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Résumé

Nous cherchons à équiper un processus d’aide à la décision d’outils permettant
de répondre aux exigences de redevabilité. Nous nous plaçons dans un cadre
dialectique, mettant en scène deux protagonistes. Le décideur est amené à
arbitrer entre des points de vue conflictuels. Un analyste, chargé d’éclairer la
prise de décision, interroge le décideur quant à ses préférences—les compromis
qu’il juge acceptable—jusqu’à obtenir une vision suffisamment claire de la
situation pour pouvoir émettre une recommandation. Cette situation est
souvent modélisée en termes d’agrégation de préférences reflétant des points de
vue multiples, et résolue en faisant appel à un raisonement inductif, permettant
à l’analyste de deviner au mieux les compromis entre ces points de vue qui
satisfont le décideur. Une abondante littérature est consacrée à l’élicitation
des préférences, où le paradigme dominant consiste à faire l’hypothèse d’un
modèle paramétrique destiné à refléter l’attitude du décideur, puis à calibrer
les valeurs des paramètres sur la base d’informations fournies par le décideur,
à l’aide d’outils algorithmiques provenant de la Recherche Opérationnelle ou
de l’Apprentissage Automatique. Afin de pouvoir rendre des comptes à des
tierces parties, il nous semble pertinent de modifier ce paradigme, en prenant
structurellement en compte le fait que l’information fournie par le décideur
au cours du dialogue est incomplète, et en nous orientant vers l’élicitation
dite robuste, où les recommandations sont inférées, non pas sur la base d’un
unique jeu de paramètres jugé représentatif, mais sur l’ensemble des jeux
de paramètres compatible avec l’information sur les préférences. Ainsi, les
recommandations robustes, dans le cadre d’un modèle d’agrégation donné, sont
déduites des éléments dialectiques. Afin de mettre en évidence ce lien déductif,
sous la forme d’une explication—si possible correcte, complète, facile à calculer
et à comprendre—nous nous sommes intéressés à la résolution d’un problème

inverse concernant le modèle.



Dans le cadre de cet ouvrage, nous avons considéré deux formes de
représentation du raisonnement: l’une ayant trait à la comparaison de paires
d’alternatives fondée sur un modèle de valeur additive, l’autre ayant trait au
tri des alternatives dans des catégories ordonnées fondé sur un raisonnement
non-compensatoire.

La première partie de cet ouvrage est consacrée au modèle additif, qui joue
un rôle central en décision multicritère, en choix social ou en apprentissage
automatique. Nous y décrivons la procédure d’agrégation multicritère inférée
dans le cadre de l’élicitation robuste dans le paradigme de la représentation

du raisonnement et des connaissances, où l’information sur les préférence
est représentée sous la forme d’une base de connaissance indépendante des
requêtes, et où les requêtes sont évaluées par un moteur d’inférence. Nous
décrivons dans ce paradigme un certain nombre de variantes du modèle additif,
soit davantage contraintes, soit permettant un langage plus expressif pour les
préférences. Nous présentons un cadre permettant de calculer la totalité de la
relation de préférence nécessaire. Nous proposons deux moteurs d’explication
pour le modèle additif. L’un est fondé sur un principe d’annulation des
arguments, et permet de relier les prémisses, issues du dialogue, à une conclusion
permettant de trancher en faveur d’une alternative. Nous en proposons diverses
représentations, en établissons la correction et la complétude, et en discutons
la simplicité, et montrons que le calcul d’explications simples est NP-complet.
L’autre est fondé sur le principe de diviser pour régner, et consiste à décomposer
une préférence complexe en une série de préférences simples enchainées par
transitivité. Ce schéma est correct, mais nécessite de trouver un compromis
entre complétude et simplicité. En outre, nous démontrons qu’il possède
d’excellentes qualités en termes de complétude, de simplicité et de calculabilité
lorsque l’on fait une hypothèse classique portant sur l’information sur les
préférences.

La seconde partie de cet ouvrage est consacrée au tri non-compensatoire
: il s’agit de porter un jugement sur la qualité intrinsèque des alternatives,
en employant un langage restreint, ce qui limite la possibilité de trouver un
compromis entre les différents points de vue. Nous commençons par proposer
un cadre unifié permettant de décrire diverses variantes courantes de cette
approche. Nous étudions le problème inverse consistant, étant donné un en-
semble d’exemples d’affectations, à trouver une valeur du jeu de paramètre du
modèle de tri non-compensatoire permettant de reproduire cette instance, et en
proposons deux formulations en termes de satisfiabilité Booléenne, dont nous
établissons la correction et la complétude. La première se fonde sur une descrip-
tion explicite de l’espace des paramètres, et requiert donc un nombre de variable
exponentiel en le nombre de points de vue. Cependant, nous démontrons de
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manière expérimentale qu’une telle formulation se montre environ cinquante
fois plus rapide que les techniques fondées sur la programmation linéaire en
nombres entiers qui constituaient l’état de l’art en la matière d’élicitation de
modèles non-compensatoires fondés sur une règle majoritaire. A l’aide d’une
caractérisation innovante des instances positives du problème inverse, nous
contournons l’obstacle de la représentation explicite de l’ensemble des coalitions
de points de vue, et proposons une seconde formulation, celle-ci compacte,
avec un nombre polynomial de variables et de clauses. Nous discutons l’apport
de ces techniques à l’élicitation robuste de modèles de tri non-compensatoire,
dans une optique de parvenir à proposer un dispositif d’aide à la décision à
même de rendre des comptes. Enfin, nous envisageons la contribution de ces
techniques à l’élaboration d’une procédure de tri où des candidats seraient
soumis à l’approbation d’un jury, et pour laquelle l’exigence de rendre compte
des décisions est prise en considération de manière structurelle, dès la concep-
tion. Nous proposons des certificats corrects et complets permettant d’attester
de la régularité procédurale, sous la forme de schéma d’arguments, bien que
la simplicité ne soit pas garantie dans le cas général. Nous proposons aussi
des certificats corrects, sous la formes de schémas d’arguments, attestant de
la nécessité de certaines décisions, permettant de répondre à de potentielles
contestations de décisions particulières.
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1

Positioning

1.1 Decision Aiding

We consider a decision aiding process, as described in [Bouyssou et al., 2006,
Tsoukiàs, 2008], occurring between somebody looking for decision support, and
an analyst providing such a support. We assume the decision maker and the
analyst have decided to follow a principled approach to decision aiding, based
on an evaluation model [Bouyssou et al., 2000].

1.1.1 The decision aiding process

In order to settle on a course of action, the decision maker and the analyst
engage in a dialectical process. Questions and answers are exchanged, and at
the end, the decision maker should emerge with a vision of the situation clear
enough to permit an enlightened decision making.

Final outcome. The stop condition of this dialog is not perfectly clear.
As forcefully formulated as the concept of bounded rationality by Simon in
his analysis of decision processes in organizations [Simon, 1991], it cannot
be expected that the decision eventually reached at the end of the process is
perfectly justified, rational or optimal in a strong sense. Decision processes, and,
a fortiori, decision aiding processes, use limited resources—time and cognitive
capabilities of the decision maker and the analyst. Therefore, what can be
expected is that the recommendations formulated at the end of the process,
which are issued from necessarily imperfectly determined models, should be
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considered as convincing by the decision maker. In particular, theya should
be convinced that the solutions emerging from the process are satisfactory.
Following [Rawls, 1971], we call considered judgement the final, stable and
desirable point of the decision aiding process, and we note that [Cailloux and
Meinard, 2018] is a recent attempt at transposing this notion in the dialectical
framework of a decision aiding process, as a deliberated judgment.

Elicitation of an evaluation model. So as to converge towards this
promised end, the protagonists often decide to follow a principled approach
to decision aiding, based on an evaluation model [Bouyssou et al., 2000]. An
evaluation model is a mathematical construct that allows to describe the
situation in an unambiguous manner, and should yield a recommendation
about the course of action the decision maker has to settle upon. Besides these
descriptive and prescriptive functions, we believe the evaluation model plays
an important constructive role. By abstracting away from the situation, and
maybe moving slightly away from the actual options of the decision maker,
it establishes a fiction that may help the decision maker to make their mind
about the adjudication of trade-offs between the various points of view. The
analyst can take advantage of this induced detachment to carefully elicit some
insights about the preferences of the decision maker, then incorporated them
into the evaluation model that eventually yields the sought answer.

The science of decision aiding This type of decision aiding process has
been an object of much scrutiny for the last fifty years. At the crossroads
between Operations Research, Economy, Applied Mathematics, Psychology,
Management Science and Computer Science, Decision Theory is interested in
providing formal tools to describe, analyze, equip and enhance decision pro-
cesses and decision aiding processes. Particularly, decision situations involving:

a) several points of view ; and/or

b) several decision makers ; and/or

c) partial or imprecise information about the consequences,

are known to require specific efforts to model and assist. While there is only
one decision maker in the situation we address, we assume that multiple points
of view should be taken into account; therefore, the problem falls under the
umbrella of multiple criteria decision aiding. The evaluation model needs to
adjudicate trade-offs between conflicting points of view; as there is no canonical

aWe use singular they as a gender-neutral pronoun. This allows us to eschew the awkward
‘he or she’, or the even more awkward assignment of each protagonist to a gender.
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Chapter 1. Positioning

way of doing so, it needs to account for the preferences of the decision maker,
by obtaining some kind of preference information.

1.1.2 Accountability

We consider the decision aiding process being subject to multiple demands for
accountability.

The decision maker. Accountability is first and foremost due to the decision
maker. They were looking for decision support, and expect the analyst to be
sincere and trustworthy, and help them in reaching a considered judgment.
This demand is even more urgent, should we consider the role of the analyst
is played by an artificial agent—which is exactly what recommender systems

[Ricci et al., 2010] try to do—as the designer of such systems shall endorse full
responsibility if the recommendation is biased or insincere. We translate this
generic demand for accountability into a (non exhaustive) list of requirements
for the decision aiding process.

• Adequacy: obviously, the analyst needs to design an adequate evaluation
model, and to elicit it adequately. While there are many scientific articles
that may offer a solid basis to address the second point, the first point is
really difficult, as illustrated e.g. by [Condorcet, 1785, Bouyssou et al.,
2000].

• Sincerity w.r.t. limited knowledge: many elicitation methods proposed in
the scientific literature either disregard mundane constraints such as time,
patience or precision, or propose inference techniques that go beyond
the information provided by the decision maker to calibrate their model.
When preference information is incomplete, the analyst should take great
care in determining whether their recommendations hold whatever the
completion might be, or if they are making an educated guess in order to
complete it, that might be falsified if additional information would become
available. This epistemic state should be reflected in their attitude when
presenting the recommendation to the decision maker. The methods used
in the decision aiding process should therefore integrate the unavoidable
imperfect character of the information (evaluations, preferences, etc.)
and of the models. The analyst should make every effort to produce
robust recommendations i.e. recommendations that are prudent, flexible,
stable, in view of the imperfections of the information and the models.

• Behavioral effects: behavioral sciences (broadly conceived) show how
sensitive people are to apparently irrelevant or non-significant details of
their environments when making a choice: how information is displayed,
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which words are used to frame the options and their consequences, etc.
The analyst should be aware of most of these effects, and do their best to
protect the decision maker from these, as they might constitute alienating
obstacles preventing to attain a considered judgment.

• Empowerment: the decision aiding dialog is rarely unstructured. The
analyst often leads the process, and questions the decision maker accord-
ing to an agenda where the goal is to rapidly elicit the model. Practical
applications of this decision aiding framework sometimes report the need
for going back and modify elements previously constructed—adding or
removing points of view, modifying the objects of the evaluation model,
or the type of results yielded by the evaluation model—but backtracking
is rarely considered in the scientific literature concerned with evalua-
tion models. Steps could profitably be taken towards a more mixed
initiative. In particular, instead of being assigned to a purely passive
role, the decision maker could be allowed two important dialog acts:
‘why?’, requesting an explanation supporting a claim made by the an-
alyst, and ‘no!’, expressing an explicit disagreement with such a claim,
and prompting a backtrack of the elicitation process.

Stakeholders of the decision. The decision aiding process may also con-
sider the need to account for the recommendation made to stakeholders of the
decision that have not been involved in the decision. The answer to this issue
can be thought of as the provision of an explanation, that conveys additional
information complementing the recommendation. These explanations may aim
at addressing two separate issues:

• maybe the stakeholders are allowed to contest the recommendation, and
the request of an explanation is actually a challenge to the validity of
the recommendation;

• maybe the stakeholders require to better understand the basis of the
recommendation, in order to better anticipate the behavior of the decision
making entity during future interactions.

Society at large. Similarly to Operations Research, Decision Aiding has
been chiefly aimed at helping chief executives to take ‘better’ decisions—more
efficient in the case of OR, better reflecting their priorities in the case of DA.
This aim was well aligned with the role of the analyst, often played by a
consultancy firm, reserving decision aiding for high-impact decisions.

Now that computers have become ubiquitous, it seems desirable to give
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access to decision aiding to the proverbial b ‘person in the street’, as we are all
decision makers, when it comes to opting for a career, a holiday destination
or a new coffee machine. A challenge in designing an artificial agent capable
of decision aiding consists in obtaining the same level of trust that a human
analyst, sanctified by formal and practical training in decision aiding matters,
but also capable of sympathizing to the concerns of his fellow human decision
maker, may benefit from. Accountability of the decision process is thus a
key enabler on the path towards its potential automation. This demand is
made all the more urgent when considering the rising defiance for ‘Artificial
Intelligence’, that conflates the dreads of ubiquitous surveillance, manipulation,
depowerment and unemployment.

Even in the case where decision aiding remains human based, thus reserved
for high-stakes situations, the willingness of the public to submit themselves to
decision from above—were they taken by enlightened despots, in the sense of
Voltaire—might have receded since the inception of OR in a world polarized
by global conflicts. It seems that people, rather than blindly following their
so-called ’elites’, demand more accountability from them. Any person in the
position of making a decision should be prepared to face the question ‘why
should I trust you?’ Note that the purpose of accountability is to answer
distrust, which is definitely not the same as promoting trustc. Distrust, or
defiance, is an exogenous state of affairs, that we need to cope withd.

This trend towards a more ‘horizontal’ society, and the rising concerns about
automated decision aiding, are somehow reflected in the legal and regulatory
systems of western societies. For instance, the General Data Regulation Policy

(see e.g. [Goodman and Flaxman, 2017, Wachter et al., 2017]), at the European
Union level, or the Loi pour une République Numérique in France (see e.g.
[Besse et al., 2017]), are recent regulatory texts that try do define, and enforce
accountability, even though both the novelty of the so-called ‘right for an
explanation’, and its legally binding aspect, are questionable: what somehow
defines a society under the rule of law is both the imperious necessity, for a
government, to duly motivate its decisions, and the right given to individuals to
contest them, even though the actual accountability of the government towards
the governed very much depends on the type and content of the explanation
required to support a decision.

bbut gender-free
c[Tintarev, 2007] identified the promotion of trust as one of the possible goals of an

explanation, in the context of recommender systems (see e.g. [Rossi et al., 2011]), where the
quality of the user experience is a key factor for (commercial) success.

dIt might be considered as negative—a nihilistic force hampering every action, or positive—
a manifestation of the people’s free will
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control:
Problem type
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output:
Aggregation
procedure

(of the correct type)

Figure 1.1: The elicitation process.

1.2 The elicitation process

At some point during the decision aiding process, a decision maker and an
analyst following a principled approach should engage in an elicitation process,
aiming at building an evaluation model that should reflect the view of the
decision maker and help them in the resolution of their dilemma.

This process can be implemented in many ways. In this section, we give
a high-level description of the process, and quickly review some common
approaches, with a particular attention to accountability issues.

1.2.1 High-level description

We give a high-level description of the elicitation process: the context it
needs to operate, the inputs it operates upon, and the outputs it yields.
Figure 1.1 illustrates this description. We detail the information that should
be provided at the onset of the process, the information that shall be processed
during elicitation, and the expected output of the process, together with their
requirements.

Aggregation procedures. The elicitation process is expected to yield an
aggregation procedure, whose role is to bring together and combine a multiplicity
of points of view into a single overall judgment. The aim of the elicitation
process is to yield an aggregation procedure that: i) reflects the views of the
decision maker, and ii) helps them solve their dilemma. The second point is
tied to the type of problem the aggregation procedure is designed to solve, e.g.:

• sorting problems consists in assigning alternatives to categories, known
in advance and ordered by level of requirement;

• pairwise comparison problems consists in adjudicating, between two
alternatives, which one is the fitter;
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Figure 1.2: Aggregation procedures.

• choice problems consists in selecting the fittest alternative among any
group;

• ranking problems consists in ordering any group of alternatives from
least fit to fittest.

Given a problem type, we call queries the potential inputs of an aggregation
procedure, and adjudications its potential outputs. Aggregation procedure of
various types are depicted on Figure 1.2.

The points of view, the way the alternatives are described according to
each point of view and the type of problem are contextual elements that need
to provided to the elicitation process. They are usually defined in a prior
phase, sometimes called problem structuring [Bouyssou et al., 2000].

Obtaining, representing and mechanizing the views of the decision

maker. Trying to faithfully represent the views of the decision maker is a
challenging endeavor, that should not be underestimated. The problem of
aggregating preferences has been the chief concern of the Social Choice domain
for more than two centuries: how should the individual preferences of a popu-
lation of agents be aggregated into a social preference? When the situation is
consensual—i.e. when an alternative is preferred to another according to all
points of view, the social preference is clear. Unfortunately, it is often necessary
to arbitrate between conflicting points of view. Therefore, the function of an
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aggregation procedure is precisely to adjudicate trade-offs between points of
view. For a long period of time, normative approaches to Social Choice have
tried to uncover or defend supposedly ‘good’ aggregation procedures, but the
discussion between Condorcet and Borda in the 1780s had already unveiled
paradoxes in seemingly ‘reasonable’ aggregation procedures [Condorcet, 1785],
and the generality of these conundrums has been established in the 1950s by
Arrow’s theorem [Arrow, 1950]: there are a number of desirable properties
for the aggregation procedure, that cannot be satisfied simultaneously. Conse-
quently, there is none ‘universally good’ aggregation procedure, only a large
set of imperfect ones that are more or less adequate to a given situation. The
stakes of the elicitation process reside in sculpting an adequate aggregation
procedure, with a reasonable amount of efforts.

Preference information. Preference information encompasses any infor-
mation provided by the decision maker to the elicitation process. It is the raw
material processed during the elicitation of the aggregation procedure. The
questions concerning preference information organize the elicitation process:

i) What type of preference information should be obtained?

ii) How to collect preference information?

iii) How preference information should be processed so as to sculpt the
aggregation procedure?

iv) How to account for imperfect preference information?

All these questions need to be considered carefully, and there are many
sensible options available to address each one of them.

The type of preference information, and its usage in the specification of
the aggregation, shall be discussed after we present a device playing a key role
in the elicitation process: the aggregation model.

1.2.2 The aggregation model

The principled approach to decision aiding advocates the use of an aggregation

model to funnel the elicitation process. While the aim of the elicitation process
is to obtain, represent and mechanize the views of the decision maker, the
aggregation model supports this aim in many ways.

Structuring the elicitation process. Technically, an aggregation model
consists in a parameterized family of aggregation procedures, which can be
considered as a partially specified aggregation procedure. Each value of the
preference parameter specifies a single aggregation procedure. Therefore, the
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goal of the elicitation process is to interpret the preference information so as to
pinpoint the value of the preference parameter, so as to yield the corresponding
procedure. Models can be considered as frames providing structure for the
elicitation process, channeling the effort of the decision maker and the analyst
into incrementally sculpting the aggregation procedure.

Languages for preference. Following [Perny, 2000, Rolland, 2013, Grabisch
and Labreuche, 2010], the aggregation models can be sorted in three families,
according to the language used to describe the aggregation procedures, to
which we append a fourth family encompassing all the models that deliberately
circumvent an explicit representation.

• Aggregate, then compare: the procedures aim at computing an overall
numeric score, the value, representing the overall fitness of an alternative,
then the usual ordering of numbers is used to sort, compare, choose or
rank alternatives.

• Compare, then aggregate: the procedure is analogous to a society where
preferences according to each points of views need to be aggregated into
an outranking relation denoting overall preference, then this relation is
exploited to yield an answer permitting to compare, sort, choose or rank
alternatives.

• rule-based systems: monotonic rules, of the form ‘if an alternative is
at least/at most as good as such alternative according to such point of
view, the . . . ’ have been used to formally describe preferences for a long
time, e.g. expert systems [Waterman, 1986] implementing decision trees,
or the dominance-based rough set approach [Greco et al., 2001b]; more
sophisticated languages for representing preferences have been proposed,
e.g. based on logics [Rossi et al., 2011, Kaci, 2011], or on representations
of conditional dependencies between points of view based on graphse,
such as generalized independence networks [Gonzales and Perny, 2004],
conditional preference networks [Boutilier et al., 2004], or conditional

possibilistic preference networks [Amor et al., 2015]—see e.g. [Amor
et al., 2016] for a recent survey.

• transductive approaches: the recommendations are obtained by establish-
ing a correspondence between the particular case at hand (the query) and
some particular facts of the knowledge base, without paying attention
to the explicit representation of the aggregation function. While case-

based reasoning has not yield significant developments in dealing with

eThese representations are often referred to as compact, as they allow for a somewhat
factorized representation of dependencies.
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Figure 1.3: Diagram for the aggregation of preferences: compare then aggregate,
or aggregate then compare?

preferences, there are several approaches for reasoning with preferences
based on analogy—e.g. [Prade and Richard, 2018, Bounhas et al., 2018],
and others based on possibilistic logic—e.g. [Dubois et al., 2005, Gérard
et al., 2007]. While this report assumes an explicit representation of
aggregation procedures, some explanatory devices proposed in Chapters
3 and 7 are naturally described in the transductive paradigm.

The value-based and outranking-based approaches to modeling preference are
illustrated, in the case of a pairwise comparison problem, by Figure 1.3.

Choosing a family of models largely determines the language used during
the elicitation dialog.

Theoretical properties. Models can be considered as normative stances
towards decision making. Theoretical studies aimed at describing the properties
of aggregation procedures are abundant in Social Choice [Brandt et al., 2016].
Conversely, studies aimed at, given a particular decisional stance, describing
the corresponding representation—the set of the aggregation procedures that
satisfy this stance—has been the focus of many studies in Economy and
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Conjoint Measurement [Debreu, 1960, Fishburn, 1976, Krantz et al., 1971].

Selecting a model. The first step, in such a principled approach, is to select
a model. This is an important decision conditioning the rest of the elicitation
process. Guidelines and principles about this question can be found in [Roy
and Słowiński, 2013, Bouyssou et al., 2000, Guitouni and Martel, 1998]. We
believe this question has bearings on the accountability of the decision aiding
process, as some models might yield an inadequate reflection of the views of
the decision maker, but, throughout this report, we adopt a normative attitude
towards the choice of the model. For us, the model is a provided element
that should not be discussed—but we shall see that our results might fuel
this discussion with arguments grounded in tangible elements. In a sense, our
position is close to [Cailloux and Endriss, 2016], where, in a Social Choice
context, in the position of deciding on a specific social rule (an aggregation

procedure, in our parlance), discussions about axioms that should be satisfied
by the social rule in the abstract should be avoided, but rather be instantiated
through prototypical examples.

1.2.3 Using preference information to specify a model

Once a model is selected, efforts should be made to collect preference informa-
tion to select a value for the preference parameter. Several approaches can be,
and have been, advocated:

Direct elicitation. A straightforward approach to the elicitation problem
would consist in promoting a discussion bearing directly on the preference
parameter. We have to forcefully object to this option:

• when taking place between experts in Decision Theory, this normative
discussion is often barren—this is a consequence of Arrow’s theorem;

• a preference parameter has no intrinsic value, and should never be
considered outside the scope of the model it parameters; for instance,
several models refer to the ‘importance of points of view’, but models
such as lexicographic orders, conditional preference networks, additive
value, or weighted majority can interpret this statement in different
manners. Communicating about the preference parameters seems like a
sure way to create confusion and misunderstanding.

Consequently, while we endorse the use of an evaluation model, we prefer to
consider it latent, and to limit the dialog to mentioning manifestations of the
model, e.g. absolute or comparative evaluation of alternatives.
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Preference information can be qualified as holistic when it is restricted to
mention phenomena that are potentially observable—i.e. alternatives—rather
than theoretical constructs of the model. The elicitation of an aggregation
model based on such holistic preference information is dubbed indirect.

Complete indirect elicitation—Standard sequences. From a theoreti-
cal point of view, the first question to consider when indirectly eliciting a model
concerns the observability of the parameters: is the parameter space one-to-one
with the observations? If not, no indirect elicitation procedure is able to
differentiate values of the preference parameter yielding similar results—see
e.g. Example 7.1 in Section 7.1.2. This has, of course, no bearing on the
outcome of the elicitation, but should raise alarms concerning the relevance of
mentioning those parameters, as they are pure artifacts of the language chosen
to describe the model.

A second, very important question concerns the provision of a constructive
algorithm yielding a questioning strategy—a list of holistic preference queries

so as to determine, up to an arbitrary precision, the value of the preference
parameter, assuming the decision maker preferences are described by an
aggregation procedure of the model.

Such a standard sequence represents a ‘gold standard’, and ensures the
model is relevant for supporting a decision aiding process. Nevertheless, the
practical interest of this platonic ideal is mitigated by some difficulties stemming
from the human-in-the-loop nature of the querying process:

• the queries postulated by the standard sequences often involve fictitious
alternatives with extreme attributes, that tend to stretch their plausibility
to the point of absurdity;

• the decision maker has limited availability or patience. Therefore, the
elicitation process should be designed in order to yield results even if it
is interrupted sooner than expected;

• The information collected is imperfect. The decision maker may make
blunders—either random or systemic, due to a cognitive bias—and not
report their true preference. They may also change their mind during
the elicitation process, maybe because of the reflexive and constructive
nature of the elicitation process.

Incomplete indirect elicitation—Disaggregation. To face these issues,
a popular solution consists in adopting a learning approach. Preference infor-
mation is considered as external data, provided as is, rather than as a (living
and breathing) database that can be queried at will. Thus, the elicitation
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process has to do with an input that is limited in length and quality, but
hopefully meaningful.

Depending whether the focus is on the product or the manner, this process
is sometimes dubbed as ‘learning’, or ‘disaggregation’:

• learning, because the final product is a compiled form of knowledge—in
the form of an aggregation procedure—that can be efficiently used to
address decision situations [Geffner, 2018];

• disaggregation [Jacquet-Lagrèze and Siskos, 2001], because it transforms
holistic preferences information that supposedly derives from the aggre-
gation procedure into information about the parameters governing this
aggregation procedure.

Approaches that call themselves ‘disaggregation’ often proceed as follows: in
a first phase, preference statements about alternatives are disaggregated—
translated into statements about parameters; then, either the set of parameters
compatible with these statements is empty, reduced to a singleton, or larger.
If it is empty, either the analyst decides to extend the aggregation model, or
they try to find a value of the parameter that ‘best reflects’ the statements
of the decision maker. If the set is reduced to a single parameter value, then
the elicitation is completef. Should the set of compatible parameters contain
more than one element, either more preference information is collected, or
a specific value of the preference parameter is singled out from the set of
values compatible with the preference information. Many methods heave been
advocated to implement a choice function yielding ‘the most representative
preference parameter’, hence, the ‘most representative aggregation procedure’g,
and we briefly describe some of them.

• Soft constraints: the statements about parameters are formalized as
constraints, and processed in an optimization framework, with the satis-
faction level of the constraints as an objective; this method was made
popular in multiple criteria decision aiding by [Siskos et al., 2005], and
permits to represent and solve the underconstrained (with too many
compatible parameters) and the overconstrained (with no compatible
parameters) in the same framework, almost seamlessly.

• Central tendencies: median, arithmetic or geometric mean [Salo and
Hamalainen, 2001], moment minimization [Bous et al., 2010]—depending
on the operations meaningfully supported by the parameters of the
model— may yield a value at the ‘center’ of the set of compatible
parameters.

fCongratulations!
gSee e.g. [Kadzinski et al., 2012].
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• Metrics of the parameter space: e.g. Stochastic Multicriteria Accept-
ability Analysis [Lahdelma et al., 1998, Tervonen and Figueira, 2008]
considers (normatively) a probability measure on the set of compatible
models and computes indexes corresponding to relative volumes. It
extends early works by [Charnetski and Soland, 1978] and computes
expected values thanks to Monte Carlo simulation techniques.

• Principled error minimization: in Preference Learning [Fürnkranz and
Hüllermeier, 2010], the probability measure on the parameter space is
tied to a noise model, assuming a latent ground truth, accounting for
the observed preference information. Selecting a parameter can then
be achieved according to a fully Bayesian approach, or simply refer to
maximum likelihood.

• Entropy maximization: generalizing Laplace’s principle of insufficient
reason, this estimation approach prescribes to aim for the less specific
parameter.

Principled elicitation processes following the disaggregation approach can
be described by the workflow presented in Table 1.1.

Step Action

1 Collect holistic preference information, under the form of
a set of queries, together with their adjudication. This
knowledge base functions as a learning set for the problem
of fitting the preference parameter.

2 Transcribe each piece of preference information into a set
of constraints bearing on the value of the preference pa-
rameter.

3 Derive a value for the preference parameter from the res-
olution of an optimization problem constrained by the
conditions transcribing the preference information.

4 Adjudicate new queries, not belonging to the learning set,
by following the sorting procedure corresponding to the
chosen model and the optimal parameter.

Table 1.1: The disaggregation framework for learning to adjudicate from
assignment examples. Adjudication can be e.g. the assignment of an alternative
to a category (for sorting problems) or the specification of pairwise preference
between two alternatives (for problems based on comparisons, e.g. choice or
ranking).
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1.3 What we propose

In an effort towards the accountability of the decision aiding process, we
propose to provide explanations shedding light not on the product of the
process—the evaluation model elicited during the process, and supposedly
representing the views of the decision maker—but on the elicitation process
itself.

1.3.1 Explaining the reasoning itself, not its product

Since the launch of the XAI—for eXplainable Artificial Intelligence— by the
Defense Advanced Research Projects Agency in 2017 [Gunning, 2017], many
studies have focused on the task of explaining a learner. In this work, we
challenge the applicability of this approach to a principled decision aiding
process along two angles:

i) According to the constructive approach to the decision aiding process
advocated by [Roy, 1993], there is nothing like a definite preference object
in the decision maker’s mind preexisting the decision aiding process. This
comes in contradiction with the (statistical) learning paradigm based on
the notion of a latent ground truth. It also hints at a possible inadequacy
of the didactic paradigm of explanation usually and implicitly assumed,
with an asymmetric role assigned to the explainer and the explainee:

• when submitted to a validation process and asked the question ‘why
should I trust you’ [Ribeiro et al., 2016], the artificial agent is in
the seat of the pupil trying to give the right answer to the teacher;

• once validated and put in production, the recommender system
asked by a user to explain its decision is expected to provide an
answer that is often not aimed at reconsidering the recommendation,
but at teaching the user to better live with ith.

ii) A learner is structurally geared towards compiling vast amounts of
knowledge into an efficient procedure. While this approach is relevant for
repeatable tasks, both in terms of available data and of opportunity to use
it again, we believe decision aiding processes do not fit this description.
Each process is singular, hopefully rather short, and inherently more
concerned with accountability than with efficiency.

Therefore, we advocate:

i) to treat preference information as a commitment from the user, rather
than the result of a measurement procedure;

hMaybe by accepting it, or by providing a direction to their effort in order to obtain a
more satisfactory result on the next occasion.
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ii) to drop the objective of learning a resolute aggregation procedure, de-
scribed by a correct value for the preference parameter; and

iii) to clarify the reasoning supporting the elicitation.

1.3.2 A dialectical take to preference information

We make several strong assumptions concerning the preference information
collected during the decision aiding process, and fueling the elicitation and
explanation processes.

While the process of collecting information needs to be meticulously carried
out, with a constant consideration for unwanted behavioral effects, in order to
maintain accountability, we will abstract them out of the scope of this report.

Preference information, as any information, is never perfect: the decision
maker can be distracted, tired or confused, and report information that does
not reflect their actual attitude; worse, they might change their mind during the
elicitation process—maybe because of the process; inter-human communication
is often lossy, and there could be misunderstanding between the decision maker
and the analyst. Nevertheless, the counterpart to accountability is to treat the
preference information as if it were perfect. We make the normative assumption
that the dialog between the decision maker and the analyst is not only an
amiable exchange, but that every speech act is a commitment, which is binding
w.r.t. the elicitation process and the shape of the aggregation procedure. Of
course, we know this assumption is purely virtual, and would eventually be
disproved in short order in an actual elicitation process, but its aim is to
establish a baseline, by taking the preference information obtained at face
value, before considering it as defeasible. Therefore, throughout this report, we
assume the collected information is free of noise. Meanwhile, we shall consider
with great care the fact that the elicitation process occurs under a budget:
providing preference information is a demanding process for the decision maker,
in terms of time spent and of cognitive burden. Therefore, we assume that
preference information might be incomplete, and that the aggregation procedure
that, ideally, would correspond to the view of the decision maker, is not fully
known.

Preference about the model. As the form of the model contributes to
the shaping of the preference structure, it ought to be itself tied to some
preference information. This point could indeed prove to be crucial, should
the assumption concerning the model be challenged by some stakeholder of
the decision situation. Throughout this report, we shall adopt a normative
stance, and consider the structure of the aggregation model is axiomatic. A
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reader interested in breaking down a monolithic axiom, such as ‘preferences are
additive’ or ‘preferences are noncompensatory’ into finer grains of reasoning
could usefully look into the literature concerned with the characterization of
models, e.g. [Fishburn, 1976, Krantz et al., 1971, Wakker, 1989, Bouyssou and
Marchant, 2007b], as well as the device proposed by [Ouerdane, 2010, Ouerdane,
2009], that identifies and uses properties of a collection of simple models to
integrate the question of model selection into the framework of defeasible
reasoning.

Holistic preferences. Throughout this report, besides preference informa-
tion concerning the model, we opt to restrict the input permitting to fit the
aggregation procedure to a particular decision situation to holistic preferences,
under the form of, e.g.:

• either pairwise, ordinal preference statements such as: ‘alternative a

is preferred to alternative b’, when considering a pairwise comparison

problem;

• or the assignment of some alternative to some category, when considering
a sorting problem.

In other words, if we try to elicit an aggregation procedure for a given problem
type, the preference information is a partial function of this type, that should
be extended by the returned aggregation procedure into a total function. There
are several advantages to this approach:

• tangibility—the information gathered reflects the opinion of the decision
maker about alternatives, of which they may have a direct experience,
but not about abstract artifacts of a model;

• unambiguity—each piece of preference information forms a unit of mean-
ing, regardless of the context. In particular, its interpretation is agnostic
to the model. It is also complete, and does not rely on specific assump-
tions for completioni;

• precision—preference information is described in a bitwise manner, as
explicit answers to questions with a binary outcome, rather than infinitely
precise equivalence queries as often assumed in the multi-attribute value
theory literature [Keeney and Raiffa, 1976, Hammond et al., 1998];

• universality—such preference statements can be encountered in many
applicative situations, coming from as different an angle as Machine
Learning, Decision Analysis or Social Choice. Nevertheless, these settings

iAs opposed, e.g. to a statement such as ‘I prefer blue cars to red cars’: does it mean
that the speaker prefers any car that is blue to any car that is red, or merely that, everything

else being equal, they prefer cars that are blue instead of red?
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generally differ concerning the acquisition of preference information: is
it given as a whole, picked up one piece at a time, or actively sought
for? We discuss some of the bearings of the mode of acquisition of the
preference information on the elicitation process in Section 2.4.1.

Additional restrictions. We consider placing constraints on the preference
information, either because they allow to represent known facts about the
world into our model of the decision aiding process, or because limiting the
expressiveness of the decision maker might help in channeling the elicitation
process while promoting accountability. For example, in Chapter 3, we consider
binary reference scales, that are encountered when the preferences expressed
by the decision maker according each point of view reference no more than
two levels. Besides luck, such a tight reference set is the consequence of one of
these two situations :

• attributes are themselves binary : present or absent features, passed
or failed checks, etc. Also, such binary attributes may result from
any model relying on subset comparisons, such as comparisons between
coalition of criteria, or pan-balance comparisons encountered in extensive
measurement problems.

• when expressing preference statements, the decision maker is deliberately

restricted to comparing between prototypical alternatives specifically cho-

sen so as to achieve a performance level chosen between two reference

values. This process is supposed to help the decision maker focusing on
the main aspects of the preference problems, by limiting the number of
changing parts between alternatives, and by referring to carefully chosen
reference values, serving as anchors. This technique is used in the field
of experimental design (yielding the one-factor-at-a-time or the factorial
experiments methods), as well as in multicriteria decision aiding. For in-
stance, the MACBETH method [Bana e Costa and Vansnick, 1995, Bana
e Costa et al., 2008] is based on binary alternatives : the decision maker
is asked to express preference between prototypical alternatives, tradi-
tionally referencing either a neutral level (for technological products,
representing the attribute of a mid-range, available product), or a high

level (representing the attribute of a luxury product, or a hypothetical
performance demanding a technological breakthrough).

In the same chapter, we also consider the notion of preference-swaps, the
simplicity of which being evaluated by their order. We naturally consider
restricting the preference information to low-order preference-swaps.
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1.3.3 Robust elicitation as deductive reasoning

Conventional elicitation aims at providing an aggregation procedure, and takes
pride in doing this whatever the context—in the case where the aggregation
model is overconstrained by the preference information, as well as in the
case where it is underconstrained. We propose to drop this goal altogether,
and replace it by three components, each one operating according to its own
reasoning paradigm:

• a deductive component, in charge of drawing conclusions entailed by
the statements composing the preference information and the normative
stance about decision embodied by the aggregation model;

• a defeasible component, in charge of relaxing some of these assumptions,
preferably in an accountable way, should the deductive component detect
an inconsistency inside the preference information, or an incompatibility
between the preference information and the aggregation model;

• an inductive component, in charge of making an educated guess in
the choice of a specific preference parameter, should the preference
information prove consistent, but incomplete—another option to consider
would consist in guessing an appropriate recommendation, should the
deductive component yield an irresolute answer.

In this report, we focus on the deductive component. We connect it to the
robust disaggregation approach. Instead of returning the most representative
model, the robust approach draws two sets of conclusions from the preference
information, in the form of an irresolute aggregation procedure, i.e. aggregation
procedures that yield a nonempty set of results, instead of a singleton, of the
appropriate type. Given a query, possible adjudications are those yielded by at
least one aggregation procedure compatible with the preference information.
Conversely, necessary adjudications are yielded by every aggregation procedure
compatible to the preference information, i.e. any other adjudication of the
same query is impossible.

Ancestry. This approach has a diverse ancestry, and can be traced through-
out the history of Operations Research and Artificial Intelligence. In Decision
Theory, [Wald, 1950] proposes a non-probabilistic decision making model in-
spired by maximin models of game theory; according to this model, decisions
are ranked on the basis of their worst-case outcomes. In Optimization, the so-
called robust approach [Verdú and Poor, 1984, Ben-Tal et al., 2009] implements
Wald’s criterion and aims at providing a solution that is good whatever the un-
known state of nature is. In Non-Monotonic Logic, the credulous and skeptical

reasoning types allow to deal with unresolved conflicts [Strasser and Antonelli,
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2018], and respectively correspond to possible and necessary outcomes; pos-

sibility theory [Dubois and Prade, 1988] proposes to represent uncertainty
through measures of possibility and necessity, and bipolar reasoning [Dubois
and Prade, 2008] explicitly deals with this dual representation of information.
In supervised Machine Learning, [Mitchell, 1982] defines the version space

as the set of all models compatible with the learning data, partially ordered
by set inclusion; the most general model permits to draw possible/optimistic
conclusions, while the most specific model draws necessary/pessimistic conclu-
sions. In Multiple Criteria Decision Aiding, the robust ordinal regression is
formally introduced in [Greco et al., 2008] in the context of the additive value
model, implementing notions already sketched in [Hazen, 1986] and [Salo and
Hamalainen, 2001], then extended to a number of models ([Angilella et al.,
2010, Corrente et al., 2014, Vetschera, 2017]); under the name of preference

inference, it also appears in [Wilson, 2009, Wilson et al., 2015, Spliet and
Tervonen, 2014]. In Decision Theory, [Ok, 2002] considers the representation
of decisional behavior with a set of utility functions; [Giarlotta and Greco,
2013] formalizes the abstract framework of necessary and possible preference
relations we inscribed the present work in.

1.3.4 Explaining robust adjudications

We would like to provide insight to the decision maker—and an analyst, if
they are human—concerning the reasons leading to consider that a given
adjudication is impossible, possible, or necessary.

Purposes of an explanation. At this stage, the aggregation procedure
should be considered to be in a transient state, under elaboration. We would
like to provide tools, not necessarily geared towards the validation of the
aggregation procedure—determining its adequacy—but towards its scrutiny.
For instance, these explanations could provide, e.g.:

• insight about the specific adequacy of a recommendation—ensuring the
recommendation results from a correct application of the procedure;

• a causal assignment for a recommendation—unveiling its causes, in this
case with a transductivej flavor, as the retrieved causes shall consist in
holistic preference statement, referring to what can be conceived of as
prototypical cases;

• a cognitively friendly—i.e. easy to follow—path of reasoning towards the
given adjudication;

jReasoning from particular to particular—see e.g. [Gammerman et al., 1998a, Pirlot
et al., 2016]
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• an entry point into the analysis of causes, maybe providing leverage
in contesting the causes leading to an unsatisfactory behavior of the
aggregation procedure.

Production of an explanation. As to the problem of the production of
these explanations, we propose to formalize the robust elicitation as a decision

problem in the sense of Computer Science—a yes-no question of the input
valuesk. Informations that can be deduced from the preference information are,
indeed, queries for which a different outcome could not have been represented
in the model, together with this preference information. Therefore, we define
the inverse problem of a model, as the question ‘can this aggregation procedure
be represented in this model?’. We note that this problem is closer to the
question of the representation of a model, central in Conjoint Measurement,
than the mainstream XAI trend interested in reasoning on the inverse problem
of the aggregation procedure—e.g., under which conditions this procedure would
have yield a better result?

The inverse problem can be used to provide explanations, based on the
certificates of a positive instance (for supporting a possible adjudication) or a
negative instance (for supporting impossible or necessary adjudications).

The workflow corresponding to our proposed framework is presented in
Table 1.2

Assessment of an explanation. The purposes of an explanation define
long-term goals. In the scope of this report, we would rather focus on the
production of an explanation.

Research question 1 (computation). How difficult is it to produce an expla-

nation?

We expect this question to require notions and tools from the field of
Computational Complexity.

Although they are of a formal nature, the explanations produced should
eventually be presented to humans.

Research question 2 (simplicity). Can we keep the explanations simple

enough?

kNot to be confounded with the topic discussed in e.g. [Colorni and Tsoukiàs, 2013]. In
the context of decision aiding, the words ‘decision’, ‘problem’ and ‘model’ are dangerously
overloaded with different but connected meanings.
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Step Action

A Collect holistic preference information, under the form of
a set of queries, together with their adjudication. This
knowledge base functions as a learning set for the problem
of fitting the preference parameter.

B Transcribe each piece of preference information into a set
of constraints bearing on the value of the preference pa-
rameter.

C Adjudicate new queries, not belonging to the learning set,
by considering all the aggregation procedures corresponding
to the chosen model and the compatible parameters (i.e.
satisfying the constraints). Predicates satisfied by every
possible adjudications are necessary. Predicates satisfied
by no possible adjudication are impossible.

D Support the adjudication with an explanation.

Table 1.2: The robust disaggregation framework for accountable adjudication.
Adjudication can be e.g. the assignment of an alternative to a category (for
sorting problems) or the specification of pairwise preference between two
alternatives (for problems based on comparisons, e.g. choice or ranking).

Neither natural language generation, nor in vivo experimentation belong
to the scope of this report, so the complexity of explanations shall be assessed
through proxies, such as length, or number of premises.

Explanation, in general, is based on reformulation. As we strive to give
explanations of a deductive process, a natural pair of questions concerns the
relationship between the explained system—the robust elicitation process—and
the explaining system.

Research question 3 (soundness). Could we explain ‘false’ results, claiming

the impossibility of an event that could happen or the possibility of an event

that cannot happen?

Research question 4 (completeness). Can we explain every ‘true’ result,

that can be deducted from the preference information and the model?

As usual when dealing with multiobjective problems, the separation of these
issues is somewhat illusory. An explanation system could be made incomplete
by confining it to providing simple explanations, for instance.

24



Chapter 1. Positioning

1.3.5 The shape of things to come

Besides this introductory chapter, the conclusive Chapter 8 and the appendices,
this report is divided in two parts, each devoted to a specific problem type and
aggregation model:

• Part I, composed of chapters 2 and 3, considers the problem of comparing
pairs of alternatives with an additive value model. Therefore, we are
trying to sculpt a binary aggregation procedure, that, when fully elicited,
should adjudicate the preference between any two alternatives.

• Part II, composed of chapters 4 to 7, deals with the problem of sort-
ing alternatives into categories ordered by level of requirement, with a
noncompensatory model. These models consider putting a cardinality
constraint on the scales permitting to represent the preference according
each point of view, so as to limit trade-offs.

The models chosen are relatively simple and are generally considered ‘inter-
pretable’, and thus are legitimate candidates when considering to make decision
aiding accountable again.

For these specific problem types and aggregation model, we either build
upon the existing robust elicitation structure, to design the deductive compo-
nent:

• the additive value model, assumed in Part I, can be considered as the
‘flagship’ of aggregation models in Decision Aiding and Social Choice and
still serves as a baseline in Machine Learning. It benefits from abundant
studies, and in particular, its robust elicitation has been developed in
[Greco et al., 2008], where the problem of adjudicating necessary queries
is formulated as a linear program. We therefore build upon this base,
and propose a dual formulation of this problem, with arguably better
properties concerning accountability (Chapter 2). Then, we propose
to interpret a Farkas certificate, either to directly provide deductive
explanations based on the cancellative properties of the model, or to ease
the breaking down of a necessary preference statements in elementary
parts, in the manner of the even-swaps active elicitation method proposed
by [Hammond et al., 1998] (Chapter 3).

• the noncompensatory sorting model, assumed in Part II, benefits from
less attention than the additive value model, and has a reputation of
computational quagmire when it comes to disaggregation. We give a
formal description of the model, accounting for part of its numerous
variants (Chapter 4). We formalize the corresponding inverse problem in
the language of Boolean satisfiability, prove its NP-hardness, even in the
case where there are only two categories (Chapter 5), and obtain results
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at least an order of magnitude faster than preceding attempts based on
mixed integer programs (Chapter 6). We propose explanations based
on unsatisfiable subsets of clauses of negative instances, in the manner
of [Junker, 2004, Besnard et al., 2010], as well as practical ways to use
them in decision aiding situations inspired by recent concerns coming
e.g. from the legal domain (Chapter 7).

Finally, Chapter 8 wraps up this report, by putting the contributions into
perspective.

1.4 Formalization

In this section, we detail the assumptions made throughout this report, as well
as the notations and writing conventions we use.

1.4.1 Points of view and alternatives

We denote X � {x , y , z , . . . } the set of alternatives and N � {i , i′, . . . } the set
of points of view. Together, they define the objects of the elicitation dialog. We
assume the points of view provide a sense of the relative fitness of alternatives,
for which we consider two equivalent representations:

• preference profiles, a tuple 〈%i〉i∈N ∈ (X × X)N of total preorders over
alternatives—binary relations that are transitive and connected. This
representation is often used in Social Choice or when representing prefer-
ences with an outranking relation. Table 1.3 provides an illustration with
a situation detailed in Section 7.2 where each point of view corresponds
to the views of a juror in a jury N � {e

1
,e

2
,e

3
,e

4
,e

5
} gathered to

assess the fitness of a number of candidates {a , b , c , d , e , f } ⊂ X.

• performance tables, where an alternative x ∈ X is described by a tuple of
performance scalars 〈xi〉i∈N encoding their fitness according to each point
of view i ∈ N on an ordinal scale (Ki , ≥i). Tables 1.4 and 1.5 provide
two illustrations with alternatives representing, respectively, hotels, a
situation considered throughout Part I, and cars, taken from Chapter 4.

The two representation are tied by the tuple of isotonic homomorphismsl

〈(X,%i) → (Ki , ≥i), x 7→ xi〉i∈N , usually called criteria. Such a representation
is possible as long as the cardinality of the scales |Ki | allows to accommodate
for the equivalence classes of the relations ∼i

m.

lIsotonic homomorphisms preserve the order structure. Unsophisticated people call them
increasing functions.

mWhen a scale is continuous, representation is possible when X/∼i has a denumerable order-
dense subset—B ⊂ A is order dense in (A, ≻) when ∀a , b ∈ A, a ≻ b ⇒ ∃c ∈ B : a ≻ c ≻ b.

26



Chapter 1. Positioning

e
1 : a ≻1 b ≻1 f ≻1 e ≻1 c ≻1 d

e
2 : e ≻2 b ≻2 c ≻2 d ≻2 a ≻2 f

e
3 : f ≻3 a ≻3 b ≻3 d ≻3 e ≻3 c

e
4 : d ≻4 a ≻4 c ≻4 e ≻4 f ≻4 b

e
5 : c ≻5 e ≻5 b ≻5 f ≻5 d ≻5 a

Table 1.3: A preference profile, detailing the ordinal preferences of jurors over
candidates. Here each profile is a total order—there are no ties.

Hotel Comfort Restaurant Commute time Cost
hA 4⋆ no 35 min 120 $
hB 4⋆ yes 50 min 160 $
hC 2⋆ yes 20 min 50 $
hD 2⋆ no 30 min 40 $

Table 1.4: A performance table: alternatives are hotels, assessed according to
the point of view of comfort, the presence of a restaurant, the commute time
needed to reach the city center, and the cost per night.

car model cost acceleration braking road holding

m1 16 973 29 2.66 2.5
m2 18 342 30.7 2.33 3
m3 15 335 30.2 2 2.5
m4 18 971 28 2.33 2
m5 17 537 28.3 2.33 2.75
m6 15 131 29.7 1.66 1.75

Table 1.5: A performance table: alternatives are car models, described according
to cost, acceleration, braking and road holding. Cost is measured in dollars,
acceleration is measured by the time, in seconds, to reach 100 km/h from full
stop—lower is better, braking power and road holding are both measured on a
qualitative scale ranging from 1 (lowest performance) to 4 (best performance).

In both representation, the notions of alternatives and points of view are
bound together so that:

i) for all purposes, the points of view, taken together, give a full account
of an alternative, i.e. alternatives that would be considered as similar
according to all points of view are indiscernible;
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ii) for the sake of discussion, we allow for any configuration of preferencesn.

Therefore, we assume that every preference profile is acceptable, or equivalently
that alternatives can achieve any level of performance, i.e. X ≡

∏
i∈N Ki.

Dominance occurs when the points of view unanimously prefer an alterna-
tive over another, defining a preorder D ⊂ X2:

D :�
⋂
i∈N

%i . (1.1)

1.4.2 Problem type

This report focuses on two different problem types: comparing pairs of alter-
natives, and sorting alternatives into predefined categories ordered by level of
requirement. This is an opportunity to define, in the abstract, a problem type

T as a functional set, containing the potential aggregation procedures. T is
described as a specific subset of the set of functional relations from a domain
T in containing the queries to a codomain Tout containing the adjudication.

a) Sorting: there is a set of categories ordered by level of requirement
{C1 ≺ · · · ≺ Cp}, so that Tsorting is the set of isotonic homomorphisms
mapping each query in T in

sorting :� (X,D) to an adjudication in Tout
sorting :�

{C1 ≺ · · · ≺ Cp}; elements φ of Tsorting are unary functions, yielding
an absolute judgment on an alternative on its own, with the following
semantic (e.g. assuming p � 3):

∀x ∈ X, φ(x) �




C1 , if x is deemed bad;

C2 , if x is deemed average

C3 , if x is deemed good .

b) Pairwise comparison: Tpairwise is the set of functions φ from T in
pairwise :�

X2 to Tout
pairwise :� {yes, no}, compatible with (or extending) dominance:

φ(D) � {yes}; φ is a binary function yielding a comparative judgment
between two alternatives, so that the binary relation % :� φ−1({yes})

has the semantics of an outranking relation [Roy, 1991]:

• if x % y but y � x, then x is strictly preferred to y;

• if x � y and y % x, then y is strictly preferred to x;

• if both x % y and y % x, then x and y are indifferent or equally

preferred;

• if both x � y and y � x, then x and y are incomparable.

nEven extravagant ones, such as extremely cheap luxury hotels without a restaurant—one
is allowed to dream.
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c) Choice: Tchoice is the set of choice functions that, given an query consist-
ing of a tuple of alternatives, yield the fittest alternative among those in
the input tuple;

d) Ranking: Tranking is the set of functions that, given a query consisting
of a tuple of alternatives, yield a permutation of this tuple sorted by
increasing overall fitness.

1.4.3 Aggregation models, the inverse problem and necessary

adjudications

Given a problem type T, e.g. pairwise comparison in Part I, or sorting in
Part II, we define a model of type T as a pair (Ω, 〈φω〉ω∈Ω ∈ TΩ), where Ω is
the parameter space and 〈φω〉ω∈Ω is a family of aggregation procedures with
type T indexed by a preference parameter ω ∈ Ω.

Definition 1.1 (inverse problem). Given a problem type T and a model

M ≡ (Ω, 〈φω〉ω∈Ω ∈ TΩ) of type T , the inverse problem Inv-M is the decision

problem consisting in, given an instance P where P is a function of type T, to

decide whether there is a value of the preference parameter ω⋆ ∈ Ω such that

φω⋆ ⊃ P. If P is a negative instance, we say it is inconsistent with M, or

that it cannot be represented in M.

The condition φω⋆ ⊃ P states that the aggregation procedure φω⋆ extends
the preference information, or, more precisely, for each preference statement
(q , a) ∈ P, the query q is adjudicated in the same manner by the aggregation
procedure φω⋆, i.e. φω⋆(q) � a.

We denote ΩM
P

, or, when the model is made clear by the context, simply
ΩP , the set of preference parameters compatible with the preference information
P:

Ω
M
P

:� {ω ∈ Ω : φω⋆ ⊃ P}. (1.2)

At this stage of the elicitation process, we identify three different situations,
according to the size of the set ΩM

P
:

• either ΩM
P

� �—the preference information is inconsistent with the
model, and the situations should be considered through the prism of
defeasible reasoning;

• or |ΩM
P
| > 1—the preference information is incomplete and there is some

ambiguousness w.r.t. the value of the preference parameter;

• finally, for the sake of exhaustiveness, when ΩM
P

is a singleton, elicitation
is complete.
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In this report, we assume that the preference information is never inconsis-
tent with the model, i.e. ΩM

P
, �.

Definition 1.2. Given a problem type T, a model M ≡ (Ω, 〈φω〉ω∈Ω ∈ TΩ)

of type T, some preference information P of type T consistent with M and a

statement σ ∈ T, σ ≡ (q , a), we say:

• σ is possible if P ∪ {σ} is a positive instance of Inv-M;

• σ is necessary if ∀σ′ ∈ {(q′, a′) ∈ T : q′ � q and a′ , a}, P ∪ {σ′} is a

negative instance of Inv-M.
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Comparing with an additive
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Foreword

This part presents original contributions to the scientific knowledge about the
necessary preference relation in the case where preferences are described by an
additive value model. This model is simple and elegant, yet plays a central role
in Decision Aiding, Social Choice and Machine Learning alike.

We give a brief definition of the comparison of alternatives using an additive
value model, highlight the most preeminent qualities of this approach, and
give a quick glimpse of domains related to decision making where this model
serves as a baseline. We list the research questions addressed in this work, give
an overview of the contents of each chapter, and list our published papers that
serve as a basis for this text.

Comparing alternatives with additive values

A preference relation % follows a value model when the overall desirability of
an alternative can be measured by a numerical score, the higher, the better.
Technically, there is a numeric function V mapping alternatives to real numbers:

V : X→ R (I.3)

Scores are then compared to derive preferences:

∀x , y ∈ X, x % y ⇐⇒ V(x) ≥ V(y) (I.4)

This way of comparing alternatives produces a preference relation that is both
transitive —i.e. for any alternatives x , y , z ∈ X, if x % y and y % z, then
x % z— and complete—i.e. for any alternatives x , y ∈ X, either x % y, or
y % x, or both—in which case we say x is indifferent or equally preferred to
y, and we denote x ∼ y. Reciprocally, any binary relation that is transitive
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and complete can be represented in the value model, without too much loss of
generalitya.

The very general framework offered by value models does not say much
about the manner in which the various points of view are aggregated. In order
to extend the dominance relation D, the function V is only required to be
nondecreasing according to each point of view.

Throughout this part, we assume that preference proceeds from an additive

value model, that postulates a specific, separated form for the value V:

∃〈vi〉 ∈
∏
i∈N

(X→ R) s .t . ∀x ∈ X, V(x) �
∑
i∈N

vi(x) (I.5)

In order for the preference relation to extend dominance (see Equation
(1.1)), all marginal value functions need to reflect preference according to the
point of view it represents:

∀i ∈ N, vi is a nondecreasing function from (X,%i) to (R, ≥). (I.6)

Interestingly, the additive value model, which is by design an ‘aggregate
then compare’ model, can also be expressed in the ‘compare then aggregate’
paradigm as well (see Figure 1.3). Each point of view i ∈ N compares
alternatives x , y ∈ X through the function ci such that ci(x , y) � vi(x) − vi(y).
These orientations are then aggregated with a simple sum. Finally, the sign of
the result is mapped to preference: {(+, x ≻ y), (0, x ∼ y), (−, x ≺ y)}.

The linear canvass of additive values is quite an asset when considering
indirect elicitation (see Section 1.2.3). The disaggregation of preference state-
ments into constraints on the preference parameter naturally yields a linear
formulation. Therefore, the problem of optimizing a loss function to induce a
model reduces to a linear [Siskos et al., 2005, Greco et al., 2008] or semidefinite
program [Bous et al., 2010]—depending on the choice of the loss function—that
can be solved efficiently.

Usage of the additive value model

Multiple criteria decision aiding. In multiple criteria decision aiding

(MCDA), the role of the additive value model is central. It is the flagship of
value models—those described in the aggregate then compare paradigm:

aThere is, actually, a third condition called order density. It concerns the number of
equivalence classes of the symmetric part of the relation, and prevents, for example, that
it is so large that as to exceed the capacity of the set of real numbers. This theoretical
consideration has no practical bearing whatsoever on the aggregation of preferences in a
decision aiding situation.
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• it connects the field with conjoint measurement and mathematical psy-
chology [Fishburn, 1967a, Krantz et al., 1971];

• it serves as the basis of very popular methods, such as the multi-attribute

value theory (MAVT) [Keeney and Raiffa, 1976], the analytical hierar-

chical processb (AHP) [Saaty, 1990], or MACBETH [Bana e Costa and
Vansnick, 1994];

• it served as a platform for the major innovations of the domain:

– the indirect elicitation via standard sequences [Keeney and Raiffa,
1976];

– the indirect elicitation via disaggregation [Siskos et al., 2005];

– active learning via the even-swaps method [Hammond et al., 1998];

– the robust disaggregation [Greco et al., 2008].

For many reasons, and above all simplicity, the additive model was, and still
is, a model of choice in other fields interested in aggregating evaluations.

Naive procedures. Evaluation of performance is ubiquitous, and so is the
need to aggregate evaluations assessed from diverse points of view. People
do this everywhere, all the time, without a specific background in Decision
Theoryc. It may be highly suspected that the method of choice for the layman
is the weighted sum—which is a particular case of the additive value model,
where the marginal values are linear—as it is easy to compute (especially with
a spreadsheet) and it offers a modicum of control through the selection of
weights.

Conjoint measurement. Conjoint measurement is interested in situations
where several latent attributes combine into an observable one, and tries to
obtain conditions favorable to a numeric evaluation of both the observable and
the latent quantities. The way the latent attributes combine into the aggregated
one is a central assumption in this approach, and the additive value model,
with two attributes, was the one permitting the fundamental breakthroughs
of [Debreu, 1960] and [Luce and Tukey, 1964]. From this initial point, more
sophisticated models were considered: additive values with any number of
attributes, polynomial values, non-compensatory models with discrete levels,
models permitting to account for interactions between inputs. Meanwhile, the
conditions in which the additive value model can legitimately be assumed as

bThe AHP is described in a multiplicative value paradigm, which is obviously equivalent
to the additive value model.

cGasp!
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the latent aggregator have been thoroughly investigated by researchers in the
field of mathematical psychology, e.g. [Miller, 2018].

Social choice. The aggregation of preference has been the chief preoccupa-
tion of social choice since its inception at the end of the 18th century with de
Borda and Condorcet.

The basic setting of voting is squarely the same than the one discussed in
this report: preferences according to each point of view are given (as opposed
to conjoint measurement) and need to be aggregated via a voting rule. In
the context of real-life applications of voting, the points of view can range
in the millions, which calls for rules that are computationally very efficient.
Among these, the positional scoring rules map the ordinal preferences expressed
by each point of view, supposed to be complete orders, to scores, which are
then summed up across all points of view: they enforce the additive value
model. Some popular voting rules—e.g. Plurality, Borda, k-Approval, see
[Brandt et al., 2016]—are positional scoring rules, while others—e.g. Single
Transferable Vote, Copeland, Kameny—are not.

In combinatorial auctions, agents bid on bundles of objects. Their behavior
can be modeled, with a representation of their preference relation between
subsets of object. A (very) simplifying assumption is to neglect interaction
between objects—either positive complementarity or negative substitutability,
see e.g. [Brandt et al., 2016]—and use an additive value model, where the
value of a bundle is simply the sum of the values of the objects composing the
bundle.

Machine learning. Classifiers are functions that map objects, often de-
scribed by tuples of features, to categories. If the features can be interpreted as
measuring some kind of desirability, this behavior can be considered through
the prism of the aggregation of evaluations stemming from multiple points
of view. Linear classifiers, producing boundaries between categories that are
affine hyperplanes, are still widely used, even though they are often outmatched
in terms of accuracy by more recent techniques, such as random forests or
neural networks (see e.g. [Bishop, 2006]). Nevertheless, as of 2018, advances
in machine learning still opt, more often than not, to present their results as
upgrades from the baseline offered by the additive model.

Research questions

There have been numerous contributions to and applications of the additive
value model. Most of them focus on modeling issues—i.e. to what extent this
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model can be used to describe real situations, or to prescribe solutions—and
elicitation issues—how to fit the parameters governing the model in order to
capture the phenomenon that needs to be modeled, especially in the presence
of uncertain data. An issue that has been less investigated (for notable
exceptions, see e.g. [Labreuche, 2011] and [Cailloux and Endriss, 2014]), and
remains difficult [Procaccia, 2018], is the question of the accountability of
recommendations based on an induced model.

Our contributions detailed in this part try to address this issue. Until
now, elicitation has mostly been considered through an Operations Research
lens, as a problem needing solving. We propose to consider it also through an
Artificial Intelligence lens, as a reasoning needing to be formalized. In such a
KRd framework, the recommendation (necessary preference) is the product of
this reasoning, and explanation could be a certificate of this process.

Research question I.1 (Formalizing the reasoning?). Could the notions and

tools put forward for the ‘robust elicitation’ of the additive value model benefit

from being streamlined by borrowing notions—such as those of ‘knowledge base’

and ‘inference engine’—from the community interested in the representation

of knowledge and reasoning?

Research question I.2 (From certificate to explanation?). Under the as-

sumption of additive preferences, what certificate of necessary preference can

we devise for a pair of alternatives? How can we compute one? How can we

leverage one into providing explanations?

Research question I.3 (Qualifying the explanations?). How the proposed

explanation engines address the challenges identified in the introduction, e.g.

completeness, soundness, simplicity and computational aspects?

Chapters

Two chapters compose this part.

• Chapter 2 addresses the question I.1 by proposing an encoding of the
pairwise preference statements of the preference information, as well as
the preference queries that require adjudication. This static encoding
permits to formalize the adjudication of queries as an inference problem,
and to propose a resolution procedure based on Farkas’ certificates,
partly answering Question I.2. This procedure greatly improves the
interpretability of the adjudication process, without compromising its
computational efficiency.

dPrinciples of knowledge representation and reasoning.
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• Chapter 3 addresses the second part of Question I.2, by proposing to build
explanations engines upon the Farkas’ certificates of necessary preference,
with integral coefficients. Two approaches to explanation are investigated:
one leverages the cancellative properties of the additive value model; the
other is reminiscent of the even-swaps method [Hammond et al., 1998],
and proposes to break down a preference statement into a sequence of
transitive, simple preference statements. These approaches are discussed
in the light of Question I.3.

Featured contributions

The encoding and its properties, the characterization of necessary preference
with Farkas’ certificates, and the explanation engine based on sequences of
preference swaps, are introduced in [Belahcene et al., 2017a]. This work has
benefited from many fruitful interactions with researchers interested in multiple
criteria aiding, and has been greatly improved since.
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2

Robust elicitation as reasoning

2.1 Introduction

This chapter is devoted to fundamental knowledge representation and reasoning
aspects, and introduces a novel encoding of preferences for step B, of the robust
disaggregation framework (see Figure 1.2) , and a novel process for adjudicating
a query for step C that, together, hopefully help improve the interpretability
of the model. The latter deals with step D builds upon these formal results by
proposing two ways of explaining necessary preference statements, discusses
their respective merits and paves the way to mixing and matching them into a
joint approach.

2.1.1 State of the art

The problem of determining, given

i. some preference information under the form of a tuple of ordinal, pairwise
holistic preference statements;

ii. a pair of alternatives x , y ∈ X;

whether x is either necessarily, possibly or impossibly preferred to y under the
assumption that the preference structure can be described in the additive value
model, has been addressed by [Greco et al., 2008]. This paper introduces two
definitions formalizing the fundamentals of the necessary preference relation,
then proposes a characterization with a linear programa.

aA linear program is an optimization problem of the form min{ f (x), x ∈ Q}, where f is
a linear function and Q is a polytope in Rn . It can be solved in polynomial time [Karmarkar,
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Definition 2.1 (Additive value functions compatible with the preference infor-
mation). Given some preference information P ⊂ X ×X, a tuple of functions

〈vi ∈ X→ R〉 is additively compatible with the preference information P if :

(i) for each point of view i ∈ N, vi is a nondecreasing function from (X,%i)

to (R, ≥);

and :

(ii) for each pair of alternatives (a , b) ∈ P,
∑

i∈N vi(a) ≥
∑

i∈N vi(b).

The first condition ensures compatibility with dominance D, the second
enforces compatibility with the preference information P. For the sake of
simplicity, we restrict ourselves to the case where the preference information
only contains statements of weak preference, with the semantic ’at least as good
as’. Consequently, whatever the preference information, the set of tuples of
value functions additively compatible with it is never empty, because any tuple
of constant values satisfies the constraints. Also, any preference is possible,
and we restrict the investigation to the necessary preference relation. The
extension to strict preference statements is straightforward, but cumbersome.

Definition 2.2 (Necessary preference under the assumption of additive utility).
[Greco et al., 2008]. Given two alternatives x , y ∈ X and some preference

information P ⊂ X × X, we say x is necessarily preferred to y and we note

(x , y) ∈ NP if the inequality
∑

i∈N vi(x) ≥
∑

i∈N vi(y) holds for every tuple of

functions 〈vi ∈ X→ R〉 additively compatible with the preference information

P.

Obviously, any preference relation stemming from an additive value model
and compatible with the preference information P extends NP , and NP is
exactly the intersection of all such preference relations.

Also, NP is reflexive, transitive and extends both Dand P.

Inference via primal feasibility of a linear program Definition 2.2,
introduced by [Greco et al., 2008], can be directly leveraged to formulate a
linear program (LP) permitting to decide, for any pair of alternatives x , y ∈ X,
whether x is necessarily preferred to y or not.

Proposition 2.1. [Greco et al., 2008]. Given some preference information

P ⊂ X×X and two alternatives x , y ∈ X, (x , y) ∈ NP if, and only if, the linear

program min

(∑
i∈N

vi(x) −
∑
i∈N

vi(y), 〈vi(z)〉 ∈ Q

)
has a nonnegative solution,

1984].
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where Q is the polytope defined by the constraints:




vi(z) ∈ R ∀i ∈ N, ∀z ∈ {x} ∪ {y} ∪
⋃

(a ,b)∈P

{a , b}

∑
i∈N

vi(a) ≥
∑
i∈N

vi(b) ∀(a , b) ∈ P

vi(c) ≥ vi(d) ∀i ∈ N, (c , d) ∈ Ri

Any pair of alternatives (x , y) ∈ X2 partitions the parameter space into
two half-spaces separated by a hyperplane

∑
i∈N(vi(x) − vi(y)) � 0, one where

x is preferred and one where y is preferred. Thus, the parameters compatible
with the preference information reside in a polytope of the parameter space.
A query is adjudicated in a necessary manner if, and only if, this polytope is
entirely on one side or another of the hyperplan corresponding to the query, or
ambivalent when the boundary hyperplane intersects the polytope.

While effective, this approach is not fully satisfactory. As a direct reformu-
lation of the definition of the relation NP , it does not offer any perspective on
the issue. Moreover, it inscribes the adjudication problem into an optimization
framework that can be considered inscrutable by the layman — here, meaning
anyone who is not well-versed in the arcane of Operations research. The
endeavor of the entire Part I of this report is to lower the barrier of entry to
this problem.

2.1.2 A grim situation

One of the challenges in dealing with the notion of necessary preference is that
it formally requires a level of due diligence that seems out of reach: in order
to prove that Alice is necessarily preferred to Bob, one has to certify that, of
the uncountably many additive values that are compatible with the preference
information, there is not a single one that puts Bob ahead of Alice. How can
one be sure they have checked them all? In their foundational article [Greco
et al., 2008], Greco et al. delegated the superhuman task of checking such
claim to a linear programming solver. This creates an unfortunate situation
where an analyst and/or a decision maker may feel powerless, deprived of their
ability to critically challenge one of the key steps of the decision-aiding process,
as they have to surrender their limited mathematical skills to the might of the
device equipped with an optimization engine.

The situation is grim. In order to circumvent this deleterious scenario
[Spliet and Tervonen, 2014] set out to describe the inference of necessary
preference relations in what should be called a rule-based framework, but, in
spite of early promising advances (see Sections 2.3.2, Component 4 and 2.4.1),
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Part I. Comparing with an additive model

their results are really weakb.

2.1.3 A motivating example

The following example could provide a glimmer of hope.

Example 2.1. You need to chose a hotel for a business trip, and you are un-
decided between four options hA , hB , hC and hD , described by the performance
table 2.1. Such options are evaluated according to four criteria :

• the room comfort, ranging from ∗ (low) to ∗ ∗ ∗ ∗ ∗ (high);

• the presence of a restaurant on the premise, with yes preferred to no;

• the commute time to the convention center, the lower the better;

• the cost, the lower the better.

Criteria Comfort Restaurant Commute time Cost
hA 4⋆ no 35 min 120 $
hB 4⋆ yes 50 min 160 $
hC 2⋆ yes 20 min 50 $
hD 2⋆ no 30 min 40 $

Table 2.1: Performance table of the hotels.

We assume the preference information contains the following statements:
P ⊇ {π1 , π2 , π3}, with:
π1 :�( ( 4* , no , 15 min , 180 $ ) , ( 2* , yes , 45 min , 50 $ ) )
π2 :�( ( 4* , no , 45 min , 50 $ ) , ( 4* , yes , 15 min , 100 $ ) )
π3 :�( ( 2* , yes , 15 min , 180 $ ) , ( 4* , no , 30 min , 180 $ ) )

For any additive values V that extends the preference information, the
following equalities stand:

• from ( ( 4* , no , 15 min , 180 $ ) , ( 2* , yes , 45 min , 50 $ ) )
∈ P we derive:

v∗(4*)+ vr(no)+ vt(15 min)+ v$(180 $) ≥ v∗(2*)+ vr(yes)+ vt(45 min)+
v$(50 $)

• from ( ( 4* , no , 45 min , 50 $ ) , ( 4* , yes , 15 min , 100 $ ) )
∈ P we derive:

v∗(4*) + vr(no) + vt(45 min) + v$(50 $) ≥ v∗(4*) + vr(yes) + vt(15 min) +
v$(100 $)

• from dominance for the criterion restaurant we derive :

bUp to the point where they devote a considerable energy to prove that, finally, necessary
preference is not that useful because its so-called ‘probability of occurrence’ is low.
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vr(yes) ≥ vr(no)

Adding these three inequalities leads to:
v∗(4*)+v∗(4*)+vr(no)+vr(no)+vr(yes)+vt(15 min)+vt(45 min)+v$(180 $)+

v$(50 $) ≥ v∗(2*)+v∗(4*)+vr(yes)+vr(yes)+vr(no)+vt(45 min)+vt(15 min)+
v$(50 $) + v$(100 $).

Cancelling terms v∗(4*), vr(no), vr(yes), vt(15 min) and v$(50 $) appearing
on both sides leads to:

v∗(4*)+ vr(no)+ vt(45 min))+ v$(180 $) ≥ v∗(2*)+ vr(yes)+ vt(45 min))+
v$(100 $)

As this inequality holds for all values compatible with the preference
information, it follows that alternative ( 4* , no , 45 min , 180 $ ) is necessarily
preferred to alternative ( 2* , yes , 45 min , 100 $ ).

In Example 2.1, necessary preference is certified in a constructive manner.
Rather than following the definition and exhausting the set of preference
parameters, it exhibits an algebraic relationship between premises— linear
inequalities encoding pieces of preference information— and the desired con-
clusion. This fortunate scenario is encouraging, but one can wonder about
its generality. Is it limited to some lucky cases, or is it a property universally
shared by necessary preference statement?

2.1.4 To the rescue: Farkas’ lemma

Theory can help here to address this question. Suppose that, indeed, Alice
is preferred to Bob under every possible assumption. What we are trying
to prove can be framed as the impossibility of finding a value function that
simultaneously restores the preference information and puts Bob ahead of Alice.
What we need, then, is a formal certificate of infeasibility for this problem. As
we have already identified this problem as a linear programming one, we might
consider the following 19th century result obtained by Giulya Farkas:

Proposition 2.2 (Farkas’ lemma). Given E ≡ Rn, a vector space of finite

dimension over the field of real numbers and 〈h , f1 , . . . , fk〉, a tuple of linear

forms on E:

{y ∈ E | h(y) > 0, f1(y) ≥ 0, f2(y) ≥ 0, . . . , fk(y) ≥ 0} � �

if, and only if,

(−h) is a linear combination with nonnegative coefficients of f1 , . . . , fk.

Farkas’ lemma is a solvability theorem for a finite system of linear inequal-
ities. It is a powerful result, foundational of the strong duality theorem for
linear optimization, and Karush, Kuhn and Tucker conditions for non-linear
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optimization. Moreover, it is closely related to the ‘lucky observation’ made in
example 2.1:

• The observation made in the example corresponds to the obvious ori-
entation of the Farkas equivalence—when a linear form h is a linear
combination with nonnegative coefficients of the linear forms f1 , . . . , fk ,
it is nonnegative whenever the forms f1 , . . . , fk are all nonnegative. The
fact that this property derives from basic, highschool-level algebra is a
blessing from the points of view of accountability, interpretability, and
explainability.

• On the other hand, the strong result obtained by Farkas lies in the
universality of this easy case. It means that the observation made in
Example 2.1 is actually not due to luck but a manifestation of a deeper
phenomenon. The form of a generic, universal certificate of infeasibility is
a tuple 〈λ1 , . . . , λk〉 of nonnegative coefficients such that −h �

∑k
i�1 λi fi .

Interestingly, framing the decision problem ‘is Alice necessarily preferred
to Bob’ as the search for the coefficients of a possible certificate is also a
linear optimization problem, which is the dual problem of the original
formulation.

2.1.5 Towards an interpretable framework for necessary

preference

We note that Proposition 2.1, which is the state-of-the-art definition for neces-
sary preference under the assumption of additive preferences, is almost suitable
for processing by Farkas’ lemma. We recast the requirement of nonnegativity
of the linear program as the infeasibility of satisfying simultaneously all the
constraints defining the polytope Q as well as

∑
i∈N vi(y) >

∑
i∈N vi(x). We

then move every variables into the RHSs, in order to write the problem in
canonical form, i.e. where the feasible region is a polytope resulting from the
intersection of a tuple of half-spaces:

Lemma 2.3 (Canonical representation of NP).

(x , y) ∈ NP ⇐⇒ there is no vector 〈vi(z)〉 for i ∈ N and

z ∈ {x} ∪ {y} ∪
⋃

(a ,b)∈P

{a , b} such that:




∑
i∈N

vi(y) −
∑
i∈N

vi(x) < 0∑
i∈N

vi(a) −
∑
i∈N

vi(b) ≥ 0 ∀(a , b) ∈ P

vi(c) − vi(d) ≥ 0 ∀i ∈ N, (c , d) ∈%i

44



Chapter 2. Robust elicitation as reasoning

The remainder of this chapter is devoted to the introduction of a streamlined
version of the idea of working with certificates of infeasibility. It is organized
as follows: Section 2.2 provides the nuts and bolts of the representation, and
should be viewed as a repository of tools; Section 2.3 illustrates the functioning
of these tools in a prototypic multiple criteria decision aiding situation; Section
2.4 discusses the relevance of these tools, and motivates their design and use;
Section 2.5 identifies venues for improvement of the toolbox, principally geared
to address cardinal preferences. Also, not included in this chapter in order to
ease reading, Appendix A gathers the proofs of the results at the end of this
report.

The tools detailed in Section 2.2, as well as the corresponding proofs in
Appendix A, were introduced in [Belahcene et al., 2017a]. All the rest is
original material.

2.2 A toolbox for the inference of necessary

preferences

The formulation of necessary preference given by Lemma 2.3 is exactly of the
form suitable to be processed by Farkas’ lemma (Proposition 2.2), with linear
forms operating on the vector space of criterion-wise values. Nevertheless,
we devote the remainder of the section to the engineering of an encoding of
preference as linear forms that is both easier to handle and to interpret.

We proceed as follows: i) we streamline the underlying vector space, in
order to obtain a static representation of the preference information that does
not depend on the alternatives of the query ; ii) we identify trivial cases of
impossible necessary preference, and tag them accordingly in order to keep a
lean representation of the cases that do matter; and iii) we offer a representation
of preference statements in the form of covectors, i.e. tuples of coefficients
permitting to compute a linear form as an inner product.

The tone of this section is technical, chaining definitions and propositions
as it aims at building a repository of tools and providing a convenient reference.
Proofs of these results are provided in Appendix A. An illustration and a
thorough discussion of these tools can be found in the remainder of this
chapter.

2.2.1 Core values and alternatives

We streamline the underlying vector space, in order to obtain a static represen-
tation of the preference information that does not depend on the alternatives
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of the query. To do this, we introduce the notion of core values, a tuple of sets
of criteria value 〈Pi〉i∈N , that encompass the performance values referenced by
the preference information according to each point of view, i.e. satisfying the
following rule:

Pi ⊇
⋃

(x ,y)∈P

{xi} ∪
⋃

(x ,y)∈P

{yi} (2.1)

For each point of view, we sort the core values by ascending order of desirability:

〈p1
i ≺i p2

i ≺i · · · ≺i p
|Pi |

i
〉 :� Pi (2.2)

We call core alternatives P the alternatives built by combining these values.

P :�
∏
i∈N

Pi (2.3)

2.2.2 Unbounded pairs

Beyond monotonicity, we have no information on preferences about values
outside of the core. Consequently, there is a class UP of unbounded pairs
(x , y) ∈ X2 that are trivial negative instances for the adjudication of necessary
preference problem: when there is a point of view i ∈ N providing an argument
that is both in disfavor of x (because yi ≻i xi) and infinitely strong (because
xi ≺i min Pi or yi ≻i max Pi). In such a case, x is clearly not necessarily
preferred to y.

UP :� {(x , y) ∈ X2 | ∃i ∈ N :
[
xi , yi

[
* [minPi ,max Pi]} (2.4)

Theorem 2.4. : UP ∩NP � �

Proof. See Appendix A. �

2.2.3 Core intervals and indexes

Consecutive core values define core intervals 〈
[
pk

i
, pk+1

i

]
〉i∈N,1≤k<|Pi |, indexed

by a pair (i , k). We name I the set of indexes.

I :�
⋃
i∈N

{(i , k) : k ∈ N and 1 ≤ k ≤ |Pi | − 1} (2.5)

2.2.4 Orientation of a core interval w.r.t. a pair of

alternatives

Given a pair of alternatives (x , y) ∈ X2 and a core index (i , k) ∈ I related
to the core interval

[
pk

i
, pk+1

i

]
, we define a numeric coefficient measuring the
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orientation of this particular interval with respect to the comparison between
x and y:

(x , y)⋆
(i ,k)

:�




+1 , if [pk
i
, pk+1

i
] ⊂ [yi , xi]

−1 , if [pk
i
, pk+1

i
] ∩ ]xi , yi[ , �

0 , else
(2.6)

These coefficients partition the intervals [pk
i
, pk+1

i
], (i , k) ∈ I between pros,

cons and neutral arguments of a pair of alternatives (x , y).

2.2.5 Covectors operating on differences of value

Besides their symbolic interpretation, the coefficients measuring the orientation
of the core intervals have a numeric role. Given an index (i , k) ∈ I and a value
function vi : Pi → R, we define elementary differences of value:

∆v(i ,k) :� vi(p
k+1
i ) − vi(p

k
i ) (2.7)

Therefore, we interpret (x , y)⋆ as a covector of RI, defining a linear form
operating on elementary differences of value:

(x , y)⋆ · ∆v �

∑
(i ,k)∈I

(x , y)⋆
(i ,k)

· ∆v(i ,k) (2.8)

2.2.6 Representation of dominance through covectors

The canonical dual base is denoted D⋆ :� 〈 δ⋆
(i ,k)

〉(i ,k)∈I, where the covector

δ⋆
(i ,k)

has all coefficients equal to zero, except for the coefficient associated to

the interval indexed by (i , k), which is equal to +1, so that δ⋆
(i ,k)

· ∆v � ∆v(i ,k)

If x dominates y, then all core intervals are oriented nonnegatively with
respect to (x , y). Therefore, any dominance statement can be represented by
a covector that is a linear combination with nonnegative coefficients of the
covectors δ⋆

(i ,k)
:

Lemma 2.5.

The additive values 〈vi(p
k
i )〉 extend D ⇐⇒ ∀δ⋆ ∈ D⋆, δ⋆ · ∆v ≥ 0 (2.9)

2.2.7 Representation of preference through covectors

For any pair of alternatives in the core x , y ∈ P, the linear form encoded by
the covector (x , y)⋆ corresponds exactly to the difference of value between x

and y.
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Lemma 2.6.

∀x , y ∈ P, V(x) − V(y) � (x , y)⋆ · ∆v , (2.10)

where V �

∑
i vi is the value function representing preference.

Proof. For any core alternative x ∈ P and any point of view i ∈ N we have:

vi(x) � vi(p
1
i ) +

∑
k: pk+1

i
-i xi

(
vi(p

k+1
i ) − vi(p

k
i )
)
.

Hence, V(x) � V(p1) + (x)⋆ × ∆v, where (x)⋆ is the covector defined over the
dual base 〈δ⋆

(i ,k)
〉(i ,k)∈I by:

(x)⋆ :�
∑
(i ,k)∈I

(x)⋆
(i ,k)
δ⋆
(i ,k)
, with (x)⋆

(i ,k)
:�

{
+1, if pk+1

i
-i x;

0, else.
(2.11)

Hence, for any pair of alternatives x , y ∈ X, the differences of values V(x)−V(y)

can be expressed as a linear form operating on the core differences ∆v:

V(x) − V(y) �
(
(x)⋆ − (y)⋆

)
× ∆v

When an alternative z belongs to the core, either zi %i pk+1
i

or zi -i pk
i
.

Equation (2.11) allows to check that, for all (i , k) ∈ I,
(
(x)⋆ − (y)⋆

)
(i ,k) matches

the following value table:

xi -i pk
i

xi %i pk+1
i

yi -i pk
i

: 0 +1

yi %i pk+1
i

: −1 0

Equation (2.6) defining the coefficients of the covector (x , y)⋆ allows to
check that the coefficients (x , y)⋆

(i ,k)
satisfy the same value table. Therefore,(

(x)⋆ − (y)⋆
)
� (x , y)⋆.

�

Given some additive values, the preference of x over y is characterized
by the nonnegativity of the linear form (x , y)⋆ applied to a specific vector of
differences of value ∆v. Conversely, given some preference information P ⊂ P2,
the compatibility of a specific vector of additive values to the preference
information can be written:

Lemma 2.7.

The additive values 〈vi(p
k
i )〉 extend P ⇐⇒ ∀π ∈ P , π⋆ · ∆v ≥ 0 (2.12)
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2.2.8 Inference of necessary preference through covectors

For pairs outside the class UP , we give three characterizations of the necessary
preference of x over y using covectors.

Theorem 2.8 (characterization of necessary preference using covectors). Given

some preference information P ⊂ P2 ⊂ X2, and a pair of alternatives (x , y) ∈

X2 \ UP, the following propositions are equivalent :

1. necessary preference

(x , y) ∈ NP

2. linear feasibility problem




(x , y)⋆ · ∆v < 0
∀π ∈ P , π⋆ · ∆v ≥ 0
∀(i , k) ∈ I, δ⋆

(i ,k)
· ∆v ≥ 0

has no solution ∆v ∈ RI

3. combination of statements ∃λ ∈ [0,+∞[P , µ ∈ [0,+∞[I:

(x , y)⋆ �

∑
π∈P

λππ
⋆
+

∑
(i ,k)∈I

µ(i ,k)δ
⋆
(i ,k)

4. integral combination of statements

∃n ∈ N⋆, ℓ ∈ NP , m ∈ NI :

n (x , y)⋆ �

∑
π∈P

ℓπ π
⋆
+

∑
(i ,k)∈I

m(i ,k) δ
⋆
(i ,k)

Proof. : see Appendix A. �

2.3 A working example

While the previous section introduced the mathematical tools underpinning
our framework designed to adjudicate necessary preference queries in an
interpretable manner, this section illustrates the functioning of these tools,
both at the individual level and collectively, by providing an example of the
process induced by Theorem 2.8. This workflow is captured and illustrated by
figure 2.1. Each box, numbered from one to nine, refers to a specific component
of the framework. The remainder of the section details each one of these,
building up a continuing example, and providing links to venues for tweaking
or augmentation discussed in subsequent sections.
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2.3.1 Inputs

The workflow is initiated by the provision of three kinds of input data: the
preference information describing the attitude of the decision maker, the core

detailing the values of interest according to each point of view, and the query

formalizing the question asked to the system.

Component 1 (Preference information). As already discussed in Section
1.3.2, the knowledge grounding the preference relation being built is collected
in the form of a list of pairwise preference statements, of the type: ‘we know
that alternative a is at least as good as alternative b’. This knowledge is
agnostic to the preference model.

Example. The preference information elicited from the decision maker can be
expressed by three preference statements.
P :� {π1 , π2 , π3}, with:
π1 :�( ( 4* , no , 15 min , 180 $ ) , ( 2* , yes , 45 min , 50 $ ) )
π2 :�( ( 4* , no , 45 min , 50 $ ) , ( 4* , yes , 15 min , 100 $ ) )
π3 :�( ( 2* , yes , 15 min , 180 $ ) , ( 4* , no , 30 min , 180 $ ) )

Going further. In Section 2.5.2, we discuss the possibility of taking into
account a wider spectrum of preference information, e.g. regarding the
intensity of preferences.

Component 2 (Core). According to each point of view i ∈ N, the core Pi

is the set of attribute values of interest. The core is related to the preference
relation by the rule expresses by (2.1).

Example. We opt to define the core on the basis of the values referenced by
the preference information:

• from the point of view of comfort:

P∗ � 〈p1
∗ :� 2* ≺∗ p2

∗ :� 4*〉

• from the point of view of the presence of a restaurant:

Pr � 〈p1
r :� no ≺r p2

r :� yes〉

• from the point of view of the time spent commuting:

Pt � 〈p1
t :� 45 min ≺t p2

t :� 30 min ≺t p3
t :� 15 min〉

• from the point of view of expenses:

P$ � 〈p1
$

:� 180 $ ≺$ p2
$

:� 100 $ ≺$ p3
$

:� 50 $〉
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1
preference

information
P

2
core
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3
query
(x , y)

4

Unbounded
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query into
(x , y)⋆

7

check
conical
relation

8

Adjudicate
yes

(x , y) ∈ NP

9

Adjudicate
no

(x , y) < NP

no

yes no

yes

Figure 2.1: Workflow for adjudicating a query under the assumptionof additive
preferences

Going further. The relationship between preference information and
core can go both ways: obtaining the preference information first, then
constructing the core around it, or, conversely, deciding first on the core
then collecting corresponding preference statements. These options are
further discussed in Section 2.4.1.

Component 3 (Query). The framework is geared towards answering specific
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queries, of the form: ‘is alternative x preferred to alternative y?’.

Example. We consider the four hotels hA , hB , hC , hD, whose performance is
given by Table 2.1. We suppose the decision maker wants to order them, from
the most desirable to the least. Consequently, we are going to consider the
twelve queries corresponding to permutations of these hotels.

Going further. In Section 2.4.2 , we show how the framework can be used
to efficiently explore the entire preference relation. In Section 2.5.2, we
consider answering queries concerning intensities of preference, of the type
‘is x preferred to y more strongly than a is preferred to b?’.

2.3.2 The encoder

Taken together, components 4, 5 and 6 form the encoder. Their collective
function is to represent the inputs in a form that is suited to be processed by
the inference engine. In our context, inference is linked to the feasibility of a
constrained problem, and we represent each piece of preference information by
a linear constraint.

Component 4 (Unboundedness checking). Unboundedness is a notion
defined by Equation 2.4. It qualifies queries that are easy to refute, thanks
to Theorem 2.4, because, according to some point of view, the potentially
stronger alternative is too weak, or the potentially weaker alternative is too
strong.

Example. Among the hotels hA , hB , hC , hD, two alternatives have an attribute
falling outside the range of the core.:

• hB is further away from the convention center (50 minutes) than the
farthest hotel mentioned in the preference information (45 min), and
than the other hotels hA , hC and hD. Thus, hB is not necessarily pre-
ferred to these hotels, and the queries (hB , hA), (hB , hC) and (hB , hD) are
unbounded.

• hD is cheaper (40 $) than the cheapest hotel mentioned in the pref-
erence information (50 $), and than the other hotels hA , hB and hC.
Thus, these hotels are not necessarily preferred to hD, and the queries
(hA , hD), (hB , hD) and (hC , hD) are unbounded.

Going further. This notion, its contribution to the interpretability of the
framework, and the flexibility it offers, are discussed in Section 2.4.1. This
section also discusses how to shut off this bypass entirely.
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Component 5 (Encoding the preference information). According to
Equation 2.12, the linear constraints representing each prefererence statement
(a , b) ∈ P can be written (a , b)⋆ · ∆v ≥ 0. The coefficients of the covector
(a , b)⋆ are given by Equation 2.6. By construction, alternatives mentioned
in the preference information are core alternatives. For these, Equation 2.6
simply amounts to take into account the core intervals [pk

i
, pk+1

i
] between xi

and yi, positively if xi ≻i yi, and negatively if yi ≻i xi.

Example. We consider the statement

π2 :� ( (4*, no, 45 min, 50 $), (4*, yes, 15 min, 100 $) )

It expresses the willingness of the decision maker to trade up in cost from
100 $ to 50 $ , at the expense of a conjoint downgrade in the presence of a
restaurant and in commute time from 15 min to 45 min , everything else —i.e.
comfort— being equal. This acceptable trade-off is encoded into a covector
given in Table 2.2.

Criteria Interval Orientation Coefficient
Comfort from 2* to 4* neutral 0
Restaurant from no to yes con −1
Commute from 45 min to 30 min con −1

from 30 min to 15 min con −1
Cost from 180 $ to 100 $ neutral 0

from 100 $ to 50 $ : pro +1

Table 2.2: Covector encoding the preference satement π2.

The covectors encoding each preference statements are given in Table
2.3. Those of the dual base, that encode dominance, are given in Table 2.4.
Together, they encode the knowledge base.

Criteria from to π⋆1 π⋆2 π⋆3
Comfort 2* 4* +1 0 −1
Restaurant no yes −1 −1 +1
Commute 45 min 30 min +1 −1 0

30 min 15 min +1 −1 +1
Cost 180 $ 100 $ −1 0 0

100 $ 50 $ −1 +1 0

Table 2.3: Covectors encoding the preference information.
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Criteria from to δ⋆∗,1 δ⋆r,1 δ⋆t ,1 δ⋆t ,2 δ⋆
$,1

δ⋆
$,2

Comfort 2* 4* +1 0 0 0 0 0
Restaurant no yes 0 +1 0 0 0 0
Commute 45 min 30 min 0 0 +1 0 0 0

30 min 15 min 0 0 0 +1 0 0
Cost 180 $ 100 $ 0 0 0 0 +1 0

100 $ 50 $ 0 0 0 0 0 +1

Table 2.4: Covectors encoding dominance.

Going further. The way the preference information is encoded, and its
consequences is thoroughly discussed in Section 2.4.2. The possibility of
representing other types of preference information, e.g. relative to the
intensity of preference, is touched upon in Section 2.5.2.

Component 6 (Encoding the query). A query (x , y) ∈ X2 represents the
question of adjudicating whether the alternative x is necessarily preferred
to the alternative y, assuming the knowledge contained in the preference
information P, and the fact that preferences are additive. Queries that are
not unbounded by the core (see Component 4) are encoded in a way that
is similar to preference information statements, with covectors (x , y)⋆ which
coefficients are given by Equation 2.6. As opposed to preference statements,
though, preference queries may reference alternatives outside the core. When
(x , y) < P2, for some point of view i ∈ N, some attribute xi , or yi , or both, falls
strictly between the values of Pi, “breaking" some interval [pk

i
, pk+1

i
]. Because

of the cautious nature of the relation NP , the orientation of any “broken”
interval is rounded down: those that would support the preference of x over y

are not taken into account and considered neutral, with coefficient 0, while
“broken” intervals that would go against this preference are totally taken into
account with coefficient −1. Figure 2.2 illustrates these notions.

Example. The covectors representing the seven queries in {hA , hB , hC , hD}2

that are neither trivial nor unbounded are given in Table 2.5.

Going further. The possibility of efficiently batch querying all the pairs
of alternatives from the core is considered in Section 2.4.2. The way the
drastically pessimistic attitude implied by the necessary relation manifests
when computing covectors of queries mentioning alternatives outside of the
core is discussed in Section 2.5.1, which also proposes venues for relaxing it.
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Figure 2.2: Orientation of the core intervals illustrated

Criteria from to (hA , hB)
⋆ (hA , hC)

⋆ (hC , hA)
⋆ (hC , hB)

⋆

Comfort 2* 4* 0 +1 −1 −1
Restaurant no yes −1 −1 +1 0
Commute 45 min 30 min 0 −1 0 +1

30 min 15 min 0 −1 0 0
Cost 180 $ 100 $ 0 −1 0 +1

100 $ 50 $ 0 −1 +1 +1

Criteria from to (hD , hA)
⋆ (hD , hB)

⋆ (hD , hC)
⋆

Comfort 2* 4* −1 −1 0
Restaurant no yes 0 −1 −1
Commute 45 min 30 min 0 +1 0

30 min 15 min 0 0 −1
Cost 180 $ 100 $ 0 +1 0

100 $ 50 $ +1 +1 0

Table 2.5: Covectors encoding the queries.

2.3.3 The inference engine

The inference engine is in charge of adjudication, i.e. determine if a query
belongs or not to the necessary preference relation, assuming the preference
information and the fact that preferences are additive. As the preference
information, previously encoded by Component 5, is treated as an input, it
follows that the inference engine embodies the reasoning about preference
under the assumption of additivity.

Component 7 (Computing the adjudication). The actual computation
of the adjudication is done under the auspices of Theorem 2.8, and particularly
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the equivalence (1) ⇐⇒ (3). It amounts to check whether the covector
representing the query can be written as a conical combinationc of the covectors
representing the preference information and the covectors of the dual base
that represent dominance. Performing such a check is a feasibility problem
belonging to the realm of linear optimization.

Example. We have the following relations:

(hC , hA)
⋆
�π⋆2 + π⋆3 + δ⋆r,1 + δ

⋆
t ,1 (2.13)

(hC , hB)
⋆
�π⋆2 + π⋆3 + 2δ⋆t ,1 + δ

⋆
$,1

(2.14)

(hD , hA)
⋆
�π⋆2 + π⋆3 + δ⋆t ,1 (2.15)

Conversely, the covectors (hA , hB)
⋆, (hA , hC)

⋆, (hD , hB)
⋆ and (hD , hC)

⋆ can
not be expressed as conical combinations of covectors of the knowledge base.

Going further. The fundamental role played by linear programming in
the propagation of necessary preference seems to spell the doom of [Spliet
and Tervonen, 2014]’s hope of expressing the relation NP in a rule-based
framework. Nevertheless, we leave the door open to adjudicating easy no

instances in a rule-based manner with the bypass offered by the boundedness
check (Component 4). Section 2.4.1 offers a discussion of this bypass.

2.3.4 Outputs

As for now, the sole output of the framework is the answer to a single query,
either ‘yes’ or ‘no’. In Chapter 3, we will consider the augmentation of the
framework with an explicative engine.

Component 8 (Adjudicating yes). When the Component 7 succeeds at
finding a conical relation between the covector representing the query and
those representing the preference information and dominance, the alternative
x is indeed necessarily preferred to the alternative y: any preference relation
based on additive values that extends the preference information deems x at
least as good as y.

Example. (hC , hA) ∈ NP , (hC , hB) ∈ NP and (hD , hA) ∈ NP .

Going further. The explicative engines described in Chapter 3 focus on this
case, and make use of the stronger result (1) ⇐⇒ (4) given by Theorem
2.8: the coefficients of the conical relation can be chosen integral.

cA conical combination is a linear combination with nonnegative coefficients.
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Component 9 (Adjudicating no). When the query is deemed unbounded
by the core by Component 4, or when Component 7 fails at finding a conical
relation between the covector representing the query and those representing
the preference information and dominance, the alternative x is not necessarily
preferred to the alternative y: there is a preference relation based on additive
values that extends the preference information and deems y better than x.

Example. (hA , hB) < NP , (hA , hC) < NP , (hA , hD) < NP , (hB , hA) < NP ,
(hB , hC) < NP , (hB , hD) < NP , (hC , hD) < NP , (hD , hB) < NP and (hD , hC) <

NP .

Going further. In this report, we do not really investigate the particulars of
an explanation of the negative cases stemming from a failure of Component
7 to find a conical relation. Section 2.4.1 shortly considers this problem,
and also discusses way to increase or decrease the throughput of the bypass
offered by Component 4, which can be explained in a rule-based framework.

Epilogue

Example. According to the preference relation NP :

• hA and hB are incomparabled;

• hC is necessarily preferred to hA and to hB;

• hD is necessarily preferred to hA;

• hD and hB are incomparable;

• hD and hC are incomparable.

Finally, Figure 2.3 depicts the preference relation NP ∩ {hA , hB , hC , hD}2.

hA hB

hD hC

Figure 2.3: Inferred preferences between hotels.

dIn this model, incomparability has an epistemic flavor. It can be understood as an
acknowledgment that more information is required to adjudicate the case.
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2.4 What we have done and why it is important

2.4.1 A flexible framework

While the previous section showcased a particular use of the set of tools we
put forward in this chapter, this is not the only possible workflow. In this
section, we insist on two specific decision points that offer the opportunity
to best tailor the framework to the needs of the situation: the acquisition of
preference information, and the notion of unbounded pairs.

Core alternatives and preference information. In the example detailed
in Section 2.3, we assumed preference information was given at the inset, under
the form of pairwise preference statement. We already discussed in Section
1.3.2, the merits of this particular choice for representing the knowledge about
preference. We consider here the question of the initiative of the protocol
governing the acquisition of preference information.

Passive acquisition. In some settings, information is acquired passively

with respect to the aggregation procedure: observations are made concerning
the parameters (supposedly) governing a certain phenomenon, then comes an
analyst assuming an additive value model, trying to infer some knowledge about
new cases. In this case, corresponding to the example given in Section 2.3,
the analyst determines the set of core alternatives after getting the preference
information (see Table 2.6) , and the rule 2.1 is read from right to left, as the
values mentioned by the preference information constrain the core.

Questioning. In other settings, preference information is learned actively:
it results from questions asked purposely in order to define the model. This is
standard practice in Decision Aiding: the decision maker invites an analyst
to help them settle their mind about a ‘decision problem’, and at some point
(see e.g. [Bouyssou et al., 2006]) the analyst proceeds by question the decision
maker about their preferences in order to elicit their preference structure.
These questions are certainly not randomly chosen, and the values of the
attributes mentioned in the queries, i.e. the core P is crafted by the analyst
before the querying, then explored in terms of preference—thus, the axiom 2.1
is read from left to right. For instance, complete elicitation procedures aims
at collecting preference information sufficient to unequivocally determine the
parameters of the aggregation procedure. Of course, as preference information
is finite, it imposes to define beforehand the extent to which the model is
defined by direct information—in other words, the core—leaving the rest to
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A
Collect some preference in-
formation

B Determine the core

C
Compute covectors for the
preference information

Table 2.6: Workflow for passive ac-
quisition of preference information,
typical of Machine Learning.

A Choose a core

B
Collect some preference in-
formation about core alter-
natives

C
Compute covectors for the
preference information

Table 2.7: Workflow for active ac-
quisition of preference information,
typical of Decision Aiding.

interpolation (and the choice of an interpolation technique). Realistic methods,
that accounts for some amount of inconsistent preference information, such as
the Analytical Hierarchic Process [Saaty, 1990] or MACBETH [Bana e Costa
and Vansnick, 1994] give explicit guidelines on how to build what we call the
core.

Active learning. More recently, active learning procedures have been
proposed [Braziunas and Boutilier, 2007, Hyafil and Boutilier, 2006, Boutilier
et al., 2010, Benabbou et al., 2017] that compute queries on the fly. These
queries are presented to the decision maker, who adjudicates them according
to their own value, and this adjudication is incorporated into the preference
information. The queries are chosen so as to converge quickly towards a
sufficiently precise model. These algorithms often work in the version space
of the model, as we do, and they might benefit from our efforts towards
interpretability and explainability of the recommendations. Their agility
requires the core to be computed again with each iteration, but we note that
this step does not incur a heavy computational burdene.

Unbounded pairs bypassing linear optimization. We introduced the
notion of unbounded pairs in our framework as a nod towards [Spliet and
Tervonen, 2014] efforts to capture necessary preference in a rule-based frame-
work, albeit with very limited results. This introduction is motivated by a
concern for interpretability. It offers a shortcut permitting to bypass the linear
programming kernel powering the search for certificates of infeasibility. The
easy cases are filtered by means of a simple rule-based system, as testing for
unboundedness simply asks whether the former alternative of the query is the

eNevertheless, it invalidates some of the benefits of the streamlined encoding, discussed
in Section 2.4.2.
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worst ever seenf according to some point of view, or if the latter alternative of
the query is the best ever seen according to some point of view. These cases
are so clear cut they might deserve a specific treatment. The obvious way of
disproving necessary preference—thus explaining the adjudication of rejected
queries—is to provide a certificate in the form of additive values amounting to
an inversion of preference:

(x , y) < NP ⇐⇒
∃V : X→ R additive and extending
P and D such that V(x) < V(y)

(2.16)

Choosing and displaying such an adversarial additive value V is not trivial,
probably involving mathematical programming for the artificial analyst on
the emitting end and some cognitive burden for the decision maker on the
receiving end. Moreover, the less obvious pitfall hides in the anecdotal value of
such an adversarial certificate. It surely proves the inadequacy of x compared
to y, but it does not tell us anything obviously useful when comparing z to
y or x to t, even less z to t. This is a limitation inherent to transductive
approaches, inference from particular to particularg. Nevertheless, the notion of
unbounded pairs circumvents this failure to generalize, by providing a universal
and synthetic rule for some cases.

Unbounded pairs are not a vital component of the framework, and can
easily and harmlessly be switched off. This can be done by augmenting the
sets of core values: from above with an ideal element comparing favorably to
any other, and from below with an anti-ideal element comparing unfavorably
to any other. In such a setting, there are no unbounded pairs, at the extra cost
of having two extra dimensions for each point of view. Conversely, the notion
of unbounded pairs could easily be expanded, e.g. by considering separate
core scales for the first and second arguments of the preference statements, in
order to extend the domain of rule-based exceptions to the linear feasibility
framework.

2.4.2 A streamlined representation

A static representation of knowledge. The only alternatives that matter
in the definition of necessary preference under the assumption of additive values
are: i) those referenced by the preference information; and ii) those that are
currently queried. Therefore, the linear program proposed in [Greco et al.,
2008], recalled in Proposition 2.1, references these two types of values, and
works perfectly fine. From the perspective of the representation of knowledge

fIn the sense of the alternatives of the query as well as those of the preference information,
but not those encountered e.g. during previous queries.

gSee Section 2.4.2 for a more detailed discussion of inductive and transductive approaches
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and reasoning, though, this situation was not quite satisfying. Preference
information makes up for the knowledge base, the known facts about the
worldh, while the adjudication of queries is the inference engine, reasoning
about those facts and using some theorem to deduce new facts. Former
ways of adjudicating queries did not establish as clear a separation between
knowledge base and preference engine as the one proposed here. Moreover, the
toolbox presented in section 2.2 proposes a way of representing facts (preference
statements in P) and queries alike in a static manner, i.e. independently from
the queries themselves. In a sense, knowledge is compiled beforehand into
covectors, and queries are adjudicated at runtime by the inference engine. This
feature identifies the inference engine as a transductive-inductive hybrid:

• transductive, defined by [Gammerman et al., 1998b, Pirlot et al., 2016,
Russell, 1912] as inference from particular to particular, because each
individual fact—a single preference statements—is encoded into its own
covector, making it possible to trace its particular influence on each
decisioni;

• inductive, because the inference engine embodies the adjudication rule,
tying particular runs—adjudication of queries—together into a general
model. This would not have been the case if the encoding of facts
had been dynamic—each run would take place in a different landscape,
shutting off any possibility for the observer to identify patterns.

Few coefficients and a clear semantic. The encoding we propose uses
one coefficient, with value −1, 0 or 1, for each core interval, that is the number
of core values minus one for each point of view. This number is slightly less
than those required in Proposition 2.1 or Lemma 2.3 in the worst case, which
is the number of core values plus two for each point of view. This improvement
comes from the outer treatment of unbounded pairs. We believe its impact
to be modest on the computational resources required to adjudicate a single
query, as linear optimization is polynomial time. Where the novel encoding
shines, though, is the way it enables the users (decision maker and analyst
alike) to get a global view of the necessary preference relation. Its influence is
twofold:

• The computation of covectors (with equation 2.6) comes with a very
simple interpolation rule, resorting to logic rather than arithmetic, per-
mitting to limit the scope of exploring the binary relation NP from the

hBesides preference information, there is another important fact: preferences are additive.
iThis would not have been the case if the facts had been digested into parameters of a

model, such as the (in)famous weights denoting the importance of criteria often discussed in
Multiple Criteria Decision Aiding.
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whole set of pairs of alternatives X2 to the finite, but combinatorial, set
of pairs of core alternatives P2;

• Rather than reasoning in terms of pairs of alternatives (i.e. P2, it is
sufficient to run through the set of their covectors, which is a subset of
{−1, 0, 1}I).

The latter point needs to be examined closely, as the computational gain
is far from obvious. The mapping from pairs of core alternatives to covectors
is neither injective nor surjective.

• There are pairs of core alternatives that are represented by the same
covector: the case where, according to some point of view, every coefficient
is null, arises if and only if the alternatives of the pair share a common
value of the attribute corresponding to this point of view, regardless of the
particular value. Thus, the encoding takes advantage of the preferential

independance property of the additive value model, and represent all the
ceteris paribus pairs in the same manner.

• Conversely, there are tuples in {−1, 0, 1}I that do not represent any pair of
alternatives. It follows from equation 2.6 that: i) each point of view i ∈ N

is either in favor of the pair, with coefficients 0 or +1; completely neutral,
with all coefficients null; or in disfavor of the pair, with coefficients 0 or
−1; and ii) for each point of view i ∈ N the set of nonzero coefficients is
an interval. It is also easy to find, for any covector satisfying (i) and (ii),
a pair of alternatives that is encoded by this covector. Therefore, it is
possible to count the covectors encoding pairs of alternatives.

Lemma 2.9. ������
⋃

(x ,y)∈P2

{(x , y)⋆}

������ �
∏
i∈N

(|Pi | × (|Pi | − 1) + 1) (2.17)

Proof. From the discussion above, there are as many covectors encoding
pairs of alternatives as there are products of intervals with a given
orientation. For a given point of view i ∈ N, there are

( |Pi |
2

)
intervals pro,( |Pi |

2

)
intervals con, and one neutral interval. �

• Moreover, it is noteworthy that some of the meaningful covectors encode
dominance relationships. They are both easy to characterize— they are
the covectors with either no pros (in {−1, 0}I) or no cons (in {0,+1}I),
with the null covector as sole overlap—and to adjudicate.

Example 2.2. Therefore, the necessary preference relation given the core
chosen for the example given in Section 2.3 involves |P∗ | × |Pr | × |Pt | × |P$ | �
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2× 2× 3× 3 � 36 core alternatives. Instead of adjudicating 36× 36 � 1296 pairs
of alternatives, it is sufficient to adjudicate (|P∗ | × (|P∗ | − 1)+ 1) × (|Pr | × (|Pr | −

1)+1)×(|Pt | × (|Pt | −1)+1)×(|P$ | × (|P$ | −1)+1) � 3×3×7×7 � 441 covectors.
Among these, (1 + 1) × (1 + 1) × (3 + 1) × (3 + 1) � 64 correspond to covectors
without any cons, encoding pairs (x , y) ∈ D and are trivial yes queries, and
the same number correspond to covectors without any pros encoding pairs
(x , y) where y Dx, and are therefore trivial no queries except in the only
overlapping case where x ≡ y and (x , y)⋆ is the null covector. Thus, there
remains 441 − 2 × 64 + 1 � 314 nontrivial covectors to adjudicate. Of these, 53
are yes instances. Finally, among the 1296 pairs of alternative, 288 are ordered
by dominance, and 250 more are ordered by the necessary preference relation:
not too bad, considered there are only three preference statements! Figure 2.4
depicts the Hasse diagram, with 36 nodes and 57 edges, of the relation NP , i.e.
the graph of NP where arcs that can be deduced from transitivity are omitted.

2.5 Perspectives and venues for improvement

This section is devoted to the description of two venues for increasing the
expressiveness of the framework presented in this chapter, thus extending
the scope of preferences it is able to represent. The first one, detailed in
Section 2.5.1, aims at equipping the framework with the ability to represent
assumptions made about the shape of the marginal value functions, frequently
encountered in the multiple criteria decision aiding literature. The second,
detailed in Section 2.5.2, considers the issue of representing the intensity of
preference and regret inside the framework.

2.5.1 Relaxing orientations to account for interpolation

While the multiple criteria decision aiding community—researchers and prac-
titioners alike—considers the additive value model as a flagship, it is seldom
used as is in practical applications. Additional assumptions are often made
concerning the shape of the marginal values, i.e. the functions 〈vi : X→ R〉i∈N .
In the framework presented this far, these functions play a purely ordinal role:
the order of the numeric values 〈vi(x)〉x∈X reflects the preference %i over the
alternatives of X. The current framework makes no assumption about the
shape of these functions, besides the fact they are monotonically nondecreasing.
When there is no assumption made about the shape of the marginal values,
necessary preference commands to interpolate values in the most demanding
way, expressed by the pessimistic rounding rule: considering the core intervals
as assets, a potentially pro interval is actually counting as supportive only if it
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4* , yes , 15 min , 50 $

4* , no , 15 min , 50 $

4* , yes , 30 min , 50 $ 2* , yes , 15 min , 50 $

4* , no , 30 min , 50 $4* , yes , 45 min , 50 $

4* , no , 45 min , 50 $ 2* , no , 15 min , 50 $

4* , yes , 15 min , 100 $

4* , yes , 15 min , 180 $ 4* , no , 15 min , 100 $ 2* , yes , 30 min , 50 $

4* , no , 15 min , 180 $

2* , yes , 45 min , 50 $ 2* , no , 30 min , 50 $

2* , no , 45 min , 50 $4* , yes , 30 min , 100 $

2* , yes , 15 min , 100 $4* , yes , 30 min , 180 $

4* , no , 30 min , 100 $

2* , yes , 15 min , 180 $

4* , no , 30 min , 180 $

2* , no , 15 min , 100 $

2* , no , 15 min , 180 $4* , yes , 45 min , 100 $

2* , yes , 30 min , 100 $

4* , yes , 45 min , 180 $ 4* , no , 45 min , 100 $

4* , no , 45 min , 180 $

2* , yes , 30 min , 180 $ 2* , yes , 45 min , 100 $ 2* , no , 30 min , 100 $

2* , yes , 45 min , 180 $ 2* , no , 30 min , 180 $ 2* , no , 45 min , 100 $

2* , no , 45 min , 180 $

π1

π2

π3

4* , yes , 15 min , 50 $

4* , no , 15 min , 50 $

4* , yes , 30 min , 50 $ 2* , yes , 15 min , 50 $

4* , no , 30 min , 50 $4* , yes , 45 min , 50 $

4* , no , 45 min , 50 $ 2* , no , 15 min , 50 $

4* , yes , 15 min , 100 $

4* , yes , 15 min , 180 $ 4* , no , 15 min , 100 $ 2* , yes , 30 min , 50 $

4* , no , 15 min , 180 $

2* , yes , 45 min , 50 $ 2* , no , 30 min , 50 $

2* , no , 45 min , 50 $4* , yes , 30 min , 100 $

2* , yes , 15 min , 100 $4* , yes , 30 min , 180 $

4* , no , 30 min , 100 $

2* , yes , 15 min , 180 $

4* , no , 30 min , 180 $

2* , no , 15 min , 100 $

2* , no , 15 min , 180 $4* , yes , 45 min , 100 $

2* , yes , 30 min , 100 $

4* , yes , 45 min , 180 $ 4* , no , 45 min , 100 $

4* , no , 45 min , 180 $

2* , yes , 30 min , 180 $ 2* , yes , 45 min , 100 $ 2* , no , 30 min , 100 $

2* , yes , 45 min , 180 $ 2* , no , 30 min , 180 $ 2* , no , 45 min , 100 $

2* , no , 45 min , 180 $

Figure 2.4: Hasse diagram of the necessary preference relation NP . Preference
information is in blue, dominance is in orange, and inferred relations are in
black.
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is entirely covered by the interval ranging from yi to xi , with partial cover not
counting at all; conversely, a potentially con interval counts as full opposition
as soon as it intersects the interval ranging from xi to yi.

Example 2.3. Consider a situation where, from some point of view i ∈ N,
the core is made of four attribute values p1

i
≺i p2

i
≺i p3

i
≺i p4

i
, and alternatives

x and y such that p1
i
≺i x ≺i p2

i
and p3

i
≺i y ≺i p4

i
. Figure 2.5 depicts two

value functions:

• one corresponding to a case extremely in disfavor of x compared to
y, with vi(x) � vi(p

1
i
) and vi(y) � vi(p

4
i
). Thus, vi(x) − vi(y) � (−1) ×

(vi(p
2
i
)−vi(p

1
i
))+(−1)×(vi(p

3
i
)−vi(p

2
i
))+(−1)×(vi(p

4
i
)−vi(p

3
i
)), encoded

into the covector (−1,−1,−1)

• one corresponding to a case extremely in disfavor of y compared to
x, with vi(x) � vi(p

2
i
) and vi(y) � vi(p

3
i
). Thus, vi(x) − vi(y) � (0) ×

(vi(p
2
i
)− vi(p

1
i
))+ (+1)× (vi(p

3
i
)− vi(p

2
i
))+ (0)× (vi(p

4
i
)− vi(p

3
i
)), encoded

into the covector (0,+1, 0)

p1
i

p2
i

p3
i

p4
i

xi yi

vi(p
1
i
)

vi(p
2
i
)

vi(p
3
i
)

vi(p
4
i
)

Adversary values for x vs. y
Adversary values for y vs. x

Figure 2.5: Most disfavorable values without assumptions w.r.t. interpolation

Nevertheless, many practical frameworks dedicated to the elicitation of
preferences make additional assumptions on the marginal values:

• Weighted sums, certainly the most popular way of aggregating values
without bothering with re-encoding them, correspond to the case where
marginal values are linear.
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• UTA [Jacquet-Lagrèze and Siskos, 1982] or MACBETH [Bana e Costa
and Vansnick, 1994], marginal values are assumed to be piecewise linear.

• More recently, [Benabbou et al., 2016, Sobrie et al., 2018] assume piece-
wise polynomials.

• Decision theoretic considerations could furthermore constrain the values,
e.g. forcing concavity in the case of diminishing returns.

All of these assumptions, and more, can be integrated in our framework by
modifying solely the encoder, but not the component dedicated to adjudication,
nor the explicative components introduced in Chapter 3. As a proof of
concept, we give two working examples showing how the coefficients of the
covector representing a query can be adjusted in order to account for additional
assumptions.

Example 2.4. Suppose the values are piecewise linear, with breaking points
at the core values, in the manner of weighted sums (with a single core interval),
UTA [Jacquet-Lagrèze and Siskos, 1982] or MACBETH [Bana e Costa and
Vansnick, 1994]. Consider the values p1

i
≺i x ≺i p2

i
≺i p3

i
≺i y ≺i p4

i
as

depicted in example 2.3. Now, the contribution of the core interval [p1
i
, p2

i
] to

the value of x is known, equal to
x−p1

i

p2

i
−p1

i

× (vi(p
2
i
) − vi(p

1
i
)). In the same vein,

vi(y) � vi(p
3
i
) +

y−p3

i

p4

i
−p3

i

× (vi(p
4
i
) − vi(p

3
i
)) Hence, the queries (x , y) and (y , x)

can be represented, according to the point of view i ∈ N, by the respective
covectors

(x , y)
⋆ piecewise linear

i
:�(−1 +

x − p1
i

p2
i
− p1

i

,−1,−1 +

p3
i
− y

p4
i
− p3

i

)

(y , x)
⋆ piecewise linear

i
:�(0 +

p2
i
− x

p2
i
− p1

i

,+1, 0 +

y − p3
i

p4
i
− p3

i

)

Figure 2.6 illustrates this situation.

Example 2.5. Suppose the values are constrained in an envelope such that,
given p1

i
≺i x ≺i p2

i
≺i p3

i
≺i y ≺i p4

i
, κi(x) × ∆v1

i
≤ vi(x) − vi(p

1
i
) ≤

κi(x)×∆v1
i

and κi(y)×∆v3
i
≤ vi(y)−vi(p

3
i
) ≤ κi(y)×∆v3

i
, where the coefficients

κi(x), κi(x), κi(y), κi(y) can be computed beforehand— and accounted for
separately. Then, the necessary preference of x over y or of y over x can
be computed with Theorem 2.8, with covectors corresponding to the most
unfavorable case:

(x , y)
⋆ envelope

i
:�(−1 + κi(x),−1,−κi(y))

(y , x)
⋆ envelope

i
:�(1 − κi(x),+1, κi(y))
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p1
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p4
i

xi yi
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i
)

vi(x)

vi(y)

Figure 2.6: Values with linear interpolation.

Figure 2.7 illustrates this situation.

p1
i

p2
i

p3
i

p4
i

xi yi

vi(p
1
i
)

vi(p
2
i
)

vi(p
3
i
)

vi(p
4
i
)

vi(xi)

vi(yi)

Figure 2.7: Envelopes of values.

The case where both x and y fall inside the same core interval needs to
be addressed with extra care, and is not discussed in this report. Moreover,
as long as the values of the coefficients κi(x), κi(x), κi(y), κi(y) are rational,
the characterization of necessary preference via a conical relation with integral
coefficients (Theorem 2.8, (1) ⇐⇒ (4)), that serves as a basis for the
explanation tools propose in Chapter 3, holds.
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2.5.2 Encoding the intensity of preferences

In [Figueira et al., 2009], the notion of necessary preference assuming additive
values is extended to account for intensity of preferences. Formally, the
intensity of preference can be introduced as a binary relation between pairs
of alternatives (that can therefore be seen as a quaternary relation between
alternatives), with the following semantic: given two pairs of alternatives
(a , b), (c , d) such that a is preferred to b and c is preferred to d, the pair (a , b)

is in relation to the pair (c , d) if a is preferred to b more intensely than c is
preferred to d. This relation enriches the language of preference in a manner
that seems easy to grasp in a decision aiding context, and methods such as
MACBETH [Bana e Costa and Vansnick, 1994] make heavy use of this kind of
statements as a source of preference information. They are also easy to model
in a value-based frameworkj, with the following rule: the preference (a , b) is
more intense than the preference (c , d) if, and only if, the difference of value
V(a) − V(b) is greater than the difference of value V(c) − V(d).

This rule is easy to represent in the present framework, as (V(a)) −V(b)) −

(V(c)−V(d)) is clearly a linear form of the elementary differences of preference
∆v. Hence, an intensity of preference statement can be represented by a
covector, and be incorporated into the knowledge base if it is an acknowledge
fact, or queried and adjudicated in order to check if this intensity can be
inferred from the knowledge base. As the coefficients of these covectors are
clearly integral, Theorem 2.8 should require very little modification to account
for intensities of preference.

At a formal level, this interpretation of differences of differences of value as
intensities rule is motivated by the fact that, in the context of additive conjoint
measurement, the value scales constructed by the measurement process are
interval scales, i.e. defined up to a positive affine transformation. These
transformations do not affect the orientation of the differences of differences
of value, which are therefore invariant with respect to the arbitrariness of
the scale (its position and magnitude). In the specific context considered
here, though, the extent to which the intensity of preference can reliably be
assessed is not clear. This context is generally labeled as ordinal, as the
only informational primitives it relies on are orientations of preference, not
magnitude. It is therefore generally considered unsuitable to the derivation
of cardinal information tied to the magnitude of the values. To this negative
consideration, it can be objected that: i) if the orientation of comparisons
between intensities of preference is based on the sign of differences of differences

jThis type of reasoning can also be extended to non-numeric representations, following
the principle of analogical proportion—see e.g. [Prade and Richard, 2018, Bounhas et al.,
2018].
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of value, it can still be considered as ordinal, as it falls clearly under the umbrella
of the Farkas-based framework hereby described; and ii) the extent to which
this type of information can be derived from the current informational state of
an incompletely elicited model is exactly what the computation of the necessary
preference relation is about. Consequently, we expect the tools introduced
here to help further the understanding of this particular issue.

A second step can be considered towards cardinality, in order to augment
the expressiveness of the framework. It is well-known that necessary preference
is a demanding notion, and may result in a preference structure that is very
sparse besides dominance. A natural way to extend the notion of necessary
preference is to interpret differences of values in terms of pairwise regret

[Savage, 1951]—the loss of value incurred by choosing an alternative instead
of another. In the context of incomplete information, when an alternative is
necessarily preferred to another, the regret of choosing it is negative, whatever
the ‘state of the nature’— here, the ground truth, i.e. the value model describing
the preference structure. Maybe, when things are not so clear cut, because
preference information is lacking, no alternative is necessarily preferred to the
other. In order to qualify this case more precisely, it might be interesting to
have a look at the pairwise maximal regret. This cardinal information has
been fruitfully used in several active learning frameworks for the elicitation
of various models [Braziunas and Boutilier, 2007, Boutilier et al., 2006] or,
more recently, [Benabbou et al., 2017]. We remark that, in order to give an
interpretation to regret, one needs to normalize the value scales. This remark is
key to incorporating regret into our framework: any ‘pairwise regret statement’
can be formulated as a statement concerning intensity of preferences. For
instance, stating that the maximum pairwise regret incurred by choosing x

instead of y is five percent can be written as:

V(y) − V(x) ≤
5

100
(V(⊤) − V(⊥))

or, equivalently:

100(V(y) − V(x)) ≤ 5(V(⊤) − V(⊥)),

where ⊤ and ⊥ are, respectively, the ideal and anti-ideal alternatives, with
maximal (resp. minimal) value. As long as the maximum pairwise regret is
a rational number, any pairwise regret statement can be expressed as linear
form operating on elementary differences of value, and encoded into a covector
with integral coefficients.
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3

Explanations

Introduction

This chapter is devoted to the presentation of elements of explanation support-
ing additive preferences. This explanatory step comes after the computation
step, where necessary preference statements are adjudicated, detailed in Chap-
ter 2. The explanation engines developed in this chapter abundantly leverage
the Farkas certificate with integer coefficients (see theorem 2.8, fourth formu-
lation) to provide argumentative support to inferred preference statements.
We propose two different approaches to the question of explaining an inferred
preference.

• The first one, described in Section 3.1, is concerned with putting in rela-
tion specific statements of the preference information, seen as premises, to
the inferred statement, seen as a conclusion. It operates by interpreting
a Farkas certificate as a pointer towards relevant preference statements,
where the pros are known to be stronger than the cons, then carving out
the desired conclusion by means of a cancellative property.

• The second one, described in Section 3.2, is based on sequences of

preference swaps, inspired by the even-swaps method for the active
learning of an additive model, proposed in [Hammond et al., 1998]. The
preference statement that requires an explanation is tentatively broken
down into a chain of transitive statements, supposedly easy to accept (or
refute) because they are restricted to the expression of trade-offs between
two points of view.



Part I. Comparing with an additive model

3.1 Explaining via cancellation

This section is dedicated to the presentation of an explanation technique. We
provide argumentation schemes [Walton and Reed, 2002] for explaining pairwise
preference statements entailed from a robust additive value model. This model
is a common way of aggregating preferences derived from incomplete preference
information stemming from multiple points of view. We ground the arguments
schemes on a cancellation principle, and prove that these explanations are
necessary and sufficient conditions to support necessary preferences under the
assumption of the additive value model. We also prove that, while the inference
is polynomial time, finding a cancellative explanation is NP-complete.

3.1.1 Cancellative properties of the additive value model

Besides transitivity, completeness and extending dominance, the additive value
model has many specific properties. The most salient, though, are certainly
the cancellative ones. Their definitions can be found e.g. in [Krantz et al.,
1971, Wakker, 1989]. They are easier to describe using a syntactic facility:
for any nontrivial subset of points of view A ⊂ N and any two alternatives
a , b ∈ X, we denote a−AbA the (fictitious) alternative which is equivalent to a

according to each point of view not in A, and equivalent to b according to the
points of view in A. We also define the sets of shared and differing attributes
between two alternatives:

∀x , y ∈ X, N�

(x ,y)
:� {i ∈ N : x ∼i y} (3.1)

N,
(x ,y)

:� {i ∈ N : x /i y} (3.2)

First-order cancellation. This property can be described as the indepen-
dence of the aggregated preference to indifferent points of view. Formally,
∀A ⊂ N ,A , �, ∀x , y , z , z′ ∈ X:

x−AzA % y−AzA ⇐⇒ x−Az′A % y−Az′A (3.3)

This property formalizes the possibility to reason ceteris paribus—everything
else being equal. When a preference relation satisfies first-order cancellation, the
specific levels of the attributes in A ≡ N�

(x ,y)
are irrelevant to the adjudication

of the preference between x and y, and thus does not need to be mentioned.
This certainly opens up opportunities w.r.t. explanation.

Higher-order cancellations These properties involve canceling out terms
across multiple pairwise preference statements. They have been extensively
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studied, in relation with the axiomatization of the additive model, in e.g. [Scott,
1964, Krantz et al., 1971, Fishburn, 1997]. They are easier to express with
a permutation, e.g., for any given integer m ≥ 1, the mth-order cancellation

axiom:

Consider m + 1 alternatives x(0) , . . . , x(m) in X. Let
y(0) , . . . , y(m) be m + 1 alternatives in X such that, for ev-
ery point of view i ∈ N, (y

(0)

i
, . . . , y

(m)

i
) is a permutation of

(x
(0)

i
, . . . , x

(m)

i
). Then,[x(k) % y(k) , ∀k ∈ {1, . . . ,m}] ⇒ y(0) %

x(0)

(3.4)

The following—obvious—theorem connects these properties to the additive
value models and, more importantly, to their robust counterpart.

Theorem 3.1. Any additive value model satisfies the cancellation axiom at any

order. Given some preference information P ⊂ X2, the necessary preference

relation assuming additive values NP satisfies the cancellation axiom at any

order.

3.1.2 Syntactic cancellation

Maybe the reasoning illustrated by Example 2.1 is exactly the prototype of
the explanations we are looking for. We formalize it under the form of an
argument scheme [Walton, 1996], an operator tying premises satisfying some
conditions, to a conclusion.

Definition 3.1 (syntactic cancellative explanation scheme). Given two positive

integers m ≥ n, and a pair of alternatives (x , y) ∈ X × X, we say the tuple

〈(a(1) , b(1)), . . . , (a(m) , b(m))〉 ∈ (X ×X)m is a syntactic cancellative explanation
of length m with n repetitions of the pair (x , y) if, for each point of view i ∈ N,

( yi , . . . , yi︸     ︷︷     ︸
n repetitions

, a
(1)

i
, . . . , a

(m)

i
) is a permutation of ( xi , . . . , xi︸     ︷︷     ︸

n repetitions

, b
(1)

i
, . . . , b

(m)

i
).

Verification of an explanation. Checking if a given tuple of pairs of
alternatives is an explanation of a given pair of alternatives with a given
number of repetitions can be performed in O(|N | · m ln m) by Algorithm 3.1.
At the heart of this algorithm, the unitary check performed by line 7, made at
the level of the attribute values, is indeed syntactic.

Certificate of necessary preference. The purpose of these argument
schemes is to provide a certificate for necessary preference.
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Algorithm 3.1: Checking a syntactic cancellative explana-

tion

Input:

• a pair of alternatives (x , y) ∈ X2;

• a tuple of pairs of alternatives

〈(a(1) , b(1)), . . . , (a(m) , b(m))〉 ∈ (X ×X)m;

• a positive integer n.

Result: True, if the tuple 〈(a(1) , b(1)), . . . , (a(m) , b(m))〉 is a syntactic
cancellative explanation with n repetitions of the pair (x , y);
False else.

1 foreach point of view i ∈ N: do

2 create a list Li of length m + n containing the values a
(1)

i
. . . a

(m)

i
as well as n copies of yi;

3 sort Li in ascending order according to %i;

4 create a list Ri of length m + n containing the values b
(1)

i
. . . b

(m)

i
as well as n copies of xi;

5 sort Ri in ascending order according to %i;
6 foreach index k ∈ [1..m + n] do
7 if Li[k] /i Ri[k] then
8 return False;

9 return True.

Theorem 3.2. Given some preference information P ⊂ X2 and two alterna-

tives x , y ∈ X, (x , y) ∈ NP if, and only if, there are two positive integers m and

n and a tuple of pairs of alternatives 〈(a(1) , b(1)), . . . , (a(m) , b(m))〉 ∈ (P ∪ D)m

forming a cancellative explanation of length m with n repetitions of the pair

(x , y).

This theorem is a more specific version of the result given, with a similara

sketch of proof in [Wakker, 1989] (II.3 on p33). For our purpose, the coefficient
n, ignored by Wakker, can not be disregarded as unimportant.

Proof. We propose a direct proof, similar to the one sketched in [Wakker, 1989]
(II.3 on p33), in Appendix A. Yet, the other results obtained in this chapter
make this proof redundant, as illustrated by Figure 3.1.

• If there is a cancellative explanation with n repetitions with pairs in
the preference information and dominance relation, then, for any ad-

aFarkas’ lemma and the hyperplane separation theorem are, essentially, the same property
with different names.
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ditive value function V �

∑
i∈N vi : X → R compatible with domi-

nance D and the preference information P, summation over the tuples
( yi , . . . , yi︸     ︷︷     ︸

n repetitions

, a
(1)

i
, . . . , a

(m)

i
) on the one hand and ( xi , . . . , xi︸     ︷︷     ︸

n repetitions

, b
(1)

i
, . . . , b

(m)

i
)

on the other hand yields, for all points of view i ∈ N:

n · vi(y) +

m∑
k�1

vi(a
(k)) � n · vi(x) +

m∑
k�1

vi(b
(k))

Then, summation over points of view yields

n · V(y) +

m∑
k�1

V(a(k)) � n · V(x) +

m∑
k�1

V(b(k))

Therefore

V(x) − V(y) �
1
n

m∑
k�1

(
V(a(k)) − V(bk)

)
Each term of the sum is a difference of values known to be nonnegative
and the coefficient n is positive, thus the difference V(x) − V(y) is
nonnegative and x is necessarily preferred to y.

• Reciprocally, if (x , y) ∈ NP , Farkas’ lemma (Proposition 2.2) applied to
the canonical representation of necessary preference (Lemma 2.3) yields
a certificate of the form:

∑
i∈N

vi(x) −
∑
i∈N

vi(y) �
∑

(a ,b)∈P∪D

λ(a ,b) ·

(∑
i∈N

vi(a) −
∑
i∈N

vi(b)

)
(3.5)

satisfied by any additive value function compatible with dominance
D and the preference information P. As the coefficients of the linear
forms are integers (indeed, there are in {−1, 0,+1}), the nonnegative
coefficients λ(a ,b) can be chosen rational. Multiplying both sides of (3.5)
by a common multiple of their denominators yield a conical combinations
with integral coefficients:

n ·

(∑
i∈N

vi(x) −
∑
i∈N

vi(y)

)
�

∑
(a ,b)∈P∪D

ℓ(a ,b) ·

(∑
i∈N

vi(a) −
∑
i∈N

vi(b)

)
(3.6)

Equation (3.6) can be rewritten as:

∑
i∈N

©­«
n · vi(x) +

∑
(a ,b)

ℓ(a ,b) · vi(b)
ª®¬
�

∑
i∈N

©­«
n · vi(y) +

∑
(a ,b)

ℓ(a ,b) · vi(a)
ª®¬

(3.7)
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This is a vector equality, between vectors indexed by a pair (i , z) ∈⋃
i∈N

⋃
z∈P̂i

{(i , z)}, with the augmented coreb defined by:

P̂i :�
⋃

(a ,b)∈P

{ai} ∪
⋃

(a ,b)∈P

{bi} ∪ {xi} ∪ {yi}; (3.8)

Consider the tuple E of length m :�
∑

(a ,b)∈P∪D ℓ(a ,b) formed by concate-
nating all the pairs (a , b) appearing in this sum with a nonzero ℓ(a ,b) coef-
ficient, each pair (a , b) being repeated ℓ(a ,b) times. For any point of view
i ∈ N, the vector equality obtained from (3.7) by only keeping the pairs
concerning this point of view, is exactly the multiset equality between
( yi , . . . , yi︸     ︷︷     ︸

n repetitions

, a
(1)

i
, . . . , a

(m)

i
) and ( xi , . . . , xi︸     ︷︷     ︸

n repetitions

, b
(1)

i
, . . . , b

(m)

i
) . Therefore, the

tuple E is an explanation of length m with n repetitions of the pair (x , y).

�

Example 3.1. Hotels are compared according to their comfort, offer of a
restaurant, commute time and cost. We are given the preference information

P ⊇ {π1 , π2 , π3}, with

π1 :�( ( 4* , no , 15 min , 180 $ ) , ( 2* , yes , 45 min , 50 $ ) )
π2 :�( ( 4* , no , 45 min , 50 $ ) , ( 4* , yes , 15 min , 100 $ ) )
π3 :�( ( 2* , yes , 15 min , 180 $ ) , ( 4* , no , 30 min , 180 $ ) )

Explain why the alternative x :� (4⋆, no, 45 min, 180 $) should be preferred
to y :� (2⋆, yes, 45 min, 100 $). We consider the dominance statement d :� ((4⋆,

yes, 30 min, 100 $), (4⋆, no, 30 min, 100 $))c. We claim that (π1 , π2 , d) is a
syntactic cancellative explanation, of length three and without repetition, of
the sought conclusion ((4⋆, no, 45 min, 180 $), (2⋆, yes, 45 min, 100 $)). The
lists 〈Li〉i∈N and 〈Ri〉i∈N built by Algorithm 3.1 are presented in Table 3.1, so
that the syntactic check can be performed line by line.

Presenting the explanation. The depiction given in Table 3.1 seems quite
technical and tedious, and might not be very enlightening. Therefore, we
propose an alternative presentation, that we feel is better suited to convey

bIn reference to the core, that satisfies (2.1). The augmented core is a useful demonstration
tool hence, as it also encompasses the attributes of the positive query (x , y). The price to
pay is that it is not static.

cAs the two alternatives have similar attributes, except from the point of view of the
presence of a restaurant, this statement is a complicated way of stating that, everything
else being equal, the presence of a restaurant is preferable to the contrary. Ceteris paribus

statements (see below) offer a more intuitive way of writing such statements.
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〈Ri〉i∈N 〈Li〉i∈N

Comfort: 2* (from π1) ∼∗ 2* (from y)
4* (from π2) ∼∗ 4* (from π1)

4* (from d) ∼∗ 4* (from π2)

4* (from x) ∼∗ 4* (from d)

Restaurant: no (from d) ∼r no (from π1)

no (from x) ∼r no (from π2)

yes (from π1) ∼r yes (from d)
yes (from π2) ∼r yes (from y)

Commute time: 45 min (from π1) ∼t 45 min (from π2)

45 min (from x) ∼t 45 min (from d)
30 min (from d) ∼t 30 min (from y)
15 min (from π2) ∼t 15 min (from π1)

Cost: 180 $ (from x) ∼$ 180 $ (from π1)

100 $ (from π2) ∼$ 100 $ (from d)
100 $ (from d) ∼$ 100 $ (from y)
50 $ (from π1) ∼$ 50 $ (from π2)

Table 3.1: Verifying the syntactic cancellative explanation of Example 3.1.

meaningful information and, maybe, actual insight concerning the underlying
reasoning, to the reader. Table 3.2 instantiates this presentation on the
explanation given in Example 3.1—the same explanation that was presented
in Table 3.1.

We know: 4* no 15 min 180 $ π1 2* yes 45 min 50 $
4* no 45 min 50 $ π2 4* yes 15 min 100 $
4* yes 30 min 100 $ d 4* no 30 min 100 $

Hence: 4* no 45 min 180 $ N{π1 ,π2} 2* yes 45 min 100 $

Table 3.2: Presentation template for syntactic cancellative explanations. Data
is taken from Example 3.1.

In this presentation:

• each line of the premises is actually a unitary premiss, with a clear
meaning—either mentioning an axiom of the preference information, ‘you
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told me that a is preferred to b’, or stating the obvious ‘a is preferred to
b, as it is better on every aspect’;

• the lines between premises and conclusion hint at an accrual of the
atoms—pros on the left, cons on the right—into bundles;

• at the end of the premises block, it is implied that the bundle of pros
outweighs the bundle of cons;

• cancellation carves the conclusion inside these bundles, in an ‘obviously
balanced’ way, provided that it is legitimate to reason ceteris paribus.

Ceteris paribus statements. The presentation can be further simplified
by integrating first-order cancellation directly into the scheme. We allow
to provide incomplete preference statements as premises or conclusion, i.e.
preference statements where identical values of the LHS and RHS are omitted
and left blank. This use of syntactic sugar is illustrated by Table 3.3. For inline
use, we denote (x , y)N,

(x ,y)
such a partial statement, with an index precising the

‘meaningful’ points of view. Formally, such an incomplete statement represents
a set of complete statements: all possible completions with similar attributes
according to the points of view in N \ N,

(x ,y)
. When the preference relation R

is assumed to satisfy first-order cancellation,

∀x , y ∈ X, (x , y)N,
(x ,y)

⊂ R ⇐⇒ (x , y)N,
(x ,y)

∩ R , �. (3.9)

Example 3.2. The statements involved in the syntactic cancellative explana-
tion of Example 3.1 can be written as follows:

π2 ≡ ((no, 45 min, 50 $), (yes, 15 min, 100 $)){r,t ,$}

d ≡ ((yes), (no)){r}

(x , y) ≡ ((4*, no, 180 $), (2*, yes, 100 $)){∗,r,$}

We know: 4* no 15 min 180 $ π1 2* yes 45 min 50 $
no 45 min 50 $ π2 yes 15 min 100 $
yes d no

Hence: 4* no 180 $ N{π1 ,π2} 2* yes 100 $

Table 3.3: Syntactic cancellative explanation with ceteris paribus statements.
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Cancellative flavor. The syntactic cancellative explanation pattern of
length m looks a lot like the m-th order cancellation axiom (3.4). There
is, nevertheless, a key difference, with the additional option of repeating the
conclusion. This feature is unnecessary in some axiomatic settings, e.g.

• in a value model, when a statement of preference is represented by a
statement about the sign of a difference in values; or

• in a necessary and possible preference structure [Giarlotta and Greco,
2013], if we suppose that both necessary and possible preference obey
the cancellation axiom of any order: suppose we know that n repetitions
of a statement of necessary preference are true, but not the original
statement; thus, the inverse preference is possible, but in this case, the n

repetitions of this possible statement becomes possible, which contradicts
the premiss.

Nevertheless, if we want to make cancellation the sole inference engine for
necessary preference, without reference to any other axiom besides compliance
to dominance and preference information, the option of repeating the conclusion
seems required.

Conjecture 3.3. There is at least a context, with a set of criteria, alternatives,

and a preference information P so that there is a pair in NP that cannot be

explained by syntactic cancellative explanations without repetitions.

3.1.3 Elliptic cancellation

In this section, we show that dominance statements are an unnecessary burden
in the explanation, that can be alleviated by a modification of the rule governing
cancellation. As the explanations are based on an omission (an ellipsis), we
dub them elliptic cancellative explanations.

Focus on preference, not minutia. Instead of the accrual of arguments
into bundles, the syntactic cancellative scheme can be seen as:

i) setting up a status quo, i.e.

y ⊕ a(1) ⊕ · · · ⊕ a(m) ≡ b(1) ⊕ · · · ⊕ b(m) ⊕ x

ii) removal of pros on both sides—a(k) from the LHS, b(k) from the RHS—
until only y and x are left. When the value of each a(k) is known to be
greater than the value of the corresponding b(k), it follows that the value
left on the LHS, i.e. the value of y, is lesser than the value left on the
RHS, i.e. the value of x.
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The elliptic cancellative scheme we propose in this section simply replaces the
first step by allowing the initial balance of value to begin skewed in favor of
the RHS. This should only reinforce preference for x w.r.t. y, and eschews
the painful and unnecessary requirement for striking a perfect balance at the
initial step of the reasoning.

Definition 3.2 (elliptic cancellative explanation scheme). We say the tuple

〈(a(1) , b(1)), . . . , (a(m) , b(m))〉 ∈ (X ×X)m is an elliptic cancellative explanation
of length m with n repetitions of the pair (x , y) if there exists a nonnegative inte-

ger m′ and a m′-tuple of dominance statements 〈(c(1) , d(1)), . . . , (c(m
′) , d(m′))〉 ∈

Dm′
such that 〈(a(1) , b(1)), . . . , (a(m) , b(m) , (c(1) , d(1)), . . . , (c(m

′) , d(m′))〉 is a syn-

tactic cancellative explanation of length m + m′ with n repetitions of the pair

(x , y).

Example 3.3. Consider the following example, about the explanation of a
query established as positive in Section 2.3.3. Assuming the same preference
information as in Example 3.1, Equation (2.13) asserts that (hC , hA) ∈ N{π2 ,π3}.
We consider the syntactic cancellative explanation given in Table 3.4 for this
pair.

We know: no 45 min 50 $ π2 yes 15 min 100 $
2* yes 15 min π3 4* no 30 min

yes 30 min 100 $ d1 no 45 min 120 $
20 min d2 35 min

Hence: 2* yes 20 min 50 $ N{π2 ,π3} 4* no 35 min 120 $

Table 3.4: A syntactic cancellative explanation for Example 3.3.

The corresponding elliptic cancellative explanation is given in Table 3.5.

We know: no 45 min 50 $ π2 yes 15 min 100 $
2* yes 15 min π3 4* no 30 min

Hence: 2* yes 20 min 50 $ N{π2 ,π3} 4* no 35 min 120 $

Table 3.5: An elliptic cancellative explanation for Example 3.3.

The existence of an elliptic explanation is, by definition, tied to the existence
of a syntactic explanation and is therefore a proof of necessary preference
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Corollary 3.4. Given some preference information P ⊂ X2 and two alter-

natives x , y ∈ X, (x , y) ∈ NP if, and only if, there are two positive integers

m and n and a tuple of pairs of alternatives 〈(a(1) , b(1)), . . . , (a(m) , b(m))〉 ∈ Pm

forming an elliptic explanation of length m with n repetitions of the pair (x , y).

Verifying an elliptic explanation. The key idea with elliptic explanations
is that the dominance information mentioned in syntactic explanations can be
reconstructed on the fly and therefore does not need mentioning. Moreover,
the verification of an elliptic cancellative explanation can completely bypass
this reconstruction step, and be directly checked by Algorithm 3.2, a slightly
modified version of Algorithm 3.1, used for checking syntactic cancellation.
The only difference resides in the unitary check performed at the attribute
level (line 7): while syntactic explanations are assessed through a syntactic
check, elliptic explanations require a preference check, where the attributes
appearing on the LHS—the one containing x—should be considered at least
as good as the attributes appearing on the RHS—the one containing y.

Algorithm 3.2: Checking an elliptic cancellative explana-

tion

Input:

• a pair of alternatives (x , y) ∈ X2;

• a tuple of pairs of alternatives

〈(a(1) , b(1)), . . . , (a(m) , b(m))〉 ∈ (X ×X)m;

• a positive integer n.

Result: True, if the tuple 〈(a(1) , b(1)), . . . , (a(m) , b(m))〉 is an elliptic
cancellative explanation with n repetitions of the pair (x , y);
False else.

1 foreach point of view i ∈ N: do

2 create a list Li of length m + n containing the values a
(1)

i
. . . a

(m)

i
as well as n copies of yi;

3 sort Li in ascending order according to %i;

4 create a list Ri of length m + n containing the values b
(1)

i
. . . b

(m)

i
as well as n copies of xi;

5 sort Ri in ascending order according to %i;
6 foreach index k ∈ [1..m + n] do
7 if Li[k] ≺i Ri[k] then
8 return False;

9 return True.
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Theorem 3.5. Given a pair of alternatives (x , y) ∈ X2, two integers m and

n, and a tuple of pairs of alternatives 〈(a(1) , b(1)), . . . , (a(m) , b(m))〉 ∈ (X ×X)m,

verifying if 〈(a(1) , b(1)), . . . , (a(m) , b(m))〉 ∈ (X × X)m is an elliptic cancellative
explanation of length m with n repetitions of the pair (x , y) can be performed

in O(|N | · (m + n) ln(m + n)) operations by Algorithm 3.2.

The proof of this theorem considers the iterative deletion of the attributes
coming from dominance statements in the verification table. Before providing
a formalization of this idea, we illustrate this principle on an example.

Example 3.4. (Example 3.3 continued) The verification table obtained when
running Algorithm 3.1 on the syntactic cancellative explanation given in
Table 3.4 is detailed in Table 3.6.

〈Ri〉i∈N 〈Li〉i∈N

Comfort: 2* (from x) ∼∗ 2* (from π3)

4* (from π3) ∼∗ 4* (from y)

Restaurant: no (from π3) ∼r no (from π2)

no (from d1) ∼r no (from y)
yes (from π2) ∼r yes (from π3)

yes (from x) ∼r yes (from d1)

Commute time: 45 min (from d1) ∼t 45 min (from π2)

35 min (from d2) ∼t 35 min (from y)
30 min (from π3) ∼t 30 min (from d1)
20 min (from x) ∼t 20 min (from d2)
15 min (from π2) ∼t 15 min (from π3)

Cost: 120 $ (from d1) ∼$ 120 $ (from y)
100 $ (from π2) ∼$ 100 $ (from d1)
50 $ (from x) ∼$ 50 $ (from π2)

Table 3.6: Checking the syntactic cancellative explanation of Example 3.1.
Attributes of alternatives appearing in dominance statements are highlighted.

Deleting the dominance statements of the explanation from this verification
table yields Table 3.7. This is also the verification table obtained when running
Algorithm 3.2 on the elliptic cancellative explanation given in Table 3.5.

It can be observed that, while attribute values are now mismatched, the
value appearing in the right column containing x are now always at least as
strong, according to each point of view, as the one appearing in the left column
containing y.
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〈Ri〉i∈N 〈Li〉i∈N

Comfort: 2* (from x) ∼∗ 2* (from π3)

4* (from π3) ∼∗ 4* (from y)

Restaurant: no (from π3) ∼r no (from π2)

yes (from π2) ≻r no (from y)
yes (from x) ∼r yes (from π3)

Commute time: 30 min (from π3) ≻t 45 min (from π2)

20 min (from x) ≻t 35 min (from y)
15 min (from π2) ∼t 15 min (from π3)

Cost: 100 $ (from π2) ≻$ 120 $ (from y)
50 $ (from x) ∼$ 50 $ (from π2)

Table 3.7: Checking the elliptic explanation presented in Table 3.5.

Proof. The two columns of the verification table are defined as follows:

• the list Ri contains the values of the tuple ( xi , . . . , xi︸     ︷︷     ︸
n repetitions

, b
(1)

i
, . . . , b

(m)

i
)

sorted in ascending order according to %i; and

• the list Li contains the values of the tuple ( yi , . . . , yi︸     ︷︷     ︸
n repetitions

, a
(1)

i
, . . . , a

(m)

i
)

sorted in ascending order according to %i.

We prove that iteratively deleting dominance statements from a syntactic
cancellative explanation of a pair (x , y) yields a verification table where,
according to any point of view i ∈ N the column containing x is pairwise-
stronger than the column containing y. We call R

( j)

i
and L

( j)

i
the lists obtained

from Ri and Li respectively after j deletions.

i) Obviously, the lists R
( j)

i
and L

( j)

i
remain sorted.

ii) We prove by induction that, after any nonnegative number j of deletions,

R
( j)

i
[k] %i L

( j)

i
[k], ∀k ∈ [1..(m + n − j)].

• Base case: j � 0. By definition R
(0)

i
� Ri and L

(0)

i
� Li. As these

original lists are obtained from a syntactic cancellative explanation,
one is a permutation of the other. As they are sorted, they are, in
fact, identical and therefore R

(0)

i
[k] ∼i L

(0)

i
[k], ∀k ∈ [1..(m + n)].

• Inductive step: suppose that, for a given number j of deletions,

R
( j)

i
[k] %i L

( j)

i
[k], ∀k ∈ [1..(m + n − j)]. We consider the effect of the

deletion of an additional dominance statement. From the point of
view i ∈ N, this statement contributes to some value li indexed by
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kl to the list L
( j)

i
, and to some value ri indexed by kr to the list R

( j)

i
.

As we consider a dominance statement, li %i ri, and we can chose
kl ≥ kr by virtue of the lists being sorted (see i) above). The lists
obtained after deletion are given by:

L
( j+1)

i
[k] �

{
L
( j)

i
[k], if k < kl; or

L
( j)

i
[k + 1], else.

R
( j+1)

i
[k] �

{
R
( j)

i
[k], if k < kr ; or

R
( j)

i
[k + 1], else.

Therefore,

(R
( j+1)

i
[k], L

( j+1)

i
[k]) �



(R

( j)

i
[k], L

( j)

i
[k]) if k < kr

(R
( j)

i
[k + 1], L( j)

i
[k]), if kr ≤ k < kl

(R
( j)

i
[k + 1], L( j)

i
[k + 1]), if k > kl

In the second case, we note that R
( j)

i
[k + 1] %i R

( j)

i
[k] because the

list R
( j)

i
is ordered in ascending order (see i) above). Therefore, in

all three cases, (R( j+1)

i
[k], L

( j+1)

i
[k]) ∈%i by induction hypothesis.

Reciprocally, any verification table where the sorted column 〈R′
i
〉 containing

x pairwise dominates the sorted column 〈L′
i
〉 containing y can be expanded into

a full syntactic explanation, by iterating insertion operations corresponding
to dominance statements. If there is no point of view i ∈ N such that the
values of R′

i
and L′

i
differ, we have a syntactic cancellative explanation. Else,

let i ∈ N a point of view such that L′
i
, R′

i
, and k the first index where

R′
i
[k] ≻i L′

i
[k]. Then, inserting the ceteris paribus dominance statement

(R′
i
[k], L′

i
[k]){i}, everything being equal along every point of view in N \ {i},

into the explanation will insert the value R′
i
[k] into the L-column and the value

L′
i
[k] into the R-column, changing one strict comparison into two equalities, and

therefore yield an elliptic explanation with strictly less differing values between
the two sets ( yi , . . . , yi︸     ︷︷     ︸

n repetitions

, a
(1)

i
, . . . , a

(m)

i
) and ( xi , . . . , xi︸     ︷︷     ︸

n repetitions

, b
(1)

i
, . . . , b

(m)

i
). �

3.1.4 Computing cancellative explanations

This section is devoted to finding explanations for a given pair of alternatives
in the necessary preference relation. We begin by establishing a connection
between the elliptic cancellative explanation defined in the previous section
and tools presented in Chapter 2. This leads to the diagram represented
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in Figure 3.1, connecting the notion of necessary preference to its various
explanations. Then, we address the problem of finding short explanations: we
prove it is NP-complete, and we provide an elegant mixed integer programming
formulation permitting to solve it.

Necessary preference
(x , y) ∈ NP

Integer linear program
∃n ∈ N⋆, 〈ℓπ〉π∈P ∈ NP :

n (x , y)⋆ ≥
∑

(a ,b)∈P

ℓ(a ,b) (a , b)
⋆

There is a syntac-
tic cancellative ex-
planation of (x , y)

The list composed of
ℓ(a ,b) repetitions of each

pair (a , b) ∈ P is an
elliptic cancellative
explanation of (x , y)

Theorem 2.8

Theorem 3.2

Corollary 3.4

Theorem 3.6

Figure 3.1: Diagram of characterizations of necessary preference, for a pair of
alternatives that is not unbounded, with references to the properties.

The following theorem completes the diagram of Figure 3.1.

Theorem 3.6. For any pair of alternatives (x , y), for any positive integer n,

for any tuple of pairs of alternatives E, we define

P̂i :�
⋃

(a ,b)∈P

{ai} ∪
⋃

(a ,b)∈P

{bi} ∪ {xi} ∪ {yi}; (3.10)

If the pair (x , y) is not left unbounded by E, the following propositions are

equivalent:

(i) E is an elliptic cancellative explanation with n repetitions of the pair

(x , y);

(ii) for all nondecreasing value functions 〈vi〉i∈N ∈
∏

i∈N

(
(̂Pi ,%i) → (R, ≥)

)
,

n ·
∑
i∈N

(
vi(xi) − vi(yi)

)
≥

∑
i∈N

∑
(a ,b)∈E

(vi(ai) − vi(bi)) ; (3.11)

(iii) with any core containing
∏

i∈N P̂i,

n · (x , y)⋆ ≥
∑

(a ,b)∈E

(a , b)⋆;
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(iv) with any core containing
∏

i∈N

(⋃
(a ,b)∈P{ai} ∪

⋃
(a ,b)∈P{bi}

)
,

n · (x , y)⋆ ≥
∑

(a ,b)∈E

(a , b)⋆;

Proof.

• (i) ⇐⇒ (ii)
Remark that Equation (3.11) is equivalent to:

∑
i∈N

©­«
n · vi(xi) +

∑
(a ,b)∈E

vi(bi)
ª®¬
≥

∑
i∈N

©­«
n · vi(yi) +

∑
(a ,b)∈E

vi(ai)
ª®¬

(3.12)

Projection of this comparison into the double-dual of each P̂i corresponds
exactly to the preference check performed by Algorithm 3.2, and is
therefore equivalent to E being an elliptic explanation of (x , y) according
to Theorem 3.5.

• (ii) ⇐⇒ (iii)
We recall that, for any point of view i ∈ N and alternatives z1 , z2 such
that the attribute values z1

i
, z2

i
belong to the core Pi, the following

identity holds:

|Pi |−1∑
k�1

(z1 , z2)⋆i ,k ·
(
vi(p

k+1
i ) − vi(p

k
i )
)
� vi(z

1
i ) − vi(z

2
i ) (3.13)

Therefore, (iii) is merely (ii) expressed in the base
〈(

vi(p
k+1
i

) − vi(p
k
i
)
)〉

(i ,k)
.

• (iv) ⇒ (ii)
When alternatives x and y do not belong to the core, Equation (3.13) is
no longer satisfied. Because of the pessimistic rounding (as explained in

Section 6, Component 2.3.2), the linear form
∑|Pi |−1

k�1
(x , y)⋆

i ,k
·
(
vi(p

k+1
i

)

− vi(p
k
i
)
)

actually underestimates the value of vi(xi) − vi(yi).

• (iii) ⇒ (iv)
Suppose n · (x , y)⋆ ≥

∑
(a ,b)∈E(a , b)

⋆ holds on the ‘augmented’ core Pi.

Removing the value(s) of Pi ∩
(⋃

(a ,b)∈P{ai} ∪
⋃

(a ,b)∈P{bi}
)

creates a

coarser scale, where each interval of the coarse scale is represented by
a coefficient that is equal to the coefficient of some interval of the fine
scale. This property, valid as soon as the pair (x , y) is not unbounded by
the core, is illustrated by Figure 3.2. Therefore, the comparison assumed
for the fine scale transfers to the coarse scale.

�
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p1
i

p2
i

p3
i

p4
i

p5
i

0 +1 0 0

0 +1 +1 +1 0 0

Case xi ≻i yi
Point of view i
Fine scale

Coarse scale

yi xi

p1
j

p2
j

p3
j

p4
j

p5
j

0 −1 −1 0

0 −10 −1 0 0

Case xi ≻i yi
Point of view i
Fine scale

Coarse scale

y jx j

Figure 3.2: Effect of subdividing the core intervals to account for the attribute
values of x and y on the covector (x , y)⋆. Subdividing yields greater values, but
there remains an interval of the finer subdivision that has the same orientation
as the coarser interval. Cases where the attributes of x or y fall outside
the range of the core intervals, or fall inside the same core interval, are not
represented.

Interpretation. Theorem 3.6 highlights the relationship between the theo-
retical and computational aspects of ncessary preference under the assumption
of additive values, studied in Chapter 2, and their explanation. Both cancella-
tive explanation schemes introduced in this section are simply vehicles for the
fundamental relation

n · (x , y)⋆ ≥
∑

(a ,b)∈E

(a , b)⋆;

This relation makes clear the particular way of assessing trade-offs associ-
ated with the additive value model:

• points of view are assessed independently—visually, each one is associated
to an axis;

• a trade-off is represented by |N | one-dimensional vectors corresponding
to the displacement from an initial alternative to a final one;

• a trade-off is beneficial when it corresponds to an increase in value, i.e.
the final alternative is preferred to the initial one;

• each statement of the preference information is an assertion of benefit
concerning some trade-off;

• a dominance trade-off is obviously beneficial;

• Proposition (iii) asserts that, according to each point of view, n times the
displacement from y to x is, according to each point of view, at least as
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beneficial as the sum—as one-dimensional vectors—of the displacements
representing the premises;

• in addition, Proposition (iv) asserts the irrelevance of the exact position
of the endpoints of the vectors representing the displacement from y to
x.

Figure 3.3 illustrates this geometric interpretation of a cancellative expla-
nation.

Comfort

Restaurant

Commute

Cost

2* 4*

no yes

60 min 45 min 30 min 15 min

150 $ 100 $ 50 $

Premises: Conclusion:

π2

π3

leave hA

obtain hC

Figure 3.3: The elliptic cancellative explanation for Example 3.3 represented
in vector form.

Simple explanations. It seems reasonable to believe that an explanation is
easier to process by a cognitive agent—‘simpler’—when it is short. In the case
of cancellative explanations, the actual cognitive burden mainly comes from
three factors: the number of points of view |N |, that we consider as mostly
exogenous; the length m of the premises; and the number n of repetitions of
the conclusion. Without any experimental evidence, we consider the problem
of finding an explanation for a given pair (x , y) ∈ NP which is as simple as
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possible as a bi-objective integer linear minimization problem:

min
n ,m∈N⋆

(n ,m) such that




n (x , y)⋆ ≥
∑
π∈P

ℓππ
⋆; and

m ≥
∑
π∈P

ℓπ .
(3.14)

Integer linear programs offer a powerful language permitting to describe
difficult combinatorial problems. These formulations can be given wholesale to
dedicated solvers, that eschews the need for developing a dedicated piece of
software and benefits from state-of-the-art refinements in the solving of such
problems. Nevertheless, it would be unwise to delegate the search for a short
explanation of a given pair of alternatives to such a solver, if this search were
not, intrinsically, a difficult combinatorial problem. The following theorem
addresses this issue.

Theorem 3.7. The problem of deciding, for a given input (x , y , n ,m) ∈

X×X×N⋆×N⋆ if there is an elliptic cancellative explanation of the pair (x , y)

of length at most m with at most n repetitions is NP-complete.

Proof. Theorem 3.5 proves an elliptic cancellative explanation can be verified
in polynomial time. Therefore, this decision problem belongs to the class NP.

Hardness can be established e.g. by reduction from Vertex cover [Karp,
1972, Cormen et al., 2001]. Formally, a vertex cover V′ of an undirected graph
G � (V, E) is a subset of V such that uv ∈ E ⇒ u ∈ V′ ∨ v ∈ V′, that is to say
it is a set of vertices V′ where every edge has at least one endpoint in the
vertex cover V′. The Vertex cover problem consists in, given an instance
(G, k) where G � (V, E) is a graph and k a positive integer, to decide whether
G has a vertex cover of size at most k, or not. Given an instance of Vertex

cover, we map it to a gadget instance of our problem:

• the set of points of view is N � V ∪ E;

• an alternative is a subset of N;

• each point of view is evaluated on a binary scale, with presence preferred
to absence;

• we define the preference information as containing all statements of the
form ({(u , v)}, {u , v})—any edge is preferred to the set of its endpoints—
for all edges (u , v) ∈ E.

Any elliptic cancellative explanation without repetition of the pair (E,V)—the
pros are the edges, the cons are the vertices—of length k is a subset of E that
forms a vertex cover of size k of of the graph G, and reciprocally.

�
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Conclusion

We introduced the notion of cancellative explanations, based on the accrual of
premises to obtain a conclusion. We studied this explanative framework in the
light of the principles stated in Section 1.3.4.

Completeness. Every preference statement that can be skeptically inferred
from the preference information and the way of reasoning corresponding to
the additive value model is supported by a cancellative explanation.

Soundness. Every preference statement that is supported by a cancellative
explanation can be skeptically inferred from the preference information and
the way of reasoning corresponding to the additive value model;

Simplicity. We provided several ways of presenting cancellative explanations,
in the form of tables, diagrams, or argument schemes, and proposed to ground
them on a syntactic check, or alternatively to keep implicit the information
tied to dominance, which can easily be restored by the recipient, in the
spirit of enthymemes. We provided polynomial-time algorithms to verify
the explanations. We proposed a metric to evaluate the simplicity of these
explanations, and formulated the problem of finding explanations as simple as
possible.

Computation. Remarkably, while adjudicating necessary preference is a
polynomial problem, explaining it concisely is NP-complete.

3.2 Explaining via a sequence of preference swaps

One might regret the cancellative explanations detailed in Section 3.1 are not
well suited to narration. Precisely, considering a cancellative explanation with
m premises, for each point of view, the accrual of the premises is mathematically
represented by a sum of m vector coordinates. While using the vector sum as a
m-ary operator is perfectly legitimate, thanks to the associativity of the binary
sum, it might overwhelm the capacity of the recipient of the explanation to
make sense of it. Information is presented in a parallel form, which does not
correspond to a narrative structure, sequential by nature.

In this section, we explore an alternate venue, reminiscent of the even-swaps

method [Hammond et al., 1998], that aims at building a sequence of simple
arguments to support a given pairwise preference. The section unfolds as
follows: in Section 3.2.1, we recall the functioning of the even-swaps method; in
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Section 3.2.2, we detail our explanation engine; in Section 3.2.3 we question this
engine in the light of our expectations concerning the support for accountable
decision making; in Section 3.2.4 we provide positive results in the case where
we try to explain the necessary preference relation inferred from preference
information obtained on a binary core.

3.2.1 Sequences of even-swaps

The even-swaps method [Hammond et al., 1998] is an interactive and construc-
tive elicitation procedure assuming conditions close to the ones ensuring an
additive value model of preferencesd. This method aims at identifying, between
two options x and y, which one is preferred to the other, without explicitly
constructing the utility functions. This is basically an iterative elimination
process based on trade-offs between pairs of attributes (“swaps"), that can
be seen as a scattered exploration of the level set containing x of the value
function representing the preferences of the decision maker.

Starting from e(0) :� x, the aim is, at each step j, to construct an alternative
e( j+1) such that either:

a) e( j+1) ≡ y, if either (e( j) , y) ∈ D or (y , e( j)) ∈ D; or

b) e( j+1) ∼ e( j) and ∃i1 , i2 ∈ N such that ∀i ∈ N \ {i1 , i2}, e( j+1) ∼i e( j).

A method propitious to explanation. Considered through the prism of
explanation, even-swaps have several very attractive features :

• the method produces a sequence of exchanges, which is naturally suited
to being narrated;

• each exchange step between an alternative and the next in the chain is
purposely simple to grasp, as the transaction either occurs along solely
two points of view, or is a dominance statement;

• the elements referenced by the method are entirely situated inside the
decision space X; no artifact of the underlying decision model (such as
utility functions), or relations between criteria, are ever put forward;

• as opposed to the cancellative explanation schemes defined in Section 3.1,
the inference from premises to conclusion is not parallel; instead, each
explanatory step merges two premises into a conclusion that serves as a
premiss in the next explanatory step; transitivity serves as an implicit
basis for reasoning;

dMore precisely, the even-swaps method only requires solvability w.r.t. a single criterion.
A discussion on the solvability conditions ensuring an additive representation can be found
in e.g. [Gonzales, 2003].
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The chain of arguments implicitly put forward during the elicitation permitting
to adjudicate a query (x , y) ∈ X2 can be made explicit through the explanation
schemes presented in Table 3.8, for the successive indifference statements, and
Table 3.9 for the final step.

We know: • x is equally preferred to e( j); and
• e( j) is equally preferred to e( j+1).

Therefore, x is equally preferred to e( j+1).

Table 3.8: Indifference scheme for an explanation based on even-swaps.

• Case where x is preferred to y:

We know: • x is equally preferred to e( j); and
• e( j) dominates y.

Therefore, x is preferred to y.

• Case where y is preferred to x:

We know: • y dominates e( j); and
• e( j) is equally preferred to x.

Therefore, y is preferred to x.

Table 3.9: Dominance schemes for an explanation based on a sequence of
swaps.

A method based on indifference statements. At each step but the last,
the even-swaps method constructs the following alternative e( j+1) by selecting
two points of view i1 , i2 ∈ N, and an attribute level ℓ ∈ Xi2—usually ℓ ≡ yi2 ,
in order to ensure the convergence of the process—then asking to the decision
maker the following question:

“Which level of satisfaction, according to the point of view i1, would com-

pensate for a change from e
( j)

i2
to ℓ according to the point of view i2, everything

else being equal [to the situation described by e( j)]e?” Such a questioning
procedure severely limits the practicality of the even-swaps approach.

eThe part between brackets does not need to be mentioned if we assume the preferences
follow the first-order cancellation axiom (see Section 3.1.1), that allows to reason ceteris

paribus.
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• Indifference requires compensation between criteria [Krantz et al., 1971]—
the assumption that, no matter how fit an alternative is according to some
point of view, it can always be surpassed overall by improving sufficiently
according to any other single point of view, barring the possibility that
some difference in attributes on one criterion could be impossible to
compensate for.

• Indifference requires solvability of the attribute scales [Krantz et al.,
1971]—the assumption that, when two alternatives that are similar
according to all points of view but one compare differently to a same
third one, there is a satisfaction level of this particular criterion in between
that permits to strike indifference with the third alternative. Solvability
naturally occurs on continuous scales but rarely between discrete ones.

• Indifference imposes a high cognitive workload on the decision maker, as
it repeatedly requires the procurement of a very precise information.

• Indifference is hardly a robust notion, especially in the context of incom-
plete preferencesf.

Consequently, in the next section, we propose a generalization of even-swaps
that avoids these issues, while retaining their simplicity and being well suited
to the context of incomplete preference.

Swaps as trade-offs. The active elicitation of an additive value model in
multiple criteria decision aiding is not the only domain where the notion of
swap is used. For instance, in Software Engineering, the Architecture Tradeoff
Analysis Method (ATAM) is used in order to assess software architectures
according to “quality attribute goals” [Kazman et al., 2000]. A trade-off point

is an architecture parameter affecting at least two quality attributes in different
directions. For example, increasing the speed of the communication channel
improves throughput in the system but reduces its reliability. Thus the speed
of that channel is a trade-off point. The concept of trade-off point in ATAM
makes explicit the interdependencies between attributes. Even though trade-
offs can be defined for any number of attributes, the examples of trade-offs
that are provided by experts are almost always given on pairs of attributes.
This is the case of the example provided above.

fWe note that [Mustakoji and Hamalainen, 2005, Mustakoji and Hamalainen, 2007] also
propose to enrich the original even swaps method in a way that accounts for incomplete
knowledge about the value function. They consider a "practical dominance" notion when
the value of an alternative is at least as high as the value of another one with every feasible
combination of parameters, this perspective being very close to the one developed in [[Greco
et al., 2008]. However, this notion is only used for pre-processing dominated alternatives,
and not integrated in the swap process, let alone used for explanatory purposes.
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3.2.2 Explaining with a sequence of preference-swaps

We introduce the notion of preference-swaps, as a tool for the explanation of a
binary relation R ⊆ X2 satisfying:

i) Pareto: D ⊆ R;

ii) transitivity; and

iii) optionally, first-order cancellation.

Obviously, these requirements are fulfilled by any preference relation supported
by an additive value model, and also, given some preference information P ⊂ X2

by the necessary preference relation assuming an additive value model NP .
In preference swaps, compared to even-swaps [Hammond et al., 1998], we

relax both the notion of indifference between consecutive alternatives in the
sequence e(0) :� x , e(1) , . . . , e(n) :� y and the notion of elementary swap:

• Indifference is replaced by an assumption of (weak) preference :

(e( j−1) , e( j)) ∈ R.

• In the context of explanation, we propose to use the syntactic complexity
of a pair (x , y) ∈ X2—its order—as a proxy for the cognitive complexity
of evaluating the acceptability of the transaction of giving y to obtain x.
Dominance relations are deemed to be simple, and are given the lowest
order. For relations requiring trade-offs between criteria, we define the
order of a swap as the number of differing attributes between the two
alternatives. This assumption is all the more reasonable as the preference
relation R has the property of first-order cancellation, which allows to
omit the shared attributes in any statement.

Definition 3.3 (preference swaps of order k). Given a binary relation R on

X satisfying Pareto, for all positive integer k, the set of preference-swaps of

order k is the binary relation Rk ⊆ X ×X defined by:

R(k) :�

{
D , if k � 1;

{(x , y) ∈ R \ D , |N,
(x ,y)

| � k}, if k > 1.
(3.15)

This definition permits to break down the relation R into layers of inherent
syntactic complexity: R �

⋃
1≤k≤|N | R

(k).
We can now define the notion of explanation by a sequence of preference

swaps. This type of explanation breaks down a single preference statement
(x , y) ∈ R that the decision maker needs to understand into a sequence of
several preference statements (e( j−1) , e( j)) ∈ R. The idea is that the initial
preference (x , y) is complex to understand as the values of x and y differ on
most (if not all) attributes, whereas each intermediate comparison (e( j−1) , e( j))
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is much easier to understand as it involves alternatives differing according to
only a few points of view.

Definition 3.4 (Explanation by preference swaps, order and length).
∀(x , y) ∈ X2 , n ∈ N, an explanation of length n of the pair (x , y) for the

relation R is a tuple (e(0) , e(1) , . . . , e(n)) ∈ Xn+1 such that e(0) � x , e(n) � y and

∀ j ∈ N : 1 ≤ j ≤ n , (e( j−1) , e( j)) ∈ R. The order of such explanation is the

integer k̂ � max{k ∈ N : ∃( j ∈ N : 1 ≤ j ≤ n) , (e( j−1) , e( j)) ∈ R(k)}.

3.2.3 Properties of the preference-swaps explanation engine

In this section, we are interested in qualifying the soundness and completeness
of the system of explanations based on preference swaps, as well as the simplicity
of its artifacts.

Soundness. When R is transitive, an explanation of a pair of alternatives
is a proof that this pair belongs to R. Hence, explanations via sequences of
preference swaps form a sound explanatory system.

Finding a balance between completeness and simplicity. One can
note that somehow we have two elements to appreciate the quality of the
explanation. First, the number of comparisons (swaps) used to construct such
an explanation. Second, its complexity which is defined by the most complex
or difficult swap (with the highest order).

However, an important question regarding a pair (x , y) ∈ X2 is whether
it is possible to find an explanation by preference-swaps of the pair (x , y).
The answer obviously depends on the bound, if any, placed upon the order
of the swaps linking the explanation chain, or the length of the explanation
chain. We address this issue by first putting a cap on the order (the order of
an explanation being the order of its most difficult link), then looking for the
possibility of finding an explanation subject to this order constraint. Then, if
explanations are available, we look for short ones.

Definition 3.5 (pairs explainable by low-order preference swaps). For any

positive integer k, Ek(R) is the set of pairs (x , y) ∈ X2 for which there exists

an explanation with a sequence of any length of preference swaps of order at

most k.

There is a trade-off between the value of the cap placed upon the order of
explanations and the set of pairs we are able to explain.
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Theorem 3.8.

D � E1(R) ⊆ E2(R) ⊆ · · · ⊆ Ek(R) ⊆ · · · ⊆ E |N |(R) � R

We interpret this nesting as a hierarchy of complexity inside the relation
R, that goes beyond the mere syntactic complexity directly measured by the
order.

Proof.

• for any (x , y) ∈ E1(R), there is a tuple (e(0) , e(1) , . . . , e(n)) ∈ Xn such that
e0

� x , e(n) � y and ∀ j ∈ N : 1 ≤ j ≤ n , (e( j−1) , e( j)) ∈ D. As relation
D is transitive, (x , y) ∈ D, hence D ⊇ E1(R). Conversely, the sequence
(e(0) :� x , e(1) :� y) is an explanation of length one and of order one of
any pair (x , y) ∈ D , hence D ⊆ E1(R). Finally, D � E1(R);

• for k′ ≥ k, an explanation of order at most k is also an explanation of
order at most k′, so Ek(R) ⊆ Ek′(R);

• the sequence (e(0) :� x , e(1) :� y) is an explanation of length one and
of order |N,

(x ,y)
| of any pair (x , y) ∈ R. As |N,

(x ,y)
| ≤ |N |, R ⊆ E |N |(R).

Conversely, an explanation (of any order and any length) of a pair (x , y)

is a proof by transitivity of (x , y) ∈ R, thus R ⊇ E |N |(R). Finally,
R � E |N |(R)

�

Computational aspects. When a cap kmax is placed upon the order of
acceptable swaps, the problems of checking the explainability of a given
statement (x , y) ∈ R and, if positive, of finding the shortest explanation, can
be formally described using the directed graph G :� (X,

⋃
1≤k≤kmax

R(k)).

• Checking explainability: The pair (x , y) belongs to Ekmax
(R) if, and only

if, there is an explanation of the pair (x , y) via a sequence of preference
swaps of order at most kmax if, and only if, the vertices x and y are
connected in the graph G.

• Computing the simplest explanation: if x and y are connected in G, the
shortest explanation for the pair (x , y) is the shortest path between x

and y in G. Thus, the length of a shortest explanation is bounded by
the diameter of G.

Of course, there are efficient algorithms in order to decide if a graph is connected
or not [Even and Tarjan, 1975], to compute the shortest path between two
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vertices of a graph, or to compute the diameter of a graph [Aingworth et al.,
1996]. However, it may be challenging to use them with regard to the size—
possibly infinite, and, when finite, exponential in the number of criteria—of
the graph G.

Existence of arbitrarily long shortest explanations. Keeping the ex-
planation short has a great bearing on its ability to convince. Even if each
elementary comparison (e( j−1) , e( j)) ∈ R is trivial for the decision maker, the
overall sequence (x , e(1) , . . . , e(n−1) , y) cannot be seen as a convincing explana-
tion if it is too long. One then looks for the shortest possible explanations,
and hope for an upper bound on this minimal size. Unfortunately, as soon as
there are three criteria measured on infinite scales, this diameter has no upper
bound, as expressed by the following theorem.

Theorem 3.9. For any integer p, if there is a subset A ⊆ N : |A| � 3 and

∀i ∈ A, |Xi | ≥ p, then there is a relation R satisfying Pareto, transitivity and

first-order cancellation, and a pair (x , y) ∈ R(3) such that (x , y) ∈ E2(R) and

any explanation of (x , y) by preference swaps of order at most 2 has a length

greater than 2p.

Proof. The proof requires instantiating the relation R, and is presented in
Appendix A. We make use of the necessary preference relation under the
assumption of additive values, for some carefully built preference information.

�

3.2.4 Results in the case of a binary core

This section is devoted to the presentation of positive results concerning the
use of the explanation engine powered by preference-swaps, under specific
assumptions:

1. the relation to be explained is the necessary preference relation, assuming
additive values;

2. the preference information only reference two levels according to each
point of view;

3. the explanations are limited to chaining preference-swaps of order at
most two, i.e. dominance statements and trade-offs along two points of
view.

To account for the core composed of binary scales, we define:

∀i ∈ N, Bi :� {⊤i ≻i ⊥i}, B :�
∏
i∈N

Bi (3.16)
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The restriction to binary scales allows us to introduce a simpler notation
for preference, in terms of positive or negative arguments:

Definition 3.6 (pros and cons of a necessary preference statement). If P ⊂

B2 , ∀(x , y) ∈ NP ,

(x , y)+ :� {i ∈ N : (x , y)⋆
(i ,1)

� +1} � {i ∈ N : yi -i ⊥i ≺i ⊤i -i xi}

(x , y)− :� {i ∈ N : (x , y)⋆
(i ,1)

� −1} � {i ∈ N : ⊥i -i xi ≺i yi -i ⊤i}

Example 3.5 (Example 3.3 continued). We are still interested in comparing
hotels according to the points of view of comfort, the presence of a restaurant,
the commute time to the city center, and the cost. We consider the binary
core described by Table 3.10.

i Point of view ⊥i ⊤i

* Cost 2* 4*
r Restaurant no yes
t Commute 40 min 20 min
$ Cost 100 $ 50 $

Table 3.10: Binary core attribute values.

ρ1 :�((⊤∗ ,⊥r ,⊤t ,⊥$), (⊥∗ ,⊤r ,⊥t ,⊤$)), so ρ+1 � {∗, t} and ρ−1 � {r, $};
ρ2 :�((⊥∗ ,⊥r ,⊥t ,⊤$), (⊥∗ ,⊤r ,⊤t ,⊥$)), so ρ+2 � {$} and ρ−2 � {r, t};
ρ3 :�((⊥∗ ,⊤r ,⊤t ,⊤$), (⊤∗ ,⊥r ,⊥t ,⊤$)), so ρ+3 � {r, t} and ρ−3 � {∗}.

We note that:

• ρ1 is weaker than π1;

• ρ2 and π2 are two different completions of the same ceteris paribus
statement;

• ρ3 is weaker than π3.

Thus, we expect N{ρ1 ,ρ2 ,ρ3} ⊂ N{π1 ,π2 ,π3}.

Structure of an explanation We are interested in characterizing E2(NP)

when P ⊂ B2. Assuming binary reference scales, the relation N
(2)

P
⊂ X2

between alternatives induces a relation between points of view Ñ
(2)

P
⊂ N2:

when, everything else being equal, being ‘good’ according to some point of view
i and ‘bad’ according to another point of view i′ is preferred to the converse,
we add the edge (i , i′) to the graph of the relation Ñ

(2)

P
.
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Definition 3.7 (swaps between points of view). If P ⊂ B2 ,

Ñ
(2)

P
:� {(i , i′) ∈ N2 : i , i′ and ((⊤i ,⊥i′), (⊥i ,⊤i′)){i ,i′} ⊂ N

(2)

P
}

We note that building the graph of Ñ
(2)

P
is polynomial time w.r.t. the

number of points of view |N | and the number of statements in P, as there
are |N |2 potential edges, each requiring to solve a linear program in |N |

dimensions with |P| constraints (see Theorem 2.8, characterization n◦3 of
necessary preference).

Example 3.6 (Example 3.5 continued). Assuming additive values, the nec-
essary preference relation deduced from the preference information given in
Example 3.5 induces the following criteria swaps:

Ñ
(2)

P
� {(∗, r), (t , r), ($, ∗), ($, r), ($, t)}

.
The graph of this relation is represented on Figure 3.4. The nodes are

labeled so as to make explicit the semantic of each edge.

Cost:
100 $ → 50 $

Comfort:
2* → 4*

Commute:
40 min → 20 min

Restaurant:
no → yes

Figure 3.4: Binary relation between criteria.

For instance, the compact criteria swap statement ($, r), represented by
the arrow from $ to r, indicates ((no, 50 $), (yes, 100 $)){r,$} ⊂ N{ρ1 ,ρ2 ,ρ3}, i.e.
everything else being equal, the decision maker prefers a cheap hotel without a
restaurant than an expensive hotel with a restaurant. It can also be interpreted
in terms of intensity of preferenceg: the preference for a reduction in cost from

gThe quaternary relation between alternatives at the heart of the notion of intensity of

preference is discussed in [Bouyssou and Pirlot, 2004, Bana e Costa and Vansnick, 1994, Bana
e Costa and Vansnick, 1995]. [Figueira et al., 2009] proposes a framework for the robust
elicitation of an additive value model where preference information can be given in the form
of intensity of preference statements.

99



Part I. Comparing with an additive model

100 $ to 50 $ is more intense than the preference for an amelioration from the
point of view of the presence of a restaurant.

We emphasize though that this relation is not suitable to being presented
directly as an explanation. This graph could easily be interpreted erroneously
as a relation of comparative importance between points of view, regardless of
the attribute values. While this notion is relevant for some preference models,
such as those based on a lexicographical order of the points of view [Fishburn,
1976, Wilson and George, 2017], it would be fallacious here. In our additive
context, each edge of the graph corresponds to a speech act and to a potential
transition e( j) → e( j+1) in an explanation via a sequence of preference-swapsh.
Also, the acts represented by the edges of the graph are atomic, because the
core is binary, there is no point in considering intermediate values, i.e. splitting
an edge. Because we restrict ourselves to preference swaps of order at most
two, there is also no point in considering relations between the nodes of the
graph with an arity greater than two. The following theorem reveals how the
graph of Ñ (2)

P
permits to decide on the explainability of a pair of alternatives,

to build an explanation when it is possible, and highlights the structure of
explanations.

Theorem 3.10 (Term by term explanation).
If P ⊂ B2 , ∀σ ∈ NP, the following propositions are equivalent :

1. Explainability with a sequence of preference swaps of order at most two:

σ ∈ E2(NP)

2. Integral combination of statements:

∃a ∈ N⋆, γ1 , · · · , γq ∈ Ñ
(2)

P
, ℓ1 , · · · , ℓq ∈ N,m1 , · · · ,mn ∈ N :

aσ⋆ �

∑
k

ℓkγ
⋆
k +

∑
k

mkδ
⋆
(k ,1)

3. Reduction to Maximum bipartite matching:

There is a matching of cardinality |σ− | in the graph of Ñ
(2)

P
∩ (σ+ × σ−).

4. Term-by-term explanation:

There is an injection φ : σ− → σ+ such that ∀k ∈ σ− , (φ(k), k) ∈ Ñ
(2)

P
.

Proof. See Appendix A. �

hThis contrasts with the usual abstract argument framework [Dung, 1995], where the
arguments are the nodes of a graph and can be involved in several attacks simultaneously.
In such an abstract framework, there is no notion of state space and current state, whereas
these notions are crucial for explanations based on a sequence of alternatives.

100



Chapter 3. Explanations

In a nutshell, an explanation is a sequence where, at each step, a positive
argument is used up to cancel an inferior negative argument, and, eventually,
every negative argument has been cancelled. We highlight three consequences
of this theorem.

Completeness: If the preference information only refers to swaps of order

two, then every necessary preference statement can be explained by swaps of

order at most two.

Corollary 3.11 (case of 2-order preference statements). If P ⊂ B2 , and

∀π ∈ P , |N,π | � 2 then NP � E2(NP).

Proof. By theorem 3.8, E2(NP) ⊂ NP . Reciprocally, if (x , y) ∈ NP , the
implication 1.⇒ 4. of theorem 2.8 ensures the existence of a linear combination
with integral, non-negative coefficients n(x , y)⋆ �

∑
π∈P

ℓππ
⋆
+

∑
(i ,k)∈I

m(i ,k)δ
⋆
(i ,k)

.

The assumption that ∀π ∈ P , |N,π | � 2 entails P ⊂ Ñ
(2)

P
, so this linear

combination satisfies proposition 2 of theorem 3.10, thus (x , y) ∈ E2(NP) by
proposition 1. �

Simplicity: Explanations can be kept short.

The next corollary states that, in the favorable case of preference information
expressed on a binary core, the length of an explanation by a sequence of
preference swaps of order at most two is at most “half the number of points of
view, rounded down, plus one”, which appears manageable for the recipient of
explanation.

Corollary 3.12 (short explanations). If P ⊂ B2, for any statement (x , y) ∈

E2(NP), there exists an explanation with a length at most ⌊
|N |
2 ⌋ + 1, where ⌊m⌋

denotes the integer part of m.

The bound ⌊
|N |
2 ⌋ + 1 basically come from the fact that |(x , y)− | ≤ ⌊

|N |
2 ⌋,

which follows directly from the characterization n◦4 of Theorem 3.10. The
main asset of this theorem is that it is constructive. The explanation sequence
will be provided in the next section.

Computation: Building an explanation, or ensuring there is none, is han-

dled by an efficient algorithm.

Indeed, it boils down to building the bipartite graph of the relation Ñ
(2)

P
∩

(σ+ × σ−), then solve the polynomial-time Maximum bipartite matching

problem on this instance. If the matching returned has cardinality |σ− |, it can
be interpreted in the sense of a term-by-term explanation, where every point
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of view against preference is counterbalanced by a point of view in favor of
preference. We emphasize that in this context, arguments, carried by edges,
are one-shot—the same argument is never used twice.

Example 3.7 (Example 3.6 continued). We consider the preference informa-
tion {ρ1 , ρ2 , ρ3}, and we look for explanations for preference statements:

• Explain why (2*, no, 20 min, 50 $) should be preferred to (4*, yes, 40 min,
120 $)?

Denoting σ :� ((2*, no, 20 min, 50 $), (4*, yes, 40 min, 120 $)) we have
σ+ � {t , $} and σ− � {∗, r}.

Figure 3.5 represents the graph of the relation Ñ
(2)

{ρ1 ,ρ2 ,ρ3}
∩ (σ+ × σ−),

and highlights a matching of cardinality two in this graph: φ−1
σ �

{($, ∗), (t , r)}.

Cost:
100 $ → 50 $

Comfort:
2* → 4*

Commute:
40 min → 20 min

Restaurant:
no → yes

Figure 3.5: Matching cons (in solid orange boxes) with stronger pros (in green
frames).

This matching can be interpreted according to the following explanation:

($, *): “The gain in cost (from 100 $ to 50 $) is preferable to the loss

in comfort (from 4* to 2*)” ;

(t, r): “The gain in commute time (from 40 min to 20 min) is preferable

to the loss of a restaurant”.

This explanation is parallel by nature: the two lines of argumentation do
not interfere, as they concern disjoint sets of points of view. They can
therefore be presented in any order. Each possible permutation leads to
a different sequence of preference-swaps:

– either ((2*, no, 20 min, 50 $)
($,∗)
−−−→ (4*, no, 20 min, 120 $)

(t ,r)
−−−→ (4*,

yes, 40 min, 120 $));
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– or ((2*, no, 20 min, 50 $)
(t ,r)
−−−→ (2*, yes, 40 min, 50 $)

($,∗)
−−−→ (4*, yes,

40 min, 120 $)).

• Explain why (3*, no, 20 min, 50 $) should be preferred to (3*, yes, 40 min,
120 $)?
Actually, this statement is true, because it corresponds to the preference
information conveyed by ρ2, strengthened by dominance. Nevertheless,
this statement cannot be supported by a sequence of preference-swaps of
order at most two, because it is solely supported along the point of view
of cost, that can not simultaneously match the disadvantages from the
points of view of the presence of a restaurant and the commute time.
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Foreword

We give a brief definition of the topics discussed in this Part—sorting problems
and noncompensatory preference models—and a correspondingly brief sample
of decision aiding situations where they can be relevant. We give an overview
of the contents of each chapter, and list the published papers of this author
that serve as a basis for this text.

Sorting into ordered categories

Throughout this part, we focus on sorting problems, where we are interested
on adjudicating the absolute fitness of any alternative, described according to
conflicting points of view, on the basis of its own merits. The outcome of this
adjudication is a category, where:

• the number of categories is finite—say p;

• the categories are known in advance: {C1 , . . . , Cp}, as opposed to clus-
tering problems where categories emerge from data;

• categories are ordered by level of requirement: {C1 ≺ · · · ≺ Cp}, corre-
sponding to the aggregated preference.

Noncompensatory models of preferences

In this part we assume that preferences are expressed through a noncom-

pensatory filter. For models interested in the comparative assessment of
alternatives, [Fishburn, 1976] proposes a filter that solely encodes the nature
of the points of view according to which an alternative is preferred to another;
[Bouyssou, 1986] proposes to relax this assumption to account for possible
discordance effects, where a very large difference in fitness according to a point
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of view has a ‘veto’ effect and weakens a strict preference into an indifference
judgment. For models yielding an absolute evaluation of alternatives, e.g.
value models in general, or models specifically tailored for sorting, the lack
of compensation is reflected by a cardinality restriction on the codomains
of the marginal value functions. In the strictest acceptation, [Bouyssou and
Marchant, 2007a, Bouyssou and Marchant, 2007b] requires that, for each level
of requirement, each point of view is expressed and accounted for through a
binary language: an alternative is either worthy, or not, barring the possibility
of compensating e.g. unworthy attributes with ‘very worthy’ ones.

Applications of Noncompensatory sorting

While the assumption of an absence of compensation may appear drastic,
simplistic or abusive, there are many real-life decision situations that are well
addressed by this model.

Binary preferences

• Intrinsically binary values: in some situations, a point of view may be
naturally measured by a 2-valued criterion: given a system, a spare
part—a motherboard for a computer, a tyre for a car, a kidney for a
transplant—is either compatible, or nota.

• Approximation of value: 2-valued criteria may offer a passable approxi-
mation of a sigmoid fitness.

Binary representations. Noncompensation can be intrinsically tied to
preference, but can also stem from its chosen representation.

• Organizational constraint: For instance, in voting context, it is customary
to limit the expressiveness of a ballot, sometimes down to a single bit
per alternative such as in a referendum or in approval voting [Laslier and
Sanver, 2010]. We can think this limitation as favoring clarity—of the
stakes of the vote as well as of the adjudication process.

• Interpretability: In some Machine Learning applications, especially for
the medical domain [Sokolovska et al., 2017], models are constrained
in their language in order to be readable and computable by humans,
without any assisting device. This built-in demand leads de facto to
noncompensatory models.

athis is obviously a simplification of reality
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Reference levels. Noncompensatory models for sorting are intrinsically
tied to the notion of reference levels: levels of attributes between between
which the model is blind to difference in fitness, because of the re-encoding
of the scales. These levels offer a metaphor that can serve as a useful base
for interaction during a decision aiding process, leveraged in e.g. the Electre
method [Roy, 1991], or in the domain specification engineering: in order
to assess candidate technological solutions to a given problem, it might be
appropriate to compare them, on every aspect, to the existing situation, or to
an explicit target. Reference level may also serve in a descriptive approach: see
e.g. the Reference-Dependent Theory [Tversky and Kahneman, 1991], where a
single level describes the perceived current situation and serves as a reference
for assessing changes.

Research questions

This part is devoted to address the following issue with the state of the art
concerning the use of noncompensatory models for decision aiding situations
modeled after a sorting problem:

Research question II.1. Many sorting models are based on a noncompen-

satory description of preference. How do these approaches relate to each other,

or differ from each other?

Research question II.2. Until now, indirect approaches to the elicitation of

noncompensatory sorting models based on mathematical programming suffer

from poor computational efficiency, that restrict them to solving toy instances.

Is it possible to do better?

Research question II.3. How an efficient solver dedicated to the feasibility

of the inverse noncompensatory sorting problem can be called upon and built

around in order to enhance the accountability of decision aiding processes?

Chapters

The chapters composing this part address the research questions related to
noncompensatory sorting in an array of manners:

• Chapter 4 proposes an answer to the Question II.1, by installing the
noncompensatory sorting model (NCS) by [Bouyssou and Marchant,
2007a, Bouyssou and Marchant, 2007b] in a central role. The chapter
illustrates the functioning of this model on a working example, proposes
a taxonomy of variants found in the literature, and highlights some
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shortcomings of the state of the art concerning the elicitation of its
parameter.

• Chapter 5 is deliberately dry and technical, and devoted to the formal
aspects of solving the inverse NCS problem (Inv-NCS), consisting in
deciding whether a given assignment of reference alternatives to ordered
categories can be represented in the noncompensatory sorting model
and, in such a case, finding adequate parameters of the model. It
partly addresses Question II.2 by exploring an alternate approach to
this problem and providing two Boolean satisfiability formulations for
Inv-NCS.

• Chapter 6 details some experimental studies aimed at assessing the
viability of the formulations detailed in the previous chapter, compared
to the state-of-the-art elicitation methods for noncompensatory sorting
based on mixed integer programming. The results obtained contribute
to address Question II.2.

• Chapter 7 proposes some clues regarding the manners to put the Inv-NCS
machinery to use in decision aiding contexts, with demands in terms of
accountability. It therefore addresses Question II.3.

Featured contributions

This part results from the augmentation, harmonization, and the putting into
perspective of several published work by this author and others:

• [Belahcene et al., 2018c] introduces the first formulation presented in
Chapter 5, and the corresponding experimental study presented in Chap-
ter 6;

• [Belahcene et al., 2018a] introduces the second formulation presented in
Chapter 5, and sets up some of the issues discussed in Chapter 7;

See also

Of course, the action of answering questions entails the asking of new ones.
The research agenda for this part is already dense. In order to provide the
reader with a fairly streamlined narration, we omitted to provide additional
contributions, that we judged too tangential, or requiring further development,
to get incorporated to the main material. This supplementary material appears
in the appendices at the end of the book. We give here a brief overview of
their content.
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Noncompensatory sorting without frontiers

Additional research question II.4. The noncompensatory sorting model

NCS is based on limiting profiles. Is it possible to circumvent this notion?

This question has already received attention, in e.g. [Fishburn, 1976]. We
detail an attempt at proposing a model for noncompensatory sorting based on
comparative judgments in Appendix B, reproducing [Belahcene et al., 2017b].

Comparing the SAT formulations for Inv-NCS

Additional research question II.5. Chapter 5 details two formulations

based on Boolean satisfiability in order to solve the inverse noncompensatory

sorting problem, but Chapter 6 only investigates the performance of one of

them. How does the pairwise formulation behave experimentally? How do the

two formulations compare to each other?

[Belahcene et al., 2018b] addresses this issue, and is reproduced in Ap-
pendix C.

A SAT formulation for noncompensatory ranking with RMP

Additional research question II.6. The noncompensatory approach to

modeling preference is not reserved to sorting problems. Indeed, the ranking
with multiple reference points model (RMP) applies the same notions to ranking

problems, where preference is binary by nature. Could the contributions to

the description of the inverse problem for NCS, using Boolean satisfiability

formulations, be transposed, mutatis mutandis, to RMP?

[Belahcene et al., 2018d] explores this venues, with promising results
reproduced in Appendix D.
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4

The noncompensatory sorting

model

4.1 The noncompensatory sorting model (NCS)

This section is devoted to the presentation of the noncompensatory sorting
model, introduced in [Bouyssou and Marchant, 2007a, Bouyssou and Marchant,
2007b]. Following the authors, Section 4.1.1 introduces the case of two cat-
egories separated by a single boundary profile, and Section 4.1.2 formally
addresses the general case, with any number of categories. Section 4.1.3 offers
a straightforward interpretation of a specific aggregation procedure following
the noncompensatory sorting model, with a simple semantic for the parameters.
It also proposes some insight about the requirements made on the parameters.
Section 4.2 proposes a working example, that can serve as a tutorial for decision
aiding with this model. Section 4.3 tries to situate the NCS model on the
atlas of sorting models, identifying meaningful variants and establishing some
relations with other identified models.

4.1.1 Sorting with a single profile.

In the noncompensatory sorting model NCS, profiles define the boundaries
between categories. Therefore, a single profile corresponds to the case where
alternatives are sorted between two ordered categories that we label, without
loss of generality as Good and Bad. A specific aggregation procedure is
described by a pair of parameters:
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• a limiting profile b ≡ 〈bi〉i∈N that defines, according to each point of view
i ∈ N, an upper set Ai of approved values at least as good as bi (and, by
contrast, a lower set X \Ai of disapproved values strictly worse than bi);
and

• a set T of sufficient coalitions of points of view, required to be an upset
of the power set of the points of view.

These notions are combined into the following assignment rule:

∀x ∈ X, x ∈ Good ⇐⇒ {i ∈ N : x %i b} ∈ T

An alternative is considered as Good if, and only if, it is better than the
limiting profile b according to a sufficient coalition of points of view.

4.1.2 Sorting into multiple categories

With p categories, the parameter space is extended accordingly, with approved
sets 〈Ak

i
〉i∈N, k∈[2..p] and sufficient coalitions 〈T k〉k∈[2..p] declined per boundary.

The ordering of the categories {C1 ≺ · · · ≺ Cp} translates into a nesting of the
sufficient coalitions:

∀k ∈ [2..p], T k is an upset of (2N , ⊆) and T 2 ⊇ · · · ⊇ T p (4.1)

and also a nesting of the approved sets:

∀i ∈ N, ∀k ∈ [2..p], Ak
i is an upset of (Xi ,-i) and A2

i ⊇ · · · ⊇ A
p

i
(4.2)

These tuples of parameters are augmented on both ends with trivial values:

T 1 :� P(N), Tp+1 :� �, ∀i ∈ N, A1
i � X, A

p+1

i
� �, (4.3)

With ω :� (〈 Ak
i
〉i∈N, k∈[2..p], 〈 T k 〉k∈[2..p]), [Bouyssou and Marchant, 2007b]

define the sorting function NCSω from X to {C1 ≺ · · · ≺ Cp} with the
noncompensatory sorting rule:

NCSω(x) � Ck ⇐⇒

{
{i ∈ N : x ∈ Ak

i
} ∈ T k

and {i ∈ N : x ∈ Ak+1
i

} < T k+1.
(4.4)

4.1.3 Interpretation of the aggregation procedure

The generic model, with p categories, is a bit less straightforward to interpret
than the model with two categories and a single profile. We propose the
following narrative interpretation:
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• at each level of requirement k ∈ [1..p], an alternative is deemed good
enough if, and only if, it is approved at exigence level k for a coalition of
points of view that is sufficient at the level of requirement k;

• at a given level of requirement, the judgment according each point of
view is 2-valued. Extremely bad and mildly bad values are treated
the same, and so are extremely good values w.r.t. mildly good values,
barring compensatory trade-offs—situations where excellence according
to a single point of view, as opposed to mere fitness, would be allowed to
trump slight mediocrity according to several points of view;

• the nesting of the approved sets and sufficient coalitions means that
approval becomes more stringent the higher the level of requirement
goes. Particularly, it prevents judgment reversals—situation where an
alternative could be considered good enough at some level k but not at
some lower level k′ < k—and allows the p − 1 queries 〈 ‘is the candidate
good enough at level k’〉k∈[1..p−1] to be adjudicated in any order without
modifying the final assignment of the candidatea. Indeed, a stronger
form of the noncompensatory sorting rule can be given:

NCSω(x) � Ck ⇐⇒

{
∀k′ ≤ k , {i ∈ N : x ∈ Ak′

i
} ∈ T k′; and

∀k′ > k , {i ∈ N : x ∈ Ak′

i
} < T k′ .

(4.5)

4.2 A working example

Terry is a journalist and prepares a car review for a special issue. He considers
a number of popular car models, and wants to sort them in order to present a
sample of cars “selected for you by the editorial board” to the readers.

This selection is based on 4 criteria : cost (measured in dollars), acceleration
(measured by the time, in seconds, to reach 100 km/h from full stop – lower
is better), braking power and road holding, both measured on a qualitative
scale ranging from 1 (lowest performance) to 4 (best performance). The
performances of six models are described in Table 4.1.

In order to assign these models to a class among C1⋆ (average) ≺ C2⋆

(good) ≺ C3⋆ (excellent), Terry considers an NCS model:

• The attributes of each model are sorted between average (⋆/ �), good
(⋆⋆/ � ) and excellent (⋆⋆⋆/ � ) by comparison to the profiles given
in Table 4.2. The resulting labeling of the six alternatives according to
each criterion is depicted in Figure 4.1 and Table 4.3.

aThis situation should be put in perspective with the fixed order in which the reference
points are examined in the RMP model.

115



Part II. Sorting with a Noncompensatory model

car model cost acceleration braking road holding

m1 16 973 29 2.66 2.5
m2 18 342 30.7 2.33 3
m3 15 335 30.2 2 2.5
m4 18 971 28 2.33 2
m5 17 537 28.3 2.33 2.75
m6 15 131 29.7 1.66 1.75

Table 4.1: Performance table.

profile cost acceleration braking road holding

b1⋆ 17 250 30 2.2 1.9
b2⋆ 15 500 28.8 2.5 2.6

Table 4.2: Limiting profiles.

⋆ ⋆⋆ ⋆⋆⋆
b1⋆ b2⋆

m1m2 m3m4 m5 m6

cost

⋆ ⋆⋆ ⋆⋆⋆
b1⋆ b2⋆

m1m2 m3 m4m5m6

acceleration

⋆ ⋆⋆ ⋆⋆⋆
b1⋆ b2⋆

m1m3 m4,
m5, m2

m6

braking

⋆ ⋆⋆ ⋆⋆⋆
b1⋆ b2⋆

m1

m3

m2m4 m5m6

road holding

Figure 4.1: Representation of performances w.r.t. category limits.

• These appreciations are then aggregated by the following rule: an alter-

native is categorized good or excellent if it is good or excellent on cost or

acceleration, and good or excellent on braking or road holding. It is cate-

gorized excellent if it is excellent on cost or acceleration, and excellent on
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model cost acceleration braking road holding

m1 ⋆⋆ ⋆⋆ ⋆⋆⋆ ⋆⋆
m2 ⋆ ⋆ ⋆⋆ ⋆⋆⋆
m3 ⋆⋆⋆ ⋆ ⋆ ⋆⋆
m4 ⋆ ⋆⋆⋆ ⋆⋆ ⋆⋆
m5 ⋆ ⋆⋆⋆ ⋆⋆ ⋆⋆⋆
m6 ⋆⋆⋆ ⋆⋆ ⋆ ⋆

Table 4.3: Categorization of performances.

braking or road holding. Being excellent on some criterion does not really
help to be considered good overall, as expected from a non-compensatory
model. Sufficient coalitions are represented on Figure 4.2.

cost and
acceleration

cost and
braking

cost and
road

holding

acceleration
and

braking

acceleration
and road
holding

braking
and road
holding

all but
road

holding

all but
braking

all but
acceleration

all but
cost

all

cost acceleration braking
road

holding

none

Figure 4.2: Sufficient (green-filled and thick-bordered) and insufficient (red-
filled and thin-bordered) coalitions of criteria. Arrows denote strength—
pointing towards the weaker.

Finally, the model yields the following assignments (Table 4.4):
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model assignment

m1 ⋆⋆
m2 ⋆
m3 ⋆⋆
m4 ⋆⋆
m5 ⋆⋆⋆
m6 ⋆

Table 4.4: Model Assignments.

4.3 Variants

In this section, we mention a number of variants of the noncompensatory
sorting model that can be found in the literature. Some of these variants
are simplifications of the model, with additional assumptions that restrict
the parameters—limiting profiles and sufficient coalitions—either explicitly
or implicitly. Other variants extend the model, either by removing some as-
sumptions or by augmenting the expressive power of the model with additional
parameters.

4.3.1 Presentation with profiles

In the most popular implementations of the noncompensatory sorting model—
the ancestor Electre-Trib [Mousseau et al., 2000, Roy, 1991] and its recent,
streamlined avatar MR-Sort [Leroy et al., 2011]—there is no mention of ‘ap-
proved sets’. These variants instead rely on the notion of limiting profiles, that
act as kind of frontiers between categories. This difference in presentation is
purely cosmetic

Approved sets and boundary profiles are tied by the following axiom:

∀i ∈ N, k ∈ [2..p], xi ∈ Xi , xi ∈ Ak
i ⇐⇒ xi %i bk

i

Condition (4.2) translates into an ordering of the values 〈 bk
i
〉k∈[2..p] according

to %i for a given criterion i ∈ N, and an ordering of the boundary profiles
according to dominance D:

b2 , . . . , bp is a non-decreasing sequence of (X,D)

This sequence is also conveniently augmented by an ideal profile bp+1 and an
anti-ideal profile b1.

bitself derived from the ranking model Electre III [Roy, 1978].
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The noncompensatory sorting rule can be written with parameters 〈 b 〉

and 〈T 〉:

NCS(〈 b 〉,〈T 〉)(x) � Ck ⇐⇒

{
{i ∈ N : x %i bk

i
} ∈ T k ; and

{i ∈ N : x %i bk+1
i

} < T k+1.

This equivalent manner of presenting the model highlights the link between the
noncompensatory models NCS for sorting and RMP (Ranking with Multiple
Profiles) [Rolland, 2013] for ranking.

The idea of representing an upset by means of a threshold can be extended.
When dealing with totally ordered sets, such as the 〈(X,%i)〉i∈N , this threshold
boils down to a single value bi. For partially ordered sets, such as (P(N), ⊆),
this threshold takes the form of an antichain—a subset where any two elements
are incomparable. Therefore, sufficient coalitions are sometimes represented
as upper closures of an antichain of minimal winning coalitionsc Z, i.e. B ∈

T ⇐⇒ ∃Z ∈ Z : Z ⊂ B. Unfortunately, this representation is not more
compact than an explicit representation of the power set, as the length of an
antichain of the hypercube can be exponentially long.

4.3.2 Limited array of parameters.

The set of preference parameters – all the pairs (〈b〉, 〈T 〉) satisfying (4.1) and
(4.3.1) – can be considered too wide and too unwieldy for practical use in
the context of a decision aiding process. Therefore, following [Bouyssou and
Marchant, 2007b], one may consider to explicitly restrict either the sequence
of limiting profiles, or the sequence of sufficient coalitions:

• noncompensatory sorting with a unique set of sufficient coaltions

T 2
� · · · � T p; (4.6)

• noncompensatory sorting with a unique limiting profile

b2
� · · · � bp . (4.7)

Or, equivalently,
∀i ∈ N, A2

i � · · · � A
p

i
. (4.8)

4.3.3 k-additive representations of sufficient coalitions

The explicit representation of sufficient coalitions can either use a boolean
flag for each subset of N, or, more economically, only mention an antichain

cIn this representation, a dictatorship is characterized by having a set of minimal winning
coalition reduced to a singleton.
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of minimally sufficient subsets. Whatever the chosen representation, it is not
compact, as it potentially demands to store an amount of information that is
exponential in the number of points of view.

Majority rule. A simplifying assumption consists in representing sufficient
coalitions in an analogy to a voting setting: each criterion i ∈ N is assigned
a voting power wi ≥ 0 so that a given coalition of criteria B ⊆ N is deemed
sufficient if, and only if, its combined voting power

∑
i∈B wi is greater than a

given qualification threshold λ.

∃λ, 〈wi〉i∈N ∈ [0,+∞[: ∀B ⊆ N, B ∈ T ⇐⇒
∑
i∈N

wi ≥ λ. (4.9)

With this rule, the sufficient coalitions are represented in a compact form which
is more amenable to linear programming.

The majority rule is used to represent sufficient coalitions both in Electre-
Tri [Roy, 1991, Greco et al., 2010a] and most variants of the MR-Sort model
[Leroy et al., 2011]. As a remarkable exception, [Sobrie et al., 2015] considers
an extension of the majority rule where the voting power of the points of view
are replaced by a capacity, a function mapping coalitions of points of view to
nonnegative real numbers that is nondecreasing w.r.t. set inclusion. A coalition
is considered sufficient if, and only if, its capacity exceeds the qualification
threshold. This variant of the MR-Sort model is obviously equivalent to the
NCS model, it offers two additional features:

• a numeric representation for the NCS model, that remains linear and
can be handled by techniques and pieces of software dedicated to linear
algebra, such as the powerful mixed integer programming (MIP) solvers;

• the notion of using a general capacity can easily be restricted to using
limited forms, called k-capacities that restrict interactions between points
of view. As 1-capacities boil down to the additive form of the majority
rule, the normative assumption of representing upsets with k-capacities
is often called k-additivity. This nesting of assumptions, with k � 1
corresponding to the majority rule and k � |N | corresponding to the
general NCS model, goes along a progressive expansion of the numeric
parameter space, as going from (k − 1) to k additivity requires k among
|N | additional parameters.

4.3.4 Description in other paradigms.

In [Bouyssou and Marchant, 2007b], the authors connect some aggregation
models for sorting described in other places to a general form of ‘decomposable
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threshold models’ [Goldstein, 1991], which is naturally and concisely described
in the aggregate then compare paradigm, with any value function V compatible
with dominance (i.e. non decreasing w.r.t. to every coordinate). They show
this broad model can be equivalently described quite simply in the compare then

aggregate paradigm, in the form of a ‘relational model with nested relations and
unique profile’, or in the rule-based paradigm in the form of a ‘pessimistic at-
least decision rules model’ [Greco et al., 2001a]. The noncompensatory sorting
model NCS particularizes these models. In particular, it can equivalently be
described in the aggregate then compare paradigm by using a value function
in the form of a Sugeno integral [Marichal, 2000, Bouyssou and Marchant,
2007b, Brabant et al., 2018]d. Moreover, part of the appeal of the NCS model
lies in the narrative structure it imposes to the generic rule-based model.

4.3.5 Veto.

We note the NCS model is born in part from an aspiration of offering a clean
theoretical base to the Electre-Tri method [Roy, 1991, Greco et al., 2010a].
Indeed, when the notion of veto—values that are so bad, according to some
point of view, that they place an upper cap to the assigned category—is
discarded, Electre-Tri appears as a particular case of the NCS model with
unique set of sufficient coalitions and an additive representation of coalitions.
Conversely, a natural extension of the noncompensatory model is to allow for
the notion of veto. Such an extension is considered in [Bouyssou and Marchant,
2007b], which details an axiomatic characterization of this model.

dThis fact has been argued twice [Slowinski et al., 2002, Bouyssou and Marchant, 2007b],
and proved once.
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5

SAT-based formulations for

Inv-NCS

5.1 Introduction

This chapter exposes our formal contributions to the aggregation of noncom-
pensatory preferences into a sorting of the alternatives in ordered, predefined
categories. In the framework of noncompensatory sorting, established by
[Bouyssou and Marchant, 2007a, Bouyssou and Marchant, 2007b], it con-
tributes to the elicitation of the model—i.e. finding adequate parameters of
the model fitting the given preference information—by tackling this problem
from a yet unexplored direction: formulating the search for parameters in the
language of propositional logic, in a form that can be fed to one of the powerful
SAT solvers that have emerged during the last decade.

5.1.1 NCS and Inv-NCS

In this section, we define the inverse noncompensatory sorting problem Inv-
NCS as a decision problem where the input is some preference information
under the form of an ordinal performance table concerning a set of reference
alternatives, and an assignment of these reference alternatives to categories,
that gives a positive answer if, and only if, there is a preference parameter
of the noncompensatory sorting model (i.e. a tuple of approved sets and a
tuple of approved coalitions satisfying some monotonicity constraints) which is
consistent with this preference information.
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Definition 5.1 (Instances of Inv-NCS). An instance of the Inv-NCS problem

is a sextuple (N,X, 〈 %i 〉i∈N , X
⋆, {C1 ≺ · · · ≺ Cp}, α) where:

• N is a finite set of points of view;

• X is a set of alternatives;

• 〈 %i 〉i∈N ∈ X2 are preferences—for each point of view i ∈ N, %i⊂ X
2 is

a total pre-ordering of the alternatives according to this point of view;

• X⋆ ⊂ X is a finite set of reference alternatives ;

• {C1 ≺ · · · ≺ Cp} is a finite set of categories ordered by level of require-
ment; and

• α : X⋆→ {C1 ≺ · · · ≺ Cp} is an assignment of the reference alternatives

to the categories.

When referring to such an instance, we shall often shorten this sextuple
as ‘α’: points of view, alternatives and preferences are usually elements spec-
ified by the context and can safely be left in the background, without any
risk of confusion; reference alternatives and categories are implicitly defined,
respectively, by the domain and codomain of the assignment α.

Definition 5.2 (Parameters of NCS). Given a context, a parameter ω of the

NCS model is a couple (〈 Ak
i
〉i∈N, k∈[2..p] , 〈 T k 〉k∈[2..p]), where the sufficient

coalitions satisfy (4.1)

∀k ∈ [2..p], T k is an upset of (2N , ⊆) and T 2 ⊇ · · · ⊇ T p;

and the approved sets satisfy (4.2)

∀i ∈ N, ∀k ∈ [2..p], Ak
i is an upset of (Xi ,-i) and A2

i ⊇ · · · ⊇ A
p

i
.

Sorting rule. Given a context and a parameter ω � (〈 Ak
i
〉i∈N, k∈[2..p],

〈 T k 〉k∈[2..p]), augmented with trivial values

T 1 :� P(N), Tp+1 :� �, ∀i ∈ N, A2
i � X, A

p+1

i
� �,

NCSω is the function from X to {C1 ≺ · · · ≺ Cp} satisfying (4.5):

NCSω(x) � Ck ⇐⇒

{
∀k′ ≤ k , {i ∈ N : x ∈ Ak′

i
} ∈ T k′; and

∀k′ > k , {i ∈ N : x ∈ Ak′

i
} < T k′ .

Definition 5.3 (Solutions of Inv-NCS). Given a context, a solution of the

instance α of the Inv-NCS problem is a parameter ω of the NCS model such

that

∀x ∈ X⋆, α(x) � NCSω(x). (5.1)
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5.1.2 Encoder and decoder.

A Boolean function is a function of the form {0, 1}k → {0, 1} for a given
nonnegative integer k. Any boolean function can be written in conjunctive

normal form, as a conjunction of clauses where each clause is a disjunction of
some variables or their negation. Such a function is said to be satisfiable if,
and only if, 1 has at least one antecedent.

Precisely, this aim of this chapter is, given a context and an instance α of
the Inv-NCS problem,to provide:

• an encoding procedure that yields a Boolean function ΦSAT
α that is satis-

fiable iff there is a solution to the instance α of the Inv-NCS problem;
and

• a decoding procedure that maps any antecedent of 1 by ΦSAT
α to a solution

ω of the instance α of the Inv-NCS problem.

5.1.3 A tale of two formulations.

The two contributions are based on Boolean satisfiability formulations:

• Section 5.2 introduces and extends a formulation originally described
in [Belahcene et al., 2018c]. It is based on an explicit representation of
the parameter space of the NCS model—coalitions of points of view and
approved sets of alternatives, for each point of view and each level of
requirement—leading to a formulation in conjunctive normal form with
O(2|N |

+ p × |N | × |X⋆|) variables and O(p × |X⋆| × 2|N |) clauses;

• Section 5.3 introduces and extends a formulation originally described in
[Belahcene et al., 2018a]. It leverages the fact that the partial inverse
problem for NCS where the approved sets are given is much easier to
solve and proposes a characterization of its feasibility based on pairs
of alternatives. This approach leads to a compact formulation of the
problem, with O(p × |N | × |X⋆|2) variables and clauses;

• Section 5.4 addresses the issue of the computational complexity of the
Inv-NCS problem, and concludes to its NP-hardness.

5.2 A SAT formulation for Inv-NCS based on

coalitions

This section describes and extends a SAT formulation for Inv-NCS initially
given in [Belahcene et al., 2018c].
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5.2.1 Informal presentation of the approach

The formulation ΦSAT−C
α yielded by the encoding presented in this section is

based on an explicit representation of the parameter space of the noncompen-
satory sorting model—the pairs composed of a sequence of approved sets and
a sequence of sufficient coalitions.

Variables. The Boolean function ΦSAT−C
α operates on two types of variables:

• the ‘a’ variables, indexed by a point of view i ∈ N, a level of requirement
k ∈ [2..p] and a reference value x ∈ X⋆, represent the approved sets A,
with the following semantic:

ai ,k ,x � 1 ⇐⇒ x ∈ Ak
i i.e. x is approved at level k according to i;

(5.2)

• the ‘t’ variables, indexed by a coalition of points of view B ⊂ N and a
level of requirement k ∈ [2..p], represent the sufficient coalitions T , with
the following semantic:

tB,k � 1 ⇐⇒ B ∈ T k i.e. the coalition B is sufficient at level k;
(5.3)

Clauses. For a Boolean function written in conjunctive normal form, the
clauses are constraints that must be satisfied simultaneously by any antecedent
of 1. ΦSAT−C

α is built around six types of clauses:

• Clauses φC1
α ensure each approved set Ak

i
is an upset of (X⋆,-i): if for

a point of view i and a level of requirement k, the value x is approved,
then any value x′ %i x must also be approved.

• Clauses φC2
α ensure approved sets are ordered by set inclusion according

to their level of requirement: if an alternative x is approved at level
k according to the point of view i, it should also be approved at level
k′ < k.

• Clauses φC3
α ensure each set of sufficient coalitions T is an upset for

inclusion: if a coalition B is deemed sufficient at the level of requirement
k, then a stronger coalition B′ ⊃ B should also be deemed sufficient at
this level.

• Clauses φC4
α ensure sets of sufficient coalitions are ordered by inclu-

sion according to their leve of requirementl: if a coalition B is deemed
insufficient at level k, it should also be at any level k′ > k.

• Clauses φC5
α ensure each alternative is not approved by a sufficient

coalition of criteria at a level of requirement above the one corresponding
to its assigned category.
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• Clauses φC6
α ensure each alternative is approved by a sufficient coalition

of criteria at a level of requirement corresponding to its assignment.

Results Section 5.2.2 is devoted to the formal definition of the formulation
Φ

SAT−C
α just described. While the role of clauses φC1

α , φ
C2
α , φ

C3
α and φC4

α is
straightforward with respect to the constraints defining ω is an acceptable
parameter for the NCS model, the fact that the fulfillment of clauses φC5

α

and φC6
α is both necessary and sufficient to ensure that NCSω ≡ α is less so,

and deserves close inspection in Section 5.2.3. Then Section 5.2.4 formalizes
a decoding procedure permitting to leverage a solution of the SAT problem
Φ

SAT−C
α into providing the parameter ω sought for eliciting the NCS model.

5.2.2 A SAT encoding of an instance of Inv-NCS

Definition 5.4. Given an instance of Inv-NCS with an assignment α : X⋆→

{C1 ≺ · · · ≺ Cp}, we define the boolean function ΦSAT-C
α with variables

〈ai ,k ,x〉i∈N, k∈[2..p], x∈X⋆ and 〈tB,k〉B⊆N, k∈[2..p], as the conjunction of clauses:

Φ
SAT-C
α :� φC1

α ∧ φC2
α ∧ φC3

α ∧ φC4
α ∧ φC5

α (5.4a)

φC1
α :�

∧
i∈N, k∈[2..p]

∧
x′ %i x ∈X⋆ (ai ,k ,x′ ∨ ¬ai ,k ,x) (5.4b)

φC2
α :�

∧
i∈N, k < k′∈[2..p], x∈X⋆ (ai ,k ,x ∨ ¬ai ,k′,x) (5.4c)

φC3
α :�

∧
B ⊂ B′ ⊆ N, k∈[2..p] (tB′,k ∨ ¬tB,k) (5.4d)

φC4
α :�

∧
B⊆N, k < k′∈[2..p] (tB,k ∨ ¬tB,k′) (5.4e)

φC5
α :�

∧
B⊆N, k∈[2..p]

∧
x∈α−1(Ck−1) (

∨
i∈B ¬ai ,k ,x ∨ ¬tB,k) (5.4f)

φC6
α :�

∧
B⊆N, k∈[2..p]

∧
x∈α−1(Ck ) (

∨
i∈B ai ,k ,x ∨ tN\B,k) (5.4g)

Efficiently enforcing monotonicity. Clauses φC1
α , φ

C2
α , φ

C3
α and φC4

α en-
force some kind of monotonicity condition. As written, they are highly redun-
dant, threatening computational efficiency. Indeed, it is sufficient to consider
clauses where ordered elements are adjacent to each other:

• for clauses φC1
α , solely consider clauses where either x′ is a successor of

x in the partial order ≻i, or alternatives indifferent to each other, i.e.
x′ ∼i x;

• for clauses φC2
α and φC4

α , solely consider clauses where levels of require-
ment are consecutive, i.e. k′ � k + 1;
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• for clauses φC1
α , solely consider clauses where coalitions B′ and B differ

on only a single point of view, i.e. B′ \ B � {i}.

Note that the formulation put to the test in Chapter 6 has been streamlined
according to these rules.

Model variants. As discussed in Section 4.3, the NCS model has many
variants. ΦSAT−C

α can easily be modified to account for two popular restrictions
of the model:

• unique profiles—drop the index k concerning the level of requirement for
the ‘a’ variables, ignore the conjunction over levels of requirement for
clauses φC1

α , and ignore clauses φC2
α altogether;

• unique set of sufficient coalitions—drop the index k concerning the level
of requirement for the ‘t’ variables, ignore the conjunction over levels of
requirement for clauses φC3

α and ignore clauses, φC4
α altogether.

The original presentation of this formulation, in [Belahcene et al., 2018c], was
aimed at advancing the state of the art concerning the elicitation of MR-Sort
models (see Section 4.3.3), and therefore focuses on the unique set of sufficient

coalitions variant. The experimental study exposed in Chapter 6 remains
focused on this variant, which is more reasonable than the unrestricted case in
terms of computation time and preference information needed to pinpoint the
parameters.

5.2.3 From a solution of Inv-NCS to a solution of the SAT

formulation

The aim of this section is to establish ΦSAT−C as an onto encoder for the Inv-
SAT problem: if an instance α is positive (i.e. has a solution), then ΦSAT−C

α

should be satisfiable.

Theorem 5.1. Given an instance of Inv-NCS with an assignment α : X⋆→

{C1 ≺ · · · ≺ Cp}, if the parameter ω �

(
〈 Ak

i
〉i∈N, k∈[2..p], 〈 T k 〉k∈[2..p]

)
is a

solution of this instance, then the pair of tuples of binary values:

• 〈ai ,k ,x〉i∈N, k∈[2..p], x∈X⋆ defined according to (5.2); and

• 〈tB〉B⊆N, k∈[2..p] defined by (5.3);

is mapped to 1 by the Boolean function ΦSAT−C
α .

Proof. We check the satisfaction of every clause:

• The monotonicity clauses φC1
α , φ

C2
α , φ

C3
α and φC4

α are satisfied by virtue
of ω being a NCS parameter, so that the approved sets satisfy (4.2) and
the sufficient coalitions satisfy (4.1). See the informal description of these
types of clause in Section 5.2.1.
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• For any exigence level k ∈ [2..p], let B ⊆ N a coalition of points of view
and x an alternative assigned to Ck−1 by α. Either B ∈ T k , and, by
the sorting rule, {i ∈ N : x ∈ Ak

i
} * B, so the disjunction

∨
i∈B ¬ai ,k ,x

is satisfied; or B < T k , and the atom ¬tB,k is satisfied. This proves the
satisfaction of φC5

α .

• For any exigence level k ∈ [2..p], any coalition B ⊂ N and any alternative
x ∈ X⋆, suppose the disjunction (

∨
i∈B ai ,k ,x ∨ tN\B,k) is not satisfied.

Hence, at exigence level k, x is disapproved according to all points of
view in B, so the coalition approving x is at most as strong as N \ B,
which is insufficient. Therefore, x does not meet the conditions to be
assigned to category Ck or better by NCS. In particular, x < α−1(Ck),
which proves that φC6

α is satisfied.

�

Corollary 5.2. Given an instance of Inv-NCS with an assignment α, if φSAT-C
α

is unsatisfiable, then α cannot be represented in the non compensatory sorting

model.

5.2.4 Decoding a solution of the SAT formulation into NCS

parameters

The aim of this section is to provide a decoder for ΦSAT−C
α , mapping any

solution of the SAT formulation to a solution of Inv-NCS—i.e a parameter ω
of the noncompensatory model such that the sorting functions NCSω and α
coincide on the set of reference alternatives X⋆.

Theorem 5.3. Given an instance of Inv-NCS with an assignment α : X⋆→

{C1 ≺ · · · ≺ Cp}, if the binary tuple 〈ai ,k ,x〉i∈N, k∈[2..p], x∈X⋆, 〈tB〉B⊆N, k∈[2..p] is

mapped to 1 by ΦSAT−C
α , then the pair ω � (〈 Ak

i
〉i∈N, k∈[2..p], 〈 T k 〉k∈[2..p])

where:

• the approved sets 〈 Ak
i
〉i∈N, k∈[2..p] are defined according to (5.2); and

• the sufficient coalitions 〈 T k 〉k∈[2..p] are defined according to (5.3);

is a parameter of the noncompensatory sorting model. Moreover, ω is a solution

of this instance.

Proof. Clauses φC1
α ensure each approved sets Ak

i
is an upset of (Xi ,-i).

Clauses φC2
α ensure approved sets are nested according to their level of re-

quirement. Clauses φC3
α ensure each set of approved coalitions is an upset of

(P(N), ⊆). Clauses φC4
α ensure sets of sufficient coalitions are nested according

to their level of requirement. Therefore, ω is a parameter for NCS.
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Suppose ω is not a solution of the instance α of Inv-NCS. There is, at least,
an alternative x ∈ X⋆ such that α(x) , NCSω(x).

• Suppose α(x) ≻ NCSω(x):
x does not meet the demand of the sorting rule NCSω for the level of
requirement k : α(x) � Ck , thus {i ∈ N : x ∈ Ak

i
} < T k . This violates the

clause of φC6
α indexed by x, k and B :� {i ∈ N : x < Ak

i
}. Indeed, for all

points of view i ∈ B, ai ,k ,x � 0 by (5.2), and N\B � {i ∈ N : x < Ak
i
} < Tk ,

thus tN\B,k � 0 by (5.3).

• Suppose α(x) ≺ NCSω(x):
x meets the demand of the sorting rule NCSω for the level of requirement
k : α(x) � Ck−1. Thus, {i ∈ N : x ∈ Ak

i
} ∈ T k . This violates the clause

of φC5
α indexed by x, k and B :� {i ∈ N : x ∈ Ak

i
}. Indeed, for all points

of view i ∈ B, ai ,k ,x � 1 by (5.2), and tB,k � 1 by (5.3).

Either case would violate a clause of ΦSAT−C
α . Therefore, ω is a solution of the

instance α of Inv-NCS.
�

Corollary 5.4. Given a context, the assignment α can be represented in the

noncompensatory sorting model if, and only if, φSAT-C
α is satisfiable.

5.3 A SAT formulation based on pairwise

separation conditions

The Boolean satisfiability formulation we propose in this section, denoted
Φ

SAT−P
α , was originally described in [Belahcene et al., 2018a], with a focus

on the case with two categories C1 ≡ Bad ≺ C2 ≡ Good. We extend this
formulation to the general case, with any number of categories, in Section 5.3.4.
It is based on the following observations:

• The noncompensatory sorting model may appear particularly unwieldy
to use explicitly, as it requires to handle explicitly the sufficient coalitions,
which number is exponential in the number of points of view.

• In the case of the MR-Sort model, where coalitions are represented with
the majority rule, in the case where the limiting profiles—and thus, the
approved sets—are known, the problem of finding suitable parameters
for the majority rule—the voting power of each point of view, and the
majority threshold—boils down to a mere linear program (with continuous
variables). This simple fact is leveraged in a heuristic approach to the
inverse MR-Sort problem described in [Sobrie et al., 2015]: a limiting
profile is guessed, ‘best’ fitting voting powers and majority threshold
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are determined through LP minimization of a loss function, and the
limiting profile is adjusted as to reach out to reference assignments not
yet captured by the current parameters.

In the light of these observations, we begin, in Section 5.3.1 by focusing
on the case where the approved sets are known. From this simple case, we
derive a powerful characterization of the assignments that can be represented
in the noncompensatory sorting model, detailed in Section 5.3.2. Section
5.3.3 proposes a SAT formulation in conjunctive normal form based on this
characterization. Section 5.3.4 considers the extension of these results to cases
with more than two categories.

5.3.1 Inv-NCS with fixed approved sets

When the approved sets are given, solving the inverse NCS problem – i.e.

learning a set of sufficient coalitions permitting to represent the assignment
in the noncompensatory sorting model – is similar to learning a disjunctive
normal form from training examples. From this observation, we derive a
polynomial timea algorithm yielding the version space [Mitchell, 1982] of the
noncompensatory sorting model with fixed approved sets:

In this section, we consider given a context, an assignment α : X⋆ →

{Good,Bad} and a tuple 〈Ai〉i∈N such that ∀i ∈ N, Ai is an upset of
(Xi ,-i).

We define the following sets of coalitions:

T〈Ai〉(α) :� cl⊇
P(N)

(⋃
g∈α−1(Good)

{
{i ∈ N : g ∈ Ai}

})
, (5.5)

F〈Ai〉(α) :� cl⊆
P(N)

(⋃
b∈α−1(Bad)

{
{i ∈ N : b ∈ Ai}

})
. (5.6)

The following lemma explicit their roles with respect to Inv-NCS:

Lemma 5.5. Given an instance of the Inv-NCS problem with an assignment

α : X⋆→ {Good,Bad}, a tuple 〈Ai〉i∈N such that ∀i ∈ N, Ai is an upset of

(Xi ,-i), and an upset S of (P(N), ⊆), the parameter (〈Ai〉,S) is a solution

of this instance if, and only if:

T〈Ai〉(α) ⊆ S ⊆ P(N) \ F〈Ai〉(α) (5.7)

Proof. α is represented by NCSS ,〈Ai〉 iff i) for all alternatives g ∈ α−1(Good),
NCSS ,〈Ai〉(g) � Good; and ii) for all alternatives b ∈ α−1(Bad), NCSS ,〈Ai〉(b) �

Bad

aSee Section 5.4.

131



Part II. Sorting with a Noncompensatory model

i) holds iff S contains
⋃

g∈α−1(Good){i ∈ N : g ∈ Ai} and, as a consequence
of being an upset for inclusion, S contains the set T〈Ai〉(α) of all the coalitions
at least as strong as those in

⋃
g∈α−1(Good){i ∈ N : g ∈ Ai}. ii) holds iff S does

not contain any coalition pertaining neither to
⋃

b∈α−1(Bad){i ∈ N : b ∈ Ai},
nor to the set F〈Ai〉(α) of all the coalitions at least as weak as

⋃
b∈α−1(Bad){i ∈

N : b ∈ Ai}. �

This simple lemma is a very powerful tool for resolving instances of the
Inv-NCS problem. It allows for features similar to the one permitted by the
assumption of an additive representation of coalitions via the majority rule:

• It offers a simple representation of the version space of the T parameter—
the set of sufficient coalitions—given the 〈Ai〉i∈N parameter—the ap-
proved sets according to each point of view. The lower bound T〈Ai〉(α)

is the set of the necessarily sufficient coalitions and F〈Ai〉(α) is the set
of necessarily insufficient coalitions. Any coalition neither in one or the
other is ambivalent: possibly sufficient and possibly insufficient. With
the majority rule, the version space is a polytope in the parameter space.

• It allows to circumvent the encoding of the parameter T (the set of
sufficient coalitions), which is a limiting factor of the efficiency of the
formulation ΦSAT−C

α . Instead, it opens the way for an approach consisting
in encoding solely the 〈Ai〉i∈N parameter (the approved sets), and find
conditions that constrains the version space to be nonempty.

• Conversely, the lemma empowers the decoding of a partial solution
〈Ai〉i∈N of an instance of the Inv-NCS problem into a suitable full
parameter (〈Ai〉i∈N ,T ), with e.g. T :� T〈Ai〉(α) or T :� P(N)\F〈Ai〉(α),
as both bounds are upsets of (P(N), ⊆).

• Concerning accountability, it is noteworthy that unsuitable sets of suffi-
cient coalitions—i.e upsets S of (P(N), ⊆) that do not satisfy (5.7)—can
be discarded in the light of direct evidence. Suppose S does not contain
T〈Ai〉(α) (resp. is not disjoint to F〈Ai〉(α)). There is a witness alternative
g assigned to Good (resp. b assigned to Bad) that is approved by a
coalition of points of view deemed insufficient (resp. sufficient), resulting
in an obvious contradiction. Moreover—and this is not the case with
the majority rule—an empty version space always results from a conflict
between a Good and a Bad witness—a fact the theorem from the next
section capitalizes on.
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5.3.2 A pairwise characterization of positive instances

The following theorem implements the strategy sketched in the previous section
and characterizes yes instances of the Inv-NCS problem with conditions tying
solely the ‘approved sets’ component of the parameter space.

Theorem 5.6. An assignment α of alternatives to categories can be represented

in the noncompensatory sorting model if, and only if, there is a tuple 〈Ai〉 ∈

P(X)N such that:

1. for each point of view i ∈ N, Ai is an upset of (X,%i)

2. for each pair of alternatives (g , b) ∈ α−1(Good) × α−1(Bad), there is at

least one point of view i ∈ N such that g ∈ Ai and b < Ai.

This result is very important as it says that, in order to check that an
assignment α is compatible with NCS, it is equivalent to find approval subsets
over each point of view such that one can discriminate each pair of Good

and Bad alternatives on at least one point of view (i.e. the Good alternative
is approved on this point of view, and not the Bad one). Interestingly, the
concept of sufficient coalitions disappears in this characterization.

Proof.

[¬(1+2) ⇒ ¬NCS] If there are two alternatives g ∈ α−1(Good) and
b ∈ α−1(Bad) that falsify Condition 2, then, for any potential parameter
ω � (〈Ai〉i∈N ,S) of a noncompensatory sorting model, the nesting {i ∈ N :
g ∈ Ai} ⊆ {i ∈ N : b ∈ Ai} results in a sorting NCSω at least as favorable to
b as to g, whereas α(b) � Bad is strictly worse than α(g) � Good.

[(1+2) ⇒ NCS] Given a tuple 〈Ai〉 ∈ P(X)N satisfying conditions 1 and 2,
we consider the sets of coalitions T〈Ai〉(α) and F〈Ai〉(α).

According to Lemma 5.5, α can be represented in the noncompensatory
model iff T〈Ai〉(α) ∩ F〈Ai〉(α) � �. Suppose this intersection is nonempty, and
let B ∈ T〈Ai〉(α) ∩ F〈Ai〉(α). By definition of T〈Ai〉(α), there is an alternative
g ∈ α−1(Good) such that B ⊇ {i ∈ N : g ∈ Ai}: for all points of view
i < B, g < Ai. By definition of F〈Ai〉(α), there is an alternative b ∈ α−1(Bad)

such that B ⊆ {i ∈ N : b ∈ Ai}: for all points of view i ∈ B, b ∈ Ai.
Consequently, there is no point of view according to which g is accepted but
not b, contradicting condition 2. Hence, T〈Ai〉(α) ∩ F〈Ai〉(α) � �. �

5.3.3 A compact SAT formulation for Inv-NCS

We leverage Theorem 5.6 by formulating a Boolean satisfiability problem
Φ

SAT−P
α that answers the decision problem: ‘can the assignment α be repre-

sented in the noncompensatory model?’
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Encoding. Similarly to the formulation ΦSAT−C
α described is Section 5.2, the

formulation ΦSAT−P
α operates on two types of variables:

• ‘a’ variables, representing the approved sets, with the exact same seman-
tics as their counterpart in ΦSAT−C

α , i.e.

ai ,x �

{
1 if x ∈ Ai i.e. x is approved according to i;

0 else.

• auxiliary ‘s’ variables, indexed by a point of view i ∈ N, an alternative
g assigned to Good and an alternative b assigned to Bad, assessing if
the alternative g is positively separated from b according to the point of
view i, i.e.

si ,g ,b �

{
1 if g ∈ Ai and b < Ai;

0 else.

Φ
SAT−P
α is the conjunction of four types of clauses: φP1

α ensuring each
Ai is an upset (matching the first condition of Theorem 5.6), φP2

α ensuring
[si ,g ,b � 1] ⇒ [g ∈ Ai], φP3

α ensuring [si ,g ,b � 1] ⇒ [b < Ai], and φP4
α

ensuring each pair (g , b) is positively separated according to at least one point
of view (matching the second condition of Theorem 5.6).

Definition 5.5. Given an instance of Inv-NCS with two categories and an

assignment α : X⋆→ {Bad ≺ Good}, we define the boolean function ΦSAT-P
α

with variables 〈ai ,x〉i∈N, x∈X⋆ and 〈si ,g ,b〉i∈N, g∈α−1(Good), b∈α−1(Bad), as the con-

junction of clauses:

φSAT-P
α :� φP1

α ∧ φP2
α ∧ φP3

α ∧ φP4
α (5.8)

φP1
α :�

∧
i∈N

∧
x′%i x∈X⋆ (ai ,x′ ∨ ¬ai ,x) (5.9a)

φP2
α :�

∧
i∈N, g∈α−1(Good), b∈α−1(Bad) (¬si ,g ,b ∨ ¬ai ,b) (5.9b)

φP3
α :�

∧
i∈N, g∈α−1(Good), b∈α−1(Bad) (¬si ,g ,b ∨ ai ,g) (5.9c)

φP4
α :�

∧
g∈α−1(Good), b∈α−1(Bad) (

∨
i∈N si ,g ,b) (5.9d)

The formulation is compact: O(|N |.|X|2) variables, O(|N |.|X|2) binary
clauses and O(|X|2) |N |-ary clauses.
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Decoding. If the instance is a yes, any solution of the satisfiability problem
translates into suitable, yet arbitrary, explicit values for the approved sets.
Upper and lower bounds for the set of sufficient coalitions can then be obtained
thanks to Lemma 5.5.

Corollary 5.7. Given an instance of Inv-NCS with two categories and an

assignment α : X⋆→ {Bad ≺ Good}, this instance is positive if, and only if,

φSAT-P
α is satisfiable.

Moreover, if 〈ai ,x〉, 〈si ,g ,b〉 is an antecedent of 1 by φSAT-P
α , then the param-

eter ω :� (〈Ai〉,S) with accepted sets defined by Ai :� {x ∈ X : ai ,x � 1} and

any upset S of (P(N), ⊆) of sufficient coalitions containing the upset T〈Ai〉(α)

and disjoint from the lower set F〈Ai〉(α) is a solution of this instance.

5.3.4 More than two categories

The case where there are p > 2 categories {C1 ≺ · · · ≺ Cp} requires a few
adaptations of the formulation given in the preceding section, and presented
in [Belahcene et al., 2018a]. It relies mostly on the fact that a NCS model
with p categories is, informally, the combination of p − 1 NCS models with two
categories which parameters satisfy the nesting conditions (4.1) and (4.2).

Given an assignment α and a level of requirement k ∈ [2..p], we define the
set of alternatives assigned at least to Ck as

C�k :�
⋃

k′∈[k..p]

Ck′ . (5.10)

We propose the following definition for ΦSAT−P′

α , that coincides with ΦSAT−P
α

(see Definition 5.5) when p � 2.

Definition 5.6. Given an instance of Inv-NCS with an assignment α : X⋆→

{C1 ≺ · · · ≺ Cp}, we define the boolean function ΦSAT-P’
α with variables

〈ai ,k ,x〉i∈N, k∈[2..p],x∈X⋆ and 〈si ,k ,g ,b〉i∈N, k∈[2..p], g∈α−1(G�k ), b<α−1(G�k ), as the con-

junction of clauses:

Φ
SAT-P’
α :� φP′1

α ∧ φP′2
α ∧ φP′3

α ∧ φP′4
α ∧ φP′5

α (5.11)

φP′1
α :�

∧
i∈N, k∈[2..p]

∧
x′%i x∈X⋆ (ai ,k ,x′ ∨ ¬ai ,k ,x) (5.12a)

φP′2
α :�

∧
i∈N, k < k′∈[2..p], x∈X⋆ (ai ,k ,x ∨ ¬ai ,k′,x) (5.12b)

φP′3
α :�

∧
i∈N, k∈[2..p]

∧
g∈α−1(C�k ), b<α−1(C�k ) (¬si ,k ,g ,b ∨ ¬ai ,k ,b) (5.12c)

φP′4
α :�

∧
i∈N, k∈[2..p]

∧
g∈α−1(C�k ), b<α−1(C�k ) (¬si ,k ,g ,b ∨ ai ,k ,g) (5.12d)

φP′5
α :�

∧
k∈[2..p]

∧
g∈α−1(C�k ), b∈α−1(C�k ) (

∨
i∈N si ,k ,g ,b) (5.12e)
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The remarks made in Section 5.2.2 about an efficient implementation of
Φ

SAT−C
α apply here: many clauses are redundant in φP′1

α and φP′2
α and can

safely be ignored.

Theorem 5.8. Given a context, an assignment α : X⋆→ {C1 ≺ · · · ≺ Cp} can

be represented in the noncompensatory sorting model if, and only if, φSAT-P’
α

is satisfiable.

Moreover, if 〈ai ,k ,x〉, 〈si ,k ,g ,b〉 is an antecedent of 1 by φSAT-P
α , then the

parameter ω :� (〈Ak
i
〉, 〈T k〉) with accepted sets defined by Ak

i
:� {x ∈ X :

ai ,k ,x � 1} and sufficient coalitions defined by

T k :� cl⊇
P(N)

(
⋃

g∈α−1(C�k )

{i ∈ N : g ∈ Ak
i }) (5.13)

is a solution of the instance α of the Inv-NCS problem.

Proof. The proof relies on the following lemma, which is merely a reformulation
of the definition of the noncompensatory sorting model:

Lemma 5.9. The instance α : X⋆→ {C1 ≺ · · · ≺ Cp} is a positive instance of

Inv-NCS if, and only if, all the instances 〈αk : X⋆→ {Bad ≺ Good}〉k∈[2..p]

with two categories, defined by

αk(x) �

{
Good if α(x) ∈ C�k ;

Bad else.
(5.14)

are positive instances of Inv-NCS and have respective solutions ωk � (〈Ak
i
〉i∈N ,

T k) that collectively satisfy the nesting conditions (4.1) and (4.2).

By construction, ΦSAT−P′

α �

∧
k∈[2..p]Φ

SAT−P
αk

∧ φP′2
α , ensuring ΦSAT−P′

α is
satisfiable if, and only if, the αk are all positive instances of Inv-NCS, with
nested satisfactory values (enforced by φP′2

α ). Moreover, Lemma 5.5 guarantees
that each set T k defined by (5.13) yields, when combined with the correspond-
ing tuple 〈Ak

i
〉i∈N of approved sets, a parameter solution of the instance αk .

The only verification left is whether the sets of sufficient coalitions 〈T k〉k∈[2..p]

are effectively nested. This fact is established by the following arguments:

i) the upper closure is an isotonic operator;

ii) the union is taken on a set of alternatives g ∈ α−1(C�k) that decreases
as the level of requirement k increases; and

iii) for a given good alternative g, the sequence of sets 〈{i ∈ N : g ∈

Ak
i
}〉k∈[2..p] is decreasing because the sequence of sets 〈Ak

i
〉k∈[2..p] is

decreasing.

�
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5.4 Computational complexity of Inv-NCS

This section addresses the question of the intrinsic computational complexity
of the problem Inv-NCS.

Boolean satisfiability offers a powerful language permitting to describe
difficult combinatorial problems [Cook, 1971]. When written in conjunctive
normal form, SAT instances can be given wholesale to dedicated solvers, that
eschews the need for developing a dedicated piece of software and benefits
from state-of-the-art refinements in the solving of such problems. Nevertheless,
it would be unwise to delegate the search for a parameter of the NCS model
consistent with a given assignment to such a solver, if this search were not,
intrinsically, a difficult combinatorial problem. This section addresses this
issue.

5.4.1 Complexity of Inv-NCS with fixed approved sets

We begin by a simple, yet strong result for the simplified version of Inv-NCS
where the approved sets are given, and the question asked boils down to: ‘Are

there nested sets of sufficient coalitions such that a given assignment can be

represented in the noncompensatory sorting model?’

Corollary 5.10 (complexity of Inv-NCS with fixed approved sets). Given

an instance of Inv-NCS with an assignment α of alternatives to categories and

a tuple 〈Ai〉 of upsets of 〈(P(X),-i)〉, the problem of deciding whether α can

be represented in the noncompensatory sorting model with approved sets 〈Ai〉

is polynomial time.

Proof. By Lemma 5.5, it boils down to checking whether T〈Ai〉(α) ∩ F〈Ai〉(α)

is empty or not, which is O(|X|2.|N |). �

This result has far-reaching implications. Inv-NCS aims at retrieving a
correct parameter for NCS. Because the parameters for NCS mention a set
of sufficient coalitions, the representation of a parameter is potentially non-
compact with respect to the instance α of the problem, whose size is linear
in the number of points of view. Therefore, Inv-NCS does not belong to the
class NP, as checking a potential solution with explicit sufficient coalitions
requires to enumerate over the power set of the points of view. Nevertheless,
the version space of Inv-NCS can be checked in polynomial time! This places
the NCS model with given approved sets in the peculiar position where the
version space of the model is simpler to store and access than a fully defined
representative model, a fact we leverage in Chapter 7.
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5.4.2 NP-hardness of Inv-NCS

We show that a solver fo the inverse NCS problem is able to solve any problem
of the class NP. Assuming P , NP, it means that Inv-NCS is intractable: there
is no algorithm able to solve every instance in a number of steps bounded by a
polynomial in the size of the instance.

Theorem 5.11. The problem of deciding whether an instance α can be rep-

resented in the noncompensatory sorting model is NP-hard, even in the case

where there are only two categories.

Proof. By reduction from SAT: Given an instance of the SAT problem—written
in conjunctive normal form, with n variables y1 , . . . , yn and m clauses c1 ∧

· · · ∧ cm—we build a gadget instance of Inv-NCS of a size bounded by a
polynomial in the size of the SAT instance, such that solving the Inv-NCS
problem with this instance permits to solve the original instance of the SAT
problem. Therefore, any Inv-NCS solver can serve as a SAT solver, and the
Inv-NCS problem is at least as hard as the SAT problem.

We build our gadget assignment with m+n points of view N :� [1..(m+n)],
2m alternatives X⋆ :� {g1 , . . . , gm , b1 , . . . , gm} and two categories {Bad ≺

Good}. g1 , . . . , gm are assigned to Good whereas b1 , . . . , bm are assigned to
Bad.

First, let us focus on the first m points of view: for eack j ∈ 1 . . .m, let
g j ∼ j b j ≻ j g1 ∼ j · · · ∼ j g j−1 ∼ j g j+1 ∼ j · · · ∼ j gm ∼ j b1 ∼ j · · · ∼ j b j−1 ∼ j

b j+1 ∼ j · · · ∼ j bm. The preference % j has two equivalence classes, the upper
one containing {g j , b j} and the lower one containing

⋃
j′, j{g j′ , b j′}. The n

last points of view of the gadget are built considering the SAT formula.
The last n points of view are built according to the clauses. Each clause

is a disjunction of atoms—either a variable y j for some index j ∈ [1..n] or
its negation ¬y j. For j ∈ [1..n], define P j as the subset of clauses containing
the atom y j, and N j as the subset of clauses containing the atom ¬y j. The
preference relation % j+m is constructed so as to have at most 3 equivalence
classes: the uppermost containing the alternatives

⋃
l∈P j

{gl}, the one in the
middle containing

⋃
l∈P j

{bl}∪
⋃

l∈N j
{gl}, and the lowest containing

⋃
l∈N j

{bl}∪⋃
l<P j∪N j

{gl , bl}.
We use the pairwise characterization of positive instances of Inv-NCS

with two categories offered by Theorem 5.6. Furthermore, we note trivial
accepted sets—i.e. points of view i ∈ N such that Ai � � or Ai � X

⋆—do not
contribute to the feasibility of the inverse NCS problem.

For the n first points of view, there is only one nontrivial accepted set: it
accepts the upper class and rejects the lower one. For the n last points of view
of the gadget, the nontrivial accepted sets accept the uppermost equivalence
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class, reject the lowest class, and either accept or reject the class in the middle.
We define a one-to-one mapping between the nontrivial accepted sets of the
gadget and the assignment of the n variables of the SAT problem:

y j :�

{
1, if An+ j �

⋃
l∈P j

{gl}

0, if An+ j �
⋃

l∈P j
{gl , bl} ∪

⋃
l∈N j

{gl}.

Thus, the assignment of truth values to the variables y j defined in the
remainder of the proof (applying the previous patch) ensures that :

[The pair (g j , b j) is discriminated according to p.o.v. k ] if, and only if,
[[[yk is a positive atom appearing in c j ] and [yk is assigned to one]] or [[¬yk is
a negative atom appearing in c j] and [yk is assigned to zero]]]

Therefore, the pair (g j , b j) is discriminated according to some p.o.v. if, and
only if, the clause c j is satisfied: a solution of the SAT problem is mapped to
a tuple of accepted sets that discriminates all pairs with opposite assignments
and reciprocally.

�
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6

Experimental results concerning

the resolution of Inv-NCS via

SAT

6.1 Introduction

This chapter is devoted to the assessment of the SAT formulations proposed
in Chapter 5.

6.1.1 Context

When trying to compare the novel SAT formulations established in Chapter 5
to the state of the art concerning the elicitation of noncompensatory sorting
models, great care must be taken concerning the specific assumptions made
about the model.

On the one hand, the novel formulations are geared towards the elicitation
of noncompensatory sorting models (NCS) from learning examples, and can
handle variants of NCS where the space of parameters are restricted (see
Section 4.3.2).

On the other hand, the state of the art concerning the elicitation of NCS
models is concerned with variants of the model, called majority rule sorting

(MR-Sort) [Leroy et al., 2011], where:

• there is only one set of sufficient coalitions for all levels of requirement
(see Section 4.3.2); and
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• sufficient coalitions have an additive representation with the majority

rule (see Section 4.3.3).

These restrictions stem from a combination of issues

• legacy, as to remain close to the Electre Tri foundational model [Roy,
1991, Greco et al., 2010a];

• representation, as to remain compatible with the mixed integer program-
ming tools often used in Operations Research; and

• performance, as even with this straitjacket of restrictions made to the
NCS model, only toy instances with very few points of views and learning
examples can be solved in a reasonable amount of time.

6.1.2 Research question

The main question this experimental study is trying to answer is:
‘To what extent can the SAT formulations for Inv-NCS can contribute

to learning the parameter of a noncompensatory sorting model from actual
assignment examples?’

The theoretical soundness of these formulations is not in question. It
is addressed in Chapter 5, and know for a fact that these formulations are
logically faithful to the elicitation problem. Nevertheless, the scope of the
research question is quite broad.

• Computational efficiency: is the actual computation time of these formu-
lations acceptable? How does it compare to the state of the art? How
do the two formulations compare to each other?

• Relevance: How close to the ground truth is the corresponding model,
compared to the one obtained with state-of-the-art methods? This
question is actually twofold:

– is it wise to do without any loss function?
The SAT formulations are inherently geared to yield, if the problem
is feasible, an arbitrary parameter for the NCS model, while the
state-of-the-art formulations are based on an Optimization frame-
work and return the ‘most representative model‘ in the sense of
some loss function.

– is it wise to do without any model parsimony?
The NCS class of sorting procedure elicited by the SAT formulations
is much broader than the MR-Sort class. While this feature is a
blessing in terms of expressiveness—it broaden the spectrum of
decisional behaviors captured by the model—it comes with a cost
for elicitation, both informational, as more learning examples are
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likely needed to pinpoint the ground truth, and computational, as
the size of the instances increases.

6.1.3 Layout of the chapter

The remainder of the chapter is organized in three section.

• Section 6.2 briefly recalls the state-of-the-art formulation, that we denote
Φ

MIP−O, used to solve the inverse MR-Sort problem, based on mixed
integer programming, and proposed by [Leroy et al., 2011]. We also
propose a modified version, denoted ΦMIP−D , obtained by turning off the
optimization of the loss function, in order to assess its influence—both
positive and negative—on the elicitation.

• Section 6.3 exposes the experimental protocol and the results of a study
devoted to comparing the formulations ΦSAT−C, ΦMIP−O and ΦMIP−D,
originally presented in [Belahcene et al., 2018c].

• Section 6.4 discusses the results of this experimental studies, in the
perspective of the research questions.

6.2 Learning MR-Sort using Mixed Integer

Programming

Learning the parameters of an MR-Sort model using mixed integer program-
ming has been studied in [Leroy et al., 2011]. We recall here the method
used in [Leroy et al., 2011] in order to obtain the mixed integer program
(MIP) formulation that infers an MR-Sort model on the basis of examples of
assignments.

With MR-Sort (see Definition 3), the condition for an alternative x ∈ X⋆

to be assigned to a category Ch reads:

x ∈ Ch ⇐⇒

{∑n
i�1 ch−1

x ,i
≥ λ∑n

i�1 ch
x ,i

< λ
with ck

x ,i �

{
wi if xi ≥ bk

i
,

0 otherwise.

The linearization of these constraints induces the use of binary variables. For
each variable ck

x ,i
, with k � {h − 1, h}, we introduce a binary variable δk

x ,i

that is equal to 1 when the performance of x ∈ X⋆ is at least as good as or
better than the performance of bk on the criterion i and 0 otherwise. For an
alternative x assigned to a category Ch with 2 ≤ h ≤ p − 1, it introduces 2n

binary variables. For alternatives assigned to one of the extreme categories,
the number of binary variables is divided by two. The value of each variable
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δk
x ,i

is obtained thanks to the following constraints:

M(δk
x ,i − 1) ≤ xi − bk

i < M · δk
x ,i (6.1a)

in which M is an sufficiently large positive constanta. The value of ck
x ,i

are
finally obtained thanks to the following constraints:{

0 ≤ ck
x ,i

≤ wi ,

δk
x ,i

− 1 + wi ≤ ck
x ,i

≤ δk
x ,i
.

(6.1b)

The dominance structure on the set of profiles is ensured by the following
constraints:

∀i ∈ N, h � {2, . . . , p − 1}, bh
i ≥ bh−1

i (6.1c)

As the equation (4.9) defining the majority rule is homogenous, the coefficients
〈w〉 and λ can be multiplied by any positive constant without modifying the
upset of coalitions they represent. Thus, the following normalization constraint
can be added without loss of generality:

n∑
i�1

wi � 1. (6.1d)

To obtain a MIP formulation, the next step consists to define an objective
function. In [Leroy et al., 2011], two objective functions are considered, one of
which consists in maximizing the robustness of the assignments. It is done by
adding continuous variables µx , νx ∈ R for each alternative x ∈ X⋆ such that:{∑n

i�1 ch−1
x ,i

� λ + µx ,∑n
i�1 ch

x ,i
� λ − νx .

(6.1e)

The objective function consists in optimizing a slack variable σ that is con-
strained by the values of the variables µx and νx as follows:

∀x ∈ X⋆,

{
σ ≤ µx ,

σ ≤ νx .
(6.1f)

The combination of the objective function and all the constraints listed above
leads to MIPs that can be found in [Leroy et al., 2011].

Definition 6.1 (MIP-O formulation for MR-Sort). Given an assignment

α : X⋆ → {1 ≺ · · · ≺ p}, we denote ΦMIP−O
α the mixed linear program with

decision variables σ, λ, 〈bk
i
〉i∈N,k∈[1..p−1], 〈wi〉i∈N , 〈ch

x ,i
〉i∈N,x∈X⋆,h∈{α(x)−1,α(x)},

〈µx〉x∈X⋆, 〈νx〉x∈X⋆ ∈ R
+ and

〈δh
x ,i
〉i∈N,x∈X⋆,h∈{α(x)−1,α(x)} ∈ {0, 1}, consisting in minimizing the objective σ,

subject to the constraints (6.1a), (6.1b), (6.1c), (6.1d), (6.1e) and (6.1f).
aM > Maxi∈N maxXi
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Faithfulness of the MIP-O formulation

Proposition 6.1 ([Leroy et al., 2011]). An assignment α : X⋆→ {1 ≺ · · · ≺ p}

can be represented in the model MR-Sort if, and only if, ΦMIP−O
α is feasible.

If the tuple 〈σ, λ, b, w, c, µ, ν, δ〉 is a feasible solution of ΦMIP−O
α , then the

tuple of profiles b, the tuple of voting powers w and the majority threshold λ

are suitable parameters of a MR-Sort model that extends the assignment α.

We are looking to compare this state-of-the-art formulation to the boolean
satisfiability formulationΦSAT−C defined in Chapter 5 in terms of computational
efficiency, and in terms of quality of the result. Yet, we suspect the two
approaches differ in too many aspects to be meaningfully compared. The
Φ

MIP−O formulation is based on a numerical representation of the problem,
considers the set of every MR-Sort model extending the assignment, and
selects the best according to the objective function – here, returning the model
that gives the sharpest difference in voting weights between sufficient and
insufficient coalitions of criteria. Meanwhile, the SAT formulations ΦSAT−C

are based on a logical representation of the problem, consider the wider set of
every noncompensatory sorting model with unique set of sufficient coalitions

extending the assignment, and randomly yields a suitable model. In order
to be able to credit the effects we would observe to the correct causes, we
introduce a third formulation, called ΦMIP−D, that helps bridging the gap
between ΦMIP−O on one hand and ΦSAT−C on the other hand. ΦMIP−D is
formally a mixed integer program with a null objective function. This trick
enables us to use the optimization shell of the MIP formulations to express a
decision problem assessing the satisfiability of the constraints, and yielding a
random solution (which, in our context, represents a particular MR-Sort model),
rather than looking for the best one in the sense of the objective function.
Another instance of this configuration, where an optimization problem is
compared to its feasibility version, can be found in [Dickerson et al., 2014].Here,
it should be noted that the MIP-D formulation differ from the feasibility
version of MIP-O on the way insufficient coalitions of criteria are characterized.
Theoretically, insufficient coalitions are defined by a strict comparison, that
cannot be represented directly in the linear optimization frameworkb.

• The optimization version circumvents this obstacle by maximizing the
contrast in normalized voting power between sufficient and insufficient
coalitions. Finding a nonzero contrast guarantees that sufficient and
insufficient coalitions can be strictly separated.

bMathematical programming relies on the fact that the domain upon which the objective
function is optimized is topologically closed. This would not be the case, should the
comparisons implicitly defining this domain were allowed to be non-strict.
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• The feasibility version addresses the obstacle by leaving the total weight
unconstrained, but requires the minimal difference between sufficient and
insufficient coalitions is at least one vote.

This slight difference might account for some divergence of behavior we observe
during our experiment (see Section 6.3, and particularly 6.3.3).

Definition 6.2 (MIP-D formulation for MR-Sort). Given an assignment α :
X⋆→ {1 ≺ · · · ≺ p}, we denote ΦMIP−D

α the mixed linear program with decision

variables 〈bk
i
〉i∈N,k∈[1..p−1], 〈wi〉i∈N , λ, 〈µx〉x∈X⋆, 〈νx〉x∈X⋆, 〈c

h
x ,i
〉i∈N,x∈X⋆,h∈{α(x)−1,α(x)}

∈ R+ and 〈δh
a ,i
〉i∈N,x∈X⋆,h∈{α(x)−1,α(x)} ∈ {0, 1}, consisting in minimizing the ob-

jective 0, subject to the constraints (6.1a), (6.1b), (6.1c), (6.1e) and (6.1g),

where:

∀x ∈ X⋆,

{
1 ≤ µx ,

1 ≤ νx .
(6.1g)

Theorem 6.2 (Faithfulness of the MIP-D formulation). An assignment α :
X⋆ → {1 ≺ · · · ≺ p} can be represented in the model MR-Sort if, and only

if, ΦMIP−D
α is feasible. If the tuple 〈λ, b, w, c, µ, ν, δ〉 is a feasible solution

of ΦMIP−D
α , then the tuple of profiles b, the tuple of voting powers w and the

majority threshold λ are suitable parameters of a MR-Sort model that extends

the assignment α.

Proof. This theorem results from Theorem 6.1, with only minor changes to
the constraints. As noted previously, the normalization constraint (6.1d) has
no effect on the feasibility of the problem. Instead, constraints (6.1g) ensure
we are looking for voting parameters large enough to have at least a difference
of one unit between the votes gathered by any sufficient coalition on the one
hand and any insufficient coalition on the other hand. �

6.3 Implementation

In this section, we study the performance of the formulation ΦSAT−C proposed
in Section 5.2, both intrinsic and comparative with respect to state-of-the-art
techniques. For the implementation, we use a state-of-the-art SAT solver,
in order to solve instances of the problem of learning the parameter of a
noncompensatory sorting model with unique set of sufficient coalitions, as
defined in Section 4.1.2 and Section 4.3.2, given the assignment of a set of
reference alternatives. We also implement two formulations relying on Mixed
Integer Programming, ΦMIP−O and ΦMIP−D presented in Section 6.2, using
an adequate solver. We begin by describing our experimental protocol, with
some implementation details. Then, we provide the results of the experimental
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study concerning the computation time of our program, and particularly the
influence the size of the learning set, the number of criteria, and the number
of categories, as well as elements of comparison between the three approaches.

6.3.1 Experimental protocol and implementation details

For the experiment we take as an input the assignment of a set of alternatives
X⋆, each described by a performance tuple on a set of criteria N, to a set of
classes {C1 ≺ · · · ≺ Cp}.

The performance of the solvers needs to be measured in practice, by solving
actual instances of the problem and reporting the computation time required.
This experimental study is run on an ordinary laptop with Windows 7 (64 bit)
equipped with an Intel Core i7-4600 CPU at 2.1 GHz and 8 GB of RAM.

Dataset generation.

In the scope of this work, we only consider to use a carefully crafted, random
dataset as an input. On the one hand, our algorithm is not yet equipped with
the capability to deal with noisy inputs, so we do not consider feeding it with
actual preference data, such as the one found in preference learning benchmarks
[Fürnkranz and Hüllermeier, 2010]. On the other hand, using totally random,
unstructured instances makes no sense in the context of algorithmic decision.
In order to ensure the preference data we are using makes sense, we use a
decision model to generate it, and, in particular, a model compatible with
the noncompensatory stance we are postulating. Precisely, we use an MR-
Sort model for generating the learning set, a model that particularizes the
noncompensatory sorting model with unique set of sufficient coalitions by
postulating the set of sufficient coalitions possess an additive structure (see
Sections 4.3.3 and 6.1.1). This choice ensures the three formulations we are
using should succeed in finding the parameters of a model extending the
reference assignment.

When generating an instance, we consider the number of criteria |N |, the
number of ordered categories p, and the number of reference alternatives |X⋆|

as parameters. In order to generate the complete preorders 〈%i〉i∈N , we adopt
a multiple criteria decision approach, and generate a numeric performance
table according to each point of view. We consider all criteria take continuous
values in the interval [0, 1], which is computationally more demanding for
our algorithm than the case where one criterion has a finite set of values.
We generate a set of ascending profiles 〈b〉 by uniformly sampling p − 1
numbers in the interval [0, 1] and sorting them in ascending order, for all
criteria. We generate voting weights 〈w〉 by sampling |N | − 1 numbers in
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the interval [0, 1], sorting them, and using them as the cumulative sum of
weights. λ is then randomly chosen with uniform probability in the interval
]0.5, 1[. Finally, we sample uniformly |X⋆| tuples in [0, 1]N , defining the
performance table of the reference alternatives, and assign them to categories in
{C1 ≺ · · · ≺ Cp} according to the model M0 :�MR-Sortω, with the parameter
ω :� (〈bk

i
〉i∈N,k∈[2..p] , 〈wi〉i∈N , λ) grouping the generated profiles, voting weights,

and qualified majority threshold.

Solving the SAT problem.

We then proceed by translating the assignment into a binary satisfaction
problem, described by sets of variables and clauses, as described by Definition
5.4. This binary satisfaction problem is written in a file, in DIMACS formatc,
and passed to a command line SAT solver - CryptoMiniSat 5.0.1 [Soos, 2016],
winner of the incremental track at SAT Competition 2016 d, released under the
MIT license. If the solver finds a solution, then it is converted into parameters
(〈ASAT−C〉,T SAT−C) for an NCS model with unique set of sufficient coalitions,
as described by Theorem 5.3. The model MSAT−C :�NCS〈ASAT−C〉,T SAT−C

yielded by the program is then validated against the input. As the ground
truth M0 used to seed the assignment is, by construction, an MR-Sort model
and therefore a NCS model with unique set of sufficient coalitions, Theorem
5.1 applies and we expect the solver to always find a solution. Moreover,
as Theorem 5.3 applies to the solution yielded, we expect the U-NCS model
returned by the program should always succeed at extending the assignment
provided.

Solving the MIP problems.

We transcribe the problem consisting of finding an MR-Sort model extending
the assignment with parameters providing a good contrast into a mixed integer
linear optimization problem described extensively in Section 6.2 that we refer
to as ΦMIP−O, where O stands for optimization. In order to bridge the gap
between this optimization stance and the boolean satisfiability approach that is
only preoccupied with returning any model that extends the given assignment,
we also transcribe the problem consisting of finding some MR-Sort model
extending the assignment into a MIP feasibility problem (optimizing the null
function over an adequate set of constraints), also described in Section 6.2 that
we refer to as ΦMIP−D, where D stands for decision. These MIP problems are
solved with Gurobi 7.02, with factory parameters except for the cap placed

chttp://www.satcompetition.org/2009/format-benchmarks2009.html
dhttp://baldur.iti.kit.edu/sat-competition-2016/
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on the number of CPU cores devoted to the computation (two), in order to
match a similar limitation with the chosen version of the SAT solver. When
the solver succeeds in finding a solution before the time limit – set to one hour
– the sorting models returned are called MMIP−O and MMIP−D, respectively.

Evaluating the ability of the inferred models to restore the original

one.

In order to appreciate how “close” a computed model Mc ∈ {MSAT−C,
MMIP−D, MMIP−O} is to the ground truth M0 from which the assignment
examples were generated, we proceed as follows: we sample a large set of
n performance profiles in X � [0, 1]N and compute the assignment of the
corresponding alternatives according to the original and computed MR-Sort
models (M0 and Mc). On this basis, we compute err − rate the proportion
of “errors”, i.e. alternatives which are not assigned to the same category by
both models.

6.3.2 Intrinsic performance of the SAT-C formulation

We run the experimental protocol described above by varying the various
values of the parameters governing the input. In order to assess the intrinsic
performance of our algorithm we consider all the combinations where

• the number of points of view |N | is chosen among {5, 7, 9, 11};

• the number of reference alternatives |X⋆| is chosen among {25, 50, 100,
200, 400};

• the number of categories p is chosen among {2, 3}.

For each value of the triplet of parameters, we sample 100 MR-Sort models
M0, and record the computation time (t) needed to provide a model MSAT−C

Figure 6.1 displays the time needed to compute MSAT−C, versus the number
of reference alternatives |X⋆|, both represented in logarithmic scale, in various
configurations of the number of criteria. The fact that each configuration is
seemingly represented by a straight line hints at a linear dependency between
log tSAT−C and log |X⋆|. The fact that the various straight lines, corresponding
to various number of criteria, seem parallel, with a slope close to 1, is compatible
with a law where tSAT−C is proportional to |X⋆|. The same observations in the
plane (number of criteria × computation time) (not represented) leads to infer
a law

tSAT−C ∝ |X⋆| × 2|N | ,

where the computing time is proportional to the number of reference alternatives
and to the number of coalitions (corresponding to the number of |N |-ary clauses
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Figure 6.1: Computation time by size of the learning set

of the SAT formulation). Finally, as a rule of thumb: the average computation

time is about 10 s for 11 criteria, 3 categories and 100 reference alternatives;

it doubles for each additional criterion, or when the number of reference

alternatives doubles.

6.3.3 Comparison between the formulations

In order to compare between models, we focus on a situation with 3 categories,
9 points of view, and 64 reference alternatives, serving as a baseline. We
then consider situations deviating from the baseline on a single parameter –
either the number of categories p, from 2 to 5, or the number of points of
view, among {5, 7, 9, 11, 13}, or the number of reference alternatives among
{16, 32, 64, 128, 256}. For each considered value of the triple of parameters,
we sample 50 MR-Sort models representing the ground truth M0, and we
record the computation time t needed to provide each of the three models
MSAT−C, MMIP−D and MMIP−O, as well as the generalization indexes for the
three models. The MIP are solved with a timeout of one hour.

Results on the computation time.

For the three formulations under scrutiny and the set of considered parameters
governing the input, the computation time ranges from below the tenth of
a second to an hour (when the timeout is reached), thus covering about five
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Figure 6.2: Distribution of the computation time and the proportion of as-
signment similar to the ground truth for the three models in the baseline
configuration: 9 points of view, 3 categories, 64 reference alternatives. Repre-
sented: median; box: 25 − 75%; whiskers: 10 − 90%.

orders of magnitude. The left side of Figure 6.2 depicts the distribution of
the computation time for the baseline situation (9 points of view, 3 categories,
64 reference assignments). While the computing time for the SAT-C and
the MIP-D formulations seem to be centered around similar values (with
Med(tSAT−C) ≈ 2.4s and Med(tMIP−D) ≈ 3.1s for the baseline), the distribution
of the computing time for the SAT-C algorithm around this center is very tight,
while the spread of this distribution for the MIP-D formulation is comparatively
huge: the slowest tenth of instances run about a thousand time slower than the
quickest tenth. The computation time of the MIP-O formulation appears about
50 times slower than the SAT-C, with a central value of Med(tMIP−O) ≈ 130s,
and covers about two orders of magnitude.

In order to assess the influence of the parameters governing the size and
complexity of the input, we explore situations differing from the baseline on a
single parameter.

• The number of reference assignments |X⋆|. Figure 6.3 indicates that the
distribution of the computing time for SAT-based algorithm remains
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Figure 6.3: Distribution of the computation time for the three models by
number of reference assignments, with three classes and nine points of view

tightly grouped around its central value, and that this value steadily
increases with the number of reference assignments. Meanwhile, the two
MIP formulations display a similar behavior, with an increase of the
central tendency steeper than the one displayed by the SAT, and a spread
that widens when taking into account additional reference assignments.

• the number of criteria |N |. Figure 6.4 indicates that the distribution of
the computing time for SAT-based algorithm remains tightly grouped
around its central value, and that this value steadily increases with the
number of criteria. This increase is steeper in the case of the SAT-C and
MIP-O formulations than for the MIP-D formulation.

• the number of categories p. Figure 6.5 displays an interesting phe-
nomenon. The number of categories seems to have a mild influence
on the computation time, without any restriction for the SAT-based
algorithm, and as soon as there are three categories or more for the
MIP-based algorithm, with a clear exception in the case of two categories,
which yields instances of the problem solved ten times faster than with
three or more categories.
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Figure 6.4: Distribution of the computation time for the three models by
number of points of view, with three classes and 64 learning examples

Results on the ability of the inferred model to restore the original

one.

The right-hand-side of Figure 6.2 depicts the distribution of the proportion of
correct assignments (as compared to the ground truth) for the baseline situation
(9 points of view, 3 categories, 64 reference assignments). The situation depicted
is conveniently described by using the distribution of outcomes yielded by the
MIP-D formulation as a pivotal point to which we compare those yielded by the
SAT-C and MIP-O formulations: the central 80% of the distribution (between
the whiskers) of outcomes for the MIP-O corresponds to the central half (the
box) for the MIP-D, while the best half of the distribution of outcomes for the
SAT corresponds to the central 80% for the MIP-D. In other terms, compared
to the MIP-D, the MIP-O offers consistently good results, while the SAT-C has
a 50% chance to yield a model that does not align very well with the ground
truth.

Figures 6.6, 6.7 and 6.8 depict the variations of the alignment of the models
yielded by the three algorithms with the ground truth with respect to the
number of reference assignments, of points of view, or of categories, respectively.
The experimental results display a tendency towards a degradation of this

153



Part II. Sorting with a Noncompensatory model

Figure 6.5: Distribution of the computation time for the three models by
number of categories, with nine points of view and 64 learning examples

alignment as the number of points of view or the number of categories increase.
Conversely, as expected, increasing the number of reference assignments no-
ticeably enhances the restoration rate. The three algorithms seem to behave
in a similar manner with respect to the modification of these parameters.

Reliability.

The three formulations expressing the problem we solve—finding a noncompen-
satory sorting model extending a given assignment of reference alternatives—
into technical terms are theoretically faithful. Moreover, as we generate the
input assignment with a hidden ground truth which itself obeys a noncom-
pensatory sorting model, the search we set out to perform should provably
succeed. Unfortunately, a computer program is but a pale reflection of an
algorithm, as it is restricted in using finite resources. While we take great care
in designing the experimental protocol in order to avoid memory problems,
we have purposefully used off-the-shelf software with default settings to solve
the formulations. While this attitude has given excellent result for the imple-
mentation of the SAT-based algorithm, which has never failed to retrieve a
model that succeeds in extending the given assignment, the two MIP-based
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Figure 6.6: Distribution of the generalization index for the three models by
size of the learning set, with three classes and nine points of view

implementations have suffered from a variety of failures, either not terminating
before the timeout set at one hour or wrongly concluding on the infeasibility
of the MIP. We report these abnormal behaviors in Table 6.1.

6.4 Discussion and perspectives

In this section, we strive at interpreting the results presented in Section 6.3. We
address the influence of the parameters governing the size and structure of the
input - the reference assignment we set out to extend with a noncompensatory
sorting model - on the computing time of the programs implementing the three
formulations modeling the problem.

6.4.1 Influence of the parameters

The influence of the various parameters (|X⋆|, the number of reference as-
signments; |N |, the number of points of view; p, the number of categories)
governing the input on the ability of the output model to predict the ground
truth seeding the input is best understood from a machine learning perspective.
The input assignments form the learning set of the algorithm, while the num-
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Figure 6.7: Distribution of the generalization index for the three models by
number of points of view, with three classes and 64 learning examples

ber of criteria and the number of categories govern the number of parameters
describing the noncompensatory sorting model. Hence, an increase in |X⋆|

adds constraints upon the system, while increases in |N | or p relieve some
constraints, but demand more resources for their management.

• The comparison between ΦMIP−O and ΦMIP−D informs the influence of
the loss function. This influence is threefold: i) optimizing this function
demands a lot more time than simply returning the first admissible solu-
tion found; ii) formalizing the problem of extending the input assignment
with a model as an optimization problem incorporates a kind of robust-
ness into the algorithm, which translates to a decrease in the number
of failures; and iii) paradoxically, the strategy consisting in finding the
most representative model (in the sense of the chosen loss function) does
not yield models with a better alignment to the ground truth than the
one consisting to return a random suitable model.

• The MIP-D and SAT-C formulations implement the same binary attitude
concerning the suitability of a noncompensatory model to extend a given
assignment, and both arbitrarily yield the first-encountered suitable
model. Nevertheless, algorithms based on these formulations display

156



Chapter 6. Experimental results concerning for Inv-NCS via SAT

Figure 6.8: Distribution of the generalization index for the three models by
number of categories, with nine points of view and 64 learning examples

marked differences in behavior: while the running time of the SAT-
based algorithm is very homogeneous between instances and follows very
regular patterns when the input parameters change, the MIP-D algorithm
behaves a lot more erratically, with some failures (displayed in table 6.1)
and a tremendous spread. We credit this difference in behavior to a
difference of approach to knowledge representation. Also, with the same
input parameters, the model returned by the MIP-D algorithm seems on
average to be more faithful to the ground truth than the model returned
by the SAT-C algorithm. As both models return random suitable models
in different categories (MR-Sort for ΦMIP−D , and the superset NCS with
a unique set of sufficient coalitions for ΦSAT−C, while the ground truth
is chosen in the MR-Sort category), we interpret the difference in the
proportion of correct assignment to the respective volumes of the two
categories of model.

• Reference assignments are a necessary evil. On the one hand, they
provide the information needed to entrench the model, and refine the
precision up to which its parameters can be known. On the other hand,
they erect a computational barrier which adds up more quickly for the

157



Part II. Sorting with a Noncompensatory model

|N | 5 7 9 11 13 9 9 9
p 3 3 3 3 3 3 5 7

|X⋆| 64 64 64 64 64 128 64 64

MIP-D 4%† 8%† 4% 0 0 42% 10% 12%
MIP-O 0 0 0 10% 48% 4% 0 0

SAT 0 0 0 0 0 0 0 0

Table 6.1: Proportion of instances failing to retrieve a model by size of the
input (|N | is the number of points of view, p is the number of categories, |X⋆| is
the number of reference assignment) and formulation. For ease of comparison,
the baseline is boldfaced. Failures are usually due to reaching the time limit of
one hour, except for configurations marked with a dagger where the failure is
due to an alleged infeasibility of the formulation.

MIP formulations we are considering than for SAT-C, as shown in Figure
6.3. Overcoming this barrier demands time and threatens the integrity
of the somewhat brittle numerical representation underlying ΦMIP−D.

• From the perspective of the model-fitting algorithm, the number of points
of view and the number of categories are usually exogenous parameters,
fixed according to the needs of the decision situation. The specific
numbers of points of view we considered during the experiment, from 5
to 13, cover most of the typical decision situations considered in Multiple
Criteria Decision Aiding. Introducing more points of view demands to
assess more parameters, which has a compound effect on complexity, as
it requires at the same time to build a higher-dimension representation
of the models, and to provide more reference examples in order to be
determined with a precision suitable to decision making. Apart from a
noticeable exception (see below), the number of categories does not seem
to have much influence (as shown on figures 6.5 and 6.8).

• Underconstrained models are not very good at providing recommenda-
tions. When fed with scarce information, the task of finding a suitable
extension is easy, but there are very little guarantees this extension
matches the unexpressed knowledge and preferences of the decision
maker concerning alternatives outside the learning set. We interpret the
decrease in the ability to align with the ground truth as the number of
criteria increases displayed on Figure 6.7 as an expression of an overfit-

ting phenomenon, where too many parameters are chosen to faithfully
represent a too little slice of the set of alternatives, but poorly represent
cases never seen before.
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• Mixed integer programs can represent decision problems, in theory. Prac-
tically though, some complex inputs have proven overwhelming for the
MIP-D formulation, whereas the MIP-O has shown more robustness, as
evidenced by Table 6.1. It seems fair to assume this lack of stability is
related to the absence of a normalization constraint such as (6.1d) in
Φ

MIP−D formulation . Determining a good lower bound on the difference
of normalized voting power between sufficient and insufficient coalitions
would therefore likely help alleviating this issue.

• MR-Sort with two categories is structurally different than models with
more than two categories. While we have defined it as a procedure where
alternatives are compared holistically to a profile, it can also be described
as an additive value sorting model with stepwise, non-decreasing, 2-valued
marginals. The experimental results, both for the computing time and
the alignment with the ground truth (see figures 6.5 and 6.8, where the
points corresponding to two categories are outliers with respect to the
rest of the series) highlight this peculiarity, and tend to show that the
value-based representation of the MR-Sort model with two categories is
computationally efficient.

See also

Chapter 5 details two formulations based on Boolean satisfiability in order
to solve the inverse noncompensatory sorting problem, but this chapter only
investigates the performance of one of them, SAT-C. Are we even sure the
second one, SAT-P, is correct? How do the two formulations compare to each
other?

[Belahcene et al., 2018b] addresses this issue, and is reproduced in Ap-
pendix C.

159





7

Accountable decisions with

Inv-NCS

The previous chapters of Part II were devoted to the definition and the solving
of the Inv-NCS problem: given points of view expressing preferences and an
assignment of alternatives to ordered categories, is it possible to represent this
assignment in the noncompensatory sorting model? if possible, with which
parameter? This chapter addresses the question of the use of this new tool in
the context of decision aiding situation. In Section 7.1, we consider a robust

elicitation process, and question the contribution of Inv-NCS to this process.
In Section 7.2, we address a fictitious decision situation, where the process is
subject to seemingly contradictory accountability demands of transparency
and secrecy.

7.1 Robust elicitation of a noncompensatory

sorting model

7.1.1 The situation

As detailed in Section 1.1, we consider a decision aiding process, as described
in [Bouyssou et al., 2006, Tsoukiàs, 2008], occurring between somebody looking
for decision support, and an analyst providing such a support.

Additionally , we assume that:

i) alternatives need to be assigned to categories, where the set of possible
categories is known, finite and totally ordered;
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ii) for the aggregation step, the decision maker and the analyst have agreed
upon the relevance of using a noncompensatory procedure, maybe for
one or more reason among those listed in the introduction of Part II.

Examples of real-world applications of decision aiding processes following this
assumption can be found in [Figueira et al., 2005], modeled after an Electre Tri
procedure [Mousseau et al., 2000], and in [Bisdorff et al., 2015], modeled after
an MR-Sort procedure [Leroy et al., 2011]. For our concern, we assume the
aggregation is following the noncompensatory sorting model [Bouyssou and
Marchant, 2007a, Bouyssou and Marchant, 2007b], as detailed in Chapter 4,
in its ‘vanilla’ version, i.e. without considering any of the variants listed in
Section 4.3.

Therefore, according to [Bouyssou et al., 2006], what remains to be done
consists in aggregating the evaluations corresponding to the different point
of view, and deriving a final recommendation. Section 7.2 proposes to jointly
consider the aggregation step with the final recommendation, by anticipating
external demands of accountability of the recommendation. In this section, we
mostly focus on the aggregation step, and accountability is considered inside
the scope of the decision aiding process—the dialog between the decision maker
and the analyst.

7.1.2 State-of-the-art approaches

Opting for the noncompensatory sorting model is a key step for the process
of aggregating the array of evaluations made according to the various points
of view into an overall sorting of the candidates into the ordered categories.
Nevertheless, at this stage, this option only translates into an empty framework.
The parameter governing the model—approved sets according to each point of
view and at each level of requirement, sufficient coalitions of points of view at
each level of requirement—still needs to be elicited in order to describe a sorting

procedure mapping alternatives to categories. How should this parameter be
determined? The stake is to reflect, as precisely as possible, the personal
judgment of the decision maker, by tuning the preference parameter. Several
approaches to this question have been proposed, detailed, and implemented:

Direct elicitation: it can be argued that the preference parameter of the
noncompensatory sorting model is readily interpretable by the decision maker.
They directly reflect, at a given level of requirement, the expectations of the
decision maker—as opposed, e.g. of the parameters of the additive model, even
the weighted sum, that only reflect acceptable trade-offs through their ratios. It
seems reasonable to expect that, in some situations, the preference parameter
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would directly be set by the decision maker and the analyst, maybe using some
trial and error, through simulation tools, to check the relevance of this setting
w.r.t. the output of the model. Nevertheless, when the number of points of
view increases, the explicit representation of coalitions of criteria becomes
exponential and therefore difficult to handle, visualize, and maybe understand.
In order to circumvent this source of complexity, the popular variants Electre
Tri and MR-Sort propose to represent the power of coalitions of points of view
with an additive model. While easy to handle, it has been argued that this
representation might induce confusion and fallacious impressions in the mind
of the decision makera. Consider, for instance, the following example.

Example 7.1. As an example, consider the two sets of weights and majority
threshold given in Table 7.1, such that a coalition B ⊂ {1, 2, 3} is considered
sufficient if, and only if,

∑
i∈B wi ≥ λ.

w1 w2 w3 λ

49 11 40 50
1 1 1 2

Table 7.1: Two sets of parameters—voting powers and qualification threshold—
representing the same sufficient coalitions of points of view.

Both sets lead to the same winning coalitions: a combination of at least
two of the three criteria is needed in order to be above the majority threshold.
The first set of parameters lets the decision maker think that there is an order
of importance between the three criteria since w1 > w3 > w2. This insight is
not true when one looks at the list of winning coalitions: each criterion has
the same importance. The second set of parameters does not let appear such
a hierarchy between the weights.

Indeed, different sets of weights and majority threshold can represent the
same sets of winning coalitions. The value of these weights and majority
threshold can be misleading. The claims of interpretability of the model should
be backed up by a careful examination of the preference parameters under the
lens of conjoint measurement: maybe a parameter offers a convenient way of
dialing the model and making sure it fits the attitude of the decision maker,
and maybe the procedures following the model are easy to carry out, but what
cannot be measured should be interpreted with the greatest care.

aAnd maybe in the mind of some analysts too!
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Full indirect elicitation via standard sequences. The preference param-
eter describing the personal preferences of the decision maker can be obtained
by asking them questions about the category where fictitious, carefully chosen
alternatives should be assigned:

• In a first phase, questions aim at pinpointing the set of sufficient coalitions.
They involve fictitious alternatives ideally fit according to some points of
view, and absolutely unfit according to the rest.

• A second phase is devoted to finding the acceptance threshold according
to each criterion. This information can be obtained e.g. by degrading
the fitness on a particular criterion i ∈ N, starting from a fictitious
alternative that is ideal on every criteria of a minimally sufficient coalition
containing i, and absolutely unfit according to the points of view outside
this coalition.

This elicitation procedure involves a lot of difficult questions concerning ficti-
tious alternatives that combine extremely bad and extremely good attributes
and border the bizarre. It might be feared that, by the simple virtue of being
so remote from reality:

• these alternatives are perceived as toys, in which the decision maker does
not believe. Therefore, their assessment has little counterfactual value.

• thinking about these alternatives removes the decision maker from the
situation at hand in an alienating manner.

Learning from assignment examples. The full indirect elicitation, de-
scribed above, empowers the analyst with the entire responsibility of the
acquisition of preference information, without any restriction w.r.t. the al-
ternatives presented to the decision maker. A more balanced approach with
respect to the roles and responsibilities of the decision maker and the analyst
during the decision aiding process may lead to consider preference information
concerning alternatives that are not crafted by the analyst, then fit the param-
eters in order to ‘best’ represent these preferences inside the model. For sorting
problems, UTADIS [Devaud et al., 1980] is a pioneering implementation of
this idea, assuming an additive value model. This approach sometimes called
disaggregation [Jacquet-Lagrèze and Siskos, 2001, Zopounidis and Doumpos,
2002, Mousseau, 2003] can be described as a four-step process, detailed in
Table 1.1.

The disaggregation framework has proven itself, time and time again,
with additive value models (for sorting or comparing): with such a model,
the second step yields a single linear comparison representing a statement
of the preference information in the parameter space. Consequently, the set
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of parameters compatible with the preference information is a polytope, and
the third step can be resolved using linear programming, as soon as the loss
function is chosen linear. As an added substantial benefit, the restitution of
the preference statements can be integrated into the loss function, rather than
with the frontiers of the polytope. This Lagrangian technique, often dubbed
‘soft constraints’, enables this framework to seamlessly deal with inconsistent
preference information—cases where the polytope of compatible parameters is
empty.

When trying to apply the disaggregation framework to any variant of the
noncompensatory sorting model, difficulties arise:

• The transcription of preference information statements into constraints
on the preference parameter is cumbersome. Proposed transcriptions
rely on nonlinear constraints [Mousseau and Slowinski, 1998] for Electre
Tri or mixed integer programming [Leroy et al., 2011, Sobrie et al., 2013]
for MR-Sort. In particular, no representation under the form of linear
comparison over continuous variables has been proposed.

• As a consequence of the previous point, computation of an optimal,
or even suitable, parameter is difficult, and painfully slow. Solving an
instance with seven points of view takes minutes [Leroy et al., 2011].

In order to circumvent these obstacles, [Sobrie et al., 2015] proposed to learn
the parameter of an MR-Sort model from assignment examples using a heuristic
method based on a population of parameter values. This algorithm converges
quite rapidly towards practically good solutions, but without offering any
guarantee.

7.1.3 Contributions of Inv-NCS

Inside the disaggregation framework. Chapter 5 introduces a novel
approach to the second step of the disaggregation framework for sorting
described by Table 1.1 for the noncompensatory sorting model. Instead of
relying on sophisticated languages such as nonlinear programming or mixed
integer programming, constraints are expressed in the elementary language of
propositional logic, as a disjunction of atoms. Parameters permitting to restore
the preference information correspond to solutions of a Boolean satisfiability
problem.

At this stage, a first important contribution is a proof of the NP-hardness
of solving the Inv-NCS problem. Unless P � NP, it entails the impossibility
to express the constraints reflecting the preference information under the form
of linear comparisons over continuous variable.
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In Chapter 6, either one or the other of the two Boolean satisfiability (SAT)
formulations of Inv-NCS are used to power the second and third steps of the
disaggregation framework. It is an actual departure of the usual approach
though, as the SAT paradigm, in its simplest formb, is solely concerned
about the feasibility of a constrained problem, but is alien to the notion of
optimization. Therefore, in the third step, the derived value of the parameter is
arbitrary, corresponding to the first solution encountered by an external solver.
A thorough experimental validation allows to derive the following findings:

• Speed—the proposed SAT-based architecture permits to obtain results
about fifty times more rapidly than the state-of-the-art MIP-based one.
Hours of computation time become minutes, minutes become seconds,
and this massive increase in performance opens new perspectives for the
usage of noncompensatory sorting models.

• Stability—the proposed SAT-based architecture is predictable in its
efficiency, and offers reliable results, that can be trusted. That was not
the case with the MIP-based architecture, as the representation of an
intrinsically discrete parameter space by means of continuous variables
naturally entails stability issues at the frontiers, and delegating these
issues to the solvers does not offer solid guarantees.

• Relevance—there is two aspects to this notion: i) is it wise to move
away from representing sufficient coalitions with the majority rule? and
ii) is it wise to do without a loss function? To the first question, the
experimental results are not sufficient to assert a positive answer, but
they nevertheless establish our option is certainly not foolish. NCS is a
broader model than MR-Sort. This additional breadth does not incur an
additional computational cost—quite the contrary—but it certainly incurs
an additional informational cost—the need to obtain more preference
information in order to pinpoint the preference parameter—that cannot
yet be precisely estimated. Concerning the loss function, it might be
practically difficult to do without—and this aspect requires further
investigation—but using one to infer a precise preference parameter
poses a problem of accountability, specific to the noncompensatory sorting
model, that we discuss in the next paragraph.

Robust disaggregation. Finding a suitable parameter for the NCS problem
is literally a byproduct of the Boolean satisfiability formulations of Inv-NCS.
Their primary focus is on the feasibility of this search. This feature can readily

bWe address the opportunity of relying on more sophisticated languages, such as MaxSAT,
in Chapter 8.
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be leveraged, via Definition 7.1 into the robust disaggregation framework, a
variant of the disaggregation framework described in [Salo and Hamalainen,
2001, Greco et al., 2008, Greco et al., 2010b], and summarized in Table 1.2.
It relies on the following definition, tying the necessary and possible recom-
mendations for the assignment of a candidate an the feasibility of the inverse
problem:

Definition 7.1. Given some preference information P, a model M consistent

with P, and an output π in the codomain of M:

• we say π is impossible when P∪{π} is inconsistent with M, i.e. P∪{π}

is a negative instance of the inverse-M problem;

• we say π is necessary when every other output in the codomain of M is

impossible.

The robustness offered by this framework is epistemic by nature: it protects
the recommendation from becoming irrelevant, should additional preference
information become available. The price to pay for this insurance against our
own ignorance is obviously quite high.

• in terms of computational burden—instead of simply applying the model,
which is really easy in the case of NCS, it requires to solve the NP-
complete Inv-NCS problem for each query;

• in terms of simplicity—a parameterized NCS model is arguably easy to
interpret for the decision maker, as it relies on a compact narrative about
sufficient fitness according to each point of view, and sufficient coalitions
of points of view, and the robust version does not offer such convenient
metaphors;

• the robust model is irresolute—the possible assignments for a given
candidate alternative form a subset of the categories, that decreases
when the preference information increases, but it sometimes does not
boil down to a singleton (a necessary assignment).

The issue of simplicity is particularly acute in the case of noncompensatory
models. Compare the situation to the additive value model, when preference
information is a set of pairwise comparative statements, as detailed in Part I.
Any pair of alternatives (x , y) ∈ X2 partitions the parameter space into two half-
spaces separated by a hyperplane, and the compatible preference parameters
reside in a polytope. The size of this polytope can be meaningfully measured in
terms of maximal pairwise regret [Wang and Boutilier, 2003], and the obtaining
of additional preference information should aim at reducing this size. When
the polytope of compatible parameters is small enough, it might reasonably
well be approximated by a ball. A ball corresponds to another paradigm

167



Part II. Sorting with a Noncompensatory model

permitting to deal with uncertainty, with a central tendency and a scalar
measure of residual uncertainty corresponding respectively to the center and
the radius of the ball. When preference information is scarce, the (deductive)
polytope has few facets—one per pairwise comparative statement— and might
not be well approximated by a ball. With abundant preference information,
the representation of the polytope with constraints becomes costly, and the
polytope shrinks, so the loss due to replacing the polytope with a ball becomes
minor. Also, when the polytope becomes small, the specifics of the inference
procedure—which consists in selecting a single parameter inside the polytope—
becomes irrelevant, as all compatible parameters are close to each other. In the
case of noncompensatory sorting models, the situation is quite different. For
instance, when the attribute scales are continuous, MR-Sort can be described
with continuous parameters—limiting profiles, voting powers and a majority
threshold. Inside this continuous space, though, the subset of parameters
compatible with a given assignment of reference alternatives is likely not a
polytope, and it is probably not even connected. This is because of the nonlinear
interaction between limiting profiles and voting powers: the same situation
is likely to be represented with either narrow accepted sets and a wide set of
sufficient coalitions, or the converse. An inference procedure—for instance, one
corresponding to a loss function—is asked to select a representative parameter.
With a fragmented subset of compatible parameters, this choice is necessarily:

i) arbitrary; and

ii) potentially insincere, because it mimics a procedure which is totally
acceptable in the linear case mentioned previously.

Therefore, while robust decision aiding might be considered a nice-to-have,
but costly, tool in the case of linear models, its role becomes crucial when
considering to provide accountable recommendations supported by a nonlinear
model.

Interlude

• In the previous section, the version space of the NCS model reflected
the incomplete knowledge of the analyst concerning the preferences of
the decision maker, and represented the envelope of possibly preferred
outcomes of the sorting models. The inverse noncompensatory sorting
problem can be used as a tool for guaranteeing the sincerity of the
elicitation process, by correctly aligning the views of the decision maker,
of the analyst, and the actual product of the process.

• In the following section, the version space of the NCS model is considered
as the leeway left to a jury in its appreciation of candidates that ought
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to be sorted into ordered categories. This autonomy left to the jury
needs to strike a delicate balance: should the model be entirely specified,
the jury could be fully automated, and its functioning could be gamed
and manipulated by malicious stakeholders; on the opposite end of the
spectrum, a very loose specification of the model results in a practical
lack of control of the jury by the society, and fails to prevent possible
abuses of authority. Inv-NCS is used as a tool to account for the decision
of the jury, given some specifications.

7.2 Accountable Approval Sorting

A committee meets to decide upon the sorting of a number of candidates into
two categories (e.g. candidates to accept or not, projects to fund or not).
The committee applies a decision process which is public, the outcomes are
public as well, however the details of the votes are sensitive and should not be
made available. To what extent can we make the committee accountable of
his decisions?

Most of the material presented in this section was originally published in
[Belahcene et al., 2018a], together with the pairwise characterization of positive
instances Inv-NCS exposed in Section 5.3.

7.2.1 The context: selection by a jury

We shall primarily be concerned with a general sorting model where candidates
are sorted by a jury N. Each juror e ∈ N expresses binary judgments [Laslier
and Sanver, 2010], and candidates are sorted as either good or bad depending
on the fact that the coalition of jurors supporting this sorting is strong enough,
or not, to win the decision of the jury.

Example 7.2. We consider a situation with six candidates X :� {a , b , c , d ,

e , f }, assessed by a jury composed of five jurors N :� {e
1
, e

2
, e

3
, e

4
, e

5
}

with the following preferences:

e
1 : a ≻1 b ≻1 f ≻1 e ≻1 c ≻1 d

e
2 : e ≻2 b ≻2 c ≻2 d ≻2 a ≻2 f

e
3 : f ≻3 a ≻3 b ≻3 d ≻3 e ≻3 c

e
4 : d ≻4 a ≻4 c ≻4 e ≻4 f ≻4 b

e
5 : c ≻5 e ≻5 b ≻5 f ≻5 d ≻5 a
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The notions involved in this real-life situations map straightforwardly to the
primitives of the noncompensatory sorting model: candidates are alternatives,
jurors are points of view, and we are considering two categories {Bad ≺ Good}.
For the noncompensatory sorting model to correctly describe the situation,
the decision process needs to be bounded by some assumptions of rationality.

• Static individual stances. From the personal point of view of each
juror, alternatives should be completely preordered by preference. This
precludes any incomparability between candidates, nor any dynamics in
the way each juror appreciates the candidates. This preference may stem
from numeric or symbolic performance, as it is often the case in multiple
criteria decision aiding, or be intrinsically ordinal, as it is often assumed
in social choice contexts.

• Indivividual consistency between preferences and vote. Each juror e ∈ N

is allowed to express only a binary judgment on each candidate x ∈ X,
which is either ‘approved according to e’ or not. The approved subset
of candidates A

e
⊆ X should be an upset for the preference relation %

e
.

Hence, there is no pair of candidates x , x′ ∈ X where x is preferred to x′

w.r.t. %
e

, x′ is approved by e but not x.

• Static collective stance. The set of winning coalitions should remain
constant during the whole decision process. This can be seen as a
requirement for the process to be unbiased.

• Consistent collective stance. The set of sufficient coalitions S ⊆ P(N)

should be an upset for inclusion. Hence, if a coalition is sufficient, any
superset of this coalition is also sufficient (and if a coalition is insufficient,
any subset of it is also insufficient).

• Latent coalition powers. The set of sufficient coalitions is not assumed to
have any particular structure besides being an upset—it can be described,
in terms of cooperative game theory, as a monotonic simple game [Peleg,
2002]. In particular, this precludes the additive structure assumed in
weighted majority games [Peleg, 2002]c or approval balloting [Laslier and
Sanver, 2010]. The jury has to find a ‘consensual agreement’, but what
defines an acceptable consensus remains unclear—from the public, if not
for the jurors themselves. Indeed, the notion of ‘sufficient coalitions’ may
appear unwieldy to use explicitly, as it references the power set of the
points of view.

Example 7.3. (Example 7.2 continued) Suppose the approved sets are as
follows: A

e
1 :� {a , b , f },A

e
2 :� {e , b , c},A

e
3 :� { f , a , b},A

e
4 :� {d , a , c},

cWe note that there are simple voting structures, such as e.g. bicameralism, that cannot
be represented as weighted majority games.
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A
e

5 :� {c , e , b}, corresponding to the three best alternatives according to the
respective points of view (3-approval). Suppose also the points of view are
aggregated according to the simple majority rule, i.e. B ∈ S ⇐⇒ |B | ≥ 3.
Then, the corresponding noncompensatory model assigns a , b , c to the Good

category, and d , e , f to the Bad one. Hence, α :� {(a ,Good), (b ,Good),

(c ,Good), (d ,Bad), (e ,Bad), ( f ,Bad)}. We note the same assignment α
can be obtained with different sorting parameters, e.g. approved sets A′

e
1

:�

{a , b , f },A′

e
2

:� {e , b , c , d , a},A′

e
3

:� {},A′

e
4

:� {d , a , c},A′

e
5

:� {c} and

sufficient coalitions S′ containing the coalitions {1, 2}, {5} and their supersets.

7.2.2 Accountability requirements

While the jury as a whole has the power of taking decisions, we consider a
situation where it has to account for its decisions. This requirement may take
several forms, and we focus our attention on two specific demands:

Procedural regularity. [Kroll et al., 2017] puts forward that a baseline
requirement for accountable decision-making—and, therefore, a key governance
principle enshrined in law and public policy in many societiesd—is procedural

regularity: each participant will know that the same procedure was applied to
her and that the procedure was not designed in a way that disadvantages her
specifically.

Contestability. An attractive normative principle [Pettit, 1997, Pettit, 2000]
is contestability: a democratic institutional arrangement should be such that
citizens could effectively challenge public decisions. The control of the governed
on the government is in general two-dimensional: electoral and contestatory.
For reasons of practical feasibility, administrative decisions are typically under
contestatory control. In this context, a candidate, (supposedly) unsatisfied
with the outcome of the process regarding his own classification, could challenge
the committee and asks for a justification.

This ‘right for an explanation’, put forward with the GDPR at the level of
the European Union, is actually entrenched in the French legal tradition under
the form of an obligation, for any administration, to motivate its decisions
and, more generally, from the principle of contradictory debate. We believe,
as [Kroll et al., 2017] or [Cozic and Valarcher, 2017] that institutions should
be organized so as to make contestation possible and that this requirement
should be taken into account from the inception of the procedure (and carried
forward throughout its life cycle).

dE.g. by the Fourteenth Amendment in the USA.
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A typical way to address procedural regularity is to require transparency

and let an independent audit agency access all the available information.
Transparency could also be an adequate answer to contestability, provided
the decision rule is interpretable, an ill-defined notion in general, but that we
use here as meaning ‘comprehensible by the persons that need to’—here, the
contestant. In the context of jury decisions, transparency is out of question,
as it suffers from several drawbacks:

Sensitive information. In this setting, the ‘details of the votes’ cover two
aspects:

i) the approval of jurors at the individual level; and

ii) the winning coalitions at the jury level.

These details might be worth considering as sensitive information for several
reasons:

• Protecting the jurors from external pressure, including threats or retalia-
tion.

• Protecting the jury and jurors from internal pressure: maybe the approval
procedure should be made with secret ballots. Maybe revealing the actual
balance of power inside the jury could exacerbate tensions.

• The details of the approval of each candidate might be considered personal
information belonging to each candidate, and should not be disclosed to
third parties.

• Revealing dissension among the jurors might weaken the authority of the
jury. In France, for instance, it is customary, and even mandatory for
justice decisions, that the deliberation of a jury remains secret, and that
the final decision is attributed to the jury—or the Court—as a whole.
The consensus between jurors—or judges—has to be found beforehand,
in the privacy of the deliberation, and there is no place left for dissenting
opinions when the decision is made public. This process contrasts with
the anglo-saxon tradition of publishing the decisions of each judge.

• Revealing the decision rule, or publishing a lot of information about it,
would create a feedback effect with some candidates adopting a strategic
behavior in order to game the output. This behavior might be itself
detrimental to the goals of the jury, and might also be detrimental to
other candidates less knowledgeable about the system, creating a breach
in equity.

Complexity Leaving the burden of proof on the shoulders of the audit
agency, or worse, of a lone plaintiff, may be too demanding. It requires, at

172



Chapter 7. Accountable decisions with Inv-NCS

the same time, to give access to a lot of information—possibly the preferences
and the assignment of the whole set of candidates—and to solve difficult
combinatorial problems—we have shown that the Inv-NCS problem is NP-hard
(Theorem 5.11)—that scales badly with the number of candidates.

Sections 7.2.3 and 7.2.4 respectively focus on answering the procedural
regularity and the contestability requirements, while paying attention to dis-
close as few information as necessary, and providing explanations that are
comprehensible by their recipient.

7.2.3 Addressing overall Procedural regularity with Inv-NCS

In this section, we consider how participants, decision subjects, and observers
can be assured that each individual sorting decision was made according to the
same procedure–—for example, how observers can be assured that the jury is
not choosing outcomes on a whim while merely claiming to follow an announced
rule. In particular, we assume this task is delegated to an independent audit
agency, which is in charge of overseeing the whole process on behalf of the
stakeholders of the decision.

In view of this demand, what needs to be proven is that α is a positive
instance for the Inv-NCS problem, i.e. the assignment α is a possible outcome
for NCS, given the preferences of the jurors over the candidates.

Should the burden of proof be left to the auditor, the audit procedure could
require either:

i) full disclosure of the preference profile 〈(X,%i)〉i∈N , and the auditor
solving the NP-hard Inv-NCS problem, e.g. using a SAT solver and
either of the formulations ΦSAT−C

α or ΦSAT−P
α detailed in Chapter 5; or

ii) full disclosure of the approved sets 〈Ai〉i∈N , and the auditor solving the
polynomial-time problem Inv-NCS with fixed accepted sets problem as
described by Lemma 5.5.

Note that the full disclosure of the decision rule is not even on the table. It
would require to reveal the entire parameter specifying the NCS model, and in
particular the provision of the set of sufficient coalitions. This is impossible,
as the ground truth, i.e. the rule deciding which coalition is sufficient, is oral
at best, and most likely implicit. We consider the jury has a black-box access
to it, and the external auditor can only guess the contours of this rule through
indirect evidence. It is likely that the investigations made by the audit agency
reveal possible parameters that do not correspond to the ground truth.

If we consider putting the burden of proof on the committee, a third option
can be engineered. We propose to leverage Theorem 5.6 to compute and
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provide a certificate of feasibility for Inv-NCS(α) that involves the disclosure
of less information, as illustrated below:

Example 7.4. (Example 7.3 continued) If the approved sets of the committee
are A

e
1 , . . . ,A

e
5 , then it needs to disclose some information concerning three

points of view in order to prove the assignment α is consistent with an approval
procedure, e.g. :

• according to the first juror e
1:

– b is approved;

– a is preferred to b;

– e is not approved;

– e is preferred to d;

therefore, the procedure is able to positively discriminate a , b from d , e;

• according to the second juror e
2:

– c is approved;

– b is preferred to c;

– d is not approved;

– d is preferred to f ;

therefore, the procedure is able to positively discriminate b , c from d , f ;

• according to e
4:

– c is approved;

– a is preferred to c;

– e is not approved;

– e is preferred to f ;

therefore, the procedure is able to positively discriminate a , c from e , f .

The following table summarizes the jurors known to discriminate each pair:

Bad

d e f

a e
1

e
1

e
4

Good b e
1

e
1

e
2

c e
2

e
4

e
2

As every pair in {a , b , c} × {d , e , f } is positively discriminated by at least
one member of the jury, the procedure is regular: there is, for each juror
individually and for the jury, collectively, a way of proceeding accordingly to
the principles exposed in Section 7.2.1and deem {a , b , c} Good and {d , e , f }

Bad.
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This manner of arguing that a given assignment is indeed a possible outcome
of an approval sorting procedure can be formalized into an argument scheme,
an operator tying a tuple of premises – pieces of information satisfying some
conditions – to a conclusion [Walton, 1996].

Definition 7.2 (Argument Scheme (AS1)). We say a tuple 〈(i1 , g1 ,G1 , b1 , B1),

. . . , (in , gn ,Gn , bn , Bn)〉 instantiates the argument scheme AS1 supporting the

assignment α if: i) for all k ∈ {1 . . . n}, ik ∈ N, gk ∈ Gk, α(Gk) � {Good},

∀g ∈ Gk , g %ik
gk, bk ∈ Bk, α(Bk) � {Bad}, ∀b ∈ Bk , bk %ik

b and gk ≻ik
bk;

and ii)
⋃

k∈{1...n} Gk × Bk � α−1(Good) × α−1(Bad)

Hence, according to the point of view ik , gk is the least preferred alternative
in the subset of Good alternatives Gk and it is preferred to bk , the most
preferred alternative in the subset of Bad alternatives Bk . This scheme is
somewhat frugal in the number of pairs of the profile 〈(X,%i)〉i∈N revealed to
the auditor, as the comparisons inside Gk × Gk or Bk × Bk are not disclosed.
Theorem 5.6 can be reworded as follows:

Corollary 7.1. An assignment α is a positive instance of Inv-NCS if, and

only if, there is an instance of AS1 supporting it.

Example 7.5. (Example 7.4 continued) The explanations given in Example
7.4 instantiate AS1 as follows:

〈
(1, b , {a , b}, e , {d , e}), (2, c , {b , c}, d , {d , f }),

(4, c , {a , c}, e , {e , f })〉

The shift in the burden of proof allows the jury to support its claim (here,
the result of the sorting procedure) with arguments of its own choosing. The
length n of an explanation instantiating the argument scheme AS1 offers
an indication regarding its cognitive complexity as well as the amount of
information disclosed to the auditor. Therefore, we would rather provide the
shortest possible explanations, and strive to mention as few points of view as
possible. Obviously, an explanation needs to reference a specific point of view
at most once, so n ≤ |N |. Unfortunately, the following result shows that one
might require all points of view in a complete explanation, even in situations
with relatively few alternatives.

Proposition 7.2. For every jury N, there exists a set of |N |+1 alternatives X

and an assignment α : X→ {Bad ≺ Good} for which any tuple instantiating

the argument scheme AS1 and supporting α has length |N |.

Proof. The result is shown by induction on the size of the jury n, with n

candidates assigned to Good and one assigned to Bad.
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• Base case: for n � 1, i.e. N � {e
1
}, we consider the candidates X2 �

{b , g} , the preference g ≻
e

1 b and the assignment α1 :� {(g ,Good),
(b ,Bad)}.

• Inductive step: Consider an assignment αn on n + 1 candidates Xn+1,
with (b ,Bad) ∈ α assessed by the jury of size n: N � {e

1
, . . . ,e

n
}, but

no strictly smaller jury. We introduce a new candidate z, and a new
juror e

n+1. Then: the jury N ∪ {e
n+1

}, with preferences such that:

– e
n+1 is indifferent w.r.t. all candidates in Xn+1, and prefers z to all

of them;

– all the jurors in N prefer z to some candidate b ∈ α−1
n (Bad).

the alternatives Xn+2 :� Xn+1 ∪ {z} and the assignment αn+1 :� αn ∪

{(z ,Good)} satisfy the property at the step n+1: any tuple instantiating
the argument scheme AS1 and supporting αn+1 has length n + 1. Indeed,
it has to take into account the juror e

n+1 to positively discriminate z

from b; but this juror does not help to discriminate any pair of candidates
in αn.

�

7.2.4 Contestability of individual decisions

In this section, we focus on the situation where a candidate, supposedly unsat-
isfied with the outcome of the decision process regarding its own classification,
challenges the committee and ask for a justification.

Explaining the outcome of a classifier. This question can be considered
as falling under the umbrella of ‘explaining the outcome of a classifier’, that
has fostered a lot of interest for the last thirty years. The problem of devising
relevant explanations accompanying the result of a classification algorithm has
been addressed from many angles, e.g.:

a. Interpretation: going step by step through the classifier has reached the
particular conclusion concerning this candidate. This approach has risen
with the advent of rule-based system, a.k.a. expert systems [Buchanan
and Shortliffe, 1984, Waterman, 1986], where the trace of the algorithm
corresponds to the triggering of a number of business rules that were
thought to make for an explanation. Limits of this approach have been
discussed, e.g. [Alvarez, 2004], pointing at the fact that a particular
trace of the execution is often arbitrary and might be misleading. In
our case, the noncompensatory sorting model has the advantage of being
easy to interpret: a candidate is deemed Bad if, and only if, it has been
disapproved by the complementary of a sufficient coalition of jurors.

176



Chapter 7. Accountable decisions with Inv-NCS

b. Surrogation: For complex classifiers, finding a surrogate model that
can be interpreted: in order to explain a recommendation made about
a particular candidate by the model, a so-called interpretable model
is learned in the neighborhood of the candidate. This approach has
been made popular by LIME (for locally interpretable model-agnostic

explanations) [Ribeiro et al., 2016], where the learning set of the surrogate
model is built using black-box access to the model to be explained and a
specific sampling technique, and with a popular implementation based
on a linear classifier. This approach suffers from the shady contours of
the notion of interpretability [Lipton, 2017].

c. Counterfactual causes: instead of focusing on how the decision was made,
it might be enlightening to question the way things could have turned
out differently. This notion is captured by the notion of counterfactual

faithfulness [Wachter et al., 2017, Doshi-Velez et al., 2017]. In our case,
that could result in pointing at a subset of jurors that would have reversed
the outcome, would have they approved the candidate.

d. Focusing on the unexpected: assuming people only ask for clarification
when they are surprised by the outcome, relevant explanations can use
a cognitive model of the recipient [Kass and Finin, 1988, Miller, 2018].
In multiple criteria decision aiding, [Labreuche, 2011] instantiates this
approach by representing the default reasoning of the user with anchors,
fictitious facts coalescing the user’s expectations.

We note that all these approaches proceed from the principle that the
decision rule is true, and adopt a didactic stance, where the system teaches the
users: accompanying them through the rule (for a.), giving them a simplified
overview (for b.), anticipating their goals (for c.) or their expectations (for d.).

A dialectical stance based on reference cases We believe the professo-
rial attitude adopted by the system in the main approaches towards explanation
detailed above is not suited to address the challenge of contestability. What
is being contested is the rule itself, hence considering it as an unquestion-
able axiom may only lead to a dialog of the deaf between the user and the
system. The system needs to adopt a lower profile with respect to its own
decision-making in order to enter a contradictory procedure.

Articulating this dialectical stance around the notion of reference cases, an
assignment α∗ : X∗ → {Good,Bad} has several advantages:

i) The reference cases represent accumulated knowledge,e.g. a compilation
of past decisions that are held of representative of a good adjudication.
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ii) The reference cases feed the dialog between the jury and the stakeholders
with axioms, facts that every party consider true.

iii) The reference cases are a mean to channel the dialog into arguing about
the commonly acknowledged facts, on the one hand, and the particulars
of the plaintiff, on the other hand. It circumvents the need or the oppor-
tunity to refer to the situation of any other candidate—thus contributing
to preserve some secrecy and preventing a cascading effect, should the
decision concerning a plaintiff be reversed.

iv) The reference cases are binding for the jury: whatever the parameter ω—
encoding the approved sets and the set of sufficient coalitions—describing
the collective functioning of the committee, the sorting rule NCSω should
coincide with the reference assignment;

∀x⋆ ∈ X⋆, NCSω(x
⋆) � α⋆(x⋆)

A large base of reference cases can also serve as a guarantee of procedural

regularity.

The representation of knowledge based on reference cases needs to be
complemented by a representation of reasoning specifically designed to reflect
the noncompensatory stance we assume.

When there is some jurisprudence α⋆ : X⋆ → {Good,Bad}, the assign-
ment of a new candidate x can be necessary, in the sense that no other
assignment is possible.

Definition 7.3 (Necessary assignment w.r.t. reference cases). Given a positive

instance α⋆ of Inv-NCS, an alternative x ∈ X is necessarily assigned to a

category C ∈ {Good,Bad} with respect to the reference assignment α⋆ if

α⋆ ∪ {(x , C)} is a negative instance of Inv-NCS, where C denotes the category

opposite to C.

Regarding the situation where a candidate challenges the jury about its
own outcome, the objective is to justify the classification of the complaining
individual with minimal disclosure of the details of the vote.
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We outline different cases:

1. the decision concerning the candidate is necessary with respect to the
jurisprudence: the sorting of the candidate cannot be otherwise, as long

as a number of other classification outcomes are accepted;

2. the situation of the candidate is ambivalent w.r.t. the jurisprudence. In
this case, where the jurisprudence does not constrain the decision of the
jury, we consider two design options:

2a. complementing the jurisprudence with a default rule; or

2b. leaving the interpretation up to the jury. Then, it may happen that
the status of the coalition of jurors having actually approved the
candidate is entailed by the jurisprudence, forming a basis for an
explanation.

Example 7.6. (Example 7.3 continued.) We consider the alternatives a, b, c,
d, e, f and their assignment α⋆ have a reference status, and we are interested
in deciding on the assignment of two candidates, x , y such that:

a ≻1 f ≻1 b ≻1 e ≻1 c ≻1 y ≻1 d ≻1 x

e ≻2 b ≻2 y ≻2 c ≻2 d ≻2 a ≻2 f ≻2 x

f ≻3 a ≻3 d ≻3 b ≻3 y ≻3 x ≻3 e ≻3 c

d ≻4 a ≻4 c ≻4 e ≻4 x ≻4 y ≻4 f ≻4 b

c ≻5 y ≻5 e ≻5 b ≻5 f ≻5 x ≻5 d ≻5 a

It is not possible to represent the assignment (x ,Good) together with the
reference assignment α. Thus, x is necessarily assigned to Bad . On the
contrary, the situation of y is ambivalent, as both assignments (y ,Good) and
(y ,Bad) can be represented together with α.

Necessary decisions entailed by the jurisprudence. An explanation of
the necessity of an assignment is intrinsically more complex than that for its
possibility: one needs to prove that it is not possible to separate all pairs of
Good and Bad candidates on at least one point of view. The proof relies on
some deadlock that needs to be shown. Formally, this situation manifests itself
in the form of an unsatisfiable boolean formula, e.g. given by Corollary 5.7.
The unsatisfiability of the entire formula can be reduced to an unsatisfiable
subset of clauses (MUS) minimal w.r.t. set inclusion, which are commonly used
as certificates of infeasibility, and can also be leveraged to produce explanations

[Junker, 2004, Besnard et al., 2010, Geist and Peters, 2017]. In the case of the
necessary decisions by approval sorting with a reference assignment, any MUS
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pinpoints a set of pairs of alternatives in (α−1(Good) ∪ {x}) × α−1(Bad) that
cannot be discriminated simultaneously according to the points of view.

Example 7.7. (Example 7.6 continued.) Consider the subset of alternatives
c , d , e , f , x, and assume x to be assigned to Good. Each pair in GB :�
{(c , e), (x , d), (x , f )} needs to be discriminated from at least one point of view
in N, but this is not possible simultaneously: i) none of the pairs in GB can
be discriminated neither from the first, the second nor the third point of view,
as the overall Good alternative is deemed worse than the Bad one. ii) no
more than one pair in GB can be discriminated according to each point of view
among {4, 5}, and there are more pairs to discriminate than points of view.

The pattern of deadlock illustrated by Example 7.7 can be generalized
and formalized into an argument scheme, with premises: i) a k-tuple of pairs
〈(g1 , b1), . . . , (gk , bk)〉 of alternatives with opposite assignment, ii) a subset of
points of view B ⊆ N with cardinality k − 1, such that, according to all points
of view i < B, b j ≻i g j for all j, and, according to all points of view i ∈ B the
intervals ]b1 , g1]i , . . . , ]b

k , gk]i are pairwise disjoint.
Clearly, this explanation technique, inspired by the pigeonhole principlee, is

sound: the existence of an argument instantiating the premises of this scheme
is a sufficient condition for the infeasibility of representing the given assignment
in the noncompensatory model, which in turn yields the conclusion that the
candidate x is necessarily assigned to the other category.

If we assume that the cognitive burden demanded by an explanation along
the lines of this argument scheme increases with the number of its premises, we
derive an implicit hierarchy among the necessary decisions supported by the
scheme, with a nesting E

ph
1 ⊆ E

ph
2 ⊆ · · · ⊆ E

ph

|N |+1
, where E

ph

k
denotes the set of

decisions supported by a pigeonhole-inspired scheme with premises referencing
at most k pairs of alternatives with opposite assignment. E

ph
1 is exactly the

set of decisions stemming from Pareto dominance, where a candidate is either
at least as good as a reference alternative in the Good category, or at most as
good as a reference alternative in the Bad category.

Is this explanation technique complete? The question of deciding if this
scheme captures a necessary condition, i.e. if any decision entailed by the
jurisprudence can be supported by such an explanation, is left open.

Conjecture 7.3.

E
ph

|N |+1
� {(x , c) ∈ X × {C1 ≺ · · · ≺ Cp} : x is necessarily assigned to c}.

eIf there are strictly more pigeons than pigeonholes, then there is a pigeonhole containing
at least two pigeons. Sophisticated people are interested in socks and drawers, and call it
Dirichlet’s theorem.
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Ambivalent situations. It may happen that, for a given candidate, both
assignments to Good and to Bad are possible. This situation is obviously all
the more frequent as the reference set is small, or the number of points of view
is high.

To handle ambivalent cases, a design option would consist in constraining
the decision of the committee, either favorably (e.g. following an innocent

unless proven guilty principle) or unfavorably (e.g. following a precautionary

principle). In both case, this amounts to completely mechanize the decision
procedure, with the advantages of guaranteeing total procedural regularity, and
eschewing the need for gathering a real jury, but also incurring the inconvenience
of having a completely public procedure that becomes gameable, and depriving
the jury of having the possibility to exercise judgment in the adjudication of
the ambivalent cases. Concerning the explanation of decisions, having a default
rule entails that only the decisions that are necessarily contrary to the rule
need to be explained. This option can therefore be seen as a strong enforcement
of the accountability requirements: no decision can be taken unless it is duly
motivated.

Another, less drastic, option consists in giving the freedom of choice to
the committee. In this case, as opposed to the situation where the decision is
entailed by the jurisprudence, and where the committee just needs to make
obvious the link between the current case and the reference cases, the committee
needs to disclose some additional information concerning its inner functioning.
In some cases, though, revealing some information concerning the approved
sets of the jurors may suffice to explain a specific outcome, thanks to Lemma
5.5.

For an unhappy candidate y assigned to Bad, suppose there exists B ⊂ N

such that:

∀e ∈ B, ∃x ∈ X⋆ : y ≺e x and x < Ae ; (7.1)

and

∃b ∈ α⋆−1(Bad) : ∀e ∈ N \ B, b ∈ Ae . (7.2)

The condition (7.3) certifies the candidate is disapproved by all the jurors in B,
while the condition (7.4) assesses the remaining jurors do not form a sufficient
coalition to qualify the candidate as Good.

Example 7.8. (Example 7.6 continued)

• According to e
1, y is disapproved, as it is worse than e < A

e
1

f;

fNote that the explanation could lean on c < A
e

1 , but it might be more convincing to

mention, if possible, reference cases that belong to α⋆−1(Bad), in order to exacerbate the

lack of fitness of the candidate—even though, here, c is preferred to e according to e
1
.
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• according to e
3, y is disapproved, as it is worse than b < A

e
3 ;

• according to e
5, y is disapproved, as it is worse than f < A

e
5 .

• Furthermore, being approved by e
2 and e

4 is not enough to warrant
access to the Good category, as illustrated by e.

Hence, y is assigned to the Bad category.

Conversely, a complaint about a candidate y assigned to Good might be
addressed by finding a subset of jurors B ⊂ N such that:

∀e ∈ B, ∃x ∈ X⋆ : y ≻e x and x ∈ Ae ; (7.3)

and
∃g ∈ α⋆−1(Good) : ∀e ∈ N \ B, g < Ae . (7.4)

The condition (7.3) certifies the candidate is approved by all the jurors in B,
while the condition (7.4) assesses they form a sufficient coalition to qualify the
candidate as Good.

These explanations do not cover every possible configuration. Indeed, they
do not reference the actual, latent, set of sufficient coalitions of jurors but only
its bounds, given the approved sets, established by Lemma 5.5—the upper
bound P(N) \ F〈Ai〉(α

⋆) when the contestation concerns a candidate deemed
Bad, the lower bound T〈Ai〉(α

⋆) when the contestation concerns a candidate
deemed Good. Figure 7.1 illustrates these bounds of the version space of the
sufficient coalitions of jurors, given the approved sets, corresponding to the
case detailed in Example 7.8. In order to ensure every decision of the jury
can be supported by an explanation, the remaining cases, corresponding to
candidates approved by a coalition of jurors that is neither necessarily nor
impossibly sufficient given the actual approved sets, could be handled by a
default rule.
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Figure 7.1: Version space of the sufficient coalitions of a noncompensatory
sorting model, with given approved sets, corresponding to Example 7.8. Nec-
essarily sufficient coalitions are in green with thick borders, necessarily insuf-
ficient coalitions are in red and ambivalent coalitions—possibly sufficient or
insufficient—are in white.
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Conclusion

8.1 Summary of our contributions

We summarize below the main results obtained in this PhD thesis, following
the structure of the document.

Contributions to the problem of comparing with an additive model.

a. We described the aggregation procedure yielded by the (robust) elicitation
of an additive value model in a KR framework, with the preference
information as a knowledge base and adjudication as inference (mostly
published in [Belahcene et al., 2017a]);

b. we provided knobs permitting to account for variants of the additive
value model, either more constrained, or allowing for a richer language
(unpublished);

c. we proposed a framework permitting to compute and represent the entire
necessary preference relation (mostly published in [Belahcene et al.,
2017a]);

d. we proposed an explanation engine for this model, based on cancellation,
permitting to tie conclusion drawn to premises that are PI statements;
various representations are discussed, completeness and soundness are
established, computation of simple explanations is NP complete (unpub-
lished);

e. we proposed another explanation engine for the additive value model,
based on a divide and conquer principle consisting in breaking down
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a complex statement into simpler statements combined by transitivity;
the scheme is sound, but there is a trade-off between simplicity and
completeness—we furthermore derive excellent completeness, simplicity
and computational results when considering a classical restriction on the
preference information. (published in [Belahcene et al., 2017a])

Contributions to the problem of noncompensatory sorting.

a. We described in a unified framework some of the variants of the noncom-
pensatory sorting model (unpublished);

b. we proposed a formulation based on Boolean satisfiability, representing
the inverse-NCS problem in a sound and complete manner that explicitly
represents the parameter space, and thus requires an exponential number
of variables and clauses w.r.t. the number of points of view (published
in [Belahcene et al., 2018c]);

c. we experimentally assessed the computational relevance of this formu-
lation, by comparing it to the state-of-the-art elicitation procedure for
MR-Sort, a noncompensatory sorting model where sufficient coalitions
of criteria are normatively assumed to be compactly represented by a
majority rule; results tend to show the proposed formulation is approxi-
mately 50 times faster than the baseline, while being moderately more
prone to overfitting (published in [Belahcene et al., 2018c]);

d. we proposed and proved a characterization of the positive instances
eschewing the explicit representation of the power set of points of view,
and proposed a second formulation based on Boolean satisfiability, repre-
senting the inverse-NCS problem in a sound and complete manner, with
a polynomial number of variables and clauses (published in [Belahcene
et al., 2018a] in the case of two categories);

e. we (briefly) discussed the potential contribution of an approach based on
Inv-NCS to the robust elicitation of the model, towards an accountable
decision aiding framework (unpublished);

f. we envisioned the potential contribution of Inv-NCS to the elaboration
of an accountable-by-design sorting procedure based on the approval
of candidates by jurors; complete and sound certificates for procedural
regularity are provided in the form of argument schemes, even though
simplicity cannot guaranteed in general; moreover, sound certificates
addressing potential contest are proposed, in support of necessary assign-
ments, also in the form of argument schemes (published in [Belahcene
et al., 2018a]).
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Chapter 8. Conclusion

8.2 Open questions and work in progress

There are a number of promising future work which can be undertaken very
soon (or are already in progress, as we shall see). We begin with those
pertaining to Part I, hence assuming an additive value model:

1. Compare the two approaches to the explanation of necessary pairwise
preference, assuming an additive value model—one based on cancellation,
the other based on simple transitive sequences. By comparison here we
mean both a deeper theoretical understanding of their relative properties
(as length of sequences etc.); but also experiments involving human users,
so as to evaluate the cognitive burden and human understandability of
the proposed explanations [Nunes et al., 2014, Miller, 2018];

2. An obvious open question regards the possibility (or not) to avoid the
repetition of the conclusion, in the cancellative explanations of necessary
pairwise preference, assuming an additive value model. We conjecture
that it is impossible to avoid, but this remains to be proven;

3. Develop the extensions of the additive model towards cardinality. There
are several opportunities that we may think of: rounding of the covector
coefficients, explanation of residual regret, preference information rela-
tive to the intensity of preference, explanation of or with intensity of
preferences. A first interesting step could be to account for quaternary
preferences, thus allowing statements of the form “a is more preferred to

b than c is preferred to d” [Bana e Costa and Vansnick, 1995, Bouyssou
and Pirlot, 2004].

Regarding the Noncompensatory Sorting model studied in Part II, we start
by pinpointing a couple of questions already mentioned in the document, and
then enumerate direct variants of the problem which could be considered:

1. We left open an intriguing but potentially challenging question regarding
the completeness of the explanation scheme based on the pigeonhole
principle, for necessary adjudications of noncompensatory sorting. If we
were to answer this conjecture in the positive, this would illustrate how
pervasive this principle could be and potentially offer insights for other
problems. We note that this would also readily imply an upper bound
on the complexity of explanations (taken as the arity).

2. While we provide first results regarding lower bounds on the length of
explanations (for instance regarding the number of viewpoints involved),
we could also exploit communication complexity [Kushilevitz and Nisan,
1997] notions to come up with general lower bounds results for the
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problem under consideration, e.g. the number of bits that need to be
exchanged in order to solve the Inv-NCS decision problem.

3. As we came up with different SAT formulations for Inv-NCS, it certainly
makes sense to experimentally assess their computational relevance, and
compare in particular the compact to the non-compact one already
provided (joint work with Oumeima Khaled and Ali Tilil, to appear in
[Belahcene et al., 2018b]—presented in Appendix C).

Finally, there are straightforward variants of the model investigated in this
document:

1. For the case of two categories, we came up with a full battery of results
(characterization results for the cases where approved sets are know or not,
and subsequent compact SAT formulation). The same exercise should
be done for the model allowing to sort into more than two categories.
We do not foresee any specific difficulty here, and believe similar results
should be obtained in the near future.

2. There are other very interesting noncompensatory models existing in the
literature. Can we extend the principle of representing inverse problem
for disaggregation to these models? In joint work with Marc Pirlot
and Olivier Sobrie, to appear in [Belahcene et al., 2018d]—presented in
Appendix D— we take up this research agenda and investigate the model
of ranking with multiple reference points [Rolland, 2013].

3. Another idea could be to bridge the noncompensatory sorting models
(which are based on a limitation a priori on the number of ordinal
categories, and constrains as a consequence the language allowed to
the decision maker with a similar cap for all points of view), to L1-
optimization techniques (‘lasso’) that yield the minimal number of total
categories [Sokolovska et al., 2017].

4. Finally, a natural feature required in many applications is to allow
to express additional constraints, e.g. cardinality constraints on the
categories (“We would like to have at least 5 acceptable projects to fund”).
This can be done inside the Boolean satisfiability framework, using SMT
(SAT modulo theory).

8.3 Perspectives

Considering a not-so-perfect preference information. When consider-
ing to put our contributions to the test consisting in supporting a real-world
decision aiding process with explanation, we foresee that the principal ob-
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stacle will be the assumption of having a perfect and consistent preference
information.

Therefore, the challenge of finding a principled way to restore this con-
sistency (or deal with inconsistency) in an accountable manner, needs to be
addressed. Several promising approaches have been proposed on the basis
that some assumptions—either preference statements or decision theoretic
properties—might simply be wrong, and should be discarded:

• considering maximally consistent subsets of statements [Mousseau et al.,
2003];

• relaxing the aggregation model—assuming models form a lattice, seen
as a partially nested structure—until a model sufficiently expressive
to accommodate for the preference information is found [Ouerdane,
2010, Greco et al., 2014];

• using a numerical estimation of inconsistency, such as a belief function

[Destercke, 2018].

An intriguing question concerns the representation of knowledge about the
aggregation procedure representing the views of the decision maker. While
we have rejected the notion of learning a compiled representation—a ball—
in favor of a list of statements—a polytope, when the model is linear—it
seems reasonable to assume that, given sufficient time, the elicitation process
might eventually converge towards a single value of the preference parameter.
When does it become sensible to move from one representation to another?
Studying this phase transition presumably requires a non-dialectic framework
that tolerates noisy inputs.

Languages. To represent the way of reasoning about preferences embodied
by the additive value model and the noncompensatory sorting model, we have
considered several paradigms:

• Linear programming (LP), with continuous variables;

• Boolean satisfiability (SAT), with binary variables;

• Mixed integer programming (MIP), which is an extension of LP that
allows for integer variables, but also extends SAT;

LP is polynomial, while SAT and MIP are NP-complete. Structurally, MIP is
far more expressive than SAT and LP, but is practically much slower, and does
not propose handy, generic certificates like LP or SAT. Replacing MIP by SAT,
in the case of Inv-NCS problem, permitted huge gains in terms of computation
time. Many more languages, of intermediate complexity and expressiveness,
can be considered:
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• MaxSAT, where a SAT formulation is complemented with an objective
function, so that the number of satisfied clauses is maximal, allows to
‘best satisfy’ an unsatisfiable instance;

• pw-MaxSAT, allows to weigh (‘weighted’) or omit (‘partial’) the contri-
bution of clauses to the objective function;

• pseudo Boolean functions (pBf) and answer set programming (ASP) offer
an even richer language—yet less so than MIP—that allow to natively
represent e.g. cardinality constraints [Berre et al., 2018].

Dropping the barrier between solver and solved. In this work, we
have repeatedly leveraged the existence of powerful solvers for MIP and SAT
formulations. This black-box approach allowed us to eschew the task of
developing a dedicated solver for our problems, while benefiting of the latest
advances. As our approach is based on certificates of infeasibility, it might be
beneficial to:

1. have a look at the representation of this type of certificates inside the
various solvers, both as a source for new ideas for explanation, and as a
way to avoid the reconstruction of such a certificate outside of the solver,
involving a large number of black-bow queries;

2. design solvers tailored to our problems and our needs for certificates.

This is the topic of the current CNRS PEPS project SAT4Ex, involving the
CRIL laboratory and ourselves.

Models. Throughout this work, the selection of an aggregation model has
been normative, and considered as belonging to the context. Models embody
assumptions about the decision-theoretic stance of the decision maker w.r.t. a
specific decision situation; therefore, a given model may prove inappropriate to
a given situation. For instance, the additive value model has two well-known
blind spots:

• incomparability—the preference structure described by any value model
is a total preorder. Given two alternatives, only three outcomes are
possible: strict preference for the former, strict preference for the latter,
or indifference. It has been shown (e.g. [Deparis et al., 2012, Dubois et al.,
2008]) that decision makers often spontaneously offer a fourth type of
answer: incomparability. This second type of symmetric relation has an
epistemic meaning that differs from the one expressed by indifference—–in
one case, the subject expresses that they know the alternatives compares
equally, while in the other they express that they have no knowledge.
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This epistemic difference may translate into different properties, and
therefore may need to be accounted for by the preference model.

• interactions between the influence of the points of view—first-order can-
cellation can be interpreted as a statement of preferential independence.
It offers the opportunity to reason ceteris paribus, i.e. everything else
being equal, without any consideration for the actual values of the things
‘being equal’. This fundamental feature of the additive model can, and
has often been, defeated in practical applications. We recall some famous
refutations of this property, e.g. Fishburn’s iterated menus, or values
of bundles [Fisher, 1892, Bouveret et al., 2016], with substitution or
complementarity effects between objects.

Many models account for interactions between the influence of the points
of view, such as Generalized additive models (GAI) [Fishburn, 1967b],
or Choquet integral [Grabisch and Labreuche, 2010]. These models,
however, are practically defined as corrections to the baseline offered by
the additive value model.

Another issue is the informational complexity of models: how much pref-
erence information is needed to elicit ‘sufficiently’. It seems crucial to select
a model of a complexity proportionate to the time budget allocated to the
decision process. This assumption can be relaxed in at least two directions:

• obviously, considering other aggregation models than those considered
here;

• considering the model selection as defeasible [Ouerdane, 2010].

Planning. Considering preference elicitation as a planning problem is not
a new idea (for instance, Boutilier [Boutilier, 2002] proposes a POMDP for-
mulation). Similarly, approaching argument generation as a planning problem
is natural, and not completely new either [Cawsey, 1993]. Since our results
identified several basic “operators” (under the form of argument schemes), it
is thus tempting to adopt this stance and design an explanation planner for
our decision-aiding setting. This unified framework could pave the way for
a potentially powerful mixture of approaches (using different types of argu-
ment schemes within the same line of explanation), as well as –perhaps more
prospectively– interleave the elicitation and explanation process.

Applications. Finally, a very valuable achievement would be to implement
a proof of concept:
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• addressing a real-world decision situation, and proposing to assist an
analyst during the elicitation of an additive value model, or of a noncom-
pensatory sorting model;

• participating in the elaboration of an accountable-by-design procedure,
maybe for an administrative algorithm [Cozic and Valarcher, 2017], or
any other agent required to account for the decision they take [Kroll
et al., 2017].
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A

Proofs

A.1 Proofs of Theorems 2.4 and 2.8

Theorem 2.4. UP ∩NP � �.

Theorem 2.8. (characterization of necessary preference using covectors)
Given some preference information P ⊂ P2 ⊂ X2, and a pair of alternatives

(x , y) ∈ X2 \ UP, the following propositions are equivalent :

1. necessary preference

(x , y) ∈ NP

2. linear feasibility problem




(x , y)⋆ × ∆v < 0
∀π ∈ P , π⋆ × ∆v ≥ 0
∀(i , k) ∈ I, δ⋆

(i ,k)
× ∆v ≥ 0

has no solution ∆v ∈ RI

3. combination of statements ∃λ ∈ [0,+∞[P , µ ∈ [0,+∞[I:

(x , y)⋆ �

∑
π∈P

λππ
⋆
+

∑
(i ,k)∈I

µ(i ,k)δ
⋆
(i ,k)

4. integral combination of statements

∃n ∈ N⋆, ℓ ∈ NP , m ∈ NI :

n (x , y)⋆ �

∑
π∈P

ℓπ π
⋆
+

∑
(i ,k)∈I

m(i ,k) δ
⋆
(i ,k)
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Proof of (1) ⇐⇒ (2)

We begin by noticing that

• preference statements involve core alternatives (see Def. 2.2.1) : P ⊂ P

• pairs of core alternatives are never unbounded : P ∩UP � �

Thus, Theorem 2.4 does not apply to core alternatives,so that preference
statements, as well as queries between core alternatives, can be represented by
covectors. We begin by breaking down the definition of covectors by point of
view :

Given a point of view ∀i ∈ N and two values ∀xi , yi ∈ Xi, let (xi , yi) ∈

R|Pi |−1 : ∀k ∈ N : 1 ≤ k ≤ |Pi | − 1,

(xi , yi)
⋆
k :�



+1, if [pk

i
, pk+1

i
] ⊂ [yi , xi]

−1, if [pk
i
, pk+1

i
] ∩ ]xi , yi[ , �

0, else.

(A.1)

So that, ∀x , y ∈ X, ∀(i , k) ∈ I, (x , y)⋆
(i ,k)

� (xi , yi)
⋆
k
. By Lemma 2.6, these

covectors permit to represent differences of value:

∀i ∈ N, ∀xi , yi ∈ Pi , ∀V ∈ V, vi(xi) − vi(yi) �

|Pi |−1∑
k�1

(xi , yi)
⋆
k∆v(i ,k) (A.2)

In the case of pairs of core alternatives, the objective function as well as
the constraints of the minimization problem of Lemma 2.3 can be expressed
using covectors and matrix multiplication:

We define the function ∆Vinf : X2 → R ∪ {−∞} by:

∀x , y ∈ P, ∆Vinf (x , y) :� inf (x , y)⋆ × ∆v s.t. ∆v ∈ ΩP ∩ΩD ; (A.3)

with ΩP :�{∆v ∈ RI : ∀π ∈ P , π⋆ × ∆v ≥ 0}; (A.4)

and ΩD :�{∆v ∈ RI : ∀(i , k) ∈ I, δ⋆
(i ,k)

× ∆v ≥ 0}. (A.5)

Thus,
∀x , y ∈ X, (x , y) ∈ NP ⇐⇒ ∆Vinf (x , y) ≥ 0 (A.6)

Generally, with alternatives (x , y) not necessarily belonging to the core P,
it has been shown [?] that minimizing V(x) −V(y) over V ∈ VP is still a linear
program, with additional decision variables accounting for the distinct values
{xi , yi} < Pi. The vi(xi), vi(yi) are only constrained by the monotonicity of
the marginal value functions, so the problem is separate :

∆Vinf � inf
∆v∈ΩP∩ΩD

∑
i∈N

inf
vi (xi ) ∈ UXi ∩ LXi

vi (yi ) ∈ UYi ∩ LYi

vi(xi) − vi(yi) (A.7)
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with, ∀i ∈ N,




UXi :� {vi(xi) ∈ R : ∀zi ∈ Pi ∪ {yi}, zi %i xi ⇒ vi(zi) ≥ vi(xi)}

LXi :� {vi(xi) ∈ R : ∀zi ∈ Pi ∪ {yi}, zi -i xi ⇒ vi(zi) ≤ vi(xi)}

UYi :� {vi(yi) ∈ R : ∀zi ∈ Pi ∪ {xi}, zi %i yi ⇒ vi(zi) ≥ vi(yi)}

LYi :� {vi(yi) ∈ R : ∀zi ∈ Pi ∪ {xi}, zi -i yi ⇒ vi(zi) ≤ vi(li)}

Thus, it is possible to circumvent this augmentation of the decision space by :

• considering a given criterion i ∈ N and a given vector ∆v ∈ ΩP ∩ΩD ;

• directly assigning the additional decision variables to their optimal values
in the inner linear program

inf
vi(xi),vi(yi)

vi(xi) − vi(yi) s.t.

{
vi(xi) ∈ UXi ∩ LXi

vi(yi) ∈ UYi ∩ LYi
;

• checking this optimal case is correctly represented, either by an unbounded

pair or in covector form.

We begin by focusing on the case where the values of Pi ∪ {xi , yi} are all
different. We sort these values in strictly ascending order, and we detail three
cases according to the position of xi and yi amongst these |Pi | + 2 values :

• the interval [xi , yi] overflows the set Pi, so that the pair (x , y) ∈ UP is
unbounded. This case actually encompasses three subcases

– xi has no predecessor, when xi is the least element of Pi ∪ {xi , yi}.
There is no constraints in LXi � R;

– yi has no successor, when yi is the highest element of Pi ∪ {xi , yi}.
There is no constraints in UYi � R;

– both preceding cases are simultaneously satisfied.

In any case,

inf vi(xi) − vi(yi) s.t.

{
vi(xi) ∈ UXi ∩ LXi

vi(yi) ∈ UYi ∩ LYi
� −∞,

thus Vinf (x , y) � −∞ and (x , y) < NP , thus proving Theorem 2.4;

• yi is the predecessor of xi, so xi is the successor of yi. In this case, the
constraints UXi , LXi ,UYi , LYi can all be replaced by the single equality
vi(xi) � vi(yi), which defines a solution both feasible and where the
objective function is minimized with respect to the decision variables
vi(xi), vi(yi). Meanwhile, we consider the coefficients (x , y)⋆

(i ,k)
, 1 ≤ k <

|Pi | : the interval [yi , xi] does not contain a single core value pk
i
∈ Pi,
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hence (x , y)⋆
(i ,k)
, +1; the interval ]xi , yi[ is empty, hence (x , y)⋆

(i ,k)
, −1;

finally (x , y)⋆
(i ,k)

� 0. This proves the identity :

inf vi(xi) − vi(yi) s.t.

{
vi(xi) ∈ UXi ∩ LXi

vi(yi) ∈ UYi ∩ LYi
�

|Pi |−1∑
k�1

(x , y)⋆
(i ,k)
∆u(i ,k) ,

as both sides are equal to zero.

• xi has a predecessor which is not yi , and yi has a successor which is

not xi.

First, we rewrite inf vi(xi) − vi(yi) s.t.

{
vi(xi) ∈ UXi ∩ LXi

vi(yi) ∈ UYi ∩ LYi
as a dif-

ference in marginal value between surrogate alternatives in the core
Pi.

The predecessor xi of xi is given by xi :� max{d ∈ Pi , d -i xi}, so that
the constraints UXi , LXi can both be replaced by the single equality
vi(xi) � vi(xi), which defines a solution both feasible and where vi(xi) is
minimal with respect to the decision variable vi(xi).

The successor yi of yi is given by yi :� min{d ∈ Pi , d %i yi}, so that
the constraints UYi , LYi can both be replaced by the single equality
vi(yi) � vi(yi), which defines a solution both feasible and where vi(yi)

is maximal, so the objective function is minimal, with respect to the
decision variable vi(yi).

Thus,

inf vi(xi) − vi(yi) s.t.

{
vi(xi) ∈ UXi ∩ LXi

vi(yi) ∈ UYi ∩ LYi
� vi(xi) − vi(yi)

Second, as both surrogate alternatives xi , yi belong to Pi, Lemma 1
ensures that :

vi(xi) − vi(yi) �

|Pi |−1∑
k�1

(xi , yi)
⋆
k∆u(i ,k)

Third, we check that the covector coefficients for criterion i of the original
pair match those of the surrogate pair, that is :

∀k ∈ N : 1 ≤ k < |Pi |, (xi , yi)
⋆
k � (xi , yi)

⋆
k

The proof is straightforward :

– if xi ≻i yi , then there is at least one attribute value d ∈ Pi between xi

and yi , so that the predecessor of xi and the successor of yi are in the
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same order, thus xi %i yi . Hence, the coefficient indexed by (i , k) of
their respective covectors are in {0,+1}, with value +1 respectively
when yi -i pk

i
≺i pk+1

i
-i xi and when yi -i pk

i
≺i pk+1

i
-i xi.

The definition of the surrogate pair ensures these conditions are
equivalent.

– if xi ≺i yi, then obviously xi -i yi. Hence, the coefficient of their
respective covectors indexed by (i , k) are in {0,−1}, with value
0 respectively when yi -i pk

i
or pk+1

i
-i xi, and when yi -i pk

i

or pk+1
i
-i xi. The definition of the surrogate pair ensures these

conditions are equivalent.

Thus,

inf vi(xi) − vi(yi) s.t.

{
vi(xi) ∈ UXi ∩ LXi

vi(yi) ∈ UYi ∩ LYi
�

|Pi |−1∑
k�1

(xi , yi)
⋆
k∆u(i ,k)

The cases where |Pi ∪ {xi , yi}| � |Pi | + 1 are correctly handled in the
discussion above : if overflow (when either xi ≺i minPi or yi ≻i max Pi)
does not occur, the case xi � yi extends the case where the optimal value
of vi(xi) − vi(yi) is zero ; the case where yi ∈ Pi leads to the introduction
of yi :� yi, and the case where xi ∈ Pi leads to xi :� xi.

Finally, for any pair (x , y) ∈ X2, we have proven that, in every case, either the
pair is unbounded and not in the relation NP , or it can be represented by a
covector such that:

∆Vinf (x , y) � inf
∆v∈RI

(x , y)⋆ × ∆v s.t.

{
∀π ∈ P , π⋆ × ∆v ≥ 0
∀(i , k) ∈ I, δ⋆

(i ,k)
× ∆v ≥ 0

�

Proof of (2) ⇐⇒ (3)

By Farkas’ lemma, the problem (2) has no solution if, and only if, the objective
linear form (x , y)⋆ is a linear combination with non-negative coefficients of the
constraints linear forms {π⋆, π ∈ P} and {δ⋆

i ,k
, (i , k) ∈ I}. �

Proof of (3) ⇐⇒ (4)

Obviously, (4) ⇒ (3). Conversely, as the covectors involved in (3) have integral
coordinates, the non-negative coefficients {λπ , π ∈ P} and {µ(i ,k) , (i , k) ∈ I},
if they exist, can be chosen in the field of rational numbers. Multiplying the
relation by the common denominator n ∈ N⋆ of these coefficients leads to
(4). �
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A.2 Proof of Theorem 3.9

Theorem 3.9 For any integer p, if there is a subset A ⊆ N : |A| � 3 and

∀i ∈ A, |Xi | ≥ p, then there is a relation R satisfying Pareto, transitivity and

first-order cancellation, and a pair (x , y) ∈ R(3) such that (x , y) ∈ E2(R) and

any explanation of (x , y) by preference swaps of order at most 2 has a length

greater than 2p.

For the sketch of the proof, we consider three points of view N � {A, B, C}

and we construct, for every p, a preference between x � (0A , pB , pC) and
y � ((2p)A , 0B , 0C). Starting from alternative (0A , pB , pC), we begin with a

preference swap between attributes A and B: (0A , pB)
(A,B)
−−−−→ (1A , (p−1)B). Then

we perform a preference swap between attributes A and C: (1A , pC)
(A,C)
−−−−→

(2A , (p − 1)C).We proceed then again by a preference swap between attributes
A and B, and so on (the sequence is depicted in Figure A.1).

0
1

2

0
1

2

0

1

2

3

4

XC

XB

X
A

Figure A.1: Description of the sequence

Proof. The proof is based on an instantiation of R with the necessary preference
relation, assuming additive value, inferred from information P, and is denoted
by NP . Let p ∈ N∗. Assume that PA :� [0..2p] ⊆ XA, PB :� [0..p] ⊆ XB and
PC :� [0..p] ⊆ XC.Consider the following preference information P, defined by
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statements in (PA × PB × PC)
2 extended ceteris paribus to X2:

P :�
p−1⋃
j�0

{π j , π
′
j}, with (A.8)

π j :� ((2 j)A , (p − j)B)
(A,B)
−−−−→ ((2 j + 1)A , (p − j − 1)B); (A.9)

π′j :� ((2 j + 1)A , (p − j)C)
(A,C)
−−−−→ ((2 j + 2)A , (p − j − 1)C). (A.10)

We set x :� (0A , pB , pC) and y :� ((2p)A , 0B , 0C). With this P, we clearly
obtain the transitive sequence(

x , (1A , (p − 1)B , pC)
)
{A,B,C}

∈ P (by π0);(
(1A , (p − 1)B , pC) , (2A , (p − 1)B , (p − 1)C)

)
{A,B,C}

∈ P (by π′0);

. . .(
((2p − 2)A , 1B , 1C) , ((2p − 1)A , 0B , 1C)

)
{A,B,C}

∈ P (by πp−1);(
((2p − 1)A , 0B , 1C) , ((2p)A , 0B , 0C)

)
{A,B,C}

∈ P (by π′p−1).

so that (x , y) ∈ R. This sequence is of length 2 p.

There remains to prove that this is the shortest explanation.
We need to to determine R(2)∩ (PA ×PB ×PC)

2
{A,B,C}

.(the other ones can be
deduced by Pareto dominance). The preference information P is very specific.
In particular, any value k ∈ PA \ {0, 2p} appears only in two statements of P:

• if k � 2 j is even, on the LHS of π j and the RHS of π′
j−1

;

• if k � 2 j + 1 is odd, on the RHS of π j and the LHS of π′
j
.

Moreover, we notice that, in the statements π j and π′
j
, the value measuring

the fitness according to the point of view A is always increasing from the
left hand side to the right hand side, and the values measuring the fitness
according to the point of view B and C are decreasing from the left hand side
to the right hand side. Hence the elements of ∆2 cannot be obtained by a
combination of two or more preference information. They are obtained only
from one preference statement (π j or pi′

j
) and Pareto dominance D. More

precisely, R(2) is composed of the following pairs(
(iA , jB , kC) , (i

′
A , j

′
B , k

′
C)

)
{A,B,C}

where either there exists l such that iA � 2l, i′
A
� 2l+1, jB ≥ p−l > p−l−1 ≥ j′B

and kC � k′
C
, or there exists l such that iA � 2l + 1, i′

A
� 2l + 2, jB � j′B and

kC ≥ p − l > p − l − 1 ≥ k′
C

. From this, one can readily see that the explanation
of the preference of x over y described earlier is the shortest one. �
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A.3 Proof of Theorem 3.10

Theorem 3.10 (Term by term explanation).
If P ⊂ B2 , ∀σ ∈ NP , the following propositions are equivalent :

1. Explainability with a sequence of preference swaps of order at most two:
σ ∈ E2(NP)

2. Integral combination of statements:
∃a ∈ N⋆, γ1 , · · · , γq ∈ Ñ

(2)

P
, ℓ1 , · · · , ℓq ∈ N,m1 , · · · ,mn ∈ N :

aσ⋆ �

∑
k

ℓkγ
⋆
k +

∑
k

mkδ
⋆
(k ,1)

3. Reduction to Maximum bipartite matching:
There is a matching of cardinality |σ− | in the graph of Ñ

(2)

P
∩ (σ+ × σ−).

4. Term-by-term explanation:
There is an injection φ : σ− → σ+ such that ∀k ∈ σ− , (φ(k), k) ∈ Ñ

(2)

P
.

We prove Th. 3.10 in four steps : (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (1).

Proof of (1) ⇒ (2)

Assume a statement σ :� (x , y) ∈ E2(NP). By theorem 3.8 and definition
3.4, there is an integer n and a tuple (e(0) , e(1) , . . . , e(n)) ∈ Xn such that
e(0) � x , e(n) � y and (e( j) , e( j+1)) ∈ D ∪ N

(2)

P
for any integer j < n. This

transitive chain of dominance relations and swaps of order 2 can be transformed
into the covector relation sought, by induction on the length of the explanation,
as described by the following lemmas :

Lemma A.1 (covector representation of dominance relations).

∀ρ ∈ D , ∃q ∈ {0,+1}I : ρ⋆ �

∑
(i ,k)∈I

q(i ,k)δ
⋆
(i ,k)

Proof. A dominance relation has no negative argument, so its covector coeffi-
cient, given by Equation (2.6), are in {0,+1}. �

Lemma A.2 (covector representation of transitivity relations).

∀x , y , z ∈ X, ∃q ∈ NI : (x , z)⋆ � (x , y)⋆ + (y , z)⋆ +
∑
(i ,k)∈I

q(i ,k)δ
⋆
(i ,k)
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Proof. For core alternatives x , y , z ∈ P, for any separate value function V ∈ V,

(x , z)⋆ × ∆v �V(x) − V(z)

�(V(x) − V(y)) + (V(y) − V(z))

�(x , y)⋆ × ∆v + (y , z)⋆ × ∆v

�((x , y)⋆ + (y , z)⋆) × ∆v

As the relation above stands for any vector ∆v ∈ [0,+∞[, it yields (x , z)⋆ �

(x , y)⋆ + (y , z)⋆ � (x , y)⋆ + (y , z)⋆ +
∑

(i ,k)∈I q(i ,k)δ
⋆
(i ,k)

with q � 0.
For alternatives not necessarily in the core, and for any criterion i ∈ N,

the trivial cases where yi ∈ {xi , zi}, the case where xi � zi, or the case
where xi , yi , zi are all distinct, divided in 6 subcases considering the order
of attributes xi , yi , zi, all lead to (x , z)⋆

(i ,k)
≥ (x , y)⋆

(i ,k)
+ (y , z)⋆

(i ,k)
because of

the rounding down of broken intervals occuring once in the LHS and twice in
the RHS. As both sides are covectors with integer coefficients, the difference
(x , z)⋆ − ((x , y)⋆ + (y , z)⋆) is a covector with non-negative integer coefficients
q(i ,k). �

Proof of (2) ⇒ (3)

Suppose there exists integer coefficients a , ℓ1 , · · · , ℓq, m1 , · · · ,mn and prefer-
ence swaps of order 2 : γ1 , · · · , γq such that

aσ⋆ �

∑
k

ℓkγ
⋆
k +

∑
k

mkδ
⋆
(k ,1)

(A.11)

Multiplying both sides of the covector equation (A.11) by the vector (1, · · · , 1),
we obtain the relation :

M :� a(|σ+ | − |σ− |) �
∑

mk ≥ 0

To homogenize the right-hand side, we represent the dominance relation
thanks to a dummy criterion : N′

� N ∪ {0} so that a a dominance statement
represented by the covector δ⋆

k ,1
can be represented in the graph of the swap

relation between points of view by an edge (i , 0). Defining D̃ :� {(i , 0), i ∈

N} ⊂ N′2, the relation D̃ ∪ Ñ
(2)

P
is a graph with nodes in N′. Re-indexing

coefficients ℓk by the positive and negative arguments of swap γk (summing
up duplicates if needed), and introducing ℓk ,0 :� mk :

a σ⋆ �

∑
γ∈D̃∪Ñ

(2)

P

ℓγ+ ,γ−γ
⋆ (A.12)

In order to complete the flow ℓ, we introduce :

221



Appendices

• a source s supplying flow ℓs ,i � a to the positive arguments i ∈ σ+;

• a sink t collecting flow ℓ j,t � a from the negative arguments j ∈ σ−, and
ℓ0,t � M from node 0.

Covector equation (A.12) ensures ℓ defines a feasible flow on the graph (N′ ∪

{s , t}, D̃∪ Ñ
(2)

P
∪({s}×σ+)∪(σ−×{t})∪{(0, t)}), without capacity constraints,

as projection on the ith coordinate ensures flow conservation for node i ∈ N′.
Flow ℓ can be decomposed as a superposition of :

• cycles, involving necessary equivalence between the nodes, and not con-
tributing to the value of the flow;

• paths from the source s to the sink t passing through node 0, denoting a
dominance relation. Their total contribution to the value of the flow is
M;

• paths from the source s to the sink t not passing through node 0, with
an overall contribution of a × |σ− | to the value of the flow. Each of
these paths links a positive argument i1 ∈ σ+ to a negative argument
ir ∈ σ− through necessary preference swaps of order 2. Transitivity of
the necessary preference relation entails that i1 is necessarily preferred
to ir : the edge (i1 , ir) belongs to Ñ

(2)

P
∩ (σ+ × σ−).

We reduce the flow ℓ by ignoring the cycles and paths passing through node 0.
Also, the flow a carried by the path from source to sink s → i1 → i2 → . . .→

ir → t is redirected to edge (i1 , ir). As a result, we obtain a flow of value
a |σ− | on the graph of the relation Ñ

(2)

P
restricted to σ+ × σ−. This entails the

existence of a matching of cardinality |σ− | in this graph, obtained by setting
an upper capacity constraint of value 1 on each edge leaving the source s

and entering the sink t (as a cut of capacity C on the network with capacity
constraints ci , j ∈ {1,∞} is a cut of capacity a × C on the same network with
capacity constraints a × ci , j).

Proof of (3) ⇒ (4)

This is simply a rewording.

Proof of (4) ⇒ (1)

Let φ : σ− → σ+, injective, such that ∀k ∈ σ− , (φ(k), k) ∈ Ñ
(2)

P
. Given

any ordering O of the negative argument set σ−, we can build a sequence
of alternatives of decreasing preference e(0) :� x , e(1) , . . . , e(|σ

− |) ∈ X such
that the k th statement (e(k−1) , e(k)) matches the swap between points of view
(φ(Ok),Ok) ∈ Ñ

(2)

P
:

N,
(e(k−1) ,e(k))

:� {φ(Ok),Ok} ; N�

(e(k) ,y)
:� N�

(e(k−1) ,y)
∪ {φ(Ok),Ok)}
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Thus, the sequence of sets (e(k) , y)− decreases from σ− to �, one element
at a time, and the sequence of sets (e(k) % y)+ also decreases from σ+ to
σ+ \ φ(σ−), one element at a time. If the set σ+ \ φ(σ−) is empty, then
e(|σ

− |)
� y, and the sequence (x � e(0) , . . . , e(|σ

− |)
� y) is an explanation of

(x , y) ∈ NP by preference swaps of order 2, of length |σ− |. Else, e(|σ
− |) , y

but (e(|σ
− |) , y) is a dominance statement, as its negative argument set is empty.

Thus, the sequence (x � e(0) , e(1) , . . . , e(|σ
− |) , y) is an explanation of (x , y) ∈ NP

by preference swaps of order 2 and a dominance relation, of length |σ− | + 1.
�
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2Thales Research & Technology, 91767 Palaiseau Cedex, France.

3Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, 75005 Paris.

khaled.belahcene, vincent.mousseau, wassila.ouerdane@centralesupelec.fr

christophe.labreuche@thalesgroup.com nicolas.maudet@lip6.fr

Abstract

We address the problem of multicriteria ordinal
sorting through the lens of accountability, i.e. the
ability of a human decision-maker to own a recom-
mendation made by the system. We put forward a
number of model features that would favor the ca-
pability to support the recommendation with a con-
vincing explanation. To account for that, we design
a recommender system implementing and formal-
izing such features. This system outputs explana-
tions under the form of specific argument schemes
tailored to represent the specific rules of the model.
At the end, we discuss possible and promising ar-
gumentative perspectives.

1 Introduction

While algorithmic automated decisions or recommendations
are nowadays pervasive, there is a growing demand of insti-
tutions and citizens to make these recommendations trans-
parent and trustworthy, while system designers seek persua-
sive recommendations [Tintarev, 2007]. The recent regulation
adopted by the European Parliament (known as the General
Data Protection Regulation, GDPR) goes further by adding
a “right to explanation”. According to [Goodman and Flax-
man, 2016] “the GDPR’s requirements could require a com-
plete overhaul of standard and widely used algorithmic tech-
niques”. We interpret this requirement in the strong sense of
accountability, its litmus test being the ability of the recipient
of the recommendation to defend it before other, skeptical,
stakeholders of the decision (whereas trust requires the rec-
ommendation to be consistently accurate, but eventually asks
for delegation of the decision to the system; transparency
simply provides access to the underlying algorithm without
concern for technical literacy [Burell, 2016]; and persuasive-
ness is hardly transferable: someone persuaded by a recom-
mendation may not be a good persuader).

Our aim in this paper is thus to build an accountable, ordi-
nal, multicriteria classifier, mapping a candidate object to a
recommendation consisting in one or more categories among
a predefined, ordered collection of these. In a multicriteria
decision aiding (MCDA) context, the only indisputable rela-
tion between objects is the Pareto dominance, occurring when
an object outperforms another on all criteria. As the situation

is seldom so clear, the rules permitting the comparison of ob-
jects need to be enriched, taking into account the knowledge
and values of the decision-maker, collected under the label
preference information, which is also considered as an input
of the classifier. We also consider an additional output, an
explanation aimed at the decision-maker, supporting the rec-
ommendation and enabling the accountability sought for. In
order to reach this goal of accountability, we make two im-
portant assumptions about the recommender system. These
design principles are as follows:

No jargon. A first step in a MCDA process is to collect
decision-maker’s preferences information. In order to accu-
rately represent the specific decision process, we opt for an
indirect elicitation [Dias et al., 2002]: the decision-maker is
never asked any questions about artifacts of the model (e.g.
weights). Instead she should express preferences directly in
the language of the actual decision situation, i.e. providing
direct assignments of typical examples, reference objects, to
categories.

No arbitrariness. MCDA usually proceeds by representing
the reasoning of the decision-maker with a formal parametric
model, describing a specific stance. The values of the prefer-
ence parameters are often fitted during an elicitation process,
up to a certain point. While many methods proceed by pick-
ing a specific, so-called representative value of the parame-
ters, we opt for a robust approach (to the lack of preference
information) [Vincke, 1999; Greco et al., 2008], formulating
a –possibly partial – recommendation that cannot be refuted
by any judgment function consistent with the preference in-
formation.

On top of these principles, we make three further assump-
tions about the MCDA model, proceeding from the willing-
ness to keep the model accessible to human reasoning.

No compensation. This assumption deals with the inter-
pretation of collected data –the evaluation of objects on vari-
ous criteria. We assume they are always used comparatively,
in a purely ordinal manner: on a given criterion, an alterna-
tive is either as good as another one, or strictly worse. Hence,
only the set of criteria for which an alternative is better is im-
portant, regardless of the specific values, and being very good
on some criterion cannot compensate for low performance on
others. This feature enables the algorithm to proceed without
performing any algebraic computation, which makes it par-
ticularly suited for explanation. It is shared with established
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non-compensatory ordinal sorting models used in the field of
MCDA (eg. NCS) [Bouyssou and Marchant, 2007]. More-
over, the use of a 2-valued comparison (≥, <) is similar to
[Bouyssou, 1986] rather than [Fishburn, 1976] who proposes
a 3-valued one (<,=, >).

No values. At the heart of the recommender system is a
preference structure encoding the comparison of alternatives.
There are two main families of structures: those based on
value [Keeney and Raiffa, 1976], and those based on out-
ranking relations [Roy, 1991]. We opt for the latter, as they
eschew the construction of a scoring function. An outrank-
ing relation naturally provides four outcomes when compar-
ing two alternatives: preference for the former, for the lat-
ter, indifference, or incomparability; also, it does not enforce
transitivity of preference.

No frontiers. In MCDA, most classifiers link the prefer-
ence structure and the recommendation of a class by introduc-
ing an explicit frontier between classes, defining the limit of
each class (a single value for value-based models, a limiting
profile for outranking-based ones, e.g. [Leroy et al., 2011]).
We do without this construct, as for instance models based
on Logical Analysis of Data (LAD) techniques [Crama et al.,
1988] which output classification rules. We shall use simple
rules permitting to classify a new object by comparing it to a
set of already classified reference objects (see Sect.2.3).

The general philosophy of these principles must be clear to
the reader: accountability should exclude in principle the use
of any model artifact that the decision-maker may not prop-
erly handle, but at the same time provide enough understand-
ing of the model so as to allow the decision-maker to defend
the recommendation as if it was her own. Following this, our
approach is to enforce these principles by design, and to in-
vestigate how far we can get with the resulting sorting model.
This approach differs from the recent work of [Ribeiro et al.,
2016] which adopts a model-agnostic approach, and builds
explanations adapted to virtually any classifier. They obtain
extremely promising results in terms of trust. As expected,
the explanation cannot be fully faithful to the model (they are
“locally” faithful though). It also differs from [Datta et al.,
2016] which seeks to extract how influential are input param-
eters, but keeping a black-box access to the model. While for
the trust requirement these approaches are sufficient, our no-
tion of accountability requires to get to grips with the model.

The rest of this paper is as follows. We propose a model
implementing and formalizing the different principles, de-
composing it in a learning phase (Section 2) and a recommen-
dation phase (Section 3). We provide formal explanations of
the recommendation in most cases, in the form of argument
schemes tailored to represent the specific rules of the model.
Section 4 introduces some insights on the description of the
sorting problem through an argumentation system. Section 5
concludes the paper, by putting its findings into perspective.

2 Formal Description

In this section, we define a recommender system following
the design principles and assumptions, and describe some of
its properties.

2.1 The Recommender System

We consider a multicriteria ordinal sorting problem : a col-
lection of objects are evaluated on a set of criteria N . We
note B := {0, 1}, so that elements of BN are at the same time
vectors with binary coordinates, and subsets of N , partially
ordered by inclusion. The maximal element of B

N is the
unanimous coalition N , also denoted (1, . . . , 1). The min-
imal element of B

N is the empty coalition ∅, also denoted
(0, . . . , 0). Each criterion i ∈ N maps an object to a perfor-
mance value in a totally ordered set Xi, the higher the better.
Consequently, each object is described by a performance vec-
tor in the partially ordered set X =

∏
i∈N Xi. The objects are

to be assigned to some class chosen among an ordered set
K = {k1 ≺ · · · ≺ kp}, so that assignment to a class with a
high index is desirable.

Formally, let us describe the recommender system as a
function mapping a pair 〈z,P〉 to a pair 〈K, E〉, where:

• The object z ∈ X is a candidate for sorting;

• P denotes preference information collected from the
decision-maker consisting of typical classification ex-
amples, a collection of reference objects X

⋆ ⊂ X, and
their assigned categories Class : X⋆ → K. For syntac-
tic reasons, we represent it by a set of object-assignment
pairs P ⊂ X×K.

P :=
⋃

x⋆∈X⋆

(x⋆, Class(x⋆))

• K ⊂ K is the recommendation, concerning the classes
that could be assigned to the candidate (see Sect. 3);

• E is an explanation yet unspecified, supporting the rec-
ommendation K (see for instance [Labreuche et al.,
2012; Belahcene et al., 2017]), and addressed by Sect.
3.

Example 1. Objects are evaluated according to four cri-
teria a, b, c, d (higher is better). Six reference objects:
X

⋆ := {A1, A2, B1, B2, C1, C2}, described by the perfor-
mance table below, are assigned to three classes: K := {⋆ ≺
⋆⋆ ≺ ⋆ ⋆ ⋆} and make up the preference information P . We
consider two candidates: X,Y and try to assign them to some
possible classes.

Object a b c d Assignment
A1 3 3 2.5 0 ⋆ ⋆ ⋆
A2 3 2 2.1 1 ⋆ ⋆ ⋆
B1 2 2 1.3 1 ⋆⋆
B2 3 1 3.7 0 ⋆⋆
C1 2 1 1.6 1 ⋆
C2 1 1 4.1 0 ⋆
X 2 2 1.1 0 ?
Y 2 3 1.8 0 ?

2.2 The Reasoning of the Decision-Maker

A non-compensatory outranking relation can be represented
by a Boolean composite function:

∀x, y ∈ X, xSφy ⇐⇒ φ ◦ON (x, y) = 1

where the observation function ON maps a pair of objects
to its concordance set, and the consistent judgment of the
decision-maker, based on these concordance sets, is repre-
sented by the judgment function φ mapping a concordance
set to a truth value.
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ON : X× X → B
N

(x, y) 7→ {i ∈ N : xi ≥ yi}

Antecedents of 1 by φ, called true points in the language
of the LAD [Crama et al., 1988], represent sufficient coali-
tions of criteria, while antecedents of 0 by φ are false points
or insufficient coalitions of criteria. φ is supposed non-
decreasing, meaning that a superset of a sufficient coalition
of criteria is also sufficient, and a subset of an insufficient
coalition is also insufficient. Compatibility of the outranking
relation S to the Pareto dominance imposes that a unanimous
support of criteria is always sufficient, so φ(N) = 1. Con-
versely, φ(∅) = 0 must hold, so the relation S is not reduced
to generalized indifference. Finally, we define the set of any
possible judgment function :

φ ∈ Φ̂ := {φ : BN → B : φ ր and φ(N) = 1 and φ(∅) = 0}

2.3 Learning From the Assignment Examples

To assign a new object to a category, we shall use the follow-
ing classification rules:

• (R1) an object cannot outrank any object assigned to a
strictly better class;

• (R2) an object outranks objects assigned to a strictly
worse class;

• (R3) objects in the same class can be in any position with
respect to outranking.

To account for that, we first denote %P the complete pre-
order between reference objects induced by P:

{
x⋆ %P y⋆ ⇐⇒ Class(x⋆) % Class(y⋆)
x⋆ ≻P y⋆ ⇐⇒ Class(x⋆) ≻ Class(y⋆)
x⋆ ∼P y⋆ ⇐⇒ Class(x⋆) = Class(y⋆)

We consider the strict enforcement of the model rules for ref-
erence objects:

• (R1) : ∀x⋆, y⋆ ∈ X
⋆, x⋆ ≻P y⋆ ⇒ Not (y⋆Sφx

⋆);

• (R2) : ∀x⋆, y⋆ ∈ X
⋆, x⋆ ≻P y⋆ ⇒ x⋆Sφy

⋆.

Hence, the assignment of reference objects expressed by P
places upper (by (R1)) and lower (by (R2)) bounds upon the
outranking relation between reference objects. so that:

≻P ⊆ Sφ ∩ (X⋆)2 ⊆ %P

These constraints transfer to the judgment functions. Each
pair (x⋆, y⋆) is mapped by the observation function ON to a
coalition of criteria. The observed coalitions ON (X⋆ × X

⋆)
serve as a learning set for the judgment function φ. They are
sorted between three sets, yielding necessary conditions on φ:

• insufficient coalitions ON (≺P) should be mapped to 0;

• sufficient coalitions ON (≻P) should be mapped to 1;

• ON (∼P), which images by φ are not constrained.

Consequently, we define the set Φ(P) of judgment func-
tions compatible to the preference information P:

Φ(P) := {φ ∈ Φ̂ : φ◦ON (≻P) = 1 and φ◦ON (≺P) = 0}

Example 2. (ex. 1 continued) In the following table, we de-
tail all the relevant observed coalitions. Sufficient coalitions
appear in the upper right side, boldfaced, while insufficient

coalitions are in the lower left side. N stands for unanimity,
which is self-explanatory.

⋆ ⋆ ⋆ ⋆⋆ ⋆
A1 A2 B1 B2 C1 C2

A1 − − abc abd abc abd

A2 − − N abd N abd

B1 d bd − − abd abd

B2 acd ac − − abc abd

C1 d d acd bd − −
C2 cd c c bcd − −

2.4 Consistency of Judgment

The set Φ(P) is empty if, and only if, Pareto dominance
is contradicted (∃ x⋆, y⋆ ∈ X

⋆, ∀i ∈ N, x⋆
i ≥ y⋆i and

Class(x⋆) < Class(y⋆)), or some coalition of criteria M ∈
B
N observed as being sufficient is weaker (for inclusion) than

some coalition M ′ ∈ B
N observed as being insufficient. In

such a case, we call the preference information P inconsis-
tent; otherwise, it is consistent and Φ(P) is a partially de-
fined Boolean function [Crama et al., 1988]. Combining the

constraints on the judgment functions expressed by Φ̂ and
by P , we can compute the true points of Φ(P). They are
the antecedents of 1 common to every judgment function
φ ∈ Φ(P), and represent the coalitions established as suf-
ficient, by the virtue of being at least as strong as an observed
sufficient coalition.

TP := {t ∈ B
N : ∃ tobs ∈ ON (≻P), tobs ⊆ t}

Conversely, the false points are the antecedents of zero com-
mon to every φ ∈ Φ(P) and represent the coalitions estab-
lished as insufficient.

FP := {f ∈ B
N : ∃ fobs ∈ ON (≺P), fobs ⊇ f}

Proposition 1 details three manners to express inconsistency:

Proposition 1. For any P ⊂ X × K, the three following
conditions are equivalent and characterize inconsistency:

1. Absence of compatible judgment function: Φ(P) = ∅

2. Conflicting constraints: TP ∩ FP 6= ∅

3. Explicit contradiction: ∃t ∈ ON (≻P), ∃f ∈ ON (≺P) :
t ⊆ f

Example 3. (ex. 2 continued) Coalitions are sorted accord-
ing to the observations, and monotonicity:

ON (≻P) = {N,abc,abd} = TP
ON (≺P) = {c,d,ac,bd,cd,acd,bcd}
FP = {∅,a,b,c,d,ac,ad,bc,bd,acd,bcd}
There is no dispute, as TP ∩ FP = ∅, but the coalition ab

is left undecided.

3 Recommendations and Explanations

In the previous section, we saw how the decision-maker in-
terprets pairwise comparisons between reference objects be-
longing to different classes as sufficient or insufficient coali-
tions of criteria. Here comes a new candidate, z ∈ X. It
gauges every reference object in X

⋆, yielding |P| observa-
tions −→o (z,P) :=

⋃
x⋆∈X⋆ ON (z, x⋆), and is also evaluated

by every reference object, yielding |P| other observations
←−o (z,P) :=

⋃
x⋆∈X⋆ ON (x⋆, z). Each of these 2|P| obser-

vations is interpreted as a sufficient, insufficient or undecided
coalition of criteria.
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Example 4. (ex. 3 continued) The following table aug-
ments the one presented in example 2 with the coalitions
resulting from comparisons between the reference objects
A1, A2, B1, B2, C1, C2 and the candidates X,Y .

⋆ ⋆ ⋆ ⋆⋆ ⋆ ? ?
A1 A2 B1 B2 C1 C2 X Y

A1 − − abc abd abc abd N N
A2 − − N abd N abd N acd

B1 d bd − − abd abd N ad

B2 acd ac − − abc abd acd acd

C1 d d acd bd − − acd ad

C2 cd c c bcd − − cd cd

X d b (ab) bd (ab) abd

Y bd b abc bd abc abd

Non-bracketed coalitions have already been sorted accord-
ing to the preference information: boldfaced coalitions are
those previously established as sufficient, the others are in-
sufficient. Bracketed coalitions are yet undecided. ∀z ∈
{X,Y }, −→o (z,P) appears in the corresponding line, and
←−o (z,P) in the appropriate column.

In this section, we specify the mapping between these ob-
servations and the output of the classifier system, the recom-
mendation K(z,P) ⊂ K and an explanation E(k,P) sup-
porting it.

3.1 Possible Assignments

As defined by the works of [Greco et al., 2010] about neces-
sary and possible preference relations, the definition of possi-
ble assignments is closely related to the notion of consistency
of an assignment with respect to the corpus of preference in-
formation. Defining, as we did in Section 2, Φ(P) as the set
of preference parameters compatible to P , and assuming it is
not empty:

• necessary assignments are yielded by every possible
completion of these preference parameters;

• possible assignments are yielded by some possible com-
pletion of these preference parameters;

• impossible assignments are yielded by no possible com-
pletion of these preference parameters;

These sets of assignments are concisely described referring
to the set:

K̂(z,P) := {k ∈ K : Φ(P ∪ {(z, k)}) 6= ∅}

A possible assignment is in K̂(z,P), an impossible one is

not. When K̂(z,P) boils down to a singleton, then it is a
necessary assignment for z.

This definition of possible assignment is straightforward to
implement, simply iterating through the set of possible as-
signments classes k ∈ K, updating the preference informa-
tion P ′ ← P ∪ {(z, k)}, and checking the consistency of
P ′. Unfortunately, it is a tricky notion when it comes to ex-
plaining. The actual unveiling of a Boolean judgment func-
tion compatible to the assignment is not very appealing, as it
introduces at the same time elements of jargon –describing
the judgment of the decision-maker as the partition of coali-
tions of criteria between sufficient and insufficient– and ar-
bitrariness, as some coalitions may very well be undecided

and should remain so. Consequently, we adopt the following
principle: “Everything is possible, unless proven otherwise”.

Doing so shifts the burden of proof towards impossibil-
ity, focusing on the exhibition of constraints restricting the

set K̂(z,P). We aim at explaining these constraints thanks
to statements of the form [premises : conclusions]scheme.
We define several argument schemes, as formalized by [Wal-
ton, 1996] in order to capture stereotypical patterns of hu-
man reasoning. These schemes specify the nature and con-
ditions imposed to both premises and conclusions, yielding
to valid arguments. We are looking for complete expla-
nations, so we must ensure the validity of the implication
premises ⇒ conclusions, and provide grounded sets of
statements, such that any premise is either the conclusion of
another argument, or directly referencing the assumed avail-
able information (pairwise comparisons between the refer-
ence objects or the candidate, based on criteria or assign-
ment).

In order to make apparent the cause of impossibility, we
consider the potential consequences of assigning a candidate
to a class through the additional (in)sufficient coalitions con-
ditional to the assignment of the candidate z to the class k:

∆TP(z, k) := TP∪{(z,k)}\TP ; ∆FP(z, k) := FP∪{(z,k)}\FP
We rewrite the impossibility of assigning the candidate z to
the class k using the conflicting constraints characterization
of inconsistency (see Prop. 1). We consider three poten-

tial sources of impossibility, sorted by evidence: K̂(z,P) =⋂
i∈{1,2,3}Ki(z,P) where:

• K1(z,P) := {k ∈ K : TP∩∆FP(z, k) = ∅} highlights
conflicts between established sufficient coalitions, and
the assignment of z;

• K2(z,P) := {k ∈ K : ∆TP(z, k)∩FP = ∅} highlights
conflicts between established insufficient coalitions, and
the assignment of z;

• K3(z,P) := {k ∈ K : ∆TP(z, k) ∩ ∆FP(z, k) =
∅} takes into account the least obvious situation where
some assignment of z may be self-contradictory, without
conflicting with any previously acknowledged informa-
tion.

The next section details the impossibilities captured by the set
K1(z,P), and proposes a supporting explanation E1(z,P),
while the other cases are briefly presented in section 3.3.

3.2 Assignments Contradicting Previously
Established Sufficient Coalitions

In this section, we focus on the set K1(z,P) := {k ∈ K :
TP ∩ ∆FP(z, k) = ∅}. As seen in the previous section this
set provides a range of possible assignments for the candidate
z, and partially implements the model described by the mani-
festo exposed in the introduction. We first describe K1(z,P)
as an intersection of constraints, for which we provide a de-
scription based on arguments. We prove K1(z,P) is an in-
terval of K, and provide a short, yet complete, explanation
accounting for this recommendation.

For increased readability, we introduce notations for par-
ticular sets of classes. For k ∈ K, let K- k (resp. K% k) the

interval of classes not greater (resp. not lower) than k.
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By construction, the recommended set K1(z,P) is built in
order to reject some impossible assignments. To illustrate and
understand its behavior, we make up a situation that specifi-
cally triggers this rejection flag. Suppose we know that:

(1) the coalition of criteria T ∈ B
N is already known to be

sufficient, and

(2) the candidate z ∈ X is at least as good as the reference
object x⋆ ∈ X

⋆, assigned to class k ∈ K, for all criteria
in T .

Then, z outranks x⋆ and cannot be assigned to a class strictly
worse than k by application of (R1). This constraint is cap-
tured by the set K1(z,P), as the assignment of z to any class
k ≺ k would lead to conclude that the coalition of criteria
ON (z, x⋆) is insufficient, so that the coalition of criteria T
would belong to both sets ∆FP(z, k) and TP . Consequently,
k /∈ K1(z,P).
If we replace the assumption (2) by:

(2’) the reference object x⋆ ∈ X
⋆, assigned to class k ∈ K,

is at least as good as the candidate z ∈ X for all criteria
in T .

then x⋆ ∈ X
⋆ outranks z and z cannot be assigned to a class

strictly better than k, as

k ≻ k ⇒ TP ∋ T ⊆ ON (x⋆, z) ∈ ∆FP(z, k)⇒ k /∈ K1(z,P)

Reciprocally, any assignment k0 /∈ K1(z,P) results in
a non-empty intersection TP ∩ ∆FP(z, k0), which involves
at least one sufficient coalition T ∈ TP , as in assumption
(1), and one stronger, insufficient coalition resulting either
from the observations−→o (z,P), as in assumption (2), or from
←−o (z,P), as in (2’).

A statement of type (1) needs to be backed by evidence, so
we introduce two argument schemes:

Definition 1. For any reference objects a⋆, b⋆ ∈ X
⋆

and any coalition of criteria T ∈ B
N , we say the

tuple [a⋆, b⋆ : T ]T instantiates the argument scheme
SUFFICIENT COALITION(P) if, and only if, T ⊇ ON (a⋆, b⋆)
and a⋆ ≻P b⋆. We also say the tuple [∅ : N ]1 instantiates the
argument scheme WEAK DOMINANCE.

Proposition 2 (Argumentative structure of the sufficient
coalitions).

TP = {N} ∪
⋃

[a⋆,b⋆:T ]T

{T}

The sufficient coalitions are exactly the conclusions of
the arguments instantiating the SUFFICIENT COALITION(P)
scheme.

In order to account for the atoms of reasoning (2) and (2’)
and present them to the recipient of the recommendation, we
define the corresponding argument schemes.

Definition 2. For any coalition of criteria T ∈ B
N , any ref-

erence object x⋆ ∈ X
⋆ and any class c ∈ K, we say that:

• the tuple [T, x⋆ : K% c ]T /−→o instantiates the argument

scheme OUTRANKING(z,P) if, and only if, T ∈ TP and
∀i ∈ T, zi ≥ x⋆

i and class(x⋆) = c.

• the tuple [T, x⋆ : K- c ]T /←−o instantiates the argument

scheme OUTRANKED(z,P) if, and only if, T ∈ TP and
∀i ∈ T, x⋆

i ≥ zi and class(x⋆) = c

Proposition 3 (Argumentative structure of the recommenda-
tion).

K1(z, p) = K ∩
⋂

[T,x⋆:k]T /−→o

K% k ∩
⋂

[T,x⋆:k]T /←−o

K- k

Proposition 3 is a concise rewording of the necessary and
sufficient conditions for a given class not to belong to the set
K1(z,P) detailed previously. As a corollary, it shows that
K1(z,P) is an interval of K. Consequently, K1(z,P) can be

completely described by a pair (k1, k1) such that:

• K1(z,P) = K% k1
∩ K- k1

• the lower bound k1 is maximal, as there is no class
strictly better than k1 which is supported by an argu-
ment instantiating the OUTRANKING(z,P) scheme. It
is trivial if k1 = minK (either when the set OUT-
RANKING(z,P) is empty, or when it does not support a
stronger outcome), in which case it does not need any
explanation. If k1 ≻ minK, then it admits at least
one explanation E1 composed of an argument [T, x⋆ :
K% k1

]T /−→o ∈ OUTRANKING backed by an argument

[a⋆, b⋆ : T ]T ∈ SUFFICIENT COALITION;

• the upper bound k1 is minimal, as there is no class

strictly worse than k1 which is supported by an argu-
ment instantiating the OUTRANKED(z,P) scheme. It

is trivial if k1 = maxK, in which case it does not
need any explanation. If k1 ≺ maxK, then it admits

at least one explanation E1 composed of an argument
[T ′, x⋆ : K- k1

]T /←−o ∈ OUTRANKED backed by an ar-

gument [a⋆, b⋆ : T ′]T ∈ SUFFICIENT COALITION.

Finally, the recommended interval K1(z,P) is supported by

an explanation E1 in the form of a pair (E1, E1), where E1

and E1 can be either the empty set or a pair of arguments.
Taken together, all these 0, 2 or 4 arguments prove that any
assignment k ∈ K \K1(z,P) should be rejected as ”impos-
sible”. Such explanation is not necessarily unique, and we

denote by Ê1(z,P) the set of suitable explanations.

Example 5. (ex. 4 continued)

Using the table presented in Example 4, the set K1 can
be interpreted as “a candidate cannot be assigned a class
laying strictly on the right of, nor a class strictly above, a
case containing a boldfaced coalition”: Consequently,

•
{

K1(X,P) = {⋆, ⋆⋆}
E1(X,P) ∋ (∅, {[∅ : N ]1, [N,B1 : - ⋆⋆]T /←−o })

X cannot be ranked higher than ⋆⋆, because B1 is rated ⋆⋆
and dominates X .

•

{
K1(Y,P) = {⋆⋆, ⋆ ⋆ ⋆}

Ê1(Y,P) ∋ ({[A1, C1 : abc]T , [abc, B1 : % ⋆⋆]T /−→o }, ∅)
Y cannot be ranked lower than ⋆⋆, because it outranks B1.
Indeed, Y compares to B1 the same way as A1 to C1: it is at
least as good on the sufficient coalition of criteria abc.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

818



3.3 Other Impossible Assignments

The set K2(z,P) is defined symmetrically from K1(z,P)
w.r.t. sufficient and insufficient coalitions. Assignments
not in K2(z,P) result from the collision of a coalition
of criteria known to be insufficient, and the observation
of a candidate object resulting in an even weaker coali-
tion, so outranking is excluded, and all the classes strictly
above or below (depending on the direction of observa-
tion) the one of the reference object are therefore for-
bidden. Mutatis mutandis, we can define the argument
schemes INSUFFICIENT COALITION(P), WEAKLY DOMI-
NATED, NOT OUTRANKING(z,P), NOT OUTRANKED(z,P)
and obtain the same structural results, leading to define simi-
lar explanations for the lower and upper bounds of the interval
K2(z,P).

Example 6. (ex. 4 continued)

Using the table presented in Ex. 4, the set K2 interprets
the insufficient coalitions of the table, those not boldfaced nor
parenthesized. A candidate cannot be assigned a class strictly
below, nor strictly on the left, of such cases. For instance,
ON (B2, X) = acd ∈ FP (e.g. because ON (C1 ≺P B1) =
acd), so X is not outranked by B2 and should be at least
assigned the same class (⋆⋆), and ON (X,B2) = bd ∈ FP
(e.g. because it is weaker than bcd = ON (C2 ≺P B2)),
so X does not outrank B2 and should not be assigned a
strictly better class (⋆⋆). In terms of preference, objects X
and B2 are incomparable, and thus should be assigned the
same class. Finally, K2(X,P) = {⋆⋆}.

The set K3(z,P) excludes inconsistent judgments on yet
undecided coalitions of criteria. There is no guarantee that
K3(z,P) has an interval structure. We omit this case due to
space limitations.

4 An argumentative Perspective

Along this paper, we proposed the construction of explana-
tions supporting results of a multi-criteria sorting problem,
as combinations of arguments schemes. Each instantiation of
one of the six previous main schemes (see Def. 1, 2 and their
symmetrical forms) provides one type of argument. These ar-
guments may be conflicting, and two different relations can
be distinguished:

Conflicting coalitions: we have evidence indicating that a
given coalition is potentially at the same time sufficient and
insufficient (i.e. there are two coalitions t ⊆ f such that
[a⋆, b⋆ : t]T and [c⋆, d⋆ : f ]F ). This situation represents an
explicit contradiction corresponding to an inconsistency situ-
ation (see Sec. 2.4). Such conflicts are not illustrated through
the previous examples, however inconsistencies are classical
situations within decision problems, as it concerns a human
decision-maker.

Conflicting classification: it may occur that, for some can-
didate, arguments based on the outranking relation point to-
wards an empty interval of possible assignments. This sit-
uation corresponds to the fact that the sets K1(z,P) and
K2(z,P) are disjoint, which may happen when either is
empty, or when the lower bound of one exceed the upper
bound of the other.

Example 7. (ex. 4 cont.) Y and A2 are incomparable, Y and
B2 are incomparable, yet A2 is preferred to B2. In particular,
A2 (⋆⋆⋆) does not outrank Y and Y does not outrank B2 (⋆⋆)
so K2(Y,P) = ∅.

The impossibility to provide any recommendation is
clearly critical from the point of view of decision aiding.
These unfortunate situations cannot be ruled out in the gen-
eral case, as they may stem from Condorcet paradoxes (fail-
ures of transitivity) concerning the necessary outranking
relation or the necessary not-outranking relation (see e.g.
[Köksalan et al., 2009] for a discussion).

The argumentative treatment for our multi-criteria ordi-
nal sorting problem is thus to construct arguments pro and
against each possible assignment (of the reference object
and the candidate), and to determine among conflicting ar-
guments the acceptable ones. This can be done by taking
two different perspectives. One way is to rely on the work
of [Dung, 1995] - the next question being to identify which
semantics are appropriate in our situation. This is close in
spirit to an approach presented in [Amgoud and Serrurier,
2007] for classification in unordered classes (however in our
context the relation between arguments would be symmetric
[Coste-Marquis et al., 2005]). Another perspective is to con-
sider the construction of the argumentation system as a dia-
logue game and to rely on critical questions [Walton, 1996;
Ouerdane et al., 2008] to evaluate the arguments. This per-
spective has the advantage to keep the decision-maker in
the loop, which is often essential in a decision situation
[Labreuche et al., 2015]. Both approaches look promising
and are made possible thanks to the modeling presented in
this paper.

5 Conclusion

We have presented a fully accountable multi-criteria ordi-
nal sorting model, based on several design principles and as-
sumptions. The strength of the model is that it solely relies
on a simple set of classification rules, which means that each
recommendation can be justified by instantiating and com-
bining these rules–nothing else. Several argument schemes
have been proposed for that purpose. Interestingly, some of
these schemes have a flavour of analogical reasoning, which
was studied in the context of classification [Hug et al., 2016].
Now the simplicity of our model comes at a price: there are
different situations where inconsistency might occur, and the
model is not equipped yet to handle such situations. Facing
this issue we can take two stances. The first one is to relax
some of our design assumptions. For instance, we may decide
that it is actually acceptable for the model to use a frontier
between classes (allowing to eschew the Condorcet paradox).
This would require original explanation techniques to main-
tain the desired accountability. Another avenue is to handle
the inconsistencies thanks to defeasible and non-monotonic
reasoning techniques [Brewka et al., 2008]. Our discussion
in Section 4 points to formal argumentation as a natural and
promising opportunity for future research.
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and Alexis Tsoukiàs. Argument schemes and critical ques-
tions for decision aiding process. In COMMA, pages 285–
296. IOS Press, 2008.

[Ribeiro et al., 2016] Marco Tulio Ribeiro, Sameer Singh,
and Carlos Guestrin. “why should i trust you?”: Explain-
ing the predictions of any classifier. In ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining (KDD), 2016.

[Roy, 1991] Bernard Roy. The outranking approach and the
foundations of electre methods. Theory and decision,
31(1):49–73, 1991.

[Tintarev, 2007] Nina Tintarev. Explanations of recommen-
dations. In Proc. ACM conference on Recommender sys-
tems, pages 203–206, 2007.

[Vincke, 1999] Philippe Vincke. Robust solutions and meth-
ods in decision-aid. Journal of multicriteria decision anal-
ysis, 8(3):181, 1999.

[Walton, 1996] Douglas Walton. Argumentation schemes for
Presumptive Reasoning. Mahwah, N. J.,Erlbaum, 1996.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

820





C

Comparing the SAT formulations

for Inv-NCS



Supplementary material

238



A new efficient SAT formulation for
learning NCS models: numerical results

Khaled Belahcène1, Oumaima Khaled1, Vincent Mousseau1, Wassila Ouerdane1 and Ali Tlili1

Abstract. The NonCompensatory Sorting (NCS) model aims at
assigning alternatives evaluated on multiple criteria to one of the
predefined ordered categories. Computing the NCS parameters
from a learning set of assignment examples is computationally
demanding. In order to overcome this problem, two formulations
based on Boolean satisfiability (SAT) have recently been proposed.
The goal of this work is to compare the efficiency of these two
formulations. Thus, we first extend the compact formulation to
the general case, handling any number of categories, and then
representative computational tests are performed.

Keywords— Multicriteria Decision, NonCompensatory Sorting,
Preference Elicitation, SAT

Introduction

Multicriteria sorting problems are decision problems in which alter-
natives evaluated on several criteria should be assigned to one of the
ordered predefined categories. Several multicriteria sorting models
have been proposed in the literature (see [8] for an overview). Among
these multicriteria sorting models, the NonCompensatory Sorting
(NCS) model corresponds to a generalization and formal description
of the Electre Tri procedure [9]. One of its specificity is to account
for the alternative evaluations in an ordinal perspective avoiding com-
pensation, and it also enables to deal meaningfully with qualitative
data.

Learning the parameters of NCS from assignment examples (Inv-
NCS) aims at computing the parameters of an NCS model, given the
desired outputs of the preference aggregation. Solving such a prob-
lem is often computationally difficult. Mixed integer linear formu-
lations [10] and heuristic approaches [12, 13] have been proposed
for Inv-NCS. Recently, [2] proposed a SAT formulation of this prob-
lem which proves to be more efficient than previous approaches. In
this paper, we report a second SAT formulation for Inv-NCS [3] de-
scribed in the context of two categories. We extend this second for-
mulation to the multiple category case, and perform numerical tests
to compare the performance of these two SAT formulations.

The paper is organized as follows. Section 1 presents the NCS
model. Inv-NCS, the problem of learning the parameters of NCS
from assignment examples is defined in Section 2. In Section 3 and
4, we present the two SAT formulations for Inv-NCS. Section 5 de-
scribes the empirical test design, the experimental results and dis-
cusses these results. A final section groups conclusions and avenues
for further research.

1 NonCompensatory Sorting models

This section is devoted to the presentation of the noncompensatory
sorting model, introduced in [5, 6].

1 LGI, CentraleSupélec, Université Paris-Saclay, Gif-Sur-Yvette, France

1.1 Basic notations

Multiple criteria sorting aims at assigning alternatives to one of the
predefined ordered categories C1, ..., Cp. The set of alternatives A
are evaluated on n criteria, N = {1, 2, . . . , n}; hence, an alterna-
tive a ∈ A is characterized by its evaluation vector (a1, . . . , an),
with ai ∈ Xi denoting its evaluation on criterion i. Each criterion is
equipped ≿i with a weak preference relation defined on Xi. We as-
sume, without loss of generality, that the preference on each criterion
increases with the evaluation (the greater, the better). We denote by
X =

∏

i∈N Xi the cartesian product of evaluation scales.

1.2 Sorting with a single profile

In the NonCompensatory Sorting model NCS, the boundaries be-
tween categories are defined by profiles. Therefore, a single profile
corresponds to the case where alternatives are sorted between two or-
dered categories that we label as GOOD and BAD. A specific sorting
procedure is described by a pair of parameters:

• a limiting profile b ≡ ⟨bi⟩i∈N that defines, according to each cri-
terion i ∈ N , an upper set Ai ⊂ Xi of approved values at least
as good as bi (and, by contrast, a lower set X \ Ai ⊂ Xi of disap-
proved values strictly worse than bi), and

• a set T of sufficient coalitions of criteria, required to be an upset
of the power set of the criteria.

These notions are combined into the following assignment rule:

∀x ∈ X, x ∈ GOOD ⇐⇒ {i ∈ N : xi ≿i bi) ∈ T

An alternative is considered as GOOD if, and only if, it is better than
the limiting profile b according to a sufficient coalition of criteria.

1.3 Sorting into multiple categories

With p categories, the parameter space is extended accordingly,

with approved sets ⟨Ak
i ⟩i∈N , k∈[2..p] and sufficient coalitions

⟨T k⟩k∈[2..p] declined per boundary.

The ordering of the categories {C1 ≺ . . . ≺ Cp} trans-
lates into a nesting of the sufficient coalitions: ∀k ∈ [2..p],
T k is an upset of (2N ,⊆) and T 2 ⊇ · · · ⊇ T p, and also a nest-

ing of the approved sets: ∀i ∈ N , ∀k ∈ [2..p], Ak
i is an upset of

(Xi,≾i) and A2
i ⊇ · · · ⊇ Ap

i .
These tuples of parameters are augmented on both ends with trivial

values: T 1 = P(N ), T p+1 = ∅, and ∀i ∈ N , A1
i = X, Ap+1

i =

∅. With ω = (⟨ Ak
i ⟩i∈N , k∈[2..p], ⟨ T k ⟩k∈[2..p]), [6] defines the

sorting function NCSω from X to {C1 ≺ . . . ≺ Cp} with the
noncompensatory sorting rule:

NCSω(x) = Ck ⇔

{

{i ∈ N : x ∈ Ak
i } ∈ T k

and {i ∈ N : x ∈ Ak+1
i } /∈ T k+1 (1)



1.4 An illustrative example

A journalist prepares a car review for a forthcoming issue. She con-
siders a number of popular car models, and wants to sort them in
order to present a sample of cars “selected for you by the editorial
board” to the readers. This selection is based on 4 criteria : cost (e),
acceleration (time, in seconds, to reach 100 km/h from full stop –
lower is better), braking power and road holding, both measured on a
qualitative scale ranging from 1 (lowest performance) to 4 (best per-
formance). The performances of six models are described in Table 1.

model cost acceleration braking road holding

m1 16 973e 29.0 sec. 2.66 2.5
m2 18 342e 30.7 sec. 2.33 3
m3 15 335e 30.2 sec. 2 2.5
m4 18 971e 28.0 sec. 2.33 2
m5 17 537e 28.3 sec. 2.33 2.75
m6 15 131e 29.7 sec. 1.66 1.75

Table 1. Performance table

In order to assign these models to a category among C1⋆ (average)

≺ C2⋆ (good) ≺ C3⋆ (excellent), the journalist considers an NCS
model:

• The attributes of each model are sorted between average (⋆/ ■),
good (⋆⋆/ ■ ) and excellent (⋆ ⋆ ⋆/ ■ ) by comparison to the pro-
files given in Table 2. The resulting labeling of the six alternatives
according to each criterion is depicted in Figure 1 and Table 3.

profile cost acceleration braking road holding

b1
⋆

17 250e 30.0 sec. 2.2 1.9

b2
⋆

15 500e 28.8 sec. 2.5 2.6

Table 2. Limiting profiles

Figure 1. Representation of performances w.r.t. category limits

model cost acceleration braking road holding

m1 ⋆⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆⋆
m2 ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆
m3 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆
m4 ⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆⋆
m5 ⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆
m6 ⋆ ⋆ ⋆ ⋆⋆ ⋆ ⋆

Table 3. Categorization of performances

• These appreciations are then aggregated by the following rule: an
alternative is categorized good or excellent if it is good or excel-
lent on cost or acceleration, and good or excellent on braking or
road holding. It is categorized excellent if it is excellent on cost
or acceleration, and excellent on braking or road holding. Being
excellent on some criterion does not really help to be considered
good overall, as expected from a noncompensatory model. Suf-
ficient coalitions are represented on Figure 2. Finally, the model
yields the assignments presented in Table 4.

Figure 2. Sufficient (green/thick-bordered) and insufficient
(red/thin-bordered) coalitions of criteria. Arrows denote coalition strength

model m1 m2 m3 m4 m5 m6

assignment ⋆⋆ ⋆ ⋆⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆

Table 4. Model Assignments

1.5 Variants of the NCS Model

In this section, we mention a number of variants of the noncom-
pensatory sorting model that can be found in the literature; these
variants correspond to simplifications of the model, with additional
assumptions that restrict the parameters—limiting profiles and suffi-
cient coalitions—either explicitly or implicitly.



The set of preference parameters – all the pairs (⟨b⟩, ⟨T ⟩) can be
considered too wide and too unwieldy for practical use in the context
of a decision aiding process. Therefore, following [6], one may con-
sider to explicitly restrict either the sequence of limiting profiles, or
the sequence of sufficient coalitions:

• noncompensatory sorting with a unique set of sufficient coalitions:
T 2 = · · · = T p;

• noncompensatory sorting with a unique limiting profile
b2 = · · · = bp or, equivalently, ∀i ∈ N , A2

i = · · · = Ap
i .

k-additive representations of sufficient coalitions The explicit
representation of sufficient coalitions can either use a boolean flag for
each subset of N , or, more economically, only mention an antichain
of minimally sufficient subsets. Whatever the chosen representation,
it is not compact, as it potentially demands to store an amount of
information that is exponential in the number of criteria.

A simplifying assumption consists in representing sufficient coali-
tions in an analogy to a voting setting: each criterion i ∈ N is as-
signed a voting power wi ≥ 0 so that a given coalition of criteria
B ⊆ N is deemed sufficient if, and only if, its combined voting
power

∑

i∈B wi is greater than a given qualification threshold λ.

∃λ, ⟨wi⟩i∈N ∈ [0,+∞[: ∀B ⊆ N , B ∈ T ⇐⇒
∑

i∈N

wi ≥ λ.

(2)
With this rule, the sufficient coalitions are represented in a compact
form which is more amenable to linear programming.

The majority rule is used to represent sufficient coalitions both in
Electre-Tri [11] and most variants of the MR-Sort model [10]. As
a remarkable exception, [13] considers an extension of the majority
rule where the voting power of criteria are replaced by a capacity,
a function mapping criteria coalitions to nonnegative real numbers
that is nondecreasing w.r.t. set inclusion. A coalition is considered
sufficient if, and only if, its capacity exceeds the qualification thresh-
old. This variant of the MR-Sort model is obviously equivalent to the
NCS model, it offers two additional features:

• a numeric representation for the NCS model, that remains linear
and can be handled by techniques and pieces of software dedi-
cated to linear algebra, such as mixed integer programming (MIP)
solvers;

• the notion of using a general capacity can easily be restricted to
using limited forms, called k-capacities that restrict interactions
between criteria. As 1-capacities boil down to the additive form
of the majority rule, the normative assumption of representing up-
sets with k-capacities is often called k-additivity. This nesting of
assumptions, with k = 1 corresponding to the majority rule and
k = |N | corresponding to the general NCS model, goes along a
progressive expansion of the numeric parameter space, as going
from (k − 1) to k additivity requires k among |N | additional pa-
rameters.

2 Learning an NCS model

For a given decision situation, assuming the NCS model is relevant
to structure the decision maker’s preferences, what should be the pa-
rameters values to fully specify the NCS model that corresponds to
the decision maker(DM) viewpoint? An option would be to simply
ask the decision maker to describe, to her best knowledge, the limit
profiles between categories and to enumerate the minimal sufficient
coalitions. In order to get this information as quickly and reliably as
possible, an analyst could make good use of the model-based elici-
tation strategy described in [4], as it permits to obtain these parame-
ters by asking the decision maker to only provide holistic preference
judgment – should some (fictitious) alternative be assigned to some
category – and builds the shortest questionnaire.

We opt for a more indirect setup, close to a machine learning
paradigm, where a set of reference assignments is given and assumed
to describe the decision maker’s point of view, and the aim is to ex-
tend these assignments with a NCS model. In this context, we usually
refer to an assignment as a function mapping a subset of reference al-
ternatives X

⋆ ⊂ X to the ordered set of categories C1 ≺ · · · ≺ Cp.
These reference alternatives highlight values of interest on each cri-
terion i ∈ N , X⋆

i =
∪

x∈X⋆{xi}. We are looking for suitable prefer-
ence parameters specifying a noncompensatory sorting model.

cinque

Instances. An instance of the Inv-NCS problem is a sextuple
(N ,X, ⟨ ≿i ⟩i∈N , X⋆, {C1 ≺ . . . ≺ Cp}, α) where:

• N is a set of criteria;

• X is a set of alternatives;

• ⟨ ≿i ⟩i∈N ∈ X
2 are preferences on criterion i, i ∈ N , ≿i⊂ X

2 is
a total pre-ordering of alternatives according to this criterion;

• X
⋆ ⊂ X is a finite set of reference alternatives ;

• {C1 ≺ . . . ≺ Cp} is a finite set of categories ordered by exi-
gence;

• α : X⋆ → {C1 ≺ . . . ≺ Cp} is an assignment of the reference
alternatives to the categories.

When referring to an instance, we often shorten this sextuple as ‘α’.

Parameters. Given a context, a parameter ω of the NCS model
is a couple (⟨ Ak

i ⟩i∈N , k∈[2..p], ⟨ T k ⟩k∈[2..p]), where the suf-

ficient coalitions satisfy: ∀k ∈ [2..p], T k is an upset of (2N ,⊆),
and T 2 ⊇ · · · ⊇ T p; and the approved sets satisfy ∀i ∈ N ,

∀k ∈ [2..p], Ak
i is an upset of (Xi,≾i) and A2

i ⊇ · · · ⊇ Ap
i .

Sorting rule. Given a parameter ω = (⟨ Ak
i ⟩i∈N , k∈[2..p],

⟨ T k ⟩k∈[2..p]), augmented with trivial values T 1 := P(N ),

T p+1 := ∅, ∀i ∈ N , A2
i = X, Ap+1

i = ∅, NCSω is the func-

tion from X to {C1 ≺ . . . ≺ Cp} satisfying:

NCSω(x) = Ck ⇔

{

∀k′ ≤ k, {i ∈ N : x ∈ Ak′

i } ∈ T k′

and

∀k′ > k, {i ∈ N : x ∈ Ak′

i } /∈ T k′

.

Solutions. Given a context, a solution of the instance α of the Inv-
NCS problem is a parameter ω of the NCS model such that ∀x ∈
X

⋆, α(x) = NCSω(x).
Throughout this paper, we assume the expression of preference is

free of noise. We are only interested in determining if the given as-
signment can be represented in the noncompensatory sorting model.

3 A first SAT formulation for Inv-NCS based on
coalitions

This section describes and extends a SAT formulation for Inv-NCS
initially given in [2]. We provide here an informal presentation of
the approach; formal justification can be found in [2]. The formula-
tion ΦC

α yielded by the encoding presented in this section is based
on an explicit representation of the parameter space of the noncom-
pensatory sorting model—the pairs are composed of a sequence of
approved sets and a sequence of sufficient coalitions.

Variables. The Boolean function ΦC
α operates on two types of vari-

ables:

• ‘a’ variables, indexed by a criterion i ∈ N , an exigence level
k ∈ [2..p] and a reference value x ∈ X

⋆, represent the ap-
proved sets Ai, with the following semantic: ai,k,x = 1 ⇔ x ∈
Ak

i i.e. x is approved at level k according to i;



• ‘t’ variables, indexed by a coalition of criteria B ⊂ N and
an exigence level k ∈ [2..p], represent the sufficient coali-
tions T , with the following semantic: tB,k = 1 ⇔ B ∈
T k i.e. the coalition B is sufficient at level k;

Clauses. For a boolean function written in conjunctive normal
form, the clauses are constraints that must be satisfied simultane-
ously by any antecedent of 1. The formulation ΦC

α is built using six
types of clauses:

• Clauses ϕC1
α ensure that each approved set Ak

i is an upset of
(X⋆,≾i): if for a criterion i and an exigence value k, the value
x is approved, then any value x′ ≿i x must also be approved.

• Clauses ϕC2
α ensure that approved sets are ordered by set inclusion

according to their exigence level: if an alternative x is approved
at exigence level k according to the criterion i, it should also be
approved at exigence level k′ < k.

• Clauses ϕC3
α ensure that each set of sufficient coalitions T is an

upset for inclusion: if a coalition B is deemed sufficient at exi-
gence level k, then a stronger coalition B′ ⊃ B should also be
deemed sufficient at this level.

• Clauses ϕC4
α ensure that set of sufficient coalitions are ordered

by inclusion according to their exigence level: if a coalition B is
deemed insufficient at exigence level k, it should also be at any
level k′ > k.

• Clauses ϕC5
α ensure that each alternative is not approved by a suf-

ficient coalition of criteria at an exigence level above the one cor-
responding to its assigned category.

• Clauses ϕC6
α ensure that each alternative is approved by a suffi-

cient coalition of criteria at an exigence level corresponding to its
assignment.

Definition 3.1. Given an instance of Inv-NCS with an assignment
α : X

⋆ → {C1 ≺ . . . ≺ Cp}, the boolean function ΦC
α with

variables ⟨ai,k,x⟩i∈N , k∈[2..p], x∈X⋆ and ⟨tB,k⟩B⊆N , k∈[2..p], as the
conjunction of clauses is defined:

ΦC
α = ϕC1

α ∧ ϕC2
α ∧ ϕC3

α ∧ ϕC4
α ∧ ϕC5

α ∧ ϕC6
α

ϕC1
α =

∧

i∈N , k∈[2..p]

∧

x′ ≿i x ∈X⋆ (ai,k,x′ ∨ ¬ai,k,x)

ϕC2
α =

∧

i∈N , k < k′∈[2..p], x∈X⋆ (ai,k,x ∨ ¬ai,k′,x)

ϕC3
α =

∧

B ⊂ B′ ⊆N , k∈[2..p] (tB′,k ∨ ¬tB,k)

ϕC4
α =

∧

B⊆N , k < k′∈[2..p] (tB,k ∨ ¬tB,k′)

ϕC5
α =

∧

B⊆N , k∈[2..p]

∧

x∈α−1(Ck−1) (
∨

i∈B ¬ai,k,x ∨ ¬tB,k)

ϕC6
α =

∧

B⊆N , k∈[2..p]

∧

x∈α−1(Ck) (
∨

i∈B ai,k,x ∨ tN\B,k)

Clauses ϕC1
α ensure monotonicity of approved sets Ak with re-

spect to the evaluations on each criterion; ϕC3
α force the set of suf-

ficient coalitions to be compatible with inclusion; ϕC2
α and ϕC4

α

enforce that approved sets Ak and sets of sufficient coalitions get
stronger for higher exigence levels; clauses ϕC5

α and ϕC6
α ensure that

reference alternatives are correctly assigned (NCSω ≡ α).
Written as such, they are highly redundant, threatening computa-

tional efficiency. Instead, it is sufficient to consider clauses where
ordered elements are adjacent to each other.

Model variants. As discussed in Section 1.5, the NCS model has
many variants. ΦC

α can easily be modified to account for two popular
restrictions of the model:

• unique profiles—drop the index k concerning the exigence level
for the ‘a’ variables, ignore the conjunction over exigence levels
for clauses ϕC1

α , and ignore clauses ϕC2
α altogether;

• unique set of sufficient coalitions—drop the index k concerning
the exigence level for the ‘t’ variables, ignore the conjunction
over exigence levels for clauses ϕC3

α and ignore clauses, ϕC4
α alto-

gether.

4 A second SAT formulation based on pairwise
separation conditions

The boolean satisfiability formulation presented in this section, de-
noted ΦP

α , was originally described in [3] but only focusing on the
case with two categories C1 ≡ BAD ≺ C2 ≡ GOOD . We extend
this formulation to the general case, with any number of categories.
This second formulation is more compact than the first one as it han-
dles explicitly a set of sufficient coalitions that lies in the power set
of the criteria.

Encoding. Similarly to the formulation ΦC
α described in Section 3,

the formulation ΦP
α operates on two types of variables:

• ‘a’ variables, representing the approved sets, with the exact same
semantics as their counterpart in ΦC

α , i.e.

ai,x =

{

1 if x ∈ Ai i.e. x is approved according to i;

0 else.

• auxiliary ‘s’ variables, indexed by a criterion i ∈ N , an alterna-
tive g assigned to GOOD and an alternative b assigned to BAD ,
assessing if the alternative g is positively separated from b accord-
ing to the criterion i, i.e.

si,g,b =

{

1 if g ∈ Ai and b /∈ Ai;

0 else.

ΦP
α is the conjunction of four types of clauses: ϕP1

α ensuring each
Ai is an upset, ϕP2

α ensuring [si,g,b = 1] ⇒ [g ∈ Ai], ϕ
P3
α ensur-

ing [si,g,b = 1] ⇒ [b /∈ Ai], and ϕP4
α ensuring each pair (g, b) is

positively separated according to at least one criterion.

Definition 4.1. Given an instance of Inv-NCS with two categories
and an assignment α : X

⋆ → { BAD ≺ GOOD }, we de-

fine the boolean function ΦP
α with variables ⟨ai,x⟩i∈N , x∈X⋆ and

⟨si,g,b⟩i∈N , g∈α−1( GOOD ), b∈α−1( BAD )
, as the conjunction of

clauses:
ϕP
α = ϕP1

α ∧ ϕP2
α ∧ ϕP3

α ∧ ϕP4
α

ϕP1
α =

∧

i∈N

∧

x′≿ix∈X⋆(ai,x′ ∨ ¬ai,x)

ϕP2
α =

∧

i∈N , g∈α−1( GOOD ), b∈α−1( BAD )
(¬si,g,b ∨ ¬ai,b)

ϕP3
α =

∧

i∈N , g∈α−1( GOOD ), b∈α−1( BAD )
(¬si,g,b ∨ ai,g)

ϕP4
α =

∧

g∈α−1( GOOD ), b∈α−1( BAD )
(
∨

i∈N si,g,b)

The formulation is compact: O(|N |.|X|2) variables, O(|N |.|X|2)
binary clauses and O(|X|2) |N |-ary clauses, whereas the number of
’t’ variables in the first formulation increases exponentially with the
number of criteria.

It should be noted that the sets T of sufficient coalitions is not
uniquely identified by the values of ’a and ’s’ variables. Indeed, if
⟨ai,x⟩, ⟨si,g,b⟩ is an antecedent of 1 by ϕSAT-P

α , then the parameter
ω = (⟨Ai⟩,S) with accepted sets defined by Ai = {x ∈ X : ai,x =
1} and any upset S of (P(N ),⊆) of sufficient coalitions contain-
ing the upset T⟨Ai⟩(α) and disjoint from the lower set F⟨Ai⟩(α) is
a solution of this instance. Therefore, among the sets of sufficient
coalitions compatible with the values of ’a and ’s’ variables, we can
identify two specific ones, Tmax and Tmin. We will also denote by
Trand, a randomly chosen compatible set of sufficient coalitions



More than two categories The case where there are p > 2 cate-
gories {C1 ≺ . . . ≺ Cp} requires a few adaptations of the formu-
lation given in the preceding section, and presented in [3]. It relies
mostly on the fact that an NCS model with p categories is informally
the combination of p− 1 NCS models with two categories whose pa-
rameters satisfy the nesting conditions on coalitions and satisfactory
values. Given an assignment α and an exigence level k ∈ [2..p], we

define the set of alternatives assigned at least to Ck as

C⪰k =
∪

k′∈[k..p]

Ck′

.

We propose the following definition for ΦP ′

α , that coincides with
ΦP

α (see Definition 4.1) when p = 2.

Definition 4.2. Given an instance of Inv-NCS with an assign-
ment α : X

⋆ → {C1 ≺ . . . ≺ Cp}, we define the

boolean function ΦP’
α with variables ⟨ai,k,x⟩i∈N , k∈[2..p],x∈X⋆ and

⟨si,k,g,b⟩i∈N , k∈[2..p], g∈α−1(G⪰k), b/∈α−1(G⪰k), as the conjunction
of clauses:

ΦP’
α = ϕP ′1

α ∧ ϕP ′2
α ∧ ϕP ′3

α ∧ ϕP ′4
α ∧ ϕP ′5

α

ϕP ′1
α =

∧

i∈N , k∈[2..p]

∧

x′≿ix∈X⋆

(ai,k,x′ ∨ ¬ai,k,x)

ϕP ′2
α =

∧

i∈N , k < k′∈[2..p], x∈X⋆

(ai,k,x ∨ ¬ai,k′,x)

ϕP ′3
α =

∧

i∈N , k∈[2..p]

∧

g∈α−1(G⪰k), b/∈α−1(G⪰k)

(¬si,k,g,b ∨ ¬ai,k,b)

ϕP ′4
α =

∧

i∈N , k∈[2..p]

∧

g∈α−1(G⪰k),b/∈α−1(G⪰k)

(¬si,k,g,b ∨ ai,k,g)

ϕP ′5
α =

∧

k∈[2..p]

∧

g∈α−1(G⪰k), b/∈α−1(G⪰k)

(
∨

i∈N si,k,g,b)

The remarks made about an efficient implementation of ΦC
α apply

here: many clauses are redundant in ϕP ′1
α and ϕP ′2

α and can safely
be ignored. The remark concerning the non-uniqueness of T in the
case of two categories also applies for more than two categories to

T k which are not uniquely defined by ΦP’
α .

5 Computational study

In this section, we present an empirical study that evaluates the com-
parative performance of the two SAT formulations presented in Sec-
tions 3 and 4 in order to assess their relative advantages. Note that
performances of SATC (Section 3) have already been proved to be
superior to MIP approaches by [2].

We restrict our experimental study to the case of U-NCS (noncom-
pensatory sorting with a unique set of sufficient coalitions) model,
i.e., where T 2 = · · · = T p. For both SAT formulations, we solve in-
stances of the problem of learning a U-NCS model given the assign-
ment of a set of reference alternatives using a state-of-the-art SAT
solver.

5.1 Experimental design

Our experiments take as input the assignment of a set of alternatives
X

∗ (described by tuples of evaluations on a set of criteria N ), to a
set of categories C1 ≺ . . . ≺ Cp. The computing performance is
measured in practice, by solving actual instances of the problem and
reporting the computation time required by the solver. This experi-
mental study is run on a laptop with Windows 10 (64 bit) equipped
with an Intel(R) Xeon(R) CPU E5-1620 v4 @3.5GHz and 16 GB of
RAM.

Dataset generation:

In this paper, we only consider carefully crafted random dataset as
an input. On the one hand, the implementation of both formulations
is not yet equipped with the capability to deal with noisy inputs, so
we do not consider feeding them with actual preference data. On the
other hand, using totally random and unstructured inputs makes lit-
tle sense in the context of algorithmic decision. In order to ensure
the preference data which makes sense, we use a decision model
to generate it, and, in particular, a model compatible with the non-
compensatory instance we are postulating. Precisely, we use an MR-
Sort model for generating the learning set, a model that particular-
izes NCS and U-NCS by postulating the set of sufficient coalitions
which possess an additive structure (see Section 1). This choice en-
sures that both formulations should succeed in finding the parameters
of a model extending the reference assignment.

When generating a dataset, we consider the number of criteria |N |,
the number of categories p, and the number of reference alternatives
|X∗| as parameters. All datasets have been tested considering a base-
line configuration composed of: 3 categories, 9 criteria, and 128 ref-
erence alternatives. Other configurations (triplet of parameters) are
also tested while deviating from the baseline on a single parameter
either the number of categories p from 2 to 5, the number of criteria,
among {3, 5, 7, 9, 11}, or the number of reference alternative among
{16, 32, 64, 128, 256, 512, 1024}.

For each triplet of parameters, we sample 100 MR-Sort M0, and
record the computation time needed to obtain an NCS Model for
SATC and SATP and the restoration rate for both formulations.

We consider all criteria take continuous value in the interval [0,1],
which is computationally more demanding than the case where one
criterion has a finite set of values. A set of ascending profiles ⟨b⟩
is generated by uniformly sampling p − 1 numbers in the interval
[0,1] and sorting them in ascending order, for all criteria. Moreover,
the voting weights ⟨w⟩ are generated by sampling |N | − 1 numbers
in the interval [0,1], sort them, and use them as the cumulative sum
of weights. The parameter λ is then randomly chosen with uniform
probability in the interval ]0.5,1[. Finally, we sample uniformly |X∗|
tuples in [0, 1]N , defining the performance table of the reference al-

ternatives, and assign them to categories in C1 ≺ . . . ≺ Cp accord-
ing to the model M0 = MR-Sort⟨b⟩,⟨w⟩,λ with the generated profiles,
voting weights, and qualified majority threshold.

Solving the SAT problems:

We then translate the assignment into a binary satisfaction prob-
lem, described by sets of variables and clauses for both formula-
tions as described in Sections 3 and 4. Each one of these binary
satisfaction problems are written in a file, and passed to a com-
mand line SAT solver - CryptoMiniSat 5.0.1 [14]. The computing

times tSATC

and tSATP

are recorded for both formulations (SATC

and SATP ). If the solver finds a solution, then it is converted into
parameters (⟨bSAT ⟩, ⟨TSAT ⟩) for a U-NCS model. Both formula-

tions MSATC

= U-NCS
⟨bSATC

⟩,⟨wSATC
⟩,λSATC and MSATP

=

U-NCS
⟨bSATP

⟩,⟨wSATP
⟩,λSATP yielded by the program are then

validated against the input. As the ground truth M0 used is an MR-
Sort model (therefore a U-NCS model), we expect the solver to al-
ways find a solution. Moreover, the U-NCS model returned by the
program should be “close” to the provided assignment.

Ability of the inferred models to restore the original one:

In order to appreciate how “close” a computed model Mc ∈

{MSATC

,MSATP

} is to the ground truth from which the assign-

ment examples were generated M0, we proceed as follows: we sam-
ple a large set of n profiles in X = [0, 1]N and compute the assign-
ment of these profiles according to the original and computed MR-



Sort models (M0 and Mc). On this basis, we compute err − rate
the proportion of “errors”, i.e. tuples which are not assigned to the
same category by both models. To obtain a reasonable sample for X,
we vary size of the sample of X = [0, 1]N according to the number

of criteria |N | : n = Max(Min(4N , 3.105), 104).
For the second formulation, the values of variables do not define

a single set of sufficient coalitions, and the formulation can return a
set T of sufficient coalitions among compatible ones. As defined in
Section 4, we can consider Tmin and Tmax the minimum and maxi-
mum compatible T , and Trand a randomly chosen compatible T . In
the first formulation, the variables define a unique set of sufficient
coalitions.

5.2 Computing time

Figure 3 displays the time needed (logarithmic scale) by the second

formulation (SATP ) with 3 categories to compute MSATP

, versus
the number of reference alternatives |X∗| and varying the number of
criteria. A similar trend is observed for 2, 4 and 5 categories.
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Figure 3. Computation time by size of the learning set (3 categories)

The observed linear trend in the results seem to exhibit a linear
dependency between log(tSATP

) and log(|X∗|). The curves with a
varying number of criteria, are almost parallel (with a slope close

to 2), which seem to show that tSATP

is proportional to |X∗|2. The
same observations in the plane (number of criteria * computation
time) (not represented) lead to infer a law :

tSATP

∼ |X∗|2 ∗ |N |

For both formulations under scrutiny and the set of considered pa-
rameters governing the input, the computation time ranges from be-
low the tenth of a second to a couple of minutes. Table 5 depicts the
distribution of the computation time for the baseline situation (9 cri-
teria, 3 categories, 128 reference assignments), the computation time
of the second formulation appears about two times slower than the
first formulation, on the other hand, the distribution of the comput-
ing time for each one of two formulations is very tight around its
center.

In order to assess the influence of the parameters governing the
size and complexity of the input, we explore situations differing from
the baseline on a single parameter:

• The number of reference assignments X
∗: Figure 4 indicates

that the distribution of the computing time for the two SAT-
formulations remains tightly grouped around its central value. It
also shows that this value steadily increases with the number

1
st

2
nd

Median quartile quartile Min Max

SATC 10.95s 8.84s 12.95s 5.33s 17.04s

SATP 5.79s 4.255s 6.759s 1.879s 8.138s

Table 5. Computation time for both formulations in the baseline
configuration: 9 criteria, 3 categories, 128 reference alternatives.

of reference assignments. For the first formulation, log(tSATC

)
is seemingly linearly (O(|X∗|)) dependent on log(|X∗|), on the
other hand, the computation time of the second formulation
quadratically (O(|X∗|2)) increases with the number of reference
assignments.
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Figure 4. Computation time for both formulations by number of reference
assignments (3 categories, 9 criteria)

• The number of criteria N : Figure 5 indicates that the distribu-
tion of the computing time for both formulations remains tightly
grouped around its central value.The computing time of SATC in-
creases exponentially with the number of criteria (O(2N )), while

computing time of SATP increases linearly (O(N )).
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Figure 5. Computation time for both formulations by number of criteria (3
categories, 128 reference assignments)

• The number of categories p: for both SAT formulations, the exper-
imental results display a linear dependence with a low slope (not
represented) between the distribution of the computation time and
the number of categories.



5.3 Results on the ability of the inferred model to
restore the original one

The second formulation returns an acceptable set of sufficient coali-
tions. To identify the upset that best restores the basic MR-Sort model
M0, it will require to study the three following situations: T = Tmin,
T = Trand and T = Tmax. T-Student tests (p = 0.05) show that
the restoration rate when T = Tmin is always at least as good as the
other two variants regardless of the number of criteria, alternatives
and categories. For comparison with the first formulation, we tend to
advocate the best, so we will consider only T = Tmin (see Table 6).

1
st

2
nd

Median quartile quartile Min Max

T = Tmin 0.888 0.828 0.937 0.669 0.995

T = Trand 0.869 0.827 0.927 0.679 0.995

T = Tmax 0.864 0.811 0.925 0.651 0.995

Table 6. Restoration rate for the second formulation in the baseline
configuration (3 categories, 9 criteria, 128 Reference assignments)

Table 7 depicts the distribution of the proportion of correct assign-
ments (as compared to the ground truth) for the baseline situation (9
criteria, 3 categories, 128 reference assignments). The proportion of
correct assignments of both formulations is almost the same with a
slight difference on the median.

1
st

2
nd

Median quartile quartile Min Max

SATC 0.858 0.767 0.939 0.656 1

SATP 0.849 0.780 0.943 0.606 1

Table 7. Restoration rate for both formulations in the baseline
configuration (3 Categories, 9 Criteria, 128 Reference assignments)

Figures 6, 7 and 8 present the variations of the alignment of the
models yielded by both formulations with the ground truth with re-
spect to the number of reference assignments of criteria or of cate-
gories, respectively. The experimental results display a tendency to-
wards a degradation of this alignment as the number of criteria or the
number of categories increases. Conversely, as expected, increasing
the number of reference assignments noticeably enhances the restora-
tion rate. The two formulations seem to behave in a similar manner
with respect to the modification of these parameters.

5.4 Discussion

In this section, we discuss the influence of the input parameters (in
particular number of criteria and size of the learning set) on on the
computing time and ability to generalize.

On the one hand, the number of reference assignments impacts lin-
early the computation time of SATC and quadratically the compu-
tation time of SATP . On the other hand, SATC depends exponen-
tially on the number of criteria, and this dependence remains linear
for SATP .

For a fixed number of criteria, if we increase the number of refer-
ence assignments, SATC becomes faster than SATP starting from
a threshold. These thresholds are calculated statistically using T-
Student tests on both distributions. The results of our statistical tests
are resumed in Table 8.

Table 8 represents the approximate thresholds from which SATC

becomes faster than SATP for the corresponding number of criteria
and categories. An example of 3 categories and 7 criteria is presented
in Figure 9. For a number of reference assignments exceeding 128,
SATC becomes faster.
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Figure 6. Restoration rate for both formulations by number of reference
assignments (3 categories, 9 criteria)
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Figure 7. Restoration rate for both formulations by number of criteria (3
categories, 128 reference assignments)

2 3 4 5

Number of categories

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
st

or
at

io
n 

Ra
te

 

SATC formulation
SATP formulation

Figure 8. Restoration rate for both formulations by number of categories
(9 criteria, 128 reference assignments)



2 categ. 3 categ. 4 categ. 5 categ.

3 crit. 16 16 32 128

5 crit. 64 64 64 ]64, 128[
7 crit. 128 ]128, 256[ ]128, 256[ 256

9 crit. ]512, 1024[ ]512, 1024[ ]512, 1024[ ]512, 1024[
11 crit. >1024 >1024 >1024 >1024

Table 8. The approximate thresholds from which SATC becomes faster
than SATP
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Figure 9. Computation time for both formulations by number of reference
assignments (3 categories, 7 criteria)

For more than 5 criteria, and less than ∼150 examples, SATP is
faster than SATC and the generalization is equivalent for both for-
mulations. Above a certain threshold on the number of reference as-
signments, SATP is penalized by the fact that the number of clauses
increase quadratically with the number of reference assignments (see
Table 8). For more than 7 criteria, SATP is faster than SATC since
the large number of criteria penalizes SATC by an exponential com-

ponent (tSATC

∼ |X∗| ∗ 2|N|) and to properly calibrate the model, a
large number of assignment examples is required.

6 Conclusion

In this paper, we consider the noncompensatory sorting model and
evaluate the comparative performances of two alternative SAT formu-
lations to infer the parameters of this sorting model from a learning
set provided by the decision maker.

The results do not show significant differences between formula-
tions in terms of generalization. Computation time of the two for-
mulations evolves depending on the number of reference alternatives
and the number of criteria; the second formulation performs better
when the number of criteria increases, while it is the contrary when
the number of reference alternatives increases.

However, for a real world decision problems (with more than 5 cri-
teria and more than 100 references alternatives), the second formula-
tion seems better as it is faster with an equivalent generalization.

This work opens avenue for further research. In particular, these
formulations do not account for noisy input. Extending these formu-
lations to the case where the set of assignment example is not fully
compatible with NCS.
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Ranking with Multiple reference Points:
Efficient Elicitation and Learning Procedures

Khaled Belahcène1, Vincent Mousseau1, Wassila Ouerdane1, Marc Pirlot2 and Olivier Sobrie2

Abstract. We consider the multicriteria ranking problem, and

specifically a ranking procedure based on reference points recently

proposed in the literature, named Ranking with Multiple reference

Points (RMP) [25, 8]. Implementing the RMP method in a real world

decision problem requires to elicit the model preference parameters.

This can be done indirectly by inferring the parameters from stated

preferences, as in [21, 22, 12].

Learning an RMP model from stated preferences proves however

to be computationally extremely costly, and can hardly be put in prac-

tice using state of the art algorithms. In this paper, we propose a

Boolean satisfiability formulation of the inference of an RMP model

from a set of pairwise comparisons which is much faster than the

existing algorithms.

1 Introduction

The multiple criteria ranking problem consists in computing a pre-

order on a finite set of alternatives A when these alternatives are

evaluated on multiple criteria. Many ranking methods have been pro-

posed in the literature to tackle this problem. Among ranking meth-

ods, the so called outranking methods (see e.g., [13, 9]) proceed by

comparing alternatives on each criterion, then aggregate these prefer-

ence relations relative to criteria into a ranking. Actually, with these

methods, a ranking is not obtained directly. The preference relations

on each criterion are first aggregated into an outranking relation. This

is done for each pair of alternatives by considering only the prefer-

ences between these alternatives on all criteria, without taking into

account the other alternatives. In such a way the independence of

irrelevant alternatives (IIA) property of the well known Arrow’s im-

possibility theorem [1] is satisfied. The drawback is that the outrank-

ing relation is not transitive in general due to the possible presence

of Condorcet cycles [10]. In order to obtain a ranking, a further step,

called exploitation is applied to the outranking relation. Transitivity

is obtained at the cost of loosing the IIA property (which is an un-

avoidable consequence of Arrow’s theorem).

However, outranking methods are well-suited for ranking prob-

lems involving qualitative criteria, as they only consider the ordinal

aspect of evaluation (as opposed to a cardinal aspect which requires

assessing trade-offs between differences of evaluations). A recently

proposed outranking based ranking method [25, 8], Ranking with

Multiple reference Points (RMP), keeps the specificity of consider-

ing ordinal data while fulfilling the IIA property. This statement ap-

parently contradicts Arrow’s theorem. Actually, this is not the case,

due to the introduction of an additional ingredient, namely the refer-

ence points.

1 LGI, CentraleSupélec, Université Paris-Saclay, Gif-Sur-Yvette, France
2 MATHRO, Faculté Polytechnique, Université de Mons, Belgium

Respecting the IIA principle is particularly important when learn-

ing ranking models from data (e.g., pairwise comparisons). In par-

ticular, when the comparisons involve real alternatives, learning a

ranking model from comparisons can lead to a situation where: (i)

the decision maker states that a is better than b (a ≻ b), (ii) a ranking

model M is computed from a learning set (including a ≻ b), but (iii)

when applying M to the set of alternatives, b is ranked better than a.

To the best of our knowledge, RMP is the only outranking based

method which fulfils the IIA property; this ranking method is there-

fore well suited to be put in practice using learning algorithms that

learn an RMP model from a set of pairwise comparisons. In our pa-

per, we propose efficient tools to learn RMP models from data.

The paper is organized as follows. Section 2 introduces the RMP

method. In Section 3, we present how to implement the RMP method

in practice using algorithms that learn an RMP from pairwise compar-

isons provided by the Decision Maker (DM). We propose, in Section

4, a standard sequence procedure to elicit an RMP model. Section

5 describes a new efficient algorithm that computes an RMP model

from a learning set. This algorithm is based on a Boolean satisfiabil-

ity formulation. We perform, in Section 6, an empirical analysis of

our algorithm to assess its performance as compared to the existing

literature. A final Section groups conclusions and further research

directions.

2 Ranking with Multiple Points

2.1 Reference points in multicriteria decision aid

Kahneman and Tversky were the first to identify clearly the role of

reference points in the formation of preferences in the context of

risky [16] and riskless decisions [27]. Reference based preferences

have since been studied (see [18, 19]) and multicriteria models using

reference points have been proposed to sort alternatives into cate-

gories (see e.g. [6, 7]), and to rank alternatives ([25, 8]). In this paper

we consider the RMP ranking method [25].

2.2 An introductory example

To introduce how the Ranking with Multiple Points (RMP) method

proceeds, we consider a simple illustrative example in which a set of

cars are to be ranked from the best to the worst. We consider three

cars x, y and z evaluated on the following four criteria: Brakes ([0-

10] scale), Road holding ([0-10] scale), Price (e), and Acceleration

(seconds to accelerate from 0 to 100km/h). The first two criteria are

to be maximized, the last two are to be minimized. The performances

of cars are shown in Table 1.

The RMP ranking method makes use of preference parameters to

specify the decision maker judgment: (i) a set of reference points,



Brakes Road holding Price Acceleration
(Max, [0,10]) (Max, [0,10]) (Min, e) (Min, sec.)

x 9.5 9.5 11.7 Ke 29.4 sec.
y 0.5 9.5 11.8 Ke 27.9 sec.
z 5 9.5 15.9 Ke 26.7 sec.

r2 8 8 12.0 Ke 28.0 sec.

r1 2 4 18.0 Ke 31.0 sec.

Table 1. Illustrative example

and (ii) an importance relation on criteria coalitions (in this example,

all criteria are assumed equally important, and it is sufficient to count

criteria in coalitions to compare them).

In our example, we use two reference points (which are vectors of

evaluations), r1 and r2, such that r2j is better than r1j on each criterion

j. These two reference points define three segments of performances

on each criterion:

• better than r2 (which can be interpreted as “good”),

• between r1 and r2 (which can be interpreted as “intermediate or

fair”); and

• worse than r1 (which can be interpreted as “insufficient”).

The values of these points r1 and r2 on criteria are provided in

Table 1. For instance, on the criterion “Brakes”, any alternative eval-

uated 8 or above will be considered “good” (e.g., alternative x) and

any alternative evaluated lower than 2 will be considered “insuffi-

cient” (e.g., alternative y). In other terms, the reference points allow

to identify an ordered encoding for each criterion defined by 3 or-

dered intervals of performances (A, B and C) as illustrated in Fig-

ure 1, such that:

A performances above r2 on each criterion are denoted as A (which

can be interpreted as “good”).

B performances between r1 and r2 on each criterion are denoted as

B (which can be interpreted as “intermediate or fair”).

C performances below r1 on each criterion are denoted as C (which

can be interpreted as “insufficient”)

Figure 1. Graphical interpretation of Table 1

The RMP method ranks alternatives based on these ordered inter-

vals of performances. Table 2 shows the results of the encoding for

the 3 alternatives considered in our example. For instance, z is en-

coded B on criterion “Brakes” because z is worse than r2 but better

than r1.

Brakes Road Holding Price Acceleration

x A A A B
y C A A A
z B A B A

Table 2. Results of the encoding procedure for the illustrative example

To compute a ranking, alternatives are not compared one to each

other but compared to the reference points. Alternatives are com-

pared to the first reference point r1. Considering two alternatives a
and b, a is preferred to b, noted a ≻ b, if the coalition of criteria

for which alternative a is evaluated A or B (i.e. better than r1) is

more important than the coalition of criteria for which alternative b
is evaluated A or B (i.e., better than r1). In this example, criteria are

assumed equally important, so we just count the number of criteria.

If a and b cannot be distinguished with respect to their comparison

to r1, then a and b are compared to r2. If the number of criteria for

which alternative a is evaluated A (i.e. better than r2) is greater than

the number of criteria for which alternative b is evaluated A (i.e., bet-

ter than r2), then a is preferred to b, otherwise a is indifferent to b.

In our example, we thus have the following:

• Alternative x is better than y because x has evaluation A or B for

all criteria, while y has evaluation A or B for only three criteria (x
compares better to r1 than y does).

• Alternative x is better than z because x and z are both evaluated A

or B on all criteria (they compare equally to r1), but x is evaluated

A on three criteria while z is evaluated A only on two criteria (x
compares better to r2 than z does).

• Alternative z is better than y because z has evaluation A or B on

all criteria while y has evaluation A or B on three criteria only (z
compares better to r1 than y does).

2.3 The RMP ranking method

We consider A, a set of alternatives evaluated on n criteria. Let us

denote N = {1, 2, . . . , i, . . . , n} the set of criteria indices, and ai

denotes the evaluation of alternative a ∈ A on criterion i (in what

follows we will consider, without loss of generality, that preferences

increase with the evaluation on each criterion, i.e., the greater the

better). The RMP method is a method for ranking a finite set of alter-

natives evaluated on several criteria [25].

To rank alternatives, RMP compares alternatives to reference

points, and then aggregates these comparisons into a final ranking.

A dominance structure can be assumed on the set of reference points

without loss of generality (for any RMP model using a set of refer-

ence points without any dominance structure, there exist an equiva-

lent RMP model using a set of reference points with a dominance

structure). RMP makes use of two types of preference parameters:

• R = {r1, r2, . . . , rh, . . . , rm}, with rh = {rh1 , ..., r
h
i , ..., r

h
n},

where rhi denotes the evaluation of rh on criterion i;
• an importance relation on criteria coalitions, � ⊆ P(N ), where

� and ≡ represent the asymmetric and symmetric part of �.

RMP proceeds through the following three steps:



1. compute c(a, rh) = {i ∈ N : ai ≥ rhi }, a ∈ A, h = 1, . . .m,

the set of criteria on which alternative a is at least as good as the

reference point rh.

2. compare alternatives one to each other to define k preference re-

lations ≿rh relative to each reference point such that a ≿rh b iff

c(a, rh) � c(b, rh). In other words, a ≿rh b holds when a com-

pares better to rh than b does. We denote ≻rh (∼rh , respectively)

the asymmetric part of the relation ≿rh (the symmetric part of

≿rh , respectively).

3. to rank two alternatives a, b ∈ A, consider sequentially the re-

lations ≿r1 ,≿r2 , . . . ,≿rk ; a is preferred to b if a ≻r1 b, or if

a ∼r1 b and a ≻r2 b, or . . . Hence, a and b are indifferent iff

a ∼rh b, for all h = 1 . . .m.

Rolland [25] proved that by proceeding in such a way, the com-

puted preference relations on alternatives are guaranteed to be transi-

tive. As mentioned earlier, a dominance structure on the set of refer-

ence points can be assumed without loss of generality.

3 Implementing the RMP ranking method

To implement the RMP method in a decision aiding study, an inter-

action with the DM is required, so as to integrate her preferences,

hence set the values of the preference parameters involved in the

RMP method. A basic approach called direct elicitation consists in

interacting with the DM directly on the values of the preference pa-

rameters. However, such an approach is not recommended as the DM

usually has no clear understanding of the semantics attached to the

preference parameters. Moreover, it imposes a strong cognitive bur-

den on the DM. Therefore, the literature frequently proposes an indi-

rect elicitation, in which the DM expresses holistic preferences (i.e.,

pairwise comparisons of alternatives) from which the values of the

preference parameters are inferred (see e.g. [5, 15, 24]).

Recent literature (see [21, 28]) proposed indirect elicitation pro-

cedures for the S-RMP method (a particular case of RMP in which

the criteria importance relation is additively representable). The De-

cision Maker provides pairwise comparisons of alternatives from

which the S-RMP preference parameters (weights, reference points,

and the lexicographic order on reference points) are inferred. Two

algorithms were proposed:

• MIP-based algorithm. [28, 21] formulate the elicitation of a

S-RMP model as a mixed linear optimization problem. In this

optimization program, the variables are the parameters of the

S-RMP method, and additional technical variables which enable

to formulate the objective function and the constraints in a linear

form. The aim is to minimize the Kemeny distance (see [17])

between the partial ranking provided by the Decision Maker

(i.e. the comparisons) and the S-RMP ranking. The resolution of

this optimization program provides a guarantee that the elicited

S-RMP model best matches the pairwise comparisons in terms of

the Kemeny distance between the comparisons provided by the

DM and the S-RMP ranking.

• Metaheuristic algorithm. Another algorithm to indirectly elicit

an S-RMP model, from pairwise comparisons, was proposed by

[22, 21]. Unlike the MIP version, this metaheuristic does not guar-

antee that the inferred model is the one which minimizes the Ke-

meny distance to DM’s statements. Indeed, the perspective is to

obtain an S-RMP model which fits the Decision Maker’s compar-

isons “well” within a “reasonable” computing time. This meta-

heuristic is based on an evolutionary algorithm in which a popula-

tion of S-RMP models is iteratively evolved.

The above mentioned algorithms suffer however from limitations:

• both algorithms only consider an additive representation of crite-

ria importance relation, which can be restrictive when interaction

between criteria occur;

• the MIP based approach is not able to deal with datasets whose

size correspond to real world decision problems (e.g. 10 criteria,

2 reference points and 50 comparisons);

• the heuristic approach is fast but is not always able to restore an

S-RMP model compatible with a set of comparisons, whenever it

exists.

To circumvent these limitations, two paths are possible:

• elicit an RMP model using a model-based elicitation strategy anal-

ogous to the one described in [3] for the NonCompensatory Sort-

ing model [6, 7]. This approach permits to elicit the RMP parame-

ters by asking the decision maker to make comparisons, and aims

at building the shortest questionnaire. We propose in Section 4

such a procedure for RMP with one single preference point.

• Design an algorithm similar to the MIP approach that can handle

real-world size datasets, as done for the NonCompensatory Sort-

ing model [6, 7] to overcome computational issues of [20] using

a Boolean satisfaction (SAT) formulation, see [2]. In this perspec-

tive, we propose, in Section 5, a SAT formulation which is com-

putationally efficient.

4 A procedure to elicit an RMP model

In this section, we restrict ourselves to RMP with a single reference

point, and we propose an elicitation procedure in which the DM an-

swers a sequence of questions that will lead to a complete knowledge

of the RMP parameters (the importance relation on coalitions, and

the reference point).

This procedure is structured in two consecutive phases: in the first

phase, the answers of the DM leads to define the � importance rela-

tion on criteria coalitions, the reference point being unknown, while

the second phase aims at specifying the reference point. The possi-

bility to identify, in the first phase, the � relation without knowledge

on the reference point is based on the following remark. Consider

the alternative xA, with A ⊆ N , having the best possible evaluation

on criterion i ∈ A, and the worst possible evaluation on criterion

j ∈ N \A. if xA ≻ xB , then A�B and not [B �A] hold whatever

the reference point. Hence, it is possible to determine � in the ab-

sence of knowledge on the reference point (note, however, that this is

possible only with RMP models involving a single reference point).

The first phase of the algorithm aims at eliciting the � relation.

Let us first recall that the relation � defined on P(N ) is transitive

and compatible with inclusion, i.e, for any pair of criteria coalitions

A,B ⊆ N , B ⊂ A ⇒ A � B. Consider the “minimal” relation �
0

containing pairs of coalitions corresponding to inclusion situations.

Consider two coalitions that are not in �
0. A positive answer to the

question “is xA preferred to xB” will enrich �
0 with the statement

A�B, and all transitive consequences (A′
�B′, for all A′, B′ such

that A ⊆ A′ and B′ ⊆ B).

Hence, the answer to the question “Is xA preferred to xB?” will

enrich relation �, and we can proceed so until � corresponds to a

complete pre-order. In other words, �0 should be completed to reach

a complete and transitive relation on the subsets of N , in which case



the importance relation on coalitions is fully known. Obviously, the

order by which questions are posed should be defined so as to mini-

mize the total number of questions. This issue is not discussed in this

paper.

The second phase of the algorithm aims at eliciting the reference

point r given the elicited relation �. In order to elicit ri the evalua-

tion of the reference point on criterion i, consider two coalitions A
and B, such that i /∈ B, A � B and not [A � B ∪ {i}]. By con-

struction, we have xA ≿ xB , but not xA ≿ xB∪{i}. Consider now

the alternative xki
B having the same evaluations as xB except on cri-

terion i on which its evaluation is ki. If xA ≿ xki
B holds, then it

means that ki < ri. From the preceding implication, we can design

a dichotomous search to elicit ri from questions of the type “Is xA

preferred to xki
B ?”. Proceeding in this way for each criterion leads to

elicit r. Note that ri can also be elicited analogously considering two

coalitions A and B, such that i /∈ A, not A � B and A ∪ {i} � B.

5 Learning an RMP model from pairwise
comparisons: a SAT formulation model

In this section, we propose a new procedure to check whether a set

of pairwise comparisons can be represented by an RMP model with

k reference points using a Boolean satisfiability (SAT) formulation.

5.1 Boolean satisfiability (SAT)

A Boolean satisfaction problem consists of a set of Boolean variables

V and a logical proposition about these variables f : {0, 1}V →
{0, 1}. A solution v⋆ is an assignment of the variables mapped to

1 by the proposition: f(v⋆) = 1. A binary satisfaction problem for

which there exists at least one solution is satisfiable, else it is unsatis-

fiable. Without loss of generality, the proposition f can be assumed

to be written in conjunctive normal form: f =
∧

c∈C c, where each

clause c ∈ C is itself a disjunction in the variables or their negation

∀c ∈ C, ∃c+, c− ∈ P(V ) : c =
∨

v∈c+ v ∨
∨

v∈c− ¬v, so that a

solution satisfies at least one condition (either positive or negative)

of every clause.

The models presented hereafter make extensive use of clauses

where there is only one non-negated variable (a subset of Horn

clauses): a ∨ ¬b1 ∨ · · · ∨ ¬bn, which represent the logical implica-

tion (b1 ∧ · · · ∧ bn) ⇒ a. It is known since Cook’s theorem [11] that

the Boolean satisfiability problem is NP-complete. Consequently, un-

less P = NP , we should not expect to solve generic SAT instances

quicker than exponential time in the worst case. Nevertheless, effi-

cient and scalable algorithms for SAT have been – and still are –

developed, and are sometimes able to handle problem instances in-

volving tens of thousands of variables and millions of clauses in a

few seconds (see e.g. [23, 4]).

5.2 A SAT encoding of given comparisons in RMP

We consider a set BC =
∪

j∈J {pj ≻ nj} of binary comparisons

provided by the DM, (p for “positive”, n for “negative”). Below, we

will use the following indices:

• h ∈ H is an index for reference points ordered by importance (i.e.

to compare alternatives, we consider r1, then r2 if needed, etc.);

• i ∈ N is the index for criteria;

• j ∈ J is the index for comparisons in the learning set, com-

posed of pairs pj ≻ nj (p for “positive”, n for “negative”), where

pj = (pj1, p
j
2, . . . , p

j
n) and nj = (nj

1, n
j
2, . . . , n

j
n) are evaluation

vectors;

• k ∈ Xi denotes values taken on criterion i ∈ N (i.e. the evaluation

scale on criterion i is Xi =
∪

j∈J {pji , n
j
i}).

We introduce the following variables:

• xi,h,k take value 1 iff the value k is above the reference point rh

on criterion i (k ≥ rhi );

• yA,B take value 1 iff the criteria coalition A is more important

than coalition B;

• zj,h take value 1 iff criteria for which alternative pj is above refer-

ence point rh are at least as important as those for which alterna-

tive nj is above rh
(

c(pj , rh) � c(nj , rh)
)

;

• z′j,h take value 1 iff criteria for which alternative nj is above ref-

erence point rh are at least as important as those for which alter-

native pj is above rh
(

c(nj , rh) � c(pj , rh)
)

;

• dh,h′ take value 1 iff the reference point rh dominates reference

point rh
′

(rhi ≥ rh
′

i , ∀i ∈ N );
• sj,h take value 1 iff alternative pj is indifferent to alternative nj

with respect to all reference points rh
′

, with h′ < h, and pj com-

pares to reference point rh at least as well as nj does;

Definition 1 (SAT encoding for RMP). Consider BC =
{(pj , nj), j ∈ J } a set of binary comparisons (pj ≻ nj). We de-

fine the Boolean function ϕSAT
BC as the conjunction of clauses:

• For all criteria i ∈ N , for all reference point rh, for all pairs of

values k, k′ ∈ Xi such that k < k′:

xi,h,k ∨ ¬xi,h,k′ (1)

• For all pairs of reference points rh, rh
′

such that h < h′:

dh,h′ ∨ dh′,h (2a)

• For all criteria i ∈ N , for value k ∈ Xi, for all pairs of reference

points rh, rh
′

such that h ̸= h′:

xi,h′,k ∨ ¬xi,h,k ∨ ¬dh,h′ (2b)

• For all pairs of coalitions A,B ⊆ N :

yA,B ∨ yB,A (3a)

• For all pairs of coalitions A,B ⊆ N such that A ⊂ B:

yB,A (3b)

• For all pairs of coalitions A,B,C ⊆ N :

¬yA,B ∨ ¬yB,C ∨ yA,C (3c)

• For all pairs of coalitions A,B ⊆ N , for all comparisons j ∈ J ,

for all reference point rh, h ∈ H:

∨

i/∈A

x
i,h,p

j
i
∨

∨

i∈B

¬x
i,h,n

j
i
∨ yA,B ∨ ¬zj,h (4a)

• For all pairs of coalitions A,B ⊆ N , for all comparisons j ∈ J ,

for all reference point rh, h ∈ H:

∨

i/∈A

x
i,h,n

j
i
∨

∨

i∈B

¬x
i,h,p

j
i
∨ yA,B ∨ ¬z′j,h (4b)

• For all pairs of coalitions A,B ⊆ N , for all comparisons j ∈ J ,

for all reference point rh, h ∈ H:

∨

i∈A

¬x
i,h,p

j
i
∨
∨

i/∈A

x
i,h,p

j
i
∨
∨

i∈B

¬x
i,h,n

j
i
∨
∨

i/∈B

x
i,h,n

j
i
∨¬yB,A∨z

′
j,h

(4c)



• For each comparison j ∈ J :

∨

h∈H

sj,h (4d)

• For each comparison j ∈ J , for all pairs of reference points

rh, rh
′

;h, h′ ∈ H such that h < h′:

zj,h ∨ ¬sj,h′ (5a)

• For each comparison j ∈ J , for all pairs of reference points

rh, rh
′

;h, h′ ∈ H such that h < h′:

z′j,h ∨ ¬sj,h′ (5b)

• For all reference points rh, h ∈ H:

¬z′j,h ∨ ¬sj,h (5c)

In Definition 1, clauses (1) impose that evaluation scale is mono-

tone with respect to reference points on each criterion i ∈ N . It

states that if evaluation k is above rh on criterion i, then any evalua-

tion k′ > k is also above rh on criterion i (we assume without loss

of generality that all criteria are to be maximized).

Clauses (2a-2b) impose a dominance structure on reference points.

(2a) check that, for any pair of reference points, either rh dominates

rh
′

or the reverse. Clauses (2b) relate variables xi,h,k to variables

dh,h′ stating that if, on criterion i, evaluation k is above reference

point rh, but not above reference point rh
′

, then rh
′

does not domi-

nate rh.

Clauses (3a-3c) guarantee that the importance relation � on crite-

ria coalitions is consistently defined. Clauses (3a) ensure relation �

to be complete, clauses (3b) ensure that � is compatible with inclu-

sion, and clauses (3b) impose transitivity.

Clauses (4a-4d) guarantee that the pairs pj , nj compare such that

pj ≻ nj . Clauses (5a-5c) guarantee that, for any comparison j ∈ J ,

when pj and nj are separated by reference pointrh
′

, pj and nj are

indifferent with respect to all reference points rh such that h < h′.

6 Numerical investigation of the SAT formulation

In this section, we study the performance of the formulation proposed

in section 5.2, both intrinsic and comparative with respect to state-of-

the-art techniques. We use a state-of-the-art SAT solver, in order to

solve instances of the problem of learning an RMP model, given a

set of pairwise comparisons. We begin by describing our experimen-

tal protocol, with some implementation details. Then, we provide the

results of the experimental study concerning the computation time of

our algorithm, and particularly the influence of the size of the learn-

ing set, and the number of criteria, as well as elements of comparison

between existing approaches.

6.1 Experimental design

The algorithm we test takes as input a set of pairwise comparisons

in which alternatives compared are described by a performance tuple

on a set of criteria N .

The performance is measured in practice, by solving actual in-

stances of the problem and reporting the computation time required.

This experimental study is run on an ordinary laptop running under

linux, equipped with an i7-6600U CPU at i2.6 GHz and 20 GB of

RAM.

Dataset generation.

In the scope of this paper, we only consider to use a carefully crafted,

random dataset as an input. On the one hand, the algorithm we de-

scribe is not yet equipped with the capability to deal with noisy in-

puts, so we do not consider feeding it with actual preference data,

such as the one found in preference learning benchmarks [14]. On

the other hand, using totally random, unstructured, inputs makes no

sense in the context of algorithmic decision. Hence, we use a deci-

sion model to generate it, and, in particular, a model compatible with

the RMP model. Precisely, we use a S-RMP model for generating

the learning set, a model that particularizes RMP by postulating the

set of importance relation on criteria coalitions possess an additive

structure (i.e., there is a set of weights wi, i ∈ N , with wi ≥ 0, ∀i
and

∑

i wi = 1, such that A � B iff
∑

i∈A wi ≥
∑

i∈B wi). This

choice ensures our SAT formulation should succeed in finding the

parameters of a model compatible with all the pairwise comparisons

in the input.

When generating a dataset, we consider the number of criteria |N |,
the number of comparisons |J |, and the number of reference points

m as experimental parameters.

We consider all criteria take continuous values in the interval [0, 1].
We generate a set of m reference points ⟨r⟩ by uniformly sampling

m numbers in the interval [0, 1] and sorting them in ascending order,

for all criteria; we then randomly re-order the reference points. We

generate criteria weights ⟨w⟩ by sampling |N | − 1 numbers in the

interval [0, 1], sorting them, and using them as the cumulative sum

of weights.

Finally, we sample uniformly pairs of tuples in [0, 1]N , defining

the performance of two alternatives3, compare these two alternatives

with M0 :=S-RMPm,⟨r⟩,⟨w⟩ and consequently determine which one

is pj and nj , j ∈ J .

Solving the SAT problem.

For a given number of criteria |N |, a given number of reference

points m, we check if a given set BC of binary comparisons can be

represented by the RMP model, by solving the corresponding SAT

formulation presented in §5.2, using the SAT solver CryptoMiniSAT

5.0.1 [26], winner of the incremental track at SAT Competition 2016

(http://baldur.iti.kit.edu/sat-competition-2016/). If the solver finds a

solution, then it is converted into parameters (⟨rSAT⟩,�SAT) for an

RMP model. The model MSAT =RMP⟨rSAT⟩,�SAT yielded by the

program is then validated against the input. As the ground truth M0

used to generate the binary comparisons is an S-RMP model (and

therefore an RMP model), we expect the solver to always find a so-

lution, and we expect the RMP model returned by the program to

always succeed at restoring the provided comparisons.

Ability of the inferred models to restore the original one.

In order to appreciate how “close” a computed model MSAT is to

the ground truth M0 from which the comparisons were generated,

we proceed as follows: we sample a set of 10000 pairs of tuples in

X = [0, 1]N and compute the comparisons of these pairs according

to the original and computed RMP models (M0 and MSAT ). On

this basis, we compute err − rate the proportion of “errors”, i.e.

pairs which do not compare in the same way by both models.

3 Only pairs of tuples that are not in the dominance relation are kept.



6.2 Performance of the SAT formulation

We run the above described experimental protocol varying the vari-

ous values of the parameters: (i) the number of criteria |N | is cho-

sen among {3, 4, 5}, (ii) the number of comparisons |BC| is chosen

among {100, 200, ..., 1000}, and (iii) the number of reference points

m is chosen among {1, 2, 3}. For each value of the triplet of parame-

ters, we sample 10 S-RMP models M0, and record the computation

time (t) needed to provide a model MSAT.

6.2.1 Results regarding computation time.

Figures 2 and 3 show the average computing time required to infer

the parameters of one RMP model when the number of examples,

criteria and reference points vary. We see in Fig. 2 that the comput-

ing time seems to grow exponentially as a function of the number of

criteria. Indeed, when the reference set contains 500 alternatives, the

average computing times for 2 reference points and 3, 4 and 5 cri-

teria are respectively equal to about 1.5 seconds, 15 seconds and 75

seconds. It is no surprise since the number of constraints in the SAT

formulation evolves as well exponentially as the number of criteria

grows. When we vary the number of reference points (Figure 3), we

observe that the same phenomenon occurs. Indeed, for 500 pairwise

comparisons in the learning set, the average computing time is about

20 seconds when the model has one reference point, it grows up to

±60 seconds for two reference points and up to ±250 seconds for 3

reference points. For an RMP model with a fixed number of criteria

and reference points, we see both in Figures 2 and 3 that the comput-

ing time evolves linearly when the number of pairwise assignment

increases. Again, this is no surprise since the number of constraints

involved also tends to increase linearly.
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Figure 2. Computing time as a function of the number of pairwise
comparisons for models involving 2 reference points and 3 to 6 criteria. Bars

represent standard deviation.

6.2.2 Results on the ability of the inferred model to restore
the original one.

To assess the ability of the SAT formulation to restore a model that

is the closest to the original one, we sample a set of 10000 pairwise

comparisons and we compute their relation of preference both with

the original model (M0) and the one learned with the SAT solver

(MSAT). Then we compute the proportion of binary comparisons

that have the same preference relation with M0 and MSAT.
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Figure 3. Computing time as a function of the number of pairwise
comparisons for models with 5 criteria, and 1 to 3 reference points. Bars

represent standard deviation.

In Figures 4 and 5, we observe that the average number of pairs of

alternatives from the test set that have the same preference relation

both with M0 and MSAT increases as a function of the number of

pairs in the learning set. When the number of criteria increases, the

number of pairs required to restore the original model M0 increases.

Figure 4 shows that with 100 alternatives, it is possible to restore on

average more than 90 percent of the relations. With 6 criteria and a

learning set of 100 pairs, less than 80 percent of the pairwise rela-

tions are restored. The same observation holds when the number of

reference points increases (see Figure 5).
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Figure 4. Average prediction accuracy as a function of the number of
pairwise comparisons for models involving 2 reference points, and 3 to 6
criteria. Test set of 10000 pairwise comparisons. Bars represent standard

deviation.

6.3 Discussion

Experimental results have shown that the algorithm was efficient for

inferring an RMP model from large sets of binary comparisons. In-

deed, the formulation is able to restore an RMP model composed

of 3 reference points and 5 criteria from 500 binary comparisons in

more or less 250 seconds. Furthermore, the algorithm performs well

in generalisation. With barely 100 alternatives, the SAT formulation

can learn an RMP model that predicts more than 70% of the binary

relations obtained with a S-RMP model.

It should be highlighted that such a performance proves this for-

mulation to be superior to existing algorithms. Indeed, MIP based
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Figure 5. Average prediction accuracy as a function of the number of
pairwise comparisons for models involving 5 criteria, and 1 to 3 reference
points. Test set of 10000 pairwise comparisons. Bars represent standard

deviation.

algorithms [28] are only able to handle a few dozens of pairwise com-

parisons which is insufficient to infer an RMP model with good gen-

eralization ability. Heuristic approaches [22, 21] can handle larger

datasets, but are not able to systematically restore an RMP compat-

ible input. A drawback of our approach is however its inability to

easily handle noisy input.

7 Conclusion

In this paper, we describe a SAT formulation in order to learn an

RMP model from a set of binary comparisons. Experimental results

show that the algorithm is efficient enough to deal with large datasets

and performs well in generalization. This formulation can be solved

more efficiently than the MIP [28] and is more acurate than the

heuristic approach [22, 21]. Our proposal is a step forward toward

the possibility of eliciting an RMP model in an interactive process

with the DM.

We see several research that should be pursued. The formulation

presented in this paper can only deal with datasets that do not con-

tain errors. A path to explore consists in finding a formulation that is

able to handle errors, for instance by using a MAXSAT formulation.

In this paper, the experiments have been done on artificial datasets.

Another path to explore consists in using it with real datasets like in

[12].
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[15] E. Jacquet-Lagrèze and J. Siskos, ‘Assessing a set of additive utility
functions for multicriteria decision-making, the UTA method’, Euro-

pean Journal of Operational Research, 10(2), 151 – 164, (1982).
[16] D. Kahneman and A. Tversky, ‘Prospect theory: An analysis of decision

under risk’, Econometrica, 47(2), 263–291, (1979).
[17] J.G. Kemeny, ‘Mathematics without numbers’, Daedalus, 88(4), 577–

591, (1959).
[18] B. Koszegi and M. Rabin, ‘A model of reference-dependent prefer-

ences’, The Quarterly Journal of Economics, 121(4), 1033 – 1065,
(2006).

[19] C. Labreuche and M. Grabisch, ‘Using multiple reference levels
in multi-criteria decision aid: The generalized-additive independence
model and the Choquet integral approaches’, European Journal of Op-

erational Research, 267, 598 – 611, (2018).
[20] A. Leroy, V. Mousseau, and M. Pirlot, ‘Learning the parameters of a

multiple criteria sorting method’, in Algorithmic Decision Theory, eds.,
R. Brafman, F. Roberts, and A. Tsoukiàs, volume 6992 of Lecture Notes
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nit de l’information quant à ses préférences au

sujet de la façon d’arbitrer entre des points de

vue conflictuels. Un analyste, chargé d’éclairer la

prise de décision, fait l’hypothèse d’un modèle de

raisonnement, et l’ajuste aux informations fournies

par le décideur. Nous faisons l’hypothèse d’un pro-

cessus d’élicitation robuste, dont les recommanda-

tions sont déduites des éléments dialectiques. Nous

nous sommes donc intéressés à la résolution d’un

problème inverse concernant le modèle, ainsi qu’à

la production d’explications, si possible correctes,

complètes, facile à calculer et à comprendre. Nous

avons considéré deux formes de représentation du

raisonnement: l’une ayant trait à la comparaison de

paires d’alternatives fondée sur un modèle de valeur
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des catégories ordonnées fondé sur un raisonnement

non-compensatoire.
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reference cases, that illustrates their views on the way

of taking into account conflicting points of view. The

analyst, who provides the support, assumes a gene-

ric representation of the reasoning with preferences,

and fits the aggregation procedure to the preference

information. We assume a robust elicitation process,

where the recommendations stemming from the fitted

procedure can be deduced from dialectical elements.

Therefore, we are interested in solving an inverse pro-

blem concerning the model, and in deriving explana-

tions, if possible sound, complete, easy to compute

and to understand. We address two distinct forms of

reasoning: one aimed at comparing pairs of alterna-

tives with an additive value model, the other aimed

at sorting alternatives into ordered categories with a

noncompensatory model.
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