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Abstract

Les chocs sans collision sont omniprésents dans l’Univers, notamment dans les restes de supernova, et sont formés via

diverses instabilités plasmas dépendant essentiellement de la vitesse et de la magnétisation des flux de plasmas. La de-

scription de tels chocs nécessite une approche cinétique, tant analytique que numérique. Dans cette thèse, nous avons

étudié, au travers de simulations Particle-In-Cell (PIC), les processus sous-jacents par lesquels les instabilités rentrent

en compétition les unes avec les autres. Nous avons montré que la diminution du rapport des masses entre ions et

électrons, souvent utilisée en simulations numériques pour accélérer la dynamique des chocs, peut avoir de fortes con-

séquences sur le transfert d’énergie entre particules durant la phase non-linéaire des instabilités. Ces dernières, comme

l’instabilité acoustique ionique (IAI) amènent sous certaines conditions à la formation de chocs électrostatiques, pou-

vant donner naissance à la formation de trous dans l’espace des phases, se propageant dans la région aval du choc,

et accélérant ce dernier. L’ajout d’un champ magnétique externe conduit à un changement de médiation du choc,

pouvant varier entre l’IAI et les ondes magnéto-soniques lente ou rapide en fonction de l’obliquité entre le champ mag-

nétique et la normale au choc. De plus, nous avons montré que l’orientation du champ magnétique permet de choisir

entre une dispersion convexe ou concave des ondes plasma conduisant à la création d’ondes précurseurs dans les

régions amont ou aval du choc. Ces chocs magnétisés se trouvent être correctement représentés par le modèle magné-

tohydrodynamique (MHD) tant qu’ils restent laminaires et que leur potentiel dans la région aval n’est pas suffisamment

grand pour réfléchir les particules du milieu amont. Nous avons montré que même pour des chocs sous critiques, une

fraction d’ions réfléchis, ne pouvant pas être représentés par la MHD, est suffisante à la croissance d’ondes solitaires

en amont du choc, conduisant à l’accélération de ce dernier, mais pas à un processus d’auto-reformation comme pour

les chocs super critiques. Bien que les échelles spatio-temporelles soient très différentes, les lois d’échelle rendent pos-

sible l’étude de tels phénomènes en laboratoire. Nos études numériques ont été faites dans un cadre de type tube à

choc pouvant être testé expérimentalement. A ce titre, nous proposons dans cette thèse une expérience sur la création

d’îlots magnétiques, formés par l’interaction de plasmas générés par l’irradiation de cibles par laser baignant dans un

champ magnétique externe, et conduisant à la formation de tels chocs. Enfin, nous avons démontré expérimentale-

ment et numériquement la formation de chocs électromagnétiques sans collisions par le biais de l’instabilité de Weibel

stimulée par l’instabilité de batterie Biermann, conduisant à l’accélération de particules par le mécanisme de Fermi. Ce

nouveau type d’expérience pourrait expliquer l’origine du rayonnement cosmique provenant des restes de supernova.

Collisionless shocks are ubiquitous in the Universe, especially in the supernova remnants, and are formed via various

plasma instabilities mainly depending on the speed and magnetization of plasma flows. The description of such shocks

requires a kinetic approach, both analytical and numerical. In this thesis, we have studied, through Particle-In-Cell

(PIC) simulations, the underlying processes by which instabilities compete with each other. We have shown that the

reduction of the ion-to-electron mass ratio, often used in numerical simulations to accelerate the dynamics of shocks,

can have strong consequences on the energy transfer between particles during the non-linear phase of instabilities.

These instabilities, like the ionic acoustic instability (IAI) lead under certain conditions to the formation of electrostatic

shocks, which can give rise to phase space holes formation, propagating in the downstream shock region, and acceler-

ating the shock. The addition of an external magnetic field leads to different shock mediation, which can vary between

the IAI to the slow or fast magneto-sonic waves as a function of the obliquity between the magnetic field and the shock

normal. Furthermore, we have shown that the orientation of the magnetic field makes it possible to choose between a

convex or concave dispersion of the plasma waves leading to the creation of precursor waves in the upstream or down-

stream shock regions. These magnetized shocks are correctly represented by the magnetohydrodynamic (MHD) model

as long as they remain laminar and their potential in the downstream region is not large enough to reflect the particles

of the upstream medium. We have shown that even for sub-critical shocks, a fraction of reflected ions, which cannot be

modeled by the MHD, is sufficient for the growth of solitary waves upstream of the shock, leading to the acceleration

of the latter, but not to a process of ’self-reformation’ as for super-critical shocks. Although spatio-temporal scales are

very different, scaling laws make possible the study of such phenomena in the laboratory. Our numerical studies have

been done in the context of shock tubes that can be experimentally tested. As such, we propose in this thesis an exper-

iment on the creation of magnetic islands, formed by the interaction of plasmas generated by the irradiation of laser

targets bathed in an external magnetic field, leading to the formation of such shocks. Finally, we experimentally and

numerically demonstrated the formation of collisionless electromagnetic shocks through the Weibel instability stimu-

lated by the Biermann Battery instability, and leading to particle acceleration by the Fermi mechanism. This new type

of experiment could explain the origin of cosmic radiation from supernova remnants.
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Introduction

Shock waves led several generations of scientists to investigate these physical phenomena and,
still give rise, thus far, to numerous questions. The first study on shocks deals with the perturba-
tions which a projectile could produce in a gas flowing at a high speed. More than a century ago,
(Mach and Wentzel, 1884) were the first to define the shock formation condition, in the course of
their experiments on a bullet propagating in a transparent though very viscous fluid. This latter
condition, stipulating that a shock wave forms whenever the relative drift speed between a gas
flow and a projectile, called v , is larger than the sound speed in the gas, called cs . The ratio be-
tween these two speeds, M = v/cs , is at this day referred to as the Mach number, and M > 1 as
the ’sine qua non’ condition for the shock formation. The Mach experiment, motivated by mili-
tary purposes, is at this day one example among many others of observable shock on Earth. The
most famous one is probably today, the Mach cone which can be seen on the backside of military
aircrafts, breaking the sound barrier.

Figure 1 – Photography of the condensation Mach cone at the backside of an aircraft propagating beyond
the sound speed (left). The sketch of the shock is shown in the right panel. Circles illustrate sound waves (or
other types of waves) being emitted by a moving source (Doppler effect). The shock propagates orthogonal
to the cone. The shock is produced for a Mach number M > 1. Picture from a website.

The condensation cone arises, in Figure 1, only during the initial forming of the shock wave,
when the pressure immediately behind the leading edge of the steepening sound wave drops due
to rarefaction. Once the shock forms and is stable, the density, pressure, and temperature down-
stream (i.e., behind the shock) are higher than those upstream (i.e., beyond the shock). The profile
of the shock can be constructed from the characteristic geometry of sound wave around the air-
craft (cf. Figure 1 right). In the downstream region the subsonic flow bends around the obstacle.
Since retardation implies that the volume of a flow element is reduced, the density downstream of
the shock is increased above the density upstream of the shock and the flow energy is converted
into the heat. This growth in temperature along the shock discontinuity increases disorder and
thus implies that entropy is generated at the shock making the whole process irreversible. Obvi-
ously, these parameters slowly equilibriate with the surrounding medium far enough away from
the shock, but in the immediate vicinity, the shock resembles a step function.

A shock can be represented as a wave that became highly nonlinear. Considering this wave
as a one-dimensional sinusoidal disturbance of the gas velocity V, moving in the gas background
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at the velocity V0, the velocity is largest at the maxima of the wave. Since the wave maxima move
faster than the remaining parts of the wave profile, the wave steepens until the gradients become
so steep that the wave breaks out and collapses, the wave starts forming a ramp corresponding
to a shock front. A schematic representation of the wave breaking process is shown in (Balogh
and Treumann, 2011). The breaking can be avoided by additional processes which set on when
the wavelength of the ramp becomes very short. In the wave propagation equation (1) the terms
of higher-order derivatives in the velocity need to be taken into account if the ramp becomes to
steep.

Equation describing of the wave propagation is given by

∂V

∂t
+ ∂V

∂x
= ∂

∂x
D
∂V

∂x
−β∂

3V

∂x3 , (1)

where D(x) represents a diffusion coefficient and β is the lowest-order contribution of wave disper-
sion to the evolution of the wave shape and amplitude (The higher-order gradients in the velocity
have been neglected). The nonlinear equation (1), shows that the wave profile can be prevented
from breaking, if diffusive or dispersive terms balance the nonlinearity steepening, thus permit-
ting to form a stationary shape wave. That equation can be simplified in two extreme cases. The
first case is that of purely diffusive compensation of the nonlinear steeping by neglecting the last
term in eq. (1), leading to the Burgers’ Dissipative Shock Solution (Burgers, 1948) which is com-
monly used in fluid mechanics. The second case is obviously the purely dissipative compensation
of the nonlinear steeping, when neglecting the diffusion coefficient D(x), leading to the Korteweg-
de Vries Dispersion Effects (Korteweg and de Vries, 1895). The latter equation accepts the so-called
soliton solution, which describes a stationary bell-shaped solitary wave pulse propagating at a cer-
tain velocity in a particular direction without any change of form. This solution will be discussed
in detail in Chapter 4 of this thesis. However, it is important to note that dispersion does not pro-
vide dissipation and entropy generation, and only diffusion can provide these, which means that
a wave described by the Korteweg-de Vries equation will be able to prevent the breaking, but not
to form a shock.

A shock wave is thus a longitudinal propagative wave, as a sound wave, with a nonlinear wave
front reaching an equilibrium between deformation and dissipation via dispersion and diffusion.
The energy dissipation mechanism, allowing to convert kinetic energy into thermal heating as dis-
cussed before, is one of the most important characteristics of a shock. Majoritarly, the dissipation
comes from microscopic processes, depending of conduction, viscosity, and other gas proper-
ties. On Earth, almost all gas are collisionnal, the interactions between molecules are mediated
by binary collisions, leading to heating and entropy generation. The shock boundary is sharp and
well-defined only as long as binary collisions between the particles of the gas occur frequently on
the characteristic time scale of the gas flow. If this is not the case then the width of its transition
layer widens. This scenario is frequently encountered in outer space where the particle density is
low.

Collisionless shocks in astrophysics

Shocks are not only present on Earth, they are ubiquitous in the Universe and are of particular
importance in astrophysics. The gases, close to stars and planets, reach temperatures substan-
tially exceeding the ionisation energy threshold are essentially ionized, and evolve in their plasma
states, where the two components, electrons and ions, are independent populations that are cou-
pled primarily through the forces of electrostatic attraction. This baryonic matter (99.9 % of the
matter which can be detected by our current technology, which represents 4–5% of the universe
average density, the rest being covered by the dark matter and dark energy) is largely much less
dense than on Earth and consists of particles moving much faster, leading to a very low binary col-
lisions frequency. The Coulomb mean free path, for fast particles, lC ∝ v4 increases rapidly with v
and, for thermal particles, lC ∝ T2 increases with temperature. In interplanetary space this length
is of the order of several AUs (Astronomical Units), and any shock of lesser width must therefore be
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completely collisionless. Shocks developing under such conditions are called collisionless shocks,
since binary collisions are not efficient anymore for the shock dissipation. The widths of collision-
less shocks are much less than the collisional mean free path, and any dissipative process must be
attributed to mechanisms based not on collisions but on collective processes capable to warrant
the production of entropy. The dissipative mechanisms that lead to the heating of a plasma that
crosses a collisionless shock and to the increase of its entropy must involve collective processes.
More than one such process exist. Several of them can be at work at the same time and they can
even couple to other processes on spatio-temporal scales that differ by orders of magnitude. Tran-
sition layers of collisionless shocks can thus display a more complex behaviour than those of their
collisional counterparts.

Figure 2 – A timeline of historic supernova candidates. The historical observators, the likelihood of identifi-
cation, the distance estimate, as well as the type of supernovae are given in legend. This picture comes from
the Chandra X-ray Observatory, Credit NASA/CXC/SAO. The majority of these pictures have been taking by
the X-ray Chandra satellite, as the ones for the Tycho SNR or the G347.3-0.5 SNR.

The first observations of stellar events, date back more than a millenium. Supernovae were
the stellar objects which have captured the most attention of the scientific community on Earth
(cf. figure 2), since they are some of the most illuminating phenomena in the Universe. Some of
them possess properties which are particularly interesting for the astrophysic community, as the
supernovae of type Ia (RCW 86, SN 1006, SN 1572 called Tycho, SN 1604 called Kepler), occuring in
binary systems (two stars orbiting one another), which produce consistent peak luminosity. The
supernova type Ia explosions are used as standard candles (controversial) to measure the distance
to their host galaxies because the visual magnitude of the supernovae depends primarily on the
distance.

Furthermore, the supernovae remnants (SNRs), which are diffuse expanding nebula that re-
sults from a supernova explosion, seems to be a candidate to collisionless shock formation. Dur-
ing the free expansion of the SNR, a forward shock (or blast wave) moves out supersonically from
the explosion through the surrounding medium, either a circumstellar material produced by pre-
supernova mass loss in the form of stellar winds or the interstellar medium (ISM) itself. Pressure
of the shocked ambient material eventually exceeds the thermal pressure of the ejecta. Ambient
medium is accelerated, compressed and heated. It pushes back into the ejecta, creating a reverse
shock. This reverse shock is responsible for heating the supernova ejecta to X-ray emitting tem-
peratures. The shock wave also accelerates the ISM into an expanding shell which outputs copious

3
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amounts of synchrotron radiation due to the acceleration of electrons in the presence of a mag-
netic field. This free expansion continues (100-200 years) until the mass of the material swept up
by the shock wave exceeds the mass of the ejected material, leading to an adiabatic phase during
which instabilities mix the shocked ISM with the supernova ejecta and enhance the magnetic field
inside the SNR shell (10,000 - 20,000 years). Finally, the evolution of the SNR ends in a radiative
phase during which the shock wave continues to cool and electrons, recombine to form heav-
ier elements, and radiate energy much more efficiently than the thermal X-rays and synchrotron
emission produced thus far, further cooling the shock wave which ultimately disperses into the
surrounding ISM.

As said before, the reverse shock is maintained by electric and magnetic fields generated col-
lectively in plasma. The magnetization of these shocks, defined as

σ= B2

4π(γsh −1)ni mi c2 , (2)

with γsh =
√

1− v2
sh/c2 the Lorentz factor of the shock (ni and mi the ion density and the ion

mass respectively), exceeds by far the original ISM magnetization, σISM ∼ 10−9 (BISM ∼ µG). The
increase of the magnetic field in SNR shocks is often due to the development of electromagnetic
instabilities (discussed in detail in Chapter 2) leading to magnetic turbulence, strong enough to
isotropize the flows, able to accelerate particles via the Fermi mechanism (discussed in Chapter 5)
and to generate nonthermal X-ray emission, which can be observed via the measurements of the
cosmic rays (CRs) spectrum on Earth.

G347.3-0.5 (cf. figure 2) is one of three shell-type supernova remnants (SNRs) in the Galaxy
whose X-ray spectrum is dominated by nonthermal emission. This puts G347.3-0.5 in the small
but growing class of SNRs for which the X-ray emission reveals directly the presence of extremely
energetic electrons accelerated by the SNR shock. The bright northwestern peak of the SNR was
resolved with the X-ray Chandra satellite consists of bright filaments and fainter diffuse emission,
these X-ray filaments are probably controlled by radiative losses (Marcowith and Casse, 2010) as
those in SN 1006. From the Chandra data, (Lazendic et al., 2004) explains the broadband emission
from G347.3-0.5 with the synchrotron and inverse Compton mechanisms and shows that spectral
properties of these regions support the hypothesis that efficient particle acceleration is occurring
in the bright SNR filaments. The clumpy morphology of these two SNRs come from the hydrody-
namic Rayleigh-Taylor instabilities causing a departure of the ejecta from spherical symmetry.

In younger SNRs, such as Cassiopeia A, Tycho, and Kepler an Alvénic and fast magnetosonic
modes damping is the dominant magnetic relaxation process (with a magnetic field ∼ 200-300
µG), possibly leading to PeV CR energies (Marcowith and Casse, 2010). In particular, the Tycho
SNR (well known for its collisionless shock with the ISM) is represented in figure 2 (Tycho colors:
Red 0.95-1.26 keV, Green 1.63-2.26 keV, Blue 4.1-6.1 keV) which shows X-ray emission measured
by Chandra (Warren et al., 2005). The thermal plasma ejecta is localized in the center of the SNR
(green), and the edge of the expanding shock appears in blue, from the non-thermal particles
accelerated at the shock front. Furthermore, FeKα diagnostics using high-quality X-ray data ob-
tained by the Suzaku satellite revealed efficient collisionless electron heating at the reverse shock
of Tycho’s SNR (Yamaguchi et al., 2014).

Supernova remnants are not the only stellar objects able to eject plasma at very high speeds
and produce large energy X-ray emission. Plasma, in SNRs, expands generally at non-relativistic
velocity, but other astrophysical events are much more brutal and drive shocks with relativistic
and even ultra-relativistic flows. It is the case of relativistic jets from Active Galactic Nuclei (AGN)
or from Gamma Ray Bursts (GRB) reaching relativistic factor up to γsh ∼ 103. Even supernova,
can lead to the formation of nebula composed of a plasma accelerated to relativistic speeds by a
rapidly rotating, hugely powerful magnetic fields (above 1 TG) that are generated by a spinning
pulsar inside the shell of the SNR. These Pulsar wind nebula (PWN), stream into the surround-
ing ISM, creating a standing shock wave, called termination shock, which decelerates the plasma
flows to sub-relativistic speeds, as it is the case for the Crab nebula (cf. figure 2). Strong magneti-
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zation of the PWNs leads to different shock formation mechanisms and to alternative acceleration
mechanisms (Lyubarsky, 2003; Sironi and Spitkovsky, 2011b) since these shocks do not necessar-
ily produce the level of magnetic turbulence required for Fermi-like acceleration. Description of
different collisionless shock mechanisms in the Universe is shown in figure 3, as function of the
shock magnetization σ and the shock speed βsh .

Figure 3 – The landscape of collisionless astro/space shocks, depending of their magnetization σ and their
energy γshβsh . The white transparent part represents electrostatic shocks (including SNRs, virial shock).
The red transparent part represents Weibel-mediated shocks (including GRB, AGN jets, and SNRs). The
green transparent part represents magnetized shocks (including PWN, Earth bow shock, AGN jets, and
SNRs). Adapted from A. Spitkovsky

Relativistic, weakly magnetized flows lead to shocks essentially mediated by the ion Weibel in-
stability (Weibel, 1959) and the following non-linear generation of magnetic turbulence (discussed
in Chapter 2 and 5), are the cradle of efficient acceleration (up to 10% of the flow kinetic energy) via
a Fermi-like mechanism has been demonstrated by means of numerical simulations (Spitkovsky,
2008b; Sironi and Spitkovsky, 2011a). As said before, the SNR does not necessarly mediates a shock
via an electromagnetic instability (Weibel instability), but it can also form an electrostatic shock
developing in magnetized electron-ion flows and leading to another acceleration mechanism than
Fermi, the Shock Surfing Acceleration (Hoshino and Shimada, 2002). A third type of shock media-
tion is feasible for supernova, with a very high magnetization level, the so called magnetized shock
(discussed in Chapter 4). The shock is thus sustained by a magnetic barrier (often referred to as a
magnetic reflection shock) that provides the local dissipation and flows isotropization mechanism
through the Maser Synchrotron Instability (Zarka et al., 1986; Hoshino and Arons, 1991). In this
type of shocks, the Fermi mechanism is suppressed and the acceleration relies on the so-called
Shock Drift Acceleration (Amano and Hoshino, 2007; Matsukiyo et al., 2011) in which particles
gain energy from the motional electric field driven by the moving magnetic barrier and are found
to drift along the shock front surface.

The best understood magnetized shock in a dilute medium is probably the Earth’s bow shock
(cf. figure 3 solar). The Earth’s magnetic field is an obstacle for the solar wind (Goldstein et al.,
2016), which is made of particles that escaped from the solar corona. The solar wind is fully ion-
ized and composed of electrons, protons and a minor fraction of heavier ions. It is a good con-
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ductor and, hence, it carries with it some of the Sun magnetic field. The relative speed between
the Earth’s magnetic field and the magnetized solar wind exceeds that of the charge density waves
in the solar wind plasma. A shock forms, which separates the solar wind from the Earth’s mag-
netosheath (Lucek et al., 2005). The latter is the downstream region. The shock is approximately
stationary in the rest frame of the Earth while the magnetosheath plasma flows around the Earth’s
magnetic field and escapes in the anti-sunward direction. The bow shock’s thickness is about 100
kilometres (Bale et al., 2003). The mean free path of solar wind particles is orders of magnitude
larger than that and binary collisions are unlikely to occur in the plasma while it crosses the bow
shock. The shock dynamics is regulated instead by interactions of the charge- and current densi-
ties carried by the ensemble of the plasma particles with the electromagnetic field. The bow shock
is a diffuse hyperbolically shaped region standing at a distance of 90000 km from the Earth sur-
face, in front of the magnetopause. The shock normal can be perpendicular, tangent or parallel to
the solar wind magnetic field leading to characterization the bow shock as perpendicular, quasi-
perpendicular, or quasi-parallel. The orientation of the macroscopic field is changing, and this af-
fects the shock formation (discussed in Chapter 4) and the acceleration mechanism (Caprioli and
Spitkovsky, 2014). The Earth bow shock is the paragon of a magnetized collisionless shock. In-situ
studies of the Earth’s bow shock by satellites can thus improve our understanding of them. How-
ever, the dependence of shocks on plasma bulk parameters like the direction and relative strength
of the upstream magnetic field and on the plasma temperature and flow speed (Bale et al., 2005;
Burgess et al., 2005) implies that we may not be able to generalize the insight gained from studies
of the Earth’s bow shock to other collisionless shocks. All these different type of shocks are able by
various mechanisms to accelerate particles, electrons and ions, which are observed on the Earth
as high-energy cosmic rays.

In this thesis we have focused our attention on shocks of non-relativistic nature, relativistic
shocks have been investigated by (Ruyer, 2014; Grassi, 2017).

Particle acceleration and cosmic ray emission

Cosmic rays are a very puzzling topic for the scientific community, because of difficulty to ex-
plain the energies of the most energetic ultra-high-energy cosmic rays (UHECRs) approaching
3× 1020eV, about 4× 107 times the energy of particles accelerated by the Large Hadron Collider
(LHC). But these rays are not just interesting from a scientific point of view, since due to their
high energy they can impact space missions outside the magnetosphere protection and damage
their microelectronics, thus reducing their life. The supernova remnants have long been suspected
to generate cosmic rays, but the size of supernovae is not large enough to maintain acceleration
above 1016 eV, making impossible their implication in the generation of Ultra High Energy par-
ticles. Telescope Array is looking for possible sources of these Ultra High Energy cosmic rays, as
GRBs or colliding galaxies, but the source of these cosmic rays is still unknown. Indeed, the Fermi-
like mechanisms seem not efficient enough to describe the spectrum of CRs above 108 GeV even in
GRBs. Different theories tried to solve this enigma as (Blasi, 2013) considering a mechanism where
a secondary instability driven by the accelerated particles generates stronger magnetic fields able
to confine much more particles at the shock front allowing a longer acceleration stage. The latter
theory failed to describe CRs above 109 GeV and the problem of generation of very high energy
cosmic rays is still unsolved. However, most cosmic rays, do not have such extreme energies, and
the energy distribution of cosmic rays peaks around 0.3 GeV, giving a place to the Earth’s bow shock
or the SNR, in the cosmic rays diagram presented by the (Cronin et al., 1997).

Cosmic rays are composed majoritarly of protons and alpha particles (99%) with a small amount
of heavier nuclei, positrons and antiprotons (∼ 1%), and come, generally, from outside the So-
lar system. These primary cosmic rays generated from the acceleration of high-energy particles
in GRBs or AGNs are converted to secondary particles when they interact with the Earth’s atmo-
sphere. The processes of primary cosmic rays decay do not include only primary particles or neu-
trons, but also particles as pions, positrons, and muons, making the observation on Earth very dif-
ficult. The CRs are detected using different methods, as the air Cherenkov telescope for energies
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< 200 GeV (using the Cherenkov radiation), or the Extensive air shower (EAS) arrays (able to mea-
sure much higher-energy cosmic rays). But all these observation methods have some limitations
and no direct observations are able to capture unequivocally the physical processes predicted by
the theory. This is why, in order to fully understand the underlying physics of CRs, the scientific
community has tried, for many decades, to produce some controlled experiments and effectively
interpret them.

Laser facilities to serve world research

Laboratory astrophysics is one of the youngest branches of astrophysics, established to recreate, in
the laboratory, conditions relevant to various astrophysical scenarios. It provides the firm labora-
tory base of atomic, molecular and plasma data necessary to understand and direct observations
in space. Laboratory experiments offer the unique possibility to have access to astrophysical phe-
nomena, for which in situ measurements are beyond our reach, in a controlled and well-diagnosed
environment.

This field came along new generations of laser facilities which are still undergoing a phase of
growing activity. The formation of partially ionised plasma on Earth is common nowadays, as for
examples lightning and neon lights, but is is possible, using laser facilities, to form plasmas close
to astrophysical conditions (fully ionised and quasi-collisionless).

Interaction of intense lasers with gas or solid targets can ionize the matter and rapidly produce
plasmas, under ad hoc experimental conditions. An intensity of 1015Wcm−2 is sufficient to ionize
certain atoms via the laser electric field in a single laser period. However, it was very complex until
the mid 1980s to go beyond this laser intensity. Amplification of a laser pulse goes through sev-
eral consecutive stages using series of active media, however its intensity is limited as a laser pulse
at intensities 109Wcm−2 can already cause serious damage to a gain medium through nonlinear
processes such as self-focusing and ionisation (Wood, 2003). Plasma formation in experiments
was limited by the damages on the laser optical elements. The introduction of the Chirped Pulse
Amplification (CPA) by (Strickland and Mourou, 1985), overcame this issue and created the tech-
nological bases of the Laboratory astrophysics with improve laser capabilities. This amplification
method is now at the basis of the most advanced technology for the production of ultra-intense
laser pulses, and received this year in october 2018 the Nobel prize shared by Gérard Mourou,
Arthur Ashkin and Donna Strickland. CPA is based on the stretching out in time of an ultrashort
laser pulse prior to introducing it to the gain medium using a pair of gratings (or prisms) that ar-
ranges the travels of the laser pulse frequency components (the high-frequency component lags
behind the low-frequency component and has longer pulse duration than the original), the in-
tensity is sufficiently low, compared with the intensity limit of 109Wcm−2, to be safely amplified
by the gain medium and finally recompressed back to the original pulse width through the rever-
sal process of stretching. This technique achieving orders of magnitude higher peak powers than
laser systems could generate before the invention of CPA, made possible, amongst others, the
production of femtosecond-duration pulses with intensity above 1021Wcm−2. The CPA method,
implemented for some of the most powerful lasers, as an example on PETAL on the Laser Mega-
Joule (LMJ), can also not be sufficient for astrophysical experiments, since these pulses even in an
unfocused large aperture (after exiting the compression grating) can exceed the threshold of dam-
age. Problems of optic damage and laser pulses degradation are still at this day a very engineering
challenges. However, CPA is the current state-of-the-art technique used by all the highest power
lasers in the world with powers greater than about 100 TW and pulse duration shorter than 1 ps.

These high power lasers are not only research systems, but have now a large commercial mar-
ket, like the Ti:sapphire-based systems of 100 GW used in medicine and industry. But the most
powerful lasers, reaching the petawatt are, for now, restricted to the academic and military re-
searches. Their number all over the world is limited to the LFEX Petawatt laser at the Gekko XII
facility in the Institute of Laser Engineering at Osaka University, the OMEGA EP laser at the Univer-
sity of Rochester’s Laboratory for Laser Energetics, the now available PETAL laser at the LMJ facil-
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ity. Furthermore, a new generation of powerful lasers starts to emerge reaching the multi-Petawatt
regime, using the technique of Optical Parametric Chirped Pulse Amplification (Ross et al., 2000),
based on a combination of the optical parametric amplification and the CPA method. It is the case
of the Vulcan Petawatt Upgrade at the Rutherford Appleton Laboratory’s central laser facility, ELI
project or the APOLLON petawatt at the Saclay CEA center (CILEX) which will possibly reach 10
PW.

The high power of these lasers is used for achieving particle acceleration to ultra-high energies,
as for example via the Target Normal Sheath Acceleration (TNSA) mechanism (Wilks et al., 2001;
Passoni et al., 2010) allowing the production of very energetic, multi-tens MeV ion populations.
These accelerated ions via TNSA are also commonly used as a diagnostic tool for proton radiogra-
phy to probe the spatial shape of the magnetic field in experiments. The basic theory of TNSA and
related models is described in detail in (Macchi et al., 2013). These lasers are also able to generate
intense ultra-short X-rays which can be used in a large range of applications. An example is the
PINNACLE project launched in 2017 by Julien Fuchs to investigate with the unique capabilities of
the APOLLON laser generation of high flux neutron sources and their interaction with plasmas to
reach the nucleosynthesis of heavy elements.

Lasers are usually divided into two main categories: high-power (discussed above) and high-
energy lasers. A diagram of the distribution and time evolution of selected high energy and/or
high power lasers is shown in figure 4.

Figure 4 – Diagram of the evolution, of selected laser facilities in the world as a function of their power and
energy. The power is calculated from the energy and a pulse duration (not shown), which can be modify.
In the case of the LMJ, the current available energy is not yet the one shown in the diagram, but the facility
must reach this value in a close future.

High-energy lasers such as the National Ignition Facility (NIF), the LMJ, Gekko XII and Orion
are huge facilities primarily dedicated to fusion energy. These facilities are composed of several
lasers divided into sets with multiple beams like quads for NIF and LMJ. For these latter facilities,
each beam is characterized by long pulses of several nanoseconds, for a power of few TW leading
to a focused intensity in a range of 1014 −1015Wcm−2 as detailed in Table 1.

The high-energy lasers have limitations related to optical damage of optic elements on gratings
(Wood, 2003) and high construction and operating costs. As for an example, the LMJ facility pos-
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Facility NIF LMJ SG-III OMEGA Gekko ORION
Country USA France Chine USA Japon UK

Total Energy 1.85 MJ 1.3 MJ 180 kJ 30 kJ 3.5 kJ 5 kJ
Wavelength 351 nm 351 nm 351 nm 351 nm 532 nm 351 nm

Number of beams lines 192 176 48 60 12 10
Peak Power 500 TW 400 TW 60 TW 0.5 TW 0.2 TW 0.5 TW

Pulse duration 1−10 ns 1−10 ns 3 ns 0.1−4 ns 1−2 ns 0.1−5 ns
Creation date 2009 2014 2015 1995 1983 2013

Table 1 – Highest-energy lasers facilities in the world.

sess a nominal laser energy designed for 30 kJ per quad, but in many cases the CEA experiments
are designed with laser energies from 10 to 15 kJ in order to limit damages on optics.

Construction of the largest high laser energy facilities (NIF and LMJ) is a part of projects for re-
placement of underground nuclear explosion tests and dedicated also to fusion research and high
energy density physics. The Sun is a main-sequence star, and thus generates its energy by nuclear
fusion. Trying to reproduce a controlling fusion reaction, between the two hydrogen isotopes,
deuterium (D) and tritium (T), producing a helium nucleus and emitting a high energy neutron is
one of the great scientific challenges of this century. Two approaches are investigated, the mag-
netic confinement fusion, which uses a tokamak-type device (the ITER facility under construction
and JET operational sins 1990s) to produce a low-density plasma over a rather long period, and the
Inertial confinement fusion (ICF) which uses high-power lasers (such as the LMJ or its American
counterpart, the NIF) to generate very dense plasmas of a very short duration (Atzeni et al., 2005)
(cf. figure 5).

Figure 5 – Experimental sphere of the LMJ facility (left), and artist representation of laboratory astrophysics
experiments (right). By mimicking fundamental physics aspects in the lab, researchers hope to better un-
derstand violent cosmic phenomena.

More specially, two methods are used to bring about very rapid implosion of a microcapsule.
The Indirect-drive inertial confinement fusion, where the laser beams are directed against the
inner walls of the gold hohlraum thus microcapsule producing intense X-rays. The radiation is
trapped inside this cavity, where the radiation temperature can reach > 106K. It is the X-rays that
interact with the microcapsule held inside the hohlraum. In the Direct-drive inertial confinement
fusion, the laser delivers its energy directly to the microcapsule, causing a direct interaction be-
tween the laser beam and the microcapsule filled with the DT mixture. The Indirect approach of
ICF is being used on LMJ and on NIF. Completed in 2009, the NIF failed, at this day, to achieve
ignition in part because of parametric and hydrodynamic instabilities (Edwards et al., 2013). The
released fusion energy for the moment is about 3% of the NIF laser energy. This recent difficult
raises particularly serious questions to the LMJ (which is not yet complete), calculated to achieve
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ignition with a gain of 10 between the energy produced by the thermonuclear reactions and the
laser energy supplied to the target. However, these facilities are not only dedicated to defense pur-
poses, but can also be used for academic researchs.

Laboratory astrophysics

Laboratory astrophysics constitutes one of subjects investigated on high energy laser facilities.
Starting from the warm dense matter physics addressing conditions in the interiors of planets
(Koenig et al., 2005), the research passes by the physics of accretion of matter in a strongly mag-
netized environment as for example in some young pre-main-sequence stars (Hartmann et al.,
2016; Revet et al., 2017), and investigates also the physics of shocks (radiative, collisionless, etc) in
supernovae (Remington et al., 1999). The fundamental physical processes predicted by quantum
electrodynamics (QED) such as the Breit–Wheeler pairs production, appearing during the grav-
itational collapse leading to the formation of a black hole being observed in Gamma Ray Bursts
(GRBs) or in AGN, can be studied in laboratory (Ruffini et al., 2010; Ribeyre et al., 2016, 2018).

Generally, spatial and temporal scales involved in astrophysical processes and those obtained
in the laboratory have extremely large differences, but similarity criteria have been identified, the
so called ’scaling laws’, to ensure the equivalence between the astrophysical conditions and those
produced in the experiments (Ryutov et al., 1999; Bouquet et al., 2010; Falize et al., 2011). The latter
references concerned radiative hydrodynamic flows, but the ’scaling laws’ are different when con-
sidering collisionless, non-radiative processes since the similarities will depend of the nature of
the instabilities, electrostatic or electromagnetic, (Ryutov et al., 2012). The latter scaling is there-
fore used to investigate collisionless shocks in the laboratory.

The first experiment on collisionless shocks has been conducted by (Dean et al., 1971), by
letting a laser-driven blast shell collide with an ambient plasma. Later, (Bell et al., 1988) studied in
the laboratory collision of a laser-driven blast shell with an obstacle, forming an electrostatic shock
due to the limited flow velocity of the laser-ablated plasma. Both approaches were the test bed
for plenty of other experiments, allowing systematic study of a wide range of collisionless shocks
different from those in the solar system which can be reached by satellites. Particularly, thanks
to the improvements of experimental diagnostics such as development of the proton radiography
using radiochromic films, RCFs (Borghesi et al., 2002), Bremsstrahlung x-ray emissions imaging,
or even Thomson scattering measurements, it has been possible to investigate in experiments the
three type of shocks described in figure 3

Electrostatic shocks are generally the easiest to produce in experiments and do not require
large energy facilities, since their width are on the microscopic scale. Until recently, these shocks
have been found to transition to a double-layer structure, in an experiment conducted by (Ahmed
et al., 2013) on the VULCAN laser facility (cf. figure 6).

Figure 6 – Left Panel: Experimental setup of (Ahmed et al., 2013). Righe Panel: A proton radiograph of the
interaction of the main laser pulse (red arrow) with a gold foil (left purple rectangle) at t=17 ps. Panel b, c
and d are zooms of the region high-lighted by the dashed white rectangle in panel a, for proton energies
11.5, 10, and 9 MeV respectively.

More recently (Schaeffer et al., 2017a,b) performed experiments on the OMEGA laser facility
and demonstrated the first laboratory generation of high-Mach-number magnetized collisionless
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shocks created through the interaction of a laser-driven magnetic piston and a magnetized ambi-
ent plasma (cf. figure 7).

Figure 7 – Left Panel: Experimental setup of (Schaeffer et al., 2017a,b). An ambient plasma generated by
laser ablation of a CH target is compressed by two counter-propagating piston plumes also created by CH
targets ablation via laser beams. An external magnetic field is provided by current-carrying wires. Right
Panel: Angular filter refractometry image, the shock is observed with an external field and ambient plasma
at t=2.85 ns.

Weibel-mediated shocks, of electromagnetic nature, result from the long-time non-linear evo-
lution of the ion Weibel-filamentation instability (Weibel, 1959), it is particularly difficult to con-
duct experiments able to form such shocks because of very large spatio-temporal scales. They
require high-energy lasers with long pulse durations to maintain the plasma at high temperature
with high drift motion in order to ensure the collisionless nature of the shock (Ross et al., 2017).
Experiments conducted on the OMEGA laser facility by (Huntington et al., 2013, 2017), failed to
fully form an electromagnetic shock even after 6 ns of interaction, these shocks remain the only
collisionless shocks not been demonstrated up to this day in experiments. More details on the
nature of these shocks as well as the experiments conducted on them will be discussed in detail in
Chapter 5.

It is important to note that the shocks discussed in this Introduction concern only ion-electron
collisionless shocks, but in parallel to these shock studies, e+/− pair plasmas collisionless shocks
are presently investigated. The recent experiment of (Sarri et al., 2015) has demonstrated the gen-
eration of neutral and high-density electron-positron plasmas and numerical kinetic simulation
by (Lobet et al., 2015) have then confirmed that soon-available laser facilities might be able to test
pair plasma collisionless astrophysics.

Outline of this manuscript.
The work performed during this thesis and presented in this manuscript concerns the physics

of ion-electron collisionless shocks in several configurations of interest for astrophysics, and often
related to the laser-plasma interaction.

In the first Chapter, we present the basic theoretical and numerical tools necessary for mod-
elling and the understanding of collisionless shocks. Starting from the kinetic description of a
plasma and discussing the hydrodynamic limit, we detail the shock physics by given the Rankine-
Hugoniot conditions and introducing the physics of instability.

Kinetic plasma instabilities necessary for formation of any collisionless shock are discussed
in Chapter 2. The underlying processes by which such instabilities compete with each other is
studied in details. In particular, the impact of the ion-to-electron mass ratio during the linear and
nonlinear growth phase instabilities are investigated (Moreno et al., 2018d).

Chapter 3, then presents the studies of electrostatic collisionless shocks by investigating the
thermal expansion of a dense plasma into a dilute plasma in an one-dimensional configuration.
The aim of this work is to understand the qualitative effects of an ambient medium on a dense
plasma expansion, as it is the case in SNR forward/reverse shocks, by performing a parametric
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analysis of the density ratio between two clouds (Moreno et al., 2018a).
Chapter 4, is dedicated to the case of magnetized shocks in the context of the Earth’s bow shock

for a range of plasma parameters able to be reached for laser-plasma experiments. We discuss the
MHD approximation in a collisionless plasma and found that kinetic shocks are transient and
that the plasma dynamics are eventually regulated by structures that exist also in the single-fluid
MHD model (Dieckmann et al., 2017b; Moreno et al., 2018c; Dieckmann et al., 2018b). To anal-
yse the limit of the MHD approximation in a collisionless shock, we investigate different shock
regimes with different ion species, to represent processes which are not captured by the MHD
model (Moreno et al., 2018e), as specular reflection and shock reformation.

Chapter 5 is dedicated to electromagnetic shocks. We present a recent experiment on the
OMEGA laser facility in the context of Laboratory Astrophysics (Li et al., 2019). This experiment
aims to reach the formation of High-Alfvenic-Mach-number nonrelativistic electromagnetic col-
lisionless shocks mediated by the ion Weibel instability. We specially analyse the role of the self-
generated Biermann battery magnetic fields on the shock formation (Moreno et al., 2018b).

In Chapter 6, we finally present proposals for laboratory experiments on magnetized collision-
less shock formation, in the context of strongly magnetized SNR shocks. These experiments are
designed for the LULI2000 and for the LMJ laser facility.
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Chapter 1

Analytical and numerical approach at the
interface of the hydrodynamic and the
kinetic models of the collisionless shock
formation

This chapter presents the basic theoretical background of collisionless shock physics. Two ap-
proaches are discussed, starting from the kinetic plasma description and followed by the hydro-
dynamic approximation. The Rankine-Hugoniot jump conditions at shocks are derived with the
shock solutions explicitly given. A general discussion of wave instabilities causing growth of initial
disturbances, necessary for the shock formation are discussed thereafter. The last section explains
the numerical simulation techniques, hydrodynamic and kinetic, used during this thesis.

1.1 Analytic models

The Korteweg-de Vries wave equation discussed in the Introduction is dissipation free and does
not directly lead to shock wave solutions. Waves transform gradually to shock whenever processes
at short wavelengths cause appearance of anomalous dissipation under the ideal conditions of
non-collisionality (Sagdeev, 1966). This statement is a very important, however, it can be justified
only within the kinetic theory of microscopic interaction between waves and particles and waves
and waves in plasmas far from thermal equilibrium.

1.1.1 Basic equations

The kinetic equation which describes collective interactions of charges many particles and elec-
tromagnetic fields was introduced by (Vlasov, 1945).

∂ fs

∂t
+v ·∇r. fs +qs(E+v∧B) ·∇p. fs = 0 (1.1)

The Vlasov equation describes evolution of the electron and ion phase space distribution func-
tion fs (index s for the different species), in low density plasmas. This equation can be derived as
a smooth version of the Klimontovich equation which describes evolution of the microscopic dis-
tribution of punctual charges qs (Klimontovich, 1967). Each point in the phase space follows a
trajectory of a real particle placed at the same point and moving under the action of the electric
and magnetic fields E, B produced by the smooth (Vlasov) charge and current distributions.

It is actually the basis of all kinetic models for particles interacting through long range forces:
electromagnetic and gravitational. The collisions in this equation are neglected. This is accurate
if the typical scale-lengths of the physical mechanisms of interest are much smaller than the col-
lisional mean-free-path of particles. Since the shocks of interest in this thesis are of collisionless
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CHAPTER 1. ANALYTICAL AND NUMERICAL APPROACH AT THE INTERFACE OF THE
HYDRODYNAMIC AND THE KINETIC MODELS OF THE COLLISIONLESS SHOCK FORMATION

nature this description is well adapted from all points of view. An additional term due to particle-
particle interaction can be added on the right side of the Vlasov equation as the Boltzmann col-
lision term, which accounts for binary scattering of the particles. The collisional effects become
important when the particles come closer to each other. The Vlasov equation is not sufficient
to describe collisional plasmas, it only describes evolution of the distribution function in a scale,

larger then the electron Debye length λDe =
√
ε0Te /ne q2

e but smaller the particle mean free path.
For the studies presented in this thesis contribution of particle collisions is assumed negligible in
comparison with the coherent motion in the mean fields.

The Vlasov equation has be coupled with Maxwell’s equations to form the relativistic Vlasov-
Maxwell set of equations,

∇×E =−(
∂B/∂t

)
, ∇·B = 0,

∇×B =µ0ε0∂E/∂t +µ0J, ∇·E = ρ/ε0,
(1.2)

where the second term in the Maxwell-Ampère equation (on the bottom left of these equations) is
the electric current density (multiplied by the permeability constant of vacuum, µ0 )

J =∑
s

qs

∫
dp v fs , (1.3)

and the term on the right in the last of these equations is the electric space charge density (divided
by the dielectric constant of vacuum, ε0 )

ρ=∑
s

qs

∫
dp fs . (1.4)

These equations already account for the seft-consistent coupling of the field to the particles
through the definition of the electric current and particle densities as zero and first moments of
the one-particle phase space distributions.

Properties of the Vlasov-Maxwell model

Solutions of the Vlasov-Maxwell set of equations are reversible in time, the dynamic of the Vlasov
system conserves the information.

Since the equations of motion define particle orbits unambiguously from the initial condi-
tions, the points contained in a given volume in the phase space can not cross the surface (oth-
erwise it would imply that two different particles come to be interchanged, and by reversing time
one would have an equivocal evolution). Consequently, the number of particles contained in given
volume is preserved during its movement. The flow in phase space is that of an incompressible
fluid.

These points can be connected to the entropy conservation. In the classical statistical me-
chanics the entropy of a system out of equilibrium is given by the formula :

S =−kB

∫
f (r,v) ln(f(r,v))drdv, (1.5)

where kB is the Boltzmann constant. According to the principle of maximum entropy, any system
tends to evolve in time towards the configuration that maximizes the specific entropy. Assuming
that the evolution of the distribution function f is described by the Vlasov equation, one obtains
from (1.5), and by using (1.1) the incompressibility property:

dS

d t
= 0. (1.6)

If the boundary conditions of the system forbid any exchange with the outside world, the en-
tropy is conserved in the Vlasov model. Many distribution functions can satisfy this maximization
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CHAPTER 1. ANALYTICAL AND NUMERICAL APPROACH AT THE INTERFACE OF THE
HYDRODYNAMIC AND THE KINETIC MODELS OF THE COLLISIONLESS SHOCK FORMATION

of entropy. The non-relativistic distribution function which has been used for different studies of
this thesis is the well known Maxwell-Boltzmann distribution function.

fs(v) =
( ms

2πkBTs

)D/2
e
−ms (v−us )2

2kBTs (1.7)

This distribution function describes a plasma equilibrium for a species with single particle
mass ms and temperature Ts , in the drifting and non-relativistic case (with us the drift velocity),
where D is the dimensionality of the momentum phase-space. Here the density of particles ns is
assumed to be uniform in space.

Other distribution functions have to be used to described plasmas at equilibrium with a tem-
perature exceeding the rest mass energy of the particles, Ts >> msc2, and drifting with relativis-
tic velocities. The Maxwell-Boltzmann distribution functions for these extreme cases, no longer
gives an appropriate description, since they predict particles with velocity exceeding the speed
of light. For these relativistic configurations the so-called Maxwell-Jüttner distribution function
(Jüttner, 1911) or the relativistic multi-waterbag distribution function (Gremillet et al., 2007; Bret
et al., 2010) are more adapted. However, the studies in this thesis are limited to non-relativistic
approach, and for this reason relativistic distribution functions will not be discussed further.

Averages and Fluctuations of the Vlasov-Maxwell set of equations

Small wave disturbances are the seeds to shocks formation, and all field and plasma quantities can
be represented as a stationary part and fluctuations components

{ fs ,E,B} = { f (0)
s ,E(0),B(0)}+ { f (1)

s ,E(1),B(1)} (1.8)

The stationary parts are represented as f (0)
s ,E(0),B(0), and the fluctuations as f (1)

s ,E(1),B(1).
Here the average quantities are assumed to vary on much longer spatial and temporal scales than
the fluctuation scales such that the condition of averaging < f (1)

s ,E(1),B(1) >= 0 remains valid.
Then, by applying the above prescription of averaging to the Vlasov equation, we obtain the ki-
netic equation for the average distribution functions f (0)

s (v,x, t ) in the form :

∂ f (0)
s

∂t
+v ·∇r. f (0)

s +qs(E(0) +v∧B(0)) ·∇p. f (0)
s =−qs〈(E(1) +v∧B(1)) ·∇p. f (1)

s 〉 (1.9)

This average Vlasov equation contains a non-vanishing pseudo-collision term on its right which
accounts for the effect of the correlations between the fluctuations and particles on the average
distribution. In Maxwell’s equations (1.2) the full distribution functions fs appearing in the ex-
pression for the electric current density in Ampère’s law and in the space charge term in Poisson’s
equation are to be replaced by their average counterparts f (0)

s , yielding

∇×E(0) =−(
∂B(0)/∂t

)
, ∇·B(0) = 0,

∇×B(0) =µ0ε0∂E(0)/∂t +µ0
∑

s
qs

∫
dp v f (0)

s , ∇·E(0) = ε−1
0

∑
s

qs

∫
dp f (0)

s .
(1.10)

The Vlasov-Maxwell set of equations for the fluctuations are obtained by the subtraction of the
set of averaged equations from the full set of equations { fs ,E,B}(1) = { fs ,E,B}− { fs ,E,B}(0).

∂ f (1)
s

∂t
+v ·∇r. f (1)

s +qs(E(0) +v∧B(0)) ·∇p. f (1)
s =−qs(E(1) +v∧B(1)) ·∇p. f (0)

s

−qs(E(1) +v∧B(1)) ·∇p. f (1)
s +qs〈(E(1) +v∧B(1)) ·∇p. f (1)

s 〉
(1.11)

∇×E(1) =−(
∂B(1)/∂t

)
, ∇·B(1) = 0,

∇×B(1) =µ0ε0∂E(1)/∂t +µ0J(1), ∇·E(1) = ρ(1)/ε0.
(1.12)
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HYDRODYNAMIC AND THE KINETIC MODELS OF THE COLLISIONLESS SHOCK FORMATION

Equation (1.11) describes the evolution of fluctuations. The amplitude of the fluctuations are
unknown, but their scales must be much shorter than the scales of the average field quantities. For
a shock wave configuration, this means for instance that the width of the shock transition regions
should be much larger than the wavelengths of the fluctuations.

There is a coupling in Eq.(1.11) to the average quantities, so that these two equations can be
solved only together. The term on its right provides the greatest complications, it is the term that
is responsible for anomalous dissipation and is thus the most interesting term in any theory that
deals with the evolution of shock waves. For a spectrum of properly chosen fluctuations this term
prevents large amplitude waves from indefinite steeping and breaking and provides the required
dissipation of kinetic energy, entropy generation, and shock stabilisation. In its general version
given above it should contain the whole physics of the shock including the complete collective
processes which occur before the binary particle collisions come into play. These equations are too
complex to be solved, and the behaviour of shocks can be described only with simplifications. The
most effective simplification is to look at the macroscopic conservation laws describing changes
of the plasma quantities across the shock transition layer which follows from the fundamental
kinetic equations presented above. These are the magnetohydrodynamic equations which lead to
the Rankine-Hugoniot jump relations across the shock transition layer.

Average quantities and conservation Law’s

The hydrodynamic approach is based on a description of plasma in terms of macroscopic quanti-
ties, such as density, temperature, mean velocity, etc. This description is accurate for distribution
functions close to the equilibrium where the average quantities can be computed. This means that
the hydrodynamic approach does not describe internal processes taking place inside the shock
transition, the generation of dissipation and entropy production to be known, but it describes the
global large scale structure of a shock.

Each microscopic physical quantity can be averaged thus, representing the correspondent
macroscopic quantity in a plasma, as the density of particles

ns(t ,r) =
∫

dp fs(t ,r,p), (1.13)

the vector of mean velocity (already introduced in the Maxwellian distribution function as the drift
velocity)

us(t ,r) = 1

ns

∫
dp v fs(t ,r,p), (1.14)

and the mean energy

Us(t ,r) = 1

ns

∫
dpεs fs(t ,r,p), (1.15)

where v = p/γms is the speed and εs = p2/2ms the energy of the particle . The transport processes
of the momentum and of the energy in plasma can be described by the tensor of momentum flux

¯̄Ps(t ,r) =
∫

dp p⊗v fs(t ,r,p), (1.16)

and the vector of energy flux

Υs(t ,r) =
∫

dpεs v fs(t ,r,p). (1.17)

It is often interesting to separate the mean motion of particles of the species s with the mean
speed us , and the chaotic (thermal) motion with the relative momentum p′ = p−ms us . This allows
to divide the energy (1.15) and the fluxes (1.16) and (1.17) of all particles into the mean and the
chaotic parts. For a classical plasma the energy is
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Us = 1

2
ms u2

s +
3

2
kBTs , (1.18)

where the temperature Ts is a measure of thermal motion. It is defined by the following equation

kBTs = 1

3msns

∫
dp(p−ms us)2 fs(t ,r,p). (1.19)

In the same way, the momentum flux ¯̄Ps(t ,r) = msns us⊗us+ ¯̄Πs contains a term corresponding
to the plasma pressure

¯̄Πs(t ,r) =
∫

dp(p−ms us)⊗ (v−us) fs(t ,r,p). (1.20)

The average energy density and the local temperatures T∥, T⊥ parallel and perpendicular to
the average magnetic field are found on the diagonal of the pressure tensor Πs .

The average Vlasov equation (1.9) produces the well-known full set of magnetohydrodynamic
equations for each particle species s = e, i . The two first equations are the conservation of the
number of particles

∂ns

∂t
+∇r · (ns us) = 0, (1.21)

and the conservation of the momentum

∂ns us

∂t
+ 1

ms
∇r · ¯̄Ps = qsNs

ms
(E(0) +us ∧B(0))+

∫
dv v ·R, (1.22)

where R is the pseudo-collision term in the right hand side of eq. (1.9). In the first order mo-
ment equation this term produces a wave friction term (at zero order the term conserves particle
number) that has the explicit form

R =− 1

ms

{
∂

∂t

< E(1) ×B(1) >
µ0︸ ︷︷ ︸

Poynti ng moment

+∇r·
[(ε0

2
〈(E(1))2〉+ 1

2µ0
〈(B(1))2〉

)
I︸ ︷︷ ︸

i sotr opi c w ave pr essur e

−
(
ε0 < E(1) ⊗E(1) >+ 1

µ0
< B(1) ⊗B(1) >

)
︸ ︷︷ ︸

ani sotr opy w ave pr essur e

]}
.

(1.23)
The friction term represents a ponderomotive force-density term containing the average wave

pressure gradients. The main contribution of this term is due to the electron momentum density
equation, since the ions are (in the non-relativistic case considered here) less sensitive to pondero-
motive effects. This term affects the motion of the electrons it is responsible for the anomalous
collisions, anomalous resistivity and viscosity.

Equations of state

The third equation of the system, the next higher moment, is the equation of energy conservation.
In a collisionless plasma, for the model of ideal hydrodynamics, this equation can be written as

3

2
nskB

(
∂Ts

∂t
+us ·∇r.Ts

)
+nskBTs∇r ·us = 0 (1.24)

Combining (1.21) and (1.24) this equation becomes

3

2

d

d t
ln(Ts)+ d

dt
ln(ns) = 0, (1.25)

where d
d t = ∂

∂t +us ·∇r is the total (Lagrangian) derivative. The product Ts .n−2/3
s is a constant along

the fluid stream lines, and the pressure is ps ∝ nΓs
s , where Γs = 5/3 is the adiabatic coefficient.

The adiabatic constant depends of the dimension number D as

Γs = 1+2/D. (1.26)
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For example, Γs = 3 for the flux in one dimension and Γs = 1 for an isothermal flux. The relation
ps ∝ nΓs

s is the equation of state, and it describes the energy conservation in a plasma if there is
no external energy source (no external magnetic field).

The equation of state has be known to investigate shock solutions. However, the equations
of state are defined for systems near the equilibrium, moreover the isothermal case cannot be
applied to shocks because of entropy dissipation at the shock front. The adiabatic equation can
be applied to fast processes taking part in the shock environment when the flow passes across the
shock front in a time so short that thermalisation becomes impossible. The momentum equations
can be applied to an extended shock that represents a ramp in the real space. The shock front
can be considered as a thin planar discontinuity that moves at a shock velocity vsh in the normal
direction n across the plasma. In the case of a plane rigid stationary shock surface as shown in
Figure 1.1, the microprocesses are confined to the interior of the shock plane.

The dissipation-free average conservation laws can be applied to the shock in order to express
the downstream values in terms of the undisturbed upstream flow and field values. With this ap-
proach the “pseudo-collision” term R in (1.22) can be neglected, since this term only concerns the
shock plane.

Figure 1.1 – Sketch of a planar thin shock with its front ∆l separating the upstream (ρU,vU,PU,ΓU) and
downstream (ρD,vD,PD,ΓD) regions.

The set of separate conservation laws for electrons and ions is applicable for the problems
where the characteristic velocities are high and the densities and temperatures of the components
are different. However, the time to reach equilibrium between ions and electrons is mi /me times
shorter than the time of temperature equilibration of electrons. Also the relaxation time of the
electrostatic field is often shorter than the relaxation time of the magnetic field. These facts allow
one to develop a more simple hydrodynamic model, assuming that the densities of both species
are approximately equal.

Single fluid magnetohydrodynamics

According to the Poisson equation, this assumption implies that the electrostatic field is zero and
the charge density is almost zero Zni ' ne . Then as in the theory of neutral fluids, one may intro-
duce the center of mass, the mass density and the mass velocity as

m = me +mi , ρm = me ne +mi ni , V = me ne ue +mi ni ui

me ne +mi ni
. (1.27)
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This leads to the magnetohydrodynamics or MHD equations for a single-fluid plasma. The
equation of continuity and the momentum conservation equation can be written down for a quasi-
neutral plasma as

∂ρm

∂t
+∇r · (ρmV) = 0, (1.28)

∂(ρmV)

∂t
+∇r · (ρmVV) =−∇r · ¯̄Π+ J∧B, (1.29)

where ¯̄Π= ¯̄Πe + ¯̄Πi is the total pressure tensor, and the indices 0 have been suppressed since only
the average moments are involved. The average electric field vanishes outside the shock ramp. To
close these equations, relations for the current J, magnetic field B and pressures must be estab-
lished. For the pressures ¯̄Πi , supposing that the conditions of ideal hydrodynamics are fulfilled,
one can use the equations of state with the appropriate adiabatic index Γs . The plasma neutrality
imposes ∇r ·J = 0, but the current can be non zero. It is defined by the Ampère equation (1.2) where
the displacement current can be neglected for sufficiently slow non-relativistic movements

∇r ×B =µ0J. (1.30)

The Faraday equation for the magnetic field involves the rotation of the electric field, which
can be found from the equation of electron motion. The expression for the electric field leads to
the collisionless Ohm’s law,

E =−V×B− 1

eρm
∇r ·Πe + 1

eρm
J×B+ me

e2ρm

∂J

∂t
+ηJ (1.31)

The first term on the right hand side represents the polarization due to the plasma motion in
the direction perpendicular to the magnetic field. This effect originates from the drift motion of
particles in crossed electric and magnetic fields. The second term is the field produced by the elec-
tron pressure, which comes from the separation of charges in an inhomogeneous plasma. The Hall
effect is at the third position, representing the creation of the electric field by a current directed
perpendicular to the magnetic field. The fourth term accounts for the electron inertia, which can
be followed by a term of resistivity retained from the pseudo-collision term from eq (1.22) in the
non-ideal case. One can introduce two characteristic lenghts: the ion inertia length

c

ωpi
=

√
ε0mi c2

Z2ni e2 , (1.32)

which is the characteristic scale length for ions to be accelerated by electromagnetic forces in a
plasma and the electron inertia length

c

ωpe
=

√
ε0me c2

ne e2 . (1.33)

The electron inertia lenght is usually small so one can typically assume massless electrons
(since c

ωpe
<< c

ωpi
). This non-collisional Ohm’s law is still too complex, introducing second order

spatial derivatives into Faraday’s law through the pressure gradient and current expressions, to
treat the conservation laws at a shock transition. However, the hypothesis of a flat shock transition
allows the three latter terms in the right hand side to be neglected, and the ideal Ohm’s law can be
written as

E =−V×B (1.34)
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Rankine-Hugoniot Relations

By combining of equations (1.28), (1.29) and (1.2) and considering an ideal Ohm’s law, one forms
the closed set of equations:

∂tρm +∇r · (ρmV) = 0 (1.35a)

∂t (ρmV)+∇r · (ρmVV)+∇r · ¯̄Π− J×B = 0 (1.35b)

∂t

(ρmV2

2
+ρmΞ+ B2

2µ0

)
+∇r ·

(ρmV2

2
V+ρmΞV+Π ·V+ E×B

µ0

)
= 0 (1.35c)

∂t B+∇r ×E = 0 (1.35d)

∇r ·B = 0 (1.35e)

where Ξ = Π
(Γi−1)ρm

is the specific internal energy. In the rest frame of the shock the continuity
equation and Maxwell’s equations become,

∇r · (ρmV) = 0 (1.37a)

∇r.(ρmV ·V)+∇r ·Π− J×B = 0 (1.37b)

∇r ·
(ρmV2

2
V+ρmΞV+Π ·V+ E×B

µ0

)
= 0 (1.37c)

∇r ×E = 0 (1.37d)

∇r ·B = 0 (1.37e)

The magnetic force J×B can be decomposed into a magnetic pressure gradient force and a mag-
netic tension force.

J×B = ∇r ×B

µ0
×B =−∇r.

B2

2µ0
+ B ·∇r ·B

µ0
(1.39)

Using (1.39) one can integrate equation (1.37) across the shock front

ρmV ·n = 0 (1.40a)

ρmV.(V ·n)+
(
Π+ B2

2µ0

)
n− (B ·n).B

µ0
= 0 (1.40b)

n ·V
{
ρmV2

2
+ρmΞ+

(
Π+ B2

2µ0

)}
− (B ·n)(B ·V)

µ0
= 0 (1.40c)

n× (V×B) = 0 (1.40d)

n ·B = 0 (1.40e)

This system of equations is the implicit form of the Rankine-Hugoniot conservation equations
in the ideal magnetohydrodynamics (ideal MHD). Explicit MHD shock solutions can be found
(Treumann, 2009) which require finite mass flux across the shock in the normal direction. The
jump conditions contain rich physics related to different wave modes in ideal MHD. They can be
classified by introducing the angle θ between the magnetic field and the shock normal n. Three
kind of shocks depending of the value of θ can exist in MHD.

• θ= 0 corresponds to a parallel shock

• θ=π/2 corresponds to a perpendicular shock
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• 0 < θ<π/2 corresponds to an oblique shock

The jump conditions allow three types of discontinuities that are not shocks.

• Contact discontinuity

• Tangential discontinuity

• Rotational discontinuity

These shocks and discontinuities will be discussed in detail in Chapter 4. The ideal MHD
approximation breaks down near the discontinuity where the kinetic theory becomes indispens-
able, which consider such effects as radiative cooling, partial ionization or thermal conduction.
The ideal magnetohydrodynamic description does not take into account the high energy non-
Maxwellian tail of particles accelerated by the shock which can modify the shock structure by
generating instabilities while getting bounced back and forth. More complexes magnetohydro-
dynamic approaches as (Drury and Voelk, 1981) have included the reaction of these CRs on the
shocks structures.

Collisionless shocks may give rise to various instabilities as the Weibel instability, the stream-
ing instability or Bell’s instability which will be discussed in the next section and in Chapter 2. The
shock thickness ∆l depends on the dominant dissipation mechanism(s) described by the kinetic
theory, this yields∆l of the order of an ion mean free path. Laminar collisionless shocks often have
a thickness of the order of an ion inertial length c

ωpi
.

1.1.2 Waves and Instabilities

Shocks can be collisional or collisionless, but must nevertheless fulfill the Rankine-Hugoniot jump
conditions. The MHD approach allows to describe the macroscopic quantities transitions as the
density, the velocity, the temperature and the magnetic flux, but does not take into account the
physics in the shock ramp.

Shocks evolve from waves mainly through nonlinear wave steeping and the onset of dissipa-
tion and dispersion. Various modes are responsible for the anomalous dissipation, shock ramp
broadening, generation of turbulence in the shock up- and down-stream the front, as well as for
the particle acceleration, and reflection from the shock. Therefore any more profound under-
standing of shock processes cannot avoid bothering with waves, instabilities, wave excitation and
wave particle interaction. A discussion on waves and instabilities will be presented in detail in
the next Chapter. Here, we introduce a general description of the plasma instabilities by using the
susceptibility tensor and the dispersion relation.

Plasma in the ground state is considered as field-free (i.e. no external magnetic or electric field
in a neutral plasma), homogeneous and infinite. Using the perturbative approach in eq (1.8) the
linearized Vlasov equation (1.11) reads

∂t . f (1)
s +v ·∂r. f (1)

s +qs(E(1) +v∧B(1)) ·∂p. f (0)
s = 0 (1.42)

It is possible to consider that all space-/time-dependent physical quantities can be written in the
form

{ fs ,E,B} = { f (0)
s ,E(0),B(0)}+ { f (1)

s ,E(1),B(1)}e−i (ωt−kr) (1.43)

Equation (1.42) provides then an explicit expression for the Fourier harmonic of the perturbation
of the distribution function

f (1)
s = i .qs

v.k−ω .(E(1) +v∧B(1)) ·∂p. f (0)
s (1.44)

From there one finds the density current
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J(1) =∑
s

ns qs

∫
dp v f (1)

s (1.45)

Performing a Fourier transform of Vlasov-Maxwell’s equations

i k×E(1) = iωB(1), i k ·B(1) = 0,

i k×B(1) =−i
ω

c2 E(1) +µ0J(1), i k ·E(1) = ε−1
0 ρ(1).

(1.46)

one finds an expression for the density current as

J(1) = iω

µ0

( k

ω
∧

( k

ω
∧E(1)

)
+ E(1)

c2

)
(1.47)

Combining equations (1.45) and (1.47) for the density current, the following equation is obtained
(with c2 = 1/µ0ε0 the square of the speed of light)

i
∑

s

ns q2
s

ε0

∫
dp

p/γ

ω−v.k
·
(
E(1) +v∧ k

ω
∧E(1)

)
·∂p. f (0)

s + iω
( k

ω
∧ k

ω
∧E(1) + E(1)

c2

)
= 0 (1.48)

The vector products can be expressed with tensor notations ⊗,

v∧ k

ω
∧E(1) =

( k

ω
⊗v−v · k

ω

)
·E(1), (1.49)

k

ω
∧ k

ω
∧E(1) =

( k

ω
⊗ k

ω
− k2

ω

)
·E(1), (1.50)

which allow us to write equation (1.48) as

∑
s

ns q2
s

ε0

∫
dp

p/γ

ω−v ·k
·
(
1− v ·k

ω
+ k

ω
⊗v

)
·E(1) ·∂p. f (0)

s +ω
( 1

c2 + k

ω
⊗ k

ω
− k2

ω2

)
·E(1) = 0 (1.51)

{
ω2

[
1

c2 + 1

ω2

∑
s

ns q2
s

ε0

∫
dp

p

γ
·∂p. f (0)

s

[
1+ k⊗v

ω−v ·k

]]
+k⊗k−k2

}
·E(1) = 0 (1.52)

Then, the general dispersion relation can be written in a compact form as the determinant of the
bracketed expression

D(ω,k) = det

[
ω2ε+k⊗k−k2

]
= 0, (1.53)

where the dielectric tensor is introduced as

ε= 1+∑
s
χs , (1.54)

with the susceptibility tensor χs for the sth species as

χs =
ω2

ps

ω2 ms

∫
dp

(
p

γ
⊗∂p. f (0)

s +
[

v⊗ p

γ

]
k ·∂p. f (0)

s

ω−v ·k

)
(1.55)

Solution to dispersion relation gives complex solutions, which can be written as

ω(k) =ωr (k)+ iδ(ωr ,k), (1.56)

where the index r indicates the real part, and δ is the imaginary part of the frequency which itself
is a function of the wave number. Each mode at given wave number evolves in time, according
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its frequency and damping/growth rate. The amplitude of the wave changes slowly in time, if the
imaginary part of the frequency is small compared to the real part.

The solution with a complex frequency from (1.43) reads

{E(1),B(1)}eδt e−i (ωr t−k·r). (1.57)

The sign of δ determine if the wave is exponentially damped (δ < 0) or if it exponentially grows
(δ> 0). In the latter case, the solution is unstable with the growth rate δ.

An instability is excited if an active medium like a warm plasma contains a certain amount of
free energy in excess to the thermal energy. Plasma containing any form of available free energy
is out of thermodynamic equilibrium. Restoration of equilibrium proceeds by excitation of waves
which may grow to amplitudes large enough for either causing dissipation or transporting the
energy away to a location where it can be dissipated by other processes. Depending on initial
conditions one or more eigenmodes start to grow out of the thermal fluctuations and propagate
across the plasma. The unstable waves that survive at nonlinear stage are those with the fastest
growth. The linear dispersion theory applies to small amplitude waves. At higher amplitudes the
linear theory fails and the instability needs to be described by a non-linear or quasi-linear theory.

In the context of collisionless shocks the instabilities of interest can be divided into two classes.
The first class concerns low frequency waves on large scales which can grow and form a large
macroscopic shock. These waves, as magnetosonic or Alfvénic modes, are discussed in Chapter
3 and 4. The other class of waves includes those formed secondarily after an initial seed shock
ramp has grown in some way out of one of the wave modes from the first class, these are ion
modes which have been identified to be responsible for structuring, shaping and reforming the
shock. They are discussed in detail in Chapter 2. Even if these waves are not forming shocks, they
contribute to the entropy generation and dissipation.

1.2 Numerical model

The modern age of physics is to a large degree determined by the availability of high speed and
high capacity computer systems. The use of these computing facilities for performing numerical
experiments on collisionless plasmas covers now almost half a century of experience. Many prob-
lems in plasmas and in particular space plasma physics with their enormous complexity could
not have been solved or even tackled without computers and numerical simulations. Also, most
of the discussion on shocks in this thesis will be based on such numerical simulations which must
accompany observations and experiments in order to understand what is going on in the shock
environment. A brief discussion about numerical methods is therefore not only unavoidable but
even necessary.

1.2.1 Computational magnetohydrodynamics

A large quantity of problems in plasma physics can be solved using hydrodynamic models (fusion,
etc). Even if in this thesis the physical phenomena studied required a kinetic description for the
plasma-plasma interaction, the fluid approach was used sometimes to support the kinetic studies,
especially to determine the plasma formation in laser-matter interaction (Atzeni and ter Vehn,
2004). Two approaches for hydrodynamic codes are possible. The Lagrangian description where
the numerical cells move with the fluid at the fluid velocity, and the Eulerian description where
the numerical grid is static and fluid is moving through it.

The Lagrangian method is in many respects the most natural form to solve complex hydrody-
namic problems. In Lagrangian case the computational mesh is moving together with the simu-
lated fluid with zero mass flux between computational cells while Eulerian method employs fixed
static computational mesh with advection flux between cells. Lagrangian coordinates are superior
to Eulerian coordinates for coupling to other physical processes (especially radiation) or for prob-
lems which involve changing computational domain with moving boundary conditions for which
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Eulerian setup would be very difficult. However, the non-symmetric deformation of a material
causes significant cell distorsions which become uncomputable (Vorticity). Many problems are
therefore more easily resolved in Eulerian coordinates.

In this thesis, the hydrodynamic code CHIC (Code Hydrodynamique d’Implosion du CELIA)
has been used to model laser-plasma interactions on a ns time scale where the kinetic description
was not feasible due to the excessively long computational time that would have been involved.
CHIC is a 2D code based on a cell-centred Lagrangian discretization scheme (Maire et al., 2007;
Galera et al., 2010; Breil et al., 2011), with possibility to have an axisymmetric geometry and pro-
jection on an Eulerian grid. Plasma evolution is described in a single fluid two temperature model
(ion and electron). The transport of electron energy is described by the Spitzer-Harm diffusion
model with a flux limiter or with a non-local model (Schurtz et al., 2000).

Propagation of laser beams in an under-dense plasma is calculated by a three-dimensional
ray tracing algorithm that takes into account refraction as well as collisional absorption. The
self-generated transverse magnetic fields are evaluated using a resistive magnetohydrodynamic
(MHD) model that is derived from the generalized Ohm law (1.31). Coupling to the electron energy
transport performed according to the Braginskii transport theory (Braginskii, 1965). The radiative
energy is described in the multi-group diffusion approximation of the radiative transfer equation.
Table were used for the equations of state (SESAME, QEOS) and opacities (Atzeni and ter Vehn,
2004).

The hydrodynamic module is based on a Lagrangian description of the equations of gas dy-
namics. Equations describing the conservation of mass, momentum and total energy are solved
by the method of finite volume on a mesh moving with the fluid velocity. The numerical scheme
is conservative and fulfills the entropy inequality following the second principle of the thermody-
namic. A numerical strategy based on the Arbitrary Lagrangian Eulerian (ALE) (Hirt et al., 1974) is
also implemented. In this approach, the Lagrangian phase is followed by two subsequent phases:
i) regularisation allowing to restore the geometrical quality of the Lagrangian mesh, and ii) con-
servative interpolation of the physical variables to the new Lagrangian mesh. Thanks to this pro-
cedure numerical simulations can be conducted on long time scales.

1.2.2 The particle-in-cell method as a kinetic approach

Almost all the physical phenomena studied in this thesis required a full kinetic description of the
plasma the magnetohydrodynamic is not suitable and a numerical scheme that couples the rela-
tivistic Vlasov equation (2.1.7) with the Maxwell’s equations has to be used. Thus far, two kinetic
numerical approaches are commonly used in the plasma physics community to study collisionless
plasma processes. The Vlasov approach (Cheng and Knorr, 1976) based on an Eulerian scheme is
one of them. The code performs a direct integration of the Vlasov-Maxwell system of equations
discretized on a phase-space grid. Another approach is the Particle-In-Cell method (PIC) (Bird-
sall and Langdon, 2004) using a Lagrangian-Eulerian approach, where the distribution function
of each species is formed by a collection of computational particles (CPs) or macroparticles and
Maxwell’s equations are solved on an Eulerian grid. Such codes can be used to excite linear plasma
modes and nonlinear plasma dynamics can be followed.

Vlasov codes are extremely efficient when a small fraction of particles is particularly impor-
tant, since these codes apply equal computational effort to the part of phase space occupied by
those particles and to the part of phase space occupied by the majority of particles. However, this
advantage can also be a problem since they have to spend time modelling unoccupied parts of the
phase space. A further disadvantage is that Vlasov codes are numerically diffusive and dispersive.
It can be problematic to model a plasma/vaccum interface in the context of laser-plasma experi-
ments, since this sharp feature can spread diffusively, and the high wavenumbers can be advected
at the wrong speed. These codes have some advantages compared to PIC codes for particular 1D
problems, but they are limited when studying more complex geometries where PIC codes excel.

The latters are based on numerical algorithms much simpler than the Vlasov method which
tries to find the direct solution of the Vlasov partial differential equation. PIC simulations have an
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’unlimited’ dynamical range for the particle momenta and no boundary conditions in the phase
space. However, PIC codes have a limited signal-to-noise ratio and a coarse phase space density
resolution. Doing so, the PIC codes are very limited when describing the regions with a small
amount of particles.

Particle-In-Cell code: Numerical scheme

Particle-in-cell simulation codes (Eastwood, 1991; Noguchi et al., 2007) solve the Vlasov-Maxwell
set of equations for collisionless warm plasmas by the method of characteristics. Real systems
studied may contain an extremely number of particles. In order to make simulations efficient,
each computational particle is representing many real particles the distribution function is dis-
cretized with Nc computational particles

fc (t ,x,p) =
Nc∑

m=1
ωmS(x−xm)δ(p−pm), (1.58)

where xm and pm are the CP’s position and momentum, δ is the Dirac distribution and S(x)
is the shape function of the CP centered in its position xm(t ). The quantity ωm is the numerical
weight of the computational particle, defined as

ωm = nc (xm(t = 0))

Nc (xm(t = 0))
, (1.59)

where nc is the initial density of the plasma at the m-th particle position. The number of real
particles corresponding to a computational particle must be chosen such that sufficient statistics
can be collected on the particle motion, and a larger number of particle Nc provides a more ac-
curate description of the local density variation. The mass mc and charge qc of each phase space
volume element, which we refer to as a computational particle, are typically much larger than
those of the physical particles, but the ratio charge/mass must be the same, qc /mc = −e/me for
electrons and qc /mc = e/mp for protons.

The continuous fields B(x, t ), E(x, t ) in the Maxwell’s equations are replaced by their discretized
counterparts. The fields are defined on a grid (Field nodes). A finite spatial resolution is intro-
duced x −→ g∆x as well as a finite time resolution t −→ g∆t , with integer values g and where
∆x is the spatial resolution of the grid and ∆t the temporal resolution. The differential operators
are replaced by difference operators, d

d x f (x) −→ ( f [(g +1)∆x]− f [g∆x])/∆x. And the differential
equations for the fields into algebraic equations.

Each computational particle evolution is described by the equation of motion

dpm

d t
= qc (Em +vm ×Bm), pm = γ(vm)mc vm,

dxm

d t
= vm, (1.60)

where we introduced the computational particle relativistic factor γ(vm) = 1/
√

1− (vm/c)2. Em

and Bm are the electric and magnetic field acting on the particle m. They are calculated at the
particle position by interpolation the values of electric and magnetic fields from the neighboring
grid points.

Several integration schemes exit. The Spectral approach using fast Fourier transform is used
to solve the Poisson Equation on a discrete spatial grid. It has been popular in the early PIC codes
(Birdsall and Langdon, 2004), when computers had very limited memory and speed. The appear-
ance of large clusters possessing a large numbers of processors have lead the community to a new
scheme more adapted to parallelization strategies, the Finite Difference Time Domain (FDTD)
scheme (Taflove et al., 2005).

Two PIC codes have been used throughout this thesis, and both are using the FDTD method,
the EPOCH (Arber et al., 2015) and PICLS (Sentoku and Kemp, 2008) codes. The field solver of the
EPOCH code is based on the Yee leapfrog scheme (Yee, 1966) and fields and current densities are
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Figure 1.2 – Field mesh for the Yee scheme (left) and particles distribution into the cell (right) where their
arrows represent their momentum.

discretized on a Cartesian grid (see Fig. 1.2). The Yee solver is subject to the Courant-Friedrich-
Lewy (CFL) condition to ensure the algorithm stability which requires the time-step to be smaller
than

c∆tCFL =
∑
m

1

∆x−2
m

, (1.61)

where the sum runs on the spatial directions resolved in the simulation.
PICLS it based in the directionnal splitting scheme. A detailed comparison between the direc-

tional splitting and the Yee scheme can be found in (Nuter et al., 2014). The directional splitting
algorithm solves the electromagnetic fields on a single computational grid (Birdsall and Langdon,
2004). The computational stencil is not compatible with the Esirkepov charge conserving scheme,
so that an error is performed in solving the Gauss equation at each time step. However, this error
can be reduced by using the Boris correction (Birdsall and Langdon, 2004). This method imposes
the computational grid to be uniform, c∆t = ∆x = ∆y , which makes the time step larger than for
the Yee method.

Furthemore, in the code EPOCH a Yee staggered 2nd order FDTD scheme is implemented
while PICLS has a fourth order current/force interpolation to suppress the numerical instability
caused by under-resolving the Debye length, as explained later. This code is particularly adapted
to simulate extremely dense and cold plasmas like laboratory plasmas.

Initialisation and loop formation in PIC simulation

The PIC simulation setups are defined at t = 0. The user builts its simulation box with a certain
number of cells Nx , Ny (2D), Nz (3D). Then he defines a phase space profile for each species (sev-
eral distribution functions can be used: Maxwellian, Maxwell-Juttner, Multi-waterbag, etc, de-
pending of the PIC code used). The user indicates the number of macro-particles per cell to de-
scribe the distribution function of each species, which will be loaded more or less randomly in the
cells.

At the first run of the simulation, the particles possessing a certain velocity and position de-
posit on the grid charge and current densities, ρ(t = 0, x) and J(t = 0, x). The Poisson’s equation is
then solved and the initial electric fields are computed, which launch the PIC loop over N time-
steps, defined by the user.

At the time n, electromagnetic fields are interpolated at the particle positions.

Em
n = 1

∆x3

∫
dx.S(x−x(n)

m )Em
n(x), (1.62)

Bm
n = 1

∆x3

∫
dx.S(x−x(n)

m )Bm
n(x), (1.63)
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Then the new particle velocities and positions are computed with these fields. The particle
pusher commonly used to advance particle positions in time is based on the one from the PSC
code written by (Ruhl, 2005) which is based on the well-known Boris pusher (Boris, 1970). It com-
putes the new particle momentum and position according at the half time step to

vm
n+ 1

2 = vm
n− 1

2 + qs

ms
∆t

[
Em

(n) + vm
(n+ 1

2 ) +vm
(n− 1

2 )

2
×Bm

(n)
]

, (1.64)

xm
n+1 = xm

n +∆t
vm

n+ 1
2

γm
(1.65)

The charge and current density projection onto the grid is then performed using the charge-
conserving algorithm proposed by Esirkepov (Villasenor and Buneman, 1992; Esirkepov, 2001).
The current densities along the dimensions of the grid are computed from the charge flux through
the cell borders while the current densities along the other dimensions are performed using a
simple projection. The total charge and current densities account for the contributions of all CPs
of all species to the given node.

The current density is known at time-step n + 1
2 , the electromagnetic fields can be advanced

by solving the Maxwell’s equations. The Maxwell-Ampère equation is firstly solved, giving the ad-
vanced electric fields

E(n+1) = E(n) +∆t
[

(∇×B)(n+ 1
2 ) − J(n+ 1

2 )
]

, (1.66)

followed by the Maxwell-Faraday equation leading to the advanced magnetic fields

B(n+ 3
2 ) = E(n+ 1

2 ) −∆t (∇×E)(n+1). (1.67)

The two codes use a current calculating scheme which solves the additional equation ∂ρ/∂t =
∇· J to calculate the current at each timestep. Doing so the total charge is conserved on the grid.
This means that the error in the solution of the Poisson’s equation is conserved, so if the Poisson’s
equation is satisfied for t = 0 it remains satisfied for all times, and the two previous equations
are sufficient to get a complete description of the new electromagnetic fields. This strategy have
the expense of a non-perfect energy conservation. However, the error in the energy conservation
for all simulations performed in this thesis was always negligible. Futhermore, other approaches
which force energy conservation imply the non-exact local charge conservation. The latter can
lead to the appearance of non-physical effects, due to the local deviation from the Gauss law.

The PIC loop is represented in Figure 1.3, where the simulation run with a time-step of ∆t .

Boundary conditions

After having computed the CPs positions and velocities, boundary conditions are applied to each
CP that has reached the limits of the spatial grid and may be located outside of the box. Each
species may have different conditions for each boundary of the simulation box. Boundary condi-
tions in EPOCH are split into three types: The Simple field, the Laser and outflow, and the Particle
boundaries. The six edge of a 3D simulation box (zmi n , zmax , ymi n , ymax , xmi n , xmax ) can have
different properties. These boundaries can be combined in different ways. We only present here
the boundary conditions for the fields and the particles since no laser have been used in our PIC
simulations.
The EPOCH code includes four Simple field boundary conditions.
1. Open boundary: EM waves outflowing characteristics propagate through the boundary.
2. Periodic boundary: Fields reaching one edge of the domain are wrapped round to the opposite
boundary.
3. Conduct boundary: This applies perfectly conducting boundary conditions to the field.
4. Reflecting boundary: The normal electric field field component is set to zero.
The EPOCH code includes four different particle boundary conditions.
1. Open boundary: Particles pass through the boundary and are destroyed (the total of CP number
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Figure 1.3 – Scheme of a Particle-In-Cell loop to advance from time-step (n) to time-step (n +1).

is not conserved in this mode).
2. Periodic boundary: Particles loop around the box, particles which leave one side of the box
reappear on the other side.
3. Reflecting boundary: Particles reflect off the boundary as if it was a hard boundary (momentum
and position follow specular reflection rules).
4. Thermal boundary: When a particle leaves the simulation it is replaced with an incoming parti-
cle sampled from a Maxwellian distribution with a temperature corresponding to that of the initial
conditions. This boundary condition simulates a “thermal bath” of particles in the domain adja-
cent to the boundary.

The code PICLS has a more limited choice for boundary conditions, it possesses nevertheless,
reflecting, periodic and thermal boundary conditions.

Parallelization strategies

The practicability of the PIC method for real world simulations is often limited by the huge size
of some physical systems and a large number of computational particles needed for obtaining ac-
curate simulation results. Thus, the parallelization of the PIC codes becomes necessary to permit
solution of such problems in a reasonable time. Today’s supercomputers often consists of clus-
ters of Symmetric multiprocessing (SMP) nodes. Both OpenMP (Open Multi-Processing) and MPI
(Message Passing Interface) are programming paradigms that can be used for parallelization of
codes for such architectures. MPI is designed for distributed memory and is probably the best
known paradigm in parallel computing. Communication between processes is done explicitly,
and a relatively large set of functions can be used opening up for high performance and tweak-
ing which is not available in OpenMP. And even though MPI is designed for distributed memory
systems, it runs just as good on shared memory systems.

Most part of the PIC codes (specially with 2D and 3D versions) would split the spatial grid
into N domains, where N is the number of cores. Each core would manage its own domain on a
separate memory space, and information is communicated between cores using the MPI protocol.
EPOCH and PICLS are massively parallel codes written using standard MPI and using a Cartesian
domain decomposition for parallelism.

One of the major limiting factors in the scalability of PIC codes is load balancing. Due to the
synchronisation of the currents required for the update of the electrodynamics fields the entire
code runs at the speed of the slowest process. Since most of the time in the main EPOCH cycle is
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taken by the particle pusher, this equates to the process with the highest number of particles being
the slowest. Since the location of particles is dependent upon the solution of the problem under
consideration, in general the code can not have exactly the same number of particles on each core.
The load balancer is used to move the inter-core boundaries so that the number of particles is as
close on each core as possible. The code PICLS do not have any load balancing, however the latter
is more needed for laser plasma interaction where the density gradient can become incredibly
large. All the studies in this thesis are about plasma-plasma interaction which did not require load
balancing.

Limitations

The numerical ressources on supercomputers is the biggest limitation to take into account in PIC
simulations. The time step and the grid size must be well chosen in PIC simulations, so that the
time and length scales of the phenomena of interest are properly resolved.

The spatial step must satisfy the condition ∆x < ιλDE, where ι is the numerical factor that
depends on the order weighting of the fields to the grid points. If the condition is not satisfied,
aliasing with the grid will lead to plasma heating. The heating will stop when the condition is
fulfilled. This condition can be generalized as vth∆t << ∆x, thus the particles should not move
more than one grid cell within∆t , which implies that the particle information should be accurately
represented on the grid. This condition leads to the CFL criterion discussed previously, stating that
the propagation of electromagnetic waves must fulfill the condition c∆t < ∆x. These numerical
heating mechanisms alter the phase space and can hide physical processes leading to incorrect
interpretation of computational results.

Some other limitations need to be taken into account. The number of particles per cell should
follow the Poisson statistics. For a number of Nc the relative fluctuations are 1/

p
Nc . These fluctua-

tions can result in particle-wave collisions, speed up parametric instabilities, change of dispersive
properties, and decrease the signal-to-noise ratio.

A last limitation of PIC codes can also be the amount of data and the memory needed on the
clusters. The diagnostics are written in a very different way and can use several options, depending
of which PIC code is used. For this reason we will not discuss how these diagnostics are written,
nor how they are analysed.
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Chapter 2

Instabilities competition and numerical
limitations on PIC simulations of
collisionless shock formation

Plasmas are usually created in a state far from thermodynamic equilibrium. Although particle col-
lisions may lead to thermodynamic equilibrium, unstable transitions between plasma instabilities
may develop at time scales that are generally shorter than typical collision times. Such instabil-
ities can be studied by using non-collisional plasma models as it has been discussed in Chapter
1. Plasma instabilities are introduced in a cold plasma approximation in the first section of this
Chapter. The second section is dedicated to our study on the numerical limitations of PIC simula-
tion in a system where instabilities compete (Moreno et al., 2018d).

2.1 Description of instabilities leading to shock formation

The reserves of free energy which create instabilities are of a great diversity and depend on the
mode of creation of the plasma and its confinement. In this section, electrostatic and electromag-
netic instabilities are discussed in a framework of a a cold, non-magnetized (B(0) = 0) plasma.

2.1.1 Susceptibility in the cold plasma approximation

The cold plasma approximation assumes a negligible thermal particle motion so that the mo-
mentum distribution is a Dirac function fs(p)(0) = δ(px −p j x )δ(py −p j y )δ(pz −p j z ). For the sta-
bility analysis, we consider a response of the system in a form of a harmonic perturbations ∝
exp(i k.r−ωt ) as described in Chapter 1. The susceptibility tensor χs using the cold distribution
function can be written as (see eq. (1.55))

χs =−
ω2

ps

ω2

∫
dp

[(
∂p ⊗ p

γ

)
+∂p · k

ω−k ·v

(
v⊗ p

γ

)]
.δ(px −p j x )δ(py −p j y )δ(pz −p j z ) (2.1)

where we used the property of the Dirac distribution function∫
d xψ(x)δ′(x) =−

∫
d xψ′(x)δ(x) (2.2)

The term in the bracket of equation (2.1) can be rewritten as a matrix

χs =−
ω2

ps

ω2

∫
dp

1

γ

χxx
s χ

x y
s χxz

s

χ
y x
s χ

y y
s χ

y z
s

χzx
s χ

z y
s χzz

s

δ(px −p j x )δ(py −p j y )δ(pz −p j z ), (2.3)

with
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χ
i j
s = δi j + 1

γmω−k ·p

[
ki p j +k j pi −ω

pi p j

γmc2

]
− 1

(γmω−k ·p)2 k ·
( p

γmc2ω−k
)
pi p j , (2.4)

where δi j is the Kronecker delta, which can also be written as

χ
i j
s = δi j + 1

γmω−k ·p
[ki p j +k j pi ]− ω2 −k2c2

(γmω−k ·p)2

pi p j

c2 (2.5)

This expression of the susceptibility will be used for all the calculations of the dispersion relations
in this chapter.

2.1.2 Electrostatic instabilities

Free energy can be stored in a relative motion of particle species. In a uniform plasma, such a
motion can be created either by injecting particles or by applying an external electric field. Insta-
bilities can be described in one dimensional geometry assuming the waves are propagating along
the direction of the particle motion, {ky ,kz } = 0.
For the velocity directed along the x-axis, fs(p)(0) = δ(px − ps0)δ(py )δ(pz ), equation (2.3) can be
written as,

χs =−
ω2

ps

ω2

1

γ


ω2

(γω−kx px /m)2 0 0

0 0 0
0 0 0

 . (2.6)

Two-stream instability (TSI)

We consider here two groups of plasma electrons which are moving with a relative velocity v. This
configuration leads to the well known Two-stream instability which has been discovered with the
first observations of plasma oscillations (Bohm and Gross, 1949), and which is also related to two-
beam amplifiers / oscillators (Haeff, 1948). Let one electron beam of a density nb and speed vb is
coming from the left and another beam of a density ne and velocity ve is coming from the right.
The density ratio between the two beams is α = nb

ne
, and we assume the current neutrality ne ve +

nb vb = 0. We consider the case where the instability is driven by drifting electrons in the presence
of motionless neutralizing ions.

The two-stream dispersion relation can be written in a compact form as

D(ω,kx ) =ω2εTSI = 0, (2.7)

where the dielectric tensor of the two-stream instability from eq. (1.54) is equal to

εTSI = 1− α

γ3
b(Ω−Z)2︸ ︷︷ ︸

beam current: 1

− 1

γ3
e (Ω+αZ)2︸ ︷︷ ︸

beam current 2

= 0, (2.8)

where we define the normalized variables

Z = kx vb

ωpe
, α= nb

ne
, Ω= ω

ωpe
. (2.9)

This dispersion relation leads to an equation of degree 4 which can be solved analytically using
the Ferrari method described in Appendix in order to find the growth rate of the instability (called
δ). To find the domain of the real values of kx where (2.7) gives complex solutions, we write the
dispersion equation in the form

H(Ω) ≡ 1 = α

γ3
b(Ω−Z)2

+ 1

γ3
e (Ω+αZ)2

. (2.10)
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Figure 2.1 – Dispersion relation H(Ωr ) of two-stream instability for Z = 1.1 (left) and its δ(Z) for a Lorentz
factor γb = 2, γe ' 1 and α= 0.003 (right)

The dispersion relation at Z = 1.1 as well as the growth rate are represented in Figure 2.1 for γb = 2
and α= 0.003.

Figure 2.1 left panel shows the graphic solution of equation (2.10). Two crossing points are
the real high-frequency solutions of the dispersion relation. These are two of the four solutions of
the dispersion relation. The remaining solutions are conjugate-complex and correspond to low-
frequency imaginary crossings at frequency Ω< Z = 1.1 and Ω>−αZ = 0.0033. One of these solu-
tions is unstable. In the limit α<< 1 the maximum of the growth rate of the two-stream instability
δmax can be found for dδ/dZ = 0.
At the wavenumber Z ∼ 1,

δmax ∼
p

3

24/3

α1/3

γb
ωpe . (2.11)

The nonlinear evolution of the two-stream instability was simulated on computer (Lampe and
Sprangle, 1975). At the linear stage the instability is non-resonant, the energy of electric field grows
exponentially taking energy from the beam kinetic energy, the beam electrons exhibit large ampli-
tude oscillations in the phase space. After approximately 10 to 15 inverse of instability growth
rates, some electrons are slowed down to zero velocity and trapped in the potential well of the
growing electric field. This process is discussed at the end of this section. Trapping mixes the
beam and plasma electrons towards a single peak velocity distribution function around the origin.
At the same time, the energy of the electric field is saturated and a new quasi stationary state is
reached.

Buneman instability

Another physical situation where plasma becomes unstable is where the electrons are in relative
motion with respect to the ions. This can occur if an electron beam neutralized by ions, or in
a plasma subjected to a constant electric field. The first of these situations has been studied by
(Pierce, 1948) in application to the electron beam amplifiers and by (Belyaev and Budker, 1956)
for electron accelerators, while the second case has been studied in detail by Buneman (Buneman,
1958).

The equilibrium is characterized by electrons having a uniform density ne and a drift velocity
ve , and ions of density ni and charge eZi ; the densities fulfill the condition of neutrality of charge
ne = Zi ni . The dynamics of electrons and ions have to be taken into account. The dispersion
equation follows directly from eq. (2.6) (considering motionless ions)

D(Ω,Z) = 1− 1

RΩ2︸ ︷︷ ︸
Ion contribution

− 1

γ3
e (Ω−Z)2︸ ︷︷ ︸

Electron contribution

= 0, (2.12)
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where R = mi /me is the mass ratio between ion and electron and in this subsection only Z =
kx ve /ωpe . Because the ion plasma frequency is much smaller than the electron plasma frequency
the dominating term is the electron term. The dispersion relation leads to an equation of degree
4, and so the Ferrari method can be used again to find the growth rate of the Buneman instability.
We write again the dispersion equation in the following form

H(Ω) ≡ 1 = 1

RΩ2 + 1

γ3
e (Ω−Z)2

. (2.13)

The dispersion relation (2.13) at Z = 1.1 as well as the growth rate are represented in by Figure 2.2
for ve = 0.0026 (γe ' 1) and mi = 1836me . As the dispersion function of the two-stream instability,
this function has two poles and between it has a minimum, whose position is found by calculating
dH(Ω)/dΩ= 0,

ΩBun = Z

1+R1/3
(2.14)

Inserting this value into H(Ω) and requiring that the minimum of H(ΩBun) > 1, the condition for
instability is found to be

Figure 2.2 – Dispersion relation H(Ωr ) of the Buneman instability for Z = 1.1 (left) and its δ(Z) for a beam
velocity ve = 0.0026 and mi = 1836me (right)

|Z| < (1+R−1/3)3/2, (2.15)

The maximum of the Buneman instability growth rate is found at Z ∼ 1, and is equal to

δmax ∼
p

3

24/3
R−1/3ωpe , (2.16)

and for larger speeds the growth rate decreases. The Buneman-unstable long-wavelength modes
have low frequencies and the corresponding low electron speeds excite low-frequency waves.

Computer simulations have shown, (Ishihara et al., 1981), that after two to three inverse of the
Buneman instability growth rates, the instability is saturated due to the electron trapping as dis-
cussed in the end this section. The trapping thermalizes electrons and saturates the instability,
which then establishes intense ion oscillations whose frequency is close toωpi . Consequently, the
electron directed kinetic energy is transferred into electron thermal motion.

Analysis of the Buneman instability with accounting for the electron thermal motion shows
that the instability develops if the electron drift velocity is larger than the electron thermal velocity
ve >> vTe . If the electron drift velocity is smaller than the thermal velocity but larger than the ion
thermal velocity, the plasma is unstable against the ion-acoustic instability. This instability cannot
be treated using a cold approximation, and the dirac distribution is not enough to describe it. The
ion-acoustic instability origin is explained by the fact that the equilibrium distribution function of
electrons with respect to the cold ions, exhibits a positive slope where resonance between waves
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and particles can occur. The drifting electrons have a hot shifted Maxwellian velocity distribution
as eq. (1.7) while the ions are cold and motionless. In one dimension, the dielectric tensor (1.54)
has been obtained by (Fried and Gould, 1961). The ion-acoustic instability occurs when the elec-
tron temperature exceeds the ion temperature, Te >> Ti , the wavelength is much larger than the
Debye length, k2λ2

DE << 1, and the current drift velocities, ve > ω/k ' cs , exceed the ion sound
speed. The latter is a characteristic speed of dispersionless waves in plasmas with low frequency
oscillations which we will describe later. Under these conditions the growth rate found by (Fried
and Gould, 1961) takes the following form

δ∼ kcs
πZi me

8mi

( ve

cs
−1

)
(2.17)

The ion-acoustic instability grows until the nonlinear saturation takes place. Coupling of a grow-
ing ion acoustic wave to ions creates a wing in the high energy range in the ion distribution func-
tion. The latter giving rise to a strong ionic Landau damping which stops the growth of the wave
(Baumjohann and Treumann, 1997).

2.1.3 Electromagnetic Weibel instability

In addition to electrostatic instabilities, electromagnetic instabilities may also develop in an un-
magnetized plasma if specific conditions are satisfied. Electromagnetic modes can also become
unstable in a plasma where there are fluxes of charged particles. These electromagnetic modes
which contain electric and magnetic fields, cannot, be reduced to a problem with one dimension,
in a direction which would be that of all the fields. One must then use the complete system of
Maxwell’s equations to describe the evolution of the fields. An unstable electromagnetic mode
which can grow was introduced by (Weibel, 1959). A Weibel instability requires an anisotropy in
the distribution function. This anisotropy can be produced by the temperature, or by the drift-
ing particles velocities (also referred to as current-filamentation instability). We consider in this
section the case where the instability is driven by drifting electrons in the presence of immobile
neutralizing ions. The waves are excited in this case in the oblique direction in the plane x,y with
respect to the direction of electron motion x. We consider here two electron streams of equal den-
sity moving with velocities +v0 and −v0 with respect to ions: 1/2 fs(p)(0) = δ(|px |−ps0)δ(py )δ(pz ).
Equation (2.3) can be written as

χs =−
ω2

ps

ω2

1

γ

1

(γmω−k ·p)2

 m2ω2 +k2
y p2

s0 (γmω−k ·p)ky ps0 0
(γmω−k ·p)ky ps0 (γmω−k ·p)2 0

0 0 0

 . (2.18)

We consider two electron populations of density ne /2 and velocity v0. The dispersion relation can
be written in a compact form as

D(ω,k) = det

[
ω2εwei +k⊗kc2 −k2c2

]
= 0, (2.19)

where the dielectric tensor of the Weibel instability from eq. (1.54) is equal to

εwei = 1−
ω2

pe

2ω2

1

γ

 m2ω2+k2
y p2

s0

(γmω−kx ps0)2 + m2ω2+k2
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The dispersion relation can be written as

D(ω,k) =
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(2.21)
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which can also take the simple form

D(ω,k) =
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(2.22)
After other simplifications the distribution function can take the form of an equation of degree 6.

aω6 +bω4 + cω2 +d = 0 (2.23)

where the different coefficients are as follows
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This equation can be solved by the Cardan method shown in Appendix.
The solution of the system can be presented in a trigonometric form

ω=
√

2ρcosθ− b

3
(2.25)

with

ρ=
√

g 2 + f 2 θ=
arctan

( f
g

)+π(i f g < 0)

3
+k

2π

3
k ∈ [0,2] (2.26)

and

p = c − b2

3
q = b

(2b2

27
− c

3
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+d f =−q

2
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√( q

2

)2
+

( p

3
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(2.27)

The growth rate for every possible wave number is pictured in figure 2.3 for two flow velocities,
v0 = 0.2 and 0.99. In the non-relativistic regime v0 = 0.2, the dominant mode is oblique, with a
strong influence of the two-stream instability, while in the relativistic regime (0.99) the current
filamentation instability dominates.

Figure 2.3 – Growth rate of the Weibel instability for a drift velocity of v0 = 0.2c (left) and v0 = 0.99c (right)
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The Weibel filamentation instability has been demonstrated to be crucial for collisionless shock
formation in astrophysical plasmas and will be discussed further in this thesis. The instability
transfers energy from the particles to the magnetic field and tends to isotropize the particle distri-
bution function.

Figure 2.4 – Sketch of the center reaction mechanism in the Weibel instability. Left panel shows the mag-
netic field perturbation acting on the particles via the Lorentz force, and the right panel show the current
formation and magnetic field pertubation amplification.

Let us now analyze the physical origin of instability and its crucial link to the Lorentz force ev0×
B. Consider for this purpose the two beams in equilibrium flowing in the opposite direction and
suppose that there exists as indicated in figure 2.4 a magnetic disturbance B(1) (due for example to
the background noise) with magnetic field B1 directed perpendicularly to the plane x,y defined by
the electron velocity (x) and the wave vector (y). The electrons get deflected by the Lorentz force,
since the fluctuations of the magnetic field are perpendicular to their initial velocity. The electrons
concentrate in spatially separed current filaments. The latter are amplifying the initial magnetic
field perturbation. It is this mechanism of positive feedback that leads to instability.

The growth of instability, continues until the Lorentz force starts to decrease the average veloc-
ity of the particles. These particles are then trapped into vortices along the direction of magnetic
perturbation. The magnetic field saturates and a quasi static state is reached, where approximately
half of the initial kinetic energy of the beams is transferred to thermal energy along the direction
of perturbation. This non-linear evolution of the electron Weibel instability has been simulated
using computers by (Davidson et al., 1972).

Analytic work has also been performed for saturation of the Weibel instability. The simplest ap-
proach is based on a perturbation expansion, in the framework of quasi-linear theory (Pokhotelov
and Amariutei, 2011). It describes the evolution of the average distribution function of electrons in
the field of many incoherent waves, usefull to deal with the different problems of weakly turbulent
wave-particle interactions in a plasma.

2.1.4 Particle trapping

The wave kinetic instabilities described in the previous subsections are based on the linearised
Vlasov equation. Such linearisations are justified for disturbances of a small amplitude, the limi-
tations of this linear theory can be understood only by considering, the nonlinear effects neglected
so far.

In an electrostatic wave of a finite amplitude, the wave-particle resonant interaction reveals
the non-linear phenomenon of trapping. This phenomenon can be understood considering the
one-dimensinal motion of one electron in an electrostatic wave. The momentum equations of the
particle in the wave frame of reference (x ′ = x−vph t and v ′ = v −vph , vph the phase speed) can be
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written as
d v

d t
= e

me
E0 sin(kx) (2.28)

considering an initial position x0 and velocity v0. The energy conservation can be calculated from
the integration of eq. (2.28) which gives

1

2
me v2 + e

k
E0 cos(kx) = 1

2
me v2

0 +
e

k
E0 cos(kx0) (2.29)

It describes a particle motion in a potential well. The particle trajectory depends of the ratio be-
tween the potential energy of the wave and its kinetic energy, 2eE0/kmv2

0 . If this ratio is smaller
than 1, the particle is free, on the contrary the particle is trapped if the potential energy of the wave
exceeds the particle kinetic energy as represented in figure 2.5. In the first case the velocity of the
particle does not change very much and the oscillation frequency is largeωb ' kv0, and in the sec-
ond case, the particle has a finite trajectory and oscillates close to the minimum of the potential at
the trapping frequency (or bounce frequency)

ωb '
√

ekE0

me
. (2.30)

Figure 2.5 – Sketch of the phase space trajectories of particles in the wave frame of reference. 1: Untrapped
Orbits (v0 > vtr ), 2: Separatrix, 3: Trapped Orbits (v0 < vtr ), where vtr = √

2eE0/kme defines the trapping
velocity

The larger the wave field amplitude, the faster the trapped resonant electrons oscillate in the
field.

Considering a non-linear resolution of the Vlasov-Poisson equations for a single wave in a
maxwellian plasma, the Landau damping may be important. The latter is a phenomenon intro-
duced by (Landau, 1946) which prevents an instability from developing, and creates a region of
stability in the parameter space. It dominates for large wave numbers and prevents the existence
of plasma waves with the wavelengths shorter than the Debye length. Its growth rate can be ex-
pressed as

ωLD =
πω2

pe

k(∂ε/∂ω)

∂ f (v)

∂v
. (2.31)

For trapping to be important,ωb >>ωLD, the perturbation wave number should be in the range of
weak Landau damping then many particles can be trapped in the growing wave. In the opposite
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case, ωb << ωLD, the wave is Landau damped, during a time comparable to τb = (2π/ωb), the
number of trapped particles could be small.

The trapping mechanism can be neglected as long as the trapping frequency is much smaller
than the Landau damping growth rate or the growth rate of the instability. However, in the case
where an unstable wave has a growth rate exceeding the Landau damping the particle trapping is
an efficient non linear saturation mechanism.

The different linear and nonlinear evolutions of the instabilities presented in this section are
of crucial interest for collisionless shock formation and their analytic complexity constrains us, to
support the analytic description, to perform kinetic simulations (PIC or Vlasov simulations).

2.2 Numerical limitations of PIC simulation in a system where instabil-
ities compete

As shown in the previous section a charge- and current neutral collisionless plasma, which is com-
posed of two counterstreaming electron beams and ions at rest, can be unstable. Such systems are
frequently found in space- and astrophysical plasmas as well as in laboratory plasmas. They de-
velop if a fast electron beam enters an initially unperturbed plasma at rest (Lovelace and Sudan,
1971; Thode and Sudan, 1975). The net current carried by the electron beam drives electromag-
netic fields, which accelerate the electrons of the background plasma into the opposite direction.
The return current of the latter eventually balances that of the beam, which restores the plasma’s
current-neutrality.

Several instabilities can develop after the current-neutrality has been reestablished. The two-
stream instability, competes with one of two possible electrostatic instabilities if we constrain the
wave vector to the direction along which the beams are drifting. It competes with the Buneman
instability if the drift speed between the background electrons and the ions exceeds significantly
the thermal speed of both species. The Buneman instability originally refers to the instability of
one electron beam with one ion beam with the same charge density (Buneman, 1958). Here we use
the term Buneman instability to denote an instability between an electron beam and an ion beam
that have a similar charge density and a drift speed that fulfills the aforementioned condition.
The Buneman instability does not grow if the background electrons are so hot that their thermal
velocity spread exceeds by far their drift velocity relative to the ions. The two-stream instability
competes in this case with the ion acoustic instability between both species of the background
plasma (Baumjohann and Treumann, 1997). If the direction of the wave vector is not constrained
to be parallel to the beam velocity vector then the counterstreaming electron beams can drive
the magnetic filamentation instability (Califano et al., 1998) or the quasi-electric oblique mode.
Instabilities driven by relativistic electron beams are reviewed in Ref. (Bret et al., 2010).

Beam instabilities have been widely examined in the past both experimentally and theoreti-
cally. Many of these studies were performed with particle-in-cell (PIC) simulations. The substan-
tial computational cost of the PIC simulations implies that in some cases the development of insta-
bilities has to be accelerated by choosing a reduced ion mass. The reduction of ion mass increases
the exponential growth rate of instabilities where the ions are involved; it is the Buneman-type in-
stability in the aforementioned case. The ion mass does, however, not affect the instabilities that
develop by the counterstreaming electron beams.

A reduction of the mass of ions in PIC simulations not only speeds up the instability, it also
alters the spectrum of the growing waves. The effects of a reduced ion mass on the exponential
growth rate of beam instabilities have been studied systematically in Ref. (Bret and Dieckmann,
2010). It turns out that in some cases even a moderate reduction of the ion mass can have pro-
found effects on the spectrum of the unstable waves. The process, by which the plasma is ther-
malized, depends in turn on the instability that saturates first. A reduction of the ion mass can,
thus, alter the final state of the plasma with potentially far-reaching consequences. A plasma sat-
uration by the filamentation instability results, for example, in strong magnetic fields (Kazimura
et al., 1998; Honda et al., 2000; Silva et al., 2003; Sakai et al., 2004; Jaroschek et al., 2005; Nishikawa
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et al., 2009; Bret et al., 2013), while the other instabilities drive primarily electric fields (Thode and
Sudan, 1973; Dieckmann et al., 2000a). The Buneman-type instability driven by a relative motion
of ions and electrons may heat ions , while the two-stream instability driven by counterstreaming
electron beams heats first the beam electrons and possibly the bulk electrons. It is unclear how the
saturation of one instability affects an other. Systematic studies are needed in order to better un-
derstand the consequences of using reduced mass ratios not only during the linear growth phase
of the instabilities but also after their nonlinear saturation.

Here we test some of the results obtained in Ref. (Bret and Dieckmann, 2010) with PIC sim-
ulations, which allow us to explore non-linear effects introduced by the reduced ion mass. We
limit ourselves to the mildly relativistic electron speeds, which are representative for solar ener-
getic electrons (Muschietti, 1990; Kontar, 2001; Klein et al., 2005; Reid and Kontar, 2010; Reid and
Ratcliffe, 2014) and for electrons that have been heated by the ablation of a solid target by a high
power laser pulse (Tabak et al., 1994). Numerical artifacts, which are caused by a reduced ion-
to-electron mass ratio, become stronger with an increasing relativistic factor of the beam speed
(Bret and Dieckmann, 2010). Some of our results are thus also relevant for numerical studies of
interactions between plasma and energetic electron beams, which are generated by the wakefield
of a laser (Esarey et al., 2009; Warwick et al., 2017). A related study involving ultrarelativistic pair
beams can be found in Ref. (Sironi and Giannios, 2014). Our parametric study is conducted in
one spatial dimension and we align the beam velocity vector with the simulation direction, which
suppresses the oblique mode instability and the filamentation instability. The results provided by
such simulations are realistic if one electron beam is dilute and the second dense and if the beam
speeds are not too high (Thode and Sudan, 1973; Tzoufras et al., 2006).

2.2.1 Analytic representation of the system

Linear Theory

We consider a system composed of a relativistic electron beam with the density nb , the reduced
velocity βb = vb/c and the Lorentz factor γb = 1√

1−β2
b

. The beam crosses a spatially uniform plasma

with the densities ni and ne of ions and electrons and ni = ne +nb . The drift velocity ve of the bulk
electrons is such that it cancels out the beam current with nb vb +ne ve = 0. The thermal speed of
a species q with the mass mq and temperature Tq is vTq = (kBTq /mq )1/2. Time is normalized by
ω−1

pe , space by cω−1
pe and frequencies by ωpe .

For the stability analysis, we consider the response of the system to a harmonic perturbations
∝ exp(i k.r− iωt ). We reduce the system to one spatial dimension (x direction), we align the sim-
ulation direction with the beam drift velocity and define the normalized variables introduced in
the previous section

R = mi

me
, Z = kx vb

ωpe
, α= nb

ne
, Ω= ω

ωpe
. (2.32)

We assume that the thermal speeds of both electron species are small compared to vb and that the
thermal speeds of the bulk ions and electrons are small compared to ve . The dispersion equation
DL(Z,Ω) for this cold plasma is found using the cold approximation of the susceptibility from eq.
(2.5), which can also be found for example, in Ref. (Bret and Dieckmann, 2010). Its Eigenmodes
fulfill the dispersion relation DL(Z,Ω) = 0 or

DL(Z,Ω) = 1− 1+α
RΩ2︸ ︷︷ ︸

Ion contribution

− α

γ3
b(Ω−Z)2︸ ︷︷ ︸

beam contribution

− 1

γ3
e (Ω+αZ)2︸ ︷︷ ︸

return current

= 0. (2.33)
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This dispersion relation can be written as

ω6 +2Z(α−1)ω5 +
[

Z2(1+α2 −4α)− 1+α
R

− α

γ3
b

− 1

γ3
e

]
ω4 +

[
2α(1−α)Z4 + 2Z

R
(1−α2)− 2Zα2

γ3
b

+ 2Z

γ3
e

]
ω3

+
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α2Z4 − Z2

R
(α3 −3α2 −3α+1)− Z2α3

γ3
b

− Z2

γ3
e

]
ω2 − 2Z3

R
α(1−α2)ω− Z4

R
α2(1−α2) = 0,

(2.34)

this an equation of degree 6 cannot be solved by an analytic method. We used the numerical tool,
“Maple“, to find the complex solutions of equation (2.34).

Figure 2.6 shows the exponential growth rate δ ≡ Im(Ω) of the instability, which is obtained
from the numerical solution of equation (2.33), as a function of R for γb = 2, γe ' 1 and for the
values α= 0.3,0.03 and 0.003.

Figure 2.6 – Exponential growth rates δ(Z,R) obtained from the solution of the linear dispersion relation eq.
(2.33) for γb = 2, γe ' 1. The growth rates for α = 0.3,0.03 and 0.003 are shown in panel (a), panel (b), and
panel (c) respectively.

This instability is the superposition of the electron two-stream instability and the Buneman
instability introduced in the previous section. The first one at low Z is driven by the electrons of
the beam and the electronic return current. The second one arises from the interaction of the elec-
tronic return current with the ions. In the limit α<< 1 the two-stream instability has its maximum

growth rate δ at the wavenumber Z ∼ 1, with δ∼
p

3
24/3

α1/3

γb
, and the unstable Buneman instability at

the wavenumber Z ∼ 1/α, with δ∼
p

3
24/3 R−1/3, as shown in the previous section.

For dense beams, the growth rate of the two-stream instability is the largest regardless of R.
However, when α and R are both small, the growth rate of the Buneman instability exceeds that of
the two-stream instability. Table 2.1 lists the maximum of the growth rate δ, localized at Z ∼ 330,
for α= 0.003 and for three different values of R. Figure 2.6 demonstrates that the choice of R affects
most strongly the beam with α= 0.003 and we focus on this case.

ion mass R (in me ) 1836 400 25
α= 0.3 maximum of δ 0.20 0.20 0.22
α= 0.03 maximum of δ 0.10 0.10 0.21
α= 0.003 maximum of δ 0.058 0.089 0.207

Table 2.1 – The growth rate of the Buneman instability for three different values of R and for α.
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2.2.2 Numerical simulations

The initial conditions

The particle-in-cell (PIC) code used for the simulations in this chapter is EPOCH (Arber et al.,
2015). We resolve one spatial dimension and the three velocity components of the CP’s (1D3V).

The simulation domain is resolved with Nx = 9×104 cells. The density of the dilute electron
beam is nb = 0.003 ni and its Lorentz factor γb = 2. The density of the background electrons is
ne = 0.997ni and their mean velocity βe = 0.0026. The length of the box is Lx = 31.4 and its spatial
resolution is ∆x = 3.5×10−4. Periodic boundary conditions for the electromagnetic fields and for
the CPs are used. The maximum resolved wave number Zmax and its resolution∆Z are respectively
Zmax = βe

π
∆x = 7800 and ∆Z = βe

2π
Lx

= 0.17. The electrons and the ions have Maxwellian velocity
distributions. We vary the ion mass and the temperatures of all species in a range where all beams
are practically cold, so to respect the assumptions underlying Eq. 2.33. The temperature of the
electron beam is Tb = 10eV, which gives the thermal speed vTb ≈ 5× 10−3vb . The temperature
of the bulk electrons is Te = 0.1eV, which gives vTe ≈ 0.2ve . The Debye length λDe = vTeω

−1
pe is

λDe = 1.25∆x. We represent the ions by 250 particles per cell (ppc), the bulk electrons by 200 ppc
and the beam electrons by 50 ppc.

The linear wave growth and its saturation

We compare the range of unstable wave numbers obtained from the solution of equation 2.33 (see
Fig.2.6) with the PIC simulations and determine the saturation time as a function of R. We analyze
the electric field component Ex (x, t ), which grows in response to the two-stream instability and
Buneman instability, by performing a Fourier transform over space

Ex ( j∆Z, t ) = N−1
x

Nx∑
p=1

Ex (p∆x, t )e− j p∆x∆Z. (2.35)

Figure 2.7 shows the power spectra Px (Z, t ) = |Ex (Z, t )|2 for the values R = 1836, 400 and 25. The

Figure 2.7 – The power spectrum Px (Z, t ) of the electric field component Ex normalized to m2
e c2ω2

pe /e2:
panel (a) corresponds to R = 1836, panel (b) to R = 400 and (c) to R = 25. The color scale is 10-logarithmic.

wave numbers ZBun ∼ 333 and ZTSI ∼ 1, where the growth rates of the Buneman instability and the
two-stream instability reach their maxima according to equation 2.33, coincide with the values
where the instabilities grow in Fig.2.7. The instabilities start to grow after about t ≈ 15. This delay
can be attributed to the time required by the thermal noise that seeds the instabilities to grow and
to the need to establish a coherent wave along the beam direction.

Figure 2.7 shows that both instabilities grow and saturate independently. For this low value of
α the growth rate of the Buneman instability is comparable to that of the two-stream instability if
R = 1836 and larger for smaller R. Indeed the Buneman mode at Z ≈ ZBun reaches about the same
power as the two-stream mode at Z ≈ ZTSI at t ≈ 100 in Fig.2.7(a) while it outgrows the two-stream
modes in the cases R = 400 and R = 25.

The field power at Z ≈ ZTSI evolves similarly in all three simulations on the displayed time
interval; the evolution of this instability is unaffected by the value of R during its linear growth

42



CHAPTER 2. INSTABILITIES COMPETITION AND NUMERICAL LIMITATIONS ON PIC
SIMULATIONS OF COLLISIONLESS SHOCK FORMATION

phase. We observe several harmonics of the wave at Z ≈ ZTSI for R = 1836 and one for R = 400.
Only a broad wave continuum is observed for R = 25. The peak power of the low-Z mode and the
number of observed harmonics increases with R, which shows that the wave can sustain a sine
shape for a larger amplitude and for a longer time.

The waves driven by the Buneman instability are not stable. Once the wave power at ZBun has
peaked the interval, in which the wave power is concentrated, it is shifted in time to lower values
of Z. The waves driven by the Buneman instability are amplified after t ≈ 250 for all R due to their
coupling to the two-stream mode. This coupling is responsible for the onset of the broadband
electrostatic wave activity, which is particularly strong for the cases R = 400 and R = 25.

In what follows we test if the dependence of the exponential growth rate of the Buneman in-
stability on R is the only reason for its faster saturation with decreasing R. The exponential growth

rate of the Buneman instability is δ∼
p

3
24/3 R−1/3. According to this growth rate the wave amplitude

reach a given amplitude after a time t ∝ R1/3, provided that the seed electric field for the insta-
bility does not depend on R. We have performed a parametric study of the saturation time of the
Buneman instability as a function of R in order to determine its scaling with the ion mass. The
saturation time of the Buneman instability fulfills tsat −15 ∝p

R as shown in Figure 2.8. The sub-
tracted time 15 corresponds approximately to the delay of the wave growth observed in Fig.2.7.
The scaling of the saturation time ∝p

R does not match the scaling t ∝ R1/3 of the time it takes
the Buneman wave to reach a given amplitude. The Buneman instability reaches its nonlinear
regime much faster for a low value of R than for a large one.

Figure 2.8 – Scaling of the saturation time with R. The temperature of the electron beam is Tb = 10eV and
the temperature of the bulk electrons is Te = 0.1eV.

Non-linear saturation and energy transfer

We explore in this section how the value for R affects the energy exchange between the three
plasma species and the electric field. We integrate for this purpose the energy density of the elec-
tric field’s Ex component and the energy densities of the individual particle species over the entire
simulation box. Particle energies are measured in their own reference frame, where the total mo-
mentum is zero at t = 0, the simulation frame is the ion reference frame. All energies are normal-
ized to the total energy.

Figure 2.9 shows the time evolution of energies of all species for the three mass ratios 1836,
400 and 25. The electric field energy grows exponentially at early times and saturates at t ≈ 90
in Fig.2.9(a), at t = 50 in Fig.2.9(b) and at t ≈ 25 in Fig.2.9(c). The faster rise of the field energy
at low R reflects the larger growth rate of the Buneman instability. The field energies at the time
the Buneman instability saturates are the same in all simulations, which suggests that the satu-
ration is caused by the interaction between the wave and electrons. This in confirmed by Fig.2.9.
The energy the ions gain when the Buneman instability saturates does increase with decreasing R
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Figure 2.9 – Panel (a) shows the particle and field energies for a mass ratio R = 1836, panel (b) for a mass
ratio 400 and panel (c) for the mass ratio 25. The temperature of the electron beam is Tb = 10eV and the
temperature of the bulk electrons is Te = 0.1eV, the dashed lines correspond to the times t = 262, 367 and
734.

but it remains small compared to the energy gain of the bulk electrons. According to Fig.2.8 the
Buneman instability saturates earlier than expected for low R, which suggests an involvement of
the ions in the saturation, while Fig.2.9 demonstrates that the instability saturates due to the wave
interaction with the electrons. Both observations are compatible if R affects the phase speed of
the electrostatic wave relative to the electrons. A decrease of the phase speed in the rest frame of
the electrons with R implies that the latter can react more easily to the wave.

The energies of the electric field, the ions and the bulk electrons all increase in Fig.2.9 when the
Buneman instability saturates. Energy conservation implies that the saturation of the Buneman
instability must have extracted energy from the beam electrons. The electric field energy decreases
after the saturation of the Buneman instability and this energy decrease depends on R.

The electric field energy rises again after t = 200. Its growth rate is the same in all three sim-
ulations as expected for the two-stream instability. The electric field energy saturates at t ≈ 300
and reaches a peak value that is about 20% of the beam electron energy for R = 1836 and 400. The
two-stream instability saturates earlier and at a lower peak value for R = 25. The phase speed of
the wave, which is driven by the two-stream instability, does not depend on R. This wave enforces
a stronger reaction of ions for a low value of R. We have observed this stronger reaction already in
Fig.2.7(c), which revealed a lower peak power of the electric field and strong broadband that set
in when the wave saturated. Figure 2.9 also shows that the bulk electron energy closely follows
that of the electric field until its saturation, after which the energies of electrons and ions evolve
differently in all simulations.

The energies of the electric field and of the bulk electrons oscillate in phase three times for
R = 1836. The beam electron energy oscillates in an opposite phase. The ion energy hardly reacts
to these oscillations for R = 1836. The ions with R = 400 are accelerated by the electric field, which
damps the energy oscillations of the electrons and the electric field. A reduction of the ion mass to
R = 25 boosts their response to the electric field and increases damping of oscillations of energies
of the electrons and the electric field. The energies of the bulk electrons and of the beam electrons
converge in all simulations and they become almost equal for R = 25. However, the mean energy
per electron is still much larger for the beam particles since α¿ 1. At the end of simulations, the
ion energy in the case of R = 25 exceeds that in the case of R = 1836 by an order of magnitude.

The simulations, which provided the data shown in Fig.2.8, were followed over a longer time
in order to determine the efficiency of the energy transfer from the electron beam to the bulk
electrons as a function of R. Figure 2.10 shows the results. The bulk electrons gain between 25%
and 30% of the total energy after the two-stream instability’s saturation if R > 100. The energy
increases from 30% to almost 50% for decreasing values R < 100. A reduction of R thus enhances
the transfer of energy from the electron beam to the bulk electrons. This effect is, however, only
observed if the electron beam is cold. Increasing the temperature of the electron beam from 10 eV
to 5 keV suppresses the rise of the final energy of the bulk electrons at low values of R.
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Figure 2.10 – The saturation energy of the bulk electrons at t = 1250 in units of the total energy for α= 0.003
and for the temperature Tb = 10eV for the electron beam. The temperature of the bulk electrons is Te =
0.1eV

Phase space density distributions

We compare in this section the phase space density distributions of the particle species at the
times t = 262, 367 and 734, which are marked by the vertical dashed lines in Fig.2.9.

- Simulation for an electron to ion mass ratio R = 1836
Figure 2.11 shows the distributions for the run with R = 1836. The dilute electron beam drives a
Langmuir wave with a positive phase speedω/k slightly below the beam speed. This velocity mis-
match is caused by the non-zero thermal velocity of the electron beam. This wave is still growing
at the time t = 262. Its phase is most easily determined from the phase space density distribution
of the bulk electrons in Fig.2.11(d), which shows sinusoidal oscillations of the mean speed with x.
The bulk velocity is zero at x ≈ 0.3 and x ≈ 5.7 and the electrostatic potential must thus have an
extremum at these positions. The surrounding electrons are attracted towards these points and
the potential is thus positive. The beam electrons in Fig.2.11(a) oscillate around the maxima of
the positive potential and some are trapped by it. The different response of both electron species
is caused by a phase speed of the wave, which is much larger in the reference frame of the bulk
electrons than in that of the beam electrons.

The number density of the beam electrons at the cusps at x = 2 and x = 7.4 is large and their
momentum βγ≈ 1 is below the initial beam momentum, which explains why the beam energy in
Fig.2.9(a) has been reduced at this time. The distribution of the beam electrons is changing into
the phase space vortices or phase space holes, which form when an electrostatic instability with
a wave vector that is aligned with the beam velocity (Roberts and Berk, 1967; O’Neil et al., 1971)
saturates. The ions oscillate in the wave’s electric field at an amplitude that is small due to the large
value of R.

The bulk electrons in Fig.2.11(d) show phase space structures surrounding the dense beam
with the wave length ' 3 · 10−2. These are electron phase space holes that were driven by the
Buneman instability. The time, during which such a phase space hole develops, is compara-
ble to the bouncing frequency of a particle with the charge q and mass m in a wave potential
ωb = (qkE/m)1/2, where kE is the product of wavenumber and electric field amplitude (See Ref.
(Dieckmann et al., 2000a) and references cited therein). Electron phase space holes form 5 times
faster than ion phase space holes holes even for the lowest ion mass R = 25. Electron phase space
holes are thus responsible for the initial saturation of the Buneman instability in all simulations,
which explains why it always saturated at about the same electric field amplitude.

The electron phase space holes have been driven by the interaction of the charge density dis-
tribution of the ion beam with the Langmuir wave, which oscillates at the plasma frequency of the
bulk electrons. Their propagation speed in the rest frame of the bulk electrons is close to that of
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Figure 2.11 – The particle phase space density distributions. The first row shows the distribution of the
beam electrons, the second row that of the bulk electrons and the bottow row that of the ions. The first
column shows the distributions at the time t = 262, the second at the time t = 367 and the third one at the
time t = 734. The ion mass is mi = 1836me and the initial temperatures of the beam and bulk electrons are
Tb = 10eV and Te = 0.1eV.
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the ions at least for large R. In its rest frame, an electron phase space hole is associated with an
electrostatic potential that is almost static and it can thus easily accelerate the ions. The speed
gain of the ions with R = 1836 remains small due to the short acceleration time and we observe
only small oscillations of the ion velocity at small wavelengths in Fig.2.11(g).

The Langmuir wave, which grew in response to the two-stream instability, has propagated to-
wards increasing x and both cusps in the electron beam distribution have rotated further at the
time t = 367. The mean momentum of the cusp electrons in Fig.2.11(b) has increased compared
to that in Fig.2.11(a), which explains why the beam energy in Fig.2.9(a) has increased. This cusp
and the current, which is associated with its motion, are causing a periodic exchange of energy
between the beam electrons on one hand and the bulk electrons and the electric field on the other
hand. The beam distribution in Fig.2.11(b) reveals presence of multiple beams. The bouncing in
the sinusoidal potential of the electrostatic wave disperses the electrons, and results in a reduction
of the amplitude of the energy oscillations.

The electron phase space holes, which were driven by the Buneman instability, coalesce to
larger ones (Roberts and Berk, 1967). The larger phase space holes in the bulk electrons in Fig.2.11(e)
yield now noticable oscillations with the wave length ' 0.1 in the ion distribution displayed by
Fig.2.11(h); the latter are ion acoustic waves. Ion acoustic waves are linearly undamped if the ra-
tio between the electron temperature and ion temperature is large (Baumjohann and Treumann,
1997), which is the case in our simulation after the Buneman instability has saturated. We note,
however, that the presence of the electron phase space holes means that the ion velocity oscilla-
tions may not be linear since electron phase space holes and large ion acoustic waves can couple
(Hosseini-Jenab and Spanier, 2017).

Coalescence of the electron phase space holes explains why the characteristic wave number of
the waves, which were generated by the Buneman instability, decreases in time in Fig.2.7.

The growth of the ion acoustic waves and of the amplitude of the velocity oscillations of the
phase space holes in the bulk electrons indicates that the instability driven by both electron species
is still active long after the Buneman instability saturated. The velocity oscillations of the bulk elec-
trons caused by the two-stream instability have a wavelength that is large compared to that of the
ion acoustic waves in Fig.2.11(h) and an amplitude that is larger than the electron thermal speed
in Fig.2.11(e). The therefrom resulting drift between the bulk electrons and ions is large enough to
destabilize the ion acoustic waves and heat the bulk electrons. This mechanism is equivalent to
the oscillating two-stream instability (Gupta et al., 2004) if the laser-generated electrostatic beat
wave were replaced by the two-stream mode.

The ion oscillations have increased their amplitude at t = 734 and the density of the hot com-
ponent of the bulk electrons has increased. The long-wavelength oscillation of the bulk distribu-
tions has vanished, which implies that the beam-driven Langmuir wave has been damped out.
The beam electrons have been dispersed and form now a turbulent distribution with a wide ve-
locity spread in Fig.2.11(c). The velocity spread is comparable to the velocity width of the electron
phase space holes at the earlier time, which is in turn determined by the trapping velocity interval
vtr = (2qE/mk)1/2 around the wave’s phase velocity. The beam distribution is well-separated from
the bulk electron distribution along the velocity direction.

- Simulation for an electron to ion mass ratio R = 25
Figure 2.12 shows the phase space density distributions obtained from the run with R = 25 at the
same times as the ones discussed in Fig.2.11. The electron beam distribution in Fig.2.12(a) shows
that a large phase space hole is about to form. Its shape is practically identical to that in the run
with R = 1836, confirming that the two-stream instability is not affected by the value of R. The
earlier development of the Buneman instability and the faster onset of the ion acceleration have
perturbed the bulk plasma in Figs. 2.12(d,g) more significantly than that in Figs. 2.11(d,g). A
comparison of Fig.2.12(h) with Fig.2.11(h) reveals a population of energetic ions for the case R = 25
that was not present in the simulation with R = 1836.

The waves driven by the Buneman instability and the electron phase space holes they drive
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Figure 2.12 – The particle phase space density distributions. The first row shows the distribution of the
beam electrons, the second row that of the bulk electrons and the bottow row that of the ions. The first
column shows the distributions at the time t = 262, the second at the time t = 367 and the third one at the
time t = 734. The ion mass is mi = 25me and the initial temperatures of the beam and bulk electrons are
Tb = 10eV and Te = 0.1eV.
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have a negative phase speed in the simulation frame. Ions, which are accelerated in the propa-
gation direction of the electron phase space hole, stay in phase with its electric field for a longer
time and are thus accelerated to a larger speed. The larger charge-to-mass ratio of ions with R = 25
means that they could be accelerated to a larger speed than those with R = 1836. The ions were ac-
celerated at the expense of the electric field energy. The ion acceleration can explain the damping
of the Buneman instability-driven waves between t = 262 and t = 367 in Fig.2.9(c).

The electric field, which is associated with the charge density oscillations of the bulk plasma,
covers a broad range of wave numbers that extends even to ZTSI (see Fig.2.7(c)). Both bulk dis-
tributions still show modulations with a long wavelength, which sustain the wave that grows in
response to the two-stream instability. Figure 2.9(c) shows that the electric field energy decreases
after t = 262, while the energies of the ions and the bulk electrons grow to values well above the
ones in the simulations with R = 1836 and 400. The growth of the energy of the bulk species slows
down at t = 367 and the electric field energy remains high and constant until t ≈ 600. Figure
2.12(b) shows that an electron phase space hole is still present in the electron beam distribution,
but it does no longer have the quasi-circular shape as the one in Fig.2.11(b). Figures 2.12(e, h)
demonstrate that the energy gain of both bulk plasma species is due to a temperature increase
and not due to a spatial modulation of the mean speed as in the simulation with R = 1836.

The temperature increase of the bulk plasma results in an increase of its thermal pressure. The
increasing thermal pressure reduces the density modulation in response to the electric field of the
wave. The reduced density modulation causes in turn a reduction of its electric field amplitude
and of the spatial modulation of the mean velocity of the bulk electrons and ions. The electron
phase space hole does no longer interact with the bulk plasma via the electrostatic wave and hence
we do no longer observe oscillations due to a periodic energy exchange between the particles and
the electric field.

The ion distribution in Fig.2.12(h) shows elongated tails that extend to a speed −10−2. These
tails form during the nonlinear evolution of the Buneman instability. Even though the density of
these tails is low, they carry a significant momentum. The mean momentum of the ions has be-
come negative, which is initially compensated for by a momentum increase of the bulk electrons.
Electrons gain more speed when they exchange momentum with the ions and they drive a neg-
ative total current in the bulk plasma. On average, a positive electric field grows. Its effect can
be seen from Fig.2.12(c). The electron beam distribution is as diffuse as that in Fig.2.11(c) and its
velocity width is comparable. The mean velocity of the beam is, however, lower by a value 0.3 for
all x. The lost kinetic energy is transferred to the bulk plasma. This process has been discussed
previously in Ref. (Lovelace and Sudan, 1971).

2.2.3 Discussion

We have studied the interplay of the Buneman instability with the two-stream instability by solving
the linear dispersion relation and by means of particle-in-cell simulations. The initial conditions
for the instabilities were selected such that the Buneman instability would grow as fast as the two-
stream instability for the ion-to-electron mass ratio of protons and faster for a reduced ion mass.
This case study is a testbed for whether or not the plasma evolution is determined by the instability
with the largest exponential growth rate. That criterion was used by Ref. (Bret and Dieckmann,
2010) to investigate the impact a reduced mass ratio has on the evolution of a relativistic electron
beam that interacts with background electrons and ions.

Our results are as follows. Both instabilities grew independently and at the expected exponen-
tial growth rate during their initial growth phase. The wave, which was driven by the Buneman
instability, saturated at an amplitude well below that of the two-stream instability. Variations of
the exponential growth rate of the Buneman instability with the ion-to-electron mass R had no
consequence for the plasma evolution because it always saturated first for the initial conditions
we considered.

The criterion for the most important instability in a beam-plasma system used by Ref. (Bret
et al., 2010) assumes that the instability saturates at a time, which is proportional to its inverse
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exponential growth rate. This time scales as ∝ R−1/3 for the Buneman instability. The electrostatic
waves in our simulations started to grow only after a significant delay in time and the growth time,
measured from the onset of the wave growth, scaled like R−1/2. The discrepancy is large especially
for low values of R.

Artifacts introduced by a reduced value for R are more pronounced during the non-linear evo-
lution phase of the Buneman instability. The Buneman instability saturated for all R by trapping
electrons from the bulk distribution. Merging of the electron phase space holes, which formed
during the saturation of the instability, shifts the characteristic wave number of the electrostatic
oscillations to lower wave numbers. Eventually they started to interact with the waves driven by
the two-stream instability and electrostatic oscillations grew over a broad frequency band. The
amplitudes of these oscillations relative to those of the two-stream mode increased with decreas-
ing R.

The electrostatic wave, which is driven by the two-stream instability, ows to a larger amplitude
when R is large and it is stable over a longer time. We observed for R = 1836 a periodic exchange
of energy between the two-stream mode on one hand and the bulk plasma and the electric field
on the other hand. These oscillations are caused by trapping of beam electrons. These oscillations
are damped for R = 400 and asymptotically damped for R = 25. Decreasing R results in a faster and
more pronounced energy loss of the beam electrons to the bulk electrons and ions. In particular
the ion energy increased for R = 25.

A reduction of R below 100 results in a doubling of the energy loss of the beam electrons and in
a drastic reduction of their mean speed. Simulations that address the propagation of relativistic,
cold and dilute electron beams through a background plasma should thus keep a value of R close
to the correct one.
We considered only wave vectors parallel to the beam velocity vector, which excluded the Weibel
instability and the oblique modes as shown in Figure 2.13, that allowed us to perform the simula-
tions at a reasonable computational cost.

Figure 2.13 – 2D hierarchy map terms of (γb ,α) adapted from (Bret and Dieckmann, 2010). Plain lines:
R = 1836. Dashed lines: R = 30. The Weibel instability tends to govern the high density regime, the Buneman
instability the ultrarelativistic one, and the oblique the rest of the phase space. The simulations presented
above do not appear on this map, since they are at too low α, which confirm the non impact of the Weibel
instability in 2D, but the presence of the oblique instability in the competitive game between instabilities.

We have considered the case of a mildly relativistic dilute electron beam, where the growth
rates of electrostatic instabilities are comparable to or larger than those of the electromagnetic
filamentation instability (Thode and Sudan, 1975). In the range of our parameters, the Weibel
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instability is excluded, but the oblique mode may compete with the Buneman/Two stream insta-
bility. Such beams are formed by the solar energetic electrons that propagate through the solar
wind and one can also find such beams in laser-plasma experiments.

Collisionless shocks, as electrostatic or electromagnetic shocks, are mostly mediated by the
instabilities discussed above. These shocks are created after the nonlinear saturation of the in-
stabilities, as the ion acoustic instability for the case of electrostatic shocks, discussed in the next
chapter. Furthermore, these instabilities can also accelerate particles, as an example, (Amano and
Hoshino, 2009) showed that a fraction of electrons are reflected in the shock foot region by small-
scale electrostatic waves generated by the Buneman instability. A too low numerical ion mass may
overestimate the Buneman instability leading to a stronger efficiency of the acceleration process.
It is thus important to consider the realistic ion mass to avoid any misrepresentation of the shock-
related processes.
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Chapter 3

Electrostatic collisionless shocks

Plasmas consist of electrically charged particles. Under normal conditions for maintaining overall
charge neutrality, positively and negatively charged species are neutralizing locally.. In absence of
drift velocities the plasma is free of electric currents and, in the absence of an external magnetic
field B0, the plasma is free of magnetic fields. In this case, an electrostatic shock can be created
as a consequence of non-linear wave steepening and wave breaking of ion-acoustic modes. Such
electrostatic shocks are rare in the heliosphere, because most moving plasmas there are magne-
tised. These shocks may, however, occur under certain very special conditions, even in strongly
magnetised plasmas, in the auroral zones of magnetised planets and in the particle acceleration
zones in the solar corona during particular flare events. In these cases, electrostatic shocks are
strictly one-dimensional and occur on very small scales where they contribute to the generation
of magnetic-field aligned electrostatic fields. These fields can promptly accelerate particles to en-
ergies of the order of the total macroscopic electrostatic potential drop.

Unmagnetized nonrelativistic shocks have been studied experimentally (Romagnani et al.,
2008; Kuramitsu et al., 2011; Ahmed et al., 2013), analytically (Sagdeev, 1966; Bardotti and Segre,
1970; Raadu and Rasmussen, 1988) and numerically (Forslund and Shonk, 1970; Karimabadi et al.,
1991; Kato and Takabe, 2010; Sarri et al., 2011). They are at least initially sustained by the density
difference between the upstream plasma and the shock-compressed downstream plasma. Ther-
mal diffusion lets more electrons move from the downstream plasma to the upstream one than
vice versa and a space charge builds up. A dense plasma acquires a positive electric potential rela-
tive to the upstream one. The incoming upstream ions have to overcome this cross-shock potential
and their kinetic energy is reduced, which has two consequences. Firstly, the density is increased
downstream. Secondly, the plasma velocity is slower downstream. The shock crossing increases
the ion velocity spread which heats up the ions. The electrostatic potential thus has a similar effect
on the inward flowing ions as binary collisions in a hydrodynamic shock.

The ions, which could not overcome the shock potential, are reflected by the shock and propa-
gate upstream. The shock-reflected ion beam transports energy upstream at a speed that exceeds
that of the shock, which is a particularity of a collisionless medium. A shock reflected ion beam is
thus a signature of a collisionless shock. Its interaction with the inflowing ions drives instabilities
upstream of the shock, which ultimately destroy the narrow transition layer and replace it by a
broad layer of electrostatic waves (Karimabadi et al., 1991). The lifetime of a collisionless electro-
static shock is thus limited. A sketch of the transition layer of an electrostatic shock is shown in
figure 3.1.

The shock formation process is enhanced in plasmas with high mass and temperature ra-
tios between the negatively and positively charged plasma components (Forslund and Shonk,
1970). Theoretical estimates are turbulent one-dimensional models and neglect the electromag-
netic modes which are associated with the multi-dimensional features of the problem (Stockem
et al., 2014).

Analytical models of electrostatic shocks rely on the electrostatic potential (cf. 3.1). This poten-
tial is described by the analytical approach proposed by Sagdeev (Sagdeev, 1966). He introduced a
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Figure 3.1 – Sketch of an electrostatic shock structure showing a monotonic increase of the potential from
Φ= 0 to Φmax in the upstream region, and an oscillatory behavior with Φ2 <Φ≤Φmax in the downstream
region. Upstream particle are so reflected (blue) if their kinetic energy is lower than Φmax , passing in the
opposite case (green). When the downstream particle’s kinetic energy is smaller than Φ2, they are trapped
and cannot reach the upstream (red). The value of Φ2 characterizes the dissipation of the directed kinetic
energy of the upstream flow into thermal (pressure) energy in the downstream.

pseudo-potential permitting to find a certain class of nonlinear solutions of the Korteweg-de Vries
equation, and to distinguish between solitary wave and shock. Different nonlinear problems in
plasmas related to solitary waves can be treated using the Sagdeev pseudo-potential, but all these
solutions are, dissipation free and are limited to relatively slow inward flows. Stronger shocks can
be created if short wavelengths instabilities produce collisionless anomalous dissipation. Kinetic
theory of microscopic interaction between waves and particles in plasmas far from thermal equi-
librium are of particular importance to explain this anomalous dissipation.

A solitary wave, presents one of solutions of the Sagdeev potential in a system without dissipa-
tion. A simple treatment of the non-magnetized collisionless shock structure, taking into account
finite ion temperature, is given in (Cairns et al., 2014), is briefly described in what follows.

Let us consider a collisionless shock illustrated in figure 3.1, where ions flow into a region, with
an increasing potential from zero to some positive unknown value Φmax . Incoming ions have a
Maxwellian distribution, equation (1.7), with an average velocity v0. A relation between the plasma
density and the potential is Φ is given by the Boltzmann law

ni (Φ,Φmax ) = 1p
2π

∫ ∞
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where the ion velocities is normalised to the thermal velocity vthi =

√
kBTi /mi , and the potential

to mi V2
i /Ze. The electrons, are assumed to be in a thermal equilibrium state in the potential, and

their flow produces a charge equilibrium far upstream, where the potential tends to zero

ne (Φ,Φmax ) = Zni (Φ,Φmax )exp
(ΦTi

ZTe

)
. (3.2)

The Poisson’s equation, using a scaling lengths of vi /ωpi , withωpi the ion plasma fequency based
on the density of the incoming flow at Φ= 0, can be written as

d 2Φ

d x2 =−∂Ψ
∂Φ

, (3.3)
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where the Sagdeev potential have been written as

Ψ=
∫ Φ

0

[
Zni (Φ′,Φmax )−ne (Φ′,Φmax )

]
dΦ′. (3.4)

The Sagdeev potential depends on the unknown quantityΦmax which defines the range of param-
eters where a stable solution exists. In order, to verify the analytical estimates of Φmax , numerical
simulations are needed. Simulations by (Cairns et al., 2014) demonstrated that an acceptable so-
lution only exists if the electron temperature is sufficiently high, and the shock Mach number is
sufficiently low. A choice of the electron-ion temperature ratio influences the Mach number, and
that high ratios lead to larger Mach number and to a high percentage of reflected ions.

3.1 Parametric simulation study of the expansion of a dense plasma
into an unmagnetized dilute plasma

Laser-matter interaction experiments and the associated numerical simulations are common to-
day tools for studies of electrostatic shocks. An intense laser pulse, absorbed by a thin solid target,
ionizes the target material and heats up its electrons to a temperature that is high enough for some
of them to leave the target material from the front and rear side. The escaping electrons leave be-
hind a positive net charge on the target’s surface that is facing away from the laser. A double layer
forms between them and the surface. Its electric field accelerates the ions of surface impurities
and of the target along the surface normal. This ion acceleration process creates a rarefaction wave
propagates into the target and continues to inject ions into the expanding plasma thus forming a
blast shell.

The blast shell expands into vacuum and its density decreases with an increasing distance
from the target’s surface. Thermal diffusion of electrons in a density gradient yields an ambipolar
electric field, which continues to accelerate ions far from the target’s surface. However, the ions
are less efficiently accelerated when the rarefaction wave reaches the center of the ablated target
(Mora and Grismayer, 2009). Blast shell fronts can reach speeds of the order of 105−107m.s−1, but
it is important to distinguish between two regimes of ion target acceleration via laser pulse.

The first one, concerns experiments where thick targets are irradiated with lasers with pulse
durations < 1 ns and peak intensities Iλ2 of the order of 1017−1018W.cm−2.µm2 (Begay and Forslund,
1982). The ions are emitted from the front surface irradiated by the laser, with a large angular di-
vergence and an energy of a few 100 keV/nucleon (depending of the wavelengh λ of the laser).
The ions originated from the target surface, and expand into vaccum according to the theoretical
models (Gurevich et al., 1968; Denavit, 1979). Simulations using parameters of these experiments
showed that the plasma expansion in vacuum, could be considered isothermal (Gitomer et al.,
1986), or adiabatic. The second ion acceleration regime is realized with short (picosecond) pulses
(Maksimchuk et al., 2000). It was demonstrated by studying the acceleration ions from the non-
irradiated rear target surface, of a thin target. The accelerating electrostatic field is generated by
fast electrons produced by an ultra-intense laser pulse, and propagated through the target, as it
was explained by (Wilks et al., 2001). This acceleration mechanism, called TNSA target normal
sheath acceleration allows to attain higher ion energies adiabatically accelerated from the target.

In our study we consider the first configuration of target ablation by ns laser pulse, resulting
to an isothermal expansion of a blast shell. Residual gas, which is present in the vacuum chamber
prior to the target ablation, is ionized by secondary X-ray emissions from the ablated target. This
ambient plasma resists the blast shell’s expansion. Its thermal pressure is initially small compared
to that of the much denser blast shell and the latter expands freely. The blast shell’s front accel-
erates, compresses and heats up the ambient plasma. The swept-up shocked ambient plasma is
separated by a shock (Forslund and Shonk, 1970; Forslund and Freidberg, 1971; Romagnani et al.,
2008; Dieckmann et al., 2010; Pusztai et al., 2018) from the ambient plasma upstream of it, if the
relative speed between both populations exceeds the relevant acoustic speed. This shock is colli-
sionless and electrostatic and it is characterized by a sharp unipolar electric field pulse. Electro-
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static shocks can be destabilized by an instability between the ions they reflect and those of the
ambient medium (Karimabadi et al., 1991) or by a Vishniak-type instability (Ahmed et al., 2017;
Dieckmann et al., 2018a).

The ram pressure, which is exerted by the upstream plasma on the shock, is balanced by the
thermal pressure of the trailing medium. The latter consists of the shocked ambient medium and
of the blast shell plasma. The shocked ambient medium is separated from the blast shell plasma
by a contact discontinuity. A pressure balance results in a uniform density and speed of the down-
stream plasma behind the shock front and in a constant maximum speed of the blast shell.

Here we examine with PIC simulations, using the EPOCH code, the shock speed evolution and
the formation of secondary structures and processes, such as ion phase space holes (Eliasson and
Shukla, 2006) or instabilities driven by the shock-reflected ion beam, are affected by the magni-
tude of the initial plasma density gradient. This study is inspired from (Dieckmann et al., 2010)
studied collisionless planar electrostatic shocks with a strong initial thermal pressure change. The
presence of the low-pressure ambient plasma modifies the proton dynamics compared with the
plasma expansion into a vacuum. In the present Chapter we investigate the case where the ther-
mal pressure gradient is small increasing the impact of the ambient medium on the blast shell
expansion.

This work can provide further insight into the dynamics of solar system shocks and the non-
relativistic astrophysical shocks, such as the supernova remnant shocks (Bell et al., 1988; Woolsey
et al., 2001). In particular, the case of large pressure a gradient investigated by (Dieckmann et al.,
2010) corresponds to the case of forward shock, resulting from the interaction between the ex-
panding SNR and the ISM, and, the next study will correpsond more to the reverse shock of a su-
pernova remnant. A better understanding of such shocks is also relevant for inertial confinement
fusion experiments.
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3.1.1 Initial conditions of PIC simulations

Simulations are performed in one spatial dimension x with three particle velocity components.
We applied periodic boundary conditions for the fields and reflecting boundary conditions for
the computational particles (CPs). The length L0 = 6-8 mm of the simulation box depends of the
initial density ratio between the ambient plasma and the blast shell, see Tab.3.1, in order to make
it large enough to separate effects introduced by the boundaries from the area of interest. The
box is subdivided into evenly spaced grid cells with the length ∆x = 0.2µm. We consider here fully
ionized hydrogen.

A dense plasma fills the domain x < 0 with an ion and electron density n0 = 1024m−3. The
ambient plasma fills the domain x > 0. Its density is defined by its ratio α with the denser plasma
as n0/α, see Tab.3.1. The electron and ion temperatures of both plasmas are Te = 1keV and Ti =
Te /10. The electrons from the ambient medium are 100 times hotter than in (Dieckmann et al.,
2010). All species are initially at rest and we represent the electrons and ions of the ambient plasma
by 102 ppc and by 4×102 ppc for the dense plasma. The simulation setup is shown in figure 3.2.

Figure 3.2 – Sketch of the plasma density distribution in the
simulations. The localisation of the boundaries of the sim-
ulation box change regarding to α.

Plasma frequencies of the electrons and
ions of the dense plasma are defined by
ωpe = (n0e2/ε0me )1/2 = 5.6× 1013s−1 and
ωpi = (Z2n0e2/ε0mi )1/2 = 1.3 × 1012s−1

respectively. The dense plasma
has an electron thermal speed of
vthe = (kBTe /me )1/2 = 1.3 × 106m.s−1

and the electron Debye length is
λDe = (ε0kBTe /n0e2)1/2 = 0.235µm,
which is larger than our spatial res-
olution. The ion acoustic speed
in these collisionless plasmas is
cs = ((γe Te+γi Ti )/mi )1/2 = 4.3×105m.s−1,
where, γe = 5/3 and γi = 3 are the specific
heat ratios for electrons and ions.

Debye length of the electrons of the dense plasma is used for the length normalization and
the dense plasma frequency is used for time normalization. The simulation box covers 2.55−3.4×
104λDe . We examine the data in the time interval 0 ≤ tωpe ≤ tmax with tmax = 1.5−1.69×105. tmax

is resolved by 4.0−4.5×106 time steps.

Label Ambient plasma density α Left wall Right wall Grid cells
Sim 1 Very high 2.5 −104 1.5 ·104 30000
Sim 2 High 5 −104 1.5 ·104 30000
Sim 3 Medium 10 −104 1.5 ·104 30000
Sim 4 Low 15 −1.21×104 2.13 ·104 40000
Sim 5 Very low 20 −104 2.34 ·104 40000

Table 3.1 – Characteristics of the simulations as function of the density ratio α (the left and right wall repre-
sent the localisation of the boundaries of the simulation normalized by λDe ).

3.1.2 Simulations results

A plasma density gradient, depending of the density ratio α, is created near the contact layer at
x = 0. Due to the high electron mobility an ambipolar electrostatic field rises. The latter confines
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Figure 3.3 – The ion density ni /n0 time and space evolution for the density ratio α= 2.5 (a), α= 5 (b), α= 10
(c), α= 15 (d), α= 20 (e), in the laboratory frame of reference.

the electrons and accelerates the ions. The electric field vector is antiparallel to the density gra-
dient and the ion acceleration launches a rarefaction wave. The electron momentum along the
density gradient is reduced by the electric field of the expanding wave, this way the electrons pro-
vide energy for the ion acceleration. The rarefaction front moved to the left into the dense plasma
x < 0 and accelerates ions to the right. The accelerated ions form a blast shell that expands and
launch a shock in the ambient medium.

The evolution in time, of the ion density is represented in Fig.3.3 for the different simulations
in the interval 0 ≤ x/λDe ≤ 8×103. The density ratio controls the velocity of the rarefaction wave.
The shock propagates faster in a lower density ambient medium. In the cases of density ratio α=
5, 10 and 15 some density pulses appear after 2×104ω−1

pe in the interval 2 ≤ x/λDe ≤ 6×103. The

initial speed of these solitary waves is close to the shock speed and slows down after few 104ω−1
pe .

In order to understand these processes we consider the ion phase space at two different times,
before and after the formation of these non-linear structures in front of the shock.

Laminar hybrid structure

Figure 3.4 displays the ion phase space components at t = 3.5× 104ω−1
pe (0.6 ns) in the interval

−1×103 ≤ x/λDe ≤ 2,5×103 for the different simulations.

Electrostatic shocks are easily captured in one-dimensional simulations. They are fully de-
scribed by the distribution of the electrostatic potential (Dieckmann et al., 2010). The rarefaction
wave, generated by the potential across the contact discontinuity, has accelerated the blast shell
ions in the interval −103 ≤ x/λDe ≤ 0 and the ion density goes down when x increases. Penetration
of the blast shell into the ambient plasma at x > 0 increases the total ion density, and an electric
field builds up in opposite direction to the dense plasma expansion. As a consequence, the blast
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Figure 3.4 – The phase space density distribution (x, vx ) of the ions on a 10-logarithmic scale at t = 3.5×
104ω−1

pe for α= 2.5 (a), α= 5 (b), α= 10 (c), α= 15 (d), α= 20 (e), in the laboratory frame of reference.

shell ions are decelerated, in the laboratory frame of reference, by the ambient medium and a
plateau with a constant velocity is formed for x > 0. A double layer structure exists in the interval
0 ≤ x/λDe ≤ xsh , where xsh is the position of the shock and represents the edge of the plateau. The
ions from the ambient medium which have crossed the shock are decelerated by the potential in
the shock frame of reference, and are mixed with the blast shell ions in the plateau region. At these
time interval, the mixing region between the blast shell and ambient ions covers all the plateau
region.

We define now the contact discontinuity as the interval where the two plasma species are
mixed with each other. Recent works on the expansion of a blast shell into an ambient plasma im-
mersed in an external magnetic field (Dieckmann et al., 2017a; Moreno et al., 2018c) have demon-
strated that the magnetic pressure helps to form a sharp contact discontinuity between the two
ion populations in the plateau region (discussed in the next Chapter). In the present purely elec-
trostatic case, the blast shell expansion is not constrained by any magnetic field and the two popu-
lations are mixed over a larger distance. However, since the ambient medium decreases the speed
of the blast shell, the latter progressively becomes less dense close to the shock front, and on large
time scales the only ion species which contribute efficiently to the shock formation are those of
the ambient plasma. The downstream frame of reference moves at the speed of the plateau vp .
The Mach number of the shock is defined as M = v0/cs , where v0 = vp + cs , and can be estimated
as the density jump of the ambient plasma close to the shock boundary. The speed of the electro-
static shock and its position depend on the density ratio. This is demonstrated in Table 3.2 and in
figure 3.3. The shock speed increases as the ambient plasma density decreases.

The ions from the blast shell which has passed the shock boundary, before the time response
of the ambient medium, moves faster than the shock and propagates upstream as an ion beam.
The electrostatic potential of the shock is able to reflect a fraction of the upstream ambient ions
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Density ratio α 2.5 5 10 15 20
Shock speed v0(105m.s−1) 4.0 4.35 4.7 4.9 5.0

Mach number (v0/cs) 0.9 1.0 1.08 1.12 1.15
Position of the shock front 1100 1180 1250 1310 1380

Table 3.2 – Mach number of the shock depending of the density ratio α.

(Pusztai et al., 2018), which will move at a speed similar to the ion beam. This linear stage evolves
until 2×103ω−1

pe where non-linear effects affect the shock propagation.

Non-linear processes

Figure 3.5 displays the ion phase space components at t = 14.2× 104ω−1
pe (2.5 ns) in the interval

−1×103 ≤ x/λDe ≤ 2,5×103 for the different simulations.

Figure 3.5 – The phase space density distribution (x, vx ) of the ions on a 10-logarithmic scale at t = 14.2×
104ω−1

pe for α= 2.5 (a), α= 5 (b), α= 10 (c), α= 15 (d), α= 20 (e), in the laboratory frame of reference.

Ion phase space holes appear in the downstream and upstream regions of the shock front.
Holes in the particle phase space can appear when the system is time dependent and can be
generated by kinetic instabilities. An ion beam propagating through an ambient medium is a
possible source for excitation of several instabilities which can produce phase space holes. The
one-dimensional configuration of our simulation does not allow excitation of the Vishniac-type
instability, which can rise close to the shock boundaries. The Weibel instability is also forbidden
in 1D geometry. Two possible electrostatic instabilities leading to shock formation can merge in
these one-dimensional simulations. One of them is the Buneman instability (Buneman, 1958)
which cannot grow in our present case since the electrons are so hot that their thermal velocity
spread exceeds by far their drift velocity relative to the ions (speed of the ion beam). A similar rea-
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son prevents the growth of the electron two-stream instability. The electrons are initially 10 times
hotter than the ions, this ratio between the electron temperature and the ion temperature is large
enough to linearly undamp the ion acoustic waves (Baumjohann and Treumann, 1997). However,
the shock dissipates part of the ion kinetic energy from the ambient medium which is strongly
heated after crossing the shock ramp, reaching a temperature of 4Ti . Because of their inital high
temperature, vte >> v0 the electrons maintain the neutrality on either side of the shock without
any variation of their thermal velocity.

Figure 3.6 – Zoom on the phase space density distribution (x, vx ) of the blast shell (a) and ambient ions (b)
on a 10-logarithmic scale at t = 10.1 104ω−1

pe for α= 10 in the Laboratory frame of reference. Panel (c) shows
the ion density of the blast shell (red) and ambient ions (black).

The increase of the ion temperature of the ambient medium therefore suppresses the growth of
the ion acoustic instability downstream since the ratio Te /Ti decreases. The ion acoustic instabil-
ity can however grow upstream, particularly in the case of a low density ratio. The hole formation
is studied in the simulation with α= 10.

An analysis of the evolution of the ion phase space components of the dense and ambient
plasma with α = 10, in the shock frame of reference, in the time interval 3.5× 104 < t < 14.2×
104ω−1

pe , has been performed. The shock has reached the position x/λDe ' 3.9×103 at t = 10.1×
104ω−1

pe (1.8 ns) at it is shown in Figure 3.6. The electrostatic shock is mostly mediated by the
ambient medium as demonstrated in Fig.3.6c where the density of the inital dense blast shell is
now lower than the density of the ambient medium. The reflected ion beam moves at a speed
vr e f = 8.5× 105m.s−1 which is approximatly two times higher than the ion acoustic speed. This
situation is favourable for the growth of solitary waves which are formed upstream of the shock due
to the ion acoustic instability. These solitary waves have already been observed by (Dieckmann
et al., 2010) for cold electron beams. In this study we consider the hot plasma.

We perform now a Galilean transformation from the laboratory reference frame to the shock
frame of reference x∗ = x−v0t . The evolution in time, of the blast shell and ambient ion density is
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represented in Fig.3.7.

Figure 3.7 – The ion density ni /n0 component evolution for the density ratio α = 10 of the dense plasma
(left) and the ambient plasma (right), in the frame of reference x∗ = x − v0t . Here v0 = 4.7×105m.s−1 and
the black line corresponds to the velocity of 5.7×104m.s−1 or 1.13v0.

The solitary waves excitation depends on the interaction between the shock reflect ion beam
and the ambient medium, and it is difficult to estimate their localization. The first solilary wave,
called SW1, appears after 4.5× 104ω−1

pe at a distance x∗ = 22λDe ∼ c/ωpe from the shock ramp.
A phase space hole is formed in the cavity bounded by the solitary wave potential and the shock
ramp. During a short time period∼ 0.5×104ω−1

pe the hole moves at the shock speed. Two conditions
required for the creation of these ion holes: first, the electrons must be sufficiently hot so the ion
acoustic waves are weakly damped, and second, the depth of the potential in the cavity is limited
by the electron thermal energy. Ion hole is related to ion-acoustic mode (Schamel, 1986), it is
more or less standing structure since it tend to self-bind as ions surrounding the hole are attracted
to the hole’s negative potential. Once produced, a hole located at velocity v , can become unstable
(Dupree, 1983). The ion hole appears to be negatively charged, since it is a local phase space
region deficient of ions. The electrons will be reflected by the ion hole’s potential. If there are more
electrons moving faster than the hole than slower, then reflecting resonant electrons will impart
momentum to the hole. Consequently, the ion hole decelerates, and, therefore, it becomes deeper,
because there are more particles with smaller velocities (Tetreault, 1988). The ion hole dynamics,
can be seen in figure 3.7.

SW1 develops into a secondary shock, which accelerates to a speed of 0.13v0 in the initial
shock frame of reference x∗, and the hole, bounded by the SW1 potential and the initial shock
ramp, accelerates identicaly in the opposite direction to the left. The hole continues to accelerate
to the left reaching a steady state at a speed close to the shock speed −1.13v0 in the initial shock
frame of reference x∗, which correspond to a speed of−0.13v0 in the laboratory frame of reference.
After 6.5×104ω−1

pe a new solitary wave, called SW2, grows much further than the previous one at
x∗ = 220λDe ∼ 10c/ωpe , between the interval 80 ≤ x∗ ≤ 300λDe . SW2 transforms to a shock at
x∗ ' 300λDe . A large quantity of blast shell ions are reflected by the SW2 potential and we clearly
see these ions moving through the cavity, in the direction of the ramp formed by SW1, at a speed
−0.13v0, in the initial shock frame of reference x∗ (cf. figure 3.7). After 104ω−1

pe of propagation into
the cavity formed by SW1 and SW2, the reflected ions reach the shock ramp at x∗ = 80λDe and
start the creation of a hole. The latter is too large and unstable. A fragmentation into a train of
smaller and stable holes appear after 8.6× 104ω−1

pe . Each of them will propagate downstream at
the same speed, −1.13v0, as the first hole formed by SW1, reaching their steady state. The shock
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formed by SW2 at x∗ ' 300λDe is only mediated by the ambient medium as shown in Fig.3.7, where
the density of the ambient medium is 10 times higher compare to the blast shell. The shock then
reaches a speed of 1.13v0, for a Mach number of 1.6.

Figure 3.8 – The square root of the ion phase space density (x, vx ) at differents time. The ion density is
multiplied with 30 as indicated on the y axis. The overplotted line is the mean speed of the ion population.

We will now study precisely the formation process of the solilary wave near x∗ ' 300λDe , where
SW2 turns to a shock. Figure 3.8 displays the ion phase space components of the upstream ions
and the evolution of their average velocity, at different times in the interval 280 ≤ x∗ ≤ 340λDe

where the solitary waves merge. The opposite currents create small perturbations on the beam
and ambient plasma. A tail is formed by these perturbations which propagates at a lower speed
than the beam. The symmetric case happens for the ambient plasma. The bipolar electric field
generated by each of these tails confines the ions. Indeed, in the comoving frame of reference of
the two ion populations, the electric fields have opposite polarities in the region surrounded by
the tails which tends to decrease the local electric field in the interval 300 ≤ x∗ ≤ 320λDe . The tail
of the blast shell ions can be clearly seen in Fig.3.8f at x∗ = 295λDe . Since the two plasma flows are
not symmetric the mean speed of the total ion population increases and reaches a speed of 1.13v0.

Discussion

In this chapter, we have introduced electrostatic shocks and investigated a thermal expansion of a
dense plasma into a dilute plasma. The aim of our work has been to perform a parametric analysis
of the density ratio between two clouds to see the qualitative effects of the ambient medium on
the dense plasma expansion. The initial conditions and the one-dimensional geometry capture
easily the electrostatic shock formation. Our results are summarized as follows. A laminar hybrid
structure is formed at the first times of the expansion. It is a double layer structure composed by a
rarefaction wave pushing the blast shell ions, which are slowed down by the ambient plasma form-
ing a plateau, the latter finally forms a shock. The electrostatic shock velocity is increasing with the
increase of the density ratio between the two plasma clouds. The shock evolution is time depen-
dent; the ambient ions reflected (Malkov et al., 2016) from the shock front excite the ion acoustic
instability in the upstream shock region. Other instabilities are excluded due to the chosen ini-
tial conditions and the 1D geometry. The solitary waves are excited at the nonlinear stage of the
ion acoustic instability. The potential of the solitary waves is sufficiently high to reflect ions and
produce phase space holes. The solitary waves form a new shock, accelerated by the phase space
holes. These solitary waves gradually reflect the ions of the expanding dense plasma, and the final
shock is at the end only mediated by the ambient medium. The gradient pressure between the two
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plasmas in (Dieckmann et al., 2010) was too large to see this separation between the initial dense
and dilute plasma.

This shock acceleration by ion acoustic phase space holes can provide further insight into the
dynamics of non-relativistic astrophysical shocks as Earth’s bow shock or SNRs. However, particu-
larly in the case of collisionless shocks in the heliosphere, the magnetic field plays a dominant role
and the global shocks are not purely electrostatic. To properly describe such shocks, the magnetic
field has to be taken into account, changing the instabilities of shock mediation. These shocks will
be investigated in the next Chapter.
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Chapter 4

Magnetosonic collisionless shock
formation by the expansion of a
magnetized blast shell

Since all collisionless shocks in the heliosphere are magnetised, magnetic field has to be included,
and the global shocks are not purely electrostatic even though subshocks developing in them can
be considered as electrostatic. We have already presented, in the previous chapters, the collision-
less shocks classification in astrophysics, as well as the analytical and numerical tools needed for
their analysis.

Collisionless electrostatic shocks have been studied in the previous chapter, where no external
field was added. A background magnetic field modifies collisionless shocks. The particle gyromo-
tion introduces new spatio-temporal scales and the shock behaviour becomes dependent on the
orientation of its normal relative to the direction of the magnetic field. Experimental observations
of the Earth’s bow shock demonstrate that the shock transition layer is narrow if the shock normal
and the magnetic field direction are quasi-perpendicular (Bale et al., 2005). The transition layer
widens with decreasing angles between both directions and one may not even find a definitive
shock front structure if both are quasi-parallel (Burgess et al., 2005).

The waves forming a shock are the lowest-frequency plasma modes that are excited under the
particular conditions of the shocked plasma. In a cold and strongly magnetized plasma there are
three fundamental MHD modes which we will discuss in this chapter.

4.1 MHD modes in cold magnetized shocks

Let us investigate the small amplitude waves which propagate through a spatially uniform mag-
netized plasma. Considering an ideal Ohm’s law (cf. equation (1.34)), the continuity equation and
Maxwell’s equations can be written as:

∂tρm +∇r · (ρmV) = 0 (4.1a)

∂t (ρmV)+∇r · (ρmVV)+∇r · ¯̄Π− J×B = 0 (4.1b)

∂t
¯̄Π+Γ ¯̄Π∇r ·V = 0 (4.1c)

∂t B+∇r ×E = 0 (4.1d)

∇r ·B = 0 (4.1e)

where (4.1c) corresponds to (1.35c) in its simplest form. These equations can be linearized, as-
suming, for the sake of simplicity, the equilibrium flow velocity and equilibrium plasma current to
be zero:
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∂tρ1 +∇r · (ρ0V) = 0 (4.3a)

∂t (ρ0V)+∇r · ¯̄Π− (∇r ×B)×B0/µ0 = 0 (4.3b)

∂t
¯̄Π+Γ ¯̄Π0∇r ·V = 0 (4.3c)

∂t B−∇r × (V×B0) = 0 (4.3d)

The equilibrium quantities, ρ0, ¯̄Π0, and B0 are constants in a spatially uniform plasma. Let us
search for wave-like solutions of Eqs. (1.37) in which perturbed quantities vary like ∝ exp(i k.r−
ωt ). It follows that equation (1.37) with the coupling of eq. (4.3a) and eq. (4.3c) takes the form

−ωρ1 +ρ0V ·k = 0 (4.5a)

−ωρ0V+k ¯̄Π− (k×B)×B0

µ0
= 0 (4.5b)

−ω
( ¯̄Π

¯̄Π0

− Γρ1

ρ0

)
= 0 (4.5c)

ωB+k× (V×B0) = 0 (4.5d)

Assuming that ω 6= 0, the above equations yield

ρ1 = ρ0
k ·V

ω
(4.7a)

¯̄Π= ¯̄Π0Γ
k ·V

ω
(4.7b)

B = (k ·V)B0 − (k ·B0)V

ω
. (4.7c)

Substitution of these expressions into the linearized equation of motion, eq. (4.5b), gives[
ω2 − (k ·B0)2

µ0ρ0

]
V =

{[
Γ ¯̄Π0

ρ0
+ B2

0

µ0ρ0

]
k− (k ·B0)

µ0ρ0
B0

}
(k ·V)− (k ·B0) (V ·B0)

µ0ρ0
k. (4.9)

Assuming the notation of the wavevector as k = k∥e∥+k⊥e⊥, where e∥ and e⊥ are the orienta-
tion of the wavevector parallel and perpendicular to the magnetic field, respectively, the previous
equation reduces to the eigenvalue equationω

2 − v2
Ak2 − c̃s

2k2
⊥ 0 −c̃s

2k∥k⊥
0 ω2 − v2

Ak2
∥ 0

−c̃s
2k∥k⊥ 0 ω2 − c̃s

2k2
∥

v = 0. (4.10)

where we recognize the Alfvén speed

vA =
√

B 2
0

µ0 ρ0
. (4.11)

The ion acoustic speed has the form

c̃s =

√√√√Γ ¯̄Π0

ρ0
. (4.12)

We can assume, without loss of generality, that the equilibrium magnetic field B0 is directed along
the z-axis, and that the wave-vector k lies in the x-z plane. Let θ be the angle subtended between
B0 and k. The solution requires that the determinant of the matrix (4.10) is zero, which yields the
dispersion relation
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DMHD(ω,k) = (ω2 − v2
Ak2 cos2θ)[(ω2 − v2

Ak2 cos2θ)(ω2 − c̃s
2k2)−ω2v2

Ak2 sin2θ] = 0. (4.13)

This dispersion equation of degree 3, in ω2, accepts three independent roots, corresponding to
the three different types of wave that can propagate in a magnetized plasma. The first, and most
obvious, root is

ω

k
= vA cos(θ). (4.14)

This wave is characterized by both k ·V = 0 and V ·B0 = 0. This solution corresponds to an incom-
pressible mode, which means that there is no change of density or pressure. The group velocity
is along B, the wave does not transfer energy (information) across the magnetic field. So we note,
that since the Alfvén wave only involves plasma motion perpendicular to the magnetic field, we
can expect the dispersion relation (4.14) to hold in a collisionless, as well as a collisional plasma.

The remaining two roots of the dispersion relation (4.13) are written

ω

k
= v f ,s , (4.15)

where v f ,s correspond to the fast/ slow magnetosonic velocity respectively and take the form

2v2
f ,s

v2
A

= (1+ β̃)±
(
(1− β̃)

2 +4β̃sin2θ
)1/2

, (4.16)

where
β̃= c̃2

s /v2
A, (4.17)

equals the ratio of the plasma’s thermal to magnetic pressure. We also define here the magne-
tosonic velocity c̃ms , which corresponds to the fast magnetosonic speed for θ= 90◦,

c̃2
ms = c̃2

s + v2
A. (4.18)

Note that v f ≥ vs . The wave with the upper sign in equation (4.15) is designated as the fast mag-
netosonic wave, whereas the wave with the negative sign is called the slow magnetosonic wave.
These waves are associated with non-zero perturbations in the plasma density and pressure, and
also involve plasma motion parallel, as well as perpendicular, to the magnetic field, k ·V 6= 0 and
V ·B0 6= 0. The latter observation suggests that the dispersion relations (4.15) are likely to undergo
significant modification in collisionless plasmas.

Considering the cold-plasma limit, which is obtained by letting the sound speed cs tend to
zero, the slow wave has its phase velocity which tends to zero and ceases to exist, whereas the
dispersion relation for the fast wave reduces to

ω

k
= vA (4.19)

The fast magnetosonic wave can be identified as the compressional-Alfvén wave modified by a
non-zero plasma pressure. In the limit vA >> cs , which correspond to low-β plasmas, the disper-
sion relation for the slow wave reduces to

ω' kc̃s cosθ. (4.20)

In low-β plasmas the slow magnetosonic wave is a sound wave modified by the presence of the
magnetic field.

A distinction between the fast and slow waves can be further understood by comparing the
sign of the plasma thermal and magnetic pressure perturbations: ¯̄Π and B0 ·B/µ0, respectively.
The fluctation of the magnetic pressure can be found from (4.7c)

BB0

µ0
= (k ·V)B2

0 − (k ·B0)(V ·B0)

µ0ω
. (4.21)
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Now, considering the z- component along the magnetic field, equation (4.5b) yields

ωρ0vz = k cosθ ¯̄Π. (4.22)

Combining equations (4.7b) with the two latter equations, we obtain

B0 ·B

µ0
= v2

A

c̃2
s

(
1− k2c̃2

s cos2θ

ω2

)
¯̄Π. (4.23)

Hence, ¯̄Π and B0 ·B/µ0 have the same sign if V > c̃s cosθ, and the opposite sign if V < c̃s cosθ. It
is straightforward to show that v f > c̃s cosθ, and vs < c̃s cosθ. Thus, we conclude that for the fast
magnetosonic wave the thermal pressure and the magnetic pressure are in phase (the fluctuations
reinforce one another), whereas in the slow magnetosonic wave these pressures are in antiphase
(the fluctuations oppose one another).

Figure 4.1 – Wave vector diagram of two cases of MHD waves in the plane of the magnetic field.

Figure 4.1 shows the angular dependence of these three phase velocities for two special cases.
Clearly in the direction perpendicular to the magnetic field only the fast mode propagates and,
hence, strictly perpendicular MHD shocks are fast shocks as has been noted. In the direction par-
allel to B all three waves can propagate. These are the lowest frequency eigenmodes of a homoge-
neous not necessarily isotropic plasma, a small disturbance excited in a plasma may propagate in
a form of one of these modes.

These solutions are obtained in a linear approximation, where waves have been considered
to be harmonic ∝ exp(i k.r−ωt ). Shocks are formed by steepening of the leading edge of a wave,
which is caused by non-linear effects. Steepening of the wave also leads to strong dispersive ef-
fects, and the competition of these two effects is responsible for the spontaneous generation of
oscillations.

Let us now consider a high-pressure plasma (c̃2
s >> v2

A) and a very small obliquity such that
R−1/2 << θ<< 1 (with R the ion-to-electron mass ratio, cf. Chapter 2), then the dispersion relation
for a slow mode obtained by (Sagdeev, 1966) acquires a simple form

ω2

k2 ≈ v2
A

(
1+ k2θ2c2

ω2
pi

)
, (4.24)
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where the second term in the parenthesis accounts for the wave dispersion. Consequently, the
dispersion effects become important at wavelengths of the order of θ(c/ωpi ). This particular ex-
ample (Sagdeev, 1966) shows that a laminar structure of non-linear oscillations inside a shock
front can be reduced to two different cases. Figure 4.2 (left) shows the two dispersion curves of low
frequency waves in the (ωr ,k)-plane from which shock waves could evolve.

Figure 4.2 – Two different types of dispersions in the (ωr ,k)-plane. (left) The short waves with concave dis-
persion relation, ω1, have a smaller group velocity than long waves and form a trail on the long wave. For a
convex dispersion relation, ω2, the short waves move faster than long waves. The effect of this difference in
sideband wave velocity on a laminar subcritical shock wave are shown in the right panel. The waves, spa-
tially damped, moving-away from the shock ramp into the downstream region, are produced by a concave
dispersion relation (down right). These waves occur in the upstream region for a convex dispersion relation
(up right).

Both curves have in common a linear dispersion at long wavelengths, i.e. at small wave-
numbers k, with slope given by the phase velocities of the waves. In this region all nonlinearly
generated sidebands have same phase and group velocities causing broadening of the wave spec-
trum and steeping. However, at higher wave-numbers the dispersion curves start diverging from a
linear slope, one of the waves turning convex, the other concave. These turnovers imply a change
in the phase and group velocities. The convex dispersion implies that shorter wavelengths gener-
ated in the convex part of the dispersion curve move faster than the long waves. They thus catch
up with the long wavelength wave and run away ahead thus forming upstream precursors of the
shock as shown in the higher part on the right. On the other hand, for the concave dispersion
shorter wavelength waves fall behind the long waves. They represent a wave trail following the
large amplitude long wave as is shown in the lower part on the right. This simple analysis of the
dispersion curves already demonstrates possible properties of the expected shock structure. This
reasoning does not hold for all shocks it depends on the shock criticality.

The existence of a critical Mach number for high Mach-numbers collisionless shocks was pre-
dicted from consideration of the insufficiency of dissipation in the shock to provide the required,
by the conservation laws, retardation of the inflow, plasma thermalisation, and entropy produc-
tion. The criticality of shocks is defined as a transition from subcritical dissipative to supercritical
viscous shock, accompanied by particle reflection.

To show how the critical Mach number of a shock arises from the Rankine-Hugoniot relations
we consider the strictly perpendicular case where the Rankine-Hugoniot conservation equations,
between the upstream (I) and downstream (II) region, in the shock frame of reference for ideal
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MHD (1.40), are written as

ρIIvII = ρIvI (4.25a)
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BIIvII = BIvI (4.25d)

An explicit solution for the different density, magnetic field and velocity jumps, ρII

ρI
= BII

BI
= vI

uII
= r

respectively, can be found as

2(2−Γ)r 2 +Γ(2(1+βI)+ (Γ−1)βIM
2
I )r −Γ(Γ+1)βIM

2
I = 0, (4.27)

where βI = 2µ0ΠI/B2
I = c̃2

s /v2
A is the ratio of the upstream plasma pressure to the magnetic field

pressure and, MI = vI/c̃sI is the acoustic Mach number.

The only type of shock that is physically possible is a fast shock, with vI >
√

v2
AI + c̃2

sI. The
component jump produced by this shock can be written as

r = 2(Γ+1)

D+
√

D2 +4(Γ+1)(2−Γ)M−2
AI

, (4.28)

where D = (Γ−1)+ (2M−2
I +ΓM−2

AI ) and MAI the Alfvenic Mach number.
Furthermore, the ion acoustic speed in the downstream shock region can be written as
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Figure 4.3 shows variation of the ion fluid and ion acoustic velocity as a function of the up-
stream Alfvenic Mach number, where the upstream acoustic Mach number has been taken in the
limit MI −→∞, corresponding to vanishing upstream pressure ΠI −→ 0.

Figure 4.3 – Dependence of the downstream normalised flow V2/V1 and sound c̃sII/V1 velocities on the
upstream Alfvenic Mach number for an ideal MHD perpendicular shock with zero upstream pressureΠI −→
0. The vertical line represents the critical Mach number which is MAI = 2.76.

The crossing of the two curves defines the critical Mach number which is Mc ' 2.76, found
numerically for a resistive shock by (Marshall, 1955). The supercritical regime is thus, realized if
the fluid velocity in the downstream shock region is subsonic (c̃sII > V2).
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Subcritical shocks are capable of generating a sufficient dissipation to account for retardation,
thermalisation and entropy in the time it takes the flow to cross the shock front from upstream to
downstream. The relevant processes are based on wave-particle interaction between the shocked
plasma and the shock-excited turbulent wave fields.

For supercritical shocks this is, however, not the case. Supercritical shocks involve mecha-
nisms different from wave-particle interaction permitting to dissipate the excess energy in the bulk
flow that cannot be dissipated by any classical anomalous dissipation. Above the critical Mach
number an efficient way of energy dissipation is rejection of the in-flowing excess energy from
the shock by reflecting a substantial part of the incoming plasma back upstream. There is thus a
qualitative change in the shock character above it that is not contained in the Rankine-Hugoniot
conditions and the MHD model. The physical processes involved into the reflection process and
their effects on the structure of the shock are discussed in the last section of this Chapter.

Thus, the description given in Fig.4.2 applies only to subcritical laminar shocks. Supercritical
higher Mach number shocks behave in a more complicated way being much less dependent on
dissipation and dispersion.

The approximation of a high-pressure plasma (c̃2
s >> v2

A) is very restricted. It is so, important
to find dispersion relations for the waves the case c̃2

s ' v2
A, where equation (4.24) cannot be applied

anymore. Numerical codes are inevitable to investigate this nonlinear physics.
It is also important to note that the Rankine-Hugoniot relations are based on a single-fluid

MHD approach. Collisionless plasmas support energetic structures that are not captured by a
single-fluid MHD theory and that can play a vital role in the thermalization of plasmas. Magne-
tosonic solitons are one of many examples of these structures (Stasiewicz et al., 2003; Gueroult
et al., 2017) as well as the beams of shock-reflected particles ahead of the bow shock (Eastwood
et al., 2005), which enforce a non-stationarity of the shock. Single-fluid MHD simulations are
nevertheless used to solve problems in collisionless plasma based on the argument that they can
describe the plasma dynamics on a large spatial scale. Indeed, as we demonstrate with PIC sim-
ulation studies, the MHD model is capable to reproduce large scale features of the collisionless
plasma evolution.
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4.2 Emergence of MHD structures in collisionless PIC simulation plasma

The plasma model, implemented in PIC codes neglects the binary collisions between particles
compared to the collective interaction processes. Binary collisions are essential in an MHD model
as they remove nonthermal plasma features and equilibrate the temperatures of all plasma species.

Many experiments have been confirmed the pertinence of the single-fluid MHD model. These
are shock tube experiments investigating the thermal expansion of plasma. In a shock tube exper-
iments (Dolder and Hide, 1960; Borisov et al., 1971), a thermal pressure gradient in a magnetized
plasma accelerates a dense plasma in a dilute ambient plasma and a rarefaction wave develops.
Interaction of the expanding plasma with the ambient plasma triggers shocks if the expansion
speed exceeds the phase velocity of the fastest ion wave. In the rest frame of the shock, the fast-
moving upstream ambient plasma is slowed down, compressed and heated as it crosses the shock
and moves downstream. This net flux adds material to the downstream plasma, which lets the
shock expand into the upstream direction. These shock tube experiments are describing in a one-
dimensional geometry, shocks in a magnetized and collisional plasma. The equations of single-
fluid MHD are well adapted to study such shocks, if collisions are frequent enough to establish a
thermal equilibrium between electrons and ions on the time scales of interest. The MHD shocks
emerge under such conditions (Brio and Wu, 1988; Falle et al., 1998). However, not all plasma
shocks are collisional, and the experiments in shock tubes using collisionless plasmas produce
different results.

In this Chapter we examine with the particle-in-cell (PIC) code EPOCH (Arber et al., 2015) re-
laxation of a thermal pressure gradient in a plasma in the presence of an external magnetic field.
We show that these kinetic shocks are transient and that some the plasma dynamics features can
be eventually described with the single-fluid MHD model (Myong and Roe, 1997). The plasma
parameters are within reach for laser-plasma experiments and our results can thus be tested ex-
perimentally.

4.2.1 Initial conditions

We use the following inital conditions for our simulation. We resolve one spatial dimension x
and three particle velocity components. Periodic boundary conditions are used for the fields and
for the computational particles (CPs). The simulation box is large enough to separate effects in-
troduced by the boundaries from the area of interest. The length L0 = 0.75 m of the simulation
box is subdivided into evenly spaced grid cells with the length ∆x = 5µm. The particle dynam-
ics is determined in PIC simulations exclusively by the charge-to-mass ratio. We consider here
fully ionized nitrogen N7+ that is frequently used in laser plasma experiments. A dilute ambient
plasma fills the interval 0 < x < 2L0/3. Its electron and ion temperatures are Te = 2.32×107K and
Ti = Te /12.5. This plasma also possesses an ion density ni = n0 and an electron density ne = 7n0

with ne = 2.75× 1020m−3. A denser plasma fills the interval −L0/3 ≤ x ≤ 0. This high-pressure
plasma has a density, which exceeds that of the ambient plasma by a factor 10. The electron tem-
perature of the high-pressure plasma is 3 times higher than that of the ambient plasma, 3Te , while
the ion temperature is the same in both plasmas, Ti . All species are initially at rest. A sketch of
the simulation initial conditions is provided in figure 4.27 (left). In the simulations of this section
we represent the electrons and ions of the ambient plasma by 3×104CPs each, while the electrons
and ions of the dense plasma are each resolved by 4.5×104CPs. A spatially uniform background
magnetic field with the strength B0 = 0.85T is applied in the simulation box its angle with respect
to the flow direction is discussed below. The lengths are measured in the units of rg e , the electron
thermal Larmor radius. The simulation box covers with x̂ = x/rg e the interval −2000 < x̂ < 4000.
Time and frequency units are defined by the electron cyclotron frequency ωce . The ion density
ni on is expressed in units of n0. We examine the late times T0 ≤ t ≤ Tmax with T0 = 461(190ns). We
resolve Tmax = 553(227ns) by 1.4×107 time steps. The values for the parameters of the ambient
plasma are listed in Table 4.1.

Most of these parameters have already been introduced such as the electron plasma frequency
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Parameter Numerical value
ωpe = (ne e2/ε0me )1/2 9.35 ·1011s−1

ωce = eB0/me 1.5 ·1011s−1

vthe = (kBTe /me )1/2 1.87 ·107m.s−1

rg e = vthe /ωce 1.25 ·10−4m
ωpi = (Z2ni e2/ε0mi )1/2 1.54 ·1010s−1

ωci = ZeB0/mi 4.07 ·107s−1

ωlh = ((ωceωci )−1 +ω−2
pi )−1/2 2.46 ·109s−1

cs = ((Γe Te +Γi Ti )/mi )1/2 4.03 ·105m.s−1

va = B0/(µ0n0mi )1/2 7.9 ·105m.s−1

cms = (v2
a + c2

s )1/2 8.88 ·105m.s−1

Table 4.1 – Plasma parameters in the ambient plasma.

ωpe , the gyro-frequency ωce , the electron thermal speed vthe the thermal gyroradius rg e , the ion
plasma frequency ωpi , the gyro-frequency ωci , and the Alfvén speed vA.

In the case of waves travelling orthogonally to the magnetic field, the electron mobility is lim-
ited to spatial scales comparable to the electron gyroradius. The ion density gradient drives an
ambipolar electric field if the electrons can still move on spatial scales below their gyroradius. The
ambipolar electric field and the ion density gradient have antiparallel components, which enforces
an electron drift in the direction orthogonal to the magnetic field and to the density gradient. The
electron response to the ambipolar electric field is affected by their gyro- and drift motion, which
modifies in turn the dispersion relation of the electric field oscillations. This effect plays an im-
portant role at frequencies above the ion gyrofrequency ωci .

The single fluid MHD approximation breaks down at such high frequencies and it has to be
replaced by a two-fluid approximation.
We define the ion acoustic speed cs using the so called two-fluid approximation (in difference
from c̃s defined for a single fluid model). The speed cs is found by solving the system of momen-
tum equations for the electrons and the ions, assuming the charge neutrality and without external
electric or magnetic field. The resolution of this set of equation results in the dispersion equation
for the ion acoustic wave ω= kcs where

cs =
√
Γe Te +Γi Ti

mi
. (4.30)

The values of the adiabatic indexes Γe,i are defined by (1.26), depending of the number of de-
grees of freedom. The thermal speed of the electrons is much larger than the ion acoustic speed,
vThe >> cs , the electrons can travel many wavelengths during a single ion wave oscillation period.
Thus the electrons are fast enough to equalise the electron temperature and therefore the elec-
tron compressions are isothermal in the ion acoustic wave, and Γe = 1. It is also important to note
that when the collision frequency is small, the plasma may not have enough time to distribute
the changes of thermal energy to all degrees of freedom, and then the situation can be reduced to
lower dimensionality. In our simulation the electrons and ions are considered as adiabatic, with 3
degrees of freedom for the electrons Γe = 5/3, and only one degree of freedom along the box direc-
tion for the ions, Γi = 3. The latter is due to the fact that in a high pressure plasma, the dispersion
effect becomes important at frequency aboveωci , where the ion trajectory is only weakly distorted
by the magnetic field in one oscillation period. It is so possible to consider the ion motion as one-

dimensional. The magnetosonic speed corresponding to this ion acoustic speed is cms =
√

c2
s + v2

A.
Both speeds are close to their MHD counterparts, c̃s , c̃ms .

Furthermore, the two-fluid approximation reveals the presence of an almost electrostatic wave
branch, which is known as the lower-hybrid (LH) mode. The dispersion relation of LH waves is
discussed in various approximations in (Verdon et al., 2008, 2009). We define here the lower-hybrid

73



CHAPTER 4. MAGNETOSONIC COLLISIONLESS SHOCK FORMATION BY THE EXPANSION OF
A MAGNETIZED BLAST SHELL

(LH) frequency

ωlh = ((ωceωci )−1 +ω−2
pi )−1/2, (4.31)

using the approximate solution of the linear dispersion relation of LH waves, which is based on the
two-fluid electrostatic cold plasma approximation. The latter takes into account the warm plasma
effects and neglects electromagnetic effects. It is valid for large wavenumbers and for waves that
move strictly perpendicular to the magnetic field k·B = 0. This LH frequency becomes a resonance
frequency at low wavenumbers, where thermal effects are negligible. Since the LH wave can have
a shorter wavelength and a higher frequency than magnetosonic waves, this wave steepens into
a shock faster and on a smaller spatial scale. The LH waves have received attention with respect
to the instabilities close to shocks (McClements et al., 1997), and LH shocks have been observed
recently in PIC simulations by (Dieckmann et al., 2016).

The ambipolar electric field, which develops at the jump of the thermal pressure between the
high-pressure plasma and the ambient plasma, forms a double layer (Hershkowitz, 1981) that lets
the plasma expand in the form of a rarefaction wave. Such waves have been described by (Allen
and Andrews, 1970) in a low pressure plasma under conditions where ionization processes can be
neglected. The rarefaction wave expands plasma (Crow et al., 1975; Mora, 2005) in the ambient
gas until a shock forms. Expanding dense plasmas can be assimilated to an expanding blast shell
coming from the solar wind which shocks the Earth’s magnetopause (Lugaz et al., 2016; Goldstein
et al., 2016).

Figure 4.4 (right) shows schematically the expansion of the blast shell in the ambient plasma,
and the formation of the rarefaction wave. The expansion speed of the blast shell, for the simula-

Figure 4.4 – Sketch of the initial plasma density distribution (left) and the rarefaction wave and shock for-
mation (right) in a shock tube setup.

tions, presented here is sufficiently low so no shock reformation takes place (Gueroult et al., 2017).
The latter mechanism will be discussed in the last section of this chapter.

The setup of our simulations is the same as in (Dieckmann et al., 2016), where the external
magnetic field was perpendicular to the blast shell expansion. The effect of adding this magnetic
field was to replace the ion acoustic wave by the lower-hybrid (LH) wave branch, with a phase
speed at large wavenumbers comparable to the ion acoustic speed cs . The initial evolution of the
expanding plasma formed a lower-hybrid wave shock at the front of the expanding plasma, which
has no counterpart in a single-fluid theory.

In this section we discuss the collisionless shock characteristics as function of the angle be-
tween the shock normal and the magnetic field direction on much larger time scales than (Dieck-
mann et al., 2016) (by a factor 100). We compare aspects of the dispersion relation of a collisionless
plasma with those of a single-fluid MHD model.
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4.2.2 Fast magnetosonic shock with wave precursor in a collisionless plasma

For this simulation, the external magnetic field is aligned with the z-axis, stricly perpendicular to
the direction of the simulation box. Two waves can be excited in this geometry at θ = 90◦; sound
waves with the speed c̃s and an incompressible Alfvén wave with the speed vA. The following re-
sults have been obtained in this geometry by (Dieckmann et al., 2017b), and are useful for the
understanding of the next studies.

Figure 4.5 – The plasma state at the time tωce = 2×104: panel (a) shows the phase space density distribution
of the ions normalized to the maximum upstream value and clamped at 2.9 for visualization reasons. We
recognize the fast rarefaction wave (FR), the precursor wave (PW), the tangential discontinuity (TD), the
fast shock (FS), and the upstream/downstream (US/DS) ions. Panel (b) shows the ion density ni /n0 . The
blue lines denote ni = n0 and x/rg e = 410. The magnetic Bz component is plotted in (c). The blue line
denotes Bz = B0 and x/rg e = 450. The obliquity is θ= 90◦.

Figure 4.5 shows the ion phase space density, the ion density and the magnetic field at the
time T0. The ions of the dense blast shell plasma are on the left of Fig.4.5(a) where the ion phase
space density has its maximum and where the mean velocity of the ions vanishes. The rarefaction
wave, that propagates to the left into the dense plasma, accelerates ions to the right, in the interval
−750 ≤ x ≤ −200. The ion density and the amplitude of Bz decrease and the ion speed increases
with increasing x̂, a characteristic of fast rarefaction waves. The latter expands up to x̂ '−200 and
ends in a precursor wave that is confined to the end of the rarefaction wave. The magnetic field
and the density across the precursor wave are modulated in phase which is the characteristic of a
fast mode as described in the previous section. This mode is spatially damped in the direction of
larger x̂. The accelerated ions form a blast shell that expands with a constant speed, temperature
and density up to x̂ ≈ 410. The ion velocity remains constant but, after x̂ ≈ 410, the ion density
decreases, while the ion temperature and the amplitude of Bz increase. This anticorrelation of
both quantities in this structure is characteristic of a tangential discontinuity.

This structure is stable and long-lived. After the discontinuity, the ion distribution, density
and the magnetic field remain unchanged in the interval 410 < x̂ < 750. Oscillations of a fast mag-
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netosonic shock appear further in the interval 750 < x̂ < 1300. The downstream region is defined
as the interval 410 < x̂ < 750 that is enclosed by the tangential discontinuity and the fast mag-
netosonic shock. The ions close to the tangential discontinuity at x̂ ' 410, move at the spatially
uniform mean speed vb ' 4.1×105m.s−1 or vb ' cms/2. The latter is the speed of the downstream
plasma in the upstream frame.

The ion phase space density, ion density and magnetic field change rapidly over 5rg e and reach
their respective downstream values Bz ' 1.5B0 and ni on ' 1.5n0 at x̂ = 420. The variation of mag-
netic field is sustained by a current of drifting electrons along the y axis.
The change in Bz is sustained by an electron drift along y and the electron temperature to the right
of the discontinuity (TD in figure 4.5) is about 100 eV below that to the left (initial dense plasma
temperature is 3 keV). The variation of density yields a thermal pressure gradient force that points
in the opposite direction of the magnetic pressure gradient force. The thermal pressure is con-
troled by the electrons and takes the form Pth(x̂) ' ne (x̂)kBTe (x̂). This pressure changes close to
x̂ = 410 as ∆Pth = Pth(x̂ > 410)−Pth(x̂ < 410). The electron density and magnetic field variation
along the discontinuity is∆ne = 25n0 and∆B = B0, which gives |PB(x̂ > 410)−PB(x̂ < 410)| =∆PB '
0.6∆Pth .
The upstream medium at x̂ ' 1300 exerces a ram pressure PR = 0.5n0mi v2

b . The latter balances
the difference between the thermal and magnetic pressure at x̂ = 410, PR ' 0.5∆Pth , which implies
that the discontinuity position is stationary in the downstream frame. Since the Larmor radius of
the energetic ions, which move with a few 105m.s−1 in the downstream frame, is only about 100rg e ,
consequently, they are confined and cannot cross the tangential discontinuity.

The front of the fast magnetosonic shock in figure 4.5(a) reveals ion velocity oscillations with
an amplitude ' vb . These oscillations are non-linear as confirmed by the non-sinusoidal oscilla-
tions of the ion density and the magnetic field distributions in figure 4.5(b,c). The magnetic pres-
sure and the thermal pressure, are in phase which suggests that these waves are fast magnetosonic
waves.

Figure 4.6 depicts at the front of the expanding plasma, Bz −B0, and the ion energy density ϑi .

Figure 4.6 – The spatio-temporal evolution of Bz −B0 in Tesla unit (left), and of the 10-logarithmic of ϑi

(right) during the simulation time.

The tangential discontinuity separates the region where Bz < B0 to Bz > B0 (cf. Figure 4.6 left,
blue and red color respectively). Due to this large gradient on 5rg e the electrons are heated close to
the discontinuity. The ions from the dense and hot blast shell which cross the tangential discon-
tinuity at the initial time perform their gyration in the ambient medium (cf. Figure 4.6 right, red
color), and return to the tangential discontinuity (these ions represent only a very low percentage
of the blast shell). A population of ambient ions from the upstream medium are reflected by the
shock ramp and are confined close to the ramp (∼ 100rg e ). The plasma passing the ramp is heated
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by the fast magnetosonic waves and oscillate in phase with the magnetic field.

The nature of oscillations in the shock transition layer can be determined from the dispersion
relation of the system. Since the waves are confined to the downstream plasma, their properties
must be evaluated in the downstream frame. Transformation from the laboratory frame to the
downstream frame gives the following space/time components, x∗ = x̂ − vb t∗ − 1300 and t∗ =
(t −T0), since the shock is localized at x̂ = 1300 at time T0. The ion density and magnetic field are
∼ 1.5n0 and ∼ 1.5B0 in the downstream region, which gives a lower-hybrid frequencyω∗

lh = 1.5ωl h

.

Figure 4.7 depicts Bz (x∗, t∗) at the front of the expanding plasma. The wave front moves at the
speed vw f ' 8.5×105m.s−1, which corresponds to the shock speed measured in the downstream
frame x∗ and it is thus well below the fast magnetosonic speed c∗ms = (v∗2

a +c∗2
s )1/2 ' 1.3×106m.s−1

in the downstream plasma.

Figure 4.7 – The evolution in time of Bz (x∗, t∗) in the downstream reference frame that moves with vb sam-
pled in the downstream frame of reference. The black line correspond to the speed vw f .

The speed of the wave front in the upstream medium is supersonic with vw f + vb ' 1.5cms .
The power spectrum SB(k,ω) of Bz (x, t ) is shown in Fig.4.8. The latter was measured in a sepa-
rate PIC simulation which modelled a spatially uniform plasma in a thermal equilibrium with the
plasma parameters of the downstream region in Fig.4.5(a). The plasma was initialized with the
parameters given in Table 4.1 in a box of 1 m length with periodic boundary conditions and the
field evolution was studied over the time interval 0 ≤ tωce ≤ 1.7× 104. The wave spectrum was
obtained by sampling the magnetic field Bz (x, t ), taking its Fourier transform over space and time
and squaring the modulus, SB(k,ω) = |Bz (k,ω)|2. The spectrum in PIC simulations peaks at values
(ω,k), which correspond to eigenmodes of the system (Dieckmann et al., 2004). The maxima of
S(k,ω) regions in k,ω-space where waves are weakly damped. The noise vertical blue lines with
periodic wavenumbers are electrostatic periodic modes induced by the periodic boundary condi-
tions of our simulation.

This power spectrum is compared to the dispersion relation of the fast magnetosonic mode
ω/k = c∗ms in the longwavelength limit k −→ 0. The dispersion relation ω f follows the frequency
interval with strong fluctuations for krg e < 0.15. The dispersion relation of plasma normal modes
takes into account also the electrostatic component of the fast magnetosonic mode, which be-
comes important close to ωlh . The frequency of the mode increases beyond ω f for krg e > 0.15.
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Figure 4.8 – The 10-logarithmic power spectrum SB(k,ω) of Bz (x, t ). The dispersion relation ω f = v f v−1
the k

is overplotted and the horizontal line is ω=ωlhω
−1
ce . The vertical line represents the wavelength of the fast

magnetosonic mode in figure 4.5. Strong fluctuations indicates weakly damped waves and the dash line
represents a fit of location of strong fluctuations.

The dispersion relation is concave at such large k (Sagdeev, 1966). The band with the strong fluc-
tuations cannot cross ωlh , which is a resonance for perpendicular magnetic field in a cold plasma
(Verdon et al., 2008), and the high wavenumbers are blocked at the lower-hybrid frequency. The
phase speed of modes with krg e > 0.15 decreases. The dispersion relation thus explains why the
wave front in Fig.4.5(a) moves at the speed vw f ' 0.65c∗ms . The steepening of the fast magne-
tosonic shock results in waves with a larger k that fall behind the shock due to their lower phase
speed.

4.2.3 Quasi-perpendicular fast magnetosonic shock with wave precursor in a colli-
sionless plasma

The previous one-dimensional PIC simulation described propagation of MHD shocks across a per-
pendicular magnetic field. Shocks reach a steady state (Forslund and Freidberg, 1971; Dieckmann
et al., 2016, 2017b) if they move slow enough to avoid a self-reformation, as discussed in (Guer-
oult et al., 2017) and in the last section of this Chapter. If the shock propagates perpendicularly
to the magnetic field then the dispersion relation of fast magnetosonic waves is concave for high
frequency waves, which implies that their phase velocity decreases with increasing wave numbers;
shock steepening drives slower waves that fall behind the shock as seen in Ref. (Dieckmann et al.,
2017b) and in figure 4.5.

Waves, which propagate obliquely to the magnetic field, can be subdivided into fast modes
with the phase speed v f and slow modes with the phase speed vs as explained in section 4.1. The
fast mode (addition of both terms on the right hand side in equation (4.16)) is characterized by a
magnetic pressure and a thermal pressure that are in phase, while both pressures are in antiphase
in the case of the slow mode (Balogh and Treumann, 2011). The phase speed of the slow mode
goes to zero as θ→ 90◦ (see eq. (4.22) and (4.23) in section 4.1) and it becomes a tangential dis-
continuity. Magnetohydrodynamic shocks can be sustained by the slow and fast modes as well as
by acoustic waves (Verscharen et al., 2017).

Here we demonstrate with a one-dimensional PIC simulation how turning the concave dis-
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persion relation into a convex one removes the trailing wave and gives rise to a shock precursor.
The precursor is formed by fast magnetosonic modes that outrun the shock. The initial condi-
tions match those in the previous subsection except for the magnetic field direction, which makes
an angle θ = 85◦ with respect to the shock normal. The plasma parameters that determine the
properties of the magnetized plasma are defined in Table 4.1. Equation (4.16) gives the speeds
v f ≈ v f ms and vs ≈ v f ms/25 for θ= 85◦ and the dispersion relations of the slow and fast modes are
ωs, f = vs, f k.

Figure 4.9 – The 10-logarithmic power spectrum PB(k,ω) of Bz (x, t ) for θ = 85◦. The dispersion relation
ω f = v f k is overplotted and the horizontal line is ω = ωl h . The vertical line represents the wavelength of
the fast magnetosonic mode in figure 4.10. Strong noise indicates weakly damped waves and the dashed
line represents the fit of the strong noise.

The dispersion relations of the fast/slow modes ω f ,s = v f ,sk are estimated with a separate PIC
simulation. The simulation conditions are the same than those used in the previous subsection,
except the magnetic field orientation. Figure 4.9 shows the power spectrum SB(k,ω) of Bz (x, t ).
Strong fluctuations indicate regions in k,ω-space where waves are weakly damped. The disper-
sion relation ω f follows the frequency interval with strong fluctuations for krg e < 0.05. The fre-
quency of this mode increases beyond ω f for krg e > 0.05. The dispersion relation is convex at
such large k (Sagdeev, 1966). The band with the strong fluctuations crossesωlh , which is not a res-
onance frequency for θ = 85◦, since cos2θ�me /mi (Verdon et al., 2008), and it gradually damps
out with increasing ω. Modes with krg e ≈ 0.15 reach a frequency ω≈ 0.015ωce . Their phase speed
is vthe /10 ≈ 2v f .

Figure 4.10 shows the ion phase space density, ion density and magnetic field at the time T0.
The ion phase space density has maximum at the left of Fig.4.10(a) where the mean velocity is
zero. These are the ions of the dense plasma. The ions gain speed with increasing x in the interval
−500 ≤ x/rg e ≤ −50 and their density decreases in Fig.4.10(b). The ion acceleration is accom-
plished by the rarefaction wave that propagates to the left into the dense plasma and accelerates
its ions to the right. The accelerated ions form a blast shell that expands with a constant speed
and density up to x/rg e ≈ 400. The ion velocity remains constant but the density decreases from
its value in the blast shell to the density ni ≈ 1.5n0. In the region 400 < x/rg e < 700, the magnetic
field amplitude and, hence, the magnetic pressure increase as the ion density decreases and the
anticorrelation of both is characteristic of a slow magnetosonic wave (see SW region in Fig.4.10). A
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Figure 4.10 – The plasma state at the time tωce = 2×104: panel (a) shows the phase space density distribu-
tion of the ions normalized to the maximum upstream value and clamped at 2.9 for visualization reasons.
We recognize the fast rarefaction wave (FR), the slow shock (SS), the fast shock (FS), the fast wave (FW)
precursor and the upstream (US) ions. We observe a slow wave (SW) precursor close to the slow shock.
Panel (b) shows the ion density ni /n0 . The blue lines denote ni = n0 and x/rg e = 450. The magnetic Bz

component is plotted in (c). The blue line denotes Bz = B0 and x/rg e = 450. The dashed red lines in (b,c)
emphasize the phase relation between ni and Bz and, thus, the wave mode. The obliquity is θ= 85◦.
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tangential discontinuity has been shown to form at this location in Ref. (Dieckmann et al., 2017b),
which considered a magnetic field direction θ= 90◦. The oblique magnetic field facilitates particle
transport across the discontinuity, which changes the tangential discontinuity into a slow mag-
netosonic shock. A slow shock, which separates the blast shell ions from those of the shocked
ambient medium, has also been observed in Ref. (Dieckmann et al., 2018b) and it changed into a
tangential discontinuity for an increasing propagation angle.

The source of ions in the interval 600 ≤ x/rg e ≤ 1350 is the ambient plasma. They have been
accelerated and compressed by the forward shock, which is located in Fig.4.10(a) at x/rg e ≈ 1350.
The ion density and the magnetic field amplitude both decrease with increasing x across the shock
and it is thus mediated by the fast magnetosonic mode. Strong waves, for which the ion density
oscillates in phase with the magnetic amplitude, are observed between the shock and the up-
stream. The amplitude of oscillations of the ion velocity and magnetic field of this shock precur-
sor decreases with increasing x and the phase relation between the thermal and magnetic pressure
shows that it is formed by the fast magnetosonic mode.

The precursor is a consequence of the convex dispersion relation observed in Fig.4.9. Shock
steepening drives waves with a large wave number, which outrun the shock and propagate up-
stream. The wavelength of the precursor wave is ≈ 80rg e , which gives the wave number krg e ≈
0.08 and a phase speed ≈ 1.3v f (See Fig.4.9). The precursor wave is damped with increasing
x > 1350rg e .

Waves are also observed on both sides of the slow shock which is centered at x/rg e = 500. The
vertical dashed red lines demonstrate that the oscillations of the magnetic and thermal pressures
have an opposite phase, which suggests that they are slow magnetosonic waves. We gain addi-
tional information about these waves and the precursor by examining their evolution in time in
their rest frame. Figure 4.10(a) shows that the ions move at the spatially uniform mean speed
vb ∼ 4.5× 105 m/s. The simulation frame equals the upstream frame and vb is thus the speed
of the rest frame of the waves in the upstream frame. We transform the distribution of Bz (x, t )
from the upstream frame into the rest frame of the waves for the times 0 ≤ t∗ωce ≤ 4000 (where
t∗ωce = tωce −2×104) and for the coordinates x∗ = x − vb t∗. The moving frame matches that of
Fig.4.10 at t∗ = 0.

Figure 4.11 – The evolution in time of Bz in the reference frame that moves with vb : panel (a) shows the field
distribution of the magnetosonic waves to the left of the slow shock, panel (b) that of the waves to the right
and panel (c) shows the magnetic field distribution of the fast shock and the precursor. The black lines in
(a, b) have a slope that corresponds to the speed vs , while that in panel (c) corresponds to the speed v f .

Figure 4.11 shows the wave fields in three intervals of the box. The wave fields close to the
slow magnetosonic shock (location x/rg e ≈ 400) in Figs. 4.11(a, b) reveal waves that propagate
away from the shock. Their phase speed ∼ vs together with the phase relation between the mag-
netic pressure and the thermal pressure in Fig.4.10 demonstrates that these are slow magnetosonic
waves. The shock in Fig.4.11(c) propagates at the speed v f in the downstream frame of reference
and at v f + vb ' 1.5v f ms in the upstream frame. The precursor waves outrun the shock but their
phase speed ∼ 1.3v f does not much the phase velocity of the fast normal mode.
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4.2.4 Oblique fast magnetosonic shock with wave precursor in a collisionless plasma

The obliquity of the shock is too small and the ratio between the fast and slow magnetosonic speed
is large (25 times). We consider here a setup with a smaller magnetic field angle and determine a
dispersion relation for the nonlinear fast magnetosonic wave as a function of the obliquity. The
initial conditions match those in the previous subsection except for the magnetic field angle θ =
70−80◦. The plasma parameters are defined in Table 4.1.

Figure 4.12 and 4.13 shows the ion phase space density, the ion density and the magnetic field
at the time T0 for an obliquity θ= 80◦ and θ= 70◦ respectively.

Figure 4.12 – The plasma state at the time tωce = 2×104: panel (a) shows the phase space density distribu-
tion of the ions normalized to the maximum upstream value and clamped at 2.9 for visualization reasons.
We recognize the fast rarefaction wave (FR), the slow shock (SS), the fast shock (FS), the fast wave (FW)
precursor and the upstream (US) ions. We observe a slow wave (SW) precursor close to the slow shock.
Panel (b) shows the ion density ni /n0 . The blue lines denote ni = n0 and x/rg e = 450. The magnetic Bz

component is plotted in (c). The blue line denotes Bz = B0 and x/rg e = 450. The dashed red lines in (b,c)
emphasize the phase relation between ni and Bz and, thus, the wave mode. The obliquity is θ= 80◦.

The shock characteristics are similar to the obliquity θ= 85◦ (See Fig.4.10). The thermal pres-
sure jump between the dense and dilute plasma drive a fast rarefaction wave, which propagats into
the dense plasma and launchs a blast shell into the ambient plasma. A slow mode shock formed
at the boundary between the blast shell plasma and the shocked ambient plasma. The shocked
ambient plasma is separated from the pristine ambient plasma by a fast magnetosonic shock. The
dominant wavelengths of the fast and the slow magnetosonic waves are larger.The increase of the
wavelength with decreasing angle presents inconvenience for numerical analysis quasi-parallel
shocks can only be described in simulations with a larger spatial resolution. The width of the slow
shock at x/rg e = 450 also increases with the decreasing angle theta, since the mobility of the elec-
trons in the x-direction increases.
Dispersion relations are found by using numerical approach similar to the previous subsections.
They are shown in figure 4.14. Convex dispersion relations of the fast magnetosonic modes are
observed, which give rise to shock precursors as in the previous subsections.

82



CHAPTER 4. MAGNETOSONIC COLLISIONLESS SHOCK FORMATION BY THE EXPANSION OF
A MAGNETIZED BLAST SHELL

Figure 4.13 – The plasma state at the time tωce = 2×104: panel (a) shows the phase space density distribu-
tion of the ions normalized to the maximum upstream value and clamped at 2.9 for visualization reasons.
We recognize the fast rarefaction wave (FR), the slow shock (SS), the fast shock (FS), the fast wave (FW)
precursor and the upstream (US) ions. We observe a slow wave (SW) precursor close to the slow shock.
Panel (b) shows the ion density ni /n0 . The blue lines denote ni = n0 and x/rg e = 450. The magnetic Bz

component is plotted in (c). The blue line denotes Bz = B0 and x/rg e = 450. The dashed red lines in (b,c)
emphasize the phase relation between ni and Bz and, thus, the wave mode. The obliquity is θ= 70◦.

Figure 4.14 – The 10-logarithmic power spectrum PB(k,ω) of Bz (x, t ) for θ = 80◦ (left) and θ = 70◦ (right).
The dispersion relation ω f = v f k is overplotted and the horizontal line is ω =ωlh . The vertical line repre-
sents the wavelength of the fast magnetosonic mode in figures 4.12 and 4.13. Strong noise indicates weakly
damped waves and the dashed line represents the fit of the strong noise.

Dependence on θ of the nonlinear fast magnetosonic wave can be estimated using some nu-
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merical fit of the strong fluctuations observed in simulations. Using an equation of the form

ω= k
v f

vThe

(
1+a(θ)∗k2

)b
, (4.32)

where a(θ) defines the deviation from the linearity depending of the obliquity, and b is equal to
−1/2 in the stricly perpendicular case and +1/2 in the other cases. Integrating different simula-
tions and obliquity we obtained the following (fit shown with dashed line in Figs.4.8,4.9,4.14)

ω= k
v f

vThe

(
1+ (C+D(θ−90)2)∗k2

)±1/2
, (4.33)

where the numerical values C and D, equal 4.33 and 3 respectively for our plasma parameters.
They depend of the characteristic frequencies of the system. This dispersion relation is compara-
ble to equation (4.24) proposed by (Sagdeev, 1966) for a high pressure plasma. Further simulations
using different values of external magnetic field and plasma temperatures may reveal the depen-
dence of C and D.

In summary we have modeled the expansion of a dense plasma into a dilute ambient plasma
in presence of an initially spatially uniform magnetic field. A blast shell is launched by the prop-
agation into the dense plasma of a fast mode rarefaction wave due to the initial thermal pressure
gradient between the dense and the dilute plasmas. The discontinuity between the blast shell
and the shocked ambient plasma is a tangential discontinuity in the stricly perpendicular case,
the obliquity releasing the slow mode that replaces the tangential discontinuity. The nature of the
shock in the ambient plasma is controlled by the dispersion relation which is concave or convex
depending of the obliquity. In the stricly perpendicular case, the concave dispersion relation con-
fines the fast magnetosonic mode in the downstream region, and in the oblique case, the convex
dispersion relation gives rise to a shock precursor which softens the transition from the ambient
plasma to the shocked ambient one. Because of this we could not observe a strong acceleration
of ions by the shock passage. An absent shock-reflected ion beam implies that the shock did not
reform by driving solitons upstream (Gueroult et al., 2017).

84



CHAPTER 4. MAGNETOSONIC COLLISIONLESS SHOCK FORMATION BY THE EXPANSION OF
A MAGNETIZED BLAST SHELL

4.3 Expansion of a radially symmetric blast shell into a uniformly mag-
netized plasma

Magnetized collisionless shocks can be driven by a magnetic pressure gradient (Forslund and Frei-
dberg, 1971) or by a drifting plasma (Lembege and Simonet, 2001). Another way to create a shock
is to launch a rarefaction wave (Sack and Schamel, 1987; Grismayer and Mora, 2006; Grismayer
et al., 2008; Thaury et al., 2010; Dieckmann et al., 2012), at the contact between a high density
shell and a dilute ambient plasma. The latter case was studied in the previous section and in Refs.
(Dieckmann et al., 2016, 2017b; Moreno et al., 2018c) with one-dimensional PIC simulations and
in the presence of an initially spatially uniform magnetic field.

The shock speed reported in Ref. (Dieckmann et al., 2017b) exceeded 1.5 times the fast magne-
tosonic speed. Shocks with such a low Mach number reflect only a small fraction of the inflowing
upstream ions. The beam of reflected ions is not energetic enough to enforce cyclic shock re-
formations observed for collisionless magnetized shocks with higher Mach numbers (Lembege
and Savoini, 1992; Scholer and Burgess, 1992; Shimada and Hoshino, 2000; Hoshino and Shimada,
2002; Scholer et al., 2003; Lee et al., 2005; Chapman et al., 2005; Burgess and Scholer, 2007; Mar-
cowith et al., 2016; Gueroult et al., 2017; Schaeffer et al., 2017a).

Structuring of the plasma flow into a rarefaction wave, a tangential discontinuity that separates
the blast shell plasma from the shocked ambient plasma, and a laminar forward shock, observed
in Ref. (Dieckmann et al., 2017b), closely follows the expectations following from a MHD model. In
this case the shock forms on time scales much shorter than an inverse ion gyro-frequency because
it involves the high-frequency part of the fast magnetosonic mode. In Ref. (Moreno et al., 2018c)
we explored the changes of the shock structure as function of the angle between the shock normal
and the magnetic field direction. This study is motivated by forthcoming experiments similar to
that in Ref. (Schaeffer et al., 2017a). Such experiments, in which a blast shell of collisionless plasma
is created by the ablation of a solid target by an intense laser pulse and interacts with a second
plasma, allow one to study in the laboratory processes that take place in energetic astrophysical or
solar system plasma (Remington et al., 1999; Zakharov, 2003). A similar experiment in the natural
environment was conducted by the AMPTE satellite mission (Bernhardt et al., 1987), it consisted
in a release in the ionosphere a cloud of barium vapors which were swiftly ionized and led to
formation of shock-like structures (Chapman, 1989).

In this section, we study with PIC simulations, a similar problem of expansion of an initially
radially symmetric blast shell of a collisionless plasma into a magnetized ambient medium. The
simulation is conducted in 2 spatial and 3 velocity dimensions, the magnetic field is aligned with
one of the directions the simulation plane. Such a setup allows us to study formation of shocks
for a wide range of angles between the shock normal and the magnetic field direction. We also
consider the case of a magnetic field, which is aligned with the normal of the simulation plane. We
test with this simulation if instabilities like the Weibel instability in an unmagnetized rarefaction
wave (Weibel, 1959; Quinn et al., 2012).

4.3.1 Initial conditions

We model fully ionized nitrogen ions and electrons with the correct mass ratio mn/me ≈ 2.6×104

and with the electron charge-to-mass ratio e/me . The plasma position in the two-dimensional
simulation plane is shown in Fig.4.15. Simulation 1 resolves the interval L1 = 16 mm by 2000 grid
cells and L2 = 32 mm by 4000 grid cells. Simulation 2 resolves the side length of the quadratic box
L1 by 2000 grid cells. The origin of the coordinate system is placed in the center of the simulation
box and the radius is r =

√
x2 + y2. A circular boundary with radius r0 = 2 mm separates a dense

plasma in the interval r ≤ r0 from the ambient plasma with r > r0. The azimuthal angle relative to
the positive y-axis in the counter-clockwise direction is ρ (only in this section, in the other sections,
ρ is defined as the density).

The ambient plasma consists of ions with the number density n0 = 1.42×1014cm−3. The ions
are 15 times denser in the interval r ≤ r0. The electrons are 7 times denser than the ions. The

85



CHAPTER 4. MAGNETOSONIC COLLISIONLESS SHOCK FORMATION BY THE EXPANSION OF
A MAGNETIZED BLAST SHELL

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

L1

L1

L1

L2

Y=0

X=0

Y=0

X=0

Figure 4.15 – Initial plasma distributions. The black circle shows the location of the dense ions with the
density 15n0 in the circle with a radius r ≤ r0, which is surrounded by the ambient plasma with a density
n0. Left panel sketches the box of simulation 1 with the side length L1 = 4r0 along x and with the side length
L2 = 2L1 along the y-axis. The magnetic field is aligned along the y-axis. Right panel shows the simulation
box geometry of simulation 2. The size of the simulation box is L1 along both the x- and y-directions and
the magnetic field is aligned with the z-axis. The boundary conditions are periodic in all directions.

electron temperature of the ambient medium is T0 = 2 keV giving an electron thermal speed vThe =
(kBT0/me )1/2 ≈ 1.9× 107m.s−1. The electron plasma frequency ωpe = (7e2n0/meε0)

1/2
is ≈ 1.8×

1012 s−1 in the ambient plasma and the ion plasma frequencyωpi = (7me /mn)1/2ωpe ≈ 3×1010 s−1.

Dimensional units are used in the last two sections of this Chapter for a direct comparaison
with laboratory scales. However, our simulations are meant to identify phenomena that may be
observed on very different scales. The dimensionless normalized quantities can be found from the
plasma parameters.

On average, thermal diffusion lets electrons stream from the dense plasma into the dilute
plasma. Consequently, the dense plasma will go onto a positive potential relative to the dilute
one. Electrons, which enter the dense plasma, are accelerated by this potential jump and form
a cloud of energetic electrons. We set the electron temperature within the dense cloud to 2T0,
which suppresses two-stream instabilities between this cloud and the thermal electrons. The ion
temperature is T0/12.5 everywhere.

Simulation 1 resolves electrons with 6.4×108 computational particles (CPs) and the ions with
9.6×108 CP’s. Simulation 2 employs a half of the total number of CPs. Initially the net charge and
current are zero everywhere in the simulation box. The electric and magnetic field components
are set to zero at the time t = 0 except the background magnetic field B0 = 0.85 T. The ratio of
the thermal to magnetic field pressures β ≡ (7n0kBT0)/(B2

0/2µ0) = 1.1 in the ambient plasma, the
pressure contribution of the cold ions is neglected. The ambient electron thermal gyro-radius is
rg e = 0.125 mm.

The ion acoustic speed in the ambient plasma is cs ≈ 4×105 m/s with cs = ((γe kBT0 +γNkBT)/mN)1/2.
We assumed that the adiabatic constants of electrons and ion are γe = 5/3 and γN = 3, respectively.
The Alfvén speed vA = B0/(µ0n0mN)1/2 is vA ≈ 4.1×105 m/s for our plasma parameters. The speed

of the fast magnetosonic wave v f ms = (c2
s + v2

A)
1/2

for perpendicular propagation is v f ms ≈ 5.8×105

m/s.
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We can estimate the speeds of normal modes for intermediate angles of propagation with re-
spect to the magnetic field direction by using a single fluid MHD model presented in section 4.1
that is valid for the frequencies below the ion gyrofrequency, which is in our case that of fully ion-
ized nitrogenωci = 7eB0/mN. The sound speed c̃s in the collisional MHD plasma is close to the ion
acoustic speed cs in collisionless plasma and the same holds for the fast magnetosonic speed. Lin-
ear Alfvén waves, which propagate along the magnetic field, do not affect the palsma density and
c̃s is the only relevant phase speed of density waves that propagate along this direction. The fast
magnetosonic speed is the only relevant one in the MHD plasma if the density waves propagate
perpendicularly to the magnetic field. Acoustic waves, which propagate obliquely to the magnetic
field, can change into slow magnetosonic modes. Slow- and fast magnetosonic modes coexist for a
wide range of oblique propagation angles and the phase speeds v f (vs) of the fast (slow) obliquely
propagating magnetosonic mode are described by equation (4.16).

4.3.2 Simulation results

We consider the plasma distribution at the time tsi m = 3.57 ns or tsi mωci /2π ≈ 2.3× 10−2. The
observed shocks are mediated by gradients in the thermal and magnetic pressures. The role of
the external magnetic field is negligible on that time scale. All densities are normalized to the
ion density n0 of the ambient medium and the magnetic pressure is normalized to the external
magnetic field PB(x, y) = (B2

x (x, y)+B2
y (x, y)+B2

z (x, y))/B2
0.

Simulation 1: magnetic field in the simulation plane

Figure 4.16(a) shows the ion density in the quadrant x > 0 and y > 0. The ion density along the
x-axis decreases below 4.5, which is the maximum value displayed on the color scale, at y ≈ 2 mm,
it reaches its minimum value ≈ 2 at y ≈ 2.8 mm and increases to over 3 just behind the shock,
which is located at y ≈ 4 mm. This density profile resembles that of a circular blast shell in an
unmagnetized plasma (Dieckmann et al., 2017a). The ion density distribution maintains a radially
symmetric profile up to x ≈ 2 mm. A striped high density band is located in the interval 2.7 mm
≤ x ≤ 3.2 mm and y ≤ 2 mm.

Figure 4.16 – The distribution of the ion density ni and of the normalized magnetic pressure PB = (B2
x +B2

y +
B2

z )/B2
0. The ion density is shown in cartesian coordinates in (a). Panel (b) shows the magnetic pressure in

cartesian coordinates. The ion density distribution in polar coordinates is shown in panel (c). The linear
color scale is clamped to the value 1.5 in (a, c) in order to emphasize the location of the shock. The time is
tsi m = 3.57 ns.

Figure 4.16(b) shows that the front of this high-density band coincides with an interval with a
steep gradient of PB up to y ≈ 3 mm. The front of the perpendicular shock in Fig.4.16(a) is located
at x ≈ 4.3 mm for y ≈ 0 and the magnetic pressure in the interval between the shock and the high-
density band is higher than that upstream. A shock, which compresses the plasma density and the
magnetic pressure like the one moving along ρ≈ 90◦, is mediated by the fast magnetosonic mode.

87



CHAPTER 4. MAGNETOSONIC COLLISIONLESS SHOCK FORMATION BY THE EXPANSION OF
A MAGNETIZED BLAST SHELL

Figure 4.16(c) shows the ion density distribution in polar coordinates. The shock front is fastest
and its separation from the trailing high-density band is largest for ρ≈ 90◦. The radius of the latter
increases as we move away from ρ = 90◦ until ρ ≈ 60◦ or ρ ≈ 120◦, which is what we expect from
Fig.4.16(a) since there the high-density structure is field-aligned. A second high-density structure
extends in the direction ρ = 90◦ up to r ≈ 2.5 mm. The gradients of the magnetic pressure and of
the thermal pressure are parallel along this direction, as we can see from Fig.4.16, which causes a
stronger acceleration of the blast shell ions in this direction. Figure 4.16(c) reveals that the density
stripes, which are also seen in the ion high-density band in Fig.4.16(a), extend to angles that range
from ρ= 0 to ρ= 90◦.

According to Fig.4.16(c) these stripes are located in the intervals 2.9 mm ≤ r ≤ 3.2 mm for ρ= 0
and 2.6 mm ≤ r ≤ 3.1 mm for ρ = 90◦. Figure 4.17 explains their origin by looking at the shocks
propagating along and perpendicular to the magnetic field. The density stripes correspond to ion
density waves, which cause velocity oscillations of the blast shell ions. They are ion acoustic waves
for ρ= 0 and lower-hybrid waves for ρ= 90◦. The oscillations start at the locations, where the blast
shell ions are no longer accelerated by the electric field of the rarefaction wave. These positions
are y = 2.9 mm and vy ≈ 6×105 m/s for the unmagnetized shock and x = 2.7 mm and vx ≈ 4.5×105

m/s for the magnetized shock. The oscillation amplitudes of the mean velocity and of the density
decrease with an increasing positive distance from these positions. These oscillations resemble
those found at the boundary between a hydrodynamic rarefaction wave and the velocity plateau
(Gurevich and Meshcherkin, 1984). Their cause is the discontinuous first derivative of the mean
velocity.

The mean speed of the blast shell ions is lower for ρ = 90◦ than for ρ = 0, which explains why
the density stripes in Fig.4.16(c) are located at lower radii. The amplitude of the density modula-
tions changes with ρ because they are tied to different wave modes. Comparing the location of the
shocks and the distributions of the downstream ions in Fig.4.17 one concludes that, even though
the blast shell ions and the ions of the ambient medium behind the shock with ρ = 90◦ are prop-
agating at a lower speed, the actual shock is faster (See also Fig.4.16(c)). Figure 4.16(c) reveals the
reason for the different shock speeds: the post-shock density of the plasma along ρ= 90◦ is ≈ 2.2n0

while it is ≈ 3.3n0 for an angle ρ= 0. The lower compression along ρ= 90◦ leads to a shock speed
that is larger in the rest frame of the downstream ions.

The mean velocity of the dense shell ions decreases behind the end of the rarefaction wave
until it reaches a minimum at y = 3.4 mm in Fig.4.17(a) and at x = 3.2 mm in Fig.4.17(b). Such
a velocity decrease is explained by an electric field. Figure 4.16(a) shows that the rapid initial de-
crease of the mean speed in Fig.4.17(a) coincides with an increase of the density for x = 0. The
density increase at x = 2.7 and y = 0 in Fig.4.16(a), which is a consequence of the slowdown of the
blast shell ions, and that of the magnetic pressure in Fig.4.16(b) results in an electric field which is
tied to the different mobility of electrons and ions in gradients of the density and magnetic pres-
sure. This electric field decreases the ion velocity at this value of x in Fig.4.17(b).

Figure 4.18 shows the amplitudes of the three magnetic field components and the mean kinetic
energy of the electrons. The magnetic By component is the main contributor to the magnetic
pressure PB. The large amplitudes of Bx are caused by the bending of the field lines by the plasma
expansion along the x-axis. This can be seen from a comparison of Fig.4.18(a,b), for example at
the location (x, y) ≈ (3 mm, -2 mm). The positive value for Bx implies that the magnetic field line
bends at this location towards increasing x, which is consistent with Fig.4.18(b). The same is true
for the four magnetic field patches at small r in Fig.4.18(a). Their polarity is opposite to those at
larger radii. This is explained by the magnetic field depletion due to the plasma expansion (see also
Fig.4.16(b)) which shifts the magnetic field lines towards smaller r . The magnetic Bz component
in Fig.4.18(c) also shows structures that follow the deformation of the field lines in the x-y plane.
The magnetic field deformation is correlated with an electron current. The electrons flow along
the magnetic field lines to large |y |, which can be seen in Fig.4.18(d).

Figure 4.19 shows the phase space density distribution of ions over the azimuthal interval 0 ≤
ρ≤ 100◦. It shows the distribution as a function of the radial velocity vr and the azimuthal velocity
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Figure 4.17 – Ion phase space density distribution at tsi m = 3.57 ns: panel (a) shows the distribution fn(y, vy )
along y, which has been averaged over the interval -0.2 mm ≤ x ≤ 0.2 mm. It depicts an ion acoustic shock
that propagates along the background magnetic field. Panel (b) shows the distribution fn(x, vx ) along x,
which has been averaged over the interval -0.2 mm ≤ y ≤ 0.2 mm. It is a fast magnetosonic shock that
propagates perpendicularly to the background magnetic field. The color scale is 10-logarithmic. Horizontal
line: fast magnetosonic speed 5.8×105 m/s.

vρ. The blast shell has driven a shock, which heats up the ambient ions, in all directions. The blast
shell ions form the dense core part in both distributions at r < 4 mm. The thermal spread of the
blast shell ions is larger in the azimuthal direction than in the radial direction; the reason being
that the ions are cooled in the radial direction where the ambipolar electric field of the rarefaction
wave accelerates them and faster ions outrun the slower ones. The ambient ions, which have not
yet encountered the shock, form the cool dense population at r > 4 mm. The diffuse population
for all radial distances is formed by ambient ions, which have crossed the shock (r < 4 mm), and
by shock-reflected ions (r > 4 mm).

A velocity modulation of the upstream ions is observed at ρ ≈ 45◦ and r ≈ 5.4 mm. Prior to
the arrival of the shock the ions are accelerated radially to several times their thermal speed vtn =
(kBT0/(12.5mn))1/2 ≈ 3.3×104m.s−1. This velocity increase along the radial direction persists up
to a propagation direction ρ= 100◦ albeit with a lower magnitude. The shocks propagating along
the angles 45◦ ≤ ρ≤ 135◦ thus have a foot, which does not exist for ρ≤ 45◦.

Figure 4.16(c) showed that the high-density band reached the shock front at ρ = 45◦ and we
assess its connection to the shock foot. Figure 4.20 compares slices of the ion density and of the
magnetic pressure for the propagation angles ρ = 45◦ and ρ = 90◦ with those of the ion acoustic
shock at ρ = 0. The density distribution in Fig.4.20(a) has a maximum between r ≈ 2.8 mm and
r ≈ 3.8 mm. The peak density 3.6n0 downstream of the shock at r ≈ 3.5 mm exceeds the post-
shock peak density 2.2n0 at r ≈ 4 mm in Fig.4.20(b) and the maximum downstream density 3n0 of
the shock in Fig.4.20(c) at r ≈ 3.5 mm. The magnetic pressure has been depleted at small radii in
all considered cases. Figures 4.20(a,b) demonstrate that the shocks pile up magnetic field ahead
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Figure 4.18 – Spatial distribution of magnetic field components: Bx (a), By (b) and Bz (c) in units of B0. Panel
(d) shows the mean kinetic energy of electrons in units of the temperature T0. The time is tsi m = 3.57 ns.

of them. The magnetic pressure in Fig.4.20(b) has started to increase even at the boundary at r = 8
mm.

A fast magnetosonic pulse emitted at t = 0 at the boundary at r = 2 mm would have reached
the position 2mm+v f ms tsi m ≈ 4.1 mm in Fig.4.20(b). The magnetic field is increased beyond this
radius, which suggests together with the exponentially decreasing PB for r > 4.1 mm that this pulse
is a damped precursor.

The magnetic pressure and the plasma density both increase in Fig.4.16(b) across the shock at
r ≈ 4.3 mm from the upstream into the downstream region. Based on this observation we have
already concluded that it is a fast magnetosonic shock. The magnetic pressure decreases and the
plasma density increases across the shock at r ≈ 3.9 mm in Fig.4.20(a); this is a slow magnetosonic
shock. The gradient of PB at the shock accelerates ions to lower radii, which enhances the plasma
compression and yields a large post-shock density.

The magnetic pressure gradient ahead of the slow- and fast magnetosonic shocks depicted
in Fig.4.20(a,b) points to increasing radii and the associated force accelerates ions in the same
direction. The upstream ions in Fig.4.19 obtain a mean radial speed, which is larger than zero,
that lets them move away from the shock. In contrast, the magnetic field is depleted ahead of the
shock in Fig.4.20(c) and its pressure gradient accelerates upstream ions towards the shock, which
amplifies the mean velocity change at ρ≈ 45◦ in Fig.4.19(a).

Depletion of PB in Fig.4.20(c) extends far ahead of the shock and it can thus not be explained
in terms of an Alfvén wave that is launched by the expanding blast shell at r = 2 mm at t = 0. The
Alfvén speed is simply too low. Effects due to Alfvén waves and a modification of shocks by a shear
Alfvén wave would also not emerge on the short time scales t ¿ω−1

ci we consider here due to their
low frequencies (Gekelman et al., 2011). The magnetic field depletion can only be caused by the
current of hot electrons, which is carried into the plasma at the electron’s thermal speed vThe À vA
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Figure 4.19 – The 10-logarithmic ion phase space density distribution. The time is tsi m = 3.57 ns. Panel (a)
shows the velocity in the radial direction vr while panel (b) shows the azimuthal velocity component vρ.

(See Fig.4.18(d)).

We have estimated the speed of the shocks shown in Fig.4.20 by measuring the distance the
density jump associated with the forward shock propagated from t = 0.9tsi m until t = tsi m . The
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Figure 4.20 – Radial profiles of the ion density (blue) and the magnetic pressure PB (red): (a) along the
direction 45◦, (b) along the direction 90◦ and (c) along ρ= 0. Both distributions have been averaged over an
angular interval with the width 0.5◦. The time is tsi m = 3.57 ns.

speed of the slow magnetosonic shock in Fig.4.20(a) is about 4.5×105 m/s, that of the fast magne-
tosonic one in Fig.4.20(b) is about 6.7×105 m/s or ≈ 1.15v f ms and that of the unmagnetized shock
in Fig.4.20(c) is about 5.4×105 m/s or 1.3cs .

Simulation 2: magnetic field transverse to the simulation plane.

Figure 4.21(a) shows the ion density for x > 0 and y > 0. This distribution is radially symmetric

Figure 4.21 – The distribution of the ion density ni and of the normalized magnetic pressure PB = (B2
x +B2

y +
B2

z )/B2
0. The ion density is shown in cartesian coordinates in (a). Panel (b) shows the magnetic pressure in

cartesian coordinates. The ion density distribution in polar coordinates is shown in panel (c). The linear
color scale is clamped to the value 1.5 in (a, c) in order to emphasize the location of the shock. The time is
tsi m = 3.57 ns.

for all radii with the exception of the density stripes found for 2.75mm < r < 4mm. The mag-
netic pressure is radially symmetric only for r ≤ 1.2 mm and r ≥ 3.7 mm as seen from Fig.4.21(b).
The magnetic pressure waves in the interval 1.3mm ≤ r ≤ 3.7mm rotate in time in the counter-
clockwise direction (Fig.4.21). Figure 4.21(c) shows that the plasma expansion is no longer a func-
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tion of ρ. We observe the density stripes, which form at the end of the rarefaction wave at the
same location 2.7mm ≤ r ≤ 3.2mm (see Fig.4.21(a)), with the same amplitude and wavelength as
their counterparts in Fig.4.16(c) for ρ= 90◦. Their amplitude and wavelength do not depend on ρ

because these are lower-hybrid waves propagating transverse to the background magnetic field.
The front of the shock in Fig.4.21(a,b) is located at r ≈ 4 mm and it compresses the plasma

density and the magnetic pressure. It is a fast magnetosonic shock, which is underlined by the
phase space density distribution of the ions in Fig.4.22. The distribution does not depend on ρ and
it resembles that in Fig.4.19 at ρ= 90◦. Figure 4.22 furthermore reveals that the ion distribution has
not been visibly affected by the azimuthal oscillations of the magnetic pressure in Fig.4.21(b).

Figure 4.23 shows the distribution of the magnetic field components and the mean electron
energy at t = tsi m . We observe modulations of the magnetic field components in the simulation
plane and of the mean kinetic energy of the electrons. The wave vector of these oscillations is
aligned with the azimuthal direction.

The Weibel instability can lead to the growth of magnetic fields in a density gradient (Quinn
et al., 2012). However, it would affect the out-of-plane magnetic field, which is not what Fig.4.23
shows. The background magnetic field maintains an electron temperature in the simulation plane
on the considered time scales ωce tsi m ≈ 500, which suppresses this instability.

Instabilities can also be driven by a drift between electrons and ions. The guiding center ap-
proximation is valid for the electrons since they perform about 100 gyroperiods during tsi m . The
radial variation of Bz in Fig.4.23(c) leads to a grad-B drift. The drift velocity vD of an electron with
the charge q = −e can be estimated by assuming that Bx ,By ¿ Bz and that B = (0,0,Bz ) changes
slowly relative to the value of Bz on spatial scales comparable to an electron thermal gyroradius.
According to Fig.4.23(c) this is the case for the electrons with rg e = 1.25×10−4m. The drift speed is
(Baumjohann and Treumann, 1997)

vD ≈ me v2
The

2qBz

B×∇Bz

B2
z

. (4.34)

Changes along z are excluded by our simulation geometry. We define cD = (me v2
The )/(2qB3

z ) and
obtain the two drift components vDx ≈ −cDBz∂y Bz and vDy ≈ cDBz∂x Bz . Electrons drift in the
clockwise direction.

We compute vD with Eq. (4.34) from the magnetic field data in Fig.4.23(c). The azimuthal
average of its modulus is shown in Fig.4.24. The drift speed exceeds vThe in the radial interval,
where magnetowaves are excited in Figs. 4.23(a,b). Equation (4.34) accurately estimates vD only
if |vD| ¿ vThe and beam instabilities grow once |vD| ∼ vThe . It is thus unlikely that electrons can
reach a drift speed 7vThe . This is confirmed by Fig.4.23(d) that shows that the mean electron ki-
netic energy is only 3 times larger than the temperature T0.

Drift speeds below vThe can drive the lower-hybrid drift instability (Brackbill et al., 1984; Winske;
Ripin et al., 1993; Daughton et al., 2004), corresponding to excitation of the ion density waves. The
linear growth rate of this instability is smaller than the lower-hybrid frequency. Figure 4.23 shows
that the magnetowaves grow on time scales ∼ω−1

ce while ωce /ωl h ≈ 60 in the ambient plasma. The
slow growth of lower-hybrid waves and the absence of ion density modulations Fig.4.21(a) on spa-
tial scales that are similar to those of the magnetic pressure in Fig.4.21(b) rule out this instability.

A faster-growing instability that involves electron-cyclotron waves (Forslund et al., 1972; Dieck-
mann et al., 2000b) sets in if the drift speed is comparable to the electron’s thermal speed. Such
waves hardly modulate the ion density. They are sustained by the interplay of the magnetic pres-
sure with the electron thermal pressure when they are saturated nonlinearly. The time evolution
of Fig.4.23(d) (not shown) evidences modulations of the mean thermal energy of the electrons,
which suggests that such an instability may be excited.

We can quantify a correlation between the magnetic pressure, which oscillates twice as fast as
the magnetic amplitude in Fig.4.23(a,b), and the mean electron energy by transforming both from
the Cartesian into a polar coordinate system followed by a Fourier transform over the azimuth
angle. We define n as the number of oscillations along the azimuthal direction; one oscillation
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Figure 4.22 – The 10-logarithmic ion phase space density distribution. The time is tsi m = 3.57 ns. Panel (a)
shows the velocity in the radial direction vr while panel (b) shows the azimuthal velocity component vρ.

per 360◦ corresponds to n = 1. The result in Fig.4.25(a, b) shows the dominant mode n = 16. The
signal in Fig.4.25(a) peaks at a smaller radius than that in Figure 4.25(b). The density decreases
with increasing r and the magnetic pressure must thus be balanced by a larger electron kinetic
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Figure 4.23 – Spatial distribution of the magnetic field components: Bx (a), By (b) and Bz (c) in units of B0.
Panel (d) shows the mean electron kinetic energy in units of the temperature T0. The time is tsi m = 3.57 ns.
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Figure 4.24 – The magnitude of the azimuthally averaged drift speed |vD|/vThe at the time tsi m = 3.57 ns.

energy.

We have extracted the phase angleα1(r ) of the Fourier transformed signal at n = 16 in Fig.4.25(a)
and that of its counterpart α2(r ) at t = tsi m −54 ps. A phase difference ∆α = α1(r )−α2(r ) = 2π im-
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Figure 4.25 – Amplitude modulus and phase speed of the drift wave: panel (a) shows the amplitude modulus
of the magnetic pressure and panel (b) that of the mean electron kinetic energy. A value n = 1 implies one
oscillation per full cycle. Both spectra are normalized for each value of r to the power at n = 0 at that r .
Panel (c) shows the propagation speed of the magnetic-structure as a function of the radius.

plies that the structure has completed one full rotation around the z-axis. The azimuthal phase
speed of the structure r∆α/54 ps is shown in Fig.4.25(c). A positive phase speed corresponds to
a counter-clockwise rotation. The phase velocity equals vThe /4 over the radial interval 1.5mm ≤
r ≤ 3.3mm, which is typical for electron Bernstein waves (Ram et al., 2002). The magnetowave
rotates in the opposite direction as the electrons, which is characteristic for waves driven by the
resonant electron-cyclotron drift instability. The opposite rotation direction is caused by the op-
positely directed phase and group velocities of electron Bernstein waves. Energy is transported
with the group velocity in the same direction as the electrons move and the phase velocity thus
has the opposite sense of rotation. This effect has been observed experimentally (Ripin and Sten-
zel, 1973).

4.3.3 Summary

We have examined the expansion of an initially radially symmetric blast shell into an ambient
plasma followed by formation of a magnetic cavity (Bernhardt et al., 1987) by means of two-dimensional
particle-in-cell simulations. The blast shell was driven by a jump in the thermal pressure between
a dense azimuthally symmetric plasma cloud and a spatially uniform dilute ambient medium in a
spatially uniform magnetic field.

One simulation considered the case of a magnetic field that was aligned with one of the axes
of the simulation box. This simulation demonstrated that collisionless forward shocks form for
all orientations of the shock normal with respect to the ambient magnetic field. The forward
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shocks are located between the pristine and the shocked ambient medium. The forward shock
that propagates perpendicularly to the magnetic field (ρ = 90◦) is mediated by the fast magne-
tosonic mode. It was trailed by a tangential discontinuity, which separates the blast shell plasma
from the shocked ambient medium. The tangential discontinuity changes into a slow magne-
tosonic shock for propagation angles 45◦ ≤ ρ< 90◦ (Eliasson, 2014). The slow magnetosonic shock
replaces the fast magnetosonic shock for the propagation angle ρ ≈ 45◦. The forward shocks are
mediated by the ion acoustic wave for propagation angles ρ< 45◦.

Our simulation time is short compared to the inverse ion gyro-frequency. In spite of this short
time, the shocks developed features that are typical for magnetosonic shocks such as the phase
relation between the plasma density and the magnetic field amplitude and a shock speed that
depends on the propagation direction. We attribute this fast shock formation time to the fact that
the magnetosonic shocks are mediated by the magnetic pressure gradient. The magnetic pressure
acts on the electrons and ions. A higher electron mobility results in a charge separation and, hence,
in an electrostatic field. The characteristic time scale, during which the force develops, is much
shorter than the time it takes an ion to complete one gyration in the magnetic field. Indeed it has
been shown in the one-dimensional simulation in Ref. (Dieckmann et al., 2017b) that the shock,
which propagates orthogonally to the magnetic field, becomes a fast magnetosonic one.

The second simulation considers a background magnetic field that pointed out of the simu-
lation plane. This geometry implies that the forward shock is mediated by the fast magnetosonic
mode. No difference between this shock and the perpendicular one in the first simulation is ob-
served. The expanding blast shell deplets the magnetic field and piles it up ahead of it in the
shocked ambient medium. The spatially non-uniform magnetic field results in the grad-B drift of
electrons in the simulation plane at a speed comparable to the electron thermal speed. This drift
speed is large enough to trigger the growth of an electron-cyclotron drift instability.

Evolution of the ion phase space density, observed in a collisionless shock, matches the MHD
model with exception of the shock-reflected ion beam. The latter is absent in collisional plasmas.
It can drive instabilities upstream of the shock or force it into a cyclic reformation, as discussed
in the next section. These kinetic effects were negligible in our simulation because the shock-
reflected ion beam was dilute. We have not examined here the electrons; their high temperature
implied that they were not in a thermal equilibrium with the ions. Their thermal pressure drives
expansion of the blast shell and creates a current that modifies the magnetic field and induces the
kinetic drift instability.

Further simulations examine evolution of the shock for a wider range of values of electron
pressure and for the blast shell’s expansion speeds in order to determine cases where the shock
evolution deviates from that predicted by the MHD model.

4.4 Failed self-reformation of a sub-critical fast magnetosonic shock in
collisionless plasma

A gas is accelerated by rapid changes of its pressure in space or time. Binary collisions mediate
this acceleration and give rise to density waves. Density waves move at the speed of sound, which
depends on the gas temperature. A shock wave forms if the bulk velocity of accelerated material
relative to that at rest is faster than the sound speed. It separates the accelerated gas from the one
upstream of the shock.

In the rest frame of the shock, the gas in the upstream region flows towards the shock. It is
slowed down and heated as it crosses the shock and enters the downstream region behind it. The
heating is accomplished by binary collisions between the particles of the gas and it implies that the
sound speed in the downstream gas is higher than that upstream of the shock. The downstream
region expands due to the transport of material across the shock and, hence, the shock can not be
stationary in the downstream frame of reference. Its speed in this reference frame can, however,
not exceed the sound speed of the downstream material.

The shock boundary is sharp and well-defined only as long as binary collisions between the
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particles of the gas occur frequently on the characteristic time scale of the gas flow. If this is not
the case then the width of its transition layer widens. This scenario is frequently encountered in
outer space where the particle density is low.

The probably best understood shock in a dilute medium is the Earth’s bow shock. The Earth’s
magnetic field is an obstacle for the solar wind (Goldstein et al., 2016), which is fed by particles that
escape the solar corona. The solar wind is fully ionized and composed of electrons, protons and a
minor fraction of heavier ions. It is a good conductor and, hence, it carries with it a magnetic field
from the Sun. The relative speed between the Earth’s magnetosphere and the magnetized solar
wind exceeds that of the charge density waves in the solar wind plasma. A shock forms, which
separates the solar wind from the Earth’s magnetosheath (Lucek et al., 2005). The latter is the
downstream region. The shock is approximately stationary in the rest frame of the Earth while the
magnetosheath plasma flows around the Earth’s magnetic field and escapes in the anti-sunward
direction.

The average shape of the Earth’s bow shock is drawn in Figure 4.26 in an ecliptic cross section.
Its shape is defined by interaction of the solar wind with the dipolar geomagnetic field.

The bow shock thickness is about 100 kilometres (Bale et al., 2003). The mean free path of solar
wind particles is orders of magnitude larger than that and binary collisions are unlikely to occur
in the plasma while it crosses the bow shock. The shock dynamics is regulated instead by the
interactions of the charge- and current densities carried by the ensemble of the plasma particles
with the electromagnetic field.

The Earth bow shock is the paragon of a collisionless shock. In-situ studies of the Earth’s
bow shock by satellites can thus further our understanding of them. However, the dependence
of shocks on plasma bulk parameters like the direction and relative strength of the upstream mag-
netic field and on the plasma temperature and flow speed (Bale et al., 2005; Burgess et al., 2005)
implies that we may not be able to generalize the insight gained from studies of the Earth’s bow
shock to other collisionless shocks.

Collisionless shocks are thus also being studied in the laboratory, for example by letting a laser-
driven blast shell collide with an ambient plasma (Dean et al., 1971) or an obstacle (Bell et al.,
1988), and numerically with kinetic simulation codes (Winske and Omidi, 1996; Arber et al., 2015).
Both approaches allow one to study systematically a wider range of collisionless shocks than those
in the solar system that can be reached by satellites. However, the limited laser energy or computer
time restrain the size and complexity of the shocks that can be created by these two approaches.

Nonrelativistic collisionless perpendicular shocks have been widely studied in the past the-
oretically (Woods, 1969; Shimada and Hoshino, 2000; Schmitz et al., 2002; Scholer et al., 2003)
and with laser-plasma experiments (Schaeffer et al., 2015, 2017a). Those studies revealed three
important parameters that determine the dynamics of the shock: the magnetization of the up-
stream medium, the shock speed relative to the speed of the density wave upstream and the ratio
between the electron and ion temperatures upstream. Most previous research considered param-
eters, which are representative for the Earth’s bow shock. Close to Earth, the solar wind’s thermal
pressure is comparable to the magnetic pressure. The electron temperature is similar to that of the
protons and the shock speed usually exceeds that of the density waves by a factor 2-10 although it
can drop below 2 and even become subsonic (Lugaz et al., 2016).

Although detectable (Balikhin et al., 2002), the cross-shock potential is not large enough on its
own to dissipate the energy of the incoming solar wind protons if the shock exceeds about 2.5 times
the speed of the density wave. In the case of the Earth’s bow shock the consequence is reflection
of upstream protons due to the Larmor rotation in the shock’s magnetic field. Such supercritical
shocks are non-stationary.

Non-stationarity of collisionless shocks has been evidenced in laboratory experiments (Morse
et al., 1972) and for the terrestrial bow shock (Walker et al., 1999) it has also been measured by a
cluster of four spacecrafts (Horbury et al., 2002). Non-stationary processes can be separated in
two groups, including and excluding micro-instabilities . The first category of non-stationary pro-
cesses based on micro-instabilities triggered within the shock front. They are responsible for the
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Figure 4.26 – A two-dimensional schematic view on Earth’s steady-state bow shock in front of the blunt mag-
netosphere by (Stone and Tsurutani, 1985), which forms when the supersonic solar wind streams against
the dipolar geomagnetic field. The bow shock is the diffuse hyperbolically shaped region standing at a
distance in front of the magnetopause. The inclined blue lines simulate the solar wind magnetic field (in-
terplanetary magnetic field IMF). In this figure the magnetic field lines lie in the plane. The direction of the
shock normal is indicated at two positions. Where it points perpendicular to the solar wind magnetic field
the character of the bow shock is perpendicular. In the vicinity of this point where the solar wind magnetic
field is tangent to the bow shock the shock behaves quasi-perpendicularly. When the shock is aligned with
or against the solar wind magnetic field the bow shock behaves quasi-parallel. Quasi-perpendicular shocks
are magnetically quiet compared to quasi-parallel shocks. This is indicated here by the gradually increas-
ing oscillatory behaviour of the magnetic field when passing along the shock from the quasi-perpendicular
part into the quasi-parallel part. Correspondingly, the behaviour of the plasma downstream of the shock
is strongly disturbed behind the quasi-perpendicular shock. Finally, when the shock is super-critical, as is
the case for the bow shock, electrons and ions are reflected from it. Reflection is strongest at the quasi-
perpendicular shock but particles can escape upstream only along the magnetic field. Hence the upstream
region is divided into an electron (yellow) and an ion foreshock accounting for the faster escape speeds of
electrons than ions.(Treumann, 2009)

turbulence which develops at the shock front and in the downstream region in electron, hybrid
and ion ranges. These instabilities are discussed in detail by (Marcowith et al., 2016). Two main
mechanisms explaining the shock front non-stationarity, excluding micro-instability processes,
have been recovered in numerical simulations. The first one is related to non-linear Whistler
waves emitted from the shock front at a very large amplitude comparable to that at the ramp,
propagating at an angle oblique to both the normal to the shock front and the static upstream
magnetic field (Walker et al., 1999). The second process is the already well mentioned, shock self-
reformation.
This mechanism is due to the accumulation of reflected ions by the shock ramp. Because of the
gyromotion, these reflected ions pile up upstream of the foot at a distance slightly smaller than
an ion gyroradius ahead of the shock ramp, and create local magnetic field and density maxima
there. Through a feedback mechanism, this foot then grows until it becomes as large as the ini-
tial shock ramp, effectively creating a new ramp. This new ramp reflects incoming ions thus with
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the shock is advancing to a new position. The process repeats cyclically: the shock is advancing
stepwise with a period less than one upstream ion gyroperiod. During the cyclic self-reformation,
the shock front fluctuates in time. The variations of the overshoot (behind the shock ramp) versus
the foot amplitude are anti-correlated (the overshoot decreases while that of the foot increases),
the ramp thickness strongly varies from a large value (a fraction of c/ωpi ) to a very small value
(only a few c/ωpe ). These modifications of the shock profile have a strong impact on the particles’
dynamics which depends on the front amplitude/ramp thickness. Numerical simulations suggest
that the onset of this non-stationary reformation process is conditioned by a large-enough Mach
number a fraction of incoming ions reflected by the shock (Hada et al., 2003), a sufficiently low
ratio of plasma to magnetic pressure (Hada et al., 2003; Scholer et al., 2003; Burgess and Scholer,
2007; Yuan et al., 2009) and a ratio of the ion thermal velocity to the shock velocity (Scholer et al.,
2003). Thus, supercritical shocks under certain conditions may reform themselves periodically
(or quasi-periodically), this process does not destroy the shock but, on the contrary, keeps it intact
while changing it with time.

Slower subcritical quasi-perpendicular shocks can dissipate most of the directed flow energy
of the upstream medium via their cross-shock potential (Dieckmann et al., 2017b, 2018b; Moreno
et al., 2018d). Their cross-shock potential is sustained by changes in the thermal and magnetic
pressures. Such shocks reflect only a few ions and they can thus not carry significant amounts of
energy upstream. Their modification of the upstream plasma remains weak, which stabilizes the
shock.

Recent works by (Gueroult and Fisch, 2016; Gueroult et al., 2017) explored behaviour of shocks
with parameters between sub-critical and supercritical shocks and demonstrated onset of shock
reformation. We focus here on an instability that can cause the self-reformation of a perpendicular
shock with a normal that is orthogonal to the magnetic field direction (Lembege and Savoini, 1992;
Shimada and Hoshino, 2000; Schmitz et al., 2002; Scholer et al., 2003).

Perpendicular shocks are mediated by a wave, which has the fast magnetosonic speed v f ms as
its phase- and group velocity in the limit of large wavelengths. The current of the ion beam, which
is reflected by a supercritical shock, can interact with fast magnetosonic solitons. Such solitons
are nonlinear pulses, which are characterized by increased magnetic and thermal pressures and
propagate faster than v f ms . The passage of the soliton does not modify the plasma in the sense
that the plasma conditions far upstream of the soliton equal those in its distant downstream re-
gion. A soliton suffers no loss of energy and momentum to the plasma and hence it is undamped.
It maintains its shape and strength as long as the surrounding plasma conditions do not change.

A fast magnetosonic soliton can grow if it is driven by an external current, in which case it
ceases to be a soliton. We will refer to it in this case as a fast magnetosonic solitary (FMS) wave. It
can grow to an amplitude that turns it into a shock (Gueroult et al., 2017) that replaces the original
one. This process is the self-reformation of a perpendicular shock discussed previously. Satellite
measurements suggest that the Earth’s bow shock is affected by it (Lobzin et al., 2007).

We examine here with a particle-in-cell (PIC) simulation a shock that moves through an electron-
proton plasma at the speed 1.5 v f ms . Such a speed is well below the threshold speed 2.76 v f ms

above which shocks become supercritical (Marshall, 1955; Gosling and Robson, 1985). Indeed
our shock does not reflect upstream protons via their Larmor rotation in the shock’s magnetic
field as in Ref. (Gueroult et al., 2017). However, the thermal velocity spread of the inflowing pro-
tons implies that some cannot overcome the shock potential and are reflected back upstream.
Studying self-reformation using a subcritical shock turns out to have two main advantages. Firstly
the shock-reflected proton beam carries little energy. Self-reformation is less violent and com-
plex than that of super-critical shocks. Secondly, we remove the time scale related to the Larmor-
rotation of protons.

Our results are the following. The shock-reflected proton beam drives a FMS wave upstream
of the original shock that grows into a fast magnetosonic shock with a partially developed down-
stream region. We call this structure a proto-shock. It reflects the protons of the shock-reflected
proton beam back to the trailing original shock. This momentum transfer pushes the proto-shock,
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which maintains the high speed of its downstream region. Since the forward shock of the proto-
shock is propagating faster than the downstream material this momentum transfer lets the proto-
shock grow.

The interplay of the proto-shock with the protons that were reflected by the original shock
increase in time the density and the magnetic field amplitude of the plasma behind it. Both reach
values that are higher than those upstream of the proto-shock. Unequal plasmas on either side
of the proto-shock imply that it is not a soliton. It changes the mean speed of the protons that
cross it. The original shock runs into a plasma that moves in the same direction, which leads to its
acceleration. A reduction of the pressure difference across the rear end of the proto-shock reduces
the potential difference between both plasmas and its ability to decelerate the shock-reflected
proton beam that arrives from the original shock. The rear end of the proto-shock accelerates in
order to reduce its speed relative to the incoming proton beam through which it can continue to
reflect them back to the original shock and extract their momentum. The rear end of the proto-
shock reaches a speed that exceeds that of its front. The downstream region of the proto-shock
shrinks and it collapses before the trailing original shock catches up with it; the shock reformation
fails.

4.4.1 Initial conditions

Numerical shock tube simulation (Fig.4.27 left) is based on the setup already explored in section
4.2 a,d in Refs. (Dieckmann et al., 2017b; Moreno et al., 2018d). The kinetic shocks and plasma
dynamics in these conditions are regulated by structures that exist also in the single-fluid MHD
model (Myong and Roe, 1997). An electrostatic lower-hybrid shock is formed initially accompa-
nied with a current that modifies the magnetic field, and excites the magnetosonic mode. These
shocks are producing a weak shock-reflected ion beam which does not lead to self-reformation.
In the present simulation, we modifed plasma parameters in order increase the shock speed and
to generate a self-reformation. We use here ionized hydrogen instead of nitrogen in section 4.2,
which increases the ion thermal spread, and allows a larger range of reflected ions.

Table 4.27 defines plasma parameters that used in the simulation with γe = 5/3 and γi = 3.

Parameter Numerical value
ωpe = (ne e2/ε0me )1/2 1.78 ·1012s−1

ωce = eB0/me 1.58 ·1011s−1

vthe = (kBTe /me )1/2 1.87 ·107m.s−1

rg e = vthe /ωce 1.67 ·10−1mm
ωpi = (Z2ni e2/ε0mi )1/2 4.16 ·1010s−1

ωci = ZeB0/mi 8.61 ·107s−1

vthi = (kBTi /mi )1/2 1.24 ·105m.s−1

rg i = vthi /ωci 1.43mm
cs = ((γe Te +γi Ti )/mi )1/2 6.04 ·105m.s−1

va = B0/(µ0n0mi )1/2 6.20 ·105m.s−1

β= (cs/va)2 ∼ 1
v f ms = (v2

a + c2
s )1/2 8.66 ·105m.s−1

Figure 4.27 – Sketch of the plasma density distribution (left) and the ambient plasma parameters in our
simulation (right).

We resolve one spatial dimension x and three particle velocity components. Periodic boundary
conditions are used for the fields and open boundary conditions for the computational particles
(CPs). The simulation box is large enough to separate effects introduced by the boundaries from
the area of interest. The length L0 = 0.5 m of the simulation box is subdivided into evenly spaced
grid cells with the length ∆x = 5µm. We consider here fully ionized hydrogen.

The ambient plasma fills the interval 0 < x < 2L0/3. Its electron and ion temperatures are
Te = 2.32×107K and Ti = Te /12.5. Table 4.27 lists all relevant parameters of the ambient plasma
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with the ion and electron density ni = ne = n0 with ne = 1021m−3. A denser plasma fills the interval
−L0/3 ≤ x ≤ 0. It consists of ions and electrons with the density 10n0 and with the temperature Ti

for ions and 2Te for electrons. All species are initially at rest. A spatially uniform background
magnetic field with the strength B0 = 0.9 T and orientation θ= 90◦ fills the entire simulation box.
We represent the electrons and ions of the ambient and dense plasma by 2× 103 ppc each. The
simulation box covers the interval −990 < x/rg e < 1980 (rg e : electron thermal gyroradius). We
examine the data during the time interval 0 ≤ tωce ≤ tmax with tmax = 1.2×104 (∼ 80 ns). tmax is
resolved by 4.8×106 time steps.

4.4.2 Simulations results

Early expansion phase at 9.5 ns (tωci = 0.82)

Figure 4.28 displays the proton density, the magnetic field amplitude and the projections of the
proton phase space density distributions on the x, vx plane and on the x, vy plane at 9.5 ns in the
interval −10mm ≤ x ≤ 25 mm.

Figure 4.28 – The plasma state at the time tωci = 0.82: Panel (a) shows the ion density ni /n0. The magnetic
Bz /B0 component is plotted in panel (b). Panels (c,d) shows the phase space density distribution (x, px ) and
(x, py ) respectively of the ions on a 10-logarithmic scale.

Figure 4.28(a) reveals a density plateau with ni ≈ 1.7n0 in the interval 5 mm ≤ x ≤ 10 mm and
a density distribution that oscillates around this value in the interval 10 mm ≤ x ≤ 12 mm. The
density decreases to a value just above n0 for x > 12 mm. A small density hump is located in the
interval 15 mm ≤ x ≤ 17 mm. The density jumps to 5n0 in the interval 0 mm ≤ x ≤ 5 mm and grows
for decreasing -10 mm ≤ x ≤ 0 mm at an almost constant slope to 10n0 (not shown). We observe a
reduced magnetic field amplitude in the interval -10 mm ≤ x ≤ 5 mm and oscillations in the inter-
val 0 mm ≤ x ≤ 5 mm. These magnetic field oscillations are in phase with the density oscillations
and they are thus fast magnetosonic modes. The magnetic amplitude jumps to 1.7B0 at x = 5 mm
where the proton density decreases. The magnetic field amplitude remains constant up to x ≈ 12
mm where it decreases to the initial value B0 with the exception of a hump that coincides with that
in the density.

The proton beam in Fig.4.28(c) shrinks along the velocity direction and its mean speed in-
creases for increasing values -10 mm ≤ x ≤ 0 mm in Fig.4.28(c). The proton’s mean speed reaches
vb ≈ 5.2× 105 m/s at x ≈ 0. Figure 4.28(d) shows no changes of the proton distribution in this
spatial interval. An acceleration of protons along x and a proton density and magnetic amplitude
that decrease with increasing x imply that this structure is a fast rarefaction wave. It propagates to
the left into the dense plasma and accelerates its protons to the right. The proton acceleration is
accomplished by the electric field driven by the changing thermal and magnetic pressures.
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The proton’s mean speed does not change in the interval 0 mm ≤ x ≤ 10 mm in Fig.4.28(c).
The decrease of the proton density at x ≈ 5 mm coincides with an increase of the magnetic field
amplitude and of the velocity spread (temperature) of the protons. We recognize this structure
as a tangential discontinuity, which separates the protons of the dense plasma from those of the
ambient one. Velocity oscillations are observed in the interval 10 mm ≤ x ≤ 12 mm and they are
responsible for the density oscillations in the same interval in Fig.4.28(a). The shock at x ≈ 12
mm reflects a minor fraction of the ambient protons in Fig.4.28(c), which propagate at the speed
vx ≈ 2×106 m/s to increasing x. We do not observe a change of the proton distribution at x = 12
mm in Fig.4.28(d) and the reflection is thus not accomplished by a rotation of ambient protons
in the shock’s magnetic field. They are reflected by the shock potential, which is mediated by fast
magnetosonic waves and their changing thermal and magnetic pressures. The density of these re-
flected ions can be estimated considering the electrostatic potential of the ramp ∆Φ. The particle
able to cross the ramp are those with velocities higher than vcr oss =

p
2e∆Φ/mi . Considering a 2D

bi-Maxwellian distribution for the ions, the density of the reflected ions is

α= 1

2
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which corresponds in the simulation to α= 0.036ni . We can so make a first estimation of the ramp
potential in the simulation, which is
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The shock-reflected protons gain speed in the negative vy direction with increasing x > 12 mm
in Fig.4.28(d) and they are slowed down along vx in Fig.4.28(c). These protons gyrate in the mag-
netic field of the stationary upstream plasma. A slowdown of the shock-reflected protons along
the simulation direction increases their density, which accounts for the density hump at x ≈ 17
mm that is in phase with a magnetic field hump. We observe in Fig.4.28(c) two separate proton
beams in the interval 13 mm ≤ x ≤ 15.5 mm, which merge at x ≈ 16 mm and vx ≈ 1.7×106 m/s
or vx ≈ 2v f ms . Some protons are reflected by an electrostatic potential that moves at 2v f ms to
increasing x.

Solitary wave growth at 19 ns (tωci = 1.64)

Figure 4.29 displays the distributions of the proton density, the magnetic field and the proton
phase space density at 19 ns in the interval -20 mm ≤ x ≤ 40 mm.

All distributions resemble qualitatively those at the earlier time up to x ≈ 20 mm. The blast
shell, which was set in motion by the thermal pressure jump between the dense and the dilute
plasma, has expanded farther. The tangential discontinuity, which separates the dense plasma
from the shocked ambient plasma, is now located at x = 10 mm. It propagated 5 mm during 9.5
ns and is thus stationary in the rest frame of the protons between 0 mm ≤ x ≤ 24 mm that move
with the mean speed vb . The shock, which forms the front of the shocked ambient medium, has
propagated from x = 12 mm to 24 mm. Its speed is ≈ 1.3×106 m/s (1.5 v f ms).

Significant differences can be observed in the interval x > 20 mm in Fig.4.29 compared to that
with x > 12 mm in Fig.4.28. The humps in the proton density and magnetic field have grown
in amplitude and they are now centred at x ≈ 29 mm. A velocity modulation is observed at this
position in Fig.4.29(c) but not in Fig.4.29(d), which implies that the velocity oscillation is sustained
by an electric field in the x-direction. This phase space distribution and oscillations of the density
and of the magnetic field, which are in phase, are characteristic for a FMS wave. The approximate
symmetry of the distribution of the shock-reflected proton beam around the shock speed 1.3×106

m/s and in the interval 24 mm ≤ x ≤ 28 mm suggests that the FMS wave moves at about the same
speed as the trailing shock.
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Figure 4.29 – The plasma state at the time tωci = 1.64: Panel (a) shows the ion density ni /n0. The magnetic
Bz /B0 component is plotted in panel (b). Panels (c,d) shows the phase space density distribution (x, px ) and
(x, py ) respectively of the ions on a 10-logarithmic scale.

Emergence and time-evolution of the proto-shock

Figure 4.30 shows the density of the protons of the ambient plasma and the magnetic field ampli-
tude as a function of space and time. We do not consider the protons of the dense plasma since
they are separated from the shock and the FMS wave by the tangential discontinuity. The data is
transformed into a moving frame x̂ = x − v0t with v0 = 1.25×106 m/s.

Figure 4.30 – The proton density distribution ni (x̂, t )/n0 is shown as a function of space and time in panel
(a) and that of the magnetic Bz (x̂, t )/B0 component in panel (b). Both distributions are sampled in the
reference frame x̂ = x − v0t with v0 = 1.25×106 m/s. The overplotted line has the slope v0/10.

Figure 4.30(a) shows how the shock is launched at x̂ = 0 and t = 0. We call it the original shock.
A contour with a density ≈ 2.3n0 that starts at x̂ ≈ −0.2 and t = 0 marks its front. It is followed
by additional density contours in Fig.4.30(a) which are separated by the distance ≈ 0.5 mm (3rg e )
along the horizontal direction. Figures 4.29(a, c) show that these density contours correspond to
the crests of the fast magnetosonic modes that mediate the original shock. They are not correlated
with magnetic field modulations prior to t ≈ 25 ns in Fig.4.30(b).

Initially the shock is stationary in the moving frame and its speed is thus v0−vb ≈ 7.3×105 m/s
or 0.84v f ms in the downstream frame. The Alfvén speed va is proportional to Bz (x̂, t ) and the ion
acoustic speed cs is higher in the hotter downstream plasma. Faster Alfvén and ion acoustic speeds
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give a larger fast magnetosonic speed downstream of the original shock, which reduces further the
shock speed relative to this speed. Our shock involves high-frequency waves, which follow a dis-
persion relation that is concave as a function of the wave number for a perpendicular propagation.
Shock steepening transfers wave energy to larger wave numbers, which fall behind the shock due
to their lower group velocity (Sagdeev, 1966) and cause the observed density oscillations.

The original shock launches a proton beam at t ≈ 2 ns which reaches the position 7 mm at
t ≈ 10 ns giving the speed ≈ 7× 105 m/s. Specular reflection of protons at rest by the original
shock should give a speed ∼ v0 in this frame. However, the thermal velocity spread of the ambient
protons implies that the original shock reflects protons from the Maxwellian tail with a positive
value of vx , which have a lower speed relative to the shock (See Fig.4.28). The density peaks at
the front of the beam, which carries the protons that were accelerated during the growth of the
original shock. Once the original shock has fully developed it reflects a lower number of protons.
The original shock accelerates at t ≈ 40 ns and reaches the speed v0/10 shortly after that.

The original shock amplifies Bz to 1.65B0 and the proton beam it reflects amplifies it to ∼ 1.1B0.
The magnetic field amplitude at the front of the shock-reflected proton beam rises immediately
after its launch. This rules out an amplification of Bz by the current along y of this proton beam,
which gives rise to magnetic field amplification on ion gyro-scales in the foot of a perpendicu-
lar shock (Treumann, 2009). We interpret the magnetic field amplification by the shock-reflected
beam as follows. The proton beam constitutes a positive current jx > 0 along x that must be
balanced by a net flow of electrons ve in the positive direction. The magnetic field is frozen in
the plasma. The magnetic field in the interval, which is occupied by the shock-reflected proton
beam, moves to increasing x. It thus carries a convective electric field Ey > 0 with ve = Ey Bz giv-
ing Ey = ve /Bz . This electric field component vanishes far upstream and we obtain at the front
of the shock-reflected proton beam dEy /d x < 0, which gives via Faraday’s law in one dimension
dEy /d x =−∂Bz /∂t a magnetic field jump.

A FMS wave grows in Figure 4.30 at x̂ ≈ 5 mm during 10 ns ≤ t ≤ 25 ns. Its length reaches 2 mm
(12 rg e ) at t ≈ 35 ns, which can accommodate three wavelengths of the periodic fast magnetosonic
wave that mediates the original shock. At this time the FMS wave has become a proto-shock with a
forward shock and a partially developed downstream region. The front of the proto-shock expands
at a constant speed while its downstream region expands to the left in this moving frame. The
proton beam, which is reflected by the original shock, is slowed down by the electric field driven by
the thermal- and magnetic pressure gradient at the rear end of the proto-shock. This momentum
transfer pushes the proto-shock’s downstream region and maintains its speed in the box frame.
The shock at the front of the proto-shock moves at a high speed in the rest frame of the downstream
medium and the length of the proto-shock increases. The density and magnetic field amplitude
behind the proto-shock and ahead of the original one start to increase at around t = 30 ns.

The front of the proto-shock moves at the speed ≈ 2×104 m/s in the moving frame between t =
20 ns and 65 ns. A density depletion propagates from its trailing end to increasing x̂ after t ≈ 50 ns.
Figure 4.30(a) shows that another density structure propagates at the same time from the trailing
end of the proto-shock into the interval between it and the proto-shock. It crosses about -3 mm
during 4 ns, which gives it the speed −7.5×105 m/s in the moving frame or 5×105 m/s (4vthi ) in
the box frame.

Waves are launched towards the original shock when the density depletion crosses one of the
density peaks in the proto-shock’s downstream region. A weak wave is launched at x̂ = 5 mm and
t = 60 ns and a stronger one at x̂ ≈ 6 mm and t = 65 ns. The weak wave moves in the direction
of the downstream region at a speed of ∼ v0/3 in the x̂ frame of reference. It crosses the original
shock at t ≈ 65 ns and is responsible for the distortion of the wave fronts behind it along the line
that starts at x̂ ≈ 2.2 mm and t = 65 ns and ends at x̂ ≈ 0.2 mm at t = 86 ns. After crossing the
potential of the shock ramp, the weak wave has decreased its speed to ∼ v0/10. The velocity of the
weak wave behind the shock ramp, in the shock frame of reference moving at the speed 1.1v0, is
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estimated from the energy conservation
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This simple model allows us to estimate the potential of the shock ramp at ∆Φ = 1.2 103 V, which
is comparable to our first estimation. After that the weak wave continues its propagation down-
stream without any perturbation or attenuation. The original shock outruns the stronger wave
and crosses it at t = 86 ns. The stronger wave crosses the distance -1.5 mm during 20 ns before it
is swept up by the original shock. Its speed in the moving frame is thus ≈−7.5×104 ms or 1.2×106

m/s in the box frame. Both waves are unipolar density and magnetic field pulses and the stronger
one propagates faster than the weaker one in the rest frame of the simulation box, which is typical
for fast magnetosonic solitons.

We do not observe here a self-reformation of the original shock. That would require that a FMS
wave forms in its upstream region and is transformed into a new shock while the original shock
collapses. In what follows we examine the cause of the proto-shock’s collapse and determine why
and how faster fast magnetosonic shocks self-reform.

The proto-shock at 38 ns (tωci = 3.27)

Figure 4.31 displays the proton density, the magnetic field amplitude and the phase space density
distribution of the protons in a spatial interval close to the original shock at the time 38 ns when
the proto-shock has reached its maximum size. This shock is located at x ≈ 48 mm. It separates the

Figure 4.31 – The plasma state at 38 ns: panel (a) shows the proton density ni /n0. The magnetic Bz /B0

component is plotted in panel (b). Panels (c, d) show the phase space density distributions (x, vx ) and (x, vy )
of the protons. The latter are normalized to their maximum values and displayed on a 10-logarithmic scale.

modified upstream plasma with the density≈ 1.1n0 and the magnetic field amplitude≈ 1.1B0 from
its downstream region with the density ≈ 1.7n0 and magnetic amplitude ≈ 1.7B0. Its transition
layer 44 mm ≤ x ≤ 48 mm is characterized by strong proton density oscillations. The amplitude
of the density oscillations and of the associated electrostatic field is large enough to trap protons
downstream of the shock; we observe closed circular structures known as ion phase space holes
Eliasson and Shukla (2006) at vx ≈ 1.5×106 m/s and 42 mm ≤ x ≤ 48 mm in Fig.4.31(c).

The proto-shock is located in the interval 51 mm ≤ x ≤ 54 mm. Its downstream region has
values of the proton density and magnetic field amplitude that are marginally below those behind
the original shock. Proton density oscillations caused by the dispersive fast magnetosonic modes
trail the front of the proto-shock. Small humps have developed ahead of the proto-shock at x ≈
58 mm in Figs. 4.31(a, b). Figures 4.31(c) shows that these humps consist of plasma that was
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piled up by the beam of protons that have been reflected by the proto-shock. Similar fronts of the
proto-shock and of the original shock in Fig.4.28 witness the onset of a shock self-reformation.

Upstream protons, which were reflected by the original shock, propagate towards the proto-
shock. They start to slow down at x ≈ 49 mm under the influence of the electric field, which is
driven by the slowly changing thermal and magnetic pressures in the interval 49 mm ≤ x ≤ 52
mm. The protons can not overcome the positive potential of the proto-shock and are reflected at
its rear end in Fig.4.31(c) forming the large circular phase space structure in the interval 48 mm
≤ x ≤ 52 mm.

Figures 4.31(c, d) demonstrate that protons, which were reflected by the proto-shock and re-
turn to the original shock, are not reflected by it even though their velocity along vx at x = 48 mm
is comparable to that of the inflowing upstream protons. This large vortex is thus not an ion phase
space hole where trapped ions gyrate in an electrostatic potential and follow closed orbits. Figure
4.31(d) shows that the returning protons have the speed vy ≈ −106 m/s at x ≈ 48 mm. The v×B-
force accelerates the protons in the negative x-direction and helps them overcoming the shock
potential (Treumann, 2009). A second energetic proton beam is created by the reflection of up-
stream protons at the front of the proto-shock. These protons rotate in the upstream magnetic
field and reach the speed vy ≈ 2×106 m/s in the downstream region of the original shock.

The proton beam in the interval 25 mm≤ x ≤ 40 mm with the speed vx ≈−106 m/s in Fig.4.31(c)
maintains this speed over more than 10 mm. A proton, which moves at the speed modulus 1.5×106

m/s in the downstream reference frame (relative speed vb) and rotates in the downstream mag-
netic field 1.6B0, has the Larmor radius 10 mm. We would expect a faster change of vx with x for
this beam. This energetic proton beam is injected at the shock, which moves at the speed ≈ v0 to
increasing x. The structure of the beam of energetic protons downstream of the original shock is
thus determined by the shock motion and by the Larmor rotation of the protons.

Small proton clouds with speeds halfway between the mean speed of the upstream protons
and that of the shock-reflected protons are located close to x ≈ 49 mm and 54 mm in Fig.4.31(c).
These protons are trapped in the shock potential; their low speed in the shock frame implies that
they can neither escape upstream nor overcome the shock potential and move downstream. They
are located upstream of the shock and they are thus transported across a magnetic field, which
is practically at rest in the simulation frame. This transport accelerates the trapped protons in
the negative y-direction and they have reached the speed vy ≈ −4×106 m/s in Fig.4.31(d). They
detrap once the v×B-force exceeds that the shock imposes on them and they move downstream
(Lee et al., 1996).

The proto-shock at 57 ns (tωci = 4.91)

Figure 4.32 shows the relevant plasma distributions at the time 57 ns when the size of the proto-
shock has halved compared to that in Fig.4.31. The original shock is located at x ≈ 73.5 mm and
its average speed between t = 38 ns and 57 ns amounts to 1.34× 106 m/s. Its transition layer is
otherwise similar to that in Fig.4.31. The proton distribution at the proto-shock’s front at x ≈ 78
mm is also qualitatively unchanged. A strong FMS wave has formed in its upstream region. We
find no protons trapped in the potential of the original shock; they have detrapped at this time. A
circular structure at x ≈ 78 mm and vx ≈ 1.5×106 m/s evidences that shock surfing acceleration is
still at work at the proto-shock and the trapped protons have reached the speed vy ≈−6×106 m/s;
their kinetic energy is close to 200 keV.

Clear differences between Figs. 4.31 and 4.32 are observed in the downstream region of the
proto-shock. We observed fast magnetosonic waves in this region at t = 38 ns and the proton
beam, which was reflected by the original shock, could not cross the downstream region of the
proto-shock. Figure 4.32(c) reveals a solitary ion phase space hole at x = 77.5 mm and vx ≈ 1.5×106

m/s. Protons from the incoming shock-reflected proton beam are not stopped by such a structure,
which is sustained by a localized negative excess charge. Some of the protons of the incoming
beam are accelerated when they approach the ion phase space hole and decelerated when they
leave it on the other end. These protons can thus cross the proto-shock without transfering their
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Figure 4.32 – The plasma state at 57 ns: panel (a) shows the proton density ni /n0. The magnetic Bz /B0

component is plotted in panel (b). Panels (c, d) show the phase space density distributions (x, vx ) and (x, vy )
of the protons. The latter are normalized to their maximum values and displayed on a 10-logarithmic scale.

momentum to it and the proto-shock is no longer pushed by the beam; it will collapse.

The mechanism for the collapse of the proto-shock

Figure 4.33 compares the intervals between the original shock and the proto-shock at the times
38 ns and 57 ns. Figures 4.33(a, b) depict the proton phase space density distributions in the x, vx

plane. One oscillation of the proton distribution is visible at low x, which is tied to the electro-
static potential of the fast magnetosonic wave. We observe a faint beam of trapped protons. The
overplotted horizontal bar shows that the wavelength of the mode is 5.35 mm (3.2rg e ) at 38 ns and
about 10% larger at 57 ns. Such a marginal change of the wave length hardly affects the phase-
and group velocities of a fast magnetosonic waves and it can thus not be responsible for the shock
acceleration between 38 and 57 ns in Fig.4.30.

Figures 4.33(c, d) show the density and magnetic field distributions that sustain the proton
phase space density distributions. The waves at the front of the original shock at low x have a
similar density- and magnetic field amplitude at both times and it is thus unlikely that the shock
acceleration is tied to nonlinear modifications of their dispersion relation. Both distributions dif-
fer at the rear end of the proto-shocks at large x. A smooth change of both densities from values
Bz ≈ 1.1B0 and ni = 1.1n0 to values 1.6B0 and 1.6n0 is observed at the time 38 ns while we ob-
serve an overshoot at the time 57 ns that is followed by a density depletion. The latter is tied to the
ion phase space hole visible in Fig.4.33(b). Ion phase space holes are electrostatic structures and
hence we do not see a modification of Bz at its location.

The most important difference between the plasma state at both times shown in Fig.4.33 are
the different values for the density and magnetic field amplitude in the intervals between the
original- and the proto-shock. Both values are 1.1 times their initial one in Fig.4.33(c) and 1.2
times that in Fig.4.33(d). Figure 4.30(a) reveals that this difference is tied to the density structure
that is launched at x̂ ≈ 3.5 mm and t ≈ 32 ns and reaches x̂ ≈ 0.5 mm at t ≈ 36 ns. This speed cor-
responds to 5×105 m/s in the box frame. We are thus looking for a proton density structure with a
speed just above the peak speed of the bulk protons in Figs. 4.33(a, b). The latter suggest that this
structure is tied to the proton beam that was reflected first at the original shock and then again
at the rear end of the proto-shock. This beam is returning back to the original shock at a velocity
just above the cutoff velocity vx ≈ 4×105 m/s of the proton distributions in Fig.4.33(c). Its protons
yield the suprathermal proton tail at x ≈ 51.5 mm and vx ≈ 5×105 m/s in Fig.4.33(a). This beam
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Figure 4.33 – A comparison of the plasma distributions at 38 ns and 57 ns: panels (a) and (b) show the
phase space density distributions along x, vx at the times 38 ns and 57 ns, respectively. Each distribution is
normalized to its peak value and displayed on a 10-logarithmic color scale. Horizontal lines show the initial
mean speed vx = 0 of the ambient protons. Horizontal lines at vx = 11× 105 m/s indicate the reference
length 5.35 mm. Panel (c) shows the proton density ni (x)/n0 (black) and Bz (x)/B0 (red) corresponding to
(a). Panel (d) shows them in the interval resolved by (b).

mixes eventually with the bulk of the protons and both populations can not be distinguished any
more in Figs. 4.33(b).

Can the shock-reflected proton beam by itself be responsible for the density increase between
the original shock and the proto-shock? We integrated the distributions in Figs. 4.33(a, b) over
1.5×106 m/s ≤ vx ≤ 2.5×106 m/s and obtained a density n0/50 for the proton beam in the interval
49 mm ≤ x ≤ 51 mm. Its density accounts for the elevated values in the interval 0.5 mm ≤ x̂ ≤ 3.5
mm and 10 ns ≤ t ≤ 25 ns in Fig.4.30(a). This proton beam is reflected at the rear end of the proto-
shock and its speed decreases from 2.3×106 m/s to 5×105 m/s, which results in its compression by
the factor 4.6. Adding up the densities of the fast incoming beam and the slow reflected beam and
neglecting the loss of protons that enter the downstream region of the proto-shock in Fig.4.33(a)
at x > 52 mm yields 0.11n0, which can account for the density enhancement in Fig.4.33(c). This
density remains unchanged between 38 ns and 57 ns and we require another source of proton
density to explain the density plateau with 1.2n0 in Fig.4.33(d).

Most protons between the original shock and the proto-shock are upstream protons that crossed
the proto-shock. Its forward shock is maintained by a balance between the thermal and magnetic
pressure of its downstream region and the ram pressure of the inflowing upstream plasma. This
pressure difference is high because Bz and ni increase by the factor 1.6 at this forward shock, which
changes the proton’s mean velocity from the value of zero upstream of the shock to a value vb in its
downstream region. An electric potential, which is set by the difference between the thermal and
magnetic pressures in the proto-shock and behind it, accelerates the protons that leave the proto-
shock at its rear end. Figure 4.33(c) shows that the values for ni and Bz behind the proto-shock
are 1.1 times higher than those upstream of the proto-shock. In the rest frame of the proto-shock’s
downstream region the protons that leave the proto-shock are accelerated less than they were de-
celerated at its front. This implies also that they are decompressed less than they were compressed
at the forward shock. The plasma between the proto-shock and the original shock must thus be
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denser than that upstream of the proto-shock, which provides the additional density in Fig.4.33(d).
Figure 4.33(a) reveals a weak change of the proton’s mean velocity with increasing 49 mm ≤

x ≤ 51 mm. Their mean speed is 6.3 × 104 m/s at 49.25 mm and increases to 9.3 × 104 m/s at
50.75 mm. A velocity change leads to a density change. The latter is responsible for the density
structure that is emitted at the rear end of the proto-shock in Fig.4.30(a). The mean velocity of
the bulk protons in Fig.4.33(b) reaches 1.65×105 m/s (0.32vb) between 74.75 mm ≤ x ≤ 75.5 mm
surrounded by minimum values 1.5×105 m/s (0.29vb) at 74 mm and 75.5 mm. This substantial
decrease of the proton acceleration and decompression at the rear end of the proto-shock can
account for the density increase beyond 1.1n0 in Fig.4.33(d). The original shock in Fig.4.33(c) is
no longer propagating into a plasma at rest but into one that moves at the speed ≈ v0/10 into the
shock’s propagation direction. The increase of the speed of the original shock Fig.4.30 is probably
a consequence of the changed mean speed of its upstream plasma.

Figure 4.33(b) demonstrates that the shock-reflected proton beam maintains its speed 2.3×106

m/s even after the original shock has accelerated. This proton beam is slowed down at the rear end
of the proto-shock. A momentum transfer from this beam to the proto-shock is most efficient if
the proto-shock can reflect them back to the original shock. Figure 4.33(a) shows that this is true
for most protons at the time 38 ns. The potential difference across the rear end of the proto-shock
and its ability to reflect the incoming proton beam has decreased at the time 57 ns. Figure 4.30
shows that the rear end of the proto-shock accelerates at this time, which reduces the velocity gap
between it and the incoming protons that were reflected by the original shock. It can thus continue
to reflect them until the rear end reaches the front of the proto-shock.

The remainder of the proto-shock at 76 ns (tωci = 6.55)

Figure 4.34 displays the distributions of the magnetic field and of the protons density as well as that
of the phase space density at the time 76 ns. The original shock has reached x ≈ 100 mm, which
yields an average propagation speed ∼ 1.4× 106 m/s between t = 57 ns and 76 ns. Its structure

Figure 4.34 – The plasma state at 76 ns: panel (a) shows the proton density ni /n0. The magnetic Bz /B0

component is plotted in panel (b). Panels (c, d) show the phase space density distributions (x, vx ) and (x, vy )
of the protons. The latter are normalized to their maximum values and displayed on a 10-logarithmic scale.

and that of its downstream region remain qualitatively unchanged compared to those at earlier
times. Such a stability is typical for subcritical shocks. It is no longer preceded by a fully developed
proto-shock. Humps in the density and magnetic field distributions are found at x ≈ 101.5 mm
in Figs. 4.34(a, b). Figure 4.30 shows that these humps are what remains from the proto-shock.
Figure 4.34(c) reveals a velocity modulation at the position of the hump, which is responsible for
the local increase of the proton density and of the magnetic field amplitude. This structure is thus
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still a FMS wave. It propagates to increasing x at the speed 1.2× 106 m/s in the box frame (See
Fig.4.30). Some of its upstream protons are reflected by the wave potential and give rise to a beam
with vx ≈ 1.5×106 m/s in the interval 102 mm ≤ x ≤ 104 mm. We computed the mean speed vx ≈ 0
of the protons ahead of the FMS wave. Their mean speed reaches 3.5×105 m/s at the crest of the
FMS wave and decreases to 1.3×105 m/s behind it. Its peak speed exceeds vthi by a factor ∼ 3.
The more energetic proton beam, which is reflected by the original shock at x ≈ 100 mm, is slowed
down and then reaccelerated by the potential of the FMS wave. This beam does not thus transfer
any net momentum to the solitary wave.

The end of the proto-shock at 86.5 ns (tωci = 7.45)

Figure 4.35 displays the distributions of the density and magnetic field and that of the proton phase
space density distributions at the time 86.5 ns. The FMS wave was significantly slower than the

Figure 4.35 – The plasma state at 86.5 ns: panel (a) shows the proton density ni /n0. The magnetic Bz /B0

component is plotted in panel (b). Panels (c, d) show the phase space density distributions (x, vx ) and (x, vy )
of the protons. The latter are normalized to their maximum values and displayed on a 10-logarithmic scale.

original shock and it has just been swept up by it at this time. Both structures are located in the
interval 110 mm ≤ x ≤ 112 mm. We can distinguish both with the help of the proton beams they
reflect. Previously the proton beam, which was reflected by the original shock, reached a higher
speed than the one that was reflected by the FMS wave and we assume that this is still the case.
We identify the original shock as the one that accelerates protons at x ≈ 110.5 mm while the FMS
wave gives rise to the less energetic proton beam at x ≈ 111 mm.

We anticipate from looking at Fig.4.35(c) how the FMS wave could interact with the original
shock. As long as the FMS wave was located in the plasma ahead of the original shock its speed was
limited by the fast magnetosonic speed and the low speed of the upstream plasma. The original
shock could catch up with it. However, the FMS wave has now entered the downstream region
that moves at the speed vb to increasing x and its hotter plasma and stronger magnetic field let
the FMS wave move faster. If this nonlinear wave is fast enough to stay ahead of the original shock
it will grow by its interaction with the inflowing upstream plasma. Figure 4.35(c) shows that the
proton beam, which is reflected by the original shock, slows down while it approaches the FMS
wave. Its protons can still cross its potential at this time and are reaccelerated at the other side.
Let us assume that the FMS wave continues to grow. The proton beam, which is reflected by the
original shock at x = 110 mm, will not be able to cross its potential any more. It will be reflected
back and form a beam of protons trapped in the potential of an ion phase space hole. The FMS
wave will become the new original shock. We note that the FMS wave will only become the new
original shock if its amplitude and, hence, its speed are high enough to let it stay at the front of the
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shocked ambient plasma. The weaker and slower FMS wave, which was launched at the earlier
time in Fig.4.30, crossed the original shock and propagated into the downstream region.

A new FMS wave grows at x ≈ 115 mm, as well as potential build up, and a new ion reflection
starts, suggesting a cyclic process. However, this process is beyond the scope of the present part of
the thesis and will be considered separately.

4.4.3 Discussion

We have studied with a particle-in-cell (PIC) simulation the evolution of a subcritical perpendic-
ular fast magnetosonic shock through a plasma, which consisted of electrons and protons with
the correct mass ratio. The shock was launched by a thermal pressure jump and it propagated at
1.5 times the fast magnetosonic speed into the ambient plasma. This speed was similar to that
in section 4.2 and several of the plasma structures we observed here have already been discussed
in this earlier section. These were the fast rarefaction wave, the tangential discontinuity and the
fast magnetosonic shock. Here we have replaced the fully ionized nitrogen by protons and we
increased the plasma density, which changed the evolution of the fast magnetosonic shock.

Supercritical shocks reflect inflowing ions by their rotation in the magnetic field in the shock
transition layer. This beam develops and evolves on a time scale that is comparable to an inverse
ion gyrofrequency. Such beams consist of a significant fraction of the inflowing upstream ions and
their speed is high. This energetic ion beam drives violent processes upstream of the shock, which
are difficult to analyse and interpret. Subcritical shocks like the one we consider here do not have
to reflect inflowing ions; the shock transition layer can be sustained by the electrostatic potential
of the shock. We selected protons with a large thermal velocity spread, which implied that protons
on the Maxwellian tail with the lowest speed relative to the shock could not overcome its potential.
They were reflected upstream forming a dilute beam. This beam disappears when the magnetic
field is tilted just by a few degrees (Moreno et al., 2018d).

This beam triggered the growth of a fast magnetosonic solitary wave upstream of the shock,
which propagated into the same direction as the shock. Its moving potential reflected the incom-
ing beam of shock-reflected protons back to the shock. This reflection transfered the momentum
and energy of the protons to the solitary wave. The wave grew into a structure with a forward shock
and a short downstream region. We called this structure a proto-shock. No such structure was ob-
served in section 4.2 and Ref. (Dieckmann et al., 2017b). The proto-shock was separated spatially
from the original shock and this interval was filled with a plasma that formed the upstream region
of the original shock.

Protons from the shock-reflected proton beam increased the density of this plasma and the
amplitude of its magnetic field which reduced its potential difference relative to the original shock
and relative to the proto-shock. Our simulation demonstrated that the protons, which crossed
the proto-shock and entered the plasma that separated the original shock from the proto-shock,
reacted to the decreased potential jump. This plasma and the original shock accelerated. The
potential drop across the original shock was still large enough to sustain it and it did not col-
lapse. A reduction of the potential difference between this plasma and the proto-shock implied
that the trailing end of the proto-shock had to speeds up in order to continue reflecting the in-
coming proton beam. It reached a speed that exceeded that of the forward shock at the front of
the proto-shock and the trailing end caught up with it. The proto-shock collapsed and was swept
up by the original shock and the self-reformation of the latter failed. The FMS wave disappears in
a time scale of ∼ 4ω−1

ci , leading to a new FMS wave which will possibly repeat the cycle performed
by the first one downstream the shock. Even if our simulation is stopped at the beginning of the
new FMS wave merging, it is reasonable to suppose that the process can repeat itself and will al-
low the shock to reach much higher velocities leading to a cyclic shock acceleration by FMS wave
formation upstream in a subcritical regime.

We expect a different evolution if the shock-reflected ion beam is either denser or faster. In
either case it will increase further the density between the original shock and the proto-shock.
The potential jump between it and the original shock will decrease and it will become too weak
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to sustain this shock. Decreasing the potential jump between this plasma and the proto-shock
will reduce the velocity change at its trailing end, which will extend the downstream region of the
proto-shock to the original one.

The simulations presented in this chapter are experimentally relevant. The blast shell of col-
lisionless plasma can be created in laboratory by the ablation of a solid target by an intense laser
pulse and made to interact with a second plasma population. These magnetized shocks have been
investigated with high-energy laser systems, and Chapter 6 will discuss of an experimental pro-
posal to recreate such shocks in laboratory. Furthermore, an overview of the different laboratory
experiments on collisionless shocks will be discussed in the next chapter, which will also present
an experiment on collisionless shock formation, where the non-stationarity of the shock is based
on micro-instabilities, as the Weibel instability responsible for the turbulence which develops at
the shock front and in the downstream region in electron, hybrid and ion ranges.
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Chapter 5

Collisionless shocks in the context of
laboratory experiments

High power laser facilities are a tools of choice to study the properties of astrophysical objects, the
overview of the different facilities and their usefulness has already been presented in the Introduc-
tion.

Along with rapid theoretical progress enabled by large-scale numerical simulations, intensive
efforts are underway to generate collisionless shocks using powerful lasers. These scaled experi-
ments provide unprecedented test-beds for scenarios of shock formation and evolution. The as-
trophysical community is particularly interested to better understand the origin of cosmic rays
from supernova remnants (Park et al., 2015, 2016), and one goal of these experiments is to observe
nonthermal particles and radiation generation, processes related to these shocks.

Two classes of collisionless shocks, magnetized (MHD) and electrostatic shocks have been dis-
cussed in two previous chapters.

Collisionless magnetized shocks are ubiquitous in Space, they are mediated by MHD modes.
These shocks have been investigated with high-energy laser systems (Podgorny, 1979; Bell et al.,
1988; Courtois et al., 2004). The first observation of collisionless perpendicular shocks have been
reported, using the Large Plasma Device (Gekelman et al., 1991) and a high energy laser system
(Niemann et al., 2012). More recently (Schaeffer et al., 2017b,a) performed an experiment on
the OMEGA laser facility (cf. figure 7) and showed the first laboratory generation of high-Mach-
number magnetized collisionless shocks created through the interaction of a laser-driven mag-
netic piston and a magnetized ambient plasma. These shocks can reflect particles and heat them
via the magnetosonic wave modes. However, no clear particle acceleration has been measured
experimentally for the magnetized shocks yet. PIC simulations showed that these shocks are very
inefficient at particle accelerations, but are efficient particle heater.

Collisionless electrostatic shocks can originate from the temperature or/and density jumps of
plasmas free of magnetic fields. Various schemes of generation of collisionless electrostatic shocks
have been realized on high energy laser facilities. The first one is an interaction between a laser
produced high-density ablating plasma and a low-density ambient plasma. Using this scheme,
on the LULI2000 laser facility, (Romagnani et al., 2008) have observed a very thin structure of the
shock and the formation of ion acoustic solitons by using the proton radiography. Similar shocks
have been observed in the experiment conducted by (Ahmed et al., 2013) on the VULCAN laser fa-
cility (cf. figure 6). Later in time they transformed in a double layer structure. The second scheme
involves laser-ablated counter-streaming plasmas created from two plane targets. These experi-
ments have been motivated by the numerical simulation by (Kato and Takabe, 2008) who demon-
strated that an electrostatic shock can be produced at early stages of the Weibel-instability medi-
ated electromagnetic shock. Electrostatic shocks are generally easy to produce in experiments and
do not require large facilities, since their width is on the microscopic scale. Electrostatic shocks
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can promptly accelerate particles to energies of the order of the macroscopic electrostatic poten-
tial drop Zi eΦmax . Numerical simulations have revealed ion acceleration in a relativistic electro-
static shock generated in an overdense plasma due to reflection of ions in the upstream region by
the shock front (Stockem et al., 2013), quasi-monoenergetic proton acceleration by such shocks
has been shown experimentally (Haberberger et al., 2011).

These two classes of shocks are not able to accelerate particles above the electrostatic potential
jump and cannot explain high energy cosmic ray emission which require multipass acceleration
mechanisms such as the first order Fermi acceleration process.

The third class of collisionless shocks presented in the introduction, are Weibel-mediated shocks.
These shocks of electromagnetic nature, results from the long-time non-linear evolution of the
Weibel-filamentation instability. This class of shock covers the relativistic domain for low mag-
netization, but also a part of the nonrelativistic domain. A transition between the two regimes of
non-magnetized shocks, the electromagnetic shocks lead by a cold electron distributions, and the
electrostatic shocks driven by slow flows, have been investigated by (Stockem et al., 2014, 2016). An
electrostatic shock (ES) can be transformed into an electromagnetic shock (EM) when the Weibel
modes time scale tW is equal to the ES formation time scale ts f as demonstrated in figure 5.1.

Figure 5.1 – Definition of electrostatic, electromagnetic and transition regimes depending on input param-
eters v2

Te /c2 = kBTe /me c2 and proper flow velocity u0 = β0γ0 . The electrostatic shock formation condition
(Forslund and Shonk, 1970) (red dashed line) limits the parameter space of electromagnetic shocks (EM).
The blue line represents the condition ts f = tW , with the nonrelativistic approximation in dashed, sepa-
rating the region of purely electrostatic shocks (ES) and the transition region (ES −→ EM). The black dots
represent the sub-set of simulation parameters discussed by (Stockem et al., 2014).

These shocks are mediated by the ion Weibel instability. The Weibel instability presented in
the second chapter only affects the electrons and appears, on electron time scales. The two-
stream and Weibel electron-electron instabilities are important for the isotropization (mutualiza-
tion) and heating of electrons. But the dissipation mechanism essential for the shock formation
appears at the second stage of interaction and involves ions.. The electrons are thermalized rel-
atively rapidly, and the ion Weibel instability develops when an ion beam propagates through a
hot isotropic electron gas. Small transverse magnetic field perturbations can drive the oppositely
moving ions into current layers of opposite sign, which reinforce the initial field (Medvedev and
Loeb, 1999), this scheme is similar to the one presented in Chapter 2 for the electron Weibel in-
stability but involves ion currents. This instability is saturated by ion trapping in magnetic wells
followed by magnetic micro turbulence. According to recent ab initio particle-in-cell (PIC) simu-
lations (Spitkovsky, 2008a; Martins et al., 2009; Sironi and Spitkovsky, 2011a), this instability both
triggers formation of the shock, and sustains its long-time propagation through continuous in-
teraction between upstream and reflected particles. Furthermore, the turbulence from the non-
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linear evolution of the Weibel instability is a way to accelerate particles by the Fermi acceleration
process which is discussed in this Chapter.

Laboratory experiments on electromagnetic collisionless shocks are formidably difficult to
conduct, since they have to meet critical shock properties in astrophysical regimes as magneti-
zation, low collisionality, and they have to be super Alfvénic (Alfvénic Mach number MA > 2−3)
(Drake, 2000; Treumann, 2009). They require matter under extreme conditions and must satisfy
the strict condition

λm f p >> ls y s >> lEM, (5.1)

where λm f p is the ion mean free path (discussed in the next section), ls y s the system size, and lEM

is the scale for instability growth ∝ c/ωpi (Kato and Takabe, 2008; Park et al., 2012). The latter
equation means that these shocks require that the flows are highly collisionless and also that the
Weibel instability reaches the non-linear regime within the bounds of the experiment.

Figure 5.2 – Top panel: Experimental setup by (Fox et al., 2013), two counter-streaming plasmas are gener-
ated by two flat plastic (CH) targets irradiated by laser beams of 500 J and 1 ns of duration focused to a spot
approximately 300 µm in diameter. Bottom panel: Proton radiography diagnostic by (Huntington et al.,
2013, 2017), observation of magnetic filaments and their merging up to longer wavelengths.

The most explored experimental route, to create electromagnetic collisionless shocks, consists
in colliding two ablative flows driven by high-energy nanosecond lasers. This setup has recently
yielded promising results at the Omega Laser Facility (Fox et al., 2013; Huntington et al., 2013,
2017). The setup used in these experiments is shown in Figure 5.2. Filamentary electromagnetic
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structures of typical wavelength of a few 100sµm have been observed through proton radiography
in the overlap region of ablative plasmas of drift velocity v limited to 1000 km.s−1 and density
1018 −1019cm−3 (cf. Fig 5.2).

Synthetic proton radiographs of the observed patterns suggest peak amplitudes of ∼ 10T, cor-
responding to a few percents of the equipartition field. The space-time dynamics of these fila-
ments is consistent with the Weibel instability, as further supported by large-scale PIC simulations.

However, the experiment on the OMEGA laser facility failled to fully form the electromag-
netic shock even after 6 ns of interaction. The region where the filaments were detected, have
not revealed increase of the ion temperature expected for shock formation: the ion tempera-
ture increased only to ∼1.5 keV, whereas the Hugoniot value would be ∼10 keV; the density also
corresponded to a simple overlap of the streams (i.e., a sum of densities of two interpenetrating
streams). The Weibel instability at non-linear stage creates magnetic turbulence (cf. figure 5.2 at
5.5 ns), but the interpenetration distances (< 50c.ω−1

pi ) and time duration of the flows were not
sufficient for shock formation and ion heating, which was consistent with PIC simulations (Hunt-
ington et al., 2013). The difficulty to fullfil condition (5.1) can be solved by increasing the flow
velocity and density in the interaction region. Doing so, the mean free path will strongly increase
(λm f p ∝ v4/n) while the ion skin depth will decrease (c.ω−1

pi ∝ n−1/2). The National Ignition Fa-
cility (NIF), possesses much greater energy (30 times higher than the OMEGA laser facility), able
to form much hotter and faster plasma flows on larger lengths, and timescales as compared to
OMEGA, which will allow this combination of parameters. Indeed, NIF experiments have already
demonstrated increased density (ne = 1.5 1020cm−3) and 1000 km.s−1 flows for foil separations in
the range 6-10 mm. However, due to the shorter distance between the foils in the NIF experiment,
the collision characteristic times are shorter than the duration of the experiment, meaning that
collisional effects may play as significant role (Ross et al., 2017), leading to a situation where col-
lisionless and collisional effects are tightly intertwined and both have to be accounted for. From
these measurements, generation of sub-relativistic collisionless shocks seems within the reach of
larger-scale, NIF-class systems, but yet remains to be demonstrated.

The difficulty to access these very large resources and the limitations in the repeatability of
such experiments force us to image other possible experiments to form such shocks on smaller
scale facilities. In this chapter, we report the formation of collisionless shocks mediated by the
Weibel instability using a different experimental route than (Fox et al., 2013) on the OMEGA laser
facility.
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5.1 Experiment on electromagnetic collisionless shocks on the OMEGA
laser facility

A novel experiment has been conducted recently by (Li et al., 2019) on the OMEGA laser facil-
ity to reveal the critical role of nonlinear collective interactions between plasma particles and
instability-generated magnetic turbulence. The following study presents a theoretical interpre-
tation of this experiment, supported by numerical simulations.

The configuration of the experiment is schematically illustrated in Figure 5.3. A highly colli-
mated plasma jet was generated by six laser beams, of 500J and 1ns of duration each (total energy
∼ 3kJ), illuminating the interior of a plastic (CH), hemispherical target. This plasma jet propagated
into a gasbag filled with 0.1 atmosphere hydrogen gas (H2), surroundind by a plastic shell (CH) of
0.8 µm thickness.

Figure 5.3 – Schematic of the experimental setup and targets. a. The subject target is a gasbag (Type 1),
made with 0.8 µm-thick polyimide and filled with hydrogen gas at the pressure of 0.1 atmosphere. An
aluminum washer is used for holding the gasbag (not shown on the figure), which is 7 mm in diameter and
0.5 mm thick. b. The 60% hemisphere has a diameter 1.8 mm and is made with 100 µm thick plastic. Six
laser beams uniformly distribute in the inner wall with an incident angle 42 degrees. The laser spots on
the hemisphere wall are about 820 µm with full spatial and temporal smoothing. Each individual laser spot
is determined by phase plate SG5 (Super Gaussian, defined as 95% energy deposition), resulting of a laser
intensity in an order of ∼ 2×1014W.cm−2. (Li et al., 2019)

The laser-ablation process can be considered as adiabatic for this very intense nanosecond
laser pulse (Amoruso et al., 1999), and can so be separed in two phases. The first one is the laser
absorption coupled with the target heating, and the second corresponds to the expansion of the
ablated plume where the initial thermal energy of the ablated plasma is converted into the kinetic
energy of the expanding flow. Using this description, one can model the plasma formation and
expansion using two relatively simple analytical and numerical models. The laser interaction as
well as the plasma plume propagation have been simulated in a 2D axisymmetric geometry using
the three-dimensional (3D) radiation-hydrodynamic code FLASH (Tzeferacos et al., 2015). Figure
5.4 shows the plasma jet formation, propagation (in vacuum), and interaction (with the gasbag
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shell), indicating the structure and dynamics of the jet density, temperature and self-generated
magnetic fields.

Figure 5.4 – Hydrodynamic simulations of the 2D maps for plasma density, electron temperature, (right)
and magnetic fields (left) at the time 3 ns when the plasma jet interacts with the gasbag shell. (Li et al.,
2019)

During the expansion process, the electrons and ions cool down and a very high-Mach number
flow is formed. The plasma jet expansion is non-uniform and density and temperature gradients
appear. Magnetic fields develop spontaneously in the presence of non-parallel density and tem-
perature gradients

∂B

∂t
= 1

ene
∇Te ×∇ne . (5.2)

This phenomenon introduced by (Biermann, 1950) is known as the Biermann battery effect. This
large-scale self-generation of magnetic field features has also been observed in (Huntington et al.,
2013). The Biermann fields, created at the target surface during the laser ablation, are carried by
the expanding plasma flow and form a loop around it. The frozen fields in Figure 5.4 at the border
of the expanding plume has a typical amplitude ∼ 2T. The simulation also indicates that the gas-
bag shell and fill-gas were nearly fully ionized by radiation from the laser-illuminated hemisphere
before the jet reached the gasbag, forming an unmagnetized electron-proton plasma inside the
gasbag with a density ∼ 5×1018cm−3 and an electron temperature ∼ 10eV . The parameters of the
edge of the plasma jet just before its interaction with the shell are compiled in Table 5.1.

Parameter ne = ni (cm−3) Te,i (eV) v0(m.s−1) B0(T)
Numerical value 1018 100 2×106 2

Parameter ωpe (s−1) vthe (m.s−1) ωce (s−1) rg e (m)
Numerical value 5.63 ·1013 4.19 ·106 3.5 ·1011 1.2 ·10−5

Parameter ωpi (s−1) vthi (m.s−1) ωci (s−1) ri (m)
Numerical value 1.31 ·1012 9.78 ·104 1.91 ·108 1.0 ·10−2

Parameter cs(m.s−1) vA(m.s−1) cms(m.s−1) σ

Numerical value 2.11 ·105 4.3 ·104 2.15 ·105

Table 5.1 – Plasma parameters of the edge of the plume before its interaction with the gasbag shell, where σ
is the magnetization described by (2) in the Introduction.

These numerical predictions, found by the hydrodynamic model, for the plasma jet properties
have been confronted to Thomson scattering measurements.
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This diagnostic tool excels at measuring the fundamental parameters in laser-produced plas-
mas (Sheffield et al., 2010). This technique has been applied to diagnose high-temperature and
high-density plasmas such as those found in inertial confinement fusion experiments and other
high-energy density plasma experiments (Froula et al., 2006; Ross et al., 2012; Morita et al., 2013).
In our experiment, the Thomson scattering measurements have been performed in shots without
the gasbag when the jet propagates freely in vaccum. The speed, temperature and density of the
jet obtained from these measurements are presented in Figure 5.5.

Figure 5.5 – 4ω Thomson scattering measurements (in vacuum). a. Lineouts taken at different times from
4ω Thomson-scattering spectra of ion-acoustic wave plotted against wavelength (Froula, 2011). The mea-
surements were conducted at target chamber center (TCC) without a gasbag, which is 7 mm from the hemi-
sphere tip, and are fitted with a multi-parameter model to provide a number of physical properties, includ-
ing jet velocity, plasma density and plasma temperature. In these experiments, the plasma density was too
low for a direct Te measurement, and the equality Te ∼ Ti is assumed, due to the collisionality of the jet
discussed later. A number of physical properties for the jet at position z=7 mm are plotted as a function
of Thomson probing time (uncertainty ∆t = ±50ps): b, jet flow velocity (uncertainty ∆v0 = ±14km.s−1); c,
jet plasma density (∆ne =±2×1018cm−3 ); and d, jet plasma temperature (Te ∼ Ti , ∆T =±50eV). (Li et al.,
2019)

From the simulation we can conclude that, the jet reaches the shell of the gasbag after 3 ns of
propagation with a speed of ∼ 2×108cm.s−1. The Thomson-scattering measurements (cf. Fig.5.5)
show that after 4 ns of propagation in vaccum, the jet speed has decreased to 1.4 × 108cm.s−1

and even below 1.15× 108cm.s−1 after 5 ns. Thomson-scattering measurements have not been
performed in the experiment before 4 ns, but the decrease of the jet speed seems to be linear in
time and the speed of the jet at 3 ns must probably be around 1.6×108cm.s−1 which is lower than
the 2×108cm.s−1 predicted by the simulations. However, this experimental jet speed is faster than
the jet obtained by (Huntington et al., 2013), by at least a factor 1.5. The hemispherical geometry
of our target, compared to the plane targets used by (Huntington et al., 2013), confines the plasma
jet and allows it to reach higher propagation speed. At the same time the jet is found to have a
density of ∼ 5×1018cm−3 and a temperature of ∼ 40eV, these values remain unchanged during the
propagation. These experimental values agree with numerical counterparts within ±50%. The jet
is supersonic Ms = v0/cs ' 10 and superAlfvénic MA = v0/vA ' 50 when reaching the gasbag (using
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numerical values).

5.1.1 Collision aspects in the plasma jets and interaction with the gasbag

The collisionless nature of the plasma interaction is an important prerequisite to develop colli-
sionless shocks, as well as other collisionless phenomena such as magnetic reconnection (Daughton
et al., 2009). In the case of collisionless shocks, the mean free path of particles, has to be much
larger than the shock width, considered as the typical length of the interaction. The binary col-
lisions depend dramatically of the plasmas parameters (density, temperature, energy), and the
collisionality is thus one of the biggest limitation of scaling experiments in laser facilities (Ross
et al., 2017). Indeed, most of the plasmas formed in experiments are weakly collisional (2-3 col-
lisions during the timescale of the experiment), and the effect of these collisions can impact the
development of instabilities (Ryutov et al., 2014) and so change the shock behavior.

In order to determine if the plasma jet and gasbag interaction are collisionnal or collisionless
we used a binary collision model by (Huba, 2009). For a test particle (labeled α) streaming with
velocity vα through a background of field particles (labeled β), a collision frequency is defined by
four relaxation processes:

Slowing down
dvα
d t

=−να/β
s vα,

Transverse diffusion
d

d t
(vα− v̂α)2

⊥ = να/β
⊥ v2

α,

Parallel diffusion
d

d t
(vα− v̂α)2

∥ = ν
α/β
∥ v2

α,

Energy loss
d v2

α

d t
=−να/β

ε v2
α

(5.3)

where vα =|vα| and the averages are performed over an ensemble of test particles and a Maxwellian
field particle distribution. Exact formulas have been found by (Trubnikov, 1965) and written as

ν
α/β
s = (1+mα/mβ)ψ(xα/β)να/β

0 ;

ν
α/β
⊥ = 2

[
(1−1/2xα/β)ψ(xα/β)+ψ′(xα/β)

]
ν
α/β
0 ;

ν
α/β
∥ =

[
ψ(xα/β)/xα/β

]
ν
α/β
0 ;

ν
α/β
ε = 2

[
(mα/mβ)ψ(xα/β)−ψ′(xα/β)

]
ν
α/β
0 ,

(5.4)

where

ν
α/β
0 = 4πe2

αe2
βΛαβnβ/m2

αv3
α, xα/β = mβv2

α/2kTβ,

ψ(x) = 2p
π

∫
d t t 1/2e−t , ψ′(x) = dψ

d x
.

(5.5)

The Coulomb logarithm Λαβ is typically Λαβ ∼ 10 − 20 and depends of the plasma parameters
(mass, density and temperature) and a detailed expression is given in Ref. (Huba, 2009). Approx-
imate solutions can be found for νs , ν⊥ and ν∥ depending of the drift motion of the test particles
xα/β, very slow (xα β << 1) and very fast (xα β >> 1) respectively.

Very slow Very fast

ν
α/β
s /nβZ2Λαβ∝ T−3/2 ε−3/2,

ν
α/β
⊥ /nβZ2Λαβ∝ T−1/2ε−1 ε−3/2,

ν
α/β
∥ /nβZ2Λαβ∝ T−1/2ε−1 Tε−5/2

(5.6)
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In these expressions, ε represents the energy of the test particle, and T the temperature of the
background plasma. A test particle collides more often with the background particles if the plasma
kinetic energy and the background temperature are low and if its density is large.

Considering the experiment, the test particles α are represented by the edge of the plasma
jet and the background of field particles by the ionized gasbag. The external mean free path l ex

αβ
(which corresponds to collisions with particles from different plasmas) of all jet particles (electron,
proton, ionized carbon) can be written as

l ex
αβ =

vp

ν
α/β
s

, (5.7)

where vp corresponds to the typical speed of the particle. This speed can be the drift speed of the
particle or the thermal speed of the particle, depending on which one is higher. In the case of hot
electrons vTα > vα, the typical speed will be vp = vTα, while for ions which have a thermal speed
much lower (a factor

p
mi ) this speed will be vp = vα.

The mean free pathes of the jet test particles in the background ionized gasbag are presented
in Table 5.2.

leC lee leH lCe lHe

0.5 0.8 1.1 1.6 103 3.0 103

lHC lHH lCH lCC lαβ
1.9 105 1.7 107 2.7 107 1.2 109 ext

Table 5.2 – External mean free path l ex
αβ

= max(vTα,vα)/να/β
s of all different Coulomb collisions in µm.

Collisions between ions are unlikely since the lowest value of the ion-ion collision mean free
path is lHC > 10cm which is much larger than the interaction region length and even larger than
the size of the experiment. This condition ensures the collisionless nature of the future shock
formation between the plasma jet and the ionized gasbag. The electrons from the plasma jet are
highly collisional with the particles coming from the gasbag, since leβ is on the µm scale, which
is much smaller than c/ωpi ' 220µm the typical length of an EM shock width (Kato and Takabe,
2008; Park et al., 2012; Huntington et al., 2013). This means that the electrons are thermalized dur-
ing the interaction and the shock formation. This thermalization is also a natural process of colli-
sionless shocks driven by the inital electron instability (cf. Chapter 2). However, the electron-ion
collisionality has an impact on the growth rate of the Weibel instability. Due to the suppression of
free electron streaming in the transverse direction, (Ryutov et al., 2014) found that the growth rate
is significantly reduced at small wave numbers (k < 3ωpi /c) compared to what predicted by the
collisionless model. However, L. Gremillet (private communication) in 1D simulations performed
with the PIC code CALDER has not observed a growth rate reduction, and further demonstrated
a positive impact of the electron collisionality on the Weibel instability, helping to maintain the
linear regime of the instability on longer timescale allowing the field to reach much higher am-
plitudes (∼ factor 3). The electron-ion collisionality can therefore facilitate the Weibel-mediated
shock formation.

These Coulombian mean free paths have been evaluated for the plasma jet particles moving
through the ionized gasbag. It is important to distinguish these collisions (jet and gasbag) from
those taking place inside the plasma jet itself. The collisions between the plasma jet particles (α)
and the gasbag (β) are called external collisions (when particles have a drift motion relative to each
other), and the collisions inside the jet, are called internal collisions. If particle species of a plasma
have different temperatures, but no relative drift, the equilibration is described by

dTα
d t

=∑
β

ν
α/β
ε (Tβ−Tα), (5.8)
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where

ν
α/β
ε = 1.8×10−19

(mβmα)1/2Z2
αZ2

β
nβλαβ

(mαTβ+mβTα)3/2
s−1. (5.9)

The internal mean free path l i n
αβ

of all particles can thus be written as

l i n
αβ =

vTα

ν
α/β
s

, (5.10)

and its value for internal Coulomb collisions are presented in Table 5.3.

leC lee leH lCe lHe

2.1 103 1.2 100 5.9 103 2.0 100 2.0 101

lHC lHH lCH lCC lαβ
4.3 10−1 7.0 100 1.4 100 1.4 10−2 int

Table 5.3 – Internal mean free path l i n
αβ

= vTα/να/β
ε of all different Coulomb collisions in µm.

The ions and electrons in the plasma jet are highly collisional. The electron mean-free-path
is much smaller than the jet radius, li e << r j et ∼ 500µm. The ions are even more collisional than
the electrons due to their higher charge (for the carbon only) and mass, the latter decreasing their
thermal velocity and thus their mean-free-path. However, the Weibel instability, supposed to me-
diate the shock in the experiment, grows from an initial velocity anisotropy (i.e. from the particles
interaction with relative drift), which means that only the external collisions are relevant for the
instability. Internal collisions insure the plasma equilibrium. As indicated by the hydrodynamic
simulation, while Ti is higher than Te close to the jet-launching region because of heating from
the collision of plasma plumes, the electron-ion equilibrium time is shorter than the time preced-
ing the measurements (τi e ∼ 500ps << t ∼ 5ns), leading to thermalization and electron-ion equi-
librium of the jet plasma. The assumption of equality of Ti and Te used in Thomson scattering
measurements (cf. Figure 5.5) therefore justified for the plasma jet.

We conclude, from these calculations, that interaction between the thermalized plasma jet and
the ionized gasbag are of a collisionless nature.

5.1.2 Plasma jet and gasbag shell interaction

Before interacting with the ionized gas, the plasma jet has to penetrate the shell which surrounds
it. Thomson scattering measurements (cf. Figure 5.5) show that the velocity of the jet front in
vacuum is 1400km.s−1. Ions having such velocity deposit in the shell a significant part of their
energy (Gericke and Schlanges, 1999).

A simplified model of such interactions is schematically displayed below.
First let us consider the photon energy deposition from the laser. We first assume that about
10% of the total laser energy (3kJ) is radiated with the effective radiation temperature ∼ 1keV.
Then the energy flux at the distance 5mm from the source (assuming isotropic emission in 2π)
is 300J/3cm2 = 100J.cm−2. The shell areal mass is 10−4g.cm−2 and the Planck opacity of the plastic
(according to (Drake, 2006) p.255) is about 100cm−1, that is, the 1keV photon stopping length is
100µm and 1% of its energy is absorbed in a shell of a thickness of 1 mm. Therefore, the absorbed
energy is 104J.g−1. The plastic heat capacity is about 1J.K−1.g−1, therefore the expected plastic
temperature is 104K = 0.9eV. While it is not destroyed by radiation from the laser-target interac-
tion, the plastic shell is heated to a temperature of a few eV.
Let us consider now the energy deposition from the protons in the plasma jet. Let us assume again
that 10% of the total laser energy is transferred to the jet propagating with an average velocity of
2× 106m.s−1. This corresponds to an average proton energy of 25keV. The plasma jet is weakly
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divergent, its radius at the shell position is comparable with the shell radius of 2.5mm. For the jet
radius of 0.3cm, the jet cross section is 0.3cm2 and the energy flux is 300J/0.3cm2 = 1000J.cm−2.

The stopping power of fast ions by free electrons for in a plasma can be expressed (Gericke and
Schlanges, 1999) with the formula

dEi

d x
=−

Zx
i ω

2
f e e2

v2
i

ln
(2me v2

i

~ω f e

)
(5.11)

where the parameter x = 1.3− 2 accounts for a deviation from the Z2
i which decreases with in-

creasing plasma density and beam charge number. Here vi and Ei are, respectively, the velocity
and the kinetic energy of ions in the plasma jet, n f e is the number density of free electrons in a

shell, ω f e =
√

4πn f e e2/me is the plasma frequency. The stopping power of a proton with such a

velocity in an electron plasma with the temperature 5eV and the density 1021cm−3 is 20MeV.cm−1

(Gericke and Schlanges, 1999). As the stopping power is proportional to the density, the proton
stopping power in the solid plastic heated to 5 eV will be about 10000MeV.cm−1 or 1MeV.µm−1.
Even if this is a very crude estimate, we conclude that protons are depositing an essential part of
their energy in the shell. Therefore, the proton energy deposition in the shell is about 107J.g−1,
which corresponds to an average shell temperature of a few keV.

The 2D hydrodynamic simulation presented above (cf. fig.5.4) does not account for mixing of
the jet plasma and the shell, which means that collisional jet energy deposition in the shell is not
accounted for. The jet fluid, may only push the shell according to the conservation laws. For this
reason, other 2D hydrodynamic simulations have been performed with the code CHIC to charac-
terize the isothermal explosion of the shell into the ambient low-density plasma, considering an
intial energy deposition into the shell according to equation (5.11). The intial conditions of the
simulation is an energy deposition of 200J localized on 100µm along the y-axis into a planar shell
of density 1.05g.cm−3 and thickness 0.8µm (for the sake of simplicity no curvature of the shell is
assumed). The simulation results are shown in figure 5.6.

Figure 5.6 – Hydrodynamic simulations of an expanding planar shell, electron density (left), temperature
(middle) and magnetic fields (right), are shown 2 ns after of the energy deposition (200 J). The jet and the
gasbag are not represented in the simulation. We only simulate the shell expansion, localized at 5000µm on
the x-axis, in vaccum (semi-vaccum). One can consider the gasbag fills the interval > 5000µm and the jet
the interval < 5000µm.

Inhomogeneous shell heating by the jet ions, is represented in the simulation as the local en-
ergy deposition. It results in the shell explosion. The density and temperature gradients of the
expanding shell generate at a magnetic field of ∼ 2−3T due to the Biermann battery effect. These
magnetic fields have a structure of two rings with the axes common with the jet axis and with the
radius comparable but smaller than the shell radius. The shell expands to a speed of ∼ 400km.s−1,
with a density of ∼ 1018cm−3 and a temperature ∼ 100eV. The density and temperature values of
the expanding shell are comparable to those of the plasma jet. However, the shell is 5 times slower
than the jet.

Shell expansion in the ambient gas is an adiabatic process the expanding plasma is accelerated
to a velocity three times more than the acoustic velocity. Interaction of the jet with the gasbag shell
is illustrated in the cartoon figure 5.7.
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Figure 5.7 – Sketch of the ion jet stopping into the gasbag shell. Ion2 interacts on a longer time scale than
Ion1 and deposit much more energy into the shell. From this, a non uniform expansion of the shell is
launched. The red part corresponds to the region simulated with the code hydrodynamic CHIC presented
in figure 5.6.

The plasma jet propagates with a certain dispersion angle and for illustration we consider here
that it covers all the gasbag surface. The ions at the edges of the jet because of their oblique prop-
agation into the shell (Ion 2 in fig. 5.7) deposite more energy than the ions propagating along the
shell surface normal. This energy deposition anisotropy will launch a non uniform explosion of
the shell, which will collide with the upcoming plasma jet on one side and with the ionized gas bas
on the otherside.

The shell expands radially according to the shell normal surface (cf. figure 5.7). The shell
isothermal expansion produces fast ions with the velocity at least 3 times faster than the average
expansion velocity. These fast ions from the shell are collisionless and their interaction with the
gas inside the shell and with the jet outside the shell produces the Weibel instability, which is en-
hanced by the magnetic field generated with the Biermann battery mechanism. These numerical
estimations are obviously undersestimating the complexity of the interaction, but can neverthe-
less give us a good idea of the range of parameters of the expanding shell.
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5.1.3 Plasma shell expansion and shock formation

Figure 5.8 shows a series of time-gated, side-on proton radiographs (Li et al., 2006) of the plasma
jet interaction with the gasbag.

Figure 5.8 – Experimental setup and proton radiographs. a. Side-on view of the experiments [from the posi-
ton of the CR39 imager, which is 15 cm from the Target Chamber Center (TCC)]. A supersonic plasma jet,
driven by 6 laser beams, is formed with a hemisphere target and propagates toward the gasbag. The proton
backlighter is at 1 cm from TCC opposing the CR39 imager (The proton flux is out of the paper). b. End-
on view from the gasbag towards the hemisphere target (against the direction of plasma jet propagation).
c.Side-on radiographs (in target plane) sampled at different times with 3.3 MeV protons [generated from
deuterium-deuterium (D-D) nuclear fusion reactions: D+D −→ p(3MeV)+T]. The arrow at right-lower
corner (the image at t = 5.4 ns) points in the direction of plasma jet propagation. Images ahead of the gasbag
washers clearly indicate the formation of crescent-shaped, quasi-perpendicular shocks and their evolution.
d. The enlarged part of an image (at 5.9 ns) displays the detailed structure (The accurate shock positions
and shock width are determined in Fig.5.9 where the small imaging effects due to the backlighting proton
Coulomb scattering are removed). Current filaments appear in the upstream plasma. e. The enlarged part
of an image (at 6.4 ns) indicates strong filament structure in front of the moving shock. f. Circular lineout
indicates that the wavelength of these filaments is ∼ 150µm. g. The measured shock velocity at the different
times. (Li et al., 2019)

The Weibel instability develops in a zone where the expanding shell plasma overlaps with the
jet. Figures 5.8c,d show filaments aligned with the flow (radial to the shell expansion) and crescent-
shaped magnetic fields at the shock fronts generated in the interaction zone. Figure 5.8 d shows
details of two shock structures, enlarged from part of a proton radiograph of the shock at t = 5.9
ns. Both shocks have a typical width of ∼ 1mm perpendicular to the flow direction and carry a
magnetic field. The orientation of the magnetic field with respect to the shock front is difficult to
estimate, because of a 3D geometry of experiment the magnetic field may have a component per-
pendicular to the observation plane which is not detected by the proton radiography. However,
assuming that the shock behavior is 2-dimensional, the orientation of the magnetic field carried
by the shock front will be in the plane of the shock front. A bow shock accelerates the ambient
hydrogen plasma and a reverse shock decelerates the CH jet plasma. The filaments are more pro-
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nounced at later timed, as shown in Figure 5.8 e, enlarged from the shock front image at t = 6.4 ns.
Fourier transform analysis indicates that the filaments are distributed with a wavelength ' 150µm
(Fig.5.8 f). The shock if fully formed at 6 ns and its velocity ush reduces from ∼ 600 to ∼ 300km.s−1

(Fig.5.8 g) corresponding to ush ≈ v0/3.

To quantify the experimental measurements, the structure of path-integrated magnetic fields
was reconstructed from experimental data (Bott et al., 2017). Shown in Fig.5.9 a is a simulated
proton radiograph of a measured shock based on the field reconstruction.

Figure 5.9 – 2D reconstruction of path-integrated magnetic fields (on detector plane, the magnification fac-
tor is 16). a. Reconstruction of proton radiograph based on the measurement (Fig. 1c, at t = 6.4 ns) resolves
the detailed structure of the bow shock, reverse shock, filaments and the shock width. Diagonal lineouts
across the shock transition (transversely averaged over 1 cm width) give the shock width (' 1mm). b. Spa-
tially resolved magnetic fields in two different regions: I- shock front (ramp) to upstream, and II- shocked jet
(cocoon) and ambient plasma (shroud). c. The reconstructed MHD current, J = (c/4π)∇×B , clearly shows
the Weibel-generated ion current filaments. d. The path-integrated parallel and perpendicular component
of the magnetic fields de-convoluted from (b). e. Transversely averaged lineouts across the shocks in (d) in-
dicate the strength of the parallel (red) and perpendicular (blue) components of magnetic field in kG.cm. f.
The profiles of path-integrated, perpendicular magnetic field (absolute values) plotted as a function of time
and space from upstream to downstream. The dashed line indicates the shock position. g. The magnetic
field jump between the regions I (upstream) and II (downstream) at time t = 6.4 ns. (Li et al., 2019)

It is remarkably consistent with the experimental image, providing a critical validation of the
reconstruction algorithm. A lineout across the shock transition gives a width, lEM = Kc/ωpi =
1mm, suggesting that K ≥ 10, is required for shock formation after instability saturation. Shown
in Fig.5.9 b, the spatial topology resolves the magnetic fields in two different regions: Region I
from the reverse shock front to the upstream region, and Region II which is the shocked region
consisting of the shocked jet (cocoon) and a compressed ambient plasma (shroud).

The filaments from upstream penetrate into the magnetized interaction region and support
magnetic turbulence resulting in electron heating and ion slowing down. A fine structure of fila-
ments is found by applying the Ampère law to the measured magnetic field.

Figure 5.9 c shows a distribution of path-integrated electric current, J = 1/mu0∇× B in the
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direction perpendicular to the observation plane, assuming the observed structure as 2D. The
reconstructions generate clear images of current filaments and small scale transverse magnetic
fields compatible with the ones expected from the Weibel instability.

Figures 5.9 d shows the components of large scale magnetic fields that are parallel and per-
pendicular to the shock normal, and their lineouts (Fig.5.9 e). Their small ratio ∼ 0.1 confirms that
the observed shocks are quasi-perpendicular. Interestingly, both shocks carry magnetic fields of
the same polarity (down left, see Fig.5.9b), while the compressed zone contains a magnetic field
of the opposite polarity separated by two magnetic islands from the shocks. Such a structure pro-
vides experimental evidence of two sources of Biermann magnetic fields generated when the shell
explodes inside and outside. A bipolar structure of magnetic field in the shocked region implies a
possibility of magnetic line reconnection that has to be further studied.

Figure 5.9 f shows the ratio of measured magnetic fields in regions I and II, up and down the
shock fronts at different times (absolute value of path-integrated perpendicular fields, | ∫ B⊥×dl |
given in Fig.5.9 e). The magnetic field values are determined assuming the proton path length
l ∼ 1mm in the field region, which is tangential to the crescent-shaped shock transition. The mea-
sured path-integrated field of 5 kG·cm corresponds thus to a 50 kG field strength, which is 3 times
the initial field. Thus, a significant jump in magnetic field, BII/BI = 3 (Fig.5.9 g), occurs within a
millimeter wide shocked region.

Assuming the shock as perpendicular, the implicit Rankine-Hugoniot conservation equations,
in the shock frame of reference for ideal MHD (1.40), are written as

ρIIvII = ρIvI (5.12a)

ρIIv2
II +ΠII +

B2
II

2µ0
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I +ΠI +
B2

I
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BIIvII = BIvI (5.12d)

An explicit solution for the different density, magnetic field and velocity jumps, ρII

ρI
= BII

BI
= vI

uII
=

r respectively, can be found as

2(2−Γ)r 2 +Γ(2(1+βI)+ (Γ−1)βIM
2
I )r −Γ(Γ+1)βIM

2
I = 0, (5.14)

where βI = 2µ0ΠI/B2
I = c2

s /v2
A is the ratio of the upstream plasma pressure to the magnetic field

pressure and, MI = vI/csI is the acoustic Mach number.

The only type of shock that is physically possible is a fast shock, with vI >
√

v2
AI + c2

sI. The
component jump produced by this shock can be written as

r = 2(Γ+1)

D+
√

D2 +4(Γ+1)(2−Γ)M−2
AI

, (5.15)

where D = (Γ−1)+ (2M−2
I +ΓM−2

AI ) and MAI is the Alfvénic Mach number.
We consider a plasma jet density of 1018cm−3 at a temperature of 100eV which carries a mag-

netic field of 2T. The measured shock speed, ush ∼ 600km.s−1, can be considered as the upstream
velocity in the shock frame of reference vI, assuming that the velocity of the upstream plasma jet
is zero in the laboratory frame of reference. It is not however true in our geometry since, the shell
expansion occurs obliquely to the jet propagation direction.

The upstream velocity in the laboratory frame of reference can be estimated as v0 cosθ, where
θ = 50◦ is the angle of the jet propagation to the shock normal (estimated from figure 5.8). Then
the upstream velocity in the shock frame of reference can be estimated as v0 cosθ+ush ≈ v0. The
particles behind the shock can be considered at rest (0 velocity) in the laboratory frame of refer-
ence, the downstream velocity is thus in the shock frame of reference at the shock velocity ≈ ush .
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The jump in velocity can thus be written as vI/vII ≈ v0/ush ≈ 3. Regarding all these estimations,
the density jump in equation (5.15) can be evaluated as r ≈ 3 which is in good agreement with the
magnetic field jump and the velocity jump. (assuming the plasma adiabatic index Γ≈ 5/3, in 3D.)

However, these measurements, present no direct experimental evidence of the shock forma-
tion. The latter is provided by the x-ray imaging, which provides access to the plasma density in
the shock. Bremsstrahlung emission shown in Fig.5.10 allows to evaluate the plasma density jump
across the shock front.

Figure 5.10 – Image of Bremsstrahlung x-ray emissions. Side-on x-ray self-emissions depict the plasma
jet, gasbag (Type 2, Extended Data Fig. 1) shell and forward moving plasma shock (opposing the moving
direction of the shocks shown in Fig. 1c). The lineout along jet propagation (blue line, left axis) shows the
emissions from the shock and the gasbag shell (The error bars are ±20%). The density jump in the shocked
region, ρII/ρI ' 3, is inferred (red line, right axis). The emission from the gasbag shell is a direct experimental
evidence of the electron heating in the upstream plasma. (Li et al., 2019)

The plasma density jump inferred from Bremsstrahlung x-ray emission is ρII/ρI = 3, and it is in
good agreement with the jumps of the magnetic field and shock velocity inferred from the proton
radiography. Finally all the experimental jump components, measured velocity jump (given by
ush ≈ vshel l /3, Fig.5.8 g), field jump (Fig.5.9 g), and density jump (Fig.5.10), are in good agreement
with equation (5.15), and written as

vI

vII
= BII

BI
= ρII

ρI
' Γ+1

(Γ−1)+2M−2
I

= r ≈ 3, (5.16)

where the Alfvénic Mach number has been considered much higher than the acoustic Mach num-

ber, MAI >> MI. The shock is magnetosonic MmsI = 1/
√

M−2
I +M−2

AI ≈ MI ≈ 3, and super Alfvénic
MAI ' 45.

These experiments have demonstrated the presence of a shock which has been confirmed by
the Rankine-Hugoniot jump conditions (considering some approximations). However, these ob-
servation do not reveal the physics in the shock formation and which instabilities are responsible
for dissipation processes developing in the shock front. In order, to understand which are the dis-
sipative mechanisms responsible for the entropy generation downstream of the shock, additional
kinetic modeling is required.
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5.2 Formation of electromagnetic collisionless shocks in the interpen-
etration of magnetized and unmagnetized plasma flows

The filamentary magnetic field structures in Fig.5.8 grow from kinetic interaction with particles.
Hydrodynamic codes cannot describe interpenetration of plasmas and formation of collisionless
shocks. In order to represent the interactions between all species we performed kinetic studies
with kinetic codes like Particle-in-cell codes. Due to the large computational time of PIC codes,
we consider a small fraction of the interaction region, large enough to study the shock formation
process. We have modeled with PIC simulations using the fully relativistic code PICLS (Sentoku
and Kemp, 2008), the interaction zone of Fig.5.7, between the plasma jet and the expanding shell,
that is, only one magnetic compression structure. The considered computation setup presents a
simplified version of the experiment and accounts only for the main processes of the shock for-
mation. Particularly, we consider a higher collision speed of the two plasmas in order to increase
the growth of the Weibel instability and reduce the size of filaments (reducing as well the size of
the simulation box).

5.2.1 Initial conditions

The following inital conditions are used in our simulations. We resolve two spatial directions x− y
and three particle velocity components (2D3V). Absorbing boundary conditions for the compu-
tational particles and fields are used in the transverse direction (y). The simulation box is large
enough to separate effects introduced by the boundaries from the area of interest, its size in 2D is
3×3mm with a spatial resolution 2.5µm in both directions.

Figure 5.11 – Magnetic field (top line) and ion density (bottom line) at the initial time, the numbers in the
top left panel indicate the numeration of zones used in the text. Plasma 1 moves from the left to right,
carries a magnetic field.

Two counterstreaming cold plasma flows contain electrons and protons.(The carbon ions from
the shell and jet are heavier compared to protons and are less affected by the magnetic perturba-
tions at the considered time scales).
Plasma 1, fills the interval −1.5 < x < 0mm, and is moving at a velocity v0 = 2×108 cm/s from the
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left to the right along the x-axis. The electron and ion temperatures are Te1 = Ti 1 = 100 eV, and the
electron and ion densities are ne1 = ni 1 = n0 = 1018cm−3. It represents the expanding shell and
carries a magnetic field B0 = 2T.
Plasma 2 represents the jet, it fills the interval 0 > x > 1.5mm, with cold electrons, motionless
ions and without magnetic field. Its electron and ion temperatures are Te2 = Ti 2 = 10 eV, and its
electron and ion densities are ne2 = ni 2 = n0R = 1018cm−3, where R = ni 2/ni 1 is the density ratio
between Plasma 1 and Plasma 2.

The simulation is initialized with Maxwellian velocity distributions for electrons and protons
with 50 particles per cell and per species.

A magnetic field of strengh B1 = 2 T, in plasma 1 is sufficient to magnetized electrons. The
magnetic field inside is maintained by the integral currents on the surface, which are created by
electrons, confined by ions with the electrostatic tension. Without collisions, the magnetic flux in
plasma, is conserved.

The values for the parameters of the moving plasma 1 are listed in Table 5.4, considering a real
proton/electron mass ratio mi /me = 1836, and the inital time of the simulation is shown in figure
5.11

Parameter Numerical value
ωpe1 = (ne1e2/ε0me )1/2 5.63 ·1013s−1

ωce1 = eB0/me 3.5 ·1011s−1

vthe1 = (kBTe1/me )1/2 4.19 ·106m.s−1

rg e1 = vthe1/ωce1 1.2 ·10−5m
ωpi 1 = (Z2ni 1e2/ε0mi )1/2 1.31 ·1012s−1

ωci 1 = ZeB0/mi 1.91 ·108s−1

cs1 = ((Γe Te1 +Γi Ti 1)/mi )1/2 2.11 ·105m.s−1

va1 = B0/(µ0ni 1mi )1/2 4.3 ·104m.s−1

cms1 = (v2
a1 + c2

s1)1/2 2.15 ·105m.s−1

Table 5.4 – Parameters of Plasma 1 in our simulations, considering a real proton/electron mass ratio
mi /me = 1836.

These parameters define the interaction mode which is typical for astrophysical electromag-
netic shocks. The flow is supersonic with the acoustic Mach number Ms = 9.5 and super Alfvénic
with the Alfvén Mach number MA = 45. The thermal to magnetic pressure ratio β= 20 in plasma 1.
The electrons are magnetized, their Larmor radius rg e1 = vTe1/ωce1 is ∼ 10µm, which is compara-
ble to the electron inertia length c/ωpe1 ' 5µm. The fluid velocity is chosen large enough, so that
the external ion mean free path from Plasma 1 with respect to Plasma 2 ions is much larger than
the considered dimensions of the system in order to assure the collisionless nature of the shock.
The external mean free path of the ions from Plasma 1 with respect to collision with electrons
from Plasma 2, for the chosen parameters, is lp−e ' 3 mm, which is comparable to the length of
the simulation box, making possible an important contribution of the electron-ion collisions on
the development of the instabilities as discussed before.

The characteristic length of our simulations is the electron inertia length c/ωpe1 of Plasma 1.
The simulation box covers with x̂ = x/(c/ωpe1) the interval −300 < x̂ < 300, with a spatial resolu-
tion 0.5c/ωpe1 in both directions. Wave numbers are multiplied by c/ωpe1. Time and frequency
units are ω−1

pe1 and ωpe1 respectively. The ion density ni is expressed in units of n0.

Large scale 2D simulations were run, for different density ratios R, resolving Tmax = 3×104ω−1
pe1 '

600 ps by 0.5ω−1
pe1 = 9 fs time steps. These simulations were sufficient to reach the saturation of the

ion filamentation instability.
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5.2.2 Numerical limitation

Before the presentation of our results, it is important discuss a numerical limitation. The colder
is the plasma, the more difficult to resolve of the Debye length. Furthermore, the denser is the
plasma, the more difficult to resolve a large plasma size (as an example the plasma in section 3 of
Chapter 4 was 104 less dense and 20 times hotter, allowing a correct resolution of the Debye length
even in 2D). The simulation box has been taken large enough to represent the development of the
Weibel instability, and due to the large density of the plasma it leads to a large simulation box and
a large number of cells.

The Debye length in our simulations is λDE ∼ 0.014c/ωpe1, which leads to an unresolution of
the Debye length by a factor ∆x/λDE ' 35. The non-resolution of the Debye length can lead to
numerical heating discussed in Chapter 1. This heating can alter the phase space of the plasma
by the apparition of unphysical processes leading to incorrect interpretation of computational
results.

The PIC simulations for the range of parameters presented above are already very costly in
computational time. A typical simulation runs over 1024 processors during 4 days, which repre-
sents ∼ 106 computational hours. The correct resolution of the Debye length will lead to increase
the number of cell by a factor 35×35 = 1225, and the number of time steps by a factor 35. If we
consider the computational time as linear with the box size and the number of time steps (which is
true as long as MPI communications do not degrade too much the scaling), the typical computa-
tional time of one simulation with a correct resolution of the Debye length will be > 4×1010 hours.
Using 10 times more processors (10240) the time required will be higher than 450 years, which is
out of the time range of this thesis.

The non-resolution of the Debye length is so inevitable, but the undesirable numerical heating
can be limited by using a high number of computational particles per cell. The numerical heat-
ing has been tracked in time for all the simulations to be sure this it does not affect the physical
convergence of the simulations.

5.2.3 Simulation results

The overall dynamics of the plasma flows explaining the initial condition and the evolution to-
wards the formation of a shock is presented in figure 5.12.

The unperturbed plasmas 1 and 2 penetrate each other. At the time 2.25×104ω−1
pe1, the inter-

penetration length of these two plasmas is > 100c.ω−1
pe1 and forms two distinct zones. A region of

magnetic field compression, referenced as zone 3, is visible in the interval 0 < x < 60c.ω−1
pe1. And

zone 4 correspond to the interval 60 > x > 120c.ω−1
pe1, where the initial magnetic fied carried by

Plasma 1 is no more present, and interaction of plasmas 1 and 2 results in generat ion of magnetic
filaments.

The initial distance between the plasmas is 25c.ω−1
pe1 and they are entering in contact at t =

4×103ω−1
pe1, corresponding to the formation time of zones 3 and 4. The boundary between them

propagates with a constant velocity, two times smaller than the ion velocity in this particular case.
The magnetic field, initially carried by Plasma 1, propagates 2 times slower than the ions of Plasma
1. This is illustrated in figure 5.13 showing the time evolution of the magnetic field strength and of
the ion density averaged over the transverse coordinate.

The structure in figure 5.13 is not, strictly speaking, a shock. Indeed, according to equation
(5.15), for the acoustic and Alfvénic Mach numbers of Plasma 1 (Ms = 9.5, MA = 45, and Γ = 2 in
two dimensions), the jump parameter should be r ∼ 2.9. The magnetic field and density jumps be-
tween zones 1 and 3 is only of a factor 2 resulting of the interpenetration of Plasma 1 and Plasma
2. These two ion populations are so interpenetrating freely and compress the magnetic field. Fur-
thermore, even after 2.25 × 104ω−1

pe1 = 600ps of interpenetration, no nonlinear evolution of the
Weibel instability to magnetic turbulence, essential for the shock formation, is observed.

However, this initial configuration of magnetic structure in the interpenetration region presents
a seed for shock formation, and it is so, important to understand the underlying physical processes
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Figure 5.12 – Magnetic field (top line) and ion density (bottom line) at the time 2.25×104ω−1
pe1, the numbers

in the top left panel indicate the numeration of zones used in the text.

Figure 5.13 – Magnetic field (top line) and ion density (bottom line) evolution with time. The deep blue in
the density panel shows the thermal diffusion of the ion in the simulation. Furthermore, the discontinu-
ity between zone 1 and 3 shows also thermal and magnetic diffusion. The black line represents the intial
Plasma 1 velocity vi , and the dashed black line the velocity of the magnetic field vb .

leading to the magnetic field configuration of figure 5.12.
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5.2.4 Adiabatic compression

The ions of Plasma 1 are penetrating freely in Plasma 2 because there are no collisions that could
slow them down. The kinetic pressure of these ions is Pi 1 = 3.3× 104 bars, which is 2000 times
higher than the thermal pressure of the electrons of Plasma 2 (16 bars). The electrons of Plasma
1 are pulled with their ions by the electrostatic field of charge separation (Bochkarev et al., 2015),
but their motion is constrained by the magnetic field. So initially, electrons can penetrate only over
a depth of the order of the Larmor radius. However, it is sufficient to activate the magnetic field
propagation into the unmagnetized zone. Gradual accumulation of electrons in the magnetized
plasma, charge neutralization and the magnetic field compression lead eventually to the displace-
ment of the magnetic field edge in the direction of the ion flow but with a velocity vb which is
smaller than vi .

The collisionless structure is changing in the kinetic scales of the electron skin depth, of the
Larmor radius and of the inertia length. On larger hydrodynamical scales, the jump conditions
between zones 1,2,3,4 and the magnetic front velocity are defined by the conservation laws. First,
the charge conservation implies that the electron density in the plasma overlapping zones 3 and 4
is equal to the ion density, that is,

ne3 = ne4 = ni 1 +ni 2 = (1+R)ne1, (5.17)

where R represents here the density ratio between Plasma 1 and Plasma 2. Second, as the electrons
are magnetized, the magnetic field in a continuous flow is proportional to the electron density,
B/ne = const (Baumjohann and Treumann, 1997). That is, compression of the electrons by a factor
1+R implies the same magnetic field compression,

B3 = B1ne3/ne1 = (1+R)B1. (5.18)

A third point is that the magnetic flux is conserved, that is, the product of the magnetic field and
the electron flow velocity is also conserved, then the velocity of the magnetic front propagation
reads

vb = vi B1/B3 = vi /(1+R). (5.19)

Fourth, the electron adiabatic compression results in an increase of electron temperature. In mag-
netized plasmas this effect corresponds to the conservation of the electron magnetic invariant,
µe = me v2

⊥/2B, where v2
⊥ = ṽ2

y + ṽ2
y is the electron rotational velocity in the plane perpendicular to

the magnetic field direction, with ṽx,y = vx,y− < vx,y >t the latter corresponding to an average in
time (Sagdeev et al., 1988).

Consequently, compression of the magnetic field by a factor 1+R implies an increase of the
electron fast transverse velocity, which corresponds to the transverse temperature T⊥ = me v2

⊥/2,
by the same factor:

Te3⊥ = Te1⊥B3/B1 = (1+R)Te1⊥. (5.20)

As the electron average energy in the magnetic field direction remains unchanged, the effective
temperature in zone 3 increases by a factor of 1+2R/3:

Te3 = Te1‖/3+2Te3⊥/3 = (1+2R/3)Te1. (5.21)

These estimates for the parameters upstream and downstream of the magnetic field discontinuity
are in good agreement with 2D3V numerical simulations shown in Fig.5.12. Two times magnetic
field and electron density compression are shown in Fig.5.12. A stationary propagation of the
magnetic field front with a velocity two times smaller than the ion flow velocity can be seen in
Fig.5.13. (a delay of shock formation of ∼ 4×103ω−1

pe1 is explained by the initial distance between

the colliding plasmas of 25c.ω−1
pe1, see Fig.5.13.)

A dependence of the magnetic field compression on the plasma density ratio is studied in more
detail with 1D PIC simulations performed with the code EPOCH (Arber et al., 2015) (the choice of
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this code for these simulations is explained by an efficient 1D3V parallelization of EPOCH). These
simulations of a smaller scale but with a much higher resolution were performed in one spatial
dimension in a box of 120c.ω−1

pe1 ' 0.6 mm with spatial and temporal resolutions of 30 nm and 0.1

fs, and were run for a total time of 6×103ω−1
pe1 ' 120 ps to support the physical interpretation of

the processes responsible for the adiabatic magnetic compression.

Figure 5.14 – a) Detailed view of the shock discontinuity between zones 1 and 3, at the time 5633ω−1
pe1 for

the density ratio R = 1. Dependence of the magnetic field jump ∆b = B3/B1 on the density ratio R = ni 2/ni 1.

Figure 5.14a shows details of the shock front at the edge of the motionless plasma, Plasma 2,
at x = 0. The formal discontinuity is in reality a smooth transition on the electron spatial scale. It
begins with a width of a few electron Larmor radii then gradually widens because of the magnetic
field diffusion. This process can also be considered as a propagation of finite amplitude magne-
tosonic waves to the right in Plasma 2 and to the left in Plasma 1. A linear dependence of the
magnetic field compression on the plasma density ratio is shown in Fig.5.14b.

The work made for the magnetic field compression and electron heating is performed by ions
and this energy is subtracted from the ion flow. This ion energy loss represents less than 1% of the
total ion kinetic energy, for a configuration of R = 1. The magnetic field profiles and the particle
phase spaces at the end of the simulation are shown in Fig.5.15. At the initial time moment the
moving plasma, Plasma 1 has a length of 250c.ω−1

pe1 with the front edge at a distance of 25c.ω−1
pe1

from Plasma 2, which has a length of 300c.ω−1
pe1. At the end of the simulation one can recognize two

magnetic field fronts: a broader one at the position x = 0 between zones 1 and 3 and a narrower
one between zones 3 and 4 at x ≈ 100c.ω−1

pe1. The ion phase spaces are not strongly modified.
The electron distribution shows two particular features: a strong heating in zone 3 due to the

adiabatic compression and a weaker heating in zone 4 due to the two-stream instability followed
by the Weibel instability as discussed below.
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Figure 5.15 – Magnetic field spatial distribution (a) and the phase space of ions (b) and electrons (c) at the
end of the simulation at t = 3×104ω−1

pe1, for R = 1.

5.2.5 Weibel instability

There are two ion streams in zone 4 free of magnetic field: the ions of Plasma 2 and the ions of
Plasma 1 moving at a high velocity, transporting a reflected unmagnetized electron population
of Plasma 2. This distribution is prone to the excitation of the ion Weibel instability as shown in
Fig.5.12.

The electrons are thermalized relatively rapidly, and the ion Weibel instability is driven by the
proton beam moving through the hot isotropic electron gas. Small transverse magnetic field per-
turbations would drive the oppositely moving protons into current layers of opposite sign, which
reinforces the initial field (Medvedev and Loeb, 1999), the one scheme is similar to this presented
in Chapter 2 for the electron Weibel instability. Let us consider as in (Lyubarsky and Eichler, 2006)
in the electron reference system two counterpropagating proton beams along the direction x, with
a waterbag distribution function to simplify the calculation, but to conserve the information on
the plasma temperature. The distribution function can be written as

fs(p) = 1

2πp2
⊥0

[
δ(px −p∥0)+δ(px +p∥0)

]
Θ(p2

⊥0 −p2
⊥), (5.22)

where Θ(x) is the Heaviside step function and p⊥ =
√

p2
y +p2

z . Considering a small transverse

magnetic field B = B0e−i (ωt−ky y)ey . The set of Vlasov-Maxwell equations in Fourier space gives the
dispersion relation

D(ω,ky ) = ω2

k2
y

[
1+χe (ω,ky )+χi (ω,ky )

]
= 0, (5.23)

where the susceptibility χs for the sth species from equation (1.55) is written as

χs =
ω2

ps

ω2

∫
dp vx

(
∂ fs

∂px
+ ky vx

ω− vy ky

∂ fs

∂py

)
(5.24)
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The ion susceptibility is

χi =−2
ω2

pi

ω2γ2

[
1

miγ+
√

m2
i γ

2 −p2
⊥0

×
(
miγ−

p2
∥0√

m2
i γ

2 −p2
⊥0

)
+

p2
∥0

p2
⊥0

(
ωmiγ√

ω2m2
i γ

2 −k2
y p2

⊥0

−1

)]
(5.25)

For very cold plasma temperatures (p2
⊥0 −→ 0) equation (5.25) reduces to

χi =−
ω2

pi

ω2γ2

[(
1−

p2
∥0

m2
i γ

2

)
+

p2
∥0

p2
⊥0

k2
y p2

⊥0

ωmiγ

]
(5.26)

The electron susceptibility in the very low frequency limit (ω<< kc) can be written as

χe = i

√
π

2

ω2
pe

ωky vTe
(5.27)

This conducts to the dispersion relation in the nonrelativistic approximation (γ≈ 1)

D(ω,ky ) =
k2

y c2

ω2 +
ω2

pi

ω2

k2
y v2

∥
ω2 − i

√
π

2

ω2
pe

ωkvTe
= 0. (5.28)

This equation of degree 3 can be solved analytically by the Cardan method. In the frame of refer-
ence of Plasma 2, the maximum growth rate of the Weibel instability can be estimated as

δ' v0ωpi /c (5.29)

for a wave number of

ky '
ωpe

c

(
ωpi

ωpe

v0

vTe

)1/3

. (5.30)

The Weibel instability described in this section concerns Zone 4 where the plasma is free of
magnetic field due to the adiabatic compression, the electrons in this region are thus not mag-
netized, and the Weibel instability grows freely. The electrons stabilize the Weibel growth, which
results of the excitation of short wavelength filaments. Equations (5.29) and (5.30) give in the case
of our simulation, δ ' 6.66×10−3ωpi 1 and ky ∼ 10ωpi 1/c. These theoretical estimations are con-
firmed by Figure 5.16 a, giving a dominating wavelength for the ion filaments of λi ' 0.6c/ωpi .

Furthermore, this wavelength of the unstable Weibel mode is approximatelyλi ' 140µm, which
can directly be compared to the wavelength of the filaments measured in Fig.5.8f (∼ 150µm), al-
lowing a validation of our interpretation and of our range of parameters.

The instability is developing for t > 100ω−1
pi 1 immediately after the two plasmas are entering in

contact, and the saturation is due to the ion trapping (Lyubarsky and Eichler, 2006), which occurs
at the time 'ω−1

tr ' 420ω−1
pi 1, where the ion trapping frequency

ωtr ' (ωci ky vi )1/2 ' 0.4δ. (5.31)

The maximum amplitude of the magnetic filaments is so contrained by the trapping frequency
and the Alfvén speed in the saturated regime can be written as

vA/vi = Bz:max√
µ0n0mi v2

i

∼ 0.42

(
me

mi

Te

mi v2
i

)1/6

. (5.32)

In the range of parameters of our simulation the Alfvén wave propagates at vA = 33×103km.s−1 for
a maximum value of the magnetic field Bz:max ' 1.5T (in good agreement with figure 5.12). The
field of the filaments is thus smaller the field carried by Plasma 1, and almost 3 times smaller the
compressed magnetic field in zone 3. However, during the expansion of zone 3, the magnetic fil-
aments created by the Weibel instability in the upstream region, zone 4 penetrate the magnetized
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Figure 5.16 – Panel a: Time evolution of the Fourier transform of the magnetic field Bz (y), averaged over
the interval vshel l × (t − t0) < x < vshel l × (t − t0)+20c/ωpe . Panel b: The magnetic field evolution at ky =
0.25ωpe1/c. The red line is the first time of interaction between the incoming flow and the gasbag t0, the
blue line represents a linear fit with a slope of 0.006ωpi .

downstream region, zone 3. The magnetic modulation is visible in the front of zone 3 (cf. figure
5.12) due to the magnetic filaments. The saturation of the Weibel instability leads to filaments
merging and excitation of stronger magnetic fields and larger wavelength turbulence. The latter
allows the formation of an electromagnetic collisionless shock and particle acceleration via the
first order Fermi mechanism. However, the present simulation is not large enough to reach this
evolution time for a real ion hydrogen mass ratio.

5.2.6 Electromagnetic shock formation ?

As discussed in Chapter 1, collisionless shocks formation is a very long process, which presents
some difficulties for numerical simulations. Electrostatic and magnetized shocks (cf. Chapters 3
and 4) can be represented in a one dimensional simulation. Electromagnetic shocks require at
least a two dimensional representation, which tenfolds the number of computational resources
needed to simulate them. The use of a reduced ion mass allows one to consider longer time scales
and to assess the shock formation. It allows to increase the growth rate of the ion Weibel insta-
bility (in the same way as for the Buneman instability discussed in Chapter 2) and to accelerate
the excitation of magnetic turbulence. Simulations with reduced a ion mass are common today
to try to simulate electromagnetic shocks (Kato and Takabe, 2008; Huntington et al., 2017). It is
also possible to increase the electron mass to reach the same effect, since the only important pa-
rameter is the mass ratio between ions and electrons. One interest to use a larger electron mass
compared to a lower ion mass, is to let unchanged the ion acoustic speed and the Alfvén speed. In
our case, the most important consideration is to conserve the electrons magnetized, and the ions
unmagnetized, regarding to their mass. In particular, the electron Larmor radius defines the width
of the transition zone between the states 1 and 3 in figure 5.14.

In order to model the shock formation we have decreased the ion-electron mass ratio to mi =
200me in our 2D PICLS simulations (changing the ion mass). This modification impacts the prop-
erties of Plasma 1 and the new plasma parameters are compiled in Table 5.5.

Plasma 1 flow is super acoustic and super Alfvénic but the Mach numbers are reduced by a
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Parameter ωpi (s−1) vthi (m.s−1) ωci (s−1) ri (m)
Numerical value 3.93 ·1012 2.96 ·105 1.75 ·109 1.14 ·10−3

Parameter cs(m.s−1) vA(m.s−1) cms(m.s−1) β

Numerical value 6.4 ·105 1.3 ·105 6.5 ·105 20

Table 5.5 – Plasma parameters of the edge of the plume before its interaction with the gasbag shell for an
ion-electron mass ratio of mi = 200me , the parameters depending only of the electron mass are unchanged.

factor 3 in this case, giving Ms = 3 and MA = 15, however the magnetic/thermal pressure ratio re-
mains unchanged, β= 20. Conservation of the Mach numbers as well as of the β parameter, would
be possible by reducing linearly and squarely the temperature and the magnetic field respectively,
compared to the ion mass. However, such a decrease of the electron temperature would lead to an
inevitable strong numerical heating.

The initial condition for simulation of the shock formation is presented in figure 5.17 for a
mass ratio of mi = 200me , and for the same electron time scale as in figure 5.12.

Figure 5.17 – Magnetic field (top line) and ion density (bottom line) at the time 2.25×104ω−1
pe1 for a mass

ratio of mi = 200me .

The reduced ion mass results in increasing of the thermal spread of the ions and in amplified
the magnetic field diffusion. The transition layer between zones 1 and 3 is now 3 times larger
(30cω−1

pe1) than in the simulation with the real ion-electron mass ratio (mi = 1836me ). The mag-
netic field as well as the ion density are compressed in the front of zone 3 by more than a factor 2
(almost 3). The wavelength of the magnetic filaments in zone 4 have decreased to λi = 93µm ac-
cording to equation (5.30). Furthermore, the ions, after 2.25×104ω−1

pe1 ∼ 1.6×103ω−1
pi 1, are trapped

into the magnetic filaments in zone 4, and penetrate zone 3, inducing a density perturbation in
this region (cf. figure 5.17 bottom, red color). The shock formation has been started, but a longer
simulation is needed, to see it fully formed.

The shock is presented in figure 5.18 for a mass ratio of mi = 200me at the time 5.4×104ω−1
pe1.

As figure 5.18 demonstrates, the simulation is no longer numerically stable. The magnetic
field strongly diffuses in Plasma 1 generating strong numerical turbulence far from the interac-
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Figure 5.18 – Magnetic field (top line) and ion density (bottom line) at the time 5.4×104ω−1
pe1 for a mass ratio

of mi = 200me .

tion region and spatially modulates the ion density. Due to this numerical diffusion, the magnetic
filaments in zone 4 are are barely above the noise. Numerical heating started to grow exponen-
tially after 3.5×104ω−1

pe1. Since the numerical diffusion is far from region 3, the simulation results
are still representative. However, the simulation cannot be further continued, Plasma 1 would
be completely disturbed by its own numerical turbulence making all the physical interpretation
unfounded.

A shock is formed at the contact layer between zones 1 and 3 at x = 80c.ω−1
pe1. This shock

can be identified as the reverse shock. The ions from Plasma 1 have an initial Larmor radius of
ri ' 225c.ω−1

pe1, however, after entering in the compressed region, the latter becomes ' 75c.ω−1
pe1

which is narrower than the width of zone 3. The ions of Plasma 1 are so now magnetized and
slowed down in the downstream region (initially zone 3). The ion density is compressed by a factor
3 in the downstream region, as well as the magnetic field. Furthermore, as the reverse shock is
mediated by Plasma 1, only a small fraction of hot ions from Plasma 2 penetrate the downstream
reverse shock region as demonstrated in figure 5.19.

Most of the ions from Plasma 1 are slowed down by a factor ∼ 2.6 in the downstream region of
the shock (zone 3). The ions from Plasma 1 which have passed the discontinuity region 3-4 before
the shock formation, continue to propagate into Plasma 2 as a beam. The latter, continues to gen-
erate Weibel magnetic filaments (zone 4 continues to expand with the remnant beam of Plasma
1). The ramp width of the reverse shock is estimated to be ∼ 300µm ' 4c/ωpi , and a population
reflected by the ramp potential starts to appear at x ∼ 50cω−1

pe1 and propagate upstream (in zone
1).

The ion density peak (∼ 4) in figure 5.18 corresponds to a shock formed by the ions from
Plasma 2. This shock can be identified as the forward shock. The mean speed of the ions of Plasma
2 in front of this shock is ∼ vi /2.5. This forward shock at the discontinuity between zones 3 and 4
has a narrow downstream region length ' 20c/ωpe1 at 5.4×104ω−1

pe1 and is only composed of ions
from Plasma 2 which have decelerated when crossing the ramp. The ramp width of the forward
shock is estimated to be ' 15c/ωpe1 ' c/ωpi , and the ions of Plasma 2 (in zone 4) are heated when
they cross the shock ramp. Furthemore, a large ion population is reflected upstream (in zone 4) by
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Figure 5.19 – Magnetic field spatial distribution (a) and the phase space of ions (b) and electrons (c) at the
initial time at t = 5.4×104ω−1

pe1, for R = 1.

the potential of the ramp as demonstrated in figure 5.19, and moves at a speed slightly lower than
the initial speed of Plasma 1 vi ∼ 6.×103km.s−1 ∼ vi/1.1.

The electrons are heated approximately by a factor 3 in the downstream region of the reverse
shock, due to the adiabatic compression of the magnetic field. The electrons in zone 4 are mostly
isotropized due to the electron instabilities (two-stream instability, ...) as discussed before.

The shocks propagation (forward and reverse) is illustrated in figure 5.20 showing the time
evolution of the magnetic field amplitude and ion density averaged over the transverse coordinate.

It is now important to clarify the nature of these shocks, which can be electrostatic, magne-
tized, or electromagnetic.

Characterization of the reverse shock.
The reverse shock is launched close to the initial discontinuity between zones 3 and 4 (which
will become the forward shock) which moves at ush− f ∼ vi /2.275. Due to the motion of the dis-
continuity between zones 3 and 4, the downstream region of the reverse shock expands to the
right in the laboratory frame of reference at ush−r ∼ vi /13 (dotted line), but in the discontinu-
ity 3-4 frame of reference, the reverse shock moves to the left, in the opposite direction of the
upstream plasma, Plasma 1, at |vi /13− vi /2.275| ∼ vi /2.75. In the reverse shock frame of refer-
ence, the upstream velocity (plasma 1) vI = vi −ush−r ∼ vi /1.08 and the downstream fluid velocity
vII = vi /2.6−ush−r ∼ vi /3.25. Combining the jump velocity with the magnetic field and ion density
jumps, vI

vII
= BII

BI
= ρII

ρI
= r ≈ 3, the Rankine-Hugoniot conditions are fulfilled. A necessary condition

for being a shock is to satisfy the Rankine-Hugoniot relations, and this is the case at least semi-
quantitatively, the magnetic field, density and velocity jumps are approximately of 3 between the
zones 1 and 3. But this is not sufficient. One need also to demonstrate the entropy dissipation.
Ideal plasma evolution including compression can generate structures such as solitary waves with
adiabatic heating. But adiabatic heating is a reversible process. The required condition for a shock
formation is entropy production which is an irreversible process. It can be often in the form of
electron heating/acceleration and/or ion heating/acceleration beyond adiabatic heating due to
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Figure 5.20 – Magnetic field (top line) and ion density (bottom line) evolution with time. The forward shock
front (discontinuity between zones 3 and 4) moves at ∼ vi /2.275 (point-dashed line). The black line repre-
sents the intial plasma 1 velocity vi , and the dashed black line the velocity of the magnetic field vb due to
the adiabatic compression. The magnetic diffusion increase the initial smooth transition 1-3 which move
from the left to right at ∼ vi /6.

compression. This is the case for this reverse shock, where the upstream ions are heated down-
stream by a factor ∼ 1.7. The reverse shock is thus purely MHD and is a strong shock since in 2D,
r ≈ 3 corresponds to MI −→∞, .

Characterization of the forward shock.
The density jump between zones 3 and 4 is ρII/ρI ∼ 2.6, since the downstream ion density is ∼
4 and is only of ∼ 1.5 in the upstream region due to the compression of the ions from Plasma
1 (reverse shock). The upstream ions (zone 4) are slowed down in the forward shock frame of
reference to vII ∼ ush− f −vd = vi /25, where vd = vi /2.5 is the velocity of the ions in the downstream
region of the forward shock in the laboratory frame of reference. The upstream ions of zone 4
are composed of ions from Plasma 2 at rest (∼ 66%) and a fraction of reflected ions of Plasma
2 and ions from Plasma 1 (∼ 33%), both propagating at ≈ vi /1.1. The upstream velocity in the
shock frame of reference can thus be established as ush− f + 0.5(ush− f − vi /1.1) = vi /10, where
the factor 0.5 represents the density proportion of the reflected ions from Plasma 2 and the ions
from Plasma 1 in upstream region, zone 4. The velocity jump can be estimated as r = vI/vII ∼ 2.5
in agreement with the density jump. The ions are heated in the downstream region, reaching a
temperature of 40 eV (4 times more than their initial temperature). Furthemore, some of these
ions propagating in the downtream region of the reverse shock (connected to the downstream
region of the forward shock) are strongly heated and reach the temperature equilibrium in this
region (heating by a factor 17). The forward shock has a downstream region with a magnetic field
∼ 4B0, and an upstream region dominated by the Weibel instability (two polarities, so in average
B = 0). The shock is not MHD since the magnetic field jump is considered infinite, however the
Rankine-Hugoniot relations (hydrodynamic) are satisfied at least semi-quantitatively.

The forward shock can thus be electrostatic or electromagnetic. Even if magnetic filaments are
generated upstream, is it sufficient to claim that this shock is mediated by the Weibel instability,

143



CHAPTER 5. COLLISIONLESS SHOCKS IN THE CONTEXT OF LABORATORY EXPERIMENTS

and thus that it is an electromagnetic shock ? Moderately supersonic flows may develop laminar
electrostatic shocks instead of turbulent Weibel-mediated shocks.

Electrostatic shocks are mediated by the ambipolar electric field set up by the electron across a
plasma (pressure) discontinuity (cf. Chapter 3). These shocks are stable in a certain range of Mach
numbers. For sub-critical shock the limitation is found to be Ms ∼ 3 (Dieckmann et al., 2013), un-
der the assumption that the electron temperature Te exceeds by far the ion temperature Ti and that
the particle velocity distributions are Maxwellian far upstream of the shock. Sub-critical shocks
can convert the entire kinetic energy of the inflowing upstream plasma into heat, while the shock-
reflected ion beam of super-critical shocks provides an additional energy dissipation mechanism
and such shocks are stable at larger Mach numbers, Ms ∼ 6.5, than the sub-critical shocks. No
stable electrostatic shocks exist under these approximations above a value Ms > 6.5. However, an
asymmetry between the colliding plasma clouds in terms of the electron temperature and density
yields a double layer that can raise the maximum value of Ms (Sorasio et al., 2006), which is con-
firmed by many observations of collisionless shock waves with Mach numbers ranging between
10 and 103.

In our simulation, the Mach number of the forward shock is found to be M f = ush− f /cs ∼ 1.3
and it is super-critical vd /cs−d > 1, where cs−d = vi /3 is the ion acoustic speed in the downstream
shock region. The Mach number is thus low enough to stabilize an electrostatic shock. The super-
criticality of the shock is in agreement with presence of the shock reflected ion beam shown in
figure 5.19. However, this structure is also possible in electromagnetic shocks. As explained in the
introduction of this Chapter, the electrostatic shock (ES) can be transformed in an electromagnetic
shock (EM) when the Weibel modes time scale tW starts to be equivalent to the ES formation time
scale ts f (cf. 5.1). Furthermore, the low temperature of our flow kBTe /me c2 ∼ 2×10−4 for a drift
speed of vi = 6.66×10−3 puts our simulation in the configuration of a pure EM shock according to
figure 5.1.

Electromagnetic shocks are mediated by the Weibel instability growing due to a strong tem-
perature anisotropy between two interpenetrating plasmas defined as

ai =
mi v2

i x +Ti x

Ti⊥
−1. (5.33)

During the nonlinear saturation of the instability, the particles are isotropized due to the turbu-
lent magnetic field and are accumulated in the overlap downstream region until the hydrodynamic-
like jumps conditions of a stationnary shock wave are established. This consideration means that
the initial anisotropy of the plasma leading to the Weibel instability must drop to approximately
ai ∼ 0 in the downstream shock region. The plasma anisotropy can be estimated from the ion
phase space in figure 5.21.

The anisotropy in the shock region at t = 3.75× 104ω−1
pe1 is ∼ 30 and decreases to ∼ 5 at t =

5.4× 104ω−1
pe1. This plasma isotropization is underlying signature of turbulent Weibel-mediated

shocks. Electrostatic shocks are characterized by laminar deceleration/reflection of the incoming
ions and they do not lead to diffusive particle acceleration. Even if the anisotropy is not close to 0,
its strong decrease indicates formation of an electromagnetic shock.

The ion isotropization length defined as the length necessary for the Weibel-mediate shock
formation has been estimated by (Spitkovsky, 2008a) as Li so ∼ 100c.ω−1

pi ∝ m1/2
i , and by (Lyubarsky

and Eichler, 2006) as Li so ∼ (mi /me )2c.ω−1
pi ∝ m2

i , in the relativistic regime. A global model (non
/ relativistic) proposed by (Ruyer et al., 2016) under the condition Te << Ti . (Ruyer et al., 2016)
finds that ion isotropization corresponds to Ti ' mi v2

i /2, leading to a magnetic wavelength of λ∼
4πc.ω−1

pi , and to an isotropization distance of Li so ' 35
(

mi
Zi me

)0.4
c.ω−1

pi . Considering the parameters

of our simulation (protons with a reduced mass mi = 200me ), this length is found to be Li so >
4000c.ω−1

pe which is 10 times larger than our simulation box. However, this isotropisation length
has been estimated in a configuration of two counter-propagating ion beams without any external
magnetic field.
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Figure 5.21 – Ion phase space from Plasma 2 at t = 3.75×104ω−1
pe1 (left) and t = 5.4×104ω−1

pe1 (right) integrated
over the whole simulation box (top), in the downstream region of the shock (middle) and in the upstream
region (bottom).

Similar simulations than those presented above but with unmagnetized electrons in Plasma 1
have been performed in order to confirm that in a symmetric configuration of magnetic field (so
Bz = 0 everywhere at t = 0), no shocks have been formed on such time/space scales. Indeed, the
Weibel instability is well formed and reaches its nonlinear saturation, but no shock is formed after
400cω−1

pe of propagation as demonstrated in figure 5.22.
Our results lead to think that the configuration with an external magnetic field accelerates the

isotropization of the ions and lead to a shock formation on smaller time and space scales. Two
factors are able to explain the accelerated shock formation. First, the ions propagating in Plasma
1 (magnetized) carry a convected electric field Ey = vi B0. The ions from plasmas 1 and 2, when
penetrating the compressed region, zone 3 (magnetic piston), are accelerated oppositely in the
transverse direction according to

d v2,y

d t
= e

mi
vi B0 (5.34a)

d v1,y

d t
=− e

mi
vi B0. (5.34b)

These two opposite flows in the transverse direction are a seed for excitation of two-stream mag-
netosonic instabilities, inducing a slowing down of the fast ions, helping to generate of the shock.
Furthermore, the electrons which stabilize the ion Weibel instability, are magnetized and produce
a smaller current than those of equation (5.27). The electron susceptibility can be written as

χe = i

√
π

2

ω2
pe

ω2
ce

, (5.36)

and if ωce > ωky vTe , the growth rate is greater and shifts of unstable wavelengths to ky ∼ ωpi /c
(Ryutov et al., 2014). These two effects are possible explanations to the acceleration of the shock
formation process.
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Figure 5.22 – Magnetic field (top line) and ion density (bottom line) evolution with time for two unmagne-
tized counterstreaming flow. The ion to electron mass ratio is mi = 200me . The black line represents the
intial Plasma 1 velocity vi .

The particularity of electromagnetic shocks is their efficiency to accelerate particles via the
first order Fermi mechanism. If the forward shock is indeed of electromagnetic nature it must be
able to accelerate a small fraction of the particles.

5.2.7 Test particles acceleration by the Fermi mechanism

Collisionless shock waves represent the final result of collective interactions involving particles
and electromagnetic fields. This process cannot be described by test particle motion in prescribed
fields. Test particle approach can however be applied for studies of motion of a small numbers
of particles in a strongly nonlinear structure. This is used in the shock theory of charged particle
acceleration which will be the subject of this last subsection.

The PICLS code possesses a particle tracking diagnostic which records the macro-particle po-
sitions and momenta at various timesteps and allows plotting particle trajectories. The simula-
tions discussed above were equipped with particle tracking for all species (ion of Plasma 1, ions of
Plasma 2, and electron). Various particle trajectories can be seen in figure 5.23.

The electrons from Plasma 1 rotate at the cyclotron frequency, and increase their gyration
speed during the adiabatic compression and later when crossing the MHD reverse shock ramp.
The ions from Plasma 1 perform a gyration on much larger time scales, and finally are decelerated
in the downstream shock region, however, the ions from Plasma 1 which have been separated from
their magnetized electrons, freely propagate through Plasma 2 without any additional momentum
transfer (px to py ).

The particles are accelerated, and our goal is to understand if the aforementioned Fermi mech-
anism operates.

Fermi acceleration
(Fermi, 1949) discussed the origin of the Cosmic Rays CRs and proposed a mechanism of acceler-
ation of charged particles based on their interaction with magnetic clouds in the ISM. If a particle
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Figure 5.23 – Tracking particle trajectories (top: ion 1, middle: ion 2, bottom: electron).

penetrates a cloud with an energy E1 and an angle θ1 measured in the Galactic frame of reference
and escapes from this cloud with the energy E′

2 and the angle θ′2 measured in the cloud frame of
reference, the change of reference frame can lead to

E′
1 = γE1(1−βcosθ1) (5.37a)

E2 = γE′
2(1+βcosθ′2), (5.37b)

where γ and β are respectively the Lorentz factor and the reduced velocity of the particle. The
energy variation is thus

∆E

E
= γ[β(cosθ′2 −cosθ1)+β(1−cosθ′2 cosθ1)]. (5.39)

and the average energy variation calculated on all the possible angles of penetration and extraction
can be written as 〈

∆E

E

〉
= 4

3
γβ2. (5.40)

This equation presents the so-called second order Fermi acceleration mechanism, since the growth
of the particle energy is ∝ β2. This acceleration is stochastic since only a small fraction of parti-
cles increases its energy. One particle can lose or gain energy in interaction with a cloud.. If the
collision is frontal (particle and cloud propagate in opposite directions in the Galactic frame of
reference), the particle will increase its energy. If the collision is leaking (particle and cloud prop-
agate in the same directions at different velocities in the Galactic frame of reference), the particle
will lose energy. On average the total energy of the particle grows since frontal collisions occur
more often than leaking ones. However, this mechanism has some limitations, and is not able to
explain the origin of the CRs. The most important problem of this mechanism is the ’injection’. At
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low energy, the particles propagate in the ISM and lose energy during Coulombian interaction. If
the collision frequency between particles and clouds is too low, the energy gain by the second or-
der Fermi mechanism cannot compensate the losses from the Coulombian interactions between
two collisions. This is why Fermi proposed to injected very energetic particles (during solar flares,
as an example), in order to not be affected by the coulombian losses, but such source of very large
energy particles is not yet found.

Due to these problems of injection and a very long acceleration time by the second order Fermi
mechanism, (Bell, 1978; Blandford and Eichler, 1987) have proposed a new particle acceleration
process via shock waves, known as the first order Fermi mechanism. The main idea of this mech-
anism is that in each part of the shock front, inhomogeneous magnetic fields are able to deflect
particles as in the second order mechanism and to isotropize their distribution. Each time, when
a particle crosses the shock front, it penetrates in a new medium with a different velocity acting
like a magnetic cloud. However, on contrary to the second order process, here the cloud has only
one direction (the shock propagation), oriented toward the particle.

When a particle crosses the shock ramp upstream-downstream, the particle energy E1 in the
upstream frame of reference has become E′

1 in the downstream frame of reference regarding to
equation (5.37). The particle is scattered in the downstream region and returns back in the up-
stream. The change of reference frame modifies the particle energy, passing from E′

1 = E′
2 to E2, as

in equation (5.37) with however β=∆v/c, representing the reduced drift velocity between the two
mediums. The energy variation is again dictated by equation (5.39), and the average energy gain is
obtained by averaging on all the crossing angles θ1 (upstream-downstream) and θ2 (downstream-
upstream). The net growth in energy for one cycle upstream-downstream-upstream can be writ-
ten as

〈∆E〉 = 4

3
βE. (5.41)

This acceleration is of the first order (∝ β), and depends of the shock velocity. Equation (5.41) can
be written as

〈∆E〉 = 4

3

r −1

r
E

ush

c
, (5.42)

if the upstream region does not move in the laboratory frame of reference (vI = ush), with r the
shock jump parameter.

A spectrum of the accelerated particles can be obtained (Spitkovsky, 2008b; Sironi and Spitkovsky,
2011a,b; Caprioli and Spitkovsky, 2014). For an initial number of particles N0 with an energy of E0,
the spectrum of the accelerated particles can be written as

dN

dE
= (x −1)

N0

E0

(
E

E0

)−x

, (5.43)

with x = (r +2)/(r −1). The spectrum depends only of the compression ratio r , and do not depend
of the shock speed, if the shock is strong (MI > 20). This process also referred to as the Diffusive
Shock Acceleration process (DSA), it is considerably more efficient than the second order Fermi
mechanism. Due to its dependence in ∝ β and not in ∝ β2, the acceleration time of a particle
is strongly reduced, which also helps to reduce considerably the problem of injection (Caprioli
et al., 2015). Indeed, the injection problem consists now in finding a source particles whose radius
of gyration is higher than the thickness of the shock, in order that the latter is effectively seen as
a discontinuity. The DSA process has been observed around interplanetary shockwaves (like the
Earth bow shock). Many space probes have thus been able to measure sudden increase in the
density of energetic particles at crossing of such a shock. However, spectra of shock-accelerated
particles have never been observed in laboratory experiments yet.
f

The spectra of electrons and ions obtained in our numerical simulation are shown in figure
5.24. The electron spectrum spreads out during the interaction time. The electron temperature
grows from 100eV to ∼ 2keV in the downstream region of the forward shock. The ions from Plasma
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Figure 5.24 – Time evolution of the spectra of the particles in the whole simulation box (top left: ions from
Plasma 1, top right: ions from Plasma 2, bottom: electrons). The black line on the bottom panel represents
the spectrum from equation (5.43) for r=2.5.

2 are heated and get momentum from the Plasma 1 ions which are decelerated. A long suprather-
mal tail appears in the electron spectrum demonstrating an efficient acceleration via the first order
mechanism. Some electrons reach energy of 20keV. The theoretical prediction of the non-thermal
electron distribution by the first order Fermi mechanism for a density jump of r=2.5, from equa-
tion (5.43), is in good agreement with the electron spectrum in our simulation.
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Experimental electron spectrum

Collisionless slowing down and reflection of the incoming ions require the ion Larmor radius to be
comparable to, or smaller than the shock front width. The corresponding magnetic field (∼ 150kG
in our case) is much higher than the compressed Biermann field in laboratory experiments. Previ-
ous laboratory experiments (Romagnani et al., 2008; Kuramitsu et al., 2011; Niemann et al., 2014;
Schaeffer et al., 2017a), including those using a laser-driven plasma flow (piston) to compress pre-
existing magnetic fields in a magnetized background plasma (Niemann et al., 2014; Schaeffer et al.,
2017a), led to the generation of magnetized shocks, which can be assimilated to the Earth’s bow
shock but have a limited interest to astrophysics. First, the laminar cross-shock potential gener-
ated by steady-state shock compression is not sufficient to decelerate and reflect the incoming
ions with high Mach numbers. Second and most importantly, such magnetized shocks cannot ac-
celerate particles due to a homogeneous distribution of the normal component of the electric field
along the shock front. In contrast with previous experiments, the ion Weibel instability plays an
essential role in our experiments for, as shown in figures 5.8 and 5.9, magnetic field amplification,
turbulence generation and nonlinear collective wave-particle interactions. First, the compressed
magnetic field amplifies the Weibel filaments to high amplitudes as the jet’s free kinetic energy is
converted to field energy, which is essential for forming a supercritical shock with a high value of
MA. Second, an inhomogeneous distribution of the magnetic field along the shock front provided
by the Weibel filaments results in the generation of an inhomogeneous normal electric field. Such
an inhomogeneous electric field provides a mechanism for multiple reflection of particles back
and forth through the shock (between downstream and upstream), allowing particles to continu-
ously gain kinetic energy. This is the fundamental feature of first-order Fermi acceleration by an
electromagnetic collisionless shock.

The electron energy distributions measured in experiments with or without gasbags in figure
5.25 a.

Figure 5.25 – (Left panel) Electron spectra measured at a direction perpendicular to the jet propagation with
(Shot 1) and without (Shots 2 and 3) gasbags. The latter serve as null shots providing the backgrounds due
to laser-plasma interaction without shocks. Error ±28% in electron number is due to the uncertainty of the
imaging plate response calibration. Error ±20% in electron energy is from the uncertainties of field mea-
surement and gyroradius estimate. (Right panel) After subtracting the average backgrounds, the electron
spectrum shows a structure of two components, a thermal component with T ≈ 2keV, and a nonthermal
component fitted with a power-law distribution. (Li et al., 2019)

A significant difference can be seen in the electron energy range εe ∼ 15− 60keV. After sub-
tracting the background, the electron spectrum in Fig.5.25 b shows a two-component structure: a
thermal component and a fast electron tail component. The thermal part corresponding to a tem-
perature Te ∼ 2keV shows that a significant part of the incoming ion kinetic energy εi = 0.5mi v2

0 =
10−12keV (with v0 = 1000−1500km.s−1) is dissipated and converted into electron thermal energy.
The nonthermal part contains ∼ 20% of the total electron population with an effective tempera-
ture Th ∼ 20keV. These hot electrons are produced in the shock via the first-order Fermi accel-
eration mechanism (∝ ush/c) or through interactions with magnetic field fluctuations, providing
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an efficient and irreversible shock entropy dissipation. The significantly higher electron energy
(εe >> 1keV) excludes acceleration by a lower-hybrid wave turbulence (Rigby et al., 2018), because
this mechanism can only accelerate electrons to a lower average energy (εe ≤ 1keV) in our exper-
imental conditions. A more detailed analysis of the energy distribution in the electron tail shows
that it can be conveniently fitted by a non-thermal power law dN(Ee )/dEe ∝ E−x

e ' 5×106E−2.67
e .

For the estimated jump parameter in our experiment r ' 3, the x parameter from equation (5.43) is
x = (r +2)/(r −1) = 2.5, which is comparable to the one measured in the experiment x = 2.67. Con-
sequently, the obtained electron energy distribution offers a compelling experimental evidence
that electromagnetic collisionless shocks are generated. During the process of shock formation, a
significant fraction of the incoming-flow kinetic energy is converted to ion and electron thermal
energy, and to electron acceleration mediated by strong, fluctuating, and quasi-static magnetic
fields.

5.2.8 Conclusion

In this study we succeeded to generate high-Alfvénic-Mach-number, nonrelativistic electromag-
netic collisionless shocks mediated by the ion Weibel instability in a laboratory by colliding two
initially unmagnetized plasmas. The Biermann battery magnetic field generated in the jet by the
exploding shell creates conditions for a faster shock formation. We showed that penetration of
a plasma with magnetized electrons in another unmagnetized plasma leads to formation of a
magnetic piston on electron time scales. This piston is characterized by electron compression
and heating and it propagates slower than the ion front with a velocity depending on the den-
sity ratio between the two plasmas. This process allows excitation of the ion Weibel instability
in the upstream region and the generation of magnetic fluctuations. Formation and evolution of
the adiabatically compressed magnetic piston is demonstrated in 1D and 2D kinetic simulations.
The instability generated spontaneous magnetic turbulence, regular magnetic fields, and nonlin-
ear wave-particle interactions providing collisionless (non-Coulombian) mechanisms essential to
both shock generation and energy dissipation. This study is a first hint of particle acceleration
by the Fermi mechanism, and other campaigns will be important to validate these observations.
This work advances our knowledge of collisionless astrophysical shocks in nonrelativistic regimes,
such as in supernova remnants. Furthermore, this work provides a roadmap for studying shock
physics in relativistic regimes, such as in the afterglow of cosmological γ-ray bursts, demonstrat-
ing that laser-matter interaction offers a powerful platform for quantitatively exploring collision-
less shocks in a broader context.
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Chapter 6

Collisionless plasma interpenetration in
a strong magnetic field for laboratory
astrophysics experiments

The last section of this thesis is dedicated to an experimental proposal which has been submitted
in September 2018 for the LULI2000 laser facility, as a scaled preparatory experiment for a future
experimental proposal for the LMJ laser facility. The goal of these experiments is to study col-
lisionless sub-relativistic magnetized shocks driven by the interaction of two counter streaming
fast (∼ 1000km/s) plasma flows, generated by laser, and immersed in an external magnetic field
leading to high plasma magnetization and high temperatures.

The magnetic field penetration into the plasma has the effect of modifying the process of shock
formation according to its magnetic geometry, which depends on whether the angle the shock nor-
mal makes with the background magnetic field is larger (quasi-perpendicular) or smaller (quasi-
parallel) than 45◦. In particular, quasi-perpendicular shocks are the result of the non-linear steep-
ening of a magnetosonic fast wave mode, which is characterized by its magnetosonic speed cms

(cf. Chapter 4). The class of supercritical (MA ≥ 3) quasi-perpendicular magnetized collisionless
shocks are of particular importance, since the dissipation mechanism of these shocks is dom-
inated by the reflection of ions back into the upstream region (cf. Chapter 4). This process is
thought to seed mechanisms (Goldenbaum, 1967) that can accelerate particles to extremely high
energies (Lembege et al., 2004).

As discussed in the Introduction and in Chapter 4, collisionless magnetized shocks are ubiq-
uitous in Space (cf Figure 3). They cover a broad range of astrophysical phenomena from the
sub-relativistic regime with the solar wind, to the extremely relativistic regime with pulsar wind
nebulae. Supercritical shocks have been well studied in the heliosphere within the limitations of
spacecraft measurements. However, in systems such as supernovae, where remote sensing has
provided compelling evidence of particle acceleration attributed to shocks, observations are too
distant and too slow to resolve structural and temporal details of the shocks themselves. Conse-
quently, laboratory experiments can complement spacecraft and remote sensing observations by
providing highly resolved, reproducible, multi-dimensional datasets.

The formation of relativistic shocks is extremely difficult to conduct in experiments, since they
require hot plasmas with relativistic speeds, formed by laser energy deposition on solid targets.
These plasmas are for now impossible to produce due to the limitations of the current laser fa-
cilities. The sub-relativistic regime requires less laser energy and can be reached by many dif-
ferent laser facilities all over the world. Experiments on collisionless magnetized shocks have
already been conducted in the sub-relativistic regime, with applications to supernova remnant
shocks. In 2004, results from an experimental study of the collisionless interaction of two laser-
produced plasmas in a magnetic field were presented (Courtois et al., 2004) using 1ns, 300J and
I = 4×1016W/cm2 laser beams. The dynamics of the two plasmas and their interaction were stud-
ied with and without magnetic field through spatially and temporally resolved measurements of
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the electron density. Experimental results showed that counter-propagating collisionless plasmas
interpenetrated when no magnetic field is present. In contrast, results obtained with the addi-
tion of a 7.5T magnetic field perpendicular to plasma flow showed some steepening of the den-
sity profile with localized increases inside the interaction area that only occurred when the field
is present. After an experimental study of subcritical laboratory magnetized collisionless shocks
using a laser-driven magnetic piston (Schaeffer et al., 2015), Schaeffer et al. obtained evidence
for the first laboratory generation of high-Mach number, magnetized collisionless shocks through
the interaction of an expanding laser-driven plasma with a magnetized ambient plasma (Schaef-
fer et al., 2017a,b). The velocities involved were of the order of 700km.s−1, the ambient plasma
electron density was around 0.5× 1019cm−3, and the ambient plasma temperature was around
15eV. The magnetization in these experiments (Courtois et al., 2004; Schaeffer et al., 2017a,b) was
σ∼ 3×10−3.

The following proposed experiment is built on the scheme proposed in (Huntington et al.,
2013) and discussed in the introduction of this section (cf. 5.2). Two ablative flows driven by high-
energy nanosecond lasers collide in the center of the experimental chamber. However, compared
to (Huntington et al., 2013), an external magnetic field is applied perpendicular to the direction
flows. This setup is also not so far from (Schaeffer et al., 2017a,b), using an external magnetic field,
but the most important difference is the significantly different electron temperature and external
magnetic field levels that will be accessed. The electron temperature will be close to the one ex-
pected in SNR shocks, of the order of 100 eV to 1 keV, as estimated in our numerical simulations
(see below). We propose to impose an external 10 to 40T- level magnetic field (B-field) (Albertazzi
et al., 2013; Higginson et al., 2015) perpendicular to the above plasma collision, giving rise to a
plasma magnetization of σ∼ 10−1 much higher than (Schaeffer et al., 2015). The goal is to obtain
an Alfvénic Mach number of a few tens (MA ' 10 for a flow density ne ∼ 1018cm−3 and velocity
∼ 1000km.s−1, see below). In this situation, PIC simulations show that instabilities distinct from
the Weibel filamentation can be triggered (Korneev et al., 2014), associated with significant density
and magnetic perturbations.

6.0.1 Experimental method and set-up

Large facilities as the NIF or the LMJ are not readily available, and each laser shot are very expen-
sive. Scaled preparatory experiments on facilities like LULI2000 (Ecole Polytechnique, France) or
Gekko XII (ILE, Japan) are so needed to access these installations in order to validate the features
of the experiments. The LULI2000 and LMJ are two laser facilities of completely different scales as
shown in Table 6.1 which compares the laser properties of these two installations.

Laser energy (J) Pulse duration (ns) Focal spot (µm) Aperture
LMJ 10 103 5 860 8.89

LULI2000 800 1.5 500 4

Table 6.1 – Laser parameters for the LMJ and LULI2000 laser facilities

The plasma plume parameters (density, temperature, expansion speed, etc) depend of the
laser properties. Indeed, an experiment on the LMJ compared to one on LULI2000 will be able
to depose on the target more energy and on a longer time scale. Consequently the plasma formed
on the LMJ laser facility will expand faster and will be maintained at higher temperatures on a
longer time scale. However, even if the plasmas have different characteristics depending of the
facility, it is possible to find some strong similarity between them.

The shock nature is defined essentially by its Mach numbers (Ms , MA or Mms). These numbers
possess dependence of the plasma properties, and if similar Mach numbers can be found between
both experiments, it will be possible to scale them. An important parameter will be the magnetic
field and its generation has some experimental constraints. The technique used for its creation
will depend of the facility used.
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Setup and magnetic field generation in the LULI2000 experiment

The creation of plasmas with a high magnetization level in experiments relies in most cases on the
generation of an external magnetic field.
The experiment will be carried out at the LULI2000 laser facility operating in the nano2000 config-
uration (“salle 2” of the facility). It will require the use of the following beams

• the North Beam, 800 J in 1.5 ns at 1 ω (1053 nm)

• the South Beam, 800 J in 1.5 ns at 1 ω (1053 nm)

• the Blue Beam in the confguration (1), 20 J in 1.5 ns at 2 ω (∼ 527 nm)

Additionally, the auxiliary laser available in the target area (CFR) will be employed at 1 ω as
an optical probe. This beam is small (∼3 mm in diameter) and will be sent in between the N & S
beams, as shown in Figure 6.1 The experimental set-up is described in Figure 6.1.

Figure 6.1 – Experimental set-up, in the nano2000 configuration (“salle 2”). on the LULI2000 laser facility.
The main two beams (N & S) will come as shown and be inserted, as shown, in the coil, irradiating the two
targets. The small probe beam will run in between the two main beams. The blue beam, for Thomson
scattering, will be inserted in the coil from the top (see Figure 6.2). The Thomson scattered light will be
collected from the same exit hole as the probe beam, using a beamsplitter to separate the probe and the
Thomson scattered light. On alternate shots, we will also place along the axis used for the exit of the probe
a Thomson parabola to analyse the energetic particles able to exit the coil.

Shown in Figure 6.1 is an existing coil made at LNCMI and used at ELFIE in previous experi-
ments. The coil arrangement is shown in the equatorial (horizontal) plane of the target chamber.
The coil will be arranged such that the B-field is vertical, as shown. This magnetization system has
been developed in the frame the SILAMPA ANR project by coupling a 16 kV pulse-power system
available at LULI (and developed by HZDR-Dresden) to split coils (developed at LNCMI). It has
been shown to develop up to 40 T, repetitively and without debris in a manner compatible with a
high-energy laser experiment. Several experiments at ELFIE, LULI2000 and JLF-Titan using such
system have already been performed.

As shown also in Figure 6.1, the North and South Beams will be focused onto two separate tar-
gets to produce the two separate expanding plasmas that will be made to collide.
The Blue Beam will be used as a Thomson scattering probe for the plasmas created at the inter-
action target. This diagnostic will allow the spatially and temporally resolved measurement of the
plasma density and temperature. It will be entering the target chamber and will be distributed
such as entering in the coil from the top as shown in Figure 6.2. The Thomson scattered light will
be collected in the horizontal axis, through the same hole where the probe beam will be exiting.
The optical probe beam (the auxiliary laser, “CFR”) will be also probing the colliding plasmas in
between the two targets. It will be propagated, owing to its small size, in between the N and S
beams, in the horizontal plane and collected, again in between the two imaging lines of the N and
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S beams, on the other side of the coil, as shown in Figure 6.1. Also on a few alternate shots, a
Thomson parabola will be positioned along the axis where the probe beam will exit, in order to
analyze the energy distribution of the particles exiting the coil.

Figure 6.2 – Experimental set-up of the blue beam (schematically) in the nano2000 (“salle 2”) target cham-
ber, showing how we plan to bring it from the top into the coil. The Thomson scattered light will be collected
in the horizontal plane.

Compared to previous experiments, this project benefits from the combination of (i) the high-
energy LULI2000 ns beams (enabling wider plasma plumes to be produced) and of (ii) the LULI
magnetic pulser developed by the team of Julien Fuchs in collaboration with LNCMI (allowing
one to use strong and pulsed external B-fields). It will allow us to perform the first experiments of
fast plasma collisions in a large-volume, compressed pulsed external magnetic field with a higher
plasma magnetization than previous experiments and in a well-diagnosed setup. This LULI2000
proposal is an important step to propose large scale experiments on LMJ/PETAL to confirm the
role of the external magnetic field as well as the diagnostics choices envisioned for these experi-
ments.

Setup and magnetic field generation in the LMJ experiment

The experiment envisioned to be carried out at the LMJ laser facility is schematically represented
in Figure 6.3.

Figure 6.3 – Experimental set-up, laser-quads are used to generate the two colliding plasma plumes and the
intense PETAL laser beam generates a TNSA particle beam radiograph the collision. VISRAD rendering of
the experimental setup with the Helmholtz coils.

This experiment will require the use of the following beams for the formation of the two plasma
plumes

• 28U-29U, 17U-18U and 10U-11U quads, first plasma plume

• 28L-29L, 17L-18L and 10L-11L quads, second plasma plume
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Each quad, of 5-ns duration and 2-TW power, will pass through a type-A CCP (phase plate). The 6
LMJ bundles (12 × 10 kJ quadruplets) will be focused on ∼ 1 mm diameter with type A continuous
phase plates, yielding an intensity ≥ 1015W.cm−2.

The magnetic field generation, will be ensured using the technique developed by (Fujioka
et al., 2013; Santos et al., 2015). An explanation of how this technique works with one coil is shown
in Figure 6.4.

Figure 6.4 – Generation of the external magnetic field in three steps. Two nickel disks are connected by a
U-turn coil. Laser pulses are focused onto the first disk through a hole in the second disk (left). A plasma
is generated at the first disk, and suprathermal hot electrons are emitted from the plasma corona (middle).
The hot electrons stream down the electron density gradient ahead of the expanding plasma plume and
impact the second disk. The second disk acquires a negative charge, and a large electrical potential develops
between the disks. That potential difference drives a current in the U-turn coil. A strong magnetic field pulse
is generated in the coil (right). (Santos et al., 2015)

Two of these coils will be used to generate two current loops in a Helmoltz configuration (see
Fig.6.3). The activation of these coils will require one LMJ bundle (2 × 10 kJ, 3 ns, with F type
plates or ghost plates, for an intensity of 6× 1015W.cm−2 ). We will use the 5U and 5L quads, of
3-ns duration and 3-TW power (10 kJ/quad). By means of the type-F CPP, the intensity will be
close to 6× 1015W.cm−2 on the two targets. The magnetic field in the plasma collision region is
estimated to be ∼ 10 T, assuming a Helmholtz configuration with 5-mm diameter coils and 1-cm
separation (Fujioka et al., 2013; Santos et al., 2015). In case a ghost phase plate is used (allowing
for a higher on-target intensity), a magnetic field of ∼ 100 T is expected in the same configuration.

The experiment will require several diagnostics

• The laser PETAL (1 kJ, 0.5 ps) will be used to create, via TNSA, the probing proton beam for
radiography. The delay of the PETAL beams relative to the 1st LMJ bundle may be varied up
to a few ns.

• SEPAGE on port S26 will be used for electron and proton spectrometry, including the RCF
stack module for proton-deflectometry (SESAME 1 for electron spectrometry).

• DMX on port MS8 will be used for soft X-ray spectroscopy of the plasma collision zone to
evaluate the plasma temperature.

Compared to previous experiments, this project will benefit from the unique combination of (i)
the radiography capability of the ps PETAL system and of (ii) the 14 high-energy LMJ quadruplets
(enabling to produce wider plasma plumes, along with strong external B-field). It will allow us
to perform experiments of fast plasma collisions in a large-volume, compressed pulsed external
magnetic field with a high plasma magnetization. As illustrated in the next subsections, the plasma
velocities before collision and the temperatures will be higher with the LMJ parameters than with
the LULI2000 parameters.

6.0.2 Hydrodynamic representation of the plasma plumes

Similarly as in Chapter 5, the characterization of the plasma plume can be done by hydrodynamic
simulations. The laser matter interaction as well as the plasma plume propagation have been
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simulated using the two-dimensional (2D) radiation-hydrodynamic code CHIC (Breil et al., 2011).
We simulate in axisymmetric geometry the interaction of 6 laser beams with a planar plastic (CH)
target. The laser beams are simulated in caustic geometry with Gaussian profiles. The wavelength
of the laser is 351µm. Two different setups have been studied corresponding to the cases of very
large and intermediate energy laser facilities, the LMJ and the LULI2000 respectively. The laser
pulses deliver energy to the target surface leading to the ionization and ablation of the material
into an extremely hot plume, also referred to as a ‘plasma plume’. The shape of the corona is
represented in Figure 6.5 for the LMJ and the LULI2000 cases, after 5 and 3.4 ns of interaction
respectively.

Figure 6.5 – Structure of the plasma plume. Left panel: Te (eV) and Ti (eV), up and down respectively are
represented at time t = 5ns in the LMJ case (left), and at time t = 3.4ns in the LULI2000 case (right).

During the expansion process, the electrons and ions cool down and a very high-Mach num-
ber flow is formed. The self-generated Biermann batterry magnetic field appears as in (?) due
to the presence of non-parallel density and temperature gradients. The typical amplitude of this
frozen field is ∼ 2T (not shown). However, it is stronger at the edge of the plume, far from the prop-
agation directional axe. In the case of two counter propagating plasma plumes, they will interact
first along the directional axes (where the self-generated field is weak), which implies that the Bier-
mann battery magnetic field will not play a significant role during the plasma plumes interaction.

The evolution of the different variables at the front edge of the plasma plume (along the axis of
propagation) versus time and space for the LMJ and LULI2000 laser facilities is shown in Figures
6.6 and 6.7 respectively.

The density of the plasma plume decreases exponentially during the propagation as the tem-
perature (Atzeni and ter Vehn, 2004). The velocity of the plume remains constant (Atzeni and ter
Vehn, 2004). The simulation using the laser properties of the LMJ shows a faster formation of the
plasma plume compared to the one using the LULI2000 parameters. This is mostly explained by
the difference of laser energy deposition on the target surface. Furthermore, the large pulse dura-
tion maintains the electrons at high temperature in the simulation using the LMJ parameters. The
electrons are heated by the oscillatory field of the laser pulse via the ponderomotive force. Because
of their large inertia, the ions are not sensitive to the ponderomotive force, and their temperature
decreases in both simulation. The plasma plume in the LULI2000 simulation can be considered
as mono-temperature, while in the LMJ simulation it is bi-temperature with Te /Ti ' 10.

We consider that these plumes propagate in an empty space with a homogenous external
magnetic field perpendicular to the propagation direction of the plasma plume with a strength of
B0 = 10T. These plasma parameters are sufficient to calculate at any time and at any position the
ion acoustic speed cs = ((γe Te +γi Ti )/mi )1/2 and the Alfvèn speed va = B0/(µ0n0mi )1/2 (cf. figure
6.6, 6.7 bottom) . From these calculations, it is also possible to evaluate the magnetosonic Mach

number Mms =
√

1
1+β1

M2
a > 1, with β1 =µ0niγe Te /B2

0 = c2
s /v2

a the Plasma-β1 ratio and Ma = v
va

the

Alfvènic Mach number, which give us the strength of the shock. The spatio-temporal evolutions
of the magnetosonic Mach number for the two different laser facilities are shown in Figure 6.8.
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Figure 6.6 – Evolution of the density (top left), temperature (top right) and velocity (bottom) of the edge of
the plasma plume versus time (color) and space (x axis) in the LMJ case.

Figure 6.7 – Evolution of the density (left), temperature (middle) and velocity (right) of the edge of the
plasma plume versus time (color) and space (x axis) in the LULI2000 case.

We note a similarity of the maximum value that the Mach number can reach in both cases
even if the laser energies involved are very different, by more than an order of magnitude. Indeed,
a lower laser energy leads to the creation of a plasma plume with a lower drift velocity as well as
a lower temperature. In the end, the ratio between these two quantities does not change signifi-
cantly, and it is the same for the Mach number. All the plasma parameters are computed in Table
6.2 at the time when the highest Mach number is reached (dashed line in Figure 6.8).

159



CHAPTER 6. COLLISIONLESS PLASMA INTERPENETRATION IN A STRONG MAGNETIC FIELD
FOR LABORATORY ASTROPHYSICS EXPERIMENTS

Figure 6.8 – Evolution of the magnetosonic Mach number Mms of the edge of the plasma plume versus time
(color) and space (x axis) in the LMJ (left) and LULI2000 (right) case.

Facility ne (cm−3) Te (eV) Ti (eV) v(cm.s−1) Mms xM(cm) tM(ns)
LMJ 7×1017 965 65 2×108 4.5 0.9 4

LULI2000 1018 171 83 108 3.8 0.5 3.4

Table 6.2 – Plasma parameters at the edge of the plume for the LMJ and LULI2000 laser facilities at the time
when the highest Mach number is reached. xM is the position of the edge of the plasma at this time tM.

In order to reach the maximum Mach number, a scaling in time and space is necessary be-
tween the two laser facilities. Nevertheless, these numerical predictions of the plasma plume be-
havior obtained with a hydrodynamic model will have to be confronted to Thomson scattering
measurements.

6.0.3 Collisionality aspects

One limitation of such laser facilities scalings, is the collisionnality of the created plasma plumes
which also strongly depends of the plasma parameters and can destroy the collisionless nature of
our shock.

As for the Mach number estimation in the previous subsection an estimate of the different
mean free paths between all species is also possible. The models used to calculate these mean free
paths are the same as those presented in Chapter 5.

The test particles α correspond to particles from the edge of one of the plasma plumes and
the background of field particles correspond to the counter propagating plasma plume (external
mean free path from eq. (5.3) (5.4) (5.5)). The evolution of all external collision mean free paths
l ex
αβ

versus time and space are represented in Figure 6.9.
Both plasma plumes have propagated on the same distance from their respective target, and

collide at the center of the experimental setup. As a consequence, the propagation distance of the
plumes to reach the maximal Mach number showed in figure 6.8 represents half of the separation
distance between the two targets. A particle can be considered as collisional if its mean free path
is smaller than the size of the system represented by two times the dash line value in figure 6.9.
The collisions between ions in the interaction region, in the case of the LMJ, are unlikely since the
lowest value of the ion-ion collision mean free path is > 2cm which is higher than the interaction
region length. It is not the case for the LULI2000 parameters, the protons from one plume seem
collisional with the carbon ions from the counter propagating plume (considering protons as the
test particle) since at the maximum value of the Mach number the mean free path lHC ' 0.7 < ls y s '
1.1 cm. Since the temperature and drift velocity of the plasma plume is lower in the LULI2000
experiment, it is understandable that the collisions are more important. The shock formed on the
LULI2000 will therefore be weakly collisional and these collisions will possibly change the shock
behavior. However, even for the LMJ experiment, the mean free path linked to electron-ion and
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Figure 6.9 – Mean free path lαβ of all Coulomb collisions inter-beam versus time for LMJ (left) and LULI2000
(right). Each position corresponds to the localization of the interaction contact region, which means that at
the position x=0.5 cm, the two plasma plumes would have propagated 0.5 cm each with a distance between
the two targets of 1 cm, and at the position x=1 cm, the two plasma plumes would have propagated 1 cm
each with a distance between the two targets of 2 cm). The dashed line corresponds to the position where
the mach number Mms is maximum.

electron-electron collisions is lower than the size of the system, which means that the electrons
will be thermalized during the interaction process. This thermalization is also a natural process of
collisionless shocks driven by initial electron instabilities (cf. Chapter 2). These instabilities will
possibly be affected by the electron collisionality, but the shock behavior is mainly supported by
the ion dynamics.

These mean free paths have been calculated for the interactions between the species of two
different plasma plumes, so when the test particles move relatively to the background of field par-
ticles. The collisions between species of the same plasma plume, the so called intra collisions,
are different from the previous external collisions, and their mean free paths are calculated from
equation (5.8) and (5.9). The evolution of all internal collision mean free paths l i n

αβ
versus time and

space are represented in Figure 6.10.

Figure 6.10 – Mean free path of all Coulomb collisions intra-beam at time t = 5ns for LMJ (left) and LULI2000
(right).

Even in the case of the LMJ, the ions and electrons in each plasma plume are highly collisional,
since all the different mean-free-paths are much smaller than the size of the plume [λi n

i e << ls y s]. It
is interesting to note that the intra-plume collisions are more frequent for ions than for electrons.
This is due to the very low thermal speed of these ions and to their charge (for carbonions). How-
ever, these collisions help to maintain the thermal equilibrium of the plasma plumes (Te = Ti ), and
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do not affect directly the shock formation. So, these collisionality calculations demonstrate that if
a shock is formed in the case of the LMJ it will be collisionless and almost collisionless in the case
of the LULI2000. Nevertheless, even if the external collisionality of a plasma is the first limiting
effect for the collisionless shock formation, by adapting the size of the system to the laser energy
capability of a laser facility, it is possible to create plasmas that are almost collisionless even for
intermediate energy laser facilities.

The next subsections are dedicated to a numerical study using PIC simulations, where we have
only considered the case of the LMJ laser facility. The following results will nevertheless be scalable
to the LULI2000 parameters.

6.0.4 Species separation during plasma plume propagation

The plasma plumes are composed of ionized carbon ions and protons. As discussed previously
the hydrodynamic simulations have some limitations, they consider a single fluid and cannot mix
the materials. During the plasma plume expansion, the dynamics of the two ion species will de-
pend of their mass. Indeed the carbon ions which are heavier than the hydrogen ions will be less
affected by the temperature gradient, vthP/vthC = p

mC/mP ' 3.45, and will expand with lower
velocities. It is important to identify which species will interact in the overlap region of the two
counter flows and will participate to the shock formation process. If the protons reach the interac-
tion region before the carbon ions, these latter will not be involved in the shock formation process,
and this species will have to be neglected. We use PIC simulations (with the code EPOCH Arber
et al. (2015)), in 1D, to examine the relaxation of the thermal pressure gradient in the presence of
a transverse external magnetic field.

The length L0x = 5mm of the simulation box is subdivided into a homogenous plasma of ion-
ized hydrogen and carbon in the interval 0 < x < 2L0x /5, and vacuum with an external magnetic
field in the interval 2L0x /5 < x < L0x . The initial electron density, is ne = 71020cm−3 with a temper-
ature of 1 keV, the ion temperature is 3 times lower, and the external magnetic field has a strength
of 10 T. The three species densities are shown in Figure 6.11 after 0.5 ns of thermal plasma expan-
sion.

Figure 6.11 – The electron (yellow), ion carbon (blue) and proton (red) density after 0.5 ns of thermal expen-
sion.

After 0.5 ns the electrons and protons have expanded on ∼ 1.4 mm and the carbon ions on ∼
1.3 mm. However, the carbon density falls dramatically and the difference of density between the
carbon ions and the protons at ∼ 1.3 mm is nP/nC ∼ 5. The spatial separation of ∼ 100µm between
the two ion species is smaller than the typical interaction length represented by the proton Larmor
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radius, ri ' 300µm. But, since the carbon density is much lower than the proton density, we con-
sider the protons as the dominant ion interacting species in the next subsections. Furthermore,
the electron density also falls strongly during the expansion, and reaches approximately the same
density as the protons. We will therefore consider an initially neutral proton-electron plasma in
what follows.

6.0.5 Setup of the PIC simulations for the interaction of the two plasma plumes into
an external magnetic field

Due to the important computational time required to perform PIC simulations, we limit our PIC
study to a small fraction of the interaction region, but we choose it large enough to be able to
study the shock formation process. The box size is in this case small enough to consider the two
counter streaming plasma flows as planar. A schematic representation of the localization of the
PIC simulation box in the experimental setup is shown in Figure 6.12. As discussed in the previous

Figure 6.12 – Sketch of the plasma plumes interaction, and the localization of the PIC simulation box. The
box size is small enough to consider the two counter streaming plasma flows as planar.

subsection, the protons are the only ion species interacting in the simulation box, supposing in
first approximation that the ionized carbon flows are much slower (cf. Figure 6.11) and reach the
interpenetrating region after the protons and with a smaller density. The electron density has
decreased during the expansion (cf. figure 6.11) and neutrality is fulfilled: nP = ne .

The simulation resolves two spatial dimensions and three particle velocity components. Re-
flecting and periodic boundary conditions are used in the x and y direction respectively, for the
computational particles (CPs) and the fields. The lengths L0x = 200µm and L0y = 200µm of the
simulation box are subdivided into evenly spaced grid cells with the lengths ∆x = 7 10−2µm and
∆y = 7 10−2µm. The plasma in the interval 0 < x < 2L0x /5 and 0 < y < L0y consists of protons and
electrons with the number density n0 = 1024m−3. The electron and ion temperatures in this inter-
val are Te = 1keV and Ti = 1keV. The plasma in this interval has a drift velocity of v0 = 2 106m.s−1,
γ0 = 1.00002. A symmetric plasma is located in the interval 3L0x /5 < x < L0x and 0 < y < L0y

with the same parameters but with an opposite drift velocity. We represent electrons and ions of
both plasmas by 9.05×107CPs. A spatially uniform background magnetic field with the strength
B0 = 10T is aligned with the z direction. The plasma characteristics of the plasma plumes in the
PIC simulation are computed in Table 6.3, using the real proton-electron mass ratio mi = 1836me .

The flow is supersonic with the Mach number Ms = v0/cs ' 3 and super Alfvénic with the
Alfvén Mach number MA = 10. Figure 6.13 shows the magnetic field Bz (left), the proton density
(middle), and the electron temperature (right) at the initial time.

The initial gap between the two plasmas is first chosen arbitrarily (40 µm in Figure 6.13). The
size of this gap will have a crucial role in the interaction process. Indeed, the magnetic field is
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Parameter Numerical value
ωpe = (ne e2/ε0me )1/2 5.63 1013s−1

ωce = eB0/me 1.75 1012s−1

vthe = (kBTe /me )1/2 1.32 107m.s−1

rg e = vthe /ωce 7.5 10−6m
ωpi = (Z2ni e2/ε0mi )1/2 1.31 1012s−1

ωci = ZeB0/mi 9.56 108s−1

ri = v0/ωci 3.23 10−4m
cs = ((γe Te +γi Ti )/mi )1/2 6.68 105m.s−1

va = B0/(µ0n0mi )1/2 2.18 105m.s−1

cms = (v2
a + c2

s )1/2 7.03 105m.s−1

Table 6.3 – The plasma parameters of the plasma plumes in the PIC simulation.

Figure 6.13 – The magnetic field Bz (left), the proton density (middle), and the electron temperature (right)
at initial time. The initial gap between the two plasma flows is 40 µm.

not self-generated by the plasma as it was the case in the experiment of (?Huntington et al., 2017),
but it is now generated by an external source (the Helmoltz coils). The magnetic field lines will
therefore be pushed by the counter propagating plasma flows. The initial magnetic pressure in
the simulation box is PB = B2

2µ0
' 400bars, and the initial electron thermal pressure in the plasma

plumes is Pth = ne kBTe ' 1600bars ' 4PB. Since the thermal pressure is much higher than the
magnetic pressure the magnetic field between the two flows will be compressed until a pressure
equilibrium is reached. As a consequence, the magnetic field will be higher than the initial one (10
T) when the two plasma flows will start to interact. However, it is important to note that this effect
of magnetic compression can be damped by the non planar shape of the plasma plumes in the ex-
periment. In this case, the magnetic field lines can be partially expelled in the direction transverse
to the propagating flows. Nevertheless the initial ion kinetic pressure of the magnetized plasma
is Pk = 0.5 ni mi v2

0 ' 33400bars, which outgrows 83 times the magnetic pressure and 20 times the
electron thermal pressure of the plasma. The ion Larmor radius is larger than the simulation box
ri > L0x , and the two flows will interpenetrate freely unless the electron temperature and the mag-
netic field compression are strongly increased. Such an increase strongly depends on the presence
of an initial gap between the two colliding plasmas.

6.0.6 Magnetic mirror and islands formation by two magnetized counter streaming
plasmas

Figure 6.14 shows the magnetic field Bz (left), the proton density (middle), and the electron tem-
perature (right) at different times.

Each of these steps correspond to different physical processes during the interaction of the
plasma flows. First the external magnetic field is compressed by the plasma flows and a magnetic
mirror forms (Fig.6.14 a,b,c, 13 ps). As a second step, the magnetic mirror breaks and magnetic
islands are formed (Fig.6.14 d,e,f, 18 ps) (Furth et al., 1963; Coppi et al., 1966). These latter start
after their formation a period of coalescence (Fig.6.14 g,h,i, 22 ps). And finally these large magnetic
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Figure 6.14 – The magnetic field Bz (left in T), the proton density (middle in n0), and the electron tempera-
ture (right in eV) at 13 (magnetic compression), 18 (broken magnetic mirror), 22 (coalesceance of magnetic
island) and 44 ps (magnetic island oscillation). The initial gap between the two plasma flows is 40 µm.

islands start an oscillation along the transverse direction and stop the ion flows (Fig.6.14 j,k,l, 44
ps).

Magnetic compression: magnetic mirror

In order to explain the magnetic compression we consider a simple model, according to (Korneev
et al., 2014), where two electron-ion flows propagate from one infinity to another through the
magnetic field barrier (Bz (±∞) → B0). The field is considered strong enough to reflect electrons
back with the same velocity in an absolute value, but with an opposite sign. Considering that the
magnetic part dominates in the Lorentz force v0B0 >> E0, which is the case of our simulation, the
magnetic field amplitude after compression (Korneev et al., 2014), can be written as

Bmax =
√

B2
0 +4γ0v2

0 (6.1)

The predicted maximum value that the magnetic field can reach is ∼ 30 T, the latter is confirmed
by the simulation results (Fig.6.14 a). These results depend of an arbitrary parameter which is the
width of the initial gap between the two flows. Similar simulations have been made with different
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gap sizes, 20 and 60µm. As demonstrated in Figure 6.15 the maximum amplitude that the mag-
netic mirror can reach before breaking does not depend of the initial gap width, however the width
of the magnetic mirror depends on it.

Figure 6.15 – The magnetic (a) and electron thermal pressure (b) for different widths of the initial gap be-
tween the two plasmas, shown at the time just before the magnetic mirror breaks: for a gap of 20µm at
t = 10ps after the beginning of the simulation (left), 40µm at t = 13ps (middle), 60µm at t = 16ps (right).
The values are averaged over the interval 0 < y < L0x along the y axis. The blue vertical line corresponds
to the center of the simulation where the plasmas collide, and the blue horizontal line corresponds to the
initial pressure value.

The plasma kinetic pressure which is much higher than the other pressures will continue to
propagate the plasmas and the magnetic mirror will be broken due to current instabilities (Ko-
rneev et al., 2014). It is important to note that in the case of a small initial gap, the magnetic mirror
will break after the interaction between the two flows (Fig.6.15 a), doing so the thermal pressure
will be different due to the superposition of the plasmas in the overlap region and to the heating
due to electron instabilities (see Chapter 2).

Magnetic compression: broken mirror

For the first step, a stationary hydrodynamic solution was enough to represent the magnetic com-
pression (where no particle interaction has been considered). But in the case of particle interac-
tion, it is necessary to take a quasi-stationary hydrodynamic solution. In the case of electron-ion
plasmas, the energy of the electron flow may be partially redistributed into electron-ion interac-
tions during the process of electron slowing down. As a result, the backscattering of electrons with
the same final velocities in absolute value becomes more difficult. The situation may therefore
correspond to electron flows, moving along the edge of the magnetic mirror perpendicularly to
the ion flows and to the magnetic field.

Considering that the electric force, created by the ions Fc and the magnetic part of the Lorentz
force FL are near the equilibrium, Ex =−vy B just before the breaking, the magnetic field amplitude
after compression (Korneev et al., 2014), can be written as

Bmax = B0/2+
√

B2
0/4+4γ2

0(γ0 −1) (6.2)

The value of the magnetic field strength after compression in the limit vx → 0, predicted by (Ko-
rneev et al., 2014), is 25 T, which is close to the simulation results (Fig.6.15 a) and to the stationary
solution (eq. (6.1)).

Considering that the electrons of the plasma edges are deflected at the border of the magnetic
mirror and form now two opposite thin sheets of currents. The ions which are not deflected create
a nonzero electric field between the current sheets. Small fluctuations in position, velocity and
density of the current sheets will act on the fields and make the system unstable. A model of mirror
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edge instability has been developed by (Korneev et al., 2014). The latter analyzed the instability on
the edge in three steps. It assumes first small changes of currents and densities, which modify
the fields δB and δE, and then calculates the action of these perturbed fields on the currents and
densities. The representation of the instability is shown in Figure 6.16.

Figure 6.16 – The scheme for the linear analysis of the instability (Korneev et al., 2014). The dashed lines at
x = X0 correspond to the border of the mirror. The thin current J0 is along this border. Fields E and B are
equilibrated for these initial positions of currents according to Fc (Ex ) = FL(vy Bz ). Here δx1, δvx1, δU1, δN1,
and δx2, δvx2, δU2, δN2 are the small changes in positions, velocities, densities in the current sheets 1 and
2 respectively.

The solution found by (Korneev et al., 2014) uses a relativistic approximation, which is far from
our experimental conditions. The model must be re-calculated, using the non-relativistic approx-
imation v0 << c. However, even the relativistic model of (Korneev et al., 2014), fails to describe the
magnetic mirror dynamic when strong magnetic fields are involved, because it does not take into
account the instabilities which are formed before the quasi-stationary solution (eq. (6.2)), as well
as the ion density perturbations and magnetic field diffusion. An analytic study, beyond the scope
of this thesis manuscript, is underway to describe the breaking mechanism of magnetic mirrors in
the limits of our experiment. Nevertheless, physical properties such as the breaking wavelength of
the magnetic mirror, can be estimated from PIC simulations. The thermal electron Larmor radius
close to the magnetic mirror before its breaking is rg e−MI ∼ 2.5µm (3 times less than the initial Lar-
mor radius in Table 6.3). The breaking wavelength, corresponding to the separation between two
magnetic islands, is λMI ' 12µm ' 5rge−MI, and the width of an island is ∆MI ' 5µm ' 2rg e−MI. An
estimation of the breaking wavelength has been found by (Pritchett, 1992) considering an equi-
librium between the thermal and magnetic pressures, leading to λMI ∼ Te /vThBmax . The electron
flows stopped initially by the mirror are now able to cross the border in the regions without strong
magnetic field compression. It is important to note that the mirror can be broken even before the
interpenetration of the counter streaming plasma flows (this has been observed for an initial gap
of 60µm).

Magnetic compression: island coalescence

A magnetic islands chain formed by current layers with such a periodic structure turns out to be
unstable (Biskamp, 1971). The latter instability turns towards coalescence of two neighbor mag-
netic islands. The merging process of the magnetic islands into larger islands, called magnetic

167



CHAPTER 6. COLLISIONLESS PLASMA INTERPENETRATION IN A STRONG MAGNETIC FIELD
FOR LABORATORY ASTROPHYSICS EXPERIMENTS

blobs, is shown in figure 6.17.

Figure 6.17 – Formation of a magnetic blob from the gyration of magnetic islands. The magnetic field Bz (T)
is shown at 13, 18, 22 and 27 ps. The initial gap between the two plasma flows is 40 µm.

The coalescence process has a duration estimated at tmg ∼ 14ps. Different regimes exist of the
coalescence instability depending on the magnetic island width∆MI and the value of the magnetic
shear BMI as explained in detail by (Zeleny and Taktakishvili, 1988). A solution in the MHD limit
has been investigated by (Pellat, 1983). The growth rate of this instability can be written as

δ' 0.4(2π/λMI)vAε
3/4
MI , (6.3)

where εMI is a parameter (0< εMI < 1) which determines the width of the initial island chain. The
growth rate is found to be equal to δ ' 1011, this value is compatible with the merging process
duration in our simulation tmg ∝ δ−1.

The instability leads to four magnetic blobs possessing an amplitude of BBM ∼ 70T and a size of
∆BM ∼ 10−20µm ' 3−6rge−BM, where rg e−BM = vTe−BM/ωce−BM is the electron thermal Larmor ra-
dius into a magnetic blob. The magnetic blobs are pushed by the kinetic pressure of the two flows
and deformed along the transverse direction ∆BM−x ∼ 10µm, ∆BM−y ∼ 20µm. The blobs oscillate
along the direction perpendicular to the plasma flows and the magnetic field, at the frequency
ωB f ' 4×1011s−1, as demonstrated in Figure 6.18.

Even after many oscillations, these blobs do not further merge, and the system seems stable.
Simulations on larger time scales must be performed to study the lifetime of these magnetic blobs
(which is beyond the scope of this thesis manuscript).

The Larmor radius of some ions, passing close to the magnetic blobs, has decreased by more
than a factor of 6, reaching ri ∼∆BM. These ions are stopped on the magnetic blobs length leading
to strong magnetized shocks (cf. figure 6.14 bottom). After 40 ps, the ion density has increased
by a factor of 3, and the magnetic field by a factor of 6. On the contrary, the Rankine-Hugoniot
relation from the set of equations (1.40) predicted the same jumps in density and magnetic field.
The difference of jumps between these two plasma parameters, measured in the simulation, is due
to the pre-compression of the magnetic field during the propagation of the two plasma plumes.
However, shocks are formed on the length of the magnetic blobs (10 µm), and the dissipation of

168



CHAPTER 6. COLLISIONLESS PLASMA INTERPENETRATION IN A STRONG MAGNETIC FIELD
FOR LABORATORY ASTROPHYSICS EXPERIMENTS

Figure 6.18 – Spatio-temporal evolution of the magnetic field Bz (y, t ) at the position x=100 µm (merging
process between 15 and 22 ps). The initial gap between the two plasma flows is 40 µm.

the kinetic energy of the fast ions goes to electron heating. A positive radial electric field, centered
on the magnetic blobs (not shown), is generated by the magnetic field gradient and slows down the
ions. Electrons passing close to the blobs cannot escape from this potential and are trapped by it,
leading to strong heating. These particles reach a temperature as high as 10 keV in the center of the
magnetic blobs, 10 times more than their initial temperature. Furthermore, the magnetic island
merging has been found to be an efficient accelerator of electrons (Tanaka et al., 2010), which has
been confirmed by the electron spectra in the simulation box shown in figure 6.19.

Figure 6.19 – Panel left: Electron spectrum at t = 0ω−1
pe (blue), and t = 3×103ω−1

pe with an external magnetic
field (red) and without (green). The right panel shows the ion spectrum at the same times.

The green curve in figure 6.19 indicates the particle spectrum from a simulation exactly similar
to the one presented here, but without external magnetic field. Figure 6.20 shows the magnetic
field Bz (left), the proton density (middle), and the electron temperature (right) at different times
for this simulation without external magnetic field.
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Figure 6.20 – The magnetic field Bz (left in T), the proton density (middle in n0), and the electron temper-
ature (right in eV) at 14 (no penetration yet), 22 (magnetic field perturbations appears), 35 (generation of
strong magnetic filaments) and 43 ps (attenuation of the magnetic filaments). The initial gap between the
two plasma flows is 40 µm and the initial magnetic field is 0 T.

The magnetic field grows from the Weibel instability mode ky =' ωpe

c

(
ωpi

ωpe

v0
vTe

)1/3 ' 44µm and

reaches 10T after 35 ps, the growth rate is found to be δ ∼ v0ωpi = 6.66× 10−3ωpi . The plasma
length is not large enough to sustain the Weibel instability during all its nonlinear stage, and the
magnetic field decreases in amplitude after 35 ps, before reaching the saturation. The small elec-
tron heating in the interpenetration region is due to the two-stream instability. Even if the mag-
netic field generated by the Weibel instability is quite significant for this hot plasma, it is not capa-
ble to heat the electrons on such small time scales. The electron heating will become significant on
longer time scales (taking larger plasmas for a much longer interaction time) when the magnetic
field will become turbulent, turning the plasma interaction to a shock, able to accelerate particles
via the Fermi first order mechanism. However, as discussed in the previous Chapter, the required
time to launch such shocks is much beyond the picosecond time scale. The addition of an external
magnetic field transverse to the plasma flow direction therefore allows to strongly heat electrons
and decelerate ions on the blobs length.
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6.0.7 Feasibility study

As shown in Fig.6.14, the external perpendicular magnetic field, which is compressed, allows to
produce a compression zone with densities higher than three times the initial density and which
is thinner than in the case with no external magnetic field. The individual magnetic vortices will
not be resolved experimentally but the dislocated compressed zone which has a width growing
from 20 µm after 15 ps to more than 50 µm after 30 ps can be characterized with optical probing
that will allow to resolve at the same time the regions where the plasmas simply overlap (density
increased by a factor of 2, so close to 2×1018cm−3) and the region where the magnetic mirror is
broken (average density around 3 times the initial density, so close to 3×1018cm−3). The Thomson
scattering diagnostic which has a spatial resolution of 50 µm and a temporal resolution of 20 ps,
will also be able to characterize the evolution of the heated zone which has a temperature evolving
from 7 keV after 15 ps to 11 keV after 30 ps. We will also use a calibrated Thomson parabola to
measure the spectra of energized ions escaping the magnetic field zone of the coil, and space-
resolved x-ray spectroscopy.

At LULI2000, the high intensity ps beam PICO2000 cannot be used to do proton radiography
when using the two 800 J ns beams. On LMJ, PETAL will be used for this purpose, allowing to
obtain the spatio-temporally resolved evolution of the magnetic fields in the compressed region.

An important perspective of this work will be the use of the experimental data to determine
the structure of the shock and the types of waves that develop close to the forming shock. This in-
formation can then be used to determine with Particle-In-Cell simulations and by analytic means
how much the particles can get accelerated by these waves.

We also want to emphasize that this proposal is ambitious but fast plasma collisions in an ex-
ternal pulsed magnetic field achieved on such a scale could bring new insights in the formation
of electromagnetic turbulence, in the creation of collisionless shocks and in the associated parti-
cle energization. The proposed setup would then become a new platform to propose innovative
studies on collisionless shocks and particle acceleration on LMJ-PETAL and NIF.

These experiments are prepared in the framework of the MACH project funded by the Agence
Nationale de la Recherche. The team involved brings together laser-plasma interaction special-
ists as well as experts in astrophysical collisionless shocks. The team has therefore a very strong
theoretical component and this proposal is the result of several years of preparation by our theory
team and several first experiments at Titan (USA), LULI and ILE (Osaka). This LULI2000 proposal
is an important step in the ANR MACH project to propose large scale experiments on LMJ/PETAL
to confirm the role of the external magnetic field as well as the diagnostics choices envisioned
for these experiments. Further theoretical and numerical work will be performed to continue the
preparation of this project.
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Conclusions

The work performed during this thesis and presented in this manuscript belongs to the general
framework of High Energy Density Laboratory Astrophysics (HEDLA). Collisionless shocks of dif-
ferent natures have been studied in several configurations of interest for astrophysics, and often
related to laser-plasma interaction.

The first work performed has been dedicated to a study of the kinetic plasma instabilities nec-
essary for the formation of any collisionless shock. It is presented in Chapter 2. The underlying
processes by which such instabilities compete with each other have been studied in details. One of
the most important features is strong dependance on the ion-to-electron mass ratio during the lin-
ear and nonlinear growth phases of the instabilities. A numerical reduction of the ion-to-electron
mass ratio, commonly used by the scientific community to speed up the growth of instabilities
and shock formation, can overestimate some instabilities, leading to a misrepresentation of the
shock processes. This study is conducted in one spatial dimension, and only a narrow range of
instabilities has been investigated. This study can be extended to multi dimensional problems,
representative of a larger variety of the astrophysical shocks in the Universe.

In Chapter 3, we then analyzed electrostatic collisionless shocks by investigating thermal ex-
pansion of a dense plasma, representative of a blast shell, into a dilute plasma, representative of an
ambient medium, in a one-dimensional configuration. These shocks, free of magnetic field, result
from the nonlinear saturation of the instabilities presented before. We performed a parametric
analysis by changing the density ratio between the two plasmas and demonstrated qualitative ef-
fects of the dilute plasma on the dense plasma expansion. A double layer structure is found. The
rarefaction wave pushes the dense blast shell ions, which are slowed down by the ambient dilute
plasma and form a plateau. The shock speed is inversely proportional to the density ratio between
the two plasmas. The shock evolution is time dependent. Ions are reflected intermittently and soli-
tary waves are formed by the ion acoustic instability in the upstream region of the shock. These
solitary waves reflect ions and form phase space holes which gradually accelerate the shock and
reflect the ions from the downstream dense plasma. In the long term the shock is only mediated
by the ambient medium.

In Chapter 4, we have studied the role of an external magnetic field on the development of
collisionless shocks. In a magnetized plasma the ion acoustic waves are replaced by fast and slow
MHD waves. Their competition depends on the angle between the shock normal and the magnetic
field direction. We studied the effects of the shape of the MHD waves relation dispersion (con-
cave/convex) on the dynamics of collisionless plasmas. Compared to a single-fluid MHD model
the kinetic shocks are transient and the plasma dynamics is eventually regulated by structures that
exist also in the single-fluid MHD model. Formation of magnetized shocks has been simulated
in one and two dimensional configurations. The latter demonstrated that collisionless forward
shocks form for all orientations of the shock normal with the ambient magnetic field direction,
but their structure depends on the propagation angle of the fast or slow MHD wave. Furthermore,
these shocks have been studied for heavy and light ions. Depending of the ion mass, the shocks
are able to reflect more or less ions back upstream, sufficiently or not for the formation of solitary
waves. This feature is not captured by the MHD model. In a supercritical regime, the magne-
tosonic solitary wave upstream might be responsible for perpendicular collisionless shock refor-
mation. It is found in the subcritical regime that the shock is accelerated, possibly in a cyclic way,
by fast magnetosonic solitary waves periodically created in the upstream region. These shocks
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are similar to the Earth’s bow shock and the plasma parameters are within reach for laser-plasma
experiments where our results can be tested. Further simulations with multiple ion species may
help to describe a variation between MHD and kinetic structures on the ion time scale. Separation
of different ion species is of great importance in laboratory experiments since most of the plasmas
formed by laser-matter interaction are composed of more than one ion species.

Chapter 5 presents a study of the development of collisionless electromagnetic shocks related
to recent experiments performed on the OMEGA laser facility. The interaction of a plasma jet,
formed by high energy lasers illuminating the interior of an hemispherical target, and a gas bag
has generated High-Alfvenic-Mach-number nonrelativistic electromagnetic collisionless shocks
mediated by the ion Weibel instability. The Biermann battery magnetic field generated in the ex-
ploding shell creates conditions for a faster shock formation. We showed that penetration of a
plasma with magnetized electrons in another unmagnetized plasma leads to the formation of a
magnetic piston on electron time scales, characterized by an adiabatic compression. This process
was demonstrated in 1D and 2D PIC simulations. The compressed hot piston propagates slower
than the ion front, and the delay depends on the density ratio between the two plasmas. The dif-
ference between the velocities of the ion front and the magnetic piston allows the formation of the
Weibel instability in the upstream region, and the generation of magnetic fluctuations. The initial
magnetic field carried by the magnetized plasma speeds up the shock formation. Mechanisms
explaining this feature are proposed. Particle acceleration has been observed in the experiment
and test particle simulations have demonstrated that it can be explained by the first order Fermi
process. This work advances our knowledge of collisionless astrophysical shocks in nonrelativistic
regimes, such as in supernova remnants. Furthermore, this work provides a roadmap for studying
shock physics in relativistic regimes, such as in the afterglow of cosmological γ-ray bursts, demon-
strating that laser-matter interaction offers a powerful platform for quantitatively exploring colli-
sionless shocks in a broader context. The importance of the magnetic field carried by only one of
the colliding plasmas will be tested more accurately in experiments using two counter propagating
flows and an external magnetic field localized in only one of these flows.

In Chapter 6, as one of the prospect of this thesis, we have presented detailed numerical mod-
eling preparing laboratory experiments on collisionless magnetized shock formation. The colli-
sion of two ablative strongly magnetized flows, driven by high-energy nanosecond lasers, can trig-
ger instabilities distinct from the Weibel filamentation. First a magnetic mirror is formed when the
two flows collide. Then current instabilities lead to the breaking of this magnetic mirror and to the
formation of magnetic islands. These islands can merge and locally create magnetosonic shocks
responsible for an efficient electron heating. A proposal has been submitted in September 2018
to test this configuration on the LULI2000 laser facility as a scaled preparatory experiment. The
proposed setup would then become a new platform to propose innovative studies on collisionless
shocks and particle acceleration on LMJ-PETAL and NIF.

All these studies have been supported by Particle-in-cell codes, which, as it has been shown,
have strong limitations to scale certain class of shock experiments, due to their very costly com-
putational time. Physicists works side by side with computer scientists to improve the numerical
performances of PIC codes, as it is the case for the open-source collaborative code SMILEI (Der-
ouillat et al., 2018), which possesses, thanks to a close collaboration with the ’Maison de la simula-
tion’, an efficient load balancing. It is however evident that, except in case of huge improvements
and developments of the available numerical resources, the fluid scale will not be reached by ki-
netic simulations in a near future, at least in 3 dimensions. But, as demonstrated in this thesis, the
fluid approximation can be well representative of collisionless plasmas except for some features
specific to collisionless shocks, as specular reflection and shock reformation. Some scientists are
presently interested by hybrid solutions taking advantage of both models, able to simulate at the
same time a thermal population, modeled by a fluid approximation, and a non-thermal one using
kinetic approaches. In (van Marle et al., 2018) the MHD code describes a thermal plasma, while
particles are used to represent a non-thermal component. A Boris pusher calculates the effect
of electromagnetic fields on the particles. The effect of charged particles on the thermal plasma
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are described through an Ohm’s law. There is no need for a large particle population that mim-
ics the thermal gas, and for the particle population Maxwell’s equations do not need to be solved,
which reduces numerical noise. These codes are however limited by the proportion of kinetic-to-
fluid particles (the condition nther mal >> nnon−ther mal needs to be fulfilled), and are not suited to
describe supercritical shocks, where a large number of particles are kinetic. Furthermore, the par-
ticle injection rate in the simulation is not easily determined. Nevertheless, these codes are unique
tools to represent the long-time evolution of the shock propagation in order to study their radia-
tive signature and their ability to accelerate particles to ultra-relativistic energies. This project of
developing a hybrid code was one goal of the ANR MACH project, which has supported this thesis
and further evidenced the new collaboration between the astrophysics and laser-plasma interac-
tion communities.
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Appendix A

Annexes

A.1 Solution of a polynomial algebraic equation by the Cardan method

This method is commonly used to solve polynomial equations of 3rd degree as

aΩ3 +bΩ2 + cΩ+d = 0, (A.1)

and let us assume that : Ω= y −α.
Equation (A.1) can be written as :

y3 +
(b

a
−3αy2

)
y2 +

(
3α2 − 2bα

a
+ c

a

)
y +

(bα2

a
− cα

a
+ d

a
−α3

)
= 0 (A.2)

Assuming b −3α= 0 and a = 1 equation (A.2) can take the following form

y3 +p.y +q = 0, (A.3)

with

p = c − b2

3
q = b

(2b2

27
− c

3

)
+d (A.4)

The two solutions of the equation can be written as y = u + v , with

u3 + v3 + (3uv +p)(u + v)+q = 0 (A.5)

where we choose 3uv +p = 0, so (u3)2 +q(u3)− p3

27 = 0
We obtain the following equation:

u = 3

√√√√−q

2
+

√( q

2

)2
+

( p

3

)3
v = 3

√√√√−q

2
−

√( q

2

)2
+

( p

3

)3
(A.6)

Since y = u + v and Ω = y −α, the solution can finally be written in the form (using (A.1) and
(A.4)) :

Ω= 3

√√√√−q

2
+

√( q

2

)2
+

( p

3

)3
+ 3

√√√√−q

2
−

√( q

2

)2
+

( p

3

)3
− b

3
(A.7)

Now, depending of the discriminent
(

q
2

)2
+

(
p
3

)3
, three different cases are possible. The one

which offers complex solutions is
(

q
2

)2
+

(
p
3

)3
< 0, then one solution is real and the other two are

complex conjugates.

I
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Ω= 3
√

g + i f + 3
√

g − i f − b

3

f =−q

2
g =

√( q

2

)2
+

( p

3

)3
(A.8)

Using a trigonometric form:

Ω= 3
√
ρ3(cosθ+ i si nθ)3 + 3

√
ρ3(cosθ− i si nθ)3 − b

3
(A.9)

Thus the solution of (A.1) is

Ω= 2ρcosθ− b

3
(A.10)

with

ρ=
√

g 2 + f 2 θ=
ar ct an

( f
g

)+π(si g < 0)

3
+k

2π

3
k ∈ [0,2] (A.11)

A.2 Growth rate solution by the Ferrari method

This method is commonly used to solve equations of 4th degree as

aΩ4 +bΩ3 + cΩ2 +dΩ+e = 0, (A.12)

We first proceed to a change of variable Ω= z − b
4a , eq. (A.12) becomes

z4 +mz2 +nz + r = 0, (A.13)

m =
(
− 3b2

8a2 + c

a

)
n =

[( b

2a

)3
− bc

2a2 + d

a

]
r =

[
−3

( b

4a

)4
+ c

a3

(b

4

)2
− bd

4a2 + e

a

]
(A.14)

We assume z4 = (z2 + y)2 +2y z2 − y2, where y is a new parameter. Equation (A.13) becomes

(z2 + y)2 − [(2y −m)z2 −nz + y2 − r ] = 0, (A.15)

We must determine y so that the bracket can be squared in order to use the property a2 −b2 =
(a −b)(a +b), and this is possible only if

∆= (−n)2 −4(2y −m)(y2 − r )] = 0, (A.16)

which leads to
8y3 −4my2 −8r y +4mr −n2 = 0, (A.17)

The three roots of eq.(A.17) can be found by the Cardan method. We use one of the real solution
y1, and rewrite eq. (A.15) as(

z2 + y1 +
√

2y1 −m

(
z − n

2(2y1 −m)

))(
z2 + y1 −

√
2y1 −m

(
z − n

2(2y1 −m)

))
= 0, (A.18)

Four different solutions for eq.(A.18) are possible (for 3 different y1,2,3)

Ω1,2,3,4 = 1

2

[
±√

2y1 −m ±
√

−2y1 −m + 2n√
2y1 −m

]
− b

4a
(A.19)
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