
HAL Id: tel-02054671
https://theses.hal.science/tel-02054671

Submitted on 2 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neural language models : Dealing with large
vocabularies
Matthieu Labeau

To cite this version:
Matthieu Labeau. Neural language models : Dealing with large vocabularies. Document and Text
Processing. Université Paris Saclay (COmUE), 2018. English. �NNT : 2018SACLS313�. �tel-02054671�

https://theses.hal.science/tel-02054671
https://hal.archives-ouvertes.fr

N
N

T
:2

01
8S

A
C

LS
31

3

Neural Language Models: Dealing with
Large Vocabularies

Thèse de doctorat de l’Université Paris-Saclay
préparée à Université Paris-Sud

Ecole doctorale n◦580 Sciences et technologies de l’information et de la
communication (STIC)

Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Orsay, le 21/09/2018, par

MATTHIEU LABEAU

Composition du Jury :

Pierre ZWEIGENBAUM
Senior Researcher, LIMSI-CNRS Président
Massih-Reza AMINI
Professor, Université Grenoble-Alpes Rapporteur
Phil BLUNSOM
Associate Professor, University of Oxford Rapporteur
Armand JOULIN
Research Scientist, Facebook Artificial Intelligence Research Examinateur
André MARTINS
Research Scientist, Instituto de Telecomunicações Examinateur
Alexandre ALLAUZEN
Professor, Université Paris-Sud Directeur de thèse

ii

Abstract

Neural networks architectures have been applied to a myriad of tasks in Natural
Language Processing (NLP), mainly since the success they met following their early
application to language modeling. Language models are an important component
in many NLP tasks, where they provide prior knowledge on the language used.
However, the cost of training a neural language model grows linearly with the number
of words it considers — the number of words in the vocabulary — which makes
training very large-vocabulary neural language models a difficult task. Another
observation made on neural language models is that they are generally less effective
on rare words than discrete models. This issue is linked to the size of the vocabulary;
indeed, the particular repartition of word counts in a text (namely, its Zipfian shape)
means we systematically encounter a large number of infrequent words in our corpus,
number that will grow with the size of the vocabulary. This is of course even
more impactful for languages with rich morphologies. Besides, since each word is
associated to a particular representation, there is no relation between words that
share morphological caracteristics.

This work investigates practical methods to ease training and improve perfor-
mances of neural language models with large vocabularies. Despite several training
tricks, the most straightforward way to limit computation time is to limit the vo-
cabulary size, which is not a satisfactory solution for numerous tasks. Most of the
existing methods used to train large-vocabulary language models revolve around
avoiding the computation of the partition function, ensuring that output scores are
normalized into a probability distribution. Here, we focus on sampling-based ap-
proaches, including importance sampling and noise contrastive estimation. These
methods allow an approximate computation of the partition function. After exam-
ining the mechanism of self-normalization in noise-contrastive estimation, we first
propose to improve its efficiency with solutions that are adapted to the inner work-
ings of the method and experimentally show that they considerably ease training.
Our second contribution is to expand on a generalization of several sampling based
objectives as Bregman divergences, in order to experiment with new objectives. We
use Beta divergences to derive a set of objectives from which noise contrastive esti-
mation is a particular case.

Finally, we aim at improving performances on full vocabulary language models,
by augmenting output words representation with subwords. We experiment on a
Czech dataset and show that using character-based representations besides word
embeddings for output representations gives better results. We also show that re-
ducing the size of the output look-up table improves results even more.

iv

Résumé

Les méthodes neuronales ont été appliquées avec succès à de nombreuses tâches
en traitement automatique du langage (TAL) depuis leur application aux modèles
de langues. Ceux-ci demeurent des composants particulièrement importants dans de
nombreux systèmes de TAL, apportant des connaissances préalables sur la langue
utilisée. Cependant, le coût d’entrâınement des modèles de langues neuronaux aug-
mente linéairement avec le nombre de mots qu’il considère — c’est à dire la taille de
son vocabulaire — ce qui rend l’entrâınement des modèles à grand vocabulaire diffi-
cile. De plus, les modèles de langues neuronaux sont en général moins efficaces sur
les mots rares que les modèles discrets. Ce problème est lié à la taille du vocabulaire;
en effet, la répartition des fréquences des mots dans un texte (qu’on appelle Zipfi-
enne) implique que le nombre de mots rares dans un corpus sera systématiquement
élevé. Ce phénomène a un impact plus important pour les langues à la morphologie
riche. De plus, puisque chaque mot est associé à une représentation particulière,
aucun usage n’est fait des similitudes morphologiques que partagent certains mots.

Le travail présenté dans cette thèse explore les méthodes pratiques utilisées pour
faciliter l’entrâınement et améliorer les performances des modèles de langues munis
de très grands vocabulaires. La principale limite à l’utilisation des modèles de langue
neuronaux est leur coût computationnel: il dépend de la taille du vocabulaire avec
laquelle il grandit linéairement. La façon la plus aisée de réduire le temps de calcul de
ces modèles reste de limiter la taille du vocabulaire, ce qui est loin d’être satisfaisant
pour de nombreuses tâches. La plupart des méthodes existantes pour l’entrâınement
de ces modèles à grand vocabulaire évitent le calcul de la fonction de partition, qui
est utilisée pour forcer la distribution de sortie du modèle à être normalisée en
une distribution de probabilités. Ici, nous nous concentrons sur les méthodes à
base d’échantillonnage, dont le sampling par importance et l’estimation contrastive
bruitée. Ces méthodes permettent de calculer facilement une approximation de
cette fonction de partition. L’examen des mécanismes de l’estimation contrastive
bruitée nous permet de proposer des solutions qui vont considérablement faciliter
l’entrâınement, ce que nous montrons expérimentalement. Ensuite, nous utilisons
la généralisation d’un ensemble d’objectifs basés sur l’échantillonnage comme diver-
gences de Bregman pour expérimenter avec de nouvelles fonctions objectif.

Enfin, nous exploitons les informations données par les unités sous-mots pour
enrichir les représentations en sortie du modèle. Nous expérimentons avec différentes
architectures, sur le Tchèque, et montrons que les représentations basées sur les
caractères permettent l’amélioration des résultats, d’autant plus lorsque l’on réduit
conjointement l’utilisation des représentations de mots.

vi

Remerciements

Je voudrais tout d’abord remercier Alexandre, qui a dirigé mon stage, puis ma
thèse. J’ai eu la chance de bénéficier de ses encouragements et de ses conseils, en
matière de recherche, d’enseignement, et de tout ce qui concerne de près ou de loin
le travail d’un doctorant, pendant plus de 4 ans. Sa disponibilité et son appui, ainsi
que nos discussions, ont été déterminants pour la réalisation de cette thèse.

Je voudrais ensuite remercier les membres du jury, qui ont accepté de participer
à l’évaluation de ce travail, et les rapporteurs, pour leur relecture et leurs avis.
Particulièrement, merci à Pierre, pour ses remarques et conseils.

Le LIMSI a été un environnement de travail on ne peut plus plaisant pendant ces
années de thèse, et ce grâce aux membres des groupes TLP et ILES. D’abord, merci à
Lauriane, avec qui j’ai eu la chance de partager un bureau pendant plusieurs années,
et Franck, avec qui j’ai partagé beaucoup de pauses qui finissaient invariablement
en discussion sur la dernière architecture neuronale à la mode. Les réunions autour
du thême traduction ont été mes premiers pas dans la communauté scientifique; je
tiens à en remercier les membres, mais tout particulièrement François et Guillaume
pour les nombreux articles, toujours très intéressants, que j’ai pu lire grâce à eux,
et pour toutes les problématiques que j’ai découvert durant ces groupes de lectures.
Les doctorants qui m’ont précédé au sein de ce thême ont aussi ma gratitude: pour
leurs conseils et leur aide, merci à Nicolas, Khanh, Benjamin et Yong. J’ai beaucoup
aimé partager le quotidien des doctorants du LIMSI; Qu’elle ai été régulière ou
plus épisodique, la compagnie de Pierre, d’Elena, de Julia et de Kevin a toujours
été enrichissante. Merci aussi aux doctorants que j’ai vu arriver; Rachel, Pooyan,
Yuming, Swen, Arnaud, pour le temps passé ensemble et les discussions, scientifiques
ou non - et Charlotte, même si elle a su résister à l’attrait d’une thèse. Enfin, j’ai été
très content de rencontrer et de passer du temps avec Aina, Syrielle, Benjamin, José
et Aman, qui ont commencé leurs thèses alors que je profitais d’une prolongation,
sans oublier Margot, qui l’a commencé juste après.

De nombreux membres permanents du Limsi m’ont aidé à comprendre un peu
mieux le travail de chercheur et d’enseignant, et j’ai beaucoup apprécié les discus-
sions que j’ai eu avec eux: merci à Thomas, Hélène, Hervé et Claude; et partic-
ulièrement à Marianna, pour les relations que j’ai pu nouer grâce à elle, et pour ses
nombreux conseils pour l’après-thèse. Merci aussi à Leonardo et Jane, qui m’ont fait
profiter de leur expérience de post-doctorants. Enfin, merci à Éric pour sa disponi-
bilité, et à Laurence pour son aide - ainsi qu’à tous les autres membres du Limsi, à
qui je dois ma gratitude.

viii

Encore merci à Franck, Pooyan, et Syrielle, qui m’ont aidé à relire ce qui suit;
à eux, à Lauriane, et à tous ceux avec qui nous avons pu passer un moment aux
deux gares; et à Alexandre. Et bien sur, à ma famille et aux amis qui m’ont cotoyé,
soutenu, supporté pendant ces 4 dernières années.

Contents

List of Figures xv

List of Tables xix

Introduction 1

1 From Discrete to Neural Language Models 5

1.1 Discrete language models . 7

1.2 Neural network language models . 9

1.2.1 Feedforward language models 9

1.2.2 Recurrent neural network language models 12

1.3 Practical considerations . 14

1.3.1 Evaluation . 15

1.3.2 Choosing hyperparameters . 16

1.3.3 The computational bottleneck 17

2 Avoiding direct normalization: Existing strategies 19

2.1 Hierarchical language models . 21

2.2 Importance Sampling . 22

2.2.1 Application to Language Modeling 22

2.2.2 Target Sampling . 25

2.2.3 Complementary Sum-Sampling 25

2.3 Density estimation as a classification task: discriminative objectives . 26

2.3.1 Noise Contrastive Estimation 26

2.3.2 BlackOut . 28

2.3.3 Negative Sampling . 30

2.4 Avoiding normalization by constraining the partition function 31

x CONTENTS

2.5 Conclusions . 32

3 Detailled analysis of Sampling-Based Algorithms 33

3.1 Choosing k and Pn: impact of the parametrization of sampling 36

3.1.1 Effects on Importance Sampling 36

3.1.2 Effects on Noise-Contrastive Estimation 38

3.2 Impact of the partition function on the training behaviour of NCE . . 43

3.2.1 Self-normalization is crucial for NCE 44

3.2.2 Influence of the shape of Pn on self-normalization 46

3.2.3 How do these factors affect learning ? 47

3.3 Easing the training of neural language models with NCE 49

3.3.1 Helping the model by learning to scale 50

3.3.2 Helping the model with a well-chosen initialization 51

3.3.3 Summary of results with sampling-based algorithms 52

3.4 Conclusions . 54

4 Extending Sampling-Based Algorithms 57

4.1 Language model objective functions as Bregman divergences 59

4.1.1 Learning by minimizing a Bregman divergence 59

4.1.2 Directly learning the data distribution 62

4.2 Learning un-normalized models using Bregman divergences 63

4.2.1 Learning by matching the ratio of data and noise distributions 63

4.2.2 Experimenting with learning un-normalized models 64

4.3 From learning ratios to directly learning classification probabilities . . 67

4.3.1 Minimizing the divergence between posterior classification prob-
abilities and link to NCE . 68

4.3.2 Directly applying β-divergences to binary classification 70

4.4 Conclusions . 72

5 Output Subword-based representations for language modeling 75

5.1 Representing words . 77

5.1.1 Decomposition into characters 78

5.1.2 Decomposing morphologically 80

5.2 Application to language modeling . 81

CONTENTS xi

5.3 Experiments on Czech with subword-based output representations . . 86

5.3.1 Influence of the vocabulary size 86

5.3.2 Effects of the representation choice 88

5.3.3 Influence of the word embeddings vocabulary size 89

5.4 Supplementary results and conclusions 90

5.4.1 Training with improved NCE on Czech 90

5.4.2 Comparative experiments on English 91

5.5 Conclusions . 92

Conclusion 93

List of publications 95

References 111

Appendices

A Proofs on Bregman divergences 115

B Subword-based models: supplementary results with NCE 119

C Subword-based models: supplementary results on embedding sizes
influence 121

D Previous work on subword-based POS tagging 123

xii CONTENTS

List of Figures

1.1 Example architecture of a feedforward neural network language model.
Here, the context size n− 1 = 3, and we only use one hidden layer. . 11

1.2 Example architecture of a recurrent neural network language model,
unrolled through 3 sucessive time steps. 13

1.3 Detailed working of a LSTM Unit; see Equations 1.7. 14

3.1 Training cross-entropy curves on PTB for models trained with MLE,
IS and NCE on a vocabulary of 10K words. 35

3.2 Top: Training cross-entropy curves on PTB for models trained with
IS and various values of the number of samples k. Bottom: Training
cross-entropy curves on PTB for models trained with IS and various
values of distortion α for the noise distribution Pn. 37

3.3 Top: Training cross-entropy curves on PTB for models trained with
NCE and various values of the number of samples k. Bottom: Cor-
responding curves of classification probabilities of data examples into
data (+) and noise samples into noise (o). 39

3.4 Top: Training cross-entropy curves on PTB for models trained with
NCE and various values of distortion α for the noise distribution Pn.
Bottom: Corresponding curves of classification probabilities of data
examples into data (+) and noise samples into noise (o). 40

3.5 Left : Training cross-entropy curves on PTB for models trained with
NCE with a unigram and bigram distribution as Pn. Right : Corre-
sponding curves of classification probabilities of data examples into
data (+) and noise samples into noise (o). 41

3.6 Left : Training cross-entropy curves on PTB for models trained with
BlackOut and various values of the number of samples k. Right :
Corresponding curves of classification probabilities of data examples
into data (+) and noise samples into noise (o). 41

3.7 Left : Training cross-entropy curves on PTB for models trained with
BlackOut and various values of distortion α for the noise distribution
Pn. Right : Corresponding curves of classification probabilities of data
examples into data (+) and noise samples into noise (o). 41

xiv LIST OF FIGURES

3.8 Left : Training cross-entropy curves on PTB for models trained with
Negative Sampling and various values of the number of samples k.
Right : Corresponding curves of classification probabilities of data
examples into data (+) and noise samples into noise (o). 42

3.9 Left : Training cross-entropy curves on PTB for models trained with
Negative Sampling and various values of distortion α for the noise
distribution Pn. Right : Corresponding curves of classification proba-
bilities of data examples into data (+) and noise samples into noise
(o). 43

3.10 Top: Training cross-entropy curves on PTB with Maximum-Likelihood
estimation, IS, NCE on an un-normalized model and a model nor-
malized before application of the NCE. Bottom: Training scores (see
equation 3.2) of the same un-normalized and normalized models trained
with NCE . 45

3.11 Repartition of the values of the partition function Zθ(H) for all ex-
amples (H,w) during specific epochs of training on PTB with NCE.
The fully colored bars represent the repartition for the un-normalized
model, while the faded bars represent the repartition for the normal-
ized model. Both scales are logarithmic. 46

3.12 Repartition of the values of the partition function Zθ(H) for all train-
ing examples (H,w), during the last epoch of training with NCE on
PTB. For both this figure and figure 3.13, the colour of a bin indicates
the proportion of training examples (H,w) for which the word w is
one of the 10 most frequent according to the noise distribution Pn:
the lighter the color is, the higher is that proportion. Both scales are
logarithmic. 47

3.13 Repartition of the values of the ratio rθ(w|H) for all positive training
examples (H,w) in orange, and associated noise sample (ŵi)

k
i=1, in

blue, at initialization. 48

3.14 Repartition of the values of the ratio rθ(w|H) for all positive training
examples (H,w) in orange, and associated noise sample (ŵi)

k
i=1, in

blue, during several training epochs of a normalized model with NCE
on PTB. 48

3.15 Repartition of the values of the ratio rθ(w|H) for all positive training
examples (H,w) in orange, and associated noise sample (ŵi)

k
i=1, in

blue, during several training epochs of an un-normalized model with
NCE on PTB. 49

3.16 Training cross-entropy curves on PTB for un-normalized models trained
with NCE while fixing, then learning a parameter Zc that shifts the
partition function, depending on the initial value of Zc. 50

LIST OF FIGURES xv

3.17 Repartition of the values of the partition function Zθ(H) for all train-
ing examples (H,w), during the last epoch of training with NCE on
PTB, where a scaling parameter Zc is learned. The color of a bin in-
dicates the proportion of training examples (H,w) for which the word
w is one of the 10 most frequent according to the noise distribution
Pn: the lighter the color is, the higher is that proportion. Both scales
are logarithmic. 51

3.18 Repartition of the values of the partition function Zθ(H) (top) and
ratio rθ(w|H) (bottom) for all training examples (H,w) at initializa-
tion, for a model whose output bias is initialized to the values of
logPn(w). 52

3.19 Repartition of the values of the ratio rθ(w|H) for all positive training
examples (H,w) in orange, and associated noise sample (ŵi)

k
i=1, in

blue, during several training epochs on PTB. The model is trained
with NCE, with a output bias initialized to the values of logPn(w). . 53

3.20 Training cross-entropy curves on PTB for un-normalized models trained
with NCE, variations of NCE and alternative additions presented in
Section 3.3. 55

5.1 Example architecture of a convolutional layer CharCNN for building
character-based representations of words. Here, the convolution ma-
trix is applied on a window of 3 characters. The • symbol indicates
the specific character token used for padding. 79

5.2 Example architecture of a bi-recurrent layer CharBiLSTM for build-
ing character-based representations of words. 80

5.3 Example architecture of our language model, when using word em-
beddings and a character CNN to build both input and output word
representations. 81

5.4 Distribution of word frequencies, ordered by rank, for the English and
Czech versions of the parallel corpus News-commentary 2015. 84

5.5 Testing perplexity curves for models trained with Words+CharCNN
input representations, with IS, for various vocabulary sizes. Vocabu-
lary sizes are given, from top to bottom, by taking fWTh = 10, 5, 2, 1, 0
in Table 5.3a . 87

xvi LIST OF FIGURES

List of Tables

3.1 Best final perplexities on the test set of the Penn Treebank (PTB)
corpus obtained with MLE, IS and NCE on a vocabulary of 10K words. 35

3.2 Structural choices and hyperparameters used on the Penn Treebank
(PTB) corpus for experiments presented in this chapter (unless spec-
ified otherwise). 36

3.3 Best final perplexities on the test set of the Penn Treebank (PTB)
corpus obtained with IS, NCE and variations, with varying number
of samples k and distortion α of the noise distribution Pn. ’X’ indi-
cates that the model did not reach a perplexity under the size of the
vocabulary within the maximal number of training epochs, which is 50. 43

3.4 Best final perplexities on the test set of the Penn Treebank (PTB) cor-
pus obtained with NCE and the two tricks presented in this section:
learning conjointly a parameter Zc and initializing the output bias to
the values of Pn - with varying number of samples k and distortion α
of the noise distribution Pn. 52

3.5 Structural choices and hyperparameters used on the 1 Billion Words
Benchmark for experiments presented in this chapter. 53

3.6 Best testing perplexities obtained on PTB with a full vocabulary and
on the 1 Billion Word Benchmark with a vocabulary of 64K words.
’X’ indicates that the model did not reach a perplexity under the size
of the vocabulary within the maximal number of training epochs 50. . 54

4.1 Choices of φ corresponding to S0 and S1 functions presented in Pihlaja
et al. (2012). 65

4.2 Best final perplexities on the test set of the Penn Treebank (PTB)
corpus obtained with Bregman divergences derived from φβ, for var-
ious values of β such that 0 < β < 1. ’X’ indicates that the model
did not reach a perplexity under the size of the vocabulary within the
maximal number of training epochs. 67

xviii LIST OF TABLES

4.3 Best final perplexities on the test set of the Penn Treebank (PTB)
corpus and of the 1 Billion Word (1BW) Benchmark, obtained with
Bregman divergences derived from φRatioβ , for various values of β. ’X’
indicates that the model did not reach a perplexity under the size of
the vocabulary within the maximal number of training epochs. 72

5.1 Example of subword decompositions used for a Czech word. 77

5.2 Detail of the various input and output representations used in our
experiments. Hw indicates the use of a Highway layer. 82

5.3 Various vocabulary sizes for Czech on News-commentary 2015. 83

5.4 Structural choices and hyperparameters used on the News-commentary
2015 Czech corpus experiments presented in this chapter. 84

5.5 Average test perplexities obtained when training 5 models using word-
based output representations with IS, for various input representa-
tions and vocabulary sizes. Results in bold are the best models for a
given vocabulary size. The underlined results are the baselines, which
use only words for the input and output representations. 85

5.6 Average test perplexities obtained when training 5 models using word
and CharCNN input and output representations with IS, for various
vocabulary sizes. Results in bold are the best models for a given
vocabulary size. 86

5.7 Average test perplexities obtained when training 5 models with IS,
for various input/output representations. Results in bold are the
best models for a given output representation. The underlined result
is the baseline, obtained using only words for the input and output
representations. 88

5.8 Test perplexity averaged on 5 models trained with IS, for various
input representations and output word look-up table sizes. Corre-
sponding vocabulary sizes are given in Table 5.3a. Test perplexities
are given for all words, frequent words (frequency > 10) and rare
words (frequency < 10). In bold are the best models for a given
input representation. 89

5.9 Average test perplexities obtained when training 5 models using word
and CharCNN input and output representations with NCE, for vari-
ous vocabulary sizes. 90

5.10 Average test perplexities obtained when training 5 models with NCE,
for various input representations and output word look-up table sizes,
on PTB. 91

B.1 Average test perplexities obtained when training 5 models with NCE,
for various input/output representations. 119

LIST OF TABLES xix

B.2 Test perplexity averaged on 5 models trained with NCE, for various
input representations and output word look-up table sizes. Corre-
sponding vocabulary sizes are given in Table 5.3a. Test perplexities
are given for all words, frequent words (frequency > 10) and rare
words (frequency < 10). 120

C.1 Average test perplexities obtained when training 5 models with NCE,
for various input representations and output word look-up table sizes,
on PTB, followed by the number of parameters of the corresponding
model (in millions) . 121

xx LIST OF TABLES

Introduction

Neural networks architectures have been applied to a myriad of tasks in Natural
Language Processing (NLP), mainly since the success they met following their early
application to language modeling (Schwenk and Gauvain, 2002; Bengio et al., 2003).
Language models are an important component in many NLP tasks, where they
provide prior knowledge on the language used. They attribute a probability to a
sentence S, based on data upon which the language model is built. In language
modeling, where words are the atomic units, a sentence S is a sequence of words:

S = (w1, . . . , wt, . . . , w|S|)

The representational power of language models is limited by how many words they
have knowledge of: these words are listed in a finite vocabulary V . Usually, this
vocabulary is built from the same data as the model. Hence, the language model
can only represent (at most) the words that are present in the training data. The
probability of S is written as:

P (S) =

|S|∏
i=1

P (wt|w1, . . . , wt−1)

While probabilities given by discrete language models are based on the number of
occurrences of a sequence in the training corpus, neural language models jointly
learn continuous representations of words, which the model scores together. These
continuous vectors, that we call embeddings, are distributed representations: the
joint learning procedure of neural language models implies that embeddings are
learned similar for words that have similar contexts, allowing for generalization
across these contexts. The development of unsupervised methods to learn such rep-
resentations (Mikolov et al., 2013), of recurrent structures (Elman, 1990b; Mikolov
et al., 2010) - and their improvements (Hochreiter and Schmidhuber, 1997) - made
neural architectures even more popular in NLP.

While neural language models can be used as stand-alone models, to compute the
probabilities of or generate sequences of words, they are necessary to many sophis-
ticated systems. Intuitively, improving a language model should also improve the
metric associated to the task it is applied to. As a matter of fact, neural language
models were applied with success to Automatic Speech Recognition (ASR) (Schwenk
and Gauvain, 2004; Schwenk, 2007; Mnih and Hinton, 2009; Le et al., 2011) and Sta-
tistical Machine Translation (SMT) (Le et al., 2012; Schwenk et al., 2012; Devlin
et al., 2014; Cho et al., 2014c), among many other tasks. For these tasks, a reduced

2

vocabulary may consequently hinder performance - for example, with the recent
task of neural machine translation, the translation performance decreases when the
number of unknown words goes up (Cho et al., 2014a). For some tasks, a large vo-
cabulary is necessary. Indeed, rare words may need to be represented: for example
in named entity recognition, or any work on social media datasets, for which the
vocabulary is very diverse due to spelling errors and informal, irregular or abbrevi-
ated words. Besides, these issues are even more pregnant for morphologically rich
languages. We can take the example of Czech, which is a highly inflected language:
the vocabularies generated from Czech data is far larger. For instance, the Czech
words dnes, dnešńı, dnešńıch, dnešku, dnesńımu, ... each have their own represen-
tation in a vocabulary, whereas in English, only a few words, among which today
and current, would be represented. This shows the importance of being able to train
large-vocabulary neural language models.

Training a neural language model is usually done by maximizing its likelihood on
the data. This is maximum likelihood estimation (MLE). In practice, we minimize
the negative log-likelihood (NLL):

NLL(S) = −
|S|∑
t=1

logP (wt|w1, . . . , wt−1)

Computing this objective and its gradient is however slow and costly. Indeed, in or-
der to compute the probability of the next word, we need to compute the score given
by the model to each word in the associated vocabulary V and to normalize these
scores, via a softmax layer. Thus, the cost of training grows linearly with |V|, which
makes training very large-vocabulary language models a difficult task. Quite a few
solutions have been proposed: hierarchical models modify the standard architecture
of the output layer (Morin and Bengio, 2005; Mnih and Hinton, 2009; Le et al.,
2011). Others, which only speed-up computation during training, approximate the
training objective via sampling schemes. The most notable are importance sam-
pling (Bengio and Sénécal, 2003, 2008) and noise contrastive estimation (Gutmann
and Hyvärinen, 2012; Mnih and Teh, 2012). These approaches each have they own
strenghs and weaknesses, but they seem to fall off for very large vocabularies (Chen
et al., 2016).

Another observation made on neural language models is that they are generally
less effective on rare words than discrete models. This issue is linked to the size of
the vocabulary; indeed, the particular repartition of word counts in a text (namely,
its Zipfian shape) means we systematically encounter a large number of infrequent
words in our corpus, number that will grow with the size of the vocabulary. This
is of course even more impactful for languages with rich morphologies: the Czech
words we used as examples previously are, for most of them, rare words. For these
words, the number of occurences is never sufficient, and the weak generalization at-
tained by using distributed representations does not help. Besides, since each word
is associated to a particular representation, there is no relation between words that
share morphological caracteristics. This implies that dnes, dnešńı, dnešńıch and
other related forms are learnt independently. To attain a better form of general-

Introduction 3

ization, language models can rely on subword units for input words, whether they
are characters (Kim et al., 2015) or morphological features (Botha and Blunsom,
2014). This also presents the advantage of vastly reducing the number of parameters
needed to represent words.

In this context, the motivations for this work are twofold: first, we wish to
facilitate training of large vocabulary neural language models. Secondly, we would
like to improve the performances of neural language models when trained on a full
vocabulary, which means that a non-negligeable number of words will be infrequent
in the training data. This implies that we will work on standalone language models.
We will verify their efficiency using an intrisic measure, the perplexity. We will
work towards our first objective by reviewing existing strategies aiming at training
large vocabularies neural language models; focusing on sampling-based methods,
we will specifically analyze the inner workings of noise contrastive estimation and
propose solutions to ease learning with this method. Finally, we will try to replace
noise contrastive estimation and other sampling-based methods in a larger class
of objective functions and experimentally explore some of them. To achieve our
second objective, we will take interest in subword-based representations. In order
to improve performances of neural language models on infrequent words, we will
not only use them for representing input words, but also to augment output word
representations.

This work is organized as follows: in Chapter 1, we review language models
in general and particulary neural language models. We detail the architecture of
feedforward and recurrent language models and how they are usually trained. After
explaining the practical aspects of training neural language models, we outline the
design choices we have made for the experiments presented subsequently. Chapter 2
describes various strategies to efficiently train large vocabularies language models -
mainly focusing on sampling-based approaches. The two main methods we discuss
are importance sampling and noise contrastive estimation. In Chapter 3, we begin
by extensively experimenting with the hyperparameters of importance sampling and
noise contrastive estimation, as well as other related methods. In order to improve
the efficiency of noise contrastive estimation, we examine the mechanism of self-
normalization and how it is affected by the frequency distribution of words in the
text and the size of the vocabulary. We propose solutions that are adapted to the
inner workings of the method and experimentally show that they considerably ease
training. Chapter 4 will expand on a generalization of several sampling based objec-
tives as Bregman divergences, in order to experiment with new objectives. We use
Beta divergences to derive a set of objectives from which noise contrastive estima-
tion is a particular case. Finally, in Chapter 5, we aim at improving performances
on full vocabulary language models, by augmenting output word representations
with subwords and experimenting with various architectures. We experiment on
a Czech dataset and show that using character-based representations besides word
embeddings for output representations gives better results when working on the full
vocabulary. We also show that in that case, reducing the size of the output look-up
table improves results even more.

4

The main contributions presented in the Sections 3.2 and 3.3 have been published
in Labeau and Allauzen (2018), while an exploration of the results of Section 3.1.2
has been published in Labeau and Allauzen (2017a). Preliminary work on subword-
based neural architectures, applied to a different task, has been published in Labeau
et al. (2015) and is presented in Annex D. We applied such architectures to language
modeling with an extrinsic evaluation on machine translation, in Labeau and Al-
lauzen (2017c). Finally, the main contributions of Chapter 5 were first explored in
Labeau and Allauzen (2017b).

Chapter 1

From Discrete to Neural Language
Models

Contents
1.1 Discrete language models 7

Smoothing . 7

Limitations . 8

1.2 Neural network language models 9

1.2.1 Feedforward language models 9

Word embeddings . 9

Hidden layers . 10

Output layer . 10

Learning with gradient descent and backpropagation . . . 11

1.2.2 Recurrent neural network language models 12

Basic recurrent layer . 12

LSTM and other improvements 14

1.3 Practical considerations . 14

1.3.1 Evaluation . 15

Datasets . 15

1.3.2 Choosing hyperparameters 16

Optimization, Regularization and Initialization 16

1.3.3 The computational bottleneck 17

6

Language models play a key role in various Natural Language Processing tasks,
such as machine translation and speech recognition. Their function is to assign prob-
abilities to sentences, i.e to determine how likely a sentence is in a given language.
As such, we can view them as prior knowledge on the language they model. The goal
is to assign a low probability to sequences that are grammatically incorrect, but also
to sequences that are grammatically correct and do not make sense. In this work,
we will only consider statistical language models, which determine the likelihood of
a sentence based only on data upon which the language model is built. A sentence
S is considered as a sequence of words

S = (w1, . . . , wt, . . . , w|S|)

Each of these words belongs to a finite vocabulary V , which contains all the words
the model is able to represent. We want to assign to S a probability

P (w1, . . . , w|S|)

Assuming that the words composing the sentence have been generated depending
on the sequence of previous words, and using the chain rule, we can write this
probability as:

P (S) =

|S|∏
t=1

P (wt|w1, . . . , wt−1)

We choose to write each sequence of previous words (w1, . . . , wt−1) as a context Ht,
transforming the probability of our sequence into a product of conditional proba-
bilities of words given a context P (wt|Ht). Then, the generation of a word w given
a context H can be modeled as depending on a multinomial distribution on the
vocabulary V . Our statistical language model must learn these distributions from a
dataset D, which is composed of couples (H,w). At first, to make the task easier,
we can use the Markov assumption: we restrict the conditional dependency of the
word wt on the n− 1 previous words. Then,

P (S) =

|S|∏
t=1

P (wt|wt−n+1, . . . , wt−1)

We call the models using this approximation n-gram models. The choice of n is
a trade-off between being able to capture longer dependencies between words, and
needing more parameters to model the conditional probabilities. Increasing n also
brings another issue: the data sparsity. Indeed, since each word comes from a
finite vocabulary V , there are |V|n possible n-grams. With higher values of n, it is
increasingly unlikely to have a particular n-gram appear in the training data D.

Historically, the first language modeling approaches are based upon counting n-
gram occurrences, which we will discuss in Section 1.1. To deal with the issue of data
sparsity, they were improved with smoothing methods, which allow giving non-zero
probabilities to sequences that were never encountered in the training data. When
improved in that manner, discrete approaches are still competitive, because of their
speed and how little space they need. However, they lack the ability to generalize
and imply an exponential growth of their number of parameters if we are to increase

Chapter 1. From Discrete to Neural Language Models 7

n. The introduction of neural networks language models, that use continuous dis-
tributed representations of words, allowed to overcome this issue. Using a recurrent
structure permitted to remove the constraint of keeping a fixed-size context, and to
capture long-term dependencies. We will present these models in Section 1.2. How-
ever, training neural networks for language modeling presents numerous practical
difficulties, among which computation time is not the least. It also implies making
quite a lot of choices on the design of the model. In the last section (1.3), we will
rapidly summarize some of these difficulties, and how they are usually addressed.
We will then discuss the computational bottleneck of neural network language mod-
els, and how it relates to the size of the output vocabulary, which is the main topic
of this work.

1.1 Discrete language models

Some of the most used language models are very simple: they are based on
relative frequencies of sequences. Indeed, maximum likelihood estimation (MLE) on
the training data D gives the following estimate:

PMLE(wt|wt−n+1, . . . , wt−1) =
cD(wt−n+1, . . . , wt)

cD(wt−n+1, . . . , wt−1)

where cD is the number of occurrences of a sequence in the training corpus D.
Usually, n is chosen to be 2 or 3, corresponding to bigram and trigram models.
However, if the quantity of training data is not large enough for the size of the
model we are training, there is a higher risk of never coming across word sequences
that are still plausible, therefore attributing them PMLE = 0. This especially is an
issue for applications such as speech recognition or machine translation, where the
word sequence in question could not be outputted, even if well evaluated by the
acoustic or translation model. Therefore, smoothing methods are used to adjust the
MLE probabilities and prevent zero probabilities.

Smoothing

The main idea behind smoothing is to move a small amount of the probabil-
ity mass attributed to n-grams seen in the data to the n-grams that are unseen.
The simplest way to do so is to add a minimum number of occurrences to each
sequence: this is additive smoothing. However, this offers poor performance. A vari-
ety of more complex methods exist, which are reviewed and compared in Chen and
Goodman (1999), or again in Goodman (2001b). These methods usually combine
high-order models (with a high value of n) with lower order models. Mostly, smooth-
ing techniques can be divided in two categories, according to how this combination
is accomplished. First, backoff models can be described by the following rule:

8 1.1 Discrete language models

Pbackoff (wt|wt−n+1, . . . , wt−1) ={
α(wt|wt−n+1, . . . , wt−1) if cD(wt−n+1, . . . , wt) > 0
γt−1
t−n+1Pbackoff (wt|wt−n+2, . . . , wt−1) if cD(wt−n+1, . . . , wt) = 0

(1.1)

If the sequence has a non-zero count, we use a distribution α which is based on dis-
counted relative frequencies. The discounting method varies: Katz smoothing (Katz,
1987) uses a ratio based on the Good-Turing estimate (Good, 1953), while other
methods use an absolute discount, notably Kneser-Ney smoothing (Kneser and Ney,
1995b). The discounted quantity is then attributed to the sequences which have a
zero-count, backing-off to a lower order model, where γ is a normalizing factor, to
ensure the distribution sums to 1.

The other category gathers interpolated models. They are the linear interpolation
of higher and lower-order n-gram models:

Pinterpolated(wt|wi−n+1, . . . , wt−1) =

λt−1
i−n+1

cD(wi−n+1, . . . , wt)

cD(wi−n+1, . . . , wt−1)
+ (1− λt−1

i−n+1)Pinterpolated(wt|wi−n+2, . . . , wt−1)

(1.2)
Jelinek and Mercer (1980) and Witten and Bell (1991) give examples of such models.
The main difference between the two categories resides in how they estimate the
probabilities of sequences which appear in the training data: interpolated models
use information from lower-order distribution, while back-off models do not. Besides
comparing these methods, Chen and Goodman (1999) experiment with combining
them. They propose a modified version of the Kneser-Ney smoothing which is still
widely used, and a recommended discrete language model for many applications.

Limitations

Several aspects of discrete language models, even with smoothing, could be im-
proved upon. As we have seen, higher-order models often use lower-order dependen-
cies to assign probabilities, because of the data sparsity. Besides, augmenting the
size of sequences the model is able to consider has an exponential cost in parameters,
which forces the context to be most of the time very short. For these reasons, longer
dependencies are ignored.

This brings up another issue: most of the parameters are free parameters, since
they directly depend on values represented by other parameters corresponding to
smaller sequences. A model being able to share parameters, in order to re-use the
information previously learnt for new sequences, would also be able to better gener-
alize to unseen sequences. Various work tried to tackle these difficulties. Some types
of language models directly incorporate knowledge about the language, whether it
is in the form of structural information (as structured language models, described
in Chelba and Jelinek (2000)) or by grouping words that belong to a same group to-
gether to exploit their closeness, as for class-based language models1 (Brown et al.,

1This type of language models can also be used to deal with the difficulty of having a large

Chapter 1. From Discrete to Neural Language Models 9

1992; Kneser and Ney, 1993). However, an approach based on using continuous
representations of words with neural networks for probability estimation offers a
solution to all these issues.

1.2 Neural network language models

We will first describe the standard feedforward language model, introduced
in Bengio et al. (2003). There are two main ideas behind this model: First, us-
ing a distributed representation, inspired by Elman (1990b); Hinton (1986), for each
word. It means that instead of representing a word as being only one element in a
large vocabulary, each word is characterized by a number of features. This allows
to describe a large number of objects with a relatively small number of parameters,
and to generalize information to new objects easily. Secondly, making these repre-
sentations continuous.Then, the smooth probability function that takes as input a
fixed-length word sequence (a context) and outputs a probability distribution on V
can be modeled with a neural network.

Both the parameters of the distributed representations and of the probability
function are learnt jointly. Previously, several approaches applied neural networks
to language modeling (Miikkulainen and Dyer, 1991; Xu and Rudnicky, 2000), but
never to learn a large-scale model of the distribution of word sequences. However,
we can mention maximum entropy language models (Berger et al., 1996), which can
be assimilated to neural networks without a hidden layer.

1.2.1 Feedforward language models

As previously, we want to be able to assign a probability

P (w1, . . . , w|S|)

to a sequence S. We still consider the Markov assumption to be true: we want to
model P (wt|Ht) where Ht = (wt−n+1, . . . , wt−1) is the first n−1 words of the n-gram,
while wt is the last. Then, we consider the conditional probability distribution over
V as a continuous function to be learned:

P (.|Ht) = f(Ht)

Word embeddings

This function is decomposed in two parts. First, the distributed representations
of the words of V . These are vectors, that we note r ∈ Rdr . In practice, they
are represented by a Look-up matrix L ∈ Rdr×|V|. Each row of this matrix is a
continuous vector that corresponds to a word in the vocabulary: L = [rj]

|V|
j=1. These

representations are called word embeddings. To obtain a representation of the full

vocabulary. Thus, we will discuss them a little more in Section 2.1

10 1.2 Neural network language models

context Ht, we simply concatenate the word embeddings corresponding to the words
of Ht:

xt = [rwt−n+1 ; . . . ; rwt−1]

Then, xt ∈ R(n−1)dr represents the whole input sequence Ht. Then, we map this
vector to a conditional probability distribution over V .

Hidden layers

This is done by applying successive feature extracting layers: each layer consists
in a simple linear transformation, using a weight matrix Whidden ∈ Rdh×(n−1)dr and
a bias vector bhidden ∈ Rdh , followed by the application of a non-linear function φ,
that we call an activation function:

ht = φ(Whiddenxt + bhidden)

If we stack at least one hidden layer between the input and output layers, we obtain
a model called the multilayer perceptron. It has been shown (Hornik et al., 1989;
Cybenko, 1989) that, with at least one hidden layer, and a suitable non-linear activa-
tion function, any function continuous on a closed part of RN can be approximated
- in our case, N = |V|.

Output layer

Now, we need to map the resulting hidden representation ht ∈ Rdh to a prob-
ability distribution on V . This means that we need to give a probability to each
word w in the vocabulary: the output of our multilayer perceptron is a vector of |V|
positive values which sum to 1, that we note PHt . Then,

P (wt = k|Ht) = PHt
k and

V∑
k=1

PHt
k = 1

We proceed with a layer whose activation function is the softmax function. First,
we extract a score with a linear transformation corresponding to a specific word in
the vocabulary. This first step is explicited with an intermediate scoring function s:

s(wt = k,Ht) = sHtk = routk ht + boutk

The vectors routk each correspond to a word k of the vocabulary, as do the bias
values boutk . They form the rows of a matrix that can be seen as the weight matrix

of the output layer, Wout = [routk]
|V|
k=1, with Wout ∈ R|V|×dh , and the associated bias

vector bout ∈ R|V|. Equivalently, we can see these weights as output word embed-
dings2. Then, we make this score positive by applying the exponential function, and
transform them into probabilities by normalizing them:

2It is possible for the input and output word embeddings to share the same parameters, which
implies dr = dh. The resulting model is called log-bilinear model (Mnih and Hinton, 2007)

Chapter 1. From Discrete to Neural Language Models 11

Whidden Wout

rwt−3

rwt−2

rwt−1

PHt
θ

dr

ht

xt

|V|

Figure 1.1: Example architecture of a feedforward neural network language model.
Here, the context size n− 1 = 3, and we only use one hidden layer.

P (wt = k|Ht) = PHt
k =

es(wt=k,Ht)∑|V|
l=1 e

s(wt=l,Ht)
=

er
out
k ht+boutk∑|V|

l=1 e
routl ht+boutl

(1.3)

The dimensions dr, dh of the word embeddings and hidden representations, and the
activation function φ, are all hyperparameters, that we need to choose. We will
discuss hyperparameter choices in more details in Section 1.3.2. The look-up matrix
L, the hidden layer weight matrix Whidden and bias bhidden, and the output layer
weight matrix Wout and bias bout are parameters of the model. We gather them
in one parameter vector θ, which is then the set of all the free parameters of our
model. The continuous function f we learn depends on θ, and outputs a conditional
probability distribution. We can then note it Pθ : it is modeled by a feedforward
neural network, composed of an input, hidden, and output layer. If H is fixed, we
can note the conditional probability distribution associated as PH

θ (.), a function over
V , or as a vector PH

θ ∈ R|V|.

Learning with gradient descent and backpropagation

In order to learn this function, we perform maximum-likelihood estimation (MLE).
The objective is to find the parameters θ which minimize the negative log-likelihood
of this conditional distribution for each tuple of input context and following word

12 1.2 Neural network language models

(H,w) ∈ D, where D is the training set:

NLL(θ) = −
∑

(H,w)∈D

logPθ(w|H) (1.4)

We can do so with the Stochastic Gradient Descent (SGD). We then need to compute
the gradient to update the parameters: in practice, this is done via backpropaga-
tion (Rumelhart et al., 1988). For one training example (H,w), such an update has
the form:

θupdated = θ − λ ∂
∂θ

logPθ(w|H) (1.5)

where λ is the learning rate, which can be treated as an hyperparameter. Its value
can be fixed or can change during training according to various strategies that we
will discuss in Section 1.3.2.

1.2.2 Recurrent neural network language models

One of the disadvantage of the conventional feedforward network is that the
length of the input context is fixed to n − 1 words. The idea of recurrent neural
networks is to use a structure adapted to working with sequences, by creating at
each time step a fixed-sized vector that represents all the preceding words. The
idea of recurrent neural network was introduced by Elman (1990a) and applied to
language modelling by Mikolov et al. (2010).

Basic recurrent layer

Our input sequence is still S = (w1, . . . , wt, . . . , w|S|). The main difference with
the feedforward model is that we compute for each time step t a hidden state ht
corresponding to a word wt. This state is computed using the previous hidden state
and the computed representation rwt , coming from the input layer. Hence,

ht = φ(Whiddenht−1 + Winputrwt)

where Whidden and Winput are weights matrices, applying linear transformations
respectively to the previous hidden state and the input representation. At each
time step, the output conditional probability distribution (which is now conditioned
on all the previous words in the sequence) is obtained in the same way as for the
feedforward model:

P (wt = k|w1, . . . , wt−1) =
er
out
k ht+boutk∑|V|

l=1 e
routl ht+boutl

(1.6)

While the first occurrence of the model (Mikolov et al., 2010) was trained with trun-
cated backpropagation, it was later (Mikolov et al., 2011) improved with backpropa-
gation through time (Werbos, 1990). The first one consists in applying parameter

Chapter 1. From Discrete to Neural Language Models 13

Winput Wout

P
Ht−2

θ

ht−2

Winput Wout

Winput Wout

ht−1

Whidden

ht

Whidden

P
Ht−1

θ

PHt
θ

dr

|V|

Figure 1.2: Example architecture of a recurrent neural network language model,
unrolled through 3 sucessive time steps.

updates using only the gradients from the current time step, while the second al-
lows propagating the gradients through several time steps. That number is usually
limited by a fixed threshold. However, there are some issues with this kind of struc-
tures. First, it is not possible to choose what to keep and what to skip in a hidden
state. It is probable that information will not be kept for very long. Secondly, even
if we rely on the backpropagation through time to make the model keep relevant
information, in practice, it causes vanishing and exploding gradients (Bengio et al.,
1994; Pascanu et al., 2013). While it is possible to clip the gradient to deal with
the latter, the former often implies that the model ignores long-term dependencies,
since the gradient vanishes after a few time steps. Hence, a conventional recurrent
neural network language model may not be able to use longer context than usual
n-grams models.

14 1.3 Practical considerations

rw

Figure 1.3: Detailed working of a LSTM Unit; see Equations 1.7.

LSTM and other improvements

The most widely used improvements on the recurrent structure are the Long
Short-Term Memory units, or LSTMs (Hochreiter and Schmidhuber, 1997). It was
specifically designed to be able to retain these long-term dependencies: through the
use of gates, it allows selecting the information that is retained and transmitted. It
also scales the descending gradient to avoid vanishing and exploding gradients when
backpropagating through time:

tt = φ(Whidden
t ht−1 + Winput

t rwt)

ft = φ(Whidden
f ht−1 + Winput

f rwt)

ot = φ(Whidden
o ht−1 + Winput

o rwt)

zt = φ(Whidden
z ht−1 + Winput

z rwt)

ct = ft � ct−1 + tt � zt

ht = ot � φ(ct)

(1.7)

which can summarized with:

ht = LSTM(ht−1, rwt)

LSTM were first applied to language modeling in Sundermeyer et al. (2012), and
compared to feedforward neural networks in Sundermeyer et al. (2013). Another
popular recurrent structure, using gates to retain or forget information, is the
Gated Recurrent Unit, or GRU (Cho et al., 2014c), which were compared to LSTM
in Chung et al. (2014). In this work, we chose to use LSTMs for our models.

1.3 Practical considerations

Even if we possess all the basic blocks that would allow us to build our language
model, many hyperparameters must be chosen. They include architectural choices,

Chapter 1. From Discrete to Neural Language Models 15

such as the number and type of layers, as well as their sizes, but also the learning
procedure, the type of regularization, and other tricks that can help training. We
will first explain how we evaluate our models, on which data, then what choices we
need to consider, before moving on to our main topic.

1.3.1 Evaluation

When used for a specific application, the performance of a language model can
be measured by how much it improves the system it is a part of, which is an ex-
trinsic evaluation. However, to evaluate a language model on its own (an intrinsic
evaluation), the most common used method is perplexity. It is the geometric average
of the inverse probability the model assigns to the words, and is usually measured
on a separate test dataset. For a sequence of N words,

PPL = N

√√√√ N∏
i=1

1

P (wt|Ht)
(1.8)

Equivalently, it can be described as the exponential of the cross-entropy of the test
data, given the model. Intuitively, it is a measure of how informed the model is.
Thus, a model attributing uniform probabilities to each word in a vocabulary V
would have a perplexity of |V|, while a model attributing a probability of 1 to the
right word each time would have a perplexity of 1.

However, we should remark that perplexity has drawbacks. First, it is intrinsic,
and measuring the effect of the model on the task it is applied to is arguably far
more important. Secondly, it is the exponential of entropy, which means perplexity
improvements which seem meaningful could mean only very small entropy changes.
This issue is further discussed in Goodman (2001b): the author argues that the
speed and space taken by a model are often overlooked, while the gains obtained on
perplexity are not always worth their cost. They also may offer almost no gain on
other measures, as the word error rate. Another aspect that is sometimes overlooked
is how important the quantity and quality of data available for training are, in order
to obtain a reasonable performance. However, while it is relatively easy to train
discrete models on large datasets, large-scale neural language models are very costly
in computation time and memory.

Datasets

One of the most used benchmarks in neural language modeling is the Penn
TreeBank (PTB) (Marcus et al., 1993) corpus. As it is rather small - 929K training
words, 73K validation words, and 82K test words - experimenting with it is not
too demanding in resources. However, as argued in Józefowicz et al. (2016), with
the increasing availability of data and computational resources, models should be
tested on larger corpora, since a good performance on a small dataset may not hold
on a larger one. The 1 Billion Word Benchmark dataset (Chelba et al., 2014) is an
open dataset commonly used as a way to compare progress of large language models.
About 1% of the dataset was held-out, shuffled and divided in 50 partitions that

16 1.3 Practical considerations

can be used as validation/test data. As we are limited in resources, we will use the
PTB for most of our experiments in this work, while we will verify our results on
the 1 Billion Word Benchmark when possible, using the first and second partitions
as validation and test datasets.

1.3.2 Choosing hyperparameters

The first choices to consider are the number of hidden layers (for both feedfor-
ward and recurrent models) and their dimensions, as well as the dimension of word
representations. Of course, higher dimensional representations are more expressive,
but also more costly to use3. These choices should also depend on the amount of
data available. Similarly, using several stacked hidden layers can improve results.
But not only is it more costly, it can also make training far more difficult, because of
the phenomenon of gradient attenuation mentioned in Section 1.2.2. Although this
issue was first handled by using specific initialization schemes (Glorot and Bengio,
2010; Saxe et al., 2013), one possible solution is to use highway layers (Srivastava
et al., 2015), which regulate the information flow (and can allow propagation of the
gradient) with a gating mechanism.

The choice of the activation function also impacts heavily how easily the informa-
tion circulates in the network: while the sigmoid and tanh were traditionally used,
they easily saturate, which makes their gradient very small. The rectified linear
unit (Glorot et al., 2011), or ReLU, which is simply the function f(u) = max(0, u),
is currently the most popular activation function. Being linear when non-zero, it
does not saturate, and its computation is faster.

Optimization, Regularization and Initialization

The learning scheme refers to the choice of the learning rate λ used to update
parameters (in Equation 1.5). It is crucial, and using strategies like iteratively
drecreasing λ after seeing enough examples facilitates learning. However, we can
use algorithms that adapt the learning rate to each parameter, like Adagrad (Duchi
et al., 2011), which uses a cache of accumulated past gradients to normalize the
learning rate. One of the most used method is Adam (Kingma and Ba, 2014), which
combines several strategies including Adagrad.

Overfitting is a common issue, and especially is of concern for smaller datasets.
While we could use the usual L1 and L2 regularization constraints, a neural-network
specific method, dropout, was recently introduced by Srivastava et al. (2014). Dropout
keeps neurons active with a probability smaller than 1 during training, which has
the effect of sampling a sub-network. While it was only efficient for feedforward
networks at first, Zaremba et al. (2014) applied it successfully to LSTMs.

How the parameters are initialized is quite important, and can drastically affect
training. The initialization scheme should be chosen in accordance with the activa-
tion function. Glorot and Bengio (2010) make the analysis that the neurons in the

3For example, see the results of Józefowicz et al. (2016) to note the influence of dimension
choices on perplexity.

Chapter 1. From Discrete to Neural Language Models 17

network should have similar output distributions, and provides advice on doing so,
while He et al. (2015) derive an initialization scheme specifically for ReLUs. How-
ever, a recent method called batch normalization (Ioffe and Szegedy, 2015), which
we will use, normalizes the outputs of activation function into a unit Gaussian dis-
tribution, rendering initialization less impactful.

1.3.3 The computational bottleneck

The main limitation of neural networks language models is their expensive com-
putational cost. This was already pointed out by Bengio et al. (2003). Schwenk
and Gauvain (2004) provide, for the feedforward model, the number of operations
needed to obtain the output distribution:

((n− 1)× dr + 1)× dh + (dh + 1)× |V| (1.9)

Since, for a language model, the quantities dr and dh verify dr � |V| and dh � |V|,
the computational cost mainly depends on the size of the vocabulary, with which it
grows linearly. Early work on neural network language models proposed a certain
number of training tricks to accelerate training, among which using a mini-batch,
i.e parallelizing computation by forwarding (and backpropagating the gradient of)
multiple examples at the same time, instead of just one. In practice, it is very
efficient, and it only requires transforming the vectors x, h and P of Section 1.2 into
matrices. However, the most straightforward way to limit computational time is to
limit the vocabulary size. Bengio et al. (2003) proposed to remove words under a
frequency threshold of the vocabulary, and to map them to a same token UNK, which
represents all unknown words. That is what we will do when we do not use the full
training vocabulary. An improvement on that idea is the short-list, (Schwenk and
Gauvain, 2004) which limits the neural language model vocabulary size, and uses
the probabilities obtained from a discrete language model for the remaining words.
However, this solution limits the model capacity to generalize to less frequent words.

While the training and inference costs of a neural language model are always
making their practical use difficult, we will in the next chapter mainly be interested
in reducing them when they are the most impactful: for language models that use
a large vocabulary.

18 1.3 Practical considerations

Chapter 2

Avoiding direct normalization:
Existing strategies

Contents
2.1 Hierarchical language models 21

2.2 Importance Sampling . 22

2.2.1 Application to Language Modeling 22

Self-normalized Importance Sampling 23

Number of samples and choice of Q 24

2.2.2 Target Sampling . 25

2.2.3 Complementary Sum-Sampling 25

2.3 Density estimation as a classification task: discrimina-
tive objectives . 26

2.3.1 Noise Contrastive Estimation 26

Application to language modeling 27

Choosing the noise distribution 28

2.3.2 BlackOut . 28

NCE with a re-weighted noise distribution 28

Approximating classification probabilities with IS 29

Choice of the sampling distribution Q 30

2.3.3 Negative Sampling . 30

2.4 Avoiding normalization by constraining the partition
function . 31

2.5 Conclusions . 32

20

The main drawback of Neural Probabilistic Language Models is their very long
computation time. At the root of this issue lies the multinomial classification ob-
jective: its computation time is linear in the number of categories, which is the size
of the target vocabulary. To understand why, we need to take a closer look at the
objective function and its gradient. Our neural probabilistic language model with
parameters θ outputs, for an input context H, a conditional distribution PH

θ for
the next word, over the vocabulary V . As explained in Section 1.2, this conditional
distribution is defined using the softmax activation function:

Pθ(w|H) =
esθ(w,H)∑

w′∈V
esθ(w′,H)

=
esθ(w,H)

Zθ(H)
(2.1)

Here, we are not interested in the network architecture and we suppose that the
model outputs a scoring function sθ(w,H) which depends on it. The denominator
is the partition function Zθ(H), which is used to ensure that for each input context
H, output scores are normalized into a probability distribution. As explained in
Section 1.2.1, the objective is to minimize the negative log-likelihood of this condi-
tional distribution for each tuple of input context and following word (H,w) ∈ D in
the training data:

NLL(θ) = −
∑

(H,w)∈D

logPθ(w|H) (2.2)

Using the Stochastic Gradient Descent (SGD) to train this objective implies taking
the objective gradient to make the parameter updates. For one training example
(H,w), the gradient of the log-probability is computed as follows:

∂

∂θ
logPθ(w|H) =

∂

∂θ
sθ(w,H)−

∑
w′∈V

Pθ(w
′|H)

∂

∂θ
sθ(w

′, H) (2.3)

With the first term, we are increasing the conditional log-likelihood of the word w,
while we are decreasing the conditional log-likelihood of all the other words in the
vocabulary with the second. Unfortunately, explicitly computing Pθ(w

′|H) implies
computing the partition function Zθ(H), which means summing over the whole
vocabulary V .

While we described in Section 1.3.3 a classic workaround consisting in using a
short-list that limits the output layer of the network to the most frequent words, the
model will not be able to generalize well to words out of this list. In this chapter,
we will describe methods that can be used to efficiently handle large vocabularies in
language modeling. We will expose the theoretical guaranties they offer, the hyper-
parameter choices they entail and their experimental advantages and weaknesses.
Most of these methods revolve around avoiding the computation of the partition
function Zθ(H). Thus, an important concept in this chapter (and the remaining of
this dissertation) is the un-normalized version of a probability distribution. This is
simply the exponential of the scoring function and we will denote it as a lower-case
version of the normalized probability distribution:

pθ(w|H) = esθ(w,H) = Pθ(w|H)Zθ(H) (2.4)

Chapter 2. Avoiding direct normalization: Existing strategies 21

We will rapidly present Hierarchical approaches (Section 2.1), which reorganize
the structure of the output layer into a tree structure. They provide a potential
O(log |V|) speedup, but at the cost of building the word hierarchy that will replace
V . The main other approaches, that we will examine in detail, use sampling schemes
to avoid computing the partition function. While Importance Sampling (Section 2.2)
directly approximates the gradient computation, Noise Contrastive Estimation (Sec-
tion 2.3.1) and related methods (Section 2.3.2 and 2.3.3) use a discriminative ob-
jective function that doesn’t require normalization and let the partition function be
parametrized separately. We will also present Constrained self-normalization (Sec-
tion 2.4), where the partition function is explicitly forced to be close to 1 in the
objective function, which is efficient for some specific applications.

2.1 Hierarchical language models

To avoid the costly summations in the multinomial classification objective, we
can modify the output layer to make this classification hierarchical. We first predict
a (series of) class or cluster and, given that class, predict the following word. While
class-based models have been used extensively in language modeling (Brown et al.,
1992; Kneser and Ney, 1993), they aimed at improving the model perplexity, or
reducing its size. Decomposing the vocabulary into classes in order to get a speed-
up in computation was first applied by Goodman (2001a), to a Maximum entropy
language model. An extension of this idea was then applied to Neural probabilistic
language models, first by Morin and Bengio (2005). Here, the prediction of a word
from a vocabulary V is replaced by a series of O(log |V|) decisions. That process can
be seen as a hierarchical decomposition of the vocabulary, following a binary tree
structure. Indeed, by building a binary hierarchical clustering of the vocabulary, we
can represent each word as a bit vector b(w) = (b1(w), . . . , bm(w)) and compute the
conditional probability of the next word as:

Pθ(w|H) =
m∏
i=1

Pθ(bi(w)|bi−1(w), . . . , b1(w), H) (2.5)

Then, the full vocabulary normalization is replaced by O(log |V|) binary nor-
malizations. The main limitation, however, is that we need to build the tree of
words, which is here done from prior knowledge. In Mnih and Hinton (2009), the
procedure used to build this tree is automated and data-driven, using various fea-
ture based algorithms on the training set. It allows the model to outperform its
non-hierarchical equivalents. Other work (Mikolov et al., 2011) used frequency to
build simple classes, while Zweig and Makarychev (2013) explicitly minimizes the
runtime of a class-based language model using dynamic programming. Another ap-
proach (Le et al., 2011) uses a short-list for the most frequent words, followed by
hierarchical clustering for the rest of the vocabulary. Using the short-list avoids the
drop of performance observed when all clusters are put in the leaves of the tree.
Combining these last two strategies, a recently introduced method (Grave et al.,
2017), the adaptive softmax, also takes into account the modern matrix multiplica-
tion computation time on GPU.

22 2.2 Importance Sampling

2.2 Importance Sampling

Importance sampling (Owen, 2013) is a general sampling technique used when
we want to estimate a distribution using samples from a different distribution. If
we have a random variable X, a function f(X) of X with an unknown distribution
and we want to estimate the expected value of f with respect to a distribution P ,
the ordinary Monte-Carlo estimator of µ = EP [f(X)] is

µ̂MC =
1

k

k∑
i=1
xi∼P

f(xi) (2.6)

However, when we can’t sample from P but have access to a proposal distribution
Q, we notice that by introducing the notation:

ρ(X) =
P(X)

Q(X)

we can obtain the following re-writing of the expectation:

EP [f(X)] =
∑
x∈X

P(x)f(x) =
∑
x∈X

ρ(x)Q(x)f(x) = EQ[ρ(X)f(X)] (2.7)

provided that Q(x) > 0 where P(x)f(x) 6= 0. Then, our estimator is:

µ̂IS =
1

k

k∑
i=1
xi∼Q

ρ(xi)f(xi) (2.8)

This estimator can easily be shown to be consistent (which means that as the num-
ber of available samples grows, the sequence of estimates converges in probability
towards the true value) and unbiased (the expected value of the estimator is the
true value of the parameter) (Owen, 2013). Using this strategy, we an concentrate
the sampling effort on important regions of the sampling space, hence the name
importance sampling.

2.2.1 Application to Language Modeling

Importance sampling was first applied to neural probabilistic language models
in Bengio and Sénécal (2003). The idea is to rewrite the gradient of the objective
presented in Equation 2.3 as:

∂ logPθ(w|H)

∂θ
=

∂

∂θ
sθ(w,H)−

∑
w′∈V

Pθ(w
′|H)

∂

∂θ
sθ(w

′, H)

=
∂

∂θ
sθ(w,H)− Ew′∼PHθ

[
∂

∂θ
sθ(w

′, H)

] (2.9)

The second term is an expectation with respect to PH
θ that can be estimated using

importance sampling with a proposal distribution Q. From Equation 2.7:

Chapter 2. Avoiding direct normalization: Existing strategies 23

∂

∂θ
logPθ(w|H) =

∂

∂θ
sθ(w,H)−

∑
w′∈V

Q(w′)
Pθ(w

′|H)

Q(w′)

∂

∂θ
sθ(w

′, H)

=
∂

∂θ
sθ(w,H)− Ew′∼Q

[
Pθ(w

′|H)

Q(w′)

∂

∂θ
sθ(w

′, H)

] (2.10)

And, from Equation 2.8, we get the gradient estimate:

∂

∂θ
logPθ(w|H) ≈ ∂

∂θ
sθ(w,H)− 1

k

k∑
i=1
ŵi∼Q

Pθ(ŵi|H)

Q(ŵi)

∂

∂θ
sθ(ŵi, H) (2.11)

However, the reason we are using sampling is to avoid computing the partition
function Zθ(H): we can only compute the un-normalized version of PH

θ .

Self-normalized Importance Sampling

As described in Bengio and Sénécal (2003), we need to use a different version
of importance sampling, that is called ratio or self-normalized importance sampling
(RIS). The idea is to normalize the weights, which we can do by applying classical
importance sampling to the partition function. Indeed, if our distribution P can
only be estimated up to its partition function, which means we only have access to
p with p = ZP , we can write:

Z =
∑
x∈X

p(x) =
∑
x∈X

ω(x)Q(x) = EQ[ω(X)] (2.12)

with

ω(x) =
p(x)

Q(x)
(2.13)

Using the same distribution Q, to be able to re-use the samples, we obtain the
estimator for Z:

Ω =
k∑
i=1
xi∼Q

ω(xi) (2.14)

Which gives us the estimator for µ,

µ̂RIS =
k∑
i=1
xi∼Q

1

Ω
ω(xi)f(xi) (2.15)

Using the strong law of large numbers, we can show that the estimator µ̂RIS con-
verges to the wanted expectation almost surely and is therefore consistent. However,
we must have Q(w) > 0 when p > 0, which is a condition a little stronger than for

24 2.2 Importance Sampling

the classic importance sampling estimator µ̂IS. Besides, µ̂RIS is biased in O(1
k
)

(Hesterberg, 2003) — which makes it asymptotically unbiased.

To apply this estimator to our problem, we now write:

ω(ŵ) =
pθ(ŵ|H)

Q(ŵ)
(2.16)

and we obtain the following gradient update:

∂

∂θ
logPθ(w|H) =

∂

∂θ
sθ(w,H)− Ew′∼Q

[
1

Zθ(H)

pθ(w
′|H)

Q(w′)

∂

∂θ
sθ(w

′, H)

]
≈ ∂

∂θ
sθ(w,H)−

k∑
i=1
ŵi∼Q

1

Ω
ω(ŵi)

∂

∂θ
sθ(ŵi, H)

(2.17)

Number of samples and choice of Q

The variance of the ratio estimator is depending on the sample size in O(1
k
) (Hes-

terberg, 2003): while both the bias and the variance can be reduced by augmenting
the number of samples drawn from Q, it might be costly to do so. Another issue is
that some of the weights ratio

ri ≈
ω(ŵi)

Ω

can become disproportionally large if the value ofQ(ŵi) is too small. A weight vastly
larger than the others would override all other weights and mimic a situation where
we have only sampled one observation. This can be measured using the effective
sample size(ESS):

ESS =

(
k∑
i=1

ri

)2

k∑
i=1

r2
i

(2.18)

which will be largely smaller than k if weights are unbalanced. We can also look at
the expression of the variance (Hesterberg, 2003) to understand this issue:

V ar(µ̂RIS) =
1

k

k∑
i=1

Pθ(ŵi|H)2(∂
∂θ
sθ(ŵi, H)− µQ(ŵi))

2

Q(ŵi)
(2.19)

It is clear that having Q too close to 0, especially when PH
θ is not, leads to a high

variance, while having Q approximately proportional to PH
θ for most w leads to a

smaller variance.

Experimentally, Bengio and Sénécal (2003), while using the unigram distribution
as Q, found that a sample size too low would cause divergence as training progresses:

Chapter 2. Avoiding direct normalization: Existing strategies 25

they used the ESS to monitor the sample size and if needed increase it during train-
ing. However, as the training advances, the number of samples necessary increases
rapidly. This behavior is conjectured to be caused by the fact that the model distri-
bution becomes increasingly complex and diverges from the unigram distribution in
Bengio and Sénécal (2008). The authors try to switch to more complex distributions
for Q (interpolated bigram and trigram distributions), but it gave poorer results -
which seems to be caused by the fact that these distributions are very different than
those learned with neural networks. They then force their distribution Q to adapt
by redistributing probability mass in order to track PH

θ . This is done by interpolat-
ing a series of n-gram models of different orders. As a result, the number of samples
needed seems to grow only linearly with time, instead of exponentially.

2.2.2 Target Sampling

A more recent approach, Jean et al. (2015), applied to machine translation,
partitions the training corpus and defines a subset of the vocabulary to sample from
for each partition, which contains at least all target words in the partition. Formally,
we obtain separate distributions Qi for each of these partitions i:

Qi(ŵ) =

{ 1
|Vi| if ŵ ∈ Vi
0 otherwise

(2.20)

Using uniform probabilities on a subset of the vocabulary simplifies the estimator
since the importance weights all have the same denominator. Since we choose this
subset to contain at least all the target words, the necessary condition for consistency
described in 2.2.1 is verified. We obtain a gradient update that is the same we would
get from a softmax applied only on the set of words sampled from Qi:

Pθ(w|H) ≈ exp sθ(w,H)
k∑
i=1

ŵi∼Qi

exp sθ(ŵi, H)

(2.21)

Using only subsets of the full vocabulary with uniform distributions also allows for
better computational efficiency.

2.2.3 Complementary Sum-Sampling

The recent work of Botev et al. (2017) shows that the high variance in the
standard importance sampling estimation is simply due to not including the correct
class into the set of samples. They show that by summing over a subset of classes
(including the correct one) to which we add the samples from Q, we dramatically
reduce the estimation error at no additional cost.

26 2.3 Density estimation as a classification task: discriminative objectives

2.3 Density estimation as a classification task: dis-

criminative objectives

Noise Contrastive Estimation (NCE) was first described in Gutmann and Hyvärinen
(2010, 2012), as a way of estimating a parametric probabilistic model from observed
data, in the case where the probability function of the model is un-normalized. The
first idea is to consider the partition function Z as a separate parameter, instead of
a value dependent on all the other parameters θ. Then, a parametrized distribution
Pθ is decomposed as:

logPθ = log pθ0 + c

with parameters θ = (θ0, c). Here, c = − logZ gives the un-normalized model proper
scaling, while the other parameters make the shape of the model match the shape
of the data density distribution. However, estimating separately θ0 and c is not
possible with maximum-likelihood estimation, since we can simply choose c to be
as large as we want to increase likelihood. The authors then propose an objective
function which mimics maximum-likelihood estimation by learning to discriminate
between examples from data or generated from a noise distribution. This method
has been applied to language modeling, as well as other approaches which also use
discriminative objectives and that will be described subsequently.

2.3.1 Noise Contrastive Estimation

With NCE, we learn the relative description of the data distribution PD to a
reference noise distribution Pn, by learning their ratio PD/Pn. This ratio is learned
by discriminating between the two distributions. Concretely, we draw k samples
from the noise distribution for each tuple (H,w) ∈ D and optimize our model to
perform a classification task between them. We can consider our example as coming
from the following mixture:

1

k + 1
PD +

k

k + 1
Pn (2.22)

Since we don’t have access to PD but want to approach it with our model of
parameters θ, we can consider the conditional class probabilities as:

P (w|C = 1, H) = Pθ(w|H) and P (w|C = 0, H) = Pn(w|H) (2.23)

which gives the posterior class probabilities:

P (C = 1|w,H) =
Pθ(w|H)

Pθ(w|H) + kPn(w|H)
(2.24)

and

P (C = 0|w,H) =
kPn(w|H)

Pθ(w|H) + kPn(w|H)
(2.25)

Chapter 2. Avoiding direct normalization: Existing strategies 27

which can be rewritten as:

P (C = 1|w,H) = σ

(
log

1

k

Pθ(w|H)

Pn(w|H)

)
(2.26)

The reformulation obtained in Equation 2.26 shows that training a classifier based
on a logistic regression estimates the log-ratio of the two distributions: we learn Pθ
relatively to Pn. Since we assume the class labels to be Bernouilli distributed and
independent, the classification objective is given by maximizing the log-likelihood
of the true examples to belong to class C = 1 and the noise samples (ŵi)1≤i≤k to
C = 0, which is, for one example (H,w) from D :

JHθ (w) = log
Pθ(w|H)

Pθ(w|H) + kPn(w|H)
+

k∑
i=1

log
kPn(ŵi|H)

Pθ(ŵi|H) + kPn(ŵi|H)
(2.27)

In order to obtain the global objective to maximize, we sum on all examples (H,w) ∈
D:

Jθ =
∑
H,w∈D

JHθ (w) (2.28)

This objective is proven to reach a maximum at Pθ∗ = PD, which is unique if we
have that Pn > 0 whenever PD > 0 (Gutmann and Hyvärinen, 2010, 2012). Besides,
the authors prove that the optimal parameters θ∗T obtained with an objective JTθ
restricted to a sample T of the training data converge in probability towards θ∗ when
T is large enough, assuming constraints on the model that are similar to those used
in Maximum Likelihood estimation. The estimation error also behaves comparably
to the estimation error of MLE: it is asymptotically following a normal distribution.

Application to language modeling

This objective does not impose any normalization constraint on our model:
as indicated earlier, it is possible to estimate an un-normalized distribution pθ0 , by
parametrizing the partition function independently. However, as described by Mnih
and Teh (2012), who first applied NCE to language modelling, this parametrization
is context-dependent and we have:

logPH
θ = log pHθ0 + cH (2.29)

However, learning an additional parameter by context gets very costly as the context
size increases. To avoid it, the authors argue that these context-dependent parame-
ters cH can be put to zero, and that given the number of free parameters, the output
scores for each context pHθ0 self-normalize, which is verified in their experiments.

28 2.3 Density estimation as a classification task: discriminative objectives

The gradient update is the following:

∂

∂θ
JHθ (w) =

kPn(w|H)

Pθ(w|H) + kPn(w|H)

∂

∂θ
logPθ(w|H)−

k∑
i=1

[
Pθ(ŵi|H)

Pθ(ŵi|H) + kPn(ŵi|H)

∂

∂θ
logPθ(ŵi|H)

]
(2.30)

We can note (Mnih and Teh (2012)) that this gradient converges to the maximum
likelihood estimation gradient as the number of samples k grows. Also, one ad-
vantage of the NCE over importance sampling is that the weights used here are
contained between 0 and 1, for any noise distribution Pn.

Choosing the noise distribution

Gutmann and Hyvärinen (2010, 2012) offer theoretical results on the impact
of the noise distribution: the estimation error of parameters θ is asymptotically
independent of Pn when the ratio of noise sample by example k coming from the
data is large enough. They also show that having both a noise distribution close to
the data distribution and a high number of samples k will lead to a better estimation
error. We can then consider the choice of the noise distribution as a trade-off between
using a large number of noise samples or using a noise distribution closer to our data
distribution.

Mnih and Teh (2012) compared the use of the uniform and unigram distribution
in their experiments, finding the unigram distribution to give far more accurate
results. In the literature, NCE was then mainly used in the context of machine
translation: Vaswani et al. (2013); Baltescu and Blunsom (2015) report results with
the unigram distribution, while Zoph et al. (2016) used an uniform noise. Chen
et al. (2015) applied NCE to speech recognition, with the unigram distribution,
but fixed the parameters cH to 9 instead of zero, choosing this value to be close
to the log-partition function at initialization, as a trade-off between performance
and convergence speed. Chen et al. (2016) highlighted the inconsistency of NCE
training (using unigram noise) when dealing with very large vocabularies, showing
very different perplexity results for close loss values.

2.3.2 BlackOut

BlackOut (Ji et al., 2015) is a more recent method using a discriminative ob-
jective, with ties to both NCE and Importance sampling. We can describe this
approach from two different points of view.

NCE with a re-weighted noise distribution

First, we can see it as applying NCE with a different noise distribution, that we
obtain by re-weighting samples from a distribution Q, using the ratio between the

Chapter 2. Avoiding direct normalization: Existing strategies 29

learned and sampling densities. As for NCE, we can work with the un-normalized
model density pθ. This re-weighted noise distribution is:

Pn(w|H) =
1

k

k∑
i=1
ŵi∼Q

Q(w)

Q(ŵi)
pθ(ŵi|H) (2.31)

If we note the set of samples Sk = {ŵi ∼ Q}ki=1 and the inverse probabilities q(w) =
1
Q(w)

we obtain the following posterior probabilities:

P (C = 1|w,H) =
q(w)pθ(w|H)

q(w)pθ(w|H) +
∑

ŵi∈Sk
q(ŵ)pθ(ŵ|H)

(2.32)

We obtain the objective of importance sampling, similar to a sampled softmax, when
we directly maximize the likelihood of the log-ratio log ω(w)

Ω
. Here, instead, we apply

a logistic regression:

P (C = 0|w,H) =

∑
ŵ∈Sk

q(ŵ)pθ(ŵ|H)

q(w)Pθ(w|H) +
∑
ŵ∈Sk

q(ŵ)pθ(ŵ|H)
(2.33)

Using the same process as for NCE, we obtain the discriminative objective:

JHθ (w) = log

 q(w)pθ(w|H)

q(w)pθ(w|H) +
∑
ŵ∈Sk

q(ŵ)pθ(ŵ|H)

 +

∑
w′∈Sk

log


∑
ŵ∈Sk

q(ŵ)pθ(ŵ|H)

q(w′)pθ(w′|H) +
∑
ŵ∈Sk

q(ŵ)pθ(ŵ|H)


(2.34)

This objective offers the same theoretical guaranties as the NCE, since the authors
prove the noise distribution P Skn to be a valid probability distribution. The only
infringement to the NCE procedure is that the samples used in the objective are
not sampled from P Skn but from Q (since we use them to build P Skn): however, the
expected value of P Skn (w|H) when we sample Sk from Q verifies:

ESk∼Q
[
P Skn (w|H)

]
= Q(w|H)

which shows that this approximation is still accurate.

Approximating classification probabilities with IS

If we take back the notations of Section 2.2.1:

30 2.3 Density estimation as a classification task: discriminative objectives

ω(ŵi) =
pθ(ŵi|H)

Q(ŵi)
and Ω =

k∑
i=1

ω(ŵi) (2.35)

we can see that while the method described in Section 2.2 is equivalent to directly
maximizing the likelihood of the log-ratio approximated via importance sampling
log ω(w)

Ω
, and can be seen as a weighted softmax, blackOut amounts to applying

a logistic regression to this same log-ratio, which we can interpret as a posterior
probability of coming from the data (C = 1):

P (C = 1|w,H) = σ

(
log

ω(w)

Ω

)
(2.36)

Then, maximizing the likelihood of classifying the true examples as such and the
importance samples as noise, we obtain the following discriminative objective:

JHθ (w) = logP (C = 1|w,H) +
k∑
i=1

log(1− P (C = 1|w,H))(ŵi|H)) (2.37)

which is the same as in Equation 2.34.

Choice of the sampling distribution Q

In Ji et al. (2015), the chosen sampling distribution Q is a power-raised unigram
distribution:

Q = pαunigram

where α ∈ [0, 1]. This distribution can be seen as an interpolation between an
uniform (α = 0) and unigram (α = 1) distribution, which is a trade-off between
being able to sample from the most important part of the probability mass (the most
frequent words) and the need to have Q not too close to 0, to avoid large weights
which would reduce the effective sampling weights, as discussed in Section 2.2.1 for
importance sampling. Experimental results show that the approach is more stable
than NCE and Importance sampling and that the discriminative objective improves
results over maximum likelihood estimation, which using a power-raised unigram
distribution does as well. However, experiments are performed over only very small
vocabularies.

2.3.3 Negative Sampling

The Negative Sampling algorithm was popularized by the skip-gram embedding
algorithm (Mikolov et al., 2013) and while closely linked to NCE, is not able to
directly optimize the likelihood of a language model and learn conditional proba-
bilities, as detailed in Dyer (2014). Recently, Melamud et al. (2016, 2017) showed
Negative Sampling to be viable for language modeling. As previously, we use k

Chapter 2. Avoiding direct normalization: Existing strategies 31

samples (ŵi)1≤i≤k from the unigram distribution. The objective is very simple: it
maximizes the likelihood of a logistic regression that discriminates true examples
from noise samples. However, here, our model directly parametrizes the log-odds
with the scoring function sθ(w,H):

JHθ (w) = log σ(sθ(w,H)) +
k∑
i=1

log σ(−sθ(ŵi, H)) (2.38)

Melamud et al. (2016) show that optimizing this objective equates to finding a
low-dimensional approximation of the shifted pointwise mutual information (PMI)
matrix:

sθ∗(w,H) ≈ log
P (w,H)

P (w)P (H)
− log k = log

P (w|H)

kP (w)
(2.39)

where the probabilities P are the frequencies in the training data. We can then
obtain an estimation of the conditional probability using our model score and the
unigram probabilities:

P̂ (w|H) ∝ P (w) exp sθ(w,H) (2.40)

Experiments on relatively small data give results slightly better than with NCE,
but the main argument for this method is the simplicity of its objective function.
Since we directly parametrize what is in the other methods a log-ratio of our model
and a noise probability, we can make the hypothesis that the learning will be more
robust: the issue of unbalanced weights (caused by a noise probability too close to
0, as discussed in Sections 2.2.1 and 2.3.2) will not occur here.

2.4 Avoiding normalization by constraining the

partition function

For some specific applications, focused on reducing the inference cost of a Neu-
ral Probabilistic Language Model, the techniques presented earlier are not a good
solution. Hierarchical approaches are still costly and importance sampling requires
normalization at testing time. Techniques based on discriminative objectives are fast
during training, but since self-normalization is difficult to monitor, using a softmax
may be required during testing. To be able to efficiently use a NPLM to decode
for a machine translation system, Devlin et al. (2014) introduced Self-normalized
Neural Networks, which they want to be able to use for inference without perform-
ing a softmax explicitly. Instead, they add an explicit constraint in their objective
function that makes the partition function Zθ(H) as close to 1 as possible during
training:

NLLSelf−normalized(θ) =
∑

(H,w)∈D

[
sθ(w,H)− α log2 Zθ(H)

]
(2.41)

32 2.5 Conclusions

The hyper-parameter α enables trading accuracy for self-normalization error. While
this objective is not faster to train, it greatly improves inference speed, since assum-
ing the model self-normalized in such a way allows us to only compute sθ(w|H).
Andreas et al. (2015) analyse the theoretical properties of self-normalized models,
whether they use discriminative objectives or an explicit constraint. They proved
that a procedure that makes the partition function Zθ(H) close to 1 for training
contexts H also makes it close to 1 for unseen contexts. However, this result doesn’t
necessarily apply to a classification objective. Nonetheless, it provides intuition that
sub-sampling the explicit constraint in the objective function 2.41 may not degrade
results, while providing a speed-up. They experiment with the following objective:

NLLSelf−normalized(θ) =
∑

(H,w)∈D

sθ(w,H)− α

γ

∑
H∈γH

log2 Zθ(H) (2.42)

Here, γH indicates that we sum on a fraction γ of all training contexts, ordered by
frequency. Their results show that choosing γ = 0.1 keeps the performance intact.
We should note that Chen et al. (2016) experimented with a similar objective, but
without squaring the partition function, which we can interpret as a classic Negative
log-likelihood objective where we normalize only for a fraction of the most frequent
contexts. In their experiments, this objective behaves very similarly to the one
presented in Equation 2.42.

2.5 Conclusions

In this chapter, we present a review of methods which allow avoiding the costly
summations in the multinomial classification objective. While hierarchical ap-
proaches can reduce the computation time from something linear to a logarithm
in V , we focused here on sampling-based approaches. Constrained objectives are
only useful if we are interested in fast inference — the main methods are Impor-
tance sampling, which approximates the partition function, and Noise Contrastive
Estimation, which avoids computing it. Both theses training procedures require sam-
pling k samples from an auxiliary distribution, and the sum over the full vocabulary
is replaced by a sum over these samples. Interesting variants of these methods exist:
we can mention complementary sum-sampling, which reduces drastically the vari-
ance of the estimator of importance sampling, and the BlackOut algorithm, which
improves on noise contrastive estimation by using a context-dependant reweighted
noise distribution.

Chapter 3

Detailled analysis of
Sampling-Based Algorithms

Contents
3.1 Choosing k and Pn: impact of the parametrization of

sampling . 36

3.1.1 Effects on Importance Sampling 36

3.1.2 Effects on Noise-Contrastive Estimation 38

Complexifying the noise distribution 39

Particular case of the BlackOut algorithm 40

Effects on Negative sampling 42

3.2 Impact of the partition function on the training be-
haviour of NCE . 43

3.2.1 Self-normalization is crucial for NCE 44

3.2.2 Influence of the shape of Pn on self-normalization 46

3.2.3 How do these factors affect learning ? 47

3.3 Easing the training of neural language models with NCE 49

3.3.1 Helping the model by learning to scale 50

3.3.2 Helping the model with a well-chosen initialization 51

3.3.3 Summary of results with sampling-based algorithms . . . 52

3.4 Conclusions . 54

34

In the previous chapter, we discussed several ways to handle large vocabularies
when training neural languages models. We chose in this dissertation to focus on
sampling-based methods, and are interested to know how these methods adjust to
very large vocabularies in practice. Indeed, the vocabulary sizes commonly used
in neural language models can reach very high numbers: for example, the 1 Bil-
lion Word Benchmark dataset (Chelba et al., 2014), in its commonly used form, is
equipped with a 800K words vocabulary. Józefowicz et al. (2016), who presented
the best published results on this corpus, experiments with both importance sam-
pling (IS) and noise contrastive estimation (NCE), showing the former to be far
more data-efficient. As discussed earlier, other works, like Chen et al. (2016), ques-
tion the efficiency of NCE for language modeling, since perplexity is not explicitly
optimized by the objective function. Therefore, we will in this chapter extensively
compare IS, NCE and derived methods.

Similarities between IS and NCE are analyzed in Józefowicz et al. (2016): the
authors explain that while NCE uses a surrogate binary classification task, we can
see IS as using a surrogate multinomial classification task, where each of the k noise
samples represents one of k + 1 categories and the last one is the data category.
This leads the authors to make the hypothesis that the multinomial nature of the
IS objective could make it a better choice. While we will explore more in-depth the
relationship between the objectives in Chapter 4, we will here try to understand what
leads to the experimental discrepancies between them. Practically, the main aspect
in which the methods differ is how they handle the partition function: while, with
IS, it is explicitly approximated (as explained in Section 2.2.1), with NCE, we can
parametrize it separately (as described in Section 2.3.1). The fact that NCE does
not explicitly optimize the log-likelihood is exactly what allows us to parametrize
the partition function separately: indeed, as detailed in Gutmann and Hyvärinen
(2013), knowing the partition function, which represents the ’scale’ of the model,
is essential to compute the likelihood1. Then, using a separate scaling parameter
would give irrelevant results when doing maximum likelihood estimation (MLE),
since we could minimize the negative log-likelihood independently of the data.

We will first study, in Section 3.1, the impact of hyperparameters (which are
the number of noise samples k and the noise distribution Pn) on both NCE and
IS. Obtaining disappointing results with NCE, we choose to investigate it specif-
ically. While it is theoretically proven to converge when the partition function is
parametrized separately, the scaling parameter is usually fixed and the un-normalized
model therefore self-normalizes, as a side effect of the training procedure. In Sec-
tion 3.2, we will compare closely the training of neural language models with MLE,
IS, NCE and analyze their respective behavior. We will then show experimen-
tally that the training instability of NCE is tied to the difficulty of the model to
self-normalize and how this evolves with variants of the algorithm. Finally, in Sec-
tion 3.3, we will use our analysis to propose various solutions to stabilize training
and bring the performance of NCE closer to what could be expected theoretically.

Throughout the chapter, we do our analysis on the Penn Treebank (PTB) cor-
pus. Usually, the size of the vocabulary is of 10K words. Using this vocabulary, a

1Which is not even taking in account the fact that the concept of likelihood only applies to
probability density functions, which are normalized.

Chapter 3. Detailled analysis of Sampling-Based Algorithms 35

0 5 10 15 20 25 30 35
Training Epochs

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Tr
ai

ni
ng

 C
ro

ss
-e

nt
ro

py

NCE
MLE
IS

Figure 3.1: Training cross-entropy curves on PTB for models trained with MLE, IS
and NCE on a vocabulary of 10K words.

Training method Perplexity

MLE 66,9
IS 71,1
NCE 87,6

Table 3.1: Best final perplexities on the test set of the Penn Treebank (PTB) corpus
obtained with MLE, IS and NCE on a vocabulary of 10K words.

comparison of training cross-entropies for models trained with MLE, NCE and IS,
and a comparison of final testing perplexities, are shown in Figure 3.1 and Table 3.1.
With this setting, we can observe that there are differences in the training processes
and that NCE does not perform as well given the same number of training epochs.
However, the model is able to reach a perplexity that is not so far from MLE and
IS, and could mirror their performance with more training epochs. To work with
an experimental set-up that allows us to witness even more evidently the training
difficulties of NCE, we choose to use the full training vocabulary instead, which con-
tains a little more than 44K words. When not specified otherwise, we use k = 100
noise samples drawn from the unigram distribution. Our hyperparameter choices
are summarized in Table 3.2. To reduce the impact of the training criterion, models
are learnt for a minimum of 30 epochs. Beyond that limit, we backtrack the epoch
when no progress has been made on the validation set perplexity, stopping training
after 10 consecutive backtrackings2.

2For the sake of clarity, backtrackings are discarded from the graphs, keeping only the epochs
used to obtain the final model.

36 3.1 Choosing k and Pn: impact of the parametrization of sampling

Hyperparameter Value

Number of noise samples k 100
Default noise distribution Pn Unigram

Hidden Layer LSTM
Maximum Sentence Length 30
Number of hidden layers 2
Word embedding dimension 300
Hidden layer dimension 300
Batch size (Sentences) 32
Dropout rate 0.5
Optimization method SGD
Learning rate 1.0
Grad clipping value 5.0
Maximum number of training epochs 50

Table 3.2: Structural choices and hyperparameters used on the Penn Treebank
(PTB) corpus for experiments presented in this chapter (unless specified otherwise).

3.1 Choosing k and Pn: impact of the parametriza-

tion of sampling

For both IS and NCE, there are strong theoretical results that can guide us
in our choices of noise distribution Pn and of number of noise samples k. How-
ever, in the larger part of the published work where these methods are used for
language modeling, practical considerations — which are, how easy it is to sample
from Pn and how much of a computational burden is using k noise samples — pre-
vail. We will here restate these results and explore experimentally reasonable (i.e,
fairly practical to implement) choices for these hyperparameters. While k is easy
to control, the complexity of Pn is harder to set. We choose here to experiment
mainly with context-independent distributions, which are the uniform and unigram
distributions. We implement the transition between the two distributions by using
a distortion parameter 0 ≤ α ≤ 1 on the unigram distribution. Pα

n is uniform for
α = 0 and unigram for α = 1; we will use additional intermediary values in our
experiments. For all experiments, final perplexity results on the testing set of PTB
are presented in Table 3.3.

3.1.1 Effects on Importance Sampling

As explained in Section 2.2.1, the bias and the variance of the self-normalized im-
portance sampling estimator can be reduced by augmenting the number of samples
k. Concerning the choice of Pn, Hesterberg (2003) gives the optimal noise distri-
bution in terms of reducing the variance. However, there is a non-zero theoretical
minimal limit on the variance that can be reached with self-normalized importance
sampling. Besides, even approximations of the optimal noise distribution would

Chapter 3. Detailled analysis of Sampling-Based Algorithms 37

necessitate knowledge of the score function

∂

∂θ
sθ(w,H)

for every word w in V , which is something we want to avoid computing. Further-
more, while previous results with IS (Bengio and Sénécal, 2003, 2008) were finding
the method unstable and attempts at adapting Pn during learning gave poor results,
our experiments show that training was stable for almost all choices of hyperparam-
eters and there was no apparent need to make Pn closer to the true data distribution.
In this, our experiments match those of Józefowicz et al. (2016). This stability is ex-

0 5 10 15 20 25 30 35
Training Epochs

4

6

8

10

12

14

16

Tr
ai

ni
ng

 C
ro

ss
-e

nt
ro

py

k=5
k=10
k=25
k=50
k=100
k=250
k=500

0 5 10 15 20 25 30 35
Training Epochs

4

6

8

10

12

14

16

Tr
ai

ni
ng

 C
ro

ss
-e

nt
ro

py

alpha=0.0
alpha=0.25
alpha=0.5
alpha=0.75
alpha=1.0

Figure 3.2: Top: Training cross-entropy curves on PTB for models trained with
IS and various values of the number of samples k. Bottom: Training cross-entropy
curves on PTB for models trained with IS and various values of distortion α for the
noise distribution Pn.

38 3.1 Choosing k and Pn: impact of the parametrization of sampling

plained by the fact that the Tensorflow function used for IS3 is a little different than
the algorithm described in Bengio and Sénécal (2003). Indeed, it always includes
the target word in the sampled distribution, making the method closer to much
more stable complementary sum-sampling (Botev et al., 2017), that we described in
Section 2.2.3.

In Figure 3.2 are shown training cross-entropies for models using IS, with varying
k and α. On the first column of Table 3.3 are the corresponding final perplexity re-
sults on the test set. We can confirm that increasing k gives a better final perplexity
and that using the unigram distribution is far more efficient than using the uniform
distribution.

3.1.2 Effects on Noise-Contrastive Estimation

The results presented in Section 2.3.1 were that as the number k of noise samples
by example increases, the choice of the noise distribution Pn has less impact on the
estimation accuracy. Besides, Gutmann and Hyvärinen (2010) explain that finding
the noise distribution that minimizes the estimation error is very difficult. However,
the authors also show that for a noise distribution close to the data distribution,
there is a guarantee that even for small values of k, the estimation error is close to
the theoretical optimum. Then, they suggest that one should first choose Pn the
closest to the data as possible so that noise can be sampled easily and then make k
as large as computationally possible.

Training cross-entropies for models trained with NCE, with varying k and α,
are presented on Figures 3.3 and 3.4. Corresponding final perplexity results are
presented in the second column of Table 3.3. To not only evaluate how well the
model optimizes perplexity, but also how well it performs at the task it is actually
training for, we also show the mean probabilities of classifying data samples into
the data class - P (C = 1|w,H), when (w,H) ∈ D - and noise samples into the
noise class — P (C = 0|ŵ,H), when ŵ ∼ Pn — during training. As we we could
see on preliminary experiments on the 10K vocabulary, NCE is far less stable than
IS. With our configuration, k needs to be of at least 100 samples for the model to
attain a reasonable perplexity in 50 epochs. The top graph of Figure 3.3 shows that
models with smaller values are far from reaching a similar result. However, when
k varies, the classification task changes: it is easier to recognize data when k is
low, and easier to recognize noise when k is high, so the second graph is harder to
interpret. We can still suppose that it is having an easier classification task (a low
k) that makes training less efficient.

While using a uniform distribution is not working in our case, smoothing the
unigram distribution seems to make learning easier, as shown on the top graph of
Figure 3.4. Still, when we get too far of the unigram distribution, learning is not as
precise and the final perplexity is quite high. Looking at classification probabilities,
we can see that for low values of α, it is easier to recognize data samples: again,
having the classification task easier makes for a less efficient training. Finally, we can
see that smoothing the unigram distribution a little is beneficial, probably thanks

3Which is called sampled softmax.

Chapter 3. Detailled analysis of Sampling-Based Algorithms 39

0 10 20 30 40 50
Training Epochs

4

6

8

10

12

14

16

Tr
ai

ni
ng

 C
ro

ss
-e

nt
ro

py

k=5
k=10
k=25
k=50
k=100
k=250
k=500

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0
k=5
k=10
k=25
k=50
k=100
k=250
k=500

Figure 3.3: Top: Training cross-entropy curves on PTB for models trained with
NCE and various values of the number of samples k. Bottom: Corresponding curves
of classification probabilities of data examples into data (+) and noise samples into
noise (o).

to having higher values of Pn(w) for rare words.

Complexifying the noise distribution

In order to explore a more complex noise distribution Pn, we experimented with
a bigram (and so, context-dependent) distribution. Training cross-entropies and
classification probabilities are shown in Figure 3.5. It is clear that the bigram
distribution is far more data-efficient than the unigram and the final perplexity is
also better. While the classification task uses the same k, we can also see that the
model is able to learn to recognize data samples far better with a bigram distribution.
While these results are very interesting, using a context-dependent distribution is

40 3.1 Choosing k and Pn: impact of the parametrization of sampling

0 10 20 30 40 50
Training Epochs

4

6

8

10

12

14

16

Tr
ai

ni
ng

 C
ro

ss
-e

nt
ro

py

alpha=0.0
alpha=0.25
alpha=0.5
alpha=0.75
alpha=1.0

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0
alpha=0.0
alpha=0.25
alpha=0.5
alpha=0.75
alpha=1.0

Figure 3.4: Top: Training cross-entropy curves on PTB for models trained with
NCE and various values of distortion α for the noise distribution Pn. Bottom:
Corresponding curves of classification probabilities of data examples into data (+)
and noise samples into noise (o).

very slow in practice, since sampling needs to be done example by example and
cannot be done once by batch. While they show that it is indeed more efficient to
use a noise distribution closer to the data distribution, these results have no practical
application.

Particular case of the BlackOut algorithm

BlackOut (Ji et al. (2015), described in Section 2.3.2) can be seen as NCE with
a re-weighted, context-dependent noise distribution: the noise probability given to
words is re-scaled using the model distribution on the noise samples. However, these
noise samples are still obtained using the original noise distribution: we can expect

Chapter 3. Detailled analysis of Sampling-Based Algorithms 41

0 10 20 30 40 50
Training Epochs

4

6

8

10

12

14

16

Tr
ai

ni
ng

 C
ro

ss
-e

nt
ro

py
NCE - Bigram
NCE-Unigram

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0
NCE - Bigram
NCE-Unigram

Figure 3.5: Left : Training cross-entropy curves on PTB for models trained with
NCE with a unigram and bigram distribution as Pn. Right : Corresponding curves
of classification probabilities of data examples into data (+) and noise samples into
noise (o).

0 5 10 15 20 25 30 35
Training Epochs

4

6

8

10

12

14

16

Tr
ai

ni
ng

 C
ro

ss
-e

nt
ro

py

k=5
k=10
k=25
k=50
k=100
k=250
k=500

0 5 10 15 20 25 30 35
0.0

0.2

0.4

0.6

0.8

1.0
k=5
k=10
k=25
k=50
k=100
k=250
k=500

Figure 3.6: Left : Training cross-entropy curves on PTB for models trained with
BlackOut and various values of the number of samples k. Right : Corresponding
curves of classification probabilities of data examples into data (+) and noise samples
into noise (o).

0 5 10 15 20 25 30 35
Training Epochs

4

6

8

10

12

14

16

Tr
ai

ni
ng

 C
ro

ss
-e

nt
ro

py

alpha=0.0
alpha=0.25
alpha=0.5
alpha=0.75
alpha=1.0

0 5 10 15 20 25 30 35
0.0

0.2

0.4

0.6

0.8

1.0
alpha=0.0
alpha=0.25
alpha=0.5
alpha=0.75
alpha=1.0

Figure 3.7: Left : Training cross-entropy curves on PTB for models trained with
BlackOut and various values of distortion α for the noise distribution Pn. Right :
Corresponding curves of classification probabilities of data examples into data (+)
and noise samples into noise (o).

42 3.1 Choosing k and Pn: impact of the parametrization of sampling

the distortion α to keep its impact on training. Results are shown in Figures 3.6
and 3.7, and final testing perplexities are shown in the third column of table 3.3.
We can immediately see that training is far more stable than with NCE: by aver-
aging over all samples to obtain re-weighted noise probabilities (see Equation 2.31),
BlackOut uses them more effectively. Still, augmenting k improves results. Binary
classification probabilities are hard to interpret here, since reweighing the noise
probabilities transforms them into two separate sets in a multinomial classification:
does the sample belong to category 1 or in one of the categories 2 to k + 1 ? The
probabilities of recognizing noise reflect this modification: they seem fixed to a value
dependent of k. Here, we can notice that smoothing does not improve results.

Effects on Negative sampling

With negative sampling (NS, described in Section 2.3.3), the model directly
parametrizes the log-odds and it learns what is, in the NCE, the ratio of the data
and noise distribution, without knowing the values of Pn. We expect here to avoid
the stability issues caused by having unbalanced weights, coming from very small
values of Pn(w) for rare words. Results are shown in Figures 3.8 and 3.9 and final
testing perplexities are shown in the fourth column of Table 3.3.

We can first notice that training seems indeed more stable than with NCE.
Interestingly, while varying k has the same predictable effect as with NCE on binary
classification probabilities, the perplexity is very differently affected: having k too
high seems to worsen the performance, and k = 50 gives the best final result. The
effect of distortion is similar to the effect obtained with NCE and using α = 0.75
gives the best result.

These results seem to confirm the analysis of Józefowicz et al. (2016) and Chen
et al. (2016): IS is far more data-efficient than NCE, which, learning for a different
task, does not optimize perplexity and therefore does not seem adapted to language
modeling. While we have explored alternatives to NCE that obtain results that are
competitive with IS, we wish to analyse in depth the inner workings of NCE and

0 5 10 15 20 25 30 35
Training Epochs

4

6

8

10

12

14

16

Tr
ai

ni
ng

 C
ro

ss
-e

nt
ro

py

k=5
k=10
k=25
k=50
k=100
k=250
k=500

0 5 10 15 20 25 30 35
0.0

0.2

0.4

0.6

0.8

1.0
k=5
k=10
k=25
k=50
k=100
k=250
k=500

Figure 3.8: Left : Training cross-entropy curves on PTB for models trained with
Negative Sampling and various values of the number of samples k. Right : Corre-
sponding curves of classification probabilities of data examples into data (+) and
noise samples into noise (o).

Chapter 3. Detailled analysis of Sampling-Based Algorithms 43

0 5 10 15 20 25 30 35
Training Epochs

4

6

8

10

12

14

16

Tr
ai

ni
ng

 C
ro

ss
-e

nt
ro

py
alpha=0.0
alpha=0.25
alpha=0.5
alpha=0.75
alpha=1.0

0 5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0
alpha=0.0
alpha=0.25
alpha=0.5
alpha=0.75
alpha=1.0

Figure 3.9: Left : Training cross-entropy curves on PTB for models trained with
Negative Sampling and various values of distortion α for the noise distribution Pn.
Right : Corresponding curves of classification probabilities of data examples into
data (+) and noise samples into noise (o).

IS NCE BlackOut NS

Baseline model 168.3 306.0 169.0 228.3

k = 5 233.9 X 248.4 252.0
k = 10 203.1 X 250.2 255.0
k = 25 184.6 X 216.3 268.6
k = 50 181.0 X 181.1 196.2
k = 250 160.3 298.0 163.7 243.0
k = 500 153.5 235.7 157.9 302.0

α = 0.0 366.1 X 487.4 900.9
α = 0.25 201.9 1068.0 233.9 344.8
α = 0.50 180.6 641.2 178.9 208.6
α = 0.75 171.5 277.0 172.3 195.8

Pn = Bigram 269.6

Table 3.3: Best final perplexities on the test set of the Penn Treebank (PTB) corpus
obtained with IS, NCE and variations, with varying number of samples k and dis-
tortion α of the noise distribution Pn. ’X’ indicates that the model did not reach a
perplexity under the size of the vocabulary within the maximal number of training
epochs, which is 50.

how to improve its performance.

3.2 Impact of the partition function on the train-

ing behaviour of NCE

In this section, we will closely monitor the training process of the same language
model, varying only the training criterion, i.e MLE, IS or NCE. We should also
remember that, apart from the type of classification they learn, NCE and IS are
different in how they handle the partition function. In order to better understand

44 3.2 Impact of the partition function on the training behaviour of NCE

what happens during NCE training, we also consider an ’intermediate’ model de-
noted as NCE normalized. This normalizes the scores into a probability distribution
Pθ(w|H) before computing the NCE objective function. Without any application
in practice, this model allows us to better assess the impact of the normalization
process.

3.2.1 Self-normalization is crucial for NCE

The training cross-entropies for the 4 models are drawn in the top graph of
Figure 3.10. Whether they are trained with MLE or NCE, the normalized models
exhibit very similar learning curves. However, while the behavior of the model
trained with IS only slightly deviates from the normalized models, the un-normalized
model trained with NCE takes far longer to reach a comparable cross-entropy, ending
with a sensibly higher value. In the bottom graph, we can observe the values of
minus the objective function4 and both of its terms (the first, data-dependent and
the second, containing the noise samples) for the normalized and un-normalized
models trained with NCE:

−Jθ =
∑
H,w∈D

[
− log

pθ(w|H)

pθ(w|H) + kPn(w)
−

k∑
i=1

log
kPn(ŵi)

pθ(ŵi|H) + kPn(ŵi)

]
(3.1)

We can observe a small decrease of the second term for the normalized model,
whereas for the un-normalized, it starts with high values and decreases to become
closer to the normalized one. Moreover, the gap between the two data-dependent
terms stays high at the end of training.

For a deeper analysis, we study the values of the partition function during train-
ing. For both the normalized and the un-normalized models, the partition function
Zθ(H) associated to each training context H is computed and the results over an
epoch are summarized with an histogram. Each bin represents a range of values
and its height represents the fraction of training contexts whose partition function
belongs to this range. For a better readability, both range values and bin heights
are in log-scale. These histograms are shown in Figure 3.11 for different epochs.
While the repartition of the partition function values for the normalized model does
not change much - which is logical, since the model is always integrated to 1 - we
observe that these values for the un-normalized model are chunked together and are
decreasing during learning (epochs 5, 10 and 15). However, this trend seems to slow
down towards the end of training, since, at epoch 30, the repartition resemble to
the one of the normalized model, only shifted to smaller values (which are still quite
high). Considering these results, we dissect what happens during the training of the
un-normalized model. Let us rewrite the objective Jθ as a function of the following
ratio:

4Since the objective JHθ is negative, we minimize −JHθ .

Chapter 3. Detailled analysis of Sampling-Based Algorithms 45

0 10 20 30 40 50
Training Epochs

4

6

8

10

12

14

16

Tr
ai

ni
ng

 C
ro

ss
-e

nt
ro

py

MLE
NCE
Normalized NCE
IS

0 10 20 30 40 50
Training Epochs

0

1

2

3

4

5

6

7

8

Tr
ai

ni
ng

 S
co

re
s

Objective
Data term
Noise term
Normalized - Objective
Normalized - Data term
Normalized - Noise term

Figure 3.10: Top: Training cross-entropy curves on PTB with Maximum-Likelihood
estimation, IS, NCE on an un-normalized model and a model normalized before
application of the NCE. Bottom: Training scores (see equation 3.2) of the same
un-normalized and normalized models trained with NCE

rθ(w,H) =
pθ(w|H)

kPn(w)
, then

−Jθ =
∑
H,w∈D

[
− log

rθ(w,H)

rθ(w,H) + 1
−

k∑
i=1

log
1

rθ(ŵi, H) + 1

] (3.2)

The second term of −Jθ is very high for large values of rθ. Since values of Pn
are always smaller than 1 and k = 100, and knowing the partition function at the
beginning of training is large for all contexts, we can assume that rθ(ŵi|H) is large
for a least part of the set of noise samples (ŵi)

k
i=1. Thus, this second term is the

largest part of the objective, whose minimization leads to a decrease of the model

46 3.2 Impact of the partition function on the training behaviour of NCE

1e-06
0.0001

0.01
1.0

Ep
oc

h
1 Un-normalized model

Normalized model

1e-06
0.0001

0.01
1.0

Ep
oc

h
5

1e-06
0.0001

0.01
1.0

Ep
oc

h
10

1e-06
0.0001

0.01
1.0

Ep
oc

h
20

1.00e+02 1.00e+05 1.00e+08 1.00e+11 1.00e+14 1.00e+17
Ranges of values taken by the partition function

1e-06
0.0001

0.01
1.0

Ep
oc

h
30

Figure 3.11: Repartition of the values of the partition function Zθ(H) for all exam-
ples (H,w) during specific epochs of training on PTB with NCE. The fully colored
bars represent the repartition for the un-normalized model, while the faded bars
represent the repartition for the normalized model. Both scales are logarithmic.

scale. However, this is done at the expense of the data-dependent term, since its
score increases a little during the first few epochs. If we take a look back at its
gradient:

∂

∂θ
JHθ (w) =

1

1 + rθ(w,H)

∂

∂θ
log pθ(w|H)−

k∑
i=1

[
rθ(w,H)

rθ(w,H) + 1

∂

∂θ
log pθ(ŵi|H)

]

(3.3)
we see that it is always scaled by the weight 1/(1 + rθ(w,H)), which means that
the objective does not learn anything from data as long as the model scale has not
decreased to a reasonable value. This shows that this ’self-normalization’ mechanism
is crucial for NCE, but we still need to understand what makes a scaling value
reasonable.

In this section, we have shown that when scoring a word w with an input context
H, the scale of the model Zθ(H) has an influence on what is learnt. Indeed, a high
value of the partition function increases the value of rθ(w,H), which reduces the
importance of the data-dependent term of the gradient. That proves the necessity
of self-normalizing in order to learn.

3.2.2 Influence of the shape of Pn on self-normalization

Now, we would like to understand what role the noise distribution Pn is playing
in learning. Let us consider again the weight of the gradient of the data-dependent

Chapter 3. Detailled analysis of Sampling-Based Algorithms 47

1.00e+00 1.00e+03 1.00e+06 1.00e+09 1.00e+12 1.00e+15 1.00e+18
Ranges of values taken by the partition function

10-710-6
10-5
10-410-3
10-2
10-1100

La
st

 tr
ai

ni
ng

 e
po

ch

Figure 3.12: Repartition of the values of the partition function Zθ(H) for all training
examples (H,w), during the last epoch of training with NCE on PTB. For both
this figure and figure 3.13, the colour of a bin indicates the proportion of training
examples (H,w) for which the word w is one of the 10 most frequent according to
the noise distribution Pn: the lighter the color is, the higher is that proportion.
Both scales are logarithmic.

term:
1

rθ(w|H) + 1
=

kPn(w)

pθ(w|H) + kPn(w)
.

Having higher values of Pn means that the model does not need to scale back the
partition function as much to be able to learn from data. Besides, if the noise
distribution is correlated with the data distribution, an example with a high value
of Pn tends to be more frequent. Therefore the model is first able to learn from
words w with the higher values of Pn(w). However, the lower Pn(w) is, the more
difficult it is for the model to learn about w. And the associated partition function
has to be closer to 1 for the data-term gradient to be meaningful.

We verify our analysis experimentally by looking at the values of the repartition
function at the end of training. The histogram is shown in Figure 3.12: this time,
each bin is colored according to the proportion of examples associated to the highest
values of Pn it contains5. This allows us to vizualize if the contexts associated to
frequent words are less ’self-normalized’. We clearly observe that this is the case:
while the majority of the partition functions have values under ≈ 100, the partition
functions of contexts associated to the higher values of Pn mainly take values that
are far larger.

We have just shown that the frequency Pn(w) of a word affects how the model
learns: the higher Pn(w) is, the more important the contribution of the data-term
to the objective is. This has another implication: high values of Pn(w) counter the
effect of high values of the partition function, which means that the model does not
need to self-normalize as much for contexts associated to frequent words.

3.2.3 How do these factors affect learning ?

To visualize how learning is affected, we propose to study histograms showing
the values taken by rθ for all data and noise samples seen by the model during a
training epoch. In orange, we show data samples and in blue, noise samples. As for
Figure 3.12, each bin is colored according to the proportion of very high frequency

5Since we use the unigram distribution, it indicates here the examples who are among the 10
most frequent words.

48 3.2 Impact of the partition function on the training behaviour of NCE

words it has: the clearer it is, the more occurrences of the 10-highest frequency
words it contains. As previously, the histograms displayed in this section are in
log-scale. We first display these values at initialization, in Figure 3.13. We can
see that ratios of occurrences of the frequent words have the lowest values. That
makes sense, since the scores given by the model at initialization follow a normal
distribution and those given to the most frequent words are divided by the higher
values of Pn.

In Figure 3.14, we show the histograms for epochs 1, 5, 10, 20 and 30, during
training of a normalized model. At epoch 1, we can see that noise samples are still
ordered in the same way as at initialization, with the ratios of the occurences of
the most frequent words having lower values. Since the model is normalized, the

1.00e-08 1.00e-05 1.00e-02 1.00e+01 1.00e+04 1.00e+07 1.00e+10
1e-08
1e-06

0.0001
0.01

1.0

At
 in

iti
al

iz
at

io
n

Figure 3.13: Repartition of the values of the ratio rθ(w|H) for all positive training
examples (H,w) in orange, and associated noise sample (ŵi)

k
i=1, in blue, at initial-

ization.

1e-08
1e-06

0.0001
0.01

1.0

Ep
oc

h
1

1e-08
1e-06

0.0001
0.01

1.0

Ep
oc

h
5

1e-08
1e-06

0.0001
0.01

1.0

Ep
oc

h
10

1e-08
1e-06

0.0001
0.01

1.0

Ep
oc

h
20

1.00e-08 1.00e-05 1.00e-02 1.00e+01 1.00e+04 1.00e+07 1.00e+10
Normalized model

1e-08
1e-06

0.0001
0.01

1.0

Ep
oc

h
30

Figure 3.14: Repartition of the values of the ratio rθ(w|H) for all positive training
examples (H,w) in orange, and associated noise sample (ŵi)

k
i=1, in blue, during

several training epochs of a normalized model with NCE on PTB.

Chapter 3. Detailled analysis of Sampling-Based Algorithms 49

1e-08
1e-06

0.0001
0.01

1.0

Ep
oc

h
1

1e-08
1e-06

0.0001
0.01

1.0
Ep

oc
h

5

1e-08
1e-06

0.0001
0.01

1.0

Ep
oc

h
10

1e-08
1e-06

0.0001
0.01

1.0

Ep
oc

h
20

1.00e-08 1.00e-05 1.00e-02 1.00e+01 1.00e+04 1.00e+07 1.00e+10
Un-normalized model

1e-08
1e-06

0.0001
0.01

1.0

Ep
oc

h
30

Figure 3.15: Repartition of the values of the ratio rθ(w|H) for all positive training
examples (H,w) in orange, and associated noise sample (ŵi)

k
i=1, in blue, during

several training epochs of an un-normalized model with NCE on PTB.

occurences of the most frequent words in data samples are learnt faster (which aligns
with our analysis in Section 3.2.3). As learning progresses, we can see that there is
a large number of data samples the model has no uncertainty about: the values of
their ratios rθ become well-separated of the values of the ratios for noise samples.

In Figure 3.15, we show the histograms for epochs 1, 5, 10, 20 and 30, during
training of an un-normalized model. During epoch one, the values taken by the
ratios are all over the place and noise samples seem uniformly distributed. During
the next epochs, a clear separation between data examples values and noise samples
values takes far more time to appear. The only data samples that are completely
separated of noise samples at the end of training are occurences of frequent words,
which was not the case for the normalized model. This seems to confirm our analysis
of Section 3.2.1: for words that are not frequent, self-normalization is necessary
before learning.

3.3 Easing the training of neural language models

with NCE

The observations made in the previous sections show us that an higher discrep-
ancy between high and low Pn leads to a more difficult training with NCE - learning

50 3.3 Easing the training of neural language models with NCE

is tiered according to word frequencies. As a consequence and because of the Zipfian
distribution of word frequencies, using the unigram distribution is harder as the size
of the vocabulary grows. As discussed previously, two values strongly impact how a
sample is learnt: first, its value of Pn; then the value of the partition function. We
will in this section introduce two simple tricks to reduce the negative impact they
have on training with NCE. We will verify how they interact with various values of
k and α, first independently, then when used together - perplexity results on the
test set of the PTB are presented in Table 3.4. Finally, we will present a summary
of the best configurations of sampling based methods for a fixed k and check their
efficiency on a much larger corpus: the 1 Billion Word Benchmark dataset. These
results are presented in Table 3.6.

3.3.1 Helping the model by learning to scale

To control the partition function, we can follow a method introduced by Chen
et al. (2015): shifting all values of the partition function by a fixed value Zc. In
practice, it means we set

pθ(w|H) =
esθ(w,H)

Zc
.

Another similar workaround consists in initializing the output bias to − log |V|
Vaswani et al. (2013); Melamud et al. (2017). It has the same effect as fixing
Zc = |V| and initializing the bias to 0. In Chen et al. (2015) this value is arbitrarily
set to logZc = 9. Here, we propose to learn the best shifting value by adding Zc
to the model parameters θ. In this case Zc can be seen as an extra bias term that
learns a normalizing constant.

Figure 3.16 represents training cross-entropy curves depending on the initial

0 5 10 15 20 25 30 35
Training Epochs

4

6

8

10

12

14

16

Tr
ai

ni
ng

 C
ro

ss
-e

nt
ro

py

log Zc = log |V|
log Zc init at 0
log Zc init at 5
log Zc init at 10
log Zc init at 15
log Zc init at 20

Figure 3.16: Training cross-entropy curves on PTB for un-normalized models trained
with NCE while fixing, then learning a parameter Zc that shifts the partition func-
tion, depending on the initial value of Zc.

Chapter 3. Detailled analysis of Sampling-Based Algorithms 51

1.00e+00 1.00e+03 1.00e+06 1.00e+09 1.00e+12 1.00e+15 1.00e+18
1e-08
1e-06

0.0001
0.01

1.0

Figure 3.17: Repartition of the values of the partition function Zθ(H) for all training
examples (H,w), during the last epoch of training with NCE on PTB, where a scaling
parameter Zc is learned. The color of a bin indicates the proportion of training
examples (H,w) for which the word w is one of the 10 most frequent according to
the noise distribution Pn: the lighter the color is, the higher is that proportion.
Both scales are logarithmic.

value of Zc, showing its impact. Figure 3.17 shows the histogram of the repartition
of values of the partition function, for the final epoch of training a model where we
learn Zc. This is to be compared with Figure 3.12, showing the same histogram, but
for classic NCE. We can see that the values of the partition function are far smaller
and grouped around 1. The first column of Table 3.4 shows how the choices of k
and α affect this method. We can see that we obtain reasonable results even with a
very low k and that smoothing the unigram distribution is only moderately helpful
here. Finally, Table 3.6 shows that learning to scale achieves a similar perplexity as
fixing it to the arbitrary value |V| on the PTB.

3.3.2 Helping the model with a well-chosen initialization

To operate on the impact of noise distribution during learning, we turn to neg-
ative sampling. We remember that with NS, the model directly parametrizes the
log-odds, and we get back an estimation of the conditional probability using the
model score and the noise distribution:

P̂ (w|H) ∝ Pn(w) exp
(
sNSθ (w,H)

)
(3.4)

Then, the initial values of rθ(w|H) = es
NS
θ (w,H) simply depend on the model

initialization and the initial values of the partition function are close to 1. We notice
that our models trained with negative sampling avoided the initial increase in cross-
entropy that is visible with NCE, even when we fix or learn Zc. We believe this is
due to having an initial model distribution very close to Pn, which is a consequence
of multiplying final scores by Pn, as showed in Equation 3.4.

To verify this, we trained a NCE model for which we initialized the output bias
with values of logPn(w). By looking at the repartition of the values of the ratio
and partition function at initialization, showed in figure 3.18, we can check that
having pθ(w|H) ≈ Pn(w) mitigates the main issues described in section 3.2: first,
our distribution is far closer to being normalized; then, the values of rθ(w|H) are
bundled together around 1/(k + 1).

Figure 3.19 presents the histograms showing the repartition of ratios rθ(w|H)
during training for this method. At epoch 1, both data and noise samples for non-
frequent words are still concentrated around 1/(k + 1), whereas data samples of

52 3.3 Easing the training of neural language models with NCE

NCE + Zc ∈ θ Bias init. at log(Pn) Both

Baseline model 179.3 151.8 148.4

k = 5 247.3 221.4 231.5
k = 10 299.0 204.4 198.2
k = 25 191.9 171.2 189.6
k = 50 184.7 157.3 167.6
k = 250 167.0 141.6 144.3
k = 500 164.6 137.5 138.4

α = 0.0 335.0 322.4 275.4
α = 0.25 201.8 205.0 193.5
α = 0.50 178.1 172.7 159.6
α = 0.75 173.5 155.0 156.3

Table 3.4: Best final perplexities on the test set of the Penn Treebank (PTB) corpus
obtained with NCE and the two tricks presented in this section: learning conjointly
a parameter Zc and initializing the output bias to the values of Pn - with varying
number of samples k and distortion α of the noise distribution Pn.

frequent words see their value of rθ increase and the noise samples of frequent words
see their value of rθ(w|H) decrease. From epoch 5, a large number of data samples
of non-frequent words have higher values of rθ and are completely separated from
noise samples. At the end of training, the repartition of these ratios resembles the
one obtained with the normalized model, in Figure 3.14.

The second column of Table 3.4 shows the efficiency of this method across values
of k and α. Strangely, except for a few configurations, including our baseline, using
this initialization jointly with learning a parameter scale Zc gives worse results than
the initialization alone. We suspect this method to be efficient enough that learning
a supplementary parameter (that is very impactful) makes training more difficult.

3.3.3 Summary of results with sampling-based algorithms

As shown in Table 3.6, with our baseline parameters choices, we get our best
model on PTB by both using this initialization and learning Zc. The final perplexity
is quite better than with Normalized NCE: pairing the ’learning to scale’ approach

1.00e+00 1.00e+03 1.00e+06 1.00e+09 1.00e+12 1.00e+15 1.00e+18
1e-08
1e-06

0.0001
0.01

1.0

1.00e-08 1.00e-05 1.00e-02 1.00e+01 1.00e+04 1.00e+07 1.00e+10
1e-08
1e-06

0.0001
0.01

1.0

Figure 3.18: Repartition of the values of the partition function Zθ(H) (top) and
ratio rθ(w|H) (bottom) for all training examples (H,w) at initialization, for a model
whose output bias is initialized to the values of logPn(w).

Chapter 3. Detailled analysis of Sampling-Based Algorithms 53

1e-08
1e-06

0.0001
0.01

1.0

Ep
oc

h
1

1e-08
1e-06

0.0001
0.01

1.0

Ep
oc

h
5

1e-08
1e-06

0.0001
0.01

1.0

Ep
oc

h
10

1e-08
1e-06

0.0001
0.01

1.0

Ep
oc

h
20

1.00e-08 1.00e-05 1.00e-02 1.00e+01 1.00e+04 1.00e+07 1.00e+10
Bias init at log(Pn)

1e-08
1e-06

0.0001
0.01

1.0

Ep
oc

h
30

Figure 3.19: Repartition of the values of the ratio rθ(w|H) for all positive training
examples (H,w) in orange, and associated noise sample (ŵi)

k
i=1, in blue, during

several training epochs on PTB. The model is trained with NCE, with a output bias
initialized to the values of logPn(w).

with the adapted initialization scheme makes NCE far more competitive, with no
additional computational cost. Figure 3.20 also shows a learning curve far smoother
than those of methods previously presented. We also present in Table 3.6 results
with slight smoothing of the noise distribution, for the methods who profit from it.

Hyperparameter Value

Number of noise samples k 100
Default noise distribution Pn Unigram
Hidden Layer LSTM
Maximum Sentence Length 30
Number of hidden layers 1
Word embedding dimension 512
Hidden layer dimension 512

Hyperparameter Value

Batch size (Sentences) 1000
Dropout rate 0.9
Optimization method Adam
Learning rate 0.01
ε 0.0001
Grad clipping value 0.0
Maximum number of training epochs 3

Table 3.5: Structural choices and hyperparameters used on the 1 Billion Words
Benchmark for experiments presented in this chapter.

54 3.4 Conclusions

Training method PTB 1BW Benchmark

MLE 150.2 -
Normalized NCE 159.3 -

NCE 306.0 X
NCE + α = 0.75 277.0 X
Importance Sampling 168.3 77.9
Importance Sampling + α = 0.75 171.5 67.2
BlackOut 169.0 71.8
NS 228.3 102.4
NS + α = 0.75 195.8 83.7
NCE + Zc = |V| 178.6 72.8
NCE + Zc ∈ θ 172.3 70.9
NCE + Bias init. at log(Pn) 151.8 74.8
NCE + Bias init. at log(Pn) + Zc ∈ θ 148.4 71.3

Table 3.6: Best testing perplexities obtained on PTB with a full vocabulary and on
the 1 Billion Word Benchmark with a vocabulary of 64K words. ’X’ indicates that
the model did not reach a perplexity under the size of the vocabulary within the
maximal number of training epochs 50.

Results on the 1 Billion Words Benchmark are presented in the second column of
Table 3.6. In this case, the vocabulary contains 64K words, which renders normal-
ized models very difficult to use in practice6. We trained the models for a minimum
of one epoch and up to two more if models made progress on the validation set
perplexity. The hyperparameters we used are shown in Table 3.5. Final results are
a little different than with the PTB: initializing the output bias to Pn(w) is here
a little less efficient, while smoothing the noise distribution with α = 0.75 is more
impactful for other sampling-based method, making IS slightly better. We suppose
this is due to the shape of the noise distribution, which, being cut at 64K words,
only contains frequent words. On the one hand, it makes for a more peaky distribu-
tion for very frequent words, which makes training with basic NCE more difficult.
Self-normalization is harder and 3 epochs are not enough for the testing perplexity
to be brought under the size of the vocabulary. On the other hand, having no long
tail composed of very rare words on the noise distribution makes training a little
easier for other methods, which renders our second trick less necessary.

3.4 Conclusions

In this chapter, we present an in-depth analysis of the inner workings of noise
contrastive estimation and propose solutions to ease training allowing the method to
reach at least comparable results with importance sampling, which is often consid-
ered more efficient. First, an exhaustive series of experiments comparing results of
importance sampling (IS), noise contrastive estimation (NCE), BlackOut and neg-
ative sampling (NS) when varying the number k of noise samples and the choice
of the noise distribution Pn shows NCE to perform badly and IS to still outperf-

6Besides the computation time constraints, the batch size is rapidly limited by the GPU memory,
while a smaller batch size also increases the computation time.

Chapter 3. Detailled analysis of Sampling-Based Algorithms 55

0 10 20 30 40 50
Training Epochs

4

6

8

10

12

14

16

Tr
ai

ni
ng

 C
ro

ss
-e

nt
ro

py

NCE
NS
BlackOut
NCE + Bias init. at log(Pn)
NCE + Zc
NCE + Bias init. at log(Pn) + Zc

Figure 3.20: Training cross-entropy curves on PTB for un-normalized models trained
with NCE, variations of NCE and alternative additions presented in Section 3.3.

morm BlackOut and NS. This leads us to closely monitor the training of two models
trained with NCE, where we normalize the scores obtained by one of them.

An analyis of the objective function and its gradients first highlights how self-
normalization is crucial if we want the NCE to learn. However, the higher Pn is, the
less self-normalization has an impact on learning. That also means that infrequent
words coming from data samples are harder to learn about and necessitate the
model to self-normalize for the associated context. Hence, the large variance of
values taken by the noise distribution has a key role in the difficulties met when
using NCE, especially for language modeling with large vocabularies, because of
the Zipfian shape of the unigram distribution. We verify this analysis using the
monitored experiments.

Finally, we propose two solutions to ease training with NCE. First, when in-
cluding a scaling parameter in the parameters of the model, the scaling process that
should be attained via self-normalization can be both stable and efficient. Additional
improvements can be obtained by initializing the bias of the output layer according
to the noise distribution. This limits the effects of the Zipfian shape of the unigram
distribution. Combining this ’learning to scale’ approach with the adapted initial-
ization scheme yields a very competitive, yet simple, training strategy for neural
language models with large vocabularies and shows convincing results on both the
Penn Treebank and the 1 Billion Words Benchmark.

56 3.4 Conclusions

Chapter 4

Extending Sampling-Based
Algorithms

Contents
4.1 Language model objective functions as Bregman diver-

gences . 59

4.1.1 Learning by minimizing a Bregman divergence 59

Decomposing the objective in two terms 61

Accounting for the context 61

How to obtain a sample objective ? 62

4.1.2 Directly learning the data distribution 62

Normalized distribution and MLE 62

Working with un-normalized distributions ? 63

4.2 Learning un-normalized models using Bregman diver-
gences . 63

4.2.1 Learning by matching the ratio of data and noise distri-
butions . 63

4.2.2 Experimenting with learning un-normalized models 64

First experimental results 65

Power-transformed entropy and beta divergence 66

4.3 From learning ratios to directly learning classification
probabilities . 67

4.3.1 Minimizing the divergence between posterior classification
probabilities and link to NCE 68

Establishing a link between φRatio and φBinClassif 69

4.3.2 Directly applying β-divergences to binary classification . . 70

Experimental results . 71

4.4 Conclusions . 72

58

Whether we are performing maximum likelihood estimation or noise contrastive
estimation, training a neural language model is done by otpimizing a function of
our model parameters θ. This objective function is expressed depending on the
probability distribution (or its un-normalized version) output by the model. But this
objective is also commonly called loss function: that is because it is the expression
of a dissimilarity between the parametrized distribution that we are learning and
the distribution described by our training data. Learning is in fact minimizing this
measure of divergence. For example, in the case of maximum likelihood estimation,
the negative likelihood that we minimize is also the Kullback-Leibler divergence
between the distribution output by the model and the data distribution:

NLL(θ) = −
∑

(H,w)∈D

logPH
θ (w) = −

∑
(H,w)∈H×V

PH
D (w) logPH

θ (w) = DKL(PD||Pθ)

(4.1)
Our knowledge on the data distribution is simply represented by examples that we
sample from the training data.

In this chapter, we will work with the divergence measures known as Bregman
divergences : the Kullback-Leibler divergence or the Euclidean squared distance are
examples of such divergences. We will highlight how Maximum-Likelihood Estima-
tion and some of the sampling-based methods described in Chapter 2 have their
objective functions derived from Bregman divergences, and are therefore part of a
generalized estimation framework. We will do this generalization in order to gain in-
sight on the inner workings of sampling-based algorithms and to derive new objective
functions. The reasoning presented here is based on two successive generalizations.
Firstly, the work of Pihlaja et al. (2012), which described NCE (2.3.1) and score
matching (Hyvärinen and Dayan, 2005) as part of a set of sampling-based objective
functions that lead to a consistent estimation of parameters. Secondly, an extension
of this set to a larger class of functions, which are Bregman divergences, in Gutmann
and Hirayama (2011).

In Section 4.1, we will shortly review Bregman divergences and how they can
be used to design objective functions for neural probabilistic language modeling. A
Bregman divergence is defined as a measure of distance corresponding to a strictly
convex function: we will re-obtain methods presented earlier by using the suitable
function. For example, the Kullback-Leibler divergence can be obtained by using
the Bregman divergence associated to the negative entropy function on a multi-
nomial probability distribution. By minimizing this divergence applied to the data
probability distribution and the model probability distribution, we obtain the classic
Maximum Likelihood Estimation objective.

Some of the methods presented earlier will be obtained by using the correspond-
ing divergence on another domain of application: instead of working with probability
distributions, we will work directly with un-normalized model distributions (which

we could also call measures), belonging to R|V|+ , in order to avoid the costly normal-
ization. In Section 4.2, we will present how we are able to use these divergences
without any summation on the full vocabulary, and experiment with example func-
tions presented in Gutmann and Hirayama (2011). Then, we will apply to language
modeling a set of Bregman divergences presenting interesting properties (Theorem 4,

Chapter 4. Extending Sampling-Based Algorithms 59

Csiszar (1991)). Also known as Beta divergences (Section 3, Cichocki and ichi Amari
(2010)), they are Bregman divergences derived with a class of generalized entropy
functions (Eguchi and Kato, 2010), obtained via a parametrized power transforma-
tion.

In Section 4.3, we will show that objectives based on a surrogate binary clas-
sification task, like NCE, can also be obtained by applying a Bregman divergence
to a set of binary classification probabilities — instead of multinomial classification
probabilities of words into the vocabulary. A composition function allows us to go
from one divergence to its corresponding “binary classification” version. We can
show that the NCE objective can be derived by applying the Bregman divergence
obtained from the negative entropy function to the binary probabilities of classifi-
cation. This allows us to experiment with a new series of divergences, that come
from the previously used class of generalized entropies, followed by the composition
function.

4.1 Language model objective functions as Breg-

man divergences

Bregman divergences were first described in Bregman (1967). Their functional
form provides a class of divergences between two functions, indexed by convex func-
tions, which include several existing distance1 measures, as the Euclidean distance or
the Kullback-Leibler divergence. Informally, Bregman divergences measure the dis-
tance between a convex function and its tangent hyperplane. Convexity gives these
divergences interesting properties, which makes them frequently used in statistical
learning. A recent characterization of Bregman divergences describes them as the
loss functions for which the unique optimal predictor is the conditional expectation
E[X|Z], when predicting a random variable X from observations Z (Banerjee et al.,
2005).

4.1.1 Learning by minimizing a Bregman divergence

The functional Bregman divergence corresponding to a function Φ : S → R,
which is a strictly convex function defined on a convex set S and twice continuously
differentiable on this set, is defined for all f, g ∈ S as:

DΦ(f, g) = Φ(f)− Φ(g)−∇Φ(g)T (f − g) (4.2)

where ∇ denotes the gradient of a function. We can note that the functional defini-
tion is a generalization of the vector and point-wise versions (Frigyik et al., 2008).
The Bregman divergence holds several nice properties, which are detailed and proved
in various works (Censor and Zenios, 1997; Grünwald and Dawid, 2004; Frigyik et al.,
2008).2 The main one is non-negativity: it stems directly from the strict convexity

1That are not formal distances: Bregman divergences in general are not.
2However, the definition is not universal and may vary depending on the author’s purpose. The

reader may use Appendix B and C of Frigyik et al. (2008) for a list of properties and proofs.

60 4.1 Language model objective functions as Bregman divergences

of Φ. We can also note the linearity and the affine invariance of the divergence
with respect to Φ.

We can now specify the functional objects we will manipulate. Since we work
with multinomial distributions over a vocabulary V , we can assume that our func-
tions can be defined attributing a value to each word of that vocabulary:

f :V → R
w → f(w)

(4.3)

and will therefore be applied to a discrete space. Then, to simplify the objects we
manipulate, f can be represented by a vector f of |V| values (fw)w∈V , that verifies
f ∈ S ⊂ R|V|. Knowing this, we can outline that in this chapter, we will only work
with three possible S: first, the set of probability distributions over V noted ∆V ,
where

∆V =

{
f : f ∈ R|V|+ ,

∑
w∈V

fw = 1

}
(4.4)

Secondly, we will use R|V|+ when we wish to work with un-normalized distribu-
tions. Lastly, we will use [0, 1]|V| when working with binary classification probabili-
ties for every word in the vocabulary. However, for the sake of consistency, we will
retain the functional notations f and f(w), as in the rest of this dissertation, the
scores and probabilities outputed by a language model are mostly denoted as func-
tions over V that we evaluate for a word w. In this context, and following Gutmann
and Hirayama (2011), it makes sense to restrict ourselves to using a specific kind
of Bregman divergence: the separable Bregman divergence (Section 3.5, Grünwald
and Dawid (2004)). This means that the function Φ can be written as:

Φ(f) =
∑
w∈V

φ(f(w))µV(w) (4.5)

where φ has the same properties as Φ, notably the strict convexity. Depending on
our choice of S, φ is defined over [0, 1] or R+. µV(w) represents a probability mass
function over V that allows us to weight the contribution of each dimension (which
represent words) to Φ, without any loss of generality. It can, in the simpler case, be
the uniform distribution. This allows us to compute the divergence between f and
g as a weighted sum of the divergences of their values over their domain V . This
restriction on Φ is necessary in order to be able to work with un-normalized models:
we do not want to have to evaluate our functions on more than one word w at a time
when computing our objective function. Then, the associated divergence is written
(using the linearity property):

DΦ(f, g) =
∑
w∈V

Dφ(f(w), g(w))µV(w) (4.6)

From the non-negativity, we obtain that

DΦ(f, g) = 0 ⇒ f = g

Chapter 4. Extending Sampling-Based Algorithms 61

We use the divergence to approximate a function representing our data by a para-
metric function representing our model. Assuming the first one is fixed, our problem
is to minimize the Bregman divergence with respect to the second. Thus, we note
fD the function representing our data, and fθ the parametric function. We then
minimize the following divergences:

DΦ(fD, fθ) =
∑
w∈V

Dφ(fD(w), fθ(w))µV(w) (4.7)

which is equivalent to minimizing the objective:

Lφ(fθ) =
∑
w∈V

[−φ(fθ(w))− φ′(fθ(w))(fD(w)− fθ(w))]µV(w) (4.8)

Decomposing the objective in two terms

We can notice that our objective is divided into two parts: one that depends on
the data function fD, and the second that only depends on fθ. Following Gutmann
and Hirayama (2011) again, we re-write this objective with two distinct functions
to highlight this separation:

Sφ0 (x) = −φ(x) + φ′(x)x and Sφ1 (x) = φ′(x) (4.9)

which satisfy, on the domain of φ:

(Sφ0)′(x)

(Sφ1)′(x)
= x and (Sφ1)′(x) > 0 (4.10)

Now, the objective defined in Equation 4.8 can be written:

LSφ(fθ) =
∑
w∈V

[
Sφ0 (fθ(w))− Sφ1 (fθ(w))fD(w)

]
µV(w) (4.11)

Accounting for the context

However, our multinomial distributions are conditional: they depend on a con-
text H. Since they share their parameters θ, we cannot learn them independently
with context dependent objectives, but we can define a global objective:

LSφ(fθ) =
∑
H∈H

LHSφ(fHθ)µH(H) (4.12)

where H is the discrete set of possible contexts, and µH(w) a probability mass
function over H, with:

LHSφ(fHθ) =
∑
w∈V

[
Sφ0 (fHθ (w))− Sφ1 (fHθ (w))fHD (w)

]
µV(w) (4.13)

62 4.1 Language model objective functions as Bregman divergences

We should note that this objective can be also written as the minimization of only
one Bregman divergence: we can consider the functions fD and fθ to be defined over
H × V . Then, if we assume that fD is included in the possible models, and that
there exists a set of parameters θ∗ such that fθ∗ = fD, the non-negativity property
of the Bregman divergence tells us that it is a minimum of the objective LS, while
the convexity property makes it unique.

How to obtain a sample objective ?

Since our goal is to approach fD, the only way for us to obtain an usable objective
is to compute the second term as a sample average over examples drawn from D.
We will examine the possible ways to do so; however, the difficulty mainly resides
in computing the first term efficiently.

4.1.2 Directly learning the data distribution

The most evident choice for our objective is to choose to directly learn the data
probability distribution: we then set fD = PD and fθ = Pθ, and the probability
mass function µV(w) can be the uniform distribution.

Normalized distribution and MLE

In that case, we can begin by setting S = ∆V , as presented in Equation 4.4, and
our objective is now, for a given context H:

LHSφ(PH
θ) =

∑
w∈V

Sφ0 (PH
θ (w))−

∑
w∈V

Sφ1 (PH
θ (w))PH

D (w) (4.14)

If we choose, as convex function:

φ : [0, 1] → R
x → x log(x)

(4.15)

which is defined at the origin by continuity. Consequently, Φ is defined as the
negative entropy function:

Φ : [0, 1]|V| → R

(x1, . . . , x|V|) →
|V|∑
i=1

xi log(xi)
(4.16)

It is easy to compute φ′(x) = log(x) + 1, which gives

Sφ0 (x) = x and Sφ1 (x) = log(x) + 1

Our objective is then:

LHKL(PH
θ) = −

∑
w∈V

PH
D (w) log(PH

θ (w)) (4.17)

Chapter 4. Extending Sampling-Based Algorithms 63

which amounts to minimizing the Kullback-Leibler (KL) divergence between PD
and Pθ - that is exactly the MLE objective. However, this implies computing the
partition function.

Working with un-normalized distributions ?

We now assume working with an un-normalized parametric distribution, which
implies setting S = R|V|. In accordance with previous notation, we now note fθ = pθ.
If we choose φ as the negative entropy extended to R+, for a given context H, we
obtain the objective:

LHKL(pHθ) =
∑
w∈V

pHθ (w)−
∑
w∈V

PH
D (w) log(pHθ (w)) (4.18)

We can consider the second term as an expectation over the data distribution, and
evaluate its sample average by drawing examples from the training data. However,
the first term still implies summing on the whole vocabulary - and the issue persists
for any other choice of φ. We should note that we could approximate the compu-
tation of our first term via importance sampling. However, since we are working
with un-normalized distribution, it resembles simple importance sampling. This is
probably harder to use than approximating the gradient of objective 4.17, which is
self-normalized importance sampling, that is the method traditionaly used in lan-
guage modeling (Section 2.2.1).

4.2 Learning un-normalized models using Breg-

man divergences

As explained in Gutmann and Hyvärinen (2010), an estimation problem can
be formulated as a classification problem: by discriminating between observed data
samples and noise samples, we can learn a decision boundary between the two. Since
we ’know’ the properties of the noise distribution, we can learn about the proper-
ties of the data distribution via this boundary. Following Gutmann and Hirayama
(2011), we can generalize this approach to obtain a class of objectives via Bregman
divergences, which are the estimators described in Pihlaja et al. (2012).

4.2.1 Learning by matching the ratio of data and noise dis-
tributions

Let us assume that we have access to a noise distribution Pn that we can sample
from, and that examples sampled from the data distribution PD (of class C = 1)
and Pn (of class C = 0) are mixed together, with a ratio of k noise samples by data
sample, as in Section 2.3.1. We can define the ratios of distributions:

rHD (w) =
PH
D (w)

kPn(w)
and rHθ (w) =

PH
θ (w)

kPn(w)
(4.19)

64 4.2 Learning un-normalized models using Bregman divergences

Gutmann and Hirayama (2011) shows that learning such a ratio implies that we are
learning an optimal classifier, while the inverse is not necessarily true. However,
putting aside the link to the classification task, we will for now focus on the ob-
jective we obtain by choosing the probability mass function µV(w) to be the noise
distribution kPn. Both the data and the model ratio are positive: here, we have
S = R|V|. The Bregman divergence associated to Φ between rHD and rHθ can be
written as a function of PH

θ , which gives the objective function:

LHSφ(PH
θ) = k

∑
w∈V

Sφ0

(
PH
θ (w)

kPn(w)

)
Pn(w)−

∑
w∈V

Sφ1

(
PH
θ (w)

kPn(w)

)
PH
D (w) (4.20)

As we have seen in Section 2.3.1, we could parametrize separately the partition
function. The solution adopted then was to set these parameters to 0 and let the
model self-normalize. It amounts to simply working with an un-normalized model
distribution pHθ in the model ratio, which is what we will do in the remainder of this
section. Then, the objective equals:

LHSφ(pHθ) = kEŵ∼Pn
[
Sφ0

(
pHθ (ŵ)

kPn(ŵ)

)]
− Ew∼PHD

[
Sφ1

(
pHθ (w)

kPn(w)

)]
(4.21)

from which we obtain a working sample objective:

L̂HSφ(pHθ) =

kND∑
i=1

ŵi∼Pn

[
Sφ0

(
pHθ (ŵi)

kPn(ŵi)

)]
−

ND∑
i=1

wi∼PHD

[
Sφ1

(
pHθ (wi)

kPn(wi)

)]
(4.22)

The set of parameters θ̂∗ maximizing the global version of the sample objective
L̂Sφ defines our estimator. Gutmann and Hirayama (2011) explain that it can be
proven that, under some technical conditions, this estimator is consistent (converg-
ing in probability to the complete objective optimum θ∗ when the number of samples
is large enough) with an asymptotic normal mean square error. These conditions
are explicited in Pihlaja et al. (2012). They are that Pn is non-zero whenever PD
is, that there is uniform convergence of the sample objective towards the Bregman
divergence, and model identifiability (one-to-one correspondence between θ and fθ)
which translates into having a full-rank fisher information matrix. This is a general-
ization of theorems 10.13 and 10.18 for proof of consistency of Maximum Likelihood
Estimation in Wasserman (2004), under similar conditions.

4.2.2 Experimenting with learning un-normalized models

We have just defined a class of objective functions that can be used to train
un-normalized models, derived from a Bregman divergence that we obtain from a
strictly convex function φ defined on R+. Pihlaja et al. (2012) gives several examples
of objectives, with their associated functions Sφ0,1. They are shown in Table 4.1, along
with the corresponding function φ, and r represents the ratio pHθ (w)/kPn(w). We

Chapter 4. Extending Sampling-Based Algorithms 65

Name φ(r) Sφ0 (r) Sφ1 (r)

IS r log(r)− r r log r

PO r2

2
r2

2
r

NCE r log(r)− (1 + r) log(1 + r) − log
(

1
1+r

)
log
(

r
1+r

)
InvPO −1

r
−1
r

− 1
2r2

InvIS −1− log(r) log r −1
r

Table 4.1: Choices of φ corresponding to S0 and S1 functions presented in Pihlaja
et al. (2012).

can see that Sφ0 and Sφ1 correspond respectively to the noise term and minus the
data term of the objective. The objective denoted as IS is obtained, again, from the
negative entropy extended to the axis of positive number3. This particular choice of
φ makes the objective the same as if we applied importance sampling to the objective
of Equation 4.13, and differs from the objective of Section 2.2 by not approximating
the partition function. We can also re-derive the NCE objective. PO, InvPO and
InvIS denote Polynomial, Inverse Polynomial and Inverse IS functions.

The Sφ0,1 functions determine how much we penalize noise and data samples de-
pending on the relative probability mass attributed to the sample by the model
compared to the noise distribution. For example, the polynomial objective, be-
ing squared on the data term, penalizes far more noise samples ŵ where the ratio
pHθ (ŵ)/kPn(ŵ) is higher than 1. Now that we are ready to apply our objectives to
language modeling, we must also be careful: we have seen in Section 3.2 that the
ratio pHθ (ŵ)/kPn(ŵ) could take from very small to very large values. This is true
even at initialisation, before the NCE objective we used could have any influence
on learning. While with NCE, the functions Sφ0,1 are stable for any values of r, it
clearly is not the case for the other examples presented here.

First experimental results

In a first series of experiments, we trained models on the Penn Treebank, follow-
ing the same setup that is exposed at the beginning of the previous chapter, with
the hyperparameters presented in Table 3.2. We tried the IS, InvIS, PO and InvPO
objectives, trained with SGD with varying learning rates (1.0, 0.1, 0.01). We also
tried the tricks presented at the end of the previous chapter, in Section 3.3, to ease
learning. As expected, in all configurations, the scores outputed by InvPO begin to
overflow during the first epoch of training. This is also mostly the case for the IS
objective, but using both training tricks and a low learning rate allows the model
to progress, even if learning is very slow and the perplexity reached stays very high.
The InvIS objective also overflows in most cases, but when we initialize the bias to
the values of Pn(w), it manages to learn; however, it stagnates after reaching a test
set perplexity of 900. Inversely, the PO objective seems to be learning properly, but

3The φ corresponding to the functions for IS of Pihlaja et al. (2012) is not exactly the negative
entropy, but Bregman divergences are affine invariant with respect to φ.

66 4.2 Learning un-normalized models using Bregman divergences

is very slow for every learning rate, and progress seems to stop for very high test set
perplexity. This is still verified when we learn a scaling parameter. However, when
we initialize the bias to the values of Pn(w), the model overflows too.

Power-transformed entropy and beta divergence

In order to gain a better flexibility and to avoid overflows, we investigated the
use of power transformations. In the four objectives presented earlier, at least one
of the functions Sφ0,1 has a linear or squared (or inverse and inverse squared) term:
we would like to experiment with functions that are transformed by a power β that
verifies |β| < 1. To do so, we use, as function Φ, a power entropy, parametrized by
a number β ∈ R 4:

φβ(r) =


1

β(β−1)
(rβ − βr + β − 1) if β 6= 0, 1

r log(r)− r + 1 if β = 1

r − log(r)− 1 if β = 0

(4.23)

It is easy to verify that φβ is strictly convex for any β. We should note that here
again, since Bregman divergences are affine invariant with respect to φ, modifying
the constant and linear terms in the entropy above does not change the resulting
objective. Knowing that, we immediately observe that this class of functions gen-
eralizes the functions φ we used to obtain the objectives IS and InvIS, for β = 1
and β = 0. We can also easily derive that PO corresponds to β = 2 and InvPO to
β = −1. In fact, the class of Bregman divergences derived from the φβ functions are
known as Beta-divergences (Basu et al. (1998)). They possess an interesting prop-
erty: they are the Bregman divergences that are homogeneous of degree β, which
means they are characterized by their multiplicative scaling behaviour (Csiszar,
1991; Cichocki and ichi Amari, 2010):

∀λ ∈ R, DΦβ(λf, λg) = λβDΦβ(f, g) (4.24)

In the case β = 1, we find that DΦ1 is the KL-divergence extended to vectors
of positive numbers, or I-divergence, while with β = 2, we obtain that DΦ2 is the

standard squared Euclidean distance, or L2 norm. The functions S
φβ
0,1 associated to

φβ are:

S
φβ
0 (r) =


rβ−1
β

r − 1

log(r)

and S
φβ
1 (r) =


rβ−1−1
β−1

if β 6= 0, 1

log(r) if β = 1

1− 1
r

if β = 0

(4.25)

Then, for our particular application, we are mainly interested in values of β
that are strictly between 0 and 1. We experiment with several values, using the

4Which is equivalent to the Tsallis q-entropy, with the relation β = q − 1 (Eguchi and Kato,
2010)

Chapter 4. Extending Sampling-Based Algorithms 67

β Perplexity

0.01 X
0.1 404.0
0.25 236.0
0.5 251.8
0.75 302.7
0.9 593.2
0.99 X

Table 4.2: Best final perplexities on the test set of the Penn Treebank (PTB) corpus
obtained with Bregman divergences derived from φβ, for various values of β such
that 0 < β < 1. ’X’ indicates that the model did not reach a perplexity under the
size of the vocabulary within the maximal number of training epochs.

same hyperparameters as previously indicated, and both initializing bias with Pn
and learning a scaling parameter. Results are presented in Table 4.2. While our
newly defined objectives do learn, their performances are not satisfactory, and for
the most part far from those obtained with the NCE in a similar configuration.

4.3 From learning ratios to directly learning clas-

sification probabilities

In the previous section, we have seen that the NCE objective can be seen as the
minimization of a Bregman divergence between the ratio of data and noise distribu-
tions, and the ratio of model and noise distributions. However, we had difficulties
learning with other Bregman divergences derived from simple functions - and we
obtained disappointing performances with working objectives. To understand the
performance of NCE compared to the other objectives we experimented with, we
look into the surrogate classification task. If we note the posterior class probabilities
of an example coming from the data (C = 1) or the noise (C = 0) as:

PH
D (C = 1|w) =

PH
D (w)

PH
D (w) + kPn(w)

PH
D (C = 0|w) = 1− PH

D (C = 1|w) (4.26)

and that we define similar posterior classification probabilities using the model dis-
tribution, we easily derive that:

rHθ (w) =
PH
θ (C = 1|w)P (C = 0)

kPH
θ (C = 0|w)P (C = 1)

=
PH
θ (C = 1|w)

PH
θ (C = 0|w)

=
PH
θ (C = 1|w)

1− PH
θ (C = 1|w)

(4.27)

While this shows that the ratio can serve as discriminant function between the two
classes, and that it allows us to learn an optimal classifier, it also gives us a direct
link between the ratio and the quantity that is directly optimized when learning for
a binary classification task: PH

θ (C = 1|w). This quantity can be obtained from the
ratio as follows:

68 4.3 From learning ratios to directly learning classification probabilities

PH
θ (C = 1|w) =

rHθ (w)

1 + rHθ (w)
(4.28)

4.3.1 Minimizing the divergence between posterior classifi-
cation probabilities and link to NCE

We can consider the probabilities of recognizing the data as functions defined on
V taking values in [0, 1]. That means that here, we have S = [0, 1]|V| — we can then
apply the general objective of Equation 4.13 to minimize the divergence between
the functions PH

D (C = 1|.) and PH
θ (C = 1|.). The probability mass function µV(w)

is the mixture from which we draw the samples:

µV(w) = PH
D (w) + kPn(w)

We obtain the following objective:

LHSφ(PH
θ (C = 1|.)) =

∑
w∈V

[
Sφ0 (PH

θ (C = 1|w))− Sφ1 (PH
θ (C = 1|w))PH

D (C = 1|w)
]
µV(w)

(4.29)

First, let us use the negative entropy of a binary random variable as convex
function φBinClassif :

φBinClassif : [0, 1] → R
p → p log(p) + (1− p) log(1− p)

(4.30)

Then, we obtain the functions

SBinClassif0 (p) = log

(
1

1− p

)
and SBinClassif1 (p) = log

(
p

1− p

)
(4.31)

which gives us the objective:

LHBinClassif (P
H
θ (C = 1|.)) =

−
∑
w∈V

log(PH
θ (C = 0|w))µV(w)

−
∑
w∈V

[
log(PH

θ (C = 1|w))− log(PH
θ (C = 0|w))

]
PH
D (C = 1|w)µV(w)

(4.32)

that we can factorize as:

Chapter 4. Extending Sampling-Based Algorithms 69

LHBinClassif (P
H
θ (C = 1|.)) =

−
∑
w∈V

log(PH
θ (C = 0|w))(1− PH

D (C = 1|w))µV(w)

−
∑
w∈V

log(PH
θ (C = 1|w))PH

D (C = 1|w)µV(w)

(4.33)

We then use the Equations 4.26 and their model versions to re-write our objective:

LHBinClassif (P
H
θ (C = 1|.)) =

−
∑
w∈V

log

(
kPn(w)

pHθ (w) + kPn(w)

)
kPn(w)

PH
D (w) + kPn(w)

µV(w)

−
∑
w∈V

log

(
pHθ (w)

pHθ (w) + kPn(w)

)
PH
D (w)

PH
D (w) + kPn(w)

µV(w)

(4.34)

Here, replacing µV by its corresponding probability mass function, we obtain:

LHBinClassif (P
H
θ (C = 1|.))

∝ −
∑
w∈V

log

(
kPn(w)

pHθ (w) + kPn(w)

)
kPn(w)−

∑
w∈V

log

(
pHθ (w)

pHθ (w) + kPn(w)

)
PH
D (w)

= −kEŵ∼Pn
[
log

kPn(ŵ)

pHθ (ŵ) + kPn(ŵ)

]
− Ew∼PHD

[
log

pHθ (w)

pHθ (w) + kPn(w)

]
(4.35)

of which the sample version is minus the NCE objective (that we maximize, whereas
here we minimize the objective) described in Equation 2.27.

Establishing a link between φRatio and φBinClassif

We have just shown that minimizing the Bregman divergence between the func-
tions PH

D (C = 1|.) and PH
θ (C = 1|.) that associate to a word a binary probability

of classification, is exactly maximizing the NCE objective. This gives us an occur-
rence where minimizing a Bregman divergence that we derive from φBinClassif (the
binary negative entropy) between the functions PH

D (C = 1|.) and PH
θ (C = 1|.) is

equivalent to minimizing a Bregman divergence derived from φRatio (with φRatioNCE(r) =
r log(r)− (1 + r) log(1 + r)) between the functions rHD and rHθ .

We would like to be able to work with ratios, because they are obtained directly
from the output of neural language models. We would also like to be optimizing more
efficiently the classification task — which we can do by using a Bregman divergence
applied to the classification. To conciliate both, we outline a formal way to derive a
function φ adapted to working with ratios from a corresponding function φBinClassif :

70 4.3 From learning ratios to directly learning classification probabilities

this gives us an objective better adapted to classification, while still being usable
directly at the output of the neural language model.

Obtaining φRatio is simply a matter of composing φBinClassif with a function σ
which allows to obtain the classification probabilities from the ratio (as described in
Equation 4.28):

σ : R+ → [0, 1]

r → r

1 + r

(4.36)

We immediately notice that, thanks to this composition, the values manipulated
during training stay between 0 and 1, which was not the case for all the objectives
we experimented in Section 4.2.2. However, to obtain the right transformation, we
need to account for the fact that we used different probability mass functions to
integrate over V for different divergences. We then multiply φBinClassif by the ratio
of the probability mass function used in this section and the one used in Section 4.2.1.
This ratio is written as:

PH
D (w) + kPn(w)

kPn(w)
= 1 + rHD (w) (4.37)

Then, we get the transformation:

φRatio : R+ → R

r → (1 + r)φBinClassif
(

r

1 + r

)
(4.38)

Proving that the obtained φRatio is convex ensures that we are still within our
framework. Then, the divergences derived from φRatio and φBinClassif verify:

DΦRatio(r
H
D , r

H
θ) = DΦBinClassif (P

H
D (C = 1|.), PH

θ (C = 1|.))

We keep both proofs for the Appendix A.

4.3.2 Directly applying β-divergences to binary classifica-
tion

We have seen previously that using the binary negative entropy as φBinClassif
yields the NCE objective. If we would like to extend this to the power entropy
functions defined in Equation 4.23, we should mimic the derivation used to obtain
NCE and use the function:

φBinClassifβ = φβ(p) + φβ(1− p)

In that case, with β = 1, we would re-derive the NCE objective. However, we could
try to simply use

φBinClassifβ (p) = φβ(p)

Chapter 4. Extending Sampling-Based Algorithms 71

We experimented with both ways. While they give almost the same results in the
case where β = 1, only the second one seemed to provide stable learning for the other
values of β, which is a result we plan to investigate on. Applying Equation 4.38, we
obtain:

φRatioβ : R+ → R

r → (1 + r)φβ

(
r

1 + r

)
(4.39)

which gives:

φRatioβ (r) =


1

β(β−1)
(rβ(1 + r)1−β − r + β − 1) if β 6= 0, 1

r log
(

r
1+r

)
− 1 if β = 1

−(1 + r) log
(

r
1+r

)
− 1 if β = 0

(4.40)

and the associated functions S
φRatioβ

0,1 are:

S
φRatioβ

0 (r) =


1
β

(
r

1+r

)β − 1
β

if β 6= 0, 1

r
1+r
− 1 if β = 1

log
(

r
1+r

)
if β = 0

(4.41)

and:

S
φRatioβ

1 (r) =


1

β−1

(
r

1+r

)β−1 − 1
β

(
r

1+r

)β − 1
β(β−1)

if β 6= 0, 1

log
(

r
1+r

)
+ 1

1+r
if β = 1

− log
(

r
1+r

)
− 1

r
if β = 0

(4.42)

We should notice that, as for the function associated to NCE SNCE0,1 showed in
in Table 4.1, the ratio r only appears inside of the term r/(1 + r) for the functions

S
φRatioβ

0,1 if β 6= 0. We expect learning procedures to be far more stable and resemble
those of NCE.

Experimental results

For this series of experiments, we use a larger range of values for β. We exper-
iment on the PTB again and verify the efficiency of our objectives on the 1 Billion
Word Benchmark, using the same setup and hyperparameters as in the previous
chapter (see Table 3.5). Again, we use both the training tricks we defined earlier.
Results are presented in Table 4.3. Here again, the influence of β on the quality of
learning is clear - however, for both corpora, we match and even mildly improve the
results obtained previously with NCE.

72 4.4 Conclusions

β PTB 1BW Benchmark

-1.0 X X
-0.25 X X
0.0 X X
0.25 338.9 X
0.5 191.8 103.4
0.75 167.8 79.7
0.9 157.9 72.9
1.0 150.2 72.6
1.1 149.7 71.4
1.25 144.4 71.8
1.5 149.5 78.1
2.0 177.2 116.9

Table 4.3: Best final perplexities on the test set of the Penn Treebank (PTB) corpus
and of the 1 Billion Word (1BW) Benchmark, obtained with Bregman divergences
derived from φRatioβ , for various values of β. ’X’ indicates that the model did not
reach a perplexity under the size of the vocabulary within the maximal number of
training epochs.

For β = 1, we obtain perplexities that are very close to the equivalent results
obtained with NCE at the end of the previous chapter (148.4 for the PTB and 71.3
for the 1BW Benchmark). The values of the β parameter that give the best results
can be inferred by looking at previous experiments made with the Beta-divergence:
indeed, for other applications, it has been shown (Cichocki et al., 2011; Basu et al.,
1998) that the choice of β implies a trade-off between robustness to outliers (for
β > 1) and efficiency (for β close to 1). Nevertheless, these results show that the
application of these divergences to language modeling should be explored further;
indeed, we believe they can be used judiciously to ease training in the difficult case
of training the model with a very large vocabulary.

4.4 Conclusions

We present in this chapter a generalization of the maximum-likelihood estima-
tion objective and of the noise contrastive estimation objective, as minimizations of
Bregman divergences. We can apply these divergences to probability distributions
of the data and model, but to avoid computing the partition function, we chose to
work with the un-normalized distribution outputed by the model. We use a surro-
gate classification task, which introduces a noise distribution that we sample from:
learning an optimal optimizer for this classification task can be done by minimizing
the divergence between the ratios of data and noise probabilities and of model and
noise probabilities.

We experiment with Bregman divergences derived from simple functions, pre-
sented in Pihlaja et al. (2012). However, given the very large range of values taken
by the model ratios, these functions overflowed during learning. Using a power-

Chapter 4. Extending Sampling-Based Algorithms 73

transformed entropy function, determined by a parameter β, we experiment with
Beta divergences. Learning is successful only for values of β for which model ratios
have an exponent that is in absolute value strictly smaller than 1.

We then show that the NCE objective can be seen as a Bregman divergence
applied to functions associating to each word in the vocabulary their binary classi-
fication probability. We derive a composition rule, allowing us to re-write Bregman
divergences applied to these functions as divergences applied to ratios. This compo-
sition rule has the advantage of transforming the ratios into values that are in the
inverval [0, 1], ensuring stability during learning. We finally experiment with these
new classes of divergences, that we derive from the power-transformed entropy func-
tions. We obtain far more convincing results, that show that the best values of β
are a little higher than 1.

74 4.4 Conclusions

Chapter 5

Output Subword-based
representations for language
modeling

Contents
5.1 Representing words . 77

5.1.1 Decomposition into characters 78

Using a convolution layer 78

Using a recurrent layer . 79

5.1.2 Decomposing morphologically 80

5.2 Application to language modeling 81

Training a language model with subword-based output
representations 82

Czech data and setup . 83

Preliminary experiments on input representations and vo-
cabulary sizes 85

5.3 Experiments on Czech with subword-based output rep-
resentations . 86

5.3.1 Influence of the vocabulary size 86

5.3.2 Effects of the representation choice 88

5.3.3 Influence of the word embeddings vocabulary size 89

5.4 Supplementary results and conclusions 90

5.4.1 Training with improved NCE on Czech 90

5.4.2 Comparative experiments on English 91

5.5 Conclusions . 92

76

In the previous chapters of this dissertation, we mainly focused our efforts on
methods designed to reduce the training time of large-vocabulary neural language
models. However, large computation time is not the only practical issue met when
training these models. A different, but not less important issue, affects the dis-
tributed representation of infrequent words. While in Section 1.1, we discussed how
discrete models need a large number of parameters and are not able to generalize,
we encounter a similar problem with continuous models as their vocabulary grow.
Indeed, because of the Zipfian shape of the frequency distribution of words in a text,
a large part of the vocabulary is composed by infrequent words that only occur a
few times in the training data. Since they are optimized on only a few examples,
the parametrized representations that are jointly learnt for these infrequent words
are not suitable.

On the other hand, the discrete correspondence between a word and its embed-
ding implies that the word structure is overlooked, even though it could provide us
precious information on these infrequent words. Besides, a model should be able to
use information learnt on frequent words to better represent infrequent words that
are similar. Another drawback of learning a different embedding for each word, inde-
pendently of their structure and frequence, is that it becomes very costly in memory
as the vocabulary grows. Moreover, while these issues are already impactful for a
morphologically poor language like English, for morphologically-rich languages, like
Czech or German, there is a combinatorial explosion of word forms, most of which
are hardly observed on training data, which renders the language modelling task
even more difficult.

As we discussed previously, rare words can be replaced by a special token UNK.
This can be seen as using a word class to merge very different words without any dis-
tinction. Using different word classes to handle out-of-vocabulary words (OOVs) Al-
lauzen and Gauvain (2005) does not really solve this difficulty, since infrequent words
are difficult to classify. A way to deal with this issue is to not stop at the level of
word units, but to also use subword units. Whether they are built via a different
supervised method with embedded language knowledge, or from the training data,
exploiting information from subword units has been attempted many times. It has
especially been the case for speech recognition, where they mainly allow to reduce
the number of OOV words. While most subword-based models were focused on a
specific language, Creutz et al. (2007) is a representative example of a model applied
to several morphologically-rich languages. One of the first occurrences of general lan-
guage models integrating morphological features to represent words is the factored
language model (Bilmes and Kirchhoff, 2003) and its neural version (Alexandrescu
and Kirchhoff, 2006). Input words are represented by their embeddings, plus sev-
eral other features, including morphemes. To alleviate the impact of OOVs, Mueller
and Schuetze (2011) used morphological features for class-based predictions when
input words are unknown, obtaining state-of-the-art results on English. While recur-
rent neural networks have shown excellent performances for character-level language
modeling (Sutskever et al., 2011; Hermans and Schrauwen, 2013), the results of such
models are usually worse than those that use word-level prediction, since they have
to consider a far longer history of tokens to be able to predict the next one correctly.
While more recent work (Hwang and Sung, 2017) seems to obtain very satisfactory
results with a supplementary word-level layer that allows a better processing of the

Chapter 5. Output Subword-based representations for language modeling 77

longer history, we will in our work always use word-level prediction.

While replacing the input word embeddings with this kind of representations
in neural language models has been experimented with exhaustively (Kim et al.,
2015; Vania and Lopez, 2017; Verwimp et al., 2017), the predicted words are only
scored based on their word embeddings. As previously explained, if the vocabulary
contains infrequent words, these representations may be barely learnt. Since we aim
at improving infrequent word representations, we will, in this chapter, experiment
with augmenting or replacing output word embeddings with representations built
from subwords. To the best of our knowledge, such an idea has only been exper-
imented by Józefowicz et al. (2016), which evaluates the use of convolutional and
LSTM layers to build word representations for output words. They allow the model
to trade size against perplexity, since their model performs worse than the classic
softmax approach, but with far less parameters.

We will, in Section 5.1, begin with a presentation of the various architectures
we will use to obtain these word representations from subwords. We then propose
to study the training of a language model which augments or completely replaces
output words representations with character-based representations. In Section 5.2,
we will apply our model on a Czech dataset, and present a series of experiments
comparing the effect of different architectures, as well as the effect of different sizes
of output look-up tables. Finally, we use the results obtained in Chapter 3 to try to
improve our models, and extend our experiments to English, with the PennTreebank,
for comparaison.

5.1 Representing words

Usually, input and output word embeddings are parameters, stored in look-up
matrices W and Wout. As we explained in Section 1.2, the word embedding rwordw

of a word w is simply the column of W corresponding to its index in the vocabulary
V : rwordw = [W]w. We present in this section different ways to build embeddings
rsubwordw as a function of a decomposition of the word w into subwords.

Quite a lot of work have been recently done with models representing words
as function of subwords units. Some are using morphological features, with a re-
cursive structure (Luong et al., 2013), or an additive one (Botha and Blunsom,
2014). However, language models that extract features directly from the character
sequence are gaining popularity, whether they use character n-grams (Sperr et al.,
2013), or characters composed by a convolutional layer (Santos and Zadrozny, 2014;

Representation Decomposition

Word poc̆átku
Characters p+o+c̆+á+t+k+u
Character 3-grams poc̆+oc̆á+c̆át+átk+tku
Lemma + Tags poc̆átek+N+MascIn+Sg+Loc+Act

Table 5.1: Example of subword decompositions used for a Czech word.

78 5.1 Representing words

Kim et al., 2015) or a Bi-LSTM layer (Ling et al., 2015), as they avoid using an
external morphological analyser. These types of models have also been applied with
success to several other task, including learning word representations (Qiu et al.,
2014; Cotterell et al., 2016; Bojanowski et al., 2016; Wieting et al., 2016), POS
tagging1 (Plank et al., 2016; Ma and Hovy, 2016; Heigold et al., 2017), Named en-
tity recognition (Gillick et al., 2016), Parsing (Ballesteros et al., 2015) and Machine
translation (Costa-jussà and Fonollosa, 2016). Recently, an exhaustive summary of
previous work on building word representations by composing subword units was
presented in Vania and Lopez (2017). This work also compares the different types
of subword unit, how they are composed, and their impact on various morphological
typologies. Among those, we consider two types of representations: decomposing
words into characters (or n-grams of characters), and decomposing them into a
Lemma and positional tags using a morphological analysis. An example of these
different decompositions is shown in Table 5.1.

5.1.1 Decomposition into characters

A word w is a character sequence {c1, .., c|w|}, where the characters belong to
a character vocabulary Vc. Let C ∈ Rdc×|Vc| be the character embedding matrix.
Then, the characters are represented by embeddings of dimension dc, {rcharc1

, .., rcharc|w|
},

where rcharci
= [C]ci denotes the vector associated to the character ci. We can

note that the character vocabulary is typically far smaller than a word vocabulary.
To infer a word embedding from its character embeddings, we use two different
architectures.

Using a convolution layer

First, a convolution layer (Waibel et al., 1990; Collobert et al., 2011), similar
to layers used in Santos and Zadrozny (2014); Kim et al. (2015), which applies
a convolution matrix WCNN

nc ∈ Rdcnc×dr over a sliding window of nc characters,
producing local features:

xnnc = WCNN
nc (rcharcn−nc+1

: .. : rcharcn)T + bCNNnc (5.1)

We add nc−1 padding vectors on each side of the word, and xnnc is a vector obtained
for each of the n+ nc − 1 possible character nc-gram. Each coordinate [xnnc]i of this
vector depends on the corresponding column [WCNN

nc]i of the convolution matrix.
We can see each of these columns as different convolution filters : using dr of these
filters results in a representation of dimension dr. The embedding of w is then
obtained by applying a max-pooling function, followed by an activation function φ,
over each of these coordinates:

[rncw]i = φ

(
|w|−nc+1

max
n=1

[xnnc]i

)
(5.2)

We can use filters of different sizes nc1 , . . . , ncf and concatenate their results:

1Which is a task we also addressed with some of these architectures: see Annex D

Chapter 5. Output Subword-based representations for language modeling 79

r3
poc̆átku

c̆

Max-pooling

o á t k

x1
3 x2

3 x3
3 x4

3 x5
3

rcharo rcharc̆ rchará rchart rchark

u

rcharu

p

rcharpr• r• r• r•

x6
3 x7

3 x8
3 x9

3

WCNN
3

Figure 5.1: Example architecture of a convolutional layer CharCNN for building
character-based representations of words. Here, the convolution matrix is applied
on a window of 3 characters. The • symbol indicates the specific character token
used for padding.

rCharCNNw = (r
nc1
w : . . . : r

ncf
w) (5.3)

An exemple of such a layer with filters of size 3 is shown in Figure 5.1. We note this
layer CharCNN (for Character Convolutional Neural Network).

Using a recurrent layer

We use a bi-LSTM (Hochreiter and Schmidhuber, 1997; Graves et al., 2005), on

characters, similarly to Ling et al. (2015). It combines the final states
−−→
h|w| and

←−
h1

of two LSTMs, respectively over the character sequence and the reverse character
sequence, which are computed as such:

−→
hi = LSTM(rcharci

,
−−→
hi−1)

←−
hj = LSTM(rcharcj

,
←−−
hj+1)

We then concatenates them to obtain the representation:

rCharBiLSTMw =
−−→
h|w| :

←−
h1 (5.4)

An example of such a layer is shown in Figure 5.2. We note it CharBiLSTM.

80 5.1 Representing words

c̆o á t k

rcharo rcharc̆ rchará rchart rchark

u

rcharu

p

rcharp

rCharBiLSTMpoc̆átku

−→
h1

←−
h7

Figure 5.2: Example architecture of a bi-recurrent layer CharBiLSTM for building
character-based representations of words.

5.1.2 Decomposing morphologically

For morphologically-rich languages, the different morphological properties of a
word (gender, case, ...) are usually encoded using multiple tags, as shown in
Table 5.1. Therefore, a word w is decomposed into a lemma l along with a set of
associated sub-tags T = {t1, .., t|T |} of fixed size |T |. For a given word, a single tag
can be created by the concatenation of the subtags. However, this implies a large
tagset and mitigates the generalization power since some sub-tags combinations can
remain unobserved on training data. In this work, we prefer a factored representation
where each sub-tag is considered independently.

Lemmas, similarly to surface forms, are represented by |Vl| vectors stored in a
look-up matrix l ∈ Rdl×|Vl|, and rlemmaw = [L]w. Each sub-tag has its own vocabulary
and its own look-up matrix. However, the additional cost is negligible given their
small size (which we will see with Czech in Table 5.3b). To infer a word embed-
ding from a sub-tags set, we also use two methods. The first method consists in
concatenating their embeddings:

rTagConcatT = rtag1t1 : . . . : rtagiti : . . . : r
tag|T |
t|T |

(5.5)

The second method uses a bidirectionnal LSTM on the sequence of tags T , using

Chapter 5. Output Subword-based representations for language modeling 81

Highway
Layer

LSTM

Softmax

’to’ ’reálné’ ’ ?’

Look-up table
C

Max-Pooling

WCNN
3Look-up table

W

rwordw rCharCNNw

Words + CharCNN
for all words in V

’je’ ’to’ ’reálné’

w rchar1
rchar2

rchar3
rchar4

rchar5

Words +
CharCNN

Figure 5.3: Example architecture of our language model, when using word embed-
dings and a character CNN to build both input and output word representations.

exactly the same structure as in Section 5.1.1:

rTagBiLSTMT =
−−→
h|T | :

←−
h1 (5.6)

We note these layers TagsConcat and TagsBiLSTM.

In several works, an intermediate layer is used between the obtained subword-
based representations and the hidden layer. It can be seen as a way to blend together
representations coming from different sources (whether it is word embeddings, the
representations resulting from differently sized convolution filters, or from the two
directions of a BiLSTM), instead of simply concatenating them. Kim et al. (2015)
uses a highway layer (Srivastava et al., 2015) to do so, which we use here too. Finally,
Verwimp et al. (2017) implements the simpler solution of concatenating character
embeddings, which we believe to be impractical to use for output representations,
since it is in practice difficult to apply a highway layer to blend those character
embeddings.

5.2 Application to language modeling

As previously, the experiment are conducted using a recurrent language model,
with LSTMs (Section 1.2.2). Integrating subword-based output representations in
a language model is straigthforward: as illustrated in Figure 5.3, we concatenate
word, character-based or lemma and tags embeddings, to obtain input and output
word representations. Table 5.2 summarizes the various representations we used in
our experiments, for both input and output words. However, since the traditional

82 5.2 Application to language modeling

Input representation rw Eq

Words rwordw

CharCNN Hw(rCharCNNw) 5.2
CharBiLSTM Hw(rCharBiLSTMw) 5.4
Words + CharCNN Hw(rwordw : rCharCNNw)
Words + CharBiLSTM Hw(rwordw : rCharBiLSTMw)

Lemma + TagsConcat. Hw(rlemmal : rTagConcatT) 5.5

Lemma + TagsBiLSTM Hw(rlemmal : rTagBiLSTMT) 5.6

Output representation routw

Words rwordw

CharCNN rCharCNNw

CharBiLSTM rCharBiLSTMw

Words + CharCNN rwordw : rCharCNNw

Words + CharBiLSTM rwordw : rCharBiLSTMw

Table 5.2: Detail of the various input and output representations used in our exper-
iments. Hw indicates the use of a Highway layer.

output layer of a neural language model includes a softmax activation function, we
face a significant issue: not only do we need to sum scores over the full vocabulary,
we also need to compute representations using a specific subword-based layer for
every word in the vocabulary, in order to compute those scores for each example.
This is, of course, very costly.

Training a language model with subword-based output representations

To avoid such a heavy training cost, we train our language model with a sampling-
based method, which we presented in Chapter 2. To begin, we choose importance
sampling, which is used by the authors of Józefowicz et al. (2016) to train the
model they built with character-based output representations. This allows us to
only compute the subword-based representations of target words, plus the words
drawn as noise samples during training. However, we still need to compute these
representations for all words when doing inference.

We experimented with various ways to link the subword-based layers to the
model and between themselves. We first apply a highway layer to the output repre-
sentation, but it seems almost always counter-productive, rendering training more
unstable. In all experiments we present, weights are not tied between input and
output representations, since our preliminary experiments with tied weights always
gave worst results. Besides, we do not mix structures for character-level represen-
tations (for example, using an input CharCNN and output CharLSTM) since our
first experiments gave systematically worse results than using the same structures).
When using different types of representations, we also kept consistency between
vocabularies: if both lemmas and words are used in a model, any lemma consid-
ered unknown has its corresponding word unknown, and inversely. The same (or
corresponding) vocabularies are used for all inputs representations, all outputs rep-

Chapter 5. Output Subword-based representations for language modeling 83

resentation, and evaluation. The only exception is presented in Section 5.3.3. When
using a character-based output representation, during evaluation, the representation
of the unknown token is built from a specific unknown character token, a specific
unknown lemma token, and specific unknown tags tokens that are parameters of the
model.

The following experiments aim at comparing potential uses of those different
subword-based word representations, and thus are not directed towards performance.
For this reason, we use the same implementation for all experiments and do not
specifically try to optimize the general model structure or the dimensional hyper-
parameters. We also use representations of the same size, indifferently of how we
build them, to verify the potential gain they bring. A more complete comparaison
of the systems we experiment with should take in account both the total dimension
of the layers and the total number of parameters they use.

To fully exploit the potential of subword-based representations, we choose to
apply our model to a morphologically complex language, Czech. We then apply our
model to English with the Penn Treebank (PTB), in order to verify the impact of
subword-based representations on this morphologically simpler language.

Czech data and setup

We used data from the parallel corpus News-commentary 2015, from the WMT
News MT Task. The data consists in 210K word sequences, amounting in about
4,7M tokens. We divide the data into a training, development and testing sets.
The development and testing sets are comprised of 10K word sequences and 150K
tokens each. In our experiments, we use different vocabulary sizes, which we obtain
by varying a frequency threshold fTh: words are selected when their frequency
in the training data is strictly higher than the threshold. Table 5.3a shows the
correspondences between vocabulary sizes and thresholds. Since this data comes
from a parallel corpus, we can compare the distributions of word frequencies in
English and Czech. These distributions are shown in Figure 5.4. The main difference
is that the tail of the Czech distribution is far longer, which means it contains far
more infrequent words than the English distribution. It also implies that the Czech
vocabulary is far larger, being more than twice the size of the English vocabulary,
which justifies our approach.

fTh |VTh|

0 (All words) 159142
1 89587
2 66743
5 37010
10 25295

(a) Vocabulary sizes for differ-
ent frequency thresholds

|VC | |VL| |Vtagi |i=1..|T |

155 61364 [12, 65, 11, 6, 9, 6, 3, 5, 5, 4, 3, 3]

(b) Vocabulary sizes for subword units

Table 5.3: Various vocabulary sizes for Czech on News-commentary 2015.

84 5.2 Application to language modeling

The lemma and tags decomposition presented in Section 5.1.2 was obtained
with Morphodita (Straková et al., 2014). There are 12 tag categories for Czech.
Vocabulary sizes for characters, lemmas and tags are detailed in Table 5.3b. As
previously mentioned, the vocabulary sizes for characters and tags are far smaller
than for words and lemmas, which makes these representations far less costly in
term of memory usage.

100 101 102 103 104 105

Rank

100

101

102

103

104

105

106

W
or

d
Fr

eq
ue

nc
y

En
Cz

Figure 5.4: Distribution of word frequencies, ordered by rank, for the English and
Czech versions of the parallel corpus News-commentary 2015.

The hyperparameters we use are shown in Table 5.4. We choose our subword and
word embedding dimensions in order to obtain, for each type of representation, an
embedding dimension of 150. In the case of the CharCNN, we use filters of 3, 5 and 7
characters, respectively of dimension 30, 50, and 70. In the case of the CharBiLSTM,
each LSTM has a dimension of 75. Tags embeddings also add up to a size of 150.

Hyperparameter Value

Number of noise samples k 500
Default noise distribution Pn Unigram
Hidden Layer LSTM
Maximum Sentence Length 30
Number of hidden layers 2
Input representation dimension drw
Hidden Layer dimension droutw

Hyperparameter Value

Batch size (Sentences) 128
Dropout rate 0.5
Optimization method Adam
Learning rate 0.001
ε 1e8

Grad clipping value 0.0
Maximum number of training epochs 5

Table 5.4: Structural choices and hyperparameters used on the News-commentary
2015 Czech corpus experiments presented in this chapter.

Chapter 5. Output Subword-based representations for language modeling 85

Finally, the input layer dimension depends on how many input representations we
use, while the hidden layer size depends on the number of output representations.
Given the large size of the vocabulary, we used k = 500 noise samples by batch. As
before, we backtrack learning when no progress has been made on the validation set
perplexity, stopping training after 10 consecutive backtrackings.

Preliminary experiments on input representations and vocabulary sizes

First, we train ’classical’ models, where we only change the type of input rep-
resentation we use, and we keep the classic output representation based only on
words. Since we want to evaluate the difficulty of representing infrequent words,
we begin by training models with various vocabulary sizes (which are detailed in
Table 5.3a). For this set of experiments, we choose models using word based input
representations, character based input representations, a concatenation of both, and
a concatenation of lemma and tag based input representations. To observe variabil-
ity in the final perplexity results, we present the average of the results obtained on
5 models, and the standard deviation. These values are shown in Table 5.5. Note
that the baseline result for the full vocabulary is a final mean perplexity of 388.1.

The larger the vocabulary is, the less stable the training is. The standard de-
viation especially grows when we go from excluding words that only appear twice
from the vocabulary (fWTh = 2), to training with the full vocabulary (fWTh = 0). That
tendency is stronger with models using only subword based representations (Char-
CNN). Some of that instability can be pinned on the fact that we do not have any
unkown words in the training data, which makes the associated embedding useless at
evaluation. However, we suppose it mostly comes from the fact that a large number
of words only appear once in the training data, and are not adequatly learned. This
is probably accentuated by the fact that our training method almost never samples
these words: their representation may only be updated once by epoch.

Despite these variations, it is clear that using both word-based and character-
based input representations (Words + CharCNN) is better than our baseline of only
word embeddings, which still gives far better results than using only character-based
input representation. The efficiency of decomposing the words as a lemma and a

fWTh 10 5 2 1 0
Input Representation

Words 139.6 ± 1.3 168.9 ± 2.7 231.5 ± 5.2 266.6 ± 4.1 388.1 ± 6.9

CharCNN 156.7 ± 3.1 187.8 ± 2.8 256.3 ± 3.5 281.9 ± 5.5 427.2 ± 14.1

Words + CharCNN 130.2 ± 1.5 161.3 ± 2.5 218.9 ± 2.3 251.9 ± 4.2 378.2 ± 6.2

Lemmas + TagsConcat 142.2 ± 3.0 176.8 ± 1.7 233.6 ± 2.4 265.3 ± 4.8 371.4 ± 6.4

Table 5.5: Average test perplexities obtained when training 5 models using word-
based output representations with IS, for various input representations and vocab-
ulary sizes. Results in bold are the best models for a given vocabulary size. The
underlined results are the baselines, which use only words for the input and output
representations.

86 5.3 Experiments on Czech with subword-based output representations

set of tags seems to depend on the size of the vocabulary: while it is comparatively
not efficient for smaller vocabularies, it works well when we include all words, even
giving the best perplexity results. It could indicate that this decomposition allows
better generalization to infrequent words.

5.3 Experiments on Czech with subword-based

output representations

In this section, we experiment with augmenting and replacing output represen-
tations with character-based embeddings. We also investigated working with tags,
but they were difficult to use in practice. The main issue is that tags can be am-
biguous across several occurrences of the same words, which is something we need
to normalize in order to predict words. To do so, we tried using specific tokens,
or choosing the most frequent tags, but in any configuration, using tags for output
representations made the model severly overfit.

5.3.1 Influence of the vocabulary size

First, we would like to study the potential usefulness of subword-based output
representations for various vocabulary sizes. Using the representations that gave, as
a whole, the best results during the preliminary experiments (Words+CharCNN),
we train models with the same vocabulary sizes than before, detailed in Table 5.3a.
The mean final perplexity and standard deviation across 5 trainings are shown in
Table 5.6, while the perplexity curves of the best of these 5 models are shown in
Figure 5.5. Clearly, our model fails to improve upon the conventional word model
when the output vocabulary size is relatively small. More precisely, models that
use a Words+CharCNN output layer seem unable to learn after a few epochs. We
link this behavior to the difficulty met by the authors in Józefowicz et al. (2016):
since most logits are tied when we use an output character-based representation -
as opposed to independently learned word embeddings, the function mapping from
word to word representation is smoother and training becomes more difficult. They
used a smaller learning rate and a low dimensional correction factor, learned for
each word, as a work-around.

However, increasing the vocabulary size reduces this effect. This is especially
clear with the full training vocabulary: in this setup, using a character-based rep-

fWTh 10 5 2 1 0
Output Representations

Words 130.2 ± 1.5 161.3 ± 2.5 218.9 ± 2.3 251.9 ± 4.2 378.2 ± 6.2

Words + CharCNN 635.6 ± 71.6 555.1 ± 37.3 422.6 ± 50.6 370.0 ± 20.8 327.2 ± 8.1

Table 5.6: Average test perplexities obtained when training 5 models using word and
CharCNN input and output representations with IS, for various vocabulary sizes.
Results in bold are the best models for a given vocabulary size.

Chapter 5. Output Subword-based representations for language modeling 87

200.0

400.0

600.0 Words + CharCNN
Words

200.0

400.0

600.0

200.0

400.0

600.0

Te
st

 P
er

pl
ex

ity

200.0

400.0

600.0

0 2 4 6 8 10 12 14
Training Epochs

200.0

400.0

600.0

Figure 5.5: Testing perplexity curves for models trained with Words+CharCNN
input representations, with IS, for various vocabulary sizes. Vocabulary sizes are
given, from top to bottom, by taking fWTh = 10, 5, 2, 1, 0 in Table 5.3a

resentation improves the performance of the model. We can assume that character
based representations compensate for the insufficient number of updates performed
on rare words embeddings during training. Indeed, combining word and character-
based embeddings allows the model to better counteract the Zipfian shape of the
word occurences distribution.

88 5.3 Experiments on Czech with subword-based output representations

Output Representation
Words

Words + Char Char

Input Representation CNN BiLSTM CNN BiLSTM

Words 388.1 ± 6.9 333.2 ± 7.0 352.6 ± 3.0 917.5 ± 35.5 1943.6 ± 82.4

Char
CNN 427.2 ± 14.1 363.2 ± 7.6 - 783.2 ± 32.8 -

BiLSTM 630.0 ± 15.1 - 576.4 ± 19.0 - 1983.3 ± 37.0

Words +
Char

CNN 378.2 ± 6.2 327.2 ± 8.1 - 827.2 ± 37.1 -

BiLSTM 376.0 ± 4.2 - 349.6 ± 11.6 - 1889.9 ± 63.3

Lemmas +
Tags

Concat. 371.4 ± 6.4 326.3 ± 6.4 338.0 ± 5.9 828.9 ± 25.7 1990.9 ± 194.2

BiLSTM 368.1 ± 3.0 335.4 ± 9.2 332.8 ± 7.4 821.3 ± 29.2 1856.1 ± 57.6

Table 5.7: Average test perplexities obtained when training 5 models with IS, for
various input/output representations. Results in bold are the best models for a
given output representation. The underlined result is the baseline, obtained using
only words for the input and output representations.

5.3.2 Effects of the representation choice

We now experiment with various representation choices, in order to assess which
combination of input and output representations gives the best performance. How-
ever, we limit these experiments to models trained with the full vocabulary, having
established that, in our current configuration, augmenting output representations
with subwords renders models difficult to train for smaller vocabulary sizes. Ta-
ble 5.7 gathers the main experimental results.

For any input representation, augmenting the output representation with a
character-based embedding, by using a Words+CharCNN output layer, improves
the performance of the model. It is especially true for convolutional layers. We
also can notice that the improvement is more important for models that performed
badly with basic output word embeddings. When using only words as output rep-
resentations, the best input representations seems to be the Lemmas+Tags input
layers (with both architectures), but the Words+CharCNN/BiLSTM input layers
are both close. With a Words+CharCNN output layer, all input representations
give close results, except for the CharCNN layer. Among them is the best improve-
ment on the baseline, which is a final mean perplexity of 326.3. Overall, biLSTMs
perform worse than their convolution/concatenation counterparts. The mean and
standard deviations are especially high when characters are used as input represen-
tation, making the decomposition into lemma and tags the best choice when using
Words + CharbiLSTM output layer.

Our experiments with only character-based embeddings as output representa-
tions give results far worse than those using also word-based embeddings. Training
is also far more unstable. The observations we previously made are however still
valid, with the exception of a model using CharCNN layers for both input and
output, which behaves better than other models using the same output representa-
tion. We believe these seemingly bad results are linked to the difficulties mentioned
in Józefowicz et al. (2016) and in Section 5.3.1.

Chapter 5. Output Subword-based representations for language modeling 89

Input
Representation

fWTh
Words + CharCNN

All words Frequent words Rare words

Words

0 333.2 ± 7.0 214.8 ± 4.7 5560.6 ± 174.0
1 317.9 ± 5.0 205.3 ± 2.7 5077.3 ± 273.2
2 303.9 ± 4.9 195.7 ± 2.9 5071.6 ± 322.7
5 291.3 ± 4.0 188.1 ± 2.2 5049.4 ± 397.5
10 306.5 ± 10.2 191.2 ± 6.6 7999.2 ± 459.1

CharCNN

0 363.2 ± 7.6 234.2 ± 3.5 5588.5 ± 552.6
1 356.9 ± 6.1 230.9 ± 2.9 5432.1 ± 575.2
2 350.9 ± 10.7 227.8 ± 7.2 5178.9 ± 451.0
5 355.3 ± 9.3 228.1 ± 5.3 6039.7 ± 765.3
10 364.8 ± 13.7 227.2 ± 9.1 8582.0 ± 279.7

Words +
CharCNN

0 327.2 ± 8.1 208.6 ± 4.7 5790.2 ± 631.9
1 291.0 ± 11.6 189.0 ± 7.0 4577.1 ± 446.0
2 283.1 ± 8.1 184.3 ± 4.7 4354.4 ± 435.2
5 268.2 ± 3.5 172.9 ± 2.2 4641.6 ± 328.6
10 278.4 ± 8.1 174.4 ± 4.4 6725.1 ± 587.0

Lemma +
TagsConcat.

0 326.3 ± 6.4 214.2 ± 5.1 5782.4 ± 538.7
1 312.8 ± 13.8 202.4 ± 8.4 4747.7 ± 312.8
2 318.6 ± 11.3 204.8 ± 6.6 5429.0 ± 526.0
5 303.7 ± 6.7 193.6 ± 2.3 6035.1 ± 718.3
10 308.3 ± 3.2 192.0 ± 1.4 7378.0 ± 616.3

Lemma +
TagsBiLSTM

0 335.4 ± 9.2 208.0 ± 4.0 5733.2 ± 573.2
1 319.0 ± 10.6 206.0 ± 6.9 5099.1 ± 301.4
2 314.3 ± 11.9 203.8 ± 8.0 4782.3 ± 221.9
5 310.3 ± 14.1 197.7 ± 7.8 5864.7 ± 526.5
10 307.8 ± 5.8 192.6 ± 3.4 7063.3 ± 542.8

Table 5.8: Test perplexity averaged on 5 models trained with IS, for various input
representations and output word look-up table sizes. Corresponding vocabulary
sizes are given in Table 5.3a. Test perplexities are given for all words, frequent
words (frequency > 10) and rare words (frequency < 10). In bold are the best
models for a given input representation.

5.3.3 Influence of the word embeddings vocabulary size

Following our observations in Section 5.3.1, we assess the effect of reducing the
word look-up table size for the Words+CharCNN output representation, which
precedently gave the best results. We do not change the size of the event space:
when constructing output representations for words under a chosen frequency, we
simply do not learn a specific word representation. For example, using a threshold
of fWTh = 10 means that words that appear less thant ten times won’t have their own
word embedding, and are represented by the unknown word token combined with
their character-based representation. Results are shown in Table B.2.

We can see that for all input representations, using a specific unknown token
in place of a specific word embedding for words appearing less than 5 times in

90 5.4 Supplementary results and conclusions

training data gives the best performance, or close to, given the standard deviation
among the threshold tested. Reducing the look-up table to words only appearing
more than 10 times gives globally worse results, even if they are still better than
if we keep the full table. Still, with the Lemmas + Tags input layer, both these
values seem to give an equivalent result. However, when looking at the perplexities
computed on rare words only (which are very hard to interpret given their very high
standard deviation) it seems that reducing the lookup table too much damages the
model performance. Since these infrequent words contribute so little to the global
perplexity, this is mostly unnoticeable on the final results.

Overall, we improve again our best results, obtaining 268.2 as final mean perplex-
ity, from a baseline of 388.1. While in our experiments, the subword-based output
representations made training on smaller vocabularies stop early, they improved the
full-vocabulary model performances. In this same setup, replacing independent word
embeddings by the unknown token for rare words yields further improvement. It is
worth noticing that this also opens the vocabulary, since our model can be used to
rescore unknown words.

5.4 Supplementary results and conclusions

In this section, we verify our previous results by training the same models with
NCE while applying the two training tricks developed in Chapter 3. We first update
the results we obtained with importance sampling in Czech, then apply our best
models to the PTB dataset.

5.4.1 Training with improved NCE on Czech

The main change we obtained when repeating the previous section’s experiments
using the improved NCE training method concerns using subword-based representa-
tions with smaller vocabularies. While, as described in Section 5.3.1, models trained
with importance sampling stopped after a few epochs, with NCE, training unfolds
normally, giving better results with an output Words + CharCNN layer than only
word-based representations for all vocabulary sizes. These results are shown in Ta-
ble 5.9. Supplementary experiments showed that the determining factor in this new
result was to initalize bias weights with the unigram frequencies (in Section 3.3.2);
understanding why requires further investigation.

fWTh 10 5 2 1 0
Output Representations

Words 136.6 ± 6.5 174.4 ± 9.3 223.3 ± 9.6 248.6 ± 8.1 389.7 ± 19.1

Words + CharCNN 124.2 ± 7.5 150.5 ± 7.4 199.8 ± 8.1 221.6 ± 5.5 320.6 ± 4.4

Table 5.9: Average test perplexities obtained when training 5 models using word
and CharCNN input and output representations with NCE, for various vocabulary
sizes.

Chapter 5. Output Subword-based representations for language modeling 91

Output Representation
Words

Words + CharCNN

Input Representation VWTh = 0 VWTh = 10K

Words 164.2 ± 1.7 158.8 ± 1.6 135.4 ± 2.1

CharCNN 161.2 ± 1.1 141.7 ± 2.8 138.1 ± 2.8

Words + CharCNN 160.9 ± 6.1 147.8 ± 1.3 130.8 ± 4.4

Table 5.10: Average test perplexities obtained when training 5 models with NCE,
for various input representations and output word look-up table sizes, on PTB.

Other detailed results on representation and the word embeddings vocabulary
size are omitted here, but can be found in the Appendix B. They mostly confirm the
two main tendancies outlined at the end of the previous section: augmenting word
embeddings with subword-based output representations yields sizable improvement,
while replacing independent word embeddings by the unknown token for rare words
improves perplexity even more. However, some notable changes are, first, that the
standard deviation is globally quite higher with NCE, especially for models using
BiLSTMs. Secondly, that while the mean perplexity is overall a little higher, the
models using CharBiLSTM only output representations obtain perplexities far better
than with importance sampling (but are still the worst output representation).

5.4.2 Comparative experiments on English

In order to verify the usefulness of our setup on a morphologically simpler lan-
guage, we now apply it to the PTB. When working on English, we only use character-
based representations, since the morphology does not carry as much information in
English as it does in Czech. We limit our experiments to the better-performing
CharCNN layers. Each input and output representations are of the same dimen-
sion, 150, and we use 2 highway layers after the input as in the rest of this chapter,
while every other hyperparameter is the same than those indicated in Table 3.2. We
should note that if we want to compare the obtained results to those obtained in
previous chapters, we should only do so for models that use both Words + CharCNN
input and output layers. Indeed, other models use smaller input and/or output di-
mensions and are therefore at a disadvantage. For a more detailled experimental
investigation of the effect of dimension sizes, please refer to Annex C.

We can see that, while augmenting the word input representation with a Char-
CNN layer is not that impactful, augmenting the word ouptut representation with
the same layer yields a nice improvement - and restricting the word embedding ta-
ble size to a smaller value (here, we arbitrarily chose 10K words) also significantly
improves perplexity. If we wish to compare our results to the perplexity obtained
with the same objective at the end of Chapter 3 (which was 148.4), we can see that
models using both Words + CharCNN layers reach a similar perplexity. However,
we obtain this results by using a little more than half the parameters, given the small
amount of parameters needed by the CharCNN layer. Besides, restricting the word
embedding table size to 10K words both reduces greatly the number of parameters
and improves on the final perplexity, to reach a mean value of 130.8.

92 5.5 Conclusions

5.5 Conclusions

In this chapter, we show how augmenting the output word embeddings of neu-
ral language models with subword-based representations can improve performance,
especially on very large vocabularies. We first present several ways to decompose
words into subwords and the neural architectures we use to build representations
from those subwords. We describe the various layers that we use to generate input
or output representations, notably the Words + CharCNN layer, that concatenates
a word embedding with the output of a convolution layer based on the characters.
Computing representations through this kind of layer for the whole vocabulary would
be very costly, which is why we use sampling-based methods for training.

We carry out experiments on Czech, with data from the parallel corpus News-
commentary 2015. In those experiments, we train models whose output represen-
tations are simple word embeddings and models with a Words + CharCNN output
layer, for various vocabulary sizes. When trained with a full vocabulary, the model
equipped with augmented output representations outperforms the classical one. We
then experiment with various types of input and output representations: consis-
tently, using a concatenation of words and character-based embeddings improves
the perplexity of the mode, while the performances of character-based only rep-
resentations are far behind. We also obtain better results with convolution layers
than with biLSTMs. Lastly, we manage to improve upon augmented models by
reducing the size of the word look-up table in the Words + CharCNN output layer:
we only learn output word embeddings for words that are frequent enough and use
the embedding of the unknown word token for the others. The other half of these
infrequent words representations are determined by their characters. While it seems
to hurt the performance of the model on infrequent words, we obtain overall sizable
gains in perplexity.

Finally, we reproduce these experiments with the NCE training tricks presented
in Section 3, obtaining similar improvements. Besides, initializing the output bias
with unigram probabilities drastically improves models trained on smaller vocabu-
laries, making models augmented with character-based representations better than
the classic models at every vocabulary size tested. We verify our results on the Penn
Treebank, improving performances once by augmenting the output representations,
then again by reducing the size of the output look-up table.

Conclusion

This work investigates practical methods to ease training and improve perfor-
mances of neural language models with large vocabularies. The main limitation of
neural language models is their expensive computational cost: it depends on the
size of the vocabulary, with which it grows linearly. Despite several training tricks,
the most straightforward way to limit computation time is to limit the vocabulary
size, which is not a satisfactory solution for numerous tasks. Most of the existing
methods used to train large-vocabulary language models revolve around avoiding
the computation of the partition function, which is used to ensure that output
scores are normalized into a probability distribution. While Importance Sampling
(IS, Section 2.2) directly approximates the gradient computation, Noise Contrastive
Estimation (NCE, Section 2.3.1) and related methods use a discriminative objec-
tive function that does not require normalization and let the partition function be
parametrized separately.

In Chapter 3 we observe how IS is more efficient than NCE, accross various
choices of the number k of noise samples and the noise distribution Pn. We show
that this difference is linked to how normalization is handled by the methods. An
analyis of the NCE objective function shows that self-normalization is necessary for
the method to learn. It also shows that the Zipfian shape of the unigram distribution
plays an important role in the difficulties met when using NCE. We experiment with
including a scaling parameter in the parameters of the model, to complement the
self-normalization process. Additionally, to reduce this negative impact of the large
variance of values taken by the unigram distribution, we initialize the bias of the
output layer according to the noise distribution, which adapts the scaling to the
word frequency. Those two approaches show convincing results on both the Penn
Treebank and the 1 Billion Words Benchmark.

In Chapter 4, we show that the maximum-likelihood estimation objective and
the noise contrastive estimation objective derive from the same class of divergences,
called Bregman divergences. Using these divergences to solve a surrogate classifi-
cation task allows us to work with un-normalized distributions. If we apply them
directly to functions associating to each word in the vocabulary their binary classifi-
cation probability, we obtain objective functions for which the weights manipulated
are contained in the inverval [0, 1]: this makes learning stable. We experiment with
parametrized Beta divergences, of which NCE is a particular case, for the parameter
β = 1. Results on both the Penn Treebank and the 1 Billion Words Benchmark
show that this class of objectives is especially efficient for values of β a little above
1, where the perplexities reached are slightly better than those obtained with NCE.

94

Computation time is not the only issue met when training large-vocabularies neu-
ral language models: a large part of the vocabulary is composed by infrequent words
that are hard to represent, damaging the performances of the model. To allow better
generalization for these rare words, we rely on subword units. In Chapter 5, we im-
plement various layers building subword-based representations of words. We carry
out experiments on Czech, with data from the parallel corpus News-commentary
2015. In particular, we show that appending character-based representations to
output word embeddings when training a neural language model with a full vocab-
ulary consistently improves the perplexity of the model. We also experiment with
reducing the size of the output look-up table : we only learn output word embeddings
for words that are frequent enough, and use the embedding of the unknown word
token for the others. The other half of these infrequent words representations are
determined by their characters. While the performance of the model on infrequent
words seem to decrease, we overall improve on the perplexity results again.

Future work

To extend the results we obtained on NCE, experiments should be done with
even larger vocabularies. Especially, we would like to explore the impact of the
long tails of Zipfian distributions on training. Another interesting research direction
could be to exploit the knowledge we have gained in Chapter 3 to better employ
context-dependant distributions. Indeed, our experiments so far have shown inter-
esting results with the bigram distribution (in Section 3.1.2), but it is impractical
to use. We believe that an efficient use of more complex noise distribution should
be explored.

Since Chapter 4 defines a class of objectives, there is certainly quite a lot of
directions we would like to explore. Besides experimenting with other possible ob-
jectives, it could prove useful to re-evaluate the use of an exponential function to
make the neural language model outputs positive. Indeed, it is possible to apply
the divergences on any kind of convex space. Alternative objectives exploiting that
fact may provide other advantages than those presented here.

The experiments we presented in Chapter 5 explore which kind of representation
can prove useful. However, performances should be compared as function of the
training cost, which could be the training time, but also the number of parameters
used. The language model could also be adapted to predict a lemma and a set of tags
instead of a word, since these vocabularies are far smaller than the word vocabulary.
We could then generate an associated word exploiting these informations, using
recent progress on morphological reinflection tasks. This kind of approach would
be particularily interesting, since it would allow to generate words unseen during
training.

List of publications

Franck Burlot, Matthieu Labeau, Elena Knyazeva, Thomas Lavergne, Alexandre
Allauzen, and François Yvon. Limsi@iwslt’16: Mt track. 2016.

Matthieu Labeau and Alexandre Allauzen. An experimental analysis of noise-
contrastive estimation: the noise distribution matters. In Proceedings of the 15th
Conference of the European Chapter of the Association for Computational Linguis-
tics: Volume 2, Short Papers, pages 15–20, Valencia, Spain, April 2017a. Associa-
tion for Computational Linguistics. URL http://www.aclweb.org/anthology/

E17-2003.

Matthieu Labeau and Alexandre Allauzen. Character and subword-based word rep-
resentation for neural language modeling prediction. In Proceedings of the First
Workshop on Subword and Character Level Models in NLP, pages 1–13, Copen-
hagen, Denmark, September 2017b. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/W17-4101.

Matthieu Labeau and Alexandre Allauzen. Représentations continues dérivées des
caractères pour un modèle de langue neuronal à vocabulaire ouvert. In Actes de la
24ème Conférence sur Traitement Automatique des Langues Naturelles, pages 32–
46, Orléans, France, Juin 2017c. URL http://taln2017.cnrs.fr/wp-content/

uploads/2017/06/actes_TALN_2017-vol1.pdf#page=42.

Matthieu Labeau and Alexandre Allauzen. Learning with noise-contrastive estima-
tion: Easing training by learning to scale. In To be published in the Proceedings of
COLING 2018, the 27th International Conference on Computational Linguistics,
Santa Fe, United States, August 2018. Association for Computational Linguistics.

Matthieu Labeau, Kevin Löser, and Alexandre Allauzen. Non-lexical neural ar-
chitecture for fine-grained pos tagging. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, pages 232–237, Lisbon,
Portugal, September 2015. Association for Computational Linguistics. URL
http://aclweb.org/anthology/D15-1025.

Benjamin Marie, Alexandre Allauzen, Franck Burlot, Quoc-Khanh Do, Julia Ive,
elena knyazeva, Matthieu Labeau, Thomas Lavergne, Kevin Löser, Nicolas
Pécheux, and François Yvon. Limsi@wmt’15 : Translation task. In Proceedings
of the Tenth Workshop on Statistical Machine Translation, pages 145–151, Lis-
bon, Portugal, September 2015. Association for Computational Linguistics. URL
http://aclweb.org/anthology/W15-3016.

http://www.aclweb.org/anthology/E17-2003
http://www.aclweb.org/anthology/E17-2003
http://www.aclweb.org/anthology/W17-4101
http://taln2017.cnrs.fr/wp-content/uploads/2017/06/actes_TALN_2017-vol1.pdf#page=42
http://taln2017.cnrs.fr/wp-content/uploads/2017/06/actes_TALN_2017-vol1.pdf#page=42
http://aclweb.org/anthology/D15-1025
http://aclweb.org/anthology/W15-3016

96 LIST OF PUBLICATIONS

References

Andrei Alexandrescu and Katrin Kirchhoff. Factored neural language models. In
Proceedings of the Human Language Technology Conference of the NAACL, Com-
panion Volume: Short Papers, pages 1–4, New York City, USA, June 2006. Associ-
ation for Computational Linguistics. URL http://www.aclweb.org/anthology/

N/N06/N06-2001.

A. Allauzen and J.L Gauvain. Open vocabulary asr for audiovisual document in-
dexation. In IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), April 2005.

Jacob Andreas, Maxim Rabinovich, Michael I. Jordan, and Dan Klein. On
the accuracy of self-normalized log-linear models. In Advances in Neu-
ral Information Processing Systems 28: Annual Conference on Neural In-
formation Processing Systems 2015, December 7-12, 2015, Montreal, Que-
bec, Canada, pages 1783–1791, 2015. URL http://papers.nips.cc/paper/

5806-on-the-accuracy-of-self-normalized-log-linear-models.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine transla-
tion by jointly learning to align and translate. CoRR, abs/1409.0473, 2014.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith. Improved transition-based
parsing by modeling characters instead of words with LSTMs. In Proceedings
of the 2015 Conference on Empirical Methods in Natural Language Processing,
pages 349–359, Lisbon, Portugal, September 2015. Association for Computational
Linguistics. URL http://aclweb.org/anthology/D15-1041.

Paul Baltescu and Phil Blunsom. Pragmatic neural language modelling in machine
translation. In Proceedings of the 2015 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
pages 820–829, Denver, Colorado, May–June 2015. Association for Computational
Linguistics. URL http://www.aclweb.org/anthology/N15-1083.

Arindam Banerjee, Xin Guo, and Hui Wang. On the optimality of conditional
expectation as a bregman predictor. IEEE Trans. Information Theory, 51(7):
2664–2669, 2005. doi: 10.1109/TIT.2005.850145. URL https://doi.org/10.

1109/TIT.2005.850145.

Ayanendranath Basu, Ian. R Harris, Nils L. Hjort, and M. C. Jones. Robust and
efficient estimation by minimising a density power divergence. Biometrika, 85(3):
549–559, 1998. URL http://oro.open.ac.uk/24027/.

http://www.aclweb.org/anthology/N/N06/N06-2001
http://www.aclweb.org/anthology/N/N06/N06-2001
http://papers.nips.cc/paper/5806-on-the-accuracy-of-self-normalized-log-linear-models
http://papers.nips.cc/paper/5806-on-the-accuracy-of-self-normalized-log-linear-models
http://aclweb.org/anthology/D15-1041
http://www.aclweb.org/anthology/N15-1083
https://doi.org/10.1109/TIT.2005.850145
https://doi.org/10.1109/TIT.2005.850145
http://oro.open.ac.uk/24027/

98 REFERENCES

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradi-
ent descent is difficult. Trans. Neur. Netw., 5(2):157–166, March 1994. ISSN 1045-
9227. doi: 10.1109/72.279181. URL http://dx.doi.org/10.1109/72.279181.

Yoshua Bengio and Jean-Sébastien Sénécal. Quick training of probabilistic neu-
ral nets by importance sampling. In Proceedings of the conference on Artificial
Intelligence and Statistics (AISTATS), 2003.

Yoshua Bengio and Jean-Sébastien Sénécal. Adaptive importance sampling to ac-
celerate training of a neural probabilistic language model. IEEE Trans. Neural
Networks, 19(4):713–722, 2008.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A
neural probabilistic language model. Journal of Machine Learning Research,
3:1137 1155, 2003. http://machinelearning.wustl.edu/mlpapers/paper_

files/BengioDVJ03.pdf.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle, Université De
Montréal, and Montréal Québec. Greedy layer-wise training of deep networks.
In In NIPS. MIT Press, 2007.

Adam L. Berger, Vincent J. Della Pietra, and Stephen A. Della Pietra. A maximum
entropy approach to natural language processing. Comput. Linguist., 22(1):39–
71, March 1996. ISSN 0891-2017. URL http://dl.acm.org/citation.cfm?id=

234285.234289.

Jeff A. Bilmes and Katrin Kirchhoff. Factored language models and generalized
parallel backoff. In Proceedings of the 2003 Conference of the North American
Chapter of the Association for Computational Linguistics on Human Language
Technology: Companion Volume of the Proceedings of HLT-NAACL 2003–short
Papers - Volume 2, NAACL-Short ’03, pages 4–6, Stroudsburg, PA, USA, 2003.
Association for Computational Linguistics. doi: 10.3115/1073483.1073485. URL
https://doi.org/10.3115/1073483.1073485.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching
word vectors with subword information. CoRR, abs/1607.04606, 2016. URL
http://arxiv.org/abs/1607.04606.

Aleksandar Botev, Bowen Zheng, and David Barber. Complementary Sum Sam-
pling for Likelihood Approximation in Large Scale Classification. In Aarti Singh
and Jerry Zhu, editors, Proceedings of the 20th International Conference on Ar-
tificial Intelligence and Statistics, volume 54 of Proceedings of Machine Learning
Research, pages 1030–1038, Fort Lauderdale, FL, USA, 20–22 Apr 2017. PMLR.
URL http://proceedings.mlr.press/v54/botev17a.html.

Jan A. Botha and Phil Blunsom. Compositional Morphology for Word Representa-
tions and Language Modelling. In Proceedings of the International Conference of
Machine Learning (ICML), Beijing, China, jun 2014.

Guillaume Bouchard, Théo Trouillon, Julien Perez, and Adrien Gaidon. Accelerating
stochastic gradient descent via online learning to sample. CoRR, abs/1506.09016,
2015. URL http://arxiv.org/abs/1506.09016.

http://dx.doi.org/10.1109/72.279181
http://machinelearning.wustl.edu/mlpapers/paper_files/BengioDVJ03.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/BengioDVJ03.pdf
http://dl.acm.org/citation.cfm?id=234285.234289
http://dl.acm.org/citation.cfm?id=234285.234289
https://doi.org/10.3115/1073483.1073485
http://arxiv.org/abs/1607.04606
http://proceedings.mlr.press/v54/botev17a.html
http://arxiv.org/abs/1506.09016

REFERENCES 99

L. M. Bregman. The relaxation method of finding the common points of convex sets
and its application to the solution of problems in convex programming. In USSR
Computational Mathematics and Mathematical Physics, page 7:200–217, 1967.

Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent J. Della Pietra,
and Jenifer C. Lai. Class-based n-gram models of natural language. Comput.
Linguist., 18(4):467–479, December 1992. ISSN 0891-2017. URL http://dl.

acm.org/citation.cfm?id=176313.176316.

Franck Burlot and François Yvon. Learning morphological normalization for trans-
lation from and into morphologically rich language. The Prague Bulletin of Math-
ematical Linguistics (Proc. EAMT), 108:49–60, June 2017.

Miguel Á. Carreira-Perpiñán and Geoffrey E. Hinton. On contrastive divergence
learning. In Proceedings of the Tenth International Workshop on Artificial Intel-
ligence and Statistics, AISTATS 2005, Bridgetown, Barbados, January 6-8, 2005,
2005. URL http://www.gatsby.ucl.ac.uk/aistats/fullpapers/217.pdf.

Yair Al Censor and Stavros A. Zenios. Parallel Optimization: Theory, Algorithms
and Applications. Oxford University Press, 1997. ISBN 019510062X.

Ciprian Chelba and Frederick Jelinek. Structured language modeling. Com-
puter Speech and Language, 14(4):283 – 332, 2000. ISSN 0885-2308. doi:
https://doi.org/10.1006/csla.2000.0147. URL http://www.sciencedirect.com/

science/article/pii/S0885230800901475.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp
Koehn, and Tony Robinson. One billion word benchmark for measuring progress in
statistical language modeling. In INTERSPEECH 2014, 15th Annual Conference
of the International Speech Communication Association, Singapore, September 14-
18, 2014, pages 2635–2639, 2014. URL http://www.isca-speech.org/archive/

interspeech_2014/i14_2635.html.

Stanley F. Chen and Joshua Goodman. An empirical study of smoothing tech-
niques for language modeling. In Proceedings of the 34th Annual Meeting
of the Association for Computational Linguistics, pages 310–318, Santa Cruz,
California, USA, June 1996. Association for Computational Linguistics. doi:
10.3115/981863.981904. URL http://www.aclweb.org/anthology/P96-1041.

Stanley F. Chen and Joshua Goodman. Regular article. Computer Speech and
Language, 13(4):359–394, 1999. doi: 10.1006/csla.1999.0128.

Wenlin Chen, David Grangier, and Michael Auli. Strategies for training large vocab-
ulary neural language models. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1975–
1985, Berlin, Germany, August 2016. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/P16-1186.

Xie Chen, Xunying Liu, Mark J. F. Gales, and Philip C. Woodland. Recurrent
neural network language model training with noise contrastive estimation for

http://dl.acm.org/citation.cfm?id=176313.176316
http://dl.acm.org/citation.cfm?id=176313.176316
http://www.gatsby.ucl.ac.uk/aistats/fullpapers/217.pdf
http://www.sciencedirect.com/science/article/pii/S0885230800901475
http://www.sciencedirect.com/science/article/pii/S0885230800901475
http://www.isca-speech.org/archive/interspeech_2014/i14_2635.html
http://www.isca-speech.org/archive/interspeech_2014/i14_2635.html
http://www.aclweb.org/anthology/P96-1041
http://www.aclweb.org/anthology/P16-1186

100 REFERENCES

speech recognition. In ICASSP, pages 5411–5415. IEEE, 2015. ISBN 978-1-4673-
6997-8. URL http://dblp.uni-trier.de/db/conf/icassp/icassp2015.html#

ChenLGW15a.

Colin Cherry. An empirical evaluation of noise contrastive estimation for the neu-
ral network joint model of translation. In Proceedings of the 2016 Conference
of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 41–46, San Diego, California, June
2016. Association for Computational Linguistics. URL http://www.aclweb.org/

anthology/N16-1006.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio.
On the properties of neural machine translation: Encoder–decoder approaches. In
Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in
Statistical Translation, pages 103–111. Association for Computational Linguistics,
2014a. doi: 10.3115/v1/W14-4012. URL http://www.aclweb.org/anthology/

W14-4012.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio.
On the properties of neural machine translation: Encoder–decoder approaches. In
Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in
Statistical Translation, pages 103–111. Association for Computational Linguistics,
2014b. doi: 10.3115/v1/W14-4012. URL http://www.aclweb.org/anthology/

W14-4012.

Kyunghyun Cho, Bart van Merriënboer, Çağlar Gülçehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations
using RNN encoder–decoder for statistical machine translation. In Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1724–1734, Doha, Qatar, October 2014c. Association for Com-
putational Linguistics. URL http://www.aclweb.org/anthology/D14-1179.

Junyoung Chung, Çağlar Gülçehre, Kyunghyun Cho, and Yoshua Bengio. Empir-
ical evaluation of gated recurrent neural networks on sequence modeling. arXiv
e-prints, abs/1412.3555, 2014. URL https://arxiv.org/abs/1412.3555. Pre-
sented at the Deep Learning workshop at NIPS2014.

Andrzej Cichocki and Shun ichi Amari. Families of alpha- beta- and gamma- diver-
gences: Flexible and robust measures of similarities. Entropy, 12(6):1532–1568,
2010. URL http://dblp.uni-trier.de/db/journals/entropy/entropy12.

html#CichockiA10.

Andrzej Cichocki, Sergio Cruces, and Shun-ichi Amari. Generalized alpha-beta di-
vergences and their application to robust nonnegative matrix factorization. En-
tropy, 13(1):134–170, 2011. ISSN 1099-4300. doi: 10.3390/e13010134. URL
http://www.mdpi.com/1099-4300/13/1/134.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu,
and Pavel Kuksa. Natural language processing (almost) from scratch. J. Mach.
Learn. Res., 12:2493–2537, November 2011. ISSN 1532-4435. URL http://dl.

acm.org/citation.cfm?id=1953048.2078186.

http://dblp.uni-trier.de/db/conf/icassp/icassp2015.html#ChenLGW15a
http://dblp.uni-trier.de/db/conf/icassp/icassp2015.html#ChenLGW15a
http://www.aclweb.org/anthology/N16-1006
http://www.aclweb.org/anthology/N16-1006
http://www.aclweb.org/anthology/W14-4012
http://www.aclweb.org/anthology/W14-4012
http://www.aclweb.org/anthology/W14-4012
http://www.aclweb.org/anthology/W14-4012
http://www.aclweb.org/anthology/D14-1179
https://arxiv.org/abs/1412.3555
http://dblp.uni-trier.de/db/journals/entropy/entropy12.html#CichockiA10
http://dblp.uni-trier.de/db/journals/entropy/entropy12.html#CichockiA10
http://www.mdpi.com/1099-4300/13/1/134
http://dl.acm.org/citation.cfm?id=1953048.2078186
http://dl.acm.org/citation.cfm?id=1953048.2078186

REFERENCES 101

Marta R. Costa-jussà and José A. R. Fonollosa. Character-based neural ma-
chine translation. In Proceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short Papers), pages 357–361,
Berlin, Germany, August 2016. Association for Computational Linguistics. URL
http://anthology.aclweb.org/P16-2058.

Ryan Cotterell, Hinrich Schütze, and Jason Eisner. Morphological smoothing and
extrapolation of word embeddings. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages
1651–1660, Berlin, Germany, August 2016. Association for Computational Lin-
guistics. URL http://www.aclweb.org/anthology/P16-1156.

Mathias Creutz, Teemu Hirsimäki, Mikko Kurimo, Antti Puurula, Janne Pylkkönen,
Vesa Siivola, Matti Varjokallio, Ebru Arisoy, Murat Saraçlar, and Andreas Stolcke.
Morph-based speech recognition and modeling of out-of-vocabulary words across
languages. ACM Trans. Speech Lang. Process., 5(1):3:1–3:29, December 2007.
ISSN 1550-4875.

Imre Csiszar. Why least squares and maximum entropy? an axiomatic approach to
inference for linear inverse problems. Ann. Statist., 19(4):2032–2066, 12 1991. doi:
10.1214/aos/1176348385. URL https://doi.org/10.1214/aos/1176348385.

George Cybenko. Approximation by superpositions of a sigmoidal function. Math-
ematics of control, signals and systems, 2(4):303–314, 1989.

Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas Lamar, Richard Schwartz,
and John Makhoul. Fast and robust neural network joint models for statistical
machine translation. In Proceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), pages 1370–1380,
Baltimore, Maryland, June 2014. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/P14-1129.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for
online learning and stochastic optimization. J. Mach. Learn. Res., 12:2121–
2159, July 2011. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?

id=1953048.2021068.

Chris Dyer. Notes on noise contrastive estimation and negative sampling. CoRR,
abs/1410.8251, 2014. URL http://arxiv.org/abs/1410.8251.

Shinto Eguchi and Shogo Kato. Entropy and divergence associated
with power function and the statistical application. Entropy, 12
(2):262–274, 2010. URL https://pdfs.semanticscholar.org/7404/

8a5d7b51bdbf8d693ff00a0f5312291ee161.pdf.

Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–
211, 1990a. URL http://dblp.uni-trier.de/db/journals/cogsci/cogsci14.

html#Elman90.

Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–
211, 1990b. doi: 10.1016/0364-0213(90)90002-E. URL http://groups.lis.

illinois.edu/amag/langev/paper/elman90findingStructure.html.

http://anthology.aclweb.org/P16-2058
http://www.aclweb.org/anthology/P16-1156
https://doi.org/10.1214/aos/1176348385
http://www.aclweb.org/anthology/P14-1129
http://dl.acm.org/citation.cfm?id=1953048.2021068
http://dl.acm.org/citation.cfm?id=1953048.2021068
http://arxiv.org/abs/1410.8251
https://pdfs.semanticscholar.org/7404/8a5d7b51bdbf8d693ff00a0f5312291ee161.pdf
https://pdfs.semanticscholar.org/7404/8a5d7b51bdbf8d693ff00a0f5312291ee161.pdf
http://dblp.uni-trier.de/db/journals/cogsci/cogsci14.html#Elman90
http://dblp.uni-trier.de/db/journals/cogsci/cogsci14.html#Elman90
http://groups.lis.illinois.edu/amag/langev/paper/elman90findingStructure.html
http://groups.lis.illinois.edu/amag/langev/paper/elman90findingStructure.html

102 REFERENCES

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and Chris Dyer. Morphological
inflection generation using character sequence to sequence learning. In Proceedings
of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 634–643, San
Diego, California, June 2016. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/N16-1077.

Bela A. Frigyik, Santosh Srivastava, and Maya R. Gupta. Functional bregman
divergence and bayesian estimation of distributions. IEEE Trans. Information
Theory, 54(11):5130–5139, 2008.

Dan Gillick, Cliff Brunk, Oriol Vinyals, and Amarnag Subramanya. Multilingual lan-
guage processing from bytes. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pages 1296–1306, San Diego, California, June 2016. Associa-
tion for Computational Linguistics. URL http://www.aclweb.org/anthology/

N16-1155.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In In Proceedings of the International Conference
on Artificial Intelligence and Statistics (AISTATS’10). Society for Artificial In-
telligence and Statistics, 2010.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neu-
ral networks. In Geoffrey Gordon, David Dunson, and Miroslav Dud́ık, edi-
tors, Proceedings of the Fourteenth International Conference on Artificial Intelli-
gence and Statistics, volume 15 of Proceedings of Machine Learning Research,
pages 315–323, Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR. URL
http://proceedings.mlr.press/v15/glorot11a.html.

Irving John Good. The population frequencies of species and the estimation of
population parameters. Biometrika, 40(3 and 4):237–264, 1953.

Joshua Goodman. Classes for fast maximum entropy training. In ICASSP, pages
561–564. IEEE, 2001a. ISBN 0-7803-7041-4. URL http://dblp.uni-trier.de/

db/conf/icassp/icassp2001.html#Goodman01.

Joshua T. Goodman. A bit of progress in language modeling. Comput. Speech Lang.,
15(4):403–434, October 2001b. ISSN 0885-2308. doi: 10.1006/csla.2001.0174.
URL http://dx.doi.org/10.1006/csla.2001.0174.

Edouard Grave, Armand Joulin, Moustapha Cissé, David Grangier, and Hervé
Jégou. Efficient softmax approximation for gpus. In Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW, Aus-
tralia, 6-11 August 2017, pages 1302–1310, 2017. URL http://proceedings.

mlr.press/v70/grave17a.html.

Alex Graves, Santiago Fernández, and Jürgen Schmidhuber. Bidirectional LSTM
networks for improved phoneme classification and recognition. In Artificial Neural
Networks: Formal Models and Their Applications - ICANN 2005, 15th Interna-
tional Conference, Warsaw, Poland, September 11-15, 2005, Proceedings, Part II,
pages 799–804, 2005.

http://www.aclweb.org/anthology/N16-1077
http://www.aclweb.org/anthology/N16-1155
http://www.aclweb.org/anthology/N16-1155
http://proceedings.mlr.press/v15/glorot11a.html
http://dblp.uni-trier.de/db/conf/icassp/icassp2001.html#Goodman01
http://dblp.uni-trier.de/db/conf/icassp/icassp2001.html#Goodman01
http://dx.doi.org/10.1006/csla.2001.0174
http://proceedings.mlr.press/v70/grave17a.html
http://proceedings.mlr.press/v70/grave17a.html

REFERENCES 103

Peter D. Grünwald and Philip Dawid. Game theory, maximum entropy, minimum
discrepancy and robust bayesian decision theory. The Annals of Statistics, 32:
1367–1433, 2004.

Michael Gutmann and Junichiro Hirayama. Bregman divergence as general frame-
work to estimate unnormalized statistical models. In UAI, 2011.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new esti-
mation principle for unnormalized statistical models. In Proceedings of the Thir-
teenth International Conference on Artificial Intelligence and Statistics, AISTATS
2010, Chia Laguna Resort, Sardinia, Italy, May 13-15, 2010, pages 297–304, 2010.
URL http://www.jmlr.org/proceedings/papers/v9/gutmann10a.html.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation of unnor-
malized statistical models, with applications to natural image statistics. Journal
of Machine Learning Research, 13:307–361, 2012. URL http://dl.acm.org/

citation.cfm?id=2188396.

M.U. Gutmann and A. Hyvärinen. Estimation of unnormalized statistical models
without numerical integration. In Proceedings of the Workshop on Information
Theoretic Methods in Science and Engineering, 2013. URL http://www.me.inf.

kyushu-u.ac.jp/witmse2013/.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the 2015 IEEE International Conference on Computer Vision
(ICCV), ICCV ’15, pages 1026–1034, Washington, DC, USA, 2015. IEEE Com-
puter Society. ISBN 978-1-4673-8391-2. doi: 10.1109/ICCV.2015.123. URL
http://dx.doi.org/10.1109/ICCV.2015.123.

Georg Heigold, Guenter Neumann, and Josef van Genabith. An extensive em-
pirical evaluation of character-based morphological tagging for 14 languages.
In Proceedings of the 15th Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Volume 1, Long Papers, pages 505–513,
Valencia, Spain, April 2017. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/E17-1048.

Michiel Hermans and Benjamin Schrauwen. Training and analysing
deep recurrent neural networks. In C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems 26, pages 190–198.
Curran Associates, Inc., 2013. URL http://papers.nips.cc/paper/

5166-training-and-analysing-deep-recurrent-neural-networks.pdf.

Timothy Classen Hesterberg. Advances in importance sampling, 2003.

Geoffrey E Hinton. Learning distributed representations of concepts. In Proceedings
of the eighth annual conference of the cognitive science society, volume 1, page 12.
Amherst, MA, 1986.

http://www.jmlr.org/proceedings/papers/v9/gutmann10a.html
http://dl.acm.org/citation.cfm?id=2188396
http://dl.acm.org/citation.cfm?id=2188396
http://www.me.inf.kyushu-u.ac.jp/witmse2013/
http://www.me.inf.kyushu-u.ac.jp/witmse2013/
http://dx.doi.org/10.1109/ICCV.2015.123
http://www.aclweb.org/anthology/E17-1048
http://papers.nips.cc/paper/5166-training-and-analysing-deep-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/5166-training-and-analysing-deep-recurrent-neural-networks.pdf

104 REFERENCES

Geoffrey E. Hinton. Training products of experts by minimizing contrastive diver-
gence. Neural Computation, 14(8):1771–1800, 2002. URL http://dx.doi.org/

10.1162/089976602760128018.

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm
for deep belief nets. Neural Comput., 18(7):1527–1554, July 2006. ISSN 0899-
7667. doi: 10.1162/neco.2006.18.7.1527. URL http://dx.doi.org/10.1162/

neco.2006.18.7.1527.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Com-
put., 9(8):1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.
9.8.1735.

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are
universal approximators. Neural Netw., 2(5):359–366, July 1989. ISSN 0893-
6080. doi: 10.1016/0893-6080(89)90020-8. URL http://dx.doi.org/10.1016/

0893-6080(89)90020-8.

Kyuyeon Hwang and Wonyong Sung. Character-level language modeling with hi-
erarchical recurrent neural networks. In 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP 2017, New Orleans, LA, USA,
March 5-9, 2017, pages 5720–5724, 2017. doi: 10.1109/ICASSP.2017.7953252.
URL https://doi.org/10.1109/ICASSP.2017.7953252.

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models
by score matching. Journal of Machine Learning Research, 6:695–709, 2005.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Francis R. Bach and David M.
Blei, editors, ICML, volume 37 of JMLR Workshop and Conference Proceedings,
pages 448–456. JMLR.org, 2015. URL http://dblp.uni-trier.de/db/conf/

icml/icml2015.html#IoffeS15.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. On using
very large target vocabulary for neural machine translation. In Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 1–10, Beijing, China, July 2015. Association for Computational
Linguistics. URL http://www.aclweb.org/anthology/P15-1001.

Fred Jelinek and Robert L. Mercer. Interpolated estimation of Markov source pa-
rameters from sparse data. In Edzard S. Gelsema and Laveen N. Kanal, editors,
Proceedings, Workshop on Pattern Recognition in Practice, pages 381–397. North
Holland, Amsterdam, 1980.

Shihao Ji, S. V. N. Vishwanathan, Nadathur Satish, Michael J. Anderson, and
Pradeep Dubey. Blackout: Speeding up recurrent neural network language models
with very large vocabularies. CoRR, abs/1511.06909, 2015. URL http://arxiv.

org/abs/1511.06909.

http://dx.doi.org/10.1162/089976602760128018
http://dx.doi.org/10.1162/089976602760128018
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1109/ICASSP.2017.7953252
http://dblp.uni-trier.de/db/conf/icml/icml2015.html#IoffeS15
http://dblp.uni-trier.de/db/conf/icml/icml2015.html#IoffeS15
http://www.aclweb.org/anthology/P15-1001
http://arxiv.org/abs/1511.06909
http://arxiv.org/abs/1511.06909

REFERENCES 105

Rafal Józefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu.
Exploring the limits of language modeling. CoRR, abs/1602.02410, 2016. URL
http://arxiv.org/abs/1602.02410.

Katharina Kann, Ryan Cotterell, and Hinrich Schütze. Neural multi-source morpho-
logical reinflection. In Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: Volume 1, Long Papers, pages
514–524, Valencia, Spain, April 2017. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/E17-1049.

Slava M. Katz. Estimation of probabilities from sparse data for the language model
component of a speech recognizer. IEEE Trans. Acoustics, Speech, and Signal Pro-
cessing, 35(3):400–401, 1987. URL http://dblp.uni-trier.de/db/journals/

tsp/tsp35.html#Katz87.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. Character-aware
neural language models. arXiv preprint arXiv:1508.06615, 2015.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014. URL http://dblp.uni-trier.de/db/journals/

corr/corr1412.html#KingmaB14.

Reinhard Kneser and Hermann Ney. Improved clustering techniques for class-
based statistical language modelling. In EUROSPEECH. ISCA, 1993. URL
http://dblp.uni-trier.de/db/conf/interspeech/eurospeech1993.html#

KneserN93.

Reinhard Kneser and Hermann Ney. Improved backing-off for m-gram language
modeling. In 1995 International Conference on Acoustics, Speech, and Signal
Processing, ICASSP ’95, Detroit, Michigan, USA, May 08-12, 1995, pages 181–
184, 1995a. URL http://dx.doi.org/10.1109/ICASSP.1995.479394.

Reinhard Kneser and Hermann Ney. Improved backing-off for m-gram language
modeling. In In Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing, volume I, pages 181–184, Detroit, Michigan, May
1995b.

Hai-Son Le, Ilya Oparin, Alexandre Allauzen, Jean-Luc Gauvain, and Francois
Yvon. Structured output layer neural network language model. In Proceed-
ings of IEEE International Conference on Acoustic, Speech and Signal Processing
(ICASSP), pages 5524–5527, Prague, Czech Republic, 2011.

Hai-Son Le, Alexandre Allauzen, and François Yvon. Continuous space transla-
tion models with neural networks. In Proceedings of the 2012 Conference of the
North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 39–48, Montréal, Canada, June 2012. Associa-
tion for Computational Linguistics. URL http://www.aclweb.org/anthology/

N12-1005.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, November
1998.

http://arxiv.org/abs/1602.02410
http://www.aclweb.org/anthology/E17-1049
http://dblp.uni-trier.de/db/journals/tsp/tsp35.html#Katz87
http://dblp.uni-trier.de/db/journals/tsp/tsp35.html#Katz87
http://dblp.uni-trier.de/db/journals/corr/corr1412.html#KingmaB14
http://dblp.uni-trier.de/db/journals/corr/corr1412.html#KingmaB14
http://dblp.uni-trier.de/db/conf/interspeech/eurospeech1993.html#KneserN93
http://dblp.uni-trier.de/db/conf/interspeech/eurospeech1993.html#KneserN93
http://dx.doi.org/10.1109/ICASSP.1995.479394
http://www.aclweb.org/anthology/N12-1005
http://www.aclweb.org/anthology/N12-1005

106 REFERENCES

Wang Ling, Chris Dyer, Alan W Black, Isabel Trancoso, Ramon Fermandez, Silvio
Amir, Luis Marujo, and Tiago Luis. Finding function in form: Compositional
character models for open vocabulary word representation. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing, pages
1520–1530, Lisbon, Portugal, September 2015. Association for Computational
Linguistics. URL http://aclweb.org/anthology/D15-1176.

Thang Luong, Richard Socher, and Christopher Manning. Better word representa-
tions with recursive neural networks for morphology. In Proceedings of the Seven-
teenth Conference on Computational Natural Language Learning, pages 104–113,
Sofia, Bulgaria, August 2013. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/W13-3512.

Xuezhe Ma and Eduard Hovy. End-to-end sequence labeling via bi-directional
LSTM-CNNs-CRF. In Proceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), pages 1064–1074,
Berlin, Germany, August 2016. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/P16-1101.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a
large annotated corpus of english: The penn treebank. Comput. Linguist., 19(2):
313–330, June 1993. ISSN 0891-2017. URL http://dl.acm.org/citation.cfm?

id=972470.972475.

Mercedes Garcia Martinez, Löıc Barrault, and Fethi Bougares. Factored neural
machine translation architectures. In International Workshop on Spoken Language
Translation (IWSLT’16), Seattle (USA), 2016.

Oren Melamud, Ido Dagan, and Jacob Goldberger. PMI matrix approximations
with applications to neural language modeling. CoRR, abs/1609.01235, 2016.
URL http://arxiv.org/abs/1609.01235.

Oren Melamud, Ido Dagan, and Jacob Goldberger. A simple language model based
on pmi matrix approximations. In Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing, pages 1861–1866, Copenhagen,
Denmark, September 2017. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/D17-1198.

Risto Miikkulainen and Michael G. Dyer. Natural language processing with mod-
ular PDP networks and distributed lexicon. Cognitive Science, 15(3):343–399,
1991. doi: 10.1207/s15516709cog1503 2. URL https://doi.org/10.1207/

s15516709cog1503_2.

Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan Cernocký, and Sanjeev Khu-
danpur. Recurrent neural network based language model. In INTERSPEECH
2010, 11th Annual Conference of the International Speech Communication As-
sociation, Makuhari, Chiba, Japan, September 26-30, 2010, pages 1045–1048,
2010. URL http://www.isca-speech.org/archive/interspeech_2010/i10_

1045.html.

http://aclweb.org/anthology/D15-1176
http://www.aclweb.org/anthology/W13-3512
http://www.aclweb.org/anthology/P16-1101
http://dl.acm.org/citation.cfm?id=972470.972475
http://dl.acm.org/citation.cfm?id=972470.972475
http://arxiv.org/abs/1609.01235
https://www.aclweb.org/anthology/D17-1198
https://doi.org/10.1207/s15516709cog1503_2
https://doi.org/10.1207/s15516709cog1503_2
http://www.isca-speech.org/archive/interspeech_2010/i10_1045.html
http://www.isca-speech.org/archive/interspeech_2010/i10_1045.html

REFERENCES 107

Tomas Mikolov, Stefan Kombrink, Lukás Burget, Jan Cernocký, and Sanjeev Khu-
danpur. Extensions of recurrent neural network language model. In ICASSP,
pages 5528–5531. IEEE, 2011. ISBN 978-1-4577-0539-7. URL http://dblp.

uni-trier.de/db/conf/icassp/icassp2011.html#MikolovKBCK11.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositionality.
In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Wein-
berger, editors, Advances in Neural Information Processing Systems 26, pages
3111–3119. Curran Associates, Inc., 2013. URL http://papers.nips.cc/paper/

5021-distributed-representations-of-words-and-phrases-and-their-compositionality.

pdf.

Yasumasa Miyamoto and Kyunghyun Cho. Gated word-character recurrent language
model. In Proceedings of the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1992–1997, Austin, Texas, November 2016. Asso-
ciation for Computational Linguistics. URL https://aclweb.org/anthology/

D16-1209.

Andriy Mnih and Geoffrey Hinton. Three new graphical models for statisti-
cal language modelling. In Proceedings of the 24th International Conference
on Machine Learning, ICML ’07, pages 641–648, New York, NY, USA, 2007.
ACM. ISBN 978-1-59593-793-3. doi: 10.1145/1273496.1273577. URL http:

//doi.acm.org/10.1145/1273496.1273577.

Andriy Mnih and Geoffrey E Hinton. A scalable hierarchical distributed lan-
guage model. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, ed-
itors, Advances in Neural Information Processing Systems 21, pages 1081–
1088. Curran Associates, Inc., 2009. URL http://papers.nips.cc/paper/

3583-a-scalable-hierarchical-distributed-language-model.pdf.

Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training neural
probabilistic language models. In Proceedings of the 29th International Conference
on Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1,
2012, 2012. URL http://icml.cc/2012/papers/855.pdf.

Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network lan-
guage model. In Robert G. Cowell and Zoubin Ghahramani, editors, Proceedings
of the Tenth International Workshop on Artificial Intelligence and Statistics, pages
246–252. Society for Artificial Intelligence and Statistics, 2005. URL http://www.

iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf.

Thomas Mueller and Hinrich Schuetze. Improved modeling of out-of-vocabulary
words using morphological classes. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies,
pages 524–528, Portland, Oregon, USA, June 2011. Association for Computational
Linguistics. URL http://www.aclweb.org/anthology/P11-2092.

Luis E. Ortiz and Leslie Pack Kaelbling. Adaptive importance sampling for es-
timation in structured domains. In Proceedings of the Sixteenth Conference
on Uncertainty in Artificial Intelligence, UAI’00, pages 446–454, San Francisco,

http://dblp.uni-trier.de/db/conf/icassp/icassp2011.html#MikolovKBCK11
http://dblp.uni-trier.de/db/conf/icassp/icassp2011.html#MikolovKBCK11
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://aclweb.org/anthology/D16-1209
https://aclweb.org/anthology/D16-1209
http://doi.acm.org/10.1145/1273496.1273577
http://doi.acm.org/10.1145/1273496.1273577
http://papers.nips.cc/paper/3583-a-scalable-hierarchical-distributed-language-model.pdf
http://papers.nips.cc/paper/3583-a-scalable-hierarchical-distributed-language-model.pdf
http://icml.cc/2012/papers/855.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf
http://www.aclweb.org/anthology/P11-2092

108 REFERENCES

CA, USA, 2000. Morgan Kaufmann Publishers Inc. ISBN 1-55860-709-9. URL
http://dl.acm.org/citation.cfm?id=2073946.2073998.

Art B. Owen. Monte Carlo theory, methods and examples. 2013.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training
recurrent neural networks. In Proceedings of the 30th International Conference
on International Conference on Machine Learning - Volume 28, ICML’13, pages
III–1310–III–1318. JMLR.org, 2013. URL http://dl.acm.org/citation.cfm?

id=3042817.3043083.

Miika Pihlaja, Michael Gutmann, and Aapo Hyvärinen. A family of computation-
ally efficient and simple estimators for unnormalized statistical models. CoRR,
abs/1203.3506, 2012. URL http://arxiv.org/abs/1203.3506.

Barbara Plank, Anders Søgaard, and Yoav Goldberg. Multilingual part-of-speech
tagging with bidirectional long short-term memory models and auxiliary loss. In
Proceedings of the 54th Annual Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 412–418, Berlin, Germany, August 2016.
Association for Computational Linguistics. URL http://anthology.aclweb.

org/P16-2067.

Siyu Qiu, Qing Cui, Jiang Bian, Bin Gao, and Tie-Yan Liu. Co-learning of word rep-
resentations and morpheme representations. In Proceedings of COLING 2014, the
25th International Conference on Computational Linguistics: Technical Papers,
pages 141–150, Dublin, Ireland, August 2014. Dublin City University and Associ-
ation for Computational Linguistics. URL http://www.aclweb.org/anthology/

C14-1015.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, pages 65–386, 1958.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Neurocomputing: Foundations
of research. chapter Learning Internal Representations by Error Propagation,
pages 673–695. MIT Press, Cambridge, MA, USA, 1988. ISBN 0-262-01097-6.
URL http://dl.acm.org/citation.cfm?id=65669.104449.

Cicero D. Santos and Bianca Zadrozny. Learning character-level representations for
part-of-speech tagging. In Tony Jebara and Eric P. Xing, editors, Proceedings of
the 31st International Conference on Machine Learning (ICML-14), pages 1818–
1826. JMLR Workshop and Conference Proceedings, 2014. URL http://jmlr.

org/proceedings/papers/v32/santos14.pdf.

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact solutions
to the nonlinear dynamics of learning in deep linear neural networks. CoRR,
abs/1312.6120, 2013. URL http://arxiv.org/abs/1312.6120.

Holger Schwenk. Continuous space language models. Comput. Speech Lang., 21(3):
492–518, July 2007. ISSN 0885-2308.

http://dl.acm.org/citation.cfm?id=2073946.2073998
http://dl.acm.org/citation.cfm?id=3042817.3043083
http://dl.acm.org/citation.cfm?id=3042817.3043083
http://arxiv.org/abs/1203.3506
http://anthology.aclweb.org/P16-2067
http://anthology.aclweb.org/P16-2067
http://www.aclweb.org/anthology/C14-1015
http://www.aclweb.org/anthology/C14-1015
http://dl.acm.org/citation.cfm?id=65669.104449
http://jmlr.org/proceedings/papers/v32/santos14.pdf
http://jmlr.org/proceedings/papers/v32/santos14.pdf
http://arxiv.org/abs/1312.6120

REFERENCES 109

Holger Schwenk and Jean-Luc Gauvain. Connectionist language modeling for large
vocabulary continuous speech recognition. In ICASSP, pages 765–768. IEEE,
2002. ISBN 0-7803-7402-9. URL http://dblp.uni-trier.de/db/conf/icassp/

icassp2002.html#SchwenkG02.

Holger Schwenk and Jean-Luc Gauvain. Neural network language models for con-
versational speech recognition. In ACM Transactions on Speech and Language
Processing - TSLP, 01 2004.

Holger Schwenk, Anthony Rousseau, and Mohammed Attik. Large, pruned or con-
tinuous space language models on a gpu for statistical machine translation. In
Proceedings of the NAACL-HLT 2012 Workshop: Will We Ever Really Replace the
N-gram Model? On the Future of Language Modeling for HLT, WLM ’12, pages
11–19, Stroudsburg, PA, USA, 2012. Association for Computational Linguistics.
URL http://dl.acm.org/citation.cfm?id=2390940.2390942.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of
rare words with subword units. In Proceedings of the Association for Computa-
tional Linguistics, pages 1715–1725, Berlin, Germany, August 2016.

Henning Sperr, Jan Niehues, and Alex Waibel. Letter n-gram-based input en-
coding for continuous space language models. In Proceedings of the Workshop
on Continuous Vector Space Models and their Compositionality, pages 30–39,
Sofia, Bulgaria, August 2013. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/W13-3204.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from over-
fitting. J. Mach. Learn. Res., 15(1):1929–1958, January 2014. ISSN 1532-4435.
URL http://dl.acm.org/citation.cfm?id=2627435.2670313.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway net-
works. CoRR, abs/1505.00387, 2015. URL http://arxiv.org/abs/1505.00387.

Jana Straková, Milan Straka, and Jan Hajič. Open-source tools for morphology,
lemmatization, pos tagging and named entity recognition. In Proceedings of
52nd Annual Meeting of the Association for Computational Linguistics: Sys-
tem Demonstrations, pages 13–18, Baltimore, Maryland, June 2014. Associa-
tion for Computational Linguistics. URL http://www.aclweb.org/anthology/

P14-5003.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. LSTM neural networks for
language modeling. In INTERSPEECH, 2012.

Martin Sundermeyer, Ilya Oparin, Jean-Luc Gauvain, B. Freiberg, Ralf Schlüter,
and Hermann Ney. Comparison of feedforward and recurrent neural network
language models. In ICASSP, pages 8430–8434. IEEE, 2013. URL http://dblp.

uni-trier.de/db/conf/icassp/icassp2013.html#SundermeyerOGFSN13.

Ilya Sutskever, James Martens, and Geoffrey Hinton. Generating text with recurrent
neural networks. In Lise Getoor and Tobias Scheffer, editors, Proceedings of the

http://dblp.uni-trier.de/db/conf/icassp/icassp2002.html#SchwenkG02
http://dblp.uni-trier.de/db/conf/icassp/icassp2002.html#SchwenkG02
http://dl.acm.org/citation.cfm?id=2390940.2390942
http://www.aclweb.org/anthology/W13-3204
http://dl.acm.org/citation.cfm?id=2627435.2670313
http://arxiv.org/abs/1505.00387
http://www.aclweb.org/anthology/P14-5003
http://www.aclweb.org/anthology/P14-5003
http://dblp.uni-trier.de/db/conf/icassp/icassp2013.html#SundermeyerOGFSN13
http://dblp.uni-trier.de/db/conf/icassp/icassp2013.html#SundermeyerOGFSN13

110 REFERENCES

28th International Conference on Machine Learning (ICML-11), ICML ’11, pages
1017–1024, New York, NY, USA, June 2011. ACM. ISBN 978-1-4503-0619-5.

Clara Vania and Adam Lopez. From characters to words to in between: Do we
capture morphology? CoRR, abs/1704.08352, 2017. URL http://arxiv.org/

abs/1704.08352.

Ashish Vaswani, Yinggong Zhao, Victoria Fossum, and David Chiang. Decoding
with large-scale neural language models improves translation. In Proceedings of
the 2013 Conference on Empirical Methods in Natural Language Processing, pages
1387–1392, Seattle, Washington, USA, October 2013. Association for Computa-
tional Linguistics. URL http://www.aclweb.org/anthology/D13-1140.

Lyan Verwimp, Joris Pelemans, Hugo Van hamme, and Patrick Wambacq.
Character-word LSTM language models. In EACL, 2017.

Alexander Waibel, Toshiyuki Hanazawa, Geofrey Hinton, Kiyohiro Shikano, and
Kevin J. Lang. Readings in Speech Recognition, chapter Phoneme Recognition
Using Time-delay Neural Networks, pages 393–404. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1990.

Larry Wasserman. All of Statistics: A Concise Course in Statistical Infer-
ence. Springer Publishing Company, Incorporated, 2004. ISBN 1441923225,
9781441923226.

P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences. PhD thesis, Harvard University, 1974.

Paul J Werbos. Backpropagation through time: What it does and how to do it.
Proceedings of the IEEE, 70(10):1550–1560, 1990.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. Charagram: Em-
bedding words and sentences via character n-grams. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, pages 1504–
1515, Austin, Texas, November 2016. Association for Computational Linguistics.
URL https://aclweb.org/anthology/D16-1157.

I. H. Witten and T. C. Bell. The zero-frequency problem: Estimating the prob-
abilities of novel events in adaptive text compression. IEEE Transactions on
Information Theory, 37(4):1085–1094, 1991.

Wei Xu and Alex Rudnicky. Can artificial neural networks learn language models?
In INTERSPEECH’00, pages 202–205, 2000.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network
regularization. CoRR, abs/1409.2329, 2014. URL http://dblp.uni-trier.de/

db/journals/corr/corr1409.html#ZarembaSV14.

Barret Zoph, Ashish Vaswani, Jonathan May, and Kevin Knight. Simple, fast
noise-contrastive estimation for large RNN vocabularies. In Proceedings of the
2016 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pages 1217–1222, San

http://arxiv.org/abs/1704.08352
http://arxiv.org/abs/1704.08352
http://www.aclweb.org/anthology/D13-1140
https://aclweb.org/anthology/D16-1157
http://dblp.uni-trier.de/db/journals/corr/corr1409.html#ZarembaSV14
http://dblp.uni-trier.de/db/journals/corr/corr1409.html#ZarembaSV14

REFERENCES 111

Diego, California, June 2016. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/N16-1145.

Geoffrey Zweig and Konstantin Makarychev. Speed regulariza-
tion and optimality in word classing. IEEE, January 2013.
URL https://www.microsoft.com/en-us/research/publication/

speed-regularization-and-optimality-in-word-classing/.

http://www.aclweb.org/anthology/N16-1145
https://www.microsoft.com/en-us/research/publication/speed-regularization-and-optimality-in-word-classing/
https://www.microsoft.com/en-us/research/publication/speed-regularization-and-optimality-in-word-classing/

112 REFERENCES

Appendices

Appendix A

Proofs on Bregman divergences

Proof that φBinClassif is convex ⇒ φRatio is convex

Let the following function be convex:

φBinClassif : [0, 1] → R
p → φBinClassif (p)

(A.1)

We would like to prove that the following function is convex:

φRatio : R+ → R

r → (1 + r)φBinClassif
(

r

1 + r

)
(A.2)

Our departure point is that ∀r, s ∈ R+, and ∀t ∈ [0, 1],

1 + tr + (1− t)s = t(1 + r) + (1− t)(1 + s) (A.3)

Then, ∀r, s ∈ R+, and ∀t ∈ [0, 1],

φRatio(tr + (1− t)s) = (1 + tr + (1− t)s)φBinClassif
(

tr + (1− t)s
1 + tr + (1− t)s

)
= (t(1 + r) + (1− t)(1 + s))×

φBinClassif
(

t(1 + r)

t(1 + r) + (1− t)(1 + s)

r

1 + r
+

(1− t)(1 + s)

t(1 + r) + (1− t)(1 + s)

s

1 + s

)
(A.4)

Since φBinClassif is convex, and since



r
1+r
∈ [0, 1]

s
1+s
∈ [0, 1]
t(1+r)

t(1+r)+(1−t)(1+s)
∈ [0, 1]

(1−t)(1+s)
t(1+r)+(1−t)(1+s)

∈ [0, 1]
t(1+r)

t(1+r)+(1−t)(1+s)
+ (1−t)(1+s)

t(1+r)+(1−t)(1+s)
= 1

(A.5)

116

we have that:

φRatio(tr + (1− t)s) ≤ t(1 + r)φBinClassif
(

r

1 + r

)
+ (1− t)(1 + s)φBinClassif

(
s

1 + s

)
= tφRatio(r) + (1− t)φRatio(s)

(A.6)

which makes φRatio convex on R+.

Proof that minimizing LΦRatio(θ) ⇔ minimizing LΦBinClassif (θ)

We will now show that minimizing the Bregman divergence between the functions
PH
D (C = 1|.) and PH

θ (C = 1|.) is equivalent to minimizing a different Bregman
divergence, between the ratios of the data and noise distributions rHD , and model
and noise distributions rHθ (w), that are:

rHD (w) =
PH
D (w)

kPn(w)
and rHθ (w) =

PH
θ (w)

kPn(w)
(A.7)

Hence, we will prove that:

DΦRatio(r
H
D , r

H
θ) = DΦBinClassif (P

H
D (C = 1|.), PH

θ (C = 1|.)) (A.8)

By using Equations 4.6, 4.2 and 4.38, we obtain that:

DΦRatio(r
H
D , r

H
θ) =

∑
w∈V

[
(1 + rHD (w))φBinClassif

(
rHD (w)

1 + rHD (w)

)
−(1 + rHθ (w))φBinClassif

(
rHθ (w)

1 + rHθ (w)

)
−φ′Ratio(rHθ (w))(rHD (w)− rHθ (w))

]
µRatioV (w)

(A.9)

By taking the derivative of the composition function presented in Equation 4.38, we
obtain that:

∇φratio(r) = φBinClassif
(

r

1 + r

)
+

1

1 + r
φ′BinClassif

(
r

1 + r

)
(A.10)

From Equation A.7, and as seen in Equation 4.39, since

µBinClassifV (w)

µRatioV (w)
= 1 + rHD (w) (A.11)

Chapter A. Proofs on Bregman divergences 117

We obtain the following:

DΦRatio(r
H
D , r

H
θ) =

∑
w∈V

[
φBinClassif (PH

D (w))− φBinClassif (PH
θ (w))

−φ′BinClassif (PH
θ (w))

(rHD (w)− rHθ (w))

(1 + rHD (w))(1 + rHθ (w))

]
µBinClassifV (w)

(A.12)

Lastly,

PH
D (w)− PH

θ (w) =
rHD (w)(1 + rHθ (w))− rHθ (w))(1 + rHD (w))

(1 + rHD (w))(1 + rHθ (w))

=
(rHD (w)− rHθ (w))

(1 + rHD (w))(1 + rHθ (w))

(A.13)

Which finally gives:

DΦRatio(r
H
D , r

H
θ) = DΦBinClassif (P

H
D (C = 1|.), PH

θ (C = 1|.)) (A.14)

118

Appendix B

Subword-based models:
supplementary results with NCE

Output Representation
Words

Words + Char Char

Input Representation CNN BiLSTM CNN BiLSTM

Words 421.9 ± 26.2 333.7 ± 12.0 355.3 ± 25.9 939.6 ± 54.8 1481.8 ± 61.8

Char
CNN 437.1 ± 7.4 386.0 ± 12.2 - 941.1 ± 39.4 -

BiLSTM 665.1 ± 43.6 - 608.4 ± 39.8 - 1638.1 ± 53.1

Words +
Char

CNN 389.7 ± 19.1 320.6 ± 4.4 - 888.2 ± 33.6 -

BiLSTM 402.9 ± 38.7 - 338.5 ± 19.0 - 1408.9 ± 52.7

Lemmas +
Tags

Concat. 406.3 ± 17.1 335.7 ± 9.9 343.0 ± 18.1 985.2 ± 25.4 1491.9 ± 68.6

BiLSTM 431.1 ± 30.0 365.1 ± 30.0 350.3 ± 29.6 946.5 ± 66.4 1462.2 ± 45.8

Table B.1: Average test perplexities obtained when training 5 models with NCE,
for various input/output representations.

120

Input
Representation

fWTh
Words + CharCNN

All words Frequent words Rare words

Words

0 333.7 ± 12.0 218.5 ± 7.5 4431.3 ± 364.9
1 326.4 ± 10.6 213.3 ± 6.8 4352.6 ± 449.2
2 312.9 ± 9.7 204.5 ± 6.7 4323.1 ± 263.8
5 317.3 ± 16.2 204.8 ± 11.1 5141.5 ± 170.9
10 314.1 ± 17.3 196.1 ± 11.1 7485.5 ± 279.5

CharCNN

0 386.0 ± 12.2 252.6 ± 7.5 4857.4 ± 368.5
1 374.1 ± 23.6 245.0 ± 15.0 4813.8 ± 308.1
2 358.8 ± 7.2 235.2 ± 4.1 4557.8 ± 359.6
5 363.7 ± 18.2 235.0 ± 12.1 5727.9 ± 454.0
10 370.9 ± 13.7 231.6 ± 8.3 8332.6 ± 577.8

Words +
CharCNN

0 311.7 ± 3.2 205.4 ± 1.9 4021.0 ± 207.0
1 302.1 ± 7.4 197.8 ± 4.8 4182.5 ± 280.1
2 288.4 ± 12.1 188.7 ± 7.3 3971.5 ± 391.0
5 297.0 ± 12.0 191.5 ± 7.9 4991.0 ± 215.7
10 287.5± 10.2 180.0 ± 6.8 6735.8 ± 312.9

Lemma +
TagsConcat.

0 335.7 ± 9.9 218.5 ± 7.0 4702.6 ± 267.8
1 328.4 ± 10.2 214.2 ± 7.7 4503.3 ± 104.6
2 322.8 ± 6.6 208.8 ± 4.6 4779.3 ± 296.6
5 325.9 ± 13.6 207.7 ± 8.9 5783.4 ± 418.3
10 341.1 ± 22.9 212.1 ± 15.0 8368.1 ± 445.4

Lemma +
TagsBiLSTM

0 395.9 ± 36.7 257.9 ± 24.0 5412.0 ± 476.2
1 366.8 ± 25.9 239.1 ± 16.1 5074.2 ± 522.9
2 344.7 ± 22.6 223.8 ± 14.2 4868.2 ± 244.3
5 324.6 ± 13.8 207.2 ± 8.1 5493.8 ± 269.0
10 341.6 ± 24.2 213.5 ± 16.4 7542.6 ± 762.4

Table B.2: Test perplexity averaged on 5 models trained with NCE, for various input
representations and output word look-up table sizes. Corresponding vocabulary
sizes are given in Table 5.3a. Test perplexities are given for all words, frequent
words (frequency > 10) and rare words (frequency < 10).

Appendix C

Subword-based models:
supplementary results on
embedding sizes influence

Output Representation
Words

Words + CharCNN

Input Representation VWTh = 0 VWTh = 10K

Words
137.3 ± 1.8 147.8 ± 2.6 131.5 ± 1.6

27,0 20,6 15,4

Words + CharCNN
133.8 ± 6.3 147.1 ± 1.3 130.8 ± 4.4

20,6 13,8 10,1

Table C.1: Average test perplexities obtained when training 5 models with NCE, for
various input representations and output word look-up table sizes, on PTB, followed
by the number of parameters of the corresponding model (in millions)

In Table C.1, all models share the same input and output representation total
size: 300. We explain the difference between the (underlined) baseline result of 137.3
and the perplexity of 148.4 obtained at the end of Chapter 3 by the presence of the
highway layers, which here amounts to adding 2 hidden layers. While using the
same total representation sizes shows that the perplexity improvements are limited,
we still improve results, while consequently decreasing the number of necessary
parameters.

122

Appendix D

Previous work on subword-based
POS tagging

Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 232–237,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

Non-lexical neural architecture for fine-grained POS Tagging

Matthieu Labeau, Kevin Löser, Alexandre Allauzen
Université Paris-Sud and LIMSI-CNRS,

Rue John von Neumann
91403 Orsay cedex

France
firstname.lastname@limsi.fr

Abstract

In this paper we explore a POS tagging ap-
plication of neural architectures that can
infer word representations from the raw
character stream. It relies on two mod-
elling stages that are jointly learnt: a
convolutional network that infers a word
representation directly from the character
stream, followed by a prediction stage.
Models are evaluated on a POS and mor-
phological tagging task for German. Ex-
perimental results show that the convolu-
tional network can infer meaningful word
representations, while for the prediction
stage, a well designed and structured strat-
egy allows the model to outperform state-
of-the-art results, without any feature en-
gineering.

1 Introduction

Most modern statistical models for natural lan-
guage processing (NLP) applications are strongly
or fully lexicalized, for instance part-of-speech
(POS) and named entity taggers, as well as lan-
guage models, and parsers. In these models, the
observed word form is considered as the elemen-
tary unit, while its morphological properties re-
main neglected. As a result, the vocabulary ob-
served on training data heavily restricts the gener-
alization power of lexicalized models.

Designing subword-level systems is appealing
for several reasons. First, words sharing morpho-
logical properties often share grammatical func-
tion and meaning, and leveraging that information
can yield improved word representations. Sec-
ond, a subword-level analysis can address the out-
of-vocabulary issue i.e the fact that word-level
models fail to meaningfully process unseen word
forms. This allows a better processing of morpho-
logically rich languages in which there is a com-
binatorial explosion of word forms, most of which

are not observed during training. Finally, using
subword units could allow processing of noisy text
such as user-generated content on the Web, where
abbreviations, slang usage and spelling mistakes
cause the number of word types to explode.

This work investigates models that do not rely
on a fixed vocabulary to make a linguistic predic-
tion. Our main focus in this paper is POS tag-
ging, yet the proposed approach could be applied
to a wide variety of language processing tasks.
Our main contribution is to show that neural net-
works can successfully learn unlexicalized mod-
els that infer a useful word representation from
the character stream. This approach achieves state
of-the-art performance on a German POS tagging
task. This task is difficult because German is a
morphologically rich language1, as reflected by
the large number of morphological tags (255) in
our study, yielding a grand total of more than
600 POS+MORPH tags. An aggravating factor
is that these morphological categories are overtly
marked by a handful of highly ambiguous inflec-
tion marks (suffixes). We therefore believe that
this case study is well suited to assess both the rep-
resentation and prediction power of our models.

The architecture we explore in section 2 differs
from previous work that only consider the charac-
ter level. Following (Santos and Zadrozny, 2014),
it consists in two stages that are jointly learnt. The
lower stage is a convolutional network that infers
a word embedding from a character string of ar-
bitrary size, while the higher network infers the
POS tags based on this word embedding sequence.
For the latter, we investigate different architec-
tures of increasing complexities: from a feedfor-
ward and context-free inference to a bi-recurrent
network that predicts the global sequence. Exper-
imental results (section 4) show that the proposed
approach can achieve state of the art performance

1Besides inflected forms, German is characterized by a
possibly infinite and evolving set of compound nouns.

232

124

and that the choice of architecture for the predic-
tion part of the model has a significant impact.

2 Network Architectures

The different architectures we propose act in two
stages to infer, for a sentence s = {w1, . . . , w|s|},
a sequence of tags {t1, . . . , t|s|}. Each tag belongs
to the tagset T . The first stage is designed to rep-
resent each word locally, and focuses on capturing
the meaningful morphological information. In the
second stage, we investigate different ways to pre-
dict the tag sequence that differ in how the global
information is used.

2.1 From character to word level
To obtain word embeddings, the usual approach
introduced by (Bengio et al., 2003) relies on a
fixed vocabulary W and each word w ∈ W is
mapped to a vector of nf real valued features by
a look-up matrix W ∈ R|W|∗nf . To avoid the use
of a fixed vocabulary, we propose to derive a word
representation from a sequence of character em-
bedding: if C denotes the finite set of characters,
each character is mapped on a vector of nc features
gathered in the look-up matrix C.

To infer a word embedding , we use a convo-
lution layer (Waibel et al., 1990; Collobert et al.,
2011), build as in (Santos and Zadrozny, 2014).
As illustrated in figure 1, a word w is a character
sequence {c1, .., c|w|} represented by their embed-
dings {Cc1 , .., Cc|w|}, where Cci denotes the row
in C associated to the character ci. A convolu-
tion filter W conv ∈ Rnf × Rdc∗nc is applied over
a sliding window of dc characters, producing local
features :

xn = W conv(Ccn−dc+1
: .. : Ccn)T + bconv,

where xn is a vector of size nf obtained for each
position n in the word2. The i-th element of the
embedding of w is the maximum over the i-th ele-
ments of the feature vectors :

[f]i = tanh(max
1≤n≤|s|

[xn]i)

Using a maximum after a sliding convolution win-
dow ensures that the embedding combines local
features from the whole word, and selects the more

2Two padding character tokens are used to deal with bor-
der effects. The first is added at the beginning and the second
at the end of the word, as many times as it is necessary to ob-
tain the same number of windows than the length of the word.
Their embeddings are added to C.

nc

Wconv × (.)T + bconv

nf

e

max(.)

S h e n

f1 f2 f3 f4 f5

Cc1 Cc2 Cc3 Cc4 Cc5Csow Ceow

Figure 1: Architecture of the layer for character-
level encoding of words.

useful ones. The parameters of the layer are the
matrices C and W conv and the bias bconv.

2.2 From words to prediction

To predict the tag sequence associated to a sen-
tence s, we first use a feedforward architecture,
with a single hidden layer. To compute the proba-
bility of tagging the n-th word in the sentence with
tag ti, we use a window of dw word embeddings3

centered around the word wn:

xn = fn− dw−1
2

: ... : fn+ dw−1
2
,

followed by a hidden and output layers:

sn = W o tanh(W hxn + bh) + bo. (1)

The parameters of the hidden an output layers
are respectively W h, bh and W o, bo.

We also experiment with a a bidirectional re-
current layer, as described in (Graves et al.,
2013). The forward and backward passes allow
each prediction to be conditioned on the complete
past and future contexts, instead of merely a neigh-
boring window. As illustrated in figure 2, the for-
ward hidden state, at position n, will be computed
using the previous forward hidden state and the
word embedding in position n:

−→
hn = tanh(

−−→
W fhfn +

−−→
W hh

−−→
hn−1 + bh)

3Similarly, we use special word tokens for padding.

233

Chapter D. Previous work on subword-based POS tagging 125

nf

|T |

nh

f1 f2 f3 f4 f5

Figure 2: Bidirectional recurrent architecture for
tag prediction. The upper part is used in the case
of structured inference.

−−→
W fh and

−−→
W hh are the transition matrices of

the forward part of the layer, and bh is the bias.
The backward hidden states are computed simi-
larly, and the hidden states of each direction are
concatenated to pass through an output layer:

sn = W o(
−→
hn :
←−
hn) + bo. (2)

2.3 Inference and Training

To infer the tag sequence from the sequence of
output layers defined by equations 1 or 2, we ex-
plore two strategies. The first simply applies a
softmax function to the output layer of the net-
work described in the previous section. In this
case, each tag prediction is made independently of
the surrounding predictions.

For sequence labeling, a more appropriate so-
lution relies on the approach of (Collobert, 2011),
also used in (Santos and Zadrozny, 2014). Let con-
sider each possible tag sequence {t1, . . . , t|s|} as a
possible path over a sequence of hidden states. We
can add a transition matrix W trans and then com-
pute the score of a sequence as follows:

s({t}|s|1 , {w}|s|1) =
∑

1≤n≤|s|

(
W trans

tn−1,tn + [sn]tn
)

The Viterbi algorithm (Viterbi, 1967) offers an ex-
act solution to infer the path that gives the max-
imum score. It is worth noticing that both these
strategies can be applied to the feedforward and

bidirectional recurrent networks. For both strate-
gies, the whole network can estimate conditional
log-likelihood of a tag sequence given a sentence
s and the set of parameters θ. This criterion can
then be optimized using a stochastic gradient as-
cent with the back-propagation algorithm.

3 Related Work

The choice to consider words from the charac-
ter level has recently been more and more ex-
plored. While its raw application to language
modeling did not achieve clear improvement over
the word-based models (Mikolov et al., 2012), this
approach shown impressive results for text gen-
eration (Sutskever et al., 2011; Graves, 2013).
However, for this line of work, the main issue is
to learn long range dependencies at the character
level since the word level is not considered by the
model.

More recently, the character level was con-
sidered as more interpretable and convenient
way to explore and understand recurrent net-
works (Karpathy et al., 2015). In (Zhang and Le-
Cun, 2015), the authors build a text understand-
ing model that does not require any knowledge
and uses hierarchical feature extraction. Here the
character level allows the model to ignore the def-
inition a priori of a vocabulary and let the model
build its own representation of a sentence or a doc-
ument, directly from the character level. To some
extent, our work can be considered as an extension
of their work, tailored for POS tagging.

(Santos and Zadrozny, 2014) applies a very sim-
ilar model to the POS tagging of Portuguese and
English. (Luong et al., 2013) also descends lower
than the word level, using a dictionary of mor-
phemes and recursive neural networks to model
the structure of the words. Similarly, this allows
a better representation of rare and complex words,
evaluated on a word similarity task.

4 Experiments and Results

Experiments are carried out on the Part-of-Speech
and Morphological tagging tasks using the Ger-
man corpus TIGER Treebank (Brants et al., 2002).
To the best of our knowledge, the best results on
this task were published in (Mueller et al., 2013),
who applied a high-order CRF that includes an in-
tensive feature engineering to five different lan-
guages. German was highlighted as having ’the
most ambiguous morphology’. The corpus, de-

234

126

POS POS+Morph

Architecture Encoding Output Dev Test Dev Test

Feedforward

Lex.
Simple 4.22 ± 0.05 5.89 ± 0.07 13.97 ± 0.14 17.46 ± 0.14
Struct. 3.90 ± 0.05 5.33 ± 0.09 12.22 ± 0.13 15.34 ± 0.13

Non-lex.
Simple 3.31 ± 0.07 4.22 ± 0.07 13.50 ± 0.16 16.23 ± 0.13
Struct. 2.92 ± 0.02 3.82 ± 0.04 11.65 ± 0.11 14.43 ± 0.19

Both
Simple 2.59 ± 0.05 3.34 ± 0.09 11.89 ± 0.14 14.63 ± 0.22
Struct. 2.22 ± 0.03∗ 2.86 ± 0.03∗ 9.11 ± 0.14 11.29 ± 0.06

biRNN

Lex
Simple 6.03 ± 0.06 8.05 ± 0.05 17.83 ± 0.11 21.33 ± 0.26
Struct. 3.89 ± 0.06 5.26 ± 0.05 11.88 ± 0.05 17.78 ± 0.12

Non-Lex
Simple 4.46 ± 0.08 5.84 ± 0.19 16.61 ± 0.18 19.39 ± 0.12
Struct. 2.74 ± 0.07 3.59 ± 0.07 10.09 ± 0.09 12.88 ± 0.28

Both
Simple 3.63 ± 0.06 4.63 ± 0.04 14.83 ± 0.11 17.54 ± 0.13
Struct. 2.21 ± 0.04∗ 2.86 ± 0.05∗ 8.63 ± 0.21∗ 10.97 ± 0.19∗

CRF 2.06 2.56 9.40 11.42

Table 1: Comparison of the feedforward and bidirectional recurrent architectures for predictions, with
different settings. The non-lexical encoding is convolutional. CRF refers to state-of-the-art system of
(Mueller et al., 2013). Simple and Struct. respectively denote the position-by-position and structured
prediction. ∗ indicates our best configuration.

scribed in details in (Fraser et al., 2013), contains
a training set of 40472 sentences, a development
and a test set of both 5000 sentences. We consider
the two tagging tasks, with first a coarse tagset (54
tags), and then a morpho-syntactical rich tagset
(619 items observed on the the training set).

4.1 Experimental settings

All the models are implemented4 with the Theano
library (Bergstra et al., 2010). For optimization,
we use Adagrad (Duchi et al., 2011), with a learn-
ing rate of 0.1. The other hyperparameters are:
the window sizes, dc and dw, respectively set to
5 and 9, the dimension of character embeddings,
word embeddings and of the hidden layer, nc, nf

and nh, that are respectively of 100, 200 and 2005.
The models were trained on 7 epochs. Parame-
ter initialization and corpus ordering are random,
and the results presented are the average and stan-
dard deviation of the POS Tagging error rate over
5 runs.

4Implementation is available at https://github.
com/MatthieuLabeau/NonlexNN

5For both the learning rate and the embedding sizes, re-
sults does not differ in a significant way in a large range of hy-
perparameters, and their impact resides more in convergence
speed and computation time

4.2 Results

The first experiment aims to evaluate the efficiency
of a convolutional encoding with the basic feed-
forward architecture for prediction. We compare
a completely non-lexicalized model which relies
only on a character-level encoding with a lexical-
ized model where we use conventional word em-
beddings stored with a fixed vocabulary6. Re-
sults are reported in Table 1 along with with the
state-of-the-art results published in (Mueller et al.,
2013). Results show that a character-level en-
coding yields better results than the conventional
word-level encoding. Moreover, the structured in-
ference allows the model to achieve accuracy rea-
sonably close to the performance of a high-order
CRF that uses handcrafted features. Finally, the
model that uses the concatenation of both the char-
acter and word-level embeddings outperforms the
state-of-the-art system on the more difficult task,
without any feature engineering.

To give an idea of how a simple model
would perform on such task, the reader can refer
to (Schmid and Laws, 2008) and (Mueller et al.,
2013). For instance in the former, by choosing the
most probable tag position-by-position, the error
rate on the development set of the TIGER dataset

6Every word that appears in the training set.

235

Chapter D. Previous work on subword-based POS tagging 127

is 32.7 for the simple POS Tagging task.
We further analyze the results by looking at

the error rates respectively on known and un-
known words7. From table 2, we observe that
the number of unknown words wrongly labeled
is divided by 3 for POS and almost divided by
2 for POS+Morph tagging, showing the ability
of character-level encoding to generalize to new
words. Moreover, a strictly non-lexical encoding
makes slightly more mistakes on words already
seen, whereas the model that concatenates both
embeddings will make less mistakes for both un-
known and known words.

This shows that information from the context
and from the morphology are complementary,
which is conjectured in (Mueller et al., 2013) by
using a morphological analyzer in complement of
higher-order CRF.

Lex. Non-lex. Both

POS Unknown 2970 1054 1010
Known 1974 2981 1620

POS+Morph Unknown 5827 3472 3384
Known 8652 10205 7232

Table 2: Error counts for known/unknown words
in the test set, with a structured feedforward pre-
diction model for the tagging task.

In the second set of experiments, we evaluate
the convolutional encoding with a bidirectional re-
current network for prediction. Results are pre-
sented in the second half of Table 1. Surprisingly,
this architecture performs poorly with simple in-
ference, but clearly improves when predicting a
structured output using the Viterbi algorithm, both
for training and testing. Moreover, a non-lexical
model trained to infer a tag sequence with the
Viterbi algorithm achieves results that are close to
the state-of-the-art, thus validating our approach.
We consider that this improvement comes from the
synergy between using a global training objective
with a global hidden representation, complexify-
ing the model but allowing a more efficient solu-
tion. Finally, the model that uses the combination
of both the character and word-level embeddings
yields the best results. It is interesting to notice
that the predictive architecture has no influence on
the results of the simple task when the prediction is

7Unknown words refer to words present in the develop-
ment or test sets, but not in the training set.

structured, but improves them on the difficult task.
This also shows that the contribution of word em-
beddings to our model corresponds to a difference
of 1.5 to 2 points in performance.

5 Conclusion

In this paper, we explored new models that can in-
fer meaningful word representations from the raw
character stream, allowing the model to exploit the
morphological properties of words without using
any handcrafted features or external tools. These
models can therefore efficiently process words that
were unseen in the training data. The evaluation
was carried out on a POS and morphological tag-
ging task for German. We described different ar-
chitectures that act in two stages: the first stage is a
convolutional network that infers a word represen-
tation directly from the character stream, while the
second stage performs the prediction. For the pre-
diction stage, we investigated different solutions
showing that a bidirectional recurrent network can
outperform state-of-the-art results when using a
structured inference algorithm.

Our results showed that character-level encod-
ing can address the unknown words problem for
morphologically complex languages. In the fu-
ture, we plan to extend these models to other tasks
such as syntactic parsing and machine translation.
Moreover, we will also investigate other architec-
tures to infer word embeddings from the character
level. For instance, preliminary experiments show
that bidirectional recurrent network can achieve
very competitive and promising results.

Acknowledgments

We would like to thank the anonymous review-
ers for their helpful comments and suggestions.
This work has been partly funded by the Eu-
ropean Unions Horizon 2020 research and in-
novation programme under grant agreement No.
645452 (QT21).

References
Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and

Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of Machine Learning Re-
search, 3:1137 1155.

James Bergstra, Olivier Breuleux, Frédéric Bastien,
Pascal Lamblin, Razvan Pascanu, Guillaume Des-
jardins, Joseph Turian, David Warde-Farley, and
Yoshua Bengio. 2010. Theano: a CPU and

236

128

GPU math expression compiler. In Proceedings
of the Python for Scientific Computing Conference
(SciPy), June. Oral Presentation.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolf-
gang Lezius, and George Smith. 2002. The TIGER
treebank. In Proceedings of the workshop on tree-
banks and linguistic theories, pages 24–41.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. J. Mach. Learn. Res., 12:2493–2537,
November.

Ronan Collobert. 2011. Deep learning for efficient
discriminative parsing. In Proceedings of the Four-
teenth International Conference on Artificial Intel-
ligence and Statistics, AISTATS 2011, Fort Laud-
erdale, USA, April 11-13, 2011, pages 224–232.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res.,
12:2121–2159, July.

Alexander Fraser, Helmut Schmid, Richárd Farkas,
Renjing Wang, and Hinrich Schütze. 2013. Knowl-
edge sources for constituent parsing of German, a
morphologically rich and less-configurational lan-
guage. Comput. Linguist., 39(1):57–85, March.

Alex Graves, Navdeep Jaitly, and Abdel-rahman Mo-
hamed. 2013. Hybrid speech recognition with deep
bidirectional LSTM. In 2013 IEEE Workshop on
Automatic Speech Recognition and Understanding,
Olomouc, Czech Republic, December 8-12, 2013,
pages 273–278.

Alex Graves. 2013. Generating sequences with recur-
rent neural networks. CoRR, abs/1308.0850.

Andrej Karpathy, Justin Johnson, and Fei-Fei Li. 2015.
Visualizing and understanding recurrent networks.
CoRR, abs/1506.02078.

Thang Luong, Richard Socher, and Christopher D.
Manning. 2013. Better word representations with
recursive neural networks for morphology. In Pro-
ceedings of the Seventeenth Conference on Compu-
tational Natural Language Learning, CoNLL 2013,
Sofia, Bulgaria, August 8-9, 2013, pages 104–113.

Tomas Mikolov, Ilya Sutskever, Anoop Deoras, Hai-
Son Le, Stefan Kombrink, and Jan Cernocky. 2012.
Subword language modeling with neural networks.
Unpublished.

Thomas Mueller, Helmut Schmid, and Hinrich
Schütze. 2013. Efficient higher-order CRFs for
morphological tagging. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 322–332, Seattle, Wash-
ington, USA, October. Association for Computa-
tional Linguistics.

Cicero D. Santos and Bianca Zadrozny. 2014.
Learning character-level representations for part-of-
speech tagging. In Tony Jebara and Eric P. Xing, ed-
itors, Proceedings of the 31st International Confer-
ence on Machine Learning (ICML-14), pages 1818–
1826. JMLR Workshop and Conference Proceed-
ings.

Helmut Schmid and Florian Laws. 2008. Estima-
tion of conditional probabilities with decision trees
and an application to fine-grained pos tagging. In
Proceedings of the 22Nd International Conference
on Computational Linguistics - Volume 1, COLING
’08, pages 777–784, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Ilya Sutskever, James Martens, and Geoffrey Hinton.
2011. Generating text with recurrent neural net-
works. In Lise Getoor and Tobias Scheffer, editors,
Proceedings of the 28th International Conference
on Machine Learning (ICML-11), ICML ’11, pages
1017–1024, New York, NY, USA, June. ACM.

Andrew Viterbi. 1967. Error bounds for convolutional
codes and an asymptotically optimum decoding al-
gorithm. IEEE Trans. Inf. Theor., 13(2):260–269,
April.

Alexander Waibel, Toshiyuki Hanazawa, Geofrey Hin-
ton, Kiyohiro Shikano, and Kevin J. Lang, 1990.
Readings in Speech Recognition, chapter Phoneme
Recognition Using Time-delay Neural Networks,
pages 393–404. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

Xiang Zhang and Yann LeCun. 2015. Text understand-
ing from scratch. CoRR, abs/1502.01710.

237

Chapter D. Previous work on subword-based POS tagging 129

Titre : Modèles de langue neuronaux: Gestion des grands vocabulaires

Mots clés : Réseaux de Neurones, Modèles de Langue, Grands Vocabulaires

Résumé : Le travail présenté dans cette thèse ex-
plore les méthodes pratiques utilisées pour facili-
ter l’entraı̂nement et améliorer les performances des
modèles de langues munis de très grands vocabu-
laires. La principale limite à l’utilisation des modèles
de langue neuronaux est leur coût computationnel:
il dépend de la taille du vocabulaire avec laquelle
il grandit linéairement. La façon la plus aisée de
réduire le temps de calcul de ces modèles reste de
limiter la taille du vocabulaire, ce qui est loin d’être
satisfaisant pour de nombreuses tâches. La plupart
des méthodes existantes pour l’entraı̂nement de ces
modèles à grand vocabulaire évitent le calcul de la
fonction de partition, qui est utilisée pour forcer la dis-
tribution de sortie du modèle à être normalisée en une
distribution de probabilités. Ici, nous nous concen-
trons sur les méthodes à base d’échantillonnage, dont
le sampling par importance et l’estimation contrastive

bruitée. Ces méthodes permettent de calculer facile-
ment une approximation de cette fonction de partition.
L’examen des mécanismes de l’estimation contrastive
bruitée nous permet de proposer des solutions qui
vont considérablement faciliter l’entraı̂nement, ce que
nous montrons expérimentalement. Ensuite, nous
utilisons la généralisation d’un ensemble d’objec-
tifs basés sur l’échantillonnage comme divergences
de Bregman pour expérimenter avec de nouvelles
fonctions objectif. Enfin, nous exploitons les infor-
mations données par les unités sous-mots pour
enrichir les représentations en sortie du modèle.
Nous expérimentons avec différentes architectures,
sur le Tchèque, et montrons que les représentations
basées sur les caractères permettent l’amélioration
des résultats, d’autant plus lorsque l’on réduit conjoin-
tement l’utilisation des représentations de mots.

Title : Neural language models: Dealing with large vocabularies

Keywords : Neural Networks, Language Modelling, Large Vocabularies

Abstract : This work investigates practical methods
to ease training and improve performances of neural
language models with large vocabularies. The main
limitation of neural language models is their expen-
sive computational cost: it depends on the size of the
vocabulary, with which it grows linearly. Despite seve-
ral training tricks, the most straightforward way to limit
computation time is to limit the vocabulary size, which
is not a satisfactory solution for numerous tasks. Most
of the existing methods used to train large-vocabulary
language models revolve around avoiding the compu-
tation of the partition function, ensuring that output
scores are normalized into a probability distribution.
Here, we focus on sampling-based approaches, inclu-
ding importance sampling and noise contrastive esti-
mation. These methods allow an approximate compu-
tation of the partition function. After examining the me-
chanism of self-normalization in noise-contrastive es-

timation, we first propose to improve its efficiency with
solutions that are adapted to the inner workings of the
method and experimentally show that they conside-
rably ease training. Our second contribution is to ex-
pand on a generalization of several sampling based
objectives as Bregman divergences, in order to expe-
riment with new objectives. We use Beta divergences
to derive a set of objectives from which noise contras-
tive estimation is a particular case. Finally, we aim at
improving performances on full vocabulary language
models, by augmenting output words representation
with subwords. We experiment on a Czech dataset
and show that using character-based representations
besides word embeddings for output representations
gives better results. We also show that reducing the
size of the output look-up table improves results even
more.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	List of Figures
	List of Tables
	Introduction
	From Discrete to Neural Language Models
	Discrete language models
	Neural network language models
	Feedforward language models
	Recurrent neural network language models

	Practical considerations
	Evaluation
	Choosing hyperparameters
	The computational bottleneck

	Avoiding direct normalization: Existing strategies
	Hierarchical language models
	Importance Sampling
	Application to Language Modeling
	Target Sampling
	Complementary Sum-Sampling

	Density estimation as a classification task: discriminative objectives
	Noise Contrastive Estimation
	BlackOut
	Negative Sampling

	Avoiding normalization by constraining the partition function
	Conclusions

	Detailled analysis of Sampling-Based Algorithms
	Choosing k and Pn: impact of the parametrization of sampling
	Effects on Importance Sampling
	Effects on Noise-Contrastive Estimation

	Impact of the partition function on the training behaviour of NCE
	Self-normalization is crucial for NCE
	Influence of the shape of Pn on self-normalization
	How do these factors affect learning ?

	Easing the training of neural language models with NCE
	Helping the model by learning to scale
	Helping the model with a well-chosen initialization
	Summary of results with sampling-based algorithms

	Conclusions

	Extending Sampling-Based Algorithms
	Language model objective functions as Bregman divergences
	Learning by minimizing a Bregman divergence
	Directly learning the data distribution

	Learning un-normalized models using Bregman divergences
	Learning by matching the ratio of data and noise distributions
	Experimenting with learning un-normalized models

	From learning ratios to directly learning classification probabilities
	Minimizing the divergence between posterior classification probabilities and link to NCE
	Directly applying -divergences to binary classification

	Conclusions

	Output Subword-based representations for language modeling
	Representing words
	Decomposition into characters
	Decomposing morphologically

	Application to language modeling
	Experiments on Czech with subword-based output representations
	Influence of the vocabulary size
	Effects of the representation choice
	Influence of the word embeddings vocabulary size

	Supplementary results and conclusions
	Training with improved NCE on Czech
	Comparative experiments on English

	Conclusions

	Conclusion
	List of publications
	References
	Proofs on Bregman divergences
	Subword-based models: supplementary results with NCE
	Subword-based models: supplementary results on embedding sizes influence
	Previous work on subword-based POS tagging

