dimensions which take a
constant value if the RG flow reaches a fixed point.

For a scale invariant theory with given scaling dimensions d; and z, one has for
the two-point functions

(2) Pl — i~ T D s o F
X y; @ =« I [%,y; @] (3.100)
One would thus define the scale-dependent, or running dimensions of the fields as
di(K) + d;(k) = =0, In TV [x,y; 9] (3.101)

However, if [, is not scale invariant, this definition is ambiguous as in fact the run-
ning dimensions may depend on the values of the field and the spacetime variables
at which the two-point function is evaluated. Thus one has to choose a particular
value of the field and a particular configuration in space-time. This step is analo-
gous to normalization conditions in perturbative RG. In most situations, we choose
® = &, homogeneous and stationary (generally, ®; = 0). Furthermore, because we
are interested in the IR behavior of the theory, we define the running dimensions,
at zero frequency and wave-number in Fourier space. Taking the Fourier transform
of (3.100) and assuming invariance under space-time translations, one has

T (p, @) = w441 P (b, By) . (3.102)
As a consequence, the running field dimensions are defined as
di(k) + dj(k) —d = —0,In Z7
with Z7 = 8,117 (p, $0)|p—o - (3.103)
In the same spirit, the running scaling dimension of time is defined as
2(k) — 2= 0,In DY

. 1 _
with DY = ﬁa,,Qrﬁ)(p, ®y)|p—o - (3.104)

Again, this definition may depend on i, 7 and ® but the limit x — 0 should be
the same for all fields with non-trivial dynamics. The x dependence of d; and d; is
implicit in the following. Now, we can define a “running dimensionless EAA” as

~

o i i
T.[®] = [,[®], with &;(%) = Z;@Z-(g, /<;2Di> , (3.105)

where the Z¢ are constructed from the Z¥ such that Z! ~ k=% and the D! are
constructed in the same fashion from the D¥. The RG flow equation of I', reads

R A
o8- o, 8]+ Lo [fo (D@ +f)*1] , (3.106)

which is the same as in the previous section except that the dilatation operators are
now running with the renormalization scale. This evolution equation, as well as the
prescription for the scaling dimensions (3.103) and (3.104), is our starting point for
the study of DEP in the next chapter.
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3.5 Causality and Itd prescription in NPRG

Let us point out a general property of out of equilibrium field theories. This will
be done in the context of the forward discretization scheme for SPDE, such as It6
prescription for Langevin equations, in continuum field theories. To do this, let us
use the example of the action of Sec. 3.3.3

Sl6, 4] = / {60, & +0)0 — A @26) + 65U (6) - %&2 o). (307)

This action was derived from an It6 Langevin equation with the MSRJD response
field formalism, and as such it satisfies the two properties associated with causality.
The first property is that S[¢,0] = 0. The second property, which is hidden in the
time-continuous limit, is that the response field is always evaluated at a later time
than the observable field in the discretized version of the action. Let us expound on
the consequences. First, let us calculate the mean field propagator of the theory:

(G506 ¥) = (6(x)(y)e = [SP]J(x,¥), (3.108)

where S® is the Hessian of the action above evaluated at the classical stationary
solution for the sources set to zero. From the action, we obtain in Fourier space (after
having extracted the delta functions of conservation of frequency and wave-number)

8&(p) = —iw +p* + 0. (3.109)
As a consequence,
ip(x—y)
(2) _ 5(2) -1 ip(x—y) __ e'P
Gy ] ,5(x,y) = /p (S5, ()] e = /p St to (3.110)

—

Let us recall that we note x = (¢,%) and y = (u,¥). For t # u, the frequency
integration is done using Jordan’s lemma and the residue theorem and gives

2 ip-(T—7)—(p%+o)(t—u
6] c3) = Bt = u) [ o, (.11)

p

The Heaviside © function which appears in the above expression is the consequence
of the causality of the initial stochastic process, as the propagator, or Green function
of the theory vanishes if the response of the system is measured before the perturba-
tion has happened. However, for the continuous description there is an ambiguity at
t = u. Formally, the propagator is proportional to the ill-defined value ©(0). This
ambiguity is in fact a general feature of out of equilibrium field theories and it is
cured by going back to the time-discretized version of the action. In a perturbative
setting, it can be shown that the Ito prescription amounts to take ©(0) = 0. An
explanation of this prescription is given in Appendix B.2.

Let us see how the causality is treated in the NPRG setting, with the notations
of a general out of equilibrium field theory as defined in Sec. 3.4. For a given theory
Z[j], let us say that j satisfies the causality property if any generalized correlation
function evaluated at j vanishes when its largest time is the one of a response field.
In particular, for such a configuration of j, the mean value of the response fields are
zero. Using the decomposition of G™ as a sum of trees whose vertices are the I'*®)
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it can be shown that the causality property of j translates for the vertex functions
as the following: if the largest time is not associated to a response field, the vertex
function vanishes.

To be more concret, let us look at the case of the Gaussian scalar field. In
this case, the j which satisfy the causality property on the correlation functions are
j = {0, 7}, for any 7. Accordingly, any configuration of the fields ® = {¢, 0} satisfies
the causality property on the vertex functions. For interacting theories, we ask that
the causality property for vertex is verified along the RG flow in any configuration
of the fields for which the response fields are set to zero. It can be checked that
it is verified at the initial condition of the flow. It has been shown in a NPRG
setting in (Canet, Chaté, and Delamotte : Benitez and Wschebor ) that
this property is conserved along the RG flow on the condition that the regulator
itself satisfies it. Explicitly, we must have

[7_2,.@] y (x,y) =0, if both i and j are observable fields
[7?&] y (x,y) =0, if i is an observable field, j a response fields and ¢t > u. (3.112)

At this point, let us elaborate on our implementation of the NPRG. Although it
would be desirable to have a regulator depending on the frequencies as well as on
the wave-numbers, in practice this turns out to be a difficult task to set up. Notably,
the introduction of a frequency regulator may breaks symmetries related to time in
certain models. This is the case for example for SNS. In the present work we choose
to have a regulator independent (or minimally dependent, see later) of the frequency.
As a consequence, the frequency integral of the flow equation is not constrained a
priori. Some progresses have been made recently to include a frequency-dependent
regulator by (Duclut and Delamotte ).

Going back to the causality condition (3.112), the last constraint means that
the off-diagonal elements of the regulator cannot be exactly instantaneous, as they
would be if the regulator was frequency independent. The response field has to be
evaluated at a later time than the observable fields instead of them being evaluated
in the regulator at the same time. For example, for the case of a one-component
scalar field theory and its response field, the causality condition (3.112) reads

=/m@wwm@em (3.113)

with € > 0. Note that within the derivative expansion of Chap. 4, the prescription
above is equivalently taken into account by simply shifting the response field in the
propagator at an infinitesimal later time:

(G 4505 ¥) 1o = $00F))ely, = (DG + € P)e, with €> 0. (3.114)
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However, one has to keep in mind that to replace the propagators by their shifted
version amounts to the Itd6 prescription only when they are integrated against ver-
tices of the theory. Going to Fourier space, the prescription rewrites as

[GP],5(P)] o = €= [GP],,(P)- (3.115)

After the integration in frequency, € can safely be set to 0.

3.6 Ward identities and dualities in NPRG

Both works on DEP and on SNS rely heavily on the tools of Ward identities, which
relate symmetries of the microscopic action § to symmetries of I',,. Let us expound
here on this formalism.

Within the NPRG framework, in the presence of the infrared regulator AS,,
Ward identities can be derived by considering a change of variables ¢ — ¢ in Z

which is at most linear in the fields and leaves the functional measure invariant.
Denoting 6 X [¢] = X[¢/] — X[¢], we have

6¢i(x) = [A - ¢li(x) + Bi(x), (3.116)

where A is a linear operator acting on ¢. We have
Z.0j] = / D[¢]e S 1-ASKH-¢

_ / Dlgle= S +0l-AS el +i-0+i:00

_ / D{]e= - A8 [61+i-0 55 +AS o)+

= zﬁm<6—5(5+A3n)[¢]+j‘5¢>j’ (3.117)
where (-); is the mean value in the presence of the sources. Thus,

(e OSHASIH00) | (3.118)

In the particular case of 0S[¢p| = dAS,[¢] = 0 and if the operator S : ¢ — ¢’ admits
a dual operator for the scalar product, such that j-S¢ = (S*j) - ¢, the identity above
reads

Z,[i] = 2.[57]]. (3.119)

Using the definition of the EAA (3.77) as the modified Legendre transform of
W, = In Z, and the invariance of the regulator, one obtains readily that

T.[S®] = T,.[®] (3.120)

i.e. the symmetries of S are symmetries of I',.

However, if the change of variables is not an exact symmetry of the action and
of the regulator, not much more can be said at this point in general. Hence let us
specify that the change of variables is controlled by an infinitesimal parameter e:
d¢ = 6.9 = O(€). As a consequence of the linearity, (0.¢); = 0.P. At linear order in
¢, one obtains from Eq. (3.118)

(6.8); + (6.AS,); = - 0.D. (3.121)
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where 0.X is the part of 04X linear in €. Using the definition (3.74) of the regulator
term, its variation can be written as

5.AS, =6 Ry - &, (3.122)

Inserting this expression in (3.121), along with the definition of j (3.79) and using
the definition of the change of variables (3.116), it follows that

6. [®] = (6.8); +etr|R, - A-GP[D]] . (3.123)

Thus, the variation of the EAA I', is equal to the mean of the variation of S plus
the term coming from a possible symmetry breaking regulator. Interestingly, due to
the definition of I',;, the variation of the regulator under the shift part of the change
of variables (3.116) does not appear in the final result.

For changes of variables which are exact symmetries of the action and of the
regulator, Eq. (3.123) simply translates into 6.I';[®] = 0, which is the infinitesimal
version of (3.120). When the variation of the action is non-zero but linear in the
fields, we call the change of variables an extended symmetry, following (Teodorovich

). In this case, the mean and the variation commute and the identity reads

5.0,.[®] = 5,.S[®]. (3.124)

This provides non-renormalization theorems which fix a sector of I'; to its initial
value and shows the usefulness of extended symmetries.

Let us present a special case of (3.121) of particular interest, which is not strictly
speaking a Ward identity but a duality. In certain situations, the variation of the
action 0.S can be re-rexpressed as a variation under a change of one of its couplings.
Noting explicitly the dependence in the microscopic coupling, say o, as S[¢; o] we
have in this case

3.S[p; 0] = €0,S[p; 0] . (3.125)

As a consequence,
<558>j = _aaw[j§ U]

(3.126)

j )
which is easily verified by taking a o derivative of the partition function at fixed
sources j. Using the relation

Oyle = Osj + 0sj -(% (3.127)

and the definition of the EAA, we obtain that
0, Wlisol|, = =0, [®;0]|, - (3.128)

Finally, the duality identity reads in this case
5.0, [®:0] = € 9,T[d; 0] + etr[Rn A-G® [cpﬂ . (3.129)

In conclusion, in this chapter we have motivated and introduced the framework
of the NPRG in the context of out of equilibrium field theories. We have tried to
show how the EAA is the natural object to look at in most situations. This has
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led to discuss the relation between fixed point of the NPRG equation and scale-
invariance, as well as our general strategy to find such fixed point. Finally, we have
discussed two topics which are necessary for our studies: the issue of causality in
out of equilibrium field theories and its treatment by the NPRG, and the derivation
of Ward identities and duality identities within the NPRG framework. Now, let us
apply these tools to the problem of the absorbing phase transition in DEP.

3.6.0.1 Version francaise

En conclusion, dans ce chapitre, nous avons motivé et présenté le formalisme du
NPRG dans le contexte des théories de champ hors équilibre. Nous avons essayé de
montrer comment ['EAA est ['objet naturel a considérer dans la plupart des situa-
tions. Cela a conduit a discuter de la relation entre le point fixe de ’équation du
NPRG et l'invariance d’échelle, ainsi que de notre stratégie générale pour trouver ce
point fixe. FEnfin, nous avons abordé deux sujets qui sont nécessaires a nos études
o la question de la causalité dans les théories de champ hors équilibre et son traite-
ment par le NPRG, ainsi que la dérivation des identités de Ward et des identités de
dualité dans le cadre du NPRG. Maintenant, appliquons ces outils au probleme de
la transition de phase absorbante dans DEP.






Chapter 4

Study of the absorbing phase
transition in DEP

In Sec. 2.1 we motivated a study of the absorbing phase transition occuring in the
DEP model with the tools of the NPRG. Notably we insisted on the uncertainty
as to whether DEP and DP-C, its naive coarse-grained counterpart, were belonging
to the same universality class. This chapter is an account on the preliminar results
for the study of DEP which were published in (Tarpin et al. ). While the field
theory of DP-C has already received considerable interest, it is the first time that
the DEP field theory is studied directly. Indeed, within the perturbative approach
of all the precedent works, both models are in the same universality class. Although
we were not able to give a definitive answer, we hope that at least our study renewed
interest in this problem and paved the way for future works on the subject.

In Sec. 4.1, we present the different field theories appearing in the study of
DEP and DP-C. We study the symmetries of these actions in Sec. 4.2 and use
them to obtain exact results for DEP and DP-C in the framework of NPRG. This
is the occasion to discuss how both theories may differ in their phase transition.
Using the constraints coming from the symmetries, we construct an ansatz for both
theories in Sec. 4.3. The results obtained with the NPRG for the DP-C ansatz are
gathered in Sec. 4.4. We finish in Sec. 4.5 by studying the RG flow of the DEP
ansatz. Unfortunately, this ansatz turns out not to be sufficiently flexible to clarify
completely the situation. We end this section by showing why it is the case.

Version francaise

Dans Sec. 2.1 nous avons motivé une étude de la transition de phase absorbante
de DEP avec les outils du NPRG. Notamment, nous avons insisté sur l'incertitude
quant a savoir st DEP et DP-C, sa formulation mésoscopique naive, appartenaient a
la méme classe d’universalité. Ce chapitre est un compte-rendu des résultats prélim-
inaires de ’étude de DEP qui ont été publiés dans (Tarpin et al. ). Alors que
la théorie des champs de DP-C a déja recu un intérét considérable, c’est la pre-
miere fois que la théorie des champs de DEP est étudiée directement. En effet, dans
l’approche perturbative contenues dans les travauzr précédents, les deux modeles sont
dans la méme classe d’universalité. Bien que nous n’ayons pas été en mesure de
donner une réponse définitive, nous espérons qu’au moins notre étude a suscité un
regain d’intérét pour ce probléeme et ouvert la voie & de futurs travaux sur le sujet.
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Dans la Sec. /.1, nous présentons les différentes théories de champ apparaissant
dans l’étude de DEP et DP-C. Nous étudions les symétries de ces actions dans la
Sec. .2 et les utilisons pour obtenir des résultats exacts pour DEP et DP-C dans
le cadre du NPRG. C’est l'occasion de discuter de la facon dont les deux théories
peuvent différer dans leur transition de phase. En utilisant les contraintes provenant
des symétries, nous construisons un ansatz pour les deux théories dans la Sec. 4.5.
Les résultats obtenus avec le NPRG pour l'ansatz pour DP-C sont rassemblés dans
la Sec. J./. Nous terminons dans la Sec. /.5 en étudiant le flot RG de ’ansatz pour
DEP. Malheureusement, cet ansatz ne s’avere pas suffisamment flexible pour clarifier
completement la situation. Nous terminons cette section en montrant pourquoi c’est
le cas.

4.1 The field theories of DEP and DP-C

4.1.1 Response field action for DP-C

First, let us use the general MSRJD formalism, presented in Chap. 3 and Ap-
pendix B.1, to write down the action of DP-C from its Langevin equation, that we
recall here:

Oip = k(c+a)p—kp* + Dpdp+11”,
Oc = Dy 0*(c— pp) +n°, (4.1)

with

(i () (X)) = 2K p(x)é(t — )0%(F — '),
(°(x)n°(x)) = 2’ Da(=0%)8(t — ¢')0"(Z — &), (4.2)

and n” and n° independent of each other. Using the formula of Appendix B.1, the
partition function of DP-C reads

Zlj.h, 7,0 = / Dip,c, p, el lirthetiptie) ~Svec (4.3)

with the action
Spp.c = /{ p[0wp — Dp & p — k(c+0)p + kp?] — K pp?
+c

[0ic — Dy 0*(c— pp)| — /,L’DA(azéf} : (4.4)

It has to be noted that the time-boundary terms of the action corresponding to
initial conditions have been dropped. This is justified because we are interested
only in studying stationary states of the process.

Because we are interested only in D4 # 0 in the following, we rescale the time
t— Dglt. This historical choice in the study of DEP is not without consequences.
Indeed, as we are limited to the study of stationnary regime, it forbids to study the
case of D4 = 0. Following the notations of (Wijland, Oerding, and Hilhorst ),
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we write A = Dp/Dy4. Rescaling the fields as in DP (see Sec. 2.1), we arrive to the
action proposed by (Kree, Schaub, and Schmittmann ; Janssen ):

Spp.c :/{5(@—)\82—a)s+gs§(s—§—fc)—|—E(8t—82)c+u6825— (8906)2}

(4.5)
with
k VEkE k
- = = r— 4.
Soo 9= f=yfug (1.6
4.1.2 Coherent field action for DEP
Now, let us concentrate on DEP, which is defined by the following reactions
Infection A+BE BB
Recovery B 1/—T> A
Diffusion of A A0 250+ A
Diffusion of B B+0 25048,
(4.7)

The field theory for the process can be casted in the form of a coherent field action
using the Doi-Peliti construction. A pedagogical presentation of this formalism is
presented in Appendix C.1. We now apply this procedure to One obtains (the index
i indicates the site on the lattice . € Z? and the initial condition has been chosen
to be Poissonian on each site)

Soep[{a,a,b,b}] = / 'y {az (1)Brai(t) + bi(1)Dubi(t) — Hal{a, b, a, b}](t)}

i€l

+ 3 [a:(0)(ai(0) — gl + Bi0)(:(0) — )] + o(=T).  (4.8)

i€l

The density of the Doi-shifted time-evolution operator, H, is given by

Hil{a,b,a,b}] = > [Dala; — a;)a; + Db — by)by]
Jj/<i,j>
+ k(b — a;) (b + D)agb; + 71 (a; — b;)b; . (4.9)

The original coherent fields a (resp. b) and a* (resp. b*) of the Doi-Peliti construction
are complex conjugate of each other. However in Appendix C.1 we have performed
the so-called Doi shift

at=a+1, b*=b+1, (4.10)

in the partition functional. This change of variable has the advantage that the action
now vanishes for @ = b = 0. This property, coupled to the fact that the a (resp.
b) field is always evaluated at a later time that the a (resp. b) one in the action
allows one to interpret the shifted action as a response field action, leaving aside
the fact that @ and @ (resp. b and b) are not independent. This seemingly ad-hoc
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change of variables can be understood by using an alternative formalism to construct
the above action. This formalism was proposed by Gardiner and uses the "positive
Poisson representation" to write a stochastic process for a complex field, and results
in the coherent field action above written directly in terms of the Doi-shifted fields.
This mapping is briefly presented in Appendix C.2.

We now take the formal continuous limit in space of (4.8). Specifying to a
hypercubic lattice of lattice spacing h, using interpolating fields as for the time
continuous limit in Appendix C.1 and assuming that they are sufficiently smooth,
both diffusion terms rewrite as

> Da(di — ¢;)¢; = W’ Dot 0°¢ + o(h* D) (4.11)

J/<ij>

with ¢ = {a,b}. Setting the appropriate scaling of the fields and of the coupling
constants with h and taking the limit A — 0, we finally arrive to the DEP continuous
coherent field action

SDEp[a,a,b,E]:/ d(@t—DA62)a+B(8t—D382)b—kab(l_)—&)(l_)—|—1)—lb(d—l_)),

.

(4.12)
where we have dropped the initial conditions because we are interested only in the
stationary state. The above action was derived in the first work on DEP (Wijland,
Oerding, and Hilhorst ). We now follow its authors by rescaling the time ¢ —
D't and making the following change of variables:

x,t

N |=

_1 _
¢:p02<a+b_p0)7 dJZPU ba
),

¢=pia, =pib-a (4.13)

where pg is the initial total density. One arrives at the following action:
SHF = [ {0 =)o+ 0025~ oo+ gy
+W[g(w—¢7—s&—@)+U(W+W—W—¢@H, (4.14)
with parameters

g:@, U:Di’ o=k(po— (k7)™')/D,. (4.15)
A A
This action will be our starting point in our NPRG study of DEP.

In (Wijland, Oerding, and Hilhorst ), the quartic terms of the above action
are dropped. This simplification is justified by the authors, using arguments from
perturbative RG. If one makes the change of variables ¢ — ¢ — ¢ in the action
(4.14) with the quartic terms truncated:

S = [ {005+ 50 -AF - o)t np Pt g vi(v—b-p-¢)} , (416)

one recognizes the DP-C action (4.5) with f = 1. Although it was obtained from
the Doi-Peliti formalism, at this point it is only when interpreted as a response field
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action that it can make sense. Indeed, we will see that as a coherent field action,
it does not conserve the total number of particles. However, at the level of formal
manipulations, (4.5) and (4.16) are completely equivalent. Thus it should be clear
now that the system studied in (Wijland, Oerding, and Hilhorst ) is DP-C. In
order to stick with this paper, when studying DP-C the action (4.16) will be used,
although the physical content is clearer in (4.5).

4.1.3 Response field action for DEP

The Doi-Peliti coherent field action has the disadvantage that its fields do not repre-
sent the physical observables of the system. In fact, the example of the calculation
of the mean value of the field with the Doi-Peliti formalism in Appendix C.1 is
the only case where the coherent field can be identified with the observable. To
overcome this, a change to so-called Grassberger variables was used in this context
in (Janssen and Stenull ) to obtain a response field action from the coherent
field one. Going back to the original coherent field action (4.12), the Grassberger
variables read as follows

po = 09
1
0y =~Ind (4.17)
i
where ¢ = {a,b}. It was shown in (Andreanov et al. ) that this mapping can be

justified by writing down directly a response field action for the counting processes
a la MSRJD. A work on the subject has been undertaken, notably to show how
the Doi-Peliti coherent field action can be recovered from this formalism (Guioth,
Lecomte, and Tarpin ). Using the change of variables above, the response
field action of DEP reads (the i’s have been hidden in a redefinition of the fields
i0 — 0)

Z[ha, hba S, Sb] _ /D[Nm e ea’ Hb]efx{halla‘f‘hbltb"!‘SaGb"ereb}e—SgEP (418)
with the following action in the space-time continuum limit

Sper = / {8u(0.= D4 0" ta = D 1030, + 00 = D %)y = D (3 6,)°

1
B gty (P70 — 1) — =y (PO — 1)} 7 (4.19)

T
and where new sources {hg, 04} couple directly to the new fields. This action was
used in (Janssen and Stenull ) as a starting point to show perturbatively that

DP-C and DEP belonged to the same universality class. This argument will be
presented in Sec. 4.2.3, along with the study of the symmetries of the action (4.19).

4.2 Symmetries, Ward identities and exact results
for DEP and DP-C

4.2.1 Symmetries of the DP-C action

Let us first study the symmetries of the DP-C action given in (4.16), following (Wi-
jland, Oerding, and Hilhorst ; Janssen and Stenull ). We have seen in
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Sec. 3.6 that in fact, we are not only interested in exact symmetries but also in
changes of variables for which the variation of the action is not zero but linear in
the fields. As explained in the previous section, these changes of variables can be
exploited as well and lead to powerful non-renormalization theorems. We will use
the following notation for the mean values of the different fields in presence:

D= (p)j, P=(p);, ¥ =(¢);, ¥ = (¥);, (4.20)

with the subscript j indicating that the mean value is taken in the presence of the
various sources. Furthermore, we write ® = {®, P, U, ¥} for the whole field content
of the theory.

To begin with, the fact that ¢ + ¢ = c is a conserved field translates in the
following extended symmetry of the DP-C action.

p(x) = p(x) —€(t),  P(x) = @(x) + (). (4.21)

Indeed, the variation of this action under this change of variables reduces to

(SN = [ e + o] (4.22)

Recalling that ¢ + ¢ is the total number of particles in the DP-C interpretation,
this extended invariance under the time-gauged shift means that the variation of
the total number of particles is only due to the external sources (Janssen ). In
fact, noticing that the combination ¢ — ¢ appears only in quadratic terms, we can
promote the time-gauged shift above to a shift gauged in space-time:

o(x) = p(x) —e(x),  @(x) = P(x) + €(x). (4.23)
The variation of the action reads

(B = [ (=g + 0+ o+ oo} (1.21)

which following Sec. 3.6, gives the Ward identity
ol ol

{(at — P)B(x) + (0, + 0*)D(x) + M@zllf(x)} o ol (4.25)
This identity can be integrated into
r,[®] = / [8(0, )0+ p "W} 4 T[ +0,0,7], (4.26)

where T".[@ + &, U, U] is an arbitrary functional. The identity (4.25) is extremely
powerful as it fixes many of the exponents of DP-C. Indeed, it implies

2 p; @) = iw +p?
I p; @) =
' p; —up ;

o] =
T Upe); @) =0T [{pe}; @], forn > 2. (4.27)

4P7'1 An
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Using the definition of the running scaling dimensions defined in Sec. 3.4.4, the
above identities respectively give

dy,+ds;=d and z = 2,

d@:d(p
ifpu#0 de+dy=d, (4.28)
that is
d
d, =dz = =
® ® 2’
z2=2,
. d
ifpu#0 dy= 3 (4.29)

For the particular case g = 0, the action possesses a time-reversal symmetry.
This symmetry is an extension of the time-reversal symmetry present in the DP
action including the fields ¢, p. For a given space-time field ¢, we note T¢ : x —
¢(—t,@). The symmetry reads:

v — =Ty, ¢— Ty,
o—Te, ¢—Tp. (4.30)

This symmetry would be broken by the initial conditions. However, as we are only
interested in the stationary state and have dropped the initial conditions from the
action, it has no implication here. For y = 0, the third line of (4.29) does not hold.
However, in this case the time-reversal (4.67) symmetry translates into

if u=0, T[.[® ¥, V]="I,TP TP, TV, —TV¥]. (4.31)
In particular, it implies
if u=0, do=dz, dy=d;. (4.32)
With (4.29) and (4.32) in mind, let us define the anomalous dimensions

_d+n

s
dy = and dy = 0

4.33
2 ) ( )
such that n = 1 = 0 at the fixed point, if the transition is described by a Gaussian

theory. Using this definition, (4.29) and (4.32) imply that

ifpu=0 n=mn,
else n=0. (4.34)

Let us now give a short proof of the hyperscaling relation 8 = v(d +n)/2. This
relation is well known and is quite generic for phase transitions in reaction-diffusion
systems, but its demonstration is of pedagogical interest for later purpose. The
exponent 3 is defined by

(ng) ~ (o —o.)". (4.35)
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It can be shown (see Appendix C.1) that within the Doi-Peliti formalism
(np) = () = () = V. (4.36)

Furthermore, if we suppose that there is a value o, such that the action is scale
invariant in the infrared, we have shown in Chap. 3 that, at the critical point ¢ = o,
the fields scale with the renormalization scale x as ¥ ~ k% . If we detune the action
from its critical point, in other words if ¢ — o, is small but different from zero, the
system will have a finite correlation length behaving as

E~(o—0a)". (4.37)

For k 2 €71, the RG does not feel yet the effect of the detuning off criticality and
one has ¥ ~ g%, However, for RG scales k < ¢!, the correlations are negligible
and the RG flow freezes. Thus we are left in the infrared with

(np) ~ U~ (€)Y ~ (0= 0™, (4.38)

in other words, f = vd, = v(d+n)/2. We readily see that for p # 0, it simplifies
to 8 = vd/2.

Finally, the action (4.16) possesses another property, which is not a symmetry in
the traditional sense, but rather a duality between a field and a coupling. Indeed,
the action is invariant under the following simultaneous shift of the field ¢ and of
the mass of the bare action o.

©o—=>p+e o—0—ge. (4.39)

In essence, this duality accounts for the fact that the mass of the field ¢ comes from
the non-zero total number of particles. Note that we could have replaced ¢ by ¢ in
the change of variables. Because of the symmetry of I",, this does not change the
result. Using the formula of Sec. 3.6, it leads to the following duality identity

T
90,7, = / Ol (4.40)

0P(x)

If we assume that the system undergoes a continuous phase transition for ¢ = o,
that is if there is only one repulsive perturbation from the critical point which
does not break the symmetries, the identity above gives us exactly this relevant
eigenperturbation. We will thus be able to parametrize I',. such as to place ourselves
within the critical surface, where the RG flow is purely attractive. Furthermore, it
fixes exactly the value of the exponent v. Let us give here a handwaving argument.

For the action detuned from criticality by ¢ — 0., using the same arguments as
in the above paragraph, for k < ¢! the r.h.s. of (4.40) scales as

51—‘5 —dy, —vdy
/,(545(X) ~ K (0 — o) : (4.41)

if we assume that the L.h.s. goes like
g0, L~ (0 —0,) ", (4.42)
by equalizing both scalings, we find directly that
vd, =1. (4.43)
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This relation, in conjunction with the exact relations (4.29) from the shift symmetry

fixes the exponent v to

2
—— 4.44
v d ( )

As an immediate consequence, we have that § = 1+ n/d, which simplifies to § = 1
for ;1 # 0. A more rigourous demonstration is given in Appendix D under technical
assumptions on the minimum of &.

This finishes to list the exact relations for the critical exponents of DP-C. These
exact relations were already known in the context of perturbative RG. However, we

have seen in Sec. 2.1.2 that they do not describe satisfactorily the existing simula-
tions of DEP.

4.2.2 Symmetries of the response field action of DEP and
equivalence with DP-C

Now, let us come back to our main interest, the action of DEP. First, let us study
the action obtained using the response field formalism (or the Grassberger change
of variables). The response field action reads

Sbep = / {ea(at — DA jta — Da 11a(5604)% + 64(0, — D 0%y, — D (3 6,)?

- k,ua,ub(eeb_ea - 1) — %ub(e%_ab — 1)} ) (4.45)

As DP-C, DEP conserves the total number of particles. This translates into the
following extended symmetry:

(9(1 — Ga + E(t) , 95 — Hb + E(t) . (446)

The corresponding variation of the action is

3(SSep) = [ OB + 00)] = [0, [ o)+ )] (@7

X

However, and contrary to DP-C, the space-time gauged shift
Ga — Ga -+ G(X) , 9(, — Gb + G(X) . (448)

is not an extended symmetry of the action. Indeed, we have seen that the contin-
uum action of reaction-diffusion processes in the response field formalism contains
conservative noise terms, which are cubic in the fields.

Now, let us give an account of the argument that DEP is in the DP-C universality
class using (4.45). First, let us make the following change of variables:

Nc:,ua—f—,ub_pOa 9029(1’
s = Up, 95 :0b—6a. (449)

This change of variable is the exact translation of the steps presented in Sec. 2.1.2 to
obtain the mean-field equations of DP-C in terms of the fields c and s. The resulting
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action reads
Shep = / {ec(at — D) e — Da(pte + po — 11s)(96.)°
- 9:(@ — Dpd*) s — Dp 15(3 6.+ 36,) + (Da — D) 0. 9,
(e po = s (¢ = 1) =~ = 1)} (4.50)

Under renormalization, the mean value of the fields and the time dependency may
acquire a non-trivial scaling with x, thus we write

(X)) = K% f1o(KT, K°t) = K% [1,(X) | (4.51)

and accordingly for the other fields. If the transition is well described by the mean-
field approximation, the renormalized propagator keeps its bare form, thus the fluc-
tuations of the fields are described by the quadratic part of the action. It reads,
making explicit the x dependence,

SSEIE)SSiaH _ / Efdfz{ﬁdﬁrdeéc(ﬁza{ — Dy 5252)/}@ + deerﬁés(/iZatA — Dp /{232)1&3
+ K2 (D — D) 0. 0% i, — K7k Oy [ po — (k7) 7] (4.52)

Asking for the kinetic terms to be scale invariant and using the symmetry between
the fields and their corresponding response fields, one readily obtains

Now, let us expand the third line of the full action of DEP (4.50) in powers of 6:

1
— ki (pe + po — prs)prs (€7 — 1) — ;us(e_es —1)
1 1 1
= =0 [k (e + po = popts = —pis] = SOk (e + po = pas)ps + —pps] + 0(85ps5)
X + (kr)~* k
= —k es,us [Po - (kT)_l} + kgs,us [ﬂs — e — %95] - §9§Us(ﬂc - ,Us) + 0(93,Us) .

(4.54)

Inserting the Gaussian scaling (4.53) in the expanded action leads to

Sglé%n—ﬁeld _ / {éc<a£ — Dy 32)/:% _ DA(Hd/2/:Lc + pg — Kd/Zﬂs)(géc)Q

+0,(0; — D 8)jis — D k¥%0,(30, + 00,)> + (D4 — Dg) b, 9
71 R
_ pO + (kT) 05:|
2
+ O(RH)} . (4.55)

— K72k Outs [ po — (k7)) + K772k Ouig [fis — pic

Looking at the IR behavior of the field theory means to take the limit K — 0. One
sees that the quadratic “mass term” in 54, blows up with an exponent —2 (giving
for the critical exponent v the value v = 1/2 in the mean-field approximation).
Furthermore the derivative terms cubic in the fields, which were coming from the
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diffusion noise, have a positive scaling with « in all dimensions and thus vanish when
rk — 0. However, the behavior of the reaction terms depend on the dimension. For
d > 4, all the terms have a positive scaling with x, while for d < 4, the cubic terms
begin to have negative scalings. Thus, the upper critical dimension of the model is
d. = 4. When studying the theory for d lower but near d., one can thus drop the
cubic derivative terms and the quartic terms, which are irrelevant in the IR limit. As
a consequence, to study the DEP phase transition as a perturbation of the Gaussian
field theory, one can start from the following truncated action, which describes the
same transition, at least near d = 4:

Strune. / {ec(at — DA te — D po(06.)2 + 0,(0, — Dy ) s + (D — D) 6. 91

~1
- kes,us [pO - (kT)il} + kes,us [/Ls — e — %93] } . (456)
Up to a rescaling of time and of the fields, we have recovered the DP-C field theory.
This argument is valid as long as DEP can be described as a perturbation of the
Gaussian field theory, that is within the perturbative RG framework. This is cer-
tainly true for d close enough to d. = 4. However, the existing simulations of DEP
are done in d = 1 and 2. This prompts the question as to whether the argument still
holds in these dimensions and motivates a non-perturbative study of this problem.
In fact, although the action (4.45) is the starting point to derive the coarse-
grained action of DP-C, it is not clear at all what are the precursors of the duality
and of the time-reversal symmetry present in DP-C. Let us nonetheless signal a
symmetry of (4.45) which exists for ¢ = 0. For an infinitesimal parameter ¥,

ToVa

ea — — + tvagaea ) Ha — Ha, + tvaaaﬂa

TaVa

9()—>—

+ 100040y, iy = py + t VaOu il - (4.57)

This symmetry is reminiscent of the well-known tilt (or Galilean) symmetry present
in the Kardar-Parisi-Zhang (KPZ) equation (Kardar, Parisi, and Zhang ). Note
that the gauged-in-time version of (4.57) also yields a variation of the action linear
in the fields, and thus leads to new Ward identities, as derived in (Canet et al.

) for KPZ. This symmetry may prove very useful for future studies of the DEP
transition starting from the response field action (4.45).

4.2.3 Symmetries of the coherent field action of DEP

Finally, let us go back to the complete coherent-field action of DEP obtained in
Sec. 4.1.2 and study its symmetries. The action reads

SHS = [ {0 =)o+ 50— AT — 00 + ooty
+W[9(¢—1ﬁ—<ﬁ—@)+’U(W+W—W—W)]}- (4.58)

First, we can look for the symmetry encoding the conservation of the number of
particles. We remember that at the level of the Doi-Peliti operator formalism of
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Appendix C.1, this translated into the property that in each monome of the time-
evolution generator, there was an equal number of creation and annihilation oper-

ators, so we expect the action to be invariant under the following rescaling of the
fields:

o—=>Ap ©— A_lgp
Y= Ay, = AT (4.59)

However, this symmetry is broken by the initial conditions. This breaking of the
rescaling symmetry survives in the stationary state because of the conservation of the
number of particles. Following (Wijland, Oerding, and Hilhorst ), in Sec. 4.1.2
we explicitly took it into account by shifting the initial fields using the initial density
po- As a consequence, the symmetry of conservation of the number of particles is a
bit more complicated, but it exists and reads, for a given A:

= Ao+ (A=1)y/po o= Ao+ (A =1)ypo
v — A, = AN (4.60)

This change of variables is an exact symmetry of the action. Moreover, if we time-
gauge its infinitesimal version:

= @+elt)(@+po) ©—0—elt)(@+ Vo)
V=Y tet)y, - —et), (4.61)

we obtain the following variation of the action:

§(Soup) = /x €8, [@p + M . (4.62)

We see that the number of particles is conserved as well. However in the Doi-
Peliti formalism, the number of particles is not an observable linear in the fields,
thus in this formalism the conservation of the number of particles do not translate
directly into a non-renormalization theorem as before. Furthermore, we see now
that a truncation to cubic order, as the one done in (Wijland, Oerding, and Hilhorst
), breaks the symmetry by rescaling, thus breaks the conservation of the number
of particles, if interpreted as a coherent field action.
Although we cannot gauge (4.60) in time without losing the linearity, we can
still write the Ward identity for the ungauged symmetry. It gives

J{vm+o

Let us write explicitly the scaling in «:

6T, ) R )
(VA B) S 0 -0 0,

4.
[ Y o (4.63)

. 6F A 5F A (SF ES 6F
oo+ P)— — (K o+ P)—= +VU—"—U—"0 =0, (4.64
/5({(& R S U R R | e

Because of the explicit dependence in k, this identity cannot describe a scale invari-
ant EAA. Physically, it stems from the fact that we placed ourselves at a finite total
density of particles pg, following (Wijland, Oerding, and Hilhorst ). The scale
invariance can only be exact at the degenerate point po = 0. However, looking at
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the scaling of each terms we see that in the IR limit k — 0, the \/po-terms dominate

and one is left with 5T 5T
/{ L f}:o. (4.65)
% 0D 5P

In other words, one obtains in the IR an action with the symmetry

©—>QP—€,0—>P+e€. (4.66)

This symmetry is the shift symmetry (4.23) of DP-C for a constant e, thus it seems
to support the idea that in the IR the action of DEP acquires the symmetry of DP-
C. However, contrary to what happens when starting from the DP-C action, we do
not obtain the full space-time gauged version (4.23), as it comes from the rescaling
symmetry (4.60). As a consequence, although the non-gauged shift symmetry is
recovered in the IR, we do not have for DEP non-renormalization theorems which
would fix the anomalous dimensions of the ¢, ¢ fields and the scaling of the time to
their Gaussian values. Near the critical dimension d. = 4, the perturbative results
are well controlled and we expect DEP to be in the same universality class as DP-C
because the terms of the DEP action which break the shift symmetry are irrelevant,
using the same reasoning as in Sec. 4.2.2. However for d = 1 or 2 (the dimensions at
which the system has been simulated), DEP and DP-C could belong to two different
universality classes. A sufficiently simple way to adress this uncertainty is to simulate
directly the Langevin equations corresponding to DP-C. To our knowledge, this has
never been done and we have recently undertaken a project in this direction. For
the time being, it seems worthwhile to study the field theory of DEP on its own.
Let us continue with its Ward identities.

Contrary to the response field action of DEP (4.45), the coherent field action
(4.58) possesses the time-reversal symmetry for ;1 = 0 and a duality reminiscent of
DP-C. The time-reversal symmetry reads

¢ — _T@Za QZ} — _Twa
0 —Tp, @¢— Te. (4.67)

This time-reversal symmetry is the same symmetry as for DP-C in the previous
section and has the same consequence

if y=0, I.b & U, 0]="I,[TP,Td, —TV,—TV]. (4.68)

The duality of DEP is the invariance of the action under the following shift of
the fields and of the parameters

p—=pte, ©—pte,
oc—0—2€q, g—g-—ce€v. (4.69)

Using the expressions of the parameters o and g, one can generate the shift of the
parameters o and g by shifting pg as pg — pg — 2¢. Thus we see again that the
duality comes from the non-zero initial value of the total density, which is conserved
by the dynamics. The duality (4.69) leads to the following identity:

o, o0,
/X{ - b =200 (4.70)
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The shift symmetry present in the IR gives us that d, = dz. Assuming that in
DEP, the control parameter of the continuous phase transition is the total density,
the same reasoning as Appendix D can be used to show that

vd, =1, (4.71)

which is the same relation as in DP-C. However, as d, may be different from d/2, v
can depart from its DP-C value. This gives a possible scenario to reconcile simula-
tions of DEP with the theory.

4.3 Modified Local potential approximation for
DEP and DP-C

Given that a DP-C fixed point would be characterized by a larger symmetry group
than the DEP one, it is unclear if one should expect the infrared DEP fixed point to
be the same as the DP-C one for dimensions far from the upper critical dimension
d.. On top of this, as reviewed in Sec. 2.1, some DP-C predictions for critical
exponents (such as § = 1 for p # 0) seem to be inconsistent with the results of lattice
simulations. Independently of this last point, it is unsatisfactory from a NPRG point
of view to rely on the perturbative argument given in Sec. 4.2.2 to explain how the
DP-C symmetries can emerge along the flow from the microscopic action of DEP
lacking these symmetries. This motivated a study of both field theories using the
tools of the NPRG. We choose to work with the simplest ansatz developed in NPRG
which turns out to be sufficient in most cases to get an accurate picture of the phase
diagram as well as a reasonable estimate of the critical exponents of the continuous
phase transitions. This ansatz named the modified local potential approximation
relies on the fact that the phase transition is controlled by the low wave-number and
low frequency content of the EAA. In this section, we motivate this approximation
and write down the corresponding ansétze for DP-C and DEP. This allows us to
derive some analytical results within this approximation. Finally, we expound on
our choice of regulator and on a further approximation which allowed us to integrate
numerically the flow equation.

4.3.1 The zeroth order of the derivative expansion

Let us rewrite the NPRG flow equation for T',, (3.81) in Fourier space, making
explicit the invariance under space rotations and translations, and the frequency
independence of the regulator:

0.8 = 5 [ (2R, G a—a 9. (1.72)
q
where G_fﬁ) is obtained by inverting the Fourier transform of the Hessian of I',, + AS,.
We have seen in Chap. 3 that the wave-number integration of the r.h.s. is limited to
values ¢ < k due to the presence of the derivative of the regulator. Because of this
property we can expand the integrand of 'y, in powers of the wave-numbers and of
the frequencies. The expansion reads at the first non-trivial order

I, [®] = / (V@) + Y z2 (@)@ [0, - DI@]0; + (@)} (47
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Some remarks are in order here. The first one is that we have assumed that the
renormalized propagators of the theory (_}E?) (p) at wave-number p < k have their
dominant contribution for frequencies of the order w < x?. Without this assump-
tion, we cannot justify to keep only the first order in time. Indeed, the regulator
chosen in this work acts only on the wave-numbers and leaves the frequency sector
uncontrolled. Thus, a priori, the high frequency sector could couple in the RG flow
to the low frequency one. We expect the RG flow to reach a decoupling fixed point,
such that for p > k the propagators takes a scale invariant form

G (p) ~ p 2Tt (w/p?) (4.74)

with the dominant contribution of the scaling function g given by values of order
unity. In this case, the integral is dominated by the values w < k* ~ k? and the
assumption is justified.

The second remark is that the symmetries can greatly help to constrain the
ansatz. For example, the causality ensures that the vertex function without response
field legs are zero. Furthermore, instead of having a generic parametrization in terms
of the fields {®;}, one can generally use the invariants of the theory. For example
for DP-C at p = 0, the functions U, , Z, and D,. would only depend on @ + @, ¥
and U — .

The above ansatz is called O(9%) and gives generally very accurate results. How-
ever, it still requires heavy calculations, as the U, , Z,. and D, are unknown functions
of many variables. A further approximation is to assume that the kinetic part of the
theory keeps in fact its bare form. This approximation is called the local potential
approximation (LPA) and sometimes denoted O(d°), as only the potential U, is
renormalized. In the case of DP-C it reads

I, [®) :/{@(@—82)@%—#@302\1’%—@(&5—)\82—0)\1/+UK(¢+§5,\I/,\I/)}. (4.75)

This ansatz allows in most cases to get a first picture of the phase diagram. However
it fixes the scaling dimension of time and of the fields to be the Gaussian ones.
Indeed, the definition of the running scaling dimensions of Sec. 3.4.4 implies that in
the LPA ansatz (4.75), for example for the ¥-¥ two-point function,

b (2
Z}{Z}w - azwrfﬁql(pa (I)O)‘p:() =1 )

DY = 0T 3} (0, Bo)pmo = 1 (4.76)
where ®y = {®@g, Py, Vo, Uy} is an unspecified configuration of stationary and uni-
form fields. As a consequence, the LPA ansatz gives directly n+ 7 =0 and z = 2.
An efficient way to upgrade the LPA approximation in order to account for field
renormalizations is to take Z, and D, to be independent of the fields (but still
depending on the renormalization scale). This ansatz, introduced in (Tetradis and
Wetterich ), is named modified LPA (LPA’) or leading order. Note that due to
the particular symmetry of DP-C fixing the @-® and #-¥ propagators to their bare
value, the only propagator which has the freedom to be renormalized is U-V.
Wrapping up, we finally give the ansatz chosen in this work for DP-C. It reads



82 Chapter 4. Study of the absorbing phase transition in DEP

for p # 0 and
PP-Clp] — / {qﬁ(at — )P + Z, V(8 — A0V + Uy (P + D, 0T, U — ‘I’)} (4.78)

for p = 0. Let us make a remark on the ansatz. Because the scaling between space
and time is already fixed by the @#-® propagator, that is

) 2F<2>(0 7, o) |50

D,‘f‘p = =1, (4.79)
QWF (w O (I)O)lw =0
we must have as well that
d
; oY _ _
igr%)dlnmlnD —L%dl InA, =0. (4.80)

Thus \; can contain at most a sub-leading logarithmic dependency in k.

Now, let us give the LPA’ ansatz for DEP. Given that the model is less con-
strained by its symmetries, one must allow a priori a more general renormalization
of the propagator of the theory. It reads

PEP[p)] — / {Z;f@(f)t — DD + 1, D B PV + ZVT(9, — \eD0?) U + UH(<I>)} ,

(4.81)
for p # 0, with u, and A\, having scaling dimension zero, and

I 0] = / {fo@(@t — D O*)P + ZYV(0, — A\ DD*) W + UE(QD)} (4.82)

for 4 = 0. Furthermore U, must satisfy the additional constraints coming from
symmetries (4.60) and (4.67):

(V5 +0)0, = (Voo + )05 + 60y — V05| Unlp, 2, 0,) = 0
and for p =0, U, 0, =0, =) = Uplp, @,10, ). (4.83)

Both for DEP and DP-C, the RG flow of the theory is entirely described at the
level of the LPA’ ansatz, by the flow of the potential
1

DU, (Pg) = =

2 / [a’fﬁ’f} z’j<q) Ggf) (q, qDO) ) (484)

and that of the two-point function at constant fields, which reads

0.8 (p.%0) = [ [0.R], (@G (. 00|~ 50K (20)
q
+ U (@0) G (a+ p, @)U (20)] 617 (0, @0). (4.85)

More precisely, we extract information only from the low frequency and low wave-
number behavior of the flow of the two-point functions. At the level of the LPA’
ansatz, all the information is contained solely in the flow of the couplings Z¢, ZV,
D, \; a,d u,, the wave-number and frequency dependence are the bare ones. Now,
let us discuss in detail our choice of the stationary homogeneous configuration ®,
at which these couplings are defined.



4.3. Modified Local potential approximation for DEP and DP-C 83

4.3.2 Choice of &) as a minimum configuration
Let us come back to the explicit definition of Z%, Z¥ D, \. and .. They are

given respectively by

[7210)
T (D, P0) =0, AeDi = (2)710,2T) (P, ®0)lp—o »

j1x D, = 0, 2F< ) (D, )| p—o - (4.86)

Zr = a f( )(p7q)0)|p:07 Dn = (Z,f)_la fc(;c;(pa CI)O)‘P:()a
0;

Within the LPA’ ansatz, we have to project explicitly these couplings to a constant
value because they acquire generically a field dependence with the RG flow. Thus
we have to explicitly choose a constant field configuration at which we define them.
Because DP-C is a response field theory and DEP a coherent field one, the interpre-
tation of the fields is not the same and the choices of constant field configuration
differ. Let us first discuss the case of DP-C. The mean value of the response fields
are zero in the stationary state, so we choose ¥y = @, = 0. Furthermore, we choose
Uy = 0 for simplicity. Finally, guided by the duality symmetry (4.39) for DP-C
which relates the mass of the W-¥ propagator to the mean value of the field @, we
set @y = xPF-C. In the DP-C context, we thus note

Min : {®, &, ¥, ¥} — {x°"¢ 0,0,0}. (4.87)

Now, let us do the same for DEP. We have seen in Appendix C.1 that within the
Doi-Peliti formalism, the original density n; field is given in terms of its associated
coherent fields by the product ¢;¢;. For the ¥ and V¥ fields, we choose for simplicity
U = ¥ = 0 as in DP-C. However, once again guided by the duality symmetry (4.69)
for DEP, we set & = & = \PFP such that @ = (xPFF)2 £ 0 without breaking the
symmetry between & and ®. Wrapping up, the constant field configuration in the
context of DEP reads

Min : {@, 0, ¥, W} — {xPH yPEY 0,0} . (4.88)

In both cases, the parametrization allows one to absorb the mass of the U-U
propagator in the following way. We assume Yy, can be implicitely defined such that

F( )(p7 (1)0)|P 0,Min — a?m;UfJMin =0. (489)

This choice of parametrization and the assumption it contains allow us to use a
central property of both DP-C and DEP, that is the duality (4.39) and (4.69) re-
spectively. The general duality identity derived in Appendix D can be rewritten in
the particular case of our ansatz. For example, let us concentrate on DP-C. We
expand partially the potential as

UPPC(o+@,0,%) = Y ur™ (0, P)(p + ¢ — x279)", (4.90)

where the x dependence of the uPTC is implicit. The duality relation (D.6) then
reads

VneN, 0,uPPC = (n+1)u gfic(g + 0,XPC). (4.91)
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In particular, by taking derivatives of this expression with respect to ¢ and 1, and
evaluating it at ¢, = 0, we obtain

1
VneN, 9,0;;ub"C(0,0) = (n+1)07 ;upt:¢(0,0) (5 + 0, x27C). (4.92)
Because
97 5ug"(0,0) = 95,U2" i = 0, (4.93)
there exists a n such that
95 sty (0,0) = 0 and 87 ;u,17°(0,0) # 0. (4.94)
We deduce from there that ]
4 aUXEP'C =0. (4.95)
g
and
vneN, OurC=0. (4.96)

Remembering that o is the control parameter of the transition, these equations
mean that xPP-C is the only relevant coupling. In other words, the RG flow can
be projected on the critical surface by considering the flow of all couplings except
xPP-C. If there is a critical point, the flow will then be fully attractive except for
the coupling x,. This is a huge simplification. Indeed in most cases when one has
to integrate numerically the RG flow of the couplings, the relevant direction is not
identified or cannot be parametrized so easily. In these cases, one has to fine-tune
a control parameter in order to approach the critical fixed point, for example by
using a dichotomy algorithm. The same can be done for DEP, using this time the

following partial expansion the partial expansion

UP™ (0, @,0,9) = > upi” (1, 9)(@ — xk™ )™ (0 — x2*")" (4.97)

The same steps as for the DP-C case show that

1
2—\/% + 8p0XEEP =0 (498)
and
Vm,n €N, 9, ultr =0, (4.99)

with the same consequences. However, note that the equivalence between the inverse
recovery rate 7 and the initial total density py as microscopic control parameters of
the critial phase transition, which is true perturbatively, may not be valid anymore.
The flow equation of the minimum Yy, is deduced by taking a derivative of the
above expression with respect to the renormalization scale. For DP-C, it reads

_ 2 7rDP-C 3 77DP-C DP-C
0= [0:025U7C] 405, UPC| o, (4.100)
If uii(k) = 63)WU,?P'C‘Mm = 0, the Min configuration cannot be defined. This
prevents this coupling from changing sign along the RG flow. It means that from
physically admissible initial conditions (which correspond to uj11(A) < 0), the RG

flow cannot reach a fixed point candidate to describe the continuous phase transition
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if uf;; > 0 at this fixed point. The perturbative fixed point found in (Wijland,
Oerding, and Hilhorst ) has uj,;/p > 0, thus it cannot be reached for p > 0.
This prompted its authors to conjecture the existence of a first order phase transition
in this case. However, this conclusion does not hold if u},, /x> 0is only a one-loop or
a perturbative feature or if there exist other fixed points with uj;; < 0 independently
of the sign of u.

A remark is of order here. As long as we are truncating the potential Uy, it is
always possible to find y, such that the above equation is verified (leaving aside
the problem of complex roots and non-unicity of the solutions). However, the full
potential Qi &Uﬁ|Min as a function of y, may not vanish for finite y,. While we feel
this difficulty would be worth investigating, we will not delve further into the subject
here. Indeed, in the following, we always truncate the potential before any actual
integration of the flow.

In order to go further and explicitly calculate the RG flow equations (4.84) and
(4.85), one has to specify the form of the regulator. This is the topic of next section.

4.3.3 The Litim © regulator

When we have introduced the general setting of the NPRG in Chap. 3 , we have
insisted on the fact that the RG flow equations for I',, and its vertex functions were
exact. In particular, the result of the integration of these equations do not depend
on the exact structure of the regulator matrix and on the form of its wave-number
dependence as long as it satisfies the required properties. However, as soon as we
make approximations of the flow equations, this property is lost. Thus the choice and
optimization of the regulator becomes an important part of NPRG studies (Canet

et al. ). We have already stated that we will limit ourselves to regulator of the
form )
as.fol =5 [ IR (@B, (-a), (1.101)
q

where 4,7 € {p,@,1,1%}. As the bare action does not have a quadratic coupling
in U-¥ and in #-®, we have only to add a regulator to the U-¥ and &-& sec-
tors. Because the regulators depend only on the modulus of the wave-number,
[R.] @w(Q) = [QK]W(Q), and accordingly for the W-W one, (4.101) simply reads

AS,[®] = / {[RK}W(Q)@(Q)@(—Q)‘F [Rm]zpw(q)‘lf(q)‘P(—q)}- (4.102)

Now, following the discussion of Sec. 3.4.3, we have to choose a x dependence of the
regulators in accordance with the definition of the running scaling dimensions. For
DP-C, it reads

[Ri] (@) = @ro(¢®/6%) . [Ril 5, () = MeZud®ry (6°/57) (4.103)
while for DEP it takes the following form

[Ri] (@) = DeZE@ro(/57) [R5 (@) = MDuZlqry(¢*/67) . (4.104)
The freedom of choice lies thus in the functional form of r, and r,. In this work,
we choose to use exclusively the Litim O regulator (Litim ):

1

ro(y) = ry(y) = ry) = (; —1)0(1 —y), (4.105)
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where O is the Heaviside function. This regulator has the huge advantage that the
wave-number integration can be done analytically. On the two-point functions, say
the W-W¥ one for example, the regulator has the following effect:

[ 4R, (m20) = Zufi + Mg+ gty = { g0 o<
Rl ’ K K f;w(w’ﬁ)7 1fq>/{

At higher order of the derivative expansion, the non-analyticity coming from the
Heaviside function can prevent from using this regulator. However, this is not the
case here. We have not tested the independency of our results on the choice of the
regulator in this work. This effect would have to be studied eventually. The fre-
quency integrals in the flow equations (4.84) and (4.85) are carried out in accordance
with causality as explained in Sec. 3.5. As a consequence of the causality prescrip-
tion and of the structure of the regulator for DEP and DP- C the integration on
w in the flow amounts to a sum on the residues of G( and G ~in the upper-half
plane. We note Res, the operation of summing the remdues in the upper-half plane
and multiplying by 7. For example, the flow of the potential reads with this notation

1
asU/i((I)O) - 5

= / { [0:Ra], (@GEA (@ Do) + [0:R,] 5 (@) G (@, cbo)}

[0, @6 @ )

= / {[0:R] (@ GE . ®0) + [OR.] 5 (0)e" G (. 00)}

—ﬁ@&@&i<mAmm+mmm¢m@@%&wmw

4.3.4 Truncation of the potential

With the explicit expression for the regulator, all is set to integrate numerically the
flow equations, at least in principle. One would have to parametrize the potential
in terms of the symmetry invariants and integrate numerically the system consti-
tuted by the ordinary differential equations (ODE) for the scaling factors (4.86) and
the non-linear partial differential flow equation of the potential, which is integro-
differential in the field variables. This task is slightly simplified by the fact that
both for DEP and DP-C, the prefactor YW which appears in the bare potential is
preserved by the renormalization flow in this setting:

UH<SO7@7¢7¢) = IZQ/}VNQO? @71/}7 QE) ° (4'107)

This property of the LPA’ ansatz at the minimum configuration for analytic poten-
tials is shown in Appendix E.1.

However, it is extremely costly to take into account the full field dependence
of the potential. This has been done when there is only one field invariant to
parametrize the potential (Berges, Tetradis, and Wetterich ; Canet et al. ).
Here there are three field invariants. As a consequence, we choose as a first ap-
proach to expand the potential in powers of the field and to truncate it. This idea is
suggested by perturbative RG, as higher monomes of the fields are less relevant as
long as their dimensions is positive. One expects to see an numerical convergence
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of the values obtained for the critical exponents with the order of truncation. This
convergence means that the critical exponents are only sensitive to the first coeffi-
cients of the potential expansion, which validates the method. This approach was
used successfuly to study the DP phase transition with the same tools in (Canet

et al. ). The potential truncated at order N reads for DP-C
UPP o+ @,0,9) =Y up C(6) (9 + ¢ — x270) e, (4.108)
bcfcl;éco
3<a+b+c<N
and for DEP
UP™P (0, 0,0, 9) =Y ublr (k5)(p — x2™)* (@ — x2*F ety (4.109)
%
3<s+p+qg+r<N

with the following constraint for the coefficients (omitting the x dependence and the
superscript for simplicity):

(3 —-p + q— T)uqur + (\/% + XK) [(3 + 1)us+1pq7’ - (p + 1)usp+1qr} =0. (4110)

The truncation has the effect to turn the partial differential equation for the
potential into a set of ODE for each couplings, thus offering a huge simplification in
the numerical integration of the flow. For example, the cubic order of DP-C reads

U0+ @,00,9) = ¥ |ugar ¢ + uor2 ¥ + w11 (@ + @ — Xa) | » (4.111)

with ug1o = —uge; for 4 = 0. One recognizes in this ansatz the DP-C action
whose bare couplings have been replaced by running couplings depending on the
renormalization scale k. The flow equations for the scaling factors (4.86) and the
potential couplings from the flow equations (4.85) and (4.84) were obtained using
the computer algebra system Mathematica. The extraction of the upper half plane
residues corresponding to the frequency integral is done using partial fraction de-
composition. This is possible because the poles appearing in the integrand of the
flow equations are well identified. The wave-number integral is done analytically
as well thanks to the choice of the © regulator. Finally, we express the flow equa-
tion for the dimensionless couplings. As expounded on in Sec. 3.4.4, one looks for
fixed points of the dimensionless Iy, expressed in terms of the dimensionless fields
®;(t,7) = k% ®;(k*f, kZ). One thus defines the dimensionless couplings

Ugbe = K" Ugpe (4.112)
such that if the 4, reach a fixed point, the dimensionless potential
Uy(Dg) = k02U, (k% Dy) (4.113)

reaches a fixed point. These steps are written in detail in Appendix E.2 for the flow of
LPF-C. The system of flow equations for the potential couplings is closed by adding
the flow of A\, as well as the determination of the running anomalous dimension
n(=7) or 7 for u = 0 and p # 0 respectively. Both of them are determined from
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Figure 4.1: Values of 7 as a function of the dimension d for ;1 = 0 calculated from
the LPA’ truncations compared to the one-loop result (dashed line) and to the
simulation (Maia and Dickman ) (isolated point at d = 1). Thick saltires mark
the disappearance of the fixed point.

the flow equation of the 2-point function (4.85) from their definitions in (4.86) and
following the same steps as for the couplings.

Before going to the results of the numerical integration, let us already signal the
limitation of the truncation. It turns out that the complexity of the flow equations
for the couplings rises substantially with the number of couplings to consider. Fur-
thermore, due to the high number of fields, the number of couplings grows rapidly
with the order. For p # 0, at the truncation orders N = 3,4, 5 and 6 we have
to consider respectively 3, 8, 19 and 34 couplings. Above N = 6, the number of
couplings grows faster than N2. At this point, to obtain and treat the lengthy
expressions for the flow equations of the couplings becomes too demanding on com-
puter RAM and we could not go further than order 6. First, let us discuss the result
of the integration in the DP-C case.

4.4 Results of the numerical integration of the
DP-C flow

After having obtained the closed system of flow equations for A, and the poten-
tial couplings, supplemented with the running of the anomalous dimension defined
through Z¥, one has to integrate them numerically. We verify that { does not ap-
pear in the flow of the other couplings, which implies that it is an unstable direction
of the flow with eigenvalue d/2 and that, once its flow is excluded, the flow of the
other couplings is fully attractive (if a critical fixed point exists). As a consequence,
the integration of the flow can be done without the need to perform any dichotomy
fine-tuning of the control parameter. This was done in C using the tools of the GNU
scientific library (GSL). We use the built-in ODE solver gsl _odeiv2 with a Runge-
Kutta-Fehlberg (RKF45) numerical scheme. We integrate the flow from physically
admissible initial conditions. If the flow reaches a fixed point, we record the critical
exponent characterizing it, n (= 77) for u = 0 and 7 for p # 0. We do this operation
for d ranging from d = 3.95, where we expect the perturbative results to hold, to
d = 1, which is relevant to make contact with the simulations. The results are
displayed in Fig. 4.1 and Fig. 4.2 respectively.
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Figure 4.2: Values of 77 as a function of the dimension for (a) u = —1 and (b) u = 0.5
calculated from the LPA’ truncations compared to the one-loop result (dashed line).
Thick saltires mark the disappearance of the fixed point.

Let us first discuss the case p = 0. At third order, written explicitly in (4.111),
(which corresponds to a renormalization of the coupling constants of the vertices of
the DP-C bare action), we find a critical fixed point for any dimension below d = 4.
It corresponds to the fixed point precedently described perturbatively in (Kree,
Schaub, and Schmittmann ; Wijland, Oerding, and Hilhorst ). At fourth
order, we find a fixed point only for d = 3. For d below 3, the flow diverges without
reaching any fixed point. At fifth order, the domain of convergence to the fixed point
extends up to a value d < 3. There is a striking difference between the value of 7
at the third order and at higher orders. For d = 3, we obtain the value n = —0.3.
This value already differs from the perturbative prediction by 50% so it would be
interesting to compare it to numerical simulations in d = 3. If extrapolated tod =1,
the value of n seems to be in accordance with the simulations in d = 1. However,
at sixth order the situation worsen and the fixed point can be reached only near
d = 4. As we were not able to push the truncation to seventh and higher orders, it
is difficult to assess at this point whether the domain of convergence to this fixed
point ends up reaching d = 1 or stablizes at a value 3 < d < 4. At this point,
as discussed below, it is not clear whether the fact that the flow does not reach
the fixed point in low dimension is an artifact due to the finite-order truncation of
the LPA’, or if it is related to the intrinsic nature of the DP-C fixed point and its
relation to DEP.

In the u < 0 case, this problem seems even sharper. At third order, we recover
the perturbative result. At higher orders, we also find the same fixed point near
d = 4. The domain of convergence to this fixed point is maximum at fifth order and
diminishes at sixth order. However, the domain of convergence in this case is smaller
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than for ;1 = 0 and does not reach d = 3. Let us note that for u # 0, as n = 0, the
only non-trivial exponent for the DP-C class is 7. This exponent is related to ', the
critical initial slip exponent (Wijland, Oerding, and Hilhorst ). Unfortunately
no numerical determination of 6’ exists in the literature for u # 0.

For 1 > 0, at third order, the same fixed point as for u < 0 is present but the
flow cannot reach it from physically admissible initial conditions since this would
require the coupling 1, to change sign along the flow, leading to a divergence of
X, as explained in Sec. 4.3.2. At this order, there exists no other fixed point, such
that we recover the same scenario as the perturbative study. At fourth order in
the field expansion, we find a new fixed point in the physical region of parameters.
In contrast with the perturbative calculations but in agreement with the numerical
simulations, this finding supports the existence of a second order phase transition
for p > 0. Interestingly, at fifth order the fixed point exists in d = 3, giving the
prediction 7 = —0.2 which could be compared to numerical determinations of 7, if
these were to exist. However, we are not able to convincingly assess the convergence
of this result with the order of the truncation in the field expansion, since the domain
of convergence to this fixed point also varies significantly as the order is increased.

In both cases, u < 0 and g > 0, the divergence of the DP-C flow below a certain
dimension gives rise to the same question as in the p = 0 case. We have checked that
it was caused by the fixed point acquiring a new unstable direction below a certain
dimension. Either it is an artifact to be imputed to the finite-order truncation, or it
signals that the continuous transition observed in the simulations of DEP in d = 1
and 2 cannot be described by the DP-C class in low dimensions. As the equivalence
between DEP and DP-C universality class is true in dimensions close enough to
d. = 4, in the second scenario there would thus exist a lower critical dimension of
DP-C, d. < 4, below which the RG flow of the DEP action would lead to a new fixed
point different from the DP-C one. Recalling the discussion of Sec. 4.2.3, this truly
DEP fixed point would share the shift symmetry (4.66) with DP-C but crucially d,,
and z would be free to differ from their respective Gaussian values d, = d/2 and
z = 2. This prompts to turn to the study of the RG flow of the DEP action.

4.5 Integration of the DEP flow and shortfalls of
the LPA’

Let us first use the truncated DEP ansatz to reexamine the argument of the pas-
sage from the rescaling symmetry (4.60) to the shift symmetry (4.66) presented in
Sec. 4.2.3. At quartic order, one obtains the following ansatz for the potential:

UEEP(% @, %, &) = Wﬁ{unn [(%0 + \/%)(@ + M) — (Xx + \/%)2}
+ w0129 (¢ + v/Po) + uo121¥ (P + /po) + Uoozzlﬁ?/f} . (4114)

Due to the presence of ,/pg, this potential cannot be made scale independent. Let
us write down the above expression in terms of the dimensionless variables, remem-
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bering that d, = dj is already fixed by (4.65):

UPEP (9, 6,10, 16) = =+ {
KM [(5% @ + /po) (K% 6 + v/po) — (K% X + v/Po)’]

+/€d1012+d1@ﬂ10121/_)</§d9’¢+\/%) +I€d0121+dwﬂ01212[1(fid”95+\/%) +l€d0022+dw+d'@ﬂ0022127$}.
(4.115)

The scaling dimension of g9 is fixed straightforwardly to be
doogg =d + 2z — de - Qdi . (4116)

Because d,, is expected to be positive, for the terms proportional to the w012, U121
and w1117 couplings to have a non-trivial limit when « — 0, one has to choose
respectively

d1012:d+2—d¢—2d&,
d0121:d+2—2d¢—d@,
d1111:d+2—d¢—d&—d¢. (4117)

With these choices, in the limit x — 0, one is left with
UEEP(@a @, 7/37 V) H:OQ/;&{ﬁllll\/E(@ + @ —2%)
+ 012+/PoY + o121 \/%@/AJ + ﬁomzﬁﬁz} ; (4.118)

which has the DP-C shift symmetry (4.66). Let us check that this scenario is realized
by actually integrating the flow.

The system of flow equations for the quartic DEP ansatz (4.114) is composed of
the flow of the potential couplings, the flow of the kinetic couplings A\, and u, and
the running of the anomalous dimensions defined through Z¥, Z¢ and D,. These
flow equations are integrated following the same method as above.

For all values of © and for d in the domain of existence of the stable DP-C fixed
point explored above, the couplings of DEP flow to this fixed point. To illustrate
this, we have plotted in Fig. 4.3 the logarithm of the norm of the variation of the
DEP potential under the rescaling symmetry (4.60) and the shift one (4.66) along
the RG flow. The norm of variation under the shift symmetry saturates to a small
value, indicating that the shift symmetry is recovered in the IR. This confirms the
scenario above. However it turns out that Z7, D, and p, do not have a RG flow
and keep their bare values Z7 = D, = 1 and p,, = p. While in DP-C, this property
was ensured by the symmetries of the model, for DEP this seems to be an accidental
feature coming from the approximation. In fact, we show in Appendix E.1.3 that
it is the case for the LPA’ ansatz, even without truncating the potential at the
condition that the latter is analytic.

As a consequence, within this ansatz, one cannot hope to reach a truly DEP
fixed point for which d, # d/2 and which would explain some discrepancies between
the theoretical predictions and numerical simulations. Furthermore, for values of
the dimension out of the domain of convergence to the DP-C fixed point, as the
DEP flow cannot escape the DP-C symmetries, it encounters the same problem
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log 6 (k)

Figure 4.3: Logarithm of the Euclidean norm of the variation of U, under the
rescaling (R) symmetry (4.60) (full line) and shift (S) one (4.66) (dashed line) as
a function of minus the RG time, for 4 = 0 (circle) and p = 0.5 (triangle) and for
d=3.2.

as the DP-C ansatz and diverges. At this point, it is unclear how this problem
could be cured. Looking at our choice of ansatz, maybe the most questionable step,
after the expansion in frequency in the derivative expansion and the polynomial
expansion of the potential, was the definition of the minimum configuration. Indeed,
as mentioned in Sec. 4.3.2, this definition implicitely assumes that one can always
follow continuously a zero of the function aiquAMm of x, along the flow and that this
root stays finite. However, if one examines in more detail Appendix E.1, it appears
that it is in fact sufficient to have ain,JMm > ( for the proof of the accidental
non-renormalization to go through. To have the property 0772Z)¢U,{|1\/ﬁn > 0 for some
X« 18 necessary in order to be able to define a stationary state. In conclusion, within
the LPA’ it seems difficult to evade the conclusion of Appendix FE.1.

The non-renormalization of the kinetic part lies crucially on the fact that the
three- and four-point vertex functions do not have any frequency dependence. One
possible lead would thus be to devise an ansatz for DEP which takes into account
the frequency and wave-number dependence of higher order vertex functions. Maybe
in conjunction with this approach, it would be fruitful to take as a starting point
the DEP action in terms of the observable and response fields (4.45). Interestingly
this action possesses already at its bare level functional dependence in the fields
and wave-number dependence in a cubic term. On the one hand, these features
complicate the NPRG treatment as they prevent from using simple approximations
such as the LPA’. On the other hand, they could be the source of new physics which
is missed by the simpler approximation available in the coherent field action. This
study may be facilitated by the newfound symmetry of the response field action
(4.57).

In summary, in this chapter we presented our take on the study of the absorbing
phase transition of DEP and its coarse-grained counterpart, DP-C. An exhaustive
analysis of the symmetries of both models allowed us to clarify the discussion as
whether both models belong to the same universality class. On the one hand for
the DP-C model, we have used a LPA’ anstaz to obtain some new results, notably
the indication of a continuous phase transition for p > 0, which is missed by per-
turbative RG at one loop. We have shown that the existence of a DP-C universality
class in any dimension is not trivially reachable. It is still an open question if this
difficulty would be alleviated by using a better suited NPRG ansatz or if it has
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a physical origin. On the other hand for the DEP model, using the LPA’ ansatz
we have confirmed our scenario that the (global) shift symmetry emerges from the
rescaling symmetry of DEP. However, we have also analytically shown how acci-
dental non-renormalizations inherent to the LPA’ ansatz chosen here prevented to
infirm or confirm the perturbative scenario of equivalence between DEP and DP-C
as universality classes.

The prospects in the study of this model include to understand better the role
that the choice of a minimum configuration y plays in the non-renormalization
theorems and in the observed instabilities of the RG flow below a certain dimension
This study should help to devise a more powerful ansatz for both models, such as
LPA’ with a functional dependence of the potential in well-chosen invariants. It may
be worthwhile to also use as starting point the response field action (4.19), whose
physical content is more straightforward. The ansatz in this case would exploit the
uncovered tilt symmetry (4.57) which exists in this action at p = 0.

Version francaise

En résumé, dans ce chapitre, nous avons présenté notre point de vue sur [’étude
de la transition de phase absorbante de DEP et de son homologue mésoscopique,
DP-C. Une analyse exhaustive des symétries des deuxr modeéles nous a permis de
clarifier la discussion pour déterminer si les deux modeéles appartiennent a la méme
classe d’unwersalité. D’une part pour le modele DP-C, nous avons utilisé un anstaz
nommé LPA’ pour obtenir de nouveauz résultats, notamment lindication d’une tran-
sition de phase continue pour p > 0, qui n’apparait pas dans le RG perturbatif
a une boucle. Nous avons montré que [’existence d’une classe d’universalité DP-
C dans nimporte quelle dimension n’est pas trivialement accessible. La question
reste ouverte de savoir si cette difficulté serait atténuée par l'utilisation d’un ansatz
NPRG mieuz adapté ou si elle a une origine physique. D’autre part, pour le mod-
ele DEP, en utilisant le méme type d’ansatz, nous avons confirmé notre scénario
selon lequel la symétrie (globale) de DPC émerge de la symétrie de DEP. Cepen-
dant, nous avons aussi montré analytiguement comment les non-renormalisations
accidentelles inhérentes a l’ansatz LPA’ choisi ici empéchént d’infirmer ou de con-
firmer le scénario perturbatif de l’équivalence entre DEP et DP-C' au niveau de la
classes d’universalité.

Les perspectives futures dans ’étude de ce modéle incluent de mieur compren-
dre le réle que joue le choiz d’une configuration minimale x dans les théorémes de
non-renormalisation et dans les instabilités observées du flot RG en-dessous d’une
certaine dimension Cette étude devrait permettre de concevoir un ansatz plus flexible
pour les deux modeéles, tel que par exemple la LPA’ avec une dépendance fonctionnelle
du potentiel dans les invariants bien choisis. Il peutl étre utile d’utiliser également
comme point de départ l’action du champ de réponse (/.19), dont le contenu physique
est plus directement lisible. L’ansatz dans ce cas exploiterait la symétrie de "tilt"
(4.57) qui a été découverte dans cette action a p = 0.






Chapter 5

Breaking of scale invariance in
correlation functions of turbulence

In this chapter we turn to the study of the stochastic Navier-Stokes field theory.
As in the previous chapter, we work in the framework of the NPRG. However, the
tools used are completely different. We use a large wave-number expansion of the
exact RG flow equation in order to investigate the time-dependence of (generalized)
correlation functions in 2- and 3-D turbulence, and the possibility of intermittency
in the direct cascade of 2-D turbulence.

In Sec. 5.1, the Lagrangian of the SNS field theory is given. We also specify the
2-D case, where the SNS field theory is in fact a scalar field theory. In Sec. 5.2,
the exact and extended symmetries of SNS are listed in both formulations and we
derive the corresponding Ward identities in Sec. 5.3. After having given a general
introduction to the large wave-number expansion in Sec. 5.4, in Sec. 5.5, the large
wave-number expansion and the obtained Ward identities are used to derive the
leading time-dependence of the correlation functions. In Sec. 5.6, the leading order
at equal times in the 2-D case is investigated and the consequences for intermittency
corrections are discussed.

Version francaise

Dans ce chapitre, nous passons a [’étude de la théorie des champs de [’équation de
Navier-Stokes stochastique. Comme dans le chapitre précédent, nous travaillons dans
le cadre du formalisme du NPRG. Cependant, les outils utilisés sont complétement
différents. Nous utilisons un développement a grand nombre d’ondes de [’équation de
flot de RG exacte afin d’étudier la dépendance temporelle des fonctions de corrélation
(généralisées) dans la turbulence en 2- et 3-D, et la possibilité d’intermittence dans
la cascade directe en turbulence 2-D.

Dans la Sec. 5.1, le Lagrangien de la théorie des champs de SNS est donné.
Nous décrivons en particuler le cas 2-D, ou la théorie des champs SNS est en fait
une théorie des champs scalaires. Dans la Sec. 5.2, les symétries exactes et éten-
dues de SNS sont listées dans les deux formulations et nous dérivons les identités de
Ward correspondantes dans la Sec. 5.5. Apres avoir donné une introduction générale
au développement & grand nombre d’ondes dans la Sec. 5./, dans la Sec. 5.5, le
développement a grand nombre d’ondes et les identités de Ward obtenues sont util-
1sées pour dérier la dépendance temporelle dominante des fonctions de corrélation.
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Dans la Sec. 5.6, Uordre dominant a temps égaux dans le cas 2-D est exploré et les
conséquences pour la possibilité de corrections d’intermittences sont examinées.

5.1 The field theory of the stochastic
Navier-Stokes equation

5.1.1 SNS action in the velocity formulation

First, let us start by recalling the setup of the SNS field theory given in Sec. 2.2. Our
starting point is the Navier-Stokes equation, which reads component-by-component

1
OV + 0030, = V0?00 — =0ap + fu, (5.1)
P

where f symbolizes additional external forces and with the additional constraint of
incompressibility:
OnUo, = 0. (5.2)

In order to study a turbulent stationary state, one has to add a forcing term f
acting at large scales to simulate the addition of energy coming from the stirring. In
this context, large scales means that the integral scale L at which energy is injected
must be very large compared to the Kolmogorov scale 7, at which viscous and
convective effects are in competition. This condition implies that there exists a whole
range of wave-number between L' and 1t where the convection term dominates the
dynamics. Because of the universality of turbulence in the inertial range, one can
average over different realizations of the forcing. These stochastic forcings must
share the following characteristics: their power spectrum must be concentrated on
L1, such as not to spoil the universal properties of the turbulent flow at intermediary
scales between n and L, and they must as well not impose a non-zero mean velocity
to the flow. The weight is chosen to be Gaussian for convenience, with zero mean
and covariance

(fa()fs(X)) = Dap(x = X') = 2605 6(t — ') N1 (|7 = 7). (5-3)

The function N1 is chosen such that its Fourier transform is smooth, peaked at L,
is zero at zero wave-number and decays exponentially fast at large wave-number.
Note that we do not need to impose the forcing to be solenoidal, as we explicitly
enforce the incompressibility along each realization of the flow. As a consequence,
the forcing can be chosen diagonal in component space without loss of generality.
This setup is sufficient to study the Navier-Stokes equation in 3-D. However the
situation is different in 2-D. In 2-D, the vorticity, defined as

W = 817)2 — 821)1 s <54>

is conserved in a perfect fluid. As stressed in Sec. 2.2.4, this implies that the energy
cascade is inverted, meaning that energy is transferred by the flow to larger and
larger spatial scales. Thus, in order to reach a steady state, it is necessary to add a
friction term to the Navier-Stokes equation in order to act as a sink for the energy.
An example of such a term, called the Ekman friction, or Ekman drag, can be



5.1. The field theory of the stochastic Navier-Stokes equation 97

derived by considering the 3-D space in which the 2-D flow is embedded. This gives
a friction term acting in the 2-D bulk which reads simply

.]E]:]kman =—av. (55)

As explained in Sec. 2.2.4, such term has a strong effect on the physics of the
energy cascade. The presence of the Ekman friction gives intermittent corrections
which are well understood (Boffetta et al. ): in this case, the velocity has
Gaussian fluctuations and the vorticity plays the role of a passive scalar advected by
the velocity field. The calculation of the intermittency corrections of the vorticity
are related in this case to the calculation of the intermittency corrections in the
Kraichnan model. In this work, we do not include an Ekman friction. Instead, we
consider a non-local damping term acting at the scale Ly. It reads

Friction(x) = — | Ry (|7 = &)a(t, 7, (5.6)
with the function Rpa chosen such that its Fourler transtorm is smooth, decays
exponentially fast for wave-number larger than Lg' and takes a finite value for wave-
number going to zero at Ly fixed. In other words, this term plays the role of a
viscosity which would act only at the boundary of the flow to damp Fourier modes
below Lg. The stationary state of the modified Navier-Stokes equation with the
stochastic forcing and the non-local friction defines our field theory of turbulence.

At this point, it is more convenient for the application of field theoretical tools
to cast it into the form of a functional integral. This step is achieved using the
MSRJD formalism. The general formula of the mapping is given in Appendix B.1.
In the literature, the incompressibility constraint is enforced explicitly by replacing
the pressure in (5.1) by its expression in term of the velocity field, given by the
solution of the following Poisson equation:

82]) = —p 8avﬁﬁgva . (57)

However, following (Canet, Delamotte, and Wschebor ), we choose here another
road and instead ensure the incompressibility condition (5.2) along the space-time
trajectory of the velocity field. This is done by introducing a new field, that we
name the response pressure and that we note p, which acts as a Lagrange multiplier
for (5.2), in analogy with the response velocity v of the MSRJD formalism which
is the Lagrange multiplier of the equation of motion (5.1). In this setting, the SNS
partition function reads

-

zv [ j /D 7, p, U p [v,ﬁ,p,ﬁ]fASV[ﬁ,z?]efx{fﬁ+fﬁ+l(p+f<ﬁ}, (58)

with respectively

+ p(x) (%va(x)}
AS[v, 0] = / Vo (t, T) Ry (17 — 7'|)va(t, ©)

Bt DN (17 — 7)) alt, f’)} . (5.9)
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We have chosen to set the quadratic, non-local part of the action apart for latter
purpose. Let us make two comments for the more mathematicaly-oriented reader.
First, note that the standard derivation of the MSRJD action for SNS implicitly
assumes existence and unicity of weak solutions of the Navier-Stokes equations.
This is a delicate point from a mathematical point of view, see for example the
recent work of (Buckmaster and Vicol ). However, the assumption underlying
the MSRJD derivation is a little weaker than strict uniqueness, since for a typical set
of initial conditions, there may exist a set of velocity configurations spoiling unicity,
as long as they are of zero measure with respect to the realizations of the forcing.
Second, we have not made any mention of the spatial domain on which live the
fields. In fact, in the following we always assume that the boundary terms which
appear when doing integration by part can be discarded. This does not seem to be
too strong of an assumption due to the presence of the damping term R.

5.1.2 Interpretation of AS as a regulator

As explained in Chap. 3, a preliminary of the NPRG treatment is the choice of a
well-suited regulator. Let us first examine the properties that it must satisfy. In
the velocity formulation (5.9), the regulator is a priori a 8 x 8 matrix with entries
7,0, p,p. In order to respect causality, the velocity-velocity sector must be set to 0,
as seen in Sec. 3.5. Furthermore, because of a the particular symmetry of the action
in the p and p sector, the pressure dependence of the EAA is equal to its value in
the bare action S (as will be shown in the next section Sec. 5.3). As a consequence,
there is no need to add regulator terms depending on p or p. Moreover, because
of the explicit incompressibility constraint along the trajectory, only the transverse
part of the regulator will contribute. Thus it can be chosen diagonal in component
space without loss of generality. Finally, in order not to break the symmetries of
the action, it is easier to use a regulator diagonal in time and invariant under space
translations and rotations. Gathering these observations, the form of the regulator
must be

~ 1 -
AS) = / {Balt, YRE (7= Jva(t, ) = 50a(t, HRE(F—7|)0a(t.7) } . (5.10)
t,Z,2"

s

The sign before RY" is chosen according to the fact that the response field is imagi-
nary.

In the Navier-Stokes action, Eq. (5.9), it turns out that terms which could play
the role of the regulator are already present for physical reasons. Indeed, the func-
tions RLE)I and Nj-1 satisfy all the requirements to play the role of regulators of the
theory. Their Fourier transforms are smooth functions, vanish exponentially fast for
wave-numbers large compared to Lg' (resp. L) and regularize the fluctuating field
for small wave-numbers (Berges, Tetradis, and Wetterich ; Canet, Delamotte,
and Wschebor ). Note here that although by construction N1 does not have
an effect on the field in the IR, the presence of Rpais sufficient to do so in the SNS
field theory. In other word, the SNS field theory is already well regulated.

We focus in this work in the direct cascade, that is in the behavior at wave-
numbers much larger than both the integral scale L' and the friction scale L.
Thus, in the following, we identify each scale in both terms with the renormalization
scale k: L' = L' = k. In this setting, the term AS, of the SNS fits exactly as the
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regulator (5.10) in the NPRG formalism. With the scales identified to s, it reads

AS [, 7] :/ {Talt, D) R(|7 = 7))valt, 7)
2,3
— Ba(t, )N (|7 — :E’|)17a(t,:?’)} . (5.11)

Note that if we were to study the inverse cascade, which corresponds to wave-
numbers between L;' and L', we would have to fix L and to reintegrate the
non-local term N in the SNS action, while Ly = x would be running.

Up to this point, the number of spatial dimensions needed not to be specified.
Indeed, the action above is our starting point to derive results valid in any spatial
dimensions d, and in particular for d = 2 and d = 3, which are the relevant ones
for the study of physically realized turbulence. However, in d = 2, a simplification
occurs. This is the subject of the next section.

5.1.3 Stream function formulation in 2-D

In 2-D, a solenoidal vector field can be written as the two-dimensional curl of a
pseudo-scalar and not the curl of a vector as it would be the case in 3-D. Indeed, in
2-D, the Helmoltz decomposition for a generic vector field ¢ reads

Vo = 00 + EQﬁagw . (5.12)

In this equation, ¢ is a scalar field and ¢ a pseudo-scalar field. A pseudo-scalar
is a one component field which behaves as scalar under rotations but change sign
under mirror symmetries. Finally, the €,43’s are the components of the antisymmetric
tensor with two indices and with €, = 1. It verifies the following identity that we
will use throughout this work:

€€y = 5&6 . (513)

The incompressibility of v with adapted boundary conditions enforces that ¢ = 0.
In the problem of 2-D turbulence, v is usually called the stream function. It is
related to the vorticity field through a Laplacian:

W = €500V = €ap€sy0n0) = —0%. (5.14)

From Eq. (5.9), setting the sources K and K to zero and integrating on p and
p shows that both ¥ and v are solenoidal. As a consequence, both fields can be
expressed through their respective stream function:

Vo = ea58ﬁ¢
T)a == Eagagl/_} . (515)

Inserting the above expressions in the SNS action (5.9) yields
S10.9) = [ 0u(0)[010.6(x) ~ vVP0U() + €5, 0,0(x) 0,0,
AST 0l = [

t, T, %

{0ub(t.3) Ry (17 = )0, 0(1,7)

= 0t ()N (|7 = &) (1) (5.16)
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Finally, we introduce the new partition function Z5[.J, J| as
2T, J.0,0] = Z5[—€a50sJas —Casdsal (5.17)

such that derivatives of Z°% with respect to J and J give back moments of 1) and
respectively. It is worth pointing out that this action is often obtained by taking the
curl of the SNS equation before casting it into a functional form (Olla ; Honko-
nen : Mayo ). Here, this operation appears naturally as the consequence
of the incompressibility constraint for . This shows that in 2-D, the velocity field
action (5.9) and the stream function one (5.16) are equivalent. Now that the actions
of SNS have been written down, we can look for their symmetries. However, before
doing so, we have to spend some time on the nature of the non-local part of the
action AS within the NPRG framework.

5.2 Symmetries and extended symmetries of SNS

As in the study of the previous chapter on the DEP field theory, Chap. 4, we are not
only interested in exact symmetries but also in extended symmetries, which give a
variation linear in the fields. First, let us list them in the case of the velocity field
action (5.9).

5.2.1 Extended symmetries in the velocity formulation

The exact symmetries of the SNS action (5.9) are familiar: space-time translations,
space rotations and Galilean invariance. Its extended symmetries were studied in the
context of the NPRG in (Canet, Delamotte, and Wschebor ; Canet, Delamotte,
and Wschebor ). First, let us notice that both terms containing p and p are
quadratic. Explicitly, one finds

dSY[U, sv, p, Pl
op(x)

6S¥[0, 7, p, P

1 .
— L0, 0.(x) | ki = Oaa - 5.18
p Ua(X) 0p(x) v ( )

Second, we have mentioned in Sec. 2.2 that the SNS action also possesses a time-
gauged Galilean symmetry. This time-gauged Galilean symmetry is well-known in
the context of field theoretical studies of turbulence (De Dominicis and Martin ;
Adzhemyan, Antonov, and Kim ; Adzhemyan, Antonov, and Vasil’ev ;
Antonov, Borisenok, and Girina ; Berera and Hochberg ). It corresponds
to the following field transformation

5va(x) = —¢a(t) + 1s(0)50a(x),  Ip(x)
50a(x) = 15(1)057(x) . 3p()

np(t)9sp(x) ,
ns(t)0sp(x) (5.19)

where 7j(t) is an infinitesimal function of time, and 7, = 0;1,. The special case of
a constant 77 corresponds to a translation in space, and the linear case 7(t) = 77 t
to the usual (non-gauged) Galilean symmetry. Let us calculate the variation of
the SNS action (5.9) under (5.19). The action is invariant under time-independent
translations, thus the only non-zero variation must come from the time-derivative
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in the action hitting on 77 and from the additional shift in the velocity —n,(t). The
terms of the action (5.9) undergoing a variation are

000 (x) = —ila(t) + 15(1)5va(X)
v3(%)0ava(x) = 15 (t)Ipva(X)

AS'[F,7] — — / (. ) Ry (17 — F)a(t) (5.20)
Plugging them back into the variation of the action, one obtains
ST+ ASY = 8V +6,(S"+ ASY) +o(||7]])

5,(8" + ASY) = —/va(x)h’a(t)—/ Oalt, )Ry (|7 — Z|)ialt) . (5.21)

2,3

The variation of the action under (5.19) is thus non-zero, but linear in the fields.

Third, another extended symmetry of the SNS action was identified in (Canet,
Delamotte, and Wschebor ). It is obtained by a simultaneous shift of both
response fields. Let us perform the following space-time gauged change of variable
in the action:

0Ua(x) = Ma(X),  0P(X) = vp(x)75(x) . (5.22)
The corresponding variation of the action reads

0y (8" + ASY) = /

X

+ / Ta(t, D) By (17 = &)valt, &) = 2N (17 = #)oa(t,7)}
t,3,8
(5.23)

00 {0122(00) = 720, ) + 0 10 (0)0s(x)] + ~0un()}

The non-linear (thus problematic) term of this variation, which comes from the
interaction, may vanish for particular space dependence of 7. The most simple
choice is to take

M (X) = 7a(t) (5.24)

independent of space. In this case, all the terms in curly braces vanish by integration
by parts except the time-derivative and one is left with a variation of the action linear
in the fields. We found that one can also choose

%(X) = Eaﬁ’yxﬁn’y(t) ) (5'25)

where the €,3, are the components of the Levi-Civita fully antisymmetric tensor with
three indices and with €153 = 1. Once again, the last three terms in curly braces
vanish after integration by parts, and this time using also the antisymmetry of €,,.
We have not identified higher order space dependence which gives a variation of the
action linear in the fields.

5.2.2 Extended symmetries of the stream function action

Now, let us do the same for the stream function action. First, due to the definition
(5.15) of the stream function and its response field as space primitives, these fields
are defined up to a constant of space. As the functional integration does not fix this
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gauge invariance, the partition function is invariant under the following change of
variable

Y(x) = ¥(x) +n(t),
P(x) = P(x) + (), (5.26)

for two functions n and 7.

Second, let us recapitulate all the extended symmetries of SNS listed in the
previous section, that can be reformulated for the stream function action of (5.16).
To begin with, the time-gauged Galilean symmetry reads in the stream function
variables as follows

1% — 1€ + eagxaf;ﬂgt) + Na ()0t
U =+ 10a(t)0at) . (5.27)

Let us calculate the variation of the action (5.16) As the action is invariant under
translations of space independent of time, the only variation of the action comes
from the time derivative hitting on 77 and from the shift in ¢). Moreover, as the shift
in 7 is linear in space, the only term where it does not vanish is the interaction
term:

5,(S* + AS*) = / ) [Eaﬁﬁg(t) + ()90t + eaﬂ%m(t)agaw] —0, (5.28)

where the last two terms cancel each other using €,gegy, = —0dq,. Interestingly
this change of variables makes §(S® + AS®) vanish, so it corresponds to an exact
symmetry in this formulation while it was an extended symmetry in the velocity
formulation. We conjecture that this apparent paradox would disappear if we were
to fix the gauge degree of freedom remaining in the stream function action. However
we do not have checked this explicitly.

Now, let us investigate the effect of a space-time gauged shift of the response
field on the action

0, (S* + AS®) = — / n(x){@Q(&g — V)Y + 000p(€5,0-100at))

+ / [RLbl(yf—f'y)a%(t,f')_2NL-1(yf—f'\)a'2¢(t,f')]}. (5.29)

7!

The choice 7(x) = 7(t) is simply the gauge-invariance of 1 and 1) discussed above
and in that case §,(S°* + AS®) = 0. The choice N(x) = x,7,(t) corresponds to
the pure time-gauged shift in the velocity formulation (5.24) and the corresponding
variation of the action is zero. It is thus also an exact symmetry in this formulation.
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The choice 77(x) = %ﬁ(t) gives
0, (S° + AS®)

= - / Qﬁ(X){atw + €a0aP st
+ [ [Rugla = #)ott.7) - 2N (7 - 7)o(6,7)] }

- / 2ﬁ<x>{at¢+ / [ (7 = #)0t,7) — 2N (1 = ) (8, ) }
(5.30)

where the variation coming from the interaction cancels by antisymmetry of €,z.
This choice corresponds to the shift linear in space in the velocity formulation (5.25)
and the corresponding variation of the stream action is linear in the fields as well.

Third, the SNS action enjoys a supplementary extended symmetry in 2-D, which
is more straightforward in the stream function formulation. This new symmetry can
be understood as a time-gauged rotation in the same way as extended Galilean sym-
metry is a time-gauged translation in space. The corresponding change of variable
reads

2
U = = (0) + (1) caspdatt
¥ = Y+ n(t)eaprslat) (5.31)

To check that it is a symmetry, we use the same line of reasoning as for the extended
Galilean invariance above. As the action is invariant under rotations independent

of time, the only variation comes from the time derivative hitting on 1 and from the
shift of :

5,(S° + AS?) :/

X

{%15 [ — ()T + 1(t)€aa0s0 + 1(t)€sy 105001

~ t)et: 000 — (O)eap0st] | Dub(t DRy - f’|)w;ﬁ(t)}

— /X b [zw) + 20(t)€apOadpth + 20(t)h(t, T) / R (|7~ f’\)}

T

=2 [ wn[ori -0 [ Riglz-70)]. (532

Thus the variation is linear in the fields. This symmetry can be written in the
velocity formulation as well, at the cost of having to deal with a non-local shift of
the pressure. However this additional extended symmetry is specific to 2-D. To our
knowledge, this symmetry has never been explicitly identified before in the literature.

To recapitulate, the following infinitesimal change of variables are extended sym-
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metries of the SNS action in 2-D, in the stream function formulation:

a) o =n(t), 0y = 7(t)
by oY =0, 04 = aila(t)
¢) & =0, 5 = Zij(t) . (5.33)

d) 0% = eapmaip(t) + na(D)Oats 6 =na(D)Oath
e) 0 =) +nt)eaprp0at, 0 =n(t)eaprslatd

Following the same methodology as in Chap. 4, the extended symmetries of the
velocity action and the stream function one are translated into Ward identities in
the next section.

5.3 Ward identities for the field theory of SNS

In this section, we use the symmetries deduced in the previous sections to derive
constraints on the EAA in the form of Ward identities. In essence, they state that
for linear changes of variables, the variation of the EAA is equal to the mean of the
variation of the action. The general formula was established in Sec. 3.6:

6, L[ @] = (6,5);, (5.34)

where 0, X is the linear variation of the functional X under an infinitesimal change
of variables of parameter n. This formula applies both for §¥ and S§°%, with their
respective set of averaged fields ®, and corresponding currents j. For the above
formula to hold in the presence of a regulator, one of the following conditions has
to be satisfied: either the change of variable is a shift, or it leaves the regulator
invariant. The only changes of variables considered above which are not pure shifts
are the time-gauged Galilean and rotation symmetries. The regulator is invariant
under translations and rotations by design. Furthermore, it has been chosen delta-
correlated in time. As a consequence, it is also invariant under the time-gauged
versions of both symmetries. In conclusion, the above formula holds in all cases.
Before writing down these identities, let us define our notations: the averaged

fields are noted respectively
T, T} (5.35)

2

o = {u,
in the velocity formulation, and
S ={U, U}, (5.36)

in the stream function one. Furthermore, we choose not to differentiate the EAA
corresponding to the respective formulations, as the context is enough to lift any
ambiguities.

5.3.1 Ward identities in the velocities formulation

Let us begin with the Ward identities related to the pressure and response pressure
shift. Using the formulas (5.18), they read respectively

[0 = = [ a2, )
/x 1(x) 5;5;;) = /x 1(X) Ol (5.37)
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Taking a derivative with respect to 1, we obtain

oL :—laaﬂa(x), and oL
p

= Dl , (5.38)

om(x) O (x)
or equivalently in an integrated form:
- 1 -
U.lu,u,m 7] = / {;ua(x)ﬁaﬂ(x) + ﬁ(x)@aua} + s, w,0,0]. (5.39)

Thus, these symmetries simply state that the pressure/response pressure sector is not
renormalized. Thus in the following, we will consider the reduced EAA depending
only on @ and 1.

First, the Ward identity corresponding to the time-gauged Galilean symmetry

(5.19) reads
ol ol
/q{(daﬁat—i_aﬁua)éu Ot iy }:_/~at2ﬂf3

As the small parameter of the change of variable is only a function of time, the
corresponding identity is only local in time. By taking functional derivatives of this
identity with respect to velocity and response velocity fields, and setting the fields
to zero, one can derive exact identities for the Fourier transforms of 1-PI generalized
correlation functions. These identites are derived in Appendix F.1.1 and reads for

(m,n) # (0,1)

Fg’;jlgh( @ {Pet1<e<min) .

= ,Da<w>f£x7?f.7.lo)z,n+,L<{pf}1§€§m+n) : (5'40)

with ﬁa(w) an operator acting on functions of n frequencies and wave-vectors as
the following:

ﬁa(w)F({pethn Z e F({pe}i<e<r—1, wi —;w , Dis {Pe}kr1<e<n) (5.41)

The action of D, (w) is hence to successively shift the frequencies of the function on
which it acts and to multiply by the corresponding wave-number. The identity (5.40)
exactly relates an arbitrary (m-1, n)-point vertex function with one vanishing wave-
vector carried by a velocity field u, to a lower-order (m,n)-point vertex function.
To check that the above expression has a well-defined limit when @ — 0, let us use
the constraint coming from invariance under-space time translations:

LU (Pehisssman) = @)16 (Y wi) 8 (30 5) DU, ((Pehisssman).
(5.42)

to write the corresponding identity in term of the VRS

= Da(w)f&?’fgymw({pz}1ge§m+n—1) ;o (5.43)

q=

f&"&i.l.;l‘i+n(w, 7, {P£}1§e§m+n—1)

where now

Do(@) F({Pe}i<e<n)

Z {pz}1<£<k 1, W + @ pk» {pe}k+1<z<n) ({Pf}lgzgn) (5 44)
w

k=
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In this case, D(w) appears explicitly as a finite difference operator and

DaF({phieca) = iy Da(@)F({pe}icen) = (= D 010 ) F({pehicesa).

(5.45)

Now, let us turn to the Ward identities corresponding to the shifts of the response
fields (5.22), respectively independent of space (5.24) or linear in space (5.25). The

first one gives
ol
L{éuﬁ + uﬁ(%uy} = /fatu/g, (546)

where we have used (5.38) to re-express the pressure term (Canet, Delamotte, and
Wschebor ). Taking functional derivatives with respect to velocity and response
velocity fields and evaluating at zero fields, one can deduce again exact identities for
vertex functions (Canet, Delamotte, and Wschebor ). They give the expression
of any T'™") with one vanishing wave-vector carried by a response velocity, which
reads

L o ({Peh1<e<m, @, @ {Peti<e<n)| . =0 (5.47)

for all (m,n) except for the two of lowest order, which keep their bare form. Using
(5.42), they read

l;&lﬁ’l)(w, 6) = (Wlaga,
Fffé? (Wi, P, o, —P1) = D505y — i) Oay - (5.48)

For completeness, we write the Ward identities corresponding to the shift linear in
space, although it will not be used in the following. The Ward identity reads

or,,
[6@[371’5{_ + uaaguo} = [eagwxgﬁtua, (5.49)

0Ug,

The corresponding identity for the vertex functions reads this time

0 0 (m,n g
(8o 505 = 150 ) TS e s (Pehizezn, .0 Pehes)| =0, (5:50)

for all (m,n) except for the vertex function corresponding to the bare vertex, which
reads

0 0\ = S . .
<5o¢'ya_q5 - 65’ya_qa>rl(3y7r1y) (wlapl + q, w2, _pl) =0 = _Z<5au5ﬂl/ - 5a1/5ﬁ,u) . (551)

Now, let us turn to the specific case of 2-D, in the stream function formulation.
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5.3.2 'Ward identities for the SNS field theory in 2-D

The list of Ward identities can be read from the list of symmetries (5.33):

(m :0
9; =2 | ov
ST, _ 6T,
/{ —eﬂax68t+a \1/)N< >+aa\115®( }_0
ST
/{ =0+ €aprp0a V) — () _2/02 (5.52)

Now, each of these functional identities can be transformed into a hierarchy of
identities for the vertex functions, which are more easily written in Fourier space:

a) fwf{m,n)(l..,w7q_:_..)ﬂ_0:0
0

b Fale " ({pchsecn @, @ {pchsesi)| =0
0?

¢) a_(ﬁrgm7n+1)({pé}1§€§m’w7q_: {Peti<e<n) . =0

2
except 0 — T = 4iwd (7)o (w + @)

ggz +
O Hmitm),_ - A F(m.n)

d) a_qzrn ’ (wa q, {p2}1§£§m+n> -0 = Zeaﬁpﬂ(w)rn ’ ({Pé}1§e§m+n)
82 1 g nd

e) aqzrnm (@, G, {Pe}i<e<min) _ =R(=w T ™ ({Peti<e<min)

0% -
except —F(l’l)(w, ¢, q"

el = —4iwd(q§)6(w + =) (5.53)

g=0

With the following definition for the new operator R(w):

ﬁ(w)F({Pehgkn — (2“&,@ Z 8 F({pchi<i<i-1, wi + @, pk,jﬂpe}kﬂq@) — F({ps}i<i<n) .
k=
(5.54)
The derivation of the identities d) and e) are a bit lengthy and are reported in Ap-

pendix F.1.2. The same identities can be written in terms of the I'{™™ by extracting

the delta functions of conservation of momenta and frequencies to get fully smooth
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functions. The identities read as follows

a) T . wq..) =0

7=0
a R —
b) 8_¢F£mn+1 ({Pe}i<e<m, aqa{Pé}lgegn—OL =0

0% - .
C> a_qgr:(sm’nﬂ)({pf}lgfgmawﬂy {P£}1§£§n—1) .

=0

2

0
except — o7 T (o j) :—4iw

8 = - (m,n
aqzrf(emﬂ @, {Pz}1§f§m+n—1)‘§0 = icagD(@) L™ ({pe})

82 = (m,n
6) aqgrnm+1 n)( w, q, {pé}lﬁfﬁm—&-n—l) 70 - R<w)rl(€ ’ )<{p6}>

(5.55)

where the operators R(w) is the finite-difference version of R(w):

n

8 F ,w +w7 9 n n
( ) ({Pe}1<z<n —QZGaBZPk {P£}1<e<k 1, Wk Dk ?{Dpe}k+1<z< ) <{p£}1§z§ )

(5.56)

The passage from the TU™™ to the TU™™ is not entirely trivial and is expounded on
in Appendix F.1.2.

5.4 Expansion at large wave-number of the RG
flow equation

After having examined in details the constraints coming from the symmetries or
extended symmetries of SNS, we can finally turn to the RG flow equation of the
theory. More specifically, to the infinite hierarchy of flow equations for the functional
moments of the generating functionals. As was expounded on in Sec. 3.4, this can
be done either using the flow of the EAA I', and its functional derivatives, the
vertex functions F,(J“, or the flow of W, and its functional derivatives, the connected
correlation functions G{". To present the method chosen here, it is easier to use the

flow equation of the '™, For example, let us recall the flow of r
_ _ _ 1_
a,L) (p) = / [0.R] ()G (@) [ - §T 2on(a,—a,p)
q
+ T (a4, p)GY (@ + p)Thi(a + p, —p)] Gi(a), (5.57)

and its diagrammatic representation in Figure 3.4: the dashed circles are the vertex

functions, the thick lines are propagators and the cross is the derivative of the

regulator. The central property of the regulator is that it limits the wave-number

q to be of order k or lower. This fact associated with the regularity of the vertex
functions can be used to derive controlled approximations of the flow equation.

Here, we follow the stategy pioneered by (Blaizot, Méndez-Galain, and Wschebor

; Benitez et al. ) and that was already used in (Canet, Delamotte, and
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8. (p) =

pP+q

Figure 5.1: Diagrammatic representation of the flow of r

Figure 5.2: Diagram contributing to G (q, —q, p, —p)

Wschebor ) in the context of turbulence. The idea is to use the two following
properties of the regulator: on the one hand, its insertion in the integration loop
on the r.h.s. of (5.57) limits the wave-number ¢ to be of order s or lower. As a
consequence, if the system is probed at scales much higher in wave-number than
the renormalization scale, that is if p > k, there is a clear separation of scales in
the flow equations: ¢/p < 1. On the other hand, the regulator ensures as well
that the vertex functions are sufficiently smooth, which allows one to approximate
them by their Taylor series in ¢. The vertex functions are expected to depend on
the internal wave-number only through scale invariant ratios of the type ¢/p. As
a consequence, this expansion is controlled by the external wave-number and an
expansion in ¢ around 0 is equivalent to looking at some form of expansion in p
around its asymptotic behavior when going to infinity.

As in (Canet, Delamotte, and Wschebor ), the results we obtain in the fol-
lowing are more conveniently expressed in terms of the flow of connected correlation
functions, thus our starting point is the flow equation of Wi,:

GW:—EtraR (G + 0 0). (5.58)

The above justification to expand the r.h.s. of the flow equation (5.57) applies as
well to the flow of correlation functions derived from (5.58). However it must be
stressed that it is only in the 1-PI vertex functions I'®¥) composing the G that
the expansion in ¢ is controlled by the external ones. For example, the diagram
of Figure 5.2 is part of the correlation functions é(4)(q, —q,p, —p). One sees that
the left part of this diagram contains a wave-vector ¢ which is not controlled by p.
Thus one has first to decompose the G™ into I'®, in order to do the wave-number
expansion only where it is controlled.

Before using the Blaizot-Mendez-Wschebor (BMW) approximation, let us obtain
the flow of the correlation functions in suitable form for the calculations. Applying
n functional derivatives j;, (xx), with 1 < k < n and i, € {1,2} the field index,
and taking the Fourier transform with respect to xl, ...X,, one obtains the RG flow
equation for the m-point correlation function GZ1 i, ({P¢}). In Appendix I'.2 it is
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shown that in the regime of large wave-numbers, that is when all the p;, 1 </ <n
are large compared to x, as well as all their partial sums, the flow equation reduces
to

- 52 .

0uGY (—a1, —a2) G el
ava 0®i(q1)d®;(qz) " ®=0
_ (5.59)
where the dependency of G in the fields appears through the implicit dependency

j = j[®] and with the differential operator 0, defined as:

~(n 1
amGz(l.)..z’n({chgzgn) = 5

- ) o
Ox = OxRi— + 0 Ny—— . 5.60
oR, "GN, (5.60)
This result is exact up to terms going to zero faster than any power of the p, and
holds for both formulations, either the velocity one with

¢ = {i,u}, (5.61)

or the stream function one

= {U, U}, (5.62)

In the latter case, the indices i, carry only the information on the nature of the field
(observable or response) while in the former, they also carry the vector component.
The expression (5.59) is in the right form to use the BMW approximation. Indeed,
it ensures that in the decomposition of the expression in square brackets in terms of
its 1-PI vertices, the wave-numbers ¢; and ¢y are always controlled by an external
wave-number and thus can be set to zero to get the leading order term in a large
wave-number expansion.

5.5 Leading order at unequal time in 2- and 3-D

Let us first examine the leading order of the large wave-number expansion at unequal
times and in any dimension. This entire section is taken directly from (Tarpin,
Canet, and Wschebor ). As explained in the previous section, it amounts to set
¢1 and go to zero in the term in square bracket of (5.82). The derivation is made in
Appendix F.3 and makes use of the Ward identities (5.40) and (5.47). The leading
contribution of the flow equation for large wave-numbers reads

_ d—1 - _
3HG<(§11)...@,L(P17 oy Pno1) = Tod /8n0(wa@Du(w)pu(—w)G&?..%(Pl, s Pn-1)
q
(5.63)

where C is the transverse part of the velocity-velocity correlation function G’z(,i)vﬁ:
C_J;(LQV’O) (p) = Plﬁ (p)C(p) where the transverse projector is defined by

n Pubv
P,uu(m = 5w/ - p2 . (564)
The flow equation for any generalized correlation function G is hence closed, in
the sense that it does not depend any longer on higher-order correlation functions.
This closure is exact in the limit of large wave-numbers, when the modulus of all
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wave-vectors and of all their partial sums are large compared to s, which excludes
exceptional configurations where a partial sum vanishes. We emphasize that this
closure involves no arbitrary truncation or selection of certain diagrams rather than
others. Its rationale is to retain only the leading order contribution at large wave-
number in the flow equation, and this contribution is calculated exactly. Note that
the G in the r.h.s. of Eq. (5.63) does not depend on the internal wave-vector ¢, and
is only integrated over the internal frequency w. This result generalizes a previous
result obtained in (Canet, Delamotte, and Wschebor ) for 2—point functions to
generic n—point connected functions. In the next sections, we study some aspects
of the solution of this flow equation at the fixed point, and in particular the general
form of the space and time dependence of the correlation functions.

Let us already emphasize a very unusual feature of the flow equations obtained
in this paper. The large wave-number part of the flow equation (determined exactly
using the BMW framework) is not negligible compared to the rest of the flow.
This behavior is referred to as non-decoupling (Collins ; Canet, Delamotte, and
Wschebor ; Canet et al. ). It implies that the RG flow of the UV modes
depends on the IR ones. This is in sharp contrast with what occurs in standard
critical phenomena, where the large wave-number part of the flow equation decouples
from the small wave-number one. This decoupling precisely entails standard scale
invariance, as explained in Sec. 3.4.3. On the contrary, the non-decoupling induces
a violation of standard scale invariance. Indeed, the main result of (Tarpin, Canet,
and Wschebor ) is to derive the exact equation which replaces scale invariance
for unequal-time quantities in turbulence.

It is important to stress that, similarly to standard critical phenomena where
there are finite-size corrections to scale invariance, there are also finite-size correc-
tions to this equation in turbulence, and hence to the leading behaviour at large
wave-numbers of the correlations functions. In particular, these corrections, not
captured by the present analysis, may determine the intermittency effects at equal
time. Indeed, at equal times, the r.h.s. of (5.63) vanishes, thus the leading behavior
is not captured.

5.5.1 Solution for the 2-point functions in 3-D

The leading contribution of the flow equation for the 2-point functions in the limit
of large wave-numbers was already derived in (Canet, Delamotte, and Wschebor
). In the notation of the present paper, Eq. (5.63), it reads

0.62,,0) = 5 [ DU@IDU-=)C ) [20@D. (66

This flow equation encompasses both the flow of the correlation function and of
the response function. Let us denote G the transverse part of the Green function,
that is G\ (p) = P (p)G(p). Let us focus on the flow equation for the transverse
velocity-velocity correlation function. Using the explicit expression (5.40) for D,
one obtains:

k0. Cl(w, ) = —2p? / Clw+@,p) — C(w.7) Ju(w) (5.66)

3 w2




112 Chapter 5. Breaking of scale invariance in correlation functions of turbulence

with J,(w) = — fqéné(w, q) given by

Jm(w) = =2 l{”anNn(ﬁ |G(w> @‘2 - Kva/iRn((j) é(w> CD%[G(W> CD} } ) (5‘67)

(which coincides with the equations given in (Canet et al. )). An important
feature of Eq. (5.66), already emphasized, is the non-decoupling, which means that
k0,C/C does not vanish in the limit of large wave-numbers |p] > k. As a con-
sequence, the behavior of the correlation functions at ¢ # 0 shows non-standard
scale invariance. On the other hand, at equal times, that is once integrated over the
external frequency w, the leading non-decoupling behavior cancels out (the r.h.s.
of Eq. (5.66) vanishes when integrated over w). For equal-times quantities, any
possible non-decoupling must come from sub-leading terms at large wave-numbers.
This implies in particular that intermittency corrections to exponents of equal-time
quantities, such as the second order structure function, are absent in the leading
order behavior at large |p], i.e. not included in these flow equations. This is made
explicit in the solution below.

Let us derive the solutions of the flow equation (5.66) at the fixed point. It is
convenient to first perform the inverse Fourier transform on w, which yields

cos(wt) — 1

kOLC(t, ) = —gpo(t,ﬁ) / Ju(=). (5.68)

-
The regimes of small ¢ and large ¢ are studied separately in the following. The
solution of Eq. (5.68) at the fixed point and in the limit of small time delays (or
equivalently large frequencies) has been obtained in (Canet et al. ). For small
t, (cos(wt) —1)/w? ~ —t?/2 in the integrand. The general solution of the resulting
fixed-point equation, which we index with the subscript 'S’ for ’short time’, follows:

log [%] — —ag(eL)?*t*p? — % log(pL) + Fs(e'2p*3t) + O(pL), (5.69)
where ¢ is the mean energy injection rate, L the integral scale, ag a non-universal
constant depending on the forcing profile (see Appendix F.4), and Fgs is a regular
function, universal up to a pre-factor. Note that we have included explicitly in
(5.69) sub-leading terms stemming from the resolution of the fixed-point equation
at leading order, although they are of the same order as the error term O(pL).
The reason is that they correspond to Kolmogorov scaling solution, and facilitate
the discussion of the result. Indeed, at equal-time, one recovers from (5.69) the
Kolmogorov prediction Cs(t = 0,7) = Hg(0)e??p~11/3. However, these terms are
only approximate in this calculation. If the sub-leading terms in the flow equation
(5.68), neglected here, are non-decoupling, then they will induce corrections (of order
at most pL) to this scaling, that is, intermittency corrections to the exponent of the
structure function.

On the other hand, at finite time delays t # 0, the leading term in (5.69) explicitly
breaks scale invariance. Indeed, it does not depend on the scaling variable tp?,
where z is the dynamical exponent z = 2/3 for NS in d = 3, and thus involves
a scale L. This leading term conveys an effective exponent z = 1, which indicates
significant corrections to standard scale invariance. Its physical origin is the sweeping
effect, which is the random advection of small-scale velocities by large-scale eddies
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(Tennekes ; Yakhot, Orszag, and She ; Chen and Kraichnan ; Nelkin
and Tabor ; Gotoh et al. ; Chevillard et al. ). The typical time-
scale appearing in the exponential (5.69) is the sweeping time 7g ~ (eL)™Y/3p~! =
1/(upmsp). One of its manifestation is that the spectrum measured in frequency has
the same exponent -5/3 as when measured in wave-numbers (we consider flows with
zero mean velocity, this is not related to Taylor’s hypothesis of frozen turbulence).

The behavior (5.69) has been observed in many numerical simulations of the NS

equation (Orszag and Patterson ; Sanada and Shanmugasundaram ; He,
Wang, and Lele ; Favier, Godeferd, and Cambon ; Canet et al. ) as well
as in experiments (Poulain et al. ). Indeed, in Fig. 1 of (Orszag and Patterson

), and Fig. 5 of (He, Wang, and Lele ), a reasonable collapse is obtained
for the quantity R(t,p) = C(t,p)/C(0,p) as a function of p [ tpms for different
times and different values of wave-numbers respectively, from simulations of decaying
turbulence. In Fig. 6 and 7 of (Sanada and Shanmugasundaram ), the collapse
for the same quantity as a function of time is qualitatively better when normalizing
by the sweeping time 7g rather than the eddy turn-over time 7, ~ 1/(c'/3p*?). In
Fig. 7, the typical time scale of R(t,p) is shown to scale linearly in p for large
wave-numbers. The same analysis is carried out in Fig. 4 of (Favier, Godeferd, and
Cambon ). The time dependence of the two-point function is explicitly tested
in (Canet et al. ), where a Gaussian form of R(t,p) in the variable s pt is
very accurately found in numerical simulations. The Gaussian behavior and the
linear dependency in p of the decorrelation time of R(¢,p) is also found in acoustic
scattering measurements, see Fig. 5 and 6 in (Poulain et al. ). As mentioned
in the introduction, such a Gaussian dependence in tp for large p and small ¢ was
predicted early on by Kraichnan within the DIA approximation (Kraichnan )
and later confirmed by RG approaches under some assumptions on the effective
viscosity (Antonov )

Let us briefly mention another feature of the fixed point solution of Eq. (5.66).
It was shown in (Canet et al. ) that, under some additional assumptions, taking
the appropriate ¢ — 0 limit, this solution predicts for the kinetic energy spectrum,
a crossover from the p~°/3 decay in the inertial range, to a stretched exponential
decay in the dissipative range, on the scale p*/®

E(p) o p~*? exp [—pup*?] (5.70)

with p a non-universal constant. This prediction was precisely confirmed in direct
numerical simulation of NS equation (Canet et al. ), and also observed in exper-
iments on turbulent swirling flows (Debue et al. ). Tt was pointed out that this
prediction does not show any bottleneck effect (Lohse and Miiller-Groeling )s
thus it may be interesting to have a better understanding of the crossover between
the two regimes.

The flow equation (5.68) is valid for a large wave-number p, but for an arbitrary
time delay t. Now, we study the opposite limit of asymptotically large ¢, which
was not considered previously. As shown in Appendix F.4, the flow equation (5.68)
simplifies in the limit ¢t > x?/3 to

kOOt ) — @ 1 P2 C (L, ). (5.71)
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As for the flow equation at small ¢, this equation can be solved at the fixed point
(see Appendix F.4). The solution, indexed by the subscript 'L’ for long’ time, reads

Cr(t,p) 11
log | s s | = —ene LY B = - log(pL) + Fule K0 + OpL), (572

with «; a non-universal constant, and sub-leading terms corresponding to Kol-
mogorov solution again included explicitly. To the best of our knowledge, this
regime was not predicted before. The corresponding time-scale in the exponential
is 71 = (Upms Lp?) 1.

Interestingly, a similar crossover from the Gaussian in tp at short time to a
behavior exp(—|t|/Texp) at long times was observed in (Poulain et al. ). However,
in this paper, Texp X (tyms) 'L, that is the p® in 77, is replaced by L~2. This indicates
that the crossover seen in the experiments is dominated by the small wave-numbers,
so it is likely to differ from ours. One can compare the related time-scales of these
two crossovers. The crossover between the two (short and long time) regimes occurs
typically when the exponents in the two exponentials are equal. For our work,
matching the exponents in (5.69) and (5.72) yields Teoss ¢ L. In the experimental
paper, the crossover time is given by Teess < L?/p = L/(pL™'). Hence, at large
p > L', this crossover time is shorter than the second crossover, and may dominate
over it.

5.5.2 Form of the solution for generic correlation functions
in 3-D

In this section, we work out the general form of the fixed point solution of the flow
equation (5.63) for any generalized n—point correlation functions. From equation
(5.63), the first step is to perform the inverse Fourier transform in frequency in order
to get the flow equation for the hybrid wave-vector and time correlation functions.
One obtains for the leading contribution of the flow equation at large wave-numbers

eiw(tkftg) . eiwtk _ e*iwtg + 1

o2

. L n . L
0.1 o, (t:71) = 5 G2, (85N S 71 [ (=)
k.t e

(5.73)

The solution of the corresponding fixed-point equation is derived in the following in
both limits ¢ — 0 and ¢ — oo.

For t; < k~2/3 the flow equation (5.73) simplifies to (see Appendix I.4)

L. . n . .
(an ey ’pktk‘Z)G((ll),,,an(tl?pla o 1, Pn-1) =0, (5.74)

with I, = [_J.(w), and J, defined in Eq. (5.67), and with Einstein summation
convention. The corresponding fixed point equation can be solved exactly, leaving
as unknown a scaling function of particular dimensionless variables. Let us present
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this solution, which is derived in details in Appendix F.4, and which reads

S ai..an

log [5m§mL_dGG(n) (t1, D1, - - 7tn—1vﬁn—l)i|
= —a5€2/3L2/3 |tkﬁk‘2 - dG 10g<,01L)

+ Fké”)al._a" <€1/3P§/3t1, &7 e ,51/3pf/3tn_1, p”_1>
P1 P1
+ O(Pmaxl) - (5.75)

In this expression, dg is the scaling dimension of G (given in Appendix I'.4), m
(resp. m) is the number of velocity (resp. response velocity) fields in this generalized
correlation function, with m +m = n, and ayg is the same non-universal constant as
in Eq. (5.69). F é") is a regular function of its arguments, which cannot be determined
by the fixed point equation at large wave-number alone, but requires the integration
of the full flow equation. As for the two-point functions, sub-leading terms which
correspond to Kolmogorov scaling solution are included in this expression, although
they are only approximate and could receive corrections from the neglected O(pmax L)
terms. The variables pj, are defined by p; = R;;p; where R,;; is a rotation matrix
which has to be explicitly constructed for each correlation function such that

-
- UkDPk (5.76)

P11 = :
Vit

Finally, ppax in (5.75) is the maximum modulus of the p; and their partial sums.
The above expression provides the leading time and wave-vector dependence of any
correlation functions, which is exact in the regime of small time differences and large
wave-numbers. The combination of time and space appearing in the exponential part
of the expression (5.75) is |ptx|*. This combination breaks scale invariance and is the
generalization to generic n-point correlation functions of the Gaussian dependence
in the variable (pt) for the 2—point correlation function, which is related to the
sweeping effect. This breaking yields the dependence on the integral scale L of this
leading term. Furthermore, in the range of validity of this solution, one has p?/3t <
pt L'/3. Hence, because of the regularity of Fé"), the leading time contribution is
due in this regime to the variable pit, except for exceptional configurations where
prtr =~ 0. The leading time-dependence of the correlation function hence takes the
form of a Gaussian

G(S”) ~ e—os(EL)? P lpite]? (5.77)

If wave-vectors are measured in units of n~! as is usually the case, the resulting

typical time scale is the sweeping time 7, = 7/ums = 1/(¢L)"/3, which differs from
the Kolmogorov time 7x = (v/¢)/2.
On the other hand, at equal times, one is left with

n — m—m _ n p_;
Gg )alman({(),pz'}) = "5 pr% exp Fé )al...an ({O, E}) (5.78)

which corresponds to Kolmogorov-like solution : a power-law behavior with a di-
mensional exponent times a scaling function. However, our calculation shows that
this is not exact a priori, and is thus compatible with the existence of intermit-
tency corrections. Indeed, these terms can receive corrections from the neglected
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O(pmaxL) terms in the flow equation. This terms could in particular modify the
exponent of the power-law, that is yield intermittency correction to the structure
functions. These corrections should be given by the next order term in the flow
equation, provided it does not to vanish at equal time. This direction is left for
future work.

We now specialize to the three-velocity correlation. In the regime of small time
differences and large wave-numbers, we obtain

Gg)aﬂv(tl7ﬁl7t2752) ~ Gg)aﬁ7(07ﬁl7 0752) exXp < - OZS(€L)2/3 |ﬁ1t1 +172t2|2> .
(5.79)

This prediction can be tested in direct numerical simulations of the NS equation
or in experiments. For example, one can construct a scalar function from the 3-
velocity correlation, such as p?G(;’ﬁ’? (p1,t, Pa, t), and measure its dependence in the
time difference ¢ in the stationary state. Normalizing the constructed function by its
value at ¢t = 0, one should obtain a Gaussian dependence in the variable |p) + pa|t.

We consider again the flow equation Eq. (5.73). In the limit of large times, i.e.
all times ¢, > x2/3 as well as all differences (t, —t,) > k?/3, this equation simplifies
to (see Appendix F.4)

J(0)

(‘LG(”)
6

al...a7l<{tiﬂﬁ}> =

> e el + el = 1t — el ) GE), ({8 531)

k0
(5.80)

We focus on the special case where all the time delays are equal t, = t for k =
1,...,n — 1. In this case, the analytical solution of the corresponding fixed-point
equation can be straightforwardly derived (see Appendix F.4). One obtains, keeping
again the sub-leading Kolmogorov scaling terms,

m—m

log [6 3 L—dGGEZ)man(t,ﬁl, oo 7ﬁn—1)]

2
= e L ‘Zﬁk‘ — dglog(e1L)
LR, (93/351/3757 a Qn—l)

01 01
+ O(PmaxL) , (5.81)

where the variables g, are obtained by a transformation of the wave-vectors satis-
fying 01 = > pk, which can be explicitly constructed for each n. The example of
G®) is explicitly given in Appendix F.4. The crossover, evidenced for the two-point
function, also emerges for generic n-point functions. The quadratic dependence in
t in the exponential at small time delays is changed at large time delays to a linear
one.

In conclusion, we have obtained the leading behavior of the correlation functions
of turbulence at unequal times. It generalizes to any time difference and for any
generalized correlation functions a known peculiarity of turbulence, the sweeping
effect. This effect disappears at equal times. As a consequence the leading order
is not sufficient to explain a possible deviation to Kolmogorov exponents for the
structure functions. In the following, we will investigate the leading order terms



5.6. Large wave-number expansion in the stream function formulation 117

at equal time in the large wave-number expansion, in the case of 2-D turbulence.
These terms would be responsible in our scenario for intermittency of the structure
functions in turbulence. The investigation of the next-to-leading terms has more
potential for success in 2-D due to the use of the new uncovered symmetry (5.31) of
the SNS field theory which is not realized in 3-D.

5.6 Large wave-number expansion in the stream
function formulation

5.6.1 Leading order of the flow equation at unequal times

The results related the in previous section in the velocity formulation hold in both 2-
D and 3-D. However, to make use of the supplementary symmetry existing only in 2-
D, it appears simpler to work in the stream function formulation. As a consequence,
our first task is to rederive the leading order result in this formulation.

Let us first recall the flow equation for the correlation functions, now to be
understood in the stream function formulation

52
0®i(q1)0®;(qz)

~(n 1 5 A ~(n .
0.6 (e = 5 [ 8,65 (-ai~a) &, ok
q1,92 P=0
(5.82)
The leading order term in wave-number would normally be obtained by setting q1, g2
to zero in the terms in bracket as in the velocity formulation. In fact, due the gauge
degree of freedom of the stream function action manifested by Eq. (5.33) line a),
there is no information at this order. Indeed, the symmetry implies that the vertex

functions are zero if one of their wave-number is set to zero, Eq. (5.53) line a). Thus,

52 ~
G, ni ]
[(5%((11)5903(012) 1eein [{pf}lﬁéi J] oo

As a consequence, one has to go further in the expansion in ¢, ¢ to get the leading
order term in the high wave-number expansion. The odd terms of this expansion
vanishes after integration due to the parity of 5Hé§?)(—ql, —q2). We deduce that
the leading order term of the flow is

=0 (5.83)

q1=¢>=0

n 1 o
3HG§1.)..¢H({P€}1§é§n)l s 25/ C%Gg)(—ql,—%)
cading q1,92
o, B 2 2
ARG { g () }
X G [{Pe}s ,
2 9q29q, Lopi(ai)de;(az) [Pkl #=0 | gi=g>=0
(5.84)

where a, b take value in {1,2}. It is checked in Appendix F.5 that the leading order
term at unequal times, already known in the velocity formulation, is recovered in
the stream function formulation:

~(n 1 N N . ~(n
G (prhzren) = 5 | 0G5, (~a1, ~a2)Du(@ ) Du(@2) Gy, ({Pe}) -
q1,92
(5.85)



118 Chapter 5. Breaking of scale invariance in correlation functions of turbulence

These flow equations can be solved at the fixed point, as was done in the 3-D
case in the previous section. However, in 2-D the scaling exponents are corrected
by logarithmic factors. This has the effect to produce additional dependencies in
the logarithm of the wave-numbers in the fixed point solutions. These solutions,
assuming no intermittency corrections, are given in (Tarpin et al. ).

5.6.2 Next-to-leading order of the flow equation

For equal times (or equivalently in Fourier space, after integrating all external fre-
quencies) the calculated leading term vanishes. Thus one has to go further in the
high wave-number expansion in order to calculate the leading term at equal times.
This term is partially controlled in 2-D due to the supplementary symmetry, namely
the time-gauged rotation. Concentrating on the equal-time correlation function, one
has to go to the next-to-leading order (NLO) in the ¢ derivatives and the leading
order term of the flow reads

1 / 5 A2)
= — 0.G7 (—d1, —d2)
0 2 q1,92 !

9o b 9c 9a 0 { 52 5(n) . ]
* G :
/{Wé} 4! aqgaqgaqg(‘?qg 6901((11)630]((]2) 21...171,[{p£} .]]

o. [ a», )
(we} 11...2n({p€}1§€§ ) L

where as before a, b, ¢, d take value in {1,2}. The main result of this work is to show
that only a certain combinations of ¢ derivatives survives after integration over the
external frequencies. The first step is to show that among the different combination
of ¢1 and ¢, derivatives only the ones with two ¢; and two g3 survives the integration
over the frequencies. The terms with only ¢ or only ¢ disappear due to (5.53), line

a), stating that a vertex function with a wave-number evaluated at zero is zero. In
Appendix F.6, it is shown that the terms with only one ¢; or only one ¢ disappear
as well. This is essentially due to the fact that this derivative translates to an overall
D operator as in the previous section, which vanishes after frequency integration.
Thus at this point one is left with

1 ~ o~
= 3 aﬁGS)(_qh _QQ>

NLO 2 J g q

3/ ™ ({pehice<n)

qulQQQQ ot 1)
x o {p
/{w} 4 0q)'0q70q50q3 [&pi(ql)é%(q) {pe}; J]] =0

Using space translations and rotations invariance of 9,.G?, the leading term can be
rewritten as

1 ~
=3 Kij (wb wz)
leading 2 1,02

- ) S Y]
o) \OGOG050G5 " 04105047065 ) ogi(an)ds(ar) P o o
(5.88)
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with .
Kij(w, @) = o5 [0.G2 (~w1, w2, ) (¢?)? . (5.89)
q

The last two parts of Appendix .6 are devoted to show that
(94 [ 52 é(n) .

9¢1 091 0¢5 05 Lopi(an)dp;(gz) ™

= 810y R (@) R(w2)GL” ; ({pe}).- (5.90)

This term vanishes after integration over frequencies by conservation of angular
momentum.

[{pehisesnil]]

~ 2i€, N B
R () ﬂz k@ §1>M(__,7wk+w2,pk,...)

{we}
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{we} w2 k=1 apk e b
—0. (5.91)

and finally one is left with

o G .
oy S ({pehi<e< )NLO

~ ot 52
= Ki(w,w “ p
/Wm () fry 091043 0q70g3 5%(011)5%((1) Dalle J]} o=
(5.92)

The message of this derivation is that among all the terms contributing to the large
wave-number leading order RG flow equation, all the terms which are controlled by
the symmetries turn out to vanish after integration over external frequencies. This
leaves for possible candidates for intermittency at equal times only terms which can-
not be treated analytically as of now. We are now investigating the possibility that
the expression above can be controlled for particular objects, such as the relevant
structure functions appearing in 2-D turbulence.

In conclusion of this chapter, let us recapitulate our findings. Certainly the
central result is the derivation of the large wave-number limit of the exact RG
flow equation for correlation functions in turbulence. This allowed us to make new
predictions on the time-dependence of such functions. The obtained behavior has
been identified to generalize the well-known sweeping effect and is a clear example of
breaking of scale-invariance in turbulence. At equal times, the leading order vanishes
and the result is not controlled anymore. We have shown that in 2-D we may be able
to control in the same way the NLO. This would give strong predictions concerning
the characterization of intermittency in the direct cascade of 2-D turbulence. More
precisely, if the NLO is shown to vanishes at equal times, this implies that there is
no intermittency correction. The calculations did not lead to a conclusive answer
at the time of the writing of thesis. However, they may give predictions for a more
restrained set of observables and guide future investigations.
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Version francaise

En conclusion de ce chapitre, récapitulons nos résultats. Le plus important est cer-
tainement la dérivation de la limite & grand nombre d’ondes de l’équation de flot
de RG exacte pour les fonctions de corrélation en turbulence. Cela nous a permis
de faire de nouvelles prédictions sur la dépendance temporelle de ces fonctions. Le
comportement obtenu a €été identifié comme généralisant le "sweeping effect” bien
connu et est un exemple clair de brisure de 'tnvariance d’échelle en turbulence. A
temps égauz, ['ordre dominant & grand nombre d’ondes devient nul et le résultat n’est
plus contrélé. Nous avons montré qu’en 2-D nous pourrions étre capables de con-
troler de la méme maniére le NLO. Cela donnerait de fortes prédictions concernant
la caractérisation de [intermittence dans la cascade directe de la turbulence de 2-D.
Plus précisément, s’il est démontré que le NLO disparait o des temps égauzx, cela
signifie qu’il n’y a pas de correction intermittente. Les calculs n’ont pas abouti a une
réponse concluante au moment de la rédaction de la these. Toutefois, ils peuvent
donner des prédictions pour certaines observables et quider les recherches futures.



Chapter 6

(zeneral conclusion

6.1 Summary

This manuscript describes the application of the tools of the NPRG framework to
two out of equilibrium systems. On the one hand, we used the modified local po-
tential approximation to investigate the absorbing phase transition occuring in the
diffusive epidemic process and its coarse-grained counterpart, the directed perco-
lation with a conserved quantity. On the other hand, we investigated the large
wave-number expansion of the exact RG flow equation of the correlation functions
in fully developed turbulence.

First, the study of DEP and DP-C was the occasion to discuss in details the
respective symmetries of both models and to challenge the standard perturbative
lore concerning them. Namely, it was predicted that both models belonged to the
same universality class and that for certain values of the parameter p of the models,
the transition was of first order. We recovered the previous perturbative results at
the lowest order of our approximation. At higher orders, we obtained hints that a
continuous phase transition exists for all values of y, in accordance with simulations.
We were also able to explore the relation between DEP and DP-C within the NPRG.
However, the chosen ansatz was demonstrated not to be powerful enough to give a
definitive answer to the questions we raised.

Second, the large wave-number expansion of the exact RG flow equation in ho-
mogeneous isotropic fully developed turbulence led to a closed equation satisfied
by any correlation functions in this system. This closed equation has a peculiar
property named non-decoupling, which induces the breaking of scale-invariance in
the temporal dependence of the correlation functions in turbulence. This is the
highlight of the manuscript. These equations were solved both in the regime of
large and small time-delays to obtain the temporal behavior of the Fourier modes of
any correlation functions. For small time delays, the temporal decay of the Fourier
modes of the correlation functions is Gaussian, with a characteristic time going like
the inverse of the wave-number. This behavior is identified with the sweeping effect:
the random advection of small eddies by larger ones. At large time differences, the
Fourier modes of the correlations have an exponential decay. A similar behavior
was already observed in experiments but it is the first time it is predicted from the
Navier-Stokes equation. Finally, the large wave-number expansion was pushed to
next-to-leading order in 2-D. The next-to-leading order term should give information
on the equal-time behavior of the correlation functions, and thus on intermittency,
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in the direct cascade in 2-D turbulence. Newly discovered symmetries allowed to
control partially this term. However, uncontrolled terms remain, preventing to give
a definitive conclusion at this point.

6.2 Prospects

Let us expound on possible leads to continue the work undertaken in this thesis.
Concerning the study of the reaction-diffusion processes DEP and DP-C, the most
straightforward approach would be to devise an ansatz more suited to capture the
possible differences between the two models. In a first step, one should investigate
the benefit of keeping a total or partial functional dependence of the potential in
the field invariants of the theory, instead of doing a systematic truncation in the
fields. This question is linked to the role of the choice of a minimum configuration
in the ansatz and maybe would provide some answers to the instabilities observed
in the flow in low dimensions. However, another approach would be to start from
the response field action of DEP. The nature of the fields, the interaction terms
and the symmetries are completely different in this case and they would require a
completely different ansatz. A work has already been undertaken to understand
the relation between both actions and to investigate the response field formalism for
Poisson process in general (Guioth, Lecomte, and Tarpin ). In particular, for
the parameter u set to zero, a time-gauged tilt symmetry is present in the response
field action, which is reminiscent of the time-gauged tilt symmetry in the KPZ
action (Canet et al. ). This property may guide the choice of an ansatz for this
action. This NPRG study should be made in parallel of simulations of the Langevin
equation of the DP-C model and simulations of the DEP model in 3-D, which are
sorely lacking for the moment.

Now, let us turn to the possible ways to go further in the study of fully developed
turbulence using NPRG. First, the exact closure for the large wave-number leading
order RG flow equation could be complemented with the previous results obtained
by integrating numerically the NPRG flow (Canet, Delamotte, and Wschebor ).
This should allow us for example to give a prediction for the crossover between
the Gaussian and the exponential decorrelation in time. It may be interesting also
to make a bridge between the time-dependence obtained here for the correlation
functions and the assumptions which are made in phenomenological closure models
such as the EDQNM. More ambitiously, a new ansatz for the numerical integration
of the flow could be proposed, taking into account our exact result, in order to
investigate features of the dissipative range in turbulence with the NPRG. Indeed,
it seems that some of these features, notably the stretch-exponential decay of the
energy spectrum in the mid-dissipative range, are already contained in the fixed
point equation (Canet et al. ). This fact calls for further investigations, for
example to determine whether our approach predict a bottleneck effect (Lohse and
Miiller-Groeling ) in the spectrum. Second, we hope that the partial closure
of the RG flow equation obtained in the direct cascade of 2-D turbulence could be
exploited further. Although a closure of the remaining term in the general case seems
out of reach, the obtained expression may simplify in particular cases relevant to the
experiments. Third, let us point out that the framework of the large wave-number
expansion for turbulence explored in this work can be generalized to other convective
models. In particular we think it could lead to new predictions in the case of the
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Kraichnan model of advected passive scalars. It may be fruitful to make the bridge
with another approach of the Kraichnan model in the framework of the NPRG,
using operator product expansion (Pagani ). A work has been undertaken
in this direction. Fourth and finally, there exists a toy-model of intermittency in
turbulence, it is the Burgers equation describing 1-D fully compressible flows. In
this case, the intermittency is well-understood and stems from the shock waves
which develop at finite times (Bec and Khanin ). To be able to rederive the
intermittency corrections in this model would constitute a nice proof of concept of
our approach.

Version francaise

The manuscrit décrit Uapplication des outils du NPRG a deux systémes hors équili-
bre. Nous avons décrit premierement ['utlisation d’un ansatz nommeé [’approrimation
du potentiel local modifié pour étudier la transition de phase absorbante présente
dans le processus de diffusion épidémique. Ceci nous a fait questionner ce qui était
communément admis a propos de ce systeme. Notamment, nous trouvons une tran-
sitton de phase continue pour n’importe quelle valeur du paramétre i, et ce en accord
avec les simulations. Ce travail reste néanmoins exploratoire et ne permet pas de
donner de réponses définitives auxr questions soulevées. Nous avons dans un Sec-
ond décrit le développement a grand nombre d’ondes de [’équation de flot de RG
exacte pour les fonctions des corrélation généralisées dans la turbulence pleinement
développée. Ce travail a permis en particulier d’obtenir une équation fermée don-
nant le comportement temporel dominant a grand nombre d’ondes, identifié comme
le "sweeping effect”. En 2-D, ce développement a pu étre poussé jusqu’a ['ordre
sous-dominant grace a de nouvelles symétries découvertes durant cette étude. Mal-
heureusement, certains termes du développement non controlés par ces symétries
empéchent de conclure pour le moment.

Dans le future, ces deux travaux peuvent étre continués dans plusieurs directions.
Concernant le processus de diffusion épidémique, ['ansatz devrait étre amélioré en
prenant en compte une dépendance fonctionelle du potentiel dans les champs, ou
du moins dans certains invariants bien choisis. L’introduction d’un régulateur en
fréquence pourrait aussi grandement améliorer la convergence des résultats. FEn-
fin, changer de point de départ et utiliser la formulation de l'action en terme de
champs de réponses pourrait s’avérer fructueuz. Concernant la turbulence, notre
résultat pourrait étre utilisé en complément d’intégration numérique du flot de RG.
Ceci pourrait mener a de nouvelles prédictions concernant la transition entre les
deux comportements temporels asymptotiques qui ont €té découverts. Il serait trés
intéressant de faire le lien entre notre approche et d’autres tel que UEDQNM dans
le traitement des corrélations temporelles. Enfin, le méme formalisme pourrait étre
testé dans des systémes analogues mieuxr controlés tels que le modele de Kraichnan
ou la turbulence de Burgers.






Appendix A

Master equation, generating function
and mean-field equations for
reaction-diffusion processes

In this appendix, we expound on the formalism of the master equation and the tool
of the generating function on the example of DP and give the master equation of
DEP. A state of DP is given by the occupation number on each site of the lattice.
The reaction defining DP, namely

Branching X5 X+X
Disintegration X509
Coagulation 2X 2 X
Diffusion X+020+X

(A1)

can be translated in term of the master equation for the random process. The master
equation is the time evolution of the probability to find the system in a particular
state. We note LL the subset of Z? which indices the sites of the lattice and {Ny}eer,
with V¢ € L, Ny : t — Ny(t) € N, the random process given by the occupation
number at each site of the lattice along the time. The probability that {N}er
takes a given value {n,}scr, at the time ¢ is abbreviated with the following notation:

P[{Né(t)}éeL = {W}eem} =P, [{WH : (A.2)

In the following, we will note {n;};x = {ne £ d;s}ser, with the convention that
P, [{TL@}} is zero if one of the occupation number is strictly negative. Furthermore,
we note < ¢,7 > nearest neighbor sites of the lattice. With these notations, the
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master equation reads

0P, [{ng}} = Z { [( — 1P [{ne}z—] — n;IPy [{W}]]

[ }P’t {ng}H] n; P [{W}]]
[ nllP’t {ng}er} —ni(n; — )Py [{W}z]]

+D Y [ VP, [{ne} -] — njpt[{ng}]}}. (A.3)

J/<ig>

Each line represents a different elementary process. For each line, the first and
second term represent respectively the inflow and outflow of probability for the
state {ny}ser. The factors depending on the occupation number simply come from
the contribution of each particle present at each site to the total reaction. This
equation conserves the total probability. It means that the r.h.s. is zero if summed
over the states:

> 0P [{n}] =0, (A.4)
{ne}

in agreement with the normalisation of probability >, , P [{n¢}] = 1. The master
equation (A.3) is the starting point to derive the evolution equations for all the
averaged observables of DP. This could be done directly. For example, multiplying
the equation by n; and summing over the state space gives the evolution of the
average occupation number at the site k, noted (Ng(t)). However, it is worthwhile
at this point to make an intermediate step by introducing the generating function
of the process:

Gil{zbeer) = (I 2 =D Pi[{ne}] [[ 207 (A.5)

Lell {ne} Lell

Gy is a multivariate function of C* to C with the property that G;({1}sr) = 1.
To obtain averaged observables, one has to take the appropriate derivatives of G,
with respect to the z,’s and to evaluate the resulting expression at {z,} = {1}. The
general rule for equal-time correlation functions is written more simply in terms of
the falling factorial n* = n!/(n — k)!:

qI . Ha Gul{=}) (4.6)

{ze3={1}
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One can derive the time evolution of G;. From (A.3), it reads

0,Gi({ze}) = ZZ{ [ — VP [{ne}i-] — niP, [{W}H

{ne} i€L
+ [+ DR [{ne}ic] = niB[ni}]]
+ A [(ni + Vil [{ne}i] — ni(ns — 1P, [{W}H

+ D Z [n]+1 Pt {W}]+z] ant[{W}H}Hzge

J/<i,j> tel

= Z Z {a [zf@ziﬂj’t [{ng}z_] Zlm_l — 2,0, [{WH Z?L} H 2"

{n¢} i€l b0
+ u[a P, [{ng}H] nitl 20, IP’t {Tlg} } Hz
0#i
A |20 P [{nedia ]2t = 202 R [k 2| T] 24
04
+D Y [50 Bl (ndse 1 - o B (n] ] TT = }
J/<ig> b#£1,5
_Z{ o (27 — 2)0,, + pu(l — 2)0.,
i€l
Az 22+ DY (z - zj)azj}c;t({@})
i/ <i,g>

= Hop ({2}, {0:,}) G:({ze}) - (A7)

Because the original master equation conserves the probability, Hpp, the generator
of the time-evolution of Gy, is zero when evaluated at {z,} = {1}. This property
helps us to calculate the evolution equation for mean values. Indeed, it implies that
the terms where no z-derivatives hit on Hpp do not give any contribution. For
example,

= > {oulo(2z - 10, - p0., + A1 - 22)2]

S

+D Y (O — 0100, }Gi{z})

j/<i,j>

= {U(sz — 1)8Zk - ,Uazk + /\(1 - QZk)agk
+ D Z 8 2d0 }Gt({zf})

{ze}={1}

i/ <kg> {ze}={1}
= { (0 = WD) = XN + D[ Y (N5(0)) — 24 (Nu@)] |
Jj/<k,j>

(A.8)

Now, let us make the same steps for DEP. We first write down the master
equation of the process. We will need two integers per site: m, and n, for the
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occupation numbers of A and B respectively. The master equation of DEP reads

0P [{mg}, {WH = Z {

k {(m,- +1)(ni — DP[{mebir, {ne}is] — manPe [{me}, {m}ﬂ
+ 77 [(ns + DB [{mei, {nediy] — naPe[{me}, {ng}]}

+ 7 {Da|my+ DB [fmed e, {ned] = mBi[{me}, )]

j/<i,g>
+ Dp [(nj + DP[{me}, {ne}ji] = nP [{ma}, {W}j+,z'—ﬂ }} :
(A.9)

The generating function depends on two complex numbers a, and b, for each site,
corresponding to my, and ny respectively. Its equation of evolution reads

0:Gy({acy. {be)) =Y {k(bg — 0ib)Da, O, + T (@ — ;)0

+ > [Dalai = a;)0, + Dp(bi — b))dy,] }Gil{ack, {be})
J/<i,3>
= Hppp Gi({ac}, {be}) - (A.10)

Interestingly, the conservation of the total number of particles is expressed at this
step by the fact that in each term of Hpgp, the number of derivatives with respect
to ay or by is equal to the number of multiplication by a, or by,. The time evolution
for the mean occupation number (My) and (N;) are obtained by differentiating with
respect to ap and by respectively. From them, the mean-field equation for the mean
densities pa(%,t) and pp(Z,t) are obtained using the same argument as for DP.



Appendix B

Out of equilibrium field theories and
NPRG

B.1 The Martin-Siggia-Rose, Janssen, de
Dominicis formalism

Let us describe the MSR.JD formalism for the general situation of a set of n generic

stochastic fields {®;(x)}1<i<, defined through a set of m stochastic partial differen-
tial equations with n constraints and [ noises

®;(0,7) = ¢io(2), 1<i<m
Hy(®) =0, 1<i<n (B.1)

where the F}, G;; and H; are functions of the ®;’s and their spatial derivatives and
the {&;}1<;<; are centered stationary Gaussian fields of correlator D,;:

(Gi(x)&;(x)) = Dy(x,x) . (B.2)
In order to obtain the generating functional of the ®;, as well as their dynamical re-
sponses, one introduces linear source terms j;, k; to the right-hand sides of equations
(B.1):
The corresponding generalized generating functional reads

Z[j, g, k) = ()55, (B.4)

where (-); ; denotes a mean on the stochastic equation in the presence of the sources
Ji, ki Following the same steps as in the main text, we have

2[j,5.0] = / DIdJel#:6[H () — FI(5[6 — B);. (B.5)

where @, is the weak solution of (B.1) for a given . Replacing the constraint
(6[¢ — @¢]); by the explicit equation of motion of ® in the presence of the sources

Ji, noted F(+) = 0, with
Fi(x) = 0h®; — Fy(®) — Gij(D)&; — ji, (B.6)
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and by the initial conditions, noted collectively as ¢|;—o = ¢, one then obtains

.5, F] = /D Olel IO S[H (8) — Koo — S0l SLF)) x 7. (B.T)

J is the Jacobian of the transformation, J = |det (5]: ) )| which depends on the
choice of discretization of (B.1). In a forward dlscretlzatlon J does not depend on
the fields (Tauber ), and can be absorbed in the functional measure.

Finally, using the Fourier representation of the functional Dirac deltas:

Z[],j,l}] _ /D[¢’¢ ] Ji ]7,¢2 Zfx{hi(Hz'*ki)+5(t)¢i,0(¢i*¢i,o)}<€*ifx¢i]‘—i>

/'D f {jigi+ijidi+ikih:} —Zf {hiHi+6(t )¢1,0(¢i_¢i,0)}6_i I (Ei(at(f’i_pi)(ei I @'Gijfj>

with § = /’@ [0un(x) = Fi()] + Ry + 5(6)550(61 — br0) }

1 _

=5 | (06D = X) (Gude) (). (B9
using the property (B.2) to compute the average value in the second line. In the
last line, the response field have been redefined to absorb the .

B.2 The prescription ©(0) = 0 in perturbation
theory

It is often stated, notably in perturbative RG, that the It6 prescription amounts to
take the prescription ©(0) = 0 when necessary in calculating loop integrals. This
prescription comes from the fact that in the vertices of the microscopic action, the
response fields are always evaluated at a later time than the observable fields. We go
back to the general response field action of Sec. 3.3.3, corresponding to a Langevin
equation for a scalar field. Its discretized version reads

T—-1
Slg. )= / {160, = 00) + At [61, (<0 + o) — A (9261 )’
t=0 V%

LU 0) — 3B @)} (B9)

with the notation t. = ¢t — 1 and with o, A > 0. Let us look back at the integrals
appearing in the perturbative corrections to the mean field calculated in Sec. 3.3.3,
for example the second term of

1

e, =5 /q {Cqurs + Bqus + c.c.}. (B.10)

On the one hand, we can try to calculate directly the integral in the continuous
limit. Using the mean field propagator, which reads

ip-(F—§)— (p*+0) (t—u
[G52>}¢¢(x,y):®(t—u)[ep( D)= (P +0) (=) (B.11)
p
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we obtain
F%(p)‘m & /qRq x [G(()Q)ng;(o) x ©(0). (B.12)

On the other hand, going back to the integration in space and time and using the
discretization, we have

—(2 1 4
M)l = 5 / (6] gl ) S (1,1, %,y). (B.13)

Due to the choice of forward discretization, the interaction term is non-zero only if
the times are well ordered. Recalling that x = (¢,7), y = (u,¥) and z = (v, Z), the
interaction term is non-zero only if

vy <vgand vy <wuwandt < vy and t < w. (B.14)

However, the propagator is non-zero only if v; > vy due to the ©-function. Thus the
integral is zero. This result can be encoded in the prescription "©(0) = 0". The same
result can be derived directly in the frequency integral, although the calculations are
more cumbersome. To do so, we need the expression of the discretized propagator.
The space-time Fourier transform of the Hessian of the discretized action reads

< L+eM[ 14 (p*+o)dt] g e ™d—1
(2) _ _ iwdt 2
S5 (P) = P =t ——— A+ P to (B.15)
Thus the discretized propagator reads
@ efiw dt
G (pP) = —0 . B.16
[ 0 }¢¢( ) e d;iz_l +p2 +o ( )

Plugging this expression in the second term of (B.10) and replacing the vertex by
its discretized version:

Us o - Up 6zwdt+zwdt 7 (B]_?)

the frequency integral to be calculated becomes

; 1
iwdt
'UJ272R — Ug2€ / —= . (B18)
/w 4 wl<n/dt =L+ p? + o

In the limit dt — 0, the frequency contour has to be closed in the upper-half complex
plane for Jordan’s lemma to apply and the integral vanishes as the (discretized)
propagator has only poles in the lower-half complex plane. However, it is worthwhile
to note that the prescription ©(0) = 0 cannot be applied outside of the loop integrals.
Indeed, the equal-time propagator is

—iwdt
@ (07— = [ PED | ©
[Go)55(0:7 =) /ﬁe 0 wl<n/dr gt P2 o

We check that Jordan’s lemma applies by closing the contour in the lower-half of
the complex plane. The integrand has only one pole, at

w* =i dt ' In [l —dt(p® + 0)], (B.19)

which is in the contour. Using the residue theorem, the w integral is calculated to
be unity and one is left with

G550, - 9) = [ 77 gz 2 0. (B.20)
p






Appendix C

Mappings to field theories

C.1 The Doi-Peliti construction

In this appendix, we expound on the Doi-Peliti construction of a coherent field
action, which is the canonical formalism for constructing an action from the master
equation of reaction-diffusion processes. For the sake of simplicity, we will use the
example of the one-site reaction 2A A A Following the notations of Appendix A,
one readily writes the corresponding master equation giving the evolution of the
probabilities associated to the process:

o [n] = M (n+ 1)nPu[n+1] = n(n— )P, [n] } (C.1)

Accordingly, the evolution of the generating functional G, defined in (A.5) is given
by
01G(t,2) = Mz — 2%)0*G(t, 2) = Hy(z,0.)G(t, 2) . (C.2)

The conservation of probability is enforced by the property H,(1,0.) = 0. This
equation can be read in the framework of the Bargmann Hilbert space 77 of analytic
functions of the complex plane with finite norms for the following scalar product
d*z ..
(frf)= [ —e "N (2)f2(z) = (filf2) - (C.3)
C

In the second equality, the Dirac notation is used, with the linear functionals on 77
given by their representations through the scalar product. A complete orthogonal
family for this scalar product are the monomes {|n) : z — 2" },,>0,

(m|n) = nloy,, . (C4)

We note ¢ and a the following operators acting on f € JZ, which are adjoint of one
another for the scalar product:

¢ f—zf (C.5)
a:fw—0.f (C.6)
These operators act on the monomes as ¢|n) = [n+1) and a|n) = n|n—1). As

a consequence, it is readily shown that ¢ and a verify the commutation relation of
ladder operators:
[¢,a] =1. (C.7)
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The operator H) giving the evolution of |G(t)) : z — G(t, z) can be reinterpreted
replacing the z by ¢ and the 0, by a to give the operator Hy(¢,a). Due to the way
it was obtained, it is already normal-ordered, that is all the annihilation operators
a act before the creation operators ¢. Now, let us construct the coherent states
corresponding to these operators, that is vector of .77 which are eigenstates of a:
for ¢ € C,

alg) =¢le) . (C.8)
Functionaly, it amounts to look for f € JZ such that 0,f = ¢f, which is solved by

) = 2 = ¢oe?*. Now, we make the choice of ¢y = 1 for commodity. This choice
leads to a dual family of linear functionals which have a very simple expression:

@ lol) = [ S5 ) = p(o) (©9)

with the property
VieA, (olc|f) =" (olf) . (C.10)

However, note that this choice prevents us from interpreting the coherent states as
generating functionals of a probability distribution as they are not equal to 1 at
z = 1. A particularly useful coherent linear functional is (1|. Indeed, the normali-
sation of the generating functional can be rewritten as, (1|G(t)) = G(¢,1) = 1 and
the property of conservation of probability of H, amounts to have (1| Hy(¢,a) =
(1| Hy(1,a) = 0. There is a non-zero overlap between the coherent states and their
duals:

(f1lg2) = 1% (C.11)

It is straightforwardly shown that this overcomplete family gives a resolution of the
identity on JZ: for f € 7

1= [ L1y (€12

Now that the framework is fully set, we can write |G(¢)) as a path integral. First,
let us perturb the infinitesimal evolution operator by adding a coupling to sources:

Hy(é,a) — Hi(t,é,a) = Hy(¢,a) + 5*(H)e + j(D)a. (C.13)

HY, does not conserve probability and Z[j, j] = (1|G(¢)) # 1 but these sources allow
one to calculate averages on the initial process. For example,

6Z(j,5"]
67 (t")

where we have used in the second equality that (1|¢ = (1] to cancel the evolution
from ¢’ to t and to insert a ¢. Using the definition of G(t), we obtain

= (1] el 7OMED G MED |G(0) = (1 ea|G()) . (C.14)
3.3*=0

0Z[4,5"]
55(t')

= (1]¢éa Yy Puln]|n) =Y nPy[n] = (N(t). (C.15)

o
I n<0 n<0

Thus, one functional derivative with respect to j(t') gives the mean occupation
number at the time ¢'. We do not underake a more complete discussion of the relation
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between observables and the introduced sources here. The modified generating
vector |G(t)) can be expressed as

Gw) = T{eh el 6(0) = tim T{TT (0 + Ht.e.a)7) FIGO)  (C.16)

t=1

where the T stands for "time-ordered product", that is the terms of the product are
ordered from right to left, from the most anterior to the most posterior. Now, using
this expression in the partition function and inserting the resolution of the identity
(C.12) at each time slice, one gets

Z[7,77]
[P e
_/CTe (1lor)

< orl T{ [T 1+ Byt.c.anr) [ S0=terointcr o) (o] }16(0)

t=1 c 7

T

= [ Do) om) { T[4 (0] (1 B30, + 0f) lowos) Je ™ (6n]G(0))
- (C.17)

where

/Dkb, ¢ = /CT lf[ dj:bt . (C.18)

Now, using the properties of the coherent states, we have

(el (1+ Hy(t,6,0)7 + 0(7)) [¢y-1) = %% (1 + H}(t, 67, &-1)7 + o(7))
— 991 H(60] 61-1)T+o(7) | (C.19)

Inserting this expression in the partition function, we readily find
2,5 = / D, ¢"Je! 717070 (C.20)

with
T
Slp,¢"] = —or + Z {@((Zﬁt — ¢—1) — H(oy, ¢t—1)7'} + @o00 — In ((¢5)™) + o(7T)
. t=1
Jot = th@ﬂ
t=1

T
Jrdo= gipeat, (C.21)
t=1

and Ny denotes the (possibly random) initial occupation number. If Nj is a Poisson
variable of parameter p, the initial condition simplifies into

dodo — In ((¢5)™) = G0 — po(df — 1) = dg(do — 1o) + Ko - (C.22)
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The construction of the coherent field action generalizes straightforwardly to m
types of particle Xj<;<,, (which can represent sites) and r reactions. If the reactions
are written symbolically as

Vk<r, E:kX'ﬁ&$§:mX@ (C.23)

i=1

the action then reads

S[{o 6 = — 3 64 +i{ —611) = H{01, 617}

=1 t=1

+ ¢00i0 — In( ) +o(rT), (C.24)

=1

with the following infinitesimal generator of the time evolution

H({¢;, d11}) = ZAk[H pk—H(%) ]H(% )% (C.25)

This action possesses a similarity with the action obtained through the response
field formalism, namely the ¢ fields are always evaluated before the ¢* (it is also the
case between ¢ and its source, to our knowledge this particularity has never been
mentioned). This fact suggests to interpret the ¢ fields as observable fields and the
¢* ones as response fields. However, the above action vanishes for ¢* = 1 due to
conservation of probability, but generally it does not vanish for ¢* = 0 as it is the
case for response field actions. To cure this problem, one can shift the ¢* in the
following way:

gr=¢+1, (C.26)

such that the shifted action vanishes for ¢ = 0. Specifying to independent Poisson
distributed initial occupation numbers, with parameters {/o}i1<i<m, the shifted
action reads

T

SHe. 0N = Y {6ualdio = du1) = H{b +1,6011)7 | + dioli0 — i) + o(7T) .

t=1
(C.27)
Let us point out that contrary to the response field formalism, ¢ and ¢* are
complex conjugate. As a consequence, ¢ and ¢ are not independent of each other.
While it is possible to show perturbatively that one can deform the fields to be real
and imaginary respectively, there is no general non-pertubative result in this direc-
tion. Indeed, a careless application of this deformation famously leads to negative
variances for the Gaussian noise of the corresponding stochastic process in certain
cases (Howard and Téuber : Munoz ). Let us note that (Benitez et al.
) were able to give a deformation applicable for one species bimolecular pro-
cesses, but where ¢* plays the role of the observable field and ¢ that of the response
field of a dual process of the original one. Nonetheless, at this point we choose to
leave this problem aside as it is done traditionally and interpret the coherent field
action in the same settings as a response field action with real fields.
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A further step to get a workable action is to take the continuous time limit, that
is to take T = ty/7 — o0, keeping ty fixed, or equivalently to take 7 — 0. We
introduce interpolating fields of ¢ and ¢:

b= 0ilD),  bin=ill),
with = tf% : (C.28)

Assuming that we are interested in differentiable paths, the finite difference rewrites
as

Gip — Pit—1 = aﬁgi(f)T +o(7). (C.29)
The difference of evaluation time between ¢ and ¢ in the evolution operator and
between 5 and ¢ vanishes in the limit 7 — O:

T T

STH{G AL, 0a )T =Y H{6(D) + 1,07 +0(rT), j-¢. =3 p+o(rT).
- - (C.30)

Finally, the time continuous action reads, dropping the tilde symbol

Sl{oot = [ at{0066) = HIG + 16HO} + 6.0 [6:(0) — pua] - (€31

0

C.2 Gardiner’s Poisson Representation

We give here a short account on an alternative derivation of coherent field which
can shed light on the Doi shift. This derivation was developed in (Gardiner and
Chaturvedi ) (see Gardiner for a more in depth presentation). To simplify
the notation we will work in the zero-dimensional case. The first step is to define
the (positive) Poisson representation of a probability distribution for the number of
particles for the N species:

Bitnd) = [ TT 5 e (€32

That is, we expand the probability distribution on a sum of "complex Poisson dis-
tribution" of parameter {«}. Alternatively, we can directly use the Poisson repre-
sentation on the generating function:

Gltz)) = 2 Rt [ o = /Hd“z WL fad). (€39
{n}

Using the equation for the time evolution of G, integration by parts and unicity of
the Poisson representation, one obtains an evolution equation for f. For example

for the pure fusion rule 2A 2 A, the time evolution of GG reads
0,G(t,2) = Mz — 2%)0*G(t, 2) = Hy(z,0.)G(t, 2), (C.34)
and the corresponding time evolution of f is

Ohf(t,a) =A[(1—0s) — (1= 0a)*]a?f(t, ) = HA(1 — O, ) f(t, ). (C.35)
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If the reaction-diffusion process involves at most bimolecular reactions, the master
equation translates into a Fokker-Planck equation for f. In the case of the pure
fusion, it reads

0.f(t,0) = Ao — )]0 f(t,0) = u[A fI(t,0) + SR[B fl(t,0)  (C.36)

with in this example
A=Xa?, B=-2)\*. (C.37)

If « is constrained to be real, (C.36) is not a Fokker-Planck equation as it is im-
possible to find a root of the non-positive B. However, we can write a Langevin
equation associated to (C.36) for a complex random variable. It reads

e = —Xa? + iV2Xal
(@) =ot—1t) (C.38)

where £ is a real noise. Using the MSRJD formalism (see Appendix B.1) on this
Langevin equation yields the following action

Sla,a) = /t{d(at + Aa®) + Aa’a’} (C.39)

which is exactly the Doi shifted coherent field action for the same process. In the
case of processes involving more than two particles, the construction of higher order
noise have been explored in (Gardiner ). This sketch of derivation leaves a lot
of things unclear, notably the vanishing of boundary terms in the complex integral
and the unicity of the Poisson representation (Droz and McKane ; Drummond

). However, we will not dwell further on the subject and simply comment that
in the case when this derivation can be put on a more stable ground, it gives an
interpretation of the coherent field action in terms of a dual continuous stochastic
process. If « stays in the positive real line, it corresponds to a process whose
instantaneous probability can always be decomposed in a basis of (real) Poisson
distribution, while a complex « corresponds to a narrower distribution as noticed
in (Wiese ). As an application, this gives a definition of multi-time expectation
values of the original process, which is more difficult to define in the standard Doi-
Peliti formalism (Chaturvedi and Gardiner ).



Appendix D

Consequence of the duality identity

In this appendix, we expound on the consequences of the duality identity (4.40) of

DP-C, which reads
ol
.= [ —. D.1

Let us partially expand I'y, in powers of @ around a stationary homogeneous value
Xx- Noting

[¢ - Xﬂ]@m({xf}lﬁfﬁn) = H [Q’(Xk:) - Xf-;] ) (D.Q)

k

Xy

Plugging the expansion in the identity (D.1) gives on the one hand for the L.h.s.

90,1, —Z nl /Xz} { F P 1<esn; H%XN] (@ — X" ({xe}1<e<n)

+ ”F ; [{Xf}1<@<m meﬁ [@ — xe"" ({Xeb1<e<n 1) (=9 3oXn)} .

(D.4)

and the other hand for the r.h.s.

Zn, / O {xehcecn; 8], [0 ™ ({Xe}icien 1), (D.5)

using the symmetry of the vertex functions. Equalizing the two sides and using
unicity of the expansion, one obtains that

\V/TL, {XH) q_sv lpy \I/}) {XZ}ISZSnv

g0y I‘f(_cn)[{xg}lggn; D] ‘QSHXJ =n+1)(1+g0,xx) / F£n+1)[{x€}1§g§n+1; D] ’¢‘>XN :
Xn+1 ]
(D.6)
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Now, if we assume the following:

3 n, {Xm Jja \Ijv \Tj}a {Xf}lgﬁgrm

aud [ TV [(xehicicnsni Bl A0, (D.7)
Xn+1
then from (D.6) one gets
14+ 90,x: =0, (D.8)
and finally
vn7 {Xm éu ‘1}7 \I]}) {XZ}ISZSn; acr F;(Qn)[{xﬂ}lﬁgﬁn; (I)] ‘45—)an| =0. (Dg)

On the one hand, from (D.8) and the scaling x, ~ k% ~ (0 — 7.)"%, one readily

obtains
vd, = 1. (D.10)

On the other hand, (D.9) states exactly that the only relevant eigenperturbation is
Xx- The same derivation can be followed for the duality identity of DEP. In Sec. 4.3,
we will see how the assumption (D.7) translates within the chosen ansatz for I';.



Appendix E
LPA’ for DEP and DP-C

E.1 Proof of the accidental non-renormalization
within LPA’

In this appendix, we prove that in the framework of the LPA’, for both DEP and
DP-C, the 1)1 prefactor appearing in the bare potential is preserved by the renormal-
ization and that only the -1 propagator can be renormalized. We call these results
accidental non-renormalizations because they are not directly linked with identified
symmetries of the model, in particular in the case of DEP. Thus they may be a spu-
rious effect of the approximation. Let us first show how these non-renormalizations
occur perturbatively.

E.1.1 Pertubative proof

The propagators and vertices of the DP-C and DEP action are listed in Fig. E.1.1
and Fig. E.1.1 respectively. The ) and 1) legs and propagators are noted with a full
line, the ¢ and ¢ legs and propagators are noted with a dashed one. The response
field legs are noted with an arrow and are said to be exiting legs while the observable
field legs do not have arrows and are said to be entering legs.

Any perturbative contribution to the renormalization of the theory is given by
a graph whose vertices are chosen in the vertices of Fig. E.1.1 and whose possible
edges are given by the propagators of Fig. E.1.1. Explicitly, a full line exiting leg
can be linked to a full line or a dashed line entering leg and a dashed line exiting
leg can be linked to a dashed line entering leg. The external entering and exiting
legs of the graph give the vertex function to which it contributes. Because each
edge has a direction - from a response field to an observable field - these graphs
are naturally directed. Furthermore, because of the property of causality of the

Figure E.1: List of the propagators of the DP-C and DEP theories
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Figure E.2: List of the vertices of the DP-C and DEP theories. The quartic vertices
e) to h) are present only in DEP.

theory, as discussed in Sec. 3.5, only directed acyclic graphs contribute. It means
that one cannot start from a given vertex, follow the arrows and come back to the
same vertex. Finally, one notices that due to the yn) prefactor of the potential of
the initial action, all vertices have at least one full line exiting leg, corresponding to
a ¢ field, and one full line entering leg, corresponding to a v one.

These properties are enough to show that the 1) prefactor of the potential is
preserved by the renormalization and that only the 1-1) propagator can be renor-
malized. Indeed, the vertices of a directed acyclic graphs are partially ordered, with
the order relation defined as u < v for two vertices u and v if one can go from u to
v following the arrows. Every finite graph will have at least one minimal element,
that is a vertex which cannot be reached from any other vertices of the graph. This
vertex has the property that all its entering legs are external. Because every bare
vertex has at least one full line entering leg, every diagram contributes to a vertex
function with at least one 1 field. In the same manner, every finite graph will have
at least one maximal element, that is a vertex from which no vertices of the graph
can be reached. As a consequence, all the exiting legs of such a vertex are external
and because at least one of them is a full line, it contributes to a vertex function
with at least one 1) field. In conclusion, every finite graph contribute to the renor-
malization of a vertex function with at least one ¢ and one v field, which is the
property we wanted to prove.
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E.1.2 Non-renormalization of the UV factor of the LPA’
potential

Now, let us see how this translates in the framework of the LPA’ approximation for
the NPRG flow. First, let us show that the potential U, is proportional to W:

UH<<107@7¢7¢) - IZAH(QD7 ()5777071]}) : (E'l)

Let us remember that we have shown in Sec. 3.5 for a generic out of equilibrium
field theory that the action vanishes when the response fields are set to zero. Using
the analyticity of ', this implies in particular that U, is proportional either to ¥
or to @. Now we use the respective symmetries of DP-C and DEP. For DP-C, the
symmetry (4.23) implies that the potential is a function of & and & only through
their sum:

UPTC (0, 0,0, 0) = Uso + @,1,9). (E.2)

As a consequence, if U, is not proportional to ¥, it will not vanish when the response
fields are set to zero. Now, for the case of DEP, the rescaling symmetry for the
potential reads:

~ 7 DEP/, . - 7
[(\/p_oJr ©)0, — (V/Po + )05 + 1p0y — 03| U™ (0, 0,9, 0) = 0. (E.3)
It is realized for an analytic potential as

UP™ (0, @, 9) = > _uir (oo + ©)*(v/po + @)P¢'d"
spqr
with s —p+q¢—7r=20. (E.4)
If upet # 0 for s — p+4 ¢ = 0, the above expression will not vanish when the
respouse fields are set to zero Thus we have proven that for both DP-C and DEP,
the potential is proportional to W.
Now, let us prove that within the LPA’, both for DP-C and DEP, the potential
is also proportional to W. Assuming that at the scale x, the potential can be written
as

Ux(9) = ¥Bx(9) (E.5)

where ¢ = {, @,1,1} is an arbitrary configuration of constant fields, we want to
show that this property is preserved by the renormalization flow:

0,U.(6)],_y = 0. (E6)

The kinetic part of the LPA’ ansatz for DP-C is a special case of the LPA’ ansatz

for DEP, thus we work directly with the latter, only specifying the symmetry of the
potential when it is necesssary. The flow equation for the potential reads

U (9) = / Res, { [0R] , (0G2(a, 0) + [0R] (@G (e, 0) } . (BT)

First, let us write down the general expression of the regulated two-point vertex
function in the LPA’ approximation:

0 Yo

0 0
_ _ ’y* O —[LHDHPZ 0 82Un(¢)
PRI+ R®) = ¢ _opr 0 | T\ G000,
* T G jef e i}
0 0 v 0
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with the lines and columns ordered as: ¢, @, 1,1 and where

Yo =27 [iw + D,p*(1 + 7’)}
Yy = ZY [iw + NDep?*(1+7)] . (E.8)

Importantly, both of these expressions vanish for a value of w in the upper half
complex plane. In principle, we could have chosen a more general kinetic structure
in the DEP case (for example adding U-¥ or WU-@ terms) but we will show in the
next section that the structure of the I'Y) matrix (E.8) is in fact protected by the
renormalization flow as well. For the mass of the propagators, using the hypothesis
(E.5), we obtain the following matrix

0 0 uyy O
00:0¢; | | Upo Upo 2Upo U
B0 0 0 wgy O

, (E.9)

where we have used the shorthand notation wg, o = Oy, Bi(¢)|yp—0. The inversion
of the two-point vertex function is easy as the last line and the last column only
contain one non-zero entry, the propagators thus read simply

Gola, 0)ly=o = (v3) " and G (a, @)|umo = (75 + ug0) - (E.10)

The pole of the first propagator is in the lower half-plane, such that the frequency
integration gives zero. We are thus left with

&mwmﬂ:ﬁMR¢M@m&“ﬁ+%@4} (E11)

At this point, we use the analyticity of I'; and the minimum configuration Min
defined as

075U |vin = 0 (E.12)
to write U,{(qb)|w:0 as an analytic series. In the DP-C case, it reads
UDP—C DP- C DP-C\k E.13
R (T Zu (0+@—x2" ) g™ (E.13)
with )
DP-C kekm {7DP-C(
\V/k m, U W@(ﬂ,ﬂmen ‘Min . (E14)

In the case of DEP, we have
U™ ()] g = D i (@ = X2 — X2 g (E.15)
klm

such that (E.3) is verified and with

1
ij l, m 'U,DEP k+l+m UDEP

Fim = Tl Ceketom s (©)] in - (E.16)
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Because of analyticity, to show that GSUH((;S)M:O = 0 is equivalent to show that

OsuY-C =0 for all k,m (resp. d;ubty = 0 for all k,I,m). Applying a k-derivative
to the definition of the couplings (E.14) for DP-C or (E.15) for DEP and using the

definition of the minimum configuration (E.12), we have respectively

1
vk, m, By = {—as Lt UD“(cbm:o]} (ko Dm0

klm! et e
Min
(E.17)
and
1
DEP _ k+l+m 77DEP
A k, l; m, aﬁuklm = {maﬁ [awkﬁllﬁm Un (¢) ‘w:0:| }
Min

+ [k + Dup i + (4 Dugi,] 0™ (E.18)

In both cases, the second term of the r.h.s. is zero because we assumed
U()],_y = 0. (E.19)

Now, let us examinate the first term of each equation. Taking the adequate
derivatives of the flow equation (E.11), we obtain

b, O[O UA0) o | = /iaﬂ%] ¢¢<Q)RGS+{ 2 (V&} :

= Oyt Ugo)”

(E.20)
where the V,, are functions of the field configuration whose exact form is not nec-
essary to specify. Evaluating at Min and using (E.12), the denominators appearing
in the integrand are simply integer powers of (vj;)*l, whose pole is in the lower half
plane. As a consequence, the first term of the r.h.s. of (E.17) and (E.18) vanishes
as well. This finishes to prove that in the LPA’ approximation, both for DEP and
DP-C, the prefactor 1) is preserved by the renormalization:

Un(9) = TuVi() (B.21)

E.1.3 Accidental non-renormalization of the LPA’ kinetic
part

Let us show that within the LPA’ approximation, only the U-W propagator can be
renormalized. For DP-C, this fact is a direct consequence of the symmetries of the
action. However, for DEP there is no identified symmetry which would enforce this
result. We assume that at the scale k, the structure of the derivative terms of Y (p)
is given by the matrix (E.8) of the previous section. We want to show that both for
DP-C and DEP,

T3 (9, 0)] = 0. (E:22)
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if ij # ). Using the structure of the regulator given in Sec. 4.3.3, the flow of a
general two-point function evaluated at an arbitrary field configuration is given by

9,12 (p,6) = 2 / ReS+{

q

= 1 - _
[0.R],, (@GR (@ 0)| = 5Ui(0) + USL(G)CY (a+ p.0)US (6)| G2 (e 0)

_ _ 1 _ _
+ [0R], (@G 0)| = SUL(0) + USL(G)CY (a+ p.0)U (6)] G (a ¢>} .

(E.23)

Now, let us evaluate the above equation in the configuration Min. First, we invert
the kinetic part of (E.8) to obtain

0 1 0 prDrp?
Y% Yo Ve

1
_ . = 0 O 0
G.‘(f) (q7 QS) ‘Min = GMm(q) - ’6‘0 0 O L* )

v
po Dicp? 1 5
QM) ol

which is simply the bare propagator with scaling factors. All the poles of the upper
triangular elements of the matrix above are situated in the lower half plane. As a
first consequence, the contributions of the flow proportional to U™ vanish and we
are left with

q

+ [0.R] (@) GEN (@ U (0)],5n G (@ + P)US ()] G ()

asf‘g%(p7¢)‘Mm = 2[Res+{

+ [0R] s (DG (UL (0)| i GA™ (4 + P)US) (0) |Mina?$n<q>} :

(E.24)

Secondly, due to the 11 factor in the potential, most contributions proportional to
U®) vanish as well. We know already that due to causality, at least one of m,n
must be a response field, say n. Let us assume m # . In both lines, as k # ¢
due to the structure of the propagator, we must have s = 1) and then, t = 1. As a
consequence, in both lines all the propagators belong to the upper triangular part
of (E.24) and have their poles in the lower half plane. Thus both lines vanish. Now,
let us assume m = ¢ and n = @. In the first line, [ = ¢, such that

3 3
Ut(n;(¢)|M1n = Ut(@ZO(¢)‘Min =0. (E25)
In the second line, [ = 1 and thus ¢ = 1. Again, all the propagators have their

respective poles in the lower half plane and the flow is zero. In conclusion, we proved
that only F% has a renormalization flow within the LPA’.
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E.2 Derivation of the NPRG flow of the couplings

In this appendix, we explicitly write down the steps necesssary to obtain the flow of
the couplings. We do this on the example of the flow of x, in the DP-C case. The
starting point is the flow of the potential

0.U(®g) = / Res { [0:R,] ,(a)GEN@, @) + [0,R.] 1 ()G (@, Do) } . (E.26)

q

To obtain the propagators, we invert the matrix T'? + R written in (E.8). Spec-
ifying to the DP-C ansatz, we set

7¢=D, =1,

K

M = [, (E27)

and we abbreviate Z¥ = Z,.. Finally, we write explicitly the scaling factors of the
regulators as in (4.104):

Rl @) = (@), [Repyla) = MWZSEr(@Ie) . (E29)

where 7 is the dimensionless O regulator defined in (4.105). The flow equation reads

P

20
3;-;U,]3P—C(CI)O) = /Res+{q ANT [(zw L q2(1 )+ UéQ,O,O))PqI

q
+ pg? (UL (= Zyiz + ) — ULOAU110) 1 Q|

+ q 7) ( r) |:(Z,§Zw + h)Pq; _i_lquU’gl,O,l)( — i

A
+*(1+7)) —2¢°(1 + r)U,gLO’l)Uél’l’o)} } , (E.29)
with
U(k l,m) gr+tm UDP-C (CI) ) (E 30)
k= AzEaaiacm Uk 0) 5 :
OPEOVLOUTE

and with the following shorthand notations:

h=A\Z@*(L+7) + UL

Q — U/gO,Q,O) (Ulgl,(),l))Q + U[g0,0,Q) (U'lgl,l,O))2 . 2hU,g1’170)UI£170’1) ,

Py =@ + (1 +7)(¢*(1 +7) + 20200 |

P\Ij _ (ZH’W)Q + h2 _ U[g0,0,Z)U’gO,Q,O) ’

A = PyPy — 2Z, UMY g’ w® + 24°Q(1 + 1)

+2ug (1 +7) (hU’gl,O,l) B U}gO,U,Q)UIgl,l,O)) I u2q4((Uél’0’l))2 B Uéo,o,z)Uéz,o,o)) _
(E.31)

By differentiating U, and evaluating the result in the configuration Min, one is
left with only two possible poles: ig*(1 +r) and i\.q*(1 +r). More precisely, the @
dependence of the integrand is as a rational function of

yziw+q2(1+7’), 7,\:iw+>\,.@q2(1+r), (E.32)
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and their respective complex conjugate. The non-zero contributions to the integral
arise from one or more () factors in the denominator. Using the notation

1
— _ —  7r(klm)
Ui = Tl (E.33)
one obtains for example for ugiy
202 (= 2X(r + 1)Z) = 22~ (ua11 2% + pugPu
[&iuou}Min = /Reer{qQ@Hr[q 1 (1 ( )Z) %\2( 275 + 1gPuai)
q 72 (7;)2(7*)

2uq11 (MC]2U012’YT\ + 2X%¢* (r + 1)2U1112)]
n2%(33)" (v)"
2¢%uin (2pun2yy + (A — 1) (r 4+ 1)%ui11.2)
Y= 1)23(73) "y
4U012((/\ — Dugary* — Mq2u111) B QZVf\ (U1217* + MQ2U112) + QZU%H((T‘ +1)Z — M)

+fmmzm[

(A= DmaZ3(75) Z3(3) "y

o / 26 Tunl ()\(7“ + 1)161112 + MUng)
- Jq AN+ 1)2¢4(r + 1)322

)\2(7’ + 1)U%11Z + 'LL012(()\ + 1)2(7’ -+ 1)%021 -+ (2)\ -+ 1)/,LU111) }

+ qzaﬁ()\Zr)

NN+ 1)2¢4(r +1)323
(E.34)

where the dependence in k is implicit for notational simplicity. At this point, the
procedure is the same as for NPRG applied to equilibrium systems. With our choice
of regulator, the momentum integral can be performed analytically and, following
the previous example, one is left with

)

HUo12U111 [)\(8 +2d — 1+ 20\ — 77) +2)? (4 +d—1- 77) + 88)\} n

_Q,d—2
[asuou]Mm =8k Ud{ (d+ 2)(d + 4)N2(\ + 1)222

ugr2tioor [A(2 + d — 7 — ) + OA] n uin A2 +d—1—n)+d+ 9+ 2]

d(d+2)\2Z? dld+2)(A+1)2Z
(E.35)

where s = In(k/A), d is the spatial dimension and vy = 1/(2d+17rgf(g)). From the
above equation, one deduces the flow equation of the minimum using (4.100):

DP-C _ —L [88u011]Min . (E36)

U111

OsX

The last step is to introduce dimensionless variables, as explained in Sec. 3.4.3:

Jtl (i) 4 A .
7% /£2+d (z+]+l)2uiﬂ7 if = 0
Uijr = i) g A .
ZV2r =054, otherwise

XDP—C _ ﬁg)ACDP-C. (E.37)

L
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For ;1 = 0, one obtains

P _dy _ 8 U111(2 4+ d+ A2+ d — 2n) + 0s\)
X T T X T o d(d+2)( + 1)
gy (M2 +d — 25) +0:)) (E.38)
d(d + 2)Na11 ‘ '
In the case p # 0, one obtains
0.4 — d. S U1 (2+d+ A2+ d—17) +9N) | dozlion2(A(2 + d —7) + 9,\)
X = TX T o d(d+ 2)(\ + 1)2 d(d + 2N,
N ptior2 (2(d + AN + 1) + (2X + 1)(9:A — A7) (E.39)
(d+2)(d+ 4N (A +1)2 ' '

To get the full set of coupled ordinary differential equation for the coefficients
U up to the truncation order, the above procedure is systematically implemented
using Mathematica.






Appendix F

Large wave-number expansion of the
RG flow equation of SNS

F.1 Ward identities for the vertex functions

F.1.1 Ward identities in velocity formulation

We derive the Ward identities for the vertex function associated with the extended
Galilean symmetry for an arbitrary vertex function I'™™. We consider the func-
tional Ward identity (5.40) derived in Sec. 5.3.1

[ {(5aﬁat +aﬁua);SF +aﬁua / 025,

where the pressure terms are omitted since they give no contribution in the following
derivation. Taking m functional derivatives of this identity with respect to velocity
fields ua (XZ) —i=1,...,m—and n with respect to response velocity fields i, (x;)
-] = ,m-+n— and setting the fields to zero yields

/ AT (%, {xebi<o<min)
m—+n

/Z 3(t — t1)6%(F — T)0aL 0" L (e bi<och1, %, (X ep1<ecmin) - (F.1)

T k=1

This identity can be expressed in Fourier space. It yields in terms of the Fourier
transforms I'(%0)

(m+1,n) G- T—wt)+i S (BT —wit
// { Zwraal Comtn (q7 {p€}1<€<m+n) i@ AR )
T 7 q,Pq

m-+n

Zp 2 :elpkx g ) —twg (t—tg)

x T

(m,n) i(q-T—wt)+i Zm"L"(pl T —wit;)
061-7--O¢m+n({pé}1§€§k—17 q, {pﬁ}k+1§£§m+n)6 ”ék =0.
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Performing the integration over & and p, and shifting the frequency wy by w, one
obtains

f&n;jlg,z+m (@, ¢, {Pehi<t<min) ‘6‘:0
m+n. o

p
Z Y al an+m {p€}1<€<k 1, Wk + @, pky{pé}k+1<é<m+n)

= Da ( )FOZL nan+m ({Pe}i<t<min) - (F.3)

F.1.2 Ward identities in the stream function formulation
F.1.2.1 Time-gauged Galilean identity

The derivation of the Ward identities is a bit less involved in the case of the stream
formulation because the vertex functions are scalar or pseudo-scalar and not tensors.
Let us first consider the time-gauged Galilean identity Eq. (5.52), line d)

/j‘{(—ew%aﬁ—@g\ﬂ)éé}z ] 5F( )}:0.

Multiplying by €., taking m functional derivatives with respect to the stream func-
tion \I/(Xz) —i=1,...,m — and n with respect to response response stream W(x;) —
] = ,m-+n— and setting the fields to zero yields

(F.4)

/*{ N xaat pintn) ( X, {Xf}léfngrn)
’ m—+n

—€as ) O(t = 1,)8U(F = BT ({xehiesh1, X, {Xe}k+1§e§m+n)} =0.

(F.5)

Going to the Fourier transforms of the vertex functions and of the delta functions
gives

// {zwxa i(FE—et)+i " (P ® Wit PO tn) (g {py}i<o<mn)
x Jq,p;

T G (F—T) —wie () + T —wt+ ST (5 T —wit)]

— ZEanlg Z e 77’5’“

x DU ({pehi<e<i-1, Q. {Pe}k+1<e<m+n)} =0. (F.6)
In the first line, using

[ravtsa- [ lews - [oilse. @
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then integrating on 7, ¢, shifting the frequencies wy, by w in the second line and
identifying the Fourier transforms, one finally gets

0
F(m+1 n) — i
Bg " (@, ¢, {Pei<e<my )(jzo

m-+n

= _2604,8 Z kF {p€}1<€<k 1, Wg + w7pk7 {pf}k+1<€<m+n)

B I (F.8)

To show that the limit @ — 0 of the above equation is finite, one has to make use
of the invariance under pure translation, which states that

m+n m—+n
Fr ) ({pehisesmen) = 0°( 3 A8 (D @) T (prhisegmin) - (F.9)
k=1 k=1

The Lh.s. of Eq. (F.8) thus reads

0 = m+1,n —
a_qarfi i )(waQ7 {pZ}ISZSm—i—n)

7=0
m—+n m—+n

[5(1 q-+ Z Pr)O Z wk)f,im“’”) (@,q, {pe}1§z§m+n—1)} ‘ﬁ

m—+n m+n

q + Z Pk ’ 7=0 w Z Wk)i£m+1’n) (w, 6, {p€}1§€§m+n71)
k=1
m-+n m

9
+8( > pi)d (@ + )a—r(mH @, q, {Pz}lgegmm—l)‘

1

+

n

q=0

B
Il

0 -
- 5d( Z ﬁk)é(w + )8_F(m+1 ™) (@, @, {Pe}1<t<min—1)| (F.10)

k=1 k=1 =

In the last line, we have used Eq. (5.55), line a), i.e. that

f‘,(.;mﬂ’n)(W, 67 {Peti<e<min—1) =0. (F.11)
As for the r.h.s. of Eq. (F.8), we have

m+n

- Zeaﬁ Z {pz}1<£<k 1, W + @ pk, {Pé}k+1<z<m+n)

m+n m-+n
= —icagd( D Pr)d(@+ Y wi)
k=1 k=1
m+n—1 g

X [ Z gkfmn)({pz}qu; 1, Wk + @, Pk, {Petrt1<e<min—1)
k=1
m+n—1 fJ

— Ph =(mn
— 2ol PERO (i )]

m-+n m+n

- 5d( Z p’f) w + Z Wk Zeaﬁpﬁ( )Ff(imM)({pf}lSZSm—}—n—l) ) (F.12)

k=1 k=1
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Identifying in both sides the regular part, one obtains finally

0 - . ‘ =
a—anim“’")(w,q, {pPei<ecmin—1) . = i€apDy(@) T ({Prhi<ocmin-1) . (F.13)

F.1.2.2 Time-gauged rotation identity

Now, let us consider the time-gauged rotation Eq. (5.52), line e)

22 ol - 20
B { (?& + EQQZL‘gaa\P)(S\D— + Ea@CL’Ba \I/ =2 E) (F14)

First, let us study the case of one W(x') derivative. After setting the fields to zero,
one gets

2
/ {%atry)(x, x') —5d(f—f’)5(t—t')eaﬁxﬁaargﬂﬂ(x)} =2 / SUT -0 (t—1).

: : (F.15)
The invariance under translation gives 8a1”,({0’1)(x) = 0. Going to Fourier space yields

// zw z[px-i—p T —wt— wt]r(ll p p _ _2//(,0 elﬁ (Z—7)—w(t—t")] (F16)

and by unicity of the Fourier transform, one obtains

0? -
.y / — —4iwd (v’ n. F.1
97 " (p,p) o 1w (p")o(w + ') (F.17)

This result can be interpreted as the non-renormalization of the kinetic term in the
bare action. Now, going to higher derivatives as in the preceding section,

2
xr
/~ {TatF(an’") (x, {x¢}1<r<mn)
m—+n

=0t = t)6UF — Fy)eaprpdal " ({Xeh1<esho1s X, {Xé}kJrlSZSern)} =0.

k=1

(F.18)

Going to the Fourier transforms of the vertex functions and of the delta functions
gives

. a? (- T— i S (B —wits) TN (mA-1,n
// {_m?€ @70+ S At PO (g (Db cpcmin)
z Jq,p;

A G () —wi () + T Tt ST (5 F —wit)]

- zeaﬁxﬂq Z z;ék

F <{p€}1<e<k 1, 4, {Pé}k+1<@<m+n)} =0. (F.19)
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Following the same steps as in the previous section, the identity for the Fourier
transform reads

82

o (m-l—ln (
0¢% "

q, {p€}1<€<m+n)

m—+n

2zea
2 Z ka 3 n ({pf}1<e<k 1, Wk +wapk7{p€}k+1<€<m+n)

= R(@) TV ({pehr<o<min) - (F.20)

As for the time-gauged Galilean identity, it is possible to express this identity as
finite differences extracting the delta of conservation. For the Lh.s., it reads

0 - m+1,n —
a_q2rf(€ i )(w7Q7 {p@}lgéSern) .

2 m+n m-+n
[5d q+ Z pk; Z Wk:>F,(gm+17n) (@, ¢, {Pe}1gé§m+n—1)} ‘ﬁ_
k=1 -
m—+n m—+n
=5 (m+1n)(— &
=9 ( ; w + Z Wk a QF/{m " (wa q, {p€}1§€§m+n—1> L
m+n m+4n )
‘(7 + Zpk ‘ o (@ + Z )8 —TU ) (@, 4 {pehi<e<min-1) -
k=1
m+n m-+n ~
+ _6d q + Z Dk ‘ . w Z wk)l—\’(im—&-l,n) (wa 07 {pf}lﬁﬁgm—kn—l)
B k=1
m—+n m—+n
- 5d( Z ﬁk w + Z wk a QFE;m—H ) (wﬂ (j; {pg}lﬁfgm-l-n—l) o
m+n m+n -
2_5d qQ+ Zp’f ‘ . (@ + Zwk)igaﬁpﬂ )T ({pehi<ecmin—1)

. (F.21)

where in the last equality a) and d) of Eq. (5.55) have been used. As for the r.h.s.,
the substitution reads

2i€,, sl 8
wﬁ Z ka 5 n ({P€}1<z<k 1, Wk +wapka{p€}k+1<£<m+n)
k=1

iy 226a5 {
w + Z

m—+n—1 m-—+n
k

Z Zpk T ({pg <ok 1, W + @, Pr, {Pe s 1<t<min-1)
=1

m-+n
Ly 0 o
+ 5d( Z Dk )a_pﬁr ({p£}1<z<k 1, Wk + @, Py {Pethr1<e<mtn— 1)]
k=1 k

8 m+n B
+p%+nw5d( Z W) mn)({p€}1<£<m+n>} ~ (F.22)

m+n k=1
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Using the delta of conservation on pf,,, in the last line and rewriting

a m-+n m+n
—5d(zp)=—5dQ+Zm ‘ , (F.23)
8pk =1 7=0

one obtains
21€ fang
o Z k_g {P€}1<e<k 1, Wk + @, Py {Pethr1<t<min)
Py
anl 2i€q8
=0(w + Z wi)d Z )
k=1 w
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X Z p?—FE@ <{p£}1<£<k 1, Wk + @, P, {Pefhr1<e<mrn—1)
k=1 op,
%ie 5 m-+n a m+n
— — 6 (q D7
+ g (w+ Zwk)aqﬁ (q—l— Zpk) y
k=1 k=1
m+n—1
X Z P | T ({peti<ech1, Wk + @, Prr 1P bt 1<t<min—1) — L™ ({Pe}i<t<min)
k=1
m4+n N B
= (@ + Zw’f )o° Z o) R(@) L™ ({pe}i<ecmen—t)
m+n m-+n -
HA(@+ D ) 55T+ D )|, s Da(@ (pehisiznen) . (F24)
Thus the second lines of each side cancel each other and we are left with
0% - . - _
a_czgrfﬁm+17n)(w7Qa {Peti<e<min—1) L= R(W)Ff(gmﬂ)({pﬁ}lgegm_m_ﬂ. (F.25)

Contrary to the case of Galilean symmetry, this step is not enough to show that
the limit @ — 0 is well-defined. Indeed, extended Galilean symmetry corresponds
to time-gauged space translation and the zero frequency limit corresponds to usm%
time-independent space translation, which are taken care of by going from the I

to the TU™". Here, it is necessary to make use of the zero frequency limit of
time-gauged rotations, that is time-independent rotations. The corresponding Ward
identity reads

m+4n—1
€ap Z P 3 op 5 L™ ({peti<e<man—t) = 0. (F.26)
Substracting it from the precedlng equation, the final result reads
53_;F’($m+1,n) (@, . {pe}1<e<min—1) o R(w)ff(ﬂm’n)({Pe}lgzgmmﬂ) (F.27)
with
R(w)F({Pr}i<e<n)

F({pet1<i<i-1, wk + @, P, {Petor1<e<n) — F({Peti<i<n)
w

= 2i€qp Zpk

(F.28)
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As a last note before closing this section, the above subtleties going from the i

to the TU™™ are also present for symmetries b) and ¢) of Eq. (5.52) concerning the
response field but the derivation is less involved because the r.h.s. is always zero
and it will be skipped.

F.2 Form of the flow equation of correlation
functions in the large wave-number regime

Let us firt derive the expression (5.82) of the flow equation for a generic generalized
n-point connected correlation function G in the regime of large wave-numbers.
The flow equation for G(™ is obtained by taking n functional derivatives of (5.58)
with respect to the sources j;, , 1 < k < n, which yields

1

0G| xehicoen:i] = —3

Y1,¥2

R e e [yz,{xm}.

({ig}1.{ig}2)
#1+#2=n

Ox[Rilij(y1 — y2) {GZ(ZTQ)M V1, y2, {%¢}3]]

(F.29)

Depending on which field theory we are looking at, the Velomty or the stream func-

tion one, the indices i, stand for the sources j = J J or j = J,J respectively.
The notation ({is}1,{i¢}2) indicates all the possible bipartitions of the n indices
{ie}1<o<n, and ({x¢}1, {xX¢}2) the corresponding bipartition in coordinates. Finally,
#1 and #2 are the cardinals of {is}; (resp. {is}2). Let us concentrate on the first
line of (F.29). One can write

/ Ox[Rlij(y1 — yz)GEﬂ1 2 Iy, v, (xeii) = / Ox[Relij(y1 — ¥y2)
Y1,y2 Y1,y2

52
(2) 0@
X [L17Z2 Glm [Z17y17.]]G [Z27y27 ]5(I)k<zl)(5q)g(22)
)
(3) ¥y (n) ;
- [ myiyaig )]GH bl (F.30)

The derivatives of G™ with respect to ® must be understood as acting on G
viewed as a diagram constructed from F vertices. More precisely, G(™ is the sum
of all tree diagrams with vertices the I'®) k& < n and with edges the propagator G,
the latter satisfying

GOx,y;j] =

0Pk(x) _ (6) - <. v) — @ T
0je(y) _( )kg( ¥) =07+ Rl b,y @) (F.31)

0P
using the property of the Legendre transform (3.48). Furthermore, introducing the

differential operator

0, = aﬁRmi + 8. N, 0

e TN (F.32)
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and using the expression (F.31), one has
(ibG;(fg) [Z1722§j] = —/ an[Rn]ij(}q - YQ)G;(;) [zl,yl;j]GZ) [ZQ,Y2;j] ) (F-33)
Y1,¥2

which appears in the first term of the r.h.s. of (F.30). The second term in the r.h.s.
of (F.30) vanishes when the sources are set to zero, since it is proportional to the
flow of one of the average field. Indeed, the functions GEI) (x) are the expectation
values of fields. The expression of their flow can be deduced by taking one derivative
of (3.76) with respect to a source and setting the sources to zero, which yields

1

0xGy"(2) = 5 / Ou[Rulis(y1 = ¥2) G (2. y1,2) (F.34)
yi1,y2

omitting additional contribution proportional to G, In the velocity formulation,
the average fields have to be set to zero to respect isotropy. In the stream function
formulation, the average fields are thus constant of space (because they are the
primitives of the velocity and response velocity fields). We can thus use the time-
gauged Galilean invariance to place ourselves in the comoving frame where they are
identically zero. As a consequence, in both formulations, the flow 8HG§1)(Z) is zero.
By identification, one concludes that the second term in the r.h.s. of Eq. (F.30)
vanishes when evaluated at zero fields. Gathering the previous expressions and
setting the fields to zero, the flow equation for G may be rewritten as

8.G" , ({xeh1<i<n)

1 ~ 52
== 0.GS) (v1, G L Hxeh<oen:]
2 /}’17)’2{ Kl (yl }’2) 5%()’1)5@@(}’2) 11...zn[{ f}lééﬁ .]]] B—0

- Y GE v G (v, {xm)} . (F.35)

({Ligr1.{ig}2)
#1+#2=n

This yields in Fourier space

aﬁéz(?)zn ({Pe}1§e§n)

1 ~ 52 .
S 0,.G\ P (—qq, — G .
- / { a0 5 G ekl

- Z éz(‘f;}tl)(qla{p8}1>8n[72%]ij<_q17_q2>é§ﬁ§;1)<q27{pf}2)}7 (£.36)

({igr1.{ig}2)
#1+#2=n

where in the first line the Fourier transform is meant after the functional derivatives

6 () g
|:5(I)k((h)5q)£(q2) Gzlzn [{pﬁ}h]]] ®

=FT <(5(I>k(Z1§5(I)g(Z2) GE?)Z” [ixe} ] ‘@:0) (@2, {pe}) (F-37)

with FT(...) denoting the Fourier transform. We focus on the flow equation (F.36),
and now consider the limit of large wave-numbers, which we define as all external
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wave-numbers being large compared to the RG scale [py| > k for 1 < ¢ < n,
as well as all possible partial sums being large ‘ZZGIﬁgl > k, for I a subset of
{1,...n}, which means that we exclude exceptional configurations where a partial
sum vanishes. The following proof relies on the presence of the derivative of the
regulator term 0,[R,] in the flow equation (F.36). The key properties of this term
are that, on the one hand, it rapidly tends to zero for wave-numbers greater that the
RG scale, and on the other hand, it ensures the analyticity of all vertex functions
at any finite k. Let us examine the second terms of the r.h.s. of (F.36) in this limit.
Using invariance under space-time translation, it can be rewritten as

/ G (ar, {peh)Ou[Ralij (—ar, —a2) G (aw, , {pe)a)
q

1,92 ({Lzh {ig}2)
#1+#2=n

36<Zwk>62<z;ﬁk>
X / Yo G UPaOR Q1B G ((pe)2) (F.38)

q ({ig}1.{ig}2)
#1+#2=n

where > {pi}1 is the sum of all the wave-numbers in {py};. Thus this term is
proportional to the derivative of the regulator evaluated at a sum of external wave-
numbers Y {pr}1 > k. Hence, it is suppressed at least exponentially in the limit
of large wave-numbers and can be neglected safely. Finally, only the first term of
(F.36) survives in this limit and we obtain Eq. (5.82) of the main text:

62 = (n) ¥
) 0P (q1)0P;(q2) v [{pe},(ij 3%30

~(n 1 - .
Gy (peheren) = 5 | 0:GF (~an—a

q1,92

F.3 Leading order in the velocity formulation

In this appendix, we show that the leading order of the flow equation at unequal
times can be closed at large wave-numbers, i.e. expressed in terms of G*®) with
k < n only, using the Ward identities associated with the extended Galilean and
extended shift identities (5.40) and (5.47), that we reproduce here for convenience:

Loty (@, G {pchi<e<min)| = Do(@)I{™, ({Peti<e<min)

L) s an ({Peh1<ecm @, @ {Pehi<e<n)| . =0 (F.40)
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F.3.1 Leading order: two-point function

Let us first perform the explicit calculation in the case of the two-point function.
The leading order flow equation reads

aﬁégji)yﬁ (pl ) p2>

leading 2

/ —k )éq(;?n(Pza —k2)[ F£]7)nn<q17q2>kluk2)
ki,ko

q1=¢>=0

(F.41)

/ zms q17k17k3)G( )( ks,—k4)rgn)t(%,k2,k4) + (i, q1) < (]ﬂh)]
k3, k4

where the double arrow signifies the permutation of the preceding term. First,
looking at the I' term, we have

F( (OI17 q2, ki, k2) = 5ivu(5jv,, Du(wl)ﬁu(wﬁfg%(kh k2) ) (F-42)

igmn

using (F.40). Second, doing the same for the one particle-reducible (1-PR) term, it
reads

[F,(f,’fw(ql, ki, k)G (—ks, —ky) T30 (a2, Ko, k4)]

fi=
= Ok, Oev, D, D, (@) T2 (1, ks)GE) (—ks, —ki) D, (@

=0

2
)T (ko k) (F.43)
Plugging back both terms in (F.41), the leading contribution of the flow reads

1 ~ ~
=35 8/1G5;i)vy(_ql) _Q2)

leading 2 Q1,92

anégzi)vg (pla p?)
G2, (p1, k1) G2, (D2, —ka) | = Dyl) Do) 12 (ki ko)
ki,ko
+ Dy(@1) D@ (1, k)G (— ks, —ka) Dy (w2) D (Ko, k) + (11, 01) 4 (v, w2)] -

ks, kq
(F.44)

Examing further the second term, we insert the following relation

su

GP(—ks, —ky) = / G (—ks, —k5) T2 (ks, k)G (—kg, —k4) , (F.45)
ks.kg
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thus each ﬁ(w)f‘(z) is enclosed between two G®. Making explicit the operator D,
this combination can be rewritten (taking for example the first one)

|G k)P E )G (s, k)
ki ks
_ @ (o 1y [Fre -
- Gvam(plv kl) _Fms(Vl +w17k17k3>
ki,k3 w1
k..“‘
+ —BF( )(kla V3 + w1, kg)] G ( k3 —k5)
wh
ki‘ ~(2) 9,7 —
== _Gvam(pla _kl)(smud(wl + v — 1/5)5 (kl — k5)
kg W
ky 2= L TAAG)
+ Eévas(S(wl + w + 1/3)5 (p1 + kg)Gsu (—kg, —k5)
ks

k: ~ —
: G’U(,u(pl) —V5 + Wi, —k?5) L G( ) (w1 + @1, D1, —ks)
w1 wl

=-D (W1)G( ) (P1, —ks) . (F.46)

where in the second equality we have used that G® and I'® are inverse of one
another

/ éz’j(plv _p2)fjk(p27 —ps) = 5ik5(V1 - V3)5d(171 - 173) . (F-47)
P2
In fact, we just proved the general property that

5.
G , P2;

=0

= _/ G( )<p17 _kl)Fk)Tnn<q7 k17k2> . éizj)(_k%pZ)
ki,ks q=0

= G, / G2 (py, —k) Dy (@) ey, o) G2 (e, o)
ki,ko

which will be useful in the general case. In the case of the flow of the two point
function, this allows to write —the integration and summation variables have been
renamed for convenience—

1
) 0 GU, v,,( qi, —q2)

q1,92

[ [~ G k)G (po, —ke) D)D) T o)
ki,ko

0.G 2, (p1,P2)

leading

+ Dpu(@1)G), (1, —ka )T (klﬁkQ)ﬁV(w2>ég;)n(p2’ —ka) + (1, w1) < (v, w2)] :
(F.19)
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Now, making explicit the D operator, we have on the one hand for the first term in
the square bracket

| G —)GE) (b2, —Ia) D (1) D) T e
ki, ko
kiKY

= ég)i)m<p17 _kl)éz(;)n(p% _k2) |: L F( ) (I/l + w1 + wa, Ela k2)
ki, k2 To1T02
F L1+ @, kv + @, ko) 4 (1, ) < (v, @2)
’(Dﬂﬂg
k5 kY = (2) o
+ —an(kla Vo + w1 + wo, k?)}
W12
KKy @) 0 .
= Gvam(pla _kl)dvﬁma(c‘)Q + 141 + w1 + YDQ)(S (pg + ]{31)
k; W1W2
ky k3 2(> | I
+ Gvgn(p27 —k2)dp,nd (w1 + 12 + @y + @2)07(P1 + k2)
ko W1W2
+ G2 (p1, —k1) G, (D2, —ko)
ki,ko
AR 2o B B
an(yl + i, kl; vy + wa, k2) + (/L, wl) ad (1/7 ’WQ)
TwW1W2
4
FoPs Gq(]a)vﬁ(phwz + v + w1 + o, kz) Pipi Gq(ivﬁ (w1 + V1 + @1 + we, k1, P2)
wiw?2 w1
+ / égji)m(pla _k1>G£ﬁn<p27 _k2)
ki,ko
k?k; ~(2) - —
—F (1/1 + w1, k)l, Vo + wa, ]{72) + (M, wl) — (l/, YDQ) (F50)
Ty

and on the other hand for the second term

Du(@1)GY, (1, —ki)T2) (K1, ko) D, (w02) G2, (P2, —ko)

k17k2 m ’UBTL
5 -
= / [pl Gq()i)m(m + @y, p1, — ki) — ! G’S)i)m(pla —v1 + Wy, —k?1)]
ki ks “V1
Py ~ q k3 ~ >
X T2 (et ko) [ Z2 G2, (w2 + . i —ka) = =2 G2, (P, —v + 2, —Fo)|
TWa W2
= PiP; Gq(,ivﬁ (w1 + @1, Pr, wa + w2, Pa)
w12
+ pzpz Gyavﬁ (plaWQ + 11 + Wy + wa, k2) plpl Gq(,i)vﬁ (w1 + 11 + Wy + wa, Eh Pz)

(NP 1o

ki kY
. / GP (p1, —v1 + w1, —kl)Gfﬂ)n(PL —vy + w, —kp) 2T
ki ks

ki, ko).
0109 ( 1, 2)

(F.51)
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Gathering everything back together, the last lines cancel each other by shifting the
frequencies v, and v, and one is left with

1
=5 0:G2,,(—a1,—q
leading 2 a1,92 a ﬁ( ! 2>

8'{@5)3!)”6 (pla p2)

[ o1 Gg;i)vﬁ (p1,ws + V1 + w1 + e, k2) Piph G (wl T+ W+ Wy, El’ P2)
1T TI1TW9
+ Pov Gvavﬁ(pl,wg + 1+ w1 + @y, ka) + Méq(?)vg(wl + 11+ @1 + w2, k1, pa)
0109 w12
1 <
-2 / OnG2,, (—at1, =) Dy (61D, () G2, (P1, P2) (F.52)
q1,92

This concludes the derivation for the two-point function case.

F.3.2 Leading order: general case

Going back to the flow of an arbitrary correlation function, the leading order term
of the flow equation reads

~(n 1 L
aﬁGgl)zn (pl’ s >pn) = 2 8HGZ(']2‘)(_q1> _q2)
leading a1,92
6 0
" o0 o omt], |
5.(a000,(q) P! Noso| _
q1=3q2=0

(F.53)

Now, we will prove the following property

52 ~(n) )
[5(1)1((11)5(1)] <q2) Gzlzn [{pf}lﬁfénv J]:| -0

= 51‘1)“5]'111/2)#( ) (wQ)Ggl 1n<{p£}) ’

(F.54)
The generalized correlation functions éz(?)hl({pg}) can be expressed as the sum

q1=3>=0

over all trees whose edges are the propagators G®@, whose vertices are the vertex
functions I'® and with external legs whose momenta and indices match the indices
of the correlation function: {(is, p¢)}. Symbolically,

G Hpehicezmil = Y ar T [{pel]

trees

70, 0tpd1= [ TTeTa i, (7.55)

111

where o is a combinatorial factor, the £ are the vertex functions and propagators
entering the composition of the tree 7 and the integration is done over all the
internal momenta of the diagram. The {p;}; which are not empty form a partition
of the external momenta {ps}1<s<n, and the internal momenta {k;}; are chosen such
that when a propagator is attached to a vertex function, the sum of the momenta
of the propagator and of the vertex function at the link is zero. Finally, the internal
indices of the theory — here i, € {#,7} — have been omitted on & but follow
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straightforwardly from the partition of momenta. The term in square bracket in the
flow equation above is a sum of tree diagrams where the two functional derivatives
have been distributed

62 = (n)
5 ()00 (qp) o Pl
{ [ S (T1 emttodn k)
Kintern 7,] m##i,j
1) 1)

< Sontqr 1P ke, s et Dl

2

[ S (T 60 5 & 00 3

mtern 1 ]#’L

Q1= CI20

(F.56)

St

When acting with a field functional derivative, either the derivative hits on a vertex
function, giving

5@;(01) u zk[{pf}1<e<ka®] ®=0 :ngﬂzk(%,{mhqq) (F.57)

or the derivative hits on a propagator, giving

) .

FGS”?LZJPMPQ;J]CP:O = _/ G%L(ph -k )quv(qaakth)G ( kZap2)
Z(qa) ki,ko ( )

F.58

with a € {1,2}.
First, let us examine the case of only one functional derivative applied to a
generic tree 7).

§(I)i<(1) Z1 Zn [{pé}]é 0

qa=0

/ Z(Hé’ ({pe}si { ‘Z}J)>5¢>( & T H{pedis {kedi]. (F.59)

mtcrn =1

giving either

5 ~ ~
5(1)((1 ) z1 zk[{p€}1<£<ka (b] = q 0 = 5vaDu(wa)Fl(f)Zk({pe}) (FGO)
if £7 is a vertex function, or
6 . ~
50;(q )GgL[PhP%J]@:o o 050, Dp(wa) G2 (P1, P2) (F.61)

if it is a propagator, using the property (F.48) of the preceding section. This shows
that

7(n)
5@'(%) 7;1---1'” [{p[}]{:':() =0

5wu/ Z( {Pe}],{ke}])> w(@a)E ({pedis {ke}i) . (F.62)

mtern =1
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In other words, the operator ﬁu(wa) is distributed on the elements of the tree
according to Leibniz rule. In order to reconstruct the operator acting on 7, that
is only on the external legs {p,}, one thus has to show that it is indeed a derivative
within this object, that is

Dyu(w.) /k E ({kehr, —K)E] (k, {ke}2) = /k D)€l ({kehi, ~K)E] (k, {ki}2)

5?({ke}1,—k)15u(wa)5§(k, {ke}z) .
(F.63)

Starting from the r.h.s.,

/k[ L (@a)E; ({ké}feb—k)gT(k {ke}ees) + & ({keeer, — )ﬁp(wa)gf(k, {ke}ies)
- [[Z B e (w4 B ehienss 08T (k. {hee)

a

+ Z ] 5 ({ke}eer, — ) (k wWj ‘Hda,kg’ {kZ}ZGJ\j)

jeJ Wa

K+ -
+ —& ({kehrer, =@ + wo, —R)E] (&, {ke}ees)

k# -
— & ({ke}eer, —k);é’](w + wa, k, {ke}ees)| - (F.64)
Shifting the associated frequency, it is readily shown that the two last terms cancel

each other. Thus one is left with the operator f)#(wa) acting on the external leg of
the object [, &&;, proving (F.63). Finally,

7(n)
6(I)i<qa)7;1 in [{pf}]q’:O =0

_51%/ ( {pe}]a{ke}])> w(@a) €7 ({pe}i, {ke}i)

D) [ TLeT pibin (i)

intern ;—1

m

mtern =1

= 810, Dy(@a) T\ ({pe}) - (F.65)

To prove (F.54), one still needs to check that the same property follows for two
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functional derivatives and their subsequent wave-number derivative. We have
52 ~
T, -
6@;(q1)0P;(qz) [tpedla=o h==

= S (I et ki)

intern k,k/ m;ék-’k-/

) )
% g Pk {ke}k}\ézo—éq)j(qz)e,z {pehw {kahul|
62
il T €2 tpohe ) e e bl
(F.66)

At this point, first setting only one wave-number to zero — let us say ¢» —, the
®;(q2) functional derivatives can be replaced by 0, D,(w2). This is possible as
well in the second term in curly brackets because the object to which it is applied,

Wiql)éfﬂ{pg}k, {k¢}x] ‘@:0 is nothing but a tree with the ¢; leg amputated and the
derivative property of ﬁ“(wa) (F.63) applies. Thus, one has
52 ~
T, _
6P;(q1)0P;(qz) [tPetlo—o Gi=0=0

=G [ S (IT Enpibm b))

intern k:,k/ m?gk,k./
k#k!
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X 5 et ek . Dulm)el ({pehw, feh)
[ S (T e Upddun kb)) Do) [ L b Dl
Kintern 1, k' 2k g1 -

=B [ 3 (T1 & tpede Bede)) v tpades okl

intern k k/#k 6¢Z (ql)

q1=0

—

q1=0

(F.67)
Making explicit ﬁy(w2)7
5 ~
T _
0B ()0 (qz) {pe}e=o

—

q1=q>=0

_ _53»,}#{;—2 [/k > < 11 dpetw. {kﬁ}k’)>

intern k k’/#k’
x Ol l(pke, (], ]
00 (w1 + @, G1) " ’ ®=0

! i ?];_i [/k Z < H En({petm\ka, {kz}m’)>

intern ml#m

0
X 5 g En Pedm Ve il 0]}

, (F.68)

q1=0
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with the shorthand notation {p¢},\k+ = {vk + w2, Dk, Prstk }m if Pr € {P¢}m and
else {pr}m\k+ = {pPe}m. Setting ¢ to zero

52
5q)k(<11)5q)£(<l2)
_ s s NH
= 5_7’1}1/57/7),,, ; w2 |:

[ S TT Eetpebor e kb)) D) (b )

intern m/ #m

T, {peH oo

—

71=3>=0

n

=i, Y L [Bu(m) [ TTETURIwE (k)]

intern gy,

= 8}, 010, Do (@) D, (@1) T, ({pe}) (F.69)

i10n,

which finishes to prove the property (F.54). Going back to the flow equation (F.98),
one obtains the announced result:

~(n 1 o . ~ 5 ~(n
G ({pcheezn) = 5 | G, (~ai ~@)Du(w)Du(w2)Gy ., ({pr})
q1,92
1 5 A ad = ~(n
=5 | 0GE, (~an—@)Du(w)Du(w2)G, ({pd}).
q1,92
(F.70)

F.4 Solution of the fixed-point equations

The aim of this secion is to derive the solution of the flow equation (5.63) for n-
point correlation functions at the fixed point and in the 3-D case. We reproduce
it from (Tarpin, Canet, and Wschebor ). It is easier to work with the hybrid
time-wave-vector representation of the flow equation, which reads

85Gg?.‘.an (thﬁh T 7tn71>ﬁn71)

1 n — - = = e
= th(;vl)...an(tlvplv"' 7tn—1>pn—1)zpk pe/J,@(TD)
kL w

iw(ty—te) _ 6iwtk o e—iwtg +1

(F.71)

First, let us introduce the effective forcing D, and the effective viscosity v, as follows

N.(|7 -7 = /ei‘f'(f_f/)Dnﬁ(q/ﬁ) = D.k"n(k|T — 7))
q
Ru(7 = 7)) = [ €7 fila/n) = vi(-5)r(elz - 7). (7.72)
q
As explained in Sec. 3.4.3, let us define the dimensionless fields 4, (X, ) and u,(X,)
as

Uo(X) = Vilig(X), and iiy(x) = Viiig(X), (F.73)

where X = (KZ,w,t), such that if they are independent of x, the EAA and the
regulator term AS, are independent of x. Inserting the definitions (I'.72) and (1'.73)
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into the expression of the regulator (5.11), one obtains in a first step

:‘iDﬁ) d % W, K d %
V, = (w —— > , and V, = (""D“ > . (F.74)
ViR K

In a second step, let us insert these expressions into the non-renormalized two- and
three-point vertex functions of (5.48). Asking that the EAA is independent of x
yields

Wi = Upk>,

KTADT =1 (F.75)

The first line fixes the scaling of time and the second line (which is the non-
renormalization of the Navier-Stokes vertex) fixes v, in terms of D,. Up to this
point, the results did not depend on the dimension of space. The last ingredients
necessary to fix the scaling exponents is the stationarity condition. However, this
condition is different in 2- and 3-D (Canet, Delamotte, and Wschebor ).

We specify to the 3-D case to write the fixed point solutions. In this case the
mean dissipation of energy per unit volume and per unit mass ¢ has a finite value
and is equal to the mean energy injected per unit volume and per unit mass (in 3-D,
the damping at large scales R should play no role). Let us calculate ¢

€ = {fa(x)va(x))
/ No(|7 — 200t 7 )vats, D)

— Dx / (13 = #D)Bul, 7 )0a (s, 3))
Dy (F.76)

where y~! is a numerical factor depending on the precise shape of the forcing. To
obtain a k-independent ¢, D, and v, are fixed to be

D, =evyx™®, and v, = (e7) 23, (B.77)
The dimensionless velocity and response velocity follow as
Ug(x) = KTVBB3Y120, (X)), and g (x) = k1P 37120, (%), (F.78)

Let us finally define the dimensionless integral J, through

/ac Q) = e BB (&), (F.79)

where s = In (k/A) is the "RG time" introduced in Sec. 3.4.3.

F.4.1 Small time delays

If one defines ¢; = e1; and let € tend to zero, the integrals in the r.h.s. of Eq. (F.71)
are equivalent to €?I.f,ts, where I, = [_J.(w):

w(ty—te) _ piwty _ ,—iwoty 1 o
lim — / Tl s S (F.80)

e—0 62 w2
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Furthermore, it was shown in Canet, Delamotte, and Wschebor that, because
of the presence of the regulator, j,i(w) is dominated by frequencies of order x2/3,
and that [, is finite. In the limit where all the time delays t; are small, the flow
equation (I.71) simplifies to

. . L n . .
0 ngl .Qn (tlapla e 7tn—1apn—1) = g|pktk|20&1)man(t17p17 T 7tn—1apn—1) 3 (Fgl)

(using Einstein convention for repeated indices). In order to ﬁnd a solution, we
define a (n — 1) x (n — 1) rotation matrix R, such that Rii = \/ﬁ, and introduce
new variables pj, such that p; = R;;p;. In particular p; = \t/’“% and the flow equation
becomes

. . I 2 A, . .
OG0 (b1, P1, -+ tnts faet) = §tktk\P1\2G&1)...an(t1>Pla oty Pt) -
(F.82)

To study the fixed point of this flow equation, we introduce the dimensionless
variables p; = gi/k, and I, = v 'e72/352/3],. According to Eq. (F.78), the dimen-
sionless n—point function can be defined as

NN NI | R S TERE , ;
Goﬁ...an(thph e 7tn*17p”71> = (W) R Gari...ozn@lvpla to 7tn717pn*1)7

(F.83)

where m (resp. m) is the number of velocity (resp. response velocity) fields in the
generalized correlation function G, with m + m = n. We note dg = 3(m — 1) +
(m — ) /3 the scaling dimension of G™, and we define oy, = yI,/2 (which fixed
point value o, = «ag is the coefficient appearing in (5.69)). The flow equation for
G™ then reads

{a —dg—pi 05+ ta a tktk|p1|} GO o (E o1, 1, faer) = 0. (F.84)

In the following, hat symbols are omitted to alleviate notation. Let us remark that
pi - Oz, only acts on the moduli of the vectors pj;, so that if one introduces the polar
decomposition p; = p;7i;, one has p; - 05 = p;0,,. Introducing the scaling variables
y; = p12/3t;, the flow equation further Slrnphﬁes to

(n)

2 — —
5045 ykyk:p?/g}Gal..‘an(yla PL T, Yn—1, Pr1s Tlp—1) = 0. (F.85)

Let us consider RG scales s such that the fixed point is reached: «g has attained
its fixed point value ., and the explicit dependence in s (through ;) is zero.
Denoting u; = Inpy, u;»1 = Inp; — Inp;, the fixed point equation becomes an
ordinary differential equation

{0~ dapidy,—

2 Zu n - —
{ —dg — Oy, — 3 Ot YUk €3 1}031 o, (YU, T Y1, Un—1, Tip—1) = 0. (1.86)

The differential equation Eq. (F.86) can be integrated, and yields

n - =
IOg Ggl)...an (ylv U, M1, 5 Yn—1, Un—1, nn—l)

2, . .
= —a, Yryp 3" — dguy + FC(”) an (W1, T, Y1y Un—1, Tin—1) - (F.87)
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In terms of the original dimensionful variables, one obtains

m—m

log [£“T* L790G) (1,71, sttt
= —06562/3[/2/3 tktk p% - dG lOg(plL)

—

+ FS(n)al...an (p?/3€1/3t17 %7 o 7p§/381/3tn717 p;_l) + O(pmaxL) ) (F88)
1 1

where p; = \t/’"t—% and the dimensionless constant v has been absorbed in the function

F én). The error on the solution is bounded by a term of order pyaL, where pay iS
the maximum of the amplitudes of the p; and of their partial sums. Note that again
the Kolmogorov solution, which stems from standard scale invariance, is included
explicitly although it is of the same order as the neglected error terms. This part
is not calculated exactly since it could receive corrections from the neglected sub-
leading terms in the flow equation. The leading term in G is a Gaussian in the
variable |prtx|, which explicitly breaks scale invariance. This breaking is related
to the sweeping effect, and expression (F.88) provides its exact expression, as a
generalization of the Gaussian in tp for the two-point function. The constant ag is
positive, see Canet, Delamotte, and Wschebor . The vectors p; are not given
explicitly, except for py, but they can be constructed for any generalized correlation
function.

For instance, in the case of G, one can use R o (! ') as the rotation matrix
from the p; to the p;, so that

log [ LG (1,71, ta, )] = —ase L |ty + Pata|* + O(paxl),  (F.89)

omitting the Kolmogorov scaling terms. A particular and interesting case corre-
sponds to t; = to = t. In this case, the expression (F.89) simplifies to

log [e'L7TGE) (71, t, )] = —aseP L2 2| + pol* + O(puaxl) . (F.90)

This simple prediction could be tested in numerical simulations of NS equation.

F.4.2 Large time delays

In this section, we derive the form of the fixed point solution for the flow equation
(5.73) in the limit of large time delays. In this limit, one can reiterate the calculation
for the two-point function, writing J(w) = (Jx(w) — J.(0)) + J.(0). The integrals
of the type [_e"™"F(w) decay exponentially in ¢ since F(w) = (J.(w) — J.(0)) /=
is an analytic function of w, while [_F(w) is a constant. Thus, the integral in
(5.73) is dominated at large times by

tw(ty—ty) _ iwoty _ ,—iwty 1
JH(O)/ e e e +

o2
“dw () . [ wt) e Tl
= 4:]&(0)/_ gSln (T) Sin ( 2 ) wg
J,(0
_ 2< ><ytk\+m\ ~Jtx — te]) (F.91)
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The flow equation Eq. (5.73) thus reads in the limit of large time delays t; > x?/

0.6 . ({t,py) = 2=

o ([t + Lt = [t — e ) G2, ({8, 53)) - (F.92)

)

To give an important concrete example, let us focus on the special case where
all time differences are equal t; =t for ¢ = 1,--- ,n — 1. In this case, the solution
can be simply derived. Introducing as previously a (n —1) x (n— 1) matrix R’, such
that R';; = 1, one defines the variables g by p; = R’;;0; with 01 = Y, px. The flow
equation becomes

J(0)
3

a Gal Qn (t7 517'” 7<§’n71) = ’51‘2“’@&?)0[”(757 517"' 7@’”71)' (F93)

To study the fixed-point, one switches to dimensionless variables as in the previous
section and defines y = g?/ 3t, to obtain the fixed point equation

J(0)
3

{ —dg — Qiagi ’§1|4/3 \y|} ay...an (yv 01,M1, - ;Qn—l,ﬁn—l) =0, (F~94)
where hat symbols have been dropped. This equation can be integrated introducing
u; = Inp; and u;»1 = Inp; — Inp;. One obtains in terms of the original variables
and including the sub-leading contributions corresponding to the Kolmogorov part
as previously

log (6""57"L‘dGG$)...an (¢, 01,7+, Pn-1)

= —aePLP |  — dglog(eiL) + Fy ", ., (g?/‘”’e”%, o Qg‘l) + O(PunsxL)
1 1
(F.95)

with o1 =), Pk, and oy, = ~vJ,(0)/4. As in the previous section, the matrix R’ can
be explicitly constructed for each n. Note that in the more general case of t; = ¢ for

t1=1,---,nand t; =0 fori =n"+1,--- ,n — 1, the above procedure would also
lead to a solution with R’ a n’ x n’ matrix leaving the p; fori =n"+1,--- ,;n—1
invariant.

As an example, let us specialize to the case of G®. One can then use R' = (1 7!)
as the matrix from the p; to the pj;, so that

log (5_1L_7G&35)7(t1>ﬁ17 ta, 7))
= —ape MLV |t] ) + pol* — Tlog(|p + fa| L)

P1+P2 P2— D
+F( p1+D 2/3 1/325 + O(pmaxL) - F.96
t <| el TP+ pa| [P+ P2 ( ) ( )

Again, the simple prediction
log [e_lL_’?G(()égb))’y(tvﬁlvt?ﬁQ)] = _aL€1/3L4/3 ’t| |ﬁ1 +ﬁ2‘2 + O(pmaxL) ) (F97)

could be tested in direct numerical simulations of NS equation.
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F.5 Next-to-leading order term in the stream
function formulation

Let us check that we recover the leading order at unequal time in the stream function
formulation. The leading order flow equation reads

alié'fl)z (pb et 7pn)

leading
1 5 A2
— 5 anGEj)( qi, _q2)
q1,92
o, B 2 2
asay 0 { 0 ) ]
X Gil in P15+ Pnsl ) F.98
2 9q20q, 19Pi(a1)0®;(qz) i P | =0 |gi==0 e

The derivation is the same as in Appendix ['.3.2, except that after having distributed
the field derivatives, we have to distribute the g-derivatives. Because a vertex func-
tion with a wave-number set to zero is zero in the stream function formulation, the
terms with a = b, which correspond to having two g-derivatives acting on the same
leg of the diagram, are zero. Thus we are left with one derivative hitting on each
leg.

aﬁég?)zn ({pf}léﬁin)

leading

/ ééz( ( Qb_(h)

q1,92

l\DIn—

P 52
>< «
ad 2 0¢204" [5@((11)5@;‘((12) fedn

, (F.99)

q1=q2=0

o]

$=0

At this point, one proves as in the velocity formulation that

O 6 ] » |

"o G ; = 0; lEaL'D W Gi1 ; : F.100

g qu)i(ql) 11...2n[{p€} J] ool i€y u( ) n<{pf} J) ( )
using

90 eTp b k) — bican (@) ({pekes {kek)  (F.101)

g2 6®;(qq,) Peyi \egal] RPN Peyis 1Ke .

where ST[{pg}Z, {k¢};] is an element (vertex function or propagator) in the tree
composing G

Let us check that it works also for two functional derivatives and their subsequent
wave-number derivative. To do this, we first set g5 = 0 to zero, as in Appendix [.3.2.
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The calculations follows in the same way, except when distributing the ¢; derivative:

& 6? )
DgrOgE 5B )50, () v-in Pela=ol
. 0
= —5jwl€,8ua—%x{
q_ly T / / 1) T
@y |:/kt ; (ggk'({pz}k ek )> 6®;(wwy + o, q~1)5k: {Petr {kf}kz]‘q):o}

@Lf;_g[
k=1

<[ S (T toador b o) g nlpdm {ke}mJ\q)_O]}

intern m/;ém

<[ STt ) el o, ],
+ Bipi€ay é i—i [

« [ i, (ml;[m ET (Pt Vs, {kehn) ) Du(@0) L ({Ped o\ (s} }

= e 2 By | e dpadn\ke (k)|

= iwf;jwi%au%u@uk(;z)@u(Wl)7357?2’"({pe}y;- (F.102)

To go from the second to the third equality, we had to use again that a vertex
function with a leg evaluated at zero wave-number is zero. Going back to the flow
equation (I7.98), one recovers the leading order result of the velocity formulation:

~(n 1 3 A 2 o N - ~(n
Gy ([pcherea) = 5 | 0GRt~ )0 05 canes D) Do (w2) L, ({Pe})
q1,92
1 » S NR A
=5 | 06, (~a —a)Dulw)Du(w2) Gy, ({pe})
q1,92

(F.103)

where we have used the definition of the stream function to reconstruct the velocity
correlation:

G o ({Pehicecn) = [[ i€as i G, ({Peti<ecn) - (F.104)
/=1

F.6 Next-to-leading order terms at equal times

In this appendix, we will present in more detail the calculation leading to the van-
ishing of certain terms in the flow of the correlation functions at equal times. The
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starting point is the next-to-leading order term of the flow equation for the gener-
alized correlation functions, evaluated at equal times

_ 1 -
o, [ G, n = 3.C? (—qu, —
fon) 11...zn({p£}1§5§ )NLO 2 . z_]( qi, q2)
¢hayala] d* { 5’ () . }
X v - Gyl [Apetsi )
/{W} 4] 8q58qb3q53qd 5<I)i(Q1)5<I)j(Q2) 1"'”[{ gl 2=0 {4 g
(F.105)

where as before a, b, ¢, d take value in {1,2}. As for the leading order at unequal
times, Appendix F.5, the four wave-number derivatives can be classified according
to the respective number of ¢; and ¢ derivatives. Using the same argument, if the
four derivatives are ¢; (resp. four @), this contribution is zero because the vertex
function with the wave-number @ (resp. ¢ ) goes to zero when the wave-numbers
are set to zero, Thus we have to consider the remaining cases: three ¢; and one ¢,
one ¢; and three ¢, and finally two ¢ and two ¢>. Let us first treat the cases one
and two, which are the same up to a permutation of q; and qs, as well as their
respective indices.

F.6.1 Vanishing of the contribution 1-3 and 3-1

Although no Ward identity exists for the third wave-number derivative of the vertex
function, the Galilean Ward identity can still be used on the leg with one derivative
and the proof of Appendix F.5 for one velocity derivative carries through to show
that one obtains a operator D acting on the external legs of the whole diagram.

. 1 o
Oy ng)i ({Pz}1<£<n) =3 anG@(—(h, —Q2)
{we} Letn ~— ~ "INLO,1-3 2 q1,q2 vj
d'ayghes O = [ 0 Am) }
X aDa —G ., 3 y
/{w[} 31 8q55’q§8q5 ey, <w1) 5(1)3((12) 11...zn[{pf} J] a=0 [ )
) Go=

(F.106)

Now, distributing the ¢, derivatives, one obtains two types of terms: either all ¢
derivatives act on the term in square bracket or one of them acts on the operator
D.

2% VN N 3
Aasabes O = O ~m) :
1€, Do (@ G, :
/{we} 3! 8q58q58qg{ a (=) [§<I>j(Q2) e n[{Pe} J]] d=0 o

H v P o 3
O PBBG . 0 [ ~(n) }
= 5y € ozDozw Gz i y ooy Pns
/{we} 3! paDele) 3=00q50¢50q5 Lo®;(qa) PPl =0
w v P o 2
h3%93 . 0 o 0 0 ) .
+ 1€,0 D, (w [ G;" . : }
/{wz} 2 Mog () 2=00¢50¢3 L6®;(qz) i PHIl G=0

G pekiill

P=01g2=0

(F.107)

:/ haspds, s 1 0 [ 9
w20 w1 0450¢8 L0 (w + @1, )
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In the first term of the first equality, it is noted explicitly that 15‘62:0 shifts only the
frequencies associated to p; and ps, thus this term is zero due to the conservation of
wave-number of the object in square bracket and the integration in frequency. The
¢ derivative on D selects the frequency shift on the g leg, which does not vanish.
However, this term is proportional to €,,¢}'¢5. Now, inserting back this term into
(F.106), the conservation of wave-number of GE?)(—ql, —qs) gives ¢ + ¢ = 0 thus
€wdly = —€uwdlq) = 0 and this term gives no contribution either to the flow
equation.

=0 (F.108)

NLO,1-3

0, / G ({pehicscn)
{we}

At this point, one is left with

o, G .
11...zn({p€}1§fﬁ ) NLO

= an/ ég?)..in({l)e}lge@)
{we}

{we} NLO,2—2
1 -
:i/ 0.G (—d1, —qz)
q1,92
¢'didbas o 92 5 (n)

< | G, loekiil

w4 0410q79¢50q5 Lo®i(aq1)0®;(q) *=0|

(F.109)

The remaining calculations can be greatly simplified by using the invariance
under space translation and rotation in the ¢j, ¢ integrals.

Hnov P o

5 A 41414929

/ anGggz)(_qh _qZ)%
71,7

2
1 [~ -
=[0G (~wr, —wn )" )
q
= (8,00 + 00000 + 000,p) Kij(wr, wi) (F.110)
with
. 1 [~ -
Kij(wi,w2) = 3 0.G2 (—wr, —w2, %) (%)? . (F.111)

Inserting this expression back into (I'.109) gives

9w / GE?.).J‘" ({pe}lgegn)
{we}
1 -
=5 Kij(w1, @2)
w1,W2

e L T
) \OGFOGOG5005 0050470 ) [50,(n)a®;(qz) P o Gi=G=0
(F.112)

o ~(n)
o = O /{w} G i ({Peti<e<n)

NLO,2—2

Thus two types of derivatives appear, the uncrossed and the crossed ones, according
to whether the ¢ derivative is contracted with the other ¢; derivative or with the
¢ derivative. Concentrating first on the contribution given by the uncrossed one, it
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is shown in the next sections first on the example of the two-point function, then in
the general case that

3G . ({petr<i<n)

uncrossed
1 - o 5
== K;j(w, @ i
2 /wl,m i 2)8q{‘0q{‘3q2”3q5[5<I>i(q1)5<1>j(qz) Dalteidl] o
1 - S s A
=5 Kpy(@1, @) R(@)R(@) G ({pe}) - (F.113)

w1, w2

where R is defined in Eq. (5.54) of the main text.

F.6.2 Uncrossed derivatives contribution for the flow of the
two-point function

In this section, it is explicitly shown that the uncrossed contribution to the flow of
G%(pl, p2) closes. First, distributing the ¢-derivatives, it reads

~(2
8& / Gqunj; (pla p2) y
W1 w2 uncrosse

~ ot
Ki; (wla wQ) / A HA EA A D
/wl ;T2 ! w1 ,w2 aqitaqita(b a(b

éfli)n(ph _k1>éq(/;27)1<p27 _k2> |: - fgfznn(q17 q2, k17 k2)

N —

1,

T (a1, ki, k)G (—ks, —ko)T' (a2, ko, k) + (4, 1) 4 (J, )

ko
k3,ky
1 -
= 5 Kij(wla YDQ)
w1, w1,w2
0! 5 ()

1
/ @ffﬁl(pl, —kl)@ffi(pz, —k3) [ Wrwmn(qb a2, ki, ko)
ki ko 9qy 9q1 0g505

0 =@
r ki, k
+/k3 . (9q“(9 m st(Ql; 15 3)
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+
71=3>=0

2
%(2) A :
x Gy (—ks, —k I ko, k
o (—ks, 4)8q58q5 jnt(q27 2, k) + (i,q1) < (J, q2) fi=r=0
1 .
=3 wa(wh@)/
w1,w2 wi,w2

[ e k)G s i)~ R(@) R (k)
ki,k2

+ R(w1) L2 (k1 k)G (—ka, —ka)R(w) D (o, k) + (1) > (w2) | -
o (F.114)

In exactly the same lines as for the operator D, it is possible to show that the

terms in square bracket rewrite as the operator R acting on the external leg of the
original diagram. First, examining the second term, using the fact that G® and
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I'® are inverse of one another, the second term of (F.114) can be rewritten as two
combinations of GAR(w,) PGP attached to one another by a I'®. Looking at
one of them, we have

[ G0 KR s k) O e k)
ki,ks

2iea5 ~(2) 8 ~(2 -
= -—_— G 9 _k |:ka F( ) Y k 9 k
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a _ = ~
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_ Qieaﬁ[ G2 (p1, —k )k“ié S(ar + 1 — v5)6(ky — k)
= = ” Pm P1, 1) akf mu 1 1 5 1 >

~ ) B
" / G2 (—ks, —ks )k — 0 (w1 + o + 1)o7t + )|
ks 8]{}3

a jod - a ~ N g
- _kga_kéjg’%(pl’ —vs + @i, —ks) — p?a—pr%(wl + @1, pi, —ks)

= —R(w1)G 2 (p1, —ks) (F.115)

where in the second equality we have contracted G® and T'® when possible and in
the third we have integrated by parts. In fact, we just proved the equivalent of the
property (F.48) of D for R:

82 5 ~(2) . ~ ~(2)
j 1)]e= = ¥ F.11
94,04, 501 (q) GU [P1, P2; jlo=o *:o R(w)G” (p1, P2) ( 6)

Inserting back this result into last line into (F.114), it reads

- 1
aﬁ? Gq(zi)p(pla p2) - 5 / Kw"l’(wh wQ) /
w1, wi,w2 Jki,ka

w1 ,wa uncrossed '
| = GOlp1, k)G (P2 k) R()R(2) T2 (K ko)

+ 7~2(wl)Gﬁ(Pl, —kl)FE?J(kl, k2)7€(w2)G$3(p2, —ks) + (1) (w2)] :
(F.117)

In fact, this structure is the same as the one appearing with the operator D for
the leading order at unequal times. It will generalize as well for any correlation
functions. To continue the derivation let us examine separately the two terms in
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square brackets. On the one hand for the first term,
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using integration by parts twice for the first two terms in the last equality. On the
other hand for the second term,
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Integrating by parts and shifting the frequencies in the first term in curly bracket
and exchanging the ki (resp. ko) integral with the ps (resp. pi) derivative in the
two last terms, one obtains
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Inserting back (F.118) and (F.120) into (F.117), one obtains finally the expected
result
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F.6.3 General proof of the closure of the uncrossed
derivatives

Let us show that the result of the previous section for éff&(pl, p2) is true for any
generalized correlation function, ¢.e. that
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Following the same steps as for the leading order at unequal times, let us first ex-
amine the action of only one functional derivative and subsequent two wave-number
derivatives applied to a tree 7™ composing GZ1 i, ({p¢}). Using the property
(F.116) demonstrated in the previous section, we obtain readily
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Thus, it is enough to show that the operator R(w,) enjoys as well the Leibniz
property.
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Starting from the r.h.s.,
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Integrating by parts in k and shifting the associated frequency, it is readily shown
that the two last terms cancel each other, proving (F.124) and

o ) . .
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To prove (I.122), one still needs to check that the same property follows for two
functional derivatives and their subsequent wave-number derivatives. As for the
leading order at unequal time, first distributing the two ¢, derivatives and setting
¢ to zero, the property (F.124) applies to show that the resulting R(w,) can be
factorized from the remaining diagram
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Making explicit ﬁ(wg) and distributing the ¢; derivative gives
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where the first term in the second equality vanishes by antisymmetry of €,,, thus
finishing to prove the property (F.122).
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