
HAL Id: tel-02053721
https://theses.hal.science/tel-02053721

Submitted on 1 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two challenges of software networking : name-based
forwarding and table verification

Leonardo Linguaglossa

To cite this version:
Leonardo Linguaglossa. Two challenges of software networking : name-based forwarding and table
verification. Networking and Internet Architecture [cs.NI]. Université Sorbonne Paris Cité, 2016.
English. �NNT : 2016USPCC306�. �tel-02053721�

https://theses.hal.science/tel-02053721
https://hal.archives-ouvertes.fr

Acknowledgements

I would like to express to:

• everyone: many thanks.

i

Contents

Acknowledgements i

Introduction 1

1 Background 5
1.1 Telecommunication Networks . 5

1.1.1 Circuit switching and packet switching 6
1.1.2 Computer Networks . 8

1.2 The Internet . 8
1.2.1 The TCP/IP Protocol Stack . 9
1.2.2 Data Plane and Control Plane . 11

1.3 The evolution of the Internet . 12
1.3.1 The behavioral issue . 12
1.3.2 The architectural issue . 13

1.4 Enhancing the Data Plane with ICN . 15
1.4.1 Architecture of NDN . 15
1.4.2 Features of ICN and NDN . 20
1.4.3 Implementation of ICN . 22
1.4.4 Challenges . 23

1.5 The SDN approach for an evolvable Network . 25
1.5.1 Architecture . 26
1.5.2 Implementation of SDN . 28
1.5.3 Features of SDN . 30
1.5.4 Challenges . 32

I Data Plane Enhancement 34

2 Introduction to the First Part 35
2.1 Design principles . 38
2.2 Design space . 39
2.3 Architecture . 40
2.4 Methodology and testbed . 41

ii

2.4.1 Methodology . 41
2.4.2 Test equipment . 42
2.4.3 Workload . 44

2.5 Contributions . 45

3 Forwarding module 46
3.1 Description . 47
3.2 Design space . 48

3.2.1 Related work . 48
3.2.2 Algorithm . 50
3.2.3 Data structure . 51

3.3 Forwarding module: design and implementation 52
3.3.1 Prefix Bloom Filter . 52
3.3.2 Block Expansion . 55
3.3.3 Reducing the number of hashing operations 56
3.3.4 Hash table design . 57
3.3.5 Caesar extensions . 58
3.3.6 Implementation . 59

3.4 Evaluation . 64
3.4.1 Experimental setting . 64
3.4.2 Performance evaluation . 69
3.4.3 Distributed Processing . 72
3.4.4 GPU Off-load . 73

3.5 Conclusion . 75

4 PIT module 76
4.1 Description . 77
4.2 Design space . 78

4.2.1 Related work . 78
4.2.2 Placement . 80
4.2.3 Data structure . 82
4.2.4 Timer support . 84
4.2.5 Loop detection . 85
4.2.6 Parallel access . 86

4.3 PIT: design and implementation . 87
4.3.1 PIT placement and packet walktrough 87
4.3.2 Data structure . 88
4.3.3 PIT operations . 89
4.3.4 Timer support . 91
4.3.5 Loop detection with Bloom filter . 91

4.4 Evaluation . 93
4.4.1 Experimental setting . 93
4.4.2 Memory footprint . 95
4.4.3 Throughput without timer . 97
4.4.4 Throughput with timer . 98

4.5 Conclusion . 99

iii

Table of symbols 101

II Network Verification 102

5 Introduction to the Second Part 103
5.1 Network Verification . 104
5.2 State of the art . 107
5.3 Contributions . 110

6 Forwarding rule verification through atom computation 112
6.1 Model . 113

6.1.1 Definitions . 114
6.1.2 Header Classes . 115
6.1.3 Set representation . 115
6.1.4 Representation of a collection of sets . 116

6.2 Atoms generated by a collection of sets . 117
6.2.1 Representing atoms by uncovered combinations 117
6.2.2 Overlapping degree of a collection . 119

6.3 Incremental computation of atoms . 120
6.3.1 Computation of atoms generated by a collection of sets 120
6.3.2 Application to forwarding loop detection 127

6.4 Theoretical comparison with related work . 128
6.4.1 Related notion of weak completeness . 130
6.4.2 Lower bound for HSA / NetPlumber . 130
6.4.3 Lower bound for VeriFlow . 131
6.4.4 Linear fragmentation versus overlapping degree 132

6.5 Conclusion . 133

Table of symbols 135

Conclusion 137

Glossary 142

Bibliography 143

iv

Introduction

Since the beginning, the Internet changed the lives of network users similarly to what the tele-

phone invention did at the beginning of the 20th century. While Internet is affecting users’

habits, it is also increasingly being shaped by network users’ behavior (cf. Background Sec-

tion 1.3, page 12). Several new services have been introduced during the past decades (i.e. file

sharing, video streaming, cloud computing) to meet users’ expectation. The Internet is not any-

more a simple network meant to connect nodes providing few websites access: this influences the

network traffic pattern and the users’ network usage. As a consequence, although the Internet

infrastructure provides a good best-effort service to exchange information in a point-to-point

fashion, this is not the principal need that todays users requests. Current networks necessitate

some major architectural changes in order to follow the upcoming requirements, but the expe-

rience of the past decades shows that bringing new features to the existing infrastructure may

be slow (a well known example is the IPv6 protocol, defined in the late Nineties and slowly

spreading only in the last few years).

In the current thesis work, we identify two main aspects of the Internet evolution: a “behavioral”

aspect, which refers to a change occurred in the way users interact with the network, and a

“structural” aspect, related to the evolution problem from an architectural point of view. The

behavioral perspective states that there is a mis-match between the usage of the network and

the actual functions it provides. While network devices implements the simple primitives of

sending and receiving generic packets, users are really interested in different primitives, such

as retrieving or consuming content. The structural perspective suggests that the problem of

the slow evolution of the Internet infrastructure lies in its architectural design, that has been

shown to be hardly upgradeable.

On the one hand, to encounter the new network usage, the research community proposed

the Named-data networking paradigm (NDN), which brings the content-based functionalities

to network devices. On the other hand Software-defined networking (SDN) can be adopted

to simplify the architectural evolution and shorten the upgrade-time thanks to its centralized

software control plane, at the cost of a higher network complexity that can easily introduce some

1

Introduction 2

bugs. Both NDN and SDN are two novel paradigms which aim to innovate current network’s

infrastructure, but despite sharing similar goals, they act at different levels.

The rationale behind NDN comes from the observation of current Internet usage. Nowadays,

users send emails, use chats and surf the Web no more than sharing multimedia files or watching

YouTube videos. Modern Internet is in fact a content network, where users are interested in

retrieving and consuming some content. Every piece of information flowing in the Internet

can be associated to a content: from the single web page to the specific packet of an on-

line video stream. Unfortunately, the network infrastructure is not suited for this new traffic

patterns, being essentially the same architecture introduced in the Seventies. To meet the new

changes in the network usage, the research community recently proposed the NDN paradigm

(cf. Background Section 1.4, page 15). NDN proposes to enrich the current network with

content-based functionalities, that can improve both network efficiency and users’ experience.

NDN requires a change in the network architecture to be fully deployed. The first question that

we want to answer is: are we able to exploit those advanced functionalities without adopting a

clean-slate approach? We address this question by designing and evaluating Caesar, a content

router that advance the state-of-the-art by implementing content-based functionalities which

may coexist with real network environments. We would like to prove that upgrading existing

architecture is feasible and that upgrades can be fully compatible with existing networks.

The SDN proposal tackles another side of the evolution problem, and its main purpose is to deal

with the Internet’s slow adaptivity to changes. In fact, reacting to new paradigms implies that

several modifications have to be done in network devices, their interconnections, implementation

and in the final deployment. These changes usually involve hardware devices, whose main task

is unique and fixed by the original design. Thus, adding new services usually translates into

buying new components. SDN (cf. Background Section 1.5, page 25) is expected to dramatically

reduce the time required to configure a whole network. SDN proposes a network architecture

made of two separate planes : a control plane, centralized and software programmable, which

defines the “behavior” of the network, and a data plane, consisting of a set of network devices

which are managed by the control plane and are responsible for the actual data processing.

SDN networks are becoming increasingly popular thanks to their ease of management and their

flexibility: changing the network’s behavior requires to simply program a software controller,

allowing the network architecture to evolve at software speed. Moreover, the actual behavior

of the network may be defined after it has been deployed, without replacing any network

device, completely under the control of the network owner. Despite its ease of management,

SDN may generate data misconfiguration on the managed network, with consequent broken

connectivity, forwarding loops, or access control violations. A full network inspection may

be unfeasible, depending on the size of the given network, its typology or the traffic pattern.

SDN verification is a novel research direction which aims to check the consistency and safety

Introduction 3

of network configurations by providing formal or empirical validation. SDN verification tools

usually take as input the network topology and the forwarding tables, to verify the presence of

problems such as packets creating a loop. Hence, the second question we want to answer is: can

we detect forwarding loops in real time? We direct our efforts toward network misconfiguration

diagnosis by means of analysis of the network topology and forwarding tables, targeting the

problem of detecting all loops at real-time and in real network environments.

Thesis organization

This thesis work is organized in three parts, with an introductory background Chapter and two

main parts.

The background serves as a survey of current network architecture, and to introduce the main

trends in the evolution of the Internet. This chapter also presents the motivations of the work

of the subsequent parts.

The first part of this thesis is devoted to the data plane enhancement, with focus on the

integration of content-based functionalities in actual network equipment. It describes Caesar,

our prototype of an advanced network device that is capable of performing content-based NDN

operations. Caesar is fully compatible with the state-of-the-art Internet routers, while adding

advanced functionalities depending on the traffic type it receives. We show that Caesar’s

forwarding performance are comparable with high-speed edge routers, and can sustain a rate

of several millions of packets per second.

The second part of this thesis considers the problem of network diagnosis in the environment

of software-defined networks. The ease of management and customization in SDN comes at the

cost of a more difficult detection of network configuration bugs. We solve this issue proposing a

theoretical framework which allows us to prove that the problem of network verification can be

bounded for practical networks. Our framework consists of a mathematical model of forwarding

networks and some algorithms which can be used to detect forwarding loops.

We conclude this thesis providing a summary of the main results achieved, and presenting on-

going and future works. For a greater ease of reading, a glossary can be found at page 142,

while tables of symbols are shown at page 101 and 135.

Introduction 4

Publications

The content of Chapter 3 is published in [PVL+14b], while the results of Chapter 4 have been

partially published in [VPL13]. Preliminary results of Chapter 6 are presented in [BDLPL+15],

while another publication is currently under submission for Chapter 6.

The patent [PVL14a], filed in 2014, contains the description of the algorithm presented in

Chapter 3.

A complementary demo, whose description is published in [PGB+14], demonstrates the feasi-

bility of a content-aware network in the mobile back-haul setting, leveraging Caesar’s design,

and show NDN provides significant benefits for both user experience and network cost in this

scenario. This is out of the main scope of this thesis and therefore not reported.

Chapter 1

Background

This section serves as background for a better understanding of this thesis. Specifically, we

introduce some basic definitions in the field of Computer Networks, with particular emphasis on

the Internet and its history. We then focus on the evolution of the Internet and the importance

of an evolvable network architecture. Finally, we introduce our approach and contributions

in the areas of Information Centric Networking and Software-Defined Networking,

which are two key technologies for the evolution of the current Internet architecture. When

acronyms are not purposely explained in the text, a description can be found in the glossary

at page 142.

1.1 Telecommunication Networks

A telecommunication network is the interconnection of two or more network devices, or nodes,

which are able to transport information between endpoints. Two examples of such a network

are the telephone network and the Internet. A network can be mathematically modeled as a

graph. Let V be the set of network nodes; let E be the set of edges, or the links between nodes;

then the graph G = (V,E) is the graph that represents the network.

While networks were classified in the past in two main categories (analog and digital networks)

today all networks are digital: the information (voice, data, video) is encoded into bits and then

translated to electrical signals. The signals are transmitted through a transmission medium (e.g.

wires, for a wired network; radio waves, for wireless devices) and are regenerated when reaching

another network device, or decoded at the final destination. All communication channels may

introduce some errors due to noise that can cause wrong bit decoding. Shannon’s theory of

communication [Sha01] demonstrates that the probability of errors for a digital transmission

5

1.1. Telecommunication Networks 6

over a noisy channel can be tuned to be almost error-free. There are other causes of errors

that are not related to the channel noise (cf. Section 1.1.1); anyway, error-recovery mechanisms

can be implemented to avoid such these errors. For a detailed description about error-recovery

techniques and data-loss avoidance, refer to the survey [LMEZG97] and RFC 2581 [SAP99].

1.1.1 Circuit switching and packet switching

There exist two methodologies of implementing a telecommunication network: circuit switching

and packet switching.

In a circuit-switched network, a user1 is identified by a unique ID (e.g. the telephone number).

A physical communication channel is established between endpoints (for instance, two users)

in order to communicate. For instance, this is the case of the traditional telephone network,

where every call between two users requires an ad-hoc communication circuit. As a consequence,

when the circuit is built, the two users are normally unavailable for other communications2. A

communication channel may introduce errors due to thermal noise, On the one hand, circuit

switching is a reliable transport for information as long as the circuit exists: the transmission

is generally error-free, because a channel exists between the two callers and it is reserved for

that specific call; in addition, the call is real-time, and the data transmitted does not require

complex ordering mechanisms. On the other hand, without a circuit no communication is

possible, implying that the usage of the resources is not optimal: i.e. when a channel is

reserved but the information is transmitted only during a fraction of the call duration. Some

special devices, known as telephone exchanges store the information about how to reach any

user in some area, and how to create a circuit for the communications.

In a packet-switched network every network node is identified by an ID called address. Following

a different approach, such a network does not create a communication path between endpoints,

but relies on groups of data called packets. Every packet is composed of two parts: the header

and the payload: the former contains the information to reach the destination, while the latter

contains the bits of the information which is to be transmitted. A packet may require to traverse

several intermediate nodes (also known as hops) before being delivered at the final destination.

It is therefore required for every node to know the next hop where any packet should be sent to

reach its destination. We call routing the process of finding one or more paths in the network

for the specific destination stored in the packet header. Each packet is routed independently:

a routing algorithm is the part of the routing responsible for deciding which output line an

1The term user identifies here a physical person, but we could also use it as a metonymy for an application,
a device, or any actor of the communication.

2This is not the case of today’s telephony, where the voice is transmitted using the Internet as a backbone and
multiple calls may be held even if the line is busy: in France almost 95% of telephony is Internet-based [Ltd13].

1.1. Telecommunication Networks 7

incoming packet should be transmitted on [Tan96, p. 362]. The route computation can be

manually-configured (static routing) when paths are installed by the network administrator at

every node, as opposed to dynamic routing, in which specific algorithms are performed (generally

in a distributed manner) to gather information about the network topology and building paths

accordingly. The routing algorithms usually calculate the network topology, or a snapshot of it;

then they store the interface(s) of the next-hop(s) for all possible destinations in a forwarding

table; as soon as an incoming packet arrives, a lookup is performed and the packet is forwarded

to the next-hop. Common routing algorithms can efficiently calculate “optimal” paths according

to a metric: for instance shortest path algorithms compute the routes that minimize the length

of the tranmission path, in terms of number of hops or geographical distance, while other

algorithms may optimize any given cost function. Two typical algorithms for shortest paths

calculation are the Bellman-Ford algorithm [Bel56, For56] and the Dijkstra algorithm [Dij59].

Since a routing algorithm specifies how routes are chosen, different algorithms may provide

different routes for the same pair of nodes. The routing protocol is the process of disseminating

the route information discovered by the routing algorithm. It defines as well the format of

the information exchanged between nodes and specifies how forwarding tables are calculated.

Finally, it encapsulates route information in regular packets, to be sent to the neighbor nodes

Since the network topology may change over time, the routing process continuously sends route

updates to all the routers with the current topology changes.

Some examples of routing protocols are OSPF and RIP, using respectively the Dijkstra’s and the

Bellman-Ford’s shortest path algorithms, and the BGP protocol, in which the policy (and so the

choice of the paths) depends on service level agreements between network providers. As a result

of the routing process, all nodes have a routing table which keeps track of the destination where a

packet should be sent to reach a target node. For a source node there can be multiple possible

paths that conduct to the same destination, and vice-versa there may be multiple locations

reachable from the same next-hop. Such a network allows to have shared communication

channels (i.e. multiple communications on the same wire) and it is flexible: it does not need

circuits to start communication. However in a packet-switched network the delivery is not

granted, because some packets may be lost along the path towards the destination node in

consequence of a link collapse or an intermediate node failure. The incorrect transmissions

may be compensated by error-detection/correction mechanisms (e.g. in the case of faulty

header or payload). On the occurrence of a link failure, the routing protocol shall be able

to detect another path (if any) for that destination node. Being natively connectionless,

a packet-switched network can also emulate the behavior of a circuit-switched network using

virtual circuit-switching.

1.2. The Internet 8

1.1.2 Computer Networks

Computer Networks are a subset of telecommunication networks. In this case, network nodes are

computers, and the network can provide some additional services beyond the simple information

transport, with the World Wide Web, digital audio/video and storage services being some

examples. When computers interact there are mainly two possible models of interactions:

push and pull. Push communication is a communication that is initiated by a sender towards

the receivers. The actors of this model are the information producer, or the Publisher, and

the consumer, or the Subscriber. The subscriber signs up for the reception of some data, that

will be “pushed” by the publisher when ready. This mechanism is called Publish/Subscribe. An

example of service based on Publish/Subscribe model is the mailing list service: a user can

subscribe to a mailing list to receive any e-mail sent to the mail address of the list at anytime;

then he can asynchronously consume the e-mails when needed.

Conversely, Pull communication is a communication method in which the receiver actively

requests some information, and the sender reacts to this request by sending back the requested

data. Pull communication is the base of the Client/Server model : a server executes a wait

procedure until it receives a request from a user; then it performs a processing routine and

sends back what the user has demanded.

The best-known example of a packet-switched computer network is the Internet, that was

initially based on a pull-communication model. The next section briefly shows its history and

then it focuses on the Internet’s architecture.

1.2 The Internet

The Internet is a telecommunication network, and in particular a computer network, that

was born as an evolution of the former ARPANET network, between the Sixties and the

Seventies. The main goal was to interconnect few nodes, located in different areas in the USA,

to implement some basic resource-sharing, text and file transfer. At the beginning, it only acted

as an improved alternative to the global telephone network for the voice transmission [Tan96,

p. 55].

As in the client/server model, two entities were involved in the communication: a client, that

requested some resource, and a server, that provided the requested resource (e.g. data, com-

putational power, storage). At that time there were many client terminals which asked for

resources, and few main computers capable of providing them. User terminals communicated

with the servers knowing the servers’ addresses, that were related to their geographical posi-

The Internet 9

Internet Layer Protocols OSI Number
Application Web, Emails, DNS 7
Transport TCP, Congestion control, UDP 4
Internet IPv4, IPv6, ICMP 3
Link Ethernet, Bluetooth, WiFi 1/2

Figure 1.1: Internet and OSI layers compared, with some protocols as example.

tion. Today’s Internet is still built upon this design choice, and the network infrastructure is

location-based, or host-centric.

1.2.1 The TCP/IP Protocol Stack

The Internet architecture is logically divided in multiple layers. Each layer is responsible for a

certain set of functions, and can exchange information with the contiguous layers of the same

node, or with the homologous layer on another node. The ISO-OSI model [Zim80] represents the

de jure standard for the definition of each layer and its services. Despite this standardization,

proposed at the end of the Seventies, the TCP/IP [CK74] is nowadays the de facto standard.

It is a protocol suite for the Internet, so-called because of the two main protocols: Internet

Protocol and Transmission Control Protocol. We will assume the TCP/IP as our model for the

remaining of the thesis.

Layers are traditionally represented in a vertical fashion, as shown in Figure 1.1. The bottom

layers are close to the physical transmission of electrical signals, while the top layers interact

with the users. In the following we provide a bottom-up overview of the Internet Layers.

The Link Layer is responsible for the transmission and the reception of electrical signals. More-

over it transforms the signals received to bits (and vice versa) for the higher layer (respectively,

from the higher layer). A sublayer of the Link layer is the Medium Access Control, which is

responsible of assembling the bits into packets (called frames at this level). It is also responsi-

ble of transmitting frames between two physically connected devices. This operation is called

forwarding.

The Internet Layer, or Network Layer, is responsible for connecting two nodes which are not

physically connected. It calculates the network layer topology by running a routing protocol.

IP is the main Network layer protocol, which defines the format of the header and the payload.

To forward packets it performs a lookup in a routing table using IP addresses as key, in order

to find the next connected hop that can be exploited to reach the final packet destination. It

also assembles the packet (called datagram at this level) for the Link Layer.

The Transport Layer is responsible of creating a communication channel between the endpoints.

www.inria.fr

The Internet 11

Plane Protocols
Data Plane MAC forwarding, File transfers, Skype calla

Control Plane ICMP, OSPF, ARP, Skype signaling

a
Skype data packets.

Figure 1.3: Data and Control Plane.

1.2.2 Data Plane and Control Plane

We can further classify the architecture into the Data Plane and the Control Plane[YDAG04].

The Data Plane, also called Forwarding Plane, carries the data traffic Data Plane tasks are

time-critical, and can be classified as follows:

• Packet input, which includes all the operations a node performs to receive a packet;

• Packet processing, which consists of all the operations performed on the current packet,

e.g. the packet classification and the lookup in a forwarding table to get the next hop;

• Packet output, which includes all the operations related to the transmission of a packet

to the following node.

All nodes have a Data Plane and different elements performing Data Plane operations. As an

example, in a router Line Cards are in charge of Data Plane processing. High-performance

IP routers may be equipped with several line cards performing high-speed operations.

The Control Plane is the part of the network architecture configuring the traffic flow in the

network. The control plane instructs the network elements on how to forward packets. Routing

protocols belong to the control plane, even if control packets are transmitted in the Data Plane.

Control plane tasks are not real-time, and can be performed on a longer time scale compared

to the Data Plane. They mainly consist of route dissemination, table maintenance and traffic

control.

The name “planes” is inspired by the lack of distinction with respect to the layers in which a

certain control or data plane operation take place: any of the elements and the protocols of

the TCP/IP protocol stack may be part of the Data or the Control Plane, according to the

function that they implement. In other words, planes are “orthogonal” to layers. An overview

of examples of Data and Control Plane functions is shown in Figure 1.3.

1.3. The evolution of the Internet 12

1.3 The evolution of the Internet

The usage of the Internet changed with the creation of new services (1971, e-mail service; 1991,

World Wide Web; 2002, BitTorrent; 2005, YouTube; 2008, Dropbox) and the introduction

of new technologies (1992, multimedia compression, i.e. MPEG; 1999, low cost RFIDs and

wireless technologies standardization). Furthermore, an increasing number of users have now

access to the Web, and this world-wide diffusion generated a boost in the network traffic and,

most of all, originated a different paradigm of network usage.

To investigate the evolution of the Internet and its usage, we focus on two main aspects of the

problem. The first one is “behavioral”, and refers to a change occurred in the way users interact

with the network: there is a mis-match between the use of the network and the functions

provided, or, from a different perspective, the infrastructure does not fit with users’ behavior

The second one is “structural”, and refers to the evolution problem from an architectural point

of view. In other words, not only the use of the network is different from its original design,

but the architecture’s design itself is difficult to upgrade and improve.

In the following, we first describe the behavioral change of the Internet usage, that lead to the

definition of a new paradigm called Information Centric Networking (ICN); we show that it is

of the approaches proposed to solve the behavioral issue (for a detailed description, see Section

1.4). Then we target the structural problem, and we show that the paradigm of Software-

Defined Networking (SDN) could be a solution to the architectural evolution problem (SDN is

described in Section 1.5).

1.3.1 The behavioral issue

The behavioral change occurred as a consequence to the features provided by new technologies,

which slightly shifted the users’ paradigm of communication. In [MPIA09] authors point out

that more than 70% of the residential Internet traffic is made of HTTP requests or P2P sharing

protocols (eDonkey, BitTorrent), and more than one third of the HTTP traffic consists of video

downloads/uploads The massive popularity of streaming platforms such as YouTube, and the

diffusion of user-generated content led to a paradigm that is no more location-based, but rather

content-based. This content-oriented model is centered on the content itself: users want to

retrieve information regardless of the exact location of the server that provides it. We describe

now why building such a mechanism over an IP underlay is not efficient [rg16].

First of all, the conversational nature of Internet gives emphasis to the endpoints: IP addresses

at network layer represent source and destination endpoints, while a content-oriented archi-

tecture requires a generalization to map any information to a name. Users are increasingly

The evolution of the Internet 13

using mobile platforms to access Internet’s content, and even though some effort has been done

to make mobility transparent to applications and higher level protocols [Per98], IP does not

support it natively. Finally, IP lacks in the support of secure communication: protocols such

as SSL contribute to build a secure channel between endpoints, but a per-content security may

be required when moving towards a content-oriented network.

The need for a novel communication model inspired both research community and industrial

R&D, so that a few solutions to match the new traffic pattern have been proposed. It is the

case of the content-delivery networks (CDN): they are global networks that provide content-

distribution mechanisms built at the Application layer on top of the current Internet infras-

tructure, representing the state-of-the-art implementation of a content-oriented network. Aka-

mai [NSS10] is one of such those systems. It leverages several servers (more than 60k) deployed

across different networks for two main goals: hosting authoritative DNS servers, to match users’

requests, and locally caching delivered contents, to speed-up the delivery performance especially

when multiple users are requesting the same content object. CDNs’ main drawbacks are the

high cost in terms of resources (bandwidth, storage, nodes distribution) and the introduction of

a overhead due to the fact that the whole protocol stack is traversed during a normal transmis-

sion, which can be not negligible (for example, they usually perform multiple DNS redirections

to satisfy users’ requests).

Information Centric Networking, or ICN3 [AD12] is a new approach for the conversion of

current Internet into a content-oriented network. The ICN approach is purely location indepen-

dent, provides content-based functionalities directly at the Network layer (such as request for a

content, or send a content to a requester), and allows the development of network functionalities

which were in the past either unfeasible, or implemented at the higher levels of the protocol

stack. A clean-slate approach to introduce ICN (or other novel technologies) may be desirable,

but it is practically unfeasible, because it would mean to replace all the network nodes in the

world: the architectural side of the evolution problem then arises.

1.3.2 The architectural issue

Two main factors limit the evolvability of the Internet architecture. It first has been ob-

served [AD11] that all layered architectures converge to a hourglass shape (cf. Figure 1.4).

Since the birth of the Internet, several applications have been developed on top of the protocol

suite, while a lot of technologies have been introduced at the bottom. Therefore, evolution is

very proficient on the top and at the bottom of the architecture, while in the middle there is

3ICN is a generic term, including several instances. The NDN paradigm hinted in the Introduction at page
1 is one of such instances.

1.4. Enhancing the Data Plane with ICN 15

1.4 Enhancing the Data Plane with ICN

Information Centric Networking is a communication paradigm that has recently been proposed

in the research community. The main goal is to improve Network Layer to better adapt it to

current Internet’s usage. This is feasible when some mechanisms like forwarding and routing are

based on names rather than locations. The new proposed network has some advantages, which

can be summarized as: network traffic reduction, native support for advanced functionalities

such as loop detection, multipath forwarding [AD12].

The ICN model inspired few research activities: among all, the Named Data Networking (NDN)

architecture proposed by Van Jacobson [JSB+09] and Zhang [ZEB+10] is the most popular. In

the following we focus on NDN, showing its architecture, the implementation, as well as its

main features and the challenges that arise from such approach.

1.4.1 Architecture of NDN

In NDN, the focus is on content, including videos, images, data, but also services and resources,

which are represented by some information in the network. In particular, a content item is

any piece of information that a user may request. It is split in multiple segments called content

chunks. Each content chunk is marked with a unique identifier called content name. The

content name is used to request all chunks of a given content item and perform the data

forwarding in the NDN network. The forwarding mechanism which takes into account a content

name instead of the location of a node is called name-based forwarding.

There are two main naming schemes used to map content chunks to their corresponding

name [Bar12]. The choice of the naming scheme may affect some properties of the NDN

network, like scalability, self-certification and also forwarding simplicity.

In a hierarchical scheme, a content name consists of a set of components, separated by a

delimiter, followed by a chunk identifier. The components can be human-readable strings that

are separated by a delimiter character, similarly to what happens with web’s URLs. A possible

example for such a name is <fr/inria/students/AliceBob/2>, which represents the chunk

with id equals to 2 of the content fr/inria/students/AliceBob. Any subset of contiguous

components is called a prefix. This scheme allows aggregation at many levels (e.g. all content

names starting with the same prefixes), and it binds different prefixes with different scopes:

that is, the same local content name may be reused within a different domain (a different

prefix). Conversely it makes it hard to perform operations such as a lookup on a table using

the content name as key. This naming scheme is the one adopted by NDN.

<fr/inria/students/AliceBob/2>
fr/inria/students/AliceBob

<P:L>

Information Centric Networking 18

with the related Data packets. The behavior of the network is summarized in the following

communication walkthrough, but it is investigated in the details in Chapter 3 and Chapter 4.

When a user4 requests a content, it sends out a request containing the content name, which

is made of a sequence of human-readable strings separated by a delimiting character, followed

by a chunk identifier. The requested content name, plus the chunk identifier and some ad-

ditional information are encapsulated in the Interest packet. All routers in an NDN network

are capable of forwarding the Interest packet in a hop-by-hop fashion, towards the destination

which is usually the content producer. We call an NDN router a content router (CR), and

more generally we refer with the name CR to any device capable of performing content-based

operations (see Section 1.4.1.3). After the request reaches the content producer, routers can

send the requested data back to the source of the request. According to a certain policy, routers

can also cache some contents, in order to provide it to the user without forwarding anymore the

content request. Each Interest packet is usually related to a single chunk. When the request

reaches the content producer it replies with the corresponding data. Similarly to the requests,

every data response is encapsulated in a Data packet.

Interests are forwarded by the content routers using longest prefix matching (LPM) computed

over a set of content prefixes stored in a Forwarding Information Base (FIB). Routers can

forward packets over multiple interfaces, thus multipath transmission is supported. To realize

symmetric routing and multicasting, NDN uses a Pending Interest Table (PIT). The PIT keeps

track of a state for each packet transmission. Interests for requested content which are not yet

served are saved in the PIT. A PIT’s entry is the tuple <content_name,list_interfaces,

list_nonces,expiration_time>. PIT prevents useless transmissions due to either duplicates

or existing requests: when a request for the same content name is received from multiple

interfaces, it simply updates the list of interfaces. The nonce is a pseudo-random number

generated at the moment of the Interest creation and then binded to it. PIT detects and

avoids loops of Interest packets comparing the nonce stored in the packet itself and the list

of nonces stored in the PIT entry for a specific content request. To further reduce Interest

transmissions, a cache called Content Store (CS) is accessed before PIT lookup. If the piece of

content requested has been cached before, CS sends it back, without further access to PIT.

On the downstream path, PIT is accessed for each data packet in order to get a breadcrumb5

route for that Data packet. PIT entry is therefore used to get the reverse path from the content

producer to the requester in a symmetric way. Thanks to the list of interfaces saved in the

PIT entry, router can send Data packets to multiple output interfaces, thus supporting native

4In NDN a user may be a human or a computer. If not differently specified, we use the impersonal “it” to
refer to a general user

5The term “breadcrumb” derives from the story of “Hansel and Gretel” by Brothers Grimm, in which the
children dropped pieces of bread to mark their path and eventually find their way back home.

<content_name, list_interfaces, list_nonces, expiration_time>
<content_name, list_interfaces, list_nonces, expiration_time>

Information Centric Networking 20

the contents. The most common policies are the Least Frequently Used and the Last Recently

Used. The processing and storage modules are out of the scope of this thesis.

Inside the control plane we can identify the Control module, which is responsible for all the

control and management operations such as content prefixes distribution (i.e. routing, traf-

fic monitoring). This thesis mainly focuses on enhancing the current data plane with NDN

functionalities. A simple control plane is present, but it is not analyzed in the details.

1.4.2 Features of ICN and NDN

Since we mainly focus on NDN as main architecture, we distinguish the features of the generic

ICN paradigm and the specific NDN architecture to avoid confusion between them. In fact

NDN is just one of the possible realizations of ICN, and its design choices may differ from

other ICN instances. The main difference between ICN and current Internet is that the content

knowledge is integrated in the Network Layer. This enables several features that were not

possible with the existing infrastructure or were difficult to implement.

Symmetric routing and multipath Routing protocols in IP do not grant in general any

symmetry in the choice of the path between two endpoints. Conversely, the NDN lookup-

and-forward process, which makes use of the FIB and PIT data structures, enables symmetric

routing: Data packets always follow the reverse path taken by the corresponding Interest packets

thanks to the soft state stored in PIT [ZEB+10]. Current Internet routing is asymmetric, and

this is not always a desirable feature because of two main issues. The first one is described in

[Pax97, ch. 8], where Paxson asserts that several protocols are developed under the assumption

that the propagation time between hosts is well approximated by half of the Round Trip Time

(RTT): when the paths are different in the two directions, this assumption is no longer valid.

In the same way, measurements under very asymmetric networks may lead to inconsistencies

when bandwidth bottlenecks have to be detected [Pax97]. Cisco [Cis] finds another problem in

asymmetric networks when forwarding decisions rely on state information stored on network

devices: in fact, the same traffic flow may encounter the state information required in one

direction, but not in the reverse path.

NDN also natively supports multipath-routing. FIBs may store multiple next-hops for the

same content prefix [WHY+12], and an ICN node can send Interest packets to different output

interfaces for load balancing or service selection. Loops are prevented both for Interest and

Data packets. For the Interest packets loops are avoided thanks to the PIT, because it can

detect duplicate packets using content name and a random nonce. Data packets do not loop

thanks to the symmetric routing feature.

Information Centric Networking 21

Multicast If many users want to retrieve the same content, several Interest packets are

produced by end nodes and propagated inside the ICN network. If multiple Interest packets

(carrying the same content name) reach the same node but have a different nonce, they can

be aggregated in a single PIT entry with the related interfaces from which they have been

received. When a matching Data packet reaches the ICN node, it is duplicated and sent to all

the interfaces stored in the corresponding PIT entry, naturally realizing multicast. Duplicate

Interest packets, or Data packets that have no matches in the PIT are automatically discovered

and deleted. Applications such as video conferencing or video/audio live streaming perfectly fit

with both the content-based nature of NDN and the native multicast feature that it provides.

Adaptive traffic control Current Internet implements a traffic control at the Transport

Layer thanks to the Transmission Control Protocol. Since TCP works at both the endpoints

and not at every hop in the network, its reaction against congestion is slow and it usually follows

a sawtooth-like pattern for a single TCP flow. NDN, as well as the end-to-end congestion

control, may use some techniques to implement in-network congestion control, in order to

reduce or augment the number of active connections [GGM12, WRN+13]. Working at the

Network layer, its reaction against a congestion is faster and the flow pattern is more graceful.

As an example, some internal node may detect congestion because several PIT entries expire,

implying that corresponding Data packets do not match them and therefore users will not

receive the content requested. The node may then lower the Interest rate (or it can decrease

the PIT size): as a result, the Data packet rate decreases as well, and all the subsequent Interest

packets overflowing the PIT table will be immediately dropped, which further reduce the overall

bandwidth usage. When multiple links towards a destination are present, ICN nodes can also

natively perform load balancing simply sending Interest packets to the multiple interfaces stored

in the FIB entries.

Security and privacy NDN includes some security primitives at Network layer [ZEB+10].

First of all, content packets are signed, and every content name is mapped to a signed piece

of content. Authentication and integrity are preserved with a per-content granularity: this is

one of the main difference with Internet secure protocols (i.e. TLS, SSL). When Internet’s

security mechanisms have been introduced, they mainly provided a secure channel, with a cost

of reduced performance [NFL+14]. The problem of the securization in the Internet is delegated

to the upper layers of the protocol stack, mainly focusing on blacklisting some untrustworthy

locations, but no assumptions are made on the content transmitted through it. This could

enable the paradoxical case in which fake or insecure data are transmitted over a secure channel

from a trustworthy location.

Information Centric Networking 22

Anonymity is preserved in NDN because no information about the requester is carried in the

Interest packets. Data packets are signed with any kind of certification algorithm, and could

possibly transmit information about the content producer. When anonymity is needed also in

the producer side, signature algorithms that do not use public/private keys may be adopted.

In-network Caching Once the network has knowledge of the content flows (content-awareness)

some caching mechanisms can be implemented directly at the Network Layer. In-network

caching enables an easier content distribution mechanism for many reasons: popular contents,

those that represent the highest bandwidth usage in the network, can be detected and cached

by edge routers close to the users, providing better content retrieving performance. Moreover,

when content popularity is exploited, advanced caching techniques may as well improve both

storage and retrieving performance.

It is possible to find similarities between traditional caching and ICN caching, although there

are many inconsistencies between the two approaches [ZLL13]. For instance, a web cache is

usually located in a well-known position, whereas every ICN node can potentially cache any

content, and each item can be stored at a per-chunk granularity, in contrast with the per-

file granularity of regular caches: this may adverse the typical Independent Reference Model

assumption [FGT92, ZLL13] which allows to prove the effectiveness of the classical caching

algorithms6.

1.4.3 Implementation of ICN

There are three main options for the deployment of an ICN network, which are valid for any

ICN instance. The clean-slate approach proposes to replace IP with ICN. This option requires

several changes in the existing infrastructure, and thus a long deployment time. Another

approach is the application overlay approach, that requires to implement ICN on top of

current existing network at the Application Layer. This strategy is feasible from the deployment

point of view, but it will reduce some benefits such as efficiency and bandwidth saving. For

this thesis we will focus on a third approach which is called integration approach. The

integration approach is based on the coexistence of existing network designs and ICN. In this

case, a Content Router will be able to perform IP operations and ICN operations according

to the type of packets it receives. This approach also intrinsically enables incremental deploy,

6Traditional caching algorithms have a file-based granularity, under the assumption that the probability
that a given object will be requested is only determined by its popularity, independent of previous requests.
NDN’s caching acts at a per-chunk level: different chunks of the same content are often correlated, e.g. requests
typically follow sequential order.

Information Centric Networking 23

because network administrators can incrementally upgrade their devices without changing all

their routers.

1.4.4 Challenges

There are several challenges and open issues that emerge both from the development of a

ICN network and from the integration of ICN functionalities inside the current Internet Layer.

This section provides a detailed description of the main challenges, focusing on those that are

resolved thanks to this work and giving an overview of the others.

1.4.4.1 ICN forwarding

One of the major difference between a content router and a regular IP router is the large

amount of state [PV11]. The number of domains registered under a top-level domain may be of

tens of millions7, and the number of Google’s indexed pages is even greater, allegedly reaching

tens of billions8: to serve all web pages at least implies that the address space of ICN is larger

than the 32-bit IPv4 address space; moreover, even though the IPv6 addressing scheme uses

128-bit addresses, it still has a known fixed size, while ICN naming is potentially unbounded

and variable-sized components are allowed.

A large state implies that FIBs may store several elements (name prefixes in NDN) compared

to IP forwarding tables. Authors of [SNO13] claim that the possible growth of the state would

cause the number of element stored in a content router’s FIB to be as great as many millions,

while a core IP router has to manage about 500k thousand entries. Besides, IP and NDN FIBs

differ also in the typology of the entries. In a regular IP router, a FIB usually contains a single

next-hop information [rg16] and the possible alternatives, together with additional information,

are stored in a separate Routing Information Base (RIB). FIBs are created by the main route

controller starting from the RIB, and distributed to all the line cards. In NDN a FIB contains

multiple next-hops, to natively implement multipath forwarding, and statistics management or

other processing.

With ICN not only the FIB size increases, but the size of the stored elements does likewise.

A content prefix, similarly to what happens with URLs, may consist of several components of

different size. The length of each component and of the whole prefix is not predictable, and no

regularity is required. It entails that existing hardware optimizations for fixed-size 32-bit IP

addresses cannot be easily converted and patched for an NDN content router.

7http://research.domaintools.com/statistics/tld-counts/
8http://www.worldwidewebsize.com/

http://research.domaintools.com/statistics/tld-counts/
http://www.worldwidewebsize.com/

Information Centric Networking 24

Finally, a regular IP router must sustain a forwarding rate of tens of Gigabits per second, or

even hundreds if it is part of the core network. A content router ready to be deployed must

perform the lookup process, together with the packet I/O, at similar speed.

These challenges are addressed in Chapter 3, where we mostly focus on name-based forwarding

on a content router which is capable of performing name lookups at a rate of tens of Gbps.

1.4.4.2 State management

The ICN paradigm requires that a soft state of every request has to be kept for a period of

time. As stated in Section 1.4.1, this is done by the Pending Interest Table.

In contrast with a FIB, the PIT is accessed for every packet received from the content router

(both Interest and Data packets). The PIT operations (i.e. insert, update, or delete) are

performed at a per-packet granularity, being a time-critical operation in an ICN content router.

The PIT must be able to detect whether an incoming Interest packet must be added to the

table, or if it can be aggregated with an existing packet previously stored, or if it is to be

dropped (duplicate Interest, or other problems). Then, it must perform the corresponding

action to the packet. When Data Packet reaches the PIT, it must perform a lookup-and-delete

process to find whether a matching Interest has been seen, and duplicate the Data packet for

every interface stored in the PIT entry.

Furthermore the PIT may reach a size that can be in the order of 106 entries, as the authors

in [DLCW12] describe. Performing line-rate operations with a large amount of state is one of

the major challenges for the deployment of ICN.

In Chapter 4 we propose a design and an implementation of a PIT that can work at high-speed,

addressing these major challenges.

1.4.4.3 Other challenges

We now describe other major challenges that arise from the ICN approach.

Routing The distribution of the routing instructions, that is the development of ICN routing

protocols, is still an interesting challenge for the ICN deployment. When the routing informa-

tion is represented by content prefixes rather than IP prefixes the major difficulty is scaling

with such an enormous state. Some papers [HAA+13] and technical reports [WHY+12, AYW+]

1.5. The SDN approach for an evolvable Network 25

propose to develop ICN routing protocols that leverage the equivalent of OSPF design princi-

ples, or extending the IPv4 Map-n-encap scalability solution. Anyway, these results leave still

some open issues like the naming dynamicity.

Caching Per-file caching mechanisms implemented for Web-pages [BCF+99] and P2P ser-

vices [SH06] show a popularity pattern that follows the Zipf (resp. Mandelbrot-Zipf) model.

Analytical models for ICN cache networks [MCG11, ZLL13] as well as experimental evaluation

testbeds [MSB+15, RRGL14] are still at an early stage and reflect a research direction. Caching

decision policy (e.g. which elements are stored in the current node) and caching replacement

(e.g. which elements are evicted from the cache) are major challenges in the ICN community.

The deployment of such a network of caches can present some decision challenges: quoting

Pavlou’s keynote speech [Pav13], they can be summarized in “cache placement” (where to put

caches), “content placement” (which content is allowed in caches) and “request-to-cache routing”

(how to redirect requests to a cache in the proximity).

Fine-grained security Every Data Packet in NDN is signed to meet the purpose of integrity

and origin verification [ZEB+10]. Signature and verification algorithms may introduce a not

negligible overhead, and then limitate network performance. Confidentiality is granted by

encryption algorithms for every chunk of content: scalability is then a major issue.

Network attacks The immunity to DDoS-like attacks is another ICN challenge. Old issues

such as cache poisoning [TD99] and new ones, i.e. Interest Flooding attacks [AMM+13] open

to new research directions.

1.5 The SDN approach for an evolvable Network

As described in Section 1.4 the hourglass shape of the current Internet’s architectures allowed

evolution on top and bottom of the protocol stack, the network layer being the bottleneck. In

addition the Internet is designed with a client/server geographical paradigm in mind, which

does not fit current traffic patterns.

One of the main difficulty in the evolution of networks is related to the tight coupling between

hardware devices and their functionalities. When network administrators want to add new func-

tionalities to their network, most of the time they are forced to add new hardware, sometimes

Software-Defined Networking 27

Nowadays, network developers tend to meet these new needs by introducing some ad-hoc solu-

tions, usually on the top of the protocol stack. This one-protocol-per-problem strategy can be

observed at the Application layer in the Internet protocol stack. This leads to the problem of

complexity.

When networks consist of several devices implementing different sets of instructions (routers,

firewalls, servers) management is not an easy task. Vendor dependency is one of the main issues,

because operating systems, management functions and in general any configuration function

may be different for different device producers. Also, as previously mentioned, new functionali-

ties require new hardware, and even replacing a single device may require several configuration

steps, firewall settings, and any protocol-dependent action that may cause misconfiguration or

deployment delays.

As a consequence of complexity, the scalability property of current infrastructure is reduced.

In details, scaling issues have two main reasons. The first one is the difficulty of management

described in the previous paragraph, which implies several configuration steps as soon as a

new hardware is deployed to meet the market’s requirements. Resources overprovisioning may

be a solution to reduce the number of upgrades. Network dimensioning should be performed

to estimate the amount of bandwidth, computational power, and any other kind of resource

needed by a specific application, but this is not possible when the traffic pattern is unknown.

The second problem arises from the fact that today’s requirements are almost unpredictable:

previous works [SDQR10, ABDDP13] showed that the performance of cloud application of a

major vendor such as Amazon are affected by high variance and traffic unpredictability: over-

provisioning is no more a feasible solution to scalability because of the difficulty in estimating

both the modifications affecting the current traffic pattern and the new resources’ requirements.

The scalability issue is the cause of the difficulty of the network to evolve in order to meet

new demands. On the one hand, the conjunction of all the aforementioned problems causes

the network to be slow-reacting to any innovation. On the other hand, users demand may vary

with a timescale that is no more in the order of years, as it was in the past, but is now reaching

a smaller window (months or even less). For instance, mobile applications are developed and

distributed in the market on a daily base. The equivalent can be said for computer software.

Networks are not able to be as dynamic as their corresponding software counterparts.

Software-Defined Networking 31

be dropped; custom if a customized action must be performed before reaching a forwarding

decision such as sending packet to the controller or performing a lookup in another rule table.

1.5.3 Features of SDN

Abstraction and modularity In the field of the Computer Science, abstraction and mod-

ularity are commonly used.

The term abstraction indicates the definition of a certain software component specifying only

the interface showed to the users. Programmers can therefore make their own design and im-

plementation choices, as long as they respect the external interface. As an example, we can

consider the abstract data type of a “List”, that is a set of elements that allows insert and re-

move operations. The abstract model of the List describes its behavior, that is storing elements

without particular ordering and providing “add” and “remove” mechanisms. The List can be

implemented in several ways (using arrays, linked nodes, or even with a dictionary), but all

those implementations are compatible as they share the same user interface.

Moreover, when programs consists of many millions lines of codes, they are built using modular

programming. Rather than building a huge monolithic application, developers today tend to

build modular software, usually with a main software core and multiple ad-hoc modules. Such

a software is easy to be upgraded, because the core is stable and new modules may be added

when needed. Software evolution is much easier when modularity is preserved.

SDN brings the notions of abstraction and modularity to the network. Programmers can

implement their own network instance, and it can be made of several modules, fully upgradeable

on the fly. Flexibility is one of the main advantages of those features.

Virtualization Network virtualization is the coexistence of multiple virtual network in-

stances sharing the same physical infrastructure. In other words virtual networks are a set

of virtual nodes and virtual links, mutually independent and logically separated, built on top

of real nodes and real links [CB10]. This approach is similar to the homologous equivalent in

servers: several computer instances rely on the same physical architecture, but they are logically

separated and independent. Many technologies are currently used to implement virtual net-

works, and they are located at different levels of the protocol stack: a Virtual Private Network

(VPN) is a virtualization technique implemented on top of IP/MPLS networks, and therefore

it belongs to the layer 3 [RR06]; a Virtual LAN (VLAN) consists of a set of switches that may

virtualize physical links using a special field in the layer 2 Ethernet frame [TFF+13]; there are

even layer 1 virtualization techniques, using L1 protocols such as SONET or SDH [TIAC04].

Software-Defined Networking 32

SDN plays a major role in improving existing virtualization mechanisms. There are three main

advantages in SDN-based network virtualization [JP13]. The first one is the ease of deployment:

thanks to the simplified data plane and the centralized software programmability, it is easy and

fast to install several network instances at different locations of the network without requiring

ad-hoc hardware or protocols. Finally, as SDN switches are simple standard devices while the

intelligence resides in the centralized controller, they are expected to be cheaper than current

devices where the control is distributed on each equipment.

Network Functions Virtualization, or NFV [C+12, HGJL15], is a further decoupling of network

functions from the dedicated hardware devices (similarly to Virtual Machines in virtualized

servers). While SDN virtualization mainly focus on network resources, NFV aims to abstract

the functions implemented by network devices (e.g. firewalls, packet filters, DNS servers) and

relocate them as generic boxes to be deployed anywhere in the network infrastructure. NFV

may work in conjunction with SDN by providing the abstract infrastructure (Data plane) that is

orchestrated by the SDN controller (Control plane). Furthermore, a generic SDN/NFV network

may be thought as a set of virtual network instances where the abstract virtual functions may

deployed as simple network virtual devices, all sharing the same physical infrastructure.

Interoperability When the network behavior is software-defined, the definition of network

instances becomes similar to programming a computer, providing a gain in terms of flexibility

and ease of management. Furthermore, when the APIs between the Software and the Hardware

sections are open and publicly available, every vendor may decide to adopt such a model, giving

a great improvement in the interoperability. Network owners are not restricted to use vendor-

compatible hardware, and vendors might also acquire some market slices thanks to the increased

competition available.

1.5.4 Challenges

The emerging SDN model opens several research challenges.In this section we provide a detailed

description of the challenges that we address in this thesis, and overview the remaining open

issues.

1.5.4.1 Network modeling and problem detection

Network administrators are interested in diagnosing problems in their networks such as the

existence of loops, or black-holes. This task can be performed by analyzing control plane

configurations or checking the data plane forwarding tables.

Software-Defined Networking 33

Network verification based on analysis of network topology and the nodes’ forwarding tables is

more promising: in fact, it is hard to generalize complex protocols and configuration languages

used for the management of control plane configurations; on the contrary, data plane analysis of

forwarding tables can detect bugs that are invisible at the level of configuration files [MKA+11]

and can quickly react to network changes [KZZ+13, ZZY+14].

Nevertheless, the table verification problem is a complex task, especially in systems where

forwarding rules are specified over multiple fields covering an increasing number of protocol

headers as in SDN. In particular, verifying network problems by checking forwarding rules is

classified under the NP-Hard complexity category (cf. Section 5.1). Some tools implement

verification algorithms exploiting heuristics, or other properties which are tightly coupled with

the Internet protocols. Two issues emerge from these approaches: they are not easy to extend

for a network which is far different from the current Internet network, and the implementations

are very specific for the network problem(s) they aim to solve.

We developed a mathematical framework, inspired from (but not limited to) SDN, which can

be used to model any kind of existing network. We are able to use our framework to analyze

router’s forwarding behavior and detect a provable complexity bound in checking the validity of

a network through forwarding tables validation. Our framework, covered in Chapter 6, makes

use of an implicit representation of the header classes: therefore we called it IHC 10.

1.5.4.2 Other challenges

We provide an overview of other challenges that are not addressed by this thesis.

Scalability/feasibility SDN forwarding engines should be able to perform fast lookup in

their rule tables. Those tables must be able to reach a throughput of tens of Gigabits per

second for an edge-network. Rule tables should be able to rapidly modify the entries in case

of rule modification, refresh or other management activities. The SDN controller can limit the

size of the network it can manage due to the bandwidth and CPU processing requirements.

In [YTG13] authors express their concern about the feasibility of an SDN-controlled network

when several updates per seconds have to be performed on many routers (e.g. a data center is

expected to require more than 30k updates/s).

10We mostly use the name IHC to identify the software tool implementing our framework. This is an on-going
work, and perspectives are given in the Conclusion at page 140

Software-Defined Networking 34

Control traffic management The SDN architecture assures a centralized network con-

troller. This may cause a control traffic bottleneck in the proximity of the SDN controller,

especially when the network is made of several nodes. Moreover, the disruption of a link to the

controller may cause the entire network fault, if some backup solutions are not provided. Even

though SDN requires a logical centralization, SDN may use several controllers, deployed in a

distributed fashion [DHM+13]. This opens some challenges about the associated coordination

algorithms, scalability and reliability especially under adversing traffic conditions (e.g. several

Control Plane updates, that may affect the coherence between the controllers’ state).

Part I

Data Plane Enhancement

35

Chapter 2

Introduction to the First Part

Since the birth of the Internet, network measurements observed a highly changing behavior of

the network usage, with many evolving patterns of traffic and sensible increment in the traffic

volume. The introduction of new services and the technology advancements are among the

main catalysts of such an evolution process. Several challenges had been faced to satisfy the

upcoming requirements of the evolving Internet. Some of them still have to be addressed: when

network dynamics change frequently, to develop new network systems accordingly is not always

an easy task. We observed (cf. Background, Section 1.3, page 12) that today most of the users

are interested in retrieving some content from the network, without caring about the exact

location of a specific content producer. The Internet is moving in the direction of consuming

content, information and services independently from the servers where these are located: it

makes sense to imagine that most of the network traffic is being replaced by content requests and

data. In fact, recent experiments conducted over a two-year timescale showed that nowadays’

Internet inter-domain traffic belongs mostly to large content/hosting providers. Moreover, the

greatest part of such a traffic migrated to content-related protocols and applications, such as

HTTP, video streaming and online services [LIJM+11].

The new approach in using the Internet comes together with a relevant increment in the amount

of traffic. The Internet’s traffic can be thought as a set of different components: it is useful to

observe that the global growth is not uniform, and the traffic change may affect only a subset

of components. CISCO’s measurements on wired and wireless Internet [Ind14, Ind15] show a

fine-grained traffic type characterization of the Internet’s traffic. Table 2.1 displays a projection

of the network traffic, based on a combination of analyst forecasts and direct data collection

of the last years, showing that the trend may dramatically increase both for fixed and mobile

networks: the overall Internet traffic is expected to grow in the next years.

36

37

Network Type
Traffic volume per year (PB/month)

CAGR
2014 2015 2016 2017 2018 2019

Fixed 31,545 37,908 46,511 58,115 72,933 91,048 24
Mobile 2,050 3,430 5,599 8,906 13,587 20,544 59

Table 2.1: Projection of the annual growth rate of both Mobile and Fixed Internet traffic, in the period 2014-
2019, and the corresponding compound annual growth rate (CAGR). [Ind14]

Traffic Type
Traffic volume per year (PB per month)

CAGR
2015 2016 2017 2018 2019 2020

Internet video 21,624 27,466 36,456 49,068 66,179 89,319 33
Web, email, and data(*) 5,853 7,694 9,476 11,707 14,002 16,092 22
P2P file sharing 6,090 6,146 6,130 6,168 6,231 6,038 0
Online gaming 27 33 48 78 109 143 40

Table 2.2: Projection of the increment in the overall Internet traffic per traffic typology, in the period 2015-
2020, and the corresponding compound annual growth rate (CAGR) [Ind15].
(*) data includes generic unclassified data traffic excluding file sharing.

Table 2.2 shows as well the overall traffic increment classified per typology: on-demand video

show the highest compound growth rate1, followed by general HTTP and data application.

Online gaming is a novel traffic typology, becoming more and more popular, as shown by its

CAGR, while classical file sharing can be considered to stay almost constant.

The Named-data Networking (NDN) paradigm is a recent networking vein that proposes to

enrich the network layer with name-based functionalities, which are novel communication prim-

itives centered around content identifiers rather than their location. The key idea behind this

approach is to identify these new communication primitives in order to implement them directly

at the network layer. We may macroscopically classify two content-distribution primitives: re-

questing for a content, and sending back the requested content.

While the evolving network usage may be matched by the new networking paradigms arising

in the research community, the traffic growth has to be matched by a corresponding increase

in network devices’ performance: in order to sustain a higher traffic volume, routers have to

show better performance in terms of forwarding speed and memory consumption. In a study of

2000 [Rob00], authors already foresaw the Internet’s growth trend, and they claimed that “to

keep pace with the Internet’s growth, the maximum speed of core routers and switches must

increase at the same rate.” High speed network design is a critical topic for current and future

R&D.

1The compound annual growth rate (CAGR) is the mean annual growth rate of a value, calculated over a
specified period of time longer than one year.

38

Both traffic typology and network paradigm are changing, and moreover the volume of the

network traffic becomes higher and higher. The question that may arise is: how does the

network architecture react to this change?

The integration of content distribution functionalities in network equipments is of critical im-

portance for the deployment of future content delivery infrastructures. On the one hand, today’s

content delivery infrastructures are evolving towards in-network solutions where content dis-

tribution is more and more integrated with the underlying ISP networks. On the other hand,

the NDN paradigm recently proposed by the research community, proposes to provide content

distribution functionalities as native network primitives.

However, the integration of content distribution functionalities in high speed routers imposes

severe changes to today’s hardware and software technologies. For instance: the routable ad-

dress space is expected to be several orders of magnitude larger than today’s IP, requiring new

routing and forwarding algorithms to handle it; packet-level caching requires the design of stor-

age engines that should operate at high speed, and can be coupled with forwarding mechanisms;

soft-state schemes can be required to enable symmetric routing; content traffic monitoring and

optimization tools should be integrated in network equipments in order to dynamically adapt

routing, forwarding, and storage management strategies.

Despite several name-based strategies have been proposed, few have attempted to build a

content router. Classical solutions (e.g. the CCNx application [Cen]), are typically implemented

as userspace (or kernelspace) daemons, and work at application level using commodity PCs

and commercial-off-the-shelf network cards, that are not suited for large scale deployment

and high-speed networking. Our work fills such gap by designing and prototyping Caesar, a

content router for high-speed content-distribution. We build Caesar as a small scale router,

that is totally compatible with current hardware and today’s protocols. Caesar’s design was

inspired by two main research directions: First, the need of integrating advanced content-aware

functionalities in current network devices without changing all the infrastructure, but rather

improving the existing Data plane by adding name-based features. Second, Caesar must work

in conjunction with existing high-speed routers, and therefore it must sustain a throughput per

link of several gigabits per second (Gbps).

The goal of this part of this Ph.D. thesis is to focus on system design of a new networking

architecture based on named-data and on its performance evaluation by means of experiments.

Hereafter we try to provide one among the possible answers to the demand for advanced content-

based functionalities in high-speed devices. This introduction serves to set up the theoretical

and practical foundation of this part of the thesis. We investigate the design principles in

Section 2.1, and explore the design space in Section 2.2. Section 2.3 introduces the hardware

that we used to develop our system. Section 2.4 describes both the methodology and the

2.1. Design principles 39

testbed that we used for the implementation and the experiments. Finally, Section 2.5 shows

our main contributions and the organization for the remainder of this part. From now on,

several symbols are introduced: we provide a table of symbols at page 101.

2.1 Design principles

We focus on the design, the implementation and the evaluation of an flexible high-speed content

router. For our router design we assume the typical separation between data plane and control

plane (cf. Background Section 1.2.2, page 11). The data plane consists of N line cards which

operate at a rate R. The line cards, which are logically separated in input and output line cards,

are interconnected by one or more switch fabric with an overall rate of NR. We associate to

each line card an identification number LCi, which is a progressive integer number assigned

to the i-th line card. The control plane consists of a route controller, which calculates route

updates received from neighbor routers, and compute the best next hops. Since the control

plane is out of the scope of this work, we assume a simple control plane with pre-calculated

routes. Caesar is the name we give to our content router.

To achieve the design of an evolvable and scalable system we keep in mind three major design

directions:

D.1 allow content-based networking, to simplify the content-distribution over current Internet;

D.2 perform high-speed packet processing, to target the increment in network throughput;

D.3 be compatible with current technology (i.e. forwarding of regular both IPv4 packets and

content requests/data), to avoid a clean-slate approach.

The direction D.1 requires to develop name-based algorithms that can handle the large name-

space imposed by a content-oriented architecture and can be implemented in high-speed network

equipments. Our schemes should be flexible to work on different environments (e.g. core, edge,

intra/inter-AS), and can further be optimized to better exploit the different content replicas

available in other network equipments, and to influence items availability across the network.

The point D.2 impacts the choice of router chassis as well as the selection of the type and

number of line cards used. We must consider a trade-off between scalability and performance:

for example, software solutions are often easy to deploy and integrate, but this comes at the

cost of losing in performance; on the contrary, hardware solutions may perform better in a very

2.2. Design space 40

specific environment, but they are usually difficult to implement in real environments in the

short term.

Finally, the point D.3 is about the coexistence with existing infrastructure. Flexibility is fun-

damental for an extensible network architecture. A clean-slate approach is not always possible

when several nodes are present in a network and those nodes are not designed to be furtherly

improved. An integration (and evolvable) approach allows to gradually deploy novel function-

alities, without affecting the behavior of the existing architecture and older devices.

2.2 Design space

We consider in this section the main directions for the design space exploration of Caesar.

We start discussing the prerequisites required to our data structures. Then we analyze the

algorithms requirements needed to access the chosen data structures. Finally we explain the

approach of data structure placement.

Data structures Data structures are of fundamental importance in the design of a con-

tent router. Differently from a regular IP, an NDN-enabled data structure may contain any

human-readable delimiter-separated string. The amount of state is greater than current IP (cf.

Background Section 1.4.4, page 23): both the size of the table (number of elements) and the

size of a single element may potentially be unbounded. The data structures used in an NDN

high-speed router have to be designed to support fast lookup (at line rate), and optimization

are required to store a large number of elements while minimizing memory footprint. Since

access speed is often in contrast with small memory requirements, a trade-off must be taken

into account.

The full design of a content router includes many data structures (cf. Background Section 1.4,

page 15). We consider a Forwarding Information Base (FIB), a Pending Interest Table (PIT)

and a Content Store (CS). The FIB, similarly to a current IP forwarding information base,

contains a set of matching rules and one (or multiple) next-hop information. The PIT is a

data-structure used to store pending requests not served yet. The CS is a packet-level cache

used to temporary store forwarded data to serve future requests.

Algorithms Choosing a computable set of steps to access a desired element stored in the

data structure is part of the algorithm design. Conventional algorithms have an execution time

that usually depends on the input size. In NDN the input is a content name, which may be

2.3. Architecture 41

Data

Plane

Control

Plane

...MIPS64 MIPS64 MIPS64

Switching Fabric

Route Controller

NPU

Line cards

L1 (48 KB) L1 (48 KB) L1 (48 KB)

DRAM (GB)

L2 Cache (2 MB)

1
0
G

b
E

1
0
G

b
E

B
a
c
k
p
la

n
e4

Figure 2.1: The hardware architecture of Caesar’s Forwarding Engine.

made of several variable-size components. The main goal for the design of a good algorithm is

a deterministic execution time, as much independent as possible from component length and

number of components.

We can access an element of a data structure by means of exact matching or prefix matching.

An exact-match algorithm consists of finding the elements whose bits are exactly the same as

the content name carried in the input packet. We talk about longest-prefix matching when we

are interested in finding the string that shares the greatest number of components with the

name carried in the input packet.

Placement The data structure are usually located in a specific line card. The placement

consists in deciding where a data structure should be located in a router. Some functionalities

may be enabled or disabled when different placements are used.

This part of the design space mainly refers to the optimization of the placement of data struc-

tures inside a router in order to support all functionalities. Some classic examples of placements

are input-only, output-only and input-output. As the name suggests, this affects the positioning

of some data structure inside the input or the output line card, or even in both of them.

2.3 Architecture

The hardware description of our system has been previously introduced in [VP12]. The design

of our content router targets a network device for an enterprise network, i.e. few 10 Gbps ports

and cumulative speed that depends on the number of active slots.

We chose to use a Cavium Network Processor equipped with CN5650 line cards (LC). Figure

2.1 shows the hardware architecture of our content router. The chassis mainly consists of a

2.4. Methodology and testbed 42

micro telecommunications computing architecture (µTCA) containing twelve slots for advanced

mezzanine cards (AMCs). Every slot may contain one single line card, and all the line cards

are respectively connected among each other by means of an internal switch. The internal

connection with the switch is called backplane. Each line card is equipped with a network

processor unit with 12 cores at 800 MHz with 48KB of L1 cache per core, 2MB of shared L2

cache memory, a 4-GB off-chip DRAM, a SFP+ 10GbE interface2 , and a 10 Gbps interface

to the backplane. We make use of a different number of slots of the chassis, depending on the

desired maximum throughput. When the Cavium unit is under extreme conditions, i.e. traffic

coming from all the line cards, the internal switch can sustain such a rate introducing some

latency, which however is negligible.

Our content router is modular: each additional functionality can be thought as a module

equipped in our content router. Caesar’s design targets a small-scale router that is easily de-

ployable in current networks, e.g. via a simple firmware upgrade of existing networking devices.

This constraints the hardware choice to programmable components already widely adopted

by commercial network equipments. We therefore resort to network processors optimized for

packet processing. The Data plane is designed to be backward compatible with existing net-

working protocols. In particular, its switch fabric is based on regular L2 switching, and thus

name-based forwarding is implemented on top of existing networking protocols (e.g. Ethernet

and IP) in a transparent fashion, without requiring a clean slate approach.

2.4 Methodology and testbed

The design and implementation of our solutions eventually resulted in a small-scale prototype:

one of the contributions of this thesis is the experimental evaluation of such a system. We

performed several experiments, following the guidelines provided by the RFC 2544 [BM99],

which inspired some of our tests. . We describe the methodology of the performance evaluation

and the experiment categories in Section 2.4.1, then we introduce our testbed in Section 2.4.2.

Finally, Section 2.4.3 describes the properties of our workload.

2.4.1 Methodology

A general experiment works as following: the device under test (DUT) is connected by means

of commodity fiber wires to some test equipment, in a bidirectional way. The test equipment

2The acronym SFP stands for Small factor pluggable and identifies a set of tranceivers for connecting optical
fibers at rate of 10 Gbits per second with existing L2/L3 network interfaces (see http://www.cisco.com/c/

en/us/products/collateral/interfaces-modules/transceiver-modules/data_sheet_c78-455693.html)

http://www.cisco.com/c/en/us/products/collateral/interfaces-modules/transceiver-modules/data_sheet_c78-455693.html
http://www.cisco.com/c/en/us/products/collateral/interfaces-modules/transceiver-modules/data_sheet_c78-455693.html

2.4. Methodology and testbed 43

sends out packets at a tunable rate to the DUT, which performs some processing depending

on the functionality to be evaluated, and sends them back to the tester. In order to be a valid

test, each transmission should last at least 60 seconds. Two main types of experiments are used

in this thesis: throughput and latency computation.

Throughput It is the fastest rate at which the DUT can process packets received by the test

equipment without any loss. Since the DUT has finite computational capacity, given that the

maximum transmission rate of the LCs is fixed (10 Gbps), it may be unable to sustain such a

rate for all packet sizes. To give two examples, transmitting packets of size 1500 bytes at the

rate of 10 Gbps requires the DUT to process about 834k packets every second, while a size of

200 bytes at the same rate translates into about 6.25M packets processed every second.

Therefore, throughput measurements typically consist in finding the smallest packet size at

which the DUT is not affected by any packet loss, and its value is measured in millions packets

per second. The results of the throughput test may be reported in the form of a graph, with

the x coordinate being the packet size and the y coordinate being the calculated packet rate.

The same plot may be reported choosing as x coordinate any other variable that may affect

the throughput.

Latency Once the throughput is calculated (and therefore no packets are lost at the through-

put rate) it is possible to calculate the latency as the difference between the time a packet is

fully transmitted by the tester, and the time at which the corresponding packet is received,

processed and completely sent back to the test equipment. The results of the latency test are

reported as a table showing the average, maximum and minimum calculated latency.

2.4.2 Test equipment

Our testbed consists of a commercial traffic generator, Caesar ’s chassis (the device under test),

and a set of network interfaces.

Traffic generator Our traffic generator is equipped with 10 Gbps optical interfaces, con-

nected through optical fibers to Caesar’s line cards. The traffic generator is tuned to inject

10Gbps traffic of Interest and Data packets. In order to generate NDN packets, the traffic gen-

erator is extended to produce regular IP packets with our additional name-based header. Two

line cards of the traffic generator are used to generate Interest and Data packets respectively.

2.4. Methodology and testbed 44

type length TLV encoding

2 bytes

content name
nonce

byte1

bytes8

(a) Interest packet format.

type length TLV encoding

byte

content name
signature
data
...

2 bytes1

(b) Data packet format.

Figure 2.2: Header format of Interest and Data packets. This header is appended to regular IPv4 packets, at
the level of the UDP protocol.

In the basic configuration, these line cards are connected to two separate line cards of Caesar,

but the number of line cards involved may vary depending on the experiment to be performed.

Device under test Caesar is activated with a set of line cards plugged in the chassis. The

router’s line cards may work in full-duplex mode; however, it is more convenient to separate the

transmission and reception processes in order to fully understand the behavior of the system:

for this reasons, our line cards are configured to work in half-duplex mode and act either as

input or as output line card exclusively.

Packet headers A standard header format for ICN is currently under debate in the ICN

research group at the IRTF [icn]. In absence of such standard, we use our own header which

consists of four fields. First, the 8-bit type field, which is a value that identifies if current packet

is an Interest or a Data packet. Then a 16-bit length field specifies the size of the content name

field. To expedite parsing, we also include a modified TLV3 components field, that consists of

an 8-bit number of components in the content name, and several offset fields, each containing

an 8-bit offset for each component in the content name. For backward compatibility, the name-

based header is placed after the IP header, which allows network devices to operate with their

standard forwarding policy, e.g. L2 or L3 forwarding. After the variable-size TLV and content

name field, the Interest packet contains the 64-bit nonce field, used to detect looping Interests

(cf. Background Section 1.4.1.2, page 17). The Data packet does not have a nonce field, but

contains the signature of the content provider and the actual data to be consumed. Our Interest

and Data packet format is summarized in Figure 2.2a and 2.2b.

3TLV, acronym of Type-Length-Value, is a flexible way of storing some optional data. It consist in a first
field Type, which identifies the information category; it is followed by the Length field, containing the size of
the data to be parsed, and finally the actual data, stored in the Value field.

2.4. Methodology and testbed 45

1 2 3 4 5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

Number of components

C
D

F

Content prefixes

Content names

Figure 2.3: Reference workload. Distribution of
number of components.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 0 1 2 3 4

N
u

m
b

e
r

o
f

e
le

m
e
n

ts

Number of collisions

CRC32 collisions

Figure 2.4: Number of prefixes with colliding hash
values. Our reference hash function is from [KC04].
The collision rate of the workload is pc = 0.002.

2.4.3 Workload

We call workload the combination of a set of content prefixes representing the items to be

stored in a table and the related requests. As a reference workload, we use the trace presented

in [WZZ+13]; this trace contains n = 107 content prefixes the authors collected by crawling

the Web. As done in [WZZ+13], we generate the requested content names by adding random

suffixes to content prefixes randomly selected from the trace; also, we form, on average, 42-

Bytes long names as in the reference workload. We denote the average name length with ν, i.e.

ν = 42 for our trace.

The prefixes of the reference workload are common URLs: this fits well with the hierarchical

naming scheme of NDN (cf. Background Section 1.4.1, page 15). Each component of a prefix

is therefore the string separated by the delimiter "/". Throughout the evaluation, we also use

several synthetic workloads to understand the impact of workload parameters and adversarial

traffic patterns.

Properties of the reference workload Figure 2.3 shows that most of the content prefixes

in the reference workload are composed by less than 3 components (2 components on average),

while content names extracted from the content requests have a number of components between

3 and 12 components (4 components on average).

When some elements are stored in a data structure, each of them is usually placed in a bucket4

together with the hashed value of the item itself. Our underlying architecture may exploit fast

4The term bucket refers to a fast-access location in a data structure, such as the index of an array. Hash
functions are used for the index computation.

/

2.5. Contributions 46

hash values computation whose performance depend on the quality of the hash typology: e.g.

cryptographic hash functions need more computational resources than generic hash functions,

but result in a better distribution of the hash values). We make use of a classical CRC32 [KC04]

algorithm for the computation of hash values (cf. Section 3.3.3).

The effectiveness of the CRC32 may be analyzed considering the number of items of the work-

load hashed to the same hash values. This is resumed in Figure 2.4, which plots the number

of hash collisions our reference workload. The plot shows that the majority of the elements

have no collisions, i.e. all these prefixes have a unique CRC32 value. Less than ten thousands

prefixes have one collision, and only 6 elements have two hash collisions. We calculate the

probability of collision pc as the ratio between the items colliding at least once and the size of

the dataset. In our reference workload we have pc = 0.002.

2.5 Contributions

Chapter 3 is related to the design and implementation of Caesar’s Forwarding module. We show

that it can handle a throughput of 10 Gbps and a forwarding table containing over 10 million

elements (some orders of magnitude greater than current IP forwarding tables). In addition,

GPU offload further speeds up the forwarding rate by an order of magnitude, while distributed

forwarding augments the amount of content prefixes served linearly with the number of line

cards, with a small penalty in terms of packet processing latency. This work has been published

in [PVL+14b].

In Chapter 4 we focus on the PIT module of Caesar. We designed and implemented a data

structure that can support fast updates (both insert, remove, update instructions) at line-rate.

In addition to the data structure, the design process requires to identify the PIT placement

as well, which refers to where in a router the PIT should be implemented. Similarly to the

Forwarding module, we provide numerical and experimental results on the PIT module of

Caesar. Previous work has been published in [VPL13].

Chapter 3

Forwarding module

This chapter presents the design, implementation and evaluation of an NDN-enabled forwarding

module. An important data structure is accessed in the forwarding module: the Forwarding

Information Base (FIB).The forwarding module is accessed in the Data-Plane for the Interest

Packet propagation. In the NDN communication model (cf. Background Section 1.4.1.2, page

17) every Interest packet should be sent towards the provider of the content requested by the

user, until the content or a copy of it is eventually found. Since a lookup for every packet is

required, this gives emphasis to the high-speed capabilities that our module should support.

The Chapter is organized as follows: we introduce the motivations in Section 3.1, which also

describes the goals and the features of our forwarding module. We investigate the design space

in Section 3.2, and then we present the design and the implementation of our high-speed NDN-

enabled forwarding module in Section 3.3. We extensively evaluate our module in Section 3.4,

using our prototype coupled with a commercial traffic generator and both synthetic and real

traces for content prefixes and requests. Section 3.5 concludes this chapter with a summary of

the results.

The main findings of this Chapter are that our forwarding module can sustain 10 Gbps links

assuming packet size of 188 Bytes and FIB with up to 10 million prefixes. We also show that

some extensions can be added to our prototype in order to support both a larger FIB and

higher forwarding speed.

47

3.1. Description 48

3.1 Description

A forwarding module is a module capable of performing I/O of incoming packets, and forward

them to a destination chosen after performing a lookup in a Forwarding Information Base.

The Forwarding Information Base is a data structure that stores a set of entries: classical FIB

entries contain a matching rule and a corresponding next-hop destination. In the case of an

IP router, the rules are represented by IPv4 prefixes, and next-hops are output interfaces. In

NDN, the FIB rules represent name prefixes with one (or more) next hop(s) information. We

adopt a DNS-like naming scheme proposed by NDN [JSB+09], where content items are split in

a sequence of packets identified by a content address, a hierarchical human-readable name with

(d+1) components delimited by a character: d components form the content name, whereas the

last component identifies a specific packet, for example /fr/inria/thesis.pdf/packet1, where

the delimiter is "/". A content router maintains forwarding information for content prefixes

that are formed by any subset of components from the content names, for example /fr/inria/*.

FIB is accessed in two cases: first, the control plane can modify the table inserting new entries to

populate the next hops information, or updating/deleting existing entries due to some routing

change; second, the data plane retrieves the information for the actual packet forwarding.

When an Interest packet arrives at a line card, the forwarding engine identifies the interface

where the packet should be forwarded performing a longest prefix matching (LPM) algorithm

on the FIB using the name carried by the packet. Additional processing such as policy routing

and packet classification might be performed depending on the router features. Afterwards, the

packet is moved to the line card where the output interface resides via the backplane and the

switch fabric. I/O operations are eventually performed in order to forward the current packet

towards its next hop. FIB is not accessed during the propagation of Data packets: thanks

to the NDN feature of symmetric routing, Data packets transmission is delegated to the PIT

module (see Chapter 4).

The forwarding module may be considered the most complex module of a content router’s

architecture [PV11], both in terms of the functionalities it enables, and for the challenges it

presents. We identify two major challenges. First, our design choice of an integration approach

implies that our content router has to process at least the same amount of packets processed

by a today’s router, assuming forwarding tables that are several orders of magnitude larger.

Second, the NDN-like forwarding tables are populated with string prefixes that may consist of

several components and (possibly) unlimited characters per component.

We propose to perform a Longest Prefix Matching algorithm on content names, whose main

novelty is the prefix Bloom filter, a Bloom filter variant that exploits the hierarchical nature of

content prefixes.

/

3.2. Design space 49

The forwarding module is the first step to build a content router, for which we chose the name

Caesar. Caesar’s forwarding module replicates the design of a a classic router where each

line card stores a full copy of the FIB. As in classic routers, each line card implements our

algorithm for name-based LPM. A switch fabric then moves packets from input to output line

card upon LPM decision. We then extend Caesar’s forwarding module by proposing distributed

forwarding, a mechanism which allows to share the FIB across Caesar’s line cards to maximize

the overall FIB size. A second extension is GPU offloading, where name-based LPM is partially

delegated to a Graphics Processing Unit (GPU), with the goal to further increase the rate.

3.2 Design space

In this section we explore the design space for the FIB module design. Section 3.2.1 reviews

the related work. Section 3.2.2 justifies the choice of a two-stage algorithm to optimize lookup

speed. Then, in Section 3.2.3 we analyze a set of data structures which could be used for the

FIB design. Our design is then analyzed in the details in Section 3.3.

3.2.1 Related work

We describe the proposed solutions addressing the same challenges of this chapter, namely data

structures for name-based LPM and NDN forwarding scheme design.

Name-based LPM Related work on name-based LPM may use three types of data struc-

tures: hash table, Bloom filter and trie solutions.

Cisco [SNO13, SNOS13] implement LPM using successive lookups in a hash table. Rather than

using the common longest-first strategy (lookups start from the longest prefix and continue with

shorter prefixes until a match is found), the search starts from the prefix length where most

FIB prefixes are centered, and restarts at a larger or shorter length, if needed. This approach

bounds the worst case number of lookups, but cannot provide average performance bounds.

Authors of [DLWL15] propose a Bloom-filter aided hash table, where the FIB entries are first

stored in a counting Bloom filter [FCAB98], a variant of regular Bloom filters (cf. Section

3.2.3) used to detect a bucket that is less charged, and finally stored in a regular hash table.

To accelerate lookup, up to k auxiliary counting Bloom filters are used, where k is the number

of hash functions applied on the incoming content name. Though this solution provides good

results in terms of lookup speed, its main drawbacks are the memory consumption (several

3.2. Design space 50

data structures are used) and the poor insert/delete performance, due to the multiple accesses

to the main memory.

NameFilter [WPM+13] is an alternative name-based LPM algorithm employing one Bloom

filter per prefix length. At lookup, a d-component content name requires d lookups in the

different Bloom filters. This approach has two intrinsic limitations. First, it cannot handle

false positives generated by the Bloom filters, and thus packets can eventually be forwarded

to the wrong interface. Second, it cannot support additional functionalities, such as multipath

and dynamic forwarding.

Among the trie-based solutions, Wang et al. [WHD+12] propose the name component encoding

(NCE), a scheme that encodes the components of a content name as symbols and organize them

as a trie. Due to its goal of compacting the FIB, NCE requires several extra data structures

that add significant complexity to the lookup process, and result in several memory accesses to

find the longest prefix match.

Differently with these approaches, we target a deterministic number of memory accesses when

detecting the maximum prefix length. We also aim to detect false positives, and supports

enhanced forwarding functionalities.

NDN router To our knowledge, the only known attempt to build a content router, i.e. a

router capable of performing name-based forwarding, are [SNO13] and [YC15].

In [SNO13, SNOS13] a content router is implemented on a Xeon-based Integrated Service

Module. Packet I/O is handled by regular line cards, while name-based LPM is performed on a

separate service module connected to the line cards via a switch fabric. Real experiments show

that the service module sustains a maximum forwarding rate of 4.5 million packets per second.

Simulations without packet I/O show that the the proposed name-based LPM algorithm handles

up to 6.3 Mpps.

Authors of [YC15] propose to use the hardware engine acceleration provided by Intel, called

DPDK [Int], to perform NDN I/O on regular network card, and a LPM algorithm based on

binary search with multiple prefix hash tables, one for each prefix length. Given d as the

maximum number of components of prefixes, d hash tables are created: these tables form a

balanced binary search tree. Lookups occur with a binary search of the prefix hash tables

to detect in which table the prefix match can be found. With this solution they are able to

store up to 109 prefixes, providing good lookup performance when multithreading is used. The

drawback of their approach is the significant performance loss when performing insert/delete

on the prefix tables; moreover, their experiment are conducted with short names (only 2 bytes)

which are not realistic for a real deployment.

3.2. Design space 51

Different from [SNO13, SNOS13], we want to support name-based LPM directly on I/O line

cards in order to reduce latency, increase the overall router throughput, and enable ICN func-

tionalities without requiring extra service modules. Our purpose in the design of Caesar is to

achieve performance that are still comparable to [SNO13, SNOS13] even though our prototype

is based on a cheaper technology.We also face the work in [YC15] since our dataset use realistic

traces with content names of 42 bytes. Additionally, we address the problem of FIB growth

allowing LCs to share the content of their FIB in order to support greater tables.

3.2.2 Algorithm

We recall, as described in Section 3.1, that at the reception of an Interest packet the forwarding

module performs a LPM on the incoming content name, selects the next-hop information and

sends the packet towards the chosen output LC. Since the processing required to detect the

prefix with the longest match with the incoming content name is easily affected by its number

of components (that we remark being variable-sized and potentially unbounded), we design our

algorithm to be as much deterministic as possible.

We propose a two-stage algorithm that is able to detect at (almost) constant time the longest

prefix stored in our FIB. The stages of the algorithm are:

1. detect the length of the longest prefix matching the incoming content name;

2. continue with regular hash table lookup processing with the longest matching prefix.

The first step may be achieved by means of a data structure for membership query [Blo70,

BM04]. This kind of data structures provide an efficient representation of a set of any type of

element, and can be used to test whether a specific element is represented in the set or not.

In particular, the feature that we exploit is that any variable-size element is compressed with

a fixed-sized length. The membership query does not provide the effective element stored in a

corresponding data structure: this task is delegated to the second part of the algorithm, which

accesses a different data structure.

We show in Section 3.3 that we manage to amortize both the prefix length and the number of

its components thanks to our two-stage approach.

3.2. Design space 52

3.2.3 Data structure

We leverage two categories of data structures for the two stages of our algorithm: Bloom filters

and hash tables.

The Bloom filter naturally fits with the first step of our two-stage algorithm: it is a data

structure that provides a simple membership query function. Bloom filters convert any variable-

size string to a tunable number of bits. k bits are chosen with k independent hash functions

applied to the whole string, and are then set in a bit string of size M according to the pre-

computed hash values. The membership query consists in checking the value of the k bits

calculated using an incoming string as input: if one or more bits are "0", then the element

is certainly not in the set, while if all bits have value equal to "1", then the element may be

present with a false-positive probability. The probability of error may be tuned, and depend

on the number of hash functions, the size of the filter and the number of stored elements n.

We derive a closed formula representing the probability of error under the assumption of uni-

form hashing, which implies that hash functions may point to any bit location with the same

probability. We start considering the first insertion and the first hash function: under these

hypothesis, the probability of setting a bit to one is 1
M

. Consequently, the probability that a

certain bit is still zero after the first insertion is (1− 1
M
). We remind that for a single element

insertion we set k bits in the Bloom filter using k hash functions: if all the k hash functions are

mutually independent, we may consider any bit set as a result of an independent experiment.

Therefore, the probability of finding a zero after k bits are set is (1− 1
M
)k. The same analysis

holds for n elements, considering every single insertion as an independent experiment when the

n items are mutually independent. After the Bloom filter is populated with n elements, the

probability of still finding a bit set to zero is (1− 1
M
)kn, and the probability of finding a bit set

to one is 1− ((1− 1
M
)kn). The probability of error is equivalent to the probability of receiving

a positive answer to the membership query while the element is not present in the set. This

is translates in performing k bit tests, by means of the k hash functions calculated over the

incoming item, finding all bits set to 1. We can approximate the probability of error with the

formula perror =
(

1−
[

1− 1
M

]kn
)k

≈
(

1− e−kn/M
)k

.

To store name prefixes we use a hash table. When a multi-core architecture is used (cf. Section

2.3) many cores may access, process and consume the same entries, causing concurrency issues.

We may classify the hash tables in lockless and locked hash tables. When a locked hash table

is used, the concurrent accesses are managed using locking mechanism such as mutex and

semaphores: these are control mechanisms, which are usually natively built-in depending on

the hardware architecture. They provide atomic access to the same memory location (e.g.

one-core-at-a-time). On the other hand, when a lockless data structure is used, no control

3.3. Forwarding module: design and implementation 53

mechanisms are provided and all cores may possibly access the same memory area. To avoid

race conditions (e.g. concurrent modifications of the same memory area which cause system

crashes) some other control is therefore required, like avoid shared memory and making each

core access only a specific area during write operations.

Thanks to the difference of operation rate between the control and the data plane, we assume

FIB as a lockless data structure: insert operations are not frequent, and occur only when some

changes are detected by the Control Plane. For this reason, there is no need to lock the memory

area to grant a one-at-a-time access during the forwarding operations. We then chose a lockless

shared hash table, with two advantages: no control mechanisms are required, and parallel access

may be exploited to augment throughput. The design of our hash table is described in Section

3.3.4.

3.3 Forwarding module: design and implementation

In this section, we detail our two-stage name-based LPM algorithm used in the forwarding

module of Caesar. Section 3.3.1 and 3.3.2 describe the prefix Bloom filter (PBF) and the

concept of block expansion, respectively. Both are used in the first stage to find the length

of the longest prefix match. Section 3.3.3 shows our technique to reduce the number of hash

values computation. Section 3.3.4 describes the hash table used in the second stage, and the

optimizations introduced to speed up the lookups.

3.3.1 Prefix Bloom Filter

The first stage of our name-based LPM algorithm consists in finding the greatest length of

a prefix matching an incoming Content name. To perform this lookup, we introduce a novel

data structure called prefix Bloom filter (PBF). The PBF exploits the hierarchical semantics

of content prefixes to find the longest prefix match using (most of the times) a single memory

access.

Similarly to the Bloom Filter, PBF is a space-efficient data structure which is made of several

blocks. Each block is a small Bloom filter: its size is chosen to fit one or multiple CPU cache

lines of the memory in which it is stored (e.g. DRAM caches, not to be confused with CPU

caches, are usually 64-128 MBytes, while CPU caches are typically smaller than 2 MB).

During the population of the FIB, a content prefix is stored both in the FIB and into a block

3.3. Forwarding module: design and implementation 54

Block Block Block

bits

1 1 1

g(p1)

1

. . .h3(p) hk(p)h2(p) h1(p)

.1 i b

m

Figure 3.1: Insertion of a prefix p into a PBF with b blocks, m bits per block, and k hash functions. The
function g(p1) selects a block using the subprefix p1 with the first component, and bits h1(p), h2(p), . . . , hk(p) are
set to 1.

chosen from the hash value of its first component1. During the lookup of a content name, its

first component identifies the unique block that must be loaded from memory to cache before

conducting the membership query. The possible load unbalancing issues due to that choice are

investigated in Section 3.3.2.

A PBF comprises b blocks, m bits per block, with k hash functions. The overall size of the

PBF is M = b × m. A scheme of the insertion of a content prefix is shown in Figure 3.1.

Let p = /c1/c2/ . . . /cd be a d-component prefix to be inserted into the PBF. The hash value

resulting from a hash function (chosen on purpose to be as much uniform as possible) g(·) with

output in the range {0, 1, . . . , b − 1} determines the block where p should be inserted. Let

now pi = /c1/c2/ . . . /ci be a subprefix with the first i components of p, such that p1 = /c1,

p2 = /c1/c2, p3 = /c1/c2/c3, and so on. We choose a block in the PBF identified by the value

g(p1), that is the result of the hash computation performed from the subprefix p1 defined by

the first component. This implies that all prefixes starting with the same component are stored

in the same block, which enables fast lookups (the possible load balancing issues are discussed

in Section 3.3.2). Once the block is selected, the values h1(p), h2(p), . . . , hk(p) are computed

using the entire prefix p, resulting in k indexes within the range {0, 1, . . . ,m− 1}. Finally, the

bits of positions h1(p), h2(p), . . . , hk(p) in the selected block are set to 1.

To find the length of the longest prefix in the PBF that matches a content name x = /c1/c2/ . . . /cd,

the first step is computing the hash value corresponding to the first component of the content

name, g(x1). This gives the index of the block where x or its subprefixes may be stored. The

block is then loaded and a match is first tried using the full name x, i.e. maximum length. The

bits of the positions h1(x), h2(x), . . . , hk(x) are then checked and, if all bits are set to 1, a match

is found. Otherwise, if some of the bits are set to zero, or if a false positive is detected (cf.

Section 3.3.4), the lookup continues trying the prefix xd−1. These trials continue until a match

is found or until all subprefixes of x have been tested. At each membership query, the bits of

the positions h1(xi), h2(xi), . . . , hk(xi) are checked, for 1 ≤ i ≤ d, accounting for a maximum

of k × d bit checks per name lookup in the worst case. Checking the bits of a block requires a

1In our naming scheme the first component is the equivalent of the top-level domain name in the DNS
hierarchy, such as com/ or fr/. For more details about DNS, refer to [Pos94].

com/
fr/

3.3. Forwarding module: design and implementation 55

single memory access as the block is stored in one cache line: no further memory accesses are

required for every subprefix lookup.

The false positive rate of the PBF is computed as follows. If ni is the number of prefixes

inserted into the i-th block, then the false positive rate of this block is fi = (1− e−kni/m)k. We

consider two possible cases of false positives. First, assume the worst-case scenario where the

name to be looked up and all of its subprefixes are not in the forwarding information base. In

this case, assuming a content name with d components, d lookup trials are required until it can

be considered as not in the FIB, and therefore the number Fi of false positives in the i-th block

follows the binomial distribution Fi ∼ B(d, fi). For the Boole’s inequality, the probability of a

collection of events is no greater than the sum of the probability of each single event. Using a

closed formula, we have that, given a collection of events Ai, then P(∪iAi) ≤
∑

i P(Ai). This

inequality, called the union bound, allows us to calculate an upper bound for the false positive

probability of a single block for a prefix lookup. After the first lookup, a sub-prefix pd−1 is

tested, and so on up to p1. Every sub-prefix is an event, and the collection of such events share

the same false positive probability fi, being located in the same PBF block i. We can bound

the false positive probability of the PBF, thanks to the Boole’s inequality, with the value d×fi,

that is d trials with false positive fi. The union bound is always valid since it represents an

upper bound; it results in a good approximation for the false positive when (d× fi) ≪ 1.

We now calculate the false positive probability for the PBF considering all blocks. Let P(bi) be

the probability that the first component of the content prefix is stored in the i-th block. When

the function g(·) is uniform, and therefore the first components of every prefix are uniformly

distributed over the PBF blocks, each block is chosen with probability P(bi) = 1/b for all i,

where b is the number of blocks, and thus the average false positive probability in the PBF

for a content name with d components and no matches is d
b

∑b
i=1 fi, where f = (1/b)

∑b
i=1 fi

represents the average false positive rate and d is the number of lookup trials.

We consider now the case where either the content name or one of its subprefixes are in the table,

and let l be the lenght of its longest prefix match. In this case, a false positive can only occur

for a subprefix whose length is larger than l, i.e., the l-component subprefix is a real positive

and the search stops. We assume the same hypothesis of the previous scenario, that is the union

bound for every lookup trial and the uniform distribution of the first components. The number

Fi of false positives in the i-th block then follows the binomial distribution Fi ∼ B(d − l, fi),

and following the same approach as the previous scenario, the average false positive probability

in this block is (d − l) × fi. In general, for a d-component name whose longest prefix match

has length l and under the assumption of the uniformity of the g(·) function, the average false

positive in the PBF is well approximated by (d− l)× f .

3.3. Forwarding module: design and implementation 56

3.3.2 Block Expansion

Since prefixes starting with the same root (that is the first component) are stored in the same

block, the single memory access allows fast lookups at the cost of a reduced accuracy of the

PBF. In fact, when many prefixes in the FIB may share the same first component, then the

corresponding block may yield a high false positive rate. This is usually avoided when the first

component distribution is uniform. To avoid an increase in the false positive probability even

with non uniform distributions of the first components, we propose a technique called block

expansion. It consists in redirecting some content prefixes to other blocks, allowing the false

positive rate to be reduced in exchange for loading a few additional cache lines from memory2.

Block expansion is used when the number ni of prefixes in the i-th block exceeds the threshold

TVi = −(m/k) log(1 − k
√
fi) selected to guarantee a maximum false positive rate fi. For now,

assume that prefixes are inserted in order from shorter to longer lengths3. Let nij be the number

of j-component prefixes stored in the i-th block. If at a given length l the number
∑

j≤l nij

exceeds the threshold TVi, then a block expansion occurs. In this case, each prefix p with

length l or higher is redirected to another block chosen from the hash value g(pl) of its first l

components. To keep track of the expansions, blocks keep a bitmap with w bits. The l-th bit

of the bitmap is set to 1 to notify that an expansion at length l occurred in the block. If the

new block indicated by g(pl) already has an expansion at a length e, with e > l, then any prefix

p with length e or higher is redirected again to another block indicated by g(pe), and so on.

Figure 3.2 shows the insertion of a prefix p = /c1/c2/ . . . /cu in a PBF using block expansion.

First, block i = g(p1) is identified as the target for p. Assuming that the threshold TVi is

reached at prefix length l, block i is expanded and the l-th bit of its bitmap is set. Since l ≤ u,

a second block j = g(pl) is then be computed from the first l components of p and, assuming

block j is not expanded, positions h1(p), h2(p), . . . , hk(p) of this block are set to 1.

The lookup process works as follows. Let x be the prefix to be looked up, and i = g(x1) be the

block where x or its LPM should be. First, the expansion bitmap of block i is checked. If the

first bit set in the bitmap is at position l and x has l or more components, then block j = g(xl)

is also loaded from memory. Assuming that no bits are set in the bitmap of j, prefixes xl and

higher are checked in block j. In case there are no matches, then prefixes xl−1 and lower are

checked in block i.

2Block expansion requires the control plane to completely recalculate the prefix Bloom filter and distribute
it to the corresponding line card. This operation is performed offline, after a threshold of prefixes per block is
reached. However, it could be possible to realize an online expansion mechanism, but this is out of the scope of
this thesis.

3The dynamic case, where the content prefixes in the FIB change over time, is addressed by the router
control plane, and is explained in Section 3.3.6.2.

3.3. Forwarding module: design and implementation 57

Block Block

bits

bits−th bit

bits

11

h1(p) hk(p)

g(pl)g(p1)

1

. . .

i j

m− w
wl

m

Figure 3.2: Insertion of a d-component prefix p into a PBF using block expansion. If block i = g(p1) reached
its insertion threshold or if the l-th bit is set in its bitmap and l ≤ d, then p is inserted into block j = g(pl).

The false positive rate of the PBF with block expansion is similar to the case without expansion,

except for two key differences. First, the block size is now m − w bits, since the first w

bits of the block are used for the expansion bitmap. The range of the hash functions hi is

thus {0, 1, . . . ,m− w − 1}. Second, the number ni of prefixes inserted in each block i is now

computed from the original insertions, minus the prefixes redirected to other blocks, plus the

prefixes coming from the expansion of other blocks.

3.3.3 Reducing the number of hashing operations

Hashing is a fundamental operation in our name-based LPM algorithm. For the lookup of a

given content prefix p = /c1/c2/ . . . /cd with d components and k hash functions in the PBF, a

total of k×d hash values must be generated for LPM in the worst case, i.e. the running time is

O(k × d). Longer content names thus have a higher overall impact on the system throughput

than shorter names. To reduce this overhead, we propose a linear O(k+d) running time hashing

scheme that only generates k+ d− 1 seed hash values, while the other (k− 1)(d− 1) values are

computed from XOR operations.

The hash values are computed as follows. Let Hij be the i-th hash value computed for the

prefix pj = /c1/c2/ . . . /cj containing the first j components of p. Then, the k × d values are

computed on demand as

Hij =

{

hi(pj) if i = 1 or j = 1

Hi1 ⊕H1j otherwise

where hi(pj) is the value computed from the i-th hash function over the j-component prefix pj,

and ⊕ is the XOR operator. The use of XOR operations significantly speeds up the computation

time without impacting hashing properties [SHKL09].

3.3. Forwarding module: design and implementation 58

cache line

MAC Address

Buckets /c1/c2/ . . . /cd

00:1F:3B:23:9A:00

/c1/c2/ . . . /cd

h32 a16 . . .p64i16

h32 a16 . . .p64i16

h32 a16 . . .p64i16

Figure 3.3: The structure of the hash table used to store the FIB. Each bucket has a fixed size of one cache
line, with overflows managed by chaining. Each entry consists of a tuple 〈h, i, a, p〉 that stores the next hop
information.

3.3.4 Hash table design

The PBF performs a membership query on content prefixes to find the longest prefix length

stored in the FIB. Once the longest prefix length is chosen, the second stage of our name-based

LPM algorithm consists of a hash table lookup to either fetch the next hop information or to

manage the possible false positives.

Our hash table design is shown in Figure 3.3. The hash table used for our forwarding module

consists of several buckets where the prefixes in the FIB are hashed to. In a similar way of

the PBF’s functions, we keep in mind, for the hash table design, the goal to minimize memory

access latency, in order to speed-up the overall processing rate. For this purpose, each bucket

is restricted to the fixed size of one cache line such that, for well-dimensioned tables, only a

single memory access is required to find and fetch an entry. In case of collisions, entries are

stored next to each other in a contiguous fashion up to the limit imposed by the cache line size.

We can manage the bucket overflows by chaining with linked lists, but this is expected to be

rare if the number of buckets is large enough.

To furtherly improve the lookup performance, our second design goal is to reduce the string

matching overhead required to find an entry. Therefore, each entry stores the hash value h of

its content prefix. String matching on the content prefix only occurs if there is a match first on

this 32-bit hash value. Due to the large output range of the hash function, an error is expected

only with small rate: we estimated in Section 2.4.3 the probability of collision for our dataset

to be equal to 0.002.

Finally, our last goal is to maximize the capacity of each bucket. For this purpose, the content

prefix is not stored at each entry due to its large and variable size. Instead, only a 64-bit pointer

p to the prefix is stored. To save space, next-hop MAC addresses are also kept in a separate

table and a 16-bit index a is stored in each entry. A 16-bit index i is also required per entry

to specify the output line card of a given content prefix. Each entry in the hash table then

consists of a 16-byte tuple 〈h, i, a, p〉, where h is the hash of the content prefix, i is the output

3.3. Forwarding module: design and implementation 59

line card index, a is index of the next-hop MAC address, and p is the pointer to the content

prefix. With this configuration every bucket consists of 8 slots at most. The bucket size is the

maximum number of slots it can contain, and is denoted by s. If needed, the last slot contains

the pointer to the linked list used in case of bucket overflow.

3.3.5 Caesar extensions

In this section, we introduce two Caesar extensions in order to meet increasing space/performance

requirements. We can support large FIBs (tens of GigaBytes) by having each line card store

only part of the entire FIB and collaborate with each other in a distributed fashion. Caesar’s

performance can be furtherly improved by offloading large packet batches to a graphics pro-

cessing unit (GPU). These solutions may introduce additional latency during packet processing

and thus are presented here as extensions that can be activated at the operator’s discretion.

Large FIB In its original design, Caesar stores a full copy of the FIB at each line card, as

commonly done by commercial routers. Although this allows each line card to independently

process packets at the nominal rate, it also results in FIB replication and waste of storage

resources. For IP prefixes, this is usually not a concern, as a typical FIB’s size is around five

hundreds thousands entries in the core network. In NDN, however, the FIB can easily grow

past hundreds of millions of content prefixes [SNO13] and memory space may become a major

issue.

We propose a Caesar extension, analyzed in details in Section 3.3.6.3, that allows multiple line

cards to share their FIB entries. We propose to store in each line card only a subset of the

original FIB entries such that, overall, Caesar is able to store N times more entries.

High-speed forwarding The classic solution to increase forwarding speeds in network de-

vices is a hardware update. However, this approach is not scalable due to the high costs both

in terms of hardware purchasing and reconfiguration time. While this may be an option for the

deployment of edge/core routers with a large set of networking features, such cost is prohibitive

for an enterprise router.

In Section 3.3.6.4, we propose an alternative strategy that does not incur such a high cost.

Wang et al. [WZZ+13] have recently shown that high-speed LPM on content names is possible

by exploiting the parallelism of popular off-the-shelf GPUs. As a second Caesar extension, we

propose to use GPUs to accelerate packet processing. Currently, commodity GPUs are available

in the market at a lower price compared to the upgrade cost. The challenge is then how to

3.3. Forwarding module: design and implementation 60

efficiently leverage a GPU to guarantee fast name-based LPM. For this extension, we assume

that a GPU is connected to each line card using a regular PCIe 16x bus and that it stores the

same FIB entries as the line card.

3.3.6 Implementation

We implement our design using the classical differentiation between data and control plane.

Our data plane is described in Section 3.3.6.1. We describe the most important features of our

control plane in Section 3.3.6.2.

3.3.6.1 Data Plane

The forwarding module is designed as a modular component inside a content router, whose

architecture is shown in Section 2.3. We now analyze the data plane of the forwarding module.

Caesar’s forwarding module is responsible for forwarding packets received by the line cards.

Similarly to a common IPv4 data plane, we may identify the most important processes.

Packet input: As a packet is received from the SPF+ 10GbE external interface, it is stored

in the off-chip DRAM of the line card via DMA. A hardware scheduler then assigns the packet

to one of the available cores for processing.

Header parsing: In Section 2.4.2 we show our definition of Interest and Data packets’headers.

One of the operation that the forwarding module has to perform is to detect if the incoming

packet is a regular IP packet or an NDN packet (by checking the protocol field in the IPv4

header, or by checking the specific type field in the NDN header). Once an NDN Interest

packet is detected, the content name is extracted and it is used to perform the LPM on the

FIB table: the name-based header contains pointers to each component, that are then stored

in the L1 cache in order to improve memory access speed. Otherwise, regular packet processing

is performed, i.e. LPM on the destination IP address.

Name-based LPM: If such a header is found, our name-based LPM algorithm is used. The

size of each PBF block is set to one cache line, or 128 bytes in our architecture (cf. Section 3.4).

Since Caesar takes advantage of hardware co-processors in the NPU, the forwarding module

may exploit such those functionalities to ensure fast hashing calculations. In particular, the

k+d−1 seed hash values are computed using CRC32 hardware functions, whereas the remaining

(k− 1)(d− 1) hash values are computed from XOR operations. In case of a match in the PBF,

the content prefix is looked up in the hash table stored in the off-chip DRAM to determine

3.3. Forwarding module: design and implementation 61

its next hop information, or to rule out false positives. Each table entry has a fixed size of 16

bytes, which, for a bucket of 128 bytes, results in a maximum of 7 entries per bucket in addition

to the 64-bit pointer required by the linked list. We dimension the hash table so to contain

10M buckets; it follows that the hash table requires 1.28 GB to store the buckets and 640 MB

to store the content prefixes, for a total of 1.92 GB.

Switching: The LPM algorithm returns the index of the output line card and the MAC address

of the next hop for a packet. The source MAC address of the packet is then set to the address

of the backplane interface, and its destination MAC address is set to the address of next hop.

Finally, the packet is placed into a per-core output queue in the backplane interface and waits

for transmission. Each NPU core has its own queue in the backplane interface to enable lockless

queue insertions and avoid contention bottlenecks. Once transmitted over the backplane, the

packet is received by the switching fabric, and regular L2 switching is performed. The packet

is then directed to the output line card over the backplane once again.

Packet output: Once received by the backplane interface of the output line card, the packet

is assigned to a NPU core and the source MAC address is overwritten with the address of

the SPF+ 10GbE interface. The packet is then sent via DMA to this interface for external

transmission.

3.3.6.2 Control Plane

The Control Plane is out of the scope of this thesis, but for the sake of clarity we may still

analyze the most important features. The forwarding module work in conjunction with a

Control plane, that is responsible for periodically computing and distributing the fowarding

information base (FIB) to line cards. These operations are performed by the route controller,

a central authority that is assumed to participate in a name-based routing protocol [HAA+13]

to construct its routing information base (RIB). The RIB is structured as a hash table that

contains the next hop information for each reachable content prefix.

The FIB is derived from the RIB and is composed of the PBF and the prefix hash table. To

allow prefix insertion and removal, the route controller maintains a mirror counting PBF (C-

PBF). For each bit in the PBF, the C-PBF keeps a counter that is incremented at insertions

and decremented at removals. Only when a counter reaches zero the corresponding bit in the

PBF is set to 0. The C-PBF enables prefix removal while avoiding to keep counters in the

original PBF, which saves precious L2 cache space.

The C-PBF is updated on two different timescales. On a long timescale (i.e. minutes), the C-

PBF is recomputed from the RIB with the goal to improve prefix distribution across blocks. On

3.3. Forwarding module: design and implementation 62

a short timescale (i.e. every insertion/removal) the C-PBF is greedily updated. When inserting

a new prefix, additional expansions are performed on blocks that exceed the false-positive

threshold. When removing a prefix, block merges are postponed until the next long-timescale

update.

The content prefixes stored in the i-th block of the PBF are hierarchically organized into a prefix

tree to (1) easily identify the length at which the threshold TVi is exceeded, and (2) efficiently

move prefixes during block expansions with a single pointer update operation. The prefix tree

of each block is implemented as a left-child right-sibling binary tree for space efficiency.

3.3.6.3 Distributed Forwarding

To share a large FIB among line cards, we implement a forwarding scheme where LPM is

performed in a distributed fashion. The idea is for each packet to be processed at the line card

where its longest prefix match resides, i.e. not necessarily the line card that received the packet.

A fast mechanism must then be in place for each received packet to be directed to the correct

line card for LPM. For this extension, the following modifications to Caesar’s control and data

planes are required.

Control plane: The route controller now has to compute a different FIB per line card. Each

content prefix p in the RIB is assigned to a line card LCi, such that i = g(p1) mod N , where

g(p1) is the hash of the subprefix p1 defined by the first component of p. The rationale here

is the same used in the PBF for block selection (cf. Section 3.3.1); by distributing prefixes to

line cards based on their first component, it is possible for an incoming packet to be quickly

forwarded to the line card where its longest prefix match resides.

In addition to distributing the FIB, the route controller also maintains a Line card Table (LT)

containing the MAC address of the backplane interface of each line card. The LT is distributed

to each line card along with their FIB, and serves two key purposes.

First, the LT is used by each line card to delegate LPM to another card (see below). Second, the

LT allows the router controller to quickly recover from failures. With distributed forwarding,

the failure of a line card may jeopardize the reachability to the prefixes it manages. We solve

this issue by allowing redirection of traffic from a failing line card to a backup line card. Once

Caesar detects a failure at a line card LCi, the route controller sends the FIB of LCi to one of

the additional line cards pre-installed and updates the LT to reflect the change. The updated

table is then distributed to all line cards to complete the failure recovery.

3.3. Forwarding module: design and implementation 63

Data plane: Upon receiving a packet with content name x, an available NPU core computes

the target line card LCi to process the packet, with i = g(x1) mod N . If LCi corresponds to the

local line card, then the regular flow of operations occurs, i.e. header extraction, name-based

LPM, switching, and forwarding (cf. Section 3.3.6). Otherwise, the destination MAC address

of the packet is overwritten with the address of the backplane interface of LCi fetched from the

LT, and the packet is transmitted over the backplane. LPM then occurs at LCi and the packet

is sent once again over the backplane to the output line card for external transmission.

Distributed forwarding imposes two constraints as tradeoffs for supporting a larger FIB. First,

it introduces a short delay caused by packets crossing the backplane twice. Second, extra

switching capacity is required. In the worst case, i.e. when a packet is never processed by the

receiving line card, the switch must operate twice as fast at a rate 2NR, where R is the rate of

a line card, instead of NR. Nonetheless, as showed in [IM03], it is possible to combine multiple

low-capacity switch fabrics to provide a high-capacity fabric with no performance loss at the

cost of small coordination buffers. This is a common approach in commercial routers, e.g. the

Alcatel 7950 XRS leverages 16 switching elements to sustain an overall throughput of 32 Tbps.

3.3.6.4 GPU Offloading

Our Caesar extension to accelerate packet forwarding makes use of a GPU. First, a brief back-

ground on the architecture and operation of the NVIDIA GTX 580 [nG] used in our imple-

mentation is provided. Then, a discussion on our name-based LPM solution using this GPU is

presented.

The NVIDIA GTX 580 GPU is composed of 16 streaming multiprocessors (SMs), each with 32

stream processors (SPs) running at 1,544 MHz. This GPU has two memory types: a large, but

slow, device memory and a small, but fast, shared memory. The device memory is an off-chip

1.5 GB GDDR5 DRAM, which is accelerated by a L2 cache used by all SMs. The shared

memory is an individual on-chip 48 KB SRAM per SM. Each SM also has several registers and

a L1 cache to accelerate device memory accesses.

All threads in the GPU execute the same function, called kernel. The level of parallelism of a

kernel is specified by two parameters, namely, the number of blocks and the number of threads

per block. A block is a set of concurrently executing threads that collaborate using shared

memory and barrier synchronization primitives. At run-time, each block is assigned to a SM

and divided into warps, or sets of 32 threads, which are independently scheduled for execution.

Each thread in a warp executes the same instruction in lockstep.

An application that aims to offload processing to a GPU works as follows. First, the application

3.3. Forwarding module: design and implementation 64

copies the data to be processed from CPU to device memory. Then, the application launches

a kernel; the kernel reads the input data from device memory, performs a desired operation

and then write results back to device memory. Finally, the application copies results back from

device memory to CPU’s memory. GPUs suite computation-intensive applications because of

their extreme thread-level parallelism as well as latency hiding capabilities.

Name-based LPM: We introduce few modifications made to the LPM algorithm to achieve

efficient GPU implementation. Due to the serial nature of Caesar’s processing units, the original

algorithm uses a PBF to test for several prefix lengths in the same filter. However, to take

advantage of the high level of parallelism in GPUs, a LPM approach that uses a Bloom filter and

hash table per prefix length is more efficient. Since large FIBs are expected, both the Bloom

filters and hash tables are stored in device memory.

For high GPU utilization, multiple warps must be assigned to each SM such that, when a warp

stalls on a memory read, other warps are available waiting to be scheduled. The GTX 580 can

have up to 8 blocks concurrently allocated and executing per SM, for a total of 128 blocks.

Content prefixes are assumed to have 128 components or less, and thus we have one block per

prefix length in the worst case. Since such a large number of components is rare, we allow a

higher degree of parallelism with multiple blocks working on the same prefix length. In this

case, each block operates on a different subset of content names received from a line card.

To keep track of the prefix lengths available in the FIB, we use a prefix length mask (PLM),

a bit array where the i-th bit indicates the presence of at least one prefix with i components

in the FIB. We have size(PLM) ≤ 128, matching the highest number of components that we

can handle at the maximum level of parallelism. This size is chosen after finding the maximum

prefix length stored in the FIB, at compile-time. When matching a content name with d

components, the PLM is first checked from position d to 1. We preload the PLM to shared

memory to speedup the masking of a content name. Our algorithm receives as input arrays

B, H, and C that contain the Bloom filters, hash tables, and content names to be looked

up, respectively. The kernel identifies the length of longest prefix in the FIB that match each

content name c ∈ C and stores it in the array L, which is then returned to the line card. All

these arrays are located in the device memory.

The algorithm works as follows: each block computes the index of the prefix length it is respon-

sible to perform lookups for. Of course, many blocks may be used per prefix length, and only

in the worst case (i.e. at least one prefix with 128 components) a block is associated to a single

prefix length. All blocks apply the mask to each input content name based on the PLM, and

prepare the execution of the LPM algorithm, which is performed in parallel by every thread

in the warp. Each iteration of the thread consists in loading a different content name and

performing a Bloom filter lookup. If a match is found, a further hash table lookup is performed

3.4. Evaluation 65

to check the possible false positive. If an entry is found in H, the prefix length is written to

the array L. The final operation is an atomic check across all SMs, to confirm that the LPM

for that specific content name is realized and only the longest prefix indexed by the array L is

returned.

This iteration continues up to the end of the batch of content names C. The input names of

our GPU algorithm are batched, that is a line card that wants to offload some processing has

to buffer a subset of the incoming content names, and send the whole batch to the GPU all at

once; the output of the GPU processing is transfered with the same approach as soon as the

results of all lookups are computed. An extended version of this algorithm, which can perform

not only LPM searches but also more generic tuple lookups, is published in [VLZL14].

3.4 Evaluation

This section experimentally evaluates Caesar’s forwarding module. First, we describe our ex-

perimental setting and analyze the Prefix Bloom Filter. Then, we evaluate both basic design

and its enhancements, namely distributed forwarding and GPU offload.

3.4.1 Experimental setting

We assume that Caesar’s line cards work in half-duplex mode, two as input line-cards and two

as output line cards. We equip Caesar with our forwarding module and connect its line cards

to a commercial traffic generator equipped with 10 Gbps optical interfaces via optical fibers.

Then we measure its forwarding throughput and latency. The throughput is the fastest rate

of packets that are forwarded without packet losses averaged over a 60 seconds time-frame. It

is measured by generating traffic at 10 Gbps to every input line-card and by increasing the

packet size until there are no losses for 60 seconds. The latency is described by the minimum,

maximum and average packet latency over a 60 seconds time-frame. We extend the traffic

generator to support the NDN-like packet format described in Section 1.4.1, i.e. regular IP

packets with an additional name-based header.

The elements stored in the FIB and requested content names derive from the reference workload

shown in Section 2.4.3 (more precisely, Figure 2.3). We assume incoming content names have

length ν = 42 bytes. It is useful to define a “distance” t between content prefixes as the

difference, measured in number of components, between the incoming content name and the

longest prefix stored in the FIB. For instance, if a/b/c/d/e is the incoming content name, and

a/b is its longest prefix, then t is equal to 3. In our workload the average distance t between

a/b/c/d/e
a/b

3.4. Evaluation 66

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 0 1 2 3 4 5 6 7 8 9 10

N
u

m
b

er
 o

f
b

u
ck

et
s

Number of elements per bucket

HT 10M Buckets

Figure 3.4: Number of prefixes per bucket in the FIB. Since at most 8 slots are occupied, there is no bucket
overflow.

content prefixes and input content names is equal to 2. This value represent a metric to detect

how many trials should be performed on average before finding a FIB match.

The synthetic workloads are generated from the reference workload by varying the following

parameters: i) distance t, that impacts the number of hash values to be computed as well as

the number of potential PBF/hash table lookups; ii) number of prefixes, which defines the size

of the FIB and thus its memory footprint and access speed ; iii) the number of prefix sharing

the first component, that impacts the amount of prefixes stored per block and thus the PBF

false positive.

3.4.1.1 Hash table dimensioning and analysis

We dimension our hash table to contain all the prefixes of the reference workload described in

Section 2.4.3. The choice of the hash table size takes into account a parameter α, that is the

load factor, defined as the ratio between the number of elements stored in the hash table and

the number of buckets it contains. Given that β denotes the number of buckets in our table,

and n is the number of stored elements, we have α = n
β
. We remind that in our design, as

described in Section 3.3.4, every bucket contains s = 8 slots.

The load factor is related to the access speed and memory usage of the hash table: for α ≪ 1,

the hash table is almost empty, the access speed may increase at the cost of a memory waste.

For α ≫ 1, the table is overloaded, and many slots per bucket are used: this increase the

average lookup time because many slots might have to be checked in order to find a match.

Our design choice is to set β = n, that is, load factor α = 1. Since the size of a bucket is

one cache line, it follows that the hash table requires 1.28 GB to store the buckets. Next-hops

3.4. Evaluation 67

storage, as well as the content prefixes and the MAC address information, require 640 MB of

memory, for a total amount of 1.92 GB.

When the FIB is populated, every prefix is stored in a slot of a bucket, selected as described

in Section 3.3.4. For each prefix p, we calculate the value h(p) using the CRC32 function, and

select the bucket at position h(p) mod β. Then, we choose the first available slot where the

prefix is eventually stored. If the bucket overflows, the last slot is used as a pointer to an

appended linked list of entries. Figure 3.4 shows the distribution of the number of prefixes per

bucket, calculated over the reference workload with β = 10M and s = 8. We note that no

bucket has more than 8 elements stored: this is important, since it shows that we do not need

to manage the bucket overflows by means of the extra linked list. Finally, 99% of the buckets

requires less than 4 slots occupied, and about 37% of the buckets are empty.

3.4.1.2 PBF dimensioning and analysis

The first step for a correct choice of the PBF’s parameters (number of blocks, size of the blocks,

number of cache lines) can be made after performing a dimensioning. This section analyzes the

prefix Bloom filter and derives a set of parameters used for the evaluation of the forwarding

module.

PBF block size We set the number of hash functions k = 2, in order to minimize the number

of seed hash values to be computed. As shown in Section 3.4.2 at page 3.4.2, the calculation

of seed hash values is an expensive operation in terms of computation time. It follows that

the generation of additional seed hash values (i.e., k > 2) while reducing the false positive

probability it significantly hurts the throughput of the system.

Figure 3.5 analyzes the throughput of our forwarding module as a function of the number of

prefixes stored in every PBF block assuming block size of one/two cache lines (i.e. 128/256

B). For this analysis we consider a synthetic workload derived from the reference one where

we vary the number of prefixes sharing a common first component. We observe that when the

number of prefixes per block is low, i.e.less than 200 prefixes per block, increasing the block size

reduces the overall throughput (measured in Mpps - Million packets per second). This happens

because a block size larger than a cache line requires additional memory accesses to DRAM at

each LPM operation.

As shown in Figure 3.6 the advantage of a larger block size is that it provides a lower false

positive probability for the same amount of prefixes per block. It follows that the number of

prefixes per block increases, the lower false positive ratio for bigger blocks translates into actual

3.4. Evaluation 68

0 100 200 300 400
5

5.5

6

6.5

7

Number of prefixes per block

F
o

rw
a

rd
in

g
 R

a
te

 [
M

p
p

s
]

m=128 B

m=256 B

Figure 3.5: Throughput as a function of the num-
ber of prefix per block.

0 100 200 300 40010−4

10−3

10−2

10−1

100

Prefix per blockBl
oc
k

fa
ls
e
po
si
ti
ve

pr
ob
ab
il
it

m=256B
m=128B

Figure 3.6: False positive as a function of the
number of prefix per block.

10 20 30 40 505.5

6

6.5

7

PBF size [MB]

Th
ro
ug
hp
ut

[M
pp
s]

M

Figure 3.7: Throughput as a function of the PBF
size.

0 20 40 60 80 10010−2

10−1

100

PBF size [MB]

Fa
ls
e
po
si
ti
ve

pr
ob
ab
il
it
y

M

Figure 3.8: False positive as a function of the
PBF size.

throughput improvements, i.e. when the are more than 200 prefixes. Nevertheless this set of

results shows that a block of a single cache line with a threshold for expansion of less that 100

prefixes per block guarantee the highest throughput. Therefore, for the rest of the evaluation

we set the the block size b=128B and the expansion threshold value TV=75 prefixes.

PBF size Figure 3.7 reports the throughput as a function of the PBF size M for the reference

workload. We observe that the throughput sharply increases with the PBF size for small value

of M . Then, after a certain size the throughput remains constant. As shown in figure 3.8

for small value of M a larger PBF size significantly reduces the false positive probability. On

the contrary, for large value of M to increase the PBF size only slightly reduces the false

positive probability and does not provide any actual throughput increase. We therefore set the

PBF size to the minimum value required to guarantee the maximum forwarding throughput,

3.4. Evaluation 69

106

2 106

3 106

4 106

5 106

co
m
de uk org au ne

t
fr nl it jp oth

ers

N
um
be
ro
fp
re
fix
es

First component

First component distribution

(a) First components in the reference workload

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Number of expansions

C
D

F

(b) Number of expansion per prefix. Reference
workload, threshold TV = 75.

Figure 3.9: Analysis of the reference workload

i.e. M = 32 MB.

Load balancing In Section 3.3.2 we discussed about the expansion mechanism needed when

the first component distribution is very skewed. Figure 3.9a shows indeed that in the reference

workload more than 90% of the dataset shares only 10 different first components. The expansion

is therefore mandatory, since few blocks will be overloaded (e.g. the block of the "com/"

component will have to deal with more than 6M prefixes). Before to present experimental

results we report in Figure 3.9b the CDF of the number of expansions required per prefix in the

reference workload assuming the parameters derived in the previous section, i.e. k=2, m=128B,

and TV=75. We observe that 95% of prefixes only requires one expansion, while only 1%

requires 4 expansions, the maximum number of expansions found in the reference workload.

However, throughout our evaluation we would like to test as well an ideal case, where expansion

is never required. We thus produce a synthetic "ideal" workload by adding a random number

to the first component, so that the first components spread across the PBF blocks. We show

this in Figure 3.10a and 3.10b. The former is a comparison between the reference workload

and our synthetic ideal workload; it shows the cumulative distribution of prefixes w.r.t. the

PBF blocks. We observe that the reference workload is represented by a step function, where

every step consists of the increment due to the few first components. On the contrary, the ideal

workload is very uniform, producing a straight line of the cumulative distribution of prefixes.

Finally, Figure 3.10b shows the distribution of prefixes per block in the PBF with the ideal

workload: we observe that all the blocks in the ideal workload contain less than 75 prefixes,

which is our threshold value; this grants that no expansion is ever needed. On average, every

block is charged with 40 prefixes.

com/

3.4. Evaluation 70

0

6

6

6

6

7

0 75000 150000 225000

Pr
ef
ix
es
pe
rb
lo
ck

Number of blocks

PBF ideal dataset
PBF normal dataset

(a) Cumulative prefixes distribution of the refer-
ence and the ideal workload

1

10

100

1000

10000

10 20 30 40 50 60 70 80

N
um
be
ro
fb
lo
ck
s

Prefixes per block

PBF ideal dataset

(b) Density distribution of prefixes per block in the
ideal workload

Figure 3.10: Analysis of the distribution of the first component in the ideal and the reference workload.

PBF ideal PBF exp PBF NoBF
Throughput Match [Mpps] 6.73 6.63 6.34 6.31

Throughput No Match [Mpps] 7.53 7.5 6.31 5.27
Min latency [µs] 6.6 6.6 6.6 6.6
Avg latency [µs] 7.3 7.5 7.7 7.7
Max latency [µs] 9.9 10.6 12.2 12.3

Table 3.1: Throughput (Mpps - Million packets per second) and latency (µs) under the reference workload
n = 10M .

3.4.2 Performance evaluation

This section provides the results of the performance evaluation of our forwarding module. We

consider three configurations of our LPM algorithm: i) PBF, where the PBF is used without

the expansion; ii) PBF exp, where the PBF is expanded; iii) NoBF, where the PBF is not used

and all matching hash tables are looked up. We also report results for an ideal case, PBF ideal,

where the PBF is used without expansion and all prefixes have a different first component,

i.e. content prefixes are uniformly distributed over blocks.

In the remainder of the section, we first evaluate the forwarding module’s performance and

then we present a sensitivity analysis where we vary parameters from such workload.

Reference workload

We start by measuring Caesar’s throughput when using our forwarding module activating a

single 10 Gbps input line-card. For the LPM algorithm, we differentiate between PBF, PBFexp

and NoBF, as described above. Finally, we assume the reference workload.

3.4. Evaluation 71

Table 3.1 summarizes the results derived from this set of experiments. We first focus on the

throughput Caesar achieves assuming the PBF exp. The table shows that Caesar supports up

to 6.63 Mpps (Million packets per second) when all incoming content names match at least a

FIB entry (“Match”), and up to 7.5 Mpps when none of the incoming packets match a FIB entry

(“No Match”), in which case the packet is forwarded to a default route. 6.63 Mpps translates to

a minimum packet size of 188 Bytes for a 10 Gbps line card at full rate. We verified that this

result extends to the full router, i.e. the forwarding module handles about 20 Gbps in input

and 20 Gbps in output with 188 Bytes.

Table 3.1 also shows that the Bloom filter expansion mechanism, only causes a 2% throughput

drop with respect to the ideal case (PBF ideal). This drop is caused by additional memory

accesses and complexity. The PBF without expansion has a performance gap of 4% with

respect to PBF exp because of the higher false positive rate. Finally, the table shows limited

throughput benefits in the usage of a PBF rather than multiple hash table accesses when all

incoming content requests match at least a FIB entry (about 5% improvement). This happens

because of the simplicity of the reference workload where the distance between content requests

and content prefixes is low, on average only 2 components. It follows that in the NoBF case, only

two additional hash table accesses are required. We will investigate more adversarial workloads

in the upcoming subsection. Nevertheless, the table shows clear benefits of the PBF when

none of the incoming packets match a FIB entry, e.g. about 30% performance increase. This

result suggests that our LPM algorithm is robust to DoS attacks, where an attacker generates

non-existing content names to slow down a content router.

We now focus on packet latency. Table 3.1 indicates that PBF exp provides a slightly lower

latency than both PBF and NoBF, on average; again, this is due to the simplicity of the reference

workload, and the packet latency is dominated by the latency due to the switching operation.

However, even under the reference workload, PBF exp reduces the maximum latency by 15%.

The maximum latency is observed for packets whose content names have many components

(e.g. 12); in this case the LPM latency becomes more significant and PBF with the expansion

mechanism provides benefits. We also notice that the expansion mechanism only causes a 2-6%

latency increase with respect to the ideal case in the average/maximum case respectively.

We now dissect the performance bottlenecks that occur in the forwarding operation. We ob-

serve the network processor cores and the software operations are the main bottlenecks of the

system [DEA+09]. First, if we run the system without performing the LPM operation, every

input line-card can process 15.6 Mpps. Second, the amount of cycles consumed by every core

per packet does not depend on the packet throughput. We thus investigate how CPU cycles are

used in Table 3.2. Specifically, we report: i) the number of cycles required for every major soft-

ware operation performed by every core of an input-line card; ii) the total number of cycles per

3.4. Evaluation 72

0 2 4 6 8 10
2

4

6

8

10

12

14

16

Avg component distance

F
o

rw
a

rd
in

g
 R

a
te

 [
M

p
p

s
]

PBF ideal

PBF

PBF exp

No PBF

Figure 3.11: Throughput as a function of average
component distance t.

10
0

10
2

10
4

10
6

13

13.5

14

14.5

15

15.5

16

16.5

17

Number of prefixes

F
o

rw
a

rd
in

g
 R

a
te

 [
M

p
p

s
]

Figure 3.12: Throughput as a function of the
number of prefixes.

operation under the reference workload, differentiating between PBF ideal, PBFexp, PBF, and

NoBF. Overall, the hash-table lookup is the most expensive operation. Content name hashing

also has a significant impact when many hash values are computed: this happens when the

distance t between content requests and content prefixes is large (cf. Figure 3.11). Also a PBF

lookup is computationally expensive when more than one blocks is loaded: this is highlighted

by the PBF exp as a consequence of the expansion operations. Finally, the I/O operation

have a non negligible impact on the performance but,as expected, they are not affected by the

considered LPM algorithm.

Sensitivity analysis

We now vary several parameters of the reference workload in order to evaluate their impact

on Caesar’s forwarding module. We start by analyzing the impact of the “distance” t between

content prefixes and input content names, i.e. the difference of their lengths as number of

components; this is the most important parameter as it reflects the complexity of the LPM.

To this goal, we generate several synthetic workloads where the average number of components

per content name d varies between 2 and 10 components, i.e. from t = 0 (equivalent of exact

match) to t = 10 (highly adversarial workload) assuming unchanged average prefix length of 2

components as in the reference workload.

Total I/O Hashing HT lookup PBF lookup
Atomic operation - 371 107 351 129

PBF ideal 1499 371 363 484 294
PBF exp 1783 371 440 485 357

PBF 1849 371 440 756 357
NoBF 1948 371 462 1048 -

Table 3.2: Cycles required for every operation.

3.4. Evaluation 73

Figure 3.11 shows the forwarding throughput as a function of t distinguishing between PBF

ideal, PBF, PBFexp and NoBF. Overall, the throughput decreases as t increases; this happens

because the number of hash values to be computed increases linearly with t. Compared to

NoBF, the throughput improvements provided by the usage of PBF increase with t; when

t = 10, PBF ideal and PBFexp almost double the throughput achieved by NoBF. Overall,

PBFexp introduces a penalty when t is small, which is then absorbed as t increases, while also

the PBF without expansion provides significant benefits.

We now investigate the impact of the FIB size, n content prefixes, on the forwarding module

in Figure 3.12. Overall, the figure shows that the throughput follows a step function: when

n = 1 the throughput is about 8.3 Mpps; when 1 < n < 1, 000, the throughput is 8 Mpps,

while for n > 1000 it suddenly drops to 6.6 Mpps. When n = 1 the prefix is permanently

stored in the L1 cache of every core. Then, when the number of prefix is small, the network

processor efficiently stores the prefixes in the L2 cache; after 1,000 prefixes, the L2 caches is

also exhausted and prefixes are placed in the off-chip DRAM, which causes such throughput

drop. After the 1,000 prefixes threshold, the throughput is almost constant: this indicates that

the amount of prefixes that the FIB may support is only limited by the amount of off-chip

DRAM. To store more prefixes, it would be sufficient to add more memory while the speed

would not be impacted. This is typically the case on edge/core routers where the amount of

DRAM available is in the order of tens of GBytes. Implementing this forwarding module on

such platforms would allow to store one-two order of magnitude more prefixes while performing

line-rate forwarding.

3.4.3 Distributed Processing

This section evaluates distributed forwarding, a mechanism to increase the number of prefixes

stored in the FIB linearly with its number of input line cards. We populate each input line-card

with a disjoint set of 10 M prefixes, and we assume the reference workload. Since Caesar mounts

a 10 Gbps switch, we limit the traffic injected to each input line card of its forwarding module

to 5 Gbps; this is the theoretical maximum that such switch can sustain when distributed

forwarding is used for 100% of the packets, i.e. two switching operations per packet.

Figure 3.13 shows the forwarding throughput of each line card as a function of the fraction of

packets distributed to the other line card for LPM, ρ in the following. Overall, the throughput

decreases as ρ increases. While a line card still processes the same amount of packets (i.e. the

ones received and processed locally, and the ones received from the other line card), packets that

are not processed locally require additional operations, namely packet dispatching, and MAC

address rewriting. In the worst case, when ρ=100%, these operations account for a throughput

3.4. Evaluation 74

0 20 40 60 80 100
11

11.5

12

12.5

13

13.5

14

Percentage of delegated packets

F
o
rw

a
rd

in
g
 R

a
te

 [
M

p
p
s
]

PBF ideal

PBF

PBF exp

No PBF

Figure 3.13: Throughput as a function of ρ.

drop of 15%.

We also estimate the impact of distributed forwarding on packet latency, assuming ρ=100%.

We find that the average and minimum latency increase by 50% compared to basic Caesar:

as previously discussed, minimum and average latency mostly derives from switching latency

which is hereby doubled. The maximum latency grows instead by about 30% under distributed

forwarding: this happens when LPM latency overcomes the switching latency, i.e. in presence

of long content names. In any case, the additional latency remains in the order of µs and it is

thus tolerable even for delay sensitive applications.

3.4.4 GPU Off-load

This section investigates the throughput speedup that GPU offloading provides to the forward-

ing process. We assume a line card offloads a batch of 8K content names to our GPU, NVIDIA

GTX 580 [nG]. Note that such batch is large enough to ensure high GPU occupancy.

We first measure how many packets per second the GPU can match as a function of the number

of rules n in the FIB (cf. Figure 3.14a). Such throughput refers only to kernel execution

time; we omit the transferring time between line card and GPU, and vice-versa, in order to be

comparable with [WZZ+13] and not limited by the PCIe bandwidth problem therein discussed.

We generate several synthetic FIBs where the number of content prefixes grow exponentially

from half a million to 16 million prefixes, the maximum number of prefixes that fit in the GTX

580’s device memory; we also vary the number of unique content prefix component lengths d

between 4 and 32 components. Finally, we assume that content names have 32 components and

that content prefix lengths are equally distributed, e.g. when d = 4 a quarter of the prefixes

3.4. Evaluation 75

512k 1M 2M 4M 8M 16M
20

40

60

80

100

120

140

160

T
h

ro
u

g
h

p
u

t
[M

p
p

s
]

n [#]

d=4 16

(a) n=0.5M:16M ; Equally distributed.

ATA MATA MATA−NW GPU−C
0

20

40

60

80

100

T
h

ro
u

g
h

p
u

t
[M

p
p

s
]

Reference

Adversarial FIB

(b) Comparison with [WZZ+13]

Figure 3.14: Evaluation of forwarding module enhancements with the GPU offloading.

have a single component.

Figure 3.14a shows two main results. First, the throughput is mostly independent from the

number of prefixes n: overall growing the FIB size from half a million to 10 million prefixes

causes less than a 10% throughput decrease. Second, the throughput largely depends on the

number of unique component lengths (d) in the FIB. For example, when n = 16 M increasing

d from 4 to 32 components reduces the throughput by 5x, from 150 to 30 Mpps.

We now compare our implementation with the work in [WZZ+13], which also explores the

usage of GPU for name-based forwarding. Fortunately, they open-sourced their GPU code

which allows us to perform a fair comparison with our implementation. The key idea of the

work in [WZZ+13] is to organize the FIB as a trie as done today for IP. They thus introduce a

character trie which allows for LPM on content names. Then, they introduce three optimiza-

tions, namely the Aligned transition array (ATA), the Multi-ATA (MATA) and the MATA

with interweaved name storage (MATA-NW), which leverage a combination of hashing and the

hierarchical nature of the content names to realize efficient compression and lookup.

Figure 3.14b compares the performance of our kernel with the kernels proposed in [WZZ+13],

namely ATA, MATA and MATA-NW by running their code on our GPU. For such comparison,

we use the reference workload, where d ≈ 3, as well as a more adversarial workload where

d = 8. We refer to this adversarial workload as “adversarial FIB”.

Compared to the results presented in [WZZ+13], we measure less than half the throughput for

ATA, MATA and MATA-NW; this is no surprise since our GPU has half the cores than the

GTX 590, the GPU used in [WZZ+13]. The figure also shows that the throughput measured

for Caesar’s Forwarding Module, about 95 Mpps, matches the results from the synthetic traces

when d = 8 and n = 10 M (Figure 3.14b). MATA-NW is slightly faster than our module, 100

3.5. Conclusion 76

versus 95 Mpps, assuming the reference workload. This happens because MATA-NW exploits

the fact that content prefixes in the FIB are very short, e.g. 2 or 3 components, to reduce LPM

to mostly an exact matching operation. Instead, our algorithm for LPM does not make any

such assumption; this design choice makes it resilient to more diverse FIBs at the expense of a

performance loss with more simplistic FIBs. Such feature is clearly visible under the adversarial

FIB workload: in this case, the forwarding module of Caesaris twice as fast as MATA-NW.

3.5 Conclusion

The first step to match the increasing request for content distribution functionalities, in the

place of the original host-to-host communication primitives, consists in building a content router

capable of performing name-based forwarding.

Since Future Internet architectures are expected to depart from a host-centric design to a

content-centric one, routers must operate on content names instead of IP addresses, at a pro-

cessing speed that should be comparable with current routers’ performance.

The address space explosion, both in number of content prefixes and their length, expected to

be on the order of tens of bytes as opposed to 32 or 128 bits for IPv4 and IPv6 respectively,

might have been a serious issue for the development of such these functionalities in high-speed

equipment.

In this chapter we fill such a gap, by proposing the design and implementation of a forwarding

module as a part of a content router, Caesar, capable of forwarding packets based on names at

wire speed. Caesar’s forwarding capabilities advance the state of the art in many ways.

First, it introduces the novel prefix Bloom filter (PBF) data structure to allow efficient longest

prefix matching operation on content names. Second, it is fully compatible with current pro-

tocols and network equipment. Third, it supports packet processing offload to external units,

such as graphics processing units (GPUs), and distributed forwarding, a mechanism which al-

lows line cards to share their FIBs with each other. Our experiments show that the forwarding

module may sustain many 10 Gbps links, and a FIB with 10 million content prefixes. This is

about two orders of magnitude compared to the state-of-the-art larger forwarding tables (BGP)

but with a rate that is equivalent to a edge-network high speed router.

We also show that the two proposed extensions allow our module to support both a larger FIB

and higher forwarding speed, with a small penalty in packet latency.

Chapter 4

PIT module

This chapter presents the design, implementation and evaluation of the Pending Interest Table

(PIT) module of an NDN-based content router. PIT’s main role is implementing the symmetric

routing feature of NDN, and preventing the creation of loops of Interest packets and duplicates.

NDN’s communication model (cf. Background Sec. 1.4.1.2) proposes to aggregate Interest

packets, or content requests, when they are addressed to the same content name. To achieve

these goals, The PIT keeps track of what content is requested and from which line-card’s

interface: all the unserved requests are stored for a tunable period of time, resulting in a

soft-state storage at every node in the network.

The PIT is designed and realized as a module of our content router, Caesar. Content names

stored in the PIT module follows the usual scheme proposed by NDN (cf. Section 2.4.2 and Sec-

tion 3.1). In the PIT content items are not split in their hierarchical components: requests are

stored using the full name as identifier, and are then looked-up with an exact-match algorithm.

For example, for the packets /fr/inria/thesis.pdf/packet1 and /fr/inria/thesis.pdf/packet2,

where the delimiter is “/”, we do not exploit the common prefix as done in Section 3.3, and

they are considered as different elements.

The Chapter is organized as follows: in Section 4.1 we describe the PIT, the goals and the

features of our module. Then we explore the design space in Section 4.2. Our design and

the related implementation for a wire-speed Pending Interest Table is shown in Section 4.3.

We extensively evaluate our PIT in Section 4.4, using the Caesar prototype coupled with a

commercial traffic generator and both synthetic and real traces for content requests. Finally a

summary of our main results is shown in Section 4.5.

Among the main findings of this Chapter, we show that a PIT whose size is in the order of 106

entries can work at a wire-speed of tens of Gbps. We also highlight and validate by means of

77

4.1. Description 78

experiments the differences between different PIT placements.

4.1 Description

The Interest propagation, which creates a “breadcrumb routing” mechanism (cf. Background

Sec. 1.4.2), is enabled thanks to the state that every NDN-router keeps in their PIT module:

equivalently, PIT entries are the breadcrumbs which actually realize symmetric routing. These

breadcrumbs are also used to aggregate Interests for the same chunk, naturally realizing mul-

ticast at the network layer. The Pending Interest Table is a data structure that is populated

when Interest packets reach one line card; this is done in order to provide a soft-state of the

requested content that are still to be served. When Data packets follow their way through the

content requester, they eventually consume their matching PIT entries. In order to prevent

loops and duplicates, Interest packets contain a random nonce value: the PIT is able to detect

when the same nonce is received twice, and drops the packet without performing any additional

instruction.

PIT operations Three operations can be performed on the PIT: insert, update and delete.

When a new Interest is received, PIT should extract the content name from the packet, and

check if an entry associated with that name is located in the PIT. It no such entry is present,

a PIT entry is created and added to the table. Otherwise, an update operation is performed.

PIT should verify at first whether the nonce carried in the packet is present in the entry’s list of

nonces, in which case a loop is detected and the packet is dropped. Then, it updates the entry’s

list of interfaces, adding the interface from where the Interest has been received, if not present.

The delete operation can occur when a timer expires, or when a Data packet is received. In

both cases, PIT performs a lookup to identify the correct entry, and it then removes the item

from the table.

Large state The PIT module must support a potentially large state. In fact, the maximum

number of elements to be stored in the PIT in the worst case depends on the transmission

rate of the router’s input interfaces and the entries’ deletion time (that may be considered as

the time taken by requested data packets to reach the PIT in the backward propagation) with

the formula nMAX = λin · TMAX (following from the Little’s law [Lit61]). In [JCDK01] authors

showed that the average latency in CDNs belongs mostly to the range [100, 250]ms : considering

an input rate of 10 Gbps, a Interest packet size of 128 bytes, and a round-trip time of 250ms, the

maximum number of element is 2.5M in the worst case. We can approximately consider the size

4.2. Design space 79

of a typical PIT in the order of O(106), as previously shown in [VPL13, DLCW12]. Our PIT

module follow the usual NDN addressing scheme with flat name representation, and an exact-

matching is used to perform insertion, lookups and updates. In the case of high transmission

delays, or when some users are requesting non-existing content, timer support may be required

to avoid PIT pollution with unnecessary items.

4.2 Design space

In this section we overview the design space explored for the PIT. Section 4.2.1 reviews the

related work. We describe in Section 4.2.2 the current proposals for PIT’s placement, i.e.

“where” in a router the PIT can be implemented. Then we analyze in Section 4.2.3 a set of

data structures which could be used for PIT’s design. Timer support and loop detection are

discussed in Section 4.2.4 and 4.2.5. Finally, Section 4.2.6 describes the main approaches to

manage parallel access in a shared data structure.

4.2.1 Related work

Our work on Pending Interest Table could be located inside the general model of flow-based

networking [PPK+15, MAB+08], in which a networking state is mantained in some data struc-

ture and several update or delete operations per second may occur. The data structure which

maintains the flows is called a Flow table. In this section we show the state-of-the-art solutions

addressing the same challenges of this chapter, namely the design of generic flow tables, and

the specific PIT design.

Flow-based Networking OpenFlow [MAB+08] is an example of a flow-based paradigm: a

flow is a tuple that is built from fields of a packet, from layer 2 (MAC) to layer 4 (TCP/UDP

ports). Every time that a packet reaches an OpenFlow switch, the tuple1 is exctracted from

the packet, and it is matched against a flow table. If no such element is present, the packet

is sent to a Controller, that performs a deep packet inspection, creates a flow, and sends back

a rule representing that flow to the switch. Finally the switch updates its Flow table, and

all subsequent packets that share the same tuple are forwarded according to the same rule.

Counters in the Flow table may be updated for every packet. It is important to highlight that

a Flow table may have several stages, i.e. a pipeline of flow tables. A match upon the i-th

1A typical packet’s classification consists in the so called 5-tuple extracted from the packet, which is made
of IP source and destination address, TCP/UDP source and destination port and protocol number.

4.2. Design space 80

table may redirect to another table, or directly to the end of the pipeline. Flow table designs

may be classified in hardware and software solutions.

Hardware techniques are usually preferred for the OpenFlow switches’ flow tables [MAB+08].

An OpenFlow switch is equipped with a Ternary-CAM table, a HW memory that can store

the bit values of 1, 0 and ∗ (don’t care bit). Such an hardware solution allows fast lookup (in

the order of millions of rules per second) but is very slow for the update instructions, i.e. less

than a thousand update per second. Moreover a TCAM has an expensive cost per bit, and it

is very power consuming.

To solve the power and cost issue, software flow tables have been introduced. OpenVSwitch

(OVS, [PPK+15]) is a virtual switch framework which implements an OpenFlow switch. Au-

thors divide the switch’s flow tables in two parts: a microflow table and a megaflow table. A

microflow table is implemented as a simple hash table, which exploits the cache memory of

the underlying architecture. An exact match is performed on the packet tuple, and entries are

extremely fine-grained (per transport connection). In case of a miss, megaflow table is accessed

and a packet classification is performed, in order to do a flow update. OVS works both in user

and kernel space. The kernel space application can sustain a rate of tens of thousands flow

update per second, when a million flow is present in the hash table.

Both those Flow table solutions work with the Internet Protocol Suite. They allow only a poor

customization scheme and it is usually limited to the type of the matching algorithm, that can

be exact match, prefix match or wildcard).

PIT Designs We now focus on other PIT designs, starting with [DLCW12]. Dai et al.

propose for their PIT design a Name Component Encoding method. Each component of the

name is encoded, and the integer value obtained is used to build an Encoded Name Prefix Trie.

This design performs well in terms of space compression (only few tens of Megabytes for a 10M

dataset) and scalability (it allows longest prefix matching, with a fixed number of components),

but it can sustain only slower rates in comparison to our solution (2.75 Mpps for insertion, 2.50

Mpps for deletion).

DiPIT [YMT+12] is a PIT design which adopt a divide et impera approach to distribute the

Pending Interest Table among each interface. This design makes use of distributed Bloom

filters, and it is scalable and performing on the Interest Packet processing, but show some flaws

for the Data Packet processing, due to the multiple parallel lookups required to find the correct

interface and complete the delivery. In their setup, with 16 Line cards, they can sustain up to

200 Mpps, which is 12.5 Mpps on each line cards. But since this design allows false-positive

match, the real rate can clearly be affected (at 120 Mpps, the false positive probability ranges

4.2. Design space 81

from 20% to 40%. Moreover, the design has been developed for 16 bytes content names.

In [YCC14] the design of a Segregated PIT is proposed. Like the previous work, authors divide

the Pending Interest table among N interfaces, but the division of tables is more general:

assuming P PITs and N interfaces, the PITs are distributed over the interfaces so that N /P

interfaces share the same PIT. In a special case, P = 1. The design is based on the assumption

of a different behavior between core and edge content routers: a segregated PIT performs an

aggregation mechanism in the edge (using real content names), and no aggregation in the core

(using fingerprints). This allows the deployment of fast tables on the core network, which

perform an exact match against a fingerprint hash table, and another hash table on the edge,

that will perform insertion, updates and deletes of real flows. This can improve scalability, but

shows the drawback of Interest overheads and Fingerprint collisions. Interest overhead occurs

when a flow is not recognized in the core network due to a different fingerprint, and so the

Interest packet is considered different and is sent anyway to the next hop. Fingerprint collision

is the dual problem, due to different content names sharing the same fingerprint. This causes

a break on the current Interest packet path.

MaPIT [LLZ14] is a design of a PIT made of two components: Mapping Bloom Filters and

String Hash Table. This design exploits the smaller size of the Bloom Filters, that can be

stored in a fast SRAM memory, to speed-up the overall processing. Once a match is found, the

String Hash table is accessed and the lookup is finished. MBF allow a tunable false positive,

which is shown to be less than 0.2%. In this paper authors don’t analyze the rate for insertion

and deletion, but we can derive it from the building time: they claim that the time to build

the MaPIT is 7488ms for 1M names: this means that, when the table is populated, a rate of

1M/7.488 = 133.547kpps is achieved.

4.2.2 Placement

As presented in Section 2.1, we assume a content router composed of N line cards which

operate at a rate R, interconnected by some switch fabrics and logically separated into input

and output line cards. We analyze the classical placements , which are input only, output only,

input-output (cf. Section 2.1) and focus on a novel placement, called third party, that was

previously introduced in [VPL13].

Input-only Originally proposed in [DLCW12] it indicates that a PIT should be placed at

each input line-card. Accordingly, an Interest creates a PIT entry only in the PIT of the

line-card where it is received. When corresponding Data returns at an output line-card, it is

4.2. Design space 82

broadcasted to all input line-cards where a PIT lookup indicates whether the Data should be

further forwarded or not. This placement enables multipath (cf. Background Sec. 1.4.2) as

Interest may be forwarded to multiple output interfaces, but it lacks loop detection2 and correct

Interest aggregation, as each PIT is only aware of local list of interfaces and list of nonces. Most

importantly, this placement requires N PIT lookups in presence of returning Data, which is a

serious bottleneck.

Output-only Originally proposed in [DLCW12], it indicates that the PIT should be placed

at each output line-card. Accordingly, an Interest does not create a PIT entry at the input line-

card where it is received, but at the output line-card where it is forwarded, selected using LPM

in the FIB. This approach allows aggregating Interests received at different line-cards, but it

shows limitations in case of multipath. When an Interest received at line-card i is forwarded to

two output line-cards, j and k, the returning Data is forwarded twice by line-card i; in fact, the

Interest creates two entries in PITj and PITk , respectively, and there is no way for line-card j

and k to detect whether the Data was already received at the other line-card. Similarly, assume

an Interest received at line-card i is sent to line-card j and a second Interest for the same Data

is received at line-card l but sent to line-card k. In theory, the first Data received, either on

line-card j or k, should satisfy both Interests; in practice, two Data are needed with this PIT’s

placement. Finally, the output-only placement requires a FIB lookup per Interest, even when

a previous Interest for the same content was already received. Last, loops cannot be detected

as each output PIT is only aware of the local list nonces.

Input-output This placement was originally discussed in [DLCW12] but dismissed in favor

of the output-only placement. It indicates that the PIT should be placed both in input and

output. Accordingly, an Interest creates a PIT entry both at the input line-card where it is

received and at the output line-card where it should be forwarded. Compared to the output only

placement, it has two benefits: no unnecessary FIB lookups and duplicated packets in presence

of multipath. However, the input-output placement also suffers from the latter multipath issue

as it also requires two Data in order to serve Interests received at different line-cards that were

forwarded to different output line-cards. Also, loops cannot be detected for the same reasons

as above. A minor problem is that a Data triggers two lookup operations: in the PIT of the

line-card where it is received, and in the PIT(s) of the line-card(s) from where it was originally

requested. The latter issue is discussed in [DLCW12] as the main motivation to dismiss this

placement.

2Errors in loops may occur when a router’s line card forward the Interest packet to another router’s input
line card: the input-only placement does not detect the loop in this scenario.

4.2. Design space 83

Third party The third party placement indicates that a PIT should be placed at each input

line-card as in the input- only placement. However, when an Interest for a content x is received

at a line-card it is “delegated” to a third party line- card, here the name. This third party line-

card is selected as j = H(x) mod N , where N is the number of line-cards in the router and

H(x) is the hash (e.g., CRC32) of the content name. Accordingly, the PIT at j aggregates all

PIT entries for A independently of the input line-card where an Interest for A was received. No

PIT at the output is needed; as Data is received, the output line-card identifies j by performing

H(x) mod N . This placement enables both multipath and loop detection as the third party

line-card acts as an aggregation point. For example, when two Data packets are expected at two

different output line-cards the first Data received is always forwarded to the third party line-

card where it consumes each pending Interest. It follows that as the second Data is received and

forwarded to the third party line-card, no PIT entries will be available anymore. In addition,

compared to the input-output placement it only requires a single lookup per PIT’s operation.

The drawback of the third party placement is that it generates an additional switching operation

for both Interest and Data. Such increase in switching operations can be absorbed by additional

switch fabrics as commonly done in commercial routers [VPL13].

4.2.3 Data structure

In order to have a minimum memory usage, the data structure used for PIT should have a small

memory footprint. PIT is accessed for every received packet, both Interest and Data, and several

lookup, insert, or delete operations per time unit may be required. In the literature, three

data structures have been proposed for the implementation of the PIT: counting Bloom filter

[LBWJ12, YMT+12], hash-table [KMV10, YSC12, PV11], and name prefix trie [DLCW12]. We

assume that a PIT entry, without regards to any kind of implementation, contains the tuple:

< content_name, list_interfaces, list_nonces, expiration > (4.1)

Counting Bloom filter (CBF) A CBF is a data structure for membership queries with no

false negative probability and tunable false positive probability. Compared to a classic Bloom

filter, CBF enables deletion using a counter per bit. In [LBWJ12, YMT+12], the authors

propose to use a CBF to implement the PIT. A CBF-based PIT only stores a footprint of

each PIT’s entry, i.e., available or not, which realizes great compression. The drawback is the

presence of false positives that generate wasted Data transmissions. Also, a CBF-based PIT

can only be coupled with the input-only placement since the compression of its entries loses the

information contained in list interfaces which requires to lookup PITs at each input line-card

in order to determine where a Data should be forwarded. Finally, a CBF-based PIT cannot

4.2. Design space 84

detect loops and support timers, as nonce values and timestamps are lost in the compression

as well. The memory footprint of a Bloom filter, given a fixed false positive probability fp, is

S = −kn

log(1−f
1

k
p)

where k is the number of hash functions, and fp is the false positive probability.

However, a CBF requires c · S memory, where c denotes the size of a counter.

Hash-table It is a data structure that maps keys to values. We explored the possible designs

of hash tables in Chapter 3 for the FIB (cf. Section 3.2.3, page 51). However it is worthy

to explore the design space of hash-tables that could meet the different requirements of the

PIT module. In [YSC12, PV11], the authors suggest to implement the PIT using a hash-table

where a content name is used as key and its corresponding PIT’s entry is used as a value.

Compared to the CBF-PIT, a PIT based on a hash-table can be coupled with all placements,

and it can detect loops (if the PIT placement supports it as well) and support timers. These

features come at the expense of a larger memory footprint compared to CBF. In theory, a PIT

based on a hash-table can perform all operations with a single memory access. In practice,

multiple accesses are needed in presence of collisions, i.e., when multiple keys map to the same

bucket. We analyze hash-table design for the PIT with the same approach of Chapter 3. In the

following, we always assume a load factor α = 1, that is the number β of buckets available in

the table matches the number n of items to be stored. This analysis is derived from the work

of Vargese et al at [KMV10].

A classic hash-table uses chaining, i.e., a list per bucket, to handle collisions. Chaining guaran-

tees that PIT operations are accomplished in 2+α/2 memory accesses on average, where α = n
β

and β refers to the number of buckets. However, when collisions happen, up to O
(

log(n)
log(log(n))

)

accesses (under the assumption n = β) are needed, which can severely hurt the required deter-

minism. The acronym to indicate a simple linear hash table is LHT. Several approaches exist

to improve upon the classic hash-table with chaining [KMV10]. Multiple choice hash-tables,

as d-left hashing, are data structures where d hash functions (d ≥ 2) are used: in the case of

d-left hash table (DT) each entry is hashed d times and added to the less loaded bucket among

the d identified. This strategy trades increased complexity and average access time, computa-

tion of d hashing functions and d probes to the data structure, with lower collision probability,

which in turn reduces the number of memory accesses in the worst case, e.g., O
(

log(log(n))
dφd

)

(assuming n = β) where φd is the asymptotic growth rate of the d-th order Fibonacci numbers

(e.g. the dominant root of xd = 1 + x + ... + xd−1). Open-addressed hash-tables are another

solution where every bucket stores a fixed number of items; the size of a bucket is limited by

the amount of data that can be read with a single access to the memory. Bucket overflow is

managed by chaining with linked lists, but this is expected to be rare if a bucket is large enough

with respect to an item. It follows that even in presence of collisions a single memory access

4.2. Design space 85

is enough in most cases. The drawback is a larger memory footprint compared to the previous

hash-tables. Also, bucket overflow is frequent if a bucket can only contain a limited number

items. Hash-tables with index are often used to solve this last issue [FAK13]. An index consists

of multiple buckets, each bucket has a fixed number of index tuples <tag, offset>. A tag is the

indexed item’s hash value, and the offset is used to address the actual item that is stored in a

separate memory location. When open-addressing is used, no pointers are usually stored inside

the buckets, since a set of slots has been previously allocated. Pre-allocation of memory space

allows lazy mechanisms for element deletion: when a stored element has to be removed, a tag

can be set to indicate that the location may be reusable for other insertions. Setting a tag is a

simple operation that is less time consuming than freeing memory and updating pointers.

Name prefix trie It is an ordered tree used to store/retrieve values associated to “compo-

nents”, set of characters separated by a delimiter; for example, INRIA is a component in e.g.,

/INRIA/THESIS/MyThesis.pdf/chunk0 and the delimiter is /. The name prefix trie supports

LPM, and exact matching as a subset of it. The Encoded Name Prefix Trie (ENPT) [DLCW12]

reduces the memory footprint of a name prefix trie by encoding each component to a 32-bits

integer called “code”. The drawback is that this compression requires to introduce a hash-table

to map codes to components. The ENPT-based PIT described in [DLCW12] does not specify

any mechanism to detect loops and remove PIT entries with expired timers; however both oper-

ations can be accomplished assuming the usage of the PIT tuple 4.1. To do so, we simply have

to add to each PIT’s entry the code associated to the content name. Similarly, the lazy deletion

mechanism discussed above can be used to remove entries when needed. In a ENPT-based PIT,

each operation starts at the root of the trie and proceeds iteratively along the tree until a leaf

node is reached or it is not possible to further proceed: it follows each PIT operation requires a

number of accesses to memory that is linear with the number of components in a content name.

Recall that a ENPT-based PIT also require an external hash-table to store PIT tuples: it fol-

lows that the memory footprint of a ENPT-based PIT is the size of the ENPT plus this hash-

table. Since no details is further provided on which hash-table should be used in [DLCW12],

we assume either LHT or DT for the reasons discussed above. Finally, two additional accesses

to memory are required to retrieve/update/remove an element from the hash-table once the

node in the ENPT is found.

4.2.4 Timer support

Timers are used to invalidate pending requests which have not been satisfied after a given

amount of time. More specifically, a timer is associated to a every active PIT entry, and,

once the timer expires, the PIT entry is invalidated. Proper timer tuning is crucial for the

INRIA
/INRIA/THESIS/MyThesis.pdf/chunk0
/

4.2. Design space 86

performance of an NDN network but it is out of the scope of the thesis (for more details, see

for example [CGM12]).

Timers can be handled in an active or lazy fashion depending on whether timer expiration is

detected and processed immediately or after a certain amount of time respectively. Active timer

management requires to constantly verify the status of all timers and invalidate a given PIT

entry as soon as its timer expires. The active approach guarantees deterministic PIT operation

execution at the cost of processing resources constantly devoted to timer management.

Lazy timer management delays timer verification to periodic checks or to the moment when

an entry is accessed for processing an Interest or Data packet. Once timer expiration is de-

tected the entry is then invalidated before any further operation. The lazy approach does not

constantly consume processing resources but may hurt PIT operation determinism and delay

critical actions that could be associated to a timer expiration (e.g. request retransmission).

4.2.5 Loop detection

As previously said, a nonce is a random number generated by a user who wants to retrieve a

content at a certain time. It is used to detect loops of Interest packets that otherwise would

be forwarded continuosly. Each unique nonce can be computed as a pseudo-random value

initialized with the tuple seed: SEED= {Ui, ICj
, Tk}. The seed so-defined takes into account

that user i is producing an Interest for the chunk j at a certain time k, and so it unequivocally

identifies a single user interaction requesting a specific content chunk. Each PIT entry should

maintain a list of nonces which have been seen for the content requested.

A not negligible amount of processing capacity is required to compare the nonce carried in

the Interest packet with all the nonces in the PIT entry. We can optimize the time spent to

traverse the list of the nonces by using mini Bloom filter rather than a list. In this scenario,

the 64-bit nonce carried in the Interest packet is split to form four 16-bit hash values. In the

corresponding PIT entry, the 64-bit nonce field is accessed as a bloom filter, and 4 bits are

checked (cf. Section 3.2.3). If there is no match, then the nonce should be added. We remark

that Bloom filters have no false negative probability, and a tunable false positive probability.

In particular, if we consider the false positive formula: fp = (1 − e−
nk
m)k when m = 64, k =

4, n = 10, the false positive is less than 5% [Blo70]. When a false positive occurs, the nonce

is erroneously thought to be already present in the PIT, and therefore the interface which the

Interest arrived from is not recorded. This means that when a Data packet related to that

pending request reaches the PIT, it is not forwarded to that interface. This behavior affects

only multicast applications, and it can be mitigated by updating the interface bitmask even

4.2. Design space 87

though the nonce bloom filter gives a positive response. The cost is in term of overhead in the

data transmission, because a Data packet can be forwarded to some interface which did not

requested a content, and the update of the bitmask was only an Interest packet which looped

(we choose this approach for our design, cf. Section 4.3.5 for more details about the detection

of loops with Bloom filters).

4.2.6 Parallel access

We identify three main approaches for concurrent PIT access, which vary in the level of paral-

lelization they can exploit.

Locked In a locked access approach only one core at a time can perform insert, remove and

lookup operations. Despite the ease of the implementation, its simplicity translates to a worst

case because it does not exploit parallelism even in the presence of many idle cores, resulting

in a one-at-a-time behavior for each packet.

Load balancing A classical approach to allow many cores to process data in parallel is to

provide memory access by using a load balancing (LB) technique. The load balancing approach

consists in giving all the cores a separate and private subset of the memory that can be used

for lockless instructions. The LB can virtually exploit full parallelism (under the hypothesis of

perfect distribution of packets, that grants a fair load balance among the cores): since one of

our main goals is high-speed computation, we decide to adopt this approach for our main PIT

table.

Reuse Finally, a reuse approach refers to a method in which every core access a private buffer

of elements that can be used to locally store and delete entries. Since local buffers have a non-

shared visibility among multiple cores, all local operations can be considered lockless (similar

to the LB). When the system reaches saturation (i.e. one local buffer is full), memory resources

should be reallocated, and the overflowing local buffer must be expanded. The expansion

operation accesses a shared memory area, and therefore it is locked. When a lookup or an

update occurs, the core should decide whether a matching PIT entry belongs to its private

buffer in order to perform a lockless instruction; otherwise it should lock the corresponding

memory area to access another core’s local buffer. This intermediate step affects only the

update and delete instructions, while the lookup is always lockless. This scheme represents a

trade-off between the previous cases.

4.3. PIT: design and implementation 88

4.3 PIT: design and implementation

Following the insights of the previous section, we now describe the design of our Pending

Interest Table and its integration in our content router Caesar. First, we review our content

router architecture and discuss the PIT placement. Then, we present the PIT data structure

and its main operations.

4.3.1 PIT placement and packet walktrough

We integrate our PIT design in Caesar, with both input-output and third-party PIT placement;

as described in Section 4.2 these two placements enable all NDN features. The packet workflow

is as follow.

• Packet Input:

The packet is received on an input line card, and a hardware load balancer dispatches it

to one of the available cores of our architecture for processing. The load balancing can be

either uniform random across cores or based on the hash value of the full content name

carried by the packet. The former guarantees a uniform distribution of load across cores,

but it requires mechanisms to deal with concurrent operations on the PIT performed by

different cores. The latter may result in unbalanced load over cores in presence of non

uniform workload, but it allows concurrent PIT operations as every core works on an

isolated part of the PIT.

• Packet processing :

– Input/Output placement: In case of an Interest packet, PIT insert or update

operations are performed on the input line card, and the packet is transferred to the

output line card towards the next hop via the switch. In case of a Data packet, PIT

remove operation is performed and the packet is then transferred to line cards that

have requested the corresponding data as indicated in the PIT entry.

– Third party placement: The target line card i is computed by using the hash

value H of the full content name, as i = H mod NL. The packet is then transferred

to line card i for PIT processing via the switch. PIT insert, update or remove

operations are performed and the packet is then transferred to the output line cards

via the switch.

• Packet output:

Once received by the backplane interface of the output line card, the packet is assigned

4.3. PIT: design and implementation 89

to a Caesar’s core and the packet is sent to the interface for transmission. In case of

input/output PIT placement, PIT operations are repeated on the output line card before

the packet is transmitted.

4.3.2 Data structure

Among the most suitable data structures identified in Section 4.2.3, we base our PIT design on

a hash-table with index approach for two main reasons. First, in our architecture the amount

of memory that can be read with a single memory access is 128 Bytes, which corresponds to a

cache line. As a PIT entry is about 100 Bytes large, a simple open-addressed approach would

result in frequent bucket overflows. Second, with a multiple-choice approach the complexity

overhead of multiple hash value computations would be higher than the complexity overhead

required to solve the collisions generated with a single hash value.

Our design is detailed in Figure 4.1a. It consists of an entry table, that manages and stores PIT

entries, and a hash index, to quickly find entries. The entry table stores fixed-size PIT entries,

and is organized as a circular append-only array where every entry can be addressed with his

position in the array. Values associated to a novel content name are simply inserted in the PIT

entry right after the last used one, overwriting existing values. We dimension the entry table to

handle worst case scenarios, where n = NMAX = λinTMAX (cf. Section 4.1) so that overwritten

values are necessarily obsolete (i.e. the PIT entry is expired). The index consists of β buckets

of 128 Bytes each (i.e. a cache line). Each bucket is composed of s slots, consisting of the index

tuples < H(content_name), P IT_entry_position >: the first field is a the 32-bit CRC value

computed over the full content name, while the second field is 32-bit value that identifies the

PIT entry position on the entry table. We choose to have a load factor α = 1, and therefore

β = n = 1M

The value s identifies each bucket’s size of the index table. The maximum number of slots per

bucket represents a worst case for the elements lookup: when the bucket is full, and the desired

element is at the end of the bucket, at least s trials are needed. Our design choice is to set

s = 13, even though it does not cover the whole cache line, and padding the rest of the bucket

with dummy bits.

The PIT entry is detailed in Figure 4.1b, and consists of the fields described in Section 4.2.

The hash value of the content name is omitted as it is already present in the index; the content

name itself is stored in a separated memory area to handle variable size names and a 64-bit

pointer to the name is stored in the PIT entry. A bloom filter of 128-bits is used to keep track

of the nonces for loop detection (cf. Section 4.2). 128-bits are reserved for timer management,

4.3. PIT: design and implementation 90

h32 i32 ... h32 i32 ...

h32 i32 ... h32 i32 ...

pit_entryi32

 cache line

last first

emptyi32

(a) PIT Hash table

active

...

nonce input_face

timer /c
1
/.../

/.../c
d

(b) PIT entry

Figure 4.1: PIT table and the single PIT entry.

while a 128-bit bitmask is used to identify the interfaces from which the Interest packet has

been received. It follows, the size of a PIT entry is 58 Bytes (aligned to 64 Bytes to fit half

cache line), plus 42 Bytes required to store a content name on average.

Parallel access In Section 4.2.6 we described three different approaches to manage the par-

allel access to the main memory. Our PIT is designed to exploit parallel processing of multiple

cores that share the same DRAM memory area. In our design, the PIT hash table is therefore

split in many subtables, and every core can perform insert, lookup and updates in a lockless

way. The procedure to achieve the lockless operations is the following: each packet is first

hashed, in order to find which core is responsible for that content name, and it is forwarded to

the corresponding core to be processed. Once the packet is dispatched, the core can perform the

usual NDN operations without concurrency issues. This mechanisms works both for Interest

and Data packets.

We chose the LB approach as our default design to exploit Caesar’s parallel multicore archi-

tecture, and because of the simplicity of deployment. Under the hypothesis of a fair packet

distribution among the cores (thanks to a perfect hashing) it may result in a performance speed-

up w.r.t. the other approaches. However, we evaluate in Section 4.4 the LB PIT, together with

the Reuse and Locked approach.

4.3.3 PIT operations

As described in Section 4.1 three main operations are performed on the PIT: insert or update

when an Interest packet is received, and remove when a Data packet is received or a timer

expires. Upon reception of an Interest or Data packet a preliminary lookup operation is required

to verify the existence and retrieve a given PIT entry. In the following we describe how those

four main operations are performed on the data structure described above.

4.3. PIT: design and implementation 91

Lookup The lookup operation works as follow. First, we generate a hash value H from full

content name extracted from the Interest or Data packet, and identify one among the β buckets

performing a modulo instruction: the index i = H mod β is then found in the index table.

Bucket i is loaded in the main memory, and H is compared with all the hash values stored

in the bucket items until a match is found. If a match exists, the content name is compared

against the name stored in the PIT entry indexed by the matched index item. If the two names

correspond, a PIT entry for the incoming content name exists; PIT processing continues with

an update or remove operation for an incoming Interest or Data packet respectively. Otherwise,

the lookup in the index table continues: this event is due to hash collision but anyway it is

expected to be rare for well designed and dimensioned hash functions.

If there is no match at the end of this process, then a PIT entry for the incoming content name

does not exist. In case of an incoming Interest packet the PIT processing continues with an

insert operation, while in case of an incoming Data packet the packet is dropped as it has not

been requested.

Insert The insert operation consists of the following steps: i) add the required information to

the first available PIT entry in the entry table; ii) update the hash index. The first operation

is performed by filling the fields of the PIT entry right after the last used one. The second

operation consists on writing some data to the bucket i = H mod β (previously selected by the

lookup operation); we insert the hash value H and the position of the PIT entry in the entry

table in the first available item of such bucket. Chaining with linked list is used if all items are

busy, but this is expected to be rare if the number of buckets is large enough.

Update The update operation consists in updating the information stored in the PIT entry

identified by the lookup operation. First, the incoming nonce is checked against nonces stored

in the PIT entry. Then, if the nonce for the considered content name has not been received

before, the nonce is added to the nonce Bloom filter field. Also, the interface from which the

interest has been received is added to the list of interfaces.

Remove The remove operation is performed when a Data packet is received, or as a conse-

quence of a timer expiration. In the both cases the active field of the index tuple identified

during the lookup process or specified in the timer entry is set to FALSE. In the former case

the timer expiration is also descheduled.

4.3. PIT: design and implementation 92

4.3.4 Timer support

Our timer management scheme follows a mixed active-lazy approach (cf. Section 4.2.4). Specif-

ically, we leverage hardware functions available in Caesarto schedule PIT timer expiration.

Then, expired timers are handled with low priority by Caesar’s hardware cores, i.e. a core han-

dles a timer only if there are not packets to be processed. Finally, before any PIT operations

described in the previous section is executed a given core checks if the timer associated to the

concerned entry is expired.

Our design does not require any additional processing resources to monitor and detect timer

expiration. It promptly reacts to timer expiration in most cases, as 100% core load is a rare

event and happens for extremely short period of time. Finally, it does not impact PIT operation

determinism because: i) timer expirations are handled separately from regular PIT operations

in most cases; ii) if a timer expiration is detected once a PIT entry is accessed for a regular

operation, the invalidation of a given entry only requires to set the active field of a the index

entry to FALSE.

When a PIT entry is used, a timer value is stored together with other information. A timer

is represented by a 32-bit integer value, which refers to the clock cycle of the insert operation.

An update instruction causes an update of the timer value, while a delete instruction does not

affect the value stored in the timer; in fact, when a timer expires, the active field is set to zero

and there is no need to overwrite the previous value of the timer. When a lookup occurs and

a PIT entry is found, the timer value is compared to the current clock cycle: if the difference

is higher than a tunable threshold, the PIT entry is considered expired, and it is afterwards

invalidated. We fixed a threshold to span a lifetime of 500ms at most. This mechanism enables

lazy deletion of expired entries, both for the Linear and the Index Hash table: in the first case,

an entry is checked while pointers of the linked entries are traversed, while in the second one,

timers are compared during the traversal of all the slots inside the current bucket.

To speedup the overall processing, the 32-bit timer is stored in the index table, and therefore

the index tuple becomes the following: < Timer,H(content_name), P IT_entry_position >.

When a lookup occurs and the bucket is chosen, then all the timers in the bucket can be

checked and invalidated if needed. The presence of the 32-bit timer in the index table reduces

the number of slots available in the bucket. We choose to fix s = 6 when timers are enabled.

4.3.5 Loop detection with Bloom filter

Bloom filters grant membership queries with no false negative answers, and a tunable false

positive probability. Since we adopt a BF approach to store the nonces indicating looping

4.3. PIT: design and implementation 93

or duplicate packets, no loops are created (no false negatives) but some non-looping Interest

packet may be erroneously considered as a duplicate (with a probability fp = 0.05, derived in

Section 4.2.5).

Such an inconsistency affects our performance in case of multicast applications, i.e. lots of

users requesting the same content chunk in a small time frame. We believe that this approach

is naturally mitigated by the aggregation feature of the PIT, and can be furtherly mitigated

bypassing the BF for popular content requests.

Aggregation and looping Interest packets We now consider an Interest packet which

is incorrectly considered a duplicate. This packet will be discarded, and the corresponding

interface I will not be added in the PIT. However, for popular content, it is likely that I is

already present in the PIT entry’s interface list due to some other content request. In this

case, even for the non-looping Interest packet, a corresponding Data packet is still created and

sent back to I. Thus, only a fraction of the false positive can be effectively considered as the

probability that a request is unserved. In case of unserved requests, retransmission may be

needed, and a traffic overhead can be present.

Ignoring the BF nonce for popular content In Background Section 1.4.1.3, Figure 1.7

we described that a Processing module may be present in a content router. This can be used

to monitor the popularity of requested contents, by counting the name occurrences in the PIT.

It is possible to detect the requests which are more popular (which are the ones that may cause

a BF nonce failure) and send Interest packets even in case of a false positive occurrence. This

may cause two problems: first, a general traffic increment; second, the forwarding of Interest

packets which are looping in the network.

Store the nonce list in the DRAM Finally, we can use the Bloom filter nonces together

with a nonce list stored the DRAM. In this way, a new nonce is added both in the nonce BF as a

"fingerprint", and in the nonce list with its complete value. This approach relies on the benefit

of the BFs, which reduce the number of useless accesses to the separate data structure, together

with the possibility to handle the false positives thanks to the access to the actual nonce list.

However, the nonce list is a very dynamic data structure (i.e. very frequent modification, due

to the incoming new nonces) and can dramatically reduce the overall PIT performance due to

atomic accesses and updates.

For our design, we decide to adopt the approach of the BF nonces and handle the possible

false positives (creating unserved requests) with retransmissions, at a cost of a Interest traffic

4.4. Evaluation 94

overhead.

4.4 Evaluation

In this section we evaluate our Pending Interest Table. We first describe our methodology in

Section 4.4.1 and then we present our experimental results from Section 4.4.2 to 4.4.4.

4.4.1 Experimental setting

For the experimental evaluation of our PIT we use the typical settings showed in Section 2.4.2.

Our Pending Interest Table is statically allocated at the start-up of the content router, and

may contain a tunable number of buckets. The maximum capacity of a PIT should be sufficient

to save the state of all pending requests: this size has been shown to be of the order of 106

elements [DLCW12] (cf. Section 4.4.1.1). We compare our PIT design with a linear hash

table implementation. We also show the difference between the locking mechanisms described

in Section 4.3.2.

We assume as workload the reference workload shown in Section 2.4.2, and we use it as input

for our commercial traffic generator to generate Interest and Data packets.

We define traffic load as the ratio between Interest packets and the total number of packets.

We identify two main conditions for the traffic load. We call flow-balanced scenario when all

the Interest packets are satisfied by Data Packets; in this scenario, the load is 50% (i.e. 50%

of all packets are Interest packets). We can vary the load conditions by varying the number of

Interest packets satisfied by the corresponding Data packets between 50% and 100% (i.e. all

packets are Interest packets). This is called the Interest-only scenario.

A flow-balanced scenario represents an average condition, in which all pending Interests are

satisfied by a corresponding Data packet. If the network is overloaded, packet losses may occur

and not all Interests can be satisfied. In this condition the number of PIT elements increases,

and we can observe a loss in performance due to the slower insert/update operations.

Our experiments consist of the following steps: first, traffic with desired characteristics is

originated at the traffic generator and transmitted to Caesar’s line cards; then Interest and

Data packets are processed by line cards and content names are extracted; finally, PIT is

accessed both for Interest and Data packets. According to the match result of the insert/lookup

4.4. Evaluation 95

operations, forwarding decisions are taken and packets are sent back to the generator. We then

measure the typical characteristic values of forwarding rate and packet latency.

4.4.1.1 PIT dimensioning

Before to analyze the memory footprint of our PIT table in Section 4.4.2, we analyze the

procedure for a correct PIT dimensioning. The reason behind the choice of a particular PIT

size deserves some considerations about the typical memory consumption of the PIT table.

We detail in this section the analysis of the PIT’s large state showed in Section 4.1 at page

4.1. We consider two variables: the insertion rate and the deletion rate of PIT entries. Let

λINS is the insertion rate for a specific line card: its value is not necessarily equivalent to the

interface’s maximum rate, because it takes into account only the new incoming Interests which

are not already stored in the PIT. We can although consider the worst case for the insertion

process, that is when all incoming requests refer to contents not yet requested. In this case,

λINS = λINTERFACE.

Let now µ be the deletion rate. We remind that a PIT entry is deleted from the PIT as soon

as either a corresponding Data packet is received, or the timer related to the item expires. We

can assert that µ = λDATA + λEXPIRATION . For the deletion process, the worst case occurs

when all the requests are not matched by an incoming content data (and therefore λDATA = 0).

In this scenario, all the elements are kept in the table until timers expire, and the deletion rate

is equivalent to the timer expiration rate.

This simple analysis can be used to dimension our PIT table in the worst case, that is when

λINS = λINTERFACE and µ = λEXPIRATION . Given a 10Gbps interface, assuming Interest

packet of 120 bytes, and an expiration time of 500ms, the maximum number of elements in the

PIT table is bounded by 10·109 bit/s
120·8 bit

· 0.5s ≈ 5 · 106 elements.

It is reasonable to tune our table to contain 1 million elements because the worst case is a rare

event into common conditions. In fact, PIT allows to aggregate the content requests for the

same content name (resulting in λINS < λINTERFACE), and if the network is not under attack

or in a congestion situation, requests will be eventually matched by corresponding Data packets

(therefore λDATA 6= 0).

4.4.1.2 PIT bucket overflow

We observe Figure 4.2, showing the number of elements per bucket when the number of PIT

buckets β is 1M for a workload of n = 1M elements. When timers are not enabled, the bucket

4.4. Evaluation 96

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 0 1 2 3 4 5 6 7 8 9 10

N
u

m
b

er
 o

f
b

u
ck

et
s

Number of elements per bucket

HT 1M Buckets

Figure 4.2: Number of prefixes per bucket in the PIT. A bucket overflow occurs only when timers are enabled.

Hash Table Overall Memory Index Entries
Linear 152 MB NA 152 (variable)
Index 232 MB 123 MB 108 MB

Table 4.1: Memory usage of Linear and Index Hash Table

size is s = 13, and therefore there is never a bucket overflow. However, when timers are

enabled the bucket size is reduced to s = 6 slots: we derived that about 100 buckets over 1M

are overloaded. We evaluate that, assuming no timer expires in one time slot, the probability

of overflow in our dataset is P(overflow) = 1.2 · 10−4.

Overflows are managed by overwriting the first slot of the overflown bucket. We give two main

reasons to explain how the error rate of this approach can be mitigated. First, when timers

are enabled it is more likely that some bucket slots are freed due to the timer expiration: in

fact the calculated P(overflow) is an upper bound, and the real percentage of items which will

be overwritten is generally lower. Second, when one item overwrites another slot in the same

bucket, the latter is always older than the current one.

Additionally, buckets overflow can be mitigated by reducing the value of the PIT entries’

expiration time.

4.4.2 Memory footprint

We begin our analysis with by considering the memory footprint of our PIT. The memory

footprint is calculated as the size of the memory allocated for the Pending Interest Table which

is stored in the DRAM memory at the startup of our experiments.

In Figure 4.3 we show a comparison between the memory occupied by both Index and Linear

4.4. Evaluation 97

 0

 100

 200

 300

 400

 500

 600

 700

 0.5 1 1.5 2 2.5 3

S
iz

e
(M

B
y

te
s)

Number of elements (Millions)

Memory footprint

Index HT
Entries

Indexes
Linear HT

Figure 4.3: Memory footprint for Linear and Index PIT as a function of the number of buckets

PIT as a function of the number of buckets. The size of the Index HT is made of two com-

ponents: the preallocation of all the indexes, and the memory for the actual entries. Both

components of course grow with the number of buckets, and the overall PIT size grows follow-

ing the sum of the two parts. LHT makes use of pointers instead of indexes, and therefore the

PIT entries and the corresponding pointers used to manage collisions occupy the full amount

of memory space of the LHT, being physically located in the same memory area.

We observe that the Index Hash table uses more memory than the LHT. This can be explained

considering that the Index HT is overdimensioned with respect to the incoming content names.

As described in Section 4.3.2, each bucket may potentially contains up to s = 13 slots: therefore,

if needed, the whole table can sustain a number of elements which is about ten times the number

of buckets, at the price of increasing the number of preallocated PIT entries. On the contrary,

the LHT requires less memory than the Index HT, but considering a population of 1M elements,

LHT is still comparable to the Index table. We remind that the size of pointers stored for every

item in LHT is 64 bit, while in the Index Hash table all items are indexed with a 32-bit index

value. Since each entry is linked to the following and the previous on, the size of pointers is

not negligible in the memory footprint.

A summary of the results is shown in Table 4.1, where we choose the reference bucket’s number

of 1 million. The Linear Hash table implementation needs 152 MB of memory. The amount of

space used by the Index hash table implementation is 232 MB, which consists of 123 MB used

by the actual indexes and 108 MB used by the complete PIT entries.

4.4. Evaluation 98

 0

 2

 4

 6

 8

 10

 50 60 70 80 90 100

R
at

e
(M

p
p

s)

Load (%)

LOCK
REUSE

LOADB

(a)

 0

 2

 4

 6

 8

 10

 50 60 70 80 90 100

R
at

e
(M

p
p

s)

Load (%)

LOCK
REUSE

LOADB

(b)

Figure 4.4: Throughput of the Linear (a) and Index Hash Table (b) as a function of the traffic load as defined
in Section 4.4.1 at page 93.

4.4.3 Throughput without timer

Figure 4.4 (a) and (b) reports the plot of the throughput, measured in millions packets per

second, as a function of the traffic load in the network, as defined in Section 4.4.1.

For both Linear and Index Hash table, the Load balancing approach (the default for our design)

takes advantages of the lockless operations, and so it performs better than other schemes

for concurrent access. For instance, in a flow-balanced scenario LHT and Index HT reach a

throughput of 6.2 Mpps and 7.9 Mpps respectively. The throughput decreases as the load

increases: in the Interest-only scenario (i.e. traffic load is 100%), the PIT throughput reaches

6.1 Mpps and 6.4 Mpps for the Linear and the Open Hash table respectively.

The plot highlights that the LHT implementation provides a throughput which is almost con-

stant, independently from the load. On the contrary, the Index HT is almost 2 Mpps slower

when the flow is made of Interest packets only, with respect to the flow-balanced scenario. We

can explain this behavior by considering the bottleneck of the PIT in the two opposite scenarios.

In a flow-balanced scenario lots of insert/deletions should be performed: this keep the usage of

PIT low, and several buckets are free to use. The Interest-only scenario, on the contrary, allows

only insert and update operations (up to the saturation of the buffer of buckets), and therefore

the hash table is always full. When the PIT is full, and timers are not active, every incoming

item is checked to detect if any existing element may be updated, and several comparison (and

possibly updates) are performed.

The LHT is slower in the flow-balanced scenario, due to PIT entries being continuously deleted

by a corresponding Data packet, or created by an incoming Interest. Pointers management

4.4. Evaluation 99

slow down the LHT performance. Index deletion, insertion and update are faster thanks to

the pre-allocation of the PIT entries. In fact, we remark that all deletions translate in the

overwriting of a variable in a PIT entry.

In the Interest only scenario, performance are similar between Index and Linear Hash table.

In this scenario, PIT bottleneck is update-bounded, because the majority of the operations are

updates. LHT is not strongly affected by this situation because its bottleneck is already present

in the pointer traversal operations. Index HT’s drop in performance is caused by the fact that

when the hash table is full, all the slot of a bucket must be traversed to detect whether a slot

is available or not. This traversal is not present in the flow balance scenario. Since both LHT

and Index HT are affected by the complete traversal of a bucket in the Interest-only scenario,

we expect to observe similar performance between the two approaches: experiments confirm

this equivalence between the two implementation.

The Load balancing implementation might be affected by the type of the traffic injected, since

some adversarial traffic pattern may overload some core with respect to the others, causing a

loss in performance. The case of such a pattern is very unlikely, and in the literature several

works make use of a LB approach: these are the explanation why we choose this approach

as our default design. When it is necessary to avoid cores overload, a tradeoff can be made

and other approaches can be adopted. In our experiments we show as well the performance

comparison of the Reuse and Locked HT. The plots of these other approaches report a behavior

which is similar to the LB design for both Linear and Index Hash table, with the former being

quite constant as the traffic load varies, and the latter showing better performance when under

a flow-balanced scenario. The overall summary of this evaluation is that the our design for the

PIT module is the one that performs better in the majority of the scenarios.

4.4.4 Throughput with timer

In Section 4.3.4 we described the design of the timer management for the Pending Interest

Table. Thanks to our mixed approach using both lazy and active deletion, timers activation

may introduce some processing overhead due to the 32-bit write or comparisons. This is the

main difference with respect to the previous experiment. Our approach grants that timers

instructions occur in two scenarios: first, for an incoming Interest packet corresponding to a

PIT entry, to detect if the existing entry is expired or it can be updated, and second, for the

other PIT entries encountered during the bucket traversal of the lookup process, to check if

some item can be lazily invalidated. As shown in Section 4.3.2, a bucket is entirely in a cache

line: this enables fast operations on all the bucket entry.

Experimental results show that no significative difference exists between enabling or disabling

4.5. Conclusion 100

timers. The timer expiration occurs even in a 100% Interest scenario, because the incoming

Interest not only triggers the timer check for an existing PIT entry, but also for all the entries

sharing the same original bucket. As a result, PIT is never overloaded even in congestion

conditions: thanks to the timer expirations, some slots are freed on Interest lookup,and new

requests are allowed to be inserted and removed.

A second explanation to this behavior can be given considering the bucket size s. When timers

are enabled, less slots are used for each bucket, and so the worst-case lookup, in which s trials

are required, consists of at most s = 6 trials, which is half of the worst-case when timers are not

enabled. Write instructions, which could affect the overall throughput, are mitigated by the

less number of trials per bucket in the worst case, and by the fact that simple 32-bit comparison

or item invalidations always occur in the same cache line. One of the main findings of Chapter

3 is that exploiting memory cache lines of the underlying architecture provides a significant

speedup. This appears as another evidence of the cache-line performance gains.

After this analysis, we chose to focus on the LB design, with timers enabled. This choice relies

on the fact that the experimental results about PIT’s throughput show better performance both

in a flow-balanced scenario (which represents an average case) and in a Interest-only scenario

(worst case). A Reuse approach is more reliable than the Load balancing approach because

it is not affected by some particular traffic pattern, but the observations of the Section 4.4.3

represent valid reasons to focus on the performance advantages of LB rather than the tradeoff

of the reuse.

4.5 Conclusion

In this chapter we focused on the design and implementation of the Pending Interest Table

(PIT), a module of our content router Caesarwhich is able to maintain a soft-state of the

pending requests. PIT allows aggregation of the same content requests as well as symmetric

routing, two core features of NDN. The PIT prevents the creation of loops of packets and

enables a native multicasting at network layer.

We make the following contributions. First, we investigated the spectrum of candidate designs

for PIT, focusing on its placement with in a content router, on the best-fitting data structures

and the necessary features to enable a full NDN processing. Then, we showed our design for

a PIT, and proposed a module which can be easily integrated in Caesar, our content router.

We evaluated each design with respect to PIT’s requirements on our prototype, performing

extensive experiments by injecting traffic with a commercial 10Gbps traffic generator.

4.5. Conclusion 101

Experiments showed that we can sustain a rate of several Gbps even in the challenging situation

of several insert/update/remove operations occurring at a per-packet granularity. Caesar’s

modular design is therefore proven to be flexible and extensible.

Table of symbols, part I

Content router, dataset, chassis

LCi Line card number i, for i ∈ [0, . . . ,N − 1]

LT Line card table, used in the Distributed Forwarding extension

n Number of elements in the dataset

N Number of line cards in a router

R Rate of a single line card

Content names and prefixes

d Number of components of a prefix

p A generic prefix

pi A generic prefix of i components, that is /c1/c2/ . . . /ci.

t Distance between prefixes, measured in number of components

x A generic content name, that is a prefix followed by a chunk identifier.

Hash table design and evaluation parameters

α Load factor of a hash table

β Number of buckets in the hash table

H, h A generic hash function. (CRC32 is our reference h(·))
ρ Fraction of delegated packets in the Distributed forwarding

s Number of slots in a bucket

Bloom filters and PBF

b Number of blocks in the prefix Bloom filter

c Size of a counter in a counting Bloom filter

f False-positive rate for a single lookup in the PBF.

fp False-positive probability of a generic Bloom filter

k Number of hash functions used for the hash calculations

M Size of the Bloom filter, measured in bits

m Size of the prefix Bloom filter block, measured in bits

nij Number of elements of j components inserted in the i-th block of the PBF

ni Number of element inserted in the block i of the prefix Bloom filter

P(bi) Probability of choosing the block i in the prefix Bloom filter

TV Threshold value for the block expansion in the PBF

w Width of the expansion bits in the preamble of a PBF block

102

Part II

Network Verification

103

Chapter 5

Introduction to the Second Part

Network incidents are not rare events: on the contrary they occur frequently and the damage

can vary with the size of the network and the typology of the incident [GJN11]. Some of the

network errors may be due to network bugs, misconfiguration or failure of some nodes. The

interest for network problem diagnosis has recently grown after the advent of SDN [PKV+13,

KDA12, MRF+13, KRW13]. Network diagnostic can prevent and/or detect the manifestation

of malicious events, but it is often a time-consuming operation, especially with the complexity

and unpredictability of todays networks. In fact a network may consist of several elements

(hundreds, or thousands of nodes), working at different layers of the protocol stack (e.g. L3

routers, L2 switches or L4 firewalls); moreover, rules of the forwarding tables may be compli-

cated filters (for instance, performing a partial match on a specific part of a packet) and they

can be mutually dependent (i.e. a rule is activated if and only if a previous rule does not match

the incoming packet). In all the above cases a deep inspection or a hand-made sanity check is

practically unfeasible.

We provide some examples of forwarding problems generated because of forwarding tables’ mis-

configuration. When the forwarding rules are created thanks to a routing protocol, a manual

modification may create new classes of packets that are rerouted until they eventually would

create a loop. When there are devices with drop rules, there can exist a set of “black-hole”

nodes, where no packet at all is delivered to the original destination. Considering the exam-

ple of packets that loop, detecting such a problem in a forwarding network is known to be a

NP-complete problem [MKA+11] when general rules such as wildcard expressions are used as

it stands for an SDN-network. Network administrators have always been interested in network

diagnosis, and the resarch community showed significant activity about this topic: in the lit-

erature there are some tools that efficiently solve this problem in networks with thousands of

forwarding rules (NetPlumber [KCZ+13], VeriFlow [KZZ+13], Anteater [MKA+11]).

104

5.1. Network Verification 105

Some of these tools make use of practical heuristics [KZZ+13, KCZ+13] to be computationally

efficient, while others translate the problem detection into its equivalent SAT1 problem (cf.

Section 5.1 and Figure 5.1 for an example connecting loop detection and SAT problem) and

solve the latter [MKA+11]. Both methods can be strongly affected by the typology of the

network rules, by the number of nodes and the size of the forwarding tables.

We now begin to formalize the network verification problem. For the remainder of this part, a

table of symbols is present at page 135.

5.1 Network Verification

For the remainder of this part of the thesis we focus on a key diagnosis task: detecting all

possible forwarding loops. Our analysis and our main results can be extended to all types of

verification problems. Given a network and nodes’ forwarding tables, the problem consists in

testing whether there exists a packet header h and a directed cycle in the network topology

such that a packet with header h will indefinitely loop along the cycle.

The NP-completeness of this problem has been previously noted in [MKA+11]. Its hardness

comes from the use of compact representations for predicate filters, that is the rules of the

forwarding tables: the set of headers that match a rule is classically represented by a prefix in

IP forwarding, a general wildcard expression in SDN, value ranges in firewall rules, or even a

mix of such representations if several header fields are considered.

We first give a toy example of forwarding loop problem where the predicate filter of each rule

is given by a wildcard expression, that is an ℓ-letter string in {1, 0, ∗}ℓ. Such an expression

represents the set all ℓ-bit headers obtained by replacing each ∗ of the expression by either 0 or

1. It is associated with the action to be taken on packets with header in that set (such packets

or headers are said to match the rule): drop, forward to a neighbor or deliver locally. Figure 5.1

illustrates a one node network with wildcard expressions of ℓ = 4 letters. Rules are tested from

top to bottom. All rules indicate to drop packets except the last one that forwards packets

to the node itself. This network contains a forwarding loop if there exists a header x1x2x3x4

that matches no rule except the last one. For the sake of clarity, given the rule: r = 110∗,
saying that a header h does not match the rule r corresponds to having h = x1x2x3x4 with

x1 = 0, or x2 = 0, or x3 = 1. Since the last character in the rule expression is a "∗", it does not

affect the header matching. This one node network thus has a forwarding loop iff the formula

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x1) is satisfiable, which

1SAT is the abbreviation of Boolean Satisfiability Problem, shortened in SATISFIABILITY (hence SAT),
and it is the problem of checking if a given boolean expression holds true.

5.1. Network Verification 106

drop

forward

1111

1110

110*

10**

0***

Figure 5.1: Example of a one-node network without any forwarding loop.

is not the case. This simple example can easily be generalized to reduce SAT to forwarding

loop detection in networks with wildcard rules. It also points out a key problem: testing the

emptiness of expressions such as rp \ ∪i=1..p−1ri where r1, . . . , rp are the sets associated to p

rules.

One interesting observation is that the set of rules of a forwarding network defines a σ-algebra:

given the set of all possible headers of l bits H = {0, 1}l, given a collection R = {r1, r2, ..., rn}
of subsets in H (the forwarding rules), which may include the empty set, the σ-algebra σ(R)

contains R and is closed under the set operations of complement, union and intersection. As

packet headers in practical networks such as Internet typically have hundreds of bits, search of

the header space is practically out of reach. The main challenge for solving such a problem thus

resides in limiting the number of tests to perform. For that purpose, previous works [KZZ+13,

KVM12] propose to consider sets of headers that match some predicate filters and do no match

some others. Defining two headers as equivalent when they match exactly the same predicate

filters, it then suffices to perform one test per equivalence class. These classes are indeed the

atoms (the minimal non-empty sets) of the field of sets (the finite σ-algebra) generated by the

sets associated to the rules.

Two challenges arise from this representation. A first challenge lies in efficiently identifying and

representing these atoms. This would be fairly easy if both intersection and complement could

be represented efficiently. In practice, most classical compact data-structures for sets of bit

strings are closed under intersection but not under complement. For example, the intersection

of two wildcard expressions, if not empty, can obviously be represented by a wildcard expression,

but the complement of a wildcard expression is more problematic. Previous works overcome

this difficulty by representing the complement of a ℓ-letter wildcard expression as the union of

several wildcard expressions (up to ℓ). However, this can result in exponential blow-up and

the tractability of these methods rely on various heuristics that do not offer rigorously proven

guarantees.

A second challenge lies in understanding the tractability of practical networks. One can easily

design a collection of 2ℓ wildcard expressions that generates all the 2ℓ possible singletons as

5.2. State of the art 108

SDN
Application/Controller

VeriFlow

Generate
Equivalence

classes

Generate
Forwarding

graphs

Run
queries

Network Diagnosis

- Type of invariant violation
- Affected set of packets

(a) Architecture of VeriFlow (image from [KZZ+13])

X X

X

X

[a, b]

[c
,

d
]

[a', b']

[c
',
 d

']

(b) VeriFlow class representation.

Figure 5.3: Architecture of VeriFlow and its representation of the header classes for R1 = {[a, b]; [c, d]} and
R2 = {[a′, b′]; [c′, d′]}.

5.2 State of the art

Our inspiration for the development of our network verification model comes from the experience

of both VeriFlow [KZZ+13] and NetPlumber/HSA [KCZ+13, KVM12]. Both tools adopt the

approach of reducing the space of all possible elements to be verified by partitioning the l-bit

header space H = 0, 1l, and checking some properties for the obtained subset. They comprise a

theoretical framework for the representation of header classes (or header expressions, for HSA),

and a core library with some external adapters, that are used to manage the topologies and

the forwarding tables of a SDN network. Adopting a different approach, other tools such as

Anteater [MKA+11] use instead external SAT solvers to verify a desired network property, and

therefore translate the verification problem in a boolean formula check.

In the following, we review both VeriFlow and NetPlumber/HSA, and give some details about

Anteater.

VeriFlow VeriFlow [KZZ+13] is a tool designed for real-time verification of network-wide

invariants such as the presence of loops or the reachability between two nodes. It is designed

to work within an SDN network controller in order to obtain a screenshot of the network’s

forwarding tables and can check the validity of some invariant property at run-time. It efficiently

performs the network validation task within the range of minutes thanks to its representation

of the header classes for the given topology and the routers’ forwarding rules.

VeriFlow runs on top of an SDN controller, which can show information about the underlying

5.2. State of the art 109

topology and the forwarding rules of each node. A naive loop detection algorithm could consist

in exploring the l-bit header space H = {0, 1}l, performing a match on all nodes’ rules. VeriFlow

aims to reduce the number of tests to perform on predicate filters by identifying only the sub-

classes affected by every new rule. Therefore, authors confine their verification activities to

only those parts of the network whose actions may be influenced by a new update. This

reduction translates in identifying the equivalence classes (ECs), defined as the set of packets

that experience the same forwarding actions throughout the network.

An overview of the VeriFlow architecture is shown in Figure 5.3a. The first part of VeriFlow’s

verification algorithm is computing the equivalence classes for each new rule (that is, the set

of headers affected by the new rule). An EC is detected by means of range comparison, and

therefore is uniquely identified by its upper and lower bound2. The ECs are organized in a

multi-dimensional trie, doubly linked with the corresponding rules and the nodes containing

the specified rule. After the ECs are generated, a network forwarding graph is created for each

EC in order to represent the network’s forwarding behavior. Finally, the forwarding graph

is traversed and some queries may be run in order to detect whether there is some kind of

invariant violations.

Figure 5.3b shows an example of the VeriFlow’s ECs representation. We consider two bi-

dimensional range rules R1 = {[a, b]; [c, d]} and R2 = {[a′, b′]; [c′, d′]}, where R2 ⊂ R1. When

R2 is fully included in R1, it could be possible to consider a different behavior for only two

classes of packets, each of them due to one specific rule. However, VeriFlow’s representation

generates several additional elements to represent the same header class. In fact, as shown in the

Figure, VeriFlow is forced to compute the range differences, thus resulting in four additional

elements to be verified. This affects the number of generated ECs, and so there are some

unnecessary verification tests that could be avoided. We show more details about VeriFlow’s

EC computation in Section 6.4.3 at page 131.

From the experience of VeriFlow we keep in mind two key points: first, when d-level rule ranges

are used, and additional sub-classes are unnecessarily represented, a d-exponential factor of tests

may be required; second, the number of levels d can be tightly coupled with current Internet

architecture (e.g. VeriFlow’s source code comes with a hard-coded number of fields d = 14,

which can represent the most important fields in standard SDN networks), thus limiting the

flexibility of such a tool.

2VeriFlow reprents SDN rules which are in general multi-level wildcards. We show for simplicity only mono-
dimensional or bi-dimensional rules. For instance, when R1 = [0, 3[and R2 = [2, 4[, VeriFlow generates the
ECs: {c1 = [0, 2], c2 = [2, 3], c3 = [4]}.

5.2. State of the art 110

hs = 1 ∗∗ ∗∗∗∗∗

1 0 0 1∗∗∗∗
hs = ∗∗

∗∗
∗∗

∗∗

hs = 1 0 0 1∗∗∗∗
...

1 0 0 1∗∗∗∗

 ∗∗ 1 ∗∗∗∗∗

B

C

A

B

C

Rules next hop

Figure 5.4: NetPlumber/HSA wildcard expression generation. The topology contains 3 nodes {A,B,C} and
two rules; a starting wildcard expression is created and then propagated in the network when a match is found.

NetPlumber/HSA NetPlumber [KCZ+13] is a tool for network verification which uses a

geometric model of both the header space and the packet processing. It is based on the HSA

framework [KVM12] and represents packets’ headers as points in the l-bit geometric space

{0, 1}l. NetPlumber is connected to the SDN controller of the network that is to be verified,

and translates the topology and the forwarding rules in a specific HSA syntax.

Tough having the same goals of VeriFlow, that is reducing the number of tests to perform

in order to run queries on the network, NetPlumber does not calculate a set of classes to

perform a query, but rather creates a wildcard rule (containing only star characters) that is

then propagated and transformed on the fly, according to the matched forwarding rules. These

transformations are called transfer function. Transfer functions are then applied for all network

nodes and resulting expressions are propagated in the network graph.

This mechanism is described in Figure 5.4. The picture shows a network topology with 3

nodes and two rules in the forwarding table of node A. NetPlumber creates at first a wildcard

expression representing all the header space (all bits are wildcard) and apply a transfer function

on it using the first rule of A as filter. This is equivalent to performing a bit-wise AND operation

between the two expressions. Finally, the result of the first expression is propagated to the next-

hop node. Figure 5.4 shows that NetPlumber/HSA model includes as well set differences: the

transfer function due the second rule of node A takes into account that the new generated

expression should not contain the set of packets already verified by the first rule.

Since header classes are not defined in the HSA framework, we cannot measure the number

of classes generated, and therefore we have to define some other parameter related to the

computation time. This can be represented by the number of wildcard expression generated

by HSA. We remark that some of the generated expressions may be empty (i.e. the wildcard

string does not represent any header set) and still be propagated by HSA: this is due to the lazy

detection of emptiness for each propagation3. Additional details about NetPlumber expressions

3It is possible to force the emptiness test to be verified at every step, thus resulting in a reduced amount of

5.3. Contributions 111

computation are shown in Section 6.4.2 at page 130.

NetPlumber can model any kind of wildcard matching, with a potentially unbounded number

of bits per rule, resulting in a more flexible design with respect to VeriFlow. Moreover, authors

assert that practical network can observe a small number of generated expressions thanks to a

property called linear fragmentation (cf. Section 6.4 and Section 6.4.4 for more details). We get

the inspiration from NetPlumber for two research directions: first, we develop our framework

in order to be as much flexible as possible (i.e. model any kind of matching rules without being

coupled with existing network architectures); second, we look for some property of practical

networks which can allow us to prove that the number of tests could be bounded in real network

environments.

Anteater Anteater [MKA+11] is a tool for network verification which exploits external SAT

solver to run queries on a network topology. It tackles the classical invariant violations such as

loop-detection and nodes reachability. Its design is tightly coupled with IPv4, and therefore it

can analyze only IP forwarding rules containing string prefixes.

Anteater express the verification queries as SAT problems, that can be verified by external

tools. It models the forwarding network as a tuple G = (V,E,P), in which V is the set of

vertexes, E is the set of edges and P is the representation of forwarding actions. In particular,

P is a function with both domain E and codomain in {True, False}: for each edge (u, v),

P(u, v) is the policy for packets traveling from u to v, represented as a boolean formula of

predicate filters.

Anteater then verifies if the boolean formula corresponding to a specific policy check holds

true. This can be done by means of external SAT-solving tools, or using a custom IP-specific

algorithm for boolean formula’s verification. We decided to avoid this SAT-translation approach

and focus instead on reducing the number of tests by finding a good representation of the header

classes.

5.3 Contributions

The main contributions of this part of the thesis are summarized in this section.

We propose a framework for a canonical representation of the atoms (i.e. the minimal non-

empty sets) of the field of sets generated by a collection of sets. We provide an efficient algorithm

expressions, at the cost of additional computation steps. However, we do not consider this for this experiment

5.3. Contributions 112

for computing such a representation. This tool is particularly suited when the intersection of

two sets can be efficiently computed and represented. This is the case for forwarding networks,

where the predicate filter associated to a rule can be seen seen as a compact data-structure

representing the set of headers that match the rule. The header classes of the network (sets of

headers matching the same rules) embrace all possible forwarding behaviors and their number

measures how many tests are classically performed for forwarding loop detection. These classes

are indeed the atoms of the field of sets generated by the collection of all predicate filters of

the network. Following this equivalence, we first provide an efficient representation of atoms

that allows to obtain the first polynomial time algorithm for loop detection in terms of number

of classes. This contrasts with previous methods that can be exponential, even in simple cases

with linear number of classes. We then introduce a notion of network dimension captured

by the overlapping degree of forwarding rules. The values of this measure appear to be very

low in practice and constant overlapping degree ensures polynomial number of header classes.

Forwarding loop detection is thus polynomial in forwarding networks with constant overlapping

degree. Our framework is described and analyzed in Chapter 6. A preliminary work has been

published in [BDLPL+15], and a following paper is currently under submission. We developed a

software tool implementing our algorithms for loop detection, called IHC. We target to evaluate

IHC’s performance as future work (cf. page 140).

Chapter 6

Forwarding rule verification through atom

computation

In this chapter we present the theoretical formalization of the problem of detecting loops in a

network by analyzing the routers’ forwarding tables. The main contribution of this chapter is

twofold. First, we make a key algorithmic step by providing an efficient algorithm for computing

an exact representation of the atoms of the field of sets generated by a collection of sets. The

representation obtained is linear in the number of atoms and allows to test efficiently if an

atom is included in a given set of the collection. The main idea is to represent an atom by the

intersection of the sets that contain it. We avoid complement computations by using cardinality

computations for testing emptiness. Our algorithm is generic and supports any data-structure

for representing sets of ℓ-bit strings that allow intersection and cardinality computation in

bounded time O(Tℓ) for some value Tℓ. It runs in polynomial time with respect to n and m,

which are the number of sets and atoms respectively.

Rule repr. Header cl. Trivial NetPlumber [KCZ+13] VeriFlow [KZZ+13] Our framework

Tℓ-bounded m O(TℓnnG2
ℓ) – – O(Tℓnm

2 logm+ nnGm)
” o.d. kmax m = O(nkmax) ” – – O(Tℓnm+ nGn

kmax)

ℓ-wildcard m ≤ 2min(ℓ,n) O(ℓnnG2
ℓ) Ω(ℓnG2

min(ℓ,n)) Ω(nG2
min(ℓ/2,n)) O(ℓnm2 + nnGm)

” o.d. kmax m = O(nkmax) ” Ω(ℓnG2
min(ℓ,n)) Ω(nG2

min(ℓ/2,n)) O(ℓ(n+ kmax2
kmax)m+ nGn

kmax)

d-multi-rng. m = O((2n)d) O(ℓnnG(2n)
d) – Ω(

(

n
d

)d−1
nG

m
d) O(dnm2 + nnGm)

” o.d. kmax m = O(nkmax) ” – Ω(
(

n
d

)d−1
nG

m
d) O(nkmax(ℓkmax2

kmax + logd n) + nGn
kmax)

Table 6.1: Worst-case complexity of forwarding loop detection with n rules that generate m header classes in an
nG-node network, depending on rule set representation. Tℓ-bounded: intersection and cardinality computations
in O(Tℓ) time; ℓ-wildcard: wildcard expressions with ℓ letters; d-multi-rng.: multi-ranges in dimension d. Addi-
tional hypothesis “o.d. kmax” stands for overlapping degree of rules bounded by some constant kmax. Our results
are detailed in Section 6.3.2; NetPlumber and VeriFlow are analyzed in Section 6.4.2 and 6.4.3 respectively.

113

6.1. Model 114

The second contribution is related to real networks application: we provide a dimension pa-

rameter, the overlapping degree kmax, that reflects the complexity of the collection of rules

considered in a given forwarding network. It is defined as the maximum number of distinct

rules (i.e. with pairwise distinct associated sets) that match a given header. This parameter

constitutes a measure of complexity for the field of sets generated by a given collection of sets.

In the context of practical hierarchical networks, we have the following intuitive reason to be-

lieve that this parameter is low: in such networks, more specific rules are used at lower levels

of the hierarchy. We can thus expect that the overlapping degree is bounded by the number

of layers of the hierarchy. Empirically, we observed a value within 5 − 15 for datasets with

hundreds to thousands of distinct multi-field rules, and kmax = 8 for the collection of IPv4

prefixes advertised in BGP.

If the overlapping degree is constant, then the number of header classes is polynomially bounded:

as a consequence, practical networks may be analyzed in a reasonable amount of time despite

the NP-completeness of the verification problem. In addition, the algorithm we propose is

tailored to take advantage of low overlapping degree kmax, even without knowledge of kmax.

Table 6.1 provides a summary of the complexity results obtained for loop detection depending

on how the sets associated to rules are represented.

We can summarize two main performance achievements of our algorithm for atom computation.

First, it manages to remain polynomial in the number m of atoms even though the number of

sets generated by intersection solely can be exponential in m with general rules. Second, the

use of cardinality computations allows to avoid exponential blow-up (in contrast with previous

work) but naturally induces a quadratic O(m2) term in the complexity. However, we manage

to reduce it to O(m) in the case of collections with constant overlapping degree.

The remainder of this chapter is organized as follows: in Section 6.1 we introduce the model;

Section 6.2 describes how to represent the atoms of a field of sets; we then show our main results

in Section 6.3, especially focusing on atom computation and its implications for forwarding loop

detection that give the upper bounds listed in Table 6.1; in Section 6.4 we give more insight

about the comparison of our results with previous works and justify the lower bounds presented

in Table 6.1; finally, Section 6.5 concludes the chapter, providing some perspectives.

6.1 Model

We start this section by giving some definitions for our generic network model. We introduce

as well the terminology that is used in this chapter.

6.1. Model 115

6.1.1 Definitions

A network instance N is characterized by a graph G = (V,E); each network node u ∈ V is a

router and has its own forwarding table T (u). Every packet in the network has an associated

header h = {b1, b2, ..., bl}, bi ∈ {0, 1}. The natural number ℓ represents the (fixed) bit-length of

packet headers. Let H denote the set of all 2ℓ possible headers (all ℓ-bit strings). We call the

set H the header space. Given a space of elements H, we call collection a finite set of subsets

of H. We also make use of the notion of cardinality : the cardinality of a set (|s|) is the number

of elements in the set s. In the context of the header space, this translates to the number of

headers contained in some set s ⊆ H. Cardinality computation is used to test if a set is empty

or not, thanks to the equivalence: |s| = 0 ⇐⇒ s = ∅.

Each forwarding table T (u) is an ordered list of forwarding rules (r1, a1), . . . , (rp, ap). The

number p is the size of the forwarding table, and it may be different for different routers.

A generic forwarding rule (r, a), is made of a predicate filter r and an action a to apply on

all packets whose header match the predicate. We say that a header h matches rule (r, a)

when it matches predicate r (we may equivalently say that (r, a) matches h). We write h ∈ r to

emphasize the fact that r can be viewed as a compact data-structure encoding the set of headers

that match it. This set is called the rule set associated to (r, a). For the ease of notation, we

thus let r denote both the predicated filter of rule (r, a) and the associated set. Each ai in the

rule entry represents the action to be made on the packet whose header matches that rule. We

consider three possible actions for a packet: forward to a neighbor, drop, or deliver (when the

packet is arrived at destination). The priority of rules is given by the ordering of the rules: when

a packet with header h arrives at node u, the first rule matched by h is applied. Equivalently,

the rule (ri, ai) is applied when h ∈ ri ∩ r1 ∩ · · · ∩ ri−1, where r denotes the complement of r.

When no match is found (i.e. h ∈ r1 ∩ · · · ∩ rp), the packet is dropped by default.

Given a header h, the forwarding graph Gh = (V,Eh) of h represents the forwarding actions

taken on a packet with header h. The forwarding graph is built in the following way: given

some rule entry (ri, ai) ∈ T (u), if we have h ∈ ri and ai = FORWARD(v), with uv ∈ Eh and

ri is the first rule that matches h in T (u), the corresponding action indicates to forward to v;

therefore Gh consists of the set of all visited nodes u ∈ V and all links uv ∈ Eh traversed until

either the packet is delivered, or it is dropped. The forwarding loop detection problem consists

in deciding whether there exists a header h ∈ H such that Gh has a directed cycle.

We make the simplifying assumption that the input port of an incoming packet is not taken

into account in the forwarding decision of a node. In a more general setting, a node has a

forwarding table for each incoming link. The model is not affected by this setting, except that

we would have to consider the line-graph of G instead of G.

6.1. Model 116

6.1.2 Header Classes

As introduced in Section 5.1, we can infer a natural relation of equivalence among headers

with respect to rules: we assert that two headers are equivalent if they match exactly the same

rules, that is if they belong to the same rule sets. In practice, this translates to the simple

observation that two equivalent headers cause the corresponding packets to have exactly the

same behavior in the network. The resulting equivalence classes partitions the header set H

into nonempty disjoint subsets called header classes. Thanks to this equivalence relation, we

can check any property of the network on a class-by-class basis instead of a header-by-header

basis. Performing a verification problem in the space of the classes is guaranteed to prove a

specific property for any h of the header space, but results in a smaller number of computation

steps. A natural parameter for such a problem is the number m of header classes; it is thus

interesting to quantify the difficulty of forwarding loop detection (or other similar network

analysis problems) with respect to this parameter.

The header classes can be defined according to the collection R of rule sets of N (i.e. R =

{r | ∃u, a s.t. (r, a) ∈ T (u)}). If R(h) ⊆ R denotes the set of all rule sets associated to the

rules matched by a given header h, then its header class is equal to
(

∩r∈R(h)r
)

∩
(

∩r∈R\R(h)r
)

(with the convention ∩r∈∅r = H). Such sets are the atoms of the field of sets generated by R.

The computation of these sets is of relevance for this thesis, because performance depends also

on the efficiency of this calculation.

6.1.3 Set representation

As we focus on the collection R of rule sets, we now detail our hypothesis on their representation.

We assume that a data-structure D allows to represent some of the subsets of a space H. For

the ease of notation, D ⊆ P(H) also denotes the collection of subsets that can be represented

with D. We assume that D is closed under intersection: if s and s′ are in D, so is s∩s′. We say

that such a data-structure D for subsets of H is TH-bounded when intersection and cardinality

can be computed in time TH at most: given the representation of s, s′ ∈ D, the representation

of s∩ s′ ∈ D and the size |s| of s (as a binary big integer) can be computed within time TH . As

big integers computed within time TH have O(TH) bits, this implies |H| = 2O(TH): the bound

TH obviously depends on H. Intersection, inclusion test (s ⊆ s′), cardinality computation

(|s|) and cardinal operations (addition, subtraction and comparison) are called elementary set

operations. Under the TH-bounded hypothesis, all these operations can be performed in O(TH)

time (s ⊆ s′ is equivalent to |s ∩ s′| = |s|).

In a forwarding network, we consider the header space H = {0, 1}ℓ of all ℓ-bit strings, which

6.1. Model 117

may be plain or decomposed in several fields. If plain, a rule set is then typically represented by

a wildcard expression or a range of integers. In both cases, they can be represented within 2ℓ

bits and both representation are O(ℓ)-bounded. We call ℓ-wildcard a string e1 · · · eℓ ∈ {0, 1, ∗}ℓ.
It represents the set {x1 · · · xℓ ∈ {0, 1}ℓ | ∀i, xi = ei or ei = ∗}. If H is decomposed into

fields, any combinations of wildcard expressions and ranges can be used (either one for each

field) and represented within O(ℓ) bits. However cardinality computations can take Θ(ℓ log ℓ)

time as multiplications of big integers are required. Such representation is thus O(ℓ log ℓ)-

bounded. Given d field lengths ℓ1, . . . , ℓd with sum ℓ, we call (d, ℓ)-multi-range a cartesian

product [a1, b1]×· · ·×[ad, bd] of d integer ranges with 0 ≤ ai ≤ bi < 2ℓi for i in 1..d. It represents

the set {bin(x1, ℓ1) · · · bin(xd, ℓd) | (x1, . . . , xd) ∈ [a1, b1]× · · · × [ad, bd]} where bin(xi, ℓi) is the

binary representation of xi within ℓi bits.

6.1.4 Representation of a collection of sets

When manipulating a collection of p sets in D, we assume that their representations are stored

in a balanced binary search tree, allowing to dynamically add, remove or test membership of a

set in O(TH log p) time. Such operations are called p-collection operations. More efficient data-

structures can be used for wildcard expressions and multi-ranges: we can use a balanced binary

search tree when comparisons according to a total order can be performed. Such comparison

can usually be obtained by comparing directly the binary representations themselves of the set

in linear time (and thus O(TH) for sets with TH-bounded representation). It is considered as an

elementary set operation. In the case of wildcard expressions, the complexity of these operations

can be reduced to O(ℓ) time by using a trie or a Patricia tree [Knu98]. Our algorithms will also

make use of an operation similar to stabbing query1 that we call p-intersection query. It consists

in producing the list Ls of sets in a collection R of p sets that intersect a given query set s

(Ls = {r ∈ R | s ∩ r 6= ∅}). We additionally require that the list Ls is topologically sorted w.r.t.

inclusion. We say that p-intersection queries can be answered with overhead (Tinter(p), Tupdt(p))

when dynamically adding or removing a set from the collection takes time Tupdt(p) at most and

the p-intersection query for any set s ∈ D takes time Tinter(p)+ |Ls|TH at most. In the case of d-

dimensional multi-ranges, a segment tree allows to answer p-intersection queries with overhead

(O(logd p), O(logd p)) [BCKO08, EM81]. In the case of wildcard expressions, a trie or a Patricia

tree allows to answer p-intersection queries with overhead (O(ℓp), O(ℓ)) (the whole tree has to

be traversed in the worse case, but no sorting is necessary as the result is naturally obtained

according to lexicographic order).

1In the field of computational geometry, the stabbing problem is the problem of detecting all n intervals
(or segments) that intersect a given segment s (that may also be a simple point). It can be extended for any
d-dimensional space [EMP+82].

6.2. Atoms generated by a collection of sets 118

6.2 Atoms generated by a collection of sets

Consider the collection R of subsets of the header space H. The field of sets σ(R) generated

by R is the (finite) σ-algebra generated by R, that is the smallest collection closed under

intersection, union and complement that contains R∪{∅, H}. The atoms of σ(R) are classically

defined as the non-empty elements that are minimal for inclusion. We call them the atoms

generated by R for the sake of simplicity. Let A(R) denote their collection. Note that for

a ∈ A(R) and r ∈ R, we have either a ⊆ r or a ⊆ r: in fact, otherwise a ∩ r and a ∩ r would

be non-empty elements of σ(R) strictly included in a; this would translate in A(R) being non-

minimal, going against the definition of atom. We can derive the following characterization

of atoms (matching our definition of header classes when R is the collection of rule sets of a

network):

A(R) =
{

a 6= ∅ | ∃R ⊆ R, a = (∩r∈Rr) ∩
(

∩r∈R\Rr
)}

(6.1)

We now show that each atom a = (∩r∈Rr) ∩
(

∩r∈R\Rr
)

can be canonically represented by

c = ∩r∈Rr and then propose an incremental algorithm for computing such a representation for

all atoms generated by a collection of sets.

6.2.1 Representing atoms by uncovered combinations

We first clarify the notion of representation: we say that a set a′ ⊆ H inclusion-wise represents

an atom a generated by the collection R when a ⊆ r ⇐⇒ a′ ⊆ r for all r ∈ R. Equivalently,

a′ represents a when it has the same containers, i.e. they are contained in the same sets of R:

R(a′) = R(a) where R(s) = {r ∈ R | s ⊆ r} denotes the sets in R that contain a set s ⊆ H.

Note that such a representative set a′ allows to efficiently compute R(a) when inclusion of a′

can be tested efficiently.

As we consider that intersection of sets can be computed efficiently, we naturally consider the

collection C(R) ⊆ σ(R) of combinations defined as sets that can be derived by intersection

from sets in R:

C(R) = {c 6= ∅ | ∃R ⊆ R, c = ∩r∈Rr} (6.2)

Our main idea is to determine whether a combination c ∈ C(R) inclusion-wise represents any

atom. By definition of R(c), c is included in all sets in R(c) and none of the sets in R \R(c).

The only atom it could inclusion-wise represent is thus
(

∩r∈R(c)r
)

∩
(

∩r∈R\R(c)r
)

if ever this

6.2. Atoms generated by a collection of sets 119

set is not empty. We will solve such emptiness tests by means of cardinality computations in

the sequel. But we can already state formally how combinations can represent atoms. For that

purpose, a combination c is said to be covered in R when c ⊆ ∪r∈R\R(c)r. Informally, this

happens when its non-containers (the sets in R \R(c)) collectively contain it. Conversely, c is

uncovered when it is not covered, or equivalently when c ∩
(

∩r∈R\R(c)r
)

6= ∅.

The following proposition states that atoms can be represented by uncovered combinations.

Proposition 6.1 Given a collection R, each combination c ∈ C(R) can be associated to the

set a(c) = c ∩
(

∩r∈R\R(c)r
)

. The collection UC(R) = {c ∈ C(R) | a(c) 6= ∅} of uncovered com-

binations is in one to one correspondence with the collection A(R) of atoms generated by R.

Every combination c ∈ UC(R) inclusion-wise represents the atom a(c). Moreover, UC(R) is the

canonical representation of A(R) in the sense that it is the unique collection of combinations

that inclusion-wise represent all atoms generated by R.

Proof The proof of Proposition 6.1 follows from the above discussion. First, we verify that if

c is an uncovered combination, a(c) is an atom: it suffices to observe that c = ∩r∈R(c)r and to

match a(c) = c ∩
(

∩r∈R\R(c)r
)

with the atom characterization given by Equation (6.1) using

R = R(c). Similarly, if a = (∩r∈Rr) ∩
(

∩r∈R\Rr
)

is an atom for some R ⊆ R, the combination

c(a) satisfies R(c(a)) = R which implies a(c(a)) = a. In particular, as a 6= ∅, c(a) is uncovered.

�

Example Consider the 8-element space H = {0..7} and the collection R = {r1 = {0..4}, r2 =
{1..5}, r3 = {2..6}, r4 = {3}}. The atoms generated by R, as defined in Equation 6.1, are

A(R) = {{0}, {1}, {2, 4}, {2}, {5}, {6}, {7}}, where:

{0} = r1 ∩ r̄2 ∩ r̄3 ∩ r̄4, {1} = r1 ∩ r2 ∩ r̄3 ∩ r̄4, {2, 4} = r1 ∩ r2 ∩ r3 ∩ r̄4, {3} = r1 ∩ r2 ∩ r3 ∩ r4,

{5} = r̄1 ∩ r2 ∩ r3 ∩ r̄4, {6} = r̄1 ∩ r̄2 ∩ r3 ∩ r̄4, and {7} = r̄1 ∩ r̄2 ∩ r̄3 ∩ r̄4.

Figure 6.1 shows a visual representation of this configuration. Due to the complement opera-

tions, the atoms can be harder to represent than the rules they are generated from: in fact, in

Figure 6.1, all rules are ranges, but the atom {2, 4} is not. In Figure 6.1, there are 8 distinct

combinations, following from Equation 6.2 and Proposition 6.1: r1, r1 ∩ r2, r1 ∩ r3, r4, r2 ∩ r3,

r3, H and r2.

The property of the characterization of Proposition 6.1 we are interested in is that it allows

to efficiently test whether a set r ∈ R contains an atom a ∈ A(R): given a combination c

that represents a, a ⊆ r is equivalent to c ⊆ r. This comes from the fact that every uncovered

combination c has same containers as a(c). (If it was not the case, a(c) = ∅ and c is covered.)

6.3. Incremental computation of atoms 121

the same collection of atoms as R and that a combination c = ∩r∈R(c)r containing an atom a

must satisfy R(c) ⊆ R(a). The overlapping degree of C(R) is thus at most 2k and we always

have K ≤ 2k. In the example from Figure 6.1, it is easy to verify that we have k = 4, k = 13/7

and K = 4.

In real datasets we observe that both k and K are in the range [2, 15] while k is in the range

[1.5, 5] (these include Inria firewall rules, Stanford forwarding tables provided by Kazemian et

al. [Kaz] and IPv4 prefixes announced at BGP level collected from the RouteViews project [Rou]).

6.3 Incremental computation of atoms

We can now state our main result concerning the computation of the atoms generated by a

collection of sets. Section 6.3.1 explain the incremental computation of atoms of a collection of

sets. Section 6.3.2 describes how the our incremental algorithm can be used to detect forwarding

loops.

6.3.1 Computation of atoms generated by a collection of sets

We first provide some notions about cardinality computation and the effect of the incremental

add of rules in Section 6.3.1. We give a basic algorithm for the incremental atoms computation

in Section 6.3.1.1, and refine this result in Section 6.3.1.2 where we take into account the

overlapping degree of the network. Finally, we show and prove our main theorem in Section

6.3.1.3, giving the time boundaries of our representation.

The incremental update requires that when a new rule r is added to the set, it should be

possible to compute the new atoms without recalculating from the beginning. The following

lemma formally states that uncovered combinations of R ∪ {r} can be obtained from UC(R).

The use of an incremental algorithm allows to avoid exponential blow-up even in cases where

the number of combinations can be exponential in the number m of atoms. This happens with

the collection of complements of the singletons of an n-element set (cf. Section 6.4.2).

Lemma 6.1 Given a new rule r ⊆ H, the collection UC(R′) of uncovered combinations of

R′ = R ∪ {r} can be obtained by intersecting uncovered combinations in UC(R) with r. More

precisely, we have UC(R′) ⊆ UC(R) ∪ {c ∩ r|c ∈ UC(R)}.

Proof Consider an uncovered combination c′ ∈ UC(R′). Let c be the intersection of the

containers of c′ in R: c = ∩r∈R(c′)r. We have either c′ = c if R′(c′) = R(c′) or c′ = c ∩ r if

6.3. Incremental computation of atoms 122

R′(c′) = R(c′) ∪ r. To conclude, it is thus sufficient to show that c is uncovered in R. This

follows from c′ ⊆ c and R′(c′) ⊆ R(c)∪{r}: the non-containers of c in R are also non-containers

of c′ in R′ and if c was covered, so would be c′.

�

We base our model on cardinality computation, that is used to test the emptiness of the atom

set. We want to compute the cardinality of a(c) = r1 ∩ r2 ∩ . . . ∩ rk ∩ rk+1 ∩ . . . ∩ rn from its

representation c = r1 ∩ r2 ∩ . . . ∩ rn. The following Lemma expresses any combination as a

disjoint union of atoms, and justify the incremental computation of atom cardinalities.

Lemma 6.2 Given a combination collection C ′ ⊆ C(R) containing UC(R), we have d =

∪c∈C′|c⊆da(c) for all d ∈ C ′. This union is disjoint and we have |a(d)| = |d| −∑c∈C′|c(d |a(c)|.

Proof Reminding that any combination d includes a(d) = d ∩
(

∩r∈R\R(d)r
)

, we have

∪c∈C′|c⊆da(c) ⊂ d. Conversely, consider h ∈ d. The sets of R containing h are R({h}), and we

have h ∈ a(c) for c = ∩r∈R({h})r. As R(d) ⊆ R({h}) (the sets that contain d also contain h)

and d = ∩r∈R(d)r, we have c ⊆ d. Hence d ⊂ ∪c∈C′|c⊆da(c). This union is disjoint as each a(c)

is either an atom or is empty.

�

6.3.1.1 Basic algorithm for atom computation

We first propose a basic algorithm for updating the collection UC of uncovered combinations

of a collection R when a set r is added to R. The main idea is that after adding r to R,

the only new uncovered combinations that can be created are intersections of pre-existing

uncovered combinations with r (see Lemma 6.1). We thus first add to UC the combinations

c ∩ r for c ∈ UC. As this may introduce covered combinations, we then compute the atom size

c.atsize = |a(c)| for each combination c. It is then sufficient to remove any combination c with

c.atsize = 0 to finally obtain UC(R ∪ {r}). This atom size computation is possible because

we have d = ∪c∈UC|c⊆da(c) for all d ∈ UC. (see Lemma 6.2). As this union is disjoint, we have

|a(d)| = |d| −∑c∈UC|c(d |a(c)|. We thus compute the inclusion relation between combinations

and store in c.sup the combinations that strictly contain c. Initializing c.atsize to |c| for all

c, we then scan all combinations c by non-decreasing cardinality (or any topological order for

inclusion) and subtract c.atsize from d.atsize for each d ∈ c.sup. A simple proof by induction

allows to prove that c.atsize = |a(c)| when c is scanned. The whole process in summarized in

Algorithm 6.1.

6.3. Incremental computation of atoms 123

Algorithm 6.1: Add a set r to a collection R and update the collection UC = UC(R) of

its uncovered combinations accordingly.

Procedure basicAdd(r,R,UC)
UC ′ := UC ∪ {c ∩ r | c ∈ UC};
For each c ∈ UC ′ do

c.atsize := |c|;
c.sup := {d ∈ UC ′ | c (d};

For each c ∈ UC ′ in non-decreasing cardinality order do

For each d ∈ c.sup do d.atsize := d.atsize− c.atsize;

;

UC := UC ′ \ {c ∈ UC ′ | c.atsize = 0};

The correctness of Algorithm 6.1 follows from the two above remarks (that is Lemma 6.1 and

Lemma 6.2). Its main complexity cost comes from intersecting r with each combination and

computing the inclusion relation between combinations, that is O(nm) and O(m2) elementary

set operations respectively. Starting from UC = {H} and incrementally applying Algorithm 6.1

to each set in R thus allows to obtain UC(R) with O(nm2) elementary set operations.

We thus obtain the following theorem :

Theorem 6.1 Given a space set H and a collection R of n subsets of H, the collection UC(R)

of combinations that canonically represent the atoms A(R) can be incrementally computed

with O(min(n+ kK logm,nm)m) elementary set operations where: m is the number of atoms

generated by R; k is the overlapping degree of R; K is the average overlapping degree of

C(R); k is the average overlapping degree of R. Within this computation, each combination

c ∈ UC(R) can be associated to the list R(c) of sets in R that contain c. If sets are represented

by ℓ-wildcard expressions (resp. (d, ℓ)-multi-ranges), the representation can be computed in

O(ℓmin(n+ kK, nm)m) (resp. O(ℓmin(k logd m+ kK, nm)m)) time.

In the following, we refine this result taking into account the overlapping degree. We define an

optimized algorithm to efficiently compute atoms, and model the time boundaries in Theorem

6.2, which we enunciate and prove in Section 6.3.1.3 at page 126.

6.3.1.2 Optimized algorithm for atom computation

To derive better bounds for low overlapping degree k, we propose a more involved algorithm

that maintains c.sup and c.atsize from one iteration to another and makes only the necessary

updates. This requires to handle several subtleties to enable lower complexity.

6.3. Incremental computation of atoms 124

We similarly start by computing the collection Inter = {c ∈ UC | c ∩ r 6= ∅} of combinations

intersecting r. A first subtlety comes from the fact that several combinations c may result in

the same c′ = c ∩ r. However, we are only interested in the combination c which is minimal

for inclusion that we call the parent of c′. The reason is that c′.sup can then be computed

from c.sup. The parent is unique unless c′ is covered in which case c′ is marked as covered and

discarded (see the argument for c′.sup computation later on). To obtain right parent informa-

tion, we thus process all c ∈ Inter by non-decreasing cardinality. The produced combinations

c′ = c ∩ r such c′ were not in UC are called new combinations. Their atom size is initialized to

c′.atsize = |c′|. See the “Parent computation” part of Algorithm 6.2.

We then remark that we only need to compute (or update) c.sup for combinations that include r,

which we store in a set Incl. We also note that c.atsize needs to be computed when c is new and

updated when c is the parent of a new combination. A second subtlety resides in computing (or

updating) c.sup only when c is not covered that is when c.atsize (after computation) appears to

be non-zero. As the computation of c.sup lists is the most heavy part of the computation, this is

necessary to enable our complexity analysis. For that purpose, we scan Incl by non-decreasing

cardinality so that the correct value of c.atsize is known when c is scanned similarly as in

Algorithm 6.1. However, we avoid any useless computation when c.atsize is zero. Otherwise,

we compute (or update) c.sup and decrease d.atsize by c.atsize from d ∈ c.sup for adequate

d: if c and d where both in UC, this computation has already been made; it is only necessary

when d is new or when d is the parent of c. We optionally maintain for each combination c a

list c.cont that contain the list of sets r ∈ R that contain c (Such lists are not necessary for

the computation but they are useful for loop detection as detailed in Section 6.3.2). See the

“Atom size computation” part of Algorithm 6.2.

A last critical point resides in the computation of c′.sup for each new combination c′. The

c′.sup list can be obtained from c′.parent.sup by copying and also intersecting elements of

c′.parent.sup with r. This is sufficient: for d ∈ UC such that c′ (d ∩ r, we can consider

c = c′.parent ∩ d. If c ∈ UC, c′.parent = c by minimality of c′.parent and we thus have

d ∈ c′.parent.sup. The case where c /∈ UC and d /∈ c′.parent.sup cannot happen as it would

imply that two different combinations c1 = c′.parent and c2 ⊆ c generate c′ by intersection

with r (c1 ∩ r = c2 ∩ r = c′) and are both minimal for inclusion. In such case, c1 ∩ c2 was

covered in R and so would be c′ in R (and also in R ∪ {r}). That is why such combination

c′ are already discarded during parent computation. On the other hand, the list c.sup of a

combination c ∈ UC can be updated by intersecting elements of c.sup with r: when c (d ∩ r

for c ⊆ r, we have c (d.

Finally, combinations c with c.atsize = 0 are discarded and removed from b.sup list of remaining

combinations as detailed in the “Remove covered combinations” part of Algorithm 6.2.

6.3. Incremental computation of atoms 125

Algorithm 6.2: Add a set r to a collection R and update the collection UC of its uncovered
combinations accordingly.

Procedure add(r,R,UC = UC(R))
New := ∅; Incl := ∅;;
/* ––––––––––– Parent computation ––––––––––– */

Inter := {c ∈ UC | c ∩ r 6= ∅} ;
Sort Inter by non-decreasing cardinality.;
For each c ∈ Inter do

c′ := c ∩ r;
If c′ /∈ Incl then

If c′ /∈ UC then

UC := UC ∪ {c′}; New := New ∪ {c′};;
c′.atsize := |c′|; c′.sup := {}; c′.cont := {} /* Updated later. */

c′.parent := c; c′.covered := false; Incl := Incl ∪ {c′};;
else

If c′.parent 6⊆ c then c′.covered := true;

Remove from Incl, New and UC all c such that c.covered = true.;
/* ––––––––––– Atom size computation ––––––––––– */

Sort Incl by non-decreasing cardinality.;
For each c ∈ Incl do

If c.atsize > 0 then

/* Adjust c.sup, c.cont and update d.atsize for impacted d) c: */

If c ∈ New then

c.parent.atsize := c.parent.atsize− c.atsize;
c.sup := {c.parent} ∪ c.parent.sup;
c.cont := c.parent.cont;

c.sup := c.sup ∪ {d ∩ r | d ∈ c.sup and d ∩ r ∈ Incl \ {c}};
c.cont := c.cont ∪ {r};
For each d ∈ c.sup s.t. d ∈ New do

d.atsize := d.atsize− c.atsize;

/* ––––––––––– Remove covered combinations ––––––––––– */

For each c ∈ Incl do

Remove from c.sup any d such that d.atsize = 0.;
If c.atsize = 0 then UC := UC \ {c}; Incl := Incl \ {c}; ;
;
If c ∈ New and c.parent.atsize = 0 then UC := UC \ {c.parent} ;

6.3.1.3 Time boundaries for the atoms computation

We now present our main result for this Section. For the sake of simplicity of asymptotic

expressions, we make the very loose assumption that ℓ = o(m) and n ≤ m. (We are mainly

interested in the case where m is large. Note also that examples with m < n would be very

6.3. Incremental computation of atoms 126

peculiar.)

Proposition 6.2 Algorithm 6.2 allow to dynamically update the collection UC of uncovered

combinations of a collection R using O(m +
∑

a∈Ar
|UC ′(a)| logm) elementary set operations

when a rule r is added to R, where m denotes the number of atoms of R, Ar = {a ∈ A(R′) | a ⊆ r}
denotes the atoms of R′ included in r, and UC ′(a) denotes the uncovered combinations of R′

that contain a.

More precisely, if the data-structures used for representing sets and collections of sets enable

elementary set operations within time Tset, p-collection operations within time Tcoll(p) and p-

intersection queries with overhead (Tinter(p), Tupdt(m)), then the update of UC can be performed

in O(Tinter(m) + |Ar|Tupdt(m) + (Tset + Tcoll(m))
∑

a∈Ar
|UC ′(a)|) time.

Proof As discussed before the correctness of Algorithm 6.2 for obtaining uncovered combina-

tions after adding set r to a collection R from UC = UC(R) and {c ∩ r | c ∈ UC} results from

Lemma 6.1. For a new combination c, the c.sup list is obtained from c.parent.sup and c.sup

is updated similarly for c ∈ UC such that c ⊆ r. The correctness of this approach has already

been discussed in Subsection 6.3. We develop here the key argument for ignoring a combination

c′ = c∩ r when it is produced by several minimal elements c1, . . . , ci ∈ UC such that cj ∩ r = c′

for j in 1..i. If this happens, we know that ∩j∈1..icj is not in UC, meaning that it is covered in

R and so is c′ ⊆ ∩j∈1..icj in R ∪ {r}. We can thus safely eliminate c′ in the first phase of the

algorithm. For the remaining new combinations c′, the parent c of c′ is the unique combination

c ∈ UC such that c ∩ r = c′ and which is minimal for inclusion.

The correctness of the atom cardinality computation follows by induction on the number com-

binations in Incl processed so far in the corresponding for loop. Consider a newly created

combination c. The initial value of c.atsize is |c|. Assuming that the correct value b.atsize has

been obtained for b processed before c and c ∈ b.sup, |a(b)| has been subtracted from c.atsize

and Lemma 6.2 implies that c.atsize = |a(c)| when we consider c in the for loop. For c already

in UC before adding r and for b ⊆ c processed before c, b.atsize has been subtracted from

c.atsize only for newly created b. For b ∈ UC, |a(b)| may have decreased but this difference

is compensated by
∑

b′∈New|b′(b
|a(b′)|. This is the reason why Algorithm 6.2 updates only

c.parent.atsize besides d ∈ c.sup such that d ∈ New. The correctness of the atom cardinality

computation implies that all covered combinations are removed and the correctness of Algo-

rithm 6.2 follows.

�

Complexity analysis We now analyze the complexity of Algorithm 6.2. The bound in terms

of elementary set operations is obtained when balanced binary search tree (BST for short) are

6.3. Incremental computation of atoms 127

used to store the various collections of sets (i.e. UC, Incl, New and c.sup for c ∈ UC). When

adding a set r, finding the combinations in UC that intersect r is a m-intersection query and can

be performed in O(Tinter(m) + |Inter|Tset) time or O(m logm) set operations using BST (sort-

ing is only necessary in that case). The collection Incl is then constructed in O(|Inter| logm)

operations with BST or O(|Inter|(Tset + Tcoll(m))) with appropriate data-structures. Remov-

ing combinations c such that c.covered = true is just a matter of scanning Incl again and

can be done within the same complexity. Let I denote the combinations included in Incl

at that point (just before cardinality computations). The computation of c.sup for c ∈ I is

done only when c.atsize > 0, i.e. only if c represents one of the atoms in Ar. we thus have

|I| ≤ |Ar|. This requires at most O(|c.parent.sup|) operations. Note that for each uncov-

ered combination d ∈ c.parent.sup yields at least one uncovered combination in c.sup (d itself

or d ∩ r or both). We thus have |c.parent.sup| ≤ |UC ′(a(c))|. The overall computation of

sup lists can thus be performed within O(
∑

a∈Ar
|UC ′(a)| logm) set operations with BST and

O((Tset + Tcoll(m))
∑

a∈Ar
|UC ′(a)|) time with appropriate data-structures. The computation

of class cardinalities and the removal of covered combinations from the sup lists have same

complexity. Removal of covered combinations from UC and Incl takes O(|Ar|) collection oper-

ations and fits within the same complexity bound. Additional cost of |Ar|Tupdt(m) is necessary

when maintaining data-structures enabling efficient m-intersection queries. The whole algo-

rithm can thus be performed in O(Tinter(m) + |Ar|Tupdt(m) + |Inter|(Tset + Tcoll(m)) + (Tset +

Tcoll(m))
∑

a∈Ar
|UC ′(a)|) time or using O(m+ |Inter| logm+

∑

a∈Ar
|UC ′(a)| logm) elementary

set operations with BST.

To achieve the proof of complexity of Algorithm 6.2, we show |Inter| ≤ ∑a∈Ar
|UC ′(a)|. Con-

sider a combination c ∈ UC that intersects r. Then c can be associated to an atom c.atm of Ar

included in c∩r (such atoms exist according to Lemma 6.2). For any atom a ∈ Ar, let a.par de-

note the atom in A(R) that contains a (we have a = a.par or a = a.par∩r). Now for c ∈ Inter,

consider the atom a = c.atm ∈ Ar. As a.par ∈ A(R) is an atom and c ∈ C(R) is a combination

intersecting a.par, we have a.par ⊆ c and c ∈ UC(a.par) is one of the combinations in UC(R)

that contains a.par. For each such combination c, a(c) intersects r or r (or both), and c or c∩ r

is uncovered in R′ = R ∪ {r}. Both contain a and we have |UC(a.par)| ≤ |UC ′(a)|. We can

thus write |Inter| =∑a∈Ar
|{c ∈ Inter | c.atm = a}| ≤∑a∈Ar

|UC(a.par)| ≤∑a∈Ar
|UC ′(a)|.

�

Proposition 6.2 represents the time boundaries of iterative application of Algorithm 6.2 (and

Algorithm 6.1 as well). The following theorem models the incremental atom computation for

a collection of rules under the assumption of a constant overlapping degree.

Theorem 6.2 Given a space set H and a collection R of n subsets of H, the collection UC(R)

of combinations that canonically represent the atoms generated by R can be incrementally com-

6.3. Incremental computation of atoms 128

puted with O(min(n + kK logm, km logm,nm)m) elementary set operations where m denotes

the number of atoms generated by R, k denotes the overlapping degree of R, k denotes the

average overlapping degree of R and K denotes the average overlapping degree of C(R).

More precisely, if the data-structures used for representing sets and collections of sets enable

elementary set operations within time Tset, p-collection operations within time Tcoll(p) and p-

intersection queries with overhead (Tinter(p), Tupdt(m)), then the representation of the atoms

generated by R can be computed in O(nTinter(m)+kmTupdt(m)+min(kK, km)m(Tset+Tcoll(m)))

time.

Proof From Proposition 6.2, the overall complexity of atom computation is:

O

(

∑

i=1..n

(

mi +
∑

a∈Ai

|UCi(a)|
)

logm

)

set operations where mi denotes the number of atoms in A({r1, . . . , ri−1}) and Ai denotes the

atoms of A({r1, . . . , ri}) included in ri and UCi = UC({r1, . . . , ri}). We first consider the case

where K is unbounded (it is possible to construct examples with m = n and K = Ω(2n)). As we

add a set to R, the number of atoms can only increase (each atom remains unchanged or is even-

tually split into two). We thus have mi ≤ m and |Ai| ≤ |{a ∈ A(R) | a ⊆ ri}|. Using |UCi(a)| ≤
mi+1 ≤ m, the overall complexity is O(nm+m logm

∑

i

∑

a∈A(r) |{r ∈ R | a ⊆ r}|) = O(nm+

km2 logm) by definition of average overlap. The O(nm2) bound is obtained by using Algo-

rithm 6.1 instead of Algorithm 6.2.

We now derive a bound depending on the average overlapping degree K of combinations.

Consider an atom a ∈ Ai and an uncovered combination c ∈ UCi(a). We can associate a to an

atom a.desc ⊆ a in A(R). As c is also a combination in C(R), we have c ∈ C(a.desc) where C(s)
denotes the combinations of R containing s. As the atoms in Ai are disjoint, the atoms a.desc for

a ∈ AR are pairwise distinct. We thus have
∑

a∈Ai
|UCi(a)| ≤

∑

a∈A(R)|a⊆ri
|C(a)|. The overall

complexity of atom computation is O(nm + logm
∑

a∈A(R)

∑

c∈C(a) |{i | a ⊆ ri}|) = O(nm +

k logm
∑

a∈A(R) |C(a)|) = O(nm+ kKm logm) by definition of overlapping degree and average

overlapping degree respectively. The refined bound in terms of Tset, Tcoll(m), Tinter(m), Tupdt(m)

is obtained similarly.

�

6.3.2 Application to forwarding loop detection

Theorem 6.2 has the following consequences for forwarding loop detection.

6.4. Theoretical comparison with related work 129

Corollary 6.1 Given a network N with collection R of n rule sets with Tℓ-bounded represen-

tation, forwarding loop detection can be performed in O(Tℓ min(n + kK logm,nm)m + knGm)

time where m is the number of atoms in A(R), k is the overlapping degree of R and k

(resp. K) is the average overlapping degree of R (resp. C(R)). If sets are represented

by ℓ-wildcard expressions (resp. (d, ℓ)-multi-ranges), the representation can be computed in

O(ℓmin(n+ kK, nm)m+ knGm) (resp. O(ℓmin(k logd m+ kK, nm)m+ knGm)) time.

Corollary 6.1 directly follows from the following claim and Theorem 6.2.

Claim 6.1 Given the collection R of rule sets of a network N , and for each atom a ∈ A(R)

the list R(a) of sets in R that contain a, forwarding loop detection can be solved in O(knGm)

time where m = |A(R)| is the number of header classes, k is the average overlapping degree of

R and nG is the number of nodes in N .

Proof We assume that each rule set r ∈ R is associated with the list Lr of forwarding rules

(r, a) that have rule set r. Each such rule is also supposed to be associated to the node u

whose table contains it and the index i of the rule in T (u). Each list Ls (cf. Section 6.1.4)

is additionally supposed to be sorted according to associated nodes. Such lists can easily be

obtained by sorting the collection of all forwarding tables according to the predicate filters of

rules.

The claim comes from the fact that uncovered combination in UC(R) inclusion-wise represent

atoms of A(R). It follows from testing for each header class a ∈ A(R) whether the graph

Ga = Gh for all h ∈ a has a directed cycle. Ga is computed by merging the lists Ls for s ∈ R(a)

in time O(|R(a)|nG). This graph has at most nG edges and cycle detection can be performed

in O(nG) time. The overall complexity follows from km =
∑

a∈A(R) |R(a)| by definition of k.

�

The upper-bounds for forwarding loop detection listed in Table 6.1 follow from Corollary 6.1. A

key ingredient consists in maintaining for each rule set a list that describes its presence, priority

and effect for each node. Detecting a loop for a header class a then consists in merging the lists

associated to the rule sets containing a (as provided by our atom representation) for obtaining

the forwarding graph Ga = Gh for all h ∈ a. Directed cycle detection is finally performed on

each such graph.

6.4 Theoretical comparison with related work

Previous works on network verification has led to a series of methods for network analysis,

resulting in several tools [KZZ+13, KCZ+13, MKA+11, ZZY+14]. The main approaches rely

6.4. Theoretical comparison with related work 130

on computing classes of headers by combining rule predicate filters using intersection and set

difference (that is intersection with complement). The idea of considering all header classes

generated by the global collection of the sets associated to all forwarding rules in the network

is due to Veriflow [KZZ+13]. However, the use of set differences results in computing a refined

partition of the atoms of the field of sets generated by this collection that can be much larger

than an exact representation. NetPlumber [KCZ+13], which relies on the header space analysis

introduced in [KVM12], refines this approach by considering the set of headers that can follow

a given path of the network topology. This set is represented as a union of classes that match

some rules (those that indicate to forward along the path) and not some others (those that

have higher priority and deviate from the path): a similar problem of atom representation thus

arises. The idea of avoiding complement operations is somehow approached in the optimization

called “lazy subtraction” that consists in delaying as much as possible the computation of set

differences. However, when a loop is detected, formal expressions with set differences have to be

tested for emptiness. They are then actually developed, possibly resulting in the manipulation

of expressions with exponentially many terms.

Concerning the tractability of the problem, the authors of NetPlumber observe a phenomenon

called “linear fragmentation” [KVM12] that allows to argue for the efficiency of the method.

They introduce a parameter c measuring this linear fragmentation and claim a polynomial

time bound for loop detection for low c [KVM12] (when emptiness tests are not included in the

analysis). However, the rigorous analysis provided in [KVM11] includes a cDG factor where DG

is the diameter of the network graph. While this factor appears to be largely overestimated in

practice, the sole hypothesis of linear fragmentation does not suffice for explaining tractability

and prove polynomial time guarantees. The alternative approach of Veriflow is specifically

optimized for rules resulting from range matching within each field of the header. When the

number of fields is constant, polynomial time execution can be guaranteed but this result does

not extend to general wildcard matching.

A similar problem consists in conflict detection between rules and their resolution [ASP00,

EM01, BC15]. It has mainly been studied in the context of multi-range rules [ASP00, EM01],

which can benefit from computational geometry algorithms. (A multi-range can be seen as

a hyperrectangle in a d-dimensional euclidean space where d is the number of fields compos-

ing headers.) Another similar problem, determining efficiently the rule that applies to a given

packet, has been extensively studied for multi-ranges [EM01, FM00, GM01]. In the case of wild-

card matching, such problems are related to the old problem of partial matching [Riv76]. It is

believed to suffer from the “curse of dimensionality” [BOR99, Pat11] and no method significantly

faster than exhaustive search is expected to be found with near linear memory (although some

tradeoffs are known for small number of ∗ letters [CIP02]). However, efficient hardware based

implementation exist based on Ternary Content Addressable Memory (TCAMs) [BGK+13] or

6.4. Theoretical comparison with related work 131

Graphics Processing Unit (GPU) [VLZL14].

6.4.1 Related notion of weak completeness

Most of the previous work rely on complement computations (or equivalent operations): the

complement of a single set generally requires to be represented as a union of several intermediate

sets (up to ℓ for ℓ-wildcards and up to 2d − 1 for d-multi-ranges). We now provide examples

where this can lead to exponential blow-up. The notion of uncovered combination is linked

to that of weak completion introduced by [BC15] in the context of rule-conflict resolution

as detailed in this section. In the context of resolution of conflicts between rules, Boutier

and Chroboczek [BC15] introduce the concept of weak completeness: a collection R is weakly

complete iff for any sets r, r′ ∈ R, we have r∩r′ = ∪r′′⊆r∩r′r
′′. They show that this is a minimal

necessary and sufficient condition for all rule conflicts to be solved when priority of rules extends

inclusion (i.e. r has priority over r′ when r (r′). Interestingly, we can make the following

connection with this work: given a combination collection C ′ ⊆ C(R) containing UC(R), we

have a(c) = c \∪c′∈C′|c′(cc
′ for all c ∈ C ′. (See Lemma 6.2 in Section 6.3.1). This allows to show

that UC(R) is weakly complete. It is indeed the smallest collection of combinations of R that

contains R ∪ {H} and that is weakly complete. Our work thus also provides an algorithm for

computing such an optimal “weak completion”.

6.4.2 Lower bound for HSA / NetPlumber

HSA/NetPlumber [KVM12, KCZ+13] use clever heuristics to efficiently compute the set of

headers HP than can traverse a given path P . An important one consists in lazy subtraction:

set difference computations are postponed until the end of the path. For that purpose, this

set HP is represented as a union of terms of the form s = c0 \ ∪i=1..pci where the elementary

sets c0, . . . , cp are represented with wildcards. The emptiness of such terms is regularly tested.

A simple heuristic is used during the construction of the path: s is obviously empty if c0 is

included in ci for some i ≥ 1. But if the path loops, HSA has to develop the corresponding

terms into a union of wildcards to determine if one of them may produce a forwarding loop.

We now provide an example where this emptiness test can take exponential time. Consider a

node whose forwarding table consists in ℓ+ 1 rules with following rule sets:

r0 = 1ℓ, ri = 1ℓ−i0 ∗i−1 for i = 1..ℓ, rℓ+1 = ∗ℓ. (6.3)

6.4. Theoretical comparison with related work 132

All rules are associated with the drop action except the last rule (with rule set rℓ+1) whose action

is to forward to the node itself. Such a forwarding table is depicted in Figure 5.1 for ℓ = 4.

Starting a loop detection from that node, HSA detects a loop for headers in rℓ+1 \∪i=0..ℓri. The

emptiness of this term is thus tested. For that purpose, HSA represents the complement of ri

with 0∗ℓ−1∪∗0∗ℓ−2∪ · · ·∪∗ℓ−i−10∗i∪∗ℓ−i1∗i−1. Note that each of the ℓ−i wildcard expressions

in that union have only one non-∗ letter. Distributivity is then used to compute rℓ+1 \ ∪i=0..ℓri

as r0 ∩ · · · ∩ rℓ. After expanding the first j − 1 intersections, HSA thus obtains a union of

wildcards with j letters in {0, 1} and ℓ − j letters equal to ∗ that has to be intersected with

rj+1 ∩ · · · ∩ rℓ. In particular, this unions contains all strings with j letters equal to 0 and ℓ− j

equal to ∗. All ℓ-letter strings with alphabet {∗, 0} are produced during the computation which

thus requires Ω(ℓ2ℓ) time. For testing a network with nG similar nodes, HSA thus requires time

Ω(ℓnG2
ℓ). As all sets r0, . . . , rℓ are pairwise disjoint, the overlapping degree of the collection is

kmax = 2 and this justifies the two lower-bounds indicated for NetPlumber in Table 6.1.

The NetPlumber approach could be generalized to more general types of rules. However, we

show that the simple heuristic for emptiness tests is not sufficient. We provide an example

where the HSA/NetPlumber approach generates an exponential number of paths while the

number of classes is linear if it relies solely on this heuristic. Consider header space H = {1..n}
and the following n+ 1 rule sets:

r1 = {1}, . . . , rn = {n} and rn+1 = H (6.4)

Consider a network N with nG = n(n+1) nodes. Each node ui,j for 0 ≤ i ≤ n and 1 ≤ j ≤ n has

table T (ui,j) = (ri+1, FwdDi+1,1), . . . , (rn, FwdDi+1,n), (rn+1, FwdDi+1,n) where action FwdDi,j

indicates to forward packets to node ui,j for i ≤ n and to drop packets for i = n+ 1. Starting

from u0,1, the HSA approach generates a path for each combination ri1 ∩ · · · ∩ rip for p ≤ n

and 1 ≤ i1 < · · · < ip ≤ n. This path goes through u0,1, u1,i1 , . . . , up,ip and then through

up+1,n, . . . , un,n. It is constructed at least for term ri1 ∩ · · · ∩ rip \ ∪j /∈{i1,...,ip}rj. The heuristical

emptiness test of NetPlumber does not detect that it is empty since ri1 ∩ · · · ∩ rip contains j

for j /∈ {i1, . . . , ip} and it is not included in rj. The number of paths generated is thus at least
∑

1≤p≤n

(

n
p

)

= 2n − 1. However, the header classes are all singletons of H and their number is

m = n. Note the high overlapping degree kmax = n of this collection of rule sets.

6.4.3 Lower bound for VeriFlow

VeriFlow [KZZ+13] incrementally computes a partition into sub-classes that forms a refinement

of the header classes: when a rule r is added, each sub-class c is replaced by c∩r and a partition

6.4. Theoretical comparison with related work 133

of c \ r. Veriflow benefits from the hypothesis that headers can be decomposed into d fixed

fields and that each rule set can be represented by a multi-range r = [a1, b1] × · · · × [ad, bd].

The intersection of two multi-ranges is obviously a multi-range. However, set difference is

obtained by intersection with the complement which is represented as the union of up to 2d−1

multi-ranges.

The complementary of a multi-range r = [a1, b1] × · · · × [ad, bd] is represented as the union of

2d− 1 multi-ranges (at most):

[0, a1 − 1]×H2..d and [b1 + 1,∞1]×H2..d,

[a1, b1]× [0, a2 − 1]×H3..d and [a1, b1]× [b2 + 1,∞2]×H3..d,

· · · ,
[a1, b1]× · · · × [ad−1, bd−1]× [0, ad − 1] and [a1, b1]× · · · × [ad−1, bd−1]× [bd + 1,∞d],

where ∞i denotes the maximum possible value in field i, and Hi..j = [0,∞i] × · · · × [0,∞j]

denotes the multi-range of all possible values for fields i, . . . , j for 1 ≤ i ≤ j ≤ d.

The difficult input for Veriflow consists in a network with n = dp + 1 rules associated to the

following multi-ranges:

r0 = H1..d, rji = H1..i−1 × [aj, aj]× [b, b]d−i for i, j ∈ [1..d]× [1..p] (6.5)

Consider the sub-classes generated while computing r0∩
(

∩i,j∈[1..d]×[1..p]r
j
i

)

. The union of multi-

ranges representing rji contains in particular H1..i−1 × [0, aj − 1] × Hi+1..d and H1..i−1 × [aj +

1,∞i]×Hi+1..d. This implies that Veriflow generates on such an input all pd sub-classes of the

form I1 × · · · × Id with Ii = [aj + 1, aj+1 − 1] for some j ∈ [0, d] (we set a0 = −1). Forwarding

loop detection of an nG-node network thus requires Ω(pdnG) = Ω(
(

n
d

)d
nG

m
d
) time for Veriflow.

As this example has overlapping degree 2, this justifies the two lower-bounds indicated for

Veriflow in Table 6.1 for d-multi-ranges.

It is possible to adapt Veriflow to support general wildcard matching by considering each field

bit as a field. The wildcard expressions r0 = ∗ℓ, r1 = 01ℓ−1, . . . , rℓ = 0ℓ−11 will then similarly

generate all 2ℓ/2 sub-classes obtained by concatenation of words 10 and 11. This justifies the

two lower-bounds indicated for Veriflow in Table 6.1 for ℓ-wildcards.

6.5. Conclusion 134

6.4.4 Linear fragmentation versus overlapping degree

Interestingly, a complexity analysis of HSA loop detection is given in the technical report [KVM11]

under an assumption called “linear fragmentation”. This assumption, which is based on em-

pirical observations, basically states that there exists a constant c such that a given rule set

intersects at most c of the terms of the set HP generated by the rules along a given path P in

the graph of the network. One can then easily prove by induction that the number of terms

generated by the rules along a path of length p is cpn at most. Under linear-fragmentation,

the time complexity of HSA loop detection (excluding emptiness tests) is thus proved to be

O(cDGDGn
2mG) in [KVM11] where DG is the diameter of network graph G, n the number of

rules, and mG the number of ports in G (in our simplified model each node has a single input

port and mG = nG the number of nodes in G). It is then argued that in practice the constant c

gets smaller as the length p of the path considered increases and that practical loop detection

has complexity O(DGn
2mG) as claimed in [KVM12]. However, it is not rigorous to neglect the

(exponential) cDG factor under the sole linear-fragmentation hypothesis.

Additionally, we think that low overlapping degree provides a simple explanation for the phe-

nomenon observed by Kazemian et al.: as the path length increases, the terms representing the

header that can traverse the path result from the intersection of more rules and become less

likely to intersect other rules when overlapping degree is limited. Moreover, bounded overlap-

ping degree kmax implies that the number of paths and terms generated by HSA is bounded by

O(nGn
kmax). This guarantees that all HSA computations besides emptiness tests remain poly-

nomial for constant kmax. In contrast, we provide in Section 6.4.2 an example with unbounded

overlapping degree where the HSA approach can generate exponentially many paths compared

to the number of header classes in the context of general rules.

6.5 Conclusion

We conclude this chapter summarizing the most important results.

We focused on the problem of finding forwarding loops in a given network instance. Our problem

is defined as following: given a network topology and all nodes’ forwarding tables, are we able

to detect if there exists at least one packet header s.t. a packet is continuously forwarded by

network nodes in a cycle? We adopted the approach of checking routers’ forwarding rules to

verify if they can create loops for some packet headers.

Keeping in mind that forwarding rules validation is known to be an NP-complete problem, we

focused on reducing the number of tests to be performed proposing a novel representation of

6.5. Conclusion 135

network forwarding classes. In forwarding networks, each forwarding rule can be associated

with the set of packet headers it matches. We showed that we can perform the verification

task on the network equivalence classes that correspond to the headers that match exactly the

same rules. These classes, called atoms, are intuitively the set of headers that share the same

forwarding behavior in the network.

We canonically represent the atoms by means of uncovered combinations of forwarding rules

w.r.t. set intersection. This allows us to ignore the complement set operation, which can

increase the complexity of representing the network classes even in simple cases such as range

rule (cf. Figure 6.1).

We proposed an efficient algorithm to incrementally compute the atoms, and take advantage

of a network “measure” that we defined: the overlapping degree. When the intersection of two

sets can be efficiently computed and represented, our algorithm is polynomial in the number

of header classes. Additionally, we showed that the overlapping degree in real networks is very

low: we can bound the overlapping degree by a constant, which furtherly ensures polynomial

number of header classes.

Our framework can be used to detect not only forwarding loops, but also other classical prob-

lems:

• finding all black-holes (e.g. detecting whether there is a node in the network where packets

are incorrectly dropped);

• detect reachability between two points (e.g. verifying if there exists at least one header

packet that connects a source and a destination node).

Finally, we believe that our tool can replace the canonical representation of existing verification

tools based on network classes, in order to speed-up the problem detection thanks to our better

representation.

Table of symbols, part II

Network modeling

D A generic data structure

G = (V,E) Network graph, ov V nodes and E edges

h A generic header

H The header space, with h ∈ H

l Number of bits of a specific header

nG Number of nodes in the network graph

n Number of rules, or size of the rule set

P Anteater policies, representing the forwarding actions

r A generic rule of the rule set, r ∈ R
R Collection of the forwarding rules

s Element stored in a data structure

u, v Generic nodes of the network u, v ∈ V . uv is an edge, or uv ∈ E

Rules, atoms and combinations

A(R) The set of network classes, or the atoms of R.

C(R) The set of rule combinations, or the set of all c for {c = ∩r∈Rr}
c A generic combination of rules, c = r1 ∩ . . . ∩ rk, for k ≤ n

m Number of classes, or size of the atoms set

T (u) Forwarding table of node u ∈ V

Network parameters and complexity analysis

DG Diameter of the network graph

d Number of fields in a multirange rule

k Overlapping degree of R, that is the maximum number of containers.

k Average overlapping degree of R
kmax Constant value which bounds the overlapping degree of the network

K Average overlapping degree of the combinations C(R)

TH Time boundary of set intersection or cardinality computation in H

Tl " in a wildcard l-bit space

136

Conclusion

137

Conclusion

The Internet usage is strongly affected by the diffusion of new services causing different paradigms

to quickly emerge. On the contrary, the underlying network infrastructure cannot be upgraded

at a comparable speed: the Internet evolution is indeed a challenge. In this thesis we fol-

lowed two main research directions: first, we focused on designing, prototyping and evaluating

Caesar, a device which is capable of introducing content-based functionalities to real commod-

ity network equipment, being fully compatible with current networks; second, we developed a

mathematical framework to analyze the problem of verifying SDN networks to check the pres-

ence of network loops, thus resulting in a software tool called IHC, that can check the existence

of loops in real networks. We now summarize the achievements of this thesis work.

Summary of Thesis Achievements

In the first part of the thesis we focused on the design, implementation and performance

evaluation of a content router, called Caesar, which is capable of performing content-based

operations in network packets at high-speed.

Forwarding In chapter 3 we tackled the problem of forwarding packets in NDN, exploiting

current network architecture and integrating name-based functionalities on commodity hard-

ware. This chapter shows three important results. First, an algorithm for name-based lookup

and forwarding on content-names, which exploit the novel prefix Bloom filter (PBF) data

structure to allow efficient longest prefix matching operations. Second, it is fully compatible

with current protocols and network equipments. Its design allows network providers to softly

upgrade their hardware (i.e. firmware upgrade) in order to exploit the content-based function-

alities without the need of redesigning or upgrading the whole network. Third, Caesar can

work at high-speed, namely tens of millions packets per second, thus matching existing edge

routers for small/medium network sizes.

138

Conclusion 139

We performed an extensive experimental evaluation of Caesar’s forwarding module, dissecting

the bottlenecks and highlighting the feasibility of our design in existing network equipments.

We showed that Caesar’s performance can match the requirements due to the growth of the

forwarding tables or an increasing desired throughput thanks to its modular extension of dis-

tributed forwarding and GPU offloading. We managed to forward packets at a rate greater

than 6.5 Mpps for a single line card with the reference workload, using content names of ν = 42

bytes, average component distance d = 2 and forwarding table of n = 10M elements. Through-

put can be furtherly increased in the order of hundreds of Mpps when offloading traffic to an

external GPU, and we can increase the FIB size of a factor N with only a 15% drop.

PIT In chapter 4 we focused on the soft-state management of NDN, which requires that

each router store the requests propagated and not yet served. This chapter showed two main

results. First, an design of a data-structure which can perform updates (insert, delete, remove)

and lookups at high-speed, matching the requirements of the NDN paradigm. Second, the PIT

module is easily integrated on the Caesar chassis, being therefore fully compatible with current

Internet infrastructure.

We performed as well an extensive experimental evaluation of PIT’s performance, showing that

a run-time state management is feasible. We are able to continuously perform insert and remove

with a rate of 7.9 Mpps in a flow-balanced scenario, performing an exact match on a table of

1M elements and the reference workload.

∗ ∗ ∗

In the second part of the thesis we presented an innovative approach for network verification in

the SDN environment. We got the inspiration from the related work on Network verification,

and targeted the problem of significantly reducing the computation time (i.e. the number of

tests to perform) in order to verify a given properties. We theoretically analyzed the problem

of detecting all possible loops in a given network, with forwarding rules that may assume the

general form of wildcard expressions matching the incoming packet headers.

Rule verification through atoms computation In chapter 6 we targeted the problem of

loop-detection in SDN, obtaining the following results. Despite the NP-completeness of this

problem, we showed that our approach advances the state-of-the-art verification tools by two

main factors: first, its innovative representation of header classes sensibly reduces the input size

of the verification problem with respect to the related work; second, the incremental algorithm

for the calculation of the header classes (and the subsequent loop detection query) shows an

Conclusion 140

important speed-up of the state-of-the-art tools. Our model can be generalized for any existing

network and other classical network verification problems such as black-holes detection and

reachability checks.

We derived a parameter for practical networks, called the overlapping degree of forwarding

rules, which allowed us to bound the complexity of the verification process to be polynomial

in the number of header classes. Numerical experiments on real datasets (including BGP and

firewall traces) showed that the overlapping degree in real environments is low, improving the

effectiveness of software verification tools based on header classes computation.

Future Work

We present now some perspectives that could be accomplished as future work.

NDN security and privacy Security and privacy issues are not taken into account for this

thesis. However, they cannot be traditionally investigated due to the significant difference

between current Internet techniques and NDN; moreover, the coexistence with current network

infrastructure may require to differentiate the actual implementation depending on the traffic

pattern. We plan to address one typology of Denial of Service (DoS) attack, namely the Interest

flooding [AMM+13]. It consists in the pollution of the PIT table with requests for unknown

or very unpopular content, causing the PIT to fail the Data transmission back to the users.

As proposed in [AMM+13] a possible solution could be to mark the malicious Interest packets:

such packets are in fact almost never matched by incoming Data packets, and are removed as

soon as the corresponding timer expires.

While users’ identity is usually hidden in the NDN architecture, when access control is required

(i.e. firewall, corporate proxies), some novel authentication mechanisms may be needed in

order to be granted with the requested permissions without losing anonymity. Authors of

[LLR+12] showed that caching may affect users’ privacy because it is possible to estimate (via

cache probing) the objects locally cached to gather privacy-sensitive information. A proposed

countermeasure could be to avoid caching of privacy-sensitive objects, because they show a low

(local) popularity and caching does not increase network performance. We plan to design a

Content Store whose caching strategy is privacy-safe.

NDN control plane The control plane development is still a challenge in NDN. The pop-

ulation of forwarding tables may be a difficult task because of the size of the address space.

Conclusion 141

Additionally, when lots of content replicas are disseminated to the network nodes, existing

routing protocols may fail in managing the number of updates.

∗ ∗ ∗

Rule verification with write action In this thesis we did not take into account the "write"

rules, that are rules defining partial header modifications. Our framework can be easily adapted

for particular cases of writes, such as MPLS [DR00], where write actions consist of adding,

removing or modifying a integer label at the end of the packet header. Generic writes may

modify the header space generating several additional classes. Moreover, header modifications

may translate in new forwarding decisions, thus resulting in a more complex forwarding graph.

However, we believe that our framework proposed in Chapter 6 could be integrated in Net-

Plumber [KCZ+13] that support such write actions. Updating a collection of uncovered com-

binations can be done in persistent style for managing efficiently several collections as they

follow different paths. Write operations could be recorded in a specific wildcard expression that

serves as a general mask for all wildcards in the collection, allowing to apply efficiently such

“network transfer function” (using HSA/NetPlumber terminology) to a collection. This would

allow to enhance the emptiness tests performed within NetPlumber to guarantee polynomial

time execution when the number of header classes is polynomially bounded.

VMs and multi-level network verification Existing work in SDN verification tools fo-

cuses on network layer, mostly considering forwarding rules. As described in Section 1.5.3 at

page 31, SDN may be exploited to implement and simplify existing virtualization mechanisms.

We believe that our framework may be extended to support more advanced high-level verifi-

cation policies. We provide a few simple example of this direction. Consider a SDN-network

implementing several virtual networks sharing the same physical infrastructure. Every network

may be granted with different bandwidth provisioning, possibly resulting in some virtual net-

work having less resources than required. It may be possible to exploit our class representation

to detect that packets of that particular virtual network are not able to go out of the local

scope even if forwarding rules are correct and the whole network is loop-free. In addition,

when several virtualization levels are present, verification tasks may be challenging due to the

increase of network classes (similarly to the “write” scenario).

Performance evaluation of IHC and comparison with related work We developed

a preliminary version of a software verification tool based on IHC, which has been developed

Conclusion 142

with high-level languages. We preliminary tested the IHC’s algorithm for atom computation

on a Linux laptop, showing that a complex network task such as network verification can be

performed even on commodity PCs.

However, in order to take advantage of IHC’s representation a more performing language is

required: we plan to develop a C/C++ plugin and we believe that our approach could be

easily integrated in the Veriflow [KZZ+13] core library both for speed-up and performance-

guarantee considerations. Our idea is to replace VeriFlow’s class computation module, which

can generate a great number of sub-classes (and therefore a higher number of elements must

be checked to detect loops) with our class representation: we expect to observe a performance

speed-up thanks to our smaller number of atoms.

Finally, we are interested in empirically evaluating the feasibility of IHC deployment in a real

network environment, and comparing our performance results with the state-of-the-art tools

for network diagnosis, namely VeriFlow and NetPlumber/HSA.

Glossary

ARP Address Resolution Protocol. It is used to match IP addresses to correspond-

ing MAC addresses [Plu82].

BGP Border gateway protocol. It is a protocol for the decision of routes among

different autonomous systems. Every autonomous system is an independent

network, and routes are not decided through a shortest-path algorithm, but

rather by means of service level agreements among network providers [RL95].

DNS Domain name system [Pos94]. It is a hierarchical decentralized database

mapping URLs (dot-delimited human-readable strings such as www.inria.

fr) to effective 32-bit IP addresses.

ICMP The Internet Control Message Protocol’s purpose is to provide feedback

about problems in the network. ICMP is used for example, to report an

error in datagram processing [Pos81].

LC Abbreviation of line card.

MPEG Moving Picture Experts Group (MPEG) is a standard which defines the

proper coding for media type such as audio and video.

OSPF Acronym for Open Shortest Path First. It is a routing protocol, based on the

Dijkstra algorithm, that responds quickly to topology changes, yet involves

small amounts of routing protocol traffic [Moy97].

RFID Radio-frequency identification (RFID), it is a technology that exploits elec-

tromagnetic fields to tag objects. An example of RFIDs objects is a corporate

badge.

RIP Acronym for Routing Information Protocol. This routing protocol, based

on the Bellman-Ford algorithm, has been used for routing computations in

computer networks since the early days of the ARPANET [Hed88].

SSL Secure socket layer. It encrypts a channel between two endpoints to create

a secure and reliable connection.

TCP Transport Control Protocol. It implements a connection-oriented reliable

channel between endpoints over an unreliable network.

UDP User Datagram protocol. The most simple protocol which can provide a

best-effort delivery channel between endpoints.

143

www.inria.fr
www.inria.fr

Bibliography

[ABDDP13] Giuseppe Aceto, Alessio Botta, Walter De Donato, and Antonio Pescapè, Cloud
monitoring: A survey, Computer Networks 57 (2013), no. 9, 2093–2115.

[AD11] Saamer Akhshabi and Constantine Dovrolis, The evolution of layered protocol
stacks leads to an hourglass-shaped architecture, ACM SIGCOMM Computer
Communication Review 41 (2011), no. 4, 206.

[AD12] Bengt Ahlgren and Christian Dannewitz, A survey of information-centric net-
working, Communication Magazine, IEEE 50 (2012), no. July, 26–36.

[AMM+13] Alexander Afanasyev, Priya Mahadevan, Ilya Moiseenko, Ersin Uzun, and Lixia
Zhang, Interest flooding attack and countermeasures in named data networking,
IFIP Networking Conference, 2013, IEEE, 2013, pp. 1–9.

[ASP00] Hari Adiseshu, Subhash Suri, and Guru M. Parulkar, Detecting and resolving
packet filter conflicts, Proceedings IEEE INFOCOM 2000, The Conference on
Computer Communications, Nineteenth Annual Joint Conference of the IEEE
Computer and Communications Societies, Reaching the Promised Land of Com-
munications, Tel Aviv, Israel, March 26-30, 2000, IEEE, 2000, pp. 1203–1212.

[AYW+] Alexander Afanasyev, Cheng Yi, Lan Wang, Beichuan Zhang, and Lixia Zhang,
Map-and-encap for scaling ndn routing, Tech. report.

[Bar12] MF Bari, A survey of naming and routing in information-centric networks, Com-
munication Magazine, IEEE 50 (2012), no. December.

[BC15] Matthieu Boutier and Juliusz Chroboczek, Source-specific routing, IFIP Network-
ing, 2015.

[BCF+99] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker, Web caching
and zipf-like distributions: Evidence and implications, INFOCOM’99. Eighteenth
Annual Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, vol. 1, IEEE, 1999, pp. 126–134.

[BCKO08] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars, Com-
putational geometry: Algorithms and applications, 3rd ed. ed., Springer-Verlag
TELOS, Santa Clara, CA, USA, 2008.

144

[BDLPL+15] Yacine Boufkhad, Ricardo De La Paz, Leonardo Linguaglossa, Fabien Mathieu,
Diego Perino, and Laurent Viennot, Vérification de tables de routage par utilisa-
tion d’un ensemble représentatif d’en-têtes, ALGOTEL 2015 - 17èmes Rencontres
Francophones sur les Aspects Algorithmiques des Télécommunications (Beaune,
France), June 2015.

[Bel56] Richard Bellman, On a routing problem, Tech. report, DTIC Document, 1956.

[BGK+13] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Mar-
tin Izzard, Fernando Mujica, and Mark Horowitz, Forwarding metamorphosis:
Fast programmable match-action processing in hardware for SDN, Proceedings of
the ACM SIGCOMM 2013 Conference on SIGCOMM (New York, NY, USA),
SIGCOMM ’13, ACM, 2013, pp. 99–110.

[Blo70] Burton H Bloom, Space/time trade-offs in hash coding with allowable errors,
Communications of the ACM 13 (1970), no. 7, 422–426.

[BM99] Scott Bradner and Jim McQuaid, Benchmarking Methodology for Network Inter-
connect Devices, RFC 2544, 1999.

[BM04] Andrei Broder and Michael Mitzenmacher, Network applications of bloom filters:
A survey, Internet mathematics 1 (2004), no. 4, 485–509.

[BOR99] Allan Borodin, Rafail Ostrovsky, and Yuval Rabani, Lower bounds for high dimen-
sional nearest neighbor search and related problems, Proceedings of the Thirty-
First Annual ACM Symposium on Theory of Computing, May 1-4, 1999, Atlanta,
Georgia, USA (Jeffrey Scott Vitter, Lawrence L. Larmore, and Frank Thomson
Leighton, eds.), ACM, 1999, pp. 312–321.

[C+12] M Chiosi et al., Network functions virtualisation–introductory white paper, SDN
and OpenFlow World Congress, Darmstadt, Germany, 2012.

[CB10] NM Mosharaf Kabir Chowdhury and Raouf Boutaba, A survey of network virtu-
alization, Computer Networks 54 (2010), no. 5, 862–876.

[Cen] Palo Alto Research Center, a CCNx software implementation, http://blogs.
parc.com/ccnx/.

[CGM12] G. Carofiglio, M. Gallo, and L. Muscariello, Icp: Design and evaluation of an
interest control protocol for content-centric networking, Computer Communica-
tions Workshops (INFOCOM WKSHPS), 2012 IEEE Conference on, March 2012,
pp. 304–309.

[CIP02] Moses Charikar, Piotr Indyk, and Rina Panigrahy, New algorithms for sub-
set query, partial match, orthogonal range searching, and related problems, Au-
tomata, Languages and Programming, 29th International Colloquium, ICALP
2002, Malaga, Spain, July 8-13, 2002, Proceedings (Peter Widmayer, Fran-
cisco Triguero Ruiz, Rafael Morales Bueno, Matthew Hennessy, Stephan Eiden-
benz, and Ricardo Conejo, eds.), Lecture Notes in Computer Science, vol. 2380,
Springer, 2002, pp. 451–462.

145

http://blogs.parc.com/ccnx/
http://blogs.parc.com/ccnx/

[Cis] Cisco, http://www.ciscopress.com/articles/article.asp?p=174313&

seqNum=5.

[CK74] V. Cerf and R. Kahn, A Protocol for Packet Network Intercommunication, Toc
22 (1974), no. 5.

[CPW11] Antonio Carzaniga, Michele Papalini, and Alexander L Wolf, Content-Based Pub-
lish / Subscribe Networking and Information-Centric Networking, ICN, 2011,
pp. 56–61.

[DEA+09] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun, Kevin
Fall, Gianluca Iannaccone, Allan Knies, Maziar Manesh, and Sylvia Ratnasamy,
Routebricks: exploiting parallelism to scale software routers, SOSP ’09 (Big Sky,
Montana, USA), 2009.

[DHM+13] Advait Dixit, Fang Hao, Sarit Mukherjee, TV Lakshman, and Ramana Kom-
pella, Towards an elastic distributed sdn controller, ACM SIGCOMM Computer
Communication Review 43 (2013), no. 4, 7–12.

[Dij59] Edsger W Dijkstra, A note on two problems in connexion with graphs, Numerische
mathematik 1 (1959), no. 1, 269–271.

[DLCW12] Huichen Dai, Bin Liu, Yan Chen, and Yi Wang, On pending interest table in
named data networking, Proceedings of the eighth ACM/IEEE symposium on
Architectures for networking and communications systems - ANCS ’12 (2012),
211.

[DLWL15] Huichen Dai, Jianyuan Lu, Yi Wang, and Bin Liu, Bfast: Unified and scalable
index for ndn forwarding architecture, Computer Communications (INFOCOM),
2015 IEEE Conference on, IEEE, 2015, pp. 2290–2298.

[DR00] Bruce Davie and Yakov Rekhter, Mpls: technology and applications, Morgan
Kaufmann Publishers Inc., 2000.

[EM81] Herbert Edelsbrunner and Hermann A. Maurer, On the intersection of orthogonal
objects, Information Processing Letters 13 (1981), no. 4, 177–181.

[EM01] David Eppstein and S. Muthukrishnan, Internet packet filter management and
rectangle geometry, Proceedings of the Twelfth Annual Symposium on Discrete
Algorithms, January 7-9, 2001, Washington, DC, USA. (S. Rao Kosaraju, ed.),
ACM/SIAM, 2001, pp. 827–835.

[EMP+82] Herbert Edelsbrunner, Hermann A. Maurer, Franco P. Preparata, Arnold L.
Rosenberg, Emo Welzl, and Derick Wood, Stabbing line segments, BIT Numerical
Mathematics 22 (1982), no. 3, 274–281.

[FAK13] Bin Fan, David G. Andersen, and Michael Kaminsky, Memc3: Compact and con-
current memcache with dumber caching and smarter hashing, Presented as part of
the 10th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 13) (Lombard, IL), USENIX, 2013, pp. 371–384.

146

http://www.ciscopress.com/articles/article.asp?p=174313&seqNum=5
http://www.ciscopress.com/articles/article.asp?p=174313&seqNum=5

[FCAB98] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z Broder, Summary cache: A
scalable wide-area web cache sharing protocol, ACM SIGCOMM Computer Com-
munication Review, vol. 28, ACM, 1998, pp. 254–265.

[FGT92] Philippe Flajolet, Daniele Gardy, and Loÿs Thimonier, Birthday paradox, coupon
collectors, caching algorithms and self-organizing search, Discrete Applied Math-
ematics 39 (1992), no. 3, 207–229.

[FLYV93] Vince Fuller, Tony Li, Jessica Yu, and Kannan Varadhan, Classless inter-domain
routing (cidr): an address assignment and aggregation strategy.

[FM00] Anja Feldmann and S. Muthukrishnan, Tradeoffs for packet classification, Pro-
ceedings IEEE INFOCOM 2000, The Conference on Computer Communications,
Nineteenth Annual Joint Conference of the IEEE Computer and Communica-
tions Societies, Reaching the Promised Land of Communications, Tel Aviv, Israel,
March 26-30, 2000, IEEE, 2000, pp. 1193–1202.

[For56] Lester Randolph Ford, Network flow theory.

[GGM12] Massimo Gallo, Carofiglio Giovanna, and Luca Muscariello, Joint Hop-by-hop and
Receiver-Driven Interest Control Protocol for Content-Centric Networks, ACM
SIGCOMM ICN, 2012 (Helsinki, Finland), August 2012.

[GJN11] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan, Understanding network
failures in data centers: measurement, analysis, and implications, ACM SIG-
COMM Computer Communication Review, vol. 41, ACM, 2011, pp. 350–361.

[GM01] Pankaj Gupta and Nick McKeown, Algorithms for packet classification, IEEE
Network: The Magazine of Global Internetworking 15 (2001), no. 2, 24–32.

[HAA+13] A K M Mahmudul Hoque, Syed Obaid Amin, Adam Alyyan, Beichuan Zhang,
Lixia Zhang, and Lan Wang, NLSR: Named-data Link State Routing Protocol,
Proceedings of the 3rd ACM SIGCOMM workshop on Information-centric net-
working - ICN ’13 (2013), 15.

[Hed88] Charles L Hedrick, Routing information protocol version 2, RFC 2453, 1988.

[HGJL15] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, Network function virtualization:
Challenges and opportunities for innovations, IEEE Communications Magazine
53 (2015), no. 2, 90–97.

[icn] Information centric networking research group (icnrg), http://irtf.org/icnrg.

[IM03] Sundar Iyer and Nick W. McKeown, Analysis of the parallel packet switch archi-
tecture, IEEE/ACM Trans. Netw. 11 (2003), no. 2, 314–324.

[Ind14] Cisco Visual Networking Index, Cisco Visual Networking Index: Forecast and
Methodology, 2014 – 2019, White Paper (2014).

147

http://irtf.org/icnrg

[Ind15] , Global mobile data traffic forecast update, 2010-2015, White Paper
(2015).

[Int] DPDK Intel, Data plane development kit, URL http://dpdk. org.

[JCDK01] Kirk L. Johnson, John F. Carr, Mark S. Day, and M. Frans Kaashoek, The mea-
sured performance of content distribution networks, Computer Communications
24 (2001), no. 2, 202–206.

[JP13] Raj Jain and Sudipta Paul, Network virtualization and software defined network-
ing for cloud computing: a survey, Communications Magazine, IEEE 51 (2013),
no. 11, 24–31.

[JSB+09] Van Jacobson, Diana K Smetters, Nicholas H Briggs, James D Thornton,
Michael F Plass, and Rebecca L Braynard, Networking Named Content, Proceed-
ings of the 5th International Conference on Emerging Networking Experiments
and Technologies CoNEXT ’09 (2009), 1–12.

[Kaz] Kazemian Peyman, HSA/NetPlumber source code repository, https://

bitbucket.org/peymank/hassel-public/.

[KC04] P. Koopman and T. Chakravarty, Cyclic redundancy code (crc) polynomial selec-
tion for embedded networks, Dependable Systems and Networks, 2004 Interna-
tional Conference on, June 2004, pp. 145–154.

[KCZ+13] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick McK-
eown, and Scott Whyte, Real time network policy checking using header space
analysis, Presented as part of the 10th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 13), 2013, pp. 99–111.

[KDA12] Vasileios Kotronis, Xenofontas Dimitropoulos, and Bernhard Ager, Outsourcing
the routing control logic: Better internet routing based on SDN principles, Pro-
ceedings of the 11th ACM Workshop on Hot Topics in Networks (New York, NY,
USA), HotNets-XI, ACM, 2012, pp. 55–60.

[KMV10] Adam Kirsch, Michael Mitzenmacher, and George Varghese, Hash-based tech-
niques for high-speed packet processing, Algorithms for Next Generation Net-
works, Springer, 2010, pp. 181–218.

[Knu98] Donald Ervin Knuth, The art of computer programming: sorting and searching,
vol. 3, Pearson Education, 1998.

[KRW13] Naga Praveen Katta, Jennifer Rexford, and David Walker, Incremental consistent
updates, Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking (New York, NY, USA), HotSDN ’13, ACM, 2013,
pp. 49–54.

[KVM11] Peyman Kazemian, George Varghese, and Nick McKeown, Header space analysis:
Static checking for networks, Tech. report, Stanford, 2011.

148

https://bitbucket.org/peymank/hassel-public/
https://bitbucket.org/peymank/hassel-public/

[KVM12] Peyman Kazemian, George Varghese, and Nick McKeown, Header space analysis:
Static checking for networks, Presented as part of the 9th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 12), 2012, pp. 113–126.

[KZZ+13] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P Brighten
Godfrey, Veriflow: Verifying network-wide invariants in real time, Presented as
part of the 10th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 13), 2013, pp. 15–27.

[LBWJ12] Zhaogeng Li, Jun Bi, Sen Wang, and Xiaoke Jiang, Compression of pending
interest table with Bloom filter in content centric network, Proceedings of the 7th
International Conference on Future Internet Technologies - CFI ’12 (2012), 46.

[LIJM+11] Craig Labovitz, Scott Iekel-Johnson, Danny McPherson, Jon Oberheide, and Far-
nam Jahanian, Internet inter-domain traffic, ACM SIGCOMM Computer Com-
munication Review 41 (2011), no. 4, 75–86.

[Lit61] John DC Little, A proof for the queuing formula: L= λ w, Operations research
9 (1961), no. 3, 383–387.

[LLR+12] Tobias Lauinger, Nikolaos Laoutaris, Pablo Rodriguez, Thorsten Strufe, Ernst
Biersack, and Engin Kirda, Privacy implications of ubiquitous caching in named
data networking architectures, Tech. report, Technical report, TR-iSecLab-0812-
001, iSecLab, 2012.

[LLZ14] Zhuo Li, Kaihua Liu, and Yang Zhao, MaPIT : An Enhanced Pending Interest
Table for NDN with Mapping Bloom Fi, Communication Letters, IEEE 18 (2014),
no. 11, 1915–1918.

[LMEZG97] Hang Liu, Hairuo Ma, Magda El Zarki, and Sanjay Gupta, Error control schemes
for networks: An overview, Mob. Netw. Appl. 2 (1997), no. 2, 167–182.

[Ltd13] Point Topic Ltd, VoIP statistics - market analysis,
http://point-topic.com/wp-content/uploads/2013/02/

Point-Topic-Global-VoIP-Statistics-Q1-2013.pdf, 2013.

[MAB+08] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peter-
son, Jennifer Rexford, Scott Shenker, and Jonathan Turner, OpenFlow:Enabling
Innovation in Campus Networks, ACM SIGCOMM Computer Communication
Review 38 (2008), no. 2, 69.

[MCG11] Luca Muscariello, Giovanna Carofiglio, and Massimo Gallo, Bandwidth and stor-
age sharing performance in information centric networking, Proceedings of the
ACM SIGCOMM workshop on Information-centric networking, ACM, 2011,
pp. 26–31.

[MKA+11] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P Godfrey,
and Samuel Talmadge King, Debugging the data plane with anteater, ACM SIG-
COMM Computer Communication Review 41 (2011), no. 4, 290–301.

149

http://point-topic.com/wp-content/uploads/2013/02/Point-Topic-Global-VoIP-Statistics-Q1-2013.pdf
http://point-topic.com/wp-content/uploads/2013/02/Point-Topic-Global-VoIP-Statistics-Q1-2013.pdf

[Moy97] John Moy, OSPF version 2, RFC 2328, 1997.

[MPIA09] Gregor Maier, Vern Paxson, U C Berkeley Icsi, and Mark Allman, On Dominant
Characteristics of Residential Broadband Internet Traffic, 9th ACM SIGCOMM
conference on Internet measurement conference (2009), 90–102.

[MRF+13] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David
Walker, Composing software-defined networks, Proceedings of the 10th USENIX
Conference on Networked Systems Design and Implementation (Berkeley, CA,
USA), nsdi’13, USENIX Association, 2013, pp. 1–14.

[MSB+15] Rodrigo B Mansilha, Lorenzo Saino, Marinho P Barcellos, Massimo Gallo, Emilio
Leonardi, Diego Perino, and Dario Rossi, Hierarchical content stores in high-
speed icn routers: Emulation and prototype implementation, Proceedings of the
2nd International Conference on Information-Centric Networking, ACM, 2015,
pp. 59–68.

[NFL+14] David Naylor, Alessandro Finamore, Ilias Leontiadis, Yan Grunenberger, Marco
Mellia, Maurizio Munafò, Konstantina Papagiannaki, Peter Steenkiste, and Po-
litecnico Torino, The Cost of the “ S ” in HTTPS, CoNext, 2014.

[nG] nvidia. GTX 580, http://geforce.com/hardware/desktop-gpus/

geforce-gtx-580/.

[NMN+14] Bruno Astuto A Nunes, Marc Mendonca, Xuan Nam Nguyen, Katia Obraczka,
and Thierry Turletti, A survey of software-defined networking: Past, present, and
future of programmable networks, IEEE Communications Surveys and Tutorials
16 (2014), no. 3, 1617–1634.

[NSS10] Erik Nygren, Ramesh K Sitaraman, and Jennifer Sun, The Akamai network: a
platform for high-performance internet applications, SIGOPS Operating Systems
Review 44 (2010), no. 3, 2–19.

[Ope12] Open Networking Foundation, Software-Defined Networking: The New Norm for
Networks [white paper], ONF White Paper (2012), 1–12.

[Pat11] Mihai Patrascu, Unifying the landscape of cell-probe lower bounds, SIAM J. Com-
put. 40 (2011), no. 3, 827–847.

[Pav13] George Pavlou, Information-Centric Networking and In-Network Cache Man-
agement: Overview, Trends and Challenges, 2013, Keynote speech of the 9th
IFIP/IEEE Conference on Network and Service Management.

[Pax97] Vern Edward Paxson, Measurements and analysis of end-to-end internet dynam-
ics, Ph.D. thesis, University of California, Berkeley, 1997.

[Per98] Charles E. Perkins, Mobile networking through mobile IP, IEEE Internet Com-
puting 2 (1998), no. 1, 58–69.

150

http://geforce.com/hardware/desktop-gpus/geforce-gtx-580/
http://geforce.com/hardware/desktop-gpus/geforce-gtx-580/

[PGB+14] Diego Perino, Massimo Gallo, Roger Boislaigue, Leonardo Linguaglossa, Matteo
Varvello, Giovanna Carofiglio, Luca Muscariello, and Zied Ben Houidi, A High
Speed Information-Centric Network in a Mobile Backhaul Setting, ICN ’14, 2014,
pp. 199–200.

[PKV+13] Peter Perešíni, Maciej Kuzniar, Nedeljko Vasić, Marco Canini, and Dejan Kostiū,
OF.CPP: Consistent Packet Processing for Openflow, Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking (New
York, NY, USA), HotSDN ’13, ACM, 2013, pp. 97–102.

[Plu82] David Plummer, Ethernet address resolution protocol: Or converting network pro-
tocol addresses to 48. bit ethernet address for transmission on ethernet hardware,
RFC 826, 1982.

[Pos81] Jon Postel, Internet control message protocol, RFC 792, 1981.

[Pos94] J. Postel, Domain name system structure and delegation, RFC 1591, 1994.

[PPK+15] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno
Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, Keith Amidon,
Awake Networks, Martín Casado, and Implementation Nsdi, The Design and
Implementation of OpenvSwitch, NSDI, 2015.

[PV11] Diego Perino and Matteo Varvello, A Reality Check for Content Centric Network-
ing, ICN ’11, 2011, pp. 44–49.

[PVL14a] D. Perino, M. Varvello, and L. Linguaglossa, Method And Apparatus To Forward
Request For Content, EP 2947839, ref. 14169327.5, location EU, US, 03 2014.

[PVL+14b] Diego Perino, Matteo Varvello, Leonardo Linguaglossa, Rafael Laufer, and Roger
Boislaigue, Caesar: a content router for high-speed forwarding on content names,
Proceedings of the tenth ACM/IEEE symposium on Architectures for networking
and communications systems, ACM, 2014, pp. 137–148.

[rg16] The NDN research group, NDN frequently asked questions, http://named-data.
net/project/faq/, 2016.

[Riv76] Ronald L. Rivest, Partial-match retrieval algorithms, SIAM J. Comput. 5 (1976),
no. 1, 19–50.

[RL95] Yakov Rekhter and Tony Li, A border gateway protocol 4 (bgp-4).

[Rob00] L. G. Roberts, Beyond Moore’s law: Internet growth trends, Computer 33 (2000),
no. 1, 117–119.

[Rou] Route Views Project, BGP traces, http://routeviews.org/.

[RR06] Eric C Rosen and Yakov Rekhter, Bgp/mpls ip virtual private networks (vpns),
RFC 4364, 2006.

151

http://named-data.net/project/faq/
http://named-data.net/project/faq/
http://routeviews.org/

[RRGL14] G Rossini, D Rossi, M Garetto, and E Leonardi, Multi-Terabyte and Multi-Gbps
Information Centric Routers, INFOCOM 2014, 2014, pp. 1–9.

[SAP99] W Richard Stevens, Mark Allman, and Vern Paxson, Tcp congestion control,
RFC 2581, 1999.

[SDQR10] Jörg Schad, Jens Dittrich, and Jorge-Arnulfo Quiané-Ruiz, Runtime measure-
ments in the cloud: Observing, analyzing, and reducing variance, Proc. VLDB
Endow. 3 (2010), no. 1-2, 460–471.

[SH06] Osama Saleh and Mohamed Hefeeda, Modeling and caching of peer-to-peer traffic,
Network Protocols, 2006. ICNP’06. Proceedings of the 2006 14th IEEE Interna-
tional Conference on, IEEE, 2006, pp. 249–258.

[Sha01] Claude Elwood Shannon, A mathematical theory of communication, ACM SIG-
MOBILE Mobile Computing and Communications Review 5 (2001), no. 1, 3–55.

[SHKL09] Haoyu Song, Fang Hao, Murali S. Kodialam, and T. V. Lakshman, Ipv6 lookups
using distributed and load balanced bloom filters for 100gbps core router line cards,
INFOCOM’09 (Rio de Janeiro, Brazil), 2009.

[SNO13] Won So, Ashok Narayanan, and David Oran, Named data networking on a router:
Fast and DoS-resistant forwarding with hash tables, Architectures for Networking
and Communications Systems (2013), no. 1, 215–225.

[SNOS13] Won So, Ashok Narayanan, David Oran, and Mark Stapp, Named data network-
ing on a router: forwarding at 20gbps and beyond, ACM SIGCOMM Computer
Communication Review, vol. 43, ACM, 2013, pp. 495–496.

[Tan96] Andrew S Tanenbaum, Computer Networks, vol. 52, 1996.

[TD99] Mahesh V Tripunitara and Partha Dutta, A middleware approach to asyn-
chronous and backward compatible detection and prevention of arp cache poison-
ing, Computer Security Applications Conference, 1999.(ACSAC’99) Proceedings.
15th Annual, IEEE, 1999, pp. 303–309.

[TFF+13] Patricia Thaler, Norman Finn, Don Fedyk, Glenn Parsons, and Eric Gray, Ieee
802.1 q.

[TIAC04] Tomonori Takeda, Ichiro Inoue, Raymond Aubin, and Marco Carugi, Layer 1
virtual private networks: service concepts, architecture requirements, and related
advances in standardization, IEEE Communications Magazine 42 (2004), no. 6,
132–138.

[VLZL14] Matteo Varvello, Rafael Laufer, Feixiong Zhang, and T.V. Lakshman, Multi-layer
packet classification with graphics processing units, CoNEXT, 2014.

[VP12] Matteo Varvello and Diego Perino, Caesar : a Content Router for High Speed
Forwarding, ICN ’12, no. Section 5, 2012, pp. 73–78.

152

[VPL13] Matteo Varvello, Diego Perino, and Leonardo Linguaglossa, On the Design and
Implementation of a wire-speed Pending Interest Table, NOMEN workshop @
INFOCOM, 2013.

[WHD+12] Yi Wang, Keqiang He, Huichen Dai, Wei Meng, Junchen Jiang, Bin Liu, and
Yan Chen, Scalable Name Lookup in NDN Using Effective Name Component
Encoding, 2012 IEEE 32nd International Conference on Distributed Computing
Systems (2012), 688–697.

[WHY+12] Lan Wang, AKMM Hoque, Cheng Yi, Adam Alyyan, and Beichuan Zhang, Ospfn:
An ospf based routing protocol for named data networking, University of Memphis
and University of Arizona, Tech. Rep (2012).

[WPM+13] Yi Wang, Tian Pan, Zhian Mi, Huichen Dai, Xiaoyu Guo, Ting Zhang, Bin Liu,
and Qunfeng Dong, Namefilter: Achieving fast name lookup with low memory
cost via applying two-stage bloom filters, INFOCOM, 2013 Proceedings IEEE,
IEEE, 2013, pp. 95–99.

[WRN+13] Yaogong Wang, Natalya Rozhnova, Ashok Narayanan, David Oran, and Injong
Rhee, An improved hop-by-hop interest shaper for congestion control in named
data networking, SIGCOMM Comput. Commun. Rev. 43 (2013), no. 4, 55–60.

[WZZ+13] Yi Wang, Yuan Zu, Ting Zhang, Kunyang Peng, Qunfeng Dong, Bin Liu, Wei
Meng, Huichen Dai, Xin Tian, Zhonghu Xu, Hao Wu, and Di Yang, Wire speed
name lookup: a GPU-based approach, 2013.

[YC15] Haowei Yuan and Patrick Crowley, Reliably scalable name prefix lookup, Proceed-
ings of the Eleventh ACM/IEEE Symposium on Architectures for networking and
communications systems, IEEE Computer Society, 2015, pp. 111–121.

[YCC14] Haowei Yuan, Patrick Crowley, and Best Case, Scalable Pending Interest Table
Design : From Principles to Practice, INFOCOM, 2014, pp. 2049–2057.

[YDAG04] L. Yang, R. Dantu, T. Anderson, and R. Gopal, Forwarding and Control Element
Separation (ForCES) Framework, RFC 3746, 2004.

[YMT+12] Wei You, Bertrand Mathieu, Patrick Truong, Jean-Francois Peltier, and Gwendal
Simon, DiPIT: A Distributed Bloom-Filter Based PIT Table for CCN Nodes,
2012 21st International Conference on Computer Communications and Networks
(ICCCN) (2012), 1–7.

[YSC12] Haowei Yuan, Tian Song, and Patrick Crowley, Scalable NDN Forwarding: Con-
cepts, Issues and Principles, 2012 21st International Conference on Computer
Communications and Networks (ICCCN) (2012), 1–9.

[YTG13] Soheil Hassas Yeganeh, Amin Tootoonchian, and Yashar Ganjali, On scalability of
software-defined networking, Communications magazine, IEEE 51 (2013), no. 2,
136–141.

153

[ZEB+10] Lixia Zhang, Deborah Estrin, Jeffrey Burke, Van Jacobson, James D Thorn-
ton, Diana K Smetters, Beichuan Zhang, Gene Tsudik, Dan Massey, Christos
Papadopoulos, Lan Wang, Patrick Crowley, and Edmund Yeh, Named Data Net-
working (NDN) Project, Tech. Report October, 2010.

[Zim80] Hubert Zimmermann, OSI reference model - the ISO model of architecture for
open systems interconnection, Communications, IEEE Transactions on 28 (1980),
no. 4, 425–432.

[ZLL13] Guoqiang Zhang, Yang Li, and Tao Lin, Caching in information centric network-
ing: a survey, Computer Networks 57 (2013), no. 16, 3128–3141.

[ZZY+14] Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar Jeyakumar, Mickey Ju, Junda
Liu, Nick McKeown, and Amin Vahdat, Libra: Divide and conquer to verify for-
warding tables in huge networks, Proceedings of the 11th USENIX Conference on
Networked Systems Design and Implementation (Berkeley, CA, USA), NSDI’14,
USENIX Association, 2014, pp. 87–99.

154

